Giambattista Amati
Claudio Carpineto
Giovanni Romano (Eds.)

Advances in
Information Retrieval

29th European Conference on IR Research, ECIR 2007
Rome, Italy, April 2007
Proceedings

LNCS 4425

‘@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4425

Giambattista Amati Claudio Carpineto
Giovanni Romano (Eds.)

Advances in
Information Retrieval

29th European Conference on IR Research, ECIR 2007
Rome, Italy, April 2-5, 2007
Proceedings

@ Springer

Volume Editors

Giambattista Amati

Claudio Carpineto

Giovanni Romano

Fondazione Ugo Bordoni

Via Baldassarre Castiglione 59, 00142 Rome, Italy
E-mail:{gba, carpinet, romano} @fub.it

Library of Congress Control Number: 2007923290

CR Subject Classification (1998): H.3, H.2,1.2.3,1.2.6-7, H4, H.5.4, 1.7

LNCS Sublibrary: SL 3 — Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-71494-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71494-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12038824 06/3142 543210

Preface

This volume contains the papers presented at ECIR 2007, the 29th European
Conference on Information Retrieval. The conference was organized by the Fon-
dazione Ugo Bordoni (FUB), in cooperation with the Information Retrieval Spe-
cialist Group of the British Computer Society (BCS-IRSG) and the ACM Special
Interest Group on Information Retrieval (ACM SIGIR). It was held during April
2-5, 2007 in Rome, hosted by the National Research Council of Italy (CNR).

The conference was initially established by BCS-IRSG in the United Kingdom
under the name “Annual Colloquium on Information Retrieval Research”. When
the involvement of Continental Europe became more important, it was decided
to alternate the conference venue between the UK and Continental Europe.
Starting from 2001, the conference was renamed ECIR. In the last few years,
ECIR has grown steadily, becoming the major European forum for research on
information retrieval.

ECIR 2007 has dramatically confirmed the growth trend, with a high record
number of submissions. In four years the number of full-paper submissions to
ECIR has nearly tripled, going from 88 (2004, Sunderland) to 124 (2005, Santiago
de Compostela), then to 175 (2006, London), and now to 220 (2007, Rome).
ECIR 2007 has also attracted more and more people from outside Europe, thus
making the conference a large, truly international event. Furthermore, in spite
of these major changes, the traditional strong focus on students has been well
preserved, for their participation has been massive.

The large number of sponsors of ECIR 2007 both reflects the increasing
importance of the conference and is a key to its success. The sponsorship con-
tribution was primarily used to support student attendance and to invite three
internationally renowned researchers to give a keynote speech, namely, Andrei
Broder (Yahoo! Research), Stephen Robertson (Microsoft Research Cambridge
and City University London), and Marco Gori (University of Siena).

Turning to the reviewing process, the Program Committee (PC) of ECIR
2007 was formed by 147 members, 41 of whom were non-European. To increase
consistency of refereeing, the PC was split in subgroups of homogeneous expertise
with three members each, and each subgroup was then assigned a bunch of
related papers.

In response to the call for papers, 220 submissions were received. Each sub-
mission was normally reviewed by three PC members. In case of a strong dis-
agreement, the reviewers were given a chance to change their reviews before
the PC meeting. The reviews were then thoroughly discussed by the 19 par-
ticipants in the PC meeting, which was held at FUB in Rome. Decisions were
based on the scores assigned by the reviewers and on the reviews themselves.
When the reviews of a paper were not sufficient to make a decision, the paper
went through an extra review at the PC meeting. Out of the 220 submissions,

VI Preface

42 were accepted for presentation at the conference. Interestingly, 23 of these
had a full-time student as the primary author.

In addition, at the PC meeting, it was decided to create a short-paper session
because there were many papers with good scores that would have been rejected
due to high competition and limited capacity for oral presentation at the confer-
ence. Nineteen papers were accepted as short papers. Short papers were given 8
pages in the proceeding (instead of 12), with the short-paper session consisting of
a brief oral presentation of all short papers followed by a poster-style exhibition.

There was also a separate call for posters. Each of the 72 poster submis-
sions was normally reviewed by three PC members, as with paper submissions.
Twenty-one posters were accepted for presentation.

The topics covered by the accepted papers span well-established as well
as emerging research areas, with a concentration on indexing techniques, dis-
tributed information retrieval, and query processing. The 42 full papers have
been grouped in the following way: Theory and Design (5), Efficiency (5), Peer-
to-Peer Networks (4), Result Merging (2), Queries (4), Relevance Feedback (2),
Evaluation (2), Classification and Clustering (4), Filtering (4), Topic Identifica-
tion (2), Expert Finding (2), XML (2), Web IR (2), Multimedia IR (2).

The success of ECIR 2007 was due to a huge number of people and several
organizations who were involved in the various stages of the whole process. We
thank the researchers who submitted their results, the members of the Program
Committee for reviewing many papers in a short time, the members of the local
Organizing Committee for their hard work over many months, the members of
the Award Committees for choosing the best paper and the the best student
paper, the keynote speakers for accepting our invitation, the Italian National
Research Council for providing the conference venue, the sponsoring organiza-
tions for providing the money. We are deeply indebted to all of them. We would
also like to thank the members of BCS-IRSG and the organizers of ECIR 2006
for their useful help. Finally, a special thanks to Fondazione Ugo Bordoni, whose
support was invaluable for running the whole conference.

We would like to conclude this preface on a more personal note. Although the
amount of work required was definitely harder than expected, we now feel that
it was worth it! Organizing and running ECIR 2007 was a great experience for
us. We are very happy especially because of our own historical involvement in
ECIR. We have seen how the conference has grown over time and we are proud
to have contributed to making it a key event in the information retrieval field.

Enjoy the papers!

January 2007 Giambattista Amati
Claudio Carpineto
Giovanni Romano

Organization

ECIR 2007 was organized by the Fondazione Ugo Bordoni (FUB), in collabora-
tion with the Information Retrieval Specialist Group of the British Computer
Society (BCS-IRSG) and the ACM Special Interest Group on Information Re-
trieval (ACM-SIGIR).

General and Program Chairs

Giambattista Amati, Fondazione Ugo Bordoni, Rome, Italy
Claudio Carpineto, Fondazione Ugo Bordoni, Rome, Italy
Giovanni Romano, Fondazione Ugo Bordoni, Rome, Italy

Local Organization Committee

Marilena Carletti, Fondazione Ugo Bordoni
Annalisa Filardo, Fondazione Ugo Bordoni
Sara Saverione, Fondazione Ugo Bordoni
Stefania Vinci, Fondazione Ugo Bordoni
Guido Zampilloni, Fondazione Ugo Bordoni

Program Committee

Maristella Agosti, University of Padova, Italy

James Allan, University of Massachusetts, Amherst, USA
Massih-Reza Amini, Université Pierre et Marie Curie, France
Einat Amitay, IBM Research Lab, Haifa, Israel

Giuseppe Attardi, University of Pisa, Italy

Leif Azzopardi, University of Strathclyde, UK

Ricardo Baeza-Yates, Yahoo! Research, Barcelona, Spain
Alex Bailey, Google, UK

Alvaro Barreiro, Universidade da Coruna, Spain

Roberto Basili, University of Tor Vergata, Roma, Italy
Holger Bast, Max Planck Institute for Informatics, Germany
Micheline Beaulieu, University of Sheffield, UK

Michel Beigbeder, Ecole Nationale Supérieure, Saint-Etienne, France
Nicholas Belkin, Rutgers University, USA

Gloria Bordogna, IDPA CNR, Italy

Theo Bothma, University of Pretoria, South Africa

VIII Organization

Mohand Boughanem, University Paul Sabatier, France
Giorgio Brajnik, Universita di Udine, Italy

Martin Braschler, Zurich University of Applied Sciences, Switzerland
Peter Bruza, Queensland University of Technology, Australia
Stefan Biittcher, University of Waterloo, Canada

Wray Buntine, Helsinki Institute of Information Technology, Finland
Fidel Cacheda, Universidade da Coruna, Spain

Jamie Callan, Carnegie Mellon University, USA

Caterina Caracciolo, FAO, Italy

David Carmel, IBM Research Lab, Haifa, Israel

Carlos Castillo, Yahoo! Research, Spain

Yves Chiaramella, IMAG, Grenoble, France

Paul-Alexandru Chirita, 1.3S Research Center, Hannover, Germany
Charles L. A. Clarke, University of Waterloo, Canada

Paul Clough, University of Sheffield, UK

Gordon Cormack, University of Waterloo, Canada

Nick Craswell, Microsoft, USA

Fabio Crestani, University of Strathclyde, UK

Bruce Croft, University of Massachusetts, Amherst, USA
Pablo De la Fuente, Universidad de Valladolid, Spain

Renato De Mori, University of Avignon, France

Maarten de Rijke, University of Amsterdam, The Netherlands
Arjen de Vries, CWI, The Netherlands

Marcello Federico, Istituto Trentino di Cultura, Italy

Ronen Feldman, Bar-Ilan University, Israel

Juan Manuel Ferndndez Luna, University of Granada, Spain
Paolo Ferragina, University of Pisa, Italy

Nicola Ferro, University of Padova, Italy

Edward Fox, Virginia Tech, USA

Johannes Fiirnkranz, TU Darmstadt, Germany

Norbert Fuhr, University of Duisburg-Essen, Germany
Patrick Gallinari, LIP6, Université Pierre et Marie Curie, France
Eric Gaussier, Xerox Research Centre Europe, France

C. Lee Giles, Pennsylvania State University, USA

Mark Girolami, University of Glasgow, UK

Ayse Goker, Robert Gordon University, UK

Julio Gonzalo, UNED, Spain

Margaret Graham, Northumbria University, UK

Warren Greiff, The MITRE Corporation, USA

David Grossman, Illinois Institute of Technology, USA
Antonio Gulli, ASK, Italy

Cathal Gurrin, Dublin City University, Ireland

Preben Hansen, SICS, Sweden

David Hawking, CSTRO ICT Centre, Australia

Organization X

Ben He, University of Glasgow, UK

William Hersh, Oregon Health Sciences University, USA

Djoerd Hiemstra, University of Twente, The Netherlands

Eduard Hoenkamp, University of Nijmegen, The Netherlands
Andreas Hotho, Universitt Kassel, Germany

Xiaohua Hu, Drexel University, USA

Theo Huibers, University of Twente, The Netherlands

Peter Ingwersen, Royal School of Library and Information Science, Denmark
Mario J. Gaspar da Silva, University of Lisbon, Portugal

Kalervo Jarvelin, University of Tampere, Finland

Gareth Jones, Dublin City University, Ireland

Joemon Jose, University of Glasgow, UK

Jaap Kamps, University of Amsterdam, The Netherlands

Jussi Karlgren, SICS, Sweden

Gabriella Kazai, Microsoft, Cambridge, UK

Manolis Koubarakis, Technical University of Crete, Greece

Wessel Kraaij, TNO TPD, The Netherlands

S. Ravi Kumar, Yahoo! Research, USA

Kui-Lam Kwok, Queens College, City University of New York, USA
Mounia Lalmas, Queen Mary, University of London, UK

Monica Landoni, University of Strathclyde, UK

Birger Larsen, Royal School of Library and Information Science, Denmark
Mun-Kew Leong, Laboratories of Information Technology, Singapore
David Lewis, David D. Lewis Consulting, USA

Xuelong Li, School of Computer Science and Information Systems, London, UK
Yang Lingpeng, Institute for Infocomm Research, Singapore
Christina Lioma, University of Glasgow, UK

David Losada, University of Santiago de Compostela, Spain

Craig Macdonald, University of Glasgow, UK

Andrew MacFarlane, City University, London, UK

Marco Maggini, University of Siena, Italy

Bernardo Magnini, Istituto Trentino di Cultura, Italy

Massimo Melucci, University of Padova, Italy

Alessandro Micarelli, University of Roma Tre, Italy

Stefano Mizzaro, University of Udine, Italy

Dunja Mladenic, Jozef Stefan Institute, Slovenia

Marie-Francine Moens, Katholieke Universiteit Leuven, Belgium
Alistair Moffat, University of Melbourne, Australia

Josiane Mothe, IRIT, France

Gheorghe Muresan, Rutgers University, USA

Jian-Yun Nie, University of Montreal, Canada

Michael Oakes, University of Sunderland, UK

Stanislaw Osinski, Poznan Supercomputing and Networking Center, Poland
Tadh Ounis, University of Glasgow, UK

X Organization

Marius Pasca, Google, USA

Gabriella Pasi, University of Milano - Bicocca, Italy

Jan O. Pedersen, Yahoo!, USA

Nils Pharo, Oslo University College, Norway

Vassilis Plachouras, University of Glasgow, UK

Jay Ponte, Google, USA

Victor Poznanski, Sharp, UK

Andreas Rauber, Vienna University of Technology, Austria
Stephen Robertson, Microsoft Research, UK

Thomas Rolleke, Queen Mary, University of London, UK
Stefan Riiger, Imperial College, UK

Song Ruihua, Microsoft Research Asia, China

Tan Ruthven, University of Strathclyde, UK

Dominich Sandor, University of Veszprem, Hungary

Ralf Schenkel, Max-Planck-Institut fiir Informatik, Germany
Hinrich Schuetze, University of Stuttgart, Germany

Giovanni Semeraro, University of Bari, Italy

Stefan Siersdorfer, Max Planck Institute for Computer Science, Germany
Fabrizio Silvestri, ISTT CNR, Italy

Alan Smeaton, Dublin City University, Ireland

Barry Smyth, University College Dublin, Ireland

Vaclav Snasel, VSB-Technical University Ostrava, Czech Republic
Eero Sormunen, University of Tampere, Finland

Amanda Spink, Queensland University of Technology, Australia
John Tait, University of Sunderland, UK

Martin Theobald, Max Planck Institute for Informatics, Germany
Ulrich Thiel, Fraunhofer IPSI, Germany

Anastasios Tombros, Queen Mary, University of London, UK
Andrew Tomkins, Yahoo!, USA

Stephen Tomlinson, Hummingbird, USA

Pertti Vakkari, University of Tampere, Finland

Keith van Rijsbergen, University of Glasgow, UK

Olga Vechtomova, University of Waterloo, Canada

Dawid Weiss, Poznan University of Technology, Poland

Ross Wilkinson, CSIRO ICT Centre, Australia

Wensi Xi, Google, USA

Tao Yang, ASK, USA

Elad Yom-Tov, IBM Research Lab, Haifa, Israel

Hugo Zaragoza, Yahoo! Research, Barcelona, Spain

Hua-Jun Zeng, Microsoft Research Asia, China

ChengXiang Zhai, University of Illinois at Urbana-Champaign, USA
Dell Zhang, University of London, UK

Justin Zobel, RMIT, Australia

Organization
Paper Awards (Sponsored by Yahoo! Research)

Best Paper Award Committee

Fabio Crestani, University of Strathclyde, UK (Chair)
David Losada, University of Santiago de Compostela, Spain
Hinrich Schuetze, University of Stuttgart, Germany

Best Student Paper Award Committee

Maristella Agosti, University of Padova, Italy (Chair)
David Lewis, David D. Lewis Consulting, USA
Giovanni Semeraro, University of Bari, Italy

Additional Reviewers

Eija Airio, University of Tampere, Finland

Mark Baillie, University of Strathclyde, UK

Nuno Cardoso, University of Lisboa, Portugal

Mauro Cettolo, Istituto Trentino di Cultura, Italy
Marco Degemmis, University of Bari, Italy

Gianna Del Corso, University of Pisa, Italy

Chris H.Q. Ding, Lawrence Berkeley National Laboratory, USA
Nicola Fanizzi, University of Bari, Italy

Stefano Ferilli, University of Bari, Italy

Claudio Giuliano, Istituto Trentino di Cultura, Italy
Milen Kouylekov, Istituto Trentino di Cultura, Italy
Jie Lu, Carnegie Mellon University, USA

Pasquale Lops, University of Bari, Italy

Joao Magalhaes, Imperial College, UK

Inderjeet Mani, The MITRE Corporation, USA
Vanessa Murdock, Yahoo! Research, Barcelona, Spain
Matteo Negri, Istituto Trentino di Cultura, Italy
Domenico Redavid, University of Bari, Italy

James Thom, RMIT, Australia

XI

Table of Contents

Keynote Talks

The Next Generation Web Search and the Demise of the Classic IR
Model ...
Andrei Broder

The Last Half-Century: A Perspective on Experimentation in
Information Retrieval
Stephen Robertson

Learning in Hyperlinked Environments
Marco Gori

Theory and Design

A Parameterised Search System.
Roberto Cornacchia and Arjen P. de Vries

Similarity Measures for Short Segments of Text
Donald Metzler, Susan Dumais, and Christopher Meek

Multinomial Randomness Models for Retrieval with Document Fields. ..
Vassilis Plachouras and ladh Ounis

On Score Distributions and Relevance
Stephen Robertson

Modeling Term Associations for Ad-Hoc Retrieval Performance Within
Language Modeling Framework
Xing Wei and W. Bruce Croft

Efficiency

Static Pruning of Terms in Inverted Files
Roi Blanco and Alvaro Barreiro

Efficient Indexing of Versioned Document Sequences..................
Michael Herscovici, Ronny Lempel, and Sivan Yogev

Light Syntactically-Based Index Pruning for Information Retrieval
Christina Lioma and ladh Ounis

Sorting Out the Document Identifier Assignment Problem.............

Fabrizio Silvestri

Efficient Construction of FM-index Using Overlapping Block Processing

for Large Scale Textsottt

Di Zhang, Yunguan Zhang, and Jing Chen

16

28

40

92

64

76

88

X1V Table of Contents

Peer-to-Peer Networks (In Memory of Henrik
Nottelmann)

Performance Comparison of Clustered and Replicated Information
Retrieval Systems
Fidel Cacheda, Victor Carneiro, Vassilis Plachouras, and ladh Ounis

A Study of a Weighting Scheme for Information Retrieval in
Hierarchical Peer-to-Peer Networks
Massimo Melucci and Alberto Poggiani

A Decision-Theoretic Model for Decentralised Query Routing in
Hierarchical Peer-to-Peer Networks i ...
Henrik Nottelmann and Norbert Fuhr

Central-Rank-Based Collection Selection in Uncooperative Distributed
Information Retrieval

Milad Shokouhi

Result Merging

Results Merging Algorithm Using Multiple Regression Models
George Paltoglou, Michail Salampasis, and Maria Satratzemi

Segmentation of Search Engine Results for Effective Data-Fusion.
Milad Shokouhi

Queries

Query Hardness Estimation Using Jensen-Shannon Divergence Among
Multiple Scoring Functions i
Javed A. Aslam and Virgil Pavlu

Query Reformulation and Refinement Using NLP-Based Sentence

Clustering
Frédéric Roulland, Aaron Kaplan, Stefania Castellani, Claude Roux,
Antonietta Grasso, Karin Pettersson, and Jacki O’Neill

Automatic Morphological Query Expansion Using Analogy-Based
Machine Learning
Fabienne Moreau, Vincent Claveau, and Pascale Sébillot

Advanced Structural Representations for Question Classification and
Answer Re-ranking
Silvia Quarteroni, Alessandro Moschitti, Suresh Manandhar, and

Roberto Basili

Relevance Feedback

Incorporating Diversity and Density in Active Learning for Relevance
Feedback
Zuobing Xu, Ram Akella, and Yi Zhang

Table of Contents

Relevance Feedback Using Weight Propagation Compared with
Information-Theoretic Query Expansion
Fadi Yamout, Michael Oakes, and John Tait

Evaluation

A Retrieval Evaluation Methodology for Incomplete Relevance
ASSESSINENES . . .ot
Mark Baillie, Leif Azzopardi, and lan Ruthven

Evaluating Query-Independent Object Features for Relevancy
Prediction e
Andres R. Masegosa, Hideo Joho, and Joemon M. Jose

Classification and Clustering

The Utility of Information Extraction in the Classification of Books
Tom Betts, Maria Milosavljevic, and Jon Oberlander

Combined Syntactic and Semantic Kernels for Text Classification
Stephan Bloehdorn and Alessandro Moschitti

Fast Large-Scale Spectral Clustering by Sequential Shrinkage
Optimization
Tie-Yan Liu, Huai-Yuan Yang, Xin Zheng,
Tao Qin, and Wei-Ying Ma
A Probabilistic Model for Clustering Text Documents with Multiple
Fields . ..o

Shanfeng Zhu, Ichigaku Takigawa, Shugin Zhang, and
Hiroshi Mamitsuka

Filtering
Personalized Communities in a Distributed Recommender System

Sylvain Castagnos and Anne Boyer

Information Recovery and Discovery in Collaborative Web Search
Maurice Coyle and Barry Smyth

Collaborative Filtering Based on Transitive Correlations Between
e .
Alexandros Nanopoulos

Entropy-Based Authorship Search in Large Document Collections
Ying Zhao and Justin Zobel

Topic Identification

Use of Topicality and Information Measures to Improve Document
Representation for Story Link Detection
Chirag Shah and Koji Eguchi

XV

XVI Table of Contents

Ad Hoc Retrieval of Documents with Topical Opinion
Jason Skomorowski and Olga Vechtomova

Expert Finding
Probabilistic Models for Expert Finding
Hui Fang and ChengXiang Zhai

Using Relevance Feedback in Expert Search
Craig Macdonald and ladh Ounis

XML IR

Using Topic Shifts for Focussed Access to XML Repositories
Elham Ashoori and Mounia Lalmas

Feature- and Query-Based Table of Contents Generation for XML
Documents
Zoltan Szlavik, Anastasios Tombros, and Mounia Lalmas

Web IR

Setting Per-field Normalisation Hyper-parameters for the Named-Page
Finding Search Task......... ..
Ben He and ladh Ounis

Combining Evidence for Relevance Criteria: A Framework and
Experiments in Web Retrieval
Theodora Tsikrika and Mounia Lalmas

Multimedia IR

Classifier Fusion for SVM-Based Multimedia Semantic Indexing.
Stéphane Ayache, Georges Quénot, and Jérdme Gensel

Search of Spoken Documents Retrieves Well Recognized Transcripts
Mark Sanderson and Xiao Mang Shou

Short Papers

Natural Language Processing for Usage Based Indexing of Web
Resources . .. oo
Anne Boyer and Armelle Brun

Harnessing Trust in Social Search
Peter Briggs and Barry Smyth

How to Compare Bilingual to Monolingual Cross-Language Information
Retrievalo
Franco Crivellari, Giorgio Maria Di Nunzio, and Nicola Ferro

Multilingual Text Classification Using Ontologies
Gerard de Melo and Stefan Siersdorfer

Table of Contents XVII

Using Visual-Textual Mutual Information and Entropy for Inter-modal
Document Indexing i 549
Jean Martinet and Shin’ichi Satoh

A Study of Global Inference Algorithms in Multi-document
Summarization 557

Ryan McDonald

Document Representation Using Global Association Distance Model.... 565
José E. Medina-Pagola, Ansel Y. Rodriguez,
Abdel Hechavarria, and José Hernandez Palancar

Sentence Level Sentiment Analysis in the Presence of Conjuncts Using

Linguistic Analysis 573
Arun Meena and T.V. Prabhakar
PageRank: When Order Changesc.. ... 581

Massimo Melucci and Luca Pretto

Model Tree Learning for Query Term Weighting in Question
ANSWETING ..o 589
Christof Monz

Examining Repetition in User Search Behavior 597
Mark Sanderson and Susan Dumais

Popularity Weighted Ranking for Academic Digital Libraries 605
Yang Sun and C. Lee Giles

Naming Functions for the Vector Space Model 613
Yannis Tzitzikas and Yannis Theoharis

Effective Use of Semantic Structure in XML Retrieval 621
Roelof van Zwol and Tim van Loosbroek

Searching Documents Based on Relevance and Type.................. 629
Jun Xu, Yunbo Cao, Hang Li, Nick Craswell, and Yalou Huang

Investigation of the Effectiveness of Cross-Media Indexing 637
Murat Yakici and Fabio Crestani

Improve Ranking by Using Image Information 645
Qing Yu, Shuming Shi, Zhiwei Li, Ji-Rong Wen, and Wei-Ying Ma

N-Step PageRank for Web Search 653
Li Zhang, Tao Qin, Tie-Yan Liu, Ying Bao, and Hang Li

Authorship Attribution Via Combination of Evidence................. 661

Ying Zhao and Phil Vines

Posters

Cross-Document Entity Tracking........ o ... 670
Roxana Angheluta and Marie-Francine Moens

XVIII Table of Contents

Enterprise People and Skill Discovery Using Tolerant Retrieval and
Visualization 674
Jan Brunnert, Omar Alonso, and Dirk Riehle

Experimental Results of the Signal Processing Approach to
Distributional Clustering of Terms on Reuters-21578 Collection. 678
Marta Capdevila Dalmau and Oscar W. Marquez Florez

Overall Comparison at the Standard Levels of Recall of Multiple

Retrieval Methods with the Friedman Test 682
José M. Casanova, Manuel A. Presedo Quindimil, and
Alvaro Barreiro

Building a Desktop Search Test-Bed 686
Sergey Chernov, Pavel Serdyukov, Paul-Alexandru Chirita,
Gianluca Demartini, and Wolfgang Nejdl

Hierarchical Browsing of Video Key Frames 691
Gianluigi Ciocca and Raimondo Schettini

Active Learning with History-Based Query Selection for Text
Categorisation 695
Michael Davy and Saturnino Luz

Fighting Link Spam with a Two-Stage Ranking Strategy 699
Guang-Gang Geng, Chun-Heng Wang, Qiu-Dan Li, and
Yuan-Ping Zhu

Improving Naive Bayes Text Classifier Using Smoothing Methods 703
Feng He and Xiaoging Ding

Term Selection and Query Operations for Video Retrieval 708
Bouke Huurnink and Maarten de Rijke

An Effective Threshold-Based Neighbor Selection in Collaborative
Filtering oo 712
Taek-Hun Kim and Sung-Bong Yang

Combining Multiple Sources of Evidence in XML Multimedia

Documents: An Inference Network Incorporating Element Language

Models . ..o 716
Zhigang Kong and Mounia Lalmas

Language Model Based Query Classification 720
Andreas Merkel and Dietrich Klakow

Integration of Text and Audio Features for Genre Classification in
Music Information Retrieval, 724
Robert Neumayer and Andreas Rauber

Retrieval Method for Video Content in Different Format Based on
Spatiotemporal Features 728
Xuefeng Pan, Jintao Li, Yongdong Zhang, Sheng Tang, and
Juan Cao

Table of Contents

Combination of Document Priors in Web Information Retrieval
Jie Peng and ladh Ounis

Enhancing Expert Search Through Query Modeling
Pavel Serdyukov, Sergey Chernov, and Wolfgang Nejdl

A Hierarchical Consensus Architecture for Robust Document
CIUSEEIING . ottt
Xavier Sevillano, German Cobo, Francesc Alias, and
Joan Claudi Socord

Summarisation and Novelty: An Experimental Investigation
Simon Sweeney, Fabio Crestani, and David E. Losada

A Layered Approach to Context-Dependent User Modelling
Elena Vildjiounaite and Sanna Kallio

A Bayesian Approach for Learning Document Type Relevance
Peter C.K. Yeung, Stefan Biittcher, Charles L.A. Clarke, and
Maheedhar Kolla

Author Index

XIX

The Next Generation Web Search and the
Demise of the Classic IR Model

Andrei Broder

Yahoo! Research, USA

broder@yahoo-inc.com

Abstract. The classic IR model assumes a human engaged in activity
that generates an “information need”. This need is verbalized and then
expressed as a query to search engine over a defined corpus. In the past
decade, Web search engines have evolved from a first generation based
on classic IR algorithms scaled to web size and thus supporting only
informational queries, to a second generation supporting navigational
queries using web specific information (primarily link analysis), to a third
generation enabling transactional and other “semantic” queries based on
a variety of technologies aimed to directly satisfy the unexpressed “user
intent”, thus moving further and further away from the classic model.

What is coming next? In this talk, we identify two trends, both rep-
resenting “short-circuits” of the model: The first is the trend towards
context driven Information Supply (IS), that is, the goal of Web IR
will widen to include the supply of relevant information from multiple
sources without requiring the user to make an explicit query. The in-
formation supply concept greatly precedes information retrieval; what is
new in the web framework, is the ability to supply relevant information
specific to a given activity and a given user, while the activity is being
performed. Thus the entire verbalization and query-formation phase are
eliminated. The second trend is “social search” driven by the fact that
the Web has evolved to being simultaneously a huge repository of knowl-
edge and a vast social environment. As such, it is often more effective
to ask the members of a given web milieu rather than construct elabo-
rate queries. This short-circuits only the query formulation, but allows
information finding activities such as opinion elicitation and discovery
of social norms, that are not expressible at all as queries against a fixed
corpus.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, p. 1, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Last Half-Century: A Perspective on
Experimentation in Information Retrieval

Stephen Robertson

Microsoft Research Cambridge and City University London, UK
ser@microsoft.com

Abstract. The experimental evaluation of information retrieval systems
has a venerable history. Long before the current notion of a search en-
gine, in fact before search by computer was even feasible, people in the
library and information science community were beginning to tackle the
evaluation issue. Sometimes it feels as though evaluation methodology
has become fixed (stable or frozen, according to your viewpoint). How-
ever, this is far from the case. Interest in methodological questions is as
great now as it ever was, and new ideas are continuing to develop. This
talk will be a personal take on the field.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, p. 2, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Learning in Hyperlinked Environments

Marco Gori

Dipartimento di Ingegneria dell’Informazione, University of Siena, Italy
marco@dii.unisi.it

Abstract. A remarkable number of important problems in different
domains (e.g. web mining, pattern recognition, biology ...) are natu-
rally modeled by functions defined on graphical domains, rather than
on traditional vector spaces. Following the recent developments in sta-
tistical relational learning, in this talk, I introduce Diffusion Learning
Machines (DLM) whose computation is very much related to Web rank-
ing schemes based on link analysis. Using arguments from function ap-
proximation theory, I argue that, as a matter of fact, DLM can compute
any conceivable ranking function on the Web. The learning is based
on a human supervision scheme that takes into account both the con-
tent and the links of the pages. I give very promising experimental re-
sults on artificial tasks and on the learning of functions used in link
analysys, like PageRank, HITS, and TrustRank. Interestingly, the pro-
posed learning mechanism is proven to be effective also when the rank
depends jointly on the page content and on the links. Finally, I argue
that the propagation of the relationships expressed by the links reduces
dramatically the sample complexity with respect to traditional learning
machines operating on vector spaces, thus making it reasonable the ap-
plication to real-world problems on the Web, like spam detection and
page classification.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, p. 3, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Parameterised Search System

Roberto Cornacchia and Arjen P. de Vries

CWI, Kruislaan 413, 1098SJ, Amsterdam, The Netherlands

{roberto,arjen}@cwi.nl

Abstract. This paper introduces the concept of a Parameterised Search
System (PSS), which allows flexibility in user queries, and, more im-
portantly, allows system engineers to easily define customised search
strategies. Putting this idea into practise requires a carefully designed
system architecture that supports a declarative abstraction language for
the specification of search strategies. These specifications should stay as
close as possible to the problem definition (i.e., the retrieval model to
be used in the search application), abstracting away the details of the
physical organisation of data and content. We show how extending an
existing XML retrieval system with an abstraction mechanism based on
array databases meets this requirement.

1 Introduction

For many years, information retrieval (IR) systems could be adequately described
as software that assign an estimate of relevancy to a pair of document and query,
each represented as a ‘bag-of-words’. The implementation of such search systems
has been relatively straightforward, and most engineers code the retrieval model
directly on top of an inverted file structure.

Trends in research and industry motivate however a reconsideration of the
above characterisation of IR. First, modern retrieval systems have become more
complex, as they exploit far more than ‘just’ the text. For example, the ranking
function combines query and document text with other types of evidence, de-
rived from, e.g., document markup, link structure, or various types of ‘context
information’. Also, work tasks supported by search have become diverse. Within
organisations, enterprise search refers to intranet search, but also search over
collections of e-mail, finding expertise, etc. [I]. People use web search indeed for
the goal of ‘finding information about’, but also to book a hotel, find a job, hunt
for a house, just to name a few. Companies are targeting these niche markets
with specialised search engines (known as vertical search).

Today, the development of such specialised applications is the job of informa-
tion retrieval specialists. We expect however that, very soon, any software devel-
oper should be able to develop applications involving search. Actually, Hawking
has stated that ‘an obvious reason for poor enterprise search is that a high per-
forming text retrieval algorithm developed in the laboratory cannot be applied
without extensive engineering to the enterprise search problem, because of the
complexity of typical enterprise information spaces’ [I]. Simplifying the process
of tailoring search to a specific work task and user context should therefore be
an important goal of IR research!

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 45 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Parameterised Search System 5

This paper proposes that the engineering of search systems may proceed
analogous to the development of office automation applications using relational
database management systems — define the ‘universe of discourse’; design a con-
ceptual schema; express the user application in terms of this schema; and, design
the user interface. So, software developers of a search application should have
access to a high-level declarative language to specify collection resources and
retrieval model. The search engine can then be parameterised for optimal effec-
tiveness: adapted to the work task and user context, optimised for specific types
of content in the collection, and specialised to exploit domain knowledge.

1.1 Anatomy of a Parameterised Search System

We refer to this new generation of information retrieval systems as parameterised
search engines (PSSs). Fig. [illustrates how a PSS differs from the traditional
search engine, in the so-called abstraction language. Its main purpose is to de-
couple search strategies from algorithms and data structures, bringing what
the database field calls data independence to IR systems. This abstraction lan-
guage should enable the search system developer to specify search strategies
declaratively, ideally without any consideration of the physical representation of
document structure and content.

Compare this to current practise using IR software like Lucene, Lemur, or
Terrier. These systems provide a variety of well-known ranking functions, imple-
mented on top of the physical document representation. The modular design of
the IR toolkit allows application developers to select one of these ranking func-
tions suited for their search problem. Design decisions about how to rank, e.g.,
weighting various types of documents differently with respect to their expected
contribution to relevancy, will however be part of the application code.

Summarising, a PSS provides a declarative IR language. Search application
developers specify the desired search strategy for a specific user and task con-
text in this language. The system translates expressions in this language into
operations on its internal data structures to perform the actual retrieval.

1.2 Approach, Contributions and Outline

This raises many open questions, the obvious one of course what the abstraction
language could look like. The main contribution of this work is to demonstrate
feasibility of the idea of a PSS through a (preliminary) prototype implemen-
tation. We propose a very specific instantiation of a PSS, by extending an ex-
isting XML IR system (PF/Tijah) with a formal language for the specification
of retrieval models (Matrix Framework for IR). Another contribution is to opera-
tionalise this theoretical framework for IR on an array database system (SRAM),
such that it can be deployed in practical search system implementation.

The remainder is organised as follows. Section [2] describes the layered archi-
tecture of the XML retrieval system PF/Tijah. Section [details how we turn
PF/Tijah into a PSS named Spiegle. We introduce its two main ingredients,
the Matrix Framework for IR formalism and the array data-model abstraction of

6 R. Cornacchia and A.P. de Vries

Conceptual Layer Conceptual Layer
User Query Language User Query Language
+
/ \ Logical Layer / \ Logical Layer
STRUCTURE CONTENT STRUCTURE CONTENT
Data Retrieval Abstraction Pata Retrieval Abstraction
fetch / browse f— A— fetch/browse A~
Models language Models language
algorithms System algorithms. patem
Engineer Engiser
X

System Data-model

Data Primitives

(a) Traditional (b) Parameterised

Physical Layer \ / Physical Layer

Data Primitives

Data Primitives

Storage

'

Fig. 1. Comparison of Search System architectures

SRAM, and explain how these are integrated. Section [l provides implementation
details. Related research is discussed in Section[Bl, before we conclude and outline
future work in Section [G

2 Querying Content and Structure in PF/Tijah

A preliminary requirement of implementing a PSS is that it allows to express
search strategies that refer to structure and content. Spiegle meets this require-
ment by building upon PF/Tijah [2], a flexible environment for setting up XML
search systems.

PF/Tijah integrates XQuery and NEXI: XQuery to query and transform the
structure of XML documents, NEXI (Narrowed Extended XPath) [3] to rank
XML elements by their content. The resulting query language provides a pow-
erful way to customise (mainly) the structural aspects of a retrieval strategy.
Its layered system architecture, depicted in Fig. uses the PathFinder (PF)
XQuery system [] to query by structure, as well as to construct the preferred
result presentation. PathFinder translates the XQuery (non-ranked) part of a
query into a relational query plan, independently from the ranking component
of the system.

The Tijah XML retrieval system provides the XML IR support, by process-
ing the NEXI expressions in a query. NEXI is a subset of XPath (it allows
only descendant and self axis steps) that allows an additional about () clause,
which ranks the selected XML elements by their content. The following example
retrieves, from a database of scientific publications, The title of documents
written by John Smith, where the abstract is about “IR DB integration”:

A Parameterised Search System 7

Conceptual Layer Conceptual Layer
‘ XQuery ‘ + ‘ NEXI ‘ ‘ XQuery ‘ + ‘ NEXI ‘
XML XML XML XML
(PathFinder) (PathFinder)
PF/Relational SRA PF/Relational SRA
/ \ Logical Layer / \ Logical Layer
STRUCTURE CONTENT STRUCTURE CONTENT
LED Retrieval Do Retrieval Array
fetch / browse fetch / browse A
Models Models language
algorithms algorthms | | | system
Enginear
i H (l e
i i SRAM
Egneor aneer System
/ \ Englme-,v
Physical Layer \(\ \/ / Physical Layer
PF / Relational Relational PF / Relational Relational
Primitives Primitives Primitives Primitives
Relational Relational
Storage Storage
(a) PF/Tijah (b) Spiegle

Fig. 2. Architectures of PF/Tijah and Spiegle

let $c := doc("papers.xml")//DOC[author = "John Smith"]
let $q := "//text[about(.//Abstract, IR DB integration)];"
for $res in tijah-query($c, $q)

return $res/title/text()

PF/Tijah translates the NEXI expression $q into a logical query plan
consisting of SRA (Score Region Algebra) operators [5]. The SRA algebra includes
operators that perform the following tasks: (i) selection of the XML elements
that are to be ranked; (ii) a parameterised element score computation, imple-
menting the about () clause according to the desired retrieval model; (iii) a
parameterised element score combination, i.e. compute the score of AND and OR
combinations of about () clauses; (iv) a parameterised element score propaga-
tion, needed when scores need to be propagated to a common ancestor before
being combined. As depicted in Fig. structured information retrieval queries
involve operations that act on structure (like (i)) and on content (e.g. (ii)). Each
SRA operator implementation is given in terms of relational database operators
(by a system engineer). Several retrieval models are supported out-of-the-box,
selected by an extra ‘options’ parameter to the tijah-query() function.

3 Spiegle: Turning an XML Retrieval System into a PSS

While PF/Tijah provides a powerful query language to embed search functional-
ity in data processing, it does not support customisation of the retrieval model.
Although advanced users may in principle modify the pre-defined mapping of
SRA operators to relational query plans to implement new ranking functions,

8 R. Cornacchia and A.P. de Vries

doing so is far from trivial. In other words, PF/Tijah supports the customisation
of the structural aspects of various search strategies, but it is inflexible with
respect to modifying the content aspects.

Spiegle overcomes this limitation in two steps. First, it supports the declarative
specification of retrieval models, by employing the Matrix Framework for IR. This
way, the search system engineer may implement information retrieval models at
a high level of abstraction. Second, SRAM translates the specified retrieval model
automatically into a relational query plan.

3.1 The Matrix Framework for IR: A Formalism for Search Strategies

The Matrix Framework for IR [6] (abbreviated to Matrix Framework) is a mathe-
matical formalism that maps a wide spectrum of IR concepts to matrix spaces
and matrix operations, providing a convenient logical abstraction that facilitates
the design of IR systems. Indexing, retrieval, relevance feedback and evaluation
measures are aspects described within the Matrix Framework. Also, it establishes
a consistent notation for frequencies in event spaces, readily available as building
blocks for IR applications in common matrix operation libraries.

We introduce only the part of the Matrix Framework that is focused on index-
ing and retrieval. First, we define three vectors, one for each of the dimensions
used in the framework: D = [wg]n«1 for documents, 7' = [w¢]sx1 for terms and
L = [w;] gx1 for locations, with 1 <d < N,1 <t < Sand 1 <[< R. The quanti-
ties wy > 0, w; > 0 and w; > 0 are the weight of document d, term ¢ and location
[, respectively. In the simplest case, these weights are boolean values that de-
note presence/absence in the collection. The term “location” is rather generic
and covers concepts indicating document components of varying granularity,
such as section, paragraph, position, or XML element.

The content and the structure of each data collection are entirely described
by the two boolean matrices LD« p (location-document) and LT}, 7 (location-
term), whereas each query is described by a vector Qrx1. As defined in (1), each
value LD(l,d) tells whether location [belongs to document d and each value
LT(l,t) encodes the occurrence of term ¢ at location [of the collection. Finally,
each query @ is described as a bit-vector of all collection-terms.

0, ifl¢d 0, iftel 0, if
LD(l’d):{1 ;flid’ LT(l’t):{1 ifiiw Q(t):{1 ifiig (1)

Standard IR statistics are defined as simple operations on matrices LD and LT"

DTy, DT — #term occurrences and term presence
DTy, = D" . LT, DT = min(DT,;,Ones[|D| x |T|]),
Dy, Thi — #per-document and #per-term locations
Dn=LD".L, T, =°1T". L, (2)
Dty Tha — #terms per document and #documents per term
Dpy = DT -T, Tnq=DT? . D,
where Ones[A x B] defines a matrix of size A x B, filled with 1’s.

A number of standard IR frequencies are easily derived from the quantities
defined above:

A Parameterised Search System 9

DTy — within-document term frequency

DTy (d,t
DTf(d,t) _ nl())
Dnl(d)
Dy, D;iy — term frequency and inverse term frequency of a document
Dyi(d
Dis@) = 1D Dius (@) = ~togDiy @), (3)
Taf, Tiqf — document frequency and inverse document frequency of a term
Tha(t
Tag) = 0 Tuag (1) = —togTys (1),
T, — collection frequency of a term
Tnl(t)
Ty(t) = |

Finally, it is possible to define a number of retrieval models using the quan-
tities and the frequencies described above. The tf.idf approach is specified as
RSViiar = DTy - diag (Tiar) - Q- Refer to [0] for many other retrieval models.

The Matrix Framework expresses indexing and retrieval tasks declaratively,
starting from a simple matrix-based representation of collection and queries,
and following a set of generic definitions that can be stored as a well-structured
system library. This facilitates the engineering of extensible retrieval systems,
as it allows a programming interface based on the array data-model (suited for
IR). Physical implementation is delegated to another, dedicated layer.

3.2 SRAM: An Array Data-Model Implementation

The SRAM system is a prototype tool for mapping sparse arrays to relations
and array operations to relational expressions. While SRAM syntax allows to
express array operations on an element by element basis, the system translates
such element-at-a-time operations to collection-oriented database queries, suited
for (potentially more efficient) bulk processing.

The SRAM language defines operations over arrays declaratively in com-
prehension syntax [7], which allows to declare arrays by means of the
following construct: A = [<array-cell value> | <array axes>]. The sec-
tion <array axes> specifies the shape S4 of result array A, i.e., its number
of dimensions and their domain, denoted as: ig < Ng,...,in_1 < Ny_1. The
value of each dimension variable ij ranges from 0 to Nj — 1. The section
<array-cell value> assigns a value to each cell indexed by the index val-
ues enumerated by the <array axes> section. For example, the expression
Tidf = [-log(Tdf(t)) | t < nTerms] defines a new array T;q[nTerms],
where the value of each cell is computed by applying the function —log to
corresponding cells of array Tyr. The explicit domain specification may be
omitted when its range is clear from the context, e.g., the more convenient
[-log(Tdf(t)) | t] is equivalent to [-log(Tdf(t)) | t < nTerms].

The language supports aggregations over any array dimension (sum, prod,
min, max). For example, summing per document the term frequency counts (in
a document-term matrix DT) of query terms (in binary vector Q) is expressed
as:P = [sum([DTf(d,t) * Q(t) | t 1) | 4 1. The shape Sp of array P is
determined by the rightmost axis d.

10 R. Cornacchia and A.P. de Vries

Retrieving the top-N values is allowed for one-dimensional arrays only. The
result consists of the positions (in order) of the values in the original array. So,
T = topN(P, N, <ASC|DESC>) returns a dense array T with Sy = [N]. The
actual values can then be fetched by dereferencing the original array, S = P(T).

The SRAM syntax allows definitions and assignments. Definitions are indicated
by the symbol “=",asin all the expressions seen above. They are expanded symbol-
ically by a preprocessor at every occurrence in the array expression. Assignments,
indicated by the symbol “:=" translate to database expressions whose result is
stored permanently in tables, named as indicated by the left part of the assign-
ment expression: <array name> := <comprehension expression>.

3.3 How Spiegle Applies the Array Data-Model

Fig. 2 shows how Spiegle inherits PF/Tijah’s logical layer, which provides an
algebraic abstraction (SRA) between the conceptual and physical layers. The
Spiegle architecture takes the point of logical abstraction further, by exploiting
the clean distinction between structure and content operations offered by SRA.
In the following, we first explain how the Matrix Framework can handle XML
documents. Next, we see how to bootstrap, index and rank XML collections
using the array data-model. The SRAM scripts shown are translated on-the-fly
into database queries executed by the backend.

The Matrix Framework and XML data. The formalism of the
Matrix Framework is not restricted to flat text search. Mapping the XML
structure to the three dimensions location, document and term is all that is
needed to apply the Matrix Framework to semi-structured collections. Each
XML file can be seen as a collection of documents, where each distinct XML
element represents a different one. The main difference from modelling plain text
collections is that locations are now shared among different (nested) elements.
Therefore, locations are defined as term and XML tag position in the file. Con-
sider the following excerpt of the papers.xml collection of scientific publications,
where location, document and term identifiers are annotated next to each piece
of text for the reader’s convenience, with 1, d and t prefixes respectively:
<PAPERS>[10,d0]

<p0C>[11,d1]

<text>[12,d2]
<Abstract>[13,d3] IR[14,t0] as[15,t1] simple[16,t2] as[17,t1] cakes[18,t3]</Abstract>[19]

</text>[140]

</D0C>[141]

<D0C>[142,d15] </DOC>[1120] ...
</PAPERS>[130000000]

Notice that (i) the two DOC elements have different identifiers; (ii) the two as oc-
currences have the same term identifier; (ii) locations 3 to 9 belong to documents
0,1,2 and 3.

Bootstrapping XML collections. A Matrix Framework representation of a
collection is obtained from vectors L, D and T and matrices LD and LT.

A Parameterised Search System 11

For the example collection papers.xml, this corresponds to a SRAM script with
the following definitions.

// global information for collection “papers.xml"‘\
nLocs=30000000 , nDocs=2000000 , nTerms=400000
L [1 1] 1< nLocs]

papers.ram : D =[11] d < nDocs]
T =[1] t < nTerms]
LD = [nLocs,nDocs], bool, sparse("0"), "LD_table"

Q [nLocs,nTerms], bool, sparse("0"), "LT_table"

First, the length of each dimension is defined as nLocs, nDocs, nTerms. Then,
vectors L, D and T are defined, using a constant weight 1. Finally, matrices
LD and LT are declared as persistently stored in the database, as they are
supposed to be the outcome of an earlier parsing and pre-processing phase on
the XML file. For each persistent matrix, the dimensionality, the element type,
the information on sparsity (LD and LT are both sparse with common value 0)
and the name of the corresponding relational table are specified. Section [gives
further details on the automatic creation of matrices LD and LT.

A script file similar to papers.ram is created automatically for each collec-
tion and it is included in every SRAM script that uses that particular collection.
Notice that the script file above only contains SRAM definitions and no assign-
ments (see Section B.2)), which result in simple in-memory declarations.

Array System Libraries. The uniform approach to IR tasks like indexing
and retrieval that the Matrix Framework provides is easily operationalised by
collecting the formulae presented in Section Bl in a system library composed
by SRAM expressions (automatically made collection-dependent using a unique
prefix for the collection’s stored arrays). Fig. Blshows an excerpt of such a library,
that is used in the subsequent paragraphs about indexing and retrieval of XML
collections. One can observe that the SRAM expressions are an almost direct
transcription of mathematical formulae to ASCII characters, which demonstrates
the intuitiveness of array comprehensions as an IR query language.

Indexing XML collections. The indexing phase creates statistical information
about a given collection. As described in Section[3] this entails the computation
of the matrices defined in (2) and (3). The definition of such matrices in SRAM
syntax is given in Fig.[3 file MF Indexing.ram. Notice that this file contains array
assignments, that create persistent arrays in the database. The SRAM script for
indexing the example papers.xml collection becomes straightforward: load the
collection’s global definitions, followed by the generic index-creation assignments:

~

J

Ranking XML collections. Recall the example query of Section [2 where
NEXI expression //text[about(.//Abstract, IR DB integration)] ranks the
“text” elements that contain an “Abstract” element about “IR DB integration”.
This structured IR part of the query is translated to SRA algebra. Selection
of text and their containing Abstract elements is performed by structure

#include "papers.ram" // global definitions for papers.xml
#include "MF_Indexing.ram" // create index arrays

12 R. Cornacchia and A.P. de Vries

#include "MF_DocContext.ram"

bm25(d,k1,b) = sum([w(d,t,k1,b) * Q(t) | t 1)

w(d,t,k1,b) = log(nDocs / Tdf(t)) * (ki1+1) * DTf(d,t)

/ (DTf(d,t) + k1 * (1 = b + b * Dnl(d) / avgDnl))

langmod(d,a) = sum([lp(d,t,a) * Q(t) | t 1)

1p(d,t,a) log(a*DTf(d,t) + (1-a)*Tf(t))
MF RetrievalModels.ram

#include "LinearAlgebra.ram" DTnl = [DTnl(d,t) * DX(d) | d,t]
DTnl := mxMult(mxTrnsp(LT), LD) Dnl = [Dnl(d) * DX(d) | d1]
Dnl := mvMult(mxTrnsp(LD), L) DT = [DT(d,t) * DX(d) | d,t]
Tnl := mvMult(mxTrnsp(LT), L) DTf = [DTf(d,t) * DX(d) | d,t]
DT = [min(DTnl(d,t),1) | d,t]
DTf := [DTnl(d,t)/Dnl(d) | d,t]
T = [Tnl(t)/nLocs | t]

MF Indexing.ram MF DocContext.ram
mxTrnsp (A) [AG,D) 14,31

mxMult (A,B)
mvMult (A,V)

[sum([ACi,k) * B(k,j) | k1) | i,j 1]
[sum([AGi,§) *V(G) | 1) 1 i]

LinearAlgebra.ram

Fig. 3. SRAM libraries (excerpts)

operations implemented using PathFinder primitives. We call the resulting node-
set the ranking-context, represented in the Matrix Framework by a binary vec-
tor DX.

Ranking the Abstract elements of the ranking-context is performed by a
content SRA operation, implemented in Spiegle by a function with signature:

Function rank(collection, rankingContext, queryTerms, N,
retrievalModel, paraml, param2, ...) := rankedContext

This function turns the ranking-context of a given query into a top-N ranked-
context against the specified query terms, by applying the desired retrieval
model. Its body executes a SRAM script, customised at each call with the value
of the current function parameters. The script of the example NEXI query
above, with parameters collection="“papers”, retrievalModel=“langmod”
and N=20, corresponds to:

//7;';lobal definitions for collection papers.xml h\\\\
#include "papers.ram"

// ranking-context and query terms

DX = [nDocs], bool, sparse("0"), "DX_table"

Q = [nTerms], bool, sparse("0"), "Q_table"

// include retrieval model definitions

#include "MF_RetrievalModels.ram"

// retrieve top N documents using "langmod" (Language Modelling)
S = [langmod(paraml,param2,...) | d]

D20 := topN([S(d) | d<20], DESC)
@ := 5(D20) J

A Parameterised Search System 13

First, global definitions for the collection papers.xml are loaded. Then, the
ranking-context and the query terms are declared as persistent arrays, previously
stored in the database by the system. Definitions of the available retrieval models
are loaded (file MF RetrievalModels.ram) and the selected one used to rank
documents. Finally, the top 20 document identifiers and scores are computed
and used together as the ranked-context returned by the SRA operator.

Fig.Bl file MF RetrievalModels.ram shows an excerpt of the available
retrieval model expressions. These get customised to the current querying
scenario by declaring the two arrays DX (ranking-context) and @ (query-
terms) before each query is executed. The first line includes library file
MF DocContext.ram. The included script limits the document axes of the index
arrays to the current ranking-context by multiplying the document axes with the
binary vector representing the ranking-context (the result of this multiplication
corresponds to precisely those portions of index arrays that contain information
about the node-set to be ranked).

4 Implementation Details

Spiegle uses PathFinder’s efficient ‘document shredder’ to turn any XML data
file into database relations (also from remote sources). PF/Tijah extends the
standard PathFinder data-model by indexing text words (terms) in addition to
XML nodes. XML elements are encoded as regions. Regions are stored as tuples
<start,end,id,type>, where id is the identifier associated with the XML ele-
ment (a node tag or a term) and type can be either node or term. The start
and end positions identify the text region in the original text file (each term is
a text region of length 1). An additional relation is created for efficient term
access (representing an inverted file structure). A more detailed description of
PathFinder and PF/Tijah indexing schemes can be found in [4l2].

To use the Matrix Framework as described above, matrices LD and LT should
be prepared during this indexing phase. Clearly, all required information is avail-
able in the tables created by PF/Tijah. Positions delimited by start and end
values become “locations”, whereas the combination of id and type values be-
come the document and term identifiers for matrices LD and LT.

Many storage schemes have been proposed for sparse multi-dimensional
arrays, with strong emphasis on the special case of two-dimensional arrays [§].
SRAM represents an n-dimensional sparse array A as relation Ry, with €4 de-
noting its default value. Each tuple encodes a vector i = (ig,...,%,—1) of index
values and a cell value A(i); only those cells for which A(i) # €4 are stored:

A— RA(io, ey in_l,V) = {(io, ey Zn—lyA(i)) | A(i) 7& 8A}.
This storage scheme naturally extends to dense arrays, for which all tuples are
stored physically. Data access patterns are optimised by creating standard rela-
tional indexing structures on top of such relations, or by explicit tuple cluster-
ing/sorting (the index columns form the relation’s primary key).

The life-cycle of array queries through the SRAM architecture can be sum-
marised by the following sequence of transformations: Array comprehension —

14 R. Cornacchia and A.P. de Vries

Array algebra — Relational algebra — Relational plan. The first translation step
generates an array-algebra tree, which represents the sequence of operations
performed on the stored arrays (reshaping, selection, aggregation, or function
application). A cost-based optimiser normalises and rewrites the array-algebra
tree. No physical details are involved in the process yet: only arrays’ size and
density are taken into account. The next step maps the array data-model to the
relational data-model, by means of translation rules that take into account the
storage details: although common values of a sparse arrays are not stored, they
may affect the final result. Standard relational optimisation techniques finalise
the relational expression. The last step of the translation process maps relational
algebra expressions to physical query plans for the database engine. Data access
paths and algorithms are chosen for the physical implementation of relational
operators in the query tree. For more in-depth details about the array-algebra
and the mapping and optimisation rules used in the translation process, see [9].

5 Related Work

This work addresses some of the main issues about IR&DB integration [TOJTT].
We are not aware of previous work that provides a declarative language for the
definition of the retrieval model as part of an XML retrieval system. However,
Inquery’s [12] (now Indri) query language can be considered to provide some
early version of a parameterised search system, and it has often been used for
precisely this flexibility (for example, in cross-language IR).

Already ten years ago, Fuhr argued in favour of data independence in IR [13],
pointing out how this would reduce problems in plain text search with noun
phrase search and treatment of compound words, and (semi-)structured data
types to capture attributes like author, journal title or publication year.

De Vries defined the notion of ‘content independence’ [I4] to refer to the
decoupling between search strategies and content representation. His definition
has been refined by Mihajlovic into the two related concepts ‘retrieval model
independence’ and ‘content description independence’ [5]. Wen et al. use ‘me-
dia independence’ for a similar separation of concerns as Mihajlovic’s content
description independence [15]. Yet, none of these authors has proposed a declar-
ative language that actually achieves the goal of separating the retrieval model
from its actual implementation.

6 Conclusions and Future Work

This paper has argued that modern IR application requirements force us to
reconsider the design characteristics of search systems. We promote an innova-
tion in the search system engineering process, by introducing more flexibility in
the IR system’s architecture. The increased flexibility aims to reduce the effort
of adapting search functionalities to work task and user context.

We defined the architectural requirements of so-called Parameterised Search
Systems: (i) a layered architecture that allows structural and content infor-
mation to be exploited for the search task; (ii) a convenient abstraction from

A Parameterised Search System 15

the physical details that discloses the retrieval engine’s capabilities to the
unique needs of each particular combination of collection characteristics, user
preferences, and search strategies.

We indicated the architecture of the PF/Tijah XML IR system as a possible
foundation to build upon, and the Matrix Framework for IR as a very well-suited
abstraction to express retrieval strategies. Finally, we showed how SRAM can
operationalise the Matrix Framework on top of a database system. The result of
this effort is Spiegle: the first prototype of parameterised XML search system.

Future work includes further exploiting the array abstraction for the im-
plementation of structure operations. This will allow for simpler inclusion of
structural information in the retrieval strategy and better opportunities for
optimising the final relational query plan. Early results of [9] have demonstrated
that SRAM’s multi-stage query translation process can give excellent run-time
performance on a large collection of web-data, given an efficient back-end system.
Integrating this new back-end into the Spiegle architecture is on-going work.

References

1. Hawking, D.: Challenges in enterprise search. In: Proc. ADC. (2004) 15-26

2. Hiemstra, D., Rode, H., van Os, R., Flokstra, J.: PFTijah: text search in an XML
database system. In: Proc. OSIR. (2006)

3. R.A.O’Keefe, Trotman, A.: The simplest query language that could possibly work.
In: Proc. INEX. (2004)

4. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery. In: Proc. SIGMOD. (2006) 479-490

5. Mihajlovic, V.: Score Region Algebra. A Flexible Framework for Structured Infor-
mation Retrieval. PhD thesis, University of Twente (2006)

6. Rolleke, T., Tsikrika, T., Kazai, G.: A General Matrix Framework for Modelling
Information Retrieval. IP&M 42(1) (2005) 4-30

7. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax.
SIGMOD Record 23(1) (1994) 87-96

8. Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the solution
of algebraic eigenvalue problems: a practical guide. STAM (2000)

9. Cornacchia, R., Héman, S., Zukowski, M., de Vries, A., Boncz, P.: Flexible and
efficient IR using Array Databases. Technical Report INS-E0701, CWI (2007)

10. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR Technolo-
gies: What is the Sound of One Hand Clapping? In: Proc. CIDR, Asilomar, CA,
USA (2005) 1-12

11. Amer-Yahia, S., Case, P., Rolleke, T., Shanmugasundaram, J., Weikum, G.: Report
on the DB/IR Panel at Sigmod 2005. SIGMOD Record 34(4) (2005) 71-74

12. Callan, J.P., Croft, W.B., Harding, S.M.: The INQUERY retrieval system. In:
Proc. DEXA. (1992) 78-83

13. Fuhr, N.: Object-oriented and database concepts for the design of networked in-
formation retrieval systems. In: Proc. CIKM. (1996) 164-172

14. de Vries, A.: Content independence in multimedia databases. JASIST 52(11)
(2001) 954-960

15. Wen, J., Li, Q., Ma, W., Zhang, H.: A multi-paradigm querying approach for a
generic multimedia database management system. SIGMOD Record 32(1) (2003)
26-34

Similarity Measures for Short Segments of Text

Donald Metzler!, Susan Dumais?, and Christopher Meek?

! University of Massachusetts
Ambherst, MA
2 Microsoft Research
Redmond, WA

Abstract. Measuring the similarity between documents and queries has been
extensively studied in information retrieval. However, there are a growing
number of tasks that require computing the similarity between two very short
segments of text. These tasks include query reformulation, sponsored search,
and image retrieval. Standard text similarity measures perform poorly on such
tasks because of data sparseness and the lack of context. In this work, we study
this problem from an information retrieval perspective, focusing on text
representations and similarity measures. We examine a range of similarity
measures, including purely lexical measures, stemming, and language
modeling-based measures. We formally evaluate and analyze the methods on a
query-query similarity task using 363,822 queries from a web search log. Our
analysis provides insights into the strengths and weaknesses of each method,
including important tradeoffs between effectiveness and efficiency.

1 Introduction

Retrieving documents in response to a user query is the most common text retrieval
task. For this reason, most of the text similarity measures that have been developed
take as input a query and retrieve matching documents. However, a growing number
of tasks, especially those related to web search technologies, rely on accurately
computing the similarity between two very short segments of text. Example tasks
include query reformulation (query-query similarity), sponsored search (query/ad
keyword similarity), and image retrieval (query-image caption similarity).

Unfortunately, standard text similarity measures fail when directly applied to these
tasks. Such measures rely heavily on terms occurring in both the query and the
document. If the query and document do not have any terms in common, then they
receive a very low similarity score, regardless of how topically related they actually
are. This is well-known as the vocabulary mismatch problem. This problem is only
exacerbated if we attempt to use these measures to compute the similarity of two short
segments of text. For example, “UAE” and “United Arab Emirates” are semantically
equivalent, yet share no terms in common.

Context is another problem when measuring the similarity between two short
segments of text. While a document provides a reasonable amount of text to infer the
contextual meaning of a term, a short segment of text only provides a limited context.
For example, “Apple computer” and “apple pie” share the term apple, but are
topically distinct. Despite this, standard text similarity measures would say that these

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 16-[27]2007.
© Springer-Verlag Berlin Heidelberg 2007

Similarity Measures for Short Segments of Text 17

two short segments of text are very similar. However, computing the similarity
between the query “Apple computer” and a full document about “apple pie” will
produce a low similarity score since the document contains proportionally less text
that is relevant to the query, especially compared to a full document about “Apple
business news”.

In this paper, we explore the problem of measuring similarity between short
segments of text from an information retrieval perspective. Studies in the past have
investigated the problem from a machine learning point of view and provided few, if
any comparisons to standard text similarity measures. In this work, we describe a set
of similarity measures that can be used to tackle the problem. These measures include
simple lexical matching, stemming, and text representations that are enriched using
web search results within a language modeling framework. In addition, we formally
evaluate the measures for the query-query similarity task using a collection of
363,822 popular web queries. Our analysis provides a better understanding of the
strengths and weaknesses of the various measures and shows an interesting tradeoff
between effectiveness and efficiency.

The remainder of this paper is laid out as follows. First, Section 2 provides an
overview of related work. We then describe the various ways to represent short
segments of text in Section 3. Section 4 follows up this discussion by describing the
similarity measures we investigated. Section 5 provides the details of our
experimental evaluation on the query-query similarity task. Finally, in Section 6 we
wrap up and provide conclusions and directions of future work.

2 Related Work

Many techniques have been proposed to overcome the vocabulary mismatch problem,
including stemming [5,9], LSI [3], translation models [1], and query expansion [6,14].
This section describes several of these techniques that are most related to our work.
The task we focus on is a query-query similarity task, in which we compare short text
segments, such as “Apple computer”, “apple pie”, “MAC OS X”, and “iMAC”.

Translation models, in a monolingual setting, have been used for document
retrieval [1], question answering [8], and detecting text reuse [7]. The goal is to
measure the likelihood that some candidate document or sentence is a translation (or
transformation) of the query. However, such models are less likely to be effective on
very short segments of texts, such as queries, due to the difficulty involved in
estimating reliable translation probabilities for such pieces of text.

Query expansion is a common technique used to convert an initial, typically short,
query into a richer representation of the information need [6,10,14]. This is
accomplished by adding terms that are likely to appear in relevant or pseudo-relevant
documents to the original query representation. In our query-query matching work,
we explore expanding both the original and candidate query representations.

Sahami and Heilman proposed a method of enriching short text representations that
can be construed as a form of query expansion [11]. Their proposed method expands
short segments of text using web search results. The similarity between two short
segments of text can then computed in the expanded representation space. The
expanded representation and DenseProb similarity measure that we present in

18 D. Metzler, S. Dumais, and C. Meek

Sections 3 and 4 are similar to this approach. However, we estimate term weights
differently and analyze how such expansion approaches compare, in terms of
efficiency and effectiveness, to other standard information retrieval measures.

Finally, since we evaluate our techniques on a query-query similarity task, it
should be noted that this problem, and the related problem of suggesting and
identifying query-query reformulations has been investigated from a number of
angles, ranging from machine learning approaches [4] to query session log
analysis[2]. These techniques are complimentary to the core representational and
similarity ideas that we explore in our work.

3 Text Representations

Text representations are an important part of any similarity measure. In this section,
we describe three different ways of representing text. Although these representations
can be applied to text of any length, we are primarily interested in using them to
represent short segments of text.

3.1 Surface Representation

The most basic representation of a short segment of text is the surface representation
(i.e. the text itself). Such a representation is very sparse. However, it is very high
quality because no automatic or manual transformations (such as stemming) have
been done to alter it. While it is possible that such transformations enhance the
representation, it is also possible that they introduce noise.

3.2 Stemmed Representation

Stemming is one of the most obvious ways to generalize (normalize) text. For this
reason, stemming is commonly used in information retrieval systems as a rudimentary
device to overcome the vocabulary mismatch problem. Various stemmers exist,
including rule-based stemmers [9] and statistical stemmers [5].

Although stemming can significantly improve matching coverage, it also
introduces noise, which can lead to poor matches. Using the Porter stemmer, both
“marine vegetation” and “marinated vegetables” stem to “marin veget”, which is
undesirable. Overall, however, the number of meaningful matches introduced
typically outweighs the number of spurious matches.

Throughout the remainder of this paper, we use the Porter stemmer to generate all
of our stemmed representations.

3.3 Expanded Representation

Although stemming helps overcome the vocabulary mismatch problem to a certain
extent, it does not handle the contextual problem. It fails to discern the difference
between the meaning of “bank” in “Bank of America” and “river bank”. Therefore, it
is desirable to build representations for the short text segments that include
contextually relevant information.

Similarity Measures for Short Segments of Text 19

<query>apple pie</query>

<title>Applie pie — Wikipedia, the free encyclopedia</title>

<snippet>In cooking, an apple pie is a fruit pie (or tart) in which the principal filling ingredient is
apples . Pastry is generally used top-and-bottom, making a double-crust pie, the upper crust of which
...</snippet>

<url>en.wikipedia.org/wiki/Apple_ pie</url>

<title>All About Food — Apple Pies</title>

<snippet>Apple Pie. Recipes. All-American Apple Pie. American Apple Pie. Amish Apple Pie .
Apple Cream Pie. Apple Crumble Pie. Apple Pie . Apple Pie in a Brown Bag. Best Apple
Pie</snippet>

<url>fp.enter.net/~rburk/pies/ applepie/applepie.htm</url>

<title>Apple Pie Recipe</title>

<snippet>Apple Pie Recipe using apple peeler corer slicer ... Apple Pie Recipe. From Scratch to
Oven in 20-Minutes. Start by preheating the oven. By the time it's ...</snippet>
<url>applesource.com/applepierecipe.htm</url>

Fig. 1. Example expanded representation for the text “apple pie.” The expanded representation
is the concatenation of the title and snippet elements.

One approach is to enrich the representation using an external source of
information related to the query terms. Possible sources of such information include
web (or other) search results returned by issuing the short text segment as a query,
relevant Wikipedia articles, and, if the short text segment is a query, query
reformulation logs. Each of these sources provides a set of contextual text that can be
used to expand the original sparse text representation.

In our experiments, we use web search results to expand our short text
representations. For each short segment of text, we run the query against a
commercial search engine’s index and retrieve the top 200 results. The titles and
snippets associated with these results are then concatenated and used as our expanded
representation. In Figure 1, we show a portion of the expanded representation for the
short text segment “apple pie”. As we see, this expanded representation contains a
number of contextually relevant terms, such as “recipe”, “food”, and “cooking” that
are not present in the surface representation. We note that this expanded
representation is similar to the one proposed in [11].

4 Similarity Measures

In this section we describe three methods for measuring the similarity between short
segments of text. These measures are motivated by, and make use of, the
representations described in the previous section. We also propose a hybrid method
of combining the ranking of the various similarity measures in order to exploit the
strengths and weaknesses of each.

4.1 Lexical

The most basic similarity measures are purely lexical. That is, they rely solely on
matching the terms present in the surface representations. Given two short segments

20 D. Metzler, S. Dumais, and C. Meek

of text, Q and C, treating Q as the query and C as the candidate we wish to measure
the similarity of, we define the following lexical matching criteria:

e Exact — Q and C are lexically equivalent. (Q: “seattle mariners tickets”, C:
“seattle mariners tickets™)

e Phrase — C is a substring of Q. (Q: “seattle mariners tickets”, C: ‘“seattle
mariners’)

e Subset — The terms in C are a subset of the terms in Q. (Q: “seattle mariners
tickets”, C: “tickets seattle”)

These measures are binary. That is, two segments of text either match (are deemed
‘similar’) or they do not. There is no graded score associated with the match.
However, if necessary, it is possible to impose such a score by looking at various
characteristics of the match such as the length of Q and C, or the frequency of the
terms in some collection.

It should also be noted that exact matches C phrase matches C subset matches.
Exact matches are very high precision (excellent matches), yet very low recall since
they miss a lot of relevant material. At the other extreme, subset matches are lower
precision, but have higher recall. Any candidate C that contains a term that does not
appear in the query Q will not match under any of these rules, which is very
undesirable. Therefore, we expect that matches generated using these lexical rules
will be have high precision but poor recall.

4.2 Probabilistic

As we just described, lexical matching alone is not enough to produce a large number
of relevant matches. In order to improve recall, we must make use of the expanded
text representations. To do so, we use the language modeling framework to model
query and candidate texts.

To utilize the framework, we must estimate unigram language models for the query
(6p) and each candidate (0c). For ranking purposes, we use the negative KL-
divergence between the query and candidate model, which is commonly used in the
language modeling framework [14]. This results in the following ranking function:

~ KL(6,,6,.) = H(8,) - CE(8,,6,)
=3 P(wl6,)log P(w!6,) M

weV

where V is the vocabulary, H is entropy, CE is cross entropy, and = denotes rank
equivalence.

The critical part of the ranking function is how the query and candidate language
models are estimated. Different estimates can lead to radically different rankings. We
now describe how we estimate these models using the representations available to us.

We begin with the query model. The most straightforward way of estimating a
query model is to use the surface representation. This is estimated as:

lj‘w,QS
1 OS |

P(wl6,) =)

Similarity Measures for Short Segments of Text 21

where QS denotes the query surface representation, tf,, s is the number of times w
occurs in the representation, and IQSI is the total number of terms in QS. This
estimate will be very sparse since we are using the surface representation. This
allows Equation 1 to be computed very efficiently since most terms in the summation
(we V) will be zero.

We also consider the case when we use the expanded representation of the query,
as described in Section 3.3. The estimate, which is analogous to the unexpanded
case, is:

tf. op + 1, P(WIC)
PO G = N
0

where QE is the query expanded representation, and u, is a smoothing parameter.
This type of estimation is commonly used in the language modeling community and
is often referred to as Dirichlet or Bayesian smoothing [13]. Since this estimate is
much more dense than the unexpanded estimate, it is more time consuming to
evaluate Equation 1. Due to the amount of data we work with in our experiments,
we truncate this distribution by only keeping the 20 most likely terms and setting the
remaining probabilities to 0. Pruning similar to this was done in [11] for the same
reason.

Finally, we describe how the candidate model is estimated. Rather than
exploring both estimates using both unexpanded and expanded representations, we
restrict ourselves to expanded representations. Therefore, we get the following
estimate:

. oy + 1 P(W| C)
POv10e) ==y +u @
C

where CE is the candidate expanded representation, and uc is a smoothing
parameter. Unlike the expanded query model, we do not truncate this distribution in
any way.

Finally, it is important to recall that expanded representations may be created using
any number of external sources. Our use of the web was simply a matter of
convenience. However, we can use this same general framework with expanded
representations generated using any possible external text source.

4.3 Hybrid

We are often interested in taking the matches generated by several different similarity
measures and combining them. We call these hybrid techniques. Given two or more
lists of matches, we stack the lists according to some pre-defined ordering (denoted
“>") of the lists, to form a combined list. For example, given match lists A and B,
and ordering A > B, we form the hybrid list AB, which is list B appended to the end
of list A. Since the same match may occur in more than one set of results, we must

22 D. Metzler, S. Dumais, and C. Meek

Table 1. Overview of query representation, candidate representation, and similarity measure
used for each matching method

Method Query Candidate Similarity Measure
Name Representation | Representation Y
. Hybrid
Lexical Surface Surface (Exact > Phrase > Subset)
. Hybrid
Stemming Stemmed Stemmed (Lexical > Exact Stems)
SparseProb Surface Expanded Probabilistic
DenseProb Expanded Expanded Probabilistic
. . Hybrid
Backoff Various Various (Exact > Exact Stems > DenseProb)

remove duplicates from the combined list. Our deduplication policy states that we
keep the highest ranked match and remove all others. Although this combination
scheme is naive, it has the advantage that there are no combination parameters to
learn.

4.4 Summary of Methods Evaluated

Table 1 summarizes the methods we evaluate in the next section. For each
method, we include the query and candidate representations and the similarity
measure used.

The Lexical method, which considers the surface forms of the query and candidate,
makes use of a hybrid technique that ranks exact matches first, then phrase matches,
and finally subset matches. The Stemming method also uses a hybrid technique that
first ranks matches using the Lexical method just described and then ranks any exact
matches that result after stemming both the query and the candidate. We refer to these
types of matches as “exact stems” matches.

The SparseProb method is the first of the two probabilistic methods. It uses the
unexpanded query representation, the expanded candidate representation, and ranks
using the negative KL-divergence, whereas the DenseProb method uses expanded
representations for both the query and the candidate and also ranks using the negative
KL-divergence.

Finally, the Backoff method is a hybrid method that ranks exact matches, exact
stems matches, and then DenseProb matches. The goal here is to see what benefit, if
any, is achieved by replacing the phrase and subset matches from the Stemming
method with DenseProb matches. We hypothesize that the DenseProb matches will
be better than the often poor phrase and subset matches.

Many other query/candidate representation combinations are possible beyond those
listed in Table 1. For example, it may be reasonable to use an expanded query form
and a surface candidate form. However, in order to maintain a reasonable scope, we
constrain ourselves to the methods described in this section.

Similarity Measures for Short Segments of Text 23

Table 2. Examples matches taken from our test collection for the query "seattle mariners". The
Seattle Mariners are a baseball team from Seattle. For each method, we show the 10 matches
with the highest similarity score.

Query: ''seattle mariners"

baseball

Lexical Stemming SparseProb DenseProb Backoff
seattle seattle seattle mariners seattle mariners .
. . . . seattle mariners
mariners mariners tickets tickets
seattle seattle mariners tickets mariners tickets seattle mariner
. . . seattle mariners seattle mariners
mariners mariners seattle mariners

tickets

seattle mariner

seattle mariners

seattle mariners

mariners tickets

baseball
seattle mariners seattle mariners seattle mariners
schedule schedule baseball
. . seattle mariners
mariners baseball mariners baseball s !
schedule

seattle baseball mariners baseball
red sox mariners

tickets

seattle baseball

mariners seattle baseball

red sox mariners

mariners schedule .
u tickets

mariners schedule

cheap mariners

. mariners schedule
tickets

seattle mariner

S5 Experimental Evaluation

In this section we evaluate the similarity measures proposed in Section 4. We begin
by showing some illustrative examples of matches generated using our algorithms.
We then formally evaluate the methods in the context of a query-query similarity task.

5.1 Illustrative Examples

Table 2 provides illustrative matches returned using the various matching techniques
described in Section 4. Although many of these results look reasonable, it is difficult
to quantify how much better any one method is by simply looking at these results.
Therefore, in the next section we formally evaluate the different match types.

5.2 Query-Query Similarity

We now describe our query-query similarity experiments. Here, we are interested in
evaluating how well the various methods we described in Section 4 can be used to
find queries that are similar to some target query. This task is a general task that is
widely applicable. For example, such a query-query similarity system could be used
to recommend alternative queries to users of a web search engine or for session
boundary detection in query log analysis.

5.2.1 Data
The following data resources were used in our experimental evaluation. A sample of
363,822 popular queries drawn from a 2005 MSN Search query log was used as our

24 D. Metzler, S. Dumais, and C. Meek

Table 3. Description of the relevance judgment scale

.. Examples
Judgment Description (Query / Candidate)
The candidate is semantically equivalent to the user atlanta ga /
Excellent ;
query. atlanta georgia
The candidate is related to (but not identical to) the seattle mariners /
Good query intent and it is likely the user would be

. . . seattle baseball tickets
interested in the candidate.

The candidate is related to the query intent, but in an
Fair overly vague or specific manner that results in the
user having little, if any, interest in the candidate.

hyundia azera /
new york car show

web visitor count /

Bad The candidate is unrelated to the query intent. .
coin counter

candidate pool of queries to match against. For each query, we generated an
expanded representation, as described in Section 3.3. In our experiments, we set i, to
0 and uc to 2500. To handle this amount of data, we built an index out of the
expanded representations using the Indri search system [12].

We also randomly sampled a set of 120 queries from the same log to use as target
queries. These target queries were then matched against the full set of 363k queries.
For each of these target queries, we ran the methods described in Section 4 and
pooled the results down to a depth of 25 per method. A single human assessor then
judged the relevance of each candidate result with respect to the target query using a
4-point judgment scale. Table 3 provides a description and examples of each type of
judgment.

The result of this assessment was 5231 judged target/candidate pairs. Of these
judgments, 317 (6%) were Excellent, 600 (11%) were Good, 2537 (49%) were Fair,
and 1777 (34%) were Bad. In order to determine the reliability of the judgments, four
assessors judged 10 target queries. The inter-annotator agreement was then computed
for these queries and was found to be 60%. However, when Excellent and Good
judgments were binned and Fair and Bad judgments were binned, the agreement
increased to 80%. This indicates the boundary between Fair and Bad is interpreted
differently among users. For this reason, we will primarily focus our attention on the
boundary between Excellent and Good and between Good and Fair. In addition, the
Excellent and Good matches are the most interesting for many practical applications
including query suggestion and sponsored search.

5.2.2 Evaluation

We are interested in understanding how our matching methods compare to each other
across various relevance criteria. Since we are interested in using standard
information retrieval metrics, such as precision and recall, we must binarize the
relevance judgments. For each experiment, we state the relevance criteria used.

We first evaluate the methods using precision-recall graphs using two different
relevance criteria. The results are given in Figure 2. For the case when Excellent
matches are considered relevant (left panel), we see that the Lexical and Stemming
methods outperform the probabilistic methods, especially at lower recall levels.

Similarity Measures for Short Segments of Text 25

0.9+ Lexical. 0.9 Lexmal.
Stemming Stemming
0.8 1 ~@-SparseProb 0.8 —®-SparseProb
—4—DenseProb —4—DenseProb
0.7 1 — Backoff 07 — Backoff
A
c 06 —& A c 06
2 ¢ k]
(3 2]
s 0.5 ‘s 0.5
%04 % 04
03 | > 03
0.2 § 0.2
01 0.1
0 T T T T T T T T T 0+ T T T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Recall Recall

Fig. 2. Interpolated, 11-point precision-recall curves for the five matching methods described in
Section 4. On the left, candidates judged ‘Excellent’ are considered relevant. On the right,
candidates judged ‘Excellent’ or ‘Good’ are considered relevant.

This is not surprising, since we expect lexical matches to easily find most of the
Excellent matches. In addition, we see that Stemming consistently outperforms the
Lexical method. However, the Backoff method dominates the other methods at all
recall levels. This results from backing off from stricter matches to less strict matches.
For example, for the query “atlanta ga”, the Lexical method will match “atlanta ga”,
but neither the Lexical nor the Stemming methods will match “atlanta georgia", which
is actually an Excellent match that is found using the DenseProb method.

When we relax the relevance criteria and consider both Excellent and Good
judgments to be relevant (right panel), we see an interesting shift in the graph. Here,
the probabilistic methods, SparseProb and DenseProb, outperform the Lexical and
Stemming methods at all recall levels, except very low levels. This suggests that the
Lexical and Stemming methods are good at finding Excellent matches, but that they
are worse at finding Good matches compared to the probabilistic methods. We
further test this hypothesis later in this section. However, once again, we see that the
Backoff method outperforms all of the methods at all recall levels.

One reason why the Backoff method is superior to the non-hybrid probabilistic
methods is the fact that the SparseProb and DenseProb methods often fail to return
exact matches high in the ranked list. This is caused by truncating the expanded
query distribution before computing the KL divergence. Since exact matches account
for a majority of the Excellent judgments, this causes the entire curve to be shifted
down. By forcing the exact and exact stems matches to occur first, we are ‘stacking
the deck’ and promoting matches that are likely to be high precision. This, combined
with the high recall of the DenseProb method, results in a superior matching method.

It is clear that exact matches are very likely to result in Excellent matches.
However, it is not clear how phrase and subset lexical matches compare to stemming
and probabilistic matches. To measure this, we compute the precision at k for the
Lexical and Backoff methods, where k is the number of results returned by the
Lexical method. This evaluation allows us to quantify the improvement achieved by
replacing the low precision phrase and subset matches with the high precision exact
stems matches and high recall DenseProb matches.

26 D. Metzler, S. Dumais, and C. Meek

Table 4. Precision at k, where k is the number of matches returned using the Lexical method.
In this table, the evaluation set of queries was stratified according to k. Queries indicates the
the number of queries associated with each k . Only values of k associated with 10 or more
queries are shown.

R = {Excellent} R = {Excellent, Good }
k | Queries Lexical Backoff Lexical Backoff
1 40 0.7500 0.8125 0.7500 0.8125
2 38 0.3235 0.4853 0.3382 0.5882
3 31 0.2688 0.4194 0.3978 0.5914

The results are presented in Table 4 for two relevance criteria. We stratify the
queries with respect to k, the number of Lexical method matches for the query, and
compute precision at depth k over these queries. We only include values of k
associated with 10 or more queries, since it misleading to compute and compare
means over smaller samples. As the results show, the Backoff method is superior in
every case. This suggests that the stemming and probabilistic matches (used in the
Backoff method) are considerably better at finding both Excellent and Good matches
compared to the phrase and subset matches (used in the Lexical method).

5.2.3 Effectiveness vs. Efficiency

One important practical aspect of the techniques developed is efficiency. Generating
lexical and stemming matches is very efficient. The probabilistic methods are slower,
but not unreasonable. Generating matches against our collection of 363,822
candidates using a modern single CPU machine takes 0.15 seconds per query using
the SparseProb method and 3 seconds per query using the DenseProb method.

The DenseProb method requires, a priori, an index of expanded representations for
both the candidates and the incoming queries. If we are asked to generate DenseProb
matches for a query that is not in our index, then we must generate this representation
on the fly. However, the SparseProb method does not exhibit this behavior and can
be used to efficiently generate matches for any incoming query.

Therefore, SparseProb is the the best choice in terms of speed and coverage.
However, if speed is not an issue, and high quality results are important, then
DenseProb is the better choice.

6 Conclusions and Future Work

In this paper we studied the problem of measuring the similarity between short
segments of text. We looked at various types of text representations, including
surface, stemmed, and expanded. We showed how web search results can be used to
form expanded representations of short text segments. We then described several
similarity measures based on these representations, including lexical matching and
probabilistic measures based on language models estimated from unexpanded and
expanded representations. We then formally evaluated and compared these measures
in the context of a query-query similarity task over a large collection of popular web

Similarity Measures for Short Segments of Text 27

search queries. Our results showed that lexical matching is good for finding
semantically identical matches and that the probabilistic methods are better at finding
interesting topically related matches. It was shown that a simple hybrid technique that
combines lexical, stemmed, and probabilistic matches results in far superior
performance than any method alone.

The probabilistic framework presented in this paper provides a general method for
measuring the similarity between two short segments of text. Although we chose to
use web search results as the basis of our expanded representation in this work, an
interesting direction of future work would be to use a variety of other sources of
external text, such as query reformulation logs, queries that result in similar click
patterns, and Wikipedia. It would also be worthwhile to evaluate these techniques in
an end-to-end application, such as a query-query reformulation system, in order to see
what impact they have in a more practical setting.

References

[1] Berger, A. and Lafferty, J. Information retrieval as statistical translation. In Proceedings
of SIGIR ’99, pages 222-229, 1999.

[2] Cucerzan, S. and Brill, E. Extracting semantically related queries by exploiting user
session information. Technical Report, Microsoft Research, 2005.

[3] Deerwester, S., Dumais, S., Landauer, T., Furnas, G. and Harshman, R. Indexing by
latent semantic analysis. In JASIST, 41(6), pages 391-407, 1990.

[4] Jones, R. Generating query substitutions. In Proceedings of WWW 2006, pages 387-396,
2006.

[5] Krovetz, R. Viewing morphology as an inference process. In Proceedings of SIGIR ’93,
pages 191-202, 1993.

[6] Lavrenko, V. and Croft, W.B. Relevance based language models. In Proceedings of
SIGIR ‘01, pages 120-127, 2001.

[7] Metzler, D., Bernstein, Y., Croft, W.B., Moffat, A., and Zobel, J. Similarity measures for
tracking information flow. In Proceedings of CIKM ‘05, pages 517-524, 2005.

[8] Murdock, V. and Croft, W.B. A Translation Model for Sentence Retrieval. In
Proceedings of HLT/EMNLP ‘05, pages 684-691, 2005.

[9] Porter, M. F. An algorithm for suffix stripping. Program, 14(3), pages 130-137, 1980.

[10] Rocchio, J. J. Relevance Feedback in Information Retrieval, pages 313-323. Prentice-
Hall, 1971.

[11] Sahami, M. and Heilman, T. A web-based kernel function for measuring the similarity of
short text snippets. In Proceedings of WWW 2006, pages 377-386, 2006.

[12] Strohman, T., Metzler, D., Turtle, H., Croft, W. B. Indri: A language model-based search
engine for complex queries. In Proceedings of the International Conference on
Intelligence Analysis, 2005.

[13] Zhai, C. and Lafferty, J. A study of smoothing methods for language models applied to
ad hoc information retrieval. In Proceedings of SIGIR ‘01, pages 334-342, 2001.

[14] Zhai, C. and Lafferty, J. Model-based feedback in the language modeling approach to
information retrieval. In Proceedings of CIKM ‘01, pages 403-410, 2001.

Multinomial Randomness Models for Retrieval with
Document Fields

Vassilis Plachouras® and Tadh Ounis?

! Yahoo! Research, Barcelona, Spain
2 University of Glasgow, Glasgow, UK
vassilis@yahoo-inc.com, ounis@dcs.gla.ac.uk

Abstract. Document fields, such as the title or the headings of a document,
offer a way to consider the structure of documents for retrieval. Most of the pro-
posed approaches in the literature employ either a linear combination of scores
assigned to different fields, or a linear combination of frequencies in the term
frequency normalisation component. In the context of the Divergence From Ran-
domness framework, we have a sound opportunity to integrate document fields
in the probabilistic randomness model. This paper introduces novel probabilis-
tic models for incorporating fields in the retrieval process using a multinomial
randomness model and its information theoretic approximation. The evaluation
results from experiments conducted with a standard TREC Web test collection
show that the proposed models perform as well as a state-of-the-art field-based
weighting model, while at the same time, they are theoretically founded and more
extensible than current field-based models.

1 Introduction

Document fields provide a way to incorporate the structure of a document in Information
Retrieval (IR) models. In the context of HTML documents, the document fields may
correspond to the contents of particular HTML tags, such as the title, or the heading
tags. The anchor text of the incoming hyperlinks can also be seen as a document field.
In the case of email documents, the fields may correspond to the contents of the email’s
subject, date, or to the email address of the sender [9]]. It has been shown that using
document fields for Web retrieval improves the retrieval effectiveness [17.7].

The text and the distribution of terms in a particular field depend on the function of
that field. For example, the title field provides a concise and short description for the
whole document, and terms are likely to appear once or twice in a given title [6]. The
anchor text field also provides a concise description of the document, but the number
of terms depends on the number of incoming hyperlinks of the document. In addition,
anchor texts are not always written by the author of a document, and hence, they may
enrich the document representation with alternative terms.

The combination of evidence from the different fields in a retrieval model requires
special attention. Robertson et al. pointed out that the linear combination of scores,
which has been the approach mostly used for the combination of fields, is difficult
to interpret due to the non-linear relation between the assigned scores and the term
frequencies in each of the fields. Hawking et al. [5] showed that the term frequency

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 28-39] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Multinomial Randomness Models for Retrieval with Document Fields 29

normalisation applied to each field depends on the nature of the corresponding field.
Zaragoza et al. introduced a field-based version of BM25, called BM25F, which
applies term frequency normalisation and weighting of the fields independently. Mac-
donald et al. [[7]] also introduced normalisation 2F in the Divergence From Randomness
(DFR) framework [l for performing independent term frequency normalisation and
weighting of fields. In both cases of BM25F and the DFR models that employ normali-
sation 2F, there is the assumption that the occurrences of terms in the fields follow the
same distribution, because the combination of fields takes place in the term frequency
normalisation component, and not in the probabilistic weighting model.

In this work, we introduce weighting models, where the combination of evidence
from the different fields does not take place in the term frequency normalisation part
of the model, but instead, it constitutes an integral part of the probabilistic randomness
model. We propose two DFR weighting models that combine the evidence from the
different fields using a multinomial distribution, and its information theoretic approx-
imation. We evaluate the performance of the introduced weighting models using the
standard .Gov TREC Web test collection. We show that the models perform as well
as the state-of-the-art model field-based PL2F, while at the same time, they employ a
theoretically founded and more extensible combination of evidence from fields.

The remainder of this paper is structured as follows. Section2lprovides a description
of the DFR framework, as well as the related field-based weighting models. Section[3]
introduces the proposed multinomial DFR weighting models. Section [] presents the
evaluation of the proposed weighting models with a standard Web test collection. Sec-
tions 5] and [@] close the paper with a discussion related to the proposed models and the
obtained results, and some concluding remarks drawn from this work, respectively.

2 Divergence from Randomness Framework and Document Fields

The Divergence From Randomness (DFR) framework [1] generates a family of prob-
abilistic weighting models for IR. It provides a great extent of flexibility in the sense
that the generated models are modular, allowing for the evaluation of new assumptions
in a principled way. The remainder of this section provides a description of the DFR
framework (Section 2.1)), as well as a brief description of the combination of evidence
from different document fields in the context of the DFR framework (Section[2.2)).

2.1 DFR Models

The weighting models of the Divergence From Randomness framework are based on
combinations of three components: a randomness model RM; an information gain
model GM; and a term frequency normalisation model.

Given a collection D of documents, the randomness model RM estimates the
probability Pra(t € d|D) of having ¢f occurrences of a term ¢ in a document d,
and the importance of ¢ in d corresponds to the informative content — log, (Pr(t €
d|D)). Assuming that the sampling of terms corresponds to a sequence of independent
Bernoulli trials, the randomness model R M is the binomial distribution:

TF)ptf (1—p)TF-t (1

Ps(t € d|D) = (tf

30 V. Plachouras and I. Ounis

where TF is the frequency of ¢ in the collection D, p =]{, is a uniform prior probability

that the term ¢ appears in the document d, and IV is the number of documents in the
collection D. A limiting form of the binomial distribution is the Poisson distribution P:

A TF
%@eﬂDﬁv%@eﬂDﬁzﬁ&” where A=TF.p="1

The information gain model GM estimates the informative content 1 — P55 of
the probability P,;s; that a term ¢ is a good descriptor for a document. When a term
t appears many times in a document, then there is very low risk in assuming that ¢
describes the document. The information gain, however, from any future occurrences of
t in d is lower. For example, the term ‘evaluation’ is likely to have a high frequency in a
document about the evaluation of IR systems. After the first few occurrences of the term,
however, each additional occurrence of the term ‘evaluation’ provides a diminishing
additional amount of information. One model to compute the probability P, is the
Laplace after-effect model:

@)

tf
tf+1

P,;s; estimates the probability of having one more occurrence of a term in a document,
after having seen ¢ f occurrences already.

The third component of the DFR framework is the term frequency normalisation
model, which adjusts the frequency ¢ f of the term ¢ in d, given the length [of d and the
average document length [in D. Normalisation 2 assumes a decreasing density function
of the normalised term frequency with respect to the document length [. The normalised
term frequency ¢ fn is given as follows:

3)

Prisk =

tfn:tf-log2(1+c-;) 4)

where c is a hyperparameter, i.e. a tunable parameter. Normalisation 2 is employed in
the framework by replacing ¢ f in Equations @) and @) with ¢ fn.
The relevance score wg,, of a document d for a query ¢ is given by:

Wa,q = thw ~wqs where wg s = (1 — Prigk) - (—logy Prt) o)
teq

where wq ¢ is the weight of the term ¢ in document d, gtw = . t%fm , qtf is the
frequency of ¢ in the query ¢, and gt f,4, is the maximum ¢t f in q. If Pg x4 is estimated
using the Poisson randomness model, P,;s; is estimated using the Laplace after-effect
model, and ¢ fn is computed according to normalisation 2, then the resulting weight-
ing model is denoted by PL2. The factorial is approximated using Stirling’s formula:
tf! =21 - tft/+05—tf

The DFR framework generates a wide range of weighting models by using different
randomness models, information gain models, or term frequency normalisation models.
For example, the next section describes how normalisation 2 is extended to handle the

normalisation and weighting of term frequencies for different document fields.

Multinomial Randomness Models for Retrieval with Document Fields 31

2.2 DFR Models for Document Fields

The DFR framework has been extended to handle multiple document fields, and to
apply per-field term frequency normalisation and weighting. This is achieved by ex-
tending normalisation 2, and introducing normalisation 2F [, which is explained
below.

Suppose that a document has £ fields. Each occurrence of a term can be assigned to
exactly one field. The frequency ¢ f; of term ¢ in the ¢-th field is normalised and weighted
independently of the other fields. Then, the normalised and weighted term frequencies
are combined into one pseudo-frequency ¢ fnop:

k
tfngp = Zwi 'tfi 10g2 (1 “+c; - ll) (6)

L
i=1 v

where w; is the relative importance or weight of the i-th field, tf; is the frequency
of ¢ in the ¢-th field of document d, [; is the length of the i-th field in d, [; is the
average length of the i-th field in the collection D, and ¢; is a hyperparameter for the
i-th field. The above formula corresponds to normalisation 2F. The weighting model
PL2F corresponds to PL2 using ¢ fnof as given in Equation (@)). The well-known BM25
weighting model has also been extended in a similar way to BM25F [17].

3 Multinomial Randomness Models

This section introduces DFR models which, instead of extending the term frequency
normalisation component, as described in the previous section, use document fields as
part of the randomness model. While the weighting model PL2F has been shown to
perform particularly well [718]], the document fields are not an integral part of the ran-
domness weighting model. Indeed, the combination of evidence from the different fields
takes place as a linear combination of normalised frequencies in the term frequency nor-
malisation component. This implies that the term frequencies are drawn from the same
distribution, even though the nature of each field may be different.

We propose two weighting models, which, instead of assuming that term frequen-
cies in fields are drawn from the same distribution, use multinomial distributions to
incorporate document fields in a theoretically driven way. The first one is based on the
multinomial distribution (Section 3.1)), and the second one is based on an information
theoretic approximation of the multinomial distribution (Section[3.2).

3.1 Multinomial Distribution

We employ the multinomial distribution to compute the probability that a term appears a
given number of times in each of the fields of a document. The formula of the weighting
model is derived as follows. Suppose that a document d has & fields. The probability
that a term occurs ¢ f; times in the ¢-th field f;, is given as follows:

TF tf1 tf tfe rtf’
Pu(t € d|D) = Lptlz L phdeprts 7
M (|D) (tf1 thy.. tfy tf,>p1 Py pltp @)

32 V. Plachouras and I. Ounis

In the above equation, T'F" is the frequency of term ¢ in the collection, p; = k,lN is the
prior probability that a term occurs in a particular field of document d, and NV is the
number of documents in the collection D. The frequency tf' = TF — Zle tf; cor-
responds to the number of occurrences of ¢ in other documents than d. The probability
p=1-k klN =N N ! corresponds to the probability that ¢ does not appear in any of
the fields of d.

The DFR weighting model is generated using the multinomial distribution from
Equation (7) as a randomness model, the Laplace after-effect from Equation (3)), and
replacing ¢ f; with the normalised term frequency ¢ fn;, obtained by applying normal-
isation 2 from Equation (). The relevance score of a document d for a query ¢ is
computed as follows:

Wd,q = thw Wq,t = thw - msk) (- logQ(PM(t S d|D))
teq teq
k
qtw
;Zletfm—&—l (0gs() ;(0gy(tfni!) —tfnilogy(p))
+logy(t/n't) — tfn'log, (¢ ®)

where gtw is the weight of a term ¢ in query ¢, tfn’ = TF — Zle tfng, tfn; =
tfi-logy(1+ ¢ - gb) for the i-th field, and ¢; is the hyperparameter of normalisation 2
for the ¢-th field. The weighting model introduced in the above equation is denoted by
ML2, where M stands for the multinomial randomness model, L stands for the Laplace
after-effect model, and 2 stands for normalisation 2.

Before continuing, it is interesting to note two issues related to the introduced weight-
ing model ML2, namely setting the relative importance, or weight, of fields in the do-
cument representation, and the computation of factorials.

Weights of fields. In Equation (8), there are two different ways to incorporate weights
for the fields of documents. The first one is to multiply each of the normalised term
frequencies ¢ fn,; with a constant w;, in a similar way to normalisation 2F (see Equa-
tion (@): tfn; := w; - tfn;. The second way is to adjust the prior probabilities p; of
fields, in order to increase the scores assigned to terms occurring in fields with low prior
probabilities: p; := ﬂ ‘. Indeed, the assigned score to a query term occurring in a field
with low probability is high, due to the factor —¢ fn; log,(p;) in Equation (8).

Computing factorials. As mentioned in Section[2.1] the factorial in the weighting model
PL2 is approximated using Stirling’s formula. A different method to approximate the
factorial is to use the approximation of Lanczos to the I" function [[12, p. 213], which
has a lower approximation error than Stirling’s formula. Indeed, preliminary experi-
mentation with ML2 has shown that using Stirling’s formula affects the performance
of the weighting model, due to the accumulation of the approximation error from com-
puting the factorial k£ + 2 times (k is the number of fields). This is not the case for the
Poisson-based weighting models PL2 and PL2F, where there is only one factorial com-
putation for each query term (see Equation (). Hence, the computation of factorials in
Equation (8)) is performed using the approximation of Lanczos to the I" function.

Multinomial Randomness Models for Retrieval with Document Fields 33
3.2 Approximation to the Multinomial Distribution

The DFR framework generates different models by replacing the binomial randomness
model with its limiting forms, such as the Poisson randomness model. In this section,
we introduce a new weighting model by replacing the multinomial randomness model
in ML2 with the following information theoretic approximation [[13]:

TF! o o-TF-D(i »:)

tf1 2 ., UK ’tf/% 1
LR fol -ttt P P2 Pe=P

")
VorTF \/ptlth c DtkDi

D(i p;) corresponds to the information theoretic divergence of the probability p;; =
;J;, that a term occurs in a field, from the prior probability p; of the field:

tfi ot tf; tf’ tf'
D(TF’pi):z;(TFlogQ TF.pi)ﬂLTFlogz TF .y (10)

where tf' = TF — Zle tf;. Hence, the multinomial randomness model M in the
weighting model ML2 can be replaced by its approximation from Equation (O)):

1og2 (2rTF) r tfni/TF 1. tfn;
Wy q = qtw . ((tfnilog + _ log)
! Z Lt Z o 2 °TF
tfn'/TF 1. tfn
+tfn'log, fnp/, +, log, 7{;) (11)

The above model is denoted by MpL2. The definitions of the variables involved in the
above equation have been introduced in Section[3.1]
It should be noted that the information theoretic divergence D(Th pl) is defined

only when ¢f; > 0 for 1 < i < k. In other words, D(/i p;) is defined only when
there is at least one occurrence of a query term in all the fields. This is not always the
case, because a Web document may contain all the query terms in its body, but it may
contain only some of the query terms in its title. To overcome this issue, the weight of
a query term ¢ in a document is computed by considering only the fields in which the
term ¢ appears.

The weights of different fields can be defined in the same way as in the case of the
weighting model ML2, as described in Section 3.1l In more detail, the weighting of
fields can be achieved by either multiplying the frequency of a term in a field by a
constant, or by adjusting the prior probability of the corresponding field.

An advantage of the weighting model MpL2 is that, because it approximates the
multinomial distribution, there is no need to compute factorials. Hence, it is likely to
provide a sufficiently accurate approximation to the multinomial distribution, and it
may lead to improved retrieval effectiveness compared to ML2, due to the lower accu-
mulated numerical errors. The experimental results in Section [4.2] will indeed confirm
this advantage of MpL2.

34 V. Plachouras and I. Ounis

4 Experimental Evaluation

In this section, we evaluate the proposed multinomial DFR models ML2 and MpL2,
and compare their performance to that of PL2F, which has been shown to be particu-
larly effective [7U8]]. A comparison of the retrieval effectiveness of PL2F and BM25F
has shown that the two models perform equally well on various search tasks and test
collections [11]], including those employed in this work. Hence, we experiment only
with the multinomial models and PL2F. Section [£.1] describes the experimental setting,
and Section 2] presents the evaluation results.

4.1 Experimental Setting

The evaluation of the proposed models is conducted with the .Gov TREC Web test
collection, a crawl of approximately 1.25 million documents from the .gov domain. The
.Gov collection has been used in the TREC Web tracks between 2002 and 2004 [2/3/4]].
In this work, we employ the tasks from the Web tracks of TREC 2003 and 2004, because
they include both informational tasks, such as the topic distillation (td2003 and td2004,
respectively), as well as navigational tasks, such as named page finding (np2003 and
np2004, respectively) and home page finding (hp2003 and hp2004, respectively). More
specifically, we train and test for each type of task independently, in order to get insight
on the performance of the proposed models [15]. We employ each of the tasks from the
TREC 2003 Web track for training the hyperparameters of the proposed models. Then,
we evaluate the models on the corresponding tasks from the TREC 2004 Web track.

In the reported set of experiments, we employ k£ = 3 document fields: the contents
of the <BODY> tag of Web documents (b), the anchor text associated with incoming
hyperlinks (a), and the contents of the <TITLE> tag (t). More fields can be defined
for other types of fields, such as the contents of the heading tags <H1> for example.
It has been shown, however, that the body, title and anchor text fields are particularly
effective for the considered search tasks [[11]]. The collection of documents is indexed
after removing stopwords and applying Porter’s stemming algorithm. We perform the
experiments in this work using the Terrier IR platform [10].

The proposed models ML2 and MpL2, as well as PL2F, have a range of hyperpa-
rameters, the setting of which can affect the retrieval effectiveness. More specifically, all
three weighting models have two hyperparameters for each employed document field:
one related to the term frequency normalisation, and a second one related to the weight
of that field. As described in Sections [3.1] and there are two ways to define the
weights of fields for the weighting models ML2 and MpL2: (i) multiplying the nor-
malised frequency of a term in a field; (ii) adjusting the prior probability p; of the i-th
field. The field weights in the case of PL2F are only defined in terms of multiplying the
normalised term frequency by a constant w;, as shown in Equation (G)).

In this work, we consider only the term frequency normalisation hyperparameters,
and we set all the weights of fields to 1, in order to avoid having one extra parameter
in the discussion of the performance of the weighting models. We set the involved
hyperparameters ¢y, ¢, and ¢, for the body, anchor text, and title fields, respectively,
by directly optimising mean average precision (MAP) on the training tasks from the
Web track of TREC 2003. We perform a 3-dimensional optimisation to set the values

Multinomial Randomness Models for Retrieval with Document Fields 35

of the hyperparameters. The optimisation process is the following. Initially, we apply a
simulated annealing algorithm, and then, we use the resulting hyperparameter values as
a starting point for a second optimisation algorithm [16]], to increase the likelihood of
detecting a global maximum. For each of the three training tasks, we apply the above
optimisation process three times, and we select the hyperparameter values that result in
the highest MAP. We employ the above optimisation process to increase the likelihood
that the hyperparameters values result in a global maximum for MAP. Figure [T shows
the MAP obtained by ML2 on the TREC 2003 home page finding topics, for each
iteration of the optimisation process. Table [I] reports the hyperparameter values that
resulted in the highest MAP for each of the training tasks, and that are used for the
experiments in this work.

0.8 T T T T
ML2 + . —
0.6 &+ ++ * T
(a9
%ﬂ 0.4 K . * oy -
Y +
0.2 wﬂ * -
0 1 1 1 1
0 40 80 120 160 200

iteration

Fig. 1. The MAP obtained by ML2 on the TREC 2003 home page finding topics, during the
optimisation of the term frequency normalisation hyperparameters

The evaluation results from the Web tracks of TREC 2003 and 2004 [4] have
shown that employing evidence from the URLs of Web documents results in important
improvements in retrieval effectiveness for the topic distillation and home page find-
ing tasks, where relevant documents are home pages of relevant Web sites. In order
to provide a more complete evaluation of the proposed models for these two types of
Web search tasks, we also employ the length in characters of the URL path, denoted by
U RLpathlen, using the following formula to transform it to a relevance score [17]:

K

. 12
k + URLpathlen (12)

Wd,q = Wd,qg + W

where wg g is the relevance score of a document. The parameters w and « are set by per-
forming a 2-dimensional optimisation as described for the case of the hyperparameters
ci. The resulting values for w and x are shown in Table 2l

4.2 Evaluation Results

After setting the hyperparameter values of the proposed models, we evaluate the models
with the search tasks from TREC 2004 Web track [4]. We report the official TREC
evaluation measures for each search task: mean average precision (MAP) for the topic
distillation task (td2004), and mean reciprocal rank (MRR) of the first correct answer
for both named page finding (np2004) and home page finding (hp2004) tasks.

36 V. Plachouras and I. Ounis

Table 1. The values of the hyperparameters Table 2. The values of the hyperparameters

Cp, Ca, and ¢, for the body, anchor text and w and k, which resulted in the high-
title fields, respectively, which resulted in est MAP on the training topic distillation
the highest MAP on the training tasks of (td2003) and home page finding (hp2003)
TREC 2003 Web track tasks of TREC 2003 Web track
ML2 ML2
Task Cp Ca ct Task w K
td2003 0.0738 4.3268 10.8220 td2003 8.8095 14.8852
np2003 0.1802 4.7057 8.4074 hp2003 10.6684 9.8822
hp2003 0.1926 310.3289 624.3673 MpL2
MpL2 Task w K
Task ¢ Ca Ct td2003 7.6974 12.4616
td2003 0.2562 10.0383 24.6762 hp2003 27.0678 67.3153
np2003 1.0216 9.2321 21.3330 PL2F
hp2003 0.4093 355.2554 966.3637 Task w K
PL2F td2003 7.3638 8.2178
Task ¢ Ca ct hp2003 13.3476 28.3669

td2003 0.1400 5.0527 4.3749
np2003 1.0153 11.9652 9.1145
hp2003 0.2785 406.1059 414.7778

Table[B]presents the evaluation results for the proposed models ML2, MpL2, and the
weighting model PL2F, as well as their combination with evidence from the URLs of
documents (denoted by appending U to the weighting model’s name). When only the
document fields are employed, the multinomial weighting models have similar perfor-
mance compared to the weighting model PL2F. The weighting models PL2F and MpL2
outperform ML2 for both topic distillation and home page finding tasks. For the named
page finding task, ML2 results in higher MRR than MpL2 and PL2F.

Using the Wilcoxon signed rank test, we tested the significance of the differences in
MAP and MRR between the proposed new multinomial models and PL2F. In the case
of the topic distillation task td2004, PL2F and MpL2 were found to perform statistically
significantly better than ML2, with p < 0.001 in both cases. There was no statistically
significant difference between PL2F and MpL2. Regarding the named page finding task
np2004, there is no statistically significant difference between any of the three proposed
models. For the home page finding task hp2004, only the difference between ML2 and
PL2F was found to be statistically significant (p = 0.020).

Regarding the combination of the weighting models with the evidence from the
URLSs of Web documents, Table 3 shows that PL2FU and MpL.2U outperform ML2U
for td2004. The differences in performance are statistically significant, with p = 0.002
and p = 0.012, respectively, but there is no significant difference in the retrieval ef-
fectiveness between PL2FU and MpL2U. When considering hp2004, we can see that
PL2F outperforms the multinomial weighting models. The only statistically significant
difference in MRR was found between PL2FU and MpL2FU (p = 0.012).

Multinomial Randomness Models for Retrieval with Document Fields 37

Table 3. Evaluation results for the weighting models ML2, MpL2, and PL2F on the TREC
2004 Web track topic distillation (td2004), named page finding (np2004), and home page finding
(hp2004) tasks. ML2U, MpL2U, and PL2FU correspond to the combination of each weighting
model with evidence from the URL of documents. The table reports mean average precision
(MAP) for the topic distillation task, and mean reciprocal rank (MRR) of the first correct answer
for the named page finding and home page finding tasks. ML2U, MpL2U and PL2FU are evalu-
ated only for td2004 and hp2004, where the relevant documents are home pages (see Section[Z.T).

Task ML2 MpL2 PL2F
MAP

td2004 0.1241 0.1391 0.1390
MRR

np2004 0.6986 0.6856 0.6878

hp2004 0.6075 0.6213 0.6270

Task ML2U MpL2U PL2FU
MAP

td2004 0.1916 0.2012 0.2045
MRR

hp2004 0.6364 0.6220 0.6464

A comparison of the evaluation results with the best performing runs submitted to
the Web track of TREC 2004 [4] shows that the combination of the proposed mod-
els with the evidence from the URLs performs better than the best performing run of
the topic distillation task in TREC 2004, which achieved MAP 0.179. The performance
of the proposed models is comparable to that of the most effective method for the
named page finding task (MRR 0.731). Regarding the home page finding task, the dif-
ference is greater between the performance of the proposed models with evidence from
the URLSs, and the best performing methods in the same track (MRR 0.749). This can be
explained in two ways. First, the over-fitting of the parameters w and x on the training
task may result in lower performance for the test task. Second, using field weights may
be more effective for the home page finding task, which is a high precision task, where
the correct answers to the queries are documents of a very specific type.

From the results in Table [3] it can be seen that the model MpL2, which employs
the information theoretic approximation to the multinomial distribution, significantly
outperforms the model ML2, which employs the multinomial distribution, for the topic
distillation task. As discussed in Section[3.2] this may suggest that approximating the
multinomial distribution is more effective than directly computing it, because of the
number of computations involved, and the accumulated small approximation errors
from the computation of the factorial. The difference in performance may be greater
if more document fields are considered.

Overall, the evaluation results show that the proposed multinomial models ML2 and
MpL2 have a very similar performance to that of PL2F for the tested search tasks.
None of the models outperforms the others consistently for all three tested tasks, and
the weighting models MpL2 and PL2F achieve similar levels of retrieval effectiveness.
The next section discusses some points related to the new multinomial models.

38 V. Plachouras and I. Ounis

5 Discussion

This section discusses (i) the advantages of the proposed multinomial models compared
to the existing field-based weighting models, and (ii) the use of normalisation 2 (or
normalisation 2F) for weighting fields in any of the field-based DFR weighting models.

The proposed models result in similar retrieval effectiveness to that of PL2F (Equa-
tion (@), and also provide a new approach to the combination of evidence from the
fields, compared to PL2F or BM25F [[17], where a weighted sum aggregates term
frequencies. Indeed, by employing multinomial distributions, the combination of fields
takes place in the probabilistic weighting model. Hence, the weight of a term in a do-
cument depends explicitly on the distribution of term frequencies in the different fields.

A second advantage of the multinomial models over PL2F or BM25F is that they
allow for a more principled approach to the weighting of fields, rather than just mul-
tiplying term frequencies by a constant. As suggested earlier, in the case of ML2 and
MpL2, the prior probability of each field can be used as a weight for that field. The same
approach cannot be applied to PL2F, because the randomness model does not consider
document fields.

Normalisation 2 is primarily used for normalising the frequency of terms in a docu-
ment, or in the document fields. In addition, it can also be used to weight the document
fields, possibly avoiding the introduction of additional hyperparameters. Indeed, from
the equation of normalisation 2: ¢ fn; =t fi-logy (1+¢;-(I;/1;)), where ¢; € (0, +00),
it can be seen that applying a very high value for a particular document field, such as the
title field, results in weak term frequency normalisation, and also multiplies the original
term frequency. In this way, it may not be necessary to employ separate hyperparame-
ters for field weights, thus reducing the imposed training overhead.

Overall, the proposed multinomial models offer a novel and effective way to com-
bine document fields in a theoretically driven approach. Their introduction in the DFR
framework can also generate a family of new weighting models, by combining different
information gain or term frequency normalisation models.

6 Conclusions

In this work, we have introduced two new weighting models that combine document
fields for Information Retrieval. While field-based weighting models, such as PL2F [7]],
or BM25F [17], combine evidence from fields in the term frequency normalisation com-
ponent, we take a different approach. In the context of the DFR framework [1], we
employ multinomial randomness models, and model the document fields in the proba-
bilistic retrieval model. The first model, ML2, employs directly the multinomial distri-
bution to assign a relevance score to documents, and the second model, MpL.2, uses an
information theoretic approximation of the multinomial distribution.

We have performed experiments in the context of the .Gov TREC Web test collection.
The evaluation results show that the new models perform as well as PL2F for a range of
Web search tasks, such as topic distillation, named page finding and home page finding.
In particular, for the topic distillation task, the model MpL2 performs as well as PL2F,
and significantly outperforms ML2, suggesting that it is more effective to approximate
the multinomial distribution, than to compute it directly.

Multinomial Randomness Models for Retrieval with Document Fields 39

The proposed multinomial models represent a novel and effective approach to the

combination of document fields, which is achieved in a principled way within a proba-
bilistic framework. As a result, one of their advantages is that, for example, they allow
for the investigation of the weighting of fields in terms of the prior probabilities of each
field.

References

1.

2.

10.

11.
12.
13.
. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted fields.

15.

16.

17.

Amati, G., van Rijsbergen, C.J.: Probabilistic models of information retrieval based on mea-
suring divergence from randomness. ACM TOIS 20 (2002) 357-389

Craswell, N., Hawking, D.: Overview of TREC-2002 web track. In: Proceedings of TREC-
2002, Gaithersburg, MD, USA (2002)

. Craswell, N., Hawking, D., Wilkinson, R., Wu, M.: Overview of the TREC-2003 web track.

In: Proceedings of TREC-2003, Gaithersburg, MD, USA (2003)

. Craswell, N., Hawking, D.: Overview of TREC-2004 web track. In: Proceedings of TREC-

2004, Gaithersburg, MD, USA (2004)

. Hawking, D., Upstill, T., Craswell, N.: Toward better weighting of anchors. In: Proceedings

of the 27th annual international ACM SIGIR conference on Research and Development in
Information Retrieval, ACM Press (2004) 512-513

. Jin, R., Hauptmann, A.G., Zhai, C.X.: Title language model for information retrieval. In:

Proceedings of the 25th annual international ACM SIGIR conference on Research and De-
velopment in Information Retrieval, ACM Press (2002) 4248

. Macdonald, C., Plachouras, V., He, B., Lioma, C., Ounis, I.: University of Glasgow at We-

bCLEF 2005: Experiments in per-field normalisation and language specific stemming. In:
Proceedings of the Cross Language Evaluation Forum (CLEF) 2005. (2005)

. Macdonald, C., He, B., Plachouras, V., Ounis, I.: University of Glasgow at TREC 2005:

Experiments in Terabyte and Enterprise Tracks with Terrier. In: Proceedings of TREC-2005,
Gaithersburg, Maryland USA (2005)

. Macdonald, C., Ounis, I.: Combining fields in known-item email search. In: SIGIR ’06:

Proceedings of the 29th annual international ACM SIGIR conference on Research and De-
velopment in Information Retrieval, ACM Press (2006) 675-676

Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A High Per-
formance and Scalable Information Retrieval Platform. In: Proceedings of ACM SIGIR’06
Workshop on Open Source Information Retrieval (OSIR) (2006)

Plachouras, V.: Selective Web Information Retrieval. PhD thesis, Department of Computing
Science, University of Glasgow (2006)

Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press (1992)

Rényi, A.: Foundations of probability. Holden-Day (1970)

In: Proceedings of the 13th ACM Conference on Information and Knowledge Management
(CIKM’04), ACM Press (2004) 42-49

Soboroff, I.: On evaluating web search with very few relevant documents. In: Proceedings
of the 27th annual international ACM SIGIR conference on Research and Development in
Information Retrieval, ACM Press (2004) 530-531

Yuret, D.: From Genetic Algorithms To Efficient Optimization. Master Thesis, MIT, A.L
Technical Report No. 1569. (1994)

Zaragoza, H., Craswell, N., Taylor, M., Saria, S., Robertson, S.: Microsoft Cambridge at
TREC-13: Web and HARD tracks. In: Proceedings of TREC-2004, Gaithersburg, MD, USA
(2004)

On Score Distributions and Relevance

Stephen Robertson

Microsoft Research, 7 JJ Thomson Avenue, Cambridge CB3 0FB, UK

ser@microsoft.com

Abstract. We discuss the idea of modelling the statistical distributions
of scores of documents, classified as relevant or non-relevant. Various
specific combinations of standard statistical distributions have been used
for this purpose. Some theoretical considerations indicate problems with
some of the choices of pairs of distributions. Specifically, we revisit a
generalisation of the well-known inverse relationship between recall and
precision: some choices of pairs of distributions violate this generalised
relationship. We identify the choices and the violations, and explore some
of the consequences of this theoretical view.

1 Introduction

The idea of modelling the distributions of scores of relevant and non-relevant
documents in an information retrieval system has been around for a long time
(see Swets [I]), but in recent years has taken a new lease of life [2I34]. Various
combinations of statistical distributions have been proposed, for example two
normal distributions of equal variance [I], two unequal variance normals or two
exponentials [5], two Poisson distributions [6], two gamma distributions [2], an
exponential for non-relevant and a normal for relevant [34l7], an exponential
and a gamma [4].

Clearly a strong argument for choosing any particular combination of distri-
butions is that it gives a good fit to some set of empirical data, and some of
the above authors address this question in various ways. However, we do not
attempt in this paper any such empirical analysis. Nor does it claim any fun-
damentally new theoretical results. Rather, it revisits old work [89] in order to
consider some theoretical properties which might be desirable for such distribu-
tions. The primary argument of the paper is that, putting aside considerations of
empirical fit, some combinations of distributions exhibit undesirable or anoma-
lous features which reduce their theoretical value. This argument generalises a
point made by Bookstein [6] about the Swets unequal variance model. Some of
these considerations were also aired in [I0] in the context of an analysis of the
relation between performance and collection size. The contribution of the paper
is to bring together and clarify the theoretical issues, and to connect them with
the recent work on score distributions.

Note that many other authors model or analyse score distributions without
reference to relevance. This work is not discussed here. Also, the work depends on
an assumption of the binary nature of relevance; a different approach would have

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 4051 2007.
© Springer-Verlag Berlin Heidelberg 2007

On Score Distributions and Relevance 41

to be taken to take account of degrees or grades or ranks of assessed relevance.
The link between relevance and ranking is assumed to be the probability ranking
principle [II], which asserts that a search system should rank output in order of
probability of (assumed binary) relevance.

In the next section, we introduce the main theoretical argument of the paper.
In Sect. [3 we analyse in detail one of the early suggestions, the case of two
normal distributions of unequal variance. Then in Sect.[d] we define a simple test
and apply it to five different sets of distributional assumptions that have been
suggested in the literature. Finally we discuss some further issues and conclude.

2 Recall and Fallout

We consider the output of a retrieval system, as a result of a search query, to be
a list of documents ranked by score or retrieval status value, and the user action
to involve reading down the list until some stopping point. This stopping point
then corresponds, explicitly or implicitly, to a threshold on the score: everything
above this threshold has been retrieved, i.e. seen by the user; everything below
has not. We further model the situation in terms of the distributions of scores in
the populations of relevant and non-relevant documents: a signal detection (SD)
theory view of retrieval. In this case, the two natural parameters for evaluation
are recall, which corresponds to the proportion of the relevant distribution ex-
ceeding the threshold, and fallout (the same for the non-relevant distribution).
We interpret these parameters in a probabilistic fashion as the values of the
respective cumulative distribution functions, cumulated from the right (i.e. from
the high-score end). In this case, the natural performance graph to consider is
a graph of recall against fallout, referred to in the SD context as the receiver
operating characteristic or ROC curve.

The recall-fallout graph is not normally used for real retrieval experiments,
partly because real fallout values are typically so small, but also so unevenly
distributed, that it is difficult to display such graphs in a reasonable way. One
solution is to transform fallout in some way, e.g. by using a log scale. However, for
the purpose of considering some theoretical characteristics, it is appropriate to
think in terms of a recall-fallout graph on linear scales. We also present all such
graphs with fallout on the x-axis and recall on the y-axis. All such curves may
be presumed to pass through (0,0) (very high threshold, nothing retrieved) and
(1,1) (very low threshold, everything retrieved). Going down the ranking from
the top to the bottom, i.e. lowering the threshold, corresponds to traversing the
curve from bottom left (0,0) to top right (1,1).

An example of an idealised smooth curve is shown in Fig.[I] (a detailed deriva-
tion of this curve is given in Section [3]). We can also see in this figure two other
properties of the recall-fallout graph on linear scales. Assuming that this curve
represents a single request, the slope of the line OA from the origin to a point A
on the curve is a monotonic function of the precision at point A. Also the slope
of the tangent at A represents the ‘instantaneous’ precision — that is, the prob-
ability that a document having exactly that score is relevant. A mathematical

42 S. Robertson

09 A
084
07 A

06 -

054 o

Recall Fg(t)

04 A
03 7"
02

014/ .

0+ ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08 09 1
Fallout F y (1

Fig. 1. Receiver Operating Characteristic (ROC) curve for the distributions discussed
in Section

explanation of these points is given in Section[3 First, we formulate the Convex-
ity Hypothesis, which provides a strong expectation on the shape of the curve.

2.1 The Convex Curve

The straight line on the linear recall-fallout graph, from point (0,0) to (1,1),
represents a random ordering of the document collection — identical relevant and
non-relevant score distributions [12]. Other straight lines may also be interpreted
as random orderings of sets. For example, suppose that we have two points A,
B on the recall-fallout graph, corresponding to two score thresholds t4 and tp,
with t4 > tp. Then the straight line from A to B corresponds to retrieval of all
documents at A (those whose scores exceed t4), followed by a random ordering
of the documents scoring between t 4 and 3.

It follows that we would in general expect the recall-fallout curve to be convex,
when viewed from the top left (0,1). If we found a scoring function which gener-
ated a curve containing a concavity, we could improve upon it simply by means
of a randomisation process on that section of the ranked list corresponding to
the concavity in the curve — this operation would replace the concave section by
a straight line, thus raising this part of the curve. (Actually, we could do better
than this: the concave part represents scores which tell us something about likely
relevance, but in the reverse order — a suitable re-ordering of score values would
get us as far above the straight line as the concavity is below it.) Thus even if it
is not always the case that the curve is convex, we would certainly expect it of
a good system, because a departure from convexity implies that the system can
be very easily improved. We may therefore state the following hypothesis, with
the support of the above arguments:

On Score Distributions and Relevance 43

Convexity hypothesis. For all good systems, the recall-fallout curve (seen
from the ideal point of recall=1, fallout=0) is convex.

This result is related to, but somewhat stronger than, the usual inverse
relationship between recall and precision — that is, the R-P relationship fol-
lows from convexity [12I8]. We see the convexity hypothesis as a generalisation
of the hypothesis of the inverse R-P relationship.

The same hypothesis can also be formulated as a condition on the instanta-
neous precision, or the probability of relevance of a document at an exact score.
The condition is that this should be a monotonic increasing function of the
score — the higher the score the higher the probability of relevance. This condi-
tion is assumed in []; their use of it will be discussed further below.

The convexity hypothesis is the basis for the theoretical arguments of this
paper.

3 Score Distributions: Details and an Example

Consider a pair of score distributions for relevant and non-relevant documents.
In Fig. @ we see an example of a pair of normal distributions. The normal is
used as example only, but we will generally be using continuous distributions,
although it is likely that the scoring function has some degree of granularity,
and also we are dealing with finite collections of documents. These distributions
are shown in the form of density functions (the usual bell curve). The x-axis is
the score or retrieval status value, denoted v; the two distributions are denoted
fr(v) and fy(v) for relevant and non-relevant documents respectively. All the
equations in this section apply to any pair of continuous distributions, but the
diagrams relate to the pair of normals.

As indicated above, we turn them into cumulative distributions from the right
— see Fig. Bl These functions are defined as follows:

Falt) = | °° fr(v)dv

and similarly for Fly.

At any given cut-off or threshold ¢ (examples shown in the form of vertical
lines), the cumulative distributions give the probability of retrieving a relevant
or non-relevant document respectively at or above that threshold score. These
two probabilities may be equated with the traditional measures of recall and
fallout respectively. That is, the probabilities can be used as definitions of recall
and fallout, and observed recall and fallout values are then estimates of these
measures:

Recall at threshold ¢ = Pr(d retrieved at or above threshold t|d relevant)
= Pr(v(d) > t|d relevant)
= Fr(1) (1)

44 S. Robertson

Non relevant

---Relevant

Probability density

Score (retrieval status value)

Fig. 2. SD model, normal distributions unequal variance: relevant mean 2.5 variance
1.2; non-relevant mean 1.8 variance 1

(where d is a random document), and similarly for fallout and Fy. We can
similarly define precision P, and identify it as a function of recall, fallout and
generality GEL as follows:

P = Pr(d relevant|v(d) > t)
_ GFg(t)
 GFr(t)+ (1 - G)Fx(t)

We reformulate this as odds:

P G Fgr(t)

1-P 1-G Fx(t) @

which gives us the monotonic relation between precision and the slope of the
straight line OA of Fig.[Il Similarly we can define the odds that a document has
a score between two limits:

G Fgr(t1) — Fr(t2)

Odds(d relevant|ty < v(d) < ta) = |G Fy(t) - Fy(ts)

3)
which gives us the corresponding relation for the line AB. Furthermore, letting
(t2 — t1) — 0 gives the instantaneous precision result.

We now treat the score v as defining parametrically a relation between recall
and fallout, and draw the ROC curve for these two parameters. The curve already
presented in Fig. [[lis based on the distributions used here. It does not actually
reach (1,1) because it was plotted only down to a threshold of zero; the assumed

1 Generality is the proportion of documents in the collection that are relevant.

On Score Distributions and Relevance 45

Cumulative probability distribution

Score (retrieval status value)

Fig. 3. SD model, normal distributions unequal variance, as Fig. 2] cumulative form

normal distributions both go below zero. The curve does indeed appear to be
convex. However, in the full curve there would actually be a small concavity, at
the right-hand end, invisible on the scale on which the graph is shown. This is
because the relevant document distribution assumed, with a larger variance than
the non-relevant, predicts a slightly larger number of documents with significant

0999 -

0998 -

Recall Fg(t)

0997 A

0996 -

0995 T T T T
099 0992 0994 0996 0998 1

Fallout F (1)

Fig. 4. Top end of the ROC curve for the distributions used in Figs 2] and

46 S. Robertson

negative scores than the non-relevant. The curve is extended to (1,1) and the
top right corner is blown up in Fig. @l now the concavity is clearly seen.

In this case we may take this to be an artifact of the model, and of no prac-
tical significance whatever, because (a) the system probably does not calculate
negative scores anyway, and (b) the number of documents in that range pre-
dicted by the distributions is probably measured in very small fractions of a
document. It could be that the two normal model gives a fair approximation to
real score distributions, and this theoretical anomaly is of no concern. However,
the conclusion must be that the 2-normal (unequal variance) model is theoreti-
cally flawed, irrespective of its practical usefulness. It therefore seems useful to
investigate the conditions under which a pair of distributions will violate the
convexity hypothesis.

4 Convexity Condition and Distributional Assumptions

The convexity condition is given in [§] as:

d? (Recaﬂ) - d? (Fallout) d(ngall) (4)
d? dt? d(Fallout)
dt

for some controlling variable t. As above, we identify recall and fallout with
Fr(t) and Fx(t) respectively. We note that

dFCZ(t) =)

As the density function f is always positive, this expression is negative. The
condition can be expressed as:

1 dfr(t) _— dfn (1)
fr(t) dt fn() dt
throughout the range of ¢t. We can now test this condition on a number of the

pairs of distributions that have been proposed for modelling scores. For each
distribution, we need the function

(®)

1 df(t)
Cf(t) dt (6)

derived from its density function f, and then we can compare gr(t) and gn(t).

4.1 Two Exponential Distributions

The case of two exponential distributions (one of the models suggested [5]) is
simple. The exponential density function is

0-on(-1)

On Score Distributions and Relevance 47

where p is the mean. Thus

Since pr would be larger than v, the convexity condition holds for all ¢.

4.2 Two Normal Distributions

Here ,
1 —(t—p)
f= mexp(s)

where g is the mean and o2 is the variance. Thus

1
9 = (=1
Again, we expect pug to be larger than py. If the two variances are equal (the
first model proposed in [I]), then the convexity condition always holds. But if
0% > 0% (as in the example above), there will be some small value of ¢ (or
perhaps a large negative value) below which the condition is not satisfied: the
reverse is the case. If 012% < 0%, the departure from convexity occurs at the other

end.

4.3 Two Poisson Distributions

This combination was suggested in [6], specifically in response to the kind of
anomaly just observed. The Poisson distribution is discrete, so the analysis above
based on continuous distributions does not apply. However, we can define a
function analogous to g(t) above, as follows:

P(k +1) — P(k)

g(k) = Pk)

for each integral threshold k£ = 0,1, ..., where P is the probability of observation
k. The probability function for the Poisson distribution is:

M exp(—k)

P(k) = X

where) is the Poisson mean, from which

A

9k =41 7!

Once more, we expect Ar to be larger than Ay, so the condition is always
satisfied. This is consistent with the argument in [6].

48 S. Robertson

4.4 Two Gamma Distributions

This configuration is used in [2]. The density is:

f) = <2) 10 (1)

where b is the scale parameter and ¢ is the shape parameter; the mean is bc.
Thus
£ = c—1 B 1
9(: T
Here if either ¢ or b is the same for the two distributions, but the other varies in
the way we would expect (higher mean for relevants), the condition is satisfied.
The range of variations for which the condition is satisfied is in fact quite wide,
although one could certainly construct examples which violate the condition for
some .
In fact Baumgarten’s model is slightly more complex, involving shifted gamma
distributions (i.e. shifted along the t-axis by a small amount).

4.5 Exponential Non-relevants and Normal Relevants

This combination is used in [4], [3] and [7], making it currently the most popular
model. If we examine the formulae for g(¢) in sections and LT we see that
in the exponential case ¢(t) is constant, while in the normal case it declines
linearly with ¢. Therefore there is always a ¢ above which the condition is not
satisfied. This affects the bottom left end of the recall-fallout graph, whatever
the parameter values.

There is also a problem at the top right end (low t). Because the exponential
is defined over the positive real numbers only, but the normal necessarily extends
over the negatives as well, the curve hits the fallout=1 line below the recall=1
level. Thereafter it climbs straight up the fallout=1 line to the point (1,1). Thus
this end also violates the convexity condition, again for all parameter values.

5 Discussion

5.1 Score Range

In practice, score distributions may be truncated. It is common, for example,
for scores to be constrained to be positive, either as a mathematical conse-
quence of the scoring formula or as a matter of practical convenience. Indeed,
most of the above theoretical distributions are also confined to the positive real
numbers, although the normal is not. Many scoring systems also, however, con-
strain the scores below a maximum. For example, some produce scores that are
normalized to the range [0,1]. All the above theoretical distributions extend to
infinity in the positive direction. This fact produces its own theoretical problems:

On Score Distributions and Relevance 49

Should the fitted distribution be a truncated version of the theoretical one,
i.e. normalised so that its integral over the truncated range is unity? This is
potentially problematic, because it affects such statistics as the mean. Many
authors ignore this issue — e.g. [4] considers a scoring system which produces
scores in the range [0,1], but does not worry about the implied truncation.

5.2 Non-convexity

This truncation might have the side-effect of resolving the non-convexity prob-
lem, by putting the non-convex part of the curve out of effective scoring range. In
the case of [4], however, the non-convexity of the normal-exponential model does
affect them, and they recognise it as a problem, at least at the high-threshold
end (the non-convexity at the other end is avoided by the truncation at zero).
They observe that for some of their topics, the non-convexity at the high ¢ end
falls within the scoring range [0,1]. In their terms, the probability of relevance
as a function of score is no longer monotonic in these cases: after a certain point
it declines. They resolve the problem by redefining the probability of relevance:
when the predicted function starts declining, they replace it with a straight line
from the maximum reached to the point (1,1) (that is, score=1 and probabil-
ity of relevance=1). They do not give any justification for this procedure, other
than that one would expect probability of relevance to be a monotonic function
of score.

On the basis of the above analysis of the recall-fallout graph, one could devise
an alternative procedure. Since a straight line on a recall-fallout graph represents
a random ordering of some set of documents, we could perform a procedure
similar to that of [4] but on the recall-fallout graph. We illustrate the procedure
in Fig. Bl Replacing the concave section of the curve with the straight line is
equivalent to randomly reordering all documents which score in that range. This
is thus a well-founded form of extrapolation.

5.3 Monotonic Transformations of the Score

One characteristic of all the above analysis is that it assigns a status to scores
which they might not possess. Systems produce scores in order to rank doc-
uments, and care not at all about the scale or shape of the scoring function.
Thus any monotonic transformation of a score produces a new score which is
indistinguishable from the old, in terms of ranking. Factors which do not affect
the rank order may be arbitrarily included or removed at any stage. This fact is
often used to simplify scoring functions, or their calculation.

Thus for example some scoring functions produce numbers that are restricted
to the range [0,1] because they are intended to model probabilities. Independence
assumptions lead one to multiply multiple probabilities; the result is another
probability. On the other hand, it is often easier to use log-probabilities (or log-
odds) and add them rather than multiplying them. The resulting logarithmic
(or logistic) scale looks quite different, and belongs to the range (—o0,0) (or
to (—o0,00)). But a system using such a scale might then decide to normalise

50 S. Robertson

009 A

08 -

07 A

06 -

05

Recall Fy(t)

04
03 V.
02 /

014 7

0 T T T T T
0 01 02 03 04 05 06 07 08 09 1

Fallout F y(?)

Fig. 5. Concavity at the high-threshold end

back to [0,1] linearly, by taking account of the observed maximum and mini-
mum values, rather than non-linearly, by reversing the logarithmic or logistic
transformation.

All such operations will drastically affect the distributions of scores, while
not at all affecting the resulting ranked output or any performance curve. Thus
observed distributions might depend on, in effect, accidental characteristics of
the system.

6 Conclusion

We have seen that we would normally expect the recall-fallout curve to be convex
in the sense defined above. That is, if we find a system which violates this
condition, then the system can be improved merely by adding a randomisation
process. Therefore we would at least expect good systems to satisfy the condition
already.

We have seen that under some models of the distributions of relevant and non-
relevant scores. models which have been proposed and/or used by researchers,
this convexity condition is violated. While the violation may relate to some part
of the score range which is not normally encountered, any violation seems at
least to raise questions about the general validity of the distributional model
under consideration.

Specifically, the model that appears to be most frequently used at present,
the normal/exponential mixture, always violates the convexity condition at both
ends of the range of theoretically possible scores. While this result does not
invalidate the model as a reasonable approximation to the true distributions, it
does put into question its general validity.

On Score Distributions and Relevance 51

References
1. Swets, J.A.: Information retrieval systems. Science 141(3577) (July 1963) 245-250
2. Baumgarten, C.: A probabilistic solution to collection fusion problem in distributed

10.

11.

12.

information retrieval. In Hearst, M., Gey, F., Tong, R., eds.: SIGIR’99: Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, New York, ACM Press (1999) 246-253
Arampatzis, A., van Hameren, A.: The score-distributional threshold optimization
for adaptive binary classification tasks. In Croft, W.B., Harper, D.J., Kraft, D.H.,
Zobel, J., eds.: SIGIR 2001: Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, New
York, ACM Press (2001) 285-293

. Manmatha, R., Rath, T., Feng, F.: Modelling score distributions for combining

the outputs of search engines. In Croft, W.B., Harper, D.J., Kraft, D.H., Zobel,
J., eds.: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, New York,
ACM Press (2001) 267-275

Swets, J.A.: Effectiveness of information retrieval methods. American Documen-
tation 20 (1969) 72-89

Bookstein, A.: When the most ‘pertinent’ document should not be retrieved — an
analysis of the Swets model. Information Processing and Management 13 (1977)
377-383

Collins-Thompson, K., Ogilvie, P., Zhang, Y., Callan, J.: Information filtering,
novelty detection and named page finding. In Voorhees, E.M., Harman, D.K., eds.:
The Eleventh Text REtrieval Conference, TREC 2002. NIST Special Publication
500-251, Gaithersburg, MD: NIST (2003) 107-118

Robertson, S.E.: Explicit and implicit variables in information retrieval systems.
Journal of the American Society for Information Science 26(4) (1975) 214-222
van Rijsbergen, C.J.: Retrieval effectiveness. In Voigt, M.J., Hanneman, G.J., eds.:
Progress in communication sciences. Volume 1., Ablex Publishing (1979) 91-118
Hawking, D., Robertson, S.: On collection size and retrieval effectiveness. Infor-
mation Retrieval 6 (2003) 99-150

Robertson, S.E.: The probability ranking principle in information retrieval. Journal
of Documentation 33 (1977) 294-304

Robertson, S.E.: The parametric description of retrieval tests. part 1: The basic
parameters. Journal of Documentation 25(1) (1969) 1-27

Modeling Term Associations for Ad-Hoc Retrieval
Performance Within Language Modeling Framework

Xing Wei and W. Bruce Croft

Center for Intelligent Information Retrieval
University of Massachusetts Amherst
140 Governors Drive
Ambherst, MA 01003
{xwei,croft}@cs.umass.edu

Abstract. Previous research has shown that using term associations could
improve the effectiveness of information retrieval (IR) systems. However, most
of the existing approaches focus on query reformulation. Document
reformulation has just begun to be studied recently. In this paper, we study how
to utilize term association measures to do document modeling, and what types
of measures are effective in document language models. We propose a
probabilistic term association measure, compare it to some traditional methods,
such as the similarity co-efficient and window-based methods, in the language
modeling (LM) framework, and show that significant improvements over query
likelihood (QL) retrieval can be obtained. We also compare the method with
state-of-the-art document modeling techniques based on latent mixture models.

Keywords: Information Retrieval, Language Model, Term/Word Associations/
Relationships, Term/Word similarity, Document Model, Topic Model.

1 Introduction

Modeling term associations is important to Information Retrieval (IR) systems. It is
well-known that ranking algorithms solely based on matching the literal words that
are present in queries and documents will fail to retrieve much relevant information.
For example, matching only the word “fruit” will miss the documents containing
“apple” that are also relevant to “fruit”. For this reason, term associations, which are
also called “term relationships” or “word similarity” in literature, have been
introduced to add new terms to the query/document representations that are related to
the original terms. There can be associations between two single terms (term-term
association); or between two groups of terms (term group association).

There has been much research in IR to associate related terms for queries and/or
documents. Manual techniques such as using hand-crafted thesauri and automatic
techniques such as clustering all attempt to provide a solution, with varying degrees of
success. Although manual processing can usually provide precise and useful
information with relatively less noise, an automatic method is expected to be more
effective due to many problems related with manual processing [15], such as labor
intensiveness, inconsistencies and ambiguity. Most automatic approaches to modeling
term associations are based on term co-occurrence or grammatical analysis.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 52 — 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Term Associations for Ad-Hoc Retrieval Performance 53

Grammatical analysis is provides very specific knowledge about term relationships, but
it is not as robust as using term co-occurrence [12]. Accurate but limited knowledge
that provides few related terms is unlikely to substantially improve the retrieval output.
Term co-occurrence has been widely used in term-association studies based on the
intuition that co-occurring words are more likely to be similar, such as in term-term
association models (e.g., measuring term similarity with co-efficient of two term-
document vectors, which was widely used in earlier work such as term clustering [15,
23, 21] and Hyperspace Analogue to Language (HAL) [4]) and term group association
models (e.g., measuring document similarity with co-efficient of two document-term
vectors in document clustering [16] and Latent Dirichlet Allocation [2]). After term
associations are constructed by these methods, some post-processing techniques can be
applied to further improve the associations such as in [6], or to make the results
compatible with systems using clustering such as in [15, 16].

With the term associations derived from previous methods, texts are reformulated
(i.e. usually expanded) to improve the retrieval effectiveness. Some reformulations
are not as explicit as replacing query terms with new terms, but instead the
reformulation process is implicit, such as in the spreading activation techniques [22,
7, 8], in which the expansion is actually acquired during the process of following
links between nodes that represent terms or documents. Both query and document
reformulation processes have been investigated.

Query reformulation has been extensively studied with many term-association
models in various IR frameworks [10, 21, 14, 26, 19] (In the works that phrases are
considered, such as [14], we view a phrase as one term in this paper). The well-known
pseudo-relevance feedback process, which expands the initial query vocabulary by
adding terms contained in previously retrieved documents, is one of the best query
expansion techniques in terms of retrieval performance [19]. Most relevance feedback
models do term group association to find terms related to the entire query, which
contains more information than individual words and thus can produce better results
[21, 14]. Some query expansion techniques based on term-term associations such as
[1] do post-processing to generate associations with the entire query. These query-
based expansion processes have to be done online, in that they require an extra search
for each query, which negatively affects query response time. Also, the efficiency of
an IR system depends heavily on the number of terms of the query submitted to the
system; query expansion therefore has its disadvantages in spite of the generally good
retrieval results.

Document reformulation can be done offline without query inputs, thus being
transparent to users and more efficient in terms of query response time. Offline
processing, however, can be time-consuming and memory-expensive because it needs
to process the associations of every term in every document of the entire collection,
which is one of the reasons that document expansion was not popular until recent
years. Two types of term associations have been applied to document reformulation:
(i) Term group associations for document reformulation are usually based on
documents. In the cluster-based document model [16], related documents are grouped
and used to expand documents; in the LDA-based document model [24], documents
are associated with related terms. Improvements have been obtained on several TREC
collections with both of these two models, but they are both very expensive and
difficult to apply to large collections, and parameter tuning for these models makes

54 X. Wei and W.B. Croft

them even more expensive. (ii) Simple term-term association has significant
advantages over term group association considering the offline efficiency of
document reformulation. Cao et al. reformulate documents within the language
modeling framework using term associations extracted both from a manually built
thesaurus (WordNet) and from a co-occurrence based automatic technique, which
considers term co-occurrence in a fixed-sized window. They achieve significant
improvements over a baseline query likelihood system on some TREC collections [5],
and obtain better results by further processing the original term-term associations with
Markov chains [6]. The window-based approach, however, always requires an
appropriate setting for the window size, and the improvements using only the
automatic model are not as impressive.

Cao et al.’s work sheds light on the effectiveness of integrating term-term
associations into the language modeling framework, which has been confirmed by a
number of groups to be a theoretically attractive and potentially very effective
probabilistic framework for studying information retrieval problems [20]. On the
other hand, the assumption of the term independence (“bag of words”) of the unigram
language model is well known to be inappropriate for natural language. This has led
many language model researchers to study term associations.

As a summary, we are interested in an automatic term-association method based on
term co-occurrence in the language modeling framework, especially for dealing with
document reformulation. Although term-association models have been studied for
decades, none of the association processes have been performed within the language
modeling framework, even that some integration processes of term associations are
carried out with language models and some association processes like the window-
based co-occurrence model are probabilistic methods. In this paper we study the
traditional term co-occurrence based automatic term-association methods in the
document reformulation task, and propose a new and simple method, which is based
on the language modeling approach and thus fits within this framework naturally, to
model term associations for retrieval operations.

2 Related Work

The history of examining term associations to improve retrieval effectiveness is
almost as long as the history of IR itself. Since the binary term matching model, IR
researchers have been trying to expand the matching of literal terms to include the
matching of many other related words.

2.1 Hand-Crafted Thesauri

The earliest method of detecting and using term associations in IR was by building
hand-crafted thesauri. This approach still attracts considerable interest from the IR
community and open resources like WordNet and the open directory project' have
been studied extensively [5, 6, 9].

Manual indexing has often been viewed as a gold standard and a thesaurus as a
“correct” way of incorporating new words or phrases, but building and maintaining a

' http://www.dmoz.com/

Modeling Term Associations for Ad-Hoc Retrieval Performance 55

thesaurus is very labor-intensive and it is very difficult to get people to agree on the
semantic classifications involved. Inconsistencies and ambiguity in the use of these
thesauri have produced poor results when they are used for retrieval experiments.
Also, it is a fact that human beings tend to stick to obvious principles of classification.
It is easy for human beings to group such words as “fruit” and “apple” together, but it
may be difficult for them to find out that “boundary”, “layer” and “flow” are related
by their combined use in aerodynamic contexts [15]. Therefore, an automatic, instead

of a manual approach, is expected to be more effective for improving retrieval.

2.2 Similarity Coefficient

A variety of similarity coefficients have been developed and applied to measure term
associations in IR environments, such as the Cosine metric, weighted and unweighted
Tamimoto [15], etc. The coefficient used in Qiu & Frei’s Concept Based Query
Expansion is one example [21]. They built a term-document matrix and computed the
similarity between any two terms as follows;

SIM (1,,t,)=.d, -d, > (1)
k=1
05+0.5x T Et) e g
d = max ff (t;)
“ = T d.0) 2)
Z((O.S+0.5><Wizf(d]))

where ff(d,,) is the frequency of term ¢; in document d;, iff(d;)=log(m/| d;l), m is the
number of terms in the collections and Id;l is the number of different terms in
document d,. max ff(t;) is the maximum frequency of term f; in all documents. The
dy’s and d‘s signify feature weights of the indexing features (documents). Then, the
similarity between a term and a query is defined as the weighted sum of the similarity
values between the term and individual terms in the query. To expand a query, terms
with the highest similarity to the query are added and the weight of each added term
takes its similarity value with the original query. Significant improvements in
retrieval effectiveness were reported in their paper [21].

Although many techniques in this area have been tested and some interesting
results were obtained, most of the techniques have been used to do query expansion.
Few studies on document modeling with term similarity coefficients have been
conducted.

2.3 Co-occurrence in Windows

Another important group of term association measures estimates the conditional
probability of a term given another term. Van Rijsbergen [23] and Cao et al. [5]
compute the conditional probability using co-occurrence samples. To compute the
conditional probability of two terms by their co-occurrence in a window is a practical
method for both its simplicity and effectiveness. A fixed-sized window is applied to
measure the co-occurrence in [5] and a sliding-window method (Hyperspace

56 X. Wei and W.B. Croft

Analogue to Language, HAL) is described in [4]. A typical computation of the co-
occurrence probability (the strength of term association) is as follows:

Pt 1) = [0)1 D ft,1,) 3)
k
where f{(1;, t;) is the frequency of co-occurrences of #; and ¢;.

2.3.1 Fixed-Sized Window

A fixed-sized window is often used to measure the co-occurrence of two terms. In this
window-based method, two words are considered as co-occurring once when the
distance between them is less than the window size. For instance, Xu & Croft
developed a metric used for query expansion based on the fixed-sized window
method and achieved excellent performance [25, 26]; Cao et al. applied fixed
windows in document modeling in combination with WordNet [5] and obtained
significant improvements on two TREC collections.

2.3.2 Sliding Window
In addition to setting a threshold to judge the co-occurrence of terms as in the fixed-
sized window method, the distance between two words are also taken into account in
some term-association models, such as in [4, 11, 17, 1]. Sliding window method is
one of the examples, which is also called HAL Space (Hyperspace Analogue to
Language) [4, 17]. By moving a window across the text, an accumulated co-
occurrence matrix for all terms is produced. Compared to the fixed-sized window
method, the sliding window method takes accumulated co-occurrence in all possible
fixed-sized windows and in this way, the strength of association between two words is
inversely proportional to their distance. Some interesting results with the sliding
window method are obtained in previous works, including query expansion tasks in
the language modeling framework [1, 4, 17]. However, its effectiveness on document
modeling tasks is still unknown.

In both the fixed-sized window and the sliding window methods, the size of the
window is a parameter that needs to be determined.

2.4 Latent Mixture Models

Because of the success of statistical approaches to representing text, IR has the
potential of benefiting from recent advances in the fields of statistical modeling and
machine learning. Research in these fields has led to new mathematical models that
effectively represent documents through latent mixture modeling techniques. Some of
these models have also been studied in IR research with interesting results, such as the
mixture of unigrams model [18] and (probabilistic) Latent Semantic Indexing
((p)LSD [12]. The Latent Dirichlet Allocation (LDA) model [2], which possesses
fully generative semantics and overcomes the drawbacks of previous latent mixture
models such as pLSI, has quickly become one of the most popular probabilistic text
modeling techniques in machine learning. LDA has recently been shown to
outperform both the unigram document model and the cluster-based document model
in the language modeling framework for IR [24].

Modeling Term Associations for Ad-Hoc Retrieval Performance 57

However, latent mixture models are usually very expensive and difficult to apply
on large collections. There is often no exact inference techniques for these models and
approximation techniques have to be adopted to iteratively approach the solution.
Parameter tuning for these complicated models makes them even more expensive.
Furthermore, they require a new training process for each new collection; in contrast,
term-term associations can often be used across collections.

3 Modeling Term Associations by Joint Probability

3.1 Term-Association Models

Previous research described in Section 1 and Section 2 has shown the effectiveness of
modeling and integrating term associations into information retrieval processes.
Especially, constructing term-term associations and integrating them into document
models is an attractive way considering both of its online efficiency and large-
collection feasibility. Also, the recently developed language modeling framework has
opened up new ways of thinking about retrieval problems. Its solid theoretical setting
and promising experimental results provide and motivate new directions of the
construction and integration process of term associations. In this section, we present
an approach in the language modeling framework to estimating the conditional
probability of terms by joint probability through Bayesian rule, and the joint
probability will be computed by unigram document models.

To get a sense of the association or closeness between two terms, w and t, we
consider P(wlf), which is the probability of observing w when ¢ is given. By Bayesian
rule, we have

P(wlt)=P(wt)/ P(t) »)

To estimate the join probability of observing the word w and the term ¢, instead of
counting co-occurrence samples in windows, we assume that w and ¢ are identical and
independent samples from a unigram document model D. Then the total probability
of observing w together with 7 is:

P(wt)= Y P(D)P(wt|D) = Y P(D)P(wID)P(t| D) 5)

Dell Dell

where [] represent some finite universe of unigram document models. We choose to
use unigram priors P(D) and limit the universe [] to the collection we test on. Then,

> P(wID)P(t1 D)

Plwln) = >SS PwID)P(ID) (©)

w

Thus, for each term ¢, there is a list of words w with the probability P(wlf)
representing the association of w and ¢#. We can view this probability as the
association/closeness between w and .

58 X. Wei and W.B. Croft

3.2 Document Language Models with Term Associations

The basic approach for using language models for IR is the query likelihood model
where each document is scored by the likelihood of its model generating a query Q.

PQID)=]]P(qID) -)
9€Q

where D is a document model, Q is the query and ¢ is a query term in Q. P(QID) is the
likelihood of the document model generating the query terms under the ‘bag-of-
words’ assumption that terms are independent given the documents. And P(glD) is
specified by the document model with Dirichlet smoothing [27],

N,

P,(wID)= NNi P, (wID)+(1—-)P, (wlcoll) » (8)

d d

where P, (wlD) is the maximum likelihood estimate of word w in the document D,
and Py;(wlcoll) is the maximum likelihood estimate of word w in the entire
collection. N, is document length. x is the Dirichlet prior, and in our experiments we
used a fixed value with =1000.

In the original query likelihood model, documents are estimated by the
independence assumption, which is not appropriate to natural language that is much
more complicated than simple “bags of words”. Modeling term associations is a
straightforward way to integrate related words into text models. To integrate the
association information into document models, we first compute the word distribution
in documents through the probabilistic association measure (Eqn (9)), and then
combine it with the original term model by linear combination:

P,(wID)=Y P(wInP(t1D) -)

€D

It is similar to the retrieval methodology using translation models proposed by
Berger and Lafferty to incorporate term associations into document language models
[3]. With the translation model, the document model becomes

P (wID)=>"tr(wl)P(t1D) > (10

where tr(wlf) is the translation model for mapping a document term ¢ to an arbitrary
term w. The translation probability t#(wlf) describes the degree of link between a term
w and the document term ¢. If we set tr(wlf) to be P(wlt), then Eqn (9) and Eqn (10)
will be same.

The linear combination method is widely used in integrating related words into
document models, such as in [16, 5, 24]. The final document model would be

P(wID)=AP,(wID)+(1—)P, (w|D)

N, _ N, :
_l(mPML(WID)-i-(l N +#)PML(W|C0H)) (11)

+(1=2))_P(wlt)P(t1D)

teD

Modeling Term Associations for Ad-Hoc Retrieval Performance 59

where /4 is the integration co-efficient. This is the only parameter to our model, and is
also one of the parameters to the other models we compare to in Section 4.

In this paper we try several association measures to model P(wlf) in Eqn (11),
including the similarity co-efficient, the fixed-sized window method, the sliding
window method, and the joint probability method we propose. In the similarity co-
efficient method, we normalize its co-efficient to be consistent with the probabilistic
application as following:

P(t;1t,)=SIM(t;,t,)/ D SIM(t,.t,) - (12)
k

4 Experiments and Results

4.1 Data

We conduct experiments on five data sets taken from TREC: the Associated Press
Newswire (AP) 1988-90 with queries 51-150, Wall Street Journal (WSJ) 1987-92
with queries 51-100 and 151-200, Financial Times (FT) 1991-94 with queries 301-
400, San Jose Mercury News (SIMN) 1991 with queries 51-150, and LA Times (LA)
with queries 301-400. Queries are taken from the “title” field of TREC topics. Queries
that have no relevant documents in the judged pool for a specific collection have been
removed from the query set for that collection.

4.2 Parameters

There are several parameters that need to be decided in our experiments. For the
retrieval experiments, the proportion of the term-association part in the linear
combination must be specified (4 in (11)). For the similarity measure, the window
sizes need to be determined. We use the AP collection as our training collection to
estimate the parameters. The WSJ, FT, SIMN, and LA collections are used for testing
whether the parameters optimized on AP can be used consistently on other
collections. At the current stage of our work, the parameters are selected through
exhaustive search or manually hill-climbing search. All parameter values are tuned
based on mean average precision (MAP).

4.3 Experimental Results

In all experiments, both the queries and documents are stemmed, and stopwords are
removed.

4.3.1 Other Term-Associating Methods

We test the effectiveness of some traditional term-term associating methods that we
discussed in Section 2 in language document models, and present the retrieval results
in Table 1.

Similarity co-efficient: With the parameter setting A=0.8, which was obtained by
training on the AP collection, we run experiments with the similarity co-efficient
based document models (SCDM) on other collections. Some improvements, including

60 X. Wei and W.B. Croft

significant improvements on one of the five collections, are achieved over query
likelihood retrieval by integrating the similarity co-efficient into document models.

Fixed-sized window: With 1=0.7 and window size W=30, which were obtained by
training on the AP collection, we run experiments with the fixed-sized window based
document models (FWDM) on other collections. Significant improvements on two of
the five collections are obtained over query likelihood retrieval.

Sliding window: Retrieval results of the document models based on the sliding
window method, with 2=0.6 and W=50, are shown in Table 1. Significant
improvements on two of the five collections over the query likelihood retrieval are
achieved. Table 1 also shows that the sliding window performs better than the fixed-
sized window, which was adopted in [5] and [6] as an automatic term associating
method to be integrated into language document models.

Table 1. Comparison of query likelihood retrieval (QL) and retrieval with document models
based on similarity coefficient (SCDM), fixed-sized window method (FWDM), or sliding
window method (SWDM). The evaluation measure is average precision. %chg denotes the
percentage change in average precision. Stars indicate statistically significant differences with a
95% confidence according to the Wilcoxon test.

Collection QL SCDM %chg FWDM %chg SWDM %chg %chg

over over over over

QL QL QL FWDM
AP 02161 0232 +7.62* 02381 +10.15* 02375 +9.88%* -0.25
FT 0.2558 0.2652 +3.68 02640 +322 02690 +5.14 +1.86%
SIMN 0.1985 0.2068 +4.18 02118 +6.67% 02142 +7.86% +1.12
LA 0.2290 02305 +0.62 02362 +3.12 02485 +8.48 +5.20%
WSJ 0.2908 0.2866 -1.44% 002827 -2.79 0.2905 -0.10 +2.76%

4.3.2 Term Associations by Joint Probability

We test document models based on the term-associating method by joint probability
(JPDM) that we present, and show the retrieval results in Table 2. 1=0.6 for these
experiments, and we process only the top 400 related terms of each term. On four of
the five collections JPDM retrieval achieves significant improvements over query
likelihood retrieval. On the WSJ collection, no improvements are achieved with
4=0.6, and then we especially tuned A for it and obtained improvement with 1=0.2 as
shown in the last line of Table 2.

In previous experiments, we build term associations for each collection
respectively. To test the easy applicability of the term-associating method we present,
we also run experiments with the term associations constructed only from the AP
collection (JPDM-ap), or all of the five collections (JPDM-all). Results of JPDM-ap
are presented in Table 2 and JPDM-all in Table 3.

JPDM-all achieves the best performance among JPDM, JPDM-all and JPDM-ap.
This shows that more training data lead to higher performance, because more data can
imply more knowledge about the term associations. At the same time, term
associations trained only on the AP collection are also effective on other collections.

Modeling Term Associations for Ad-Hoc Retrieval Performance 61

Table 2. Comparison of query likelihood retrieval (QL) and retrievals with JPDM and JPDM-ap

Collection QL JPDM %chgover JPDM-ap %chgover %chg over
QL QL JPDM

AP 0.2161 0.2400 +11.03* 0.2400 +11.03* 0

FT 0.2558 0.2754 +7.66* 0.2636 +3.05 -4.28

SIMN 0.1985 0.2180 +9.80* 0.2139 +7.74% -1.88

LA 0.2290 0.2516 49.85* 0.2426 +5.91 -3.59

WSJ 0.2908 0.2870 -1.32 0.2884 -0.83 +0.49

WSJ (A=0.2) 02908 0.2971 +2.15 N/A N/A N/A

Table 3. Comparison of query likelihood retrieval (QL) and retrievals with LBDM, JPDM, and
JPDM-all

Collection QL LBDM JPDM-all %chgover %chgover %chg over
QL JPDM LBDM

AP 0.2161 0.2629 0.2422 +12.05% +0.92% -7.91%

FT 0.2558 0.2795 0.2842 +11.10 +3.20 +1.68

SIMN 0.1985 0.2279 0.2186 +10.10%* +0.27* -4.06*

LA 0.2290 0.2563 0.2547 +11.21%* +1.24 -0.63

WSJ 0.2908 0.3244 0.2910 +0.07 +1.41% -10.30*

So, the term associations built by joint probability do not have to be trained on the
specific collection of experiments.

Table 3 shows the comparison of JPDM-all and LDA-based document models
(LBDM) [24]. The LBDM achieves better performance than the term association
model we propose. However, based on our experiments, the term association
modeling is much faster than the LDA model estimation. Also, we have shown that it
is very easy and effective to apply the term associations trained on other collections,
which is impossible for the LDA model training.

5 Conclusions and Future Work

We have proposed a probabilistic term association model in the language modeling
framework, which measures term associations through their joint probability, and a
document retrieval model that integrates term associations into document models
through linear combination. We did experiments and compared the model we
proposed with other popular term-association methods on ad-hoc retrieval tasks.

The experimental results showed that modeling term associations through joint
probability was effective in the language modeling framework. Document models
that include term associations outperformed the query likelihood model, and term
associations constructed by joint probability achieved better performance than other
term-association models, such as window co-occurrence methods, in the language
modeling framework. Comparing the two window co-occurrence methods, the
sliding window method performs better than the fixed-sized window method on the

62 X. Wei and W.B. Croft

retrieval tasks. We also showed that term associations trained on other collections
were effective in our model, and more training data leads to better performance.

Although the retrieval with term-associating model did not obtain improvements
over the LDA-based document models [24], the results are interesting and
encouraging considering the cost of LDA training.

For future work, we plan to investigate whether several association measures can
be combined in one document modeling. We will also combine the term-association
based document models with latent mixture model based document models and test
the effectiveness of this combination. In addition, studying post-processing with the
probabilistic term associations obtained from this paper would also be interesting.

Acknowledgments

This work was supported in part by the Center for Intelligent Information Retrieval
and in part by NSF grant #CNS-0454018. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors' and do not necessarily
reflect those of the sponsor.

References

1. Bai, J., Song, D., Bruza, P., Nie, J.-Y. and Cao, G.: Query expansion using term
relationships in language models for information retrieval. In Fourteenth International
Conference on Information and Knowledge Management (CIKM 2005).

2. Blei, D. M., Ng, A. Y., and Jordan, M. J.: Latent Dirichlet allocation. In Journal of
Machine Learning Research, 3, 993-1022 (2003).

3. Berger, A. and Lafferty, J.: Information retrieval as statistical translation. In Proceedings
of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval, 222-229, August 15-19, 1999, Berkeley, California, United States.

4. Burgess, C., Livesay, K., and Lund, K., Explorations in Context Space: Words, Sentences,
Discourse. Discourse Processes, 25(2&3), 211-257 (1998).

5. Cao, G., Nie, J.-Y., and Bai, J.: Integrating word relationships into language models. In
Proceedings of SIGIR 2005, 298-305.

6. Cao, G., Nie, J.-Y., and Bai, J.: Constructing Better Document and Query Models with
Markov Chains. In Proceedings of the ACM 15th Conference on Information and
Knowledge Management (CIKM), November 2006, Arlington, USA.

7. Croft, W.B., Lucia, T.J., Cringean, J., and Willett, P.: Retrieving Documents By Plausible
Inference: An Experimental Study. Information Processing and Management, 25, 599-614
(1989).

8. Croft, W.B. and Thompson, R.: I3R : A New Approach to the Design of Document
Retrieval Systems. Journal of the American Society for Information Science, 38(6), 389-
404, (1987).

9. Croft, W.B. and Wei, X.: Context-Based Topic Models for Query Modification. CIIR
Technical Report, IR-424 (2005).

10. Fang, H. and Zhai, C.: Semantic Term Matching in Axiomatic Approaches to Information
Retrieval. In Proceedings ACM SIGIR 2006, 115-122.

12.

13.

15.

16.

20.

21.

22.

23.

24.

25.

26.

27.

Modeling Term Associations for Ad-Hoc Retrieval Performance 63

. Gao, J.F., Nie, J.-Y., Zhang, J., Xun, E., Zhou, M. and Huang, C.: Improving Query

Translation for CLIR using Statistical Models. In Proceedings of the 24th ACM SIGIR
Conference on Research and Development in IR, pp. 96-104 (2001).

Manning, C.D., Raghavan, P., and Schiitze, H.: Introduction to Information Retrieval,
Cambridge University Press (2007).

Hofmann, T.: Probabilistic latent semantic indexing. In Proceedings of SIGIR 1999,
Berkeley, CA, USA.

. Jing, Y. and Croft, W.B.: An Association Thesaurus for Information Retrieval, In

Proceedings RIAO-94, 146-160 (1994).

Jones, K. S.: Automatic Keyword Classification for Information Retrieval. London:
Butterworths (1971).

Liu, X. and Croft, W.B. Liu, X., and Croft, W. B.: Cluster-based retrieval using language
models, in Proceedings of SIGIR 2004, 186-193.

. Lund, K. and Burgess, C.: Producing High-dimensional Semantic Spaces from Lexical

Co-occurrence. Behavior Research Methods, Instruments,& Computers, 28(2), 203-208
(1996).

. McCallum, A.: Multi-label text classification with a mixture model trained by EM. In

AAAI workshop on Text Learning (1999).

. Lavrenko, V. and Croft, W.B.: Relevance-based language models. In Research and

Development in Information Retrieval, 120-127 (2001).

Ponte, J. and Croft, W.B. : A language modeling approach to information retrieval. In
Proceedings of ACM SIGIR 1998 275-281.

Qui, Y. and Frei, H., Concept based query expansion, In Proceedings of ACM SIGIR
1993, 160-169.

Salton G. and Buckley, C.: On the Use of Spreading Activation Methods in Automatic
Information Retrieval. In Technical Report 88-907, Department of Computer Science,
Cornell University.

Van Rijsbergen, C. J.: Automatic Classification. In: Information Retrieval. 2nd edn.
Chapter 3. London: Butterworths. (1979). http://citeseer.ist.psu.edu/vanrijsbergen79
information.html

Wei, X. and Croft, W.B. LDA-based Document Models for Ad-hoc Retrieval. In
Proceedings of SIGIR 2006, 178-185.

Xu, J.: Solving the Word Mismatch Problem Through Automatic Text Analysis. Ph.D.
Dissertation. Department of Computer Science, University of Massachusetts (1997).

Xu, J. and Croft, W.B.: Query expansion using local and global document analysis. In
Proceedings of the 1996 ACM SIGIR Conference on Research and Development in
Information Retrieval.

Zhai, C. and Lafferty, J.: A study of smoothing methods for language models applied to ad
hoc information retrieval. In Proceedings of ACM SIGIR 2001, 334-342.

Static Pruning of Terms in Inverted Files

Roi Blanco and Alvaro Barreiro

IRLab, Computer Science Department
University of Coruna, Spain
rblanco@udc.es, barreiro@udc.es

Abstract. This paper addresses the problem of identifying collection
dependent stop-words in order to reduce the size of inverted files. We
present four methods to automatically recognise stop-words, analyse the
tradeoff between efficiency and effectiveness, and compare them with a
previous pruning approach. The experiments allow us to conclude that in
some situations stop-words pruning is competitive with respect to other
inverted file reduction techniques.

1 Introduction

Inverted files are the data structures employed by most modern retrieval systems
[14] to associate index terms (words, stems, phrases, bigrams, etc. ..) with doc-
ument occurrences. Indexes are organised into posting lists containing several
pointers which carry the correspondence information. Fast query evaluation is
normally done by repeatedly accessing the on-disk index file and fetching the in-
formation for every query term. Disk accessing times are the bottleneck for most
retrieval systems, and there had been many solutions to improve query evalua-
tion times without affecting retrieval effectiveness, such as lossless compression
techniques [7]. More recently, a new family of lossy compression algorithms,
namely pruning, has emerged to try to improve the efficiency while retaining
high effectiveness values. Pruning techniques aim at removing unnecessary in-
formation by determining a set of non relevant pointers in each posting list and
ruling them out of the retrieval. If the pointer set is dependent on each query,
it is called dynamic pruning [13], whereas if the pruning can be made off-line it
is said to be static. Recent works demonstrated that static pruning can produce
very compact indices whilst not suffering from an unacceptable precision loss [2].
Also, this technique has been applied in web retrieval [4].

This paper presents several techniques for reducing the size of the inverted file
by identifying a stop-words set dependent on the collection. The main difference
between this method and the one described in [2] (hereinafter Carmel’s method)
is that the whole term is removed from the index instead of deleting single occur-
rences. We introduce several techniques based on the terms’ informativeness value,
in particular inverse document frequency (idf) and residual inverse document fre-
quency (ridf), and a novel method based on the term discriminative value. Dis-
carding a whole term determines that the index term is not useful in every possible

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 64-{75] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Static Pruning of Terms in Inverted Files 65

context (query). Although this claim may seem too aggressive (or naive), except
for a predetermined and well-known set of function words, we found out that in
some scenarios these algorithms prove to be competitive or even better than the
methods based on the pruning of term-document occurrences. Other works ([2], [4])
size the amount of pruning as the percentage of pointers removed from the inverted
file, and in [2] Carmel et al. advanced that it is not known how static pruning would
behave in conjunction with the traditional lossless compression methods, and that
further research was needed in order to clarify it. This paper also presents the ex-
periments and results assessing the relationship between the amount of pointers
and the real space savings, for five well known coding algorithms. We advance a
good and stable behaviour of the static pruning methods for every coding scheme
tested. Experiments also report on query times in a real retrieval platform.

The rest of the paper is organised as follows: section [2] describes Carmel’s
method, section [3] introduces the term pruning methods, the experiments and
results are presented in section @ and the paper ends with a conclusions and
further work section.

2 Static Index Pruning of Posting Entries

Carmel et al. in [2] proposed and successfully tested a method for removing
information from an inverted file. The algorithm operates in a per-term basis,
selecting the less mecessary information from every single posting list in order
to reduce the total index size.

There are two parameters involved in the so-called top-k pruning algorithm:
k and e. The procedure to select which postings are removed from the index
is as follows. First, for every term in the lexicon, the algorithm computes the
contribution of every document occurrence to the final score using the score
function of the retrieval system. Then it retrieves the k-th highest score z; and
sets a threshold 7 = € % z;. Finally, every document occurrence which score is
lower than 7, is dropped out from the posting list.

It is worth to point out that this is an idealised pruning algorithm, as the
top k& documents scores for a query with less than 1 terms are guaranteed to
be the same, within an error of e, when the original or pruned inverted file is
used. However, the algorithm has the problem of obtaining negligible pruning
levels. In order to obtain any significant index reduction it is necessary to shift
every document occurrence score in the term lists, by subtracting a global mini-
mum score to every document score. The real procedure is to apply the pruning
algorithm after this ad-hoc modification of the inverted file. This accomplishes
excellent results but the aforementioned property is not proved to hold. As well,
there is another variation of the algorithm, namely é-top answers, that consists
of keeping the entries whose score value under a query ¢ is at least ¢ times the
highest score of all the documents under ¢. The implementation we employed
here considered the BM25 score [L1] instead of Smart’s tf-idf (used in [2]) and we
decided to skip any shifting implying that higher pruning levels were obtained
by setting a higher e value.

66 R. Blanco and A. Barreiro

3 Static Index Pruning of Term Posting Lists

Traditionally, stop word removal aims at identifying noisy terms that may hurt
precision, and to the best of our knowledge it has not been used for efficiency
purposes.

It is clear that removing high-frequency terms from an uncompressed inverted
file may lead to substantial space savings, as they tend to engross most of the
occurrences (according to Zipf’s law). How this may affect to compressed in-
verted files is disccussed in [I4]. The claim is that the higher the frequency of
the word, the better a parametrised compression model such as Golomb will
adapt to it, so the less space it will consume in a compressed form. In general, it
is a commonly accepted idea that stop-words should be in the inverted file since
removing high-frequency words would result in very small space savings. How-
ever, we believe that if it is possible to obtain a good ranking of terms according
to their importance, it would be interesting to establish the tradeoff between
retrieval accuracy and the index reduction implied by the removal of the less
important terms. In fact, some authors [I0] report that building a manual ex-
tended stop-list speeds searches. We propose to study this effect with techniques
that obtain informativeness B1) and discriminative [B2) rankings.

3.1 Stop-Words List Based on idf and ridf

The inverse document frequency is a term informativeness measure, therefore it
can be used to produce a ranking of bad terms (those with lower idf values). We
used a common idf normalisation introduced by Robertson and Sparck-Jones
in [9] that performed well for identifying dynamic stop-words in [6]. If D is the
total number of documents in the collection, and df the number of documents
the term ¢ appears in (document frequency), then the idf for term ¢ is:

D—df—0.5>

df +0.5 (1)

idf = log <

Residual idf is defined in [3] as the difference between the observed idf (IDF)

and the idf expected under the assumption that the terms follow an independence

model, such as Poisson (I ﬁF) To the best of our knowledge it has not been used

for identifying collection-dependent stop-words, although in [§] it is employed

successfully for named entity recognition. If ¢f is the total number of tokens for
a term ¢, then the ridf devised by a Poisson distribution is

A d
RIDF =1DF — IDF = —log(g

) +log(1—e™ %) (2)

Church and Gale [3] claim that the more a term deviates from Poisson, the
more dependent on hidden variables, and more useful the term is to discrimi-
nate between documents containing it on the basis of the hidden dependencies.
In order to compute the idf and ridf values for every term appearing in the
collection, it is only necessary to traverse the lexicon file once.

Static Pruning of Terms in Inverted Files 67

3.2 Stop-Words List Based on Salton’s Term Discrimination Model

Salton’s Term Discrimination Model (TDM) [12] is one of the first computa-
tionally attractive attempts to find an effective ranking of words, based on the
analysis of the Discriminative Value (DV) of a term and it was used for au-
tomatic indexing. The model is embodied into the vector-space framework for
Information Retrieval and its use has been limited to small collections (Cran-
field, Medlars, Time). However, the usefulness of the model has not been clearly
stated in the following years, nor it has been applied in large TREC collections.
This paper proposes to revisit the original model and to determine to which
extend it may be worthy as a tool for finding stop-words.

The Term Discrimination Model measures the importance of every index term
based on the influence it has on a document space. The main assumption is that a
document space with distant vectors is preferable for retrieval. A good document
space is one that maximises the average separation between every pair of vectors,
because it would be easier to distinguish among the retrieved documents. Under
this claim, and given that terms act as dimensions of the document space, it is
possible to rank the index terms according to how much each term affects the
density of the vector space, i.e. how good as discriminators they are. The DV of
a term ¢ is defined as how much the removal of ¢ from the vector space decreases
the total space density.

Let {t1...tr} and {d; ...dp} be the term and the document set respectively,
where every document d; is represented by a term frequency component vector
(tfir,tfia.. . tfir). The calculation of every document-to-document distance as
a measure of the space density is computationally unaffordable for very large
collections. One possible variation could be a definition of the density measure
related to documents-to-centroid distances. In this case, the DV for a term ¢, is

DV, = Zdlbtance Zdlstance iyc) = Qr —Q, (3)

=1

where @ is the space density, @ is the space density after the term ¢ is re-
moved, d¥ is the document obtained after removing the term t; from d;, c is the
document centroid and ¢ is the document centroid resulting after the removal
of the term t.

A straight implementation of eq. Bl is very time consuming. For every term,
it requires the computation of the similarities between every document and the
centroid, forcing to traverse T" times a direct file of D documents. Next it follows
a reformulation of eq. [3 that allows to save most of the operations by storing
some data in main memory and reducing drastically the total computation time.
First, let TF;“ (TF;) be the j-th component of the centroid c* (c):

TF; = 37ty TFF = TF; if ;ék~ TFF=0if j = k.
Equation[B]can be rewritten as follows, where ¢ f; " 1s the j-th component of dr.

Zztfj; x TFF iitﬁj x TF;)
|| x IC’“\ |di| x ||

i=1 j=1 i=1 j=1

68 R. Blanco and A. Barreiro

Let w; = Z]T:l tfi;TF;, which is a value that can be precomputed for each
di, then

T .
Sotfhx T =" toe)
w; — tfix T Fy ifty € d;,

j=1
and Qi can be expressed as

D D
w; — tfisTFy, w;
i\gE:di |Ck| X |d§| i\%di |Ck| X |di<:|

Taking into account that |df| = |di| if t), ¢ d;, and that Y\, g4, =

ZZD:1 Ig'il — Zi\tkedi Ig'il , then @ can be finally rewritten as:

D D
1 w; — tfix T F w; w;
e\ 2 U) Y e
1\lk 7

Since @ is constant, the Q) values will suffice to compute the rank produced by
the TDM. The reformulation of @) introduced in eq. [allows the computation
of this rank with just one single pass to a direct file to calculate the w; and
|d;| values, and another one to the inverted file to recalculate every single term
2
Z]’
\/ZJ,T:lTFJ% implying that |d¥| = /|di|2 — 2, |¥| = \/|c[2 — TF2. Finally
we propose another last modification to this model, in which the contribution
Iclkl Zz’; 1 @:I is dropped out from eq. [l This factor is dominant in the final value

contribution. If we use the cosine normalisation, then |d;| = \/ Zle tfz, |el =

of @y and very dependent on the |c¥| value. This is a problem in large collections
because the method is too biased for high frequency terms (concretely on the
factor TF; appearing on |c¥|), ranking them higher.

This efficient implementation of the Term Discrimination Model requires
2|D| + |T'| extra pointers to store the document lengths, the w; (for each docu-
ment) and the T'F; (for each term) values. Considering 16-byte double precision
floats, these amounts sum up to approximately 12 MB for the 2 Gigabyte TREC
web collection.

The approach described here will be referred as tdm1 and we denote as tdm2
another variation that employs a term frequency normalisation factor in the
fashion of BM25 [I1]:

(k1 + 1)t fij
thig + ko (1= 0) + b1t

avglen

tfi = (8)
)

In equation[8, len(d;) stands for the number of tokens in the document d;, avglen
is the average document length in the collection and we used the recommended
values for k1 = 1.2 and for b = 0.75. In the implementation of tdm2 we considered
the simplification of not recomputing the average document length every time a
term is removed from the collections. Once the term frequencies are computed
according to eq. [§] the process follows as described for tdm1.

Static Pruning of Terms in Inverted Files 69

4 Experiments and Results

4.1 Experimental Setting

We report our empirical findings using the five pruning methods described in
sections Pl and [Bl The evaluation tries to assess how the mean average precision
(MAP) and precision at ten (P@Q10) vary as the number of deleted occurrences
from the inverted file increases. Intentionally, we chose settings that devise high
precision values in order to measure the decrease in precision when augmenting
the pruning level. We used Porter’s algorithm for stemming. BM25 (eq. @) was
selected as the scoring function for every method, as it has proved to be robust
in the IR literature:

score(d, Q) = ZlogQ 9)

(D —dfy + 0.5) (k1 + 1)tf (ks + 1)qtf
teqQ

dfy +0.5 K+tf ks+qtf

where gt f is the frequency of the term in the query, K = k1 ((1—0)+ bai’gz), and
d; and avgl are the document and average document length respectively. The
recommended values [I1] are: k4 = 1.2, k3 = 1000 and b = 0.75.

We experimented with TREC topics from 401 to 450 in the LATimes and
WT2g collections, short queries (title) and long queries (title plus description).
Note that the narrative field was discarded as it hurts precision using these
settings. Regarding to Carmel’s method, the k value was set to 10, and the
different pruning levels were obtained by modifying e.

For the TDM-based methods, another condition was taken into account in
order to smooth the correlation between the frequency range and the discrimi-
nation value. We introduced a document frequency threshold based on the size
the collection: only terms with document frequency in the collection greater than
400(2000) where pruned for the LATimes(WT2g) collection.

A second class of experiments try to assess the real tradeoff between the
pruning level and the disk space occupied by the inverted file, using different
posting-list compression methods. We experimented with five different coding
algorithms [7] for the document pointers: three non-parametrised methods (v,
6, variable byte), a local parametrised method (Golomb coding), and a context-
sensitive method (interpolative coding). Within-document term frequencies were
coded with unary code, except for the case of variable byte where they were
coded with variable bytes as well.

Finally, a third experiment measured the real query time performance of the
system for one term-based method (ridf) and Carmel’s method, to try to deter-
mine the final speedup effect of pruning on a retrieval platform.

Indexing and retrieval was carried out using the Terrier IR platfor v1.0.0,
developed at the University of Glasgow. The pruning and compression program
suite was implemented on top of it.

! http://ir.dcs.gla.uk/terrier

70 R. Blanco and A. Barreiro

4.2 Precision vs. Pruning

Figures [to @ show MAP and P@10 results for the LATimes collection, for
both short and long queries. The precision curves end when the number of
terms deleted forces any query to be empty. In general, all the methods that
prune terms are able to increase initial MAP and P@10 values. Overall, tdm1
achieved the highest values in precision with a pruning level around 20%-30%.
If Fox’s stop-list [0] is applied the results are: MAP 0.2695(0.2524) and P@10
0.2933(0.2911) for long(short) queries at a 26.7% pruning level. The best values
achieved with the tdm1, MAP 0.2839(0.2544) and P@10 0.3224 (0.3022), are
better than those attained by Fox’s stop-list. Term pruning methods present a
good behaviour at certain levels, being ridf remarkably stable and smooth and
tdm1 very good at increasing precision, although at the cost of being too ag-
gressive. The other two methods, tdm2 and idf are very correlated and perform
slightly worse than ridf for most of the cases.

Tables Ml and Pl summarise the results for the WT2g collection. Results are
analogous to the ones obtained in the LATimes, although short queries benefit
more from precision gains. It is remarkable that Carmel’s method is able to
improve P@10 values in the WT2g collection at very high pruning levels (short
queries only).

0.29
0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21

0.2

0 10 20 30 40 50 60 70

Fig. 1. MAP vs. %pruning for LATimes & long queries

0.32
0.3 15
0.28

0.26

0.24

0.22
0.2

0 10 20 30 40 50 60 70

Fig. 2. PQ10 vs. %pruning for LATimes & long queries

Static Pruning of Terms in Inverted Files 71

Table 1. Precision vs. %pruning WT2g & long queries

pruning
0% 10% 15% 20% 25% 30% 40% 50% 60% 65%
tdml MAP 0.2966 0.3006 0.3062 0.3074 0.2892 0.2704 0.2473 0.2151 0.2054 -
P@10 0.4780 0.4780 0.4780 0.4860 0.4660 0.4460 0.3980 0.3440 0.3143 -
tdm2 MAP 0.2966 0.2985 0.2942 0.2925 0.2755 0.2741 0.2602 0.2436 0.2166 0.2054
P@10 0.4780 0.4620 0.4600 0.4680 0.4360 0.4400 0.4080 0.3780 0.3583 0.3208
idf MAP 0.2966 0.2987 0.2945 0.2928 0.2749 0.2733 0.2599 0.2410 0.2163 -
P@10 0.4780 0.4640 0.4620 0.4700 0.4380 0.4380 0.4100 0.3760 0.3204 -
ridf MAP 0.2966 0.3000 0.3050 0.2970 0.2922 0.2962 0.2881 0.2625 0.2325 0.2322
P@10 0.4780 0.4800 0.4880 0.4640 0.4600 0.4640 0.4560 0.4320 0.3760 0.3653
pruning
0% 9.3% 14.0 % 19.1% 24.2% 30.3% 39.4% 52.1% 58.1 % 66.0%
Carmel MAP 0.2966 0.2789 0.2779 0.2712 0.2634 0.2591 0.2606 0.2405 0.2283 0.2188
P@10 0.4780 0.4480 0.4460 0.4540 0.4440 0.4480 0.4400 0.4280 0.4220 0.4200

Every method presented needs to set some threshold in order to stop pruning,
be it the ¢ parameter (Carmel’s method) or the percentage of pruning (term
pruning methods). We carried out a third experiment in order to find an au-
tomatic threshold using Fox’s stop-list as relevance information, i.e. good stop-
words. The procedure is as follows: the list of terms is sorted according to a first
measure and split into several intervals bounded by the relevant (trusted) stop-
words. For every term and using a second measure, its informativeness value vy
and the value of the lower bound of its corresponding interval v, are compared. If
vy > v1 the term is pruned. Combining the ridf (first) and tdm2 (second) mea-
sures this approach gives, for long(short) queries, MAP values of 0.2685(0.2490)
and P@10 values of 0.3044(0.2889) at a 56% pruning level in the LATimes col-
lection. These precision values are obtained automatically and comparable with
the ones obtained by Fox’s stop-list alone, but at a higher pruning level.

0.26 T

0.25 1

0.24

0.23

0.22

0.21

0 10 20 30 40 50 60

Fig. 3. MAP vs. %pruning LATimes & short queries

4.3 Index Compression vs. Index Pruning

Figure [shows the real tradeoff between pruning level and disk space usage
(WT2g collection). The graphs reflect how the inverted file size decreases when
the number of pruned pointers increases using different coding methods. Sizes are

72 R. Blanco and A. Barreiro

0.3
0.29

0.28
0.27
Carmel —x— B 5

0.26 || tdm1 ---=—-

tdm2 o
0.25 idf -8

ridf ——e—— o
0.24 . -
0 10 20 30 40 50 60

Fig. 4. PQ10 vs. %pruning LATimes & short queries

Table 2. Precision vs. %pruning WT2g & short queries

pruning
0% 10% 15% 20% 25% 30% 35% 40% 50% 55%

tdml MAP 0.2540 0.2688 0.2719 0.2661 0.2524 0.2470 - - - -

P@10 0.4180 0.4540 0.4560 0.4620 0.4480 0.4271 - - - -

tdm2 MAP 0.2540 0.2635 0.2641 0.2600 0.2498 0.2490 0.2393 0.2351 0.2172 -

P@10 0.4180 0.4360 0.4360 0.4300 0.4040 0.4060 0.3800 0.3620 0.3553 -
idf MAP 0.2540 0.2635 0.2644 0.2602 0.2503 0.2495 0.2408 0.2351 0.2172 0.2109
P@10 0.4180 0.4380 0.4380 0.4300 0.4080 0.4040 0.3780 0.3600 0.3480 0.3163
ridf MAP 0.2540 0.2619 0.2640 0.2636 0.2594 0.2572 0.2524 0.2509 0.2333 0.2254
P@10 0.4180 0.4400 0.4360 0.4204 0.4143 0.4204 0.4020 0.3939 0.3633 0.3653

pruning
0% 9.27% 14.0% 19.1% 24.2% 31.0% 39.6% 45.2% 52.1% 58.9%
Carmel MAP 0.2540 0.2634 0.2632 0.2622 0.2606 0.2558 0.2548 0.2526 0.2397 0.2301
P@10 0.4180 0.4360 0.4360 0.4360 0.4380 0.4420 0.4400 0.4500 0.4580 0.4500

relative with respect to the original inverted index except in the last graph,
where the size is absolute. Only the posting list file is considered since the space
reduction due to the lexicon file is not significant. The behaviour is stable for
every compression algorithm, which proves that measuring the pruning level as
the number of deleted occurrences is a valid indicator of the final compressed
file, despite of the coding method used. The best reduction is obtained for the
method based on ridf although with minor differences. The final figure shows the
relative performance of the different coding algorithms, measured in megabytes
(pruning values obtained with ridf).

Tt is possible to explain the values in figure Bl as follows. Real coding of posting
lists is based on document gaps. A document gap is the difference between
two consecutive document identifiers in the same list. For a given term with
consecutive document identifiers a, b, ¢ the cost of coding its postings would be
¢(b—a)+ ¢(c—b) and for bit-based coding methods ¢(x) = O (log(x)). Carmel’s
method may prune the document occurrence with identifier b resulting in a coded
posting list reduction from log(b—a)+log(c—b) to log(c—a). Methods that prune
every term occurrence do not leave this log(c — a) gap in the posting list when
they operate, as they remove the whole list, thus they may yield less average
bits per gap values. The first slope in the graphs is due to the fact that the

Static Pruning of Terms in Inverted Files 73

Gamma Coding Delta Coding
100 100
00 1) 9
80 & 80
S 70 g 70
& 60 & 60
» 7
L 50 L 50
40 40
30 30
20 20
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Golomb Coding Variable Byte Coding
100 @& 100
% \SX 90 "
80 E\ﬁ\ii}&k\ 80
z 70 T s 70
g 60 : 2 60
» »
L 50 L 50 78\5
40 40 RS
30 30
20 20
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 90
Interpolative Coding Ridf Pruning
100 160
Carmel —<— n gamma —x—
90 L idf 8- |] 140 L@ delta —&-
B\)ﬁ | 0] M— - golomb @
M 1 VB —=
80 S 120 - IC --a-- |
L
—_ 0 i |
g ™ g -
° <]
& 60 I
7] > n
L s 8 "u
AT - N
40 40 TR "
30 20 B
20 0 .
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Fig. 5. Effect on Inverted File size vs. %pruning

first terms in being pruned are the ones with highest document frequency, which
happen to be the ones with the highest within-document term frequencies. When
those frequencies are coded in unary (¢(z) = x) the space saved when they are
removed is more noticeably. In fact, if the frequencies are coded with gamma,
the slope softens. It is interesting to notice that Carmel’s method follows this
behaviour too, which indicates that if € is low, it is only able to delete occurrences
of terms with high document frequency.

In the case of variable byte coding, 90% of the pointers require just one byte
and therefore there is no noticeable difference among the methods. Variable
byte is clearly the worst method with respect to inverted file size, although it is
interesting because of its faster decompression times.

74 R. Blanco and A. Barreiro

4.4 Query Times vs. Pruning

Figure [0 reports on average query times for ridf and Carmel’s method on the
LATimes collection with fifty queries (topics from 401 to 450). There is a query
processing time reduction which is more important in the case of long queries.
The different behaviour between the methods is due to the number of disk ac-
cesses, main bottleneck for query evaluation in retrieval systems. Every query
term is processed if the inverted file is pruned with Carmel’s method, and this
is the reason why query processing time varies smoothly with respect to the
pruning level. In the ridf-based pruning method, query processing times can be
drastically reduced at pruning levels that maintain or even improve the precision
values.

350 T T
carmel long queries —*—
300 Fmseem ridf long queries ---8--- | |
T carmel short queries ---o---
*~~~~ﬁ,_ﬂ ridf short queries -——®-
250 H
%3\
T — -
200 T
i =
150 8
100 b
B L e C-Boes il i g TS . - S e T 0g
50
0 10 20 30 40 50 60 70

Fig. 6. Average query processing time (ms) vs. %pruning

5 Conclusions and Future Work

We implemented several pruning techniques based on the informativeness and
discriminative value of terms. We also evaluated the behaviour of precision with
respect to pruning, and the final effect in index file reduction and query pro-
cessing times. Those methods have been compared with the well-known pruning
method introduced by Carmel et al. [2]. We found out that tdm1 is good if only
high values of precision are desired, although it is very aggressive, and ridf is
easy to implement and very stable. In general, pruning whole terms is better
for maintaining or improving MAP, and it keeps precision values at high prun-
ing levels with long queries, whereas pruning pointers is better with respect to
P@10. In particular, Carmel’s method behaved very well for P@Q10 and short
queries in the WT2g collection. Therefore, methods that prune terms could be
useful in applications such as indexing collections for PDAs and mobile devices,
and desktop search.

One future research line is to design a pointer-based pruning method that
operates selectively over posting lists, driven by a global term rank. Another
topic of research is to address the problem of pruning while allowing for phrasal
queries. None of the methods presented here is appropriate for processing phrasal

Static Pruning of Terms in Inverted Files 75

queries. To tackle these problems it is necessary to develop an explicit pruning
method for this purpose [] or to combine a pruned inverted file with a next-word
index [1J.

Acknowledgements. The work reported here was co-funded by SEUI and
FEDER under project MEC TIN2005-08521-C02 and “Xunta de Galicia” under
project PGIDITO6PXIC10501PN. Roi Blanco is supported by a grant of DXID
of the “Xunta de Galicia”. We also thank the support of the “Galician Network
of NLP&IR” (2006/03).

References

1.

2.

10.

11.

12.

13.

14.

D. Bahle, H. Williams, and J. Zobel. Efficient phrase querying with an auxiliary
index. In Proc. of ACM SIGIR 2002, pages 215-221.

D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. Maarek, and A. Soffer.
Static index pruning for information retrieval systems. In Proc. of ACM SIGIR
2001, pages 43-50.

. K. Church and W. Gale. Poisson mixtures. Natural Language FEngineering,

2(1):163-190, 1995.

. E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S. Silva, P. Calado, and

M. A. Nascimento. Improving web search efficiency via a locality based static
pruning method. In Proc. of WWW 2005, pages 235-244.

. C. Fox. A stop list for general text. SIGIR Forum, 24(1-2):19-21, 1990.
. R.T.W. Lo, B. He, and I. Ounis. Automatically building a stopword list for an

information retrieval system. In Proc. of DIR’05, Utrecht, Netherlands, 2005.

. A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer Academic

Publishers, Norwell, MA, USA, 2002.

. J. D. M. Rennie and T. Jaakkola. Using term informativeness for named entity

detection. In Proc. of ACM SIGIR 2005, pages 353-360.

. S. Robertson and K. Sparck Jones. Relevance weighting of search terms. JASIS,

27:129-146, 1976.

S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In Text REtrieval
Conference, pages 151-162, 2000.

S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at
TREC-4. In Text REtrieval Conference, pages 21-30, 1996.

G. Salton, C. S. Yang, and C. T. Yu. A theory of term importance in automatic
text analysis. JASIS, 26(1):33-44, 1975.

H. Turtle and J. Flood. Query evaluation: Strategies and optimizations. [P&M,
31(6):831-850, 1995.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufmann Publishers, San Francisco,
CA, 1999.

Efficient Indexing of Versioned Document
Sequences

Michael Herscovici', Ronny Lempel?, and Sivan Yogev?

! Google Inc., Haifa, Isracl (work done while at IBM)
2 IBM Haifa Research Lab, Israel

Abstract. Many information systems keep multiple versions of docu-
ments. Examples include content management systems, version control
systems (e.g. ClearCase, CVS), Wikis, and backup and archiving solu-
tions. Often, it is desired to enable free-text search over such reposito-
ries, i.e. to enable submitting queries that may match any version of any
document. We propose an indexing method that takes advantage of the
inherent redundancy present in versioned documents by solving a variant
of the multiple sequence alignment problem. The scheme produces an in-
dex that is much more compact than a standard index that treats each
version independently. In experiments over publicly available versioned
data, our method achieved compaction ratios of 81% as compared with
standard indexing, while supporting the same retrieval capabilities.

1 Introduction

In many business applications, information systems keep multiple versions of
documents. Examples include content management systems, version control sys-
tems (e.g. ClearCase and CVS), Wikis, and backup and archiving solutions.
Email, where each reply or forward operation in a thread often repeats some
previously sent content, can also be seen as having evolving document versions.
Often, it is desired to enable free-text search over such repositories, i.e. to enable
submitting queries that may match any version of any document. A straightfor-
ward way to support free-text search over corpora of versioned documents is to
index each version of each document separately, essentially treating the versions
as independent entities. However, intuition suggests that when each version is
not significantly different than its predecessor, the redundancy of the data can
be exploited to index the data in a more compact manner, while still preserving
the retrieval functionality supported by the full index.

This paper proposes an indexing method that eliminates much of the redun-
dancy present in versioned documents and produces an index that is much more
compact than a standard index that treats each version independently. The
scheme involves first solving a unique variant of the multiple sequence alignment
problem, and then indexing just once every token of the alignment that is com-
mon to a sequence of versions. Experiments over publicly available versioned data
showed that our compact index is considerably smaller than the corresponding
standard index, while supporting the same retrieval capabilities.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 7687 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Indexing of Versioned Document Sequences 7

The rest of this paper is organized as follows: Section [2] surveys related work.
Section [3] assumes that an alignment of multiple sequences is given, and shows
how to index those sequences efficiently while supporting search operations over
the resulting index. The ensuing analysis yields an optimality criterion for the
given alignment, and Section] presents a polynomial time algorithm that, under
certain assumptions, produces an optimal alignment according to that criterion.
Section [reports on experiments demonstrating the savings in index space that
our scheme achieves on real-life versioned data. Section [0l addresses implemen-
tation details that were omitted in previous sections. We conclude in Section [7

2 Related Work

2.1 The Inverted Index Data Structure

The inverted index (sometimes called inverted file) is the data structure of choice
for full-text indexing in search engines [I], [2]. Many papers have described algo-
rithms for building inverted indices, e.g. [2, [8] [, 5]. An inverted index contains
a postings list for each unique term that appears in the corpus. Each postings
list consists of posting elements, with each element corresponding to a single
appearance of the term in the corpus. A simple abstraction of a posting element
is as a pair (d,0) that represents the location - the document id and the offset
within the document - of the occurrencdl. The elements within each postings
list are typically sorted by increasing locations. Another important structure in
an inverted index is the lexicon, or dictionary, which is a lookup table that for
each term ¢ in the corpus, points to the postings list corresponding to .

The description above implies that the number of posting elements in the
index equals the total number of terms appearing in the corpus. Our goal is to
reduce this factor when there is inherent redundancy in the set of indexed docu-
ments. This problem was addressed in 1992 by Anick and Flynn [6], who identi-
fied corporate helpdesk corpora as a domain with evolving data. In the proposed
indexing solution, changes to the indexed documents are saved in time-stamped
“delta entries” consisting of the added/deleted text. This enables performing
“historical queries”, where the index is rolled back to a certain point in time and
the query is evaluated for that time. The complexity of historical query evalua-
tion depends on the number of rollback actions, and therefore performing a query
on the entire history of the index could be inefficient. Recently, Broder et al. [7]
showed how to index certain redundant content in an efficient manner, by iden-
tifying content that can be indexed just once and logically shared among several
documents. Their method was applied to two domains - the indexing of near-
duplicate Web pages (e.g. as identified by the shingling method described in []])
and the indexing of threaded email and newsgroup discussions. For example, in
the latter case, the model in [7] assumes that when replying to or forwarding an
email m, the entire content of m is kept in an uninterrupted fashion in the reply.
Under that somewhat limiting assumption, the content of each message in the

! Indexing the offsets within the document is required for efficient support of phrase
queries and for proximity-based ranking of search results.

78 M. Herscovici, R. Lempel, and S. Yogev

thread is thus contained in all “downstream” messages (replies and forwards
that include it), and can be shared with those messages. In a sense, this work
extends [7] by indexing redundant content in a compact manner without any
restrictions or limiting assumptions on the structure of the corpus. We note that
in a different domain, Ferragina et al. [9] proposed a compression scheme for
XML that preserves the ability to efficiently search and navigation the data.

2.2 Sequence Comparison

Methods to compare sequences of symbols (e.g. the Levenshtein edit distance
[10] and others) are of great importance in textual applications (spell checking,
data compression, coding theory), molecular biology (DNA, RNA and protein
sequences analysis), and many other fields. A widely studied problem is the
longest common subsequence (LCS) problem (see [I1] for a review), where given
two strings, we look for a subsequence of both with maximal length. An effi-
cient algorithm for this problem, proposed by Myers [12], is implemented by the
UNIX diff command [I3], and included in GNU diff 1.15. For strings of lengths
m and n, its complexity is O((n + m)D), where D is the minimal number of
insertion/deletion operations required to transform one string into the other.
As with many comparison problems, the general LCS problem is NP-Hard [14].

3 Efficient Indexing of Aligned Sequences

This section shows how to efficiently index sequence of versioned documents.
We begin by defining an alignment of a single sequence of versions, and trans-
forming the alignment into an inverted index. Subsequently, Bl shows that the
index supports the basic operators that are required in free-text search engines.
Subsection analyzes the factors that influence the size of the index, and de-
rives an optimality criterion on the alignment matrix that will guide us to an
alignment algorithm in Section [l

Definition 1. Let s1, sa, ..., s, be n sequences over alphabet X. An (n+1) x L
matriz M is an exclusive alignment of s1, ..., Sy if:

1. The first row of M (row 0) is a supersequence of length L of s1,...,Sp.

2. All other entries of M are binary.

3. For each row i =1,...,n, one can reconstruct s; by concatenating the sym-
bols in M())j s.t. Mi)j =1.

For example, Equation [Il shows an exclusive alignment matrix of the sequences
s1 = ABCDEF, s; = ABXEFY, s3 = XCDEFY, s4 = ZBXCDFY
ZABXCDEFY

011011110
M=|011100111 (1)
000111111
101111011

Efficient Indexing of Versioned Document Sequences 79

Let there be a sequence of n versioned documents dy, ..., d,, where each docu-
ment is represented as a sequence of words (tokens). Let M denote an alignment
matrix of the documents, where each column corresponds to a token (Section Hl
will explain how to derive M).

From the alignment we derive (";‘1) virtual documents {v;;,1 <1i < j < n}
as follows: each virtual document v, ; will contain the tokens in row 0 of M, cor-
responding to columns having a maximal run of 1s that starts at row ¢ and ends
at row j. Furthermore, the virtual documents will be ordered by lexicographic
ordering of the pair (j,4), i.e. primarily by increasing values of the end of the
run of 1s, and within all runs ending at a particular index j, by increasing index
of the beginning of the run. To exemplify this process, Equation [2] depicts the
transformation of the alignment shown in Equation [l into 10 virtual documents
(consider each letter to be a token):

ZABXCDEFY 1.v1, =CD 6. v3 3 = (empty)
011011110 2. vy; = AB 7. vy =F
011100111 |= 3. v22=_(empty) 8 wgo =XY (2)
000111111 4.1}371=E 9. 1}473:CD
101111011 5. v32 = (empty) 10.v44 =ZB

The process above transformed a single group of 4 (physical) versioned docu-
ments into 10 virtual documents. Given k sequences of versioned documents

di,.oodh o, d2 o dR, L b dE

s %o » ng) ? g

A . .
we construct N = Zf:l ("2+ 1) virtual documents, and order them as follows:

1 Ul 2 02 k Ulc

VL g5 3 Unynas UTase s Ungngs oo s UlaseesUn oy
We now simply build the inverted index that corresponds to the N virtual doc-
uments, assigning them documents identifiers (docids) 1,..., N. In addition,we
also require four predicates per virtual document X = docid(vﬁi) in the index:

from(X) =1, to(X)=j, root(X)= docid(vfl)7 last(X) = docid(vak_’nk)

3.1 Supporting the Various Search Operators

Given an inverted index with N virtual documents, this section presents an
efficient document-at-a-time algorithm [I5] to support basic Boolean search
queries, consisting of required and/or forbidden termsd. The algorithm returns a
list of virtual documents, corresponding to physical documents that contain all
the required terms and none of the forbidden terms. Using the predicates root,
from and to, we will map the resulting virtual documents to the corresponding

2 For ease of presentation, this section deals only with Boolean queries. Section
presents extensions for supporting TF/IDF scoring.

80 M. Herscovici, R. Lempel, and S. Yogev

original versioned documents. To simplify our algorithm, we swap every forbid-
den term ¢ with a virtual required term (denoted by neg(t)) that “virtually”
appears in all the documents in which the forbidden term does not appear, and
only in those. Formally then, a query @ is a set of size |Q| of required terms
(real and virtual), ty,...,%q|-

We denote by p; the current position within the postings list of the term
t; py is often called the cursor of term ¢ in the IR literature. Next, we define
a few primitive functions used in our algorithm. First, the primitive next(p;,
docid) sets p; to the first virtual document in ¢’s postings list whose id is greater
than docid (or to oo if no such document exists) and returns that document id.
Figure B shows how to implement the next function for the virtual term neg(t)
using ¢’s cursor p;. Second, the function location(root, from, to) returns the id of
the virtual document corresponding to the range [from, to], given the id of the
virtual root document (corresponding to the range [1,1]) of a group of versioned
documents. This can simply be calculated as follows:

t
location(root, from, to) = r00t+(fr0m—1)+(20>

Third, the function overlapDocsRange(docidl, docid2) returns the id of the vir-
tual document that corresponds to the intersection of the ranges represented by
docidl and docid2, or oo if the two ranges do not intersect.

Our algorithm uses a modification of the zig-zag join [I6] technique, in which
the cursors of all required terms (real or virtual) are advanced in alternating
order, until they align at some document id. That document then contains all
of the terms, i.e. matches the query. At each step of a zig-zag join, a cursor
that lags behind the most advanced cursor is chosen, and is advanced using the
next operator to a point at or beyond the most advanced cursor. In our case, we
slightly modify the classic zig-zag join, since cursor positions do not necessarily
need to align at some virtual document, but rather on a set of virtual documents
whose ranges intersect. Figure [[] presents the standard outer shell document-at-
a-time evaluation. The nextCandidate function, depicted in Figure Bl performs
the zig-zag join and returns the virtual document id representing the next range

function search(Query Q)
// we assume that the cursors of all physical terms are initialized to position 0
candidate < 0
while candidate # co do
// Find a virtual document containing all required (real or virtual) terms
candidate «— nextCandidate(candidate, Q)
output candidate
end while
end function

Fig. 1. Enumerating all documents that match the query @

Efficient Indexing of Versioned Document Sequences 81

function nextCandidate(docid, Query Q)
// advance t1 beyond the last document in docid’s range
nextd «— next(ps,, location(root(docid),to(docid),to(docid)))
align «— 2
// perform a zig-zag join on ranges of virtual documents
while (align # |Q| + 1) A (nextd # o) do
// advance term tq1;9n to or beyond the beginning of nextd’s range
temp < next(p,,,, , location(root(nextd), 1, from(nextd)) — 1)
// surely now to(temp)>from(nextd)
if (root(temp) == root(nextd)) A (from(temp) < to(nextd)) then
nextd «— overlapDocs Range(nextd,temp)
align < align + 1
else
nextd «— next(ps,, location(root(temp),1, from(temp)) — 1)
align «— 2
end if
end while
return nextd
end function

Fig. 2. Zig-zag join beyond a given start-point argument

on which all cursors intersect. Finally, Figure] presents the implementation of
the nezt function of the virtual cursor that corresponds to a negative term. For
ease of presentation, an easily eliminated tail recursion is used there.

Theorem 1. The algorithm shown in Figure [1 outputs a virtual document if
and only if the range of physical documents corresponding to it match the query,
i.e. contain all the required terms and none of the forbidden terms.

The proof follows in the spirit of [7], with some additional interval algebra over
the virtual document identifiers (e.g. the overlapDocsRange function).

3.2 Implications on Alignment Optimality

The size of a classical inverted index depends on three main factors. First, the
size of the lexicon. Since the vocabulary of the index does not change with our
approach, the lexicon’s size does not vary between standard indexing and our
proposed scheme. Second, the total number of posting elements in the various
postings lists. This factor is reduced by our scheme, since instead of having a
posting element per token per document, the number of posting elements in our
scheme is equal to the total number of runs of 1 in the columns of the alignment
matrix. The third factor is the compressibility of each postings list. Postings lists
are typically compressed by some form of delta encoding, i.e. compression of the
numeric gaps between successive document identifiers and offsets therein [2, [3].
Since our scheme enlarges the space of document identifiers by transforming

82 M. Herscovici, R. Lempel, and S. Yogev

function next(pi—neg(w), docid) // Invariant: from(docid) always equals to(docid)
if docid > p,, then
Pw — next(pw, docid)
end if
target «— docid + 1
// we now know that to(pw) is at or beyond to(target)
if (pw = 00) V (root(pw) > root(target)) then
// return the id corresponding to the range that starts at to(target)
// and continues until the end of target’s version group
pe < location(root(target), to(target), to(last(target)))
return p;
end if
// here we know that p., and target share the same root
if from(pw) > to(target) then
// return the id corresponding to the range [to(target),from(p.)-1]
pe < location(root(target), to(target), from(pw) — 1)
return p;
end if
// the range of p,, immediately follows docid; we therefore apply tail recursion
pe < next(pe, location(root(target),to(pw), to(pw)))
end function

Fig. 3. Advancing a virtual cursor of a negative term

each group of n versioned documents into ("3') virtual documents, the postings

lists on virtual documents should not compress as well as postings lists on the
physical documents, introducing some overhead into our scheme. In addition to
the above factors, our scheme requires additional overhead external to the index
due to the four predicates required for all virtual documents.

In this paper, we do not attempt to adapt the compression of the postings
lists to better fit our indexing scheme. Thus, the reduction of index space will
depend on our ability to align sequences of versioned documents in a manner
that minimizes the number of runs of 1 in the columns of the alignment matrix.

4 Indexing-Optimal Alignment of Multiple Sequences

As argued in Section [3.2] the degree of freedom in our scheme that affects the size
of the resulting inverted index is the number of runs of 1 in the alignment matrix.
Thus, we aim to find an alignment matrix for a set of versioned documents that
has as few runs of 1 in its columns as possible. For two strings, finding an
alignment with a minimal number of runs of 1 is identical to the LCS problem
described in Section 22] since each alignment column includes a single run of
1, and the optimal LCS solution minimizes the number of columns. As with
LCS, the generalization to aligning N strings is NPH, since even if all rows of
the alignment matrix are given (which, in our case, they are not), finding the

Efficient Indexing of Versioned Document Sequences 83

permutation of the rows that minimizes the number of runs of 1 in the columns
is a known NP-Hard problem called Consecutive Blocks Minimization [14].

We thus limit ourselves to cases where the document versions evolve in a linear
fashion, i.e. the versions do not branch. In such cases, it is natural to assume that
each version is relatively close to the previous one, and so we heuristically align
the documents (and order the corresponding rows of the matrix) according to the
temporal order of the documents’ creation. We hereby prove that by restricting
the space of possible alignment matrices to those where row i corresponds to
version 7, an alignment that minimizes the number of runs of 1 can be found by
a greedy polynomial-time algorithm.

Theorem 2. Let S = (s1,82,...,5,) be an ordered set of sequences, and denote
the length of s; by l;. Let the cost of an exclusive alignment M (¢(M)) be the
number of runs of 1 in M, and assume that M* is an exclusive alignment of S
with minimal cost. Then:

C(M*) = i li — i lCS(Si,h Si)
i=1 =2

where lcs(s;, sj) denotes the length of the LCS of sequences s;, ;.

Proof: The number of runs of 1 is the total number of 1 in the matrix, minus
the number of occurrences of 1 below another 1. The total number of 1 in every
exclusive alignment of S is Y. | I;. Assume by contradiction that

C(M*) < i li — i lCS(Si,h Si)
i=1 =2

This means that the number of occurrences of 1 below another 1 is greater than
Yoo les(si—1, i), and so there exists an index 2 < ¢ < n such that the number
of 1s in row ¢ of M* which occur below 1s in row ¢ —1 is greater than lcs(s;—1, $;).
This contradicts the definition of LCS, and therefore

n

n
o(M*) > Zli — Zlcs(si_l,si)
i=1 i=2

To show that ¢(M*) = >0 | 1; — > 5 les(si—1,8;), we construct an exclu-
sive alignment matrix M’ of (s1,...,sy) as follows: initialize M’ with s; as the
supersequence in row-0, and add an all-1 row. Now, iteratively for i = 2,... n,
add row i according to the pairwise LCS alignment of s;_1 and s;. This involves
adding columns to M’ corresponding to indices where s; contains a symbol that
is not part of the LCS. That symbol is added to the supersequence in row-0, and
below that we add 0 for rows 1,...,7— 1 and a 1 in row 7. This process ensures
that the number of runs of 1 starting in row 7 is I; — les(s;—1, 8;), and so

(M) = Zn:li - ZH:ZCS(Si—la 8i),
i=1 =2

completing the proof. o

84 M. Herscovici, R. Lempel, and S. Yogev

According to Theorem 2] given an ordered set of versioned documents, a greedy
algorithm constructs an exclusive alignment matrix whose number of runs of
1 is minimal. Furthermore, the complexity of finding M is polynomial, and is
equivalent to solving n — 1 pairwise LCS problems. Finally, we state a criterion
on {s1,89,...,8,} where, when met, guarantees that aligning them in natural
order is indeed optimal:

Theorem 3. Let s1,...,s, be strings satisfying that for each i =2,...,n,
les(siy si—1) > les(siy 8i—2) > .. les(si, 51) -

Then, there exists an exclusive alignment of s1,...,s, whose cost is no larger
than that of any exclusive alignment on any permutation of those strings.

5 Experiments

This section presents experimental results for publicly available text reposito-
ries where document versions evolve in a linear fashion. The repositories tested
were (1) 4323 documents corresponding to versions of 222 Wikipedia entries of
countries, and (2) 2055 documents corresponding to versions of 142 MediaWiki
PHP source files. In both cases, at most 20 versions of each specific resource
(Wikipedia entry or PHP source file) were crawled.

Our indexing code was written in Java, using the LCS algorithm of the Diff
class [I7] and version 1.9.1 of the Apache Lucene search libraryﬁ. The Original
documents were tokenized using Lucene’s Standard Tokenizer; for each set of ver-
sions, the token sequences were exclusively aligned by the algorithm described in
Section [l and virtual documents were constructed from the resulting alignment.
We processed the sequence of virtual documents through one additional change
of discarding all empty virtual documents (to which the alignment assigned no
tokens). This required adding two predicates for translating between the non
empty documents’ identifiers and the full virtual identifier space, and perform-
ing slight changes to the functions in Section B]. Next, the original documents
and the non-empty virtual documents were indexed separately by Lucene.

To optimize the compressibility of the Lucene index over the original doc-
uments, we added those documents to the Lucene index by version sets, and
within each version group by increasing version numbers. Since Lucene sorts its
postings lists by document insertion order, this process naturally clusters terms
in consecutive documents, improving the compressibility of the postings lists.

For each of the two repositories, we measured two compression ratios:

Alignment ratio: the number of tokens in the set of virtual documents, divided
by the number of tokens in the set of original documents. This ratio examines
the reduction in the number of posting elements in the version-aware index.

Index ratio: The size (in bytes) of the Lucene index resulting from the virtual
documents plus the overhead needed for the required predicates, divided by
the size of the index of the original versioned documents.

3http://lucene.apache.org/

http://lucene.apache.org/

Efficient Indexing of Versioned Document Sequences 85

Table 1. Experimental setup - input documents and resulting compression ratios

Repository No. original No. original No. virtual Alignment Index
version sets documents documents ratio ratio

(non-empty)
Wikipedia countries 222 4323 45138 (7019) 7.46% 12%
MediaWiki source files 142 2055 19144 (4240) 8.63% 18.5%

Table 2. Indexing time measurements

Repository Indexing time Alignment time Indexing time Overall
orig. docs orig. docs virt. docs virt. docs

Wikipedia countries 125 sec 295 sec 61 sec 356 sec

MediaWiki source files 33 sec 116 sec 32 sec 148 sec

The results of the experiments on the different repositories are given in table [l
Note the savings of over 81% in actual index space are achieved in both cases.

Next, we turned to measure indexing time. In order to assess the affect of
producing and indexing virtual documents on the index building time, Table
reports the following per each repository: (1) the time to index original texts
(each version separately), (2) the time to align the original texts, and (3) the
time to index the resulting virtual documents. The sum of the latter two repre-
sents the total time needed to process the versioned texts into a version-aware
compact index. As expected, the overall time for version-aware indexing exceeds
the original indexing time by far, and is dominated by the alignment time which
is expected to remain dominant even if further optimized. However, it seems that
as the collection size grows, the actual indexing time of the non-empty virtual
documents somewhat compensates for the time spent performing the alignments.
To fully characterize this behavior, more experiments and analysis are needed.

We did not perform extensive experiments comparing the query-time perfor-
mance of the version-aware index to that of the standard index over the physical
documents. However, since the algorithmic overhead of our scheme beyond the
standard zig-zag join involves very few operations (see Section Bl while the
amount of required I/O is greatly reduced due to the much smaller index, we
anticipate that the runtime performance of our index scheme will be on par with
or better than that of a standard Lucene index over all physical documents.

6 Implementation Issues

Scoring documents: Section Bl showed that our indexing scheme supports
Boolean queries, i.e. can identify documents that match Boolean predicates
on their contents. However, in order to rank the matching documents by rel-
evance, search systems must enumerate the occurrences of all query terms in
each matching document. To support such ranking, whenever a virtual document

86 M. Herscovici, R. Lempel, and S. Yogev

to. from TePresenting the range [from,to] of version group k is returned from the
nextCandidate function of Figure 2 we score the to-from+1 “real” documents
represented by that range. We stream through the postings lists of all posi-
tive query terms, starting from virtual document v’;mm)l and ending at Ufo,tm
attributing each term occurrence within those virtual documents to the corre-
sponding “real” documents.

Suppoting exact-phrase queries: The indexing scheme described in Section[3]
aligns documents according to the words they contain; the alignment then gov-
erns the distribution of the words among several virtual documents. This pro-
cess does not preserve word co-occurrence patterns - words that appear next
to each other in a certain version may be assigned to different virtual docu-
ments. Thus, the indexing scheme as presented does not support exact-phrase
queries or proximity-based ranking considerations. To overcome this limitation,
one may align the versioned documents by sentences: in tokenized documents,
each sentence is hashed into an integer value, transforming documents into in-
teger sequences. Those integers are then aligned, assigned to virtual documents,
and transformed back to sentences. This variant of our scheme keeps sentences
intact, enabling to support exact-phrase queries (and proximity based scoring)
within sentence boundaries.

Note that indexing documents that were aligned by sentences will result in
lesser space savings as compared to documents aligned by individual words,
since any change in a sentence between version 7 and i + 1 causes the entire
sentence to be associated with another virtual documents. Consequently, when
computing the exclusive alignment by sentences, the cost of starting a new run
of 1 in some column equals the number of words in the sentence associated with
that column. Therefore, the optimality criterion of the alignment becomes the
weighted sum of runs of 1, where the weight of each run in column j is the
number of tokens in sentence j. Our row-alignment algorithm adapts to this by
applying the Needleman-Wunsch algorithm [I8] instead of the LCS algorithm.

7 Conclusions and Future Work

This paper presented a scheme to efficiently index corpora consisting of sequences
of document versions. Such sequences naturally arise in content management
systems, in email, in code repositories and in Wikis. The indexing scheme avoids
re-indexing certain units that repeat within the versions but still supports search
operations as if the entire text of all versions was indexed. Using a variant of
the multiple sequence alignment problem, we showed a greedy, polynomial-time
algorithm that optimally solves the problem under some natural assumptions.
We validated our approach on two real-life corpora consisting of sequences of
versioned documents, where we demonstrated savings of 81% in index space as
compared to a standard approach that indexes all versions of each document. The
limitations of our scheme are that (1) it increases indexing time, and therefore
is only applicable in cases where such an increase can be tolerated, and (2) as
in [7], it assumes that the index over the versions is built in batch mode, i.e the

Efficient Indexing of Versioned Document Sequences 87

indexing process accepts a batch of version sequences and builds an index for
searching over them.

For future work, we intend to explore supporting tree-like evolution patterns
of versioned documents (i.e. to support branches). Also, while batched index-
ing may suffice for many applications (e.g. archiving), we intend to investigate
incremental indexing schemes for versioned data.

References

[1]

2]

8]

[9]

[10]

[11]

Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., Raghavan, S.: Searching the
web. ACM Transactions on Internet Technology 1(1) (2001) 2-43

Witten, 1., Moffat, A., Bell, T.: Managing Gigabytes. second edn. Morgan Kauf-
mann Publishers, Inc., San Francisco, CA (1999)

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press /
Addison Wesley, New York, NY (1999)

Heinz, S., Zobel, J.: Efficient single-pass index construction for text databases.
JASIST 54(8) (2003) 713-729

Melnik, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building a distributed full-
text index for the web. In: Proc. 10th International World Wide Web Conference
(WWW 2001), ACM Press (2001) 396-406

Anick, P.G., Flynn, R.A.: Versioning a full-text information retrieval system.
In: Proc. 15th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. (1992) 98-111

Broder, A.Z., Eiron, N., Fontoura, M., Herscovici, M., Lempel, R., McPherson, J.,
Qi, R., Shekita, E.J.: Indexing of shared content in information retrieval systems.
In: Proc. 10th International EDBT Conference. (2006) 313-330

Broder, A.Z., Glassman, S.C., Manasse, M.S.: Syntactic clustering of the web. In:
Proc. 6th International WWW Conference. (1997)

Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and
searching xml data via two zips. In: Proc. 15th International World Wide Web
Conference (WWW’2006). (2006) 751-760

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady 10(8) (1966) 707-710

Apostolico, A.: String editing and longest common subsequences. In Rozenberg,
G., Salomaa, A., eds.: Handbook of Formal Languages. Volume 2 Linear Modeling;:
Background and Application., Springer-Verlag, Berlin (1997) 361-398

Myers, EEZW.: An o(ND) difference algorithm and its variations. Algorithmica
1(2) (1986) 251-266

Miller, W., Myers, E.W.: A file comparison program. Software — Practice and
Experience 15(11) (1985) 1025-1040

Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

Turtle, H., Flood, J.: Query evaluation: strategies and optimizations. Inf. Process.
Manage. 31(6) (1995)

Garcia-Molina, H., Ullman, J., Widom, J.: Database System Implementation.
Prentice Hall (2000)

Gathman, S.D.: Diff java class (2003) http://www.bmsi.com/java/Diff. javal
Needleman, S., Wunsch, C.: A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. J. Molecular Biology 48(3)
(1970) 443-453

http://www.bmsi.com/java/Diff.java

Light Syntactically-Based Index Pruning for
Information Retrieval

Christina Lioma and Iadh Ounis

University of Glasgow, G12 8QQ, UK
{xristina,ounis}@dcs.gla.ac.uk

Abstract. Most index pruning techniques eliminate terms from an in-
dex on the basis of the contribution of those terms to the content of the
documents. We present a novel syntactically-based index pruning tech-
nique, which uses exclusively shallow syntactic evidence to decide upon
which terms to prune. This type of evidence is document-independent,
and is based on the assumption that, in a general collection of docu-
ments, there exists an approximately proportional relation between the
frequency and content of ‘blocks of parts of speech’ (POS blocks) [5].
POS blocks are fixed-length sequences of nouns, verbs, and other parts
of speech, extracted from a corpus. We remove from the index, terms
that correspond to low-frequency POS blocks, using two different strate-
gies: (i) considering that low-frequency POS blocks correspond to se-
quences of content-poor words, and (ii) considering that low-frequency
POS blocks, which also contain ‘non content-bearing parts of speech’,
such as prepositions for example, correspond to sequences of content-
poor words. We experiment with two TREC test collections and two
statistically different weighting models. Using full indices as our base-
line, we show that syntactically-based index pruning overall enhances
retrieval performance, in terms of both average and early precision, for
light pruning levels, while also reducing the size of the index. Our novel
low-cost technique performs at least similarly to other related work, even
though it does not consider document-specific information, and as such
it is more general.

1 Introduction

The field of Information Retrieval (IR) addresses the general problem of how to
retrieve information, which is relevant to a user need, from a given repository
of information, such as a document collection. Information in the document
collection is represented in the form of an index, which contains statistics on
term frequencies in each document and in the whole collection. An integral part
of the index is the postings file, which records information on which terms appear
in which documents and the term frequency statistics of these terms [7]. Usually,
terms are associated with individual weights, which capture the importance of
the terms to the content of each document. Term weights can be computed using
various term weighting schemes. A matching function then estimates the likely

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 88 2007.
© Springer-Verlag Berlin Heidelberg 2007

Light Syntactically-Based Index Pruning for Information Retrieval 89

relevance of a document to a query, on the basis of term weights, and the most
relevant documents are identified and retrieved [I1].

Very often, stopwords are removed from the index. Stopword removal is a
way of pruning terms that harm retrieval performance. Generally, indez pruning
consists of replacing a full index by a smaller index, with the aim of improving
system efficiency, without harming significantly retrieval performance [7]. System
efficiency relates to issues such as the computational costs associated with storing
large indices, or the time needed to query large indices. Retrieval performance
relates to how relevant the returned results are (precision), or how many of the
relevant results are returned (recall). Typically, system efficiency benefits from
index pruning, because pruned indices tend to be more economical to store, and
less time-consuming to query. Overall retrieval performance tends to decrease
after index pruning, although early precision can be enhanced, for moderate or
light pruning [4/10].

We present a light index pruning technique, which uses shallow syntactic evi-
dence to prune low-content terms from the index, at indexing time. Specifically,
this shallow syntactic evidence consists of blocks of part of speech (POS blocks),
which are induced from a corpus. Any general corpus, such as a test collection,
can be used. Firstly, a POS tagger maps every term in the corpus to a part of
speech. We define a POS block as a fixed-length block of parts of speech, which
we extract from text in a recurrent and overlapping way. For example, for a given
sentence ABCDEFGH, where parts of speech are denoted by the single letters A,
B, C, D, E, F, G, H, and where POS block length = 4, the POS blocks extracted
are ABCD, BCDE, CDEF, DEFG, and EFGH. We extract all possible POS
blocks from the corpus, without considering the order in which POS blocks oc-
cur, or the documents in which they occur. It has been shown that low-frequency
POS blocks correspond to low-content words [5], unlike the case of individual
words, where low-frequency words tend to be high in content [6]. On this basis, we
hypothesise that pruning the words corresponding to low-frequency POS blocks
from an index corresponds to eliminating content-poor words, and may enhance
retrieval performance. In order to test the validity of this hypothesis, we take
the following steps. Firstly, we POS tag a corpus and extract POS blocks from
it. Secondly, we set a cutoff threshold 6, which controls which POS blocks from
the corpus are used for pruning the index. Thirdly, we POS tag the collection
to be indexed, and remove from it the words which correspond to POS blocks
bounded by 0. With regards to which POS blocks from the corpus are used for
index pruning, we test two different strategies, which we call Rank A and Rank
B, respectively. Rank A considers the raw frequency of a POS block as indicative
of the content salience of the words corresponding to that POS block. More sim-
ply, it assumes that low-frequency POS blocks correspond to low-content words.
Using this strategy, POS blocks are frequency-sorted, and the 6 least frequent
POS blocks are used for index pruning. Rank B considers both the frequency of a
POS block, and the part of speech classification (POS class) of its components,
as indicative of the content salience of the words corresponding to that POS
block. More simply, it assumes that low-frequency POS blocks that contain non

90 C. Lioma and I. Ounis

content-bearing parts of speech, such as prepositions for example, correspond to
low-content words. Using this strategy, POS blocks are sorted according to their
frequency and member parts of speech, and the 6 least frequent POS blocks are
used for index pruning. Note that this is a low-cost approach, because it simply
requires running the collection through the POS tagger once at indexing time,
and is not born down by query or document-centric parameters.

This paper is organised as follows. Section [2] presents related work. Section
presents in details our proposed syntactically-based index pruning technique.
Section M presents and discusses our experiments using Rank A and Rank B
strategies. Section [{l summarises our findings and states intended future work.

2 Related Studies

Index pruning is used in IR to improve system efficiency, without harming sig-
nificantly retrieval performance [4[7]. Typically, the data pruned from the index
is estimated to be the least important to retrieval performance, according to
some relevance criteria [2J4U7IT0]. Index pruning is uniform when it is applied
to all the documents in the same way, regardless of document- or term-specific
criteria. A detailed overview of index pruning methods is given in [4]. In the
same study, Carmel et al. investigate uniform and term-based index pruning
methods, and report that early precision is not affected by moderate pruning,
unlike average precision, which seems to decrease approximately linearly with
the amount of data pruned. An alternative to pruning terms from an index,
is replacing the documents in the index by their respective summaries [2J10].
Brandow et al. show that summary indexing improves precision at the cost of a
large loss in recall [2]. This claim is also supported by Sakai and Sparck Jones,
who report that moderate summary indexing does not affect early precision [10].
Overall, the consensus seems to be that light or moderate index pruning does
not decrease significantly early precision, but may decrease average precision. As
long as retrieval performance is not significantly hurt by index pruning, pruning
techniques are applied, driven primarily by system efficiency gains [7].

The syntactically-based index pruning technique we present, differs from the
above work in two ways. Firstly, our aim is not to mainly improve system ef-
ficiency, but also to enhance retrieval performance. Hence, we only and solely
apply light pruning, wishing to validate solely the applicability of our novel
syntactically-based pruning technique, and not its detailed effect upon general
system efficiency, even though we do report on the index compression resulting
from our pruning techniques, as compression in index is typically related to gains
in efficiency. Secondly, the pruning criteria we use are not lexical, but exclusively
shallow syntactic. More simply, our pruning criteria do not relate to words, but
parts of speech. Also, our pruning technique does not use relevance weight met-
rics, or other document-specific criteria, to decide which terms to prune. The
only two criteria used are the frequency of a POS block in a corpus, and the
POS class of the members of a POS block, namely whether they are nouns,
verb, prepositions, and so on. In this respect, our technique is novel, generic,
and document-independent. Note that, in literature, restrictions are usually

Light Syntactically-Based Index Pruning for Information Retrieval 91

Table 1. Open class parts of speech and their % frequency in WT10G

Part of Speech (POS) POS Class % in WT10G

Noun 38
Adjective 8
Verb opett 7
Participle 4

introduced in the pruning strategies. For example, in [4], terms are pruned only
from the postings list, while in [I0], there is a minimum length for a summary. On
the opposite, our application includes no such restrictions. We prune terms from
all the data structures of the index, and also allow for documents to have all of
their terms pruned. Applying such restrictions may further refine our technique,
and lead to further improving our reported results.

3 Syntactically-Based Index Pruning

We present the steps taken in order to test the hypothesis that shallow syntactic
evidence can indicate low-content terms, whose elimination from the index can
enhance retrieval performance, while reducing the index size.

All words in language are syntactically classified as either open or closed class
words. The open class contains nouns, verbs, and generally content-rich words,
while the closed class contains prepositions, conjunctions, and generally content-
poor words that mainly perform linguistic well-formedness functions, instead of
bearing content. These syntactic categories of words collectively constitute the
parts of speech. Following from [5], we consider a shallow categorisation of parts
of speech, namely one that only distinguishes between 14 parts of speech, as it is
enough to distinguish between content words and stop words. Table [displays
the 4 open class parts of speech we use, out of all 14. Using a POS tagger,
we extract POS blocks from a corpu:-El. Section [I] presented and illustrated how
POS blocks are extracted from text. At the end of this stage, we have a list of all
the POS blocks induced from the corpus. In order to turn the list of POS blocks
extracted from the corpus into evidence that can be used to indicate low-content
terms, we test two different strategies, namely Rank A and Rank B.

Rank A. We consider the raw frequency of a POS block in the corpus as
indicative of the content salience of the words potentially associated to that
POS block [B]. We sort all the POS blocks extracted from the corpus in order of
raw frequency, and assume that low — frequency =~ low — content.

Rank B. We consider both the frequency of a POS block, and the POS class
of its components, as indicative of the content salience of the words correspond-
ing to that POS block. The open class parts of speech we use are displayed in

1 'We use WT10G, but generally, any corpus can be used.

92 C. Lioma and I. Ounis

Table[l In order to represent this combination of frequency and POS class in a
quantitative way, we introduce an estimator of content for POS blocks. This esti-
mator approximates the potential amount of content of the words corresponding
to a POS block on the basis of: (i) the POS class of the POS block components,
and (ii) the length of the POS block. This content score estimator is based on
two assumptions, namely that: (i) only open class parts of speech correspond to
content-bearing words (see Table[Il); (ii) nouns are slightly more content-bearing
than adjectives, verbs, and participles. Both of these assumptions are based on
linguistic intuition. Specifically, in this paper, the content score c¢spospiockt Of a
POS block is estimated as follows:

Cn+Cavp-o
lposbiock

(1)
where C'y = number of nouns in the POS block, C' 4y p = number of adjectives
and/or verbs and/or participles in the POS block, I pospioc = POS block length,
and p = penalising parameter. g is a penalising parameter applied to adjectives,
verbs, and participles, following from the intuition that they are slightly less
content-bearing than nouns. Using the statistics found in Table[Il as a guide, we
set o = 0.17, as follows. Adjectives, verbs and participles occur in the corpus
approximately 19% (=8% + 7% + 4%) of the times, while nouns occur approxi-

mately 38% of the times. We estimate o = 1%3 ~ 0.17. Using Equation (), the
content score of a POS block can be between 0 and 1, where 0 and 1 denote no
content and the maximum amount of content, respectively. For example, using
the here-proposed content score estimator for POS blocks, the POS blocks noun
+ noun + noun + noun and adjective + noun + preposition + adverb score
cs =1 and cs = 0.29, respectively.

Having established a quantitative estimator of content for POS blocks, we
come back to the second strategy used to test our hypothesis. Specifically, we
multiply the raw frequency and content score of POS blocks, and sort the POS
blocks extracted from the corpus, according to the product of this multiplica-
tion. Multiplication is a simple way of combining frequency to content score,
which practially implements our assumption, and hence is suitable for our ex-
perimentation. Other linear or log-scale combination approaches may be also
used.

Strategies Rank A and Rank B are used for index pruning as follows. Firstly,
identically to Section [Il we POS tag the collection to be indexed, only that this
time we retain information on which POS blocks correspond to which terms in
the collection. Secondly, we define a cutoff threshold 6 to control the number of
POS blocks used for index pruning. Then, only for those POS blocks bounded by
0, we remove from the collection the terms corresponding to those POS blocks.
Terms are removed from all the data structures at indexing time. Note that the
value of § does not correspond to the actual frequency (for Rank A), or product
of frequency and content score (for Rank B) of a POS block, but to the number
of POS blocks which are to be used for index pruning. Note also, that, for the
POS blocks selected for pruning to be low-content, we start counting 6 POS
blocks from the the lowest ranking to the higher ranking. For example, let us

CSPOSblock =

Light Syntactically-Based Index Pruning for Information Retrieval 93

assume that Rank A contains 10 POS blocks, in decreasing order of frequency.
Then, setting § = 3, means that the words corresponding to the 10nth, 9nth,
and 8th POS blocks are pruned from the index.

4 Evaluation

4.1 Experimental Settings

We evaluate our hypothesis on WT2G (2GB) and WT10G (10GB), from the
1999, 2000 and 2001 Small Web, Web, and Adhoc tracks of the TREC Web Track,
respectively, using topics 401-550 from the corresponding taskdd. We experiment
with Title-only queries, as such queries are more representative of real user
queries on the Web. During indexing, we apply stopword removal and Porter’s
full stemming. We select the largest of the two collections, namely WT10G, as
the corpus from which we extract POS blocks, and POS tag it using the Tree-
Tagger I. We set POS block length to [pospiock = éﬂ We the BM25 [9] and
PL2 [I] weighting models. For all our experiments, we use the Terrier IR plat-
form [8]. We use the default values of all weighting model parameters: (i) for
BM25, k1 = 1.2, k3 = 1000, and b = 0.75 [9]; (ii) for PL2, ¢ = 10.99 with
WT2G, and ¢ = 13.13 with WT10GH. We use default values, instead of tuning
these parameters, because our focus is to test our index pruning hypothesis,
and not to optimise retrieval performance. If the said parameters are optimised,
retrieval performance may be further improved. We use mean average precision
(MAP) and precision at 10 (P@10) to evaluate the impact of pruning on retrieval
performance, using the full index as a baseline. We use a metric of similarity for
the top k retrieved results, namely the symmetric difference [4] between the full
and pruned indices, to evaluate the impact of pruning on early precision. We set
k to 10, in accordance with P@10. The maximum and minimum symmetric dif-
ference scores of 1 and 0 occur when the top k results of the two indices are the
same or disjoint, respectively, without considering the order of the results. In ad-
dition, we report the compression in index resulting from our pruning technique,
as such compression is typically associated with gains in system efficiency.

4.2 Results and Discussion

We conduct experiments to test the hypothesis that pruning words which corre-
spond to low-frequency POS blocks from the index, can enhance retrieval perfor-
mance, at low pruning levels, using strategies Rank A and Rank B. By pruning
levels, we denote the amount of data pruned from the full index.

2 Information on the TREC datasets is found at: http://trec.nist.org/

3 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

4 We have also experimented with lpospiocr = 3 and 5, and observed little variation
in retrieval performance. Generally, POS block length may vary, as long as it is kept
within a range that appropriately models the adjacency of the terms in the sentence.
This point is discussed in [5].

5 Default settings for PL2 are suggested at:
http://ir.des.gla.ac.uk/terrier /doc/dfr description.html

94 C. Lioma and I. Ounis

Table 2. Collection statistics after pruning. POS blocks § = number of POS blocks
used (in multiples of 1,000). Rank A = POS blocks sorted according to their frequency
only. Rank B = POS blocks sorted according to the product of their frequency and
content. tokens = individual words pruned (% from full index). terms = unique terms
pruned (% from full index). postings = document pointers pruned from the postings
list (% from full index).

POS blocks

6 (1,000)

23
22
21
20
19
18
17
16
15
14
13
23
22
21
20
19
18
17
16
15
14
13

% PRUNING

% pruned from full index

Rank A Rank B collection
tokens terms postings tokens terms postings
18.39 5.07 14.56 20.37 14.09 15.42
12.13 3.55 9.46 14.35 12.09 10.52
8.47 2.16 6.53 10.99 10.78 .77
6.00 1.46 4.57 8.78 10.31 5.98
4.38 1.10 3.31 7.36 9.97 4.82

3.24 0.82 244 6.36 9.77 4.02 WT2G
2.44 0.65 1.83 5.70 9.61 3.49
1.84 0.50 1.37 5.24 9.50 3.13
1.41 0.39 1.04 490 9.42 2.86
1.10 0.31 0.80 4.65 9.35 2.67
0.82 0.24 0.61 4.46 9.30 2.52
16.57 4.68 14.30 19.93 14.69 15.23
11.16 3.23 9.38 14.57 12.72 10.56
7.90 1.96 6.56 11.56 11.41 7.87
5.70 1.39 4.65 9.62 11.00 6.12
4.24 1.08 3.41 8.27 10.64 4.96

3.33 0.84 2.5 7.37 10.47 4.17 WT10G
2.43 0.66 1.93 6.73 10.29 3.63
1.86 0.53 1.46 6.28 10.17 3.26
1.44 0.40 1.11 5.96 10.10 2.99
1.13 0.31 0.86 5.71 10.04 2.78
0.86 0.25 0.66 5.52 9.99 2.63

POS BLOCKS USED vs PRUNING - WT10G
T T T T T

—— RANK A
—£- RANKB

L
60

L
65

70 75 80
% POS BLOCKS USED

L L L
85 90 95

100

Fig. 1. % POS blocks used vs % pruning for WT10G

Light Syntactically-Based Index Pruning for Information Retrieval 95

Table [2 displays statistics relating to the effect of each of our two prun-
ing strategies on WT2G and WT10G, during indexing, separately for tokens,
unique terms, and postings. Column POS blocks 6 (1,000) contains the num-
ber of POS blocks used for pruning, in multiples of 1,000. We clearly see that
pruning terms from more POS blocks (increasing 6) leads to more index com-
pression (more terms being removed from the index). We also see that Rank B
is more effective than Rank A, in the sense that it leads to more index com-
pression, throughout. This is due to the fact that Rank A is a raw frequency
sort of POS blocks, while Rank B is a sorting of a combination of POS block
frequency and POS class information. More simply, the lowest ranked POS block
in Rank B is not necessarily the least frequent POS block in the corpus, but a
POS block that combines both (i) very low frequency, and (ii) very low content
score. Very low content score practically translates to a POS block which does
not contain any nouns, adjectives, or verbs. The fact that Rank B is better than
Rank A is graphically illustrated in Figure [Il which plots various pruning lev-
els against the % of POS blocks used. This % is the proportion of POS blocks
used for pruning WT10G, out of all the POS blocks extracted from WT10G.
We clearly observe that using the same number of POS blocks with Rank A
and Rank B results in more index compression for the latter, than for the for-
mer. In Figure [Il we also observe that, even pruning the terms corresponding
to 95% of all the POS blocks extracted from WT10G, only results in reducing
the WT10G full index by 16-20%. Since we only use the lowest frequent POS
blocks for pruning, this seems to indicate that there exists a very large number
of POS blocks of low frequency, which is one of the properties of a power law
distribution.

Table [3 displays retrieval performance scores at different index compression
levels, separately for Rank A and Rank A, and for each collection. Pruning levels
are reported in % reduction of postings, similarly to [4]. We see that light pruning
leads to an overall improvement in MAP and P@10 over the full index, which is
sometimes statistically significant. Two important observations are drawn from
this table. Firstly, at no point does pruning hurt significantly retrieval. This point
is very encouraging, considering that our techniques uses no document-specific
criteria. Secondly, light pruning can improve both MAP and P@10. In fact, the
best obtained MAP and P@10 scores for WT2G, namely MAP = 0.320 and
P@10 = 0.468, are not given by the full index, but by pruning 2.86% and 1.37%
of the index, respectively. Both of these scores are statistically very significant
(p << 0.01). Similarly for WT10G, the best overall MAP and PQ@10 scores,
namely MAP = 0.210 and P@Q10 = 0.328, are not given by the full index, but
by pruning 0.66% and 2.99% of the index. The best overall retrieval scores are
separately displayed in Tabledl Finally, in Table[3we observe that PL2 performs
better than BM25, which could be due to the default parameter settings used.
Even so, both PL2 and BM25 outperform scores reported in [34], using TF-IDF
and the same settings.

5 Indeed we can report that the distribution of POS blocks in WT10G follows a Zipfian
distribution.

96 C. Lioma and I. Ounis

Table 3. Pruning using POS blocks from Rank A and Rank B. Prune (%) = reduction
in postings from full index. Grey-shaded = full index. Boldface = equal to or better
than the full index. * and ** = stat. significance at p < 0.05 and p < 0.01 (Wilcoxon
matched-pairs signed-ranks test), respectively.

Rank A Rank B
MAP P@io \ MAP P@1o0 Collection
07 [y
Prune (%)) 105 p12 BM25 |PL2 Prune (%)/p\ 95 pL2 BM25 |PL2
1456 |0.243%%|0.298%*% |0.432%%|0.454** || 15.42 |0.246* |0.301%* |0.430% |0.454%*
9.46 [0.250 0.303 |0.426 |0.456 1052 [0.254 [0.308 |0.438 |0.456
6.53 |0.253 [0.306 |0.428 |0.466 777 |0.258 [0.310 [0.432 |0.466
457 |0.257 |0.310 |0.442 |0.462 598 (0257 [0.311 |0.436 |0.466
331 |0.259 [0.313 |0.442 |0.460 482 |0.259 [0.312 |0.434 |0.464
244 |0.259 [0.313 |0.440 |0.462 402 |0.260 0.317 |0.440 (0.462 |\
1.83 [0.260 [0.315 [0.442 |0.464 3.49 |0.259 |0.319%*0.432 |0.462%*
1.37 |0.261%|0.317**(0.438* |0.468**|| 3.13 |0.260 |0.319%*|0.434 |0.460**
1.04 |0.261*|0.318* |0.438* |0.462* 2.86 |0.258 |0.320%*(0.434 [0.456**
0.80 |0.260 |0.318 [0.434 |0.462 2.67 |0.258 [0.318 [0.430 |0.454
0.61 |0.260*|0.318* |0.436* |0.460* 252 |0.257* [0.318 |0.432* |0.456
0.00 [0.258 [0.317 0.426 |0.456 0.00 [0.258 [0.317 |0.426 |0.456
14.30 |0.1757%[0.105F [0.293%% [0.298%F || 15.23 |0.1757%|0.199%* [0.295%* |0.307+
9.38 |0.182* |0.203 |0.304* |0.307 1056 |0.179%%(0.204 |0.300%**|0.307
6.56 |0.185% [0.206** |0.302* [0.316%* 7.87 |0.182* [0.207 |0.303* |0.313
465 |0.187 [0.207 |0.300 |0.317 6.12 |0.184 [0.207 |0.306 |0.316
341 |0.186 [0.206 |0.301 [0.312 496 |0.185 [0.207 |0.302 |0.325
2.55 [0.187 |0.208* [0.298 |0.319* 417 10.185 (0208 [0.303 0325 |
1.93 [0.187 [0.209 [0.300 |0.323 3.63 [0.185 [0.209 |0.301 |0.326
146 [0.186 [0.209 [0.302 |0.324 3.26 [0.186 [0.208 |0.303 |0.326
111 [0.187 |0.209 [0.302 [0.324 2.99 |0.186* [0.209 [0.303* |0.328
0.86 |0.187 |0.209 [0.302 |0.326 2.78 |0.186 [0.209 |0.301 |0.328
0.66 |0.188 |0.210 [0.303 |0.326 2.63 |0.186* |0.209* |0.301* |0.328*
0.00 [0.187 [0.209 0.300 |0.326 0.00 [0.187 [0.209 |0.300 |0.326

Figure Bl plots MAP and P@10 versus index pruning. For both WT2G and
WT10G, and for index compression more than roughly 6% of the full index, the
relation between average precision and pruning becomes practically decreasing
linear, where as pruning increases, average precision decreases, for both Rank
A and Rank B. For index compression less than 6%, varying pruning leads to
variations in average precision, which can be either increasing or decreasing,
but only slightly. Using Rank A results in more variations for this pruning range
(<6%), than using Rank B, for both collections and with both weighting models.
This seems to suggest that Rank B is more stable. With regards to precision at
10, index compression roughly less than 8-10% of the full index seems to generally
increase precision, with the exception of using PL2 on the WT10G collection. For
index compression more than 10% of the full index, there is a slight degradation
in early precision. Overall, Rank A and Rank B perform very similarly, in terms
of retrieval performance. BM25 and PL2 also behave very similarly, indicating
that our conclusions drawn from these runs are consistent across two statistically
different weighting models, hence they are general.

Figure [3 plots the similarity of the top 10 results to the full index versus
pruning, using a symmetric difference [4] estimation. We observe that the early
precision obtained by Rank B approximates the full index more closely than that
obtained by Rank A. This observation, which is consistent for both collections

Light Syntactically-Based Index Pruning for Information Retrieval 97

MAP vs PRUNING - WT2G
033 T T T T T T

P@10 vs PRUNING - WT2G
T

—— RANK A: BM25 o047 ! ! ! ! !
-5~ RANK B: BM25
0a2 -6~ RANK A: PL2
—+— RANK B: PL2 0.485
031t 1 0.46
03f 7 0.455
029t 1 0451 1
< °
©
= 4
0.28 b 0.4451 4
027 1 044 B
0261 4 0435} B
025t 4 043 1
024 0.425 I I . . N 1 .
o 2 4 8 10 12 14 16 o 2 4 8 12 14 16
PRUNING % PRUNING %
MAP vs PRUNING - WT10G P@10 vs PRUNING - WT10G
02 T T T T T 0
—— RANK A: BM25
-5~ RANK B: BM25
-6~ RANK A: BM25
0214 —— RANKB:BM25 | 0325
0205 B 032
02 B 0315
0.195 B 031
% e
H g
0191 B 0.305
o185 B o
o018 B 0295} B
0175} B o029t B
017 0285
0 2 4 12 14 16 o 2 4 12 14 16

8 8
PRUNING % PRUNING %

Fig. 2. Precision vs Pruning (% postings)

SIMILARITY vs PRUNING - WT2G SIMILARITY vs PRUNING - WT10G
T T T T .

T T
—— RANK A BM25 o4 " " " " " "
—&— RANK B: BM25
o RANK A: PL2
—— RANK B: PL2

035

035 4

0.4 T T T

SIMILARITY

SIMILARITY

°
° ° I °
2 s 8 ©

0.15F

10 12
PRUNING %

Fig. 3. Top 10 similarity at varying levels of pruning

and both weighting models, indicates that introducing the content score (Equa-
tion [M)) of a POS block into the frequency ranking of POS blocks is a better
pruning strategy.

98 C. Lioma and I. Ounis

Table 4. Best MAP and P@10 scores. Ar% MAP & Ar% PQ10 = % difference
from full index in MAP & P@10, respectively. Prun.% = % pruning in postings from
full index. strategy = pruning strategy and weighting model. ** = stat. significance
at p < 0.01 (Wilcoxon matched-pairs signed-ranks test).

best ~ Ap% Prun. strategy best = Ap % Prun. strategy coll
MAP MAP % pPa@lo P@lo %

0.320** +1.0 2.86 Rank B: PL2 0.468*%* +42.6 1.37 Rank A: PL2 WT2G
0.210 +0.5 0.66 Rank A: PL2 0.328 +0.6 2.99 Rank B: PL2 WT10G

Table [l compares the performance of syntactically-based index pruning to
other index pruning work [34]. We compare with reported experiments that use
the same collections, topics, and similar pruning levels to ours (under column
experimental setltings). We see that, both Rank A and Rank B pruning strategies
are at least comparable to the uniform pruning strategy of Carmel et al. [4],
(marked @). Note that we prune terms using document-independent syntactic
evidence (Section[l]), and from the whole index, while [] prune terms according
to their contribution to the relevance score of a document, and only from the
postings lists. On the basis of these two key-differences, we consider the fact
that our technique is comparable to that of [4], as very promising. Table [also
includes the results of pruning reported in [3], (marked ®), whereby, in addition
to using document-specific information and pruning the postings lists only, a
term-based strategy is used. Our equivalent run applies a uniform, as opposed
to term-based, technique, which is generally considered less effective [3l4]. Still,
we observe no significant difference between the two runs, a fact which is an
additional credit to our technique. When we repeat this run using the exact 50
topics used in [3], (marked ¢), we observe that our technique outperforms that
of [3] in P@10, with a slight decrease in MAP. We consider this performance
notable, considering how much more refined is the pruning approach applied
in [3], as already discussed.

Table 5. Comparison of our runs to other index pruning work (grey-shaded).
Ar% MAP & Ar% PQ10 = % difference in MAP & P@10 from full index. Prun.%
= % pruning in postings from full index. & = run described in [4]. ® = run described
in [3]. ¢ repeats the run of the preceeding row using 50, instead of 100, topics. Major
differences appear in boldface.

Prun. Ar% Ar%
% MAP PQ10
15.4 -4.7 +40.9 WT2G, 401-450 (Title
14.6 -5.8 +1.4 WT2G, 401-450 (Title
®13.2 -4.0 +2.5 WT2G, 401-450 (Title), uniform prun. from postings
10.5 -1.6 +2.8 WT2G, 401-450 (Title), Rank B, uniform prun. from all index
®10.7 -1.9 0.0 WTI0G, 501-550 (Title), term-based prun. from postings
10.6 -2.4 0.0 WTI10G, 451-550 (Title), Rank B, uniform prun. from all index
©10.6 -2.9 +4.3 WT10G, 501-550 (Title), Rank B, uniform prun. from all index

experimental settings

, Rank B, uniform prun. from all index
, Rank A, uniform prun. from all index

NN

Light Syntactically-Based Index Pruning for Information Retrieval 99

5 Conclusion

We proposed a novel, low-cost, unsupervised statistical technique for index prun-
ing, with uses shallow syntactic evidence to reduce noise from the index. We hy-
pothesised that pruning the words corresponding to low-frequency POS blocks
from an index corresponds to eliminating content-poor words, and may enhance
retrieval performance. We presented POS blocks, as fixed-length blocks of parts
of speech, and assumed that low-frequency POS blocks correspond to low-content
words, following from [5]. On the basis of this, we tested two pruning strate-
gies: Firstly, terms corresponding to 6 low-frequency POS blocks, were pruned
from the index (Rank A). Secondly, terms corresponding to 6 low-frequency
POS blocks which were also estimated to contain ‘non content-bearing parts
of speech’, such as prepositions for example, were pruned from the index. We
experimented with various values of 0, and reported on the associated effect
on pruning levels and retrieval performance, while also making a note of the
associated gain in index compression. Both strategies behaved similarly, with
Rank B providing results closer to the full index, for early precision. Overall,
by compressing the index up to a maximum of roughly 14-15% (see Table [B]),
our proposed syntactically-based pruned indices outperfomed the full indices, in
terms of MAP and P@10, for both collections. Additionally, for similar index
compression levels, our syntactically-based technique was shown to be compara-
ble to [34], which used more refined document-specific and term-based pruning
approaches. In the future, we wish to experiment with higher index compression
levels, and also applying our pruning technique more intelligently, for example
on a per-document basis.

References

1. Amati, G.: Probabilistic Models for Information Retrieval based on Divergence
from Randomness. Phd thesis. Department of Computing Science, University of
Glasgow (2003)

2. Brandow, R., Mitze, K., Rau, L.: Automatic Condensation of Electronic Publi-
cations by Sentence Selection. Information Processing and Management, 31(5).
(1995) 675-685

3. Carmel, D., Amitay, E., Herscovici, M., Maarek, Y., Petruschka, Y., and Soffer,
A.: Juru at TREC 10 - Experiments with Index Pruning. In: Text REtrieval
Evaluation Conference (TREC 2001) 228-265

4. Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M., Maarek, Y., and Soffer,
A.: Static Index Pruning for Information Retrieval Systems. In: ACM Conference
on Research and Development in Information Retrieval (SIGIR 2001) 43-50

5. Lioma, C., Ounis, I.: Examining the Content Load of Part of Speech Blocks for

Information Retrieval. In: Proceedings of the International Committee on Com-

putational Linguistics and the Association for Computational Linguistics (COL-

ING/ACL 2006)

Luhn, H., P.: The Automatic Creation of Literature Abstracts. (1958) 159-165

7. Witten, I. H., Moffat, A., Bell, T. C.: Managing Gigabytes: Compressing and
Indexing Documents and Images. 2nd edn. Morgan Kaufmann, San Francisco
(1999)

2

100 C. Lioma and I. Ounis

8. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A
High Performance and Scalable Information Retrieval Platform. In: ACM Confer-
ence on Research and Development in Information Retrieval Workshop on Open
Source Information Retrieval (OSIR 2006)

9. Robertson, S., Walker, S.: Some Simple Approximations to the 2-Poisson Model
for Probabilistic Weighted Retrieval. In: ACM Conference on Research and Devel-
opment in Information Retrieval (SIGIR 1994) 232-241

10. Sakai, T., Sparck Jones, K.: Generic Summaries for Indexing in Information Re-
trieval. In: ACM Conference on Research and Development in Information Re-
trieval (SIGIR 2001) 190-198

11. van Rijsbergen, C., J.: Information Retrieval. Butterworths, London (1979)

Sorting Out the Document Identifier
Assignment Problem

Fabrizio Silvestri

Institute for Information Science and Technologies
ISTI - CNR, via Moruzzi, 1, 56126 Pisa, Italy

fabrizio.silvestri@isti.cnr.it

Abstract. The compression of Inverted File indexes in Web Search En-
gines has received a lot of attention in these last years. Compressing the
index not only reduces space occupancy but also improves the overall
retrieval performance since it allows a better exploitation of the memory
hierarchy. In this paper we are going to empirically show that in the
case of collections of Web Documents we can enhance the performance
of compression algorithms by simply assigning identifiers to documents
according to the lexicographical ordering of the URLs. We will validate
this assumption by comparing several assignment techniques and several
compression algorithms on a quite large document collection composed
by about six million documents. The results are very encouraging since
we can improve the compression ratio up to 40% using an algorithm that
takes about ninety seconds to finish using only 100 MB of main memory.

1 Introduction

Indexes in Web Search Engines (WSEs) are usually represented using the pop-
ular Inverted File (IF) data structure [I5]. Given a set of documents, an IF is
composed by two distinct sets: the Lexicon and the Posting Lists. The Lexicon
represents the set of terms that can be found within the whole document set. To
each term of the lexicon a Posting List is associated containing information (the
so-called posting) on all the documents containing that term. For example, the
index entry < t1;5;3,4,10,20,23 > states that term ¢; (stored within the Lexi-
con) appears in five documents, namely 3, 4, 10, 20, and 23. The set containing
all these lists is stored within the Posting Lists section.

One of the main reasons why IFs (or one of their variations) are usually
adopted in real world WSEs, is that they can be easily compressed to reduce
memory occupancy. Compressing indexes in WSEs has been also proved to en-
hance efficiency of the retrieval process [2IITIT4]. A reduction in space occupancy,
in fact, usually corresponds to a better utilization of the memory hierarchy.

The majority of the techniques adopted for compressing IF's are based on their
d-gapped representation [I5]. Posting lists are usually scanned sequentially. For
this reason, it is possible to represent those lists by taking differences among
successive identifiers (with the obvious exception of the first one). This way, the

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 101 2007.
© Springer-Verlag Berlin Heidelberg 2007

102 F. Silvestri

previous list would be represented as < t1;5;3,1,6,10,3 >. Encoding each inte-
ger with a technique requiring few bits for smaller values will result in a reduction
of the utilized space. Variable-length encoding schemata allow IF indexes to be
represented concisely since small d-gaps are much more frequent than large ones.
This feature of posting lists, usually called Clustering property [1] is passively ex-
ploited by compression algorithms. However, by mapping DoclIDs in a way that
increases the frequency of small d-gaps, it is very likely that we can enhance
the effectiveness of any variable-length encoding scheme [13]. It has been shown
that an effective way to compute such a mapping is clustering the collection of
documents and computing the mapping by considering the way documents are
grouped within the clusters.

Indeed, clustering is an expensive operation especially in a highly dimen-
sional domain like textual documents. Even if a number of scalable clustering
techniques are known, a cheaper approach would be desirable.

As often happens when dealing with large scale WSEs, the simplest solution
usually results to be the most effective one. What we are going to empirically
validate in this paper is, in fact, that a very effective mapping can be obtained
by considering the sorted list of URLs referencing the web documents of the
collection. Furthermore, it is very likely that this lexicographical ordering of
the URLs is already used by link databases; we will show, then, that it would
introduce benefits also for assigning numerical identifiers to documents in Web
Search Engines indexes.

As already pointed out in another paper [I0], numbering the URLs following
their lexicographical order improves the performance of web graph compression
algorithms. In the following we are going to show that using this kind of num-
bering scheme we can also obtain better compression ratios by spending just a
few seconds even on a very large number of documents. In fact, sorting a list of
5.9 million URLs would take about 90 seconds against about 45 minutes needed
by our previous clustering solutions.

While the motivations presented in [I0] clearly explain why sorting URLs
can improve compression effectiveness for Web graphs, it is not so easy how to
argument why sorting URLs can improve index compression too.

Luhn’s hypothesis [9] can help in finding a reasonable motivation to this phe-
nomenon. Luhn’s hypothesis states that the significance of a word can be effec-
tively measured by its frequency of occurrence. In particular, Luhn stated that
words occurring less (more) than a given cut-off value are not significant as they
are too rare (too common).

It is reasonable to say that lists referring to common terms are highly com-
pressible since they contain relatively small d-gaps. On the other hand, rare
terms occur only once or twice and do not impact on compression performance.

The lists we should care about are instead those whose length falls between
the two Luhn’s cut-offs. These lists, in fact, are likely to be referring to terms
that are either highly correlated (e.g. “new” and “york”), or highly uncorrelated
(e.g. “loudspeakers”, and “octopussy”).

Sorting Out the Document Identifier Assignment Problem 103

At least in principle, by placing documents containing correlated terms closer
and by separating documents containing uncorrelated terms, we should ob-
serve a gain in compressibility of postings. Unfortunately this problem has been
shown to be NP-complete [3], and several heuristics have been proposed in the
past [T2U5/T3/4].

Our hypothesis is that documents sharing correlated and discriminant terms
are very likely to be hosted by the same site thus will also share a large prefiz of
their URLSs.

To partially evaluate the validity of our hypothesis we performed a simple
experiment. We sorted the URLs identifying the documents of our test collec-
tion, and we took the first 35,000 documents. Then, between all the possible
pairs of documents we measured the similarities using the Jaccard measure, and
the similarity among their relative URLs by counting the number of tokens in
common (i.e. the similarity among http://www.aaa.bbb.cc/people/nl.surnamel
and http://www.aaa.bb.cc/people/n2.surname? is 2 since they share the server
part and the first subdirectory). Among those pairs of URLs with similarity 0,
the large majority (about 89.7%) have also Jaccard similarity equal to 0. The
document similarity increased by considering URLs with similarity equal to 1
and 2. In the former case the 18.1% of documents are at distance 0.1, in the
latter the large majority of document pairs (52.1%) have similarity equal to
0.9 meaning that they share a large number of terms. This simple experiment
empirically shown that the two measures might be linked in some manner.

In our opinion, the most important strength point of this paper is the sim-
plicity of the algorithm employed. Instead of thinking of sophisticated metric,
or algorithms, to measure the distance between documents, in the case of Web
collections we simply need to sort the URL list lexicographically, and assign
identifiers to documents accordingly.

The paper is organized as follows. Section [2] reviews the state-of-the-art on
the assignment problem and analyzes pros and cons when compared against our
solution. Section Bl briefly recalls the assignment problem definition and the main
definitions that will be used throughout this paper. Section [shows the results
of our empirical evaluation of the URL sorting assignment heuristics. Finally
Section [B concludes the paper, and present some issues that we are going to face
in the future.

2 Related Work

In recent years several works have discussed approaches to the encoding of lists
of integer values. These techniques have usually been applied to the compression
of full-text indexes represented by means of d-gapped inverted lists [I5]. Only re-
cently, though, some works have been done in order to enhance the compressibil-
ity of indexes through a clever assignment of identifiers to documents [T2/5UT3|[4].

Shieh et al. [I2] proposed a DocID reassignment algorithm adopting a Trav-
elling Salesman Problem (TSP) heuristic. A similarity graph is built by con-
sidering each document of the collection as a vertex and by inserting an edge
between any pair of vertices whose associated documents share at least one term.

104 F. Silvestri

Moreover, edges are weighted by the number of terms shared by the two docu-
ments. The TSP heuristic algorithm is then used to find a cycle in the similarity
graph having maximal weight and traversing each vertex exactly once. The sub-
optimal cycle found is finally broken at some point and the DocIDs are reassigned
to the documents according to the ordering established. The rationale is that
since the cycle preferably traverses edges connecting documents sharing a lot
of terms, if we assign close DoclIDs to these documents, we should expect a re-
duction in the average value of d-gaps and thus in the size of the compressed
IF index. The experiments conducted demonstrated a good improvement in the
compression ratio achieved. Unfortunately, this technique requires to store the
whole graph in the main memory, and is too expensive to be used for real Web
collections: the authors reported that reordering a collection of approximately
132,000 documents required about 23 hours and 2.17 GBytes of main memory.

Blelloch and Blandford [5] also proposed an algorithm (hereinafter called
B#B) that permutes the document identifiers in order to enhance the clustering
property of posting lists. Starting from a previously built IF index, a similar-
ity graph G is considered where the vertices correspond to documents, and the
edges are weighted with the cosine similarity [8] measure between each pair
of documents. The Bé&B algorithm recursively splits G into smaller subgraphs
G1i = (Vii, Er ;) (where [is the level, and i is the position of the subgraph within
the level), representing smaller subsets of the collection. Recursive splitting pro-
ceeds until all subgraphs become singleton. The DocIDs are then reassigned
according to a depth-first visit of the resulting tree. The main drawback of this
approach is its high cost both in time and space: similarly to [I2] it requires
to store the whole graph G in the main memory. Moreover, the graph splitting
operation is expensive, although the authors proposed some effective sampling
heuristics aimed to reduce its cost. In [5] the results of experiments conducted
with the TREC-8 ad hoc track collection are reported. The enhancement of
the compression ratio obtained is significant, but execution times reported re-
fer to tests conducted on a sub-collection of only 32,000 documents. The paper
addresses relevant issues, but due to its cost, the B&B algorithm also seems
unfeasible for real Web collections. Several transactional-model-based solution
have been compared against B&B in [13] and they showed that there is actu-
ally room for a lot of improvements to their method. In particular, not from an
effectiveness point of view, but more from a scalability perspective.

In [4], Blanco and Barreiro studied the effect of dimensionality reduction on re-
assignment algorithms based on the Greedy-NN TSP algorithm. Basically, they
first reduce dimensionality of the input matrix through a Singular Value Decom-
position (SVD) transformation and then they apply the Greedy-NN TSP algo-
rithm. They also tested the effect of blocking (i.e., the division of the dataset in
subsets) on the effectiveness of the algorithm. Results are very good and they were
able to obtain good compression ratios with low running times. Even thought the
results are good, using the SVD transformation on the matrix might spoil the scal-
ability of the method. Indeed, the block partitioning approach proposed seems to
reduce this effect but costs quite a lot in terms of effectiveness degradation.

Sorting Out the Document Identifier Assignment Problem 105

In our opinion, another drawback of all the previous approaches is that they fo-
cus on reassigning DocIDs appearing in a previously built IF index. The strength
point of this work, however, is that DocIDs are assigned on the fly, before (and
not either during, or after) the inversion of the document collection. In order to
compute efficiently and effectively a good assignment, a new model to represent
the collection of documents is needed. In a previous work [I3], there have been
presented some results relative to four assignment algorithms based on cluster-
ing. The clustering approach resulted to be scalable and space-effective. This
means that it can be used to assign DocIDs even before the spidered collection
will be processed by the Indexer. Thus, when the index will be actually commit-
ted on disk, the new DocID assignment will be already computed. Conversely,
the other methods proposed so far require that the IF index has already been
computed in advance. They also proposed a new model that allowed the assign-
ment algorithm to be placed into the typical spidering-indexing life-cycle of a
WSE. The Transactional Model was based on the popular bag-of-words model.
This work remain valid for generic textual document collections. Though, the
main concern about this kind of techniques within Web collections is that usually
document identifiers are used also for other purposes, like for instance addressing
snippets, retrieve ranking information, and so on. Renumbering the collection,
thus, may not be feasible in practice for large scale WSEs.

The solution of considering the sorted list of URLs has already been used
in [I0] to enhance the compressibility of Web Graphs. Web graphs may be rep-
resented by using adjacency lists. They are basically lists that contain, for each
vertex v of the graph, the list of vertices directly reachable from v. It has been
observed that almost 80% of all links are local, that is, point to pages of the same
site. Starting from this observation, it is obvious that assigning closer identifiers
to URLs referring to the same site will result in adjacency lists that will contain
the around 80% of ids very close among them. Representing these lists using a
d-gapped representation will thus lead to d-gapped adjacency lists having long
runs of 1’s. Starting from this assumption, in [I0] and [6], authors show that
exploiting the lexicographical ordering of URLs leads to an enhancement in per-
formance of Web graphs encoding algorithms.

The main matter of this paper is an evaluation of the compression algorithms
efficiency, when an inverted index is built over a collection whose numerical
identifiers are assigned according to lexicographically sorted URLs.

3 Assignment of Doclds

Basically, the previously proposed clustering-based (re)assignment algorithms
were trying to reduce the average gap value by clustering together documents
having a number of terms in common. The distance measure used in clustering
was thus based on this concept of number of shared terms and the complexity of
clustering algorithms depended on the number of distance computationsﬂ. The

! The distance measure used was the Jaccard distance that depends on the cardinality
of the intersection between the set of terms contained within two documents A, and

B, and on the cardinality of their union. d (4, B) =1 — I‘:Dg} .

106 F. Silvestri

complexity is generally linear (O (|D])) in the case of k-means based clustering,
or superlinear (O (|D|log|D])) in the case of hierarchical clustering methods
(like B&B). Indeed, this complexity results consider distance computations as
a constant complexity (O (1)) operation. Computing the distance between two
documents, in fact, means finding the intersection among two sets of term, and
this is clearly not a cheap operation.

The algorithm we are going to present instead is indeed trivial, since it just
consists of sorting the list of URLs, yet very efficient, since it does not require
any set intersection operations. The computational complexity of this approach
is O (|D]log|D|). Differently from the clustering methods, the complexity is ex-
pressed as the number of string comparisons instead of number of set intersections.
Furthermore, sorting the list of URLs is very effective from the compression ratio
point of view. Another non-trivial advantage of this solution with respect to the
previously proposed ones, is that a lot of scalable external memory string sorting
algorithms exists while, currently, no assignment (or even re-assignment) algo-
rithms have been proposed using external memory based techniques. One could
obviously use one of the many external memory clustering solutions that exists in
literature, but these will still require a lot of time to complete their operations.

Throughout the rest of this paper we will compare our assignment strategy
based on URLSs sorting against the previously proposed k-scan algorithm [T3].

4 Experiments

We experimented our solution on an index built upon the WBR99 collection.
WBR99 consists of 5,939,061 documents, about 22 GB uncompressed,
representing a snapshot of the Brazilian Web (domains .br) as spidered by
www.todobr.com.br. As the hardware platform, we used a Pentium IV 3.2GHz,
with 1GB of RAM, local disk, and Linux as the operating system.

The tests we perform are aimed at showing the superiority of our approach
with respect to the clustering approach. We will show the improvements in both
compression ratio, reordering time, and space consumed of various encoding
algorithms.

We considered several encoding schemata in our experiments:

— Elias’ Gamma (GAMMA);
Elias’ Delta (DELTA);

Golomb Code (GOLOMB);
Variable Byte (VB);

— Interpolative Coding (INTERP);
— Simple9 (S9).

Simple9, hereinafter S9, is the encoding scheme described in [I]. Gamma,
Delta, Golomb, Interpolative (INTERP) and Variable Byte (VB) are five popular
encoding schemata described in [I5].

In order to assess the validity of our method we performed our experiments
by comparing not only different encoding methods but also different orderings
for assigning document IDs. The orderings compared are the following:

Sorting Out the Document Identifier Assignment Problem 107

— A random ordering (Random). For each document an ID is assigned u.a.r.
by considering the set of previously unassigned IDs.

— The original numbering of documents given to documents in the index
(Original).

— Block, and transactional-model based k-scan clustering (Clustering). In this
case k, the number of clusters, has been set equal to 900, and the block
size has been set equal to 900,000 documents. Since this kind of clustering
is sensitive to initial ordering [I3], we fed the algorithm with the ordering
found in the original index.

— URL-based sorting (Url sorting).

— k-scan clustering of the document collection again using k& = 900, and
900,000 documents for each block (Clustering + Url Sorting). The sorted
list of URLs has been taken as the initial ordering of the documents.

4.1 Results

Regarding the enhancements in compression ratios, Table [l and Figure [l show
comparisons between six different compression ratios and five different orderings.

Table 1. Results of various assignment algorithms using different encoding schemata.
In bold are represented the best results obtained for each encoding schemata.

VB GAMMA DELTA S9 INTERP GOLOMB

Random 114 12.72 12.71 15.41 11.13 11.31

Original 11.25 12.34 12.32 152 10.94 11.12

Url sorting 9.72 7.72 7.69 14.34 7.48 8.23
Clustering 9.81 8.82 8.8 14.03 7.26 8.63
Clustering + Url sorting 10.03 8.96 8.95 14.15 7.31 8.9

In Table[ll the best compression ratio achieved by each methods and for each
ordering schema has been represented in bold. As we expected the compression
ratio in the case of identifiers assigned by using our URL sorting method per-
forms better than clustering in almost all the cases except for S9, and INTERP.
Anyway, the enhancements in terms of compression ratio of the URL sorting
method against the Clustering one is visible only in the case of Gamma and
Delta. Here the URL sorting has produced a posting list section that is 13%
smaller than the Clustering ordering. In the remaining cases Clustering and
URL-ordering are comparable.

Since Clustering is sensitive to the initial ordering, we also tested a hybrid
solution consisting in performing Clustering on the list of documents ordered
according to their URLs. Contrarily to what we expected this method did not
perform better neither than URL sorting, nor than Clustering (except for S9
and INTERP). We have not found a good explanation of the reason why this
happens, we reserve to better investigate this issue in the near future. Another
positive result is that differently from what was observed in [I3] VB can be
improved.

108 F. Silvestri

Compression
16 T T T T

T
'Variable Byte’
‘Gamma’
"Delta’
"Simple9’
‘Interpolative’
"Golomb’

L

Bits per gap

Random Original Url sorting Clustering Clustering+sorting

Fig. 1. Compression ratios of six different encoding techniques when applied to five
different orderings

To further confirm our results we also measured the distribution of d-gaps
within three different ordering: original, clustering and URL sorting. Figure
reports the three distributions.

As the histogram shows, the number of very small d-gaps dramatically in-
creases in clustering and URL sorting based ordering with respect to the original
ordering. In particular the number of d-gaps equal to 1 and 2 increases in the
cases of URL sorting from around 75, 000,000 to 325,000, 000. The URL sorting
successfully increases the number of small d-gaps up to the d-gap equal to seven
and decreases the other. The clustering schema, instead, successfully increases
the small d-gaps up to the d-gap equal to fifteen. This is the main reason why
URL sorting is slightly better than clustering. This observation also confirms
our hypothesis made in Section Bl When we reduce the average gap, the result-
ing IF results smaller almost independently from the encoding method actually
adopted.

As we have seen, compression efficiency gains are comparable in most cases to
those obtained by clustering. The main improvement, though, is in the resources
consumed by our novel assignment algorithm compared to those needed by so-
lutions based on clustering. As already said sorting a list of about six million
URLSs took just ninety seconds on the testing platform to complete and occupied
just 95MB of main memory. On the other hand, clustering the same collection
of documents required the partitioning of the collection into seven blocks of

Sorting Out the Document Identifier Assignment Problem 109

Gap distribution
3.5e+08 T T T T T T T T T T T T T T
Url sorting s
Clustering s
Original data m—
3e+08

2.5e+08

2e+08

1.5e+08

number of gaps

1e+08

5e+07

gap value

Fig. 2. Distribution of the d-gaps within the index organized according to the three
different orderings: original, clustering and URL sorting

Table 2. Time (in seconds) spent for clustering each block of documents

Block Size
100,000 300,000 500,000 700,000 900,000
Time (s) 39 119 197 274 352

900, 000 documents each (except for the last block composed by around 600,000
documents), each block took about 352 seconds, for a total of about 45 minutes
of CPU-time. The memory occupancy in the case of clustering has been around
1.2GB. It is thus clear that, while the ordering algorithm can scale to billions of
documents without any particular problems, Clustering solutions cannot afford
to achieve the same performance figures. In fact, as Table] shows, reducing
the block size to 100,000 documents will result in a slightly reduction of total
completion time around 100 seconds less than the case with blocks of 900,000
documents. In all the experiments the number of total clusters has been kept
equal to 1,000.

On the other hand a reduction of block size will impact in compression per-
formance. Table [3] shows the relation among block size and compression ratio.

110 F. Silvestri

Table 3. Bits per gap of various encoding schemata when the collection is reordered
using Clustering, and by varying block size

Block Size
100,000 300,000 500,000 700,000 900,000
VB 11.24 10.9 10.56 9.98 9.81

GAMMA 1232 1218 10.83 9.03 8.82
DELTA 12.32 1217 10.81 9.02 8.8

S9 15.01 14.91 14.46 14.11 14.03
INTERP 10.89 9.23 8.01 7.62 7.26
GOLOMB 11.07 10.79 9.98 9.11 8.63

As it is possible to observe in the table, by reducing the number of documents
for each block, the compression ratio dramatically decreases. By halving the size
of the blocks, in fact, almost all of the methods loose performance between one
and two bits per each posting. For example, in the case of GAMMA, passing
from 900, 000 documents per block to 500, 000 documents per block, the number
of bits per posting increases from 8.82 to 10.83 that is about 23% worse.

To be more precise, we should have performed our tests comparing the sorting
technique against a clustering technique not requiring the prior partitioning of
the collection into blocks. To date, there have not been proposed any external
memory document assignment algorithm. Actually one could think about using
one of the many out-of-core clustering methods that exist in the literature. Any-
way, these clustering methods will be even slower than the blocked solution and
is not really clear whether the compression ratios will increase further.

5 Conclusions and Future Works

We have shown that a simple sorting of the list of URLs associated to a collec-
tion of Web documents is very effective and results to be very fast. In all the
experiments performed the compression ratio has increased by numbering the
documents according to the sorted list of URLs.

This fully confirms our initial claim. Ordering of the URLs used by link
databases introduces benefits also if the same ordering would be used for as-
signing numerical identifiers to documents in Web Search Engines indezes.

The benefits of sorting, when compared to clustering, are multiple. Compres-
sion ratios are about 5% better. The time needed to compute the assignment
is two orders of magnitude smaller than the time needed by clustering. The
space occupied by the clustering algorithms is dramatically bigger than the
space needed to sort a list of URLs. In our tests, clustering used around one
KB per each document assigned, requiring the prior subdivision of the collection
in blocks. Furthermore, the URL-ordering method is more scalable to collections
of even billion of URLs.

Nevertheless, due to the very limited time consumed by the sorting algorithm,
one may think about placing the assignment module before the indexing phase
will actually took place.

Sorting Out the Document Identifier Assignment Problem 111

In conclusion, the URL sorting technique is the most efficient technique for
assigning doclDs in the case of Web Search Engines when considering the classic
time-space trade-off. In the other cases, for instance desktop search, enterprise
search, email search systems, where URL information are not available, we might
use folder’s names or e-mail threads. Anyway, if none of this information is
available clustering is still viable.

Some points remain to be investigated further. An important issue, when
dealing with encoding methods is the time spent in decoding lists, and thus in
resolving queries. So far, methods based on the Variable Byte schema (i.e. byte-
aligned methods) have been shown to be the most effective, offering the best
trade-off between decoding speed, and space occupancy. From what it can be seen
in Figure [[l Gamma, and Delta scheme, now, has compression ratios far better
than those of Variable-Byte. This could mean that the Delta schema may become
that of reference for compressing posting lists in Web Search Engines. In the
near future, we are going to evaluate the decoding speed of the various encoding
scheme in light of this new ordering schema on a real IR system. It should be
pointed out, in fact, that in real IR systems IF indices contain information about
term frequencies and term positions. This data obviously affects the performance
(in terms of retrieval time) of a retrieval system and can be only measured
experimentally.

References

1. Vo Ngoc Anh and Alistair Moffat. Inverted index compression using word-aligned
binary codes. Inf. Retr., 8(1):151-166, 2005.

2. Vo Ngoc Anh and Alistair Moffat. Simplified similarity scoring using term ranks.
In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference
on research and development in information retrieval, pages 226-233, New York,
NY, USA, 2005. ACM Press.

3. Roi Blanco and Alvaro Barreiro. Characterization of a simple case of the reas-
signment of document identifiers as a pattern sequencing problem. In SIGIR ’05:
Proceedings of the 28th annual international ACM SIGIR conference on research
and development in information retrieval, pages 587-588, New York, NY, USA,
2005. ACM Press.

4. Roi Blanco and Alvaro Barreiro. Document Identifier Reassignment Through Di-
mensionality Reduction. In Advances in Information Retrieval: 27th European
Conference on IR research, ECIR 2005, Santiago de Compostela, Spain, March
21-23, 2005. Proceedings, pages 375 — 387, 2005.

5. Dan Blandford and Guy Blelloch. Index compression through document reordering.
In Proceedings of the Data Compression Conference (DCC’02), pages 342-351,
Washington, DC, USA, 2002. IEEE Computer Society.

6. P. Boldi and S. Vigna. The webgraph framework i: compression techniques. In
WWW °04: Proceedings of the 13th international conference on World Wide Web,
pages 595-602, New York, NY, USA, 2004. ACM Press.

7. A. Bookstein, S. T. Klein, and T. Raita. Modeling word occurrences for the com-
pression of concordances. ACM Trans. Inf. Syst., 15(3):254-290, 1997.

8. Chris Buckley. Implementation of the smart information retrieval system. Technical
Report TR85-686, Cornell University, Computer Science Department, May 1985.

112

9.

10.

11.

12.

13.

14.

15.

F. Silvestri

H. P. Luhn. The Automatic Creation of Literature Abstracts. IBM Journal of
Research Development, 2(2):159-165, 1958.

Keith H. Randall, Raymie Stata, Janet L. Wiener, and Rajiv G. Wickremesinghe.
The link database: Fast access to graphs of the web. In DCC ’02: Proceedings of
the Data Compression Conference (DCC ’02), page 122, Washington, DC, USA,
2002. IEEE Computer Society.

Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compression
of inverted indexes for fast query evaluation. In SIGIR ’02: Proceedings of the
25th annual international ACM SIGIR conference on research and development in
information retrieval, pages 222-229, New York, NY, USA, 2002. ACM Press.
Wann-Yun Shieh, Tien-Fu Chen, Jean Jyh-Jiun Shann, and Chung-Ping Chung.
Inverted file compression through document identifier reassignment. Information
Processing and Management, 39(1):117-131, January 2003.

Fabrizio Silvestri, Salvatore Orlando, and Raffaele Perego. Assigning identifiers to
documents to enhance the clustering property of fulltext indexes. In SIGIR ’04:
Proceedings of the 27th annual international ACM SIGIR conference on research
and development in information retrieval, pages 305-312, New York, NY, USA,
2004. ACM Press.

A. Trotman. Compressing inverted files. Information Retrieval, 6(1):5-19, January
2003.

Tan H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes — Com-
pressing and Indexing Documents and Images. Morgan Kaufmann Publishing, San
Francisco, second edition edition, 1999.

Efficient Construction of FM-index
Using Overlapping Block Processing
for Large Scale Texts*

Di Zhang!, Yunquan Zhang!:?, and Jing Chen®

! Institute of Software, Chinese Academy of Sciences
2 State Key Laboratory of Computer Science
{zhangdi,zyq}@mail.rdcps.ac.cn
3 Microsoft Research Asia
jingchen@microsoft.com

Abstract. In previous implementations of FM-index, the construction
algorithms usually need several times larger memory than text size.
Sometimes the memory requirement prevents the FM-index from being
employed in processing large scale texts. In this paper, we design an ap-
proach to constructing FM-index based on overlapping block processing.
It can build the FM-index in linear time and constant temporary mem-
ory space, especially suitable for large scale texts. Instead of loading and
indexing text as a whole, the new approach splits the text into blocks of
fixed size, and then indexes them respectively. To assure the correctness
and effectiveness of query operation, before indexing, we further append
certain length of succeeding characters to the end of each block. The ex-
perimental results show that, with a slight loss on the compression ratio
and query performance, our implementation provides a faster and more
flexible solution for the problem of construction efficiency.

Keywords: FM-index, Self-index, Block processing.

1 DMotivation

In recent years, the amount of digital information is growing rapidly, and a large
part of these data is in the form of text. This situation has made the space
consumption of indices on texts become a serious problem. With the attempt to
reduce the size of indices, a powerful concept of self-index has emerged[I3]. Self-
index is an index that provides fast search functionality using space proportional
to the k-th order entropy[12] of the text. Besides search functionality, it also
contains enough information to efficiently reproduce any text substring. A self-
index can therefore replace the text. The exciting concept has triggered much
interest on this issue and produced surprising results in very few years.

* This work was supported in partial by the National Natural Science Foundation
of China under contract No.60303020 and No0.60533020, the National 863 Plan of
China under contract No.2006AA01A125 and No. 2006AA01A102, and Foundation
of CAS under contract No. KSH1-02.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 113 2007.
© Springer-Verlag Berlin Heidelberg 2007

114 D. Zhang, Y. Zhang, and J. Chen

FM-index is the first self-index designed by Ferragina and Manzini [2]. They
realized the potential of the relationship between text compression and text
indexing, in particular regarding the correspondence between the entropy of a
text and the regularities in some widely used indexing data structures. The FM-
index is designed to occupy space close to that of the best existing compression
techniques, and provide search and text recovering functionality with almost
optimal time complexity [5].

Many other researches follow the idea of FM-index, such as Huft-FMI[6], RL-
FMI[9], AT-FMI[4]. Despite their efficiency in compression and searching, an-
other important concern is the construction efficiency. In practical applications,
the construction phase of FM-index is either too slow, or require too much work-
ing space[8]. Some studies have notice the problem. In paper [7], the construction
algorithm can build the FM-index in O(nloglog|X]) time and O(nlog|X|)-bit
working space.

Apart from full-text indices, we observed that many compression tools such
as bzip2[14], usually split their input data into blocks of equal size before com-
pression. This idea also could be employed by FM-index construction.

This paper is organized as follows. First, we introduce some background
knowledge on FM-index, including the basic algorithm and construction pro-
cedure. Then, we discuss possible ways of implementing a block version of the
FM-index, and give a complete solution of block construction. Finally, a series
of experiments on various kinds of texts will be performed to validate the im-
provements we have made.

2 Background

2.1 FM-index

The algorithm of FM-index is based upon the relationship between the Burrows-
Wheeler compression algorithm [I] and the suffix array data structure [I1]. FM-
index is a sort of compressed suffix array that takes advantage of the compress-
ibility of the indexed data in order to achieve space occupancy close to the
information theoretical minimum. Precisely, given text T[1,n]| to be indexed,
the FM-index occupies at most 5nHy(T') + o(n) bits of storage, where Hy(T)is
the k-th order entropy of T, and allows the search for the occ occurrences of a
pattern P[1,p] within T in O(p + occ log' ™ n) time, where € > 0 is an arbitrary
constant fixed in advance[2].

The Burrows-Wheeler transform produces a permutation of the original text,
denoted by TP = bwt(T). String T*** is the result of the following steps: (1)
append a special end marker #, which is the smallest character lexicographically,
to the end of T'; (2) form a conceptual matrix M whose rows are the cyclic shifts
of string T'# sorted in lexicographic order; (3) construct 7! by taking the last
column of M. The first column is denoted by F'[2].

The suffix array A of text T is represented implicitly by T*%*: A[i] = j iff
the i-th row of M contains string t;t;11 - --t,#t1 - --tj—1.[6] The novel idea of
the FM-index is to store T°"* in compressed form, and then simulate the search

Efficient Construction of FM-index Using Overlapping Block Processing 115

in the suffix array. The FM-index can also locate the text positions where P
occurs, and display any length of substrings around the occurrences. The details
of search algorithm are referred to [2] and [6].

Paper [3] introduced the first implementation of FM-index, now it has been
upgraded to the version A, 1t provides a group of standard APIs of self-index,
it is easy for later researchers to modify or extend its function.

2.2 Procedure of Construction

In above implementation of FM-index, the program constructs the index for a
text as follow steps:

1. Load the whole text into main memory;

2. Scan the text to find a special character that never occurs. If any, insert it
to the source data homogeneously, otherwise (this is not common), every
position in text should be marked; build suffix array by sorting, also get all
positions for characters in sequence L simultaneously;

3. Calculate Occ for every character, and build the mapping from original al-
phabet of ASCII code to new alphabet; generate sequence L from suffix array
built in step 2, and transfer it to new alphabet X' according to the mapping
in step 4;

4. Record the positions of the special character in input file according to the
order in L. The positions can be denoted as loc occ[i] = j, which means the
i-th special character in L corresponding to input file is located in position j;

5. Compress the buckets and generate auxiliary information, and save them to
disk.

In the above procedures, memory consumption mainly includes the follow-
ing parts: load whole text to memory(step [I); build suffix array(step 2); BWT
(step B)); and some other auxiliary data structures. All these usually add up to
several times larger memory requirement than the original text size. Detailed
experimental results about memory consumption can be found in Section .2

3 Block FM-index

3.1 Basic Block FM-index

The original construction method requires enough memory to load an input text
and build the index as a whole, which is infeasible for large texts like DNA
sequences, whose size is often in the orders of Gigabytes.

There are some possible alternatives when dealing with large amounts of data.
One is to optimize the program to enhance the ceiling of input data size. Al-
though it permits larger files to be indexed than before, there will still be even
larger files that could not fit into main memory. Another choice is to use sec-
ondary memory when main memory is not enough. This will make the construc-
tion much costly because excessive increments in I/O operations[I3].

! FM-index Version 2, http://roquefort.di.unipi.it/ ferrax/fmindexV2/index.html

116 D. Zhang, Y. Zhang, and J. Chen

Having considered the above alternatives, we find another way to overcome the
memory problem. Our solution is to naturally split the data into independent
blocks of a predetermined size before the data is indexed. These blocks are
then processed through the FM-index algorithm in order, and their indexes are
concatenated back again to form the final output file. The format of new output
file is not compatible to the original FM-index, but it is just an index container
actually. It is composed of two parts, including header and body. The header
contains some necessary information to recover the text, such as length of input
file, block size, etc.; and the body contains separated indexes ordered by the
position of blocks in input file.

Besides building, the process of query operation should also be modified. The
program executes a given query on all indexed blocks respectively, collects the
results and submits them to the user.

3.2 Overlapping Block FM-index

The above block model has a problem that can’t be ignored. That is, if an occur-
rence of the pattern crosses through two adjacent blocks, it will be lost in results
set because either block contains only part of the pattern. In other words, in text
T[1,n], given an occurrence occ[h, h +p — 1] of pattern P[1,p], if occ[h, h+p —1]
lies on the boundary of block B; and block B; 41, it will be divided into two parts:
occlh, h +m] and occ[h +m + 1, h + p — 1]. In this instance, neither of the blocks
will contain the full length of occ[h, h + p — 1]. It will be lost in query results.

To solve this problem, the above model should be adjusted. The first solution
is to search across blocks from end to start using the backward method[2]. Al-
though this method is intuitive, but it has the following shortcomings: (1) the
implementation of block version tied closely to the concrete implementation of
original FM-index. This limits the application scope of the block model that
may be applied on other self-indices, and the software will be hard to reuse if
FM-index upgrades its version; (2) the query process is not independent of each
block, which is not conducive to the future parallelization of query process in
SMP or clusters for very large data sets.

In aware of these shortcomings, we propose another method named overlap-
ping block model. It is based on an obvious fact that, in common query task, the
pattern is far shorter than target file, actually there are always several orders
of magnitude difference. Thus, if we estimate the maximum length r of possible
query patterns, we could concatenate each block and its succeeding characters
of length r to generate a new block, then process it in building procedure.

This overlapping block model is shown as Figure[ll Assumes the block size is s
and overlapping length is 7, the number of blocks will be b = [(n—r)/(s—7)]. In
practice, since the parameters s and r are both predetermined, b can be denoted
as: b= O(n). For a given text T[1,n] with a constant alphabet X, the construc-
tion time and space for each block can be presumed as constants C'T" and CM
in theory. Thus, the construction time of T'[1,n] is O(b) = O(n). Noticed that
the memory can be reused in serial processing of blocks, the construction space
of T[1,n] is CM, which is a constant number. The above analysis results can be

Efficient Construction of FM-index Using Overlapping Block Processing 117

‘Block i ‘Block i+1

Basic x
Block Model X

Overlapping x :
Block Model X Zzl

A

A
A 4

Fig. 1. Overlapping block model for FM-index

confirmed by experiments in Section On other important aspects of per-
formance, such as storage occupancy and query performance, since the explicit
conclusions can’t be made from general theoretical analysis, we incline to use
the experiments to illustrate the impacts of block model. Related experimental
results will be given in Section ET1

There are also some drawbacks in overlapping model. First, it produces some
redundancy. In fact, compared to the size of the entire document, the redundant
part of index, which is usually negligible, will not impact the compression ratio
substantively. Second, there should be a solution to deal with very long search
patterns such as P[1,p](p > r), which still have possible loss of occurrences. Here
is a solution for this situation. First we break the long patterns P[1, p] into short
sub-patterns P{[1,r], Py[r+1,2r]--- P[[(k — 1)r + 1, p] with equal length [p/r].
All the sub-patterns can be searched correctly in block model. And then we use
them to query the block index respectively, merge the nearby items in different
result sets according to the sequence of sub-patterns in the original long pattern.
That means, given a result set R for pattern P, and sub-result sets R} for sub-
patterns P/(1 <i < k): occlh,h+p—1] € R, iff occj[h,h+r—1] € Ri A--- A
occi|h+ (k—1)r,h+p—1] € R}.. Although this solution is somewhat inefficient,
in practice we can set r big enough to avoid splitting pattern frequently.

4 Experimental Results

The overlapping block FM-index contains two key parameters: the block size
s and overlapping length r. In this section we will perform a series of exper-
iments to show the effects of these parameters on the compression and query
performance. Furthermore, we demonstrated the performance enhancements of
the block model in contrast to the original version.

Our experiments ran on a Pentium 4 processor at 3.06 GHz, with 1 MB L2
cache and 512MB of DDR2 RAM. The operating system was Fedora core 5.

118 D. Zhang, Y. Zhang, and J. Chen

Table 1. Files used in the experiments. To understand the features of the files, we also
provide alphabet size and compression ratio under bzip2 (level 9).

Collection Size (bytes) Content Alphabet Size Bzip2-9 comp. ratio
sources 210,866,607 C/Java source code 230 18.68%
dna 403,927,746 gene DNA sequences 16 25.76%
english 2,210,395,553 English text files 239 28.35%
xml 294,724,056 XML format text 97 11.39%

We compiled the code with gce 3.4.4 using optimization option “-09”. The texts
from Pizza& Chili Corpusﬂ which is a special test suite for compressed index, are
used for experiments in this paper. They are listed in Table[Il In the following
sections, we use file-n to denote the first n Megabytes of file.

In addition, we use the default settings of FM-index in the following experi-
ments. These settings are: superbucket size = 16; bucket size = 512; frequency
of marked characters = 0.02.

4.1 The Effects of Parameters

Block Size. From the point of view of construction, of course the smaller the
block size, the less space and time the program consumes. But on the other side,
the block size should be big enough to guarantee a better compression ratio
through BWT. Furthermore, more blocks will bring more auxiliary information,
thus the compression ratio would be decreased. However, because the bucket size
is fixed, the enhancement of compression ratio is limited in certain scope. It can
not be exceeded whatever large block size is set to.

To obtain more comprehensive results, we selected a number of truncated texts
of 100MB as test suites. The results in Figure] validated the above analysis.
For a specific text, when the block size is larger than a critical value, the growth
of compression ratio is not obvious.

In practical applications, we can choose a suitable block size to emphasize on
compression ratio or construction time. In the following experiments, we will set
10MB as our default block size.

Overlapping Length. Because the overlapping length is very small compared
to the block size, its effect on compression ratio can be ignored. Now we only
experiment the effects of overlapping length on query performance. We randomly
select substrings from english-100, and group them by length. Each group has 100
members. Then these groups of substrings are queried as patterns on the indices.
As shown in Figure 3] the block model has brought some reduction on query
performance, but the loss is generally acceptable. Only in the situation that
needs to split the very long patterns into short ones would lead to substantial
decline in performance. Anyhow, the overlapping length can be adjusted for
specific query tasks. To ensure that there is no need to split patterns in most
tasks, we set the overlapping length to 1KB in the following experiments.

% Pizza&Chili Corpus, http://pizzachili.di.unipi.it /index.html

Efficient Construction of FM-index Using Overlapping Block Processing 119

= 60 ‘
g —4&A— sources—100
gsp—e— o : 4 4.7+ e
g) & ‘Aﬁgé_—gzg:i english-100
c
Saof : —
3 — I
Qo L]
E‘ 30 < . —X——%—3
S 20 : .
10° 10 10’

block size (MB)

—=4A— sources—100
—+— dna-100
—&— english-100
—— xml-100

compression time (s)

block size (MB)

Fig. 2. Compression ratio (percentage), and construction time (seconds) as a function
of the block size (MB). The block FM-index was built for the first 100MB of the listed
four files, with a 64 bytes overlapping length.

0.5— ,
—>— block

0457 —o— original
0.4

0.35
0.3
0.25

locate time (s)

0.2
0.15
0.1

0.05

ol— ‘ ‘ ‘ ‘
20 30 40 50 60 70 80 90

pattern length (bytes)

Fig. 3. The average time (seconds) for a locate operation as a function of pattern
length (bytes), compared with block FM-index and original FM-index. The substrings
of certain length from english-100 files, are selected at random as query patterns. We
set the overlapping length to 64B.

4.2 Comparison Between Block FM-index and FM-index

Some comparisons between the FM-index and other self-index tools have been
made in [3] and [I0]. Here we focus on comparisons of performance between
block FM-index and original FM-index.

120 D. Zhang, Y. Zhang, and J. Chen

Construction Performance. We compare the performance of block version
and original version as the size of english-n grows, including construction time,
RAM consumption, and compression ratio. The results are shown in Figure [l
From the results, we confirmed the perviously mentioned enhancement of per-
formance. The block model achieved linear time and constant space performance,
while the compression ratio loss is not obvious when dealing with large texts.

construction time of english-n construction time of english-n
1500 1500
@ D
[0} (0]
£ 1000 £ 1000
S 5
© ©
£ 500 2 500
2 2
3 3
1 2 3 4 0
10 10 10 10 0 500 1000 1500 2000 2500
text size (MB) text size (MB)
RAM consumption of english-n RAM consumption of english-n
& 400 & 400
= =
5 300 S 300
‘g g
5 200 € 200
2 2
9Q <]
° 100 S 100
= =
< <
o 0 o 0
10' 10° 10° 10* 0 500 1000 1500 2000 2500
text size (MB) text size (MB)
compression ratio of english-n compression ratio of english-n
.48 48
? R
2 47 o 47
o 8
S 46 S 46
[7] [}
[%] (%]
o o
g5 g4 —— block
3 8 —o— original
44 44
10' 10° 10° 10* 0 500 1000 1500 2000 2500
text size (MB) text size (MB)

Fig. 4. Construction time (second), RAM consumption (MB), compression ratio (per-
centage) as a function of the size of truncated version of file english (MB). In every
row, we use two coordinate systems to illustrate one graphics: the left column uses
a semi-logarithmic coordinates, while the right column uses the ordinary coordinates.
We set parameters as mentioned above: block size = 10MB, overlapping length = 1KB.
When we built the FM-index for the text file that larger than 100MB, the OS would
prompt there is not enough memory to allocate in test machine, thus no data are col-
lected under such situation. In addition, at the point of 100MB, there is some decline
on RAM requirement, instead of keeping on increasing. We estimate that it is due to
the virtual memory management strategy of OS.

Efficient Construction of FM-index Using Overlapping Block Processing 121

In our experiments, not only the entire english of over 2GB has been built into
FM-index successfully, but also the progress of building is visible by counting

blocks that have been indexed. The comparison of performance is shown in
Figure @l

Query Performance. Figure [0l shows a comparison of query performance be-
tween the block FM-index and the FM-index.

The experimental results show that for data of Gigabytes, the performance of
locate, display, and extract operations are closer to the original version, but the
performance loss of count is more significant than others. For count operation,
because the occurrences in overlapping zone may be counted twice, we can merely
get an approximate result in count operation. If the accurate result of a count
operation is ¢, the overlapping model will give an approximate result, which is a

count on file-100 locate on file-100
0.5 0.5
0.4 0.4
% 0.3} z 0.3
[0] * (O]
£ E
=02 * * = 0.2 * é
* 0] *
¢} ¢} o
0.1 © o 0.1
0 - 0 -
sources dna english xml sources dna english xml
display on file—100 x 107 extract on file—100
0.5 5
* block
O original
0.4} 4 9
% 0.3} 0 3t
) *]
£ 0 é £
= 0.2 * =2 é
© *
*
e} o %
0.1 1 o
0 - 0 - &
sources dna english xml sources dna english xml

Fig. 5. Comparison on query performance of block FM-index and original FM-index,
including the count, locate, display and extract operations. We built index for the first
100MB of the listed files, using original FM-index and block FM-index respectively.
The file size is restricted to 100MB because the original FM-index can not index larger
texts on our experimental platform. We haven’t compared the RAM use of query
operations because they are negligible in practice. The query patterns are selected
randomly from corresponding files, with the average length of 50 bytes. In experiment,
display length = 10, and length of extract = 50.

122 D. Zhang, Y. Zhang, and J. Chen

range between max([c/b],c — b) and ¢. Thus, in block FM-index we use locate
operation to replace count operation to ensure the accuracy of the results.

5 Conclusion

This paper focuses on a practical method for constructing the FM-index for
large scale texts efficiently. We proposed an overlapping block model with its
implementation, and performed a series of experiments on it. It can construct
the FM-index in O(n) time and O(1) space, without significant slowdown on
query operations . Its implementation, which is an extension to the original self-
index tools, can build indexes for texts of Gigabytes, just using a commodity
PC instead of an expensive server.

In the future, based upon the block FM-index, we will try to parallelize the
FM-index algorithm both for construction process and query operations. By
parallel processing, the performance will hopefully be further improved for large
scale texts.

Acknowledgements

Special thanks to Prof. Jiachang Sun for his indispensable guidance[I5].

References

[1] Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124(1994). Digital Equipment Corporation.

[2] Ferragina, P. and Manzini, G.: Opportunistic data structures with applications.
In Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS)
(2000), pp. 390-398.

[3] Ferragina, P. and Manzini, G.: An experimental study of an opportunistic index.
In Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
(2001), pp. 269-278.

[4] Ferragina, P., Manzini, G., Makinen, V., and Navarro, G.: An alphabet-friendly
FM-index. In Proc. 11th International Symposium on String Processing and In-
formation Retrieval (SPIRE), LNCS v. 3246 (2004), pp. 150-160.

[5] Ferragina, P., Manzini, G., Méakinen, V., and Navarro, G.: Compressed represen-
tation of sequences and full-text indexes. Technical Report 2004-05 (Dec.) (2004),
Technische Fakultit, Universitat Bielefeld, Germany.

[6] Grabowski, S., Mékinen, V., and Navarro, G.: First Huffman, then Burrows-
Wheeler: an alphabet-independent FM-index. In Proc. 11th International Sym-
posium on String Processing and Information Retrieval (SPIRE), LNCS v. 3246
(2004), pp. 210-211. Short paper. Full version as Technical Report TR/DCC-2004-
4, Department of Computer Science, University of Chile, July 2004.

[7] Hon, W.-K., Sddakane, K., and Sung, W.-K.: Breaking a time-and-space barrier
in constructing full-text indices. In Proc. 44th IEEE Symposium on Foundations
of Computer Science (FOCS) (2003), pp. 251-260.

[8] Hon, W.-K., Lam, T.-W., Sung, W.-K., Tse, W.-L, Wong, C.-K., and Yiu, S.-M.:
Practical aspects of compressed suffix arrays and FM-index in searching DNA
sequences. In Proceedings of the 6th Workshop on Algorithm Engineering and
Experiments. STAM Press, Philadelphia, Pa. (2004), 31-38.

[9]

[10]

[11]
[12]

[13]

[14]

[15]

Efficient Construction of FM-index Using Overlapping Block Processing 123

Maékinen, V. and Navarro, G.: New search algorithms and time/space tradeoffs
for succinct suffix arrays. Technical Report C-2004-20 (April) (2004), University
of Helsinki, Finland.

Makinen, V. and Navarro, G.: Succinct suffix arrays based on run-length encoding.
In Proc. 16th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS v. 3537 (2005), pp. 45-56.

Manber, U., Myers, G.: Suffix arrays: new method for on-line string searches.
SIAM Journal on Computing, 22(5) (1993): 935-948.

Manzini, G. An analysis of the Burrows-Wheeler transform. Journal of the ACM
48, 3 (2001), 407-430.

Navarro, G., Makinen, V.: Compressed Full-Text Indexes. Technical Report
TR/DCC-2005-7 (2005), Dept. of Computer Science, University of Chile, June
2005.

Seward, J.R.: Bzip2 and libbzip2: a program and library for data compression.
http://sources.redhat.com/bzip2/ (1998)

Sun, J.C.: Matrix analysis to additive schwarz methods. Journal of Computational
Mathematics, Vol.13, No.4 (1995), 325-336.

Performance Comparison of Clustered and Replicated
Information Retrieval Systems

Fidel Cachedal, Victor Carneirol, Vassilis Plachourasz, and Tadh Ounis®

! Department of Information and Communication Technologies, University of A Coruiia
Facultad de Informatica, Campus de Elvifia s/n, 15071 A Coruiia, Spain
{fidel, viccar}@udc.es
2 Yahoo! Research
Ocata 1, 1st floor, 08003 Barcelona, Spain
vassilis@yahoo-inc.com

3 Department of Computing Science, University of Glasgow

Glasgow, G12 8QQ, UK
ounis@dcs.gla.ac.uk

Abstract. The amount of information available over the Internet is increasing
daily as well as the importance and magnitude of Web search engines. Systems
based on a single centralised index present several problems (such as lack of
scalability), which lead to the use of distributed information retrieval systems to
effectively search for and locate the required information. A distributed re-
trieval system can be clustered and/or replicated. In this paper, using simula-
tions, we present a detailed performance analysis, both in terms of throughput
and response time, of a clustered system compared to a replicated system. In
addition, we consider the effect of changes in the query topics over time. We
show that the performance obtained for a clustered system does not improve the
performance obtained by the best replicated system. Indeed, the main advantage
of a clustered system is the reduction of network traffic. However, the use of a
switched network eliminates the bottleneck in the network, markedly improving
the performance of the replicated systems. Moreover, we illustrate the negative
performance effect of the changes over time in the query topics when a distrib-
uted clustered system is used. On the contrary, the performance of a distributed
replicated system is query independent.

Keywords: distributed information retrieval, performance, simulation.

1 Introduction

The information available over the Internet has increased spectacularly in the last
years, and we can expect that it will continue growing at the same rate, at least in the
short term. Simultaneously, Web search engines have grown in importance as the
users need to find, recover, and filter all the information available in this environment.
Therefore, Web search engines must manage a large amount of information, and
make it possible for users to locate the information required in a very short time,
while simultaneously dealing with a large number of queries.

Information Retrieval (IR) systems based on a single centralised index present sev-
eral problems, such as the lack of scalability, or server overloading and failures [11],

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 124 — 2007.
© Springer-Verlag Berlin Heidelberg 2007

Performance Comparison of Clustered and Replicated Information Retrieval Systems 125

which make them unsuitable for highly loaded systems, such as Web search engines.
For this reason, the methods based on the distribution of the documents index for
searching and storage are widely used. For example, the Google web search service is
based on a distributed and replicated IR architecture [1].

A distributed IR system is made up of two components: the brokers (dispatchers or
receptionists) and the query servers. The brokers receive the queries from the users,
distribute them to the query servers, and send back the final results to the user. The
query servers hold the distributed index, process the queries, and send their partial
results back to the brokers for the final merging.

An inverted index can be distributed over a collection of servers following two
main strategies: global inverted files (term partitioning), or local inverted files (docu-
ment partitioning). In this work, we will focus on the local inverted file strategy as it
has been found to be more efficient than the global inverted file strategy [17] [21].

The index distribution is necessary to deal with a high volume of data (probably
because it cannot be indexed by a single machine) and to keep the response times low.
When the volume of queries handled by the system must be increased (e.g. because
multiple users simultaneously send queries to a Web search engine), then the IR sys-
tem must be parallelised to process multiple queries concurrently. Two main types of
systems can be defined to increase the query throughput: replicated and clustered.

A replicated system is composed of one or more distributed IR systems. Each dis-
tributed system indexes the whole collection, and all the distributed systems that have
been replicated have the same number of query servers. The brokers, in this case,
must decide initially which replica will process the query, and then broadcast the
query to all the query servers in the replica. The brokers must balance the load
through all the replicas to obtain an optimal performance.

A clustered system is divided into groups of computers (or clusters), where each
group operates as an autonomous distributed IR system. Each cluster can be composed
of a different number of query servers. Each cluster is responsible for one disjoint part
of the whole collection of documents, and each cluster could use distribution and repli-
cation to store its respective index. In this case, a broker must determine the appropri-
ate cluster for each query and then submit the query to it. A clustered system must be
configured a-priori based on the distribution of the queries that the IR system expects
to receive. For example, if 40% of the queries submitted to the IR system are related to
“Entertainment”, we may assign 40% of our resources (e.g. query servers) to the “En-
tertainment’ cluster in order to improve its response time and throughput. This implies
that a change in the queries distribution may affect the overall system performance. For
example, if the number of “Entertainment” queries drops to 20%, this cluster may
improve its performance, probably at the expense of other clusters.

In this paper, we present a detailed performance analysis, based on simulations, of
a clustered system compared to a replicated system. We also study the effect of
changes in the query topics over time, based on work by Spink, Jansen, Wolfram and
Saracevic [22].

The performance analysis in distributed IR is used to study different configurations
and measure different parameters, usually considering a fixed set of resources. Two
parameters are usually considered in the performance analysis of a distributed IR
system: response time and throughput [19]. In the former, we are interested in the
average time to answer a query when the system is idle. In the latter, we are interested

126 F. Cacheda et al.

in the maximum query processing rate that the system is able to achieve. This is espe-
cially interesting when designing a large-scale IR system (e.g. hundreds of computers)
in order to determine the optimal configuration for some fixed benchmarksl, and to
detect and prevent possible bottlenecks.

Many previous articles have studied different performance parameters of pure dis-
tributed IR systems, such as [8], [10], [14] or [21], to name but a few. On the other
side, several previous articles examined the effects of different parallelisation tech-
niques in a distributed IR system. Tomasic and Garcia-Molina [23] simulated a small
group of servers and studied the effect of multiprogramming on the throughput using
various inverted index organisations. Frieder and Siegelmann [9] studied the organisa-
tion of the data to improve the performance of parallel IR systems using multiproces-
sor computers. Lu and McKinley [16] analysed the effects of partial replication to
improve the performance in a collection of 1TB. Moffat, Webber, Zobel and Baeza-
Yates [18] presented a replication technique for a pipelined term distributed system,
which significantly improves the throughput over a basic term distributed system.

In [5] and [6], the authors analysed the performance of a distributed, replicated and
clustered system using a simple network model. They identified two main bottlenecks:
the brokers and the network. The high load on the brokers was due to the number of
local answer sets to be sorted. The network bottleneck was due to the high number of
query servers and the continuous data interchange with the brokers, especially in a
replicated IR system. The analysis of the clustered systems indicated that the best
throughput was achieved when a great number of query servers was used, outperform-
ing a replicated system. However, the clustered systems must be configured a-priori
based on the queries distribution that the IR system is expected to receive.

In [4], a more realistic network simulation model is presented, and the authors de-
scribed some solutions for the main bottlenecks of a distributed IR system. They
showed that the use of a switched network reduces the saturation of the interconnec-
tion network. They also showed that the brokers’ bottleneck can be improved by re-
ducing the number of partial results sent by the query servers (with a negligible prob-
ability of changing the system’s precision and recall retrieval performances), or by
using a hierarchical distributed broker model.

The main objective of this paper is to compare the performance of a replicated and
clustered IR system, both in terms of throughput and response time, using the ex-
tended simulation model introduced in [4], and to compare the obtained results with
those previously reported in [5] and [6].

The paper is organised as follows. The simulation model is described in Section 2.
Section 3 describes the simulations performed for the clustered and replicated systems
and the results obtained. A discussion of the results obtained is presented in Section 4.
The main conclusions of the work and possible future research directions are pre-
sented in Section 5.

2 Simulation Model

The simulation model of a distributed IR system used in this work is based on the
work described in [4], where the authors implemented a discrete event-oriented

' An example of fixed benchmarks is that the maximum response time should be one second
per query and the minimum throughput should be twenty queries per second.

Performance Comparison of Clustered and Replicated Information Retrieval Systems 127

simulator using the JavaSim simulation environment [15]. The defined simulation
model represents a local inverted file strategy (see Section 1). All the queries are
stored in a global queue, which is controlled by one or more central brokers. Each
broker will take one query and will send it to all the query servers through a network
[21]. Each query server then processes the whole query locally, obtains the answer set
for that query, ranks the documents, selects a certain number of documents from the
top of the ranking and returns them to the broker. The broker collects all the local
answer sets and combines them into a global and final ranked set of documents.

From the brokers’ point of view, the time to process the ith query (named £;) is di-
vided into three phases: the time to process the query in the query servers (P;), the
time to receive all the partial answers from the query servers to the broker (P,) and the
merging and ranking of the final results by the broker (P;). Therefore, the processing
time for a query ¢; is given by:

B 3 B

1, =max(f, ;) +max(ra, ;) +Xtc(rr, ;)
j

where the following parameters are introduced:

- g; vector of keywords for the ith query.

- t;;: total time (in milliseconds) to complete the processing of query g; at query
Server j.

- ra;;: time to receive the local answer set for query g; from the query server j.

- tr;;: number of documents from the top ranking in query ¢; returned as the lo-
cal answer set for query server j, where tr;; < tr,,qy, and tr,,,, is the maximum
number of top ranked documents in the local answer (we consider the top 1000
documents only).

- tc(n): time to merge and sort n documents, which is computed following the
logarithmic model: fc(n) = tc, +tc, Xn+tc, xIn(n), as described in [4].

From the query servers’ point of view, the time to process the ith query by the jth
query server (named ¢,;) is divided into five phases: the time to receive the query from
the broker (P;,), the initialisation time (P,), the seek time (P;;), the reading time
from disk (P, 4), and the ranking of the partial results (P, s).

LT A2 LK fs As
t.,=rq +ti+kxts+ Y d,_ xtr+ic(r,)
keg;

where these new parameters are introduced:

- rg;;: time to receive the query g; for the query server j.

- ti: initialisation time, including memory allocation and output display, if nec-
essary.

- ki number of keywords in query g;.

- ts: average seek time for a single disk.

- tr: average time to read the information about one document in an inverted list
and to do its processing (seek time is excluded).

- dy;: number of documents of the inverted list for keyword k on query server .

- r;; number of results obtained for query g; on query server j.

128 F. Cacheda et al.

The Terrier” IR system described in [20] is used to estimate the parameters for the
analytical model, obtaining the following values: ti = 62.335ms, ts = 0.03ms, tr =
1.15ps, tcy = -470, tc; = 0.0, tc; = 62 [4]. The document model parameters (dy; and r; ;)
are simulated from the SPIRIT collection, which consists of 94,552,870 documents
and 1 terabyte (TB) of text [13]. Each query is generated as a sequence of K terms
(t;,-..,1), independently and identically distributed, following the skewed query model
[12]. The skewed query model sets the probability of a term occurring in a query
proportional to its frequency in the vocabulary, and provides more realistic queries
than the uniform query model [6].

The network parameters (rg;; and ra;;) that determine the transmission times
among the hosts cannot be estimated using an analytical model, as they depend di-
rectly on the network load of each moment. Therefore, a network simulation model is
defined.

In [5] and [6], the network simulation model was based on a shared access local
area network (LAN), where the transmission media is shared out among all the hosts,
which must compete to access the media and send their transmissions. This network
simulation model had certain limitations (e.g. not considering the maximum number
of hosts connected to the LAN or the maximum size of the network) that reduced the
capacities of the simulated IR systems.

With the aim of improving the limitations of this initial network model, a new
model was defined in [4], equivalent to a switched network FastEthernet I00BASE-T
at 100Mbps. The switched LAN is the evolution of the shared access networking
technology and it is based on a device named switch, which centralises the communi-
cation among the hosts. In this way, the switch will reduce the transmission conflicts,
because a host only has to compete with other hosts that want to communicate with
the same destination, increasing the effective network speed.

Using this new network model, a more extensive and realistic simulation model is
defined, where the hosts are interconnected via one or more switches, depending on
the number of hosts to be interconnected (assuming that each switch has a capacity
for 64 hosts). Moreover, the overhead estimation is carried out exhaustively, taking
into account the different headers of the communication protocols, IP fragmentation,
and even the propagation delay [4]. The design of this new network model has also
extended the capacity to represent multicast messages. The multicast messages allow
sending one message to multiple recipients, instead of sending one message to each
recipient (unicast messages). In a distributed IR system based on local inverted files,
multicast messages are especially useful to reduce the number of messages required to
distribute the queries to the query servers from the brokers.

In [4], an extended description of the switched network simulation model can be
found, along with a detailed comparison of the real IR system with the simulation
model, confirming their correspondence. A brief description of the network simula-
tion model can also be found in the short article [3]. In all the experiments reported in
this paper, this new switched network simulation model is used in order to obtain
realistic conclusions when simulating and comparing the clustered and replicated
systems.

% A core version of the Terrier system can be downloaded from http:/ir.dcs.gla.ac.uk/terrier

Performance Comparison of Clustered and Replicated Information Retrieval Systems 129

3 Experiments

The objective of the experiments in this paper is to compare the performance of a
replicated and clustered IR system, both in terms of throughput and response time,
using a realistic setting based on the switched network simulation model described in
the previous section. In [5] and [6], the main conclusions showed that a clustered
system will outperform a replicated system if a notable number of query servers is
used (e.g. 1024). These experiments, however, were based on a shared access net-
work, which produced the saturation of the network in the replicated system. More-
over, only four replicas were defined in the considered replicated system.

In the new experiments conducted in this paper, we provide a detailed comparison
between a replicated system and a clustered system using 1024 query servers and a
switched network supporting multicast. In addition, we consider replicated systems
with up to 32 replicas.

3.1 Experimental Setting

For the replicated system we examine different configurations for the 1024 query
servers: 1, 2, 4, 8, 16 and 32 replicas (with 1024, 512, 256, 128, 64 and 32 query
servers per replica, respectively). The optimal number of brokers required for the
replicated system is calculated as 3R, where R is the number of replicas, as shown in
[4]. The optimal number of brokers is the minimum number of brokers necessary to
obtain the best throughput and response time performance (there are no improvements
by further increasing this number).

As mentioned in Section 1, a clustered system must be configured a-priori based on
the distribution of queries that the IR system is likely to receive. For the configuration
of the clustered system in the experiments reported in this section, we used the work
by Spink et al. [22], where a set of real Web queries is categorised into 11 different
topics considering three different years: 1997, 1999 and 2001. Table 1 provides a
summary of the 11 topics and the percentage of queries through the different years.

We assume that each topic is indexed in a different cluster. The SPIRIT collection
[13] is divided into 11 sub-collections with an inverted file of approximately the
same size that is 8.5 million documents in each sub-collection. Therefore, the 11
defined clusters will index the same number of documents, although using a different
number of servers. This setting is selected because we are more interested in the
configuration of each cluster, rather than the distribution of the topics. Hence, the
configurations of the clusters will fit the same throughput curve, generating a simpler
simulation model.

In the reported simulations, the number of queries is fixed to 200 and the queries
will retrieve 3 million documents on average. The base sub-collection of 8.5 million
documents has been distributed over N query servers using a switched network and
three brokers, where N = 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512. In Table 1, the col-
umn Configuration describes the query servers assigned to each topic. The first num-
ber represents the number of the distributed query servers, and the second, the number
of replicas in each cluster.

130 F. Cacheda et al.

Table 1. Distribution of queries across general topic categories, and the used configurations for
the simulated clustered system. The column Configuration describes the query servers assigned
to each topic. The first number represents the number of the distributed query servers, and the
second one represents the number of replicas in each cluster.

Topics 1997 1999 2001 Configuration
Entertainment 19.64 % 7.73 % 6.65 % 67 *3
Pornography 16.54% 773 % 8.56 % 56 *3
Commerce 13.03% 2473 % 24.76 % 66 *2
Computers 1224 % 11.13 % 9.65 % 63 *2
Sciences 924 % 8.02% 7.55% 48 *2
People 6.43 % 20.53% 19.75 % 66 * 1
Society 544% 443 % 3.96 % 56 * 1
Education 533% 552% 4.55% 55*1
Arts 514% 133% 1.16% 53*1
Non-English 384% 7.03% 11.36 % 39 * 1
Government 313 % 1.82% 2.05% 32*%1

The clustered system is configured in accordance with the distribution of the topics
of the year 1997. The replications for the most popular topics are maximised, but the
number of query servers in each replica is kept as close as possible to 64 in order to
obtain an appropriate response time. Indeed, in [4], the authors studied the improve-
ment obtained with a switched network and the figures showed that with less than 64
query servers the performance of the system decreases importantly. The number of
brokers is selected taking into account the sum of the replicas in each cluster (i.e.
R=18 replicas), and calculating the optimal number of brokers as 3R, as described in
[4]. For completeness, we also report results with the optimal number of brokers
2R + 1, suggested in [5] and [6].

In all our experiments, as stressed in Section 1, the performance is measured using
the throughput and the response time. The throughput is measured considering that
the system is operating in batch mode and that there is a processing queue of 200
queries. The response time is measured assuming that the queries will arrive to the IR
system following an Exponential distribution [7], with mean 500 milliseconds and
simulating 200 queries.

3.2 Replicated and Clustered System Comparison

The results obtained for the simulated clustered and replicated systems are presented
in Table 2. The column Replicated describes the configurations for the studied repli-
cated system. The first number represents the number of replicas, and the second one
represents the number of the distributed query servers. In all the replicated system
configurations, the optimal number of brokers is defined as 3R. The shaded cells rep-
resent the optimal configurations for the replicated and clustered systems. In this case,
the optimal configuration is the one that achieves the best trade-off between the mini-
mal response time and the maximal throughput.

Performance Comparison of Clustered and Replicated Information Retrieval Systems 131

Regarding the replicated systems, we observe that the throughput increases as the
number of replicas increases due to the higher level of parallelism in the system. At
the same time, the response time of the system is decreasing as the replication in-
creases, except for the last configuration (32x32), where the reduced distribution of
the index in each replication (only 32 query servers) increases the response time to
2658 milliseconds per query (17% more than the optimal configuration).

On the other hand, Table 2 shows that the throughput of the clustered system is
maximised if 3R brokers are used. This configuration outperforms the 2R + I con-
figuration in terms of throughput, extending the conclusions obtained in [4] for the
replicated system to the clustered system. The number of brokers does not have an
important repercussion on the response time as the queries are processed nearly se-
quentially, which leads to minimal parallelisation. In a clustered system, the number
of replicas (R) is calculated as the sum of all the replicas through all the clusters (e.g.
18 replicas, obtained from the configuration in Table 1).

Comparing the two types of systems, the results show that a replicated system with
16 replicas will achieve a better throughput and response time than the clustered sys-
tem defined. In both cases the level of parallelism achieved is quite similar (with 16
and 18 parallel groups, respectively). The main benefit achieved with the clustered
system is a reduction in the network traffic, which is crucial if the network is the main
bottleneck of the system. However, the switched network has solved this problem
improving markedly the performance of the replicated system, which is able to out-
perform the clustered system.

This result suggests that the distribution must be used to reduce the response times
and the replication must be used to increase the query throughput of the system. For
example, this is the approach used by the Google web search service [1].

The main conclusion of the above set of experiments is that the performance of a
clustered system (both in throughput and response time) does not improve the per-
formance obtained by the best replicated system. This result is related to the use of a
switched network. The switched network has eliminated the bottleneck in the net-
work, markedly improving the performance of the replicated systems. On the other
hand, the main advantage of a clustered system is the reduction of network traffic,
which is less relevant when a switched network model is used.

Table 2. Throughput (queries/second) and response time (milliseconds) for the clustered and
replicated systems (with the optimal number of brokers as 3R), using a switched network sup-
porting multicast

. Response Clustered Response
Replicated } Throughput Tipme Brokers Year Throughput Tfme

1x1024 0.70 4247.83 3R 1997 7.60 2404.11
2x512 1.38 4257.67 3R 1999 3.23 2828.11
4x256 2.69 3231.22 3R 2001 3.59 2960.87
8x128 5.03 235492 | 2R+1 1997 7.17 2380.20
16x64 8.47 227409 | 2R+1 1999 3.11 3165.59
32x32 12.92 265893 | 2R+1 2001 3.43 2863.65

132 F. Cacheda et al.

3.3 Query Topics Change

As we described in the introduction, a clustered system must be configured a-priori
based on the distribution of the queries that the IR system expects to receive. In our
experiments above, the clustered system was configured based on the queries distribu-
tion for the year 1997 (Table 1, second column).

In this section, we study the effect of changes in the topics distribution over time in
the performance of clustered systems. Obviously, the performance of a replicated
system is query independent. Therefore, the performance values obtained for a repli-
cated system do not change: 8.47 queries per second and 2.27 seconds per query on
average, for the optimal configuration (See Table 2, row 16x64). However, the per-
formance of a clustered system when the queries distribution varies can be severely
affected, as we will discuss below.

Indeed, in the experiments reported in Table 2, we also used the query distribution
for the years 1999 and 2001 (Table 1, third and forth column respectively) to simulate
the queries in the clustered system. The results (see Table 2) show more than 50%
throughput reduction in the 3R configuration (from 7.60 queries per second to 3.23
and 3.59 queries per second for the years 1999 and 2001, respectively) and in the 2R
+ [configuration (from 7.17 queries per second to 3.11 and 3.43 queries per second
for the years 1999 and 2001, respectively), and an increase in the response time be-
tween 17% and 33%, in both configurations, for the years 1999 and 2001.

The negative effect on the response time is less marked, because each cluster has
been configured with enough query servers per replica to obtain an appropriate re-
sponse time. On the other hand, the changes in the popular topics imply that smaller
clusters will receive more queries, decreasing their throughput, while larger clusters
will receive fewer queries and may have idle periods, decreasing the overall through-
put of the system.

In [5] and [6], the throughput worsening due to the changes in the topics distribu-
tion was also confirmed, although the distribution for the year 2001 was the baseline
and the reduction in the performance was mainly manifested in the year 1997, with
nearly no changes with the year 1999.

The important repercussion of the changes in the queries distribution in the per-
formance of the clustered systems entails a permanent monitoring of the queries sub-
mitted to the IR system and, if necessary, the modification of the clusters configura-
tion. This point raises new research concerns, such as the estimation of the threshold
in the topics change where it is worth modifying the configuration, looking for a bal-
ance between the performance improvement and the cost of modifying the cluster
configuration of the IR system.

4 Discussion

We have shown that the performance obtained (both in terms of throughput and re-
sponse time) for a clustered system does not improve over the one obtained by the
best replicated system.

This result, which in some way contradicts the conclusions in [5] and [6], is related
to the use of a switched network. The main benefit of a clustered system is the reduc-
tion of network traffic. However, the switched network has eliminated the bottleneck

Performance Comparison of Clustered and Replicated Information Retrieval Systems 133

in the network, markedly improving the performance of the replicated systems, which
exceeds that of the clustered systems. It is interesting to state that the clustered system
results represent a best-case performance as we have assumed that documents can be
split in non-overlapping clusters and queries can be assigned univocally to one cluster.

Moreover, we have illustrated the negative performance effect of the changes over
time in the topics distribution, when a clustered system is used, as opposed to the per-
formance of a replicated system, which is query independent. As a consequence, the
configuration of a clustered system needs to be modified according to the topics distri-
bution and their drift over time. This may prove to be a practical problem in the Web
context, where the information needs of the users and their interest may markedly vary
over time, for example, in reaction to contemporary events and concerns [2].

When building a large-scale IR system, the index distribution is necessary to deal
with a high volume of data (and to keep the response times low) and the parallelisa-
tion is necessary to process multiple queries concurrently. The results obtained in this
work suggest that the replicated systems are the best option for the parallelisation in
terms of performance (throughput and response time) and stability through the time
(as it is query independent).

Finally, it is important to mention that there could be other factors not represented
in these simulations that could improve the performance of the clustered systems. For
example, one benefit of the clustered systems is the reduction in the size of the collec-
tion indexed by each cluster. This may produce a reduction in the number of relevant
results obtained by the IR system, since the final results must be associated with the
relevant cluster for the query. In all the experiments reported in this paper, both types
of systems retrieve exactly the same number of relevant documents for each query.
Nevertheless, in a real clustered system, some documents associated with other less
relevant clusters will not be included and this could reduce the overall response time.
It is however difficult to precisely model this as it depends on factors such as the size
of the cluster, the length of the query and its type. In addition, the number of returned
documents may affect precision and recall. As a consequence, in comparing the clus-
tered and replicated systems, we simulated systems that return the same number of
documents making the comparison fair in terms of precision and recall measures.

5 Conclusions

In this work, we have presented a detailed study of a clustered system and several
replicated systems, comparing their performance in terms of throughput and response
time. Using the extended simulation network model introduced in [4] to represent a
switched network, we can perform a more accurate and realistic evaluation of the two
types of distributed IR systems.

We showed that the throughput and response time for a clustered system do not
improve the values obtained by the best replicated system. Moreover, the performance
of a replicated system is independent of the changes over time in the query topics
whilst there is a negative effect on the clustered system performance. This implies
that the configuration of a clustered system needs to be adapted dynamically to the
topics distribution. A possible future work would be to investigate how to automati-
cally define the optimal configuration of a clustered system over time.

134 F. Cacheda et al.

It is also important to consider that there are other factors that have not been taken
into account, such as the reduction in the number of relevant documents, which may
improve the performance of clustered systems. Another future work would be to study
this effect on the response time and its repercussion in terms of precision and recall.

This work suggests that the replicated IR systems should be used to obtain a better
degree of parallelism and throughput. In this sense, in our future work, we would like
to study different solutions to reduce data interchange through the interconnection
network and the workload on the brokers for the replicated and distributed IR systems.

Acknowledgements

The work of the first and second authors has been partially supported by the Spanish
government under project TSI2005-07730.

The work of the third and fourth authors is funded by a UK Engineering and Physi-
cal Sciences Research Council (EPSRC) project grant, number GR/R90543/01. The
project funds the development of the Terrier Information Retrieval framework (url:
http://ir.dcs.gla.ac.uk/terrier).

We would also like to thank Mark Sanderson and Hideo Joho for giving us access
to the 1TB dataset used for the SPIRIT Project.

References

1. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The Google cluster architec-
ture. IEEE Micro, 23(2), (2003) 22-28.

2. Beitzel, S.M., Jensen, E.C., Chowdhury, A., Grossman, D., Frieder, O.: Hourly Analysis of
a Very Large Topically Categorized Web Query Log. In Proc. of the 27™ Conf. on Research
and Development in Information Retrieval. New York: ACM Press. (2004) 321-328

3. Cacheda, F., Carneiro, V., Plachouras, V., Ounis, I.: Performance Network Analysis for
Distributed Information Retrieval Architectures. In Proc. of 27" European Conf. on In-
formation Retrieval Research (ECIR’05), LNCS Vol, 3408, (2005) 527-529.

4. Cacheda, F., Carneiro, V., Plachouras, V., Ounis, L.: Performance Network Analysis for
Distributed Information Retrieval Architectures. Information Processing and Management
Journal, published on-line (2006)

5. Cacheda, F., Plachouras, V,. Ounis, I.: Performance Analysis of Distributed Architectures
to Index One Terabyte of Text. In Proc. of 26™ European Conf. on Information Retrieval
Research, LNCS Vol. 2997, (2004) 394-408.

6. Cacheda, F., Plachouras, V., Ounis, I.: A Case Study of Distributed Information Retrieval
Architectures to Index One Terabyte of Text. Information Processing and Management
Journal, 41(5), (2005) 1141-1161

7. Cacheda, F., Vifia, A.: Experiences retrieving information in the World Wide Web. In Pro-
c. of the 6th IEEE Symposium on Computers and Communications. IEEE Computer Soci-
ety, (2001) 72-79

8. Cahoon, B., McKinley, K.S.: Performance evaluation of a distributed architecture for in-
formation retrieval. In Proc. of 19" ACM-SIGIR International Conf. on Research and De-
velopment in Information Retrieval, New York: ACM Press. (1996) 110-118.

9. Frieder, O., Siegelmann, H. T.: On the Allocation of Documents in Multiprocessor Infor-
mation Retrieval Systems. In Proc. of the 14" ACM-SIGIR Conf. on Research and Devel-
opment in Information Retrieval. New York: ACM Press. (1991) 230-239

Performance Comparison of Clustered and Replicated Information Retrieval Systems 135

10.

11.

12.

17.

19.

20.

21.

22.

23.

Hawking, D.: Scalable text retrieval for large digital libraries. Lecture Notes in Computer
Science, Vol. 1324. (1997) 127-146

Hawking, D., Thistlewaite, P.: Methods for Information Server Selection. ACM Transac-
tions on Information Systems, Vol. 17(1). (1999) 40-76

Jeong, B., Omiecinski, E.: Inverted File Partitioning Schemes in Multiple Disk Systems.
IEEE Transactions on Parallel and Distributed Systems, Vol. 6(2). (1995) 142-153

. Jones, C. B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M., Weibel,

R.: Spatial information retrieval and geographical ontologies an overview of the SPIRIT
project. In Proc. of the 25" ACM-SIGIR Conf. on Research and Development in Informa-
tion Retrieval. New York: ACM Press. (2002) 387-388

. Lin, Z., Zhou, S.: Parallelizing I/O intensive applications for a workstation cluster: a case

study. ACM SIGARCH Computer Architecture News, Vol. 21 (5). (1993) 15-22

. Little, M. C.: JavaSim User's Guide. Public Release 0.3, Version 1.0. University of New-

castle upon Tyne. Retrieved 1 June, 2003. http://javasim.ncl.ac.uk/manual/javasim.pdf

. Lu, Z., McKinley, K.: Partial collection replication versus caching for information re-

trieval systems. In Proc. of the 25™ ACM-SIGIR Conf. on Research and Development in
Information Retrieval. New York: ACM Press. (2000) 248-255

Moffat, A., Webber, W., Zobel, J.: Load Balancing for Term-Distributed Parallel Re-
trieval. In Proc. of the 29" ACM-SIGIR Conf. on Research and Development in Informa-
tion Retrieval. New York: ACM Press. (2006) 348-355

. Moffat, A., Webber, W., Zobel, J., Baeza-Yates, R.: A pipelined architecture for distrib-

uted text query evaluation. Information Retrieval, published on-line. (2006)

Moffat, A., Zobel, J.: What does it mean to “measure performance”? In Proc. of the 5% In-
ternational Conf. on Web Information Systems, LNCS Vol. 3306. (2004) 1-12

Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A High
Performance and Scalable Information Retrieval Platform. In Proc. of ACM SIGIR'06
Workshop on Open Source Information Retrieval. (2006)

Ribeiro-Neto, B., Barbosa, R.: Query performance for tightly coupled distributed digital li-
braries. Proc. 3 ACM Conf. on Digital Libraries. New York: ACM Press. (1998) 182-190
Spink, A., Jansen, B. J., Wolfram, D., Saracevic, T.: From e-sex to e-commerce: Web
search changes. IEEE Computer Vol. 35(3). (1998) 107-109

Tomasic, A., Garcia-Molina, H.: Performance of inverted indices in shared-nothing distrib-
uted text document information retrieval systems. In Proc. 2™ Inter. Conf. on Parallel and
Distributed Info. Systems. San Diego, California: IEEE Computer Society. (1993) 8-17

A Study of a Weighting Scheme for Information
Retrieval in Hierarchical Peer-to-Peer Networks

Massimo Melucci and Alberto Poggiani

University of Padova
Department of Information Engineering
{massimo.melucci,alberto.poggiani}@dei.unipd.it

Abstract. The experimental results show that the proposed simple
weighting scheme helps retrieve a significant proportion of relevant data
after traversing only a small portion of a peer-to-peer hierarchical peer
network in a depth-first manner. A real, large, highly heterogeneous test
collection searched by very short, ambiguous queries was used for sup-
porting the results. The efficiency and the effectiveness would suggest
the implementation, for instance, in audio-video information retrieval
systems, digital libraries or personal archives.

1 Introduction

A Web search engine (SE) is the main instrument for finding the documents
relevant to user’s need [I]. When some SEs are inter-connected to each other
in an anarchic way, the stores of information may become much large without
big investments. Peer-to-Peer (P2P) Information Retrieval (IR) can succeed in
accessing much larger stores of information. P2P-IR systems perform content-
based search technique across a network of peers. This paradigm favors scal-
ability, increases system resilience, avoids unique points of failure, distributes
indexing and query processing tasks to multiple computing nodes, re-uses pro-
cessing power and memory at low-cost from shared, under utilized resources. In
a digital library system, for instance, a network of peers can support the fed-
eration of heterogeneous, independent information sources without cumbersome
organization and coordination overhead.

The peers have little knowledge about each other, therefore the evidence about
document relevance is rather limited and can definitely be less readily collected
than the evidence collected from centralized or distributed systems. These net-
works can also be very large, yet the bandwidth is rather small. Therefore query
flooding is impracticable and a small portion of the network has to be selected
in order to contact the peers that potentially store relevant documents. What is
needed is a model which ranks documents and peers in a way that the probabil-
ity of reaching all and only relevant data is maximized by minimizing network
traversal. Clearly, then, retrieval modeling in P2P network becomes crucial in
order to improve recall-oriented task completion. In particular, it was found that
term weighting schemes can be tuned in order for improving IR effectiveness [2].

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 136 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 137

Fig. 1. A pictorial description of the P2P architecture

® Groups/Ultra—peers
O Peers
D D Documents

This paper reports on the evaluation of a simple weighting scheme for IR
across P2P networks. The weighting scheme was proposed in [3/4] and evaluated
by using the 1988 Associated Press test collection and the TREC-3, TREC-4 and
TREC-5 topics. Although the evaluation in [3l4] gave useful insights about the
effectiveness of the weighting scheme, its size was quite limited and partially com-
parable to the realistic collections. While some research works employed artificial
relevance judgments, the evaluation reported in this paper in contrast employed
a real, large and well-known test collection. The results help draw more stable
conclusions about the effectiveness and the efficiency of the weighting scheme
than the similar conclusions drawn after using medium-size test collections.

Because of the shortage of space, the illustration of an exhaustive back-
ground of this subject is impossible. Some references about motivations,
architectures and approaches to P2P-IR and to distributed IR are, for

example, [BIGTROTOIII2T3).

2 The Weighting Scheme

The P2P network is hierarchically organized as three levels — groups, peers and
documents — such that an element of every level belongs to the element of the
upper level. A pictorial description is provided in Fig.[Il How documents, peers,
groups belonging to these levels are scored with respect to a query @ is illustrated
in the following. The peer sends the query to the ultra-peer of its group. The
ultra-peer routes the query to the top ranked peers of its own group, to itself
and to the top-ranked connected neighboring ultra-peers. Every selected peer
ranks its documents with respect to the query and sends them back to the ultra-
peer with the statistics needed to merge the result lists coming from the other
peers. The top-ranked connected neighboring ultra-peers recursively replicate the
process. Time-To-Live (TTL) is decreased by 1 for every query forward. If an
ultra-peer cannot answer the query, the peers of its group are not searched, and
the query is in this case forwarded to every neighboring ultra-peer. When a peer
or an ultra-peer contact a peer, the connected peers are weighted and ranked.

As top-ranked documents, peers and ultra-peers are needed, a ranking scheme
is defined as follows. The ultra-peers u’s are ranked by

) =3 wil M

138 M. Melucci and A. Poggiani

(3)

7,u

is the weight of keyword ¢ in the group led by u — the super-

script identifies the level of the network. Moreover, wl(ng = Zpeu wg?p), pro-

@)
i.p
w? = (Zje;; w(l)) irfg where irffg = log(Nf) + 0.5)/n(2) N is the num-

4P .7 U’
(2)

7,u

where w

vided w,”’ is the weight of ¢ in the peer p € u. The latter is computed as

ber of peers p in the group led by ultra-peer u, n;”’ is the number of peers p

(€]

whose documents are indexed by ¢ and w; ;s the weight of 7 in the document

j of peer p. The peers of a group have been ranked by

2
wz(,Q) = Zw;p) . (2)

1€Q
Lastly, w}') = TF; ; - IDF; , where TF; ; = log (fi.j, + 1)/ Yic; 10g (fijp +1) -
Ujp/(140.0115- Uj) and IDF; , = log (N;(;D - nE}ﬁ)/n(I) U;,p is the number

i,p>
of unique terms in the document j, ngl) is the total number of documents in

1)

peer p, n;, is the number of documents in peer p indexed by i, as reported

in [T4]. Therefore the score of document j in peer p for the given query @ will be

Sl 3)

1€Q
3 Experiments

The experiments aimed at measuring the proportion of recall as the portion of
visited network increased. The portion of visited network was function of the
first ultra-peer contacted, the number of times the query is routed to an ultra-
peer, that is the TTL, the number of ultra-peers contacted by an ultra-peer,
and the number of peers to which a query was routed. The baseline experiment
consisted of a local search such that every document has been stored into a single
peer, as it were a traditional centralized IR system. The experiments have been
performed by using the MySQL fulltext capabilities [15].

Test Collection. A P2P network was simulated by using a large test collection
in a laboratory setting. Previous studies used different experimental testbeds.
It was decided to use and organize a well-known test collection so as to have a
realistic P2P network. The choice fell back on DLLC (Digital Libraries Lu and
Callan), i.e. the testbed created at Carnegie Mellon University for evaluating the
performance of content-based retrieval in P2P networks. DLLC is based on the
TREC WT10g Web test collection of the Text Retrieval Conference (TREC),
which is a 10GB, 1.69 million document set. Every document in this collection
contains the HTML code of a webpage. One index on fulltext webpage body
and title was built by our experimental system. For full documentation and

applications, see [TOT2T6IT7ITIITINZ0].

Network Topology. Some important remarks and findings about recent snapshots
(Apr. 2004 — Feb. 2005) of Gnutella network reported in [2TI22]23] have been in

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 139

Number of Documents

0 50 100 150 200 250
Group Index

. Average

Number of Ultrapeers with x Leaves

Number of Peers
i

8 10 12 14 16 18 20 0 50 100 150 200 250
Number of Leaves Group Index

(9 2 4 6

Fig. 2. (a) Distribution of Group Sizes. (b) Distribution of Peers and Documents over
Groups.

this paper taken into account, that is: The node degree in the top-level overlay
does not exhibit a power-law distribution — it has rather a significant spike
around 30, which is the default maximum degree in the most popular Gnutella
implementation (LimeWire and BearShare). There are much fewer peers with a
degree greater than 30. The number of peers with degree lower than 30 is very
significant, and the distribution of degree is quite uniform between 0 and 30. A
significant minority of ultra-peers are connected to less than 30 leaves, which
indicates the availability of open slots for new leaves for joining the overlay. This
clearly contrasts with the power-law degree distribution reported in previous
studies [24].

The 250 peers with the highest number of documents have been elected as
ultra-peers. The ultra-peers have not been assumed to have greater computa-
tional power than peers. For creating the groups, every peer was assigned to one
and only to one randomly chosen ultra-peer. This reflects peers’ behavior in real
Gnutella 0.6 environment — a peer does not select by content for connecting
to the group, but joins the first group selected from a list which answers peer’s
request of connections. Doing so a Gaussian distribution of the number of peers
over the groups was achieved, as depicted in Fig. [P{(a), while Fig. B(b) shows
the distribution of documents and of peers over the groups. The connections
between ultra-peers have been generated randomly. Every ultra-peer has a num-
ber of connection uniformly distributed between 1 and 5; every ultra-peer has
on average three neighbors ultra-peer. In this way the topology resembles the

topology described in [2T2223].

Queries. Experiments used the topics of the TREC-9 and TREC-2001 Web
tracks [25]. As in [I0] only the title field of the topics was used for gener-
ating the queries. The reason was that, in real P2P settings, queries are on
average very short [20] and the title meets this condition. On average each topic
in TREC 9 has 47.7 relevant documents while in TREC 2001 has 62.2 relevant
documents as depicted in Fig. Bla). Fig. Blb) shows the fraction of the total
number of peers that a query needs to be forwarded to, in order to achieve 100%

140 M. Melucci and A. Poggiani

TREC 9 TREC 9 TREC 2001

" average |))))) ') — Average — Average
— Median ~ Median

8 f

Number of Relevant Documents

}

451 455 460 465 470

475 480 485
Query Number

TREC 2001

8
% of Total UltraPeer Population
) 8

Number of Relevant Documents

s01 505 520 825 530 535 15 10 15 20 25 30 35 40 45 15 10 15 20 25 30 35 40 45
Query Number Topic Number (Sorted) Topic Number (Sorted)

Fig. 3. (a) Distribution of Relevant Documents over the Topics. (b) Number of peer
collections needed for 100% recall (sorted per topic figure).

recall. In this case 70% of the queries can fully be answered after contacting only
less than 1% of the total peer population, and 90% needs for contacting not more
than 2%. Of course, these percentages are valid when the peers containing the
relevant documents are known, and should not be confused with the percentages
given in the following. These figures give an idea of the difficulty of the task
studied. Due to the “right” peers are unknown, peer and ultra-peer selection is a
hard task and should work very well so as to make the P2P-IR system effective.
It should also be noted that “real” queries, and not “artificial” queries such as
those employed in other studies, have been used in our experiments. Therefore
“real” relevance assessments have been used thus making the task much more
difficult and results less “good” than the task based on “artificial” queries and
assessments: Our interest was indeed in realistic IR across P2P networks.

Evaluation Settings. The following parameters have been used for testing the
retrieval algorithm: TTL is the number of times a query is routed to an ultra-
peer. If TTL = 1 only the ultra-peer leading the group of the peer to which
the query was submitted is contacted. If TTL = 2 the first ultra-peer and its
m top-ranked neighbors are contacted, and so on. Since the contacted ultra-
peers are ranked by Equation [Il the m top-ranked ultra-peers are selected. In
the experiments m € {1,2,3}. The contacted peers are ranked by Equation
and the k£ peers with the highest wz(?) values have been matched against the
query, and then selected. In the experiments k € {1,3,5,7,10}. The retrieved
documents are ranked by using Equation[Band the n top-ranked documents have
been given back to the ultra-peer. In the experiments it was supposed n = 20, 50
are the most common values set by an end user.

For each chosen combination of values of TTL, m, k,n two runs have been
performed: one for TREC-9 topics and TREC-2001 topics. The statistics have
been averaged over 40 different starting ultra-peers, i.e. each run was repeated
for every starting ultra-peer, with different out-degrees and capability of reaching
other ultra-peers. The starting ultra-peers have been randomly selected and are

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 141

50 T T T T T) I T
PERVsPRR +
45 | -

- + -
40 . N . *
35 I .
30fF * .

25 + +

PRR
+
+
4+

20 | + E
15 i
10 g .

5F -

10 12 14 16 18 20
PER

N
I
o
[e)

Fig. 4. The relationship between PER and PRR

always the same in every simulation. In this way our result are independent of
the peer which originated the queries.

Three quantities have been measured and averaged over the starting ultra-
peers for measuring to what extent the network can efficiently and effectively
retrieve relevant documents: Peer Exploration Ratio (PER) is the ratio between
the average number of selected peers and the total number of peers the network
is composed of, i.e. 2500. Ultra-Peer Exploration Ratio (UPER) is the ratio
between the average number of selected ultra-peers and the total number of
ultra-peers the network is composed of, i.e. 250. Peer Recall Ratio (PRR) is
the ratio between the number of relevant documents retrieved by visiting the
network and the number of relevant documents retrieved by the baseline run.
That is, if NV documents are retrieved by visiting the network, the corresponding
baseline run retrieved N documents from the centralized collection.

The relationship between PER and PRR is depicted in Figure @ on the basis
of the result tables reported in the following. The plot shows an almost-linear
relationship between PER and PRR, although there are some variations which
are explained in the rest of the section.

Weighting Scheme Fvaluation Results. The following questions have been
answered: (i) How much should TTL be? (ii) Is ultra-peer ranking effective?
(éii) Is peer ranking effective? The experimental results are reported in the fol-
lowing tables for the TREC-9 topic set — the results for TREC-2001 were similar
and have not been reported here due to the shortage of space. Every table is
organized by TTL, m, k and each row includes the average number of actual con-
tacted peers k, the number of documents retrieved by every peer (n), the average
number of actual contacted ultra-peers (m), the number of documents retrieved
across the network (N), and the number of relevant documents retrieved across
the network (RDN). For example, the first row of Table[Il(a) tells that when (7)
m = 1 ultra-peers are contacted since the query is issued by a peer, (ii) the
ultra-peer does not contact any other ultra-peer (TTL = 1) and (éii) the query

142 M. Melucci and A. Poggiani

Table 1. TTL = 1,2, m = 1

kn k N RDN PER PRR Ekn k N RDN PER PRR
120 0.9 617.9 3.3 0.04% 7.4% 120 1.81332.7 7.90.07% 9.8%
320 2.51458.7 4.4 0.10% 5.5% 320 5.03114.6 10.9 0.20% 8.2%
520 3.72031.9 4.6 0.15% 4.8% 520 7.64310.0 11.3 0.31% 7.2%
720 4.72422.6 4.6 0.19% 4.5% 720 9.65110.3 11.4 0.38% 6.9%
1020 5.52771.0 4.7 0.22% 4.4% 1020 11.4 5804.9 11.7 0.45% 6.8%
10 50 5.5 4625.8 5.5 0.22% 4.0% 10 50 11.4 9862.1 13.8 0.45% 5.9%
(a) TTL=1, m =1 (b) TTL=2, m = 1

Table 2. TTL =2, m=2,3

kEn k N RDN PER PRR Ekn k N RDN PER PRR
120 2.6 1821.4 10.2 0.10% 9.8% 120 3.1 2159.6 11.3 0.12% 10.3%
320 7.0 4287.7 14.0 0.38% 8.7% 320 8.4 5106.1 15.90.34% 8.6%
520 10.6 5956.5 14.6 0.42% 7.7% 520 12.8 7110.8 16.6 0.51% 7.8%
720 13.3 7063.6 14.9 0.53% 7.3% 720 16.1 8441.3 16.9 0.64% 7.3%

1020 15.8 8017.5 15.3 0.63% 7.1% 1020 19.0 9577.1 17.40.76% 7.0%
10 50 15.8 13552.0 17.9 0.63% 6.3% 10 50 19.0 16147.3 20.1 0.76% 6.6%
(a) TTL=2, m = 2 (b) TTL=2, m = 3

is routed to k = 1 top ranked peer of the group led by the ultra-peer, then, 617.9
documents are on average retrieved — the average has been computed over 40
starting ultra-peers; due to n = 20 are selected from the peer and the ultra-peer,
3.3 documents are relevant, thus exploring 0.04% of the network and achieving
7.4% of the recall which would be achieved if every document was collected in
one centralized server.

How much should TTL be? Let us concentrate on a given PER and observe PRR
for different TTL’s (Tables [l and). It can be noted that PRR varies when the
value of PER is reached at different TTL’s; for example, about PER = 2.0% of
peers have been visited by only accessing ultra-peers with m = 3,k = 10, TTL =
3 and PRR was about 11%. A comparable PER was observed with m = 3,k =
5,TTL = 4, but PRR is significantly higher. The same pattern can be observed
for different TTL’s as reported in Tables[2l Bland @l It can be concluded that TTL
is affecting effectiveness, provided PER. This suggests that the “best” strategy
would increase the number of “hops” between the ultra-peers, i.e. TTL. In other
words, the values of PRR with similar PER values suggest that a “depth-first
search” (big TTL, small m and k) is better than a “breadth-first search” (small
TTL and big k). Nevertheless, this pattern probably depends on the dataset
and the actual content distribution between different ultra-peers. It was found,
indeed, that different datasets and distributions of relevant data across the peers
lead to opposite conclusions [4]. If the relevant documents were concentrated
in a very few peers, then a depth-first strategy would be less effective than

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 143

Table 3. TTL = 3,4 and TREC-9 topic set

kEn k N RDN PER PRR k n k N RDN PER PRR
m =1, m = 2.85, UPER = 1.14 m =1, m=3.77, UPER = 1.51

120 2.8 1979.6 12.90.11% 11.9% 120 3.7 2631.6 18.00.15% 13.1%
320 7.5 45925 17.40.30% 9.9% 320 9.9 6080.1 24.20.40% 11.1%
520 11.3 6326.6 17.9 0.45% 9.0% 520 15.0 8383.7 25.0 0.60% 9.9%
720 14.1 7480.6 18.1 0.57% 8.4% 720 18.7 9929.6 25.30.75% 9.3%

10 20 16.7 8444.6 18.5 0.67% 8.1% 1020 22.1 11226.3 25.8 0.88% 9.2%
10 50 16.7 14303.5 22.2 0.67% 7.5% 10 50 22.1 19050.1 30.6 0.88% 9.0%

m =2, m = 5.33, UPER = 2.13 m =2, m = 9.83, UPER = 3.93
120 5.2 3767.5 20.7 0.21% 12.2% 120 9.7 7009.1 37.6 0.39% 15.2%
320 14.4 8822.4 28.70.58% 11.1% 320 26.8 16464.7 52.6 1.07% 14.6%
520 21.8 12212.5 30.1 0.87% 10.0% 520 40.8 22899.9 55.3 1.63% 14.1%
720 27.4 14477.7 30.7 1.10% 9.8% 720 51.427237.8 56.6 2.06% 13.4%

10 20 32.3 16356.9 31.2 1.29% 9.5% 10 20 60.6 30808.3 57.6 2.42% 13.3%
10 50 32.3 27596.5 37.5 1.29% 9.7% 10 50 60.6 52030.4 68.3 2.42% 13.4%

m =3, m="7.73, UPER = 3.09 m =3, m = 17.05, UPER = 6.82
120 7.6 5447.0 27.6 0.31% 13.1% 120 16.9 12125.9 57.4 0.68% 17.1%
320 21.1 12842.0 39.1 0.84% 12.2% 320 47.228806.6 82.3 1.89% 18.0%
520 32.1 17867.0 41.0 1.29% 11.7% 520 72.240273.3 87.4 2.89% 17.2%
720 40.4 21240.6 42.3 1.62% 11.5% 720 91.1 48008.6 89.9 3.64% 16.7%

10 20 47.5 23984.3 42.9 1.90% 11.2% 10 20 107.3 54265.9 91.5 4.29% 16.8%
10 50 47.5 40302.2 50.7 1.90% 11.6% 10 50 107.2 91298.8 107.0 4.29% 17.3%
(a) TTL=3 (b) TTL=4

the strategy adopted in these experiments. While clustering would help increase
the concentration of relevant documents in a very few peers and the knowledge
of the location of these relevant documents [7], this technique is infeasible in
realistic or large experimental settings.

Is Ultra-Peer Ranking Effective? The weighting scheme proposed in this paper
aims at reducing the portion of network visited for achieving a high proportion
of recall. Therefore, ultra-peer ranking selects the ultra-peers which lead to the
peers which are rich of relevant documents. If TTL = 1, ultra-peer ranking is
ignored due to only one ultra-peer, i.e. the starting ultra-peer, is contacted inde-
pendently of m. When TTL > 1, every contacted ultra-peer is called for choosing
the “best” ultra-peer out of m connected ultra-peers and ranking is needed.
Let us consider TTL = 2 in Tables 2[(a) and 2I(b). PRR little increases from
m = 1 to m = 2 and from the latter to m = 3 for a given k; for example, if
k = 1, PRR increases from 9.8% to 10.3% when m = 2 increases to m = 3,
respectively. If TTL = 4, and for k = 1, something similar happens, as reported
in Table B(b) — PRR increases from 13.1% (m = 1), to 15.2% (m = 2), and
to 17.1% (m = 3). This small increase signifies that considering the second or
the third ranked ultra-peer other than the top-ranked ultra-peer little affects
effectiveness. Our explanation is that the single ultra-peer selected with m = 1

144 M. Melucci and A. Poggiani

Table 4. TTL = 5,6 and TREC-9 topic set

k n k N RDN PER PRR
m =1, m = 4.68, UPER = 1.87
120 4.9 32485 22.40.18% 13.6%
320 12.3 7483.0 30.10.49% 12.2%
520 18.4 10317.9 31.3 0.74% 11.0%
720 23.1 12229.1 31.8 0.92% 10.5%
1020 27.3 13824.6 32.4 1.09% 10.3%
10 50 27.3 23493.5 38.2 1.09% 10.1%
m =2, m=17.22, UPER = 6.89
120 17.1 12346.0 64.6 0.68% 19.0%
320 47.3 29109.6 93.0 1.89% 19.8%
520 72.1 40572.6 98.4 2.88% 18.7%
720 91.0 48350.9 101.0 3.64% 18.4%
10 20 107.7 54799.5 102.7 4.31% 18.4%
10 50 107.7 92637.6 121.7 4.31% 19.0%
m =3, m = 34.64, UPER = 13.85
120 34.5 24855.1 113.2 1.38% 24.9%
320 96.7 59182.8 164.4 3.87% 25.9%
520 148.1 82810.4 175.9 5.92% 25.9%
720 186.9 98779.2 181.6 7.48% 26.2%
10 20 220.3 111784.4 185.0 8.81% 26.3%
10 50 220.3 188350.0 219.8 8.81% 27.4%
(a) TTL=5

k n k N RDN PER PRR
m =1, m = 5.56, UPER = 2.23
120 5.5 3840.6 26.5 0.22% 14.4%
320 14.5 88321 36.1 0.58% 13.5%
520 21.8 12172.7 37.4 0.87% 12.0%
720 27.3 14425.7 38.2 1.09% 11.7%
1020 32.2 16318.3 39.0 1.29% 11.5%
1050 32.2 27706.4 45.6 1.29% 11.3%
m =2, m = 28.39, UPER = 11.36
120 28.3 20533.9 104.6 1.13% 24.9%
320 78.6 48538.5 151.1 3.14% 24.9%
520 120.0 67704.0 160.1 4.80% 25.1%
720 151.8 80672.3 164.9 6.07% 24.7%
10 20 180.0 91507.1 168.0 7.20% 24.8%
10 50 180.0 154478.6 198.7 7.20% 25.9%
m =3, m = 59.94, UPER = 23.97
120 59.8 43126.5192.9 2.39% 30.9%
320 168.0 102958.4 284.0 6.72% 37.7%
5 20 257.5 144294.2 303.8 10.30% 38.4%
720 325.4 172316.9 313.5 13.02% 38.0%
10 20 384.1 195307.3 320.6 15.37% 37.9%
10 50 384.1 329435.7 380.9 15.37% 40.5%
(b) TTL=6

accounts for the largest proportion of PRR and that the second or third top-
ranked ultra-peer is important but to a much less extent than the top-ranked
ultra-peer. Something similar happens for the other TTL’s and for the other k’s,
as reported in Tables Ba), @(a) and E(b).

In general, the first top-ranked ultra-peer accounts for the largest propor-
tion of PRR. This outcome is an evidence supporting the hypothesis that the
weighting scheme is capable for selecting the “best” ultra-peers.

Is Peer Ranking Effective? Once the best ultra-peers have been selected, the best
peers belonging to those groups had to be chosen. The values of PRR achieved
with different k values for the same TTL and m have been computed for evaluat-
ing peer ranking effectiveness. In this way to what extent PRR varies by varying
the number of select peers is measured. The previously cited tables report the
PRR values achieved varying TTL, for each value of k and a fixed value of m.

A different pattern can be observed when the values of PRR are compared by
varying k. The results bear evidence of the initial contribution to PRR of the
one or three top-ranked peers. As the number of top-ranked peers increases, the
values of PRR decreases. This result suggests that the selection of the first top-
ranked peer accounts for a very significant proportion of PRR and that additional
peers are little useful, if not disadvantageous, for increasing the quantity of
relevant documents.

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 145

The negative trend of PRR when £ increase is reverted once the exploration
of the network becomes larger due to larger TTL’s and/or m’s. Indeed, Ta-
bles Blb), E(a) and E(b) report that PRR increases if the number of peers in-
creases, yet the contribution of the k-top ranked peers, k > 1, decreases as k
increases — a similar pattern was observed as far concerned the ultra-peers.

One explanation can be provided considering the distribution of relevant
documents, which are concentrated in a very small subset of the peers. If TTL
and m are small, the event that the ultra-peer leading to a group of peers storing
many relevant documents can be reached is very improbable. The query is little
likely to have been routed by the contacted ultra-peer(s) to “relevant” peers.
Therefore increasing k causes an increase of retrieved documents without an in-
crease of relevant documents. On the contrary, if TTL and m are not small, the
contacted ultra-peers may lead to the group of peers storing the relevant docu-
ments. The query is likely to have been routed to the “relevant” peers because
of the higher number of contacted ultra-peers. As the relevant documents may
be concentrated in some of the contacted peers, one group is likely to include
all these peers. Therefore increasing k causes an increase of retrieved relevant
documents.

Conclusions about Effectiveness and Efficiency. In general, the results suggests
that a partial exploration of the network produces levels of recall which should
be regarded as acceptable if the difficulty of the test collection is considered.
Indeed, after contacting about 16% of the peers, a system based on the proposed
weighting scheme can retrieve about 40% of the relevant documents that can be
retrieved by a centralized system, as reported in Table [d{b).

Provided the characteristics of the test collection and of the network topol-
ogy, it is our belief this is an encouraging results. Although the adoption of a
similarity-based algorithm for organizing leaf nodes by topic as performed in
DLLC could improve the routing step, this adoption is not affordable nor is it
realistic with our system — a peer is required the statistics of the full network
for connecting to the right group.

One effective strategy might be: (i) Decide for a “depth-first visit” strategy.
(ii) Two or three at most top-ranked ultra-peers are selected by the ultra-peer
that first received the query. (éii) The contacted ultra-peers contact very few
peers, perhaps only the first top-ranked peer. The contacted peers retrieve in
parallel some documents which are returned to the calling ultra-peer. Because k
is low, the network bandwidth used is relatively small.

Peers and ultra-peers need to communicate to each other some data about
local indexes for helping rank peer and ultra-peer. Because the network is a
hierarchy — every peer connects to one ultra-peer — a peer periodically com-
municates a summary of its own index to one ultra-peer. The summary is a
straightforward list of the term weights computed for every peer — this infor-
mation is directly gathered from the local indexes. Term weight list update is
required only if a new document is added to the peer and the latter decides to
make the document as publicly available. The ultra-peers are connected to a few
others. Every ultra-peer transmits a summary of the summaries received from

146 M. Melucci and A. Poggiani

its own peers to the other ultra-peers. The summary of the summaries is a list
of term weights for every group. For both lists compression algorithms can be
performed thus making synchronization quite fast.

4 Conclusions

This paper covers an empirical study using standard collections in a simulated
P2P testbed. The basic rationale taken for the particular formulas used is the
idea to select ultra-peers, then peers and lastly documents using the same type
of formula. The particular parameters chosen for studying have been consistent
with the characteristics of the P2P networks. In the future non-uniform param-
eters will be investigated. The approach is exploration rather than hypothesis
testing. Although this study is mostly suggestive, it is a reasonable approach at
this stage of the development and may provide results that can immediately be
adopted.

One of the main points made in this paper concerning the efficacy of the
ranking scheme is that the first peer or ultra-peer visited gives a quite large pro-
portion of recall and that subsequent ultra-peers little contribute. It is thought
that this is an evidence of good ranking, yet there may be obviously many more
relevant peers or ultra-peers, as recall is very low after one ultra-peer is visited
— therefore the addition of the next high-ranking peers should also contribute
to recall; these are not contributions as large as the first, but still positive. This
is true, but one should have to do with efficiency because PER would increase
more quickly than PRR, namely, the increase of PER is not compensated by a
significant increase of PRR — such an issue should be considered.

References

1. A. Broder. A taxonomy of Web search. SIGIR Forum, 36(2):3-10, 2002.

2. G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
IPM, 24(5):513-523, 1988.

3. M. Melucci and R. Castiglion. A weighing framework for information retrieval in
peer-to-peer networks. In Proc. of DEXA Workshop, pages 374-378, Copenaghen,
August 22-26 2005. IEEE Press.

4. M. Melucci and R. Castiglion. An evaluation of a recursive weighing scheme for
information retrieval in peer-to-peer networks. In Proc. of CIKM Workshop on IR
in P2P Networks, pages 9-16, Bremen, Germany, November 4 2005. ACM Press.

5. M. Bawa, G. S. Manku, and P. Raghavan. Sets: Search enhanced by topic-
segmentation. In Proc. of SIGIR. ACM Press, 2003.

6. S. Chernov. Result Merging in a Peer-to-Peer Web Search Engine. PhD thesis,
University of Saarland, February 2005.

7. I.A. Klampanos, V. Poznanski, J. Jose, and P. Dickman. A Suite of Testbeds for
the Realistic Evaluation of Peer-to-Peer Information Retrieval Systems. Proc. of
ECIR, volume 3408 of LNCS. Springer-Verlag.

8. J. Callan. Distributed information retrieval. In W. B. Croft, editor, Advances
in information retrieval, chapter 5, pages 127-150. Kluwer Academic Publishers,
2000.

9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 147

. L. Gravano, K. Chang, A. Paepcke, and H. Garcia-Molina. STARTS: Stanford
proposal for internet retrieval and search. Technical Report SIDL-WP-1996-0043,
Computer Science Department, Stanford University, 1996.

J. Lu and J. Callan. Federated search of text-based digital libraries in hierarchical
peer-to-peer networks. In Proc. of SIGIR, Sheffield, UK, 2004. ACM Press.

L. S. Larkey, M. E. Connell, and J. P. Callan. Collection selection and results
merging with topically organized U.S. patents and TREC data. In Proc. of CIKM,
pages 282-289. ACM Press, McLean, Virginia, US 2000.

J. Lu and J. Callan. Merging retrieval results in hierarchical peer-to-peer networks.
In Proc. of SIGIR, Sheffield, UK, 2004. ACM Press.

L.Si and J. Callan. A semi-supervised learning method to merge search engine
results. ACM TOIS, 21(4):457-491, October 2003.

A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In
Proc. of SIGIR, pages 21-29, Zurich, Switzerland, 1996. ACM Press.

P. Gulutzan. MySQL’s full-text formulas, January 2006.
http://www.databasejournal.com/features/mysql/article.php/3512461.

J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In
Proc. of CIKM, 2003.

J. Lu and J. Callan. Peer-to-peer testbed definitions: trecwt10g-2500-bysource-v1
and trecwt10g-query-bydoc-v1, January 2006. http://hartford.1lti.cs.cmu.edu/
callan/Datal

D. Hawking. Overview of the TREC-9 Web track. In E. M. Voorhes and D. K. Har-
man, editors, Proc. of TREC, pages 87-101, Gaithersburg, Maryland, September
2001. Department of Commerce, NIST.

P. Bailey, N. Craswell, and D. Hawking. Engineering a multi-purpose test collection
for Web retrieval experiments. IPM, 39(6):853-871, November 2003.

H. Nottelmann and N. Fuhr. Comparing different architectures for query routing
in peer-to-peer networks. In Proc. of ECIR, LNCS, London, UK, 2006. Springer.
D. Stutzbach, R. Rejaie, and S. Sen. Characterizing unstructured overlay topologies
in modern P2P file-sharing systems. In Proc. of IMC, pages 49-62, 2005.

S. Zhao, D. Stutzbach, and R. Rejaie. Characterizing files in the modern Gnutella
network: A measurement study. In Proc. of MMCN, San Jose, CA, January 2006.
D. Stutzbach and R. Rejaie. Characterizing the two-tier Gnutella topology. In Proc.
of SIGMETRICS, pages 402-403, Banff, Alberta, Canada, 2005. ACM Press.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In Proc. of ICS, pages 84-95. ACM Press, 2002.
TREC. Text REtrieval Conference, January 2006. http://trec.nist.gov.

. S. Kwok. P2P searching trends: 2002-2004. IPM, 42(1):237-247, January 2006.

http://www.databasejournal.com/features/mysql/article.php/3512461
http://hartford.lti.cs.cmu.edu/callan/Data
http://hartford.lti.cs.cmu.edu/callan/Data
http://trec.nist.gov

A Decision-Theoretic Model for Decentralised Query
Routing in Hierarchical Peer-to-Peer Networks

Henrik Nottelmann and Norbert Fuhr

Department of Informatics, University of Duisburg-Essen,
47048 Duisburg, Germany
norbert . fuhr@uni-due.de

Abstract. Efficient and effective routing of content-based queries is an emerging
problem in peer-to-peer networks, and can be seen as an extension of the tradi-
tional “resource selection” problem. The decision-theoretic framework for
resource selection aims, in contrast to other approaches, at minimising overall
costs including e.g. monetary costs, time and retrieval quality. A variant of this
framework has been successfully applied to hierarchical peer-to-peer networks
(where peers are partitioned into DL peers and hubs), but that approach considers
retrieval quality only. This paper proposes a new model which is capable of con-
sidering also the time costs of hubs (i.e., the number of hops in subsequent steps).
The evaluation on a large test-bed shows that this approach dramatically reduces
the overall retrieval costs.

1 Introduction

Peer-to-peer (P2P) networks have emerged recently as an alternative to centralised
architectures. The major problem in such networks is query routing, i.e. deciding to
which other peers the query has to be sent for high efficiency and effectiveness. In
contrast to the traditional resource selection problem, this process is inherently decen-
tralised in peer-to-peer networks and based on local knowledge.

The decision-theoretic framework (DTF) [7, B] computes an optimum selection
based on cost estimations. These cost estimations include several important factors like
retrieval quality, time or money. A user can weight these cost sources for specifying
her own selection policy, e.g. preferring cheap digital libraries (DLs), or high quality
DLs. Resource descriptions, i.e. statistical aggregation of the DLs, are employed for
estimating costs, in particular to approximate the retrieval quality.

[8] presents a heuristic extension of the DTF for hierarchical peer-to-peer networks.
In such a P2P topology, peers are partitioned into low-end DL peers hosting the docu-
ments, and hubs which act as directory peers. Only hubs are responsible for routing; a
DL receiving a query only returns result documents but does not forward the query to
other peers. Costs for hubs are computed by simply aggregating the resource descrip-
tions of all DLs in a certain neighbourhood of that hub, by assuming that these DLs are
merged into a single virtual collection. This approach, however, does not allow to esti-
mate time costs properly: Those costs depend on the peers a selected hub itself selects,
and thus cannot be estimated via simple aggregated statistics.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 148-[I39] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

A Decision-Theoretic Model for Decentralised Query Routing 149

In this paper, we present the first theoretical model for decentralised query routing in
hierarchical P2P networks which considers time costs, and we give experimental results
demonstrating the validity of this model. The basic idea is to estimate the costs of the
DLs a neighbour hub would select in subsequent phases. This estimation is based on
statistical aggregations of the DLs’ content, as well as the distances of the DLs to the
hub. The advantages are two-fold: Hub costs are only based on those DLs the hub po-
tentially selects (i.e., can contribute to the final result). Second, this approach allows us
to take the distances of selected DLs (and, thus, the associated time costs) into account.

This paper is structured as follows: Section [2l briefly describes DTF. An overview
over important aspects of resource selection in peer-to-peer networks is given in sec-
tion Bl Then, section [presents a new approach for estimating hub costs which in-
herently also considers the number of hubs associated with the selection of a hub. An
evaluation of the proposed approach is shown in section 3 Section [6] summarises work
related to resource selection in distributed IR.

2 The Decision-Theoretic Framework for Resource Selection

Most resource selection approaches (e.g. CORI) only consider retrieval quality. As an
approximation, they compute a similarity score of each DL to the query, and select a
fixed number of top-ranked libraries. Other aspects like execution time of the DLs are
neglected.

In contrast, the decision-theoretic framework (DTF) is capable of dealing with
different selection criteria, which are unified under the notion of “costs”. As the actual
costs are unknown in advance, expected costs (for digital library DL; when s; documents
are retrieved for query ¢) are regarded instead.

Different sources can be considered:

Effectiveness: Probably most important, a user is interested in getting many rele-
vant documents. In a simple model, effectiveness costs are based on the expected
number s; — E[ri(si,q)] of non-relevant documents, where E[r;(s;,q)] denotes the
expected number of relevant documents among the s; top-ranked documents.

Time: We assume uniform costs for transmitting a result document, thus these costs
can be neglected for selection. As a consequence, the expected costs EC/ (s;) are
based on the initial costs for contacting a DL.

Money: Monetary costs are important for some applications, but can be neglected in
the context of this paper.

These cost sources are weighted by user-specific parameters c¢¢ (for effectiveness)
and ¢ (time) parameters. They allow a user to specify her own selection policy, e.g.
good results vs. fast results. Thus, the expected costs (for digital library DL; when s;
documents are retrieved for query ¢) are computed as:

ECi(si,q) == ¢ [si — E[ri(si,q)]] + ¢ - EC{ (s:) . Q)

A user also specifies the total number n of documents to be retrieved out of m
libraries, and the task is to compute an optimum solution (employing the algorithm
presented in [3]]):

150 H. Nottelmann and N. Fuhr

m
s = argmin Y, ECi(s;,q).
;‘n:[Si:" i=1

Relevance costs are computed in two steps:

1. First, the expected number E(rel|q, DL) of relevant documents in the library is com-
puted based on statistical aggregations (called “resource description”) of the DL.

2. Then, a linearly decreasing approximation of the recall-precision function is used
for computing the expected number E[r;(s;,q)] of relevant retrieved documents.

For the first step, the resource descriptions store the DL size |DL| and the average
(expectation) u; = E[w(d,t)|d € DL] of the indexing weights w(d,t) (for document d
and term 7). For a query with term weights a(g,7) (summing up to one) and a linear
retrieval model, the expected number E(rel|q, DL) of relevant documents in DL w.r.t.
query ¢ can be estimated as:

E(rel|q,DL) = 2 Pr(rel|lg,d) ~ 2 Za(q,t)-w(d,t)

deDL deDL teq

— pL-Salg.r)- Y Y

teq deDL |DL‘
= |DL|- Y a(q,1)-uy , 2)

teq

where Pr(rel|q,d) denotes the probability that document d is relevant.

In a second step, E(rel|g, DL) is mapped onto the expected number E[r;(s;,q)] of
relevant retrieved documents. Assuming a linearly decreasing recall-precision function
P:[0,1] —[0,1], P(R) := 1 —R, with expected precision E[r;(s;,q)] /s; and expected re-
call E[ri(s;,q)]/E (rel|g,DL;), we can estimate the number of relevant documents when
retrieving s; documents:

E(rel|q,DL;) - s

Elri(si = .
rilsi-a)] E(rellq,DL;) + s;

3)

For DTF, the libraries have to return the probabilities of relevance of the result doc-
uments, thus no further normalisation step is required.

3 Resource Selection in Peer-to-Peer Networks

Query routing (i.e., resource selection) is a crucial task in peer-to-peer networks, as con-
tacting all connected peers does not scale [9]]. This section introduces several competing
approaches for resource selection in peer-to-peer networks.

3.1 Network Topologies

A direct neighbour P € nb(P') of a peer P’ is another peer P if and only if there is a
(direct) connection link. The distance between two peers is the minimum number of
hops (i.e., links) required to go from one peer to the other.

A Decision-Theoretic Model for Decentralised Query Routing 151

In this paper, we regard hierarchical peer-to-peer topologies, which are based on
a partition of peers into DL peers (sometimes also called “leaves”) and hubs. DLs
are typically end-user machines which answer but do not forward queries, while hubs
are responsible for routing and, thus, high-bandwidth computers which are nearly per-
manently online. Each DL peer is connected to at least one hub but not to other DL
peers, which reduces the number of messages during query routing (i.e., resource selec-
tion). This results in a simple yet reasonable and efficient topology, called hierarchical
peer-to-peer networks.

In this paper, we focus on HyperCube graphs (HyperCubes for short) [11] . A
(binary) HyperCube is a regular d-dimensional structure, where each peer is connected
to exactly d other peers (one per dimension). Messages arriving via a connection on di-
mension k € {0,1,...,d — 1} can only be forwarded to peers on strictly higher dimen-
sions kK’ > k. A consequence is that the dimensions define (starting from an arbitrary
peer) a spanning tree on the network, which ensures that there is exactly one path from
one peer to another peer. It also corresponds to a clearly defined partition of the whole
network.

Positions of missing peers are filled with “virtual peers” (see [11] for details), which
are then replaced by “shortcuts” to all original peers which can be contacted through
virtual peers only. As a consequence, peers can be connected to more or less than d
neighbours.

In this paper, we also ensure that each DL is connected to exactly one hub, so that
(given the HyperCube) there is exactly one path from any hub to any DL in the network
(i.e., cycles do not occur).

3.2 Centralised and Decentralised Selection

A simple selection strategy is to use the P2P network for a “cost estimation collection
phase”, where the query is flooded in a Gnutella-like way through the hub network.
Each hub computes cost estimations of its neighbour DLs, and sends them to the hub
starting the routing process. Then, a single central selection is computed, and the se-
lected DL peers are notified directly. This centralised selection strategy yields a global
optimum, but is rather inefficient (see [9] for Gnutella, and section[3.2] for hierarchical
networks). HyperCubes can improve the cost estimation collection phase as each hub is
connected exactly once (and not multiple times).

In contrast, decentralised selection computes a local optimum selection on every hub
receiving the query, by considering locally available descriptions of all DLs and hubs
in a predefined distance. Thus, a hub decides locally how many documents should be
retrieved from neighbour DLs, and how many documents are to be delivered by neigh-
bour hubs (which itself compute a local selection). This decentralised selection method
produces an overhead as a cost estimation and selection has to be performed on every
hub. On the other hand, this method cuts down the number of hubs that are traversed,
and thus saves time and bandwidth. In HyperCubes, hub descriptions are based on dis-
joint sets of DLs, which should improve the selection accuracy. The following Sec-
tion describes how resource descriptions for hubs can be computed and employed for
decentralised selection.

152 H. Nottelmann and N. Fuhr
4 Cost Estimation for Hubs

A hub description is a representative of the neighbourhood of a hub. Basically, its
statistical characteristics are defined by combining the resource descriptions of a set
of DL peers

A naive approach is to combine the documents of all DLs in a neighbourhood in a
large “virtual” collection, and use the description of that collection as the hub descrip-
tion [8]]. This, however, has two drawbacks: A hub is not a monolithic DL, its selection
results in further selection steps which ignores most of the DLs in the neighbourhood.
Additionally, time costs (i.e., the number of hops) are not considered in such a setting.

The basic idea presented in this paper is to approximate the selection step in a
selected hub: When we estimate the costs of a hub, we assume that the hub selects
the best DLs in the neighbourhood (but no hubs), and only consider these selected DLs
in the cost estimation. This approach also allows us to estimate the time costs associated
with selecting a hub.

4.1 Hub Resource Descriptions

In the traditional decision-theoretic framework (see section2)), the resource description
contains the average indexing weight y; = E[w(d,t)|d € DL] for each index term ¢. Time
costs can easily be added for DLs by using a constant value (e.g., one) for the one hop
to the neighbour DL, by setting EC// (s;) = 1 iff 5; > 0, and = 0, otherwise.

However, a hub is a representative of a sub-network (a “neighbourhood”), and its
selection results in contacting further peers (DLs and hubs) with additional costs for
those hops. In addition, a term ¢ can occur in DL peers in different distances for a
neighbour hub H, so constant time costs are not sufficient for hubs. In the following,
we show how the content of a resource description is modified for hubs, so that time
costs can be considered as well.

We start with a simple scenario, where a hub H is connected to m libraries DLy, ...,
DL, € nb(H). Neighbour hubs H' € nb(H) are not considered so far, the approach is
extended to this case in section [£3] We further assume that resource descriptions are
given for all DL;, i.e. the average indexing weights y; ; = E(f < d|d € DL;).

Each term ¢ can be regarded as a single-term query. Then, the number R;(f) =
E(rel|t,DL;) of relevant documents in each DL; can be easily estimated according to
equation (@) as:

Rt,,‘ = E(rel\t,DL,-) = |DL,| Ui

The results are rounded to natural numbers, to ease the further processing steps.

For the hub A under consideration, the discrete empirical distribution Pr(R;) of the
number of relevant documents is computed over all neighbour DLs. Let us assume a
term ¢; for which 4 of the 6 neighbour DLs have 3 relevant documents for #; and the
2 other neighbour DLs have 5 relevant documents. Then, the resulting distribution is
defined by Pr(R;, =3) =4/6 and Pr(R; =5)=2/6.

! In peer-to-peer networks, co-operative peers can be assumed, so query-based sampling is not
considered here; each DL returns its description upon request.

A Decision-Theoretic Model for Decentralised Query Routing 153

This distribution Pr(R;) forms a compact representation of the content of the hub’s
neighbourhood, and is used as the resource description of hub H. In other words, for
each term ¢ a function Pr(R, = -) is stored.

4.2 Cost Estimation

At query time, the resource description of hub H is employed for estimating retrieval
costs. Costs for hubs are estimated in 6 subsequent phases, incorporating only neigh-
bour DLs:

1. For the query, the distribution of relevant documents in all DLs is computed.

2. For all DLs, the number of relevant documents is estimated based on the
distribution.

3. The DLs are ranked w.r. t. their number of relevant documents, and the best DLs
are selected.

4. Costs are estimated based on the best selected DLs.

5. Minimum costs are computed.

In the first phase, the distribution Pr(R,) of the relevant documents R, = E(rel|q,DDL)
(for a query ¢ and a randomly chosen library DL) is computed. Remember that with a
linear retrieval function, we have:

Rq :E(I'Cl|q,DL) = |DL‘ ’ za(Q7t) ‘M = Za(QJ) ‘R .

teq teq

Thus, the random variable R, can be considered as the linear combination of the
random variables R;. The distribution Pr(R,) can thus be computed via convolution:

Pr(R,;) = D [1Pr(R).

Ry: Rq:Ztéq“(%I)'Rt req

Here, basically, the probabilities of all possible cases for the R, which lead to a fixed
value of R, are summed up, assuming independence of the R;. (Since the distributions
Pr(R;) are very sparse, the convolution can be computed reasonably efficiently.) As
an example, assume—in addition to the distribution for term #; (see section F.I)—a
second term #, with Pr(R;, = 1) = Pr(R,, = 3) = 1/2, and further assume a;, = a;, =
1/2. Then, the case R; = 2 can only be caused by R;, =3 and R,, = 1 with Pr(R, =
2)=2/3-1/2=1/3. Similarly, the case R, = 3 can be caused by either R, = R;, =3
or by R, =5 and R, = 1, thus Pr(R;, =3) =2/3-1/2+1/3-1/2 = 1/2. Finally,
Pr(R;,=4)=2/3-1/2=1/61is caused by the case R;, =5 and R;, = 3.

In a second step, the frequencies Pr(R,) and the number m of neighbour DLs are
used for estimating the number of relevant documents for the DLs. E.g., for m = 6 DLs
in total, 2 DLs have 2 relevant document, 3 DL have 3 relevant documents, and the
sixth DL contains 4 relevant documents. Interpolation is used for computing a value for
each DL in cases where the probability for a R, value does not correspond to a natural
number of occurrences.

Third, the DLs are ranked w.r. t. their number of relevant documents, i.e. Ry > R, >
... > Ry. For 1 <I1<m,R(l):= ZleRi denotes the sum of the number of relevant
documents in the top / DLs.

154 H. Nottelmann and N. Fuhr

R=9
O

R=3 R=3

R=3
R=2
R=4 S
R=2
R=5 R=5
R=2 R=2

Fig. 1. Hub costs in larger neighbourhoods

In a fourth step, we assume that a hub is the combination of all / selected DLs, i.e.
a hub is considered as a single DL. With the recall-precision function and equation (3)),
we can compute the number r(s,R(I)) of relevant documents in the result set when
retrieving s documents from the union of the / selected DLs. Following equation (),
the costs EC(s,/,R(!)) when / neighbour DLs are selected can be computed as:

ECy(s,[,R(])) :=c*-[s—r(s,R())]] +c" - (I+1).

Note that the number of hops equals the number of selected neighbour DLs (each one
can be reached via one hop in a later phase) plus 1 hop for reaching the hub itself.
The final cost estimations can be easily computed in a sixth step:

ECy(s) = min{ECy(s,l,R(I))|1 <1 <m}
=min{c® [s—r(s,R(]))]] +" - I+ D1 <I<m}.

These cost estimations can be used in the usual selection process.

4.3 Considering a Larger Neighbourhood

So far, only neighbour DLs are considered for computing the resource description of
a hub. However, hubs typically are connected to other (neighbour) hubs, which them-
selves have DLs (and, potentially, other hubs) attached. We apply a trick and conceptu-
ally replace hubs and their attached DLs by new virtual DLs directly connected to the
hub. Thus, the network structure is “flattened”, and costs can be estimated for all DLs
in the same way, regardless of their distance.

The horizon % defines the maximum distance between the hub A and the DLs to be
considered for its hub description. In section [£2] only neighbour DLs are considered,
which equals to a horizon 4 = 1. For a horizon / > 1, the neighbourhood function nb is
extended as follows:

nb'(H) := nb(H),

nb"(H):= |J nb" '(H').
H' enb(H)

In other words, nb"(H) describes all peers in a distance of exactly & hops (from H).

A Decision-Theoretic Model for Decentralised Query Routing 155

The key idea for considering remote DLs is the following: Costs remain untouched
if such a library DL! is replaced by two “virtual” DLs connected directly to H, where
the relevant documents are uniformly distributed over both DLs (i.e., with R/2 relevant
documents): To obtain R relevant documents, two hops (one for each new virtual DL)
are required. For implementing this scheme, the neighbouring hub H’ has to send its
cumulated statistics about DL; € nb(H’) to hub H. Costs are then estimated as described
in section without a need for caring about the distance of DL peers. A similar
approach is used for & > 2, were a DL in distance of &’ < h is replaced by 4’ DLs with
R/ relevant documents.

An example is shown in figure [[I Here, the DLs directly connected to the hub H
remain untouched. The DL connected to the direct neighbour hub of H (with R = 4 rel-
evant documents) is replaced by two virtual hubs with R = 4/2 = 2, while the DL with
R =9 connected to the neighbour hub of the neighbour hub (i.e., the DLs in nb*(H)) is
replaced by three virtual DLs with R=9/3 = 3.

5 Evaluation

The proposed approach has been evaluated on a large test-bed. This sections describes
the setup of the experiments and results in terms of efficiency, effectiveness and costs.

5.1 Experimental Setup

The WT10g collection is used as a basis for our experiments. The topology “cmu”
(taken from [5]) employes a hierarchical P2P network, where the WT10g collection
is divided into 11,485 collections according to the document URLSs; 2,500 collections
(containing in total 1,421,088 documents) were chosen randomly, each of them forming
one DL peer. Hubs are formed by similarity of the DL peers, each hub is connected to
13-1,013 DLs (379.8 on average). Neighbour hubs are selected randomly so that each
hub has 1-7 hub neighbours (3.8 on average).

The topology “hc-1" regarded in this paper is a HyperCube derived from the “cmu”
topology in the following way: it consists of 25 hubs as in “cmu” (with dimension
d =5); each hub is connected to 4—14 other hubs (5.8 on average). Each DL is connected
to exactly one hub, randomly chosen out of the “cmu” connections, so that each hub is
connected to 3-254 DLs (100 on average). Thus, “hc-1" completely avoids cycles and
yields disjoint hub neighbourhoods.

The WT10g collection only provides 100 topics with relevance judgements. For
large P2P networks, more queries are required. Thus, we use 1,000 random queries
(from the test set) generated from title fields of documents. Each query contains up
to 6 terms, the average is 2.9 terms per query. In all experiments, n = 50 documents
are requested. As these queries were created artificially, no relevance judgements are
available. Pseudo-relevance judgements were obtained by combining all 2,500 col-
lections into one centralised collection (using system-wide IDF values), and marking
the 50 top-ranked documentd for each query as “relevant”. Thus, the experiments

2 Documents are ranked using the same indexing weights and retrieval functions as all DLs.

156 H. Nottelmann and N. Fuhr

measure how well distributed retrieval approximates the centralised collection. Docu-
ment indexing weights are computed based on the BM25 formula [10].

For resource selection, we set ¢® = 1 in all cases (for effectiveness costs, i.e. the
number of non-relevant documents), and vary the parameter ¢’ to simulate different user
preferences. Similarly, for computing costs after retrieval (the actual costs connected to
the query) we set ¢® = 1 and use varying parameters for the time component. Please
note that for ¢’ = ¢ = 1, one hop corresponds to one non-relevant document. For the
same number of documents, selecting an additional DL thus can only be compensated
if that DL returns an additional relevant document. Similarly, for ¢! = f: =0.25, four
hops correspond to one relevant document.

For result merging, we assume that a hub propagates the hub-local idf valued] to its
directly connected DLs, and then merge the returned ranking lists according to descend-
ing RSVs.

Table 1. Results for centralised and decentralised resource selection

(@) h=1
Dec.,¢' =0 Cent,c =0 Dec.,c¢' =0.1 Dec., ¢ =0.25 Dec.,c =0.5 Dec., ¢’ =1

P@10 0.4385/0.0% 0.6586/50.2% 0.4241/-3.3% 0.4044/-7.8% 0.3527/-19.6% 0.2981/-32.0%
P@30 0.2087/0.0% 0.3774/80.8% 0.2171/4.0% 0.2206/5.7% 0.2072/-0.7% 0.1856/-11.1%
MAP 0.1307/0.0% 0.2565/96.3% 0.1387/6.1% 0.1450/10.9% 0.1399/7.0% 0.1299/-0.6%

Precision 0.1571/0.0% 0.2688/71.1% 0.1677/6.7% 0.1751/11.4% 0.1700/8.2% 0.1597/1.6%
Recall ~ 0.1354/0.0% 0.2576/90.3% 0.1435/6.0% 0.1493/10.3% 0.1438/6.2% 0.1325/-2.1%

#Hops 40.9/0.0% 55.57/35.5% 23.6/-424% 149/-63.6% 9.8/-76.0% 6.6/-83.8%
Costs 35.7870.0% 34.52/-35% 37.54/4.9% 38.63/8.0% 40.00/11.8% 41.98/17.3%
(b) h=2
Dec.,c' =0 Cent.,c' =0 Dec.,c' =0.1 Dec., ¢’ =0.25 Dec.,c' =05 Dec.,c =1

P@10 0.5694/0.0% 0.6586/15.7% 0.5560/-2.4% 0.5278/-7.3% 0.4797/-15.8% 0.4198/-26.3%
P@30 0.3141/0.0% 0.3774/20.2% 0.3300/5.1% 0.3301/5.1% 0.3167/0.8% 0.2920/-7.0%
MAP 0.2066/0.0% 0.2565/24.2% 0.2206/6.8% 0.2232/8.0% 0.2194/6.2% 0.2079/0.6%

Precision 0.2360/0.0% 0.2688/13.9% 0.2520/6.8% 0.2559/8.4% 0.2536/7.4% 0.2448/3.7%
Recall 0.2139/0.0% 0.2576/20.5% 0.2278/6.5% 0.2295/7.3% 0.2255/5.4% 0.2136/-0.1%

#Hops 45.2/0.0% 55.57/22.7% 23.3/-484% 149/-67.1% 10.1/-77.7% 7.21-84.2%
Costs 34.10/0.0% 34.52/1.3% 35.73/4.8% 36.84/8.1% 38.24/12.2% 40.61/19.1%
(c)h=3
Dec.,c' =0 Cent,c' =0 Dec,c =0.1 Dec., ¢’ =025 Dec.,c' =0.5 Dec,c =1

P@10 0.6307/0.0% 0.6586/4.4% 0.6284/-0.4% 0.6048/-4.1% 0.5618/-10.9% 0.4987/-20.9%
P@30 0.3757/0.0% 0.3774/0.5% 0.4012/6.8% 0.4045/7.7% 0.3939/4.8% 0.3652/-2.8%
MAP 0.2541/0.0% 0.2565/0.9% 0.2765/8.8% 0.2822/11.1% 0.2816/10.8% 0.2688/5.8%

Precision 0.2810/0.0% 0.2688/-4.4% 0.3056/8.8% 0.3125/11.2% 0.3142/11.8% 0.3036/8.0%
Recall 0.2625/0.0% 0.2576/-1.8% 0.2844/8.3% 0.2891/10.1% 0.2892/10.2% 0.2752/4.8%

#Hops 45.0/0.0% 55.5/233% 22.0/-51.0% 14.4/-68.1% 10.1/-77.6% 7.6/-83.2%
Costs 33.08/0.0% 34.52/44% 34.13/32% 35.17/6.3% 36.62/10.7% 39.64/19.8%

3 In order to reduce the experimental effort, we used system-wide idf values in our experiments,
since earlier experiments showed that the difference between system-wide and hub-local
idf values is negligible.

A Decision-Theoretic Model for Decentralised Query Routing 157

5.2 Results

Table [depicts the results for our HyperCube topology. First, the tables show that
centralised selection (“cent.”) outperforms decentralised variants (“‘dec.”) in terms of
effectiveness. Compared to ¢’ = 0 (ignoring time costs), precision in the top ranks de-
creases with increasing time costs ¢’ (for a single hop). Precision in lower ranks, mean
average precision (MAP) as well as set-based precision and recall, however, increase up
toc =0.5 (forh=1)or ¢ =1 (for h = 3 and the set-based values), before these values
decrease again. As intended, efficiency dramatically increases (i.e., less hubs and DLs
are selected) with increasing ¢’. Both effects nearly balance so that the overall costs
only slightly increase.

The table also reveals that for any fixed time cost user parameter ¢’, effectiveness
increases with a larger horizon &. In other words, a larger hub neighbourhood (with
more DLs considered) improves the cost estimation process. This fact shows that our
model makes good use of the knowledge provided. As also can be seen from these
figures, decentralised selection with time costs considered outperforms the two other
approaches.

As a summary, incorporating time costs in the selection process dramatically reduces
the final costs w. . t. the user’s preference. Moreover, the approach is capable of adjust-
ing to increasing time costs per hop ¢’ so that the final costs increase only marginally.
In addition, broadening the horizon leads to increased retrieval quality and marginally
lower costs.

6 Related Work

In contrast to the decision-theoretic framework (DTF) employed in this paper, most of
the other selection algorithms compute a score for every library. Then, the top-ranked
documents of the top-ranked libraries are retrieved and merged in a data fusion step.

The GIOSS system [4]] is based on the vector space model and — thus — does not refer
to the concept of relevance. For each library, a goodness measure is computed which
is the sum of all scores (in the experiments reported, SMART scores) of all documents
in this library w.r.t. the current query. Libraries are ranked according to the goodness
values.

The state-of-the-art system CORI [[]] uses the INQUERY retrieval system which
is based on inference networks. The resource selection task is reduced to a document
retrieval task, where a “document” is the concatenation of all documents of one library.
The indexing weighting scheme is quite similar to one employed in DTFE, but applied
to libraries instead of documents. Thus, term frequencies are replaced by document
frequencies, and document frequencies by collection frequencies. CORI also covers the
data fusion problem, where the library score is used to normalise the document score.
Experiments showed that CORI outperforms G1OSS [2].

Another ranking approach is based on language models [13]. Basically, the lan-
guage model of the collection is smoothed with a collection-independent (system-wide)
language model, and KL-divergence is used for ranking the DLs. The final document
ranking is computed in a result merging step by using the original (collection-biased)

158 H. Nottelmann and N. Fuhr

document probabilities, the DL scores, a smoothing factor, and Bayesian inversion. The
quality of this approach is slightly better than CORI.

The language model approach has been extended towards hierarchical peer-to-peer
networks in [6] for ranking neighbour peers (leaves and hubs). Hubs are described by
neighbourhood (which is not limited to the directly connected DLs), where the influence
of term frequencies of distant DLs is exponentially decreased. DLs and hubs are se-
lected separately, as DL and hub descriptions are not in the same order of magnitude. A
fixed number of hubs is selected, while a modified version of the semi-supervised learn-
ing algorithm [[12] is employed for computing a threshold for the number of selected
leaves.

The decision-theoretic framework has been extended towards peer-to-peer networks
in [8]. There, an extensive discussion of resource selection architectures for peer-to-peer
networks is presented. The architectures are classified based on the underlying resource
selection approach (DTF and CORI as a baseline), design choices like the locality of
knowledge (e.g. IDF values) and selections (centralised vs. decentralised), as well as
the network topology (hierarchical networks with DLs and hubs, distributed hash tables
and HyperCubes). Time costs, however, are not regarded there. The evaluation shows
that DTF slightly outperforms CORI in peer-to-peer networks. Centralised selection
has higher effectiveness than decentralised selection, but has an expensive cost esti-
mation collection phase. Distributed hash tables [14] and HyperCubes can reduce that
effort.

7 Conclusion and Outlook

This paper presents the first theoretical model for decentralised query routing in
hierarchical peer-to-peer networks, which also incorporates time costs (in addition to
traditional retrieval quality measures). For this, the decision-theoretic framework has
been extended to estimate the costs of DLs a neighbour hub would select in subsequent
phases. This estimation is based on statistical aggregations of the DLs’ content, as well
as the distance of the DLs to the hub. The advantages are two-fold: Hub costs are only
based on those DLs which the hub potentially selects (and, thus, can contribute to the
final result). Second, this approach allows us to take the distance of selected DLs (and,
thus, the associated time costs) into account.

The evaluation shows that the new P2P variant of the decision-theoretic framework is
capable to optimise the selection quality when time costs are considered. The final costs
(w.r.t. the user’s preference) are dramatically reduced. Moreover, the approach can
adjust to increasing time costs ¢’ per hop so that the final costs increase only marginally.
Furthermore, broadening the horizon leads to increased retrieval quality and marginally
lower costs.

Here we have tested our model under optimum conditions, in order to demonstrate
its general validity. Future work will concentrate on the development of approxima-
tions for less favourable settings. First, we will replace the empirical term distributions
Pr(R;) by appropriate theoretical distributions. Another issue is the reduction of the
required knowledge about the neighbourhood when constructing resource descriptions.
Currently, each hub has to provide separate statistics of all DLs in distance 1, for all

A Decision-Theoretic Model for Decentralised Query Routing 159

DLs in distance 2, and so on. As an alternative, approximate aggregated descriptions
will be investigated. In a similar way, we will work on modifications of the approach
for effectively dealing with cycles in the network.

References

(1]

(2]

(3]
(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with inference net-
works. In E. A. Fox, P. Ingwersen, and R. Fidel, editors, Proceedings of the 18th Annual
International ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 21-29, New York, 1995. ACM. ISBN 0-89791-714-6.

J. French, A. Powell, J. Callan, C. Viles, T. Emmitt, K. Prey, and Y. Mou. Comparing the
performance of database selection algorithms. In Proceedings of the 22nd International
Conference on Research and Development in Information Retrieval, pages 238-245, New
York, 1999. ACM.

N. Fuhr. A decision-theoretic approach to database selection in networked IR. ACM Trans-
actions on Information Systems, 17(3):229-249, 1999.

L. Gravano and H. Garcia-Molina. Generalizing GIOSS to vector-space databases and
broker hierarchies. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, VLDB’95, Proceed-
ings of 21th International Conference on Very Large Data Bases, pages 78-89, Los Altos,
California, 1995. Morgan Kaufman.

J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In D. Kraft,
O. Frieder, J. Hammer, S. Qureshi, and L. Seligman, editors, Proceedings of the 12th Inter-
national Conference on Information and Knowledge Management, New York, 2003. ACM.
J. Lu and J. Callan. Federated search of text-based digital libraries in hierarchical peer-to-
peer networks. In J. Callan, N. Fuhr, and W. Nejdl, editors, SIGIR Workshop on Peer-to-
Peer Information Retrieval, 2004.

H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval quality
for resource selection. In J. Callan, G. Cormack, C. Clarke, D. Hawking, and A. Smeaton,
editors, Proceedings of the 26th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, New York, 2003. ACM.

H. Nottelmann and N. Fuhr. Comparing different architectures for query routing in peer-
to-peer networks. In ECIR, pages 253-264. Springer, 2006.

J. Ritter. Why Gnutella can’t scale. No, really., 2001.
http://www.darkridge.com/~jpr5/doc/gnutella.html.

S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at TREC.
In Text REtrieval Conference, pages 21-30, 1992.

M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Digital libraries. In /st Workshop on
Agents and P2P Computing, 2005.

L. Si and J. Callan. A semi-supervised learning method to merge search engine results.
ACM Transactions on Information Systems, 24:457-49, 2003.

L. Si, R. Jin, J. Callan, and P. Ogilvie. = Language modeling framework for re-
source selection and results merging. In C. Nicholas, D. Grossman, K. Kalpakis,
S. Qureshi, H. van Dissel, and L. Seligman, editors, Proceedings of the 11th Interna-
tional Conference on Information and Knowledge Management, New York, 2002. ACM.
http://www-2.cs.cmu.edu/~callan/Papers/cikm02-1si.pdf.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications. In ACM SIGCOMM, 2001.
http://www.acm.org/sigcomm/sigcomm2001/pl2-stoica.pdf.

http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www-2.cs.cmu.edu/~callan/Papers/cikm02-lsi.pdf
http://www.acm.org/sigcomm/sigcomm2001/p12-stoica.pdf

Central-Rank-Based Collection Selection in
Uncooperative Distributed Information Retrieval

Milad Shokouhi

School of Computer Science and Information Technology
RMIT University, Melbourne 3001, Australia
milad@cs.rmit.edu.au

Abstract. Collection selection is one of the key problems in distributed
information retrieval. Due to resource constraints it is not usually feasi-
ble to search all collections in response to a query. Therefore, the cen-
tral component (broker) selects a limited number of collections to be
searched for the submitted queries. During the past decade, several col-
lection selection algorithms have been introduced. However, their perfor-
mance varies on different testbeds. We propose a new collection-selection
method based on the ranking of downloaded sample documents. We test
our method on six testbeds and show that our technique can signifi-
cantly outperform other state-of-the-art algorithms in most cases. We
also introduce a new testbed based on the TREC GOV2 documents.

1 Introduction

Distributed information retrieval (DIR) has attracted considerable research in-
terest during recent years. Centralized search engines are not capable of indexing
the hidden web [Raghavan and Garcia-Molina, [2001]. In addition, it is not feasi-
ble to crawl and index the web documents with the same rate that they change.
DiR has been introduced as a solution to these deficiencies. DIR techniques pro-
vide a search service over non-crawlable pages. They also return the recent ver-
sion of webpages without consuming costly resources for crawling. Distributed
search can be divided into three major steps; Firstly suitable collections are se-
lected for a query. Secondly, the query is sent to the selected collections and they
search their documents for suitable answers. Finally, the results from selected
collections are returned to the broker that then merges them for presentation to
the user.

In this paper, we focus on the collection selection stage. In DIR systems, each
collection is represented by a set of documents and vocabularies usually known as
collection summaries or representation sets. In cooperative environments, collec-
tions provide the broker with their term statistics and summaries m,

. However, in real-life environments such as the web, collections may be
uncooperative. In this case, collections are not willing to share their informa-
tion and the broker should gather small summary sets for each collection by

sampling ﬂQa.l]_an_andﬁmnﬁl], lZDD_].ﬂ Random queries are sent to each collection

and results are downloaded and stored as collection representation sets.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 160 2007.
© Springer-Verlag Berlin Heidelberg 2007

Central-Rank-Based Collection Selection in Uncooperative DIR 161

We propose a novel collection selection algorithm that can be used in both
cooperative and uncooperative environments. However, we focus on the latter
scenario as it is more similar to the practical situations. For each entered query,
our method ranks collections according to the ranking of their centrally held
sampled documents. The sampled documents from all collections are gathered
in a single central index. Each query is executed on this index and the collection
weights are calculated according to the ranking of their sampled documents. In
the next sections we show that this simple idea can outperform the state-of-
the-art methods on many testbeds including our new testbed created from the
TREC GOV2 documents.

2 Collection Selection

For a given query, the broker ranks available collections based on the computed
similarity values for their representation sets. It is not usually feasible to search
all collections for a query. Therefore, the broker selects a few collections that are
more likely to return relevant documents. For this purpose, the broker evaluates
the similarity of the entered query with the collection summaries. These sum-
maries vary from term statistics in cooperative situations ﬂf&mwﬂ, 11995,
Gravano et all, QM] to a limited number of documents downloaded by sam-
pling for uncooperative environments ﬂﬂalla.u_andﬁmnﬁl], 2001; |Craswell et all,

. The broker chooses those collections that have a summary similar to the
query.

Introduced by |Gravano et all [1999], GLOSS uses the document frequency and
weight of each term to select suitable collections. However, GLOSS uses unrealistic
assumptions such as uniform term weight distribution across all collections. In
cvv [Yuwono and Led, 1997], the fraction of documents inside each collection
that contain the query terms is used for collection selection.

CoORI1 mmﬂ, |L9_9j]] applies inference networks for collection selection. It
has been reported as the most effective method in many papers ,

2000; Powell and Frencl, m, but there are question marks over its effective-

ness |[D’Souza et all, .

12003] suggest a decision-theoretic framework (DTF)
that selects the best collections while reducing the overall costs such as time
and money. Despite having a theoretical foundation, the reported performance
of DTF is worse than CORI for short queries.

During recent years, new collection selection algorithms have been claimed to
produce better results than CORI [D’Souza etal.,2004a; Si et al., 2002: Si and
Callan, 2003a: 2004]. Si et al. [2002] developed a language modeling framework
for distributed information retrieval. Their system slightly outperforms CORI in
some cases. REDDE [Si and Callan, 2003a] ranks the collections based on the
estimated number of relevant documents they contain. REDDE has been shown
to be very effective on some testbeds. However, as we show in the next sections,
it produces poor results for some other testbeds.

162 M. Shokouhi

Si and Callan [2004] presented their Unified Utility Maximization (UUM)
framework for collection selection. UuM performs slightly better than REDDE on
some testbeds. However, it uses training data and logistic models that require
human relevance judgments.

We use CORI and REDDE as the benchmarks of our experiments because they
are the two well-known algorithms that do not require training data for collection
selection, and they both can work on uncooperative environments. In the next
section, we introduce a novel approach for selecting collections in DIR systems.

3 Central-Rank-Based Collection Selection

In uncooperative environments, collection summaries usually consist of a limited
number of documents downloaded by query-based sampling ﬂQalla.u_andﬁaneﬂ,
m. The query is compared to each of these summaries and collections are se-
lected based on the similarity of their summaries with the query ,
m or according to the estimated number of relevant documents they contain
ISi_and Callan, 2003a]. The ranking of sampled documents contains useful in-
formation that could be applied for selecting suitable collections. The set of all
collection summaries together approximates a global index of documents in all
collections and the ranking of summary documents could be seen as the result
of a query against this index.

We propose central-rank-based collection selection (CRCS) as a new method
that ranks collections according to the ranking of their summary documents and
show that it can effectively select suitable collections.

In CRres, an effective retrieval model is applied to the index of all sampled
documents from collections. We refer to this model as the central sample search
engine (CSSE). For each query, CSSE ranks the downloaded documents from col-
lections. Then, the weight of each collection is calculated based on the ranks of
its sampled documents that are in the top ~ results. We have arbitrarily set ~
to 50 for our experiments. How to identify an optimum value for this number is
left as future work. The documents ranked after + are less likely to be relevant
and should have no impact on collection weights.

The top v documents are ranked according to their probabilities of relevance.
Intuitively, the weight of a collection with a sampled document at rank one
should be incremented more than another collection with a sampled document
at rank say 40.

The impact of a sampled document D on the weight of its original collection
¢ is computed according to the position of that document in the top = results.
In the simplest form, this can be computed linearly as below:

N_Jr—J if J<v
R(Dj;) = {O otherwise (1)

where R(D;) represents the impact of document D at the jth rank of results
returned by CSSE. The impact of documents decreases linearly according to their

ranks. However, previous studies [Joachims et all, [2005; Manmatha et all, 2001]

Central-Rank-Based Collection Selection in Uncooperative DIR 163

suggest that the importance of documents for users and their probabilities of rel-
evance have a negative exponential relation with the document ranks. Therefore,
it might be more suitable to assign document scores in a negative exponential
manner as follows:

R(Dj) = avexp(—f3 x j) if Dj €5; (2)

Here, j is the rank of document D. Coefficient parameters a and [are two
constants respectively set to 1.2 and 2.8 in our experiments according to the
suggested figures by LJoachims et al! [2005]. We use crcs(l) when the impact
values are computed linearly and crRCs(e) when Eq. (@) is applied.

The size of a collection is also important for calculating its final weight. If
two collections contribute the same number of documents in the top-ranked re-
sults, the larger collection is likely to contain more relevant documents due to its
greater size. Collection size is an important factor that has to be considered dur-
ing collection selection. KL-divergence ﬂm, @], REDDE ,
@f.ﬁ_‘@_an and UUM [Siand Callan, 2004] all consider a collection size parameter
in their calculations. Since the exact values for collection sizes are not usually
available in uncooperative environments, we recommend that the size of each col-
lection be estimated using the capture-history method ﬂSthmhijj_aJ_], l2_0_05ﬂ]

In our experiments, we assume that the size of all collection summaries is the
same (300 documents). In practice, collection summaries might be different in
size. Larger summaries are more likely to contain the query terms, which means
that collections with larger summaries are more likely to be selected for any
given query. To overcome this bias, CRCS divides the weight of each collection
by the size of its representation set.

Putting this together, CRCS calculates the weight of each collection as below:

Ciz X R 3
CHmamx|S| DEE; (3)

where, CH is the size of collection ¢ estimated by the capture-history method

|2Q05_b|] We normalize the collection sizes by dividing the size of
each collection by the size of the largest collection involved (CH 44). |S;] is the
size of the representation set for collection ¢ that is the number of documents
downloaded by query-based sampling lQa.l]_a.u_andﬁmnﬁl], [2QQ].|] from that col-
lection. The weight of each collection is calculated by summing up the impact
values for its summary documents. In summary, CRCS computes the final weights
of collections as below:

— CSSE runs the query and ranks the sampled documents on the broker.

— The top v documents returned by CSSE are selected and their impact values
on the weights of their corresponding collections are calculated

— Collections are ranked according to the impact values of their sampled doc-
uments and their estimated sizes.

A similar technique is suggested by |Craswell et all ﬂ21)1)ﬂ] for collection selec-
tion. In their approach, the broker sends a number of training multi-term probe

164 M. Shokouhi

queries to collections. The top results from each collection are downloaded and
gathered together in a single index. Then, the broker applies an effective re-
trieval model to rank the downloaded documents for the initial training queries.
The search effectiveness of collection are computed according to their contribu-
tion to the top n (they suggested n = 20) results when the query is executed
on the downloaded documents. Our approach is different to their technique in
several ways; they calculate an effectiveness score for each collection according
to its performance for the training queries. The final weight of a collection is
computed by adding its effectiveness factor to the score calculated by a stan-
dard collection selection algorithms such as CORI. Unlike our approach, their
suggested technique has not been used independently without relying on other
collection selection methods. Also, while CRCS can select effective collections on-
line, the suggested method by [Craswell et. all, |24)Dﬂ] cannot capture this without
a sufficient number of offline training queries.

REDDE [Si_and Callarl, [2003a] also uses a similar strategy for collection selec-
tion. However, it ignores the rank difference of documents in the central sample
index and concentrates on selecting collections with the highest number of rel-
evant documents (high recall). In contrast, our novel CRCS method focuses on
selecting collections with high-quality documents (high precision).

In the following sections we compare the performance of CRCS with the other
state-of-the-art methods on different testbeds.

4 Experimental Testbeds and Evaluation Metrics

Several testbeds have been developed for DIR experiments. These testbeds may
be useful for evaluating DIR methods for specific applications such as enterprise
search. However, most of them are not suitable for evaluating DIR techniques on
the web because:

— The proposed testbeds are usually much smaller than the web collections
and cannot be considered as good instances of the current web servers. The
largest testbed reported so far is about 18 GB used by [Hawking and Thomas

. The other common testbeds are at most one sixth of this size[Powell
and French, 2003: Si and Callan, 2003b:a].

— Collections are generated artificially by allocating each document to a col-
lection according to a predefined criteria. This might be the author name or
the year of publicationﬂﬂmmlLa.nd_EmngH, 12003; Si_and Callax, DDDB_HQ]

— Collections usually only contain documents from the TREC newswire data.
Considering the diversity of topics on the web, testbeds containing only
news-related documents are not sufficient for unbiased evaluations.

In addition to the testbed deficiencies, there is a common defect with re-
lated work in this area; proposed algorithms are usually only tested on a few
testbeds and their robustness has not been evaluated on different test data.
In Section [l we show that the performance of DIR methods vary substantially
on different testbeds. This is consistent with previous work by

Central-Rank-Based Collection Selection in Uncooperative DIR 165

Table 1. Testbed statistics

Number of Documents Size

%1000 (MB)
Testbed Size (GB) Min Avg Max Min Avg Max
trec123-100col-bysource 3.2 0.7 10.8 39.7 28 32 42
trecd-kmeans 2.0 0.3 57 827 4 20 249
100-col-cov2 110.0 32.6 155.0 717.3 105 1126 3891

M] that investigates the impact of testbed characteristics on collection se-
lection algorithms. An algorithm that produces the best results on one dataset
does not necessarily perform as well on another. We also introduce a new testbed
based on the TREC GOV2 data. Our new testbed is more than six times larger
than the largest DIR testbed reported so far; it is about 36 times larger than

trec123-100col-bysource Iﬂm&lLand_Emndi lZDDﬂ Si_and Callan, lZMBHB 2004
, M}, and 55 times larger than trec4-kmeans M&&Jﬁ 12003D;
ijm 11999]. We test our method on six testbeds, so that we can fairly
compare its performance and robustness with other available approaches. Ta-
ble [l includes information about the three major testbeds that have been used
in our experiments. The other three testbeds are all generated from trec123-
100col-bysource, thus we do not present them in the table.

— trec4-kmeans (trec4): One hundred collections created from the TREC4
data. A k-means clustering algorithm have been used to organize the collec-
tions by topic [Xu and Croftl, [1999]. TREC topics 201-250 (description) and
their relevance judgments are used for performance evaluations. Collections
in this testbed are small and the average query length is 7.2 words.

— trec123-100col-bysource (uniform): One hundred collections are created
by organizing the documents from the TREC disks 1, 2, and 3 by source
and publication date. It is one of the most popular DIR testbeds and has
been used in many papers [Powell and French, 2003;|Si and Callan, 2003H;
2004; 1Si et _all, 2002]. TREC topics 51-100 (title) are used as queries with the
average length of 3 words per query.

— 100-co0l-GOV2 testbed (GOV2): In this new testbed, documents from
the largest 100 servers in the TREC GOV2 data—in terms of the number of
crawled pages—have been extracted and located in one hundred separate
collections. TREC topics 701-750 (title) were used as queries. On average
there are 3.2 words per query. The documents in all collections are from
crawled webpages and the size of this testbed is many times larger than the
current alternatives.

The other three testbeds are generated artificially from the uniform testbed
[Powell and French, 2003; ISi and Callax, 20034} 2004].

— trec123-AP-WSJ-60col (relevant): 24 Associate Press collections in the
uniform testbed are collapsed into a single large APress collection. The same
process is applied to 16 Wall Street Journal collections and they create a large

166 M. Shokouhi

WSJournal collection. The other collections remain unchanged. Two large
collections have higher density of relevant documents for the TREC queries.

— trec123-21db-60col (representative): Collections in the uniform testbed
are sorted by their name. Every fifth collection starting with the first is
merged into a large “representative” collection. The same process is applied
to every fifth collection starting from the second collection and they form
another large representative collection. The other collections are unchanged.

— trec123-FR-DOE-81col (nonrelevant): The 13 Federal Register and 6
Department of Energy collections in the uniform testbed are collapsed in
two large collections respectively called FR and DOE. The rest of collections
remain as were before. The larger collections have a lower density of relevant
documents.

Collection selection algorithms are often compared using a recall metric Ry,

[Powell and French, [2003; |Si_and Callan, [20034; 2004]

Zf:l B
Zi’c*l B;
Here, E is the collection selection ranking (CORI, REDDE, CRCS). B is the baseline
ranking that is the relevance based ranking (RBR) ﬂﬂm&l]_and_EanH 2003] in
our experiments. F; and B; are respectively the number of relevant documents
in the ith ranked collection of E and B.

Choosing collections with a greater number of relevant documents (high re-
call) does not always lead to higher search effectiveness in DIR experiments
ISi_and Callan, 20034; 2004]. Therefore, we also assess the effectiveness of al-
gorithms on each testbed using relevance judgments. In all testbeds, we down-
load 300 documents by query-based sampling[Callan and Connell, 2001] for each
collection. Although it has been argued that using static summary sizes for col-
lections is not always recommended M, 12006; IShokouhi et. all, Im(ml],
we use this number to make our results comparable to other published work in
this area [Callan and Connell, 2001 [Craswell et all, 2000; |Si and Callan, 2003a;
m Each collection returns at most 100 answers to the broker for the entered
query. We used ssL |Si and Callan, [2003b] algorithm to merge the returned re-
sults from the selected collections. The next section discusses the experimental
results.

Ry = (4)

5 Results

Figure [depicts the performance of different collection selection algorithms on
the trec4d and uniform testbeds. The horizontal axis in these figures shows the
cutoff values, which are the number of collections that are selected for each query.
The goal of collection selection methods is to select a few collections that contain
the best answers. Therefore, we only show the Ry values for cutoffs smaller than
20. This number is consistent with DIR experiments that are reported elsewhere

ISi_and Callan, [20034; 2004]. On the trec4 testbed, all methods produce almost

Central-Rank-Based Collection Selection in Uncooperative DIR 167

1.0—----- CORI 1.0 4
1 — - ReDDE 1
0.8 4—x— CRCS(l) 0.8 -
1 CRCS(e) 1
2 0.6 2 0.6
R PIEALE R
0.2 0.2 -
0.0 7 0.0 7
0 5 10 15 20 0 5 10 15 20
Cutoff (trec4) Cutoff (uniform)

Fig. 1. R values for the CORI, REDDE and CRCS algorithms on the trec4-kmeans (left)
and trec123-100col-bysource (right) testbeds

1.0—----- CORI 1.0 4
1 — - ReDDE 1
0.8 4—x— CRCS(l) 0.8 -
1 CRCS(e) . j‘*%aeeexx
2 0.6 2 0.6
g] 5 g]
e 0.4—_ % & 0.4—_ '
02 %X~ 024..-""
0.0 7 0.0 7
0 5 10 15 20 0 5 10 15 20
Cutoff (representative) Cutoff (relevant)

Fig. 2. R values for the CORI, REDDE and CRCS algorithms on the trec123-2ldb-60col
(left) and trec123-AP-WSJ-60col (right) testbeds

the same Ry, values for different cutoff points. For the uniform testbed, however,
REDDE has a clear advantage while other methods have similar performance.
We show later in this section that the advantage in recall does not have any
significant impact on the final search effectiveness.

The Ry values for the representative and relevant testbeds are illustrated in
Fig. 2 On the representative testbed, the difference between methods is negli-
gible. On the relevant testbed, CORI produces far worse results than the other
approaches. REDDE and CRCS(1) show similar outputs and they both work better
than cres(e) for smaller cutoff points.

Figure [B] shows the Rj values produced by different methods on the cov2
and non-relevant testbeds. The difference between methods on the non-relevant
dataset is negligible for all cutoff values. On the qov2 testbed, CORI selects
collections with more relevant documents for smaller cutoff points. For larger
cutoffs, all methods show similar outputs.

Higher recall values in the collection selection stage do not always lead to

high precision in the final results ﬂSj_zmd_Qal]_aﬂ, 120034l; 12_01)_41] Therefore, we

168 M. Shokouhi

1.0—----- CORI 1.0 4
1 — - ReDDE 1
0.8 4—x— CRCS(l)
17— CRCS(e)
2 0.6 g
R E
c 041 e
02"
0.0 7 0.0 7
0 5 10 15 20 0 5 10 15 20
Cutoff (nonrelevant) Cutoff (GOV2)

Fig. 3. R values for the CORI, REDDE and CRCS algorithms on the trec123-FR-DOE-
81col (left) and 100-col-Gov2 (right) testbeds

Table 2. Performance of different methods for the Trec4 (trec4-kmeans) testbed.
TREC topics 201-250 (long) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@l5 P@20 P@5 P@10 P@15 P@20
CORI 0.3000 0.2380 0.2133" 0.1910" 0.3480 0.2980 0.2587 0.2380
ReDDE 0.2160 0.1620 0.1373 0.1210 0.3480 0.2860 0.2467 0.2190
CRCS(1) 0.2960 0.2260 0.2013 0.1810" 0.3520 0.2920 0.2533 0.2310
CRCS(e) 0.3080 0.2400 0.2173" 0.1910" 0.3880 0.3160 0.2680 0.2510

evaluate the search effectiveness of algorithms using the TREC queries and rel-
evance judgments. We only report the results for cutoff=1 and cutoff=>5. The
former shows the system outputs when only the best collection is selected while
for the latter, the best five collections are chosen to get searched for the query.
We do not report the results for larger cutoff values because cutoff=>5 has shown
to be a reasonable threshold for DIR experiments on the real web collections
[Avrahami et all, 2006]. The P@x values show the calculated precision on the
top x results.

We select REDDE as the baseline as it does not require training queries and its
effectiveness is found to be higher than CORI and older alternatives [Si and callan,
2003a]. The following tables compare the performance of discussed methods on
different testbeds. We used the t-test to calculate the statistical significance
of difference between approaches. For each table, T and i respectively indicate
significant difference at the 99% and 99.9% confidence intervals between the
performance of REDDE and other methods.

Results in Table [2] show that on the trecd4 testbed, methods produce similar
precision values when five collections are selected per query. The numbers also
suggest that REDDE is not successful in selecting the best collection. It produces
poorer results than the other methods and the difference is usually significant
for P@Q15 and P@20.

Central-Rank-Based Collection Selection in Uncooperative DIR 169

Table 3. Performance of collection selection methods for the uniform (trec123-100col-
bysource) testbed. TREC topics 51-100 (short) were used as queries.

Cutoff=1
P@5 P@l10 P@l15 P@20
CORI 0.2520 0.2140 0.1960 0.1710
ReDDE 0.1920 0.1660 0.1413 0.1280
CRCS(1) 0.2120 0.1760 0.1520 0.1330

Cutoff=5
P@5 P@10 PQ@l15 P@20
0.3080 0.3060 0.2867 0.2730
0.2960 0.2820 0.2653 0.2510
0.3440 0.3240 0.3067 0.2860

CRCS(e) 0.3800% 0.3060F 0.2613* 0.22607 0.3960 0.37007 0.3480" 0.33107

Table 4. Performance of collection selection methods for the representative (trec123-
2ldb-60col) testbed. TREC topics 51-100 (short) were used as queries.

Cutoff=1
P@5 P@10 P@l15 P@20
CORI 0.2160 0.2040 0.1773 0.1730
ReDDE 0.3320 0.3080 0.2960 0.2850
CRCS(1) 0.3160 0.2980 0.2867 0.2740

Cutoff=5
P@5 P@10 P@l5 P@20
0.3520 0.3500 0.3347 0.3070
0.3480 0.3220 0.3147 0.3010
0.3160 0.3160 0.2973 0.2810

CRCS(e) 0.2960 0.2760 0.2467 0.2340 0.3400 0.3500 0.3333 0.3090

On the uniform testbed (Table[), crcs(e) significantly outperforms the other
alternatives for both cutoff values. CORI, REDDE, and CRCS(1) show similar per-
formance on this testbed. Comparing the results with the Ry values in Figure[Il
confirms our previous statement that selecting collections with a high number
of relevant documents does not necessarily lead to an effective retrieval.

For the representative testbed as shown in Table dl there is no significant
difference between methods for cutoff=5. Crcs(1), crcs(e) and REDDE produce
comparable performance when only the best collection is selected. The precision
values for CORI when cutoff=1 are shown in italic to indicate that they are
significantly worse than REDDE at the 99% confidence interval.

On the relevant testbed (Table [), all precision values for CORI are signifi-
cantly inferior to that of REDDE for both cutoff values. REDDE in general pro-
duces higher precision values than CRCS methods. However, none of the gaps are
detected statistically significant by the t-test at the 99% confidence interval.

Table 5. Performance of collection selection methods for the relevant (trec123-AP-
WSJ-60col) testbed. TREC topics 51-100 (short) were used as queries.

Cutoff=1
P@5 P@10 P@l5 P@20
CORI 0.1440 0.1280 0.1160 0.1090
ReDDE 0.3960 0.3660 0.3360 0.3270
CRCS(1) 0.3840 0.3580 0.3293 0.3120
CRCS(e) 0.3080 0.2860 0.2813 0.2680

Cutoff=5
P@5 P@10 P@l5 P@20
0.2440 0.2340 0.2333 0.2210
0.3920 0.3900 0.3640 0.3490
0.3800 0.3640 0.3467 0.3250
0.3480 0.3420 0.3280 0.3170

170 M. Shokouhi

Table 6. Performance of collection selection methods for the non-relevant (trec123-
FR-DOE-81col) testbed. TREC topics 51-100 (short) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@15 P@20 P@5 P@10P@15 P@20
CORI 0.2520 0.2100 0.1867 0.1690 0.3200 0.2980 0.2707 0.2670
ReDDE 0.2240 0.1900 0.1813 0.1750 0.3480 0.2980 0.2707 0.2610
CRCS(1) 0.2040 0.1860 0.1813 0.1800 0.3360 0.3220 0.2973 0.2860
CRCS(e) 0.32007 0.28207 0.25337 0.2240 0.3880 0.3600 0.3387" 0.32107

Table 7. Performance of collection selection methods for the Gov2 (100-col-GOv2)
testbed. TREC topics 701-750 (short) were used as queries.

Cutoff=1 Cutoff=5
P@5 P@10 P@l15 P@20 P@5 P@l10P@15 P@20
CORI 0.15927 0.1347" 0.1143 0.0969" 0.2735 0.2347 0.2041 0.1827
ReDDE 0.0490 0.0327 0.0286 0.0235 0.2163 0.1837 0.1687 0.1551
CRCS(1) 0.0980 0.0755 0.0667 0.0531 0.1959 0.1510 0.1442 0.1286
CRCS(e) 0.0857 0.0714 0.0748 0.0643 0.2776 0.2469 0.2272 0.2122

The results for Crcs(l), REDDE and CORI are comparable on the non-relevant
testbed (Table[d). Crcs(e) significantly outperforms the other methods in most
cases. On the cov2 testbed (Table [7), CORI produces the best results when
cutoff=1 while in the other scenarios there is no significant difference between
the methods.

Overall, we can conclude that CRCS(e) selects better collections and its high
performance remains robust. In none of the reported experiments, the precision
values for CRCS(e) were significantly poorer than any other method at the 99%
confidence interval. However, in many cases, the performance of CRCS(e) was
significantly better than the second best method at the 99% or 99.9% confidence
intervals. CORI and REDDE showed variable performance on different testbeds,
each outperforming the other on some datasets.

6 Conclusions

We have introduced a new collection selection method for uncooperative DIR en-
vironments. We have shown that our proposed CRCS method can outperform the
current state-of-the-art techniques. We investigated the robustness of different
collection selection algorithms and showed that the performance of REDDE and
CORI changes significantly on different testbeds while CRCS produces robust
results. We also introduced a new testbed for DIR experiments based on the
TREC GOV2 dataset. Our proposed testbed is about 36 times larger than the
most well-known DIR testbeds and more than 6 times larger than the largest
DIR testbed ever reported. Moreover, unlike traditional DIR testbeds that docu-

Central-Rank-Based Collection Selection in Uncooperative DIR 171

ments are assigned artificially into collections, collections in this testbed contain
downloaded web documents arranged by server.

Experiments reported in this paper are based on the assumption that all
collections are using the same retrieval model with equal effectiveness. However,
in practice, collections often use different retrieval models and have different
effectiveness. We plan to extend our experiments on collections with different
retrieval models. Finally, the most proper values for «, 8 and ~ have not been
investigated and will be explored in our future research.

Acknowledgment

I am grateful to Justin Zobel, for his valuable comments on this work.

References

T. Avrahami, L. Yau, Luo Si, and Jamie Callan. The FedLemur: federated search in the
real world. Journal of the American Society for Information Science and Technology,
57(3):347-358, 2006.

M. Baillie, L. Azzopardi, and F. Crestani. Adaptive query-based sampling of distributed
collections. In SPIRE String Processing and Information Retrieval Symposium, pages
316-328, Glasgow, UK, 2006.

J. Callan and M. Connell. Query-based sampling of text databases. ACM Transactions
on Information Systems, 19(2):97-130, 2001.

J. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with inference
networks. In Proc. ACM SIGIR Conf., pages 21-28, Seattle, Washington, 1995.

N. Craswell, P. Bailey, and D. Hawking. Server selection on the World Wide Web. In
Proc. ACM Conf. on Digital Libraries, pages 37-46, San Antonio, Texas, 2000.

D. D’Souza, J. Thom, and J. Zobel. Collection selection for managed distributed doc-
ument databases. Information Processing and Management, 40(3):527-546, 2004a.

D. D’Souza, J. Zobel, and J. Thom. Is CORI effective for collection selection? an explo-
ration of parameters, queries, and data. In Proc. Australian Document Computing
Symposium, pages 41-46, Melbourne, Australia, 2004b.

L. Gravano, C. K. Chang, H. Garcia-Molina, and A. Paepcke. STARTS: Stanford
proposal for Internet meta-searching. In Proc. ACM SIGMOD Conf., pages 207—
218, Tucson, Arizona, 1997.

L. Gravano, H. Garcia-Molina, and A. Tomasic. GIOSS: text-source discovery over the
Internet. ACM Transactions on Database Systems, 24(2):229-264, 1999.

D. Hawking and P. Thomas. Server selection methods in hybrid portal search. In Proc.
ACM SIGIR Conf., pages 75-82, Salvador, Brazil, 2005.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting
clickthrough data as implicit feedback. In Proc. ACM SIGIR Conf., pages 154-161,
Salvador, Brazil, 2005.

R. Manmatha, T. Rath, and F. Feng. Modeling score distributions for combining the
outputs of search engines. In Proc. ACM SIGIR Conf., pages 267-275, New Orleans,
Louisiana, 2001.

H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval
quality for resource selection. In Proc. ACM SIGIR Conf., pages 290-297, Toronto,
Canada, 2003.

172 M. Shokouhi

A. L. Powell and J. French. Comparing the performance of collection selection algo-
rithms. ACM Transactions on Information Systems, 21(4):412-456, 2003.

S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In Proc. 27th Int. Conf.
on Very Large Data Bases, pages 129-138, Roma, Italy, 2001. Morgan Kaufmann
Publishers Inc.

M. Shokouhi, F. Scholer, and J. Zobel. Sample sizes for query probing in uncooperative
distributed information retrieval. In Proc. Asia Pacific Web Conf., pages 63-75,
Harbin, China, 2006a.

M. Shokouhi, J. Zobel, F. Scholer, and S.M.M. Tahaghoghi. Capturing collection size
for distributed non-cooperative retrieval. In Proc. ACM SIGIR Conf., pages 316—
323, Seattle, Washington, 2006b.

L. Si and J. Callan. Unified utility maximization framework for resource selection. In
Proc. ACM CIKM Conf., pages 32-41, Washington, 2004.

L. Si and J. Callan. Relevant document distribution estimation method for resource
selection. In Proc. ACM SIGIR Conf., pages 298-305, Toronto, Canada, 2003a.

L. Si and J. Callan. A semisupervised learning method to merge search engine results.
ACM Transactions on Information Systems, 21(4):457-491, 2003b.

L. Si, R. Jin, J. Callan, and P. Ogilvie. A language modeling framework for resource
selection and results merging. In Proc. ACM CIKM Conf., pages 391-397, McLean,
Virginia, 2002.

J. Xu and B. Croft. Cluster-based language models for distributed retrieval. In Proc.
ACM SIGIR Conf., pages 254-261, Berkeley, California, United States, 1999.

B. Yuwono and D. L. Lee. Server ranking for distributed text retrieval systems on
the Internet. In Proc. Conf. on Database Systems for Advanced Applications, pages
41-50, Melbourne, Australia, 1997.

Results Merging Algorithm Using Multiple Regression
Models

George Paltoglou', Michail Salampasis’, and Maria Satratzemi'

! University of Macedonia, Egnatias 156, 54006 Thessaloniki, Greece
2 Technological Educational Institute of Thessaloniki, P.O. BOX 141, 57400 Thessaloniki,
Greece
{gpalt,cslmsa}@it.teithe.gr, maya@uom.gr

Abstract. This paper describes a new algorithm for merging the results of
remote collections in a distributed information retrieval environment. The
algorithm makes use only of the ranks of the returned documents, thus making
it very efficient in environments where the remote collections provide the
minimum of cooperation. Assuming that the correlation between the ranks and
the relevancy scores can be expressed through a logistic function and using
sampled documents from the remote collections the algorithm assigns local
scores to the returned ranked documents. Subsequently, using a centralized
sample collection and through linear regression, it assigns global scores, thus
producing a final merged document list for the user. The algorithm’s
effectiveness is measured against two state-of-the-art results merging
algorithms and its performance is found to be superior to them in environments
where the remote collections do not provide relevancy scores.

Keywords: Distributed Information Retrieval, Results Merging, Algorithms.

1 Introduction

With the proliferation of the Web, it has become increasingly difficult for users to
find relevant information to satisfy their information needs. Often, they are faced with
the decision of choosing amongst several information sources in order to find the
most appropriate that will provide the necessary information. A solution to this
problem is provided by search engines, which give users a starting point in finding
the information they need.

General purpose search engines nonetheless, only offer a limited solution. They
cannot index the whole of the WWW because of its prohibitive size and rate of
growth and thus index only parts of it. In addition to that, a large number of web sites,
collectively known as invisible web [2, 14], are either not reachable by search engines
or do not allow their content to be indexed by them and offer their own search
capabilities. Thus, a user posing a query to general purpose search engines may be
missing on relevant and highly qualitative information.

Distributed Information Retrieval (DIR [3]) offers a possible solution to the above
problems by offering users the capability of simultaneously searching remote
document collections (i.e. search engines or specific sites) through a single interface.

The challenge posed by DIR is on how to combine the results from multiple,
independent, heterogeneous document collections into a single merged result in such

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 173+184,{2007.
© Springer-Verlag Berlin Heidelberg 2007

174 G. Paltoglou, M. Salampasis, and M. Satratzemi

a fashion that the effectiveness of the combination approximates or even surpasses the
effectiveness of searching the entire set of documents as a single collection, if one
was possible. This process can be perceived as four separate but often interleaved
sub-processes. The source representation stage [4, 16], in which surrogates of the
available remote collections are created. The source selection [6, 12, 16] stage, in
which a subset of the available information collections is chosen to process the query.
The query submission stage, in which the query is submitted to the selected
collections. The results merging [8, 15] stage, in which the separate results are
combined into a single merged result list which is returned to the user.

The focus of this paper is on the last part of distributed information retrieval
process. Research [3, 6, 8, 15] has shown that the results merging phase is one of the
most important elements in DIR, because it directly affects the response that the users
get in return to their information need. Even if the most appropriate information
sources have been chosen in the previous stages, if the merging isn’t effective the
overall quality of the retrieval process will deteriorate.

The rest of the paper is divided as follows. Section 2 reports on prior work. Section
3 describes the new methodology proposed. Section 4 describes the setup of the
experiments. Section 5 reports and discusses the results and section 6 concludes the
paper, summarizing the findings and presenting ideas for further development.

2 Prior Work

Significant research has been made in distributed information retrieval in recent years.
Most of the focus has been on source selection, but significant progress has also been
made in results merging, too.

The STARTS [9] initiative is an attempt to facilitate the task of querying multiple
document sources through a commonly agreed protocol. It provides a solution for
acquiring resource descriptions in a cooperative environment and thus facilitates
source selection and results merging.

When cooperation from collections is not available (i.e. isolated environments),
techniques have been developed that allow for the estimation of their contents. Query-
based sampling [4] is such a technique that creates samples of the collections through
multiple one-term queries. Through the sample, important statistics concerning the
contents of the collection (such as terms, term frequencies, document frequencies etc)
can be inferred.

Merging the result lists from individual collection is a complex problem not only
because of the variety of retrieval engines that may be used by the individual
collections, but also because of the diversity of collection statistics. Some of the
results merging algorithms that have been proposed in recent years make use only of
the ranked lists of documents returned by the individual collections, while others
assume that the remote collections also return relevancy scores.

One of the first experiments in results merging was made by Voorhees in [17]. In
that work two approaches where tested: one simple interleaving algorithm and a
probabilistic biased c-faced die algorithm. The interleaving approach is based on the
assumption that all chosen collections have the same number of relevant documents
and works by simply interleaving their results one by one. It was found to be highly
ineffective since this assumption is rather improbable in most environments. The

Results Merging Algorithm Using Multiple Regression Models 175

c-faced die approach produced better results and was considered the most
sophisticated technique that could be adopted in isolated environments in the absence
of both sample collections and relevancy scores. The probabilistic nature of the
algorithm was later re-examined in [18], and various deterministic approaches were
presented.

In environments where the remote collections return not only ranked lists of
documents but also relevancy scores, a variety of approaches have been proposed.
Raw score merging merges the results as they are returned from the remote
collections in a descending order, but it was found to be inefficient since for it to
function properly, it required that the relevancy scores be comparable (i.e. between 0
and 1). The problem of incomparable scores was overcome by normalizing the
returned scores at a common range. This approach produced better results, but the
problem of different corpus statistics, eventually resulted in incomparable scores.

Weighted scores merging overcomes the above issue by assigning each document a
score which is based both on the relevancy of the document itself and the relevancy of
the collection where it belongs. The CORI results merging algorithm [3, 6] is based
on a heuristic weighted scores merging algorithm and is considered state-of-the-art.
The final score of each document is calculated as shown below:

C\i= (Ci'Cmin) / (Cmax'cmin) (1)
D= (D'Dmin) / (Dmax'Dmin) (2)
D= (D +0.4*D *C) /1.4 3)

Equations (1) and (2) are used to normalize the collection and document scores to a
range of 0 to 1 while equation (3) assigns the final weighted document relevancy score.

The work presented in this paper is influenced by the work in [15]. The algorithm
presented in that paper, named semi-supervised learning (SSL), makes use of a
centralized index, comprised of all the sampled documents from the remote
collections. The algorithm takes advantage of the common documents between the
centralized index and the remote collections and their corresponding relevancy scores
to estimate a linear regression model between the two scores.

The work presented in this paper differs from that work considerably in that it does
not rely on relevancy scores returned from the remote collections, only ranked lists of
documents. It is therefore much more efficient in environments where the remote
collection provide minimum cooperation.

The results merging problem is often confused with the metasearch problem,
where a number of information retrieval algorithms pose a query to a single document
collection or multiple similar collections [10]. Most of the approaches under that
context are based on the concept that the more a document appears at the returned
lists of the individual algorithms, the more relevant it is. The work presented in this
paper assumes that the remote collections have no documents in common (i.e. are
non-intersecting), thus making the utilization of the above algorithms inappropriate.

Last but not least, a number of approaches download “on the fly”, partially or fully,
the returned documents in order to produce a final ranking [8]. The advantage of these
methods is that they can estimate “first hand” the relevancy of a document. The
disadvantages are that they have a significant time overhead and increased bandwidth
requirements even if the download is only partial.

176 G. Paltoglou, M. Salampasis, and M. Satratzemi

3 Results Merging Algorithm Using Multiple Regression Models

Most successful results merging algorithms [6, 15] rely on the concept that the remote
collections return relevancy scores along with their ranked lists. However, in most
modern environments, that is not the case. More often, remote collections return only
ranked lists, relying on the fact that the average user has no need for relevancy scores,
since they cannot be directly interpreted. Unfortunately, much less information is
conveyed in rankings. Even if a collection is minimally relevant to a query, and the
returned documents are only remotely relevant themselves, the rankings are the same
as those provided by a very relevant collection returning very relevant documents.

3.1 Maximizing Usage of Local Resources

The motivation behind the results merging algorithm presented in this paper is to
function effectively in environments where the remote collections provide the
minimum of cooperation. By minimum, it is assumed that the remote collections are
able to run queries and return ranked lists of documents, without scores. In order to
achieve the goal of effectiveness, it is important for the algorithm to maximize the
usage of available local resources. The sample collections that are created through
query-sampling are readily available to the algorithm since they are stored locally and
are under the control of the local authority. Their primarily use is for source selection
and are usually discarded afterwards. It was not until the work in [15] that they were
also utilized in later stages of the distributed information retrieval process.

In that work, all the sample documents from the individual collections were
indexed into one single centralized index. The purpose of that index was to function
as a representative of a single global index that would be created if all the documents
were available for indexing. Specifically, the document and term frequency patterns
were expected to resemble those that would be available under a centralized system.

The present work goes a step further and exploits this idea even more by regarding
the sample collection of each remote collection as its representative. Under that
notion, it is assumed that important statistics between the two collections (sample —
remote) share common patterns. It is not assumed, nor is it necessary, that the sample
collection be regarded as a complete representative of the remote collection, only that
the most prominent features of the remote would still be valid in the sample.

3.2 Lack of Relevancy Scores

Previous work [1] attempted to make up for the lack of relevancy scores wherever
that it was encountered by assuming that there is a linear mapping between the ranks
of documents and the relevancy scores. Specifically, in cases where the remote
collections did not return relevancy scores, artificial scores were assigned to the
returned documents, giving a score of 0.6 to the 1* ranked document and decreasing
at a steady rate until assigning a score of 0.4 to the last.

It has been shown in [7] none the less, that the decrease in relevancy is not linearly
connected to the ranking. Specifically, it was shown that a logistic function, with b<0,
would provide a better mapping. According to that work, the probability that
document D; is relevant given its rank X;, is given by the equation:

Results Merging Algorithm Using Multiple Regression Models 177

akbz;

e
e, “)

Prob [D‘ is Rel/x‘]:
1+e

Figure 1 demonstrates the expected correlation between relevancy and ranking.

Prob. of
relevance

X T R T T T

T T T T e
Fig. 1. Graph demonstrating the expected correlation between rank (x) and probability of
relevance (y). A logistic function with b < 0 was used to generate the S-curve.

Based on the above, the present work moves away from assigning artificial scores
linearly and attempts to estimate the actual graph for each individual collection in
order to produce accurate relevancy scores.

3.3 Estimating Local Relevancy Scores from Rankings

Following the source selection stage, the query is executed at the remote collections
and in parallel on the locally stored samples of the selected collections and on the
centralized index. We have used the inquery retrieval algorithm to query the local
collections and the centralized index but any effective retrieval algorithm would do
(kl divergence [19], okapi [13] etc). For each collection, two lists of documents are
returned, one from the remote collection, containing only a ranked list of documents
and one from the local sample, containing relevancy scores. The result list from the
centralized index is disregarded for the time being, as it is incorporated into the
algorithm at a latter stage. For each collection, the two document lists are compared
and all the common documents are stored along with the rank that they obtained at the
remote collection and the relevancy score at the local sample.

3.3.1 Estimating the S-Curve for Each Collection

Given the common documents found between the remote and the sampled collections,
the algorithm estimates the S-curve for each collection, thus assigning local scores to
the unseen documents returned from the remote collections. Influenced by the work in
[7], we hypothesize that the correlation between the rank X of a document and the
relevancy score Y is given by a logistic function:

¥
5]

Y=)

1+e atb*%

178 G. Paltoglou, M. Salampasis, and M. Satratzemi

Applying the following transformations, we are able to modify the above equation
into a linear one:

Y/(1-Y) = % (6)
In[Y/(1-Y)]=a + b*X @)
logit[Y]=a + b*X ®)

We need to estimate the parameters a, b of the above model in order to estimate the
S-curve for each collection. Since equation (8) is a linear one, that estimation can be
accomplished through linear regression.

3.3.2 Linear Regression
A linear regression model can be formally stated as:

y=a+b*x +e ©)]

where x is the independent variable (in our case, the rank of the document at the remote
collection), y is the dependent variable (the similarity score of the document in the
sample collection), a and b are the parameters of the model and e is the error (see below).

The observations used for the estimation of the model are pairs (x;, y;) i=1,...,n
where x; is the rank of the i common document, y; is the relevancy score of the
document in the sample collection and n is the number of common documents found.
Under that context, the aim of the model is to estimate parameters a and b that
minimize the error e which represents the difference between the observed values of y
and the ones estimated through the model. The best way to accomplish this is through
least-squares regression analysis. In particular, the algorithm aims at minimizing the
sum of squared residuals S:

s=>[v.%.] (10)

where y; is the observed relevancy score of the i common document and §; is the one
estimated by the model.
The problem can be formalized using matrix terminology as follows:

Y=X*B +¢ (11)
where
yl 1 X‘l e‘l
y 1x a €
Y=|"?|,x=| °|,B=| |,e| °
...... b
Y. I'x, e,

where n is the number of common documents found. The optimal solution for
parameters a and b is the one that minimizes S in equation (10) and is given by:

B=(X'X)'XY (12)

Results Merging Algorithm Using Multiple Regression Models 179

In the experiments that were conducted we used only the first 10 common
documents and disregarded the rest. Also, in order to better simulate the decline at the
end of the graph (Fig.1), we inserted a “fake” common document at rank 3000, with
score 0.001. Although these two adjustments were not necessary, they were found to
increase the effectiveness of the algorithm.

The above process is repeated for each collection chosen by the source selection
algorithm. Applying equation (5) with the estimated parameters for each remote
collection, the algorithm assigns local relevancy scores to all the documents returned.

3.4 Estimating Global Relevancy Scores

Having estimated a local score for each document returned from the remote
collections, the algorithm moves to the second phase, which is to estimate global
scores for the returned documents. It is at this stage that the result list returned from
the centralized index comes into use. As previously, the algorithm locates the
common documents returned from the sample collections and the centralized index
and stores their respective scores and fits a linear regression model to the data.

One might question whether linear regression is the best choice, or whether a
polynomial (non-linear) regression would fit the data in a better way. Various reasons
suggested the above decision. First of all, linear regression is consistent with the work
done in [15], where a linear regression model is used to fit the relevancy scores
attained from common documents at the remote collection and at the centralized
index. Also, extensive early experiments showed that the benefit from going from a
linear to a non-linear model would be minimal.

The pairs (x;, y;) i=1,...,m that will serve in the estimation of the parameters a and
b in this case are x; (the score assigned to the i common document from the sample
collection) and y; (the score assigned to the i common document from the centralized
index). Again, the preferred methodology for estimating the parameters is the least-
squares regression analysis, for which the optimal solution is given by equation (12).

Having estimated parameters a and b for each collection, the algorithm applies
equation (9) to all the documents returned from the remote collections, using as
independent variable the local score (x) that was attributed to them during the first
phase of the algorithm and producing a final global score (y).

4 Experiment Setup
We used the TREC123 testbed, divided into 100 collections [12], that has been used
extensively in DIR experiments. More information is provided below:

Trec123-100col-bysource: The documents in TREC 1, 2, 3 CDs are divided in 100
non-intersecting collections, organized by source and publication date. The contents
of the collections are somewhat heterogeneous.

Table 1. Statistics about the collection

Number of .. Number of Documents
Name . Size in GBs
Collections Min Max Avg

Trec123-100col 100 3.2 752 39713 10782

180 G. Paltoglou, M. Salampasis, and M. Satratzemi

For queries, we used the title field from TREC topics 51-150. The average length
of the queries is 3.1, which is typical for web queries.

Table 2. Statistics about the queries

Number of TREC Topic TREC Topic Av. Length in
Queries Set Field Words

Trec123-100col 100 51-150 Title 3.1

Name

For the experiments that were conducted, we used query-based sampling [4] for
source representation, sending one-word queries and downloading the first four
documents until a total of 300 documents per collection had been indexed. For source
selection, we used CORI [6], as it is one of the best performing algorithms:

T=df / (df+50+150*cw/avg_cw) (13)
I=log[(IDBI+0.5)/cf] / log[IDBI+1.0] (14)
p(r/Cy)=b + (1-b)*T*I (15)

where df is the number of documents in collection C; that contain term 1, cf is the
number of collection that contain term ry, cw is the number of terms in C;, avg_cw is
the average cw, IDBI is the number of available remote collections and b is the default
belief, set to the default value of 0.4.

An important factor that had to be examined was the retrieval algorithm that would
be used at the remote collections. Two strategies were possible; we could either
assume that all the remote collections operate on the same information retrieval
algorithm, or that those differ. In order to make the experiments more realistic, the
second approach was adopted. Three retrieval algorithms were implemented (inquery
[5], kl-divergence language model [19] and the popular okapi algorithm [13]) and
they were assigned to the remote collections in a round robin fashion. All the
algorithms, including our own, were implemented using the Lemur Toolkit [11].

We also had to carefully consider the range of artificial scores that CORI and SSL
would use. In [1] it was suggested that a good range would be 0.6-0.4. Indeed, after
testing various ranges, it was found that although the differences weren’t significant
that range produced slightly better results.

5 Results

5.1 Number of Common Documents

For the algorithm to function properly, a minimum number of common documents
need to be found between the sample and the remote collections and between the
sample collections and the centralized index. Effectively, since we only utilize the
first 10 common documents between the sample and the remote collections, any more
than 10 are not needed. We report on the number of common documents found in
both phases in a variety of settings below.

Results Merging Algorithm Using Multiple Regression Models 181

5.1.1 Remote and Sample Collections

Figure 2 shows the number of common documents that were found between the
sample and the remote collections for queries 51-150 when 10 collections were
selected to return 1000 and 300 documents each (left and right graph respectively). In
the first case, the number of common documents is between 20 and 40 in the majority
of queries, but there are 33 occasions out of 1000 (100 queries*10 collections) in
which less than 3 documents were located. For these collections, although regression
would be possible, a “fall-back” strategy was adopted and manufactured scores were
assigned to the returned documents, as in [1].

400 600
350
g 300 e
c 250 2 400
£ 200 £ 3w
£ 150 [=
= 00 B 200

100
o

10 20 30 40 50 60 70 80 50 100110120 T T
10 20 30 40 50 60 7O 80 90 100110120
CommaonDocuments CommonDocuments

Fig. 2. Number of common documents found between the sample and the remote collections,
when 1000 and 300 documents were returned from each (left and right graph respectively). The
instances (y axis) refer to the number of times that the number of common documents found
between a sample and a remote collection is as the corresponding interval at the x axis.

When 300 documents are requested, the number of common documents is, as
expected, decreased. In 541 instances out of 1000, 0—-10 common documents are
found. The number of occasions where less than 3 documents were located and a
“fall-back” strategy had to be adopted increased to 52, which although higher than in
the previous setting, is still only a small fraction (5.2%).

5.1.2 Sample Collections and Centralized Index

A second question raised is whether enough common documents are found between
the sample collections and the centralized index. Since both the sample collections
and the centralized index are under our control, we have chosen to always request the
maximum number of returned documents. Results are shown on figure 3.

Instances

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Common documents

Fig. 3. Number of common documents between the samples and the centralized index

182 G. Paltoglou, M. Salampasis, and M. Satratzemi

Although there is still a small number of instances (35 out of 1000) where there are
less than 3 common documents, in the majority of cases enough documents are found

to perform the second stage regression.

5.2 Precision

In distributed information retrieval environments it is usually inefficient to retrieve all
the relevant documents scattered in the remote collections. Especially, when the focus
of the retrieval is on the results merging part of the process, the focus is on precision.
Tables 3 to 5 report the results on precision at rankings 5 to 30 in a variety of
settings. The percentages in parentheses report the difference between the new

algorithm and CORI (left parenthesis) and SSL (right parenthesis) respectively.

Table 3. Precision using 10 collections, each one returning 1000 documents

Precision CORI SSL Multiple Regression Models
At 5 docs: 0.1460 0.1560 0.1620 (+10.9%) (+3.8%)
At 10 docs: 0.1370 0.1350 0.1440 (+5.1%) (+6.6%)
At 15 docs: 0.1260 0.1267 0.1327 (+5.3%) (+4.7%)
At 20 docs: 0.1180 0.1205 0.1260 (+6.7%) (+4.5%)
At 30 docs: 0.1113 0.1103 0.1133 (+1.7%) (+2.7%)

Table 4. Precision using 10 collections, each one returning 300 documents

Precision CORI SSL Multiple Regression Models
At5docs: 0.1340 0.1600 0.1780 (+32.8%) (+11.2%)
At 10 docs: 0.1340 0.1470 0.1540 (+14.9%) (+4.7%)
At 15 docs: 0.1333 0.1373 0.1427 (+7.0%) (+3.9%)
At 20 docs: 0.1300 0.1290 0.1335 (+2.7%) (+2.6%)
At 30 docs: 0.1260 0.1177 0.1177 (-6.5%) (+0.0%)

Table 5. Precision using 3 collections, each one returning 300 documents

Precision CORI SSL Multiple Regression Models
At 5 docs: 0.1360 0.1580 0.1740 (+27.9%) (+10.1%)
At 10 docs: 0.1360 0.1300 0.1480 (+8.8%) (+13.9%)
At 15 docs: 0.1293 0.1187 0.1380 (+6.7%) (+16.2%)
At 20 docs: 0.1205 0.1075 0.1255 (+4.1%) (+16.7%)
At30docs: 0.1153 0.0947 0.1083 (-6.1%) (+14.4%)

It can be seen that the new results merging algorithm outperforms both CORI and
SSL in most settings, often by a nontrivial margin. Even in settings where the remote
collections return only a limited number of documents (i.e. 300) the new algorithm

still manages to keep the precision at high levels.

Results Merging Algorithm Using Multiple Regression Models 183

6 Conclusions and Future Work

In this paper a new results merging algorithm was presented. It was designed
explicitly to function effectively in settings where the remote collections return only
ranked lists of documents, without relevancy scores. The effectiveness of the
algorithm was tested against two state-of-the-art algorithms and was found to be
superior to them.

Even more, the algorithm could be implemented to make use of relevancy scores
whenever they are available, combining rank and score in producing the final
document list.

Lastly, a methodology was provided on how to assign scores in environments
where only ranked lists are returned using sampled documents. Although the
particular methodology wasn’t explicitly tested, the performance of the results
merging algorithm indicate that there is at least some merit in it.

Acknowledgements

This work was supported by PENED, measure 8.3, action 8.3.1 under, project number
404, named “Collection fusion algorithms”.

References

1. Avrahami, T. T., Yau, L., Luo Si, Callan, J.: The Fedlemur Project: Federated Search in
the Real World. J. Am. Soc. Inf. Sci. Technol. 57, no. 3 (2006) 347-58
2. Bergman, M.: The deep web: surfacing the hidden value http://www.brightplanet.com/
resources/details/deepweb.html BrightPlanet. (2001)
3. Callan J.: Distributed Information Retrieval, In W.B. Croft, editor, Advances in
information retrieval, Kluwer Academic Publishers, chapter 5, 127-150
4. Callan, J., Connell M.: Query-based Sampling of Text Databases. ACM Trans. Inf. Syst.
19, no. 2 (2001) 97-130
5. Callan, J. P., Croft, W., B., Harding, St., M.: Inquery Retrieval System. 3rd International
Conference on Database and Expert Systems Applications (1992) 78-83.
6. Callan, J., Zhihong, L. U., Croft, W. B.: Searching Distributed Collections With Inference
Networks. SIGIR '95 (1995) 21-28
7. Calve, A. Le, Savoy, J.: Database Merging Strategy Based on Logistic Regression. Inf.
Process. Manage. 36, no. 3 (2000) 341-59
8. Craswell, N., Hawking D., Thistlewaite P. B.: Merging Results from Isolated Search
Engines. Australasian Database Conference (1999) 189-200
9. Gravano, L., Chang, C., Garcia-Molina, H., Paepcke A.: STARTS: Stanford proposal for
internet meta-searching. 20" SIGMOD (1997) 207-218.
10. Lee, J., H.: Analyses of multiple evidence combination. (1997) 267-276
11. Lemur Toolkit http://www.lemurproject.org
12. Powell, A., L., French, J., C., Callan J., Connell, M., Viles, C., L.: The Impact of Database
Selection on Distributed Searching. SIGIR '00 (2000) 232-239
13. Robertson, S., E., Walker, S., Hancock-Beaulieu M., Gatford M.: Okapi at Trec-3. TREC-
3 (1994) 109-126.

184 G. Paltoglou, M. Salampasis, and M. Satratzemi

14. Sherman, C.: Search for the invisible web. Guardian Unlimited (2001)

15. Si L., Callan J.: A Semisupervised Learning Method to Merge Search Engine Results.
ACM Trans. Inf. Syst. 21, no. 4 (2003) 457-91

16. Si L., Callan, J.: Relevant Document Distribution Estimation Method for Resource
Selection. SIGIR '03 (2003) 298-305

17. Voorhees, E. M., Gupta, N. K., Johnson-Laird, B.: The Collection Fusion Problem. TREC-
3 (1994) 500-725

18. Yager, R., R., Rybalov, A.: On the Fusion of Documents From Multiple Collection
Information Retrieval Systems. J. Am. Soc. Inf. Sci. 49, no. 13 (1998) 77-84

19. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad
hoc information retrieval, SIGIR'01 (2001) 334-342.

Segmentation of Search Engine Results for
Effective Data-Fusion

Milad Shokouhi

School of Computer Science and Information Technology
RMIT University, Melbourne 3001, Australia
milad@cs.rmit.edu.au

Abstract. Metasearch and data-fusion techniques combine the rank
lists of multiple document retrieval systems with the aim of improving
search coverage and precision.

We propose a new fusion method that partitions the rank lists of
document retrieval systems into chunks. The size of chunks grows ex-
ponentially in the rank list. Using a small number of training queries,
the probabilities of relevance of documents in different chunks are ap-
proximated for each search system. The estimated probabilities and nor-
malized document scores are used to compute the final document ranks
in the merged list. We show that our proposed method produces higher
average precision values than previous systems across a range of testbeds.

1 Introduction

In traditional information retrieval, a centralized search system is responsible
for crawling and indexing the documents and ranking them for user queries.

In the practice, there are many cases that combining the outputs of multiple
retrieval systems may produce better results than using a single monolithic
system. Metasearch [Meng et all, [2002], distributed information retrieval (DIR)
m, M] and data-fusion , techniques all combine the results of
different retrieval models to produce a richer rank list.

Compared to centralized search engines, metasearch engines have several ad-
vantages. Some of these benefits, as noted by other researchers [Aslam and
Montague, 2001; Meng et al., 2002; Vogt, 1999] are listed below:

High recall: Compared to centralized search engines, metasearch engines can
provide a broader search coverage over the internet documents. Commercial
search engines index varying portions of the web graph and the amount of overlap
between their sets of indexed documents is small. For example, the amount of
overlap between the indexed documents by Googleﬂ and Yahoof is estimated to

be less than 45% [Bar-Yossef and Gurevich, 2006]

! WWW.google.com
www.search.yahoo.com

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 185{197,|2007.
© Springer-Verlag Berlin Heidelberg 2007

186 M. Shokouhi

High precision: A document that is returned by multiple search engines for a
query is more likely to be relevant than another document that is returned by
only a single search engine. A previous study suggests that search systems are
not likely to return the same nonrelevant documents HE, @] while they may
return the same relevant documents. Therefore, the search precision improves
by giving high ranks to documents that are returned by multiple search engines.
This is also known as the chorus effect ﬂ@,

Typically, the top-ranked answers returned by search engines have higher
density of relevant documents compared to the other results. Therefore, a result
list that is generated from the top-ranked documents of different search engines
is more likely to contain relevant documents than the outputs of a single search
engine. This is also known as the skimming effect ﬂ@, @]

Remowal of spam pages: Spam pages can be avoided by combining the results
of multiple search engines. It is unlikely that several search engines return a

particular spam page for a given query [Dwork et all, [200].

Easy updates: The contents of many web documents such as news pages change
frequently. While centralized search engines cannot update their index with the
same rate, metasearch techniques can be useful for providing a search service
over the most recent documents [Rasolofo et. all, 2003].

These benefits were originally suggested for metasearch engines but most of
them are also valid for DIR and data-fusion techniques.

Data-fusion methods merge the results of different ranking functions that are
applied on a single text collection [Aslam and Montague, 2001; Croft, 2000; Fox
and Shaw, 1993; Lee, 1997; Lillis et al., 2006; Vogt, 1999]. In metasearch—also
known as collection fusion—the query is sent to different search engines that
may have different rates of overlap. In other words, data-fusion is a special form
of metasearch where the overlap between search engines is 100% @, @}

When the amount of overlap between search systems is negligible, metasearch
can be classified under the DIR category. Therefore, DIR can be considered as a
special form of metasearch where the overlap between search systems in either
none or negligible Mﬁ@m, 2 .

In this paper, we propose a novel data-fusion technique that can effectively
merge the results of different ranking functions that are applied to a single
collection. Our algorithm partitions the rank lists returned by search engines
into separate chunks. The probability of relevance for documents in each chunk
is computed for all search engines. The final score of a document is calculated
according to its probabilities of relevance in multiple result sets. We show that
the merged lists produced by our method have higher mean average precision
compared to the alternatives.

2 Data Fusion

Perhaps, the simplest data-fusion method is the round-robin strategy

Savoy et all, [1996] or interleaving [Voorhees et all, [1994], where documents re-

turned by all search systems are treated equally and are merged according to

Segmentation of Search Engine Results for Effective Data-Fusion 187

their ranks. The final merged list produced by the round-robin strategy con-
tains the top-ranked documents from all search systems followed by the second
top-ranked documents and so forth. Since the search effectiveness of different
ranking functions is ignored by round-robin, it is not suitable for environments
where both poor and effective search systems are involved. A more sophisticated
model of interleaving is suggested by [Voorhees et all ﬂl&%ﬂ In this approach,
the effectiveness of retrieval models is approximated by training queries. The
number of documents that are included in the final merged list from each col-
lection depends on the approximated effectiveness of that model in the training
phase.

Several combination methods are suggested by [Fox and Shaw ﬂ_’l_9_93; |_LQ9_4I] to
compute the score of documents that are returned by more than a single search
system. CombSUM and CombMNZ are the most successful of these methods and
are used in many metasearch engines such as Metacrawler Eﬁﬂm_gjmm
m and SavvySearch [Dreilinger and Howd, 1997]. ITn CombSUM, when a doc-
ument d is returned by multiple retrieval models, all scores are added together
to produce the final score. In CombMIN and CombMAX, respectively the mini-
mum and maximum values among the scores reported by different search systems
are used as the final score. CombMNZ adds all the reported scores for a docu-
ment and multiplies the sum value to the number of retrieval models that have
returned that document (d) as below:

N
CombMNZy=» D x [D° > 0| (1)

Here, N is the number of input rank lists for data-fusion and |D¢ > 0] is the
number of rank lists that contain the document d. D¢ is the normalized score of
document d in the rank list ¢ and is computed as:

Sa—D

D¢ = min 2
Dfnaz - D1cwzn ()

Where Sj; is the score of document d in the rank list ¢ before normalization.
DS ... and D¢ . are the minimum and maximum document scores available in

the rank list. We use CombMNZ as one of our baselines because it is a common

benchmark for the data-fusion experiments m 11997; |Aslam and Montague,
20005 2001; Manmatha et all, [2001; ILillis et all, 2006].

- m | proposed a modified version of CombMNZ where document ranks
are used instead of document scores. Linear combination methods for data-fusion
have been investigated [Vogt_and Cottrell, 1999; Vogt, DDDH,U})_QQ] in which, doc-
uments are merged according to their normalized relevance scores. Both training
data and document scores are needed for calculating the final score of a docu-
ment. A logistic regression model is suggested by [Calvé and Savoy ﬂl)i)ﬂ] to map
the document ranks to the probabilities of relevance. Their suggested approach
produces slightly better results than linear combination methods.

A probabilistic fusion approach is suggested by [Aslam_and Montagud ﬂ20_0_d]

They assume that the the probability of relevance of a document in any given

188 M. Shokouhi

rank is known for each retrieval model. They use those probabilities to calculate
the final document scores for merging. Their suggested method—also known
as Bayes-fuse ﬂAslam and Montague, 2001]—can produce comparable results
to CombMNZ. Borda-fuse ﬂA_ﬁ_a.m_aJ:ld_Mgm_l;a,gj_lgl7 |2£)D_1ﬂ is inspired by a voting
algorithm. In Borda-fuse, documents are merged according to their ranks and
no training data is required. |Aslam and Montagud ﬂ2£)1)_1|] showed that the per-
formance of Borda-fuse is usually slightly lower (but comparable) than that of
standard fusion techniques such as CombMNZ. Manmatha et all [2001] empiri-
cally showed that for a given query, the distributions of scores for relevant and
nonrelevant documents respectively follow normal and exponential curves. They
used curve-fitting techniques to map the document scores to the probabilities
of relevance. Then the outputs of search engines can be merged by averaging
the probabilities of relevance for documents. They showed that their proposed
approach can produce similar results to those of CombMNZ.

In ProbFuse ﬂLilliLe:La.U, IZO_OH], each of the returned rankings is divided into k
consecutive segments. [Lillis et all HZQOQ] empirically showed that for the TREC
adhoc experiments, where each submitted run (rank list) contains 1000 answers
per query, dividing lists into 25 segments produces effective results. That is, for
each rank list, the first 40 answers for a query are considered as the first segment.
Answers 41-80 generate the second segment and so forth. For each search system,
the probability of relevance of documents in each segment is estimated by using
training queries as follows:

ZQ— [R,ql
P(rel|d;) = qilem’“ where Sizej, = 25 (3)

Here, P(rel|d}) represents the probability of relevance of a document (d), that
has been returned in the kth segment of the rank list ¢. @ is the number of
training queries and | Ry, 4| is the number of relevant documents that are returned
in the kth segment of the rank list for the training query q. Once the probabilities
of relevance for each system are calculated, ProbFuse uses them to calculate
the merging scores of documents. The final document scores are calculated by
summing up their probabilities of relevance in all systems (the chorus effect) as:

N C
ProbFuse; = Z P(T(Zw’“) (4)

C

Where N is the total number of search systems used for data-fusion. ProbFuse
divides the probability of relevance of a document by its segment number (k).
This strategy advantages the documents that appear on the top ranks of each
result set (the skimming effect). ProbFuse is one of the most recent and effective
data-fusion methods. Thus, we use it as one of the baselines in our experiments.

In the following sections we introduce our data-fusion technique and compare
it with two other baselines. We show that our method can produce better merged
lists than the competitive approaches.

Segmentation of Search Engine Results for Effective Data-Fusion 189

3 SegFuse

In this section, we describe SegFuse, our novel data-fusion technique. SegFuse is
a probabilistic data-fusion method that estimates the probabilities of relevance of
documents using a small number of training queries. SegFuse can be summarized
in three steps:

1. For each search system, the returned rank list is partitioned into chunks.
The size of chunks increases exponentially in the rank lists.

2. For each search system, the probability of relevance for documents in each
chunk is estimated using a few training queries.

3. The final score of a document is computed according to its probabilities
of relevance in the rank lists. SegFuse merges the results and ranks the
documents according to their final scores.

As for ProbFuse |Lillis et all, M, the outputs of each ranking function
are divided into segments. However, there are two major distinctions between
SegFuse and the suggested approach by [Lillis et al! [2006].

First, in ProbFuse, the size of segments is always constant (say 40). Equation
) suggests that a document that is returned in the rank 39 of a result set
with the relevance probability of R is advantaged over another document that
is returned at the top-rank of another result set with the relevance probability
of R — e. This is against the skimming effect which suggests that top-ranked
documents should be advantaged. We propose that the size of segments be varied
exponentially according to the ranks. Therefore, the rank difference of documents
is considered more effectively.

Second, ProbFuse ignores the scores of documents that may be provided by
search systems. We propose the use of the normalized document score values.

In SegFuse, the probability of relevance of a document d returned in the
kth segment of a result set ¢ is calculated by averaging the number of relevant
documents that are returned in that segment for the training queries:

ZqQ:l Iéi;;;é«zl
Q
Here, k is the segment number of document d in the result set c. @ is the total
number of training queries and |Ry, 4| is the number of relevant documents that
are returned for the training query ¢ in the kth segment of the result set c. Sizey,
is the number of documents that are available in the kth segment of the rank list.
The parameters of the exponential function are chosen empirically according to
our preliminary experiments. For a given result set, the first top five documents
are included in the first segment. Segment two consists of the documents between
ranks 6 to 20. The other segments are defined with an exponential increase in
the size. Note that except for the way that Sizey is calculated, this is the same

equation that is used by ProbFuse in Eq. ([3).
The strategy used by SegFuse for calculating the segment size is inspired by
the observations of other researchers regarding that the probabilities of relevance

P(relldy) = where Sizej, = (10 x 2¥71) — 5 (5)

190 M. Shokouhi

for documents and their importance for users decrease exponentially[Joachims
et al., 2005; Manmatha et al., 2001]. In a given rank list, a few top documents
are usually more important for users [Joachims et all, m&ﬂ and have the highest
probability of relevance [Manmatha. et all, 2001]. The difference between docu-
ments becomes negligible as we move towards the bottom of a rank list. There
might be other exponential functions that produce more effective results. But
we leave the investigation of an optimum exponential function as future work.
SegFuse calculates the final score of a document as:

N
SegFuse, = ZP(reHdi) x D¢+ P(rel|df) (6)

Where N is the total number of rank lists that contain the document d. D¢
is the normalized score of document d returned by collection ¢ that is com-
puted by equation (2)). Note that, unlike ProbFuse, the scores are not divided by
the segment number. That is because the highly ranked documents are already
advantaged by Eq. (@). Such documents are picked from smaller populations
with higher density of relevant documents compared to those in other segments.
In general, the skimming and chorus effects are implicitly considered by equa-
tions (&) and (@) respectively.

4 Testbeds

To evaluate our model and compare it with other techniques we created two
testbeds from the result sets submitted to the TREC3 and TREC) conferences.
For the TREC3 experiments ﬂm, @], 40 runs were submitted by different
participants to the adhoc track for the TREC topics 151-200. We randomly
picked 30 files from the submitted runs. We then assign the selected files into
six groups each containing five submissions.

In the TRECS5 conference |Voorhees and Harmaﬂ, |L9£Mﬂ], participants were
asked to submit their results for the adhoc track for two categories A and B. In
CategoryB the queries (TREC topics 251-300) were only executed on a subset
of data. We use the results submitted for CategoryA, where queries are on the

Table 1. Six groups are created from the submitted runs to the TREC3 conference.
Each group contains five runs that are chosen randomly from the results submitted to
the TREC3 adhoc task for topics 151-200.

Runl Run2 Run3 Run4 Runb5
G1 input.assctv2 input.clartm input.rutfua2 input.siems2 input.topic4
G2 input.assctvl input.brkly6 input.citri2 input.eth001 input.virtul
G3 input.brkly7 input.cityal input.eth002 input.nyuirl input.xerox3
G4 input.acqntl input.clarta input.erimal input.nyuir2 input.padrel
G5 input.citril input.lsiaOmf input.padre2 input.topic3 input.vtc2s2
G6 input.citya2 input.inql01 input.pircsl input.siemsl input.vtchs2

Segmentation of Search Engine Results for Effective Data-Fusion 191

Table 2. Seven groups are created from the submitted runs to the TRECS5 conference.
Each group contains five runs that are chosen randomly from the results submitted to
the TREC5 adhoc task for topics 251-300.

Runl Run2 Run3 Run4 Run5j
G1 input.Cor5A2cr input.ibmge2 input.LNmFull2 input.uwgexl input.vtwnAl
G2 input.Cor5Alse input.DCU962 input.ibmgel input.INQ302 input.pircsAAS
G3 input.anubman4 input.colm1l input.genrld input.ibms96b input. KUSG2
G4 input.Cor5M2rf input.DCU964 input.ETHasl input.gmu96aul input.ibmgd?2
G5 input.CorbM1le input.erliAl input.fsclt3 input.gmu96au2 input.pircsAM1
G6 input.city96al input.DCU961 input.genrl3 input.LNaDescl input.pircsAAL
G7 input.CLCLUS input.genrll input.gmu96ma2 input.KUSG3 input.LNaDesc2

complete dataset. In total, there are 61 runs submitted by participants from
which we picked 35 randomly. We then assign the selected files randomly into
seven groups each containing five unique submissions.

Tables [0 and 2] respectively show the names of selected submissions from
TREC3 and TRECS5 runs that are used in our experiments. For both testbeds,
the runs in each group (G) are used together for the data-fusion experiments.

5 Experimental Results

We use CombMNZ and ProbFuse as the baselines of our experiments. The former
is a common baseline for data-fusion experiments [Lee, 1997; Aslam and Mon-
tague, 2000; 2001; Manmatha et al., 2001; Lillis et al., 2006] while the latter is
one of the most recent algorithms proposed in this area.

In both TREC3 and TRECS5 testbeds, the rank lists assigned to each group
are merged using our SegFuse method and the results are compared with that of
CombMNZ and ProbFuse. There are 50 TREC topics available for each testbed.
For ProbFuse and SegFuse methods that use training queries, we applied different
portions of available query sets for training and testing. For each testbed, we
used different training sizes @) where @ € {5,10, 15,20}. That is, 10%-40% of
the available queries in each testbed are used for training and the rest are used
for testing. Although CombMNZ does not use training queries, for the sake of
fair comparison, it was evaluated solely based on the testing subset of queries.

Data-fusion experiments are usually compared by the mean average precision
value and the produced average precision at different recall points [Aslam and
Montague, 2001; Manmatha et al., 2001; Lillis et al., 2006; Vogt, 2000].

Figure [depicts the 11-point average precision values obtained for varying
number of testing queries on both testbeds. The curves in each graph are pro-
duced by averaging the precision values of data-fusion runs on the available
groups when the specified number of testing queries are used. For example,
the precision values for SegFuse on the top-left graph are calculated as follows.
First, for each group in Table [l 10% of the available queries (topics 151-155)
are used for calculating the probabilities of relevance. Once the probabilities are

192 M. Shokouhi
1.0 5 1.0
0.8 _ SegFuse 08 _ SegFuse
_5 0.6 4 — — — ProbFuse _5 0.6 < — — — ProbFuse
g 1l ™. - CombMNZ g l N N