

Lecture Notes in Computer Science 4425
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Giambattista Amati Claudio Carpineto
Giovanni Romano (Eds.)

Advances in
Information Retrieval

29th European Conference on IR Research, ECIR 2007
Rome, Italy, April 2-5, 2007
Proceedings

13

Volume Editors

Giambattista Amati
Claudio Carpineto
Giovanni Romano
Fondazione Ugo Bordoni
Via Baldassarre Castiglione 59, 00142 Rome, Italy
E-mail:{gba, carpinet, romano}@fub.it

Library of Congress Control Number: 2007923290

CR Subject Classification (1998): H.3, H.2, I.2.3, I.2.6-7, H.4, H.5.4, I.7

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-71494-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71494-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12038824 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at ECIR 2007, the 29th European
Conference on Information Retrieval. The conference was organized by the Fon-
dazione Ugo Bordoni (FUB), in cooperation with the Information Retrieval Spe-
cialist Group of the British Computer Society (BCS-IRSG) and the ACM Special
Interest Group on Information Retrieval (ACM SIGIR). It was held during April
2–5, 2007 in Rome, hosted by the National Research Council of Italy (CNR).

The conference was initially established by BCS-IRSG in the United Kingdom
under the name “Annual Colloquium on Information Retrieval Research”. When
the involvement of Continental Europe became more important, it was decided
to alternate the conference venue between the UK and Continental Europe.
Starting from 2001, the conference was renamed ECIR. In the last few years,
ECIR has grown steadily, becoming the major European forum for research on
information retrieval.

ECIR 2007 has dramatically confirmed the growth trend, with a high record
number of submissions. In four years the number of full-paper submissions to
ECIR has nearly tripled, going from 88 (2004, Sunderland) to 124 (2005, Santiago
de Compostela), then to 175 (2006, London), and now to 220 (2007, Rome).
ECIR 2007 has also attracted more and more people from outside Europe, thus
making the conference a large, truly international event. Furthermore, in spite
of these major changes, the traditional strong focus on students has been well
preserved, for their participation has been massive.

The large number of sponsors of ECIR 2007 both reflects the increasing
importance of the conference and is a key to its success. The sponsorship con-
tribution was primarily used to support student attendance and to invite three
internationally renowned researchers to give a keynote speech, namely, Andrei
Broder (Yahoo! Research), Stephen Robertson (Microsoft Research Cambridge
and City University London), and Marco Gori (University of Siena).

Turning to the reviewing process, the Program Committee (PC) of ECIR
2007 was formed by 147 members, 41 of whom were non-European. To increase
consistency of refereeing, the PC was split in subgroups of homogeneous expertise
with three members each, and each subgroup was then assigned a bunch of
related papers.

In response to the call for papers, 220 submissions were received. Each sub-
mission was normally reviewed by three PC members. In case of a strong dis-
agreement, the reviewers were given a chance to change their reviews before
the PC meeting. The reviews were then thoroughly discussed by the 19 par-
ticipants in the PC meeting, which was held at FUB in Rome. Decisions were
based on the scores assigned by the reviewers and on the reviews themselves.
When the reviews of a paper were not sufficient to make a decision, the paper
went through an extra review at the PC meeting. Out of the 220 submissions,

VI Preface

42 were accepted for presentation at the conference. Interestingly, 23 of these
had a full-time student as the primary author.

In addition, at the PC meeting, it was decided to create a short-paper session
because there were many papers with good scores that would have been rejected
due to high competition and limited capacity for oral presentation at the confer-
ence. Nineteen papers were accepted as short papers. Short papers were given 8
pages in the proceeding (instead of 12), with the short-paper session consisting of
a brief oral presentation of all short papers followed by a poster-style exhibition.

There was also a separate call for posters. Each of the 72 poster submis-
sions was normally reviewed by three PC members, as with paper submissions.
Twenty-one posters were accepted for presentation.

The topics covered by the accepted papers span well-established as well
as emerging research areas, with a concentration on indexing techniques, dis-
tributed information retrieval, and query processing. The 42 full papers have
been grouped in the following way: Theory and Design (5), Efficiency (5), Peer-
to-Peer Networks (4), Result Merging (2), Queries (4), Relevance Feedback (2),
Evaluation (2), Classification and Clustering (4), Filtering (4), Topic Identifica-
tion (2), Expert Finding (2), XML (2), Web IR (2), Multimedia IR (2).

The success of ECIR 2007 was due to a huge number of people and several
organizations who were involved in the various stages of the whole process. We
thank the researchers who submitted their results, the members of the Program
Committee for reviewing many papers in a short time, the members of the local
Organizing Committee for their hard work over many months, the members of
the Award Committees for choosing the best paper and the the best student
paper, the keynote speakers for accepting our invitation, the Italian National
Research Council for providing the conference venue, the sponsoring organiza-
tions for providing the money. We are deeply indebted to all of them. We would
also like to thank the members of BCS-IRSG and the organizers of ECIR 2006
for their useful help. Finally, a special thanks to Fondazione Ugo Bordoni, whose
support was invaluable for running the whole conference.

We would like to conclude this preface on a more personal note. Although the
amount of work required was definitely harder than expected, we now feel that
it was worth it! Organizing and running ECIR 2007 was a great experience for
us. We are very happy especially because of our own historical involvement in
ECIR. We have seen how the conference has grown over time and we are proud
to have contributed to making it a key event in the information retrieval field.

Enjoy the papers!

January 2007 Giambattista Amati
Claudio Carpineto
Giovanni Romano

Organization

ECIR 2007 was organized by the Fondazione Ugo Bordoni (FUB), in collabora-
tion with the Information Retrieval Specialist Group of the British Computer
Society (BCS-IRSG) and the ACM Special Interest Group on Information Re-
trieval (ACM-SIGIR).

General and Program Chairs

Giambattista Amati, Fondazione Ugo Bordoni, Rome, Italy
Claudio Carpineto, Fondazione Ugo Bordoni, Rome, Italy
Giovanni Romano, Fondazione Ugo Bordoni, Rome, Italy

Local Organization Committee

Marilena Carletti, Fondazione Ugo Bordoni
Annalisa Filardo, Fondazione Ugo Bordoni
Sara Saverione, Fondazione Ugo Bordoni
Stefania Vinci, Fondazione Ugo Bordoni
Guido Zampilloni, Fondazione Ugo Bordoni

Program Committee

Maristella Agosti, University of Padova, Italy
James Allan, University of Massachusetts, Amherst, USA
Massih-Reza Amini, Université Pierre et Marie Curie, France
Einat Amitay, IBM Research Lab, Haifa, Israel
Giuseppe Attardi, University of Pisa, Italy
Leif Azzopardi, University of Strathclyde, UK
Ricardo Baeza-Yates, Yahoo! Research, Barcelona, Spain
Alex Bailey, Google, UK
Álvaro Barreiro, Universidade da Coruña, Spain
Roberto Basili, University of Tor Vergata, Roma, Italy
Holger Bast, Max Planck Institute for Informatics, Germany
Micheline Beaulieu, University of Sheffield, UK
Michel Beigbeder, École Nationale Supérieure, Saint-Etienne, France
Nicholas Belkin, Rutgers University, USA
Gloria Bordogna, IDPA CNR, Italy
Theo Bothma, University of Pretoria, South Africa

VIII Organization

Mohand Boughanem, University Paul Sabatier, France
Giorgio Brajnik, Università di Udine, Italy
Martin Braschler, Zurich University of Applied Sciences, Switzerland
Peter Bruza, Queensland University of Technology, Australia
Stefan Büttcher, University of Waterloo, Canada
Wray Buntine, Helsinki Institute of Information Technology, Finland
Fidel Cacheda, Universidade da Coruña, Spain
Jamie Callan, Carnegie Mellon University, USA
Caterina Caracciolo, FAO, Italy
David Carmel, IBM Research Lab, Haifa, Israel
Carlos Castillo, Yahoo! Research, Spain
Yves Chiaramella, IMAG, Grenoble, France
Paul-Alexandru Chirita, L3S Research Center, Hannover, Germany
Charles L. A. Clarke, University of Waterloo, Canada
Paul Clough, University of Sheffield, UK
Gordon Cormack, University of Waterloo, Canada
Nick Craswell, Microsoft, USA
Fabio Crestani, University of Strathclyde, UK
Bruce Croft, University of Massachusetts, Amherst, USA
Pablo De la Fuente, Universidad de Valladolid, Spain
Renato De Mori, University of Avignon, France
Maarten de Rijke, University of Amsterdam, The Netherlands
Arjen de Vries, CWI, The Netherlands
Marcello Federico, Istituto Trentino di Cultura, Italy
Ronen Feldman, Bar-Ilan University, Israel
Juan Manuel Fernández Luna, University of Granada, Spain
Paolo Ferragina, University of Pisa, Italy
Nicola Ferro, University of Padova, Italy
Edward Fox, Virginia Tech, USA
Johannes Fürnkranz, TU Darmstadt, Germany
Norbert Fuhr, University of Duisburg-Essen, Germany
Patrick Gallinari, LIP6, Université Pierre et Marie Curie, France
Éric Gaussier, Xerox Research Centre Europe, France
C. Lee Giles, Pennsylvania State University, USA
Mark Girolami, University of Glasgow, UK
Ayse Goker, Robert Gordon University, UK
Julio Gonzalo, UNED, Spain
Margaret Graham, Northumbria University, UK
Warren Greiff, The MITRE Corporation, USA
David Grossman, Illinois Institute of Technology, USA
Antonio Gulli, ASK, Italy
Cathal Gurrin, Dublin City University, Ireland
Preben Hansen, SICS, Sweden
David Hawking, CSIRO ICT Centre, Australia

Organization IX

Ben He, University of Glasgow, UK
William Hersh, Oregon Health Sciences University, USA
Djoerd Hiemstra, University of Twente, The Netherlands
Eduard Hoenkamp, University of Nijmegen, The Netherlands
Andreas Hotho, Universitt Kassel, Germany
Xiaohua Hu, Drexel University, USA
Theo Huibers, University of Twente, The Netherlands
Peter Ingwersen, Royal School of Library and Information Science, Denmark
Mario J. Gaspar da Silva, University of Lisbon, Portugal
Kalervo Jarvelin, University of Tampere, Finland
Gareth Jones, Dublin City University, Ireland
Joemon Jose, University of Glasgow, UK
Jaap Kamps, University of Amsterdam, The Netherlands
Jussi Karlgren, SICS, Sweden
Gabriella Kazai, Microsoft, Cambridge, UK
Manolis Koubarakis, Technical University of Crete, Greece
Wessel Kraaij, TNO TPD, The Netherlands
S. Ravi Kumar, Yahoo! Research, USA
Kui-Lam Kwok, Queens College, City University of New York, USA
Mounia Lalmas, Queen Mary, University of London, UK
Monica Landoni, University of Strathclyde, UK
Birger Larsen, Royal School of Library and Information Science, Denmark
Mun-Kew Leong, Laboratories of Information Technology, Singapore
David Lewis, David D. Lewis Consulting, USA
Xuelong Li, School of Computer Science and Information Systems, London, UK
Yang Lingpeng, Institute for Infocomm Research, Singapore
Christina Lioma, University of Glasgow, UK
David Losada, University of Santiago de Compostela, Spain
Craig Macdonald, University of Glasgow, UK
Andrew MacFarlane, City University, London, UK
Marco Maggini, University of Siena, Italy
Bernardo Magnini, Istituto Trentino di Cultura, Italy
Massimo Melucci, University of Padova, Italy
Alessandro Micarelli, University of Roma Tre, Italy
Stefano Mizzaro, University of Udine, Italy
Dunja Mladenic, Jozef Stefan Institute, Slovenia
Marie-Francine Moens, Katholieke Universiteit Leuven, Belgium
Alistair Moffat, University of Melbourne, Australia
Josiane Mothe, IRIT, France
Gheorghe Muresan, Rutgers University, USA
Jian-Yun Nie, University of Montreal, Canada
Michael Oakes, University of Sunderland, UK
Stanislaw Osinski, Poznan Supercomputing and Networking Center, Poland
Iadh Ounis, University of Glasgow, UK

X Organization

Marius Pasca, Google, USA
Gabriella Pasi, University of Milano - Bicocca, Italy
Jan O. Pedersen, Yahoo!, USA
Nils Pharo, Oslo University College, Norway
Vassilis Plachouras, University of Glasgow, UK
Jay Ponte, Google, USA
Victor Poznanski, Sharp, UK
Andreas Rauber, Vienna University of Technology, Austria
Stephen Robertson, Microsoft Research, UK
Thomas Rolleke, Queen Mary, University of London, UK
Stefan Rüger, Imperial College, UK
Song Ruihua, Microsoft Research Asia, China
Ian Ruthven, University of Strathclyde, UK
Dominich Sandor, University of Veszprem, Hungary
Ralf Schenkel, Max-Planck-Institut für Informatik, Germany
Hinrich Schuetze, University of Stuttgart, Germany
Giovanni Semeraro, University of Bari, Italy
Stefan Siersdorfer, Max Planck Institute for Computer Science, Germany
Fabrizio Silvestri, ISTI CNR, Italy
Alan Smeaton, Dublin City University, Ireland
Barry Smyth, University College Dublin, Ireland
Vaclav Snasel, VSB-Technical University Ostrava, Czech Republic
Eero Sormunen, University of Tampere, Finland
Amanda Spink, Queensland University of Technology, Australia
John Tait, University of Sunderland, UK
Martin Theobald, Max Planck Institute for Informatics, Germany
Ulrich Thiel, Fraunhofer IPSI, Germany
Anastasios Tombros, Queen Mary, University of London, UK
Andrew Tomkins, Yahoo!, USA
Stephen Tomlinson, Hummingbird, USA
Pertti Vakkari, University of Tampere, Finland
Keith van Rijsbergen, University of Glasgow, UK
Olga Vechtomova, University of Waterloo, Canada
Dawid Weiss, Poznan University of Technology, Poland
Ross Wilkinson, CSIRO ICT Centre, Australia
Wensi Xi, Google, USA
Tao Yang, ASK, USA
Elad Yom-Tov, IBM Research Lab, Haifa, Israel
Hugo Zaragoza, Yahoo! Research, Barcelona, Spain
Hua-Jun Zeng, Microsoft Research Asia, China
ChengXiang Zhai, University of Illinois at Urbana-Champaign, USA
Dell Zhang, University of London, UK
Justin Zobel, RMIT, Australia

Organization XI

Paper Awards (Sponsored by Yahoo! Research)

Best Paper Award Committee

Fabio Crestani, University of Strathclyde, UK (Chair)
David Losada, University of Santiago de Compostela, Spain
Hinrich Schuetze, University of Stuttgart, Germany

Best Student Paper Award Committee

Maristella Agosti, University of Padova, Italy (Chair)
David Lewis, David D. Lewis Consulting, USA
Giovanni Semeraro, University of Bari, Italy

Additional Reviewers

Eija Airio, University of Tampere, Finland
Mark Baillie, University of Strathclyde, UK
Nuno Cardoso, University of Lisboa, Portugal
Mauro Cettolo, Istituto Trentino di Cultura, Italy
Marco Degemmis, University of Bari, Italy
Gianna Del Corso, University of Pisa, Italy
Chris H.Q. Ding, Lawrence Berkeley National Laboratory, USA
Nicola Fanizzi, University of Bari, Italy
Stefano Ferilli, University of Bari, Italy
Claudio Giuliano, Istituto Trentino di Cultura, Italy
Milen Kouylekov, Istituto Trentino di Cultura, Italy
Jie Lu, Carnegie Mellon University, USA
Pasquale Lops, University of Bari, Italy
Joao Magalhaes, Imperial College, UK
Inderjeet Mani, The MITRE Corporation, USA
Vanessa Murdock, Yahoo! Research, Barcelona, Spain
Matteo Negri, Istituto Trentino di Cultura, Italy
Domenico Redavid, University of Bari, Italy
James Thom, RMIT, Australia

Table of Contents

Keynote Talks

The Next Generation Web Search and the Demise of the Classic IR
Model . 1

Andrei Broder

The Last Half-Century: A Perspective on Experimentation in
Information Retrieval . 2

Stephen Robertson

Learning in Hyperlinked Environments . 3
Marco Gori

Theory and Design

A Parameterised Search System . 4
Roberto Cornacchia and Arjen P. de Vries

Similarity Measures for Short Segments of Text . 16
Donald Metzler, Susan Dumais, and Christopher Meek

Multinomial Randomness Models for Retrieval with Document Fields . . . 28
Vassilis Plachouras and Iadh Ounis

On Score Distributions and Relevance . 40
Stephen Robertson

Modeling Term Associations for Ad-Hoc Retrieval Performance Within
Language Modeling Framework . 52

Xing Wei and W. Bruce Croft

Efficiency

Static Pruning of Terms in Inverted Files . 64
Roi Blanco and Álvaro Barreiro

Efficient Indexing of Versioned Document Sequences 76
Michael Herscovici, Ronny Lempel, and Sivan Yogev

Light Syntactically-Based Index Pruning for Information Retrieval 88
Christina Lioma and Iadh Ounis

Sorting Out the Document Identifier Assignment Problem 101
Fabrizio Silvestri

Efficient Construction of FM-index Using Overlapping Block Processing
for Large Scale Texts . 113

Di Zhang, Yunquan Zhang, and Jing Chen

XIV Table of Contents

Peer-to-Peer Networks (In Memory of Henrik
Nottelmann)

Performance Comparison of Clustered and Replicated Information
Retrieval Systems . 124

Fidel Cacheda, Victor Carneiro, Vassilis Plachouras, and Iadh Ounis

A Study of a Weighting Scheme for Information Retrieval in
Hierarchical Peer-to-Peer Networks . 136

Massimo Melucci and Alberto Poggiani

A Decision-Theoretic Model for Decentralised Query Routing in
Hierarchical Peer-to-Peer Networks . 148

Henrik Nottelmann and Norbert Fuhr

Central-Rank-Based Collection Selection in Uncooperative Distributed
Information Retrieval . 160

Milad Shokouhi

Result Merging

Results Merging Algorithm Using Multiple Regression Models 173
George Paltoglou, Michail Salampasis, and Maria Satratzemi

Segmentation of Search Engine Results for Effective Data-Fusion 185
Milad Shokouhi

Queries

Query Hardness Estimation Using Jensen-Shannon Divergence Among
Multiple Scoring Functions . 198

Javed A. Aslam and Virgil Pavlu

Query Reformulation and Refinement Using NLP-Based Sentence
Clustering . 210

Frédéric Roulland, Aaron Kaplan, Stefania Castellani, Claude Roux,
Antonietta Grasso, Karin Pettersson, and Jacki O’Neill

Automatic Morphological Query Expansion Using Analogy-Based
Machine Learning . 222

Fabienne Moreau, Vincent Claveau, and Pascale Sébillot

Advanced Structural Representations for Question Classification and
Answer Re-ranking . 234

Silvia Quarteroni, Alessandro Moschitti, Suresh Manandhar, and
Roberto Basili

Relevance Feedback

Incorporating Diversity and Density in Active Learning for Relevance
Feedback . 246

Zuobing Xu, Ram Akella, and Yi Zhang

Table of Contents XV

Relevance Feedback Using Weight Propagation Compared with
Information-Theoretic Query Expansion . 258

Fadi Yamout, Michael Oakes, and John Tait

Evaluation

A Retrieval Evaluation Methodology for Incomplete Relevance
Assessments . 271

Mark Baillie, Leif Azzopardi, and Ian Ruthven

Evaluating Query-Independent Object Features for Relevancy
Prediction . 283

Andres R. Masegosa, Hideo Joho, and Joemon M. Jose

Classification and Clustering

The Utility of Information Extraction in the Classification of Books 295
Tom Betts, Maria Milosavljevic, and Jon Oberlander

Combined Syntactic and Semantic Kernels for Text Classification 307
Stephan Bloehdorn and Alessandro Moschitti

Fast Large-Scale Spectral Clustering by Sequential Shrinkage
Optimization . 319

Tie-Yan Liu, Huai-Yuan Yang, Xin Zheng,
Tao Qin, and Wei-Ying Ma

A Probabilistic Model for Clustering Text Documents with Multiple
Fields . 331

Shanfeng Zhu, Ichigaku Takigawa, Shuqin Zhang, and
Hiroshi Mamitsuka

Filtering

Personalized Communities in a Distributed Recommender System 343
Sylvain Castagnos and Anne Boyer

Information Recovery and Discovery in Collaborative Web Search 356
Maurice Coyle and Barry Smyth

Collaborative Filtering Based on Transitive Correlations Between
Items . 368

Alexandros Nanopoulos

Entropy-Based Authorship Search in Large Document Collections 381
Ying Zhao and Justin Zobel

Topic Identification

Use of Topicality and Information Measures to Improve Document
Representation for Story Link Detection . 393

Chirag Shah and Koji Eguchi

XVI Table of Contents

Ad Hoc Retrieval of Documents with Topical Opinion 405
Jason Skomorowski and Olga Vechtomova

Expert Finding

Probabilistic Models for Expert Finding . 418
Hui Fang and ChengXiang Zhai

Using Relevance Feedback in Expert Search . 431
Craig Macdonald and Iadh Ounis

XML IR

Using Topic Shifts for Focussed Access to XML Repositories 444
Elham Ashoori and Mounia Lalmas

Feature- and Query-Based Table of Contents Generation for XML
Documents . 456

Zoltán Szlávik, Anastasios Tombros, and Mounia Lalmas

Web IR

Setting Per-field Normalisation Hyper-parameters for the Named-Page
Finding Search Task . 468

Ben He and Iadh Ounis

Combining Evidence for Relevance Criteria: A Framework and
Experiments in Web Retrieval . 481

Theodora Tsikrika and Mounia Lalmas

Multimedia IR

Classifier Fusion for SVM-Based Multimedia Semantic Indexing 494
Stéphane Ayache, Georges Quénot, and Jérôme Gensel

Search of Spoken Documents Retrieves Well Recognized Transcripts 505
Mark Sanderson and Xiao Mang Shou

Short Papers

Natural Language Processing for Usage Based Indexing of Web
Resources . 517

Anne Boyer and Armelle Brun

Harnessing Trust in Social Search . 525
Peter Briggs and Barry Smyth

How to Compare Bilingual to Monolingual Cross-Language Information
Retrieval . 533

Franco Crivellari, Giorgio Maria Di Nunzio, and Nicola Ferro

Multilingual Text Classification Using Ontologies . 541
Gerard de Melo and Stefan Siersdorfer

Table of Contents XVII

Using Visual-Textual Mutual Information and Entropy for Inter-modal
Document Indexing . 549

Jean Martinet and Shin’ichi Satoh

A Study of Global Inference Algorithms in Multi-document
Summarization . 557

Ryan McDonald

Document Representation Using Global Association Distance Model 565
José E. Medina-Pagola, Ansel Y. Rodŕıguez,
Abdel Hechavarŕıa, and José Hernández Palancar

Sentence Level Sentiment Analysis in the Presence of Conjuncts Using
Linguistic Analysis . 573

Arun Meena and T.V. Prabhakar

PageRank: When Order Changes . 581
Massimo Melucci and Luca Pretto

Model Tree Learning for Query Term Weighting in Question
Answering . 589

Christof Monz

Examining Repetition in User Search Behavior . 597
Mark Sanderson and Susan Dumais

Popularity Weighted Ranking for Academic Digital Libraries 605
Yang Sun and C. Lee Giles

Naming Functions for the Vector Space Model . 613
Yannis Tzitzikas and Yannis Theoharis

Effective Use of Semantic Structure in XML Retrieval 621
Roelof van Zwol and Tim van Loosbroek

Searching Documents Based on Relevance and Type 629
Jun Xu, Yunbo Cao, Hang Li, Nick Craswell, and Yalou Huang

Investigation of the Effectiveness of Cross-Media Indexing 637
Murat Yakıcı and Fabio Crestani

Improve Ranking by Using Image Information . 645
Qing Yu, Shuming Shi, Zhiwei Li, Ji-Rong Wen, and Wei-Ying Ma

N-Step PageRank for Web Search . 653
Li Zhang, Tao Qin, Tie-Yan Liu, Ying Bao, and Hang Li

Authorship Attribution Via Combination of Evidence 661
Ying Zhao and Phil Vines

Posters

Cross-Document Entity Tracking . 670
Roxana Angheluta and Marie-Francine Moens

XVIII Table of Contents

Enterprise People and Skill Discovery Using Tolerant Retrieval and
Visualization . 674

Jan Brunnert, Omar Alonso, and Dirk Riehle

Experimental Results of the Signal Processing Approach to
Distributional Clustering of Terms on Reuters-21578 Collection 678

Marta Capdevila Dalmau and Oscar W. Márquez Flórez

Overall Comparison at the Standard Levels of Recall of Multiple
Retrieval Methods with the Friedman Test . 682

José M. Casanova, Manuel A. Presedo Quindimil, and
Álvaro Barreiro

Building a Desktop Search Test-Bed . 686
Sergey Chernov, Pavel Serdyukov, Paul-Alexandru Chirita,
Gianluca Demartini, and Wolfgang Nejdl

Hierarchical Browsing of Video Key Frames . 691
Gianluigi Ciocca and Raimondo Schettini

Active Learning with History-Based Query Selection for Text
Categorisation . 695

Michael Davy and Saturnino Luz

Fighting Link Spam with a Two-Stage Ranking Strategy 699
Guang-Gang Geng, Chun-Heng Wang, Qiu-Dan Li, and
Yuan-Ping Zhu

Improving Naive Bayes Text Classifier Using Smoothing Methods 703
Feng He and Xiaoqing Ding

Term Selection and Query Operations for Video Retrieval 708
Bouke Huurnink and Maarten de Rijke

An Effective Threshold-Based Neighbor Selection in Collaborative
Filtering . 712

Taek-Hun Kim and Sung-Bong Yang

Combining Multiple Sources of Evidence in XML Multimedia
Documents: An Inference Network Incorporating Element Language
Models . 716

Zhigang Kong and Mounia Lalmas

Language Model Based Query Classification . 720
Andreas Merkel and Dietrich Klakow

Integration of Text and Audio Features for Genre Classification in
Music Information Retrieval . 724

Robert Neumayer and Andreas Rauber

Retrieval Method for Video Content in Different Format Based on
Spatiotemporal Features . 728

Xuefeng Pan, Jintao Li, Yongdong Zhang, Sheng Tang, and
Juan Cao

Table of Contents XIX

Combination of Document Priors in Web Information Retrieval 732
Jie Peng and Iadh Ounis

Enhancing Expert Search Through Query Modeling 737
Pavel Serdyukov, Sergey Chernov, and Wolfgang Nejdl

A Hierarchical Consensus Architecture for Robust Document
Clustering . 741

Xavier Sevillano, Germán Cobo, Francesc Aĺıas, and
Joan Claudi Socoró

Summarisation and Novelty: An Experimental Investigation 745
Simon Sweeney, Fabio Crestani, and David E. Losada

A Layered Approach to Context-Dependent User Modelling 749
Elena Vildjiounaite and Sanna Kallio

A Bayesian Approach for Learning Document Type Relevance 753
Peter C.K. Yeung, Stefan Büttcher, Charles L.A. Clarke, and
Maheedhar Kolla

Author Index . 757

The Next Generation Web Search and the

Demise of the Classic IR Model

Andrei Broder

Yahoo! Research, USA
broder@yahoo-inc.com

Abstract. The classic IR model assumes a human engaged in activity
that generates an “information need”. This need is verbalized and then
expressed as a query to search engine over a defined corpus. In the past
decade, Web search engines have evolved from a first generation based
on classic IR algorithms scaled to web size and thus supporting only
informational queries, to a second generation supporting navigational
queries using web specific information (primarily link analysis), to a third
generation enabling transactional and other “semantic” queries based on
a variety of technologies aimed to directly satisfy the unexpressed “user
intent”, thus moving further and further away from the classic model.

What is coming next? In this talk, we identify two trends, both rep-
resenting “short-circuits” of the model: The first is the trend towards
context driven Information Supply (IS), that is, the goal of Web IR
will widen to include the supply of relevant information from multiple
sources without requiring the user to make an explicit query. The in-
formation supply concept greatly precedes information retrieval; what is
new in the web framework, is the ability to supply relevant information
specific to a given activity and a given user, while the activity is being
performed. Thus the entire verbalization and query-formation phase are
eliminated. The second trend is “social search” driven by the fact that
the Web has evolved to being simultaneously a huge repository of knowl-
edge and a vast social environment. As such, it is often more effective
to ask the members of a given web milieu rather than construct elabo-
rate queries. This short-circuits only the query formulation, but allows
information finding activities such as opinion elicitation and discovery
of social norms, that are not expressible at all as queries against a fixed
corpus.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Last Half-Century: A Perspective on

Experimentation in Information Retrieval

Stephen Robertson

Microsoft Research Cambridge and City University London, UK
ser@microsoft.com

Abstract. The experimental evaluation of information retrieval systems
has a venerable history. Long before the current notion of a search en-
gine, in fact before search by computer was even feasible, people in the
library and information science community were beginning to tackle the
evaluation issue. Sometimes it feels as though evaluation methodology
has become fixed (stable or frozen, according to your viewpoint). How-
ever, this is far from the case. Interest in methodological questions is as
great now as it ever was, and new ideas are continuing to develop. This
talk will be a personal take on the field.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learning in Hyperlinked Environments

Marco Gori

Dipartimento di Ingegneria dell’Informazione, University of Siena, Italy
marco@dii.unisi.it

Abstract. A remarkable number of important problems in different
domains (e.g. web mining, pattern recognition, biology . . .) are natu-
rally modeled by functions defined on graphical domains, rather than
on traditional vector spaces. Following the recent developments in sta-
tistical relational learning, in this talk, I introduce Diffusion Learning
Machines (DLM) whose computation is very much related to Web rank-
ing schemes based on link analysis. Using arguments from function ap-
proximation theory, I argue that, as a matter of fact, DLM can compute
any conceivable ranking function on the Web. The learning is based
on a human supervision scheme that takes into account both the con-
tent and the links of the pages. I give very promising experimental re-
sults on artificial tasks and on the learning of functions used in link
analysys, like PageRank, HITS, and TrustRank. Interestingly, the pro-
posed learning mechanism is proven to be effective also when the rank
depends jointly on the page content and on the links. Finally, I argue
that the propagation of the relationships expressed by the links reduces
dramatically the sample complexity with respect to traditional learning
machines operating on vector spaces, thus making it reasonable the ap-
plication to real-world problems on the Web, like spam detection and
page classification.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, p. 3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Parameterised Search System

Roberto Cornacchia and Arjen P. de Vries

CWI, Kruislaan 413, 1098SJ, Amsterdam, The Netherlands
{roberto,arjen}@cwi.nl

Abstract. This paper introduces the concept of a Parameterised Search
System (PSS), which allows flexibility in user queries, and, more im-
portantly, allows system engineers to easily define customised search
strategies. Putting this idea into practise requires a carefully designed
system architecture that supports a declarative abstraction language for
the specification of search strategies. These specifications should stay as
close as possible to the problem definition (i.e., the retrieval model to
be used in the search application), abstracting away the details of the
physical organisation of data and content. We show how extending an
existing XML retrieval system with an abstraction mechanism based on
array databases meets this requirement.

1 Introduction

For many years, information retrieval (IR) systems could be adequately described
as software that assign an estimate of relevancy to a pair of document and query,
each represented as a ‘bag-of-words’. The implementation of such search systems
has been relatively straightforward, and most engineers code the retrieval model
directly on top of an inverted file structure.

Trends in research and industry motivate however a reconsideration of the
above characterisation of IR. First, modern retrieval systems have become more
complex, as they exploit far more than ‘just’ the text. For example, the ranking
function combines query and document text with other types of evidence, de-
rived from, e.g., document markup, link structure, or various types of ‘context
information’. Also, work tasks supported by search have become diverse. Within
organisations, enterprise search refers to intranet search, but also search over
collections of e-mail, finding expertise, etc. [1]. People use web search indeed for
the goal of ‘finding information about’, but also to book a hotel, find a job, hunt
for a house, just to name a few. Companies are targeting these niche markets
with specialised search engines (known as vertical search).

Today, the development of such specialised applications is the job of informa-
tion retrieval specialists. We expect however that, very soon, any software devel-
oper should be able to develop applications involving search. Actually, Hawking
has stated that ‘an obvious reason for poor enterprise search is that a high per-
forming text retrieval algorithm developed in the laboratory cannot be applied
without extensive engineering to the enterprise search problem, because of the
complexity of typical enterprise information spaces’ [1]. Simplifying the process
of tailoring search to a specific work task and user context should therefore be
an important goal of IR research!

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 4–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Parameterised Search System 5

This paper proposes that the engineering of search systems may proceed
analogous to the development of office automation applications using relational
database management systems – define the ‘universe of discourse’; design a con-
ceptual schema; express the user application in terms of this schema; and, design
the user interface. So, software developers of a search application should have
access to a high-level declarative language to specify collection resources and
retrieval model. The search engine can then be parameterised for optimal effec-
tiveness: adapted to the work task and user context, optimised for specific types
of content in the collection, and specialised to exploit domain knowledge.

1.1 Anatomy of a Parameterised Search System

We refer to this new generation of information retrieval systems as parameterised
search engines (PSSs). Fig. 1 illustrates how a PSS differs from the traditional
search engine, in the so-called abstraction language. Its main purpose is to de-
couple search strategies from algorithms and data structures, bringing what
the database field calls data independence to IR systems. This abstraction lan-
guage should enable the search system developer to specify search strategies
declaratively, ideally without any consideration of the physical representation of
document structure and content.

Compare this to current practise using IR software like Lucene, Lemur, or
Terrier. These systems provide a variety of well-known ranking functions, imple-
mented on top of the physical document representation. The modular design of
the IR toolkit allows application developers to select one of these ranking func-
tions suited for their search problem. Design decisions about how to rank, e.g.,
weighting various types of documents differently with respect to their expected
contribution to relevancy, will however be part of the application code.

Summarising, a PSS provides a declarative IR language. Search application
developers specify the desired search strategy for a specific user and task con-
text in this language. The system translates expressions in this language into
operations on its internal data structures to perform the actual retrieval.

1.2 Approach, Contributions and Outline

This raises many open questions, the obvious one of course what the abstraction
language could look like. The main contribution of this work is to demonstrate
feasibility of the idea of a PSS through a (preliminary) prototype implemen-
tation. We propose a very specific instantiation of a PSS, by extending an ex-
isting XML IR system (PF/Tijah) with a formal language for the specification
of retrieval models (Matrix Framework for IR). Another contribution is to opera-
tionalise this theoretical framework for IR on an array database system (SRAM),
such that it can be deployed in practical search system implementation.

The remainder is organised as follows. Section 2 describes the layered archi-
tecture of the XML retrieval system PF/Tijah. Section 3 details how we turn
PF/Tijah into a PSS named Spiegle. We introduce its two main ingredients,
the Matrix Framework for IR formalism and the array data-model abstraction of

6 R. Cornacchia and A.P. de Vries

User Query Language

Data
fetch / browse

algorithms

STRUCTURE

Retrieval
Models

Data Primitives

Storage

Conceptual Layer

Logical Layer

Physical Layer

CONTENT

System
Engineer

System
Engineer

(a) Traditional

User Query Language

Data
fetch / browse

algorithms

STRUCTURE

Retrieval
Models

Abstraction
language

Abstraction
language

Data PrimitivesData Primitives

Storage

Conceptual Layer

Logical Layer

Physical Layer

CONTENT

Data-model

Abstraction

Data-model

Data-model

Abstraction

Data-model

Data-model

Abstraction

Data-model

System
Engineer

System
Engineer

(b) Parameterised

Fig. 1. Comparison of Search System architectures

SRAM, and explain how these are integrated. Section 4 provides implementation
details. Related research is discussed in Section 5, before we conclude and outline
future work in Section 6.

2 Querying Content and Structure in PF/Tijah

A preliminary requirement of implementing a PSS is that it allows to express
search strategies that refer to structure and content. Spiegle meets this require-
ment by building upon PF/Tijah [2], a flexible environment for setting up XML
search systems.

PF/Tijah integrates XQuery and NEXI: XQuery to query and transform the
structure of XML documents, NEXI (Narrowed Extended XPath) [3] to rank
XML elements by their content. The resulting query language provides a pow-
erful way to customise (mainly) the structural aspects of a retrieval strategy.
Its layered system architecture, depicted in Fig. 2(a), uses the PathFinder (PF)
XQuery system [4] to query by structure, as well as to construct the preferred
result presentation. PathFinder translates the XQuery (non-ranked) part of a
query into a relational query plan, independently from the ranking component
of the system.

The Tijah XML retrieval system provides the XML IR support, by process-
ing the NEXI expressions in a query. NEXI is a subset of XPath (it allows
only descendant and self axis steps) that allows an additional about() clause,
which ranks the selected XML elements by their content. The following example
retrieves, from a database of scientific publications, The title of documents
written by John Smith, where the abstract is about “IR DB integration”:

A Parameterised Search System 7

NEXI

Data
fetch / browse

algorithms

STRUCTURE

Retrieval
Models

Relational
Primitives

PF / Relational
Primitives

Relational
Storage

Conceptual Layer

Logical Layer

Physical Layer

CONTENT

XML

TIJAH

SRA

System
Engineer

XQuery +

XML

PathFinder

PF/Relational

System
Engineer

(a) PF/Tijah

NEXI

Data
fetch / browse

algorithms

STRUCTURE

Retrieval
Models

Array
language

Relational
Primitives

PF / Relational
Primitives

Relational
Storage

Conceptual Layer

Logical Layer

Physical Layer

CONTENT

Arrays

SRAM

Relations

XML

TIJAH

SRA

System
Engineer

System
Engineer

XQuery +

XML

PathFinder

PF/Relational

(b) Spiegle

Fig. 2. Architectures of PF/Tijah and Spiegle

let $c := doc("papers.xml")//DOC[author = "John Smith"]
let $q := "//text[about(.//Abstract, IR DB integration)];"
for $res in tijah-query($c, $q)
return $res/title/text()

PF/Tijah translates the NEXI expression $q into a logical query plan
consisting of SRA (Score Region Algebra) operators [5].The SRA algebra includes
operators that perform the following tasks: (i) selection of the XML elements
that are to be ranked; (ii) a parameterised element score computation, imple-
menting the about() clause according to the desired retrieval model; (iii) a
parameterised element score combination, i.e. compute the score of AND and OR
combinations of about() clauses; (iv) a parameterised element score propaga-
tion, needed when scores need to be propagated to a common ancestor before
being combined. As depicted in Fig. 2(a), structured information retrieval queries
involve operations that act on structure (like (i)) and on content (e.g. (ii)). Each
SRA operator implementation is given in terms of relational database operators
(by a system engineer). Several retrieval models are supported out-of-the-box,
selected by an extra ‘options’ parameter to the tijah-query() function.

3 Spiegle: Turning an XML Retrieval System into a PSS

While PF/Tijah provides a powerful query language to embed search functional-
ity in data processing, it does not support customisation of the retrieval model.
Although advanced users may in principle modify the pre-defined mapping of
SRA operators to relational query plans to implement new ranking functions,

8 R. Cornacchia and A.P. de Vries

doing so is far from trivial. In other words, PF/Tijah supports the customisation
of the structural aspects of various search strategies, but it is inflexible with
respect to modifying the content aspects.

Spiegle overcomes this limitation in two steps. First, it supports the declarative
specification of retrieval models, by employing the Matrix Framework for IR. This
way, the search system engineer may implement information retrieval models at
a high level of abstraction. Second, SRAM translates the specified retrieval model
automatically into a relational query plan.

3.1 The Matrix Framework for IR: A Formalism for Search Strategies

The Matrix Framework for IR [6] (abbreviated to Matrix Framework) is a mathe-
matical formalism that maps a wide spectrum of IR concepts to matrix spaces
and matrix operations, providing a convenient logical abstraction that facilitates
the design of IR systems. Indexing, retrieval, relevance feedback and evaluation
measures are aspects described within the Matrix Framework. Also, it establishes
a consistent notation for frequencies in event spaces, readily available as building
blocks for IR applications in common matrix operation libraries.

We introduce only the part of the Matrix Framework that is focused on index-
ing and retrieval. First, we define three vectors, one for each of the dimensions
used in the framework: D = [wd]N×1 for documents, T = [wt]S×1 for terms and
L = [wl]R×1 for locations, with 1 ≤ d ≤ N , 1 ≤ t ≤ S and 1 ≤ l ≤ R. The quanti-
ties wd ≥ 0, wt ≥ 0 and wl ≥ 0 are the weight of document d, term t and location
l, respectively. In the simplest case, these weights are boolean values that de-
note presence/absence in the collection. The term “location” is rather generic
and covers concepts indicating document components of varying granularity,
such as section, paragraph, position, or XML element.

The content and the structure of each data collection are entirely described
by the two boolean matrices LDL×D (location-document) and LTL×T (location-
term), whereas each query is described by a vector QT×1. As defined in (1), each
value LD(l, d) tells whether location l belongs to document d and each value
LT (l, t) encodes the occurrence of term t at location l of the collection. Finally,
each query Q is described as a bit-vector of all collection-terms.

LD(l, d) =

{
0, if l /∈ d

1, if l ∈ d
, LT (l, t) =

{
0, if t /∈ l

1, if t ∈ l
, Q(t) =

{
0, if t /∈ Q

1, if t ∈ Q
(1)

Standard IR statistics are defined as simple operations on matrices LD andLT :

DTnl, DT – #term occurrences and term presence

DTnl = LDT · LT, DT = min(DTnl, Ones[|D| × |T |]),
Dnl, Tnl – #per-document and #per-term locations

Dnl = LDT · L, Tnl = LT T · L, (2)
Dnt, Tnd – #terms per document and #documents per term

Dnt = DT · T, Tnd = DT T · D,

where Ones[A × B] defines a matrix of size A × B, filled with 1’s.
A number of standard IR frequencies are easily derived from the quantities

defined above:

A Parameterised Search System 9

DTf – within-document term frequency

DTf (d, t) =
DTnl(d, t)

Dnl(d)
,

Dtf , Ditf – term frequency and inverse term frequency of a document

Dtf (d) =
Dnt(d)
|T | , Ditf (d) = −logDtf (d), (3)

Tdf , Tidf – document frequency and inverse document frequency of a term

Tdf (t) =
Tnd(t)
|D| , Tidf (t) = −logTdf (t),

Tnl – collection frequency of a term

Tf (t) =
Tnl(t)
|L| .

Finally, it is possible to define a number of retrieval models using the quan-
tities and the frequencies described above. The tf.idf approach is specified as
RSVtf.idf = DTf · diag (Tidf) · Q. Refer to [6] for many other retrieval models.

The Matrix Framework expresses indexing and retrieval tasks declaratively,
starting from a simple matrix-based representation of collection and queries,
and following a set of generic definitions that can be stored as a well-structured
system library. This facilitates the engineering of extensible retrieval systems,
as it allows a programming interface based on the array data-model (suited for
IR). Physical implementation is delegated to another, dedicated layer.

3.2 SRAM: An Array Data-Model Implementation

The SRAM system is a prototype tool for mapping sparse arrays to relations
and array operations to relational expressions. While SRAM syntax allows to
express array operations on an element by element basis, the system translates
such element-at-a-time operations to collection-oriented database queries, suited
for (potentially more efficient) bulk processing.

The SRAM language defines operations over arrays declaratively in com-
prehension syntax [7], which allows to declare arrays by means of the
following construct: A = [<array-cell value> | <array axes>]. The sec-
tion <array axes> specifies the shape SA of result array A, i.e., its number
of dimensions and their domain, denoted as: i0 < N0, . . . , in−1 < Nn−1. The
value of each dimension variable ij ranges from 0 to Nj − 1. The section
<array-cell value> assigns a value to each cell indexed by the index val-
ues enumerated by the <array axes> section. For example, the expression
Tidf = [-log(Tdf(t)) | t < nTerms] defines a new array Tidf [nTerms],
where the value of each cell is computed by applying the function − log to
corresponding cells of array Tdf . The explicit domain specification may be
omitted when its range is clear from the context, e.g., the more convenient
[-log(Tdf(t)) | t] is equivalent to [-log(Tdf(t)) | t < nTerms].

The language supports aggregations over any array dimension (sum, prod,
min, max). For example, summing per document the term frequency counts (in
a document-term matrix DTf) of query terms (in binary vector Q) is expressed
as: P = [sum([DTf(d,t) * Q(t) | t]) | d]. The shape SP of array P is
determined by the rightmost axis d.

10 R. Cornacchia and A.P. de Vries

Retrieving the top-N values is allowed for one-dimensional arrays only. The
result consists of the positions (in order) of the values in the original array. So,
T = topN(P, N, <ASC|DESC>) returns a dense array T with ST = [N]. The
actual values can then be fetched by dereferencing the original array, S = P(T).

The SRAM syntax allows definitions and assignments. Definitions are indicated
by the symbol “=”, as in all the expressions seen above. They are expanded symbol-
ically by a preprocessor at every occurrence in the array expression. Assignments,
indicated by the symbol “:=”, translate to database expressions whose result is
stored permanently in tables, named as indicated by the left part of the assign-
ment expression: <array name> := <comprehension expression>.

3.3 How Spiegle Applies the Array Data-Model

Fig. 2 shows how Spiegle inherits PF/Tijah’s logical layer, which provides an
algebraic abstraction (SRA) between the conceptual and physical layers. The
Spiegle architecture takes the point of logical abstraction further, by exploiting
the clean distinction between structure and content operations offered by SRA.
In the following, we first explain how the Matrix Framework can handle XML
documents. Next, we see how to bootstrap, index and rank XML collections
using the array data-model. The SRAM scripts shown are translated on-the-fly
into database queries executed by the backend.

The Matrix Framework and XML data. The formalism of the
Matrix Framework is not restricted to flat text search. Mapping the XML
structure to the three dimensions location, document and term is all that is
needed to apply the Matrix Framework to semi-structured collections. Each
XML file can be seen as a collection of documents, where each distinct XML
element represents a different one. The main difference from modelling plain text
collections is that locations are now shared among different (nested) elements.
Therefore, locations are defined as term and XML tag position in the file. Con-
sider the following excerpt of the papers.xml collection of scientific publications,
where location, document and term identifiers are annotated next to each piece
of text for the reader’s convenience, with l, d and t prefixes respectively:

<PAPERS>[l0,d0]
<DOC>[l1,d1]
<text>[l2,d2]
<Abstract>[l3,d3] IR[l4,t0] as[l5,t1] simple[l6,t2] as[l7,t1] cakes[l8,t3]</Abstract>[l9]
...
</text>[l40]

</DOC>[l41]
<DOC>[l42,d15] </DOC>[l120] ...

</PAPERS>[l30000000]

Notice that (i) the two DOC elements have different identifiers; (ii) the two as oc-
currences have the same term identifier; (ii) locations 3 to 9 belong to documents
0,1,2 and 3.

Bootstrapping XML collections. A Matrix Framework representation of a
collection is obtained from vectors L, D and T and matrices LD and LT .

A Parameterised Search System 11

For the example collection papers.xml, this corresponds to a SRAM script with
the following definitions.

papers.ram :

�

�

�

�

// global information for collection "papers.xml"
nLocs=30000000 , nDocs=2000000 , nTerms=400000
L = [1 | l < nLocs]
D = [1 | d < nDocs]
T = [1 | t < nTerms]
LD = [nLocs,nDocs], bool, sparse("0"), "LD_table"
LT = [nLocs,nTerms], bool, sparse("0"), "LT_table"

First, the length of each dimension is defined as nLocs, nDocs, nTerms. Then,
vectors L, D and T are defined, using a constant weight 1. Finally, matrices
LD and LT are declared as persistently stored in the database, as they are
supposed to be the outcome of an earlier parsing and pre-processing phase on
the XML file. For each persistent matrix, the dimensionality, the element type,
the information on sparsity (LD and LT are both sparse with common value 0)
and the name of the corresponding relational table are specified. Section 4 gives
further details on the automatic creation of matrices LD and LT .

A script file similar to papers.ram is created automatically for each collec-
tion and it is included in every SRAM script that uses that particular collection.
Notice that the script file above only contains SRAM definitions and no assign-
ments (see Section 3.2), which result in simple in-memory declarations.

Array System Libraries. The uniform approach to IR tasks like indexing
and retrieval that the Matrix Framework provides is easily operationalised by
collecting the formulae presented in Section 3.1 in a system library composed
by SRAM expressions (automatically made collection-dependent using a unique
prefix for the collection’s stored arrays). Fig. 3 shows an excerpt of such a library,
that is used in the subsequent paragraphs about indexing and retrieval of XML
collections. One can observe that the SRAM expressions are an almost direct
transcription of mathematical formulae to ASCII characters, which demonstrates
the intuitiveness of array comprehensions as an IR query language.

Indexing XML collections. The indexing phase creates statistical information
about a given collection. As described in Section 3.1, this entails the computation
of the matrices defined in (2) and (3). The definition of such matrices in SRAM
syntax is given in Fig. 3, file MF Indexing.ram. Notice that this file contains array
assignments, that create persistent arrays in the database. The SRAM script for
indexing the example papers.xml collection becomes straightforward: load the
collection’s global definitions, followed by the generic index-creation assignments:

�

�

�

	
#include "papers.ram" // global definitions for papers.xml
#include "MF_Indexing.ram" // create index arrays

Ranking XML collections. Recall the example query of Section 2, where
NEXI expression //text[about(.//Abstract, IR DB integration)] ranks the
“text” elements that contain an “Abstract” element about “IR DB integration”.
This structured IR part of the query is translated to SRA algebra. Selection
of text and their containing Abstract elements is performed by structure

12 R. Cornacchia and A.P. de Vries

#include "MF_DocContext.ram"
bm25(d,k1,b) = sum([w(d,t,k1,b) * Q(t) | t])
w(d,t,k1,b) = log(nDocs / Tdf(t)) * (k1+1) * DTf(d,t)

/ (DTf(d,t) + k1 * (1 - b + b * Dnl(d) / avgDnl))

langmod(d,a) = sum([lp(d,t,a) * Q(t) | t])
lp(d,t,a) = log(a*DTf(d,t) + (1-a)*Tf(t))

MF RetrievalModels.ram

#include "LinearAlgebra.ram"
DTnl := mxMult(mxTrnsp(LT), LD)
Dnl := mvMult(mxTrnsp(LD), L)
Tnl := mvMult(mxTrnsp(LT), L)
DT := [min(DTnl(d,t),1) | d,t]
DTf := [DTnl(d,t)/Dnl(d) | d,t]
Tf := [Tnl(t)/nLocs | t]

DTnl = [DTnl(d,t) * DX(d) | d,t]
Dnl = [Dnl(d) * DX(d) | d]
DT = [DT(d,t) * DX(d) | d,t]
DTf = [DTf(d,t) * DX(d) | d,t]

MF Indexing.ram MF DocContext.ram

mxTrnsp(A) = [A(j,i) | i,j]
mxMult(A,B) = [sum([A(i,k) * B(k,j) | k]) | i,j]
mvMult(A,V) = [sum([A(i,j) * V(j) | j]) | i]

LinearAlgebra.ram

Fig. 3. SRAM libraries (excerpts)

operations implemented using PathFinder primitives. We call the resulting node-
set the ranking-context, represented in the Matrix Framework by a binary vec-
tor DX .

Ranking the Abstract elements of the ranking-context is performed by a
content SRA operation, implemented in Spiegle by a function with signature:

Function rank(collection, rankingContext, queryTerms, N,
retrievalModel, param1, param2, ...) := rankedContext

This function turns the ranking-context of a given query into a top-N ranked-
context against the specified query terms, by applying the desired retrieval
model. Its body executes a SRAM script, customised at each call with the value
of the current function parameters. The script of the example NEXI query
above, with parameters collection=“papers”, retrievalModel=“langmod”
and N=20, corresponds to:

�

�

// global definitions for collection papers.xml
#include "papers.ram"
// ranking-context and query terms
DX = [nDocs], bool, sparse("0"), "DX_table"
Q = [nTerms], bool, sparse("0"), "Q_table"
// include retrieval model definitions
#include "MF_RetrievalModels.ram"
// retrieve top N documents using "langmod" (Language Modelling)
S = [langmod(param1,param2,...) | d]
D20 := topN([S(d) | d<20], DESC)
S20 := S(D20)

A Parameterised Search System 13

First, global definitions for the collection papers.xml are loaded. Then, the
ranking-context and the query terms are declared as persistent arrays, previously
stored in the database by the system. Definitions of the available retrieval models
are loaded (file MF RetrievalModels.ram) and the selected one used to rank
documents. Finally, the top 20 document identifiers and scores are computed
and used together as the ranked-context returned by the SRA operator.

Fig. 3, file MF RetrievalModels.ram shows an excerpt of the available
retrieval model expressions. These get customised to the current querying
scenario by declaring the two arrays DX (ranking-context) and Q (query-
terms) before each query is executed. The first line includes library file
MF DocContext.ram. The included script limits the document axes of the index
arrays to the current ranking-context by multiplying the document axes with the
binary vector representing the ranking-context (the result of this multiplication
corresponds to precisely those portions of index arrays that contain information
about the node-set to be ranked).

4 Implementation Details

Spiegle uses PathFinder’s efficient ‘document shredder’ to turn any XML data
file into database relations (also from remote sources). PF/Tijah extends the
standard PathFinder data-model by indexing text words (terms) in addition to
XML nodes. XML elements are encoded as regions. Regions are stored as tuples
<start,end,id,type>, where id is the identifier associated with the XML ele-
ment (a node tag or a term) and type can be either node or term. The start
and end positions identify the text region in the original text file (each term is
a text region of length 1). An additional relation is created for efficient term
access (representing an inverted file structure). A more detailed description of
PathFinder and PF/Tijah indexing schemes can be found in [4,2].

To use the Matrix Framework as described above, matrices LD and LT should
be prepared during this indexing phase. Clearly, all required information is avail-
able in the tables created by PF/Tijah. Positions delimited by start and end
values become “locations”, whereas the combination of id and type values be-
come the document and term identifiers for matrices LD and LT .

Many storage schemes have been proposed for sparse multi-dimensional
arrays, with strong emphasis on the special case of two-dimensional arrays [8].
SRAM represents an n-dimensional sparse array A as relation RA, with εA de-
noting its default value. Each tuple encodes a vector i = (i0, . . . , in−1) of index
values and a cell value A(i); only those cells for which A(i) �= εA are stored:

A �→ RA(i0, . . . , in−1, v) = {(i0, . . . , in−1, A(i)) | A(i) �= εA}.

This storage scheme naturally extends to dense arrays, for which all tuples are
stored physically. Data access patterns are optimised by creating standard rela-
tional indexing structures on top of such relations, or by explicit tuple cluster-
ing/sorting (the index columns form the relation’s primary key).

The life-cycle of array queries through the SRAM architecture can be sum-
marised by the following sequence of transformations: Array comprehension �→

14 R. Cornacchia and A.P. de Vries

Array algebra �→ Relational algebra �→ Relational plan. The first translation step
generates an array-algebra tree, which represents the sequence of operations
performed on the stored arrays (reshaping, selection, aggregation, or function
application). A cost-based optimiser normalises and rewrites the array-algebra
tree. No physical details are involved in the process yet: only arrays’ size and
density are taken into account. The next step maps the array data-model to the
relational data-model, by means of translation rules that take into account the
storage details: although common values of a sparse arrays are not stored, they
may affect the final result. Standard relational optimisation techniques finalise
the relational expression. The last step of the translation process maps relational
algebra expressions to physical query plans for the database engine. Data access
paths and algorithms are chosen for the physical implementation of relational
operators in the query tree. For more in-depth details about the array-algebra
and the mapping and optimisation rules used in the translation process, see [9].

5 Related Work

This work addresses some of the main issues about IR&DB integration [10,11].
We are not aware of previous work that provides a declarative language for the
definition of the retrieval model as part of an XML retrieval system. However,
Inquery’s [12] (now Indri) query language can be considered to provide some
early version of a parameterised search system, and it has often been used for
precisely this flexibility (for example, in cross-language IR).

Already ten years ago, Fuhr argued in favour of data independence in IR [13],
pointing out how this would reduce problems in plain text search with noun
phrase search and treatment of compound words, and (semi-)structured data
types to capture attributes like author, journal title or publication year.

De Vries defined the notion of ‘content independence’ [14] to refer to the
decoupling between search strategies and content representation. His definition
has been refined by Mihajlovic into the two related concepts ‘retrieval model
independence’ and ‘content description independence’ [5]. Wen et al. use ‘me-
dia independence’ for a similar separation of concerns as Mihajlovic’s content
description independence [15]. Yet, none of these authors has proposed a declar-
ative language that actually achieves the goal of separating the retrieval model
from its actual implementation.

6 Conclusions and Future Work

This paper has argued that modern IR application requirements force us to
reconsider the design characteristics of search systems. We promote an innova-
tion in the search system engineering process, by introducing more flexibility in
the IR system’s architecture. The increased flexibility aims to reduce the effort
of adapting search functionalities to work task and user context.

We defined the architectural requirements of so-called Parameterised Search
Systems : (i) a layered architecture that allows structural and content infor-
mation to be exploited for the search task; (ii) a convenient abstraction from

A Parameterised Search System 15

the physical details that discloses the retrieval engine’s capabilities to the
unique needs of each particular combination of collection characteristics, user
preferences, and search strategies.

We indicated the architecture of the PF/Tijah XML IR system as a possible
foundation to build upon, and the Matrix Framework for IR as a very well-suited
abstraction to express retrieval strategies. Finally, we showed how SRAM can
operationalise the Matrix Framework on top of a database system. The result of
this effort is Spiegle: the first prototype of parameterised XML search system.

Future work includes further exploiting the array abstraction for the im-
plementation of structure operations. This will allow for simpler inclusion of
structural information in the retrieval strategy and better opportunities for
optimising the final relational query plan. Early results of [9] have demonstrated
that SRAM’s multi-stage query translation process can give excellent run-time
performance on a large collection of web-data, given an efficient back-end system.
Integrating this new back-end into the Spiegle architecture is on-going work.

References

1. Hawking, D.: Challenges in enterprise search. In: Proc. ADC. (2004) 15–26
2. Hiemstra, D., Rode, H., van Os, R., Flokstra, J.: PFTijah: text search in an XML

database system. In: Proc. OSIR. (2006)
3. R.A.O’Keefe, Trotman, A.: The simplest query language that could possibly work.

In: Proc. INEX. (2004)
4. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:

MonetDB/XQuery. In: Proc. SIGMOD. (2006) 479–490
5. Mihajlovic, V.: Score Region Algebra. A Flexible Framework for Structured Infor-

mation Retrieval. PhD thesis, University of Twente (2006)
6. Rölleke, T., Tsikrika, T., Kazai, G.: A General Matrix Framework for Modelling

Information Retrieval. IP&M 42(1) (2005) 4–30
7. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax.

SIGMOD Record 23(1) (1994) 87–96
8. Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the solution

of algebraic eigenvalue problems: a practical guide. SIAM (2000)
9. Cornacchia, R., Héman, S., Zukowski, M., de Vries, A., Boncz, P.: Flexible and

efficient IR using Array Databases. Technical Report INS-E0701, CWI (2007)
10. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR Technolo-

gies: What is the Sound of One Hand Clapping? In: Proc. CIDR, Asilomar, CA,
USA (2005) 1–12

11. Amer-Yahia, S., Case, P., Rölleke, T., Shanmugasundaram, J., Weikum, G.: Report
on the DB/IR Panel at Sigmod 2005. SIGMOD Record 34(4) (2005) 71–74

12. Callan, J.P., Croft, W.B., Harding, S.M.: The INQUERY retrieval system. In:
Proc. DEXA. (1992) 78–83

13. Fuhr, N.: Object-oriented and database concepts for the design of networked in-
formation retrieval systems. In: Proc. CIKM. (1996) 164–172

14. de Vries, A.: Content independence in multimedia databases. JASIST 52(11)
(2001) 954–960

15. Wen, J., Li, Q., Ma, W., Zhang, H.: A multi-paradigm querying approach for a
generic multimedia database management system. SIGMOD Record 32(1) (2003)
26–34

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 16 – 27, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Similarity Measures for Short Segments of Text

Donald Metzler1, Susan Dumais2, and Christopher Meek2

1 University of Massachusetts
Amherst, MA

2 Microsoft Research
Redmond, WA

Abstract. Measuring the similarity between documents and queries has been
extensively studied in information retrieval. However, there are a growing
number of tasks that require computing the similarity between two very short
segments of text. These tasks include query reformulation, sponsored search,
and image retrieval. Standard text similarity measures perform poorly on such
tasks because of data sparseness and the lack of context. In this work, we study
this problem from an information retrieval perspective, focusing on text
representations and similarity measures. We examine a range of similarity
measures, including purely lexical measures, stemming, and language
modeling-based measures. We formally evaluate and analyze the methods on a
query-query similarity task using 363,822 queries from a web search log. Our
analysis provides insights into the strengths and weaknesses of each method,
including important tradeoffs between effectiveness and efficiency.

1 Introduction

Retrieving documents in response to a user query is the most common text retrieval
task. For this reason, most of the text similarity measures that have been developed
take as input a query and retrieve matching documents. However, a growing number
of tasks, especially those related to web search technologies, rely on accurately
computing the similarity between two very short segments of text. Example tasks
include query reformulation (query-query similarity), sponsored search (query/ad
keyword similarity), and image retrieval (query-image caption similarity).

Unfortunately, standard text similarity measures fail when directly applied to these
tasks. Such measures rely heavily on terms occurring in both the query and the
document. If the query and document do not have any terms in common, then they
receive a very low similarity score, regardless of how topically related they actually
are. This is well-known as the vocabulary mismatch problem. This problem is only
exacerbated if we attempt to use these measures to compute the similarity of two short
segments of text. For example, “UAE” and “United Arab Emirates” are semantically
equivalent, yet share no terms in common.

Context is another problem when measuring the similarity between two short
segments of text. While a document provides a reasonable amount of text to infer the
contextual meaning of a term, a short segment of text only provides a limited context.
For example, “Apple computer” and “apple pie” share the term apple, but are
topically distinct. Despite this, standard text similarity measures would say that these

 Similarity Measures for Short Segments of Text 17

two short segments of text are very similar. However, computing the similarity
between the query “Apple computer” and a full document about “apple pie” will
produce a low similarity score since the document contains proportionally less text
that is relevant to the query, especially compared to a full document about “Apple
business news”.

In this paper, we explore the problem of measuring similarity between short
segments of text from an information retrieval perspective. Studies in the past have
investigated the problem from a machine learning point of view and provided few, if
any comparisons to standard text similarity measures. In this work, we describe a set
of similarity measures that can be used to tackle the problem. These measures include
simple lexical matching, stemming, and text representations that are enriched using
web search results within a language modeling framework. In addition, we formally
evaluate the measures for the query-query similarity task using a collection of
363,822 popular web queries. Our analysis provides a better understanding of the
strengths and weaknesses of the various measures and shows an interesting tradeoff
between effectiveness and efficiency.

The remainder of this paper is laid out as follows. First, Section 2 provides an
overview of related work. We then describe the various ways to represent short
segments of text in Section 3. Section 4 follows up this discussion by describing the
similarity measures we investigated. Section 5 provides the details of our
experimental evaluation on the query-query similarity task. Finally, in Section 6 we
wrap up and provide conclusions and directions of future work.

2 Related Work

Many techniques have been proposed to overcome the vocabulary mismatch problem,
including stemming [5,9], LSI [3], translation models [1], and query expansion [6,14].
This section describes several of these techniques that are most related to our work.
The task we focus on is a query-query similarity task, in which we compare short text
segments, such as “Apple computer”, “apple pie”, “MAC OS X”, and “iMAC”.

Translation models, in a monolingual setting, have been used for document
retrieval [1], question answering [8], and detecting text reuse [7]. The goal is to
measure the likelihood that some candidate document or sentence is a translation (or
transformation) of the query. However, such models are less likely to be effective on
very short segments of texts, such as queries, due to the difficulty involved in
estimating reliable translation probabilities for such pieces of text.

Query expansion is a common technique used to convert an initial, typically short,
query into a richer representation of the information need [6,10,14]. This is
accomplished by adding terms that are likely to appear in relevant or pseudo-relevant
documents to the original query representation. In our query-query matching work,
we explore expanding both the original and candidate query representations.

Sahami and Heilman proposed a method of enriching short text representations that
can be construed as a form of query expansion [11]. Their proposed method expands
short segments of text using web search results. The similarity between two short
segments of text can then computed in the expanded representation space. The
expanded representation and DenseProb similarity measure that we present in

18 D. Metzler, S. Dumais, and C. Meek

Sections 3 and 4 are similar to this approach. However, we estimate term weights
differently and analyze how such expansion approaches compare, in terms of
efficiency and effectiveness, to other standard information retrieval measures.

Finally, since we evaluate our techniques on a query-query similarity task, it
should be noted that this problem, and the related problem of suggesting and
identifying query-query reformulations has been investigated from a number of
angles, ranging from machine learning approaches [4] to query session log
analysis[2]. These techniques are complimentary to the core representational and
similarity ideas that we explore in our work.

3 Text Representations

Text representations are an important part of any similarity measure. In this section,
we describe three different ways of representing text. Although these representations
can be applied to text of any length, we are primarily interested in using them to
represent short segments of text.

3.1 Surface Representation

The most basic representation of a short segment of text is the surface representation
(i.e. the text itself). Such a representation is very sparse. However, it is very high
quality because no automatic or manual transformations (such as stemming) have
been done to alter it. While it is possible that such transformations enhance the
representation, it is also possible that they introduce noise.

3.2 Stemmed Representation

Stemming is one of the most obvious ways to generalize (normalize) text. For this
reason, stemming is commonly used in information retrieval systems as a rudimentary
device to overcome the vocabulary mismatch problem. Various stemmers exist,
including rule-based stemmers [9] and statistical stemmers [5].

Although stemming can significantly improve matching coverage, it also
introduces noise, which can lead to poor matches. Using the Porter stemmer, both
“marine vegetation” and “marinated vegetables” stem to “marin veget”, which is
undesirable. Overall, however, the number of meaningful matches introduced
typically outweighs the number of spurious matches.

Throughout the remainder of this paper, we use the Porter stemmer to generate all
of our stemmed representations.

3.3 Expanded Representation

Although stemming helps overcome the vocabulary mismatch problem to a certain
extent, it does not handle the contextual problem. It fails to discern the difference
between the meaning of “bank” in “Bank of America” and “river bank”. Therefore, it
is desirable to build representations for the short text segments that include
contextually relevant information.

 Similarity Measures for Short Segments of Text 19

<query>apple pie</query>

<title>Applie pie – Wikipedia, the free encyclopedia</title>

<snippet>In cooking, an apple pie is a fruit pie (or tart) in which the principal filling ingredient is

apples . Pastry is generally used top-and-bottom, making a double-crust pie, the upper crust of which

...</snippet>

<url>en.wikipedia.org/wiki/Apple_ pie</url>

<title>All About Food – Apple Pies</title>

<snippet>Apple Pie. Recipes. All-American Apple Pie. American Apple Pie. Amish Apple Pie .

Apple Cream Pie. Apple Crumble Pie. Apple Pie . Apple Pie in a Brown Bag. Best Apple

Pie</snippet>

<url>fp.enter.net/~rburk/pies/ applepie/applepie.htm</url>

<title>Apple Pie Recipe</title>

<snippet>Apple Pie Recipe using apple peeler corer slicer ... Apple Pie Recipe. From Scratch to

Oven in 20-Minutes. Start by preheating the oven. By the time it's ...</snippet>

<url>applesource.com/applepierecipe.htm</url>

…

Fig. 1. Example expanded representation for the text “apple pie.” The expanded representation
is the concatenation of the title and snippet elements.

One approach is to enrich the representation using an external source of
information related to the query terms. Possible sources of such information include
web (or other) search results returned by issuing the short text segment as a query,
relevant Wikipedia articles, and, if the short text segment is a query, query
reformulation logs. Each of these sources provides a set of contextual text that can be
used to expand the original sparse text representation.

In our experiments, we use web search results to expand our short text
representations. For each short segment of text, we run the query against a
commercial search engine’s index and retrieve the top 200 results. The titles and
snippets associated with these results are then concatenated and used as our expanded
representation. In Figure 1, we show a portion of the expanded representation for the
short text segment “apple pie”. As we see, this expanded representation contains a
number of contextually relevant terms, such as “recipe”, “food”, and “cooking” that
are not present in the surface representation. We note that this expanded
representation is similar to the one proposed in [11].

4 Similarity Measures

In this section we describe three methods for measuring the similarity between short
segments of text. These measures are motivated by, and make use of, the
representations described in the previous section. We also propose a hybrid method
of combining the ranking of the various similarity measures in order to exploit the
strengths and weaknesses of each.

4.1 Lexical

The most basic similarity measures are purely lexical. That is, they rely solely on
matching the terms present in the surface representations. Given two short segments

20 D. Metzler, S. Dumais, and C. Meek

of text, Q and C, treating Q as the query and C as the candidate we wish to measure
the similarity of, we define the following lexical matching criteria:

• Exact – Q and C are lexically equivalent. (Q: “seattle mariners tickets”, C:
“seattle mariners tickets”)

• Phrase – C is a substring of Q. (Q: “seattle mariners tickets”, C: “seattle
mariners”)

• Subset – The terms in C are a subset of the terms in Q. (Q: “seattle mariners
tickets”, C: “tickets seattle”)

These measures are binary. That is, two segments of text either match (are deemed
‘similar’) or they do not. There is no graded score associated with the match.
However, if necessary, it is possible to impose such a score by looking at various
characteristics of the match such as the length of Q and C, or the frequency of the
terms in some collection.

It should also be noted that exact matches ⊆ phrase matches ⊆ subset matches.
Exact matches are very high precision (excellent matches), yet very low recall since
they miss a lot of relevant material. At the other extreme, subset matches are lower
precision, but have higher recall. Any candidate C that contains a term that does not
appear in the query Q will not match under any of these rules, which is very
undesirable. Therefore, we expect that matches generated using these lexical rules
will be have high precision but poor recall.

4.2 Probabilistic

As we just described, lexical matching alone is not enough to produce a large number
of relevant matches. In order to improve recall, we must make use of the expanded
text representations. To do so, we use the language modeling framework to model
query and candidate texts.

To utilize the framework, we must estimate unigram language models for the query
(θQ) and each candidate (θC). For ranking purposes, we use the negative KL-
divergence between the query and candidate model, which is commonly used in the
language modeling framework [14]. This results in the following ranking function:

∑
∈

≡

−=−

Vw
CQ

CQQCQ

wPwP

CEHKL

)|(log)|(

),()(),(

θθ

θθθθθ
 (1)

where V is the vocabulary, H is entropy, CE is cross entropy, and ≡ denotes rank
equivalence.

The critical part of the ranking function is how the query and candidate language
models are estimated. Different estimates can lead to radically different rankings. We
now describe how we estimate these models using the representations available to us.

We begin with the query model. The most straightforward way of estimating a
query model is to use the surface representation. This is estimated as:

||
)|(,

QS

tf
wP QSw

Q =θ (2)

 Similarity Measures for Short Segments of Text 21

where QS denotes the query surface representation, tfw,QS is the number of times w
occurs in the representation, and |QS| is the total number of terms in QS. This
estimate will be very sparse since we are using the surface representation. This
allows Equation 1 to be computed very efficiently since most terms in the summation
(Vw ∈) will be zero.

We also consider the case when we use the expanded representation of the query,
as described in Section 3.3. The estimate, which is analogous to the unexpanded
case, is:

Q

QQEw
Q QE

CwPtf
wP

μ
μ

θ
+

+
=

||

)|(
)|(,

 (3)

where QE is the query expanded representation, and µQ is a smoothing parameter.
This type of estimation is commonly used in the language modeling community and
is often referred to as Dirichlet or Bayesian smoothing [13]. Since this estimate is
much more dense than the unexpanded estimate, it is more time consuming to
evaluate Equation 1. Due to the amount of data we work with in our experiments,
we truncate this distribution by only keeping the 20 most likely terms and setting the
remaining probabilities to 0. Pruning similar to this was done in [11] for the same
reason.

Finally, we describe how the candidate model is estimated. Rather than
exploring both estimates using both unexpanded and expanded representations, we
restrict ourselves to expanded representations. Therefore, we get the following
estimate:

C

CCEw
C CE

CwPtf
wP

μ
μ

θ
+

+
=

||

)|(
)|(,

 (4)

where CE is the candidate expanded representation, and µC is a smoothing
parameter. Unlike the expanded query model, we do not truncate this distribution in
any way.

Finally, it is important to recall that expanded representations may be created using
any number of external sources. Our use of the web was simply a matter of
convenience. However, we can use this same general framework with expanded
representations generated using any possible external text source.

4.3 Hybrid

We are often interested in taking the matches generated by several different similarity
measures and combining them. We call these hybrid techniques. Given two or more
lists of matches, we stack the lists according to some pre-defined ordering (denoted
“>”) of the lists, to form a combined list. For example, given match lists A and B,
and ordering A > B, we form the hybrid list AB, which is list B appended to the end
of list A. Since the same match may occur in more than one set of results, we must

22 D. Metzler, S. Dumais, and C. Meek

Table 1. Overview of query representation, candidate representation, and similarity measure
used for each matching method

Method
Name

Query
Representation

Candidate
Representation

Similarity Measure

Lexical Surface Surface
Hybrid

(Exact > Phrase > Subset)

Stemming Stemmed Stemmed
Hybrid

(Lexical > Exact Stems)

SparseProb Surface Expanded Probabilistic

DenseProb Expanded Expanded Probabilistic

Backoff Various Various
Hybrid

(Exact > Exact Stems > DenseProb)

remove duplicates from the combined list. Our deduplication policy states that we
keep the highest ranked match and remove all others. Although this combination
scheme is naïve, it has the advantage that there are no combination parameters to
learn.

4.4 Summary of Methods Evaluated

Table 1 summarizes the methods we evaluate in the next section. For each
method, we include the query and candidate representations and the similarity
measure used.

The Lexical method, which considers the surface forms of the query and candidate,
makes use of a hybrid technique that ranks exact matches first, then phrase matches,
and finally subset matches. The Stemming method also uses a hybrid technique that
first ranks matches using the Lexical method just described and then ranks any exact
matches that result after stemming both the query and the candidate. We refer to these
types of matches as “exact stems” matches.

The SparseProb method is the first of the two probabilistic methods. It uses the
unexpanded query representation, the expanded candidate representation, and ranks
using the negative KL-divergence, whereas the DenseProb method uses expanded
representations for both the query and the candidate and also ranks using the negative
KL-divergence.

Finally, the Backoff method is a hybrid method that ranks exact matches, exact
stems matches, and then DenseProb matches. The goal here is to see what benefit, if
any, is achieved by replacing the phrase and subset matches from the Stemming
method with DenseProb matches. We hypothesize that the DenseProb matches will
be better than the often poor phrase and subset matches.

Many other query/candidate representation combinations are possible beyond those
listed in Table 1. For example, it may be reasonable to use an expanded query form
and a surface candidate form. However, in order to maintain a reasonable scope, we
constrain ourselves to the methods described in this section.

 Similarity Measures for Short Segments of Text 23

Table 2. Examples matches taken from our test collection for the query "seattle mariners". The
Seattle Mariners are a baseball team from Seattle. For each method, we show the 10 matches
with the highest similarity score.

Query: "seattle mariners"
Lexical Stemming SparseProb DenseProb Backoff
seattle

mariners
seattle

mariners
seattle mariners

tickets
seattle mariners

tickets
seattle mariners

seattle seattle mariners tickets mariners tickets seattle mariner

mariners mariners seattle mariners
seattle mariners

baseball
seattle mariners

tickets

 seattle mariner
seattle mariners

baseball
seattle mariners mariners tickets

seattle mariners

schedule
seattle mariners

schedule
seattle mariners

baseball

 mariners baseball mariners baseball
seattle mariners

schedule
 seattle baseball seattle baseball mariners baseball

 mariners
red sox mariners

tickets
seattle baseball

 mariners schedule mariners schedule
red sox mariners

tickets

 seattle mariner
cheap mariners

tickets
mariners schedule

5 Experimental Evaluation

In this section we evaluate the similarity measures proposed in Section 4. We begin
by showing some illustrative examples of matches generated using our algorithms.
We then formally evaluate the methods in the context of a query-query similarity task.

5.1 Illustrative Examples

Table 2 provides illustrative matches returned using the various matching techniques
described in Section 4. Although many of these results look reasonable, it is difficult
to quantify how much better any one method is by simply looking at these results.
Therefore, in the next section we formally evaluate the different match types.

5.2 Query-Query Similarity

We now describe our query-query similarity experiments. Here, we are interested in
evaluating how well the various methods we described in Section 4 can be used to
find queries that are similar to some target query. This task is a general task that is
widely applicable. For example, such a query-query similarity system could be used
to recommend alternative queries to users of a web search engine or for session
boundary detection in query log analysis.

5.2.1 Data
The following data resources were used in our experimental evaluation. A sample of
363,822 popular queries drawn from a 2005 MSN Search query log was used as our

24 D. Metzler, S. Dumais, and C. Meek

Table 3. Description of the relevance judgment scale

Judgment Description
Examples

(Query / Candidate)

Excellent
The candidate is semantically equivalent to the user

query.
atlanta ga /

atlanta georgia

Good
The candidate is related to (but not identical to) the

query intent and it is likely the user would be
interested in the candidate.

seattle mariners /
seattle baseball tickets

Fair
The candidate is related to the query intent, but in an

overly vague or specific manner that results in the
user having little, if any, interest in the candidate.

hyundia azera /
new york car show

Bad The candidate is unrelated to the query intent.
web visitor count /

coin counter

candidate pool of queries to match against. For each query, we generated an
expanded representation, as described in Section 3.3. In our experiments, we set µQ to
0 and µC to 2500. To handle this amount of data, we built an index out of the
expanded representations using the Indri search system [12].

We also randomly sampled a set of 120 queries from the same log to use as target
queries. These target queries were then matched against the full set of 363k queries.
For each of these target queries, we ran the methods described in Section 4 and
pooled the results down to a depth of 25 per method. A single human assessor then
judged the relevance of each candidate result with respect to the target query using a
4-point judgment scale. Table 3 provides a description and examples of each type of
judgment.

The result of this assessment was 5231 judged target/candidate pairs. Of these
judgments, 317 (6%) were Excellent, 600 (11%) were Good, 2537 (49%) were Fair,
and 1777 (34%) were Bad. In order to determine the reliability of the judgments, four
assessors judged 10 target queries. The inter-annotator agreement was then computed
for these queries and was found to be 60%. However, when Excellent and Good
judgments were binned and Fair and Bad judgments were binned, the agreement
increased to 80%. This indicates the boundary between Fair and Bad is interpreted
differently among users. For this reason, we will primarily focus our attention on the
boundary between Excellent and Good and between Good and Fair. In addition, the
Excellent and Good matches are the most interesting for many practical applications
including query suggestion and sponsored search.

5.2.2 Evaluation
We are interested in understanding how our matching methods compare to each other
across various relevance criteria. Since we are interested in using standard
information retrieval metrics, such as precision and recall, we must binarize the
relevance judgments. For each experiment, we state the relevance criteria used.

We first evaluate the methods using precision-recall graphs using two different
relevance criteria. The results are given in Figure 2. For the case when Excellent
matches are considered relevant (left panel), we see that the Lexical and Stemming
methods outperform the probabilistic methods, especially at lower recall levels.

 Similarity Measures for Short Segments of Text 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Lexical
Stemming
SparseProb
DenseProb
Backoff

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Lexical
Stemming
SparseProb
DenseProb
Backoff

Fig. 2. Interpolated, 11-point precision-recall curves for the five matching methods described in
Section 4. On the left, candidates judged ‘Excellent’ are considered relevant. On the right,
candidates judged ‘Excellent’ or ‘Good’ are considered relevant.

This is not surprising, since we expect lexical matches to easily find most of the
Excellent matches. In addition, we see that Stemming consistently outperforms the
Lexical method. However, the Backoff method dominates the other methods at all
recall levels. This results from backing off from stricter matches to less strict matches.
For example, for the query “atlanta ga”, the Lexical method will match “atlanta ga”,
but neither the Lexical nor the Stemming methods will match “atlanta georgia", which
is actually an Excellent match that is found using the DenseProb method.

When we relax the relevance criteria and consider both Excellent and Good
judgments to be relevant (right panel), we see an interesting shift in the graph. Here,
the probabilistic methods, SparseProb and DenseProb, outperform the Lexical and
Stemming methods at all recall levels, except very low levels. This suggests that the
Lexical and Stemming methods are good at finding Excellent matches, but that they
are worse at finding Good matches compared to the probabilistic methods. We
further test this hypothesis later in this section. However, once again, we see that the
Backoff method outperforms all of the methods at all recall levels.

One reason why the Backoff method is superior to the non-hybrid probabilistic
methods is the fact that the SparseProb and DenseProb methods often fail to return
exact matches high in the ranked list. This is caused by truncating the expanded
query distribution before computing the KL divergence. Since exact matches account
for a majority of the Excellent judgments, this causes the entire curve to be shifted
down. By forcing the exact and exact stems matches to occur first, we are ‘stacking
the deck’ and promoting matches that are likely to be high precision. This, combined
with the high recall of the DenseProb method, results in a superior matching method.

It is clear that exact matches are very likely to result in Excellent matches.
However, it is not clear how phrase and subset lexical matches compare to stemming
and probabilistic matches. To measure this, we compute the precision at k for the
Lexical and Backoff methods, where k is the number of results returned by the
Lexical method. This evaluation allows us to quantify the improvement achieved by
replacing the low precision phrase and subset matches with the high precision exact
stems matches and high recall DenseProb matches.

26 D. Metzler, S. Dumais, and C. Meek

Table 4. Precision at k, where k is the number of matches returned using the Lexical method.
In this table, the evaluation set of queries was stratified according to k. Queries indicates the
the number of queries associated with each k . Only values of k associated with 10 or more
queries are shown.

 R = {Excellent} R = {Excellent, Good}

k Queries Lexical Backoff Lexical Backoff

1 40 0.7500 0.8125 0.7500 0.8125

2 38 0.3235 0.4853 0.3382 0.5882

3 31 0.2688 0.4194 0.3978 0.5914

The results are presented in Table 4 for two relevance criteria. We stratify the
queries with respect to k, the number of Lexical method matches for the query, and
compute precision at depth k over these queries. We only include values of k
associated with 10 or more queries, since it misleading to compute and compare
means over smaller samples. As the results show, the Backoff method is superior in
every case. This suggests that the stemming and probabilistic matches (used in the
Backoff method) are considerably better at finding both Excellent and Good matches
compared to the phrase and subset matches (used in the Lexical method).

5.2.3 Effectiveness vs. Efficiency
One important practical aspect of the techniques developed is efficiency. Generating
lexical and stemming matches is very efficient. The probabilistic methods are slower,
but not unreasonable. Generating matches against our collection of 363,822
candidates using a modern single CPU machine takes 0.15 seconds per query using
the SparseProb method and 3 seconds per query using the DenseProb method.

The DenseProb method requires, a priori, an index of expanded representations for
both the candidates and the incoming queries. If we are asked to generate DenseProb
matches for a query that is not in our index, then we must generate this representation
on the fly. However, the SparseProb method does not exhibit this behavior and can
be used to efficiently generate matches for any incoming query.

Therefore, SparseProb is the the best choice in terms of speed and coverage.
However, if speed is not an issue, and high quality results are important, then
DenseProb is the better choice.

6 Conclusions and Future Work

In this paper we studied the problem of measuring the similarity between short
segments of text. We looked at various types of text representations, including
surface, stemmed, and expanded. We showed how web search results can be used to
form expanded representations of short text segments. We then described several
similarity measures based on these representations, including lexical matching and
probabilistic measures based on language models estimated from unexpanded and
expanded representations. We then formally evaluated and compared these measures
in the context of a query-query similarity task over a large collection of popular web

 Similarity Measures for Short Segments of Text 27

search queries. Our results showed that lexical matching is good for finding
semantically identical matches and that the probabilistic methods are better at finding
interesting topically related matches. It was shown that a simple hybrid technique that
combines lexical, stemmed, and probabilistic matches results in far superior
performance than any method alone.

The probabilistic framework presented in this paper provides a general method for
measuring the similarity between two short segments of text. Although we chose to
use web search results as the basis of our expanded representation in this work, an
interesting direction of future work would be to use a variety of other sources of
external text, such as query reformulation logs, queries that result in similar click
patterns, and Wikipedia. It would also be worthwhile to evaluate these techniques in
an end-to-end application, such as a query-query reformulation system, in order to see
what impact they have in a more practical setting.

References

[1] Berger, A. and Lafferty, J. Information retrieval as statistical translation. In Proceedings
of SIGIR ’99, pages 222-229, 1999.

[2] Cucerzan, S. and Brill, E. Extracting semantically related queries by exploiting user
session information. Technical Report, Microsoft Research, 2005.

[3] Deerwester, S., Dumais, S., Landauer, T., Furnas, G. and Harshman, R. Indexing by
latent semantic analysis. In JASIST, 41(6), pages 391-407, 1990.

[4] Jones, R. Generating query substitutions. In Proceedings of WWW 2006, pages 387-396,
2006.

[5] Krovetz, R. Viewing morphology as an inference process. In Proceedings of SIGIR ’93,
pages 191-202, 1993.

[6] Lavrenko, V. and Croft, W.B. Relevance based language models. In Proceedings of
SIGIR ‘01, pages 120-127, 2001.

[7] Metzler, D., Bernstein, Y., Croft, W.B., Moffat, A., and Zobel, J. Similarity measures for
tracking information flow. In Proceedings of CIKM ‘05, pages 517-524, 2005.

[8] Murdock, V. and Croft, W.B. A Translation Model for Sentence Retrieval. In
Proceedings of HLT/EMNLP ‘05, pages 684-691, 2005.

[9] Porter, M. F. An algorithm for suffix stripping. Program, 14(3), pages 130-137, 1980.
[10] Rocchio, J. J. Relevance Feedback in Information Retrieval, pages 313-323. Prentice-

Hall, 1971.
[11] Sahami, M. and Heilman, T. A web-based kernel function for measuring the similarity of

short text snippets. In Proceedings of WWW 2006, pages 377-386, 2006.
[12] Strohman, T., Metzler, D., Turtle, H., Croft, W. B. Indri: A language model-based search

engine for complex queries. In Proceedings of the International Conference on
Intelligence Analysis, 2005.

[13] Zhai, C. and Lafferty, J. A study of smoothing methods for language models applied to
ad hoc information retrieval. In Proceedings of SIGIR ‘01, pages 334-342, 2001.

[14] Zhai, C. and Lafferty, J. Model-based feedback in the language modeling approach to
information retrieval. In Proceedings of CIKM ‘01, pages 403-410, 2001.

Multinomial Randomness Models for Retrieval with
Document Fields

Vassilis Plachouras1 and Iadh Ounis2

1 Yahoo! Research, Barcelona, Spain
2 University of Glasgow, Glasgow, UK

vassilis@yahoo-inc.com, ounis@dcs.gla.ac.uk

Abstract. Document fields, such as the title or the headings of a document,
offer a way to consider the structure of documents for retrieval. Most of the pro-
posed approaches in the literature employ either a linear combination of scores
assigned to different fields, or a linear combination of frequencies in the term
frequency normalisation component. In the context of the Divergence From Ran-
domness framework, we have a sound opportunity to integrate document fields
in the probabilistic randomness model. This paper introduces novel probabilis-
tic models for incorporating fields in the retrieval process using a multinomial
randomness model and its information theoretic approximation. The evaluation
results from experiments conducted with a standard TREC Web test collection
show that the proposed models perform as well as a state-of-the-art field-based
weighting model, while at the same time, they are theoretically founded and more
extensible than current field-based models.

1 Introduction

Document fields provide a way to incorporate the structure of a document in Information
Retrieval (IR) models. In the context of HTML documents, the document fields may
correspond to the contents of particular HTML tags, such as the title, or the heading
tags. The anchor text of the incoming hyperlinks can also be seen as a document field.
In the case of email documents, the fields may correspond to the contents of the email’s
subject, date, or to the email address of the sender [9]. It has been shown that using
document fields for Web retrieval improves the retrieval effectiveness [17,7].

The text and the distribution of terms in a particular field depend on the function of
that field. For example, the title field provides a concise and short description for the
whole document, and terms are likely to appear once or twice in a given title [6]. The
anchor text field also provides a concise description of the document, but the number
of terms depends on the number of incoming hyperlinks of the document. In addition,
anchor texts are not always written by the author of a document, and hence, they may
enrich the document representation with alternative terms.

The combination of evidence from the different fields in a retrieval model requires
special attention. Robertson et al. [14] pointed out that the linear combination of scores,
which has been the approach mostly used for the combination of fields, is difficult
to interpret due to the non-linear relation between the assigned scores and the term
frequencies in each of the fields. Hawking et al. [5] showed that the term frequency

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 28–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multinomial Randomness Models for Retrieval with Document Fields 29

normalisation applied to each field depends on the nature of the corresponding field.
Zaragoza et al. [17] introduced a field-based version of BM25, called BM25F, which
applies term frequency normalisation and weighting of the fields independently. Mac-
donald et al. [7] also introduced normalisation 2F in the Divergence From Randomness
(DFR) framework [1] for performing independent term frequency normalisation and
weighting of fields. In both cases of BM25F and the DFR models that employ normali-
sation 2F, there is the assumption that the occurrences of terms in the fields follow the
same distribution, because the combination of fields takes place in the term frequency
normalisation component, and not in the probabilistic weighting model.

In this work, we introduce weighting models, where the combination of evidence
from the different fields does not take place in the term frequency normalisation part
of the model, but instead, it constitutes an integral part of the probabilistic randomness
model. We propose two DFR weighting models that combine the evidence from the
different fields using a multinomial distribution, and its information theoretic approx-
imation. We evaluate the performance of the introduced weighting models using the
standard .Gov TREC Web test collection. We show that the models perform as well
as the state-of-the-art model field-based PL2F, while at the same time, they employ a
theoretically founded and more extensible combination of evidence from fields.

The remainder of this paper is structured as follows. Section 2 provides a description
of the DFR framework, as well as the related field-based weighting models. Section 3
introduces the proposed multinomial DFR weighting models. Section 4 presents the
evaluation of the proposed weighting models with a standard Web test collection. Sec-
tions 5 and 6 close the paper with a discussion related to the proposed models and the
obtained results, and some concluding remarks drawn from this work, respectively.

2 Divergence from Randomness Framework and Document Fields

The Divergence From Randomness (DFR) framework [1] generates a family of prob-
abilistic weighting models for IR. It provides a great extent of flexibility in the sense
that the generated models are modular, allowing for the evaluation of new assumptions
in a principled way. The remainder of this section provides a description of the DFR
framework (Section 2.1), as well as a brief description of the combination of evidence
from different document fields in the context of the DFR framework (Section 2.2).

2.1 DFR Models

The weighting models of the Divergence From Randomness framework are based on
combinations of three components: a randomness model RM; an information gain
model GM; and a term frequency normalisation model.

Given a collection D of documents, the randomness model RM estimates the
probability PRM(t ∈ d|D) of having tf occurrences of a term t in a document d,
and the importance of t in d corresponds to the informative content − log2(PRM(t ∈
d|D)). Assuming that the sampling of terms corresponds to a sequence of independent
Bernoulli trials, the randomness model RM is the binomial distribution:

PB(t ∈ d|D) =
(

TF

tf

)
ptf(1 − p)TF−tf (1)

30 V. Plachouras and I. Ounis

where TF is the frequency of t in the collection D, p = 1
N is a uniform prior probability

that the term t appears in the document d, and N is the number of documents in the
collection D. A limiting form of the binomial distribution is the Poisson distribution P :

PB(t ∈ d|D) ≈ PP(t ∈ d|D) =
λtf

tf !
e−λ where λ = TF · p =

TF

N
(2)

The information gain model GM estimates the informative content 1 − Prisk of
the probability Prisk that a term t is a good descriptor for a document. When a term
t appears many times in a document, then there is very low risk in assuming that t
describes the document. The information gain, however, from any future occurrences of
t in d is lower. For example, the term ‘evaluation’ is likely to have a high frequency in a
document about the evaluation of IR systems. After the first few occurrences of the term,
however, each additional occurrence of the term ‘evaluation’ provides a diminishing
additional amount of information. One model to compute the probability Prisk is the
Laplace after-effect model:

Prisk =
tf

tf + 1
(3)

Prisk estimates the probability of having one more occurrence of a term in a document,
after having seen tf occurrences already.

The third component of the DFR framework is the term frequency normalisation
model, which adjusts the frequency tf of the term t in d, given the length l of d and the
average document length l in D. Normalisation 2 assumes a decreasing density function
of the normalised term frequency with respect to the document length l. The normalised
term frequency tfn is given as follows:

tfn = tf · log2(1 + c · l

l
) (4)

where c is a hyperparameter, i.e. a tunable parameter. Normalisation 2 is employed in
the framework by replacing tf in Equations (2) and (3) with tfn.

The relevance score wd,q of a document d for a query q is given by:

wd,q =
∑
t∈q

qtw · wd,t where wd,t = (1 − Prisk) · (− log2 PRM) (5)

where wd,t is the weight of the term t in document d, qtw = qtf
qtfmax

, qtf is the
frequency of t in the query q, and qtfmax is the maximum qtf in q. If PRM is estimated
using the Poisson randomness model, Prisk is estimated using the Laplace after-effect
model, and tfn is computed according to normalisation 2, then the resulting weight-
ing model is denoted by PL2. The factorial is approximated using Stirling’s formula:
tf ! =

√
2π · tf tf+0.5e−tf .

The DFR framework generates a wide range of weighting models by using different
randomness models, information gain models, or term frequency normalisation models.
For example, the next section describes how normalisation 2 is extended to handle the
normalisation and weighting of term frequencies for different document fields.

Multinomial Randomness Models for Retrieval with Document Fields 31

2.2 DFR Models for Document Fields

The DFR framework has been extended to handle multiple document fields, and to
apply per-field term frequency normalisation and weighting. This is achieved by ex-
tending normalisation 2, and introducing normalisation 2F [7], which is explained
below.

Suppose that a document has k fields. Each occurrence of a term can be assigned to
exactly one field. The frequency tfi of term t in the i-th field is normalised and weighted
independently of the other fields. Then, the normalised and weighted term frequencies
are combined into one pseudo-frequency tfn2F :

tfn2F =
k∑

i=1

wi · tfi log2

(
1 + ci · li

li

)
(6)

where wi is the relative importance or weight of the i-th field, tfi is the frequency
of t in the i-th field of document d, li is the length of the i-th field in d, li is the
average length of the i-th field in the collection D, and ci is a hyperparameter for the
i-th field. The above formula corresponds to normalisation 2F. The weighting model
PL2F corresponds to PL2 using tfn2F as given in Equation (6). The well-known BM25
weighting model has also been extended in a similar way to BM25F [17].

3 Multinomial Randomness Models

This section introduces DFR models which, instead of extending the term frequency
normalisation component, as described in the previous section, use document fields as
part of the randomness model. While the weighting model PL2F has been shown to
perform particularly well [7,8], the document fields are not an integral part of the ran-
domness weighting model. Indeed, the combination of evidence from the different fields
takes place as a linear combination of normalised frequencies in the term frequency nor-
malisation component. This implies that the term frequencies are drawn from the same
distribution, even though the nature of each field may be different.

We propose two weighting models, which, instead of assuming that term frequen-
cies in fields are drawn from the same distribution, use multinomial distributions to
incorporate document fields in a theoretically driven way. The first one is based on the
multinomial distribution (Section 3.1), and the second one is based on an information
theoretic approximation of the multinomial distribution (Section 3.2).

3.1 Multinomial Distribution

We employ the multinomial distribution to compute the probability that a term appears a
given number of times in each of the fields of a document. The formula of the weighting
model is derived as follows. Suppose that a document d has k fields. The probability
that a term occurs tfi times in the i-th field fi, is given as follows:

PM(t ∈ d|D) =
(

TF

tf1 tf2 . . . tfk tf ′

)
ptf1
1 ptf2

2 . . . ptfk

k p′tf
′

(7)

32 V. Plachouras and I. Ounis

In the above equation, TF is the frequency of term t in the collection, pi = 1
k·N is the

prior probability that a term occurs in a particular field of document d, and N is the
number of documents in the collection D. The frequency tf ′ = TF −

∑k
i=1 tfi cor-

responds to the number of occurrences of t in other documents than d. The probability
p′ = 1 − k 1

k·N = N−1
N corresponds to the probability that t does not appear in any of

the fields of d.
The DFR weighting model is generated using the multinomial distribution from

Equation (7) as a randomness model, the Laplace after-effect from Equation (3), and
replacing tfi with the normalised term frequency tfni, obtained by applying normal-
isation 2 from Equation (4). The relevance score of a document d for a query q is
computed as follows:

wd,q =
∑
t∈q

qtw · wd,t =
∑
t∈q

qtw · (1 − Prisk) ·
(

− log2(PM(t ∈ d|D)
)

=
∑
t∈q

qtw∑k
i=1 tfni + 1

·
(

− log2(TF !) +
k∑

i=1

(
log2(tfni!) − tfni log2(pi)

)

+ log2(tfn′!) − tfn′ log2(p
′)
)

(8)

where qtw is the weight of a term t in query q, tfn′ = TF −
∑k

i=1 tfni, tfni =
tfi · log2(1 + ci · li

li
) for the i-th field, and ci is the hyperparameter of normalisation 2

for the i-th field. The weighting model introduced in the above equation is denoted by
ML2, where M stands for the multinomial randomness model, L stands for the Laplace
after-effect model, and 2 stands for normalisation 2.

Before continuing, it is interesting to note two issues related to the introduced weight-
ing model ML2, namely setting the relative importance, or weight, of fields in the do-
cument representation, and the computation of factorials.

Weights of fields. In Equation (8), there are two different ways to incorporate weights
for the fields of documents. The first one is to multiply each of the normalised term
frequencies tfni with a constant wi, in a similar way to normalisation 2F (see Equa-
tion (6)): tfni := wi · tfni. The second way is to adjust the prior probabilities pi of
fields, in order to increase the scores assigned to terms occurring in fields with low prior
probabilities: pi := pi

wi
. Indeed, the assigned score to a query term occurring in a field

with low probability is high, due to the factor −tfni log2(pi) in Equation (8).

Computing factorials. As mentioned in Section 2.1, the factorial in the weighting model
PL2 is approximated using Stirling’s formula. A different method to approximate the
factorial is to use the approximation of Lanczos to the Γ function [12, p. 213], which
has a lower approximation error than Stirling’s formula. Indeed, preliminary experi-
mentation with ML2 has shown that using Stirling’s formula affects the performance
of the weighting model, due to the accumulation of the approximation error from com-
puting the factorial k + 2 times (k is the number of fields). This is not the case for the
Poisson-based weighting models PL2 and PL2F, where there is only one factorial com-
putation for each query term (see Equation (2)). Hence, the computation of factorials in
Equation (8) is performed using the approximation of Lanczos to the Γ function.

Multinomial Randomness Models for Retrieval with Document Fields 33

3.2 Approximation to the Multinomial Distribution

The DFR framework generates different models by replacing the binomial randomness
model with its limiting forms, such as the Poisson randomness model. In this section,
we introduce a new weighting model by replacing the multinomial randomness model
in ML2 with the following information theoretic approximation [13]:

TF !
tf1!tf2! · · · tfk!tf ′!

p1
tf1p2

tf2 · · · pk
tfkp′tf

′
≈ 1

√
2πTF

k

2−TF ·D
(

tfi
T F ,pi

)
√

pt1pt2 · · · ptkp′t
(9)

D
(

tfi

TF , pi

)
corresponds to the information theoretic divergence of the probability pti =

tfi

TF that a term occurs in a field, from the prior probability pi of the field:

D
(tfi

TF
, pi

)
=

k∑
i=1

(tfi

TF
log2

tfi

TF · pi

)
+

tf ′

TF
log2

tf ′

TF · p′ (10)

where tf ′ = TF −
∑k

i=1 tfi. Hence, the multinomial randomness model M in the
weighting model ML2 can be replaced by its approximation from Equation (9):

wd,q =
∑
t∈q

qtw ·
k
2 log2(2πTF)∑k

i=1 tfni + 1
·

(k∑
i=1

(
tfni log2

tfni/TF

pi
+

1
2

log2
tfni

TF

)

+ tfn′ log2
tfn′/TF

p′
+

1
2

log2
tfn′

TF

)
(11)

The above model is denoted by MDL2. The definitions of the variables involved in the
above equation have been introduced in Section 3.1.

It should be noted that the information theoretic divergence D
(

tfi

TF , pi

)
is defined

only when tfi > 0 for 1 ≤ i ≤ k. In other words, D
(

tfi

TF , pi

)
is defined only when

there is at least one occurrence of a query term in all the fields. This is not always the
case, because a Web document may contain all the query terms in its body, but it may
contain only some of the query terms in its title. To overcome this issue, the weight of
a query term t in a document is computed by considering only the fields in which the
term t appears.

The weights of different fields can be defined in the same way as in the case of the
weighting model ML2, as described in Section 3.1. In more detail, the weighting of
fields can be achieved by either multiplying the frequency of a term in a field by a
constant, or by adjusting the prior probability of the corresponding field.

An advantage of the weighting model MDL2 is that, because it approximates the
multinomial distribution, there is no need to compute factorials. Hence, it is likely to
provide a sufficiently accurate approximation to the multinomial distribution, and it
may lead to improved retrieval effectiveness compared to ML2, due to the lower accu-
mulated numerical errors. The experimental results in Section 4.2 will indeed confirm
this advantage of MDL2.

34 V. Plachouras and I. Ounis

4 Experimental Evaluation

In this section, we evaluate the proposed multinomial DFR models ML2 and MDL2,
and compare their performance to that of PL2F, which has been shown to be particu-
larly effective [7,8]. A comparison of the retrieval effectiveness of PL2F and BM25F
has shown that the two models perform equally well on various search tasks and test
collections [11], including those employed in this work. Hence, we experiment only
with the multinomial models and PL2F. Section 4.1 describes the experimental setting,
and Section 4.2 presents the evaluation results.

4.1 Experimental Setting

The evaluation of the proposed models is conducted with the .Gov TREC Web test
collection, a crawl of approximately 1.25 million documents from the .gov domain. The
.Gov collection has been used in the TREC Web tracks between 2002 and 2004 [2,3,4].
In this work, we employ the tasks from the Web tracks of TREC 2003 and 2004, because
they include both informational tasks, such as the topic distillation (td2003 and td2004,
respectively), as well as navigational tasks, such as named page finding (np2003 and
np2004, respectively) and home page finding (hp2003 and hp2004, respectively). More
specifically, we train and test for each type of task independently, in order to get insight
on the performance of the proposed models [15]. We employ each of the tasks from the
TREC 2003 Web track for training the hyperparameters of the proposed models. Then,
we evaluate the models on the corresponding tasks from the TREC 2004 Web track.

In the reported set of experiments, we employ k = 3 document fields: the contents
of the <BODY> tag of Web documents (b), the anchor text associated with incoming
hyperlinks (a), and the contents of the <TITLE> tag (t). More fields can be defined
for other types of fields, such as the contents of the heading tags <H1> for example.
It has been shown, however, that the body, title and anchor text fields are particularly
effective for the considered search tasks [11]. The collection of documents is indexed
after removing stopwords and applying Porter’s stemming algorithm. We perform the
experiments in this work using the Terrier IR platform [10].

The proposed models ML2 and MDL2, as well as PL2F, have a range of hyperpa-
rameters, the setting of which can affect the retrieval effectiveness. More specifically, all
three weighting models have two hyperparameters for each employed document field:
one related to the term frequency normalisation, and a second one related to the weight
of that field. As described in Sections 3.1 and 3.2, there are two ways to define the
weights of fields for the weighting models ML2 and MDL2: (i) multiplying the nor-
malised frequency of a term in a field; (ii) adjusting the prior probability pi of the i-th
field. The field weights in the case of PL2F are only defined in terms of multiplying the
normalised term frequency by a constant wi, as shown in Equation (6).

In this work, we consider only the term frequency normalisation hyperparameters,
and we set all the weights of fields to 1, in order to avoid having one extra parameter
in the discussion of the performance of the weighting models. We set the involved
hyperparameters cb, ca, and ct, for the body, anchor text, and title fields, respectively,
by directly optimising mean average precision (MAP) on the training tasks from the
Web track of TREC 2003. We perform a 3-dimensional optimisation to set the values

Multinomial Randomness Models for Retrieval with Document Fields 35

of the hyperparameters. The optimisation process is the following. Initially, we apply a
simulated annealing algorithm, and then, we use the resulting hyperparameter values as
a starting point for a second optimisation algorithm [16], to increase the likelihood of
detecting a global maximum. For each of the three training tasks, we apply the above
optimisation process three times, and we select the hyperparameter values that result in
the highest MAP. We employ the above optimisation process to increase the likelihood
that the hyperparameters values result in a global maximum for MAP. Figure 1 shows
the MAP obtained by ML2 on the TREC 2003 home page finding topics, for each
iteration of the optimisation process. Table 1 reports the hyperparameter values that
resulted in the highest MAP for each of the training tasks, and that are used for the
experiments in this work.

 0

 0.2

 0.4

 0.6

 0.8

 0 40 80 120 160 200

M
A

P

iteration

ML2

Fig. 1. The MAP obtained by ML2 on the TREC 2003 home page finding topics, during the
optimisation of the term frequency normalisation hyperparameters

The evaluation results from the Web tracks of TREC 2003 [3] and 2004 [4] have
shown that employing evidence from the URLs of Web documents results in important
improvements in retrieval effectiveness for the topic distillation and home page find-
ing tasks, where relevant documents are home pages of relevant Web sites. In order
to provide a more complete evaluation of the proposed models for these two types of
Web search tasks, we also employ the length in characters of the URL path, denoted by
URLpathlen, using the following formula to transform it to a relevance score [17]:

wd,q := wd,q + ω · κ

κ + URLpathlen
(12)

where wd,q is the relevance score of a document. The parameters ω and κ are set by per-
forming a 2-dimensional optimisation as described for the case of the hyperparameters
ci. The resulting values for ω and κ are shown in Table 2.

4.2 Evaluation Results

After setting the hyperparameter values of the proposed models, we evaluate the models
with the search tasks from TREC 2004 Web track [4]. We report the official TREC
evaluation measures for each search task: mean average precision (MAP) for the topic
distillation task (td2004), and mean reciprocal rank (MRR) of the first correct answer
for both named page finding (np2004) and home page finding (hp2004) tasks.

36 V. Plachouras and I. Ounis

Table 1. The values of the hyperparameters
cb, ca, and ct, for the body, anchor text and
title fields, respectively, which resulted in
the highest MAP on the training tasks of
TREC 2003 Web track

ML2
Task cb ca ct

td2003 0.0738 4.3268 10.8220
np2003 0.1802 4.7057 8.4074
hp2003 0.1926 310.3289 624.3673

MDL2
Task cb ca ct

td2003 0.2562 10.0383 24.6762
np2003 1.0216 9.2321 21.3330
hp2003 0.4093 355.2554 966.3637

PL2F
Task cb ca ct

td2003 0.1400 5.0527 4.3749
np2003 1.0153 11.9652 9.1145
hp2003 0.2785 406.1059 414.7778

Table 2. The values of the hyperparameters
ω and κ, which resulted in the high-
est MAP on the training topic distillation
(td2003) and home page finding (hp2003)
tasks of TREC 2003 Web track

ML2
Task ω κ

td2003 8.8095 14.8852
hp2003 10.6684 9.8822

MDL2
Task ω κ

td2003 7.6974 12.4616
hp2003 27.0678 67.3153

PL2F
Task ω κ

td2003 7.3638 8.2178
hp2003 13.3476 28.3669

Table 3 presents the evaluation results for the proposed models ML2, MDL2, and the
weighting model PL2F, as well as their combination with evidence from the URLs of
documents (denoted by appending U to the weighting model’s name). When only the
document fields are employed, the multinomial weighting models have similar perfor-
mance compared to the weighting model PL2F. The weighting models PL2F and MDL2
outperform ML2 for both topic distillation and home page finding tasks. For the named
page finding task, ML2 results in higher MRR than MDL2 and PL2F.

Using the Wilcoxon signed rank test, we tested the significance of the differences in
MAP and MRR between the proposed new multinomial models and PL2F. In the case
of the topic distillation task td2004, PL2F and MDL2 were found to perform statistically
significantly better than ML2, with p < 0.001 in both cases. There was no statistically
significant difference between PL2F and MDL2. Regarding the named page finding task
np2004, there is no statistically significant difference between any of the three proposed
models. For the home page finding task hp2004, only the difference between ML2 and
PL2F was found to be statistically significant (p = 0.020).

Regarding the combination of the weighting models with the evidence from the
URLs of Web documents, Table 3 shows that PL2FU and MDL2U outperform ML2U
for td2004. The differences in performance are statistically significant, with p = 0.002
and p = 0.012, respectively, but there is no significant difference in the retrieval ef-
fectiveness between PL2FU and MDL2U. When considering hp2004, we can see that
PL2F outperforms the multinomial weighting models. The only statistically significant
difference in MRR was found between PL2FU and MDL2FU (p = 0.012).

Multinomial Randomness Models for Retrieval with Document Fields 37

Table 3. Evaluation results for the weighting models ML2, MDL2, and PL2F on the TREC
2004 Web track topic distillation (td2004), named page finding (np2004), and home page finding
(hp2004) tasks. ML2U, MDL2U, and PL2FU correspond to the combination of each weighting
model with evidence from the URL of documents. The table reports mean average precision
(MAP) for the topic distillation task, and mean reciprocal rank (MRR) of the first correct answer
for the named page finding and home page finding tasks. ML2U, MDL2U and PL2FU are evalu-
ated only for td2004 and hp2004, where the relevant documents are home pages (see Section 4.1).

Task ML2 MDL2 PL2F

MAP
td2004 0.1241 0.1391 0.1390

MRR
np2004 0.6986 0.6856 0.6878
hp2004 0.6075 0.6213 0.6270

Task ML2U MDL2U PL2FU

MAP
td2004 0.1916 0.2012 0.2045

MRR
hp2004 0.6364 0.6220 0.6464

A comparison of the evaluation results with the best performing runs submitted to
the Web track of TREC 2004 [4] shows that the combination of the proposed mod-
els with the evidence from the URLs performs better than the best performing run of
the topic distillation task in TREC 2004, which achieved MAP 0.179. The performance
of the proposed models is comparable to that of the most effective method for the
named page finding task (MRR 0.731). Regarding the home page finding task, the dif-
ference is greater between the performance of the proposed models with evidence from
the URLs, and the best performing methods in the same track (MRR 0.749). This can be
explained in two ways. First, the over-fitting of the parameters ω and κ on the training
task may result in lower performance for the test task. Second, using field weights may
be more effective for the home page finding task, which is a high precision task, where
the correct answers to the queries are documents of a very specific type.

From the results in Table 3, it can be seen that the model MDL2, which employs
the information theoretic approximation to the multinomial distribution, significantly
outperforms the model ML2, which employs the multinomial distribution, for the topic
distillation task. As discussed in Section 3.2, this may suggest that approximating the
multinomial distribution is more effective than directly computing it, because of the
number of computations involved, and the accumulated small approximation errors
from the computation of the factorial. The difference in performance may be greater
if more document fields are considered.

Overall, the evaluation results show that the proposed multinomial models ML2 and
MDL2 have a very similar performance to that of PL2F for the tested search tasks.
None of the models outperforms the others consistently for all three tested tasks, and
the weighting models MDL2 and PL2F achieve similar levels of retrieval effectiveness.
The next section discusses some points related to the new multinomial models.

38 V. Plachouras and I. Ounis

5 Discussion

This section discusses (i) the advantages of the proposed multinomial models compared
to the existing field-based weighting models, and (ii) the use of normalisation 2 (or
normalisation 2F) for weighting fields in any of the field-based DFR weighting models.

The proposed models result in similar retrieval effectiveness to that of PL2F (Equa-
tion (6)), and also provide a new approach to the combination of evidence from the
fields, compared to PL2F or BM25F [17], where a weighted sum aggregates term
frequencies. Indeed, by employing multinomial distributions, the combination of fields
takes place in the probabilistic weighting model. Hence, the weight of a term in a do-
cument depends explicitly on the distribution of term frequencies in the different fields.

A second advantage of the multinomial models over PL2F or BM25F is that they
allow for a more principled approach to the weighting of fields, rather than just mul-
tiplying term frequencies by a constant. As suggested earlier, in the case of ML2 and
MDL2, the prior probability of each field can be used as a weight for that field. The same
approach cannot be applied to PL2F, because the randomness model does not consider
document fields.

Normalisation 2 is primarily used for normalising the frequency of terms in a docu-
ment, or in the document fields. In addition, it can also be used to weight the document
fields, possibly avoiding the introduction of additional hyperparameters. Indeed, from
the equation of normalisation 2: tfni = tfi · log2

(
1+ci ·(li/li)

)
, where ci ∈ (0, +∞),

it can be seen that applying a very high value for a particular document field, such as the
title field, results in weak term frequency normalisation, and also multiplies the original
term frequency. In this way, it may not be necessary to employ separate hyperparame-
ters for field weights, thus reducing the imposed training overhead.

Overall, the proposed multinomial models offer a novel and effective way to com-
bine document fields in a theoretically driven approach. Their introduction in the DFR
framework can also generate a family of new weighting models, by combining different
information gain or term frequency normalisation models.

6 Conclusions

In this work, we have introduced two new weighting models that combine document
fields for Information Retrieval. While field-based weighting models, such as PL2F [7],
or BM25F [17], combine evidence from fields in the term frequency normalisation com-
ponent, we take a different approach. In the context of the DFR framework [1], we
employ multinomial randomness models, and model the document fields in the proba-
bilistic retrieval model. The first model, ML2, employs directly the multinomial distri-
bution to assign a relevance score to documents, and the second model, MDL2, uses an
information theoretic approximation of the multinomial distribution.

We have performed experiments in the context of the .Gov TREC Web test collection.
The evaluation results show that the new models perform as well as PL2F for a range of
Web search tasks, such as topic distillation, named page finding and home page finding.
In particular, for the topic distillation task, the model MDL2 performs as well as PL2F,
and significantly outperforms ML2, suggesting that it is more effective to approximate
the multinomial distribution, than to compute it directly.

Multinomial Randomness Models for Retrieval with Document Fields 39

The proposed multinomial models represent a novel and effective approach to the
combination of document fields, which is achieved in a principled way within a proba-
bilistic framework. As a result, one of their advantages is that, for example, they allow
for the investigation of the weighting of fields in terms of the prior probabilities of each
field.

References

1. Amati, G., van Rijsbergen, C.J.: Probabilistic models of information retrieval based on mea-
suring divergence from randomness. ACM TOIS 20 (2002) 357–389

2. Craswell, N., Hawking, D.: Overview of TREC-2002 web track. In: Proceedings of TREC-
2002, Gaithersburg, MD, USA (2002)

3. Craswell, N., Hawking, D., Wilkinson, R., Wu, M.: Overview of the TREC-2003 web track.
In: Proceedings of TREC-2003, Gaithersburg, MD, USA (2003)

4. Craswell, N., Hawking, D.: Overview of TREC-2004 web track. In: Proceedings of TREC-
2004, Gaithersburg, MD, USA (2004)

5. Hawking, D., Upstill, T., Craswell, N.: Toward better weighting of anchors. In: Proceedings
of the 27th annual international ACM SIGIR conference on Research and Development in
Information Retrieval, ACM Press (2004) 512–513

6. Jin, R., Hauptmann, A.G., Zhai, C.X.: Title language model for information retrieval. In:
Proceedings of the 25th annual international ACM SIGIR conference on Research and De-
velopment in Information Retrieval, ACM Press (2002) 42–48

7. Macdonald, C., Plachouras, V., He, B., Lioma, C., Ounis, I.: University of Glasgow at We-
bCLEF 2005: Experiments in per-field normalisation and language specific stemming. In:
Proceedings of the Cross Language Evaluation Forum (CLEF) 2005. (2005)

8. Macdonald, C., He, B., Plachouras, V., Ounis, I.: University of Glasgow at TREC 2005:
Experiments in Terabyte and Enterprise Tracks with Terrier. In: Proceedings of TREC-2005,
Gaithersburg, Maryland USA (2005)

9. Macdonald, C., Ounis, I.: Combining fields in known-item email search. In: SIGIR ’06:
Proceedings of the 29th annual international ACM SIGIR conference on Research and De-
velopment in Information Retrieval, ACM Press (2006) 675–676

10. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A High Per-
formance and Scalable Information Retrieval Platform. In: Proceedings of ACM SIGIR’06
Workshop on Open Source Information Retrieval (OSIR) (2006)

11. Plachouras, V.: Selective Web Information Retrieval. PhD thesis, Department of Computing
Science, University of Glasgow (2006)

12. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press (1992)

13. Rényi, A.: Foundations of probability. Holden-Day (1970)
14. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple weighted fields.

In: Proceedings of the 13th ACM Conference on Information and Knowledge Management
(CIKM’04), ACM Press (2004) 42–49

15. Soboroff, I.: On evaluating web search with very few relevant documents. In: Proceedings
of the 27th annual international ACM SIGIR conference on Research and Development in
Information Retrieval, ACM Press (2004) 530–531

16. Yuret, D.: From Genetic Algorithms To Efficient Optimization. Master Thesis, MIT, A.I.
Technical Report No. 1569. (1994)

17. Zaragoza, H., Craswell, N., Taylor, M., Saria, S., Robertson, S.: Microsoft Cambridge at
TREC-13: Web and HARD tracks. In: Proceedings of TREC-2004, Gaithersburg, MD, USA
(2004)

On Score Distributions and Relevance

Stephen Robertson

Microsoft Research, 7 JJ Thomson Avenue, Cambridge CB3 0FB, UK
ser@microsoft.com

Abstract. We discuss the idea of modelling the statistical distributions
of scores of documents, classified as relevant or non-relevant. Various
specific combinations of standard statistical distributions have been used
for this purpose. Some theoretical considerations indicate problems with
some of the choices of pairs of distributions. Specifically, we revisit a
generalisation of the well-known inverse relationship between recall and
precision: some choices of pairs of distributions violate this generalised
relationship. We identify the choices and the violations, and explore some
of the consequences of this theoretical view.

1 Introduction

The idea of modelling the distributions of scores of relevant and non-relevant
documents in an information retrieval system has been around for a long time
(see Swets [1]), but in recent years has taken a new lease of life [2,3,4]. Various
combinations of statistical distributions have been proposed, for example two
normal distributions of equal variance [1], two unequal variance normals or two
exponentials [5], two Poisson distributions [6], two gamma distributions [2], an
exponential for non-relevant and a normal for relevant [3,4,7], an exponential
and a gamma [4].

Clearly a strong argument for choosing any particular combination of distri-
butions is that it gives a good fit to some set of empirical data, and some of
the above authors address this question in various ways. However, we do not
attempt in this paper any such empirical analysis. Nor does it claim any fun-
damentally new theoretical results. Rather, it revisits old work [8,9] in order to
consider some theoretical properties which might be desirable for such distribu-
tions. The primary argument of the paper is that, putting aside considerations of
empirical fit, some combinations of distributions exhibit undesirable or anoma-
lous features which reduce their theoretical value. This argument generalises a
point made by Bookstein [6] about the Swets unequal variance model. Some of
these considerations were also aired in [10] in the context of an analysis of the
relation between performance and collection size. The contribution of the paper
is to bring together and clarify the theoretical issues, and to connect them with
the recent work on score distributions.

Note that many other authors model or analyse score distributions without
reference to relevance. This work is not discussed here. Also, the work depends on
an assumption of the binary nature of relevance; a different approach would have

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 40–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Score Distributions and Relevance 41

to be taken to take account of degrees or grades or ranks of assessed relevance.
The link between relevance and ranking is assumed to be the probability ranking
principle [11], which asserts that a search system should rank output in order of
probability of (assumed binary) relevance.

In the next section, we introduce the main theoretical argument of the paper.
In Sect. 3 we analyse in detail one of the early suggestions, the case of two
normal distributions of unequal variance. Then in Sect. 4 we define a simple test
and apply it to five different sets of distributional assumptions that have been
suggested in the literature. Finally we discuss some further issues and conclude.

2 Recall and Fallout

We consider the output of a retrieval system, as a result of a search query, to be
a list of documents ranked by score or retrieval status value, and the user action
to involve reading down the list until some stopping point. This stopping point
then corresponds, explicitly or implicitly, to a threshold on the score: everything
above this threshold has been retrieved, i.e. seen by the user; everything below
has not. We further model the situation in terms of the distributions of scores in
the populations of relevant and non-relevant documents: a signal detection (SD)
theory view of retrieval. In this case, the two natural parameters for evaluation
are recall, which corresponds to the proportion of the relevant distribution ex-
ceeding the threshold, and fallout (the same for the non-relevant distribution).
We interpret these parameters in a probabilistic fashion as the values of the
respective cumulative distribution functions, cumulated from the right (i.e. from
the high-score end). In this case, the natural performance graph to consider is
a graph of recall against fallout, referred to in the SD context as the receiver
operating characteristic or ROC curve.

The recall-fallout graph is not normally used for real retrieval experiments,
partly because real fallout values are typically so small, but also so unevenly
distributed, that it is difficult to display such graphs in a reasonable way. One
solution is to transform fallout in some way, e.g. by using a log scale. However, for
the purpose of considering some theoretical characteristics, it is appropriate to
think in terms of a recall-fallout graph on linear scales. We also present all such
graphs with fallout on the x-axis and recall on the y-axis. All such curves may
be presumed to pass through (0,0) (very high threshold, nothing retrieved) and
(1,1) (very low threshold, everything retrieved). Going down the ranking from
the top to the bottom, i.e. lowering the threshold, corresponds to traversing the
curve from bottom left (0,0) to top right (1,1).

An example of an idealised smooth curve is shown in Fig. 1 (a detailed deriva-
tion of this curve is given in Section 3). We can also see in this figure two other
properties of the recall-fallout graph on linear scales. Assuming that this curve
represents a single request, the slope of the line OA from the origin to a point A
on the curve is a monotonic function of the precision at point A. Also the slope
of the tangent at A represents the ‘instantaneous’ precision – that is, the prob-
ability that a document having exactly that score is relevant. A mathematical

42 S. Robertson

Fig. 1. Receiver Operating Characteristic (ROC) curve for the distributions discussed
in Section 3

explanation of these points is given in Section 3. First, we formulate the Convex-
ity Hypothesis, which provides a strong expectation on the shape of the curve.

2.1 The Convex Curve

The straight line on the linear recall-fallout graph, from point (0,0) to (1,1),
represents a random ordering of the document collection – identical relevant and
non-relevant score distributions [12]. Other straight lines may also be interpreted
as random orderings of sets. For example, suppose that we have two points A,
B on the recall-fallout graph, corresponding to two score thresholds tA and tB,
with tA > tB. Then the straight line from A to B corresponds to retrieval of all
documents at A (those whose scores exceed tA), followed by a random ordering
of the documents scoring between tA and tB.

It follows that we would in general expect the recall-fallout curve to be convex,
when viewed from the top left (0,1). If we found a scoring function which gener-
ated a curve containing a concavity, we could improve upon it simply by means
of a randomisation process on that section of the ranked list corresponding to
the concavity in the curve – this operation would replace the concave section by
a straight line, thus raising this part of the curve. (Actually, we could do better
than this: the concave part represents scores which tell us something about likely
relevance, but in the reverse order – a suitable re-ordering of score values would
get us as far above the straight line as the concavity is below it.) Thus even if it
is not always the case that the curve is convex, we would certainly expect it of
a good system, because a departure from convexity implies that the system can
be very easily improved. We may therefore state the following hypothesis, with
the support of the above arguments:

On Score Distributions and Relevance 43

Convexity hypothesis. For all good systems, the recall-fallout curve (seen
from the ideal point of recall=1, fallout=0) is convex.

This result is related to, but somewhat stronger than, the usual inverse
relationship between recall and precision – that is, the R-P relationship fol-
lows from convexity [12,8]. We see the convexity hypothesis as a generalisation
of the hypothesis of the inverse R-P relationship.

The same hypothesis can also be formulated as a condition on the instanta-
neous precision, or the probability of relevance of a document at an exact score.
The condition is that this should be a monotonic increasing function of the
score – the higher the score the higher the probability of relevance. This condi-
tion is assumed in [4]; their use of it will be discussed further below.

The convexity hypothesis is the basis for the theoretical arguments of this
paper.

3 Score Distributions: Details and an Example

Consider a pair of score distributions for relevant and non-relevant documents.
In Fig. 2, we see an example of a pair of normal distributions. The normal is
used as example only, but we will generally be using continuous distributions,
although it is likely that the scoring function has some degree of granularity,
and also we are dealing with finite collections of documents. These distributions
are shown in the form of density functions (the usual bell curve). The x-axis is
the score or retrieval status value, denoted v; the two distributions are denoted
fR(v) and fN (v) for relevant and non-relevant documents respectively. All the
equations in this section apply to any pair of continuous distributions, but the
diagrams relate to the pair of normals.

As indicated above, we turn them into cumulative distributions from the right
– see Fig. 3. These functions are defined as follows:

FR(t) =
∫ ∞

v=t

fR(v)dv

and similarly for FN .
At any given cut-off or threshold t (examples shown in the form of vertical

lines), the cumulative distributions give the probability of retrieving a relevant
or non-relevant document respectively at or above that threshold score. These
two probabilities may be equated with the traditional measures of recall and
fallout respectively. That is, the probabilities can be used as definitions of recall
and fallout, and observed recall and fallout values are then estimates of these
measures:

Recall at threshold t = Pr(d retrieved at or above threshold t|d relevant)
= Pr(v(d) ≥ t|d relevant)
= FR(t) (1)

44 S. Robertson

Fig. 2. SD model, normal distributions unequal variance: relevant mean 2.5 variance
1.2; non-relevant mean 1.8 variance 1

(where d is a random document), and similarly for fallout and FN . We can
similarly define precision P , and identify it as a function of recall, fallout and
generality G1, as follows:

P = Pr (d relevant|v(d) ≥ t)

=
GFR(t)

GFR(t) + (1 − G)FN (t)

We reformulate this as odds:

P

1 − P
=

G

1 − G

FR(t)
FN (t)

(2)

which gives us the monotonic relation between precision and the slope of the
straight line OA of Fig. 1. Similarly we can define the odds that a document has
a score between two limits:

Odds(d relevant|t1 ≤ v(d) ≤ t2) =
G

1 − G

FR(t1) − FR(t2)
FN (t1) − FN (t2)

(3)

which gives us the corresponding relation for the line AB. Furthermore, letting
(t2 − t1) → 0 gives the instantaneous precision result.

We now treat the score v as defining parametrically a relation between recall
and fallout, and draw the ROC curve for these two parameters. The curve already
presented in Fig. 1 is based on the distributions used here. It does not actually
reach (1,1) because it was plotted only down to a threshold of zero; the assumed

1 Generality is the proportion of documents in the collection that are relevant.

On Score Distributions and Relevance 45

Fig. 3. SD model, normal distributions unequal variance, as Fig. 2, cumulative form

normal distributions both go below zero. The curve does indeed appear to be
convex. However, in the full curve there would actually be a small concavity, at
the right-hand end, invisible on the scale on which the graph is shown. This is
because the relevant document distribution assumed, with a larger variance than
the non-relevant, predicts a slightly larger number of documents with significant

Fig. 4. Top end of the ROC curve for the distributions used in Figs 2 and 3

46 S. Robertson

negative scores than the non-relevant. The curve is extended to (1,1) and the
top right corner is blown up in Fig. 4; now the concavity is clearly seen.

In this case we may take this to be an artifact of the model, and of no prac-
tical significance whatever, because (a) the system probably does not calculate
negative scores anyway, and (b) the number of documents in that range pre-
dicted by the distributions is probably measured in very small fractions of a
document. It could be that the two normal model gives a fair approximation to
real score distributions, and this theoretical anomaly is of no concern. However,
the conclusion must be that the 2-normal (unequal variance) model is theoreti-
cally flawed, irrespective of its practical usefulness. It therefore seems useful to
investigate the conditions under which a pair of distributions will violate the
convexity hypothesis.

4 Convexity Condition and Distributional Assumptions

The convexity condition is given in [8] as:

d2(Recall)
dt2

<
d2(Fallout)

dt2

d(Recall)
dt

d(Fallout)
dt

(4)

for some controlling variable t. As above, we identify recall and fallout with
FR(t) and FN (t) respectively. We note that

dFR(t)
dt

= −fR(t)

As the density function f is always positive, this expression is negative. The
condition can be expressed as:

1
fR(t)

dfR(t)
dt

>
1

fN(t)
dfN (t)

dt
(5)

throughout the range of t. We can now test this condition on a number of the
pairs of distributions that have been proposed for modelling scores. For each
distribution, we need the function

g(t) =
1

f(t)
df(t)
dt

(6)

derived from its density function f , and then we can compare gR(t) and gN(t).

4.1 Two Exponential Distributions

The case of two exponential distributions (one of the models suggested [5]) is
simple. The exponential density function is

f(t) =
1
μ

exp
(

− t

μ

)

On Score Distributions and Relevance 47

where μ is the mean. Thus

g(t) = − 1
μ

.

Since μR would be larger than μN , the convexity condition holds for all t.

4.2 Two Normal Distributions

Here

f(t) =
1

σ
√

2π
exp

(
−(t − μ)2

2σ2

)

where μ is the mean and σ2 is the variance. Thus

g(t) =
1
σ2 (μ − t)

Again, we expect μR to be larger than μN . If the two variances are equal (the
first model proposed in [1]), then the convexity condition always holds. But if
σ2

R > σ2
N (as in the example above), there will be some small value of t (or

perhaps a large negative value) below which the condition is not satisfied: the
reverse is the case. If σ2

R < σ2
N , the departure from convexity occurs at the other

end.

4.3 Two Poisson Distributions

This combination was suggested in [6], specifically in response to the kind of
anomaly just observed. The Poisson distribution is discrete, so the analysis above
based on continuous distributions does not apply. However, we can define a
function analogous to g(t) above, as follows:

g(k) =
P (k + 1) − P (k)

P (k)

for each integral threshold k = 0, 1, ..., where P is the probability of observation
k. The probability function for the Poisson distribution is:

P (k) =
λk exp(−k)

k!

where λ is the Poisson mean, from which

g(k) =
λ

k + 1
− 1

Once more, we expect λR to be larger than λN , so the condition is always
satisfied. This is consistent with the argument in [6].

48 S. Robertson

4.4 Two Gamma Distributions

This configuration is used in [2]. The density is:

f(t) =
(

t

b

)c−1 1
b Γ (c)

exp
(

− t

b

)

where b is the scale parameter and c is the shape parameter; the mean is bc.
Thus

g(t) =
c − 1

t
− 1

b

Here if either c or b is the same for the two distributions, but the other varies in
the way we would expect (higher mean for relevants), the condition is satisfied.
The range of variations for which the condition is satisfied is in fact quite wide,
although one could certainly construct examples which violate the condition for
some t.

In fact Baumgarten’s model is slightly more complex, involving shifted gamma
distributions (i.e. shifted along the t-axis by a small amount).

4.5 Exponential Non-relevants and Normal Relevants

This combination is used in [4], [3] and [7], making it currently the most popular
model. If we examine the formulae for g(t) in sections 4.2 and 4.1, we see that
in the exponential case g(t) is constant, while in the normal case it declines
linearly with t. Therefore there is always a t above which the condition is not
satisfied. This affects the bottom left end of the recall-fallout graph, whatever
the parameter values.

There is also a problem at the top right end (low t). Because the exponential
is defined over the positive real numbers only, but the normal necessarily extends
over the negatives as well, the curve hits the fallout=1 line below the recall=1
level. Thereafter it climbs straight up the fallout=1 line to the point (1,1). Thus
this end also violates the convexity condition, again for all parameter values.

5 Discussion

5.1 Score Range

In practice, score distributions may be truncated. It is common, for example,
for scores to be constrained to be positive, either as a mathematical conse-
quence of the scoring formula or as a matter of practical convenience. Indeed,
most of the above theoretical distributions are also confined to the positive real
numbers, although the normal is not. Many scoring systems also, however, con-
strain the scores below a maximum. For example, some produce scores that are
normalized to the range [0,1]. All the above theoretical distributions extend to
infinity in the positive direction. This fact produces its own theoretical problems:

On Score Distributions and Relevance 49

Should the fitted distribution be a truncated version of the theoretical one,
i.e. normalised so that its integral over the truncated range is unity? This is
potentially problematic, because it affects such statistics as the mean. Many
authors ignore this issue – e.g. [4] considers a scoring system which produces
scores in the range [0,1], but does not worry about the implied truncation.

5.2 Non-convexity

This truncation might have the side-effect of resolving the non-convexity prob-
lem, by putting the non-convex part of the curve out of effective scoring range. In
the case of [4], however, the non-convexity of the normal-exponential model does
affect them, and they recognise it as a problem, at least at the high-threshold
end (the non-convexity at the other end is avoided by the truncation at zero).
They observe that for some of their topics, the non-convexity at the high t end
falls within the scoring range [0,1]. In their terms, the probability of relevance
as a function of score is no longer monotonic in these cases: after a certain point
it declines. They resolve the problem by redefining the probability of relevance:
when the predicted function starts declining, they replace it with a straight line
from the maximum reached to the point (1,1) (that is, score=1 and probabil-
ity of relevance=1). They do not give any justification for this procedure, other
than that one would expect probability of relevance to be a monotonic function
of score.

On the basis of the above analysis of the recall-fallout graph, one could devise
an alternative procedure. Since a straight line on a recall-fallout graph represents
a random ordering of some set of documents, we could perform a procedure
similar to that of [4] but on the recall-fallout graph. We illustrate the procedure
in Fig. 5. Replacing the concave section of the curve with the straight line is
equivalent to randomly reordering all documents which score in that range. This
is thus a well-founded form of extrapolation.

5.3 Monotonic Transformations of the Score

One characteristic of all the above analysis is that it assigns a status to scores
which they might not possess. Systems produce scores in order to rank doc-
uments, and care not at all about the scale or shape of the scoring function.
Thus any monotonic transformation of a score produces a new score which is
indistinguishable from the old, in terms of ranking. Factors which do not affect
the rank order may be arbitrarily included or removed at any stage. This fact is
often used to simplify scoring functions, or their calculation.

Thus for example some scoring functions produce numbers that are restricted
to the range [0,1] because they are intended to model probabilities. Independence
assumptions lead one to multiply multiple probabilities; the result is another
probability. On the other hand, it is often easier to use log-probabilities (or log-
odds) and add them rather than multiplying them. The resulting logarithmic
(or logistic) scale looks quite different, and belongs to the range (−∞, 0) (or
to (−∞, ∞)). But a system using such a scale might then decide to normalise

50 S. Robertson

Fig. 5. Concavity at the high-threshold end

back to [0,1] linearly, by taking account of the observed maximum and mini-
mum values, rather than non-linearly, by reversing the logarithmic or logistic
transformation.

All such operations will drastically affect the distributions of scores, while
not at all affecting the resulting ranked output or any performance curve. Thus
observed distributions might depend on, in effect, accidental characteristics of
the system.

6 Conclusion

We have seen that we would normally expect the recall-fallout curve to be convex
in the sense defined above. That is, if we find a system which violates this
condition, then the system can be improved merely by adding a randomisation
process. Therefore we would at least expect good systems to satisfy the condition
already.

We have seen that under some models of the distributions of relevant and non-
relevant scores. models which have been proposed and/or used by researchers,
this convexity condition is violated. While the violation may relate to some part
of the score range which is not normally encountered, any violation seems at
least to raise questions about the general validity of the distributional model
under consideration.

Specifically, the model that appears to be most frequently used at present,
the normal/exponential mixture, always violates the convexity condition at both
ends of the range of theoretically possible scores. While this result does not
invalidate the model as a reasonable approximation to the true distributions, it
does put into question its general validity.

On Score Distributions and Relevance 51

References

1. Swets, J.A.: Information retrieval systems. Science 141(3577) (July 1963) 245–250
2. Baumgarten, C.: A probabilistic solution to collection fusion problem in distributed

information retrieval. In Hearst, M., Gey, F., Tong, R., eds.: SIGIR’99: Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, New York, ACM Press (1999) 246–253

3. Arampatzis, A., van Hameren, A.: The score-distributional threshold optimization
for adaptive binary classification tasks. In Croft, W.B., Harper, D.J., Kraft, D.H.,
Zobel, J., eds.: SIGIR 2001: Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, New
York, ACM Press (2001) 285–293

4. Manmatha, R., Rath, T., Feng, F.: Modelling score distributions for combining
the outputs of search engines. In Croft, W.B., Harper, D.J., Kraft, D.H., Zobel,
J., eds.: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, New York,
ACM Press (2001) 267–275

5. Swets, J.A.: Effectiveness of information retrieval methods. American Documen-
tation 20 (1969) 72–89

6. Bookstein, A.: When the most ‘pertinent’ document should not be retrieved – an
analysis of the Swets model. Information Processing and Management 13 (1977)
377–383

7. Collins-Thompson, K., Ogilvie, P., Zhang, Y., Callan, J.: Information filtering,
novelty detection and named page finding. In Voorhees, E.M., Harman, D.K., eds.:
The Eleventh Text REtrieval Conference, TREC 2002. NIST Special Publication
500-251, Gaithersburg, MD: NIST (2003) 107–118

8. Robertson, S.E.: Explicit and implicit variables in information retrieval systems.
Journal of the American Society for Information Science 26(4) (1975) 214–222

9. van Rijsbergen, C.J.: Retrieval effectiveness. In Voigt, M.J., Hanneman, G.J., eds.:
Progress in communication sciences. Volume 1., Ablex Publishing (1979) 91–118

10. Hawking, D., Robertson, S.: On collection size and retrieval effectiveness. Infor-
mation Retrieval 6 (2003) 99–150

11. Robertson, S.E.: The probability ranking principle in information retrieval. Journal
of Documentation 33 (1977) 294–304

12. Robertson, S.E.: The parametric description of retrieval tests. part 1: The basic
parameters. Journal of Documentation 25(1) (1969) 1–27

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 52 – 63, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Term Associations for Ad-Hoc Retrieval
Performance Within Language Modeling Framework

Xing Wei and W. Bruce Croft

Center for Intelligent Information Retrieval
University of Massachusetts Amherst

140 Governors Drive
Amherst, MA 01003

{xwei,croft}@cs.umass.edu

Abstract. Previous research has shown that using term associations could
improve the effectiveness of information retrieval (IR) systems. However, most
of the existing approaches focus on query reformulation. Document
reformulation has just begun to be studied recently. In this paper, we study how
to utilize term association measures to do document modeling, and what types
of measures are effective in document language models. We propose a
probabilistic term association measure, compare it to some traditional methods,
such as the similarity co-efficient and window-based methods, in the language
modeling (LM) framework, and show that significant improvements over query
likelihood (QL) retrieval can be obtained. We also compare the method with
state-of-the-art document modeling techniques based on latent mixture models.

Keywords: Information Retrieval, Language Model, Term/Word Associations/
Relationships, Term/Word similarity, Document Model, Topic Model.

1 Introduction

Modeling term associations is important to Information Retrieval (IR) systems. It is
well-known that ranking algorithms solely based on matching the literal words that
are present in queries and documents will fail to retrieve much relevant information.
For example, matching only the word “fruit” will miss the documents containing
“apple” that are also relevant to “fruit”. For this reason, term associations, which are
also called “term relationships” or “word similarity” in literature, have been
introduced to add new terms to the query/document representations that are related to
the original terms. There can be associations between two single terms (term-term
association); or between two groups of terms (term group association).

There has been much research in IR to associate related terms for queries and/or
documents. Manual techniques such as using hand-crafted thesauri and automatic
techniques such as clustering all attempt to provide a solution, with varying degrees of
success. Although manual processing can usually provide precise and useful
information with relatively less noise, an automatic method is expected to be more
effective due to many problems related with manual processing [15], such as labor
intensiveness, inconsistencies and ambiguity. Most automatic approaches to modeling
term associations are based on term co-occurrence or grammatical analysis.

 Modeling Term Associations for Ad-Hoc Retrieval Performance 53

Grammatical analysis is provides very specific knowledge about term relationships, but
it is not as robust as using term co-occurrence [12]. Accurate but limited knowledge
that provides few related terms is unlikely to substantially improve the retrieval output.
Term co-occurrence has been widely used in term-association studies based on the
intuition that co-occurring words are more likely to be similar, such as in term-term
association models (e.g., measuring term similarity with co-efficient of two term-
document vectors, which was widely used in earlier work such as term clustering [15,
23, 21] and Hyperspace Analogue to Language (HAL) [4]) and term group association
models (e.g., measuring document similarity with co-efficient of two document-term
vectors in document clustering [16] and Latent Dirichlet Allocation [2]). After term
associations are constructed by these methods, some post-processing techniques can be
applied to further improve the associations such as in [6], or to make the results
compatible with systems using clustering such as in [15, 16].

With the term associations derived from previous methods, texts are reformulated
(i.e. usually expanded) to improve the retrieval effectiveness. Some reformulations
are not as explicit as replacing query terms with new terms, but instead the
reformulation process is implicit, such as in the spreading activation techniques [22,
7, 8], in which the expansion is actually acquired during the process of following
links between nodes that represent terms or documents. Both query and document
reformulation processes have been investigated.

Query reformulation has been extensively studied with many term-association
models in various IR frameworks [10, 21, 14, 26, 19] (In the works that phrases are
considered, such as [14], we view a phrase as one term in this paper). The well-known
pseudo-relevance feedback process, which expands the initial query vocabulary by
adding terms contained in previously retrieved documents, is one of the best query
expansion techniques in terms of retrieval performance [19]. Most relevance feedback
models do term group association to find terms related to the entire query, which
contains more information than individual words and thus can produce better results
[21, 14]. Some query expansion techniques based on term-term associations such as
[1] do post-processing to generate associations with the entire query. These query-
based expansion processes have to be done online, in that they require an extra search
for each query, which negatively affects query response time. Also, the efficiency of
an IR system depends heavily on the number of terms of the query submitted to the
system; query expansion therefore has its disadvantages in spite of the generally good
retrieval results.

Document reformulation can be done offline without query inputs, thus being
transparent to users and more efficient in terms of query response time. Offline
processing, however, can be time-consuming and memory-expensive because it needs
to process the associations of every term in every document of the entire collection,
which is one of the reasons that document expansion was not popular until recent
years. Two types of term associations have been applied to document reformulation:
(i) Term group associations for document reformulation are usually based on
documents. In the cluster-based document model [16], related documents are grouped
and used to expand documents; in the LDA-based document model [24], documents
are associated with related terms. Improvements have been obtained on several TREC
collections with both of these two models, but they are both very expensive and
difficult to apply to large collections, and parameter tuning for these models makes

54 X. Wei and W.B. Croft

them even more expensive. (ii) Simple term-term association has significant
advantages over term group association considering the offline efficiency of
document reformulation. Cao et al. reformulate documents within the language
modeling framework using term associations extracted both from a manually built
thesaurus (WordNet) and from a co-occurrence based automatic technique, which
considers term co-occurrence in a fixed-sized window. They achieve significant
improvements over a baseline query likelihood system on some TREC collections [5],
and obtain better results by further processing the original term-term associations with
Markov chains [6]. The window-based approach, however, always requires an
appropriate setting for the window size, and the improvements using only the
automatic model are not as impressive.

Cao et al.’s work sheds light on the effectiveness of integrating term-term
associations into the language modeling framework, which has been confirmed by a
number of groups to be a theoretically attractive and potentially very effective
probabilistic framework for studying information retrieval problems [20]. On the
other hand, the assumption of the term independence (“bag of words”) of the unigram
language model is well known to be inappropriate for natural language. This has led
many language model researchers to study term associations.

As a summary, we are interested in an automatic term-association method based on
term co-occurrence in the language modeling framework, especially for dealing with
document reformulation. Although term-association models have been studied for
decades, none of the association processes have been performed within the language
modeling framework, even that some integration processes of term associations are
carried out with language models and some association processes like the window-
based co-occurrence model are probabilistic methods. In this paper we study the
traditional term co-occurrence based automatic term-association methods in the
document reformulation task, and propose a new and simple method, which is based
on the language modeling approach and thus fits within this framework naturally, to
model term associations for retrieval operations.

2 Related Work

The history of examining term associations to improve retrieval effectiveness is
almost as long as the history of IR itself. Since the binary term matching model, IR
researchers have been trying to expand the matching of literal terms to include the
matching of many other related words.

2.1 Hand-Crafted Thesauri

The earliest method of detecting and using term associations in IR was by building
hand-crafted thesauri. This approach still attracts considerable interest from the IR
community and open resources like WordNet and the open directory project1 have
been studied extensively [5, 6, 9].

Manual indexing has often been viewed as a gold standard and a thesaurus as a
“correct” way of incorporating new words or phrases, but building and maintaining a

1 http://www.dmoz.com/

 Modeling Term Associations for Ad-Hoc Retrieval Performance 55

thesaurus is very labor-intensive and it is very difficult to get people to agree on the
semantic classifications involved. Inconsistencies and ambiguity in the use of these
thesauri have produced poor results when they are used for retrieval experiments.
Also, it is a fact that human beings tend to stick to obvious principles of classification.
It is easy for human beings to group such words as “fruit” and “apple” together, but it
may be difficult for them to find out that “boundary”, “layer” and “flow” are related
by their combined use in aerodynamic contexts [15]. Therefore, an automatic, instead
of a manual approach, is expected to be more effective for improving retrieval.

2.2 Similarity Coefficient

A variety of similarity coefficients have been developed and applied to measure term
associations in IR environments, such as the Cosine metric, weighted and unweighted
Tamimoto [15], etc. The coefficient used in Qiu & Frei’s Concept Based Query
Expansion is one example [21]. They built a term-document matrix and computed the
similarity between any two terms as follows;

∑
=

⋅=
n

k
jkikji ddttSIM

1

),(, (1)

∑
=

×+

×+
=

n

j
j

i

ij

k
i

ik

ik

diif
tff

tdff

diif
tff

tdff

d

1

2))(
)(max

),(
5.05.0((

)(
)(max

),(
5.05.0(

 ,

(2)

where ff(dk, ti) is the frequency of term ti in document dk, iff(dk)=log(m/| dk|), m is the
number of terms in the collections and |dk| is the number of different terms in
document dk. max ff(ti) is the maximum frequency of term ti in all documents. The
dik’s and djk‘s signify feature weights of the indexing features (documents). Then, the
similarity between a term and a query is defined as the weighted sum of the similarity
values between the term and individual terms in the query. To expand a query, terms
with the highest similarity to the query are added and the weight of each added term
takes its similarity value with the original query. Significant improvements in
retrieval effectiveness were reported in their paper [21].

Although many techniques in this area have been tested and some interesting
results were obtained, most of the techniques have been used to do query expansion.
Few studies on document modeling with term similarity coefficients have been
conducted.

2.3 Co-occurrence in Windows

Another important group of term association measures estimates the conditional
probability of a term given another term. Van Rijsbergen [23] and Cao et al. [5]
compute the conditional probability using co-occurrence samples. To compute the
conditional probability of two terms by their co-occurrence in a window is a practical
method for both its simplicity and effectiveness. A fixed-sized window is applied to
measure the co-occurrence in [5] and a sliding-window method (Hyperspace

56 X. Wei and W.B. Croft

Analogue to Language, HAL) is described in [4]. A typical computation of the co-
occurrence probability (the strength of term association) is as follows:

∑=
k

kijiij ttfttfttP),(/),()|(,
(3)

where f(ti, tj) is the frequency of co-occurrences of ti and tj.

2.3.1 Fixed-Sized Window
A fixed-sized window is often used to measure the co-occurrence of two terms. In this
window-based method, two words are considered as co-occurring once when the
distance between them is less than the window size. For instance, Xu & Croft
developed a metric used for query expansion based on the fixed-sized window
method and achieved excellent performance [25, 26]; Cao et al. applied fixed
windows in document modeling in combination with WordNet [5] and obtained
significant improvements on two TREC collections.

2.3.2 Sliding Window
In addition to setting a threshold to judge the co-occurrence of terms as in the fixed-
sized window method, the distance between two words are also taken into account in
some term-association models, such as in [4, 11, 17, 1]. Sliding window method is
one of the examples, which is also called HAL Space (Hyperspace Analogue to
Language) [4, 17]. By moving a window across the text, an accumulated co-
occurrence matrix for all terms is produced. Compared to the fixed-sized window
method, the sliding window method takes accumulated co-occurrence in all possible
fixed-sized windows and in this way, the strength of association between two words is
inversely proportional to their distance. Some interesting results with the sliding
window method are obtained in previous works, including query expansion tasks in
the language modeling framework [1, 4, 17]. However, its effectiveness on document
modeling tasks is still unknown.

In both the fixed-sized window and the sliding window methods, the size of the
window is a parameter that needs to be determined.

2.4 Latent Mixture Models

Because of the success of statistical approaches to representing text, IR has the
potential of benefiting from recent advances in the fields of statistical modeling and
machine learning. Research in these fields has led to new mathematical models that
effectively represent documents through latent mixture modeling techniques. Some of
these models have also been studied in IR research with interesting results, such as the
mixture of unigrams model [18] and (probabilistic) Latent Semantic Indexing
((p)LSI) [12]. The Latent Dirichlet Allocation (LDA) model [2], which possesses
fully generative semantics and overcomes the drawbacks of previous latent mixture
models such as pLSI, has quickly become one of the most popular probabilistic text
modeling techniques in machine learning. LDA has recently been shown to
outperform both the unigram document model and the cluster-based document model
in the language modeling framework for IR [24].

 Modeling Term Associations for Ad-Hoc Retrieval Performance 57

However, latent mixture models are usually very expensive and difficult to apply
on large collections. There is often no exact inference techniques for these models and
approximation techniques have to be adopted to iteratively approach the solution.
Parameter tuning for these complicated models makes them even more expensive.
Furthermore, they require a new training process for each new collection; in contrast,
term-term associations can often be used across collections.

3 Modeling Term Associations by Joint Probability

3.1 Term-Association Models

Previous research described in Section 1 and Section 2 has shown the effectiveness of
modeling and integrating term associations into information retrieval processes.
Especially, constructing term-term associations and integrating them into document
models is an attractive way considering both of its online efficiency and large-
collection feasibility. Also, the recently developed language modeling framework has
opened up new ways of thinking about retrieval problems. Its solid theoretical setting
and promising experimental results provide and motivate new directions of the
construction and integration process of term associations. In this section, we present
an approach in the language modeling framework to estimating the conditional
probability of terms by joint probability through Bayesian rule, and the joint
probability will be computed by unigram document models.

To get a sense of the association or closeness between two terms, w and t, we
consider P(w|t), which is the probability of observing w when t is given. By Bayesian
rule, we have

)(/)()|(tPwtPtwP = , (4)

To estimate the join probability of observing the word w and the term t, instead of
counting co-occurrence samples in windows, we assume that w and t are identical and
independent samples from a unigram document model D. Then the total probability
of observing w together with t is:

∑∑
∏∈∏∈

==
DD

DtPDwPDPDwtPDPwtP)|()|()()|()()(,
(5)

where ∏ represent some finite universe of unigram document models. We choose to
use unigram priors P(D) and limit the universe ∏ to the collection we test on. Then,

∑∑
∑

=

w D

D

DtPDwP

DtPDwP
twP

)|()|(

)|()|(
)|(

 .

(6)

Thus, for each term t, there is a list of words w with the probability P(w|t)
representing the association of w and t. We can view this probability as the
association/closeness between w and t.

58 X. Wei and W.B. Croft

3.2 Document Language Models with Term Associations

The basic approach for using language models for IR is the query likelihood model
where each document is scored by the likelihood of its model generating a query Q.

∏
∈

=
Qq

DqPDQP)|()|(,
(7)

where D is a document model, Q is the query and q is a query term in Q. P(Q|D) is the
likelihood of the document model generating the query terms under the ‘bag-of-
words’ assumption that terms are independent given the documents. And P(q|D) is
specified by the document model with Dirichlet smoothing [27],

)|()1()|()|(collwP
N

N
DwP

N

N
DwP ML

d

d
ML

d

d
U μμ +

−+
+

= , (8)

where PML(w|D) is the maximum likelihood estimate of word w in the document D,
and PML(w|coll) is the maximum likelihood estimate of word w in the entire
collection. Nd is document length. μ is the Dirichlet prior, and in our experiments we
used a fixed value with μ=1000.

In the original query likelihood model, documents are estimated by the
independence assumption, which is not appropriate to natural language that is much
more complicated than simple “bags of words”. Modeling term associations is a
straightforward way to integrate related words into text models. To integrate the
association information into document models, we first compute the word distribution
in documents through the probabilistic association measure (Eqn (9)), and then
combine it with the original term model by linear combination:

∑
∈

=
Dt

T DtPtwPDwP)|()|()|(.
(9)

 It is similar to the retrieval methodology using translation models proposed by
Berger and Lafferty to incorporate term associations into document language models
[3]. With the translation model, the document model becomes

∑=
t

TR DtPtwtrDwP)|()|()|(,
(10)

where tr(w|t) is the translation model for mapping a document term t to an arbitrary
term w. The translation probability tr(w|t) describes the degree of link between a term
w and the document term t. If we set tr(w|t) to be P(w|t), then Eqn (9) and Eqn (10)
will be same.

The linear combination method is widely used in integrating related words into
document models, such as in [16, 5, 24]. The final document model would be

∑
∈

−+

+
−+

+
=

−+=

Dt

ML
d

d
ML

d

d

TU

DtPtwP

collwP
N

N
DwP

N

N

DwPDwPDwP

)|()|()1(

))|()1()|((

)|()1()|()|(

λ
μμ

λ

λλ
 .

(11)

 Modeling Term Associations for Ad-Hoc Retrieval Performance 59

where λ is the integration co-efficient. This is the only parameter to our model, and is
also one of the parameters to the other models we compare to in Section 4.

In this paper we try several association measures to model P(w|t) in Eqn (11),
including the similarity co-efficient, the fixed-sized window method, the sliding
window method, and the joint probability method we propose. In the similarity co-
efficient method, we normalize its co-efficient to be consistent with the probabilistic
application as following:

∑=
k

kijiij ttSIMttSIMttP),(/),()|(.
(12)

4 Experiments and Results

4.1 Data

We conduct experiments on five data sets taken from TREC: the Associated Press
Newswire (AP) 1988-90 with queries 51-150, Wall Street Journal (WSJ) 1987-92
with queries 51-100 and 151-200, Financial Times (FT) 1991-94 with queries 301-
400, San Jose Mercury News (SJMN) 1991 with queries 51-150, and LA Times (LA)
with queries 301-400. Queries are taken from the “title” field of TREC topics. Queries
that have no relevant documents in the judged pool for a specific collection have been
removed from the query set for that collection.

4.2 Parameters

There are several parameters that need to be decided in our experiments. For the
retrieval experiments, the proportion of the term-association part in the linear
combination must be specified (λ in (11)). For the similarity measure, the window
sizes need to be determined. We use the AP collection as our training collection to
estimate the parameters. The WSJ, FT, SJMN, and LA collections are used for testing
whether the parameters optimized on AP can be used consistently on other
collections. At the current stage of our work, the parameters are selected through
exhaustive search or manually hill-climbing search. All parameter values are tuned
based on mean average precision (MAP).

4.3 Experimental Results

In all experiments, both the queries and documents are stemmed, and stopwords are
removed.

4.3.1 Other Term-Associating Methods
We test the effectiveness of some traditional term-term associating methods that we
discussed in Section 2 in language document models, and present the retrieval results
in Table 1.

Similarity co-efficient: With the parameter setting λ=0.8, which was obtained by
training on the AP collection, we run experiments with the similarity co-efficient
based document models (SCDM) on other collections. Some improvements, including

60 X. Wei and W.B. Croft

significant improvements on one of the five collections, are achieved over query
likelihood retrieval by integrating the similarity co-efficient into document models.

Fixed-sized window: With λ=0.7 and window size W=30, which were obtained by
training on the AP collection, we run experiments with the fixed-sized window based
document models (FWDM) on other collections. Significant improvements on two of
the five collections are obtained over query likelihood retrieval.

Sliding window: Retrieval results of the document models based on the sliding
window method, with λ=0.6 and W=50, are shown in Table 1. Significant
improvements on two of the five collections over the query likelihood retrieval are
achieved. Table 1 also shows that the sliding window performs better than the fixed-
sized window, which was adopted in [5] and [6] as an automatic term associating
method to be integrated into language document models.

Table 1. Comparison of query likelihood retrieval (QL) and retrieval with document models
based on similarity coefficient (SCDM), fixed-sized window method (FWDM), or sliding
window method (SWDM). The evaluation measure is average precision. %chg denotes the
percentage change in average precision. Stars indicate statistically significant differences with a
95% confidence according to the Wilcoxon test.

Collection QL SCDM %chg
over
QL

FWDM %chg
over
QL

SWDM %chg
over
QL

%chg
over
FWDM

AP 0.2161 0.232 +7.62* 0.2381 +10.15* 0.2375 +9.88* -0.25
FT 0.2558 0.2652 +3.68 0.2640 +3.22 0.2690 +5.14 +1.86*
SJMN 0.1985 0.2068 +4.18 0.2118 +6.67* 0.2142 +7.86* +1.12
LA 0.2290 0.2305 +0.62 0.2362 +3.12 0.2485 +8.48 +5.20*
WSJ 0.2908 0.2866 -1.44* 0.2827 -2.79 0.2905 -0.10 +2.76*

4.3.2 Term Associations by Joint Probability
We test document models based on the term-associating method by joint probability
(JPDM) that we present, and show the retrieval results in Table 2. λ=0.6 for these
experiments, and we process only the top 400 related terms of each term. On four of
the five collections JPDM retrieval achieves significant improvements over query
likelihood retrieval. On the WSJ collection, no improvements are achieved with
λ=0.6, and then we especially tuned λ for it and obtained improvement with λ=0.2 as
shown in the last line of Table 2.

In previous experiments, we build term associations for each collection
respectively. To test the easy applicability of the term-associating method we present,
we also run experiments with the term associations constructed only from the AP
collection (JPDM-ap), or all of the five collections (JPDM-all). Results of JPDM-ap
are presented in Table 2 and JPDM-all in Table 3.

JPDM-all achieves the best performance among JPDM, JPDM-all and JPDM-ap.
This shows that more training data lead to higher performance, because more data can
imply more knowledge about the term associations. At the same time, term
associations trained only on the AP collection are also effective on other collections.

 Modeling Term Associations for Ad-Hoc Retrieval Performance 61

Table 2. Comparison of query likelihood retrieval (QL) and retrievals with JPDM and JPDM-ap

Collection QL JPDM %chg over
QL

JPDM-ap %chg over
QL

%chg over
JPDM

AP 0.2161 0.2400 +11.03* 0.2400 +11.03* 0
FT 0.2558 0.2754 +7.66* 0.2636 +3.05 -4.28
SJMN 0.1985 0.2180 +9.80* 0.2139 +7.74* -1.88
LA 0.2290 0.2516 +9.85* 0.2426 +5.91 -3.59
WSJ 0.2908 0.2870 -1.32 0.2884 -0.83 +0.49
WSJ (λ=0.2) 0.2908 0.2971 +2.15 N/A N/A N/A

Table 3. Comparison of query likelihood retrieval (QL) and retrievals with LBDM, JPDM, and
JPDM-all

Collection QL LBDM JPDM-all %chg over
QL

%chg over
JPDM

%chg over
LBDM

AP 0.2161 0.2629 0.2422 +12.05* +0.92* -7.91*
FT 0.2558 0.2795 0.2842 +11.10 +3.20 +1.68
SJMN 0.1985 0.2279 0.2186 +10.10* +0.27* -4.06*
LA 0.2290 0.2563 0.2547 +11.21* +1.24 -0.63
WSJ 0.2908 0.3244 0.2910 +0.07 +1.41* -10.30*

So, the term associations built by joint probability do not have to be trained on the
specific collection of experiments.

Table 3 shows the comparison of JPDM-all and LDA-based document models
(LBDM) [24]. The LBDM achieves better performance than the term association
model we propose. However, based on our experiments, the term association
modeling is much faster than the LDA model estimation. Also, we have shown that it
is very easy and effective to apply the term associations trained on other collections,
which is impossible for the LDA model training.

5 Conclusions and Future Work

We have proposed a probabilistic term association model in the language modeling
framework, which measures term associations through their joint probability, and a
document retrieval model that integrates term associations into document models
through linear combination. We did experiments and compared the model we
proposed with other popular term-association methods on ad-hoc retrieval tasks.

The experimental results showed that modeling term associations through joint
probability was effective in the language modeling framework. Document models
that include term associations outperformed the query likelihood model, and term
associations constructed by joint probability achieved better performance than other
term-association models, such as window co-occurrence methods, in the language
modeling framework. Comparing the two window co-occurrence methods, the
sliding window method performs better than the fixed-sized window method on the

62 X. Wei and W.B. Croft

retrieval tasks. We also showed that term associations trained on other collections
were effective in our model, and more training data leads to better performance.

Although the retrieval with term-associating model did not obtain improvements
over the LDA-based document models [24], the results are interesting and
encouraging considering the cost of LDA training.

For future work, we plan to investigate whether several association measures can
be combined in one document modeling. We will also combine the term-association
based document models with latent mixture model based document models and test
the effectiveness of this combination. In addition, studying post-processing with the
probabilistic term associations obtained from this paper would also be interesting.

Acknowledgments

This work was supported in part by the Center for Intelligent Information Retrieval
and in part by NSF grant #CNS-0454018. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors' and do not necessarily
reflect those of the sponsor.

References

1. Bai, J., Song, D., Bruza, P., Nie, J.-Y. and Cao, G.: Query expansion using term
relationships in language models for information retrieval. In Fourteenth International
Conference on Information and Knowledge Management (CIKM 2005).

2. Blei, D. M., Ng, A. Y., and Jordan, M. J.: Latent Dirichlet allocation. In Journal of
Machine Learning Research, 3, 993-1022 (2003).

3. Berger, A. and Lafferty, J.: Information retrieval as statistical translation. In Proceedings
of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval, 222-229, August 15-19, 1999, Berkeley, California, United States.

4. Burgess, C., Livesay, K., and Lund, K., Explorations in Context Space: Words, Sentences,
Discourse. Discourse Processes, 25(2&3), 211-257 (1998).

5. Cao, G., Nie, J.-Y., and Bai, J.: Integrating word relationships into language models. In
Proceedings of SIGIR 2005, 298-305.

6. Cao, G., Nie, J.-Y., and Bai, J.: Constructing Better Document and Query Models with
Markov Chains. In Proceedings of the ACM 15th Conference on Information and
Knowledge Management (CIKM), November 2006, Arlington, USA.

7. Croft, W.B., Lucia, T.J., Cringean, J., and Willett, P.: Retrieving Documents By Plausible
Inference: An Experimental Study. Information Processing and Management, 25, 599-614
(1989).

8. Croft, W.B. and Thompson, R.: I3R : A New Approach to the Design of Document
Retrieval Systems. Journal of the American Society for Information Science, 38(6), 389-
404, (1987).

9. Croft, W.B. and Wei, X.: Context-Based Topic Models for Query Modification. CIIR
Technical Report, IR-424 (2005).

10. Fang, H. and Zhai, C.: Semantic Term Matching in Axiomatic Approaches to Information
Retrieval. In Proceedings ACM SIGIR 2006, 115-122.

 Modeling Term Associations for Ad-Hoc Retrieval Performance 63

11. Gao, J.F., Nie, J.-Y., Zhang, J., Xun, E., Zhou, M. and Huang, C.: Improving Query
Translation for CLIR using Statistical Models. In Proceedings of the 24th ACM SIGIR
Conference on Research and Development in IR, pp. 96-104 (2001).

12. Manning, C.D., Raghavan, P., and Schütze, H.: Introduction to Information Retrieval,
Cambridge University Press (2007).

13. Hofmann, T.: Probabilistic latent semantic indexing. In Proceedings of SIGIR 1999,
Berkeley, CA, USA.

14. Jing, Y. and Croft, W.B.: An Association Thesaurus for Information Retrieval, In
Proceedings RIAO-94, 146-160 (1994).

15. Jones, K. S.: Automatic Keyword Classification for Information Retrieval. London:
Butterworths (1971).

16. Liu, X. and Croft, W.B. Liu, X., and Croft, W. B.: Cluster-based retrieval using language
models, in Proceedings of SIGIR 2004, 186-193.

17. Lund, K. and Burgess, C.: Producing High-dimensional Semantic Spaces from Lexical
Co-occurrence. Behavior Research Methods, Instruments,& Computers, 28(2), 203-208
(1996).

18. McCallum, A.: Multi-label text classification with a mixture model trained by EM. In
AAAI workshop on Text Learning (1999).

19. Lavrenko, V. and Croft, W.B.: Relevance-based language models. In Research and
Development in Information Retrieval, 120-127 (2001).

20. Ponte, J. and Croft, W.B. : A language modeling approach to information retrieval. In
Proceedings of ACM SIGIR 1998 275-281.

21. Qui, Y. and Frei, H., Concept based query expansion, In Proceedings of ACM SIGIR
1993, 160-169.

22. Salton G. and Buckley, C.: On the Use of Spreading Activation Methods in Automatic
Information Retrieval. In Technical Report 88-907, Department of Computer Science,
Cornell University.

23. Van Rijsbergen, C. J.: Automatic Classification. In: Information Retrieval. 2nd edn.
Chapter 3. London: Butterworths. (1979). http://citeseer.ist.psu.edu/vanrijsbergen79
information.html

24. Wei, X. and Croft, W.B. LDA-based Document Models for Ad-hoc Retrieval. In
Proceedings of SIGIR 2006, 178-185.

25. Xu, J.: Solving the Word Mismatch Problem Through Automatic Text Analysis. Ph.D.
Dissertation. Department of Computer Science, University of Massachusetts (1997).

26. Xu, J. and Croft, W.B.: Query expansion using local and global document analysis. In
Proceedings of the 1996 ACM SIGIR Conference on Research and Development in
Information Retrieval.

27. Zhai, C. and Lafferty, J.: A study of smoothing methods for language models applied to ad
hoc information retrieval. In Proceedings of ACM SIGIR 2001, 334-342.

Static Pruning of Terms in Inverted Files

Roi Blanco and Álvaro Barreiro

IRLab, Computer Science Department
University of Coruña, Spain

rblanco@udc.es, barreiro@udc.es

Abstract. This paper addresses the problem of identifying collection
dependent stop-words in order to reduce the size of inverted files. We
present four methods to automatically recognise stop-words, analyse the
tradeoff between efficiency and effectiveness, and compare them with a
previous pruning approach. The experiments allow us to conclude that in
some situations stop-words pruning is competitive with respect to other
inverted file reduction techniques.

1 Introduction

Inverted files are the data structures employed by most modern retrieval systems
[14] to associate index terms (words, stems, phrases, bigrams, etc. . .) with doc-
ument occurrences. Indexes are organised into posting lists containing several
pointers which carry the correspondence information. Fast query evaluation is
normally done by repeatedly accessing the on-disk index file and fetching the in-
formation for every query term. Disk accessing times are the bottleneck for most
retrieval systems, and there had been many solutions to improve query evalua-
tion times without affecting retrieval effectiveness, such as lossless compression
techniques [7]. More recently, a new family of lossy compression algorithms,
namely pruning, has emerged to try to improve the efficiency while retaining
high effectiveness values. Pruning techniques aim at removing unnecessary in-
formation by determining a set of non relevant pointers in each posting list and
ruling them out of the retrieval. If the pointer set is dependent on each query,
it is called dynamic pruning [13], whereas if the pruning can be made off-line it
is said to be static. Recent works demonstrated that static pruning can produce
very compact indices whilst not suffering from an unacceptable precision loss [2].
Also, this technique has been applied in web retrieval [4].

This paper presents several techniques for reducing the size of the inverted file
by identifying a stop-words set dependent on the collection. The main difference
between this method and the one described in [2] (hereinafter Carmel’s method)
is that the whole term is removed from the index instead of deleting single occur-
rences. We introduce several techniques based on the terms’ informativeness value,
in particular inverse document frequency (idf) and residual inverse document fre-
quency (ridf), and a novel method based on the term discriminative value. Dis-
carding a whole term determines that the index term is not useful in every possible

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 64–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Static Pruning of Terms in Inverted Files 65

context (query). Although this claim may seem too aggressive (or naive), except
for a predetermined and well-known set of function words, we found out that in
some scenarios these algorithms prove to be competitive or even better than the
methods based on the pruning of term-document occurrences.Otherworks ([2],[4])
size the amount of pruning as the percentage of pointers removed from the inverted
file, and in [2] Carmel et al. advanced that it is not known how static pruning would
behave in conjunction with the traditional lossless compression methods, and that
further research was needed in order to clarify it. This paper also presents the ex-
periments and results assessing the relationship between the amount of pointers
and the real space savings, for five well known coding algorithms. We advance a
good and stable behaviour of the static pruning methods for every coding scheme
tested. Experiments also report on query times in a real retrieval platform.

The rest of the paper is organised as follows: section 2 describes Carmel’s
method, section 3 introduces the term pruning methods, the experiments and
results are presented in section 4 and the paper ends with a conclusions and
further work section.

2 Static Index Pruning of Posting Entries

Carmel et al. in [2] proposed and successfully tested a method for removing
information from an inverted file. The algorithm operates in a per-term basis,
selecting the less necessary information from every single posting list in order
to reduce the total index size.

There are two parameters involved in the so-called top-k pruning algorithm:
k and ε. The procedure to select which postings are removed from the index
is as follows. First, for every term in the lexicon, the algorithm computes the
contribution of every document occurrence to the final score using the score
function of the retrieval system. Then it retrieves the k-th highest score zt and
sets a threshold τt = ε ∗ zt. Finally, every document occurrence which score is
lower than τt is dropped out from the posting list.

It is worth to point out that this is an idealised pruning algorithm, as the
top k documents scores for a query with less than 1

ε terms are guaranteed to
be the same, within an error of ε, when the original or pruned inverted file is
used. However, the algorithm has the problem of obtaining negligible pruning
levels. In order to obtain any significant index reduction it is necessary to shift
every document occurrence score in the term lists, by subtracting a global mini-
mum score to every document score. The real procedure is to apply the pruning
algorithm after this ad-hoc modification of the inverted file. This accomplishes
excellent results but the aforementioned property is not proved to hold. As well,
there is another variation of the algorithm, namely δ-top answers, that consists
of keeping the entries whose score value under a query q is at least δ times the
highest score of all the documents under q. The implementation we employed
here considered the BM25 score [11] instead of Smart’s tf-idf (used in [2]) and we
decided to skip any shifting implying that higher pruning levels were obtained
by setting a higher ε value.

66 R. Blanco and Á. Barreiro

3 Static Index Pruning of Term Posting Lists

Traditionally, stop word removal aims at identifying noisy terms that may hurt
precision, and to the best of our knowledge it has not been used for efficiency
purposes.

It is clear that removing high-frequency terms from an uncompressed inverted
file may lead to substantial space savings, as they tend to engross most of the
occurrences (according to Zipf’s law). How this may affect to compressed in-
verted files is disccussed in [14]. The claim is that the higher the frequency of
the word, the better a parametrised compression model such as Golomb will
adapt to it, so the less space it will consume in a compressed form. In general, it
is a commonly accepted idea that stop-words should be in the inverted file since
removing high-frequency words would result in very small space savings. How-
ever, we believe that if it is possible to obtain a good ranking of terms according
to their importance, it would be interesting to establish the tradeoff between
retrieval accuracy and the index reduction implied by the removal of the less
important terms. In fact, some authors [10] report that building a manual ex-
tended stop-list speeds searches. We propose to study this effect with techniques
that obtain informativeness (3.1) and discriminative (3.2) rankings.

3.1 Stop-Words List Based on idf and ridf

The inverse document frequency is a term informativeness measure, therefore it
can be used to produce a ranking of bad terms (those with lower idf values). We
used a common idf normalisation introduced by Robertson and Sparck-Jones
in [9] that performed well for identifying dynamic stop-words in [6]. If D is the
total number of documents in the collection, and df the number of documents
the term t appears in (document frequency), then the idf for term t is:

idf = log
(

D − df − 0.5
df + 0.5

)
(1)

Residual idf is defined in [3] as the difference between the observed idf (IDF)
and the idf expected under the assumption that the terms follow an independence
model, such as Poisson (ˆIDF). To the best of our knowledge it has not been used
for identifying collection-dependent stop-words, although in [8] it is employed
successfully for named entity recognition. If tf is the total number of tokens for
a term t, then the ridf devised by a Poisson distribution is

RIDF = IDF − ˆIDF = − log(
df

D
) + log(1 − e−

tf
D) (2)

Church and Gale [3] claim that the more a term deviates from Poisson, the
more dependent on hidden variables, and more useful the term is to discrimi-
nate between documents containing it on the basis of the hidden dependencies.
In order to compute the idf and ridf values for every term appearing in the
collection, it is only necessary to traverse the lexicon file once.

Static Pruning of Terms in Inverted Files 67

3.2 Stop-Words List Based on Salton’s Term Discrimination Model

Salton’s Term Discrimination Model (TDM) [12] is one of the first computa-
tionally attractive attempts to find an effective ranking of words, based on the
analysis of the Discriminative Value (DV) of a term and it was used for au-
tomatic indexing. The model is embodied into the vector-space framework for
Information Retrieval and its use has been limited to small collections (Cran-
field, Medlars, Time). However, the usefulness of the model has not been clearly
stated in the following years, nor it has been applied in large TREC collections.
This paper proposes to revisit the original model and to determine to which
extend it may be worthy as a tool for finding stop-words.

The Term Discrimination Model measures the importance of every index term
based on the influence it has on a document space. The main assumption is that a
document space with distant vectors is preferable for retrieval. A good document
space is one that maximises the average separation between every pair of vectors,
because it would be easier to distinguish among the retrieved documents. Under
this claim, and given that terms act as dimensions of the document space, it is
possible to rank the index terms according to how much each term affects the
density of the vector space, i.e. how good as discriminators they are. The DV of
a term t is defined as how much the removal of t from the vector space decreases
the total space density.

Let {t1 . . . tT } and {d1 . . . dD} be the term and the document set respectively,
where every document di is represented by a term frequency component vector
〈tfi1, tfi2 . . . tfiT 〉. The calculation of every document-to-document distance as
a measure of the space density is computationally unaffordable for very large
collections. One possible variation could be a definition of the density measure
related to documents-to-centroid distances. In this case, the DV for a term tk is

DVk =
D∑

i=1

distance(dk
i , ck) −

D∑
i=1

distance(di, c) = Qk − Q, (3)

where Q is the space density, Qk is the space density after the term tk is re-
moved, dk

i is the document obtained after removing the term tk from di, c is the
document centroid and ck is the document centroid resulting after the removal
of the term tk.

A straight implementation of eq. 3 is very time consuming. For every term,
it requires the computation of the similarities between every document and the
centroid, forcing to traverse T times a direct file of D documents. Next it follows
a reformulation of eq. 3 that allows to save most of the operations by storing
some data in main memory and reducing drastically the total computation time.
First, let TF k

j (TFj) be the j-th component of the centroid ck (c):

TFj = 1
D

∑D
i=1 tfij ; TF k

j = TFj if j �= k; TF k
j = 0 if j = k.

Equation 3 can be rewritten as follows, where tfk
ij is the j-th component of dk

i .

DVk =
D∑

i=1

T∑
j=1

tfk
ij × TF k

j

|dk
i | × |ck|

−
D∑

i=1

T∑
j=1

tfij × TFj

|di| × |c| , (4)

68 R. Blanco and Á. Barreiro

Let wi =
∑T

j=1 tfijTFj, which is a value that can be precomputed for each
di, then

T∑
j=1

tfk
ij × TF k

j =

{
wi if tk /∈ di

wi − tfikTFk if tk ∈ di,
(5)

and Qk can be expressed as

Qk =
D∑

i\tk∈di

wi − tfikTFk

|ck| × |dk
i | +

D∑
i\tk /∈di

wi

|ck| × |dk
i | (6)

Taking into account that |dk
i | = |di| if tk /∈ di, and that

∑
i\tk /∈di

wi

|di| =∑D
i=1

wi

|di| −
∑

i\tk∈di

wi

|di| , then Qk can be finally rewritten as:

Qk =
1

|ck|

⎛
⎝ D∑

i\tk∈di

(
wi − tfikTFk

|dk
i |

− wi

|di|

)
+

D∑
i=1

wi

|di|

⎞
⎠ (7)

Since Q is constant, the Qk values will suffice to compute the rank produced by
the TDM. The reformulation of Qk introduced in eq. 7 allows the computation
of this rank with just one single pass to a direct file to calculate the wi and
|di| values, and another one to the inverted file to recalculate every single term

contribution. If we use the cosine normalisation, then |di| =
√∑T

j=1 tf2
ij , |c| =√∑T

j=1 TF 2
j , implying that |dk

i | =
√

|di|2 − t2ik, |ck| =
√

|c|2 − TF 2
k . Finally

we propose another last modification to this model, in which the contribution
1

|ck|
∑D

i=1
wi

|di| is dropped out from eq. 7. This factor is dominant in the final value
of Qk and very dependent on the |ck| value. This is a problem in large collections
because the method is too biased for high frequency terms (concretely on the
factor TFj appearing on |ck|), ranking them higher.

This efficient implementation of the Term Discrimination Model requires
2|D| + |T | extra pointers to store the document lengths, the wi (for each docu-
ment) and the TFj (for each term) values. Considering 16-byte double precision
floats, these amounts sum up to approximately 12 MB for the 2 Gigabyte TREC
web collection.

The approach described here will be referred as tdm1 and we denote as tdm2
another variation that employs a term frequency normalisation factor in the
fashion of BM25 [11]:

ˆtfij =
(k1 + 1)tfij

tfij + k1

(
(1 − b) + b len(di)

avglen

) (8)

In equation 8, len(di) stands for the number of tokens in the document di, avglen
is the average document length in the collection and we used the recommended
values for k1 = 1.2 and for b = 0.75. In the implementation of tdm2 we considered
the simplification of not recomputing the average document length every time a
term is removed from the collections. Once the term frequencies are computed
according to eq. 8 the process follows as described for tdm1.

Static Pruning of Terms in Inverted Files 69

4 Experiments and Results

4.1 Experimental Setting

We report our empirical findings using the five pruning methods described in
sections 2 and 3. The evaluation tries to assess how the mean average precision
(MAP) and precision at ten (P@10) vary as the number of deleted occurrences
from the inverted file increases. Intentionally, we chose settings that devise high
precision values in order to measure the decrease in precision when augmenting
the pruning level. We used Porter’s algorithm for stemming. BM25 (eq. 9) was
selected as the scoring function for every method, as it has proved to be robust
in the IR literature:

score(d, Q) =
∑
t∈Q

log2

(
D − dft + 0.5

dft + 0.5

)
(k1 + 1)tf
K + tf

(k3 + 1)qtf
k3 + qtf

(9)

where qtf is the frequency of the term in the query, K = k1((1− b)+ b dl

avgl), and
dl and avgl are the document and average document length respectively. The
recommended values [11] are: k1 = 1.2, k3 = 1000 and b = 0.75.

We experimented with TREC topics from 401 to 450 in the LATimes and
WT2g collections, short queries (title) and long queries (title plus description).
Note that the narrative field was discarded as it hurts precision using these
settings. Regarding to Carmel’s method, the k value was set to 10, and the
different pruning levels were obtained by modifying ε.

For the TDM-based methods, another condition was taken into account in
order to smooth the correlation between the frequency range and the discrimi-
nation value. We introduced a document frequency threshold based on the size
the collection: only terms with document frequency in the collection greater than
400(2000) where pruned for the LATimes(WT2g) collection.

A second class of experiments try to assess the real tradeoff between the
pruning level and the disk space occupied by the inverted file, using different
posting-list compression methods. We experimented with five different coding
algorithms [7] for the document pointers: three non-parametrised methods (γ,
δ, variable byte), a local parametrised method (Golomb coding), and a context-
sensitive method (interpolative coding). Within-document term frequencies were
coded with unary code, except for the case of variable byte where they were
coded with variable bytes as well.

Finally, a third experiment measured the real query time performance of the
system for one term-based method (ridf) and Carmel’s method, to try to deter-
mine the final speedup effect of pruning on a retrieval platform.

Indexing and retrieval was carried out using the Terrier IR platform1 v1.0.0,
developed at the University of Glasgow. The pruning and compression program
suite was implemented on top of it.

1 http://ir.dcs.gla.uk/terrier

70 R. Blanco and Á. Barreiro

4.2 Precision vs. Pruning

Figures 1 to 4 show MAP and P@10 results for the LATimes collection, for
both short and long queries. The precision curves end when the number of
terms deleted forces any query to be empty. In general, all the methods that
prune terms are able to increase initial MAP and P@10 values. Overall, tdm1
achieved the highest values in precision with a pruning level around 20%-30%.
If Fox’s stop-list [5] is applied the results are: MAP 0.2695(0.2524) and P@10
0.2933(0.2911) for long(short) queries at a 26.7% pruning level. The best values
achieved with the tdm1, MAP 0.2839(0.2544) and P@10 0.3224 (0.3022), are
better than those attained by Fox’s stop-list. Term pruning methods present a
good behaviour at certain levels, being ridf remarkably stable and smooth and
tdm1 very good at increasing precision, although at the cost of being too ag-
gressive. The other two methods, tdm2 and idf are very correlated and perform
slightly worse than ridf for most of the cases.

Tables 1 and 2 summarise the results for the WT2g collection. Results are
analogous to the ones obtained in the LATimes, although short queries benefit
more from precision gains. It is remarkable that Carmel’s method is able to
improve P@10 values in the WT2g collection at very high pruning levels (short
queries only).

 0.2
 0.21
 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29

 0 10 20 30 40 50 60 70

Carmel
tdm1
tdm2

idf
ridf

Fig. 1. MAP vs. %pruning for LATimes & long queries

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0 10 20 30 40 50 60 70

Carmel
tdm1
tdm2

idf
ridf

Fig. 2. P@10 vs. %pruning for LATimes & long queries

Static Pruning of Terms in Inverted Files 71

Table 1. Precision vs. %pruning WT2g & long queries

pruning
0% 10% 15% 20% 25% 30% 40% 50% 60% 65%

tdm1 MAP 0.2966 0.3006 0.3062 0.3074 0.2892 0.2704 0.2473 0.2151 0.2054 –
P@10 0.4780 0.4780 0.4780 0.4860 0.4660 0.4460 0.3980 0.3440 0.3143 –

tdm2 MAP 0.2966 0.2985 0.2942 0.2925 0.2755 0.2741 0.2602 0.2436 0.2166 0.2054
P@10 0.4780 0.4620 0.4600 0.4680 0.4360 0.4400 0.4080 0.3780 0.3583 0.3208

idf MAP 0.2966 0.2987 0.2945 0.2928 0.2749 0.2733 0.2599 0.2410 0.2163 –
P@10 0.4780 0.4640 0.4620 0.4700 0.4380 0.4380 0.4100 0.3760 0.3204 –

ridf MAP 0.2966 0.3000 0.3050 0.2970 0.2922 0.2962 0.2881 0.2625 0.2325 0.2322
P@10 0.4780 0.4800 0.4880 0.4640 0.4600 0.4640 0.4560 0.4320 0.3760 0.3653

pruning
0% 9.3% 14.0 % 19.1% 24.2% 30.3% 39.4% 52.1% 58.1 % 66.0%

Carmel MAP 0.2966 0.2789 0.2779 0.2712 0.2634 0.2591 0.2606 0.2405 0.2283 0.2188
P@10 0.4780 0.4480 0.4460 0.4540 0.4440 0.4480 0.4400 0.4280 0.4220 0.4200

Every method presented needs to set some threshold in order to stop pruning,
be it the ε parameter (Carmel’s method) or the percentage of pruning (term
pruning methods). We carried out a third experiment in order to find an au-
tomatic threshold using Fox’s stop-list as relevance information, i.e. good stop-
words. The procedure is as follows: the list of terms is sorted according to a first
measure and split into several intervals bounded by the relevant (trusted) stop-
words. For every term and using a second measure, its informativeness value v1
and the value of the lower bound of its corresponding interval v2 are compared. If
v2 ≥ v1 the term is pruned. Combining the ridf (first) and tdm2 (second) mea-
sures this approach gives, for long(short) queries, MAP values of 0.2685(0.2490)
and P@10 values of 0.3044(0.2889) at a 56% pruning level in the LATimes col-
lection. These precision values are obtained automatically and comparable with
the ones obtained by Fox’s stop-list alone, but at a higher pruning level.

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0 10 20 30 40 50 60

Carmel
tdm1
tdm2

idf
ridf

Fig. 3. MAP vs. %pruning LATimes & short queries

4.3 Index Compression vs. Index Pruning

Figure 5 shows the real tradeoff between pruning level and disk space usage
(WT2g collection). The graphs reflect how the inverted file size decreases when
the number of pruned pointers increases using different coding methods. Sizes are

72 R. Blanco and Á. Barreiro

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0 10 20 30 40 50 60

Carmel
tdm1
tdm2

idf
ridf

Fig. 4. P@10 vs. %pruning LATimes & short queries

Table 2. Precision vs. %pruning WT2g & short queries

pruning
0% 10% 15% 20% 25% 30% 35% 40% 50% 55%

tdm1 MAP 0.2540 0.2688 0.2719 0.2661 0.2524 0.2470 – – – –
P@10 0.4180 0.4540 0.4560 0.4620 0.4480 0.4271 – – – –

tdm2 MAP 0.2540 0.2635 0.2641 0.2600 0.2498 0.2490 0.2393 0.2351 0.2172 –
P@10 0.4180 0.4360 0.4360 0.4300 0.4040 0.4060 0.3800 0.3620 0.3553 –

idf MAP 0.2540 0.2635 0.2644 0.2602 0.2503 0.2495 0.2408 0.2351 0.2172 0.2109
P@10 0.4180 0.4380 0.4380 0.4300 0.4080 0.4040 0.3780 0.3600 0.3480 0.3163

ridf MAP 0.2540 0.2619 0.2640 0.2636 0.2594 0.2572 0.2524 0.2509 0.2333 0.2254
P@10 0.4180 0.4400 0.4360 0.4204 0.4143 0.4204 0.4020 0.3939 0.3633 0.3653

pruning
0% 9.27% 14.0% 19.1% 24.2% 31.0% 39.6% 45.2% 52.1% 58.9%

Carmel MAP 0.2540 0.2634 0.2632 0.2622 0.2606 0.2558 0.2548 0.2526 0.2397 0.2301
P@10 0.4180 0.4360 0.4360 0.4360 0.4380 0.4420 0.4400 0.4500 0.4580 0.4500

relative with respect to the original inverted index except in the last graph,
where the size is absolute. Only the posting list file is considered since the space
reduction due to the lexicon file is not significant. The behaviour is stable for
every compression algorithm, which proves that measuring the pruning level as
the number of deleted occurrences is a valid indicator of the final compressed
file, despite of the coding method used. The best reduction is obtained for the
method based on ridf although with minor differences. The final figure shows the
relative performance of the different coding algorithms, measured in megabytes
(pruning values obtained with ridf).

It is possible to explain the values in figure 5 as follows. Real coding of posting
lists is based on document gaps. A document gap is the difference between
two consecutive document identifiers in the same list. For a given term with
consecutive document identifiers a, b, c the cost of coding its postings would be
φ(b−a)+φ(c−b) and for bit-based coding methods φ(x) = O (log(x)). Carmel’s
method may prune the document occurrence with identifier b resulting in a coded
posting list reduction from log(b−a)+log(c−b) to log(c−a). Methods that prune
every term occurrence do not leave this log(c − a) gap in the posting list when
they operate, as they remove the whole list, thus they may yield less average
bits per gap values. The first slope in the graphs is due to the fact that the

Static Pruning of Terms in Inverted Files 73

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Gamma Coding

Carmel
idf

ridf

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Delta Coding

Carmel
idf

ridf

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Golomb Coding

Carmel
idf

ridf

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Variable Byte Coding

Carmel
idf

ridf

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(%
)

Interpolative Coding

Carmel
idf

ridf

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

IF
 S

iz
e

(M
B

)

Ridf Pruning

gamma
delta

golomb
VB
IC

Fig. 5. Effect on Inverted File size vs. %pruning

first terms in being pruned are the ones with highest document frequency, which
happen to be the ones with the highest within-document term frequencies. When
those frequencies are coded in unary (φ(x) = x) the space saved when they are
removed is more noticeably. In fact, if the frequencies are coded with gamma,
the slope softens. It is interesting to notice that Carmel’s method follows this
behaviour too, which indicates that if ε is low, it is only able to delete occurrences
of terms with high document frequency.

In the case of variable byte coding, 90% of the pointers require just one byte
and therefore there is no noticeable difference among the methods. Variable
byte is clearly the worst method with respect to inverted file size, although it is
interesting because of its faster decompression times.

74 R. Blanco and Á. Barreiro

4.4 Query Times vs. Pruning

Figure 6 reports on average query times for ridf and Carmel’s method on the
LATimes collection with fifty queries (topics from 401 to 450). There is a query
processing time reduction which is more important in the case of long queries.
The different behaviour between the methods is due to the number of disk ac-
cesses, main bottleneck for query evaluation in retrieval systems. Every query
term is processed if the inverted file is pruned with Carmel’s method, and this
is the reason why query processing time varies smoothly with respect to the
pruning level. In the ridf -based pruning method, query processing times can be
drastically reduced at pruning levels that maintain or even improve the precision
values.

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

carmel long queries
ridf long queries

carmel short queries
ridf short queries

Fig. 6. Average query processing time (ms) vs. %pruning

5 Conclusions and Future Work

We implemented several pruning techniques based on the informativeness and
discriminative value of terms. We also evaluated the behaviour of precision with
respect to pruning, and the final effect in index file reduction and query pro-
cessing times. Those methods have been compared with the well-known pruning
method introduced by Carmel et al. [2]. We found out that tdm1 is good if only
high values of precision are desired, although it is very aggressive, and ridf is
easy to implement and very stable. In general, pruning whole terms is better
for maintaining or improving MAP, and it keeps precision values at high prun-
ing levels with long queries, whereas pruning pointers is better with respect to
P@10. In particular, Carmel’s method behaved very well for P@10 and short
queries in the WT2g collection. Therefore, methods that prune terms could be
useful in applications such as indexing collections for PDAs and mobile devices,
and desktop search.

One future research line is to design a pointer-based pruning method that
operates selectively over posting lists, driven by a global term rank. Another
topic of research is to address the problem of pruning while allowing for phrasal
queries. None of the methods presented here is appropriate for processing phrasal

Static Pruning of Terms in Inverted Files 75

queries. To tackle these problems it is necessary to develop an explicit pruning
method for this purpose [4] or to combine a pruned inverted file with a next-word
index [1].

Acknowledgements. The work reported here was co-funded by SEUI and
FEDER under project MEC TIN2005-08521-C02 and “Xunta de Galicia” under
project PGIDIT06PXIC10501PN. Roi Blanco is supported by a grant of DXID
of the “Xunta de Galicia”. We also thank the support of the “Galician Network
of NLP&IR” (2006/03).

References

1. D. Bahle, H. Williams, and J. Zobel. Efficient phrase querying with an auxiliary
index. In Proc. of ACM SIGIR 2002, pages 215–221.

2. D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. Maarek, and A. Soffer.
Static index pruning for information retrieval systems. In Proc. of ACM SIGIR
2001, pages 43–50.

3. K. Church and W. Gale. Poisson mixtures. Natural Language Engineering,
2(1):163–190, 1995.

4. E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S. Silva, P. Calado, and
M. A. Nascimento. Improving web search efficiency via a locality based static
pruning method. In Proc. of WWW 2005, pages 235–244.

5. C. Fox. A stop list for general text. SIGIR Forum, 24(1-2):19–21, 1990.
6. R.T.W. Lo, B. He, and I. Ounis. Automatically building a stopword list for an

information retrieval system. In Proc. of DIR’05, Utrecht, Netherlands, 2005.
7. A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer Academic

Publishers, Norwell, MA, USA, 2002.
8. J. D. M. Rennie and T. Jaakkola. Using term informativeness for named entity

detection. In Proc. of ACM SIGIR 2005, pages 353–360.
9. S. Robertson and K. Sparck Jones. Relevance weighting of search terms. JASIS,

27:129–146, 1976.
10. S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In Text REtrieval

Conference, pages 151–162, 2000.
11. S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at

TREC-4. In Text REtrieval Conference, pages 21–30, 1996.
12. G. Salton, C. S. Yang, and C. T. Yu. A theory of term importance in automatic

text analysis. JASIS, 26(1):33–44, 1975.
13. H. Turtle and J. Flood. Query evaluation: Strategies and optimizations. IP&M,

31(6):831–850, 1995.
14. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kaufmann Publishers, San Francisco,
CA, 1999.

Efficient Indexing of Versioned Document

Sequences

Michael Herscovici1, Ronny Lempel2, and Sivan Yogev2

1 Google Inc., Haifa, Israel (work done while at IBM)
2 IBM Haifa Research Lab, Israel

Abstract. Many information systems keep multiple versions of docu-
ments. Examples include content management systems, version control
systems (e.g. ClearCase, CVS), Wikis, and backup and archiving solu-
tions. Often, it is desired to enable free-text search over such reposito-
ries, i.e. to enable submitting queries that may match any version of any
document. We propose an indexing method that takes advantage of the
inherent redundancy present in versioned documents by solving a variant
of the multiple sequence alignment problem. The scheme produces an in-
dex that is much more compact than a standard index that treats each
version independently. In experiments over publicly available versioned
data, our method achieved compaction ratios of 81% as compared with
standard indexing, while supporting the same retrieval capabilities.

1 Introduction

In many business applications, information systems keep multiple versions of
documents. Examples include content management systems, version control sys-
tems (e.g. ClearCase and CVS), Wikis, and backup and archiving solutions.
Email, where each reply or forward operation in a thread often repeats some
previously sent content, can also be seen as having evolving document versions.
Often, it is desired to enable free-text search over such repositories, i.e. to enable
submitting queries that may match any version of any document. A straightfor-
ward way to support free-text search over corpora of versioned documents is to
index each version of each document separately, essentially treating the versions
as independent entities. However, intuition suggests that when each version is
not significantly different than its predecessor, the redundancy of the data can
be exploited to index the data in a more compact manner, while still preserving
the retrieval functionality supported by the full index.

This paper proposes an indexing method that eliminates much of the redun-
dancy present in versioned documents and produces an index that is much more
compact than a standard index that treats each version independently. The
scheme involves first solving a unique variant of the multiple sequence alignment
problem, and then indexing just once every token of the alignment that is com-
mon to a sequence of versions. Experiments over publicly available versioned data
showed that our compact index is considerably smaller than the corresponding
standard index, while supporting the same retrieval capabilities.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 76–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Indexing of Versioned Document Sequences 77

The rest of this paper is organized as follows: Section 2 surveys related work.
Section 3 assumes that an alignment of multiple sequences is given, and shows
how to index those sequences efficiently while supporting search operations over
the resulting index. The ensuing analysis yields an optimality criterion for the
given alignment, and Section 4 presents a polynomial time algorithm that, under
certain assumptions, produces an optimal alignment according to that criterion.
Section 5 reports on experiments demonstrating the savings in index space that
our scheme achieves on real-life versioned data. Section 6 addresses implemen-
tation details that were omitted in previous sections. We conclude in Section 7.

2 Related Work

2.1 The Inverted Index Data Structure

The inverted index (sometimes called inverted file) is the data structure of choice
for full-text indexing in search engines [1, 2]. Many papers have described algo-
rithms for building inverted indices, e.g. [2, 3, 4, 5]. An inverted index contains
a postings list for each unique term that appears in the corpus. Each postings
list consists of posting elements, with each element corresponding to a single
appearance of the term in the corpus. A simple abstraction of a posting element
is as a pair 〈d, o〉 that represents the location - the document id and the offset
within the document - of the occurrence1. The elements within each postings
list are typically sorted by increasing locations. Another important structure in
an inverted index is the lexicon, or dictionary, which is a lookup table that for
each term t in the corpus, points to the postings list corresponding to t.

The description above implies that the number of posting elements in the
index equals the total number of terms appearing in the corpus. Our goal is to
reduce this factor when there is inherent redundancy in the set of indexed docu-
ments. This problem was addressed in 1992 by Anick and Flynn [6], who identi-
fied corporate helpdesk corpora as a domain with evolving data. In the proposed
indexing solution, changes to the indexed documents are saved in time-stamped
“delta entries” consisting of the added/deleted text. This enables performing
“historical queries”, where the index is rolled back to a certain point in time and
the query is evaluated for that time. The complexity of historical query evalua-
tion depends on the number of rollback actions, and therefore performing a query
on the entire history of the index could be inefficient. Recently, Broder et al. [7]
showed how to index certain redundant content in an efficient manner, by iden-
tifying content that can be indexed just once and logically shared among several
documents. Their method was applied to two domains - the indexing of near-
duplicate Web pages (e.g. as identified by the shingling method described in [8])
and the indexing of threaded email and newsgroup discussions. For example, in
the latter case, the model in [7] assumes that when replying to or forwarding an
email m, the entire content of m is kept in an uninterrupted fashion in the reply.
Under that somewhat limiting assumption, the content of each message in the
1 Indexing the offsets within the document is required for efficient support of phrase

queries and for proximity-based ranking of search results.

78 M. Herscovici, R. Lempel, and S. Yogev

thread is thus contained in all “downstream” messages (replies and forwards
that include it), and can be shared with those messages. In a sense, this work
extends [7] by indexing redundant content in a compact manner without any
restrictions or limiting assumptions on the structure of the corpus. We note that
in a different domain, Ferragina et al. [9] proposed a compression scheme for
XML that preserves the ability to efficiently search and navigation the data.

2.2 Sequence Comparison

Methods to compare sequences of symbols (e.g. the Levenshtein edit distance
[10] and others) are of great importance in textual applications (spell checking,
data compression, coding theory), molecular biology (DNA, RNA and protein
sequences analysis), and many other fields. A widely studied problem is the
longest common subsequence (LCS) problem (see [11] for a review), where given
two strings, we look for a subsequence of both with maximal length. An effi-
cient algorithm for this problem, proposed by Myers [12], is implemented by the
UNIX diff command [13], and included in GNU diff 1.15. For strings of lengths
m and n, its complexity is O((n + m)D), where D is the minimal number of
insertion/deletion operations required to transform one string into the other.
As with many comparison problems, the general LCS problem is NP-Hard [14].

3 Efficient Indexing of Aligned Sequences

This section shows how to efficiently index sequence of versioned documents.
We begin by defining an alignment of a single sequence of versions, and trans-
forming the alignment into an inverted index. Subsequently, 3.1 shows that the
index supports the basic operators that are required in free-text search engines.
Subsection 3.2 analyzes the factors that influence the size of the index, and de-
rives an optimality criterion on the alignment matrix that will guide us to an
alignment algorithm in Section 4.

Definition 1. Let s1, s2, . . . , sn be n sequences over alphabet Σ. An (n+1)×L
matrix M is an exclusive alignment of s1, . . . , sn if:

1. The first row of M (row 0) is a supersequence of length L of s1, . . . , sn.
2. All other entries of M are binary.
3. For each row i = 1, . . . , n, one can reconstruct si by concatenating the sym-

bols in M0,j s.t. Mi,j = 1.

For example, Equation 1 shows an exclusive alignment matrix of the sequences

s1 = ABCDEF, s2 = ABXEFY, s3 = XCDEFY, s4 = ZBXCDFY

M =

⎛
⎜⎜⎜⎜⎝

Z A B X C D E F Y
0 1 1 0 1 1 1 1 0
0 1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1

⎞
⎟⎟⎟⎟⎠ (1)

Efficient Indexing of Versioned Document Sequences 79

Let there be a sequence of n versioned documents d1, . . . , dn, where each docu-
ment is represented as a sequence of words (tokens). Let M denote an alignment
matrix of the documents, where each column corresponds to a token (Section 4
will explain how to derive M).

From the alignment we derive
(
n+1

2

)
virtual documents {vj,i, 1 ≤ i ≤ j ≤ n}

as follows: each virtual document vj,i will contain the tokens in row 0 of M , cor-
responding to columns having a maximal run of 1s that starts at row i and ends
at row j. Furthermore, the virtual documents will be ordered by lexicographic
ordering of the pair 〈j, i〉, i.e. primarily by increasing values of the end of the
run of 1s, and within all runs ending at a particular index j, by increasing index
of the beginning of the run. To exemplify this process, Equation 2 depicts the
transformation of the alignment shown in Equation 1 into 10 virtual documents
(consider each letter to be a token):⎛

⎜⎜⎜⎜⎝
Z A B X C D E F Y
0 1 1 0 1 1 1 1 0
0 1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1

⎞
⎟⎟⎟⎟⎠ =⇒

1. v1,1 = CD 6. v3,3 = (empty)
2. v2,1 = AB 7. v4,1 = F
3. v2,2 = (empty) 8. v4,2 = XY
4. v3,1 = E 9. v4,3 = CD
5. v3,2 = (empty) 10. v4,4 = ZB

(2)

The process above transformed a single group of 4 (physical) versioned docu-
ments into 10 virtual documents. Given k sequences of versioned documents

d1
1, . . . , d

1
n1

, d2
1, . . . , d

2
n2

, . . . , dk
1 , . . . , dk

nk

we construct N
�
=

∑k
i=1

(
ni+1

2

)
virtual documents, and order them as follows:

v1
1,1, . . . , v

1
n1,n1

, v2
1,1, . . . , v

2
n2,n2

, . . . , vk
1,1, . . . , v

k
nk,nk

We now simply build the inverted index that corresponds to the N virtual doc-
uments, assigning them documents identifiers (docids) 1, . . . , N . In addition,we
also require four predicates per virtual document X = docid(vk

j,i) in the index:

from(X) = i, to(X) = j, root(X) = docid(vk
1,1), last(X) = docid(vk

nk,nk
)

3.1 Supporting the Various Search Operators

Given an inverted index with N virtual documents, this section presents an
efficient document-at-a-time algorithm [15] to support basic Boolean search
queries, consisting of required and/or forbidden terms2. The algorithm returns a
list of virtual documents, corresponding to physical documents that contain all
the required terms and none of the forbidden terms. Using the predicates root,
from and to, we will map the resulting virtual documents to the corresponding

2 For ease of presentation, this section deals only with Boolean queries. Section 6
presents extensions for supporting TF/IDF scoring.

80 M. Herscovici, R. Lempel, and S. Yogev

original versioned documents. To simplify our algorithm, we swap every forbid-
den term t with a virtual required term (denoted by neg(t)) that “virtually”
appears in all the documents in which the forbidden term does not appear, and
only in those. Formally then, a query Q is a set of size |Q| of required terms
(real and virtual), t1, . . . , t|Q|.

We denote by pt the current position within the postings list of the term
t; pt is often called the cursor of term t in the IR literature. Next, we define
a few primitive functions used in our algorithm. First, the primitive next(pt,
docid) sets pt to the first virtual document in t’s postings list whose id is greater
than docid (or to ∞ if no such document exists) and returns that document id.
Figure 3 shows how to implement the next function for the virtual term neg(t)
using t’s cursor pt. Second, the function location(root, from, to) returns the id of
the virtual document corresponding to the range [from, to], given the id of the
virtual root document (corresponding to the range [1,1]) of a group of versioned
documents. This can simply be calculated as follows:

location(root, from, to) = root+(from-1)+
(

to
2

)

Third, the function overlapDocsRange(docid1, docid2) returns the id of the vir-
tual document that corresponds to the intersection of the ranges represented by
docid1 and docid2, or ∞ if the two ranges do not intersect.

Our algorithm uses a modification of the zig-zag join [16] technique, in which
the cursors of all required terms (real or virtual) are advanced in alternating
order, until they align at some document id. That document then contains all
of the terms, i.e. matches the query. At each step of a zig-zag join, a cursor
that lags behind the most advanced cursor is chosen, and is advanced using the
next operator to a point at or beyond the most advanced cursor. In our case, we
slightly modify the classic zig-zag join, since cursor positions do not necessarily
need to align at some virtual document, but rather on a set of virtual documents
whose ranges intersect. Figure 1 presents the standard outer shell document-at-
a-time evaluation. The nextCandidate function, depicted in Figure 2, performs
the zig-zag join and returns the virtual document id representing the next range

function search(Query Q)
// we assume that the cursors of all physical terms are initialized to position 0
candidate ← 0
while candidate �= ∞ do

// Find a virtual document containing all required (real or virtual) terms
candidate ← nextCandidate(candidate,Q)
output candidate

end while
end function

Fig. 1. Enumerating all documents that match the query Q

Efficient Indexing of Versioned Document Sequences 81

function nextCandidate(docid, Query Q)
// advance t1 beyond the last document in docid’s range
nextd ← next(pt1 , location(root(docid), to(docid), to(docid)))
align ← 2
// perform a zig-zag join on ranges of virtual documents
while (align �= |Q| + 1) ∧ (nextd �= ∞) do

// advance term talign to or beyond the beginning of nextd’s range
temp ← next(ptalign , location(root(nextd), 1, from(nextd)) − 1)
// surely now to(temp)≥from(nextd)
if (root(temp) == root(nextd)) ∧ (from(temp) ≤ to(nextd)) then

nextd ← overlapDocsRange(nextd, temp)
align ← align + 1

else
nextd ← next(pt1 , location(root(temp), 1, from(temp)) − 1)
align ← 2

end if
end while
return nextd

end function

Fig. 2. Zig-zag join beyond a given start-point argument

on which all cursors intersect. Finally, Figure 3 presents the implementation of
the next function of the virtual cursor that corresponds to a negative term. For
ease of presentation, an easily eliminated tail recursion is used there.

Theorem 1. The algorithm shown in Figure 1 outputs a virtual document if
and only if the range of physical documents corresponding to it match the query,
i.e. contain all the required terms and none of the forbidden terms.

The proof follows in the spirit of [7], with some additional interval algebra over
the virtual document identifiers (e.g. the overlapDocsRange function).

3.2 Implications on Alignment Optimality

The size of a classical inverted index depends on three main factors. First, the
size of the lexicon. Since the vocabulary of the index does not change with our
approach, the lexicon’s size does not vary between standard indexing and our
proposed scheme. Second, the total number of posting elements in the various
postings lists. This factor is reduced by our scheme, since instead of having a
posting element per token per document, the number of posting elements in our
scheme is equal to the total number of runs of 1 in the columns of the alignment
matrix. The third factor is the compressibility of each postings list. Postings lists
are typically compressed by some form of delta encoding, i.e. compression of the
numeric gaps between successive document identifiers and offsets therein [2, 3].
Since our scheme enlarges the space of document identifiers by transforming

82 M. Herscovici, R. Lempel, and S. Yogev

function next(pt=neg(w), docid) // Invariant: from(docid) always equals to(docid)
if docid ≥ pw then

pw ← next(pw, docid)
end if
target ← docid + 1
// we now know that to(pw) is at or beyond to(target)
if (pw = ∞) ∨ (root(pw) > root(target)) then

// return the id corresponding to the range that starts at to(target)
// and continues until the end of target’s version group
pt ← location(root(target), to(target), to(last(target)))
return pt

end if
// here we know that pw and target share the same root
if from(pw) > to(target) then

// return the id corresponding to the range [to(target),from(pw)-1]
pt ← location(root(target), to(target), from(pw) − 1)
return pt

end if
// the range of pw immediately follows docid; we therefore apply tail recursion
pt ← next(pt, location(root(target), to(pw), to(pw)))

end function

Fig. 3. Advancing a virtual cursor of a negative term

each group of n versioned documents into
(

n+1
2

)
virtual documents, the postings

lists on virtual documents should not compress as well as postings lists on the
physical documents, introducing some overhead into our scheme. In addition to
the above factors, our scheme requires additional overhead external to the index
due to the four predicates required for all virtual documents.

In this paper, we do not attempt to adapt the compression of the postings
lists to better fit our indexing scheme. Thus, the reduction of index space will
depend on our ability to align sequences of versioned documents in a manner
that minimizes the number of runs of 1 in the columns of the alignment matrix.

4 Indexing-Optimal Alignment of Multiple Sequences

As argued in Section 3.2, the degree of freedom in our scheme that affects the size
of the resulting inverted index is the number of runs of 1 in the alignment matrix.
Thus, we aim to find an alignment matrix for a set of versioned documents that
has as few runs of 1 in its columns as possible. For two strings, finding an
alignment with a minimal number of runs of 1 is identical to the LCS problem
described in Section 2.2, since each alignment column includes a single run of
1, and the optimal LCS solution minimizes the number of columns. As with
LCS, the generalization to aligning N strings is NPH, since even if all rows of
the alignment matrix are given (which, in our case, they are not), finding the

Efficient Indexing of Versioned Document Sequences 83

permutation of the rows that minimizes the number of runs of 1 in the columns
is a known NP-Hard problem called Consecutive Blocks Minimization [14].

We thus limit ourselves to cases where the document versions evolve in a linear
fashion, i.e. the versions do not branch. In such cases, it is natural to assume that
each version is relatively close to the previous one, and so we heuristically align
the documents (and order the corresponding rows of the matrix) according to the
temporal order of the documents’ creation. We hereby prove that by restricting
the space of possible alignment matrices to those where row i corresponds to
version i, an alignment that minimizes the number of runs of 1 can be found by
a greedy polynomial-time algorithm.

Theorem 2. Let S = (s1, s2, . . . , sn) be an ordered set of sequences, and denote
the length of si by li. Let the cost of an exclusive alignment M (c(M)) be the
number of runs of 1 in M , and assume that M∗ is an exclusive alignment of S
with minimal cost. Then:

c(M∗) =
n∑

i=1

li −
n∑

i=2

lcs(si−1, si)

where lcs(si, sj) denotes the length of the LCS of sequences si, sj.

Proof: The number of runs of 1 is the total number of 1 in the matrix, minus
the number of occurrences of 1 below another 1. The total number of 1 in every
exclusive alignment of S is

∑n
i=1 li. Assume by contradiction that

c(M∗) <

n∑
i=1

li −
n∑

i=2

lcs(si−1, si)

This means that the number of occurrences of 1 below another 1 is greater than∑n
i=2 lcs(si−1, si), and so there exists an index 2 ≤ i ≤ n such that the number

of 1s in row i of M∗ which occur below 1s in row i−1 is greater than lcs(si−1, si).
This contradicts the definition of LCS, and therefore

c(M∗) ≥
n∑

i=1

li −
n∑

i=2

lcs(si−1, si)

To show that c(M∗) =
∑n

i=1 li −
∑n

i=2 lcs(si−1, si), we construct an exclu-
sive alignment matrix M ′ of (s1, . . . , sn) as follows: initialize M ′ with s1 as the
supersequence in row-0, and add an all-1 row. Now, iteratively for i = 2, . . . , n,
add row i according to the pairwise LCS alignment of si−1 and si. This involves
adding columns to M ′ corresponding to indices where si contains a symbol that
is not part of the LCS. That symbol is added to the supersequence in row-0, and
below that we add 0 for rows 1, . . . , i − 1 and a 1 in row i. This process ensures
that the number of runs of 1 starting in row i is li − lcs(si−1, si), and so

c(M ′) =
n∑

i=1

li −
n∑

i=2

lcs(si−1, si),

completing the proof. �

84 M. Herscovici, R. Lempel, and S. Yogev

According to Theorem 2, given an ordered set of versioned documents, a greedy
algorithm constructs an exclusive alignment matrix whose number of runs of
1 is minimal. Furthermore, the complexity of finding M is polynomial, and is
equivalent to solving n − 1 pairwise LCS problems. Finally, we state a criterion
on {s1, s2, . . . , sn} where, when met, guarantees that aligning them in natural
order is indeed optimal:

Theorem 3. Let s1, . . . , sn be strings satisfying that for each i = 2, . . . , n,

lcs(si, si−1) ≥ lcs(si, si−2) ≥ . . . lcs(si, s1) .

Then, there exists an exclusive alignment of s1, . . . , sn whose cost is no larger
than that of any exclusive alignment on any permutation of those strings.

5 Experiments

This section presents experimental results for publicly available text reposito-
ries where document versions evolve in a linear fashion. The repositories tested
were (1) 4323 documents corresponding to versions of 222 Wikipedia entries of
countries, and (2) 2055 documents corresponding to versions of 142 MediaWiki
PHP source files. In both cases, at most 20 versions of each specific resource
(Wikipedia entry or PHP source file) were crawled.

Our indexing code was written in Java, using the LCS algorithm of the Diff
class [17] and version 1.9.1 of the Apache Lucene search library3. The Original
documents were tokenized using Lucene’s StandardTokenizer; for each set of ver-
sions, the token sequences were exclusively aligned by the algorithm described in
Section 4 and virtual documents were constructed from the resulting alignment.
We processed the sequence of virtual documents through one additional change
of discarding all empty virtual documents (to which the alignment assigned no
tokens). This required adding two predicates for translating between the non
empty documents’ identifiers and the full virtual identifier space, and perform-
ing slight changes to the functions in Section 3.1 . Next, the original documents
and the non-empty virtual documents were indexed separately by Lucene.

To optimize the compressibility of the Lucene index over the original doc-
uments, we added those documents to the Lucene index by version sets, and
within each version group by increasing version numbers. Since Lucene sorts its
postings lists by document insertion order, this process naturally clusters terms
in consecutive documents, improving the compressibility of the postings lists.

For each of the two repositories, we measured two compression ratios:

Alignment ratio: the number of tokens in the set of virtual documents, divided
by the number of tokens in the set of original documents. This ratio examines
the reduction in the number of posting elements in the version-aware index.

Index ratio: The size (in bytes) of the Lucene index resulting from the virtual
documents plus the overhead needed for the required predicates, divided by
the size of the index of the original versioned documents.

3 http://lucene.apache.org/

http://lucene.apache.org/

Efficient Indexing of Versioned Document Sequences 85

Table 1. Experimental setup - input documents and resulting compression ratios

Repository No. original No. original No. virtual Alignment Index
version sets documents documents ratio ratio

(non-empty)

Wikipedia countries 222 4323 45138 (7019) 7.46% 12%

MediaWiki source files 142 2055 19144 (4240) 8.63% 18.5%

Table 2. Indexing time measurements

Repository Indexing time Alignment time Indexing time Overall
orig. docs orig. docs virt. docs virt. docs

Wikipedia countries 125 sec 295 sec 61 sec 356 sec

MediaWiki source files 33 sec 116 sec 32 sec 148 sec

The results of the experiments on the different repositories are given in table 1.
Note the savings of over 81% in actual index space are achieved in both cases.

Next, we turned to measure indexing time. In order to assess the affect of
producing and indexing virtual documents on the index building time, Table 2
reports the following per each repository: (1) the time to index original texts
(each version separately), (2) the time to align the original texts, and (3) the
time to index the resulting virtual documents. The sum of the latter two repre-
sents the total time needed to process the versioned texts into a version-aware
compact index. As expected, the overall time for version-aware indexing exceeds
the original indexing time by far, and is dominated by the alignment time which
is expected to remain dominant even if further optimized. However, it seems that
as the collection size grows, the actual indexing time of the non-empty virtual
documents somewhat compensates for the time spent performing the alignments.
To fully characterize this behavior, more experiments and analysis are needed.

We did not perform extensive experiments comparing the query-time perfor-
mance of the version-aware index to that of the standard index over the physical
documents. However, since the algorithmic overhead of our scheme beyond the
standard zig-zag join involves very few operations (see Section 3.1) while the
amount of required I/O is greatly reduced due to the much smaller index, we
anticipate that the runtime performance of our index scheme will be on par with
or better than that of a standard Lucene index over all physical documents.

6 Implementation Issues

Scoring documents: Section 3.1 showed that our indexing scheme supports
Boolean queries, i.e. can identify documents that match Boolean predicates
on their contents. However, in order to rank the matching documents by rel-
evance, search systems must enumerate the occurrences of all query terms in
each matching document. To support such ranking, whenever a virtual document

86 M. Herscovici, R. Lempel, and S. Yogev

vk
to,from representing the range [from,to] of version group k is returned from the

nextCandidate function of Figure 2, we score the to-from+1 “real” documents
represented by that range. We stream through the postings lists of all posi-
tive query terms, starting from virtual document vk

from,1 and ending at vk
to,to,

attributing each term occurrence within those virtual documents to the corre-
sponding “real” documents.

Suppoting exact-phrase queries: The indexing scheme described in Section 3
aligns documents according to the words they contain; the alignment then gov-
erns the distribution of the words among several virtual documents. This pro-
cess does not preserve word co-occurrence patterns - words that appear next
to each other in a certain version may be assigned to different virtual docu-
ments. Thus, the indexing scheme as presented does not support exact-phrase
queries or proximity-based ranking considerations. To overcome this limitation,
one may align the versioned documents by sentences: in tokenized documents,
each sentence is hashed into an integer value, transforming documents into in-
teger sequences. Those integers are then aligned, assigned to virtual documents,
and transformed back to sentences. This variant of our scheme keeps sentences
intact, enabling to support exact-phrase queries (and proximity based scoring)
within sentence boundaries.

Note that indexing documents that were aligned by sentences will result in
lesser space savings as compared to documents aligned by individual words,
since any change in a sentence between version i and i + 1 causes the entire
sentence to be associated with another virtual documents. Consequently, when
computing the exclusive alignment by sentences, the cost of starting a new run
of 1 in some column equals the number of words in the sentence associated with
that column. Therefore, the optimality criterion of the alignment becomes the
weighted sum of runs of 1, where the weight of each run in column j is the
number of tokens in sentence j. Our row-alignment algorithm adapts to this by
applying the Needleman-Wunsch algorithm [18] instead of the LCS algorithm.

7 Conclusions and Future Work

This paper presented a scheme to efficiently index corpora consisting of sequences
of document versions. Such sequences naturally arise in content management
systems, in email, in code repositories and in Wikis. The indexing scheme avoids
re-indexing certain units that repeat within the versions but still supports search
operations as if the entire text of all versions was indexed. Using a variant of
the multiple sequence alignment problem, we showed a greedy, polynomial-time
algorithm that optimally solves the problem under some natural assumptions.
We validated our approach on two real-life corpora consisting of sequences of
versioned documents, where we demonstrated savings of 81% in index space as
compared to a standard approach that indexes all versions of each document. The
limitations of our scheme are that (1) it increases indexing time, and therefore
is only applicable in cases where such an increase can be tolerated, and (2) as
in [7], it assumes that the index over the versions is built in batch mode, i.e the

Efficient Indexing of Versioned Document Sequences 87

indexing process accepts a batch of version sequences and builds an index for
searching over them.

For future work, we intend to explore supporting tree-like evolution patterns
of versioned documents (i.e. to support branches). Also, while batched index-
ing may suffice for many applications (e.g. archiving), we intend to investigate
incremental indexing schemes for versioned data.

References

[1] Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., Raghavan, S.: Searching the
web. ACM Transactions on Internet Technology 1(1) (2001) 2–43

[2] Witten, I., Moffat, A., Bell, T.: Managing Gigabytes. second edn. Morgan Kauf-
mann Publishers, Inc., San Francisco, CA (1999)

[3] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press /
Addison Wesley, New York, NY (1999)

[4] Heinz, S., Zobel, J.: Efficient single-pass index construction for text databases.
JASIST 54(8) (2003) 713–729

[5] Melnik, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building a distributed full-
text index for the web. In: Proc. 10th International World Wide Web Conference
(WWW 2001), ACM Press (2001) 396–406

[6] Anick, P.G., Flynn, R.A.: Versioning a full-text information retrieval system.
In: Proc. 15th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. (1992) 98–111

[7] Broder, A.Z., Eiron, N., Fontoura, M., Herscovici, M., Lempel, R., McPherson, J.,
Qi, R., Shekita, E.J.: Indexing of shared content in information retrieval systems.
In: Proc. 10th International EDBT Conference. (2006) 313–330

[8] Broder, A.Z., Glassman, S.C., Manasse, M.S.: Syntactic clustering of the web. In:
Proc. 6th International WWW Conference. (1997)

[9] Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and
searching xml data via two zips. In: Proc. 15th International World Wide Web
Conference (WWW’2006). (2006) 751–760

[10] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady 10(8) (1966) 707–710

[11] Apostolico, A.: String editing and longest common subsequences. In Rozenberg,
G., Salomaa, A., eds.: Handbook of Formal Languages. Volume 2 Linear Modeling:
Background and Application., Springer-Verlag, Berlin (1997) 361–398

[12] Myers, E.W.: An o(ND) difference algorithm and its variations. Algorithmica
1(2) (1986) 251–266

[13] Miller, W., Myers, E.W.: A file comparison program. Software – Practice and
Experience 15(11) (1985) 1025–1040

[14] Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

[15] Turtle, H., Flood, J.: Query evaluation: strategies and optimizations. Inf. Process.
Manage. 31(6) (1995)

[16] Garcia-Molina, H., Ullman, J., Widom, J.: Database System Implementation.
Prentice Hall (2000)

[17] Gathman, S.D.: Diff java class (2003) http://www.bmsi.com/java/Diff.java.
[18] Needleman, S., Wunsch, C.: A general method applicable to the search for sim-

ilarities in the amino acid sequence of two proteins. J. Molecular Biology 48(3)
(1970) 443–453

http://www.bmsi.com/java/Diff.java

Light Syntactically-Based Index Pruning for

Information Retrieval

Christina Lioma and Iadh Ounis

University of Glasgow, G12 8QQ, UK
{xristina,ounis}@dcs.gla.ac.uk

Abstract. Most index pruning techniques eliminate terms from an in-
dex on the basis of the contribution of those terms to the content of the
documents. We present a novel syntactically-based index pruning tech-
nique, which uses exclusively shallow syntactic evidence to decide upon
which terms to prune. This type of evidence is document-independent,
and is based on the assumption that, in a general collection of docu-
ments, there exists an approximately proportional relation between the
frequency and content of ‘blocks of parts of speech’ (POS blocks) [5].
POS blocks are fixed-length sequences of nouns, verbs, and other parts
of speech, extracted from a corpus. We remove from the index, terms
that correspond to low-frequency POS blocks, using two different strate-
gies: (i) considering that low-frequency POS blocks correspond to se-
quences of content-poor words, and (ii) considering that low-frequency
POS blocks, which also contain ‘non content-bearing parts of speech’,
such as prepositions for example, correspond to sequences of content-
poor words. We experiment with two TREC test collections and two
statistically different weighting models. Using full indices as our base-
line, we show that syntactically-based index pruning overall enhances
retrieval performance, in terms of both average and early precision, for
light pruning levels, while also reducing the size of the index. Our novel
low-cost technique performs at least similarly to other related work, even
though it does not consider document-specific information, and as such
it is more general.

1 Introduction

The field of Information Retrieval (IR) addresses the general problem of how to
retrieve information, which is relevant to a user need, from a given repository
of information, such as a document collection. Information in the document
collection is represented in the form of an index, which contains statistics on
term frequencies in each document and in the whole collection. An integral part
of the index is the postings file, which records information on which terms appear
in which documents and the term frequency statistics of these terms [7]. Usually,
terms are associated with individual weights, which capture the importance of
the terms to the content of each document. Term weights can be computed using
various term weighting schemes. A matching function then estimates the likely

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 88–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Light Syntactically-Based Index Pruning for Information Retrieval 89

relevance of a document to a query, on the basis of term weights, and the most
relevant documents are identified and retrieved [11].

Very often, stopwords are removed from the index. Stopword removal is a
way of pruning terms that harm retrieval performance. Generally, index pruning
consists of replacing a full index by a smaller index, with the aim of improving
system efficiency, without harming significantly retrieval performance [7]. System
efficiency relates to issues such as the computational costs associated with storing
large indices, or the time needed to query large indices. Retrieval performance
relates to how relevant the returned results are (precision), or how many of the
relevant results are returned (recall). Typically, system efficiency benefits from
index pruning, because pruned indices tend to be more economical to store, and
less time-consuming to query. Overall retrieval performance tends to decrease
after index pruning, although early precision can be enhanced, for moderate or
light pruning [4,10].

We present a light index pruning technique, which uses shallow syntactic evi-
dence to prune low-content terms from the index, at indexing time. Specifically,
this shallow syntactic evidence consists of blocks of part of speech (POS blocks),
which are induced from a corpus. Any general corpus, such as a test collection,
can be used. Firstly, a POS tagger maps every term in the corpus to a part of
speech. We define a POS block as a fixed-length block of parts of speech, which
we extract from text in a recurrent and overlapping way. For example, for a given
sentence ABCDEFGH, where parts of speech are denoted by the single letters A,
B, C, D, E, F, G, H, and where POS block length = 4, the POS blocks extracted
are ABCD, BCDE, CDEF, DEFG, and EFGH. We extract all possible POS
blocks from the corpus, without considering the order in which POS blocks oc-
cur, or the documents in which they occur. It has been shown that low-frequency
POS blocks correspond to low-content words [5], unlike the case of individual
words, where low-frequency words tend to be high in content [6]. On this basis, we
hypothesise that pruning the words corresponding to low-frequency POS blocks
from an index corresponds to eliminating content-poor words, and may enhance
retrieval performance. In order to test the validity of this hypothesis, we take
the following steps. Firstly, we POS tag a corpus and extract POS blocks from
it. Secondly, we set a cutoff threshold θ, which controls which POS blocks from
the corpus are used for pruning the index. Thirdly, we POS tag the collection
to be indexed, and remove from it the words which correspond to POS blocks
bounded by θ. With regards to which POS blocks from the corpus are used for
index pruning, we test two different strategies, which we call Rank A and Rank
B, respectively. Rank A considers the raw frequency of a POS block as indicative
of the content salience of the words corresponding to that POS block. More sim-
ply, it assumes that low-frequency POS blocks correspond to low-content words.
Using this strategy, POS blocks are frequency-sorted, and the θ least frequent
POS blocks are used for index pruning. Rank B considers both the frequency of a
POS block, and the part of speech classification (POS class) of its components,
as indicative of the content salience of the words corresponding to that POS
block. More simply, it assumes that low-frequency POS blocks that contain non

90 C. Lioma and I. Ounis

content-bearing parts of speech, such as prepositions for example, correspond to
low-content words. Using this strategy, POS blocks are sorted according to their
frequency and member parts of speech, and the θ least frequent POS blocks are
used for index pruning. Note that this is a low-cost approach, because it simply
requires running the collection through the POS tagger once at indexing time,
and is not born down by query or document-centric parameters.

This paper is organised as follows. Section 2 presents related work. Section
3 presents in details our proposed syntactically-based index pruning technique.
Section 4 presents and discusses our experiments using Rank A and Rank B
strategies. Section 5 summarises our findings and states intended future work.

2 Related Studies

Index pruning is used in IR to improve system efficiency, without harming sig-
nificantly retrieval performance [4,7]. Typically, the data pruned from the index
is estimated to be the least important to retrieval performance, according to
some relevance criteria [2,4,7,10]. Index pruning is uniform when it is applied
to all the documents in the same way, regardless of document- or term-specific
criteria. A detailed overview of index pruning methods is given in [4]. In the
same study, Carmel et al. investigate uniform and term-based index pruning
methods, and report that early precision is not affected by moderate pruning,
unlike average precision, which seems to decrease approximately linearly with
the amount of data pruned. An alternative to pruning terms from an index,
is replacing the documents in the index by their respective summaries [2,10].
Brandow et al. show that summary indexing improves precision at the cost of a
large loss in recall [2]. This claim is also supported by Sakai and Sparck Jones,
who report that moderate summary indexing does not affect early precision [10].
Overall, the consensus seems to be that light or moderate index pruning does
not decrease significantly early precision, but may decrease average precision. As
long as retrieval performance is not significantly hurt by index pruning, pruning
techniques are applied, driven primarily by system efficiency gains [7].

The syntactically-based index pruning technique we present, differs from the
above work in two ways. Firstly, our aim is not to mainly improve system ef-
ficiency, but also to enhance retrieval performance. Hence, we only and solely
apply light pruning, wishing to validate solely the applicability of our novel
syntactically-based pruning technique, and not its detailed effect upon general
system efficiency, even though we do report on the index compression resulting
from our pruning techniques, as compression in index is typically related to gains
in efficiency. Secondly, the pruning criteria we use are not lexical, but exclusively
shallow syntactic. More simply, our pruning criteria do not relate to words, but
parts of speech. Also, our pruning technique does not use relevance weight met-
rics, or other document-specific criteria, to decide which terms to prune. The
only two criteria used are the frequency of a POS block in a corpus, and the
POS class of the members of a POS block, namely whether they are nouns,
verb, prepositions, and so on. In this respect, our technique is novel, generic,
and document-independent. Note that, in literature, restrictions are usually

Light Syntactically-Based Index Pruning for Information Retrieval 91

Table 1. Open class parts of speech and their % frequency in WT10G

Part of Speech (POS) POS Class % in WT10G

Noun

open

38
Adjective 8
Verb 7
Participle 4

introduced in the pruning strategies. For example, in [4], terms are pruned only
from the postings list, while in [10], there is a minimum length for a summary. On
the opposite, our application includes no such restrictions. We prune terms from
all the data structures of the index, and also allow for documents to have all of
their terms pruned. Applying such restrictions may further refine our technique,
and lead to further improving our reported results.

3 Syntactically-Based Index Pruning

We present the steps taken in order to test the hypothesis that shallow syntactic
evidence can indicate low-content terms, whose elimination from the index can
enhance retrieval performance, while reducing the index size.

All words in language are syntactically classified as either open or closed class
words. The open class contains nouns, verbs, and generally content-rich words,
while the closed class contains prepositions, conjunctions, and generally content-
poor words that mainly perform linguistic well-formedness functions, instead of
bearing content. These syntactic categories of words collectively constitute the
parts of speech. Following from [5], we consider a shallow categorisation of parts
of speech, namely one that only distinguishes between 14 parts of speech, as it is
enough to distinguish between content words and stop words. Table 1 displays
the 4 open class parts of speech we use, out of all 14. Using a POS tagger,
we extract POS blocks from a corpus1. Section 1 presented and illustrated how
POS blocks are extracted from text. At the end of this stage, we have a list of all
the POS blocks induced from the corpus. In order to turn the list of POS blocks
extracted from the corpus into evidence that can be used to indicate low-content
terms, we test two different strategies, namely Rank A and Rank B.

Rank A. We consider the raw frequency of a POS block in the corpus as
indicative of the content salience of the words potentially associated to that
POS block [5]. We sort all the POS blocks extracted from the corpus in order of
raw frequency, and assume that low − frequency ≈ low − content.

Rank B. We consider both the frequency of a POS block, and the POS class
of its components, as indicative of the content salience of the words correspond-
ing to that POS block. The open class parts of speech we use are displayed in

1 We use WT10G, but generally, any corpus can be used.

92 C. Lioma and I. Ounis

Table 1. In order to represent this combination of frequency and POS class in a
quantitative way, we introduce an estimator of content for POS blocks. This esti-
mator approximates the potential amount of content of the words corresponding
to a POS block on the basis of: (i) the POS class of the POS block components,
and (ii) the length of the POS block. This content score estimator is based on
two assumptions, namely that: (i) only open class parts of speech correspond to
content-bearing words (see Table 1); (ii) nouns are slightly more content-bearing
than adjectives, verbs, and participles. Both of these assumptions are based on
linguistic intuition. Specifically, in this paper, the content score csPOSblock of a
POS block is estimated as follows:

csPOSblock =
CN + CAV P · �

lPOSblock
(1)

where CN = number of nouns in the POS block, CAV P = number of adjectives
and/or verbs and/or participles in the POS block, lPOSblock = POS block length,
and � = penalising parameter. � is a penalising parameter applied to adjectives,
verbs, and participles, following from the intuition that they are slightly less
content-bearing than nouns. Using the statistics found in Table 1 as a guide, we
set � = 0.17, as follows. Adjectives, verbs and participles occur in the corpus
approximately 19% (=8% + 7% + 4%) of the times, while nouns occur approxi-
mately 38% of the times. We estimate � = 19/3

38 ≈ 0.17. Using Equation (1), the
content score of a POS block can be between 0 and 1, where 0 and 1 denote no
content and the maximum amount of content, respectively. For example, using
the here-proposed content score estimator for POS blocks, the POS blocks noun
+ noun + noun + noun and adjective + noun + preposition + adverb score
cs = 1 and cs = 0.29, respectively.

Having established a quantitative estimator of content for POS blocks, we
come back to the second strategy used to test our hypothesis. Specifically, we
multiply the raw frequency and content score of POS blocks, and sort the POS
blocks extracted from the corpus, according to the product of this multiplica-
tion. Multiplication is a simple way of combining frequency to content score,
which practially implements our assumption, and hence is suitable for our ex-
perimentation. Other linear or log-scale combination approaches may be also
used.

Strategies Rank A and Rank B are used for index pruning as follows. Firstly,
identically to Section 1, we POS tag the collection to be indexed, only that this
time we retain information on which POS blocks correspond to which terms in
the collection. Secondly, we define a cutoff threshold θ to control the number of
POS blocks used for index pruning. Then, only for those POS blocks bounded by
θ, we remove from the collection the terms corresponding to those POS blocks.
Terms are removed from all the data structures at indexing time. Note that the
value of θ does not correspond to the actual frequency (for Rank A), or product
of frequency and content score (for Rank B) of a POS block, but to the number
of POS blocks which are to be used for index pruning. Note also, that, for the
POS blocks selected for pruning to be low-content, we start counting θ POS
blocks from the the lowest ranking to the higher ranking. For example, let us

Light Syntactically-Based Index Pruning for Information Retrieval 93

assume that Rank A contains 10 POS blocks, in decreasing order of frequency.
Then, setting θ = 3, means that the words corresponding to the 10nth, 9nth,
and 8th POS blocks are pruned from the index.

4 Evaluation

4.1 Experimental Settings

We evaluate our hypothesis on WT2G (2GB) and WT10G (10GB), from the
1999, 2000 and 2001 Small Web, Web, and Adhoc tracks of the TREC Web Track,
respectively, using topics 401-550 from the corresponding tasks2. We experiment
with Title-only queries, as such queries are more representative of real user
queries on the Web. During indexing, we apply stopword removal and Porter’s
full stemming. We select the largest of the two collections, namely WT10G, as
the corpus from which we extract POS blocks, and POS tag it using the Tree-
Tagger 3. We set POS block length to lPOSblock = 44. We the BM25 [9] and
PL2 [1] weighting models. For all our experiments, we use the Terrier IR plat-
form [8]. We use the default values of all weighting model parameters: (i) for
BM25, k1 = 1.2, k3 = 1000, and b = 0.75 [9]; (ii) for PL2, c = 10.99 with
WT2G, and c = 13.13 with WT10G5. We use default values, instead of tuning
these parameters, because our focus is to test our index pruning hypothesis,
and not to optimise retrieval performance. If the said parameters are optimised,
retrieval performance may be further improved. We use mean average precision
(MAP) and precision at 10 (P@10) to evaluate the impact of pruning on retrieval
performance, using the full index as a baseline. We use a metric of similarity for
the top k retrieved results, namely the symmetric difference [4] between the full
and pruned indices, to evaluate the impact of pruning on early precision. We set
k to 10, in accordance with P@10. The maximum and minimum symmetric dif-
ference scores of 1 and 0 occur when the top k results of the two indices are the
same or disjoint, respectively, without considering the order of the results. In ad-
dition, we report the compression in index resulting from our pruning technique,
as such compression is typically associated with gains in system efficiency.

4.2 Results and Discussion

We conduct experiments to test the hypothesis that pruning words which corre-
spond to low-frequency POS blocks from the index, can enhance retrieval perfor-
mance, at low pruning levels, using strategies Rank A and Rank B. By pruning
levels, we denote the amount of data pruned from the full index.
2 Information on the TREC datasets is found at: http://trec.nist.org/
3 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
4 We have also experimented with lPOSblock = 3 and 5, and observed little variation

in retrieval performance. Generally, POS block length may vary, as long as it is kept
within a range that appropriately models the adjacency of the terms in the sentence.
This point is discussed in [5].

5 Default settings for PL2 are suggested at:
http://ir.dcs.gla.ac.uk/terrier/doc/dfr description.html

94 C. Lioma and I. Ounis

Table 2. Collection statistics after pruning. POS blocks θ = number of POS blocks
used (in multiples of 1,000). Rank A = POS blocks sorted according to their frequency
only. Rank B = POS blocks sorted according to the product of their frequency and
content. tokens = individual words pruned (% from full index). terms = unique terms
pruned (% from full index). postings = document pointers pruned from the postings
list (% from full index).

POS blocks % pruned from full index
collection

θ (1,000)
Rank A Rank B

tokens terms postings tokens terms postings

23 18.39 5.07 14.56 20.37 14.09 15.42

WT2G

22 12.13 3.55 9.46 14.35 12.09 10.52
21 8.47 2.16 6.53 10.99 10.78 7.77
20 6.00 1.46 4.57 8.78 10.31 5.98
19 4.38 1.10 3.31 7.36 9.97 4.82
18 3.24 0.82 2.44 6.36 9.77 4.02
17 2.44 0.65 1.83 5.70 9.61 3.49
16 1.84 0.50 1.37 5.24 9.50 3.13
15 1.41 0.39 1.04 4.90 9.42 2.86
14 1.10 0.31 0.80 4.65 9.35 2.67
13 0.82 0.24 0.61 4.46 9.30 2.52

23 16.57 4.68 14.30 19.93 14.69 15.23

WT10G

22 11.16 3.23 9.38 14.57 12.72 10.56
21 7.90 1.96 6.56 11.56 11.41 7.87
20 5.70 1.39 4.65 9.62 11.00 6.12
19 4.24 1.08 3.41 8.27 10.64 4.96
18 3.33 0.84 2.55 7.37 10.47 4.17
17 2.43 0.66 1.93 6.73 10.29 3.63
16 1.86 0.53 1.46 6.28 10.17 3.26
15 1.44 0.40 1.11 5.96 10.10 2.99
14 1.13 0.31 0.86 5.71 10.04 2.78
13 0.86 0.25 0.66 5.52 9.99 2.63

50 55 60 65 70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

16

18

20
POS BLOCKS USED vs PRUNING − WT10G

%
 P

R
U

N
IN

G

% POS BLOCKS USED

RANK A
RANK B

Fig. 1. % POS blocks used vs % pruning for WT10G

Light Syntactically-Based Index Pruning for Information Retrieval 95

Table 2 displays statistics relating to the effect of each of our two prun-
ing strategies on WT2G and WT10G, during indexing, separately for tokens,
unique terms, and postings. Column POS blocks θ (1,000) contains the num-
ber of POS blocks used for pruning, in multiples of 1,000. We clearly see that
pruning terms from more POS blocks (increasing θ) leads to more index com-
pression (more terms being removed from the index). We also see that Rank B
is more effective than Rank A, in the sense that it leads to more index com-
pression, throughout. This is due to the fact that Rank A is a raw frequency
sort of POS blocks, while Rank B is a sorting of a combination of POS block
frequency and POS class information. More simply, the lowest ranked POS block
in Rank B is not necessarily the least frequent POS block in the corpus, but a
POS block that combines both (i) very low frequency, and (ii) very low content
score. Very low content score practically translates to a POS block which does
not contain any nouns, adjectives, or verbs. The fact that Rank B is better than
Rank A is graphically illustrated in Figure 1, which plots various pruning lev-
els against the % of POS blocks used. This % is the proportion of POS blocks
used for pruning WT10G, out of all the POS blocks extracted from WT10G.
We clearly observe that using the same number of POS blocks with Rank A
and Rank B results in more index compression for the latter, than for the for-
mer. In Figure 1, we also observe that, even pruning the terms corresponding
to 95% of all the POS blocks extracted from WT10G, only results in reducing
the WT10G full index by 16-20%. Since we only use the lowest frequent POS
blocks for pruning, this seems to indicate that there exists a very large number
of POS blocks of low frequency, which is one of the properties of a power law
distribution6.

Table 3 displays retrieval performance scores at different index compression
levels, separately for Rank A and Rank A, and for each collection. Pruning levels
are reported in % reduction of postings, similarly to [4]. We see that light pruning
leads to an overall improvement in MAP and P@10 over the full index, which is
sometimes statistically significant. Two important observations are drawn from
this table. Firstly, at no point does pruning hurt significantly retrieval. This point
is very encouraging, considering that our techniques uses no document-specific
criteria. Secondly, light pruning can improve both MAP and P@10. In fact, the
best obtained MAP and P@10 scores for WT2G, namely MAP = 0.320 and
P@10 = 0.468, are not given by the full index, but by pruning 2.86% and 1.37%
of the index, respectively. Both of these scores are statistically very significant
(p << 0.01). Similarly for WT10G, the best overall MAP and P@10 scores,
namely MAP = 0.210 and P@10 = 0.328, are not given by the full index, but
by pruning 0.66% and 2.99% of the index. The best overall retrieval scores are
separately displayed in Table 4. Finally, in Table 3 we observe that PL2 performs
better than BM25, which could be due to the default parameter settings used.
Even so, both PL2 and BM25 outperform scores reported in [3,4], using TF·IDF
and the same settings.

6 Indeed we can report that the distribution of POS blocks in WT10G follows a Zipfian
distribution.

96 C. Lioma and I. Ounis

Table 3. Pruning using POS blocks from Rank A and Rank B. Prune (%) = reduction
in postings from full index. Grey-shaded = full index. Boldface = equal to or better
than the full index. * and ** = stat. significance at p < 0.05 and p < 0.01 (Wilcoxon
matched-pairs signed-ranks test), respectively.

Rank A Rank B
Collection

Prune (%)
MAP P@10

Prune (%)
MAP P@10

BM25 PL2 BM25 PL2 BM25 PL2 BM25 PL2

14.56 0.243** 0.298** 0.432** 0.454** 15.42 0.246* 0.301** 0.430* 0.454**

WT2G

9.46 0.250 0.303 0.426 0.456 10.52 0.254 0.308 0.438 0.456
6.53 0.253 0.306 0.428 0.466 7.77 0.258 0.310 0.432 0.466
4.57 0.257 0.310 0.442 0.462 5.98 0.257 0.311 0.436 0.466
3.31 0.259 0.313 0.442 0.460 4.82 0.259 0.312 0.434 0.464
2.44 0.259 0.313 0.440 0.462 4.02 0.260 0.317 0.440 0.462
1.83 0.260 0.315 0.442 0.464 3.49 0.259 0.319** 0.432 0.462**
1.37 0.261* 0.317** 0.438* 0.468** 3.13 0.260 0.319** 0.434 0.460**
1.04 0.261* 0.318* 0.438* 0.462* 2.86 0.258 0.320** 0.434 0.456**
0.80 0.260 0.318 0.434 0.462 2.67 0.258 0.318 0.430 0.454
0.61 0.260* 0.318* 0.436* 0.460* 2.52 0.257* 0.318 0.432* 0.456
0.00 0.258 0.317 0.426 0.456 0.00 0.258 0.317 0.426 0.456

14.30 0.175** 0.195** 0.293** 0.298** 15.23 0.175** 0.199** 0.295** 0.307**

WT10G

9.38 0.182* 0.203 0.304* 0.307 10.56 0.179** 0.204 0.300** 0.307
6.56 0.185* 0.206** 0.302* 0.316** 7.87 0.182* 0.207 0.303* 0.313
4.65 0.187 0.207 0.300 0.317 6.12 0.184 0.207 0.306 0.316
3.41 0.186 0.206 0.301 0.312 4.96 0.185 0.207 0.302 0.325
2.55 0.187 0.208* 0.298 0.319* 4.17 0.185 0.208 0.303 0.325
1.93 0.187 0.209 0.300 0.323 3.63 0.185 0.209 0.301 0.326
1.46 0.186 0.209 0.302 0.324 3.26 0.186 0.208 0.303 0.326
1.11 0.187 0.209 0.302 0.324 2.99 0.186* 0.209 0.303* 0.328
0.86 0.187 0.209 0.302 0.326 2.78 0.186 0.209 0.301 0.328
0.66 0.188 0.210 0.303 0.326 2.63 0.186* 0.209* 0.301* 0.328*
0.00 0.187 0.209 0.300 0.326 0.00 0.187 0.209 0.300 0.326

Figure 2 plots MAP and P@10 versus index pruning. For both WT2G and
WT10G, and for index compression more than roughly 6% of the full index, the
relation between average precision and pruning becomes practically decreasing
linear, where as pruning increases, average precision decreases, for both Rank
A and Rank B. For index compression less than 6%, varying pruning leads to
variations in average precision, which can be either increasing or decreasing,
but only slightly. Using Rank A results in more variations for this pruning range
(<6%), than using Rank B, for both collections and with both weighting models.
This seems to suggest that Rank B is more stable. With regards to precision at
10, index compression roughly less than 8-10% of the full index seems to generally
increase precision, with the exception of using PL2 on the WT10G collection. For
index compression more than 10% of the full index, there is a slight degradation
in early precision. Overall, Rank A and Rank B perform very similarly, in terms
of retrieval performance. BM25 and PL2 also behave very similarly, indicating
that our conclusions drawn from these runs are consistent across two statistically
different weighting models, hence they are general.

Figure 3 plots the similarity of the top 10 results to the full index versus
pruning, using a symmetric difference [4] estimation. We observe that the early
precision obtained by Rank B approximates the full index more closely than that
obtained by Rank A. This observation, which is consistent for both collections

Light Syntactically-Based Index Pruning for Information Retrieval 97

0 2 4 6 8 10 12 14 16
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33
MAP vs PRUNING − WT2G

PRUNING %

M
A

P

RANK A: BM25
RANK B: BM25
RANK A: PL2
RANK B: PL2

0 2 4 6 8 10 12 14 16
0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

0.465

0.47
P@10 vs PRUNING − WT2G

P
@

10

PRUNING %

RANK A: BM25
RANK B: BM25
RANK A: PL2
RANK B: PL2

0 2 4 6 8 10 12 14 16
0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215
MAP vs PRUNING − WT10G

PRUNING %

M
A

P

RANK A: BM25
RANK B: BM25
RANK A: BM25
RANK B: BM25

0 2 4 6 8 10 12 14 16
0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

PRUNING %

P
@

10

P@10 vs PRUNING − WT10G

RANK A: BM25
RANK B: BM25
RANK A: PL2
RANK B: PL2

Fig. 2. Precision vs Pruning (% postings)

2 4 6 8 10 12 14 16 18 20
0.15

0.2

0.25

0.3

0.35

0.4
SIMILARITY vs PRUNING − WT2G

PRUNING %

S
IM

IL
A

R
IT

Y

RANK A: BM25
RANK B: BM25
RANK A: PL2
RANK B: PL2

2 4 6 8 10 12 14 16 18 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

PRUNING %

S
IM

IL
A

R
IT

Y

SIMILARITY vs PRUNING − WT10G

RANK A: BM25
RANK B: BM25
RANK A: PL2
RANK B: PL2

Fig. 3. Top 10 similarity at varying levels of pruning

and both weighting models, indicates that introducing the content score (Equa-
tion 1) of a POS block into the frequency ranking of POS blocks is a better
pruning strategy.

98 C. Lioma and I. Ounis

Table 4. Best MAP and P@10 scores. ΔF % MAP & ΔF % P@10 = % difference
from full index in MAP & P@10, respectively. Prun.% = % pruning in postings from
full index. strategy = pruning strategy and weighting model. ** = stat. significance
at p < 0.01 (Wilcoxon matched-pairs signed-ranks test).

best ΔF % Prun. strategy best ΔF % Prun. strategy coll
MAP MAP % P@10 P@10 %

0.320** +1.0 2.86 Rank B: PL2 0.468** +2.6 1.37 Rank A: PL2 WT2G
0.210 +0.5 0.66 Rank A: PL2 0.328 +0.6 2.99 Rank B: PL2 WT10G

Table 5 compares the performance of syntactically-based index pruning to
other index pruning work [3,4]. We compare with reported experiments that use
the same collections, topics, and similar pruning levels to ours (under column
experimental settings). We see that, both Rank A and Rank B pruning strategies
are at least comparable to the uniform pruning strategy of Carmel et al. [4],
(marked ⊕). Note that we prune terms using document-independent syntactic
evidence (Section 1), and from the whole index, while [4] prune terms according
to their contribution to the relevance score of a document, and only from the
postings lists. On the basis of these two key-differences, we consider the fact
that our technique is comparable to that of [4], as very promising. Table 5 also
includes the results of pruning reported in [3], (marked ⊗), whereby, in addition
to using document-specific information and pruning the postings lists only, a
term-based strategy is used. Our equivalent run applies a uniform, as opposed
to term-based, technique, which is generally considered less effective [3,4]. Still,
we observe no significant difference between the two runs, a fact which is an
additional credit to our technique. When we repeat this run using the exact 50
topics used in [3], (marked �), we observe that our technique outperforms that
of [3] in P@10, with a slight decrease in MAP. We consider this performance
notable, considering how much more refined is the pruning approach applied
in [3], as already discussed.

Table 5. Comparison of our runs to other index pruning work (grey-shaded).
ΔF % MAP & ΔF % P@10 = % difference in MAP & P@10 from full index. Prun.%
= % pruning in postings from full index. ⊕ = run described in [4]. ⊗ = run described
in [3]. � repeats the run of the preceeding row using 50, instead of 100, topics. Major
differences appear in boldface.

Prun. ΔF % ΔF %
experimental settings

% MAP P@10

15.4 -4.7 +0.9 WT2G, 401-450 (Title), Rank B, uniform prun. from all index
14.6 -5.8 +1.4 WT2G, 401-450 (Title), Rank A, uniform prun. from all index

⊕13.2 -4.0 +2.5 WT2G, 401-450 (Title), uniform prun. from postings
10.5 -1.6 +2.8 WT2G, 401-450 (Title), Rank B, uniform prun. from all index

⊗10.7 -1.9 0.0 WT10G, 501-550 (Title), term-based prun. from postings
10.6 -2.4 0.0 WT10G, 451-550 (Title), Rank B, uniform prun. from all index

�10.6 -2.9 +4.3 WT10G, 501-550 (Title), Rank B, uniform prun. from all index

Light Syntactically-Based Index Pruning for Information Retrieval 99

5 Conclusion

We proposed a novel, low-cost, unsupervised statistical technique for index prun-
ing, with uses shallow syntactic evidence to reduce noise from the index. We hy-
pothesised that pruning the words corresponding to low-frequency POS blocks
from an index corresponds to eliminating content-poor words, and may enhance
retrieval performance. We presented POS blocks, as fixed-length blocks of parts
of speech, and assumed that low-frequency POS blocks correspond to low-content
words, following from [5]. On the basis of this, we tested two pruning strate-
gies: Firstly, terms corresponding to θ low-frequency POS blocks, were pruned
from the index (Rank A). Secondly, terms corresponding to θ low-frequency
POS blocks which were also estimated to contain ‘non content-bearing parts
of speech’, such as prepositions for example, were pruned from the index. We
experimented with various values of θ, and reported on the associated effect
on pruning levels and retrieval performance, while also making a note of the
associated gain in index compression. Both strategies behaved similarly, with
Rank B providing results closer to the full index, for early precision. Overall,
by compressing the index up to a maximum of roughly 14-15% (see Table 3),
our proposed syntactically-based pruned indices outperfomed the full indices, in
terms of MAP and P@10, for both collections. Additionally, for similar index
compression levels, our syntactically-based technique was shown to be compara-
ble to [3,4], which used more refined document-specific and term-based pruning
approaches. In the future, we wish to experiment with higher index compression
levels, and also applying our pruning technique more intelligently, for example
on a per-document basis.

References

1. Amati, G.: Probabilistic Models for Information Retrieval based on Divergence
from Randomness. Phd thesis. Department of Computing Science, University of
Glasgow (2003)

2. Brandow, R., Mitze, K., Rau, L.: Automatic Condensation of Electronic Publi-
cations by Sentence Selection. Information Processing and Management, 31(5).
(1995) 675-685

3. Carmel, D., Amitay, E., Herscovici, M., Maarek, Y., Petruschka, Y., and Soffer,
A.: Juru at TREC 10 - Experiments with Index Pruning. In: Text REtrieval
Evaluation Conference (TREC 2001) 228-265

4. Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M., Maarek, Y., and Soffer,
A.: Static Index Pruning for Information Retrieval Systems. In: ACM Conference
on Research and Development in Information Retrieval (SIGIR 2001) 43-50

5. Lioma, C., Ounis, I.: Examining the Content Load of Part of Speech Blocks for
Information Retrieval. In: Proceedings of the International Committee on Com-
putational Linguistics and the Association for Computational Linguistics (COL-
ING/ACL 2006)

6. Luhn, H., P.: The Automatic Creation of Literature Abstracts. (1958) 159-165
7. Witten, I. H., Moffat, A., Bell, T. C.: Managing Gigabytes: Compressing and

Indexing Documents and Images. 2nd edn. Morgan Kaufmann, San Francisco
(1999)

100 C. Lioma and I. Ounis

8. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A
High Performance and Scalable Information Retrieval Platform. In: ACM Confer-
ence on Research and Development in Information Retrieval Workshop on Open
Source Information Retrieval (OSIR 2006)

9. Robertson, S., Walker, S.: Some Simple Approximations to the 2-Poisson Model
for Probabilistic Weighted Retrieval. In: ACM Conference on Research and Devel-
opment in Information Retrieval (SIGIR 1994) 232-241

10. Sakai, T., Sparck Jones, K.: Generic Summaries for Indexing in Information Re-
trieval. In: ACM Conference on Research and Development in Information Re-
trieval (SIGIR 2001) 190-198

11. van Rijsbergen, C., J.: Information Retrieval. Butterworths, London (1979)

Sorting Out the Document Identifier

Assignment Problem

Fabrizio Silvestri

Institute for Information Science and Technologies
ISTI - CNR, via Moruzzi, 1, 56126 Pisa, Italy

fabrizio.silvestri@isti.cnr.it

Abstract. The compression of Inverted File indexes in Web Search En-
gines has received a lot of attention in these last years. Compressing the
index not only reduces space occupancy but also improves the overall
retrieval performance since it allows a better exploitation of the memory
hierarchy. In this paper we are going to empirically show that in the
case of collections of Web Documents we can enhance the performance
of compression algorithms by simply assigning identifiers to documents
according to the lexicographical ordering of the URLs. We will validate
this assumption by comparing several assignment techniques and several
compression algorithms on a quite large document collection composed
by about six million documents. The results are very encouraging since
we can improve the compression ratio up to 40% using an algorithm that
takes about ninety seconds to finish using only 100 MB of main memory.

1 Introduction

Indexes in Web Search Engines (WSEs) are usually represented using the pop-
ular Inverted File (IF) data structure [15]. Given a set of documents, an IF is
composed by two distinct sets: the Lexicon and the Posting Lists. The Lexicon
represents the set of terms that can be found within the whole document set. To
each term of the lexicon a Posting List is associated containing information (the
so-called posting) on all the documents containing that term. For example, the
index entry < t1; 5; 3, 4, 10, 20, 23 > states that term t1 (stored within the Lexi-
con) appears in five documents, namely 3, 4, 10, 20, and 23. The set containing
all these lists is stored within the Posting Lists section.

One of the main reasons why IFs (or one of their variations) are usually
adopted in real world WSEs, is that they can be easily compressed to reduce
memory occupancy. Compressing indexes in WSEs has been also proved to en-
hance efficiency of the retrieval process [2,11,14]. A reduction in space occupancy,
in fact, usually corresponds to a better utilization of the memory hierarchy.

The majority of the techniques adopted for compressing IFs are based on their
d-gapped representation [15]. Posting lists are usually scanned sequentially. For
this reason, it is possible to represent those lists by taking differences among
successive identifiers (with the obvious exception of the first one). This way, the

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 101–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

102 F. Silvestri

previous list would be represented as < t1; 5; 3, 1, 6, 10, 3 >. Encoding each inte-
ger with a technique requiring few bits for smaller values will result in a reduction
of the utilized space. Variable-length encoding schemata allow IF indexes to be
represented concisely since small d-gaps are much more frequent than large ones.
This feature of posting lists, usually called Clustering property [7] is passively ex-
ploited by compression algorithms. However, by mapping DocIDs in a way that
increases the frequency of small d-gaps, it is very likely that we can enhance
the effectiveness of any variable-length encoding scheme [13]. It has been shown
that an effective way to compute such a mapping is clustering the collection of
documents and computing the mapping by considering the way documents are
grouped within the clusters.

Indeed, clustering is an expensive operation especially in a highly dimen-
sional domain like textual documents. Even if a number of scalable clustering
techniques are known, a cheaper approach would be desirable.

As often happens when dealing with large scale WSEs, the simplest solution
usually results to be the most effective one. What we are going to empirically
validate in this paper is, in fact, that a very effective mapping can be obtained
by considering the sorted list of URLs referencing the web documents of the
collection. Furthermore, it is very likely that this lexicographical ordering of
the URLs is already used by link databases; we will show, then, that it would
introduce benefits also for assigning numerical identifiers to documents in Web
Search Engines indexes.

As already pointed out in another paper [10], numbering the URLs following
their lexicographical order improves the performance of web graph compression
algorithms. In the following we are going to show that using this kind of num-
bering scheme we can also obtain better compression ratios by spending just a
few seconds even on a very large number of documents. In fact, sorting a list of
5.9 million URLs would take about 90 seconds against about 45 minutes needed
by our previous clustering solutions.

While the motivations presented in [10] clearly explain why sorting URLs
can improve compression effectiveness for Web graphs, it is not so easy how to
argument why sorting URLs can improve index compression too.

Luhn’s hypothesis [9] can help in finding a reasonable motivation to this phe-
nomenon. Luhn’s hypothesis states that the significance of a word can be effec-
tively measured by its frequency of occurrence. In particular, Luhn stated that
words occurring less (more) than a given cut-off value are not significant as they
are too rare (too common).

It is reasonable to say that lists referring to common terms are highly com-
pressible since they contain relatively small d-gaps. On the other hand, rare
terms occur only once or twice and do not impact on compression performance.

The lists we should care about are instead those whose length falls between
the two Luhn’s cut-offs. These lists, in fact, are likely to be referring to terms
that are either highly correlated (e.g. “new” and “york”), or highly uncorrelated
(e.g. “loudspeakers”, and “octopussy”).

Sorting Out the Document Identifier Assignment Problem 103

At least in principle, by placing documents containing correlated terms closer
and by separating documents containing uncorrelated terms, we should ob-
serve a gain in compressibility of postings. Unfortunately this problem has been
shown to be NP-complete [3], and several heuristics have been proposed in the
past [12,5,13,4].

Our hypothesis is that documents sharing correlated and discriminant terms
are very likely to be hosted by the same site thus will also share a large prefix of
their URLs.

To partially evaluate the validity of our hypothesis we performed a simple
experiment. We sorted the URLs identifying the documents of our test collec-
tion, and we took the first 35, 000 documents. Then, between all the possible
pairs of documents we measured the similarities using the Jaccard measure, and
the similarity among their relative URLs by counting the number of tokens in
common (i.e. the similarity among http://www.aaa.bbb.cc/people/n1.surname1
and http://www.aaa.bb.cc/people/n2.surname2 is 2 since they share the server
part and the first subdirectory). Among those pairs of URLs with similarity 0,
the large majority (about 89.7%) have also Jaccard similarity equal to 0. The
document similarity increased by considering URLs with similarity equal to 1
and 2. In the former case the 18.1% of documents are at distance 0.1, in the
latter the large majority of document pairs (52.1%) have similarity equal to
0.9 meaning that they share a large number of terms. This simple experiment
empirically shown that the two measures might be linked in some manner.

In our opinion, the most important strength point of this paper is the sim-
plicity of the algorithm employed. Instead of thinking of sophisticated metric,
or algorithms, to measure the distance between documents, in the case of Web
collections we simply need to sort the URL list lexicographically, and assign
identifiers to documents accordingly.

The paper is organized as follows. Section 2 reviews the state-of-the-art on
the assignment problem and analyzes pros and cons when compared against our
solution. Section 3 briefly recalls the assignment problem definition and the main
definitions that will be used throughout this paper. Section 4 shows the results
of our empirical evaluation of the URL sorting assignment heuristics. Finally
Section 5 concludes the paper, and present some issues that we are going to face
in the future.

2 Related Work

In recent years several works have discussed approaches to the encoding of lists
of integer values. These techniques have usually been applied to the compression
of full-text indexes represented by means of d-gapped inverted lists [15]. Only re-
cently, though, some works have been done in order to enhance the compressibil-
ity of indexes through a clever assignment of identifiers to documents [12,5,13,4].

Shieh et al. [12] proposed a DocID reassignment algorithm adopting a Trav-
elling Salesman Problem (TSP) heuristic. A similarity graph is built by con-
sidering each document of the collection as a vertex and by inserting an edge
between any pair of vertices whose associated documents share at least one term.

104 F. Silvestri

Moreover, edges are weighted by the number of terms shared by the two docu-
ments. The TSP heuristic algorithm is then used to find a cycle in the similarity
graph having maximal weight and traversing each vertex exactly once. The sub-
optimal cycle found is finally broken at some point and the DocIDs are reassigned
to the documents according to the ordering established. The rationale is that
since the cycle preferably traverses edges connecting documents sharing a lot
of terms, if we assign close DocIDs to these documents, we should expect a re-
duction in the average value of d-gaps and thus in the size of the compressed
IF index. The experiments conducted demonstrated a good improvement in the
compression ratio achieved. Unfortunately, this technique requires to store the
whole graph in the main memory, and is too expensive to be used for real Web
collections: the authors reported that reordering a collection of approximately
132, 000 documents required about 23 hours and 2.17 GBytes of main memory.

Blelloch and Blandford [5] also proposed an algorithm (hereinafter called
B&B) that permutes the document identifiers in order to enhance the clustering
property of posting lists. Starting from a previously built IF index, a similar-
ity graph G is considered where the vertices correspond to documents, and the
edges are weighted with the cosine similarity [8] measure between each pair
of documents. The B&B algorithm recursively splits G into smaller subgraphs
Gl,i = (Vl,i, El,i) (where l is the level, and i is the position of the subgraph within
the level), representing smaller subsets of the collection. Recursive splitting pro-
ceeds until all subgraphs become singleton. The DocIDs are then reassigned
according to a depth-first visit of the resulting tree. The main drawback of this
approach is its high cost both in time and space: similarly to [12] it requires
to store the whole graph G in the main memory. Moreover, the graph splitting
operation is expensive, although the authors proposed some effective sampling
heuristics aimed to reduce its cost. In [5] the results of experiments conducted
with the TREC-8 ad hoc track collection are reported. The enhancement of
the compression ratio obtained is significant, but execution times reported re-
fer to tests conducted on a sub-collection of only 32, 000 documents. The paper
addresses relevant issues, but due to its cost, the B&B algorithm also seems
unfeasible for real Web collections. Several transactional-model-based solution
have been compared against B&B in [13] and they showed that there is actu-
ally room for a lot of improvements to their method. In particular, not from an
effectiveness point of view, but more from a scalability perspective.

In [4], Blanco and Barreiro studied the effect of dimensionality reduction on re-
assignment algorithms based on the Greedy-NN TSP algorithm. Basically, they
first reduce dimensionality of the input matrix through a Singular Value Decom-
position (SVD) transformation and then they apply the Greedy-NN TSP algo-
rithm. They also tested the effect of blocking (i.e., the division of the dataset in
subsets) on the effectiveness of the algorithm. Results are very good and they were
able to obtain good compression ratios with low running times. Even thought the
results are good, using the SVD transformation on the matrix might spoil the scal-
ability of the method. Indeed, the block partitioning approach proposed seems to
reduce this effect but costs quite a lot in terms of effectiveness degradation.

Sorting Out the Document Identifier Assignment Problem 105

In our opinion, another drawback of all the previous approaches is that they fo-
cus on reassigning DocIDs appearing in a previously built IF index. The strength
point of this work, however, is that DocIDs are assigned on the fly, before (and
not either during, or after) the inversion of the document collection. In order to
compute efficiently and effectively a good assignment, a new model to represent
the collection of documents is needed. In a previous work [13], there have been
presented some results relative to four assignment algorithms based on cluster-
ing. The clustering approach resulted to be scalable and space-effective. This
means that it can be used to assign DocIDs even before the spidered collection
will be processed by the Indexer. Thus, when the index will be actually commit-
ted on disk, the new DocID assignment will be already computed. Conversely,
the other methods proposed so far require that the IF index has already been
computed in advance. They also proposed a new model that allowed the assign-
ment algorithm to be placed into the typical spidering-indexing life-cycle of a
WSE. The Transactional Model was based on the popular bag-of-words model.
This work remain valid for generic textual document collections. Though, the
main concern about this kind of techniques within Web collections is that usually
document identifiers are used also for other purposes, like for instance addressing
snippets, retrieve ranking information, and so on. Renumbering the collection,
thus, may not be feasible in practice for large scale WSEs.

The solution of considering the sorted list of URLs has already been used
in [10] to enhance the compressibility of Web Graphs. Web graphs may be rep-
resented by using adjacency lists. They are basically lists that contain, for each
vertex v of the graph, the list of vertices directly reachable from v. It has been
observed that almost 80% of all links are local, that is, point to pages of the same
site. Starting from this observation, it is obvious that assigning closer identifiers
to URLs referring to the same site will result in adjacency lists that will contain
the around 80% of ids very close among them. Representing these lists using a
d-gapped representation will thus lead to d-gapped adjacency lists having long
runs of 1’s. Starting from this assumption, in [10] and [6], authors show that
exploiting the lexicographical ordering of URLs leads to an enhancement in per-
formance of Web graphs encoding algorithms.

The main matter of this paper is an evaluation of the compression algorithms
efficiency, when an inverted index is built over a collection whose numerical
identifiers are assigned according to lexicographically sorted URLs.

3 Assignment of DocIds

Basically, the previously proposed clustering-based (re)assignment algorithms
were trying to reduce the average gap value by clustering together documents
having a number of terms in common. The distance measure used in clustering
was thus based on this concept of number of shared terms and the complexity of
clustering algorithms depended on the number of distance computations1. The
1 The distance measure used was the Jaccard distance that depends on the cardinality

of the intersection between the set of terms contained within two documents A, and
B, and on the cardinality of their union. d (A, B) = 1 − |A∩B|

|A∪B| .

106 F. Silvestri

complexity is generally linear (O (|D|)) in the case of k-means based clustering,
or superlinear (O (|D| log |D|)) in the case of hierarchical clustering methods
(like B&B). Indeed, this complexity results consider distance computations as
a constant complexity (O (1)) operation. Computing the distance between two
documents, in fact, means finding the intersection among two sets of term, and
this is clearly not a cheap operation.

The algorithm we are going to present instead is indeed trivial, since it just
consists of sorting the list of URLs, yet very efficient, since it does not require
any set intersection operations. The computational complexity of this approach
is O (|D| log |D|). Differently from the clustering methods, the complexity is ex-
pressed as the number of string comparisons instead of number of set intersections.
Furthermore, sorting the list of URLs is very effective from the compression ratio
point of view. Another non-trivial advantage of this solution with respect to the
previously proposed ones, is that a lot of scalable external memory string sorting
algorithms exists while, currently, no assignment (or even re-assignment) algo-
rithms have been proposed using external memory based techniques. One could
obviously use one of the many external memory clustering solutions that exists in
literature, but these will still require a lot of time to complete their operations.

Throughout the rest of this paper we will compare our assignment strategy
based on URLs sorting against the previously proposed k-scan algorithm [13].

4 Experiments

We experimented our solution on an index built upon the WBR99 collection.
WBR99 consists of 5,939,061 documents, about 22 GB uncompressed,
representing a snapshot of the Brazilian Web (domains .br) as spidered by
www.todobr.com.br. As the hardware platform, we used a Pentium IV 3.2GHz,
with 1GB of RAM, local disk, and Linux as the operating system.

The tests we perform are aimed at showing the superiority of our approach
with respect to the clustering approach. We will show the improvements in both
compression ratio, reordering time, and space consumed of various encoding
algorithms.

We considered several encoding schemata in our experiments:

– Elias’ Gamma (GAMMA);
– Elias’ Delta (DELTA);
– Golomb Code (GOLOMB);
– Variable Byte (VB);
– Interpolative Coding (INTERP);
– Simple9 (S9).

Simple9, hereinafter S9, is the encoding scheme described in [1]. Gamma,
Delta, Golomb, Interpolative (INTERP) and Variable Byte (VB) are five popular
encoding schemata described in [15].

In order to assess the validity of our method we performed our experiments
by comparing not only different encoding methods but also different orderings
for assigning document IDs. The orderings compared are the following:

Sorting Out the Document Identifier Assignment Problem 107

– A random ordering (Random). For each document an ID is assigned u.a.r.
by considering the set of previously unassigned IDs.

– The original numbering of documents given to documents in the index
(Original).

– Block, and transactional-model based k-scan clustering (Clustering). In this
case k, the number of clusters, has been set equal to 900, and the block
size has been set equal to 900, 000 documents. Since this kind of clustering
is sensitive to initial ordering [13], we fed the algorithm with the ordering
found in the original index.

– URL-based sorting (Url sorting).
– k-scan clustering of the document collection again using k = 900, and

900, 000 documents for each block (Clustering + Url Sorting). The sorted
list of URLs has been taken as the initial ordering of the documents.

4.1 Results

Regarding the enhancements in compression ratios, Table 1 and Figure 1 show
comparisons between six different compression ratios and five different orderings.

Table 1. Results of various assignment algorithms using different encoding schemata.
In bold are represented the best results obtained for each encoding schemata.

VB GAMMA DELTA S9 INTERP GOLOMB

Random 11.4 12.72 12.71 15.41 11.13 11.31

Original 11.25 12.34 12.32 15.2 10.94 11.12

Url sorting 9.72 7.72 7.69 14.34 7.48 8.23
Clustering 9.81 8.82 8.8 14.03 7.26 8.63

Clustering + Url sorting 10.03 8.96 8.95 14.15 7.31 8.9

In Table 1, the best compression ratio achieved by each methods and for each
ordering schema has been represented in bold. As we expected the compression
ratio in the case of identifiers assigned by using our URL sorting method per-
forms better than clustering in almost all the cases except for S9, and INTERP.
Anyway, the enhancements in terms of compression ratio of the URL sorting
method against the Clustering one is visible only in the case of Gamma and
Delta. Here the URL sorting has produced a posting list section that is 13%
smaller than the Clustering ordering. In the remaining cases Clustering and
URL-ordering are comparable.

Since Clustering is sensitive to the initial ordering, we also tested a hybrid
solution consisting in performing Clustering on the list of documents ordered
according to their URLs. Contrarily to what we expected this method did not
perform better neither than URL sorting, nor than Clustering (except for S9
and INTERP). We have not found a good explanation of the reason why this
happens, we reserve to better investigate this issue in the near future. Another
positive result is that differently from what was observed in [13] VB can be
improved.

108 F. Silvestri

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

Random Original Url sorting Clustering Clustering+sorting

B
its

 p
er

 g
ap

Compression

’Variable Byte’
’Gamma’

’Delta’
’Simple9’

’Interpolative’
’Golomb’

Fig. 1. Compression ratios of six different encoding techniques when applied to five
different orderings

To further confirm our results we also measured the distribution of d-gaps
within three different ordering: original, clustering and URL sorting. Figure 2
reports the three distributions.

As the histogram shows, the number of very small d-gaps dramatically in-
creases in clustering and URL sorting based ordering with respect to the original
ordering. In particular the number of d-gaps equal to 1 and 2 increases in the
cases of URL sorting from around 75, 000, 000 to 325, 000, 000. The URL sorting
successfully increases the number of small d-gaps up to the d-gap equal to seven
and decreases the other. The clustering schema, instead, successfully increases
the small d-gaps up to the d-gap equal to fifteen. This is the main reason why
URL sorting is slightly better than clustering. This observation also confirms
our hypothesis made in Section 3. When we reduce the average gap, the result-
ing IF results smaller almost independently from the encoding method actually
adopted.

As we have seen, compression efficiency gains are comparable in most cases to
those obtained by clustering. The main improvement, though, is in the resources
consumed by our novel assignment algorithm compared to those needed by so-
lutions based on clustering. As already said sorting a list of about six million
URLs took just ninety seconds on the testing platform to complete and occupied
just 95MB of main memory. On the other hand, clustering the same collection
of documents required the partitioning of the collection into seven blocks of

Sorting Out the Document Identifier Assignment Problem 109

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nu
m

be
r

of
 g

ap
s

gap value

Gap distribution

Url sorting
Clustering

Original data

Fig. 2. Distribution of the d-gaps within the index organized according to the three
different orderings: original, clustering and URL sorting

Table 2. Time (in seconds) spent for clustering each block of documents

Block Size
100,000 300,000 500,000 700,000 900,000

Time (s) 39 119 197 274 352

900, 000 documents each (except for the last block composed by around 600, 000
documents), each block took about 352 seconds, for a total of about 45 minutes
of CPU-time. The memory occupancy in the case of clustering has been around
1.2GB. It is thus clear that, while the ordering algorithm can scale to billions of
documents without any particular problems, Clustering solutions cannot afford
to achieve the same performance figures. In fact, as Table 2 shows, reducing
the block size to 100, 000 documents will result in a slightly reduction of total
completion time around 100 seconds less than the case with blocks of 900, 000
documents. In all the experiments the number of total clusters has been kept
equal to 1, 000.

On the other hand a reduction of block size will impact in compression per-
formance. Table 3 shows the relation among block size and compression ratio.

110 F. Silvestri

Table 3. Bits per gap of various encoding schemata when the collection is reordered
using Clustering, and by varying block size

Block Size
100,000 300,000 500,000 700,000 900,000

VB 11.24 10.9 10.56 9.98 9.81

GAMMA 12.32 12.18 10.83 9.03 8.82

DELTA 12.32 12.17 10.81 9.02 8.8

S9 15.01 14.91 14.46 14.11 14.03

INTERP 10.89 9.23 8.01 7.62 7.26

GOLOMB 11.07 10.79 9.98 9.11 8.63

As it is possible to observe in the table, by reducing the number of documents
for each block, the compression ratio dramatically decreases. By halving the size
of the blocks, in fact, almost all of the methods loose performance between one
and two bits per each posting. For example, in the case of GAMMA, passing
from 900, 000 documents per block to 500, 000 documents per block, the number
of bits per posting increases from 8.82 to 10.83 that is about 23% worse.

To be more precise, we should have performed our tests comparing the sorting
technique against a clustering technique not requiring the prior partitioning of
the collection into blocks. To date, there have not been proposed any external
memory document assignment algorithm. Actually one could think about using
one of the many out-of-core clustering methods that exist in the literature. Any-
way, these clustering methods will be even slower than the blocked solution and
is not really clear whether the compression ratios will increase further.

5 Conclusions and Future Works

We have shown that a simple sorting of the list of URLs associated to a collec-
tion of Web documents is very effective and results to be very fast. In all the
experiments performed the compression ratio has increased by numbering the
documents according to the sorted list of URLs.

This fully confirms our initial claim. Ordering of the URLs used by link
databases introduces benefits also if the same ordering would be used for as-
signing numerical identifiers to documents in Web Search Engines indexes.

The benefits of sorting, when compared to clustering, are multiple. Compres-
sion ratios are about 5% better. The time needed to compute the assignment
is two orders of magnitude smaller than the time needed by clustering. The
space occupied by the clustering algorithms is dramatically bigger than the
space needed to sort a list of URLs. In our tests, clustering used around one
KB per each document assigned, requiring the prior subdivision of the collection
in blocks. Furthermore, the URL-ordering method is more scalable to collections
of even billion of URLs.

Nevertheless, due to the very limited time consumed by the sorting algorithm,
one may think about placing the assignment module before the indexing phase
will actually took place.

Sorting Out the Document Identifier Assignment Problem 111

In conclusion, the URL sorting technique is the most efficient technique for
assigning docIDs in the case of Web Search Engines when considering the classic
time-space trade-off. In the other cases, for instance desktop search, enterprise
search, email search systems, where URL information are not available, we might
use folder’s names or e-mail threads. Anyway, if none of this information is
available clustering is still viable.

Some points remain to be investigated further. An important issue, when
dealing with encoding methods is the time spent in decoding lists, and thus in
resolving queries. So far, methods based on the Variable Byte schema (i.e. byte-
aligned methods) have been shown to be the most effective, offering the best
trade-off between decoding speed, and space occupancy. From what it can be seen
in Figure 1, Gamma, and Delta scheme, now, has compression ratios far better
than those of Variable-Byte. This could mean that the Delta schema may become
that of reference for compressing posting lists in Web Search Engines. In the
near future, we are going to evaluate the decoding speed of the various encoding
scheme in light of this new ordering schema on a real IR system. It should be
pointed out, in fact, that in real IR systems IF indices contain information about
term frequencies and term positions. This data obviously affects the performance
(in terms of retrieval time) of a retrieval system and can be only measured
experimentally.

References

1. Vo Ngoc Anh and Alistair Moffat. Inverted index compression using word-aligned
binary codes. Inf. Retr., 8(1):151–166, 2005.

2. Vo Ngoc Anh and Alistair Moffat. Simplified similarity scoring using term ranks.
In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference
on research and development in information retrieval, pages 226–233, New York,
NY, USA, 2005. ACM Press.

3. Roi Blanco and Alvaro Barreiro. Characterization of a simple case of the reas-
signment of document identifiers as a pattern sequencing problem. In SIGIR ’05:
Proceedings of the 28th annual international ACM SIGIR conference on research
and development in information retrieval, pages 587–588, New York, NY, USA,
2005. ACM Press.

4. Roi Blanco and Alvaro Barreiro. Document Identifier Reassignment Through Di-
mensionality Reduction. In Advances in Information Retrieval: 27th European
Conference on IR research, ECIR 2005, Santiago de Compostela, Spain, March
21-23, 2005. Proceedings, pages 375 – 387, 2005.

5. Dan Blandford and Guy Blelloch. Index compression through document reordering.
In Proceedings of the Data Compression Conference (DCC’02), pages 342–351,
Washington, DC, USA, 2002. IEEE Computer Society.

6. P. Boldi and S. Vigna. The webgraph framework i: compression techniques. In
WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pages 595–602, New York, NY, USA, 2004. ACM Press.

7. A. Bookstein, S. T. Klein, and T. Raita. Modeling word occurrences for the com-
pression of concordances. ACM Trans. Inf. Syst., 15(3):254–290, 1997.

8. Chris Buckley. Implementation of the smart information retrieval system. Technical
Report TR85–686, Cornell University, Computer Science Department, May 1985.

112 F. Silvestri

9. H. P. Luhn. The Automatic Creation of Literature Abstracts. IBM Journal of
Research Development, 2(2):159–165, 1958.

10. Keith H. Randall, Raymie Stata, Janet L. Wiener, and Rajiv G. Wickremesinghe.
The link database: Fast access to graphs of the web. In DCC ’02: Proceedings of
the Data Compression Conference (DCC ’02), page 122, Washington, DC, USA,
2002. IEEE Computer Society.

11. Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compression
of inverted indexes for fast query evaluation. In SIGIR ’02: Proceedings of the
25th annual international ACM SIGIR conference on research and development in
information retrieval, pages 222–229, New York, NY, USA, 2002. ACM Press.

12. Wann-Yun Shieh, Tien-Fu Chen, Jean Jyh-Jiun Shann, and Chung-Ping Chung.
Inverted file compression through document identifier reassignment. Information
Processing and Management, 39(1):117–131, January 2003.

13. Fabrizio Silvestri, Salvatore Orlando, and Raffaele Perego. Assigning identifiers to
documents to enhance the clustering property of fulltext indexes. In SIGIR ’04:
Proceedings of the 27th annual international ACM SIGIR conference on research
and development in information retrieval, pages 305–312, New York, NY, USA,
2004. ACM Press.

14. A. Trotman. Compressing inverted files. Information Retrieval, 6(1):5–19, January
2003.

15. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes – Com-
pressing and Indexing Documents and Images. Morgan Kaufmann Publishing, San
Francisco, second edition edition, 1999.

Efficient Construction of FM-index

Using Overlapping Block Processing
for Large Scale Texts�

Di Zhang1, Yunquan Zhang1,2, and Jing Chen3

1 Institute of Software, Chinese Academy of Sciences
2 State Key Laboratory of Computer Science

{zhangdi,zyq}@mail.rdcps.ac.cn
3 Microsoft Research Asia
jingchen@microsoft.com

Abstract. In previous implementations of FM-index, the construction
algorithms usually need several times larger memory than text size.
Sometimes the memory requirement prevents the FM-index from being
employed in processing large scale texts. In this paper, we design an ap-
proach to constructing FM-index based on overlapping block processing.
It can build the FM-index in linear time and constant temporary mem-
ory space, especially suitable for large scale texts. Instead of loading and
indexing text as a whole, the new approach splits the text into blocks of
fixed size, and then indexes them respectively. To assure the correctness
and effectiveness of query operation, before indexing, we further append
certain length of succeeding characters to the end of each block. The ex-
perimental results show that, with a slight loss on the compression ratio
and query performance, our implementation provides a faster and more
flexible solution for the problem of construction efficiency.

Keywords: FM-index, Self-index, Block processing.

1 Motivation

In recent years, the amount of digital information is growing rapidly, and a large
part of these data is in the form of text. This situation has made the space
consumption of indices on texts become a serious problem. With the attempt to
reduce the size of indices, a powerful concept of self-index has emerged[13]. Self-
index is an index that provides fast search functionality using space proportional
to the k-th order entropy[12] of the text. Besides search functionality, it also
contains enough information to efficiently reproduce any text substring. A self-
index can therefore replace the text. The exciting concept has triggered much
interest on this issue and produced surprising results in very few years.
� This work was supported in partial by the National Natural Science Foundation

of China under contract No.60303020 and No.60533020, the National 863 Plan of
China under contract No.2006AA01A125 and No. 2006AA01A102, and Foundation
of CAS under contract No. KSH1-02.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 113–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

114 D. Zhang, Y. Zhang, and J. Chen

FM-index is the first self-index designed by Ferragina and Manzini [2]. They
realized the potential of the relationship between text compression and text
indexing, in particular regarding the correspondence between the entropy of a
text and the regularities in some widely used indexing data structures. The FM-
index is designed to occupy space close to that of the best existing compression
techniques, and provide search and text recovering functionality with almost
optimal time complexity [5].

Many other researches follow the idea of FM-index, such as Huff-FMI[6], RL-
FMI[9], AT-FMI[4]. Despite their efficiency in compression and searching, an-
other important concern is the construction efficiency. In practical applications,
the construction phase of FM-index is either too slow, or require too much work-
ing space[8]. Some studies have notice the problem. In paper [7], the construction
algorithm can build the FM-index in O(n log log |Σ|) time and O(n log |Σ|)-bit
working space.

Apart from full-text indices, we observed that many compression tools such
as bzip2[14], usually split their input data into blocks of equal size before com-
pression. This idea also could be employed by FM-index construction.

This paper is organized as follows. First, we introduce some background
knowledge on FM-index, including the basic algorithm and construction pro-
cedure. Then, we discuss possible ways of implementing a block version of the
FM-index, and give a complete solution of block construction. Finally, a series
of experiments on various kinds of texts will be performed to validate the im-
provements we have made.

2 Background

2.1 FM-index

The algorithm of FM-index is based upon the relationship between the Burrows-
Wheeler compression algorithm [1] and the suffix array data structure [11]. FM-
index is a sort of compressed suffix array that takes advantage of the compress-
ibility of the indexed data in order to achieve space occupancy close to the
information theoretical minimum. Precisely, given text T [1, n] to be indexed,
the FM-index occupies at most 5nHk(T) + o(n) bits of storage, where Hk(T)is
the k-th order entropy of T , and allows the search for the occ occurrences of a
pattern P [1, p] within T in O(p + occ log1+ε n) time, where ε > 0 is an arbitrary
constant fixed in advance[2].

The Burrows-Wheeler transform produces a permutation of the original text,
denoted by T bwt = bwt(T). String T bwt is the result of the following steps: (1)
append a special end marker #, which is the smallest character lexicographically,
to the end of T ; (2) form a conceptual matrix M whose rows are the cyclic shifts
of string T# sorted in lexicographic order; (3) construct T bwt by taking the last
column of M. The first column is denoted by F [2].

The suffix array A of text T is represented implicitly by T bwt: A[i] = j iff
the i-th row of M contains string tjtj+1 · · · tn#t1 · · · tj−1.[6] The novel idea of
the FM-index is to store T bwt in compressed form, and then simulate the search

Efficient Construction of FM-index Using Overlapping Block Processing 115

in the suffix array. The FM-index can also locate the text positions where P
occurs, and display any length of substrings around the occurrences. The details
of search algorithm are referred to [2] and [6].

Paper [3] introduced the first implementation of FM-index, now it has been
upgraded to the version 21. It provides a group of standard APIs of self-index,
it is easy for later researchers to modify or extend its function.

2.2 Procedure of Construction

In above implementation of FM-index, the program constructs the index for a
text as follow steps:

1. Load the whole text into main memory;
2. Scan the text to find a special character that never occurs. If any, insert it

to the source data homogeneously, otherwise (this is not common), every
position in text should be marked; build suffix array by sorting, also get all
positions for characters in sequence L simultaneously;

3. Calculate Occ for every character, and build the mapping from original al-
phabet of ASCII code to new alphabet; generate sequence L from suffix array
built in step 2, and transfer it to new alphabet Σ according to the mapping
in step 4;

4. Record the positions of the special character in input file according to the
order in L. The positions can be denoted as loc occ[i] = j, which means the
i-th special character in L corresponding to input file is located in position j;

5. Compress the buckets and generate auxiliary information, and save them to
disk.

In the above procedures, memory consumption mainly includes the follow-
ing parts: load whole text to memory(step 1); build suffix array(step 2); BWT
(step 3); and some other auxiliary data structures. All these usually add up to
several times larger memory requirement than the original text size. Detailed
experimental results about memory consumption can be found in Section 4.2.

3 Block FM-index

3.1 Basic Block FM-index

The original construction method requires enough memory to load an input text
and build the index as a whole, which is infeasible for large texts like DNA
sequences, whose size is often in the orders of Gigabytes.

There are some possible alternatives when dealing with large amounts of data.
One is to optimize the program to enhance the ceiling of input data size. Al-
though it permits larger files to be indexed than before, there will still be even
larger files that could not fit into main memory. Another choice is to use sec-
ondary memory when main memory is not enough. This will make the construc-
tion much costly because excessive increments in I/O operations[13].
1 FM-index Version 2, http://roquefort.di.unipi.it/˜ferrax/fmindexV2/index.html

116 D. Zhang, Y. Zhang, and J. Chen

Having considered the above alternatives, we find another way to overcome the
memory problem. Our solution is to naturally split the data into independent
blocks of a predetermined size before the data is indexed. These blocks are
then processed through the FM-index algorithm in order, and their indexes are
concatenated back again to form the final output file. The format of new output
file is not compatible to the original FM-index, but it is just an index container
actually. It is composed of two parts, including header and body. The header
contains some necessary information to recover the text, such as length of input
file, block size, etc.; and the body contains separated indexes ordered by the
position of blocks in input file.

Besides building, the process of query operation should also be modified. The
program executes a given query on all indexed blocks respectively, collects the
results and submits them to the user.

3.2 Overlapping Block FM-index

The above block model has a problem that can’t be ignored. That is, if an occur-
rence of the pattern crosses through two adjacent blocks, it will be lost in results
set because either block contains only part of the pattern. In other words, in text
T [1, n], given an occurrence occ[h, h + p− 1] of pattern P [1, p], if occ[h, h + p − 1]
lies on the boundary of block Bi and block Bi+1, it will be divided into two parts:
occ[h, h + m] and occ[h + m + 1, h + p − 1]. In this instance, neither of the blocks
will contain the full length of occ[h, h + p − 1]. It will be lost in query results.

To solve this problem, the above model should be adjusted. The first solution
is to search across blocks from end to start using the backward method[2]. Al-
though this method is intuitive, but it has the following shortcomings: (1) the
implementation of block version tied closely to the concrete implementation of
original FM-index. This limits the application scope of the block model that
may be applied on other self-indices, and the software will be hard to reuse if
FM-index upgrades its version; (2) the query process is not independent of each
block, which is not conducive to the future parallelization of query process in
SMP or clusters for very large data sets.

In aware of these shortcomings, we propose another method named overlap-
ping block model. It is based on an obvious fact that, in common query task, the
pattern is far shorter than target file, actually there are always several orders
of magnitude difference. Thus, if we estimate the maximum length r of possible
query patterns, we could concatenate each block and its succeeding characters
of length r to generate a new block, then process it in building procedure.

This overlapping block model is shown as Figure 1. Assumes the block size is s
and overlapping length is r, the number of blocks will be b = �(n−r)/(s−r)�. In
practice, since the parameters s and r are both predetermined, b can be denoted
as: b = Θ(n). For a given text T [1, n] with a constant alphabet Σ, the construc-
tion time and space for each block can be presumed as constants CT and CM
in theory. Thus, the construction time of T [1, n] is O(b) = O(n). Noticed that
the memory can be reused in serial processing of blocks, the construction space
of T [1, n] is CM , which is a constant number. The above analysis results can be

Efficient Construction of FM-index Using Overlapping Block Processing 117

�
��

�

Basic
Block Model

Overlapping
Block Model

s

r

Block i Block i+1

Fig. 1. Overlapping block model for FM-index

confirmed by experiments in Section 4.2. On other important aspects of per-
formance, such as storage occupancy and query performance, since the explicit
conclusions can’t be made from general theoretical analysis, we incline to use
the experiments to illustrate the impacts of block model. Related experimental
results will be given in Section 4.1.

There are also some drawbacks in overlapping model. First, it produces some
redundancy. In fact, compared to the size of the entire document, the redundant
part of index, which is usually negligible, will not impact the compression ratio
substantively. Second, there should be a solution to deal with very long search
patterns such as P [1, p](p > r), which still have possible loss of occurrences. Here
is a solution for this situation. First we break the long patterns P [1, p] into short
sub-patterns P ′

1[1, r], P ′
2[r + 1, 2r] · · ·P ′

k[(k − 1)r + 1, p] with equal length �p/r�.
All the sub-patterns can be searched correctly in block model. And then we use
them to query the block index respectively, merge the nearby items in different
result sets according to the sequence of sub-patterns in the original long pattern.
That means, given a result set R for pattern P , and sub-result sets R′

i for sub-
patterns P ′

i (1 ≤ i ≤ k): occ[h, h + p − 1] ∈ R, iff occ′1[h, h + r − 1] ∈ R′
1 ∧ · · · ∧

occ′k[h+(k −1)r, h+p−1] ∈ R′
k. Although this solution is somewhat inefficient,

in practice we can set r big enough to avoid splitting pattern frequently.

4 Experimental Results

The overlapping block FM-index contains two key parameters: the block size
s and overlapping length r. In this section we will perform a series of exper-
iments to show the effects of these parameters on the compression and query
performance. Furthermore, we demonstrated the performance enhancements of
the block model in contrast to the original version.

Our experiments ran on a Pentium 4 processor at 3.06 GHz, with 1 MB L2
cache and 512MB of DDR2 RAM. The operating system was Fedora core 5.

118 D. Zhang, Y. Zhang, and J. Chen

Table 1. Files used in the experiments. To understand the features of the files, we also
provide alphabet size and compression ratio under bzip2 (level 9).

Collection Size (bytes) Content Alphabet Size Bzip2-9 comp. ratio

sources 210,866,607 C/Java source code 230 18.68%
dna 403,927,746 gene DNA sequences 16 25.76%
english 2,210,395,553 English text files 239 28.35%
xml 294,724,056 XML format text 97 11.39%

We compiled the code with gcc 3.4.4 using optimization option “-O9”. The texts
from Pizza&Chili Corpus2, which is a special test suite for compressed index, are
used for experiments in this paper. They are listed in Table 1. In the following
sections, we use file-n to denote the first n Megabytes of file.

In addition, we use the default settings of FM-index in the following experi-
ments. These settings are: superbucket size = 16; bucket size = 512; frequency
of marked characters = 0.02.

4.1 The Effects of Parameters

Block Size. From the point of view of construction, of course the smaller the
block size, the less space and time the program consumes. But on the other side,
the block size should be big enough to guarantee a better compression ratio
through BWT. Furthermore, more blocks will bring more auxiliary information,
thus the compression ratio would be decreased. However, because the bucket size
is fixed, the enhancement of compression ratio is limited in certain scope. It can
not be exceeded whatever large block size is set to.

To obtain more comprehensive results, we selected a number of truncated texts
of 100MB as test suites. The results in Figure 2 validated the above analysis.
For a specific text, when the block size is larger than a critical value, the growth
of compression ratio is not obvious.

In practical applications, we can choose a suitable block size to emphasize on
compression ratio or construction time. In the following experiments, we will set
10MB as our default block size.

Overlapping Length. Because the overlapping length is very small compared
to the block size, its effect on compression ratio can be ignored. Now we only
experiment the effects of overlapping length on query performance. We randomly
select substrings from english-100, and group them by length. Each group has 100
members. Then these groups of substrings are queried as patterns on the indices.

As shown in Figure 3, the block model has brought some reduction on query
performance, but the loss is generally acceptable. Only in the situation that
needs to split the very long patterns into short ones would lead to substantial
decline in performance. Anyhow, the overlapping length can be adjusted for
specific query tasks. To ensure that there is no need to split patterns in most
tasks, we set the overlapping length to 1KB in the following experiments.
2 Pizza&Chili Corpus, http://pizzachili.di.unipi.it/index.html

Efficient Construction of FM-index Using Overlapping Block Processing 119

10
0

10
1

10
2

20

30

40

50

60

block size (MB)

co
m

pr
es

si
on

 r
at

io
 (

%
)

sources−100
dna−100
english−100
xml−100

10
0

10
1

10
2

20

40

60

80

100

block size (MB)

co
m

pr
es

si
on

 ti
m

e
(s

)

10MB

sources−100
dna−100
english−100
xml−100

Fig. 2. Compression ratio (percentage), and construction time (seconds) as a function
of the block size (MB). The block FM-index was built for the first 100MB of the listed
four files, with a 64 bytes overlapping length.

20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

64B

pattern length (bytes)

lo
ca

te
 ti

m
e

(s
)

block
original

Fig. 3. The average time (seconds) for a locate operation as a function of pattern
length (bytes), compared with block FM-index and original FM-index. The substrings
of certain length from english-100 files, are selected at random as query patterns. We
set the overlapping length to 64B.

4.2 Comparison Between Block FM-index and FM-index

Some comparisons between the FM-index and other self-index tools have been
made in [3] and [10]. Here we focus on comparisons of performance between
block FM-index and original FM-index.

120 D. Zhang, Y. Zhang, and J. Chen

Construction Performance. We compare the performance of block version
and original version as the size of english-n grows, including construction time,
RAM consumption, and compression ratio. The results are shown in Figure 4.

From the results, we confirmed the perviously mentioned enhancement of per-
formance. The block model achieved linear time and constant space performance,
while the compression ratio loss is not obvious when dealing with large texts.

10
1

10
2

10
3

10
4

0

500

1000

1500

text size (MB)

co
ns

tr
uc

tio
n

tim
e

(s
)

construction time of english−n

0 500 1000 1500 2000 2500
0

500

1000

1500

text size (MB)

co
ns

tr
uc

tio
n

tim
e

(s
)

construction time of english−n

10
1

10
2

10
3

10
4

0

100

200

300

400

text size (MB)

R
A

M
 c

on
su

m
pt

io
n

(M
B

)

RAM consumption of english−n

0 500 1000 1500 2000 2500
0

100

200

300

400

text size (MB)

R
A

M
 c

on
su

m
pt

io
n

(M
B

)

RAM consumption of english−n

10
1

10
2

10
3

10
4

44

45

46

47

48

text size (MB)

co
m

pr
es

si
on

 r
at

io
 (

%
)

compression ratio of english−n

0 500 1000 1500 2000 2500
44

45

46

47

48

text size (MB)

co
m

pr
es

si
on

 r
at

io
 (

%
)

compression ratio of english−n

block
original

Fig. 4. Construction time (second), RAM consumption (MB), compression ratio (per-
centage) as a function of the size of truncated version of file english (MB). In every
row, we use two coordinate systems to illustrate one graphics: the left column uses
a semi-logarithmic coordinates, while the right column uses the ordinary coordinates.
We set parameters as mentioned above: block size = 10MB, overlapping length = 1KB.
When we built the FM-index for the text file that larger than 100MB, the OS would
prompt there is not enough memory to allocate in test machine, thus no data are col-
lected under such situation. In addition, at the point of 100MB, there is some decline
on RAM requirement, instead of keeping on increasing. We estimate that it is due to
the virtual memory management strategy of OS.

Efficient Construction of FM-index Using Overlapping Block Processing 121

In our experiments, not only the entire english of over 2GB has been built into
FM-index successfully, but also the progress of building is visible by counting
blocks that have been indexed. The comparison of performance is shown in
Figure 4.

Query Performance. Figure 5 shows a comparison of query performance be-
tween the block FM-index and the FM-index.

The experimental results show that for data of Gigabytes, the performance of
locate, display, and extract operations are closer to the original version, but the
performance loss of count is more significant than others. For count operation,
because the occurrences in overlapping zone may be counted twice, we can merely
get an approximate result in count operation. If the accurate result of a count
operation is c, the overlapping model will give an approximate result, which is a

sources dna english xml
0

0.1

0.2

0.3

0.4

0.5
count on file−100

tim
e

(s
)

sources dna english xml
0

0.1

0.2

0.3

0.4

0.5
locate on file−100

tim
e

(s
)

sources dna english xml
0

0.1

0.2

0.3

0.4

0.5
display on file−100

tim
e

(s
)

sources dna english xml
0

1

2

3

4

5
x 10

−3 extract on file−100

tim
e

(s
)

block
original

Fig. 5. Comparison on query performance of block FM-index and original FM-index,
including the count, locate, display and extract operations. We built index for the first
100MB of the listed files, using original FM-index and block FM-index respectively.
The file size is restricted to 100MB because the original FM-index can not index larger
texts on our experimental platform. We haven’t compared the RAM use of query
operations because they are negligible in practice. The query patterns are selected
randomly from corresponding files, with the average length of 50 bytes. In experiment,
display length = 10, and length of extract = 50.

122 D. Zhang, Y. Zhang, and J. Chen

range between max(�c/b�, c − b) and c. Thus, in block FM-index we use locate
operation to replace count operation to ensure the accuracy of the results.

5 Conclusion

This paper focuses on a practical method for constructing the FM-index for
large scale texts efficiently. We proposed an overlapping block model with its
implementation, and performed a series of experiments on it. It can construct
the FM-index in O(n) time and O(1) space, without significant slowdown on
query operations . Its implementation, which is an extension to the original self-
index tools, can build indexes for texts of Gigabytes, just using a commodity
PC instead of an expensive server.

In the future, based upon the block FM-index, we will try to parallelize the
FM-index algorithm both for construction process and query operations. By
parallel processing, the performance will hopefully be further improved for large
scale texts.

Acknowledgements

Special thanks to Prof. Jiachang Sun for his indispensable guidance[15].

References

[1] Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124(1994). Digital Equipment Corporation.

[2] Ferragina, P. and Manzini, G.: Opportunistic data structures with applications.
In Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS)
(2000), pp. 390-398.

[3] Ferragina, P. and Manzini, G.: An experimental study of an opportunistic index.
In Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
(2001), pp. 269-278.

[4] Ferragina, P., Manzini, G., Makinen, V., and Navarro, G.: An alphabet-friendly
FM-index. In Proc. 11th International Symposium on String Processing and In-
formation Retrieval (SPIRE), LNCS v. 3246 (2004), pp. 150-160.

[5] Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G.: Compressed represen-
tation of sequences and full-text indexes. Technical Report 2004-05 (Dec.) (2004),
Technische Fakultät, Universität Bielefeld, Germany.

[6] Grabowski, S., Mäkinen, V., and Navarro, G.: First Huffman, then Burrows-
Wheeler: an alphabet-independent FM-index. In Proc. 11th International Sym-
posium on String Processing and Information Retrieval (SPIRE), LNCS v. 3246
(2004), pp. 210-211. Short paper. Full version as Technical Report TR/DCC-2004-
4, Department of Computer Science, University of Chile, July 2004.

[7] Hon, W.-K., Sädakane, K., and Sung, W.-K.: Breaking a time-and-space barrier
in constructing full-text indices. In Proc. 44th IEEE Symposium on Foundations
of Computer Science (FOCS) (2003), pp. 251-260.

[8] Hon, W.-K., Lam, T.-W., Sung, W.-K., Tse, W.-L, Wong, C.-K., and Yiu, S.-M.:
Practical aspects of compressed suffix arrays and FM-index in searching DNA
sequences. In Proceedings of the 6th Workshop on Algorithm Engineering and
Experiments. SIAM Press, Philadelphia, Pa. (2004), 31-38.

Efficient Construction of FM-index Using Overlapping Block Processing 123

[9] Mäkinen, V. and Navarro, G.: New search algorithms and time/space tradeoffs
for succinct suffix arrays. Technical Report C-2004-20 (April) (2004), University
of Helsinki, Finland.

[10] Mäkinen, V. and Navarro, G.: Succinct suffix arrays based on run-length encoding.
In Proc. 16th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS v. 3537 (2005), pp. 45-56.

[11] Manber, U., Myers, G.: Suffix arrays: new method for on-line string searches.
SIAM Journal on Computing, 22(5) (1993): 935-948.

[12] Manzini, G. An analysis of the Burrows-Wheeler transform. Journal of the ACM
48, 3 (2001), 407-430.

[13] Navarro, G., Mäkinen, V.: Compressed Full-Text Indexes. Technical Report
TR/DCC-2005-7 (2005), Dept. of Computer Science, University of Chile, June
2005.

[14] Seward, J.R.: Bzip2 and libbzip2: a program and library for data compression.
http://sources.redhat.com/bzip2/ (1998)

[15] Sun, J.C.: Matrix analysis to additive schwarz methods. Journal of Computational
Mathematics, Vol.13, No.4 (1995), 325-336.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 124 – 135, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Performance Comparison of Clustered and Replicated
Information Retrieval Systems

Fidel Cacheda1, Victor Carneiro1, Vassilis Plachouras2, and Iadh Ounis3

1 Department of Information and Communication Technologies, University of A Coruña
 Facultad de Informática, Campus de Elviña s/n, 15071 A Coruña, Spain

{fidel, viccar}@udc.es
2 Yahoo! Research

Ocata 1, 1st floor, 08003 Barcelona, Spain
vassilis@yahoo-inc.com

3 Department of Computing Science, University of Glasgow
Glasgow, G12 8QQ, UK

ounis@dcs.gla.ac.uk

Abstract. The amount of information available over the Internet is increasing
daily as well as the importance and magnitude of Web search engines. Systems
based on a single centralised index present several problems (such as lack of
scalability), which lead to the use of distributed information retrieval systems to
effectively search for and locate the required information. A distributed re-
trieval system can be clustered and/or replicated. In this paper, using simula-
tions, we present a detailed performance analysis, both in terms of throughput
and response time, of a clustered system compared to a replicated system. In
addition, we consider the effect of changes in the query topics over time. We
show that the performance obtained for a clustered system does not improve the
performance obtained by the best replicated system. Indeed, the main advantage
of a clustered system is the reduction of network traffic. However, the use of a
switched network eliminates the bottleneck in the network, markedly improving
the performance of the replicated systems. Moreover, we illustrate the negative
performance effect of the changes over time in the query topics when a distrib-
uted clustered system is used. On the contrary, the performance of a distributed
replicated system is query independent.

Keywords: distributed information retrieval, performance, simulation.

1 Introduction

The information available over the Internet has increased spectacularly in the last
years, and we can expect that it will continue growing at the same rate, at least in the
short term. Simultaneously, Web search engines have grown in importance as the
users need to find, recover, and filter all the information available in this environment.
Therefore, Web search engines must manage a large amount of information, and
make it possible for users to locate the information required in a very short time,
while simultaneously dealing with a large number of queries.

Information Retrieval (IR) systems based on a single centralised index present sev-
eral problems, such as the lack of scalability, or server overloading and failures [11],

 Performance Comparison of Clustered and Replicated Information Retrieval Systems 125

which make them unsuitable for highly loaded systems, such as Web search engines.
For this reason, the methods based on the distribution of the documents index for
searching and storage are widely used. For example, the Google web search service is
based on a distributed and replicated IR architecture [1].

A distributed IR system is made up of two components: the brokers (dispatchers or
receptionists) and the query servers. The brokers receive the queries from the users,
distribute them to the query servers, and send back the final results to the user. The
query servers hold the distributed index, process the queries, and send their partial
results back to the brokers for the final merging.

An inverted index can be distributed over a collection of servers following two
main strategies: global inverted files (term partitioning), or local inverted files (docu-
ment partitioning). In this work, we will focus on the local inverted file strategy as it
has been found to be more efficient than the global inverted file strategy [17] [21].

The index distribution is necessary to deal with a high volume of data (probably
because it cannot be indexed by a single machine) and to keep the response times low.
When the volume of queries handled by the system must be increased (e.g. because
multiple users simultaneously send queries to a Web search engine), then the IR sys-
tem must be parallelised to process multiple queries concurrently. Two main types of
systems can be defined to increase the query throughput: replicated and clustered.

A replicated system is composed of one or more distributed IR systems. Each dis-
tributed system indexes the whole collection, and all the distributed systems that have
been replicated have the same number of query servers. The brokers, in this case,
must decide initially which replica will process the query, and then broadcast the
query to all the query servers in the replica. The brokers must balance the load
through all the replicas to obtain an optimal performance.

A clustered system is divided into groups of computers (or clusters), where each
group operates as an autonomous distributed IR system. Each cluster can be composed
of a different number of query servers. Each cluster is responsible for one disjoint part
of the whole collection of documents, and each cluster could use distribution and repli-
cation to store its respective index. In this case, a broker must determine the appropri-
ate cluster for each query and then submit the query to it. A clustered system must be
configured a-priori based on the distribution of the queries that the IR system expects
to receive. For example, if 40% of the queries submitted to the IR system are related to
“Entertainment”, we may assign 40% of our resources (e.g. query servers) to the “En-
tertainment” cluster in order to improve its response time and throughput. This implies
that a change in the queries distribution may affect the overall system performance. For
example, if the number of “Entertainment” queries drops to 20%, this cluster may
improve its performance, probably at the expense of other clusters.

In this paper, we present a detailed performance analysis, based on simulations, of
a clustered system compared to a replicated system. We also study the effect of
changes in the query topics over time, based on work by Spink, Jansen, Wolfram and
Saracevic [22].

The performance analysis in distributed IR is used to study different configurations
and measure different parameters, usually considering a fixed set of resources. Two
parameters are usually considered in the performance analysis of a distributed IR
system: response time and throughput [19]. In the former, we are interested in the
average time to answer a query when the system is idle. In the latter, we are interested

126 F. Cacheda et al.

in the maximum query processing rate that the system is able to achieve. This is espe-
cially interesting when designing a large-scale IR system (e.g. hundreds of computers)
in order to determine the optimal configuration for some fixed benchmarks1, and to
detect and prevent possible bottlenecks.

Many previous articles have studied different performance parameters of pure dis-
tributed IR systems, such as [8], [10], [14] or [21], to name but a few. On the other
side, several previous articles examined the effects of different parallelisation tech-
niques in a distributed IR system. Tomasic and Garcia-Molina [23] simulated a small
group of servers and studied the effect of multiprogramming on the throughput using
various inverted index organisations. Frieder and Siegelmann [9] studied the organisa-
tion of the data to improve the performance of parallel IR systems using multiproces-
sor computers. Lu and McKinley [16] analysed the effects of partial replication to
improve the performance in a collection of 1TB. Moffat, Webber, Zobel and Baeza-
Yates [18] presented a replication technique for a pipelined term distributed system,
which significantly improves the throughput over a basic term distributed system.

In [5] and [6], the authors analysed the performance of a distributed, replicated and
clustered system using a simple network model. They identified two main bottlenecks:
the brokers and the network. The high load on the brokers was due to the number of
local answer sets to be sorted. The network bottleneck was due to the high number of
query servers and the continuous data interchange with the brokers, especially in a
replicated IR system. The analysis of the clustered systems indicated that the best
throughput was achieved when a great number of query servers was used, outperform-
ing a replicated system. However, the clustered systems must be configured a-priori
based on the queries distribution that the IR system is expected to receive.

In [4], a more realistic network simulation model is presented, and the authors de-
scribed some solutions for the main bottlenecks of a distributed IR system. They
showed that the use of a switched network reduces the saturation of the interconnec-
tion network. They also showed that the brokers’ bottleneck can be improved by re-
ducing the number of partial results sent by the query servers (with a negligible prob-
ability of changing the system’s precision and recall retrieval performances), or by
using a hierarchical distributed broker model.

The main objective of this paper is to compare the performance of a replicated and
clustered IR system, both in terms of throughput and response time, using the ex-
tended simulation model introduced in [4], and to compare the obtained results with
those previously reported in [5] and [6].

The paper is organised as follows. The simulation model is described in Section 2.
Section 3 describes the simulations performed for the clustered and replicated systems
and the results obtained. A discussion of the results obtained is presented in Section 4.
The main conclusions of the work and possible future research directions are pre-
sented in Section 5.

2 Simulation Model

The simulation model of a distributed IR system used in this work is based on the
work described in [4], where the authors implemented a discrete event-oriented

1 An example of fixed benchmarks is that the maximum response time should be one second

per query and the minimum throughput should be twenty queries per second.

 Performance Comparison of Clustered and Replicated Information Retrieval Systems 127

simulator using the JavaSim simulation environment [15]. The defined simulation
model represents a local inverted file strategy (see Section 1). All the queries are
stored in a global queue, which is controlled by one or more central brokers. Each
broker will take one query and will send it to all the query servers through a network
[21]. Each query server then processes the whole query locally, obtains the answer set
for that query, ranks the documents, selects a certain number of documents from the
top of the ranking and returns them to the broker. The broker collects all the local
answer sets and combines them into a global and final ranked set of documents.

From the brokers’ point of view, the time to process the ith query (named ti) is di-
vided into three phases: the time to process the query in the query servers (P1), the
time to receive all the partial answers from the query servers to the broker (P2) and the
merging and ranking of the final results by the broker (P3). Therefore, the processing
time for a query qi is given by:

31 2

, , ,max() max() ()

PP P

i i j i j i j
j

t t ra tc tr= + +∑

where the following parameters are introduced:
- qi: vector of keywords for the ith query.
- ti,j: total time (in milliseconds) to complete the processing of query qi at query

server j.
- rai,j: time to receive the local answer set for query qi from the query server j.
- tri,j: number of documents from the top ranking in query qi returned as the lo-

cal answer set for query server j, where tri,j ≤ trmax, and trmax is the maximum
number of top ranked documents in the local answer (we consider the top 1000
documents only).

- tc(n): time to merge and sort n documents, which is computed following the
logarithmic model:)ln()(210 ntcntctcntc ×+×+= , as described in [4].

From the query servers’ point of view, the time to process the ith query by the jth
query server (named ti,j) is divided into five phases: the time to receive the query from
the broker (P1,1), the initialisation time (P1,2), the seek time (P1,3), the reading time
from disk (P1,4), and the ranking of the partial results (P1,5).

1,4 1,51,1 1,2 1,3

, , , ,()
i

P PP P P

i j i j i k j i j
k q

t rq ti k ts d tr tc r
∈

= + + × + × +∑

where these new parameters are introduced:
- rqi,j: time to receive the query qi for the query server j.
- ti: initialisation time, including memory allocation and output display, if nec-

essary.
- ki: number of keywords in query qi.
- ts: average seek time for a single disk.
- tr: average time to read the information about one document in an inverted list

and to do its processing (seek time is excluded).
- dk,j: number of documents of the inverted list for keyword k on query server j.
- ri,j: number of results obtained for query qi on query server j.

128 F. Cacheda et al.

The Terrier2 IR system described in [20] is used to estimate the parameters for the
analytical model, obtaining the following values: ti = 62.335ms, ts = 0.03ms, tr =
1.15μs, tc0 = -470, tc1 = 0.0, tc2 = 62 [4]. The document model parameters (dk,j and ri,j)
are simulated from the SPIRIT collection, which consists of 94,552,870 documents
and 1 terabyte (TB) of text [13]. Each query is generated as a sequence of K terms
(t1,…,tk), independently and identically distributed, following the skewed query model
[12]. The skewed query model sets the probability of a term occurring in a query
proportional to its frequency in the vocabulary, and provides more realistic queries
than the uniform query model [6].

The network parameters (rqi,j and rai,j) that determine the transmission times
among the hosts cannot be estimated using an analytical model, as they depend di-
rectly on the network load of each moment. Therefore, a network simulation model is
defined.

In [5] and [6], the network simulation model was based on a shared access local
area network (LAN), where the transmission media is shared out among all the hosts,
which must compete to access the media and send their transmissions. This network
simulation model had certain limitations (e.g. not considering the maximum number
of hosts connected to the LAN or the maximum size of the network) that reduced the
capacities of the simulated IR systems.

With the aim of improving the limitations of this initial network model, a new
model was defined in [4], equivalent to a switched network FastEthernet 100BASE-T
at 100Mbps. The switched LAN is the evolution of the shared access networking
technology and it is based on a device named switch, which centralises the communi-
cation among the hosts. In this way, the switch will reduce the transmission conflicts,
because a host only has to compete with other hosts that want to communicate with
the same destination, increasing the effective network speed.

Using this new network model, a more extensive and realistic simulation model is
defined, where the hosts are interconnected via one or more switches, depending on
the number of hosts to be interconnected (assuming that each switch has a capacity
for 64 hosts). Moreover, the overhead estimation is carried out exhaustively, taking
into account the different headers of the communication protocols, IP fragmentation,
and even the propagation delay [4]. The design of this new network model has also
extended the capacity to represent multicast messages. The multicast messages allow
sending one message to multiple recipients, instead of sending one message to each
recipient (unicast messages). In a distributed IR system based on local inverted files,
multicast messages are especially useful to reduce the number of messages required to
distribute the queries to the query servers from the brokers.

In [4], an extended description of the switched network simulation model can be
found, along with a detailed comparison of the real IR system with the simulation
model, confirming their correspondence. A brief description of the network simula-
tion model can also be found in the short article [3]. In all the experiments reported in
this paper, this new switched network simulation model is used in order to obtain
realistic conclusions when simulating and comparing the clustered and replicated
systems.

2 A core version of the Terrier system can be downloaded from http://ir.dcs.gla.ac.uk/terrier

 Performance Comparison of Clustered and Replicated Information Retrieval Systems 129

3 Experiments

The objective of the experiments in this paper is to compare the performance of a
replicated and clustered IR system, both in terms of throughput and response time,
using a realistic setting based on the switched network simulation model described in
the previous section. In [5] and [6], the main conclusions showed that a clustered
system will outperform a replicated system if a notable number of query servers is
used (e.g. 1024). These experiments, however, were based on a shared access net-
work, which produced the saturation of the network in the replicated system. More-
over, only four replicas were defined in the considered replicated system.

In the new experiments conducted in this paper, we provide a detailed comparison
between a replicated system and a clustered system using 1024 query servers and a
switched network supporting multicast. In addition, we consider replicated systems
with up to 32 replicas.

3.1 Experimental Setting

For the replicated system we examine different configurations for the 1024 query
servers: 1, 2, 4, 8, 16 and 32 replicas (with 1024, 512, 256, 128, 64 and 32 query
servers per replica, respectively). The optimal number of brokers required for the
replicated system is calculated as 3R, where R is the number of replicas, as shown in
[4]. The optimal number of brokers is the minimum number of brokers necessary to
obtain the best throughput and response time performance (there are no improvements
by further increasing this number).

As mentioned in Section 1, a clustered system must be configured a-priori based on
the distribution of queries that the IR system is likely to receive. For the configuration
of the clustered system in the experiments reported in this section, we used the work
by Spink et al. [22], where a set of real Web queries is categorised into 11 different
topics considering three different years: 1997, 1999 and 2001. Table 1 provides a
summary of the 11 topics and the percentage of queries through the different years.

We assume that each topic is indexed in a different cluster. The SPIRIT collection
[13] is divided into 11 sub-collections with an inverted file of approximately the
same size that is 8.5 million documents in each sub-collection. Therefore, the 11
defined clusters will index the same number of documents, although using a different
number of servers. This setting is selected because we are more interested in the
configuration of each cluster, rather than the distribution of the topics. Hence, the
configurations of the clusters will fit the same throughput curve, generating a simpler
simulation model.

In the reported simulations, the number of queries is fixed to 200 and the queries
will retrieve 3 million documents on average. The base sub-collection of 8.5 million
documents has been distributed over N query servers using a switched network and
three brokers, where N = 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512. In Table 1, the col-
umn Configuration describes the query servers assigned to each topic. The first num-
ber represents the number of the distributed query servers, and the second, the number
of replicas in each cluster.

130 F. Cacheda et al.

Table 1. Distribution of queries across general topic categories, and the used configurations for
the simulated clustered system. The column Configuration describes the query servers assigned
to each topic. The first number represents the number of the distributed query servers, and the
second one represents the number of replicas in each cluster.

Topics 1997 1999 2001 Configuration

Entertainment 19.64 % 7.73 % 6.65 % 67 * 3
Pornography 16.54 % 7.73 % 8.56 % 56 * 3
Commerce 13.03 % 24.73 % 24.76 % 66 * 2
Computers 12.24 % 11.13 % 9.65 % 63 * 2
Sciences 9.24 % 8.02 % 7.55 % 48 * 2
People 6.43 % 20.53 % 19.75 % 66 * 1
Society 5.44 % 4.43 % 3.96 % 56 * 1
Education 5.33 % 5.52 % 4.55 % 55 * 1
Arts 5.14 % 1.33 % 1.16 % 53 * 1
Non-English 3.84 % 7.03 % 11.36 % 39 * 1
Government 3.13 % 1.82 % 2.05 % 32 * 1

The clustered system is configured in accordance with the distribution of the topics
of the year 1997. The replications for the most popular topics are maximised, but the
number of query servers in each replica is kept as close as possible to 64 in order to
obtain an appropriate response time. Indeed, in [4], the authors studied the improve-
ment obtained with a switched network and the figures showed that with less than 64
query servers the performance of the system decreases importantly. The number of
brokers is selected taking into account the sum of the replicas in each cluster (i.e.
R=18 replicas), and calculating the optimal number of brokers as 3R, as described in
[4]. For completeness, we also report results with the optimal number of brokers
2R + 1, suggested in [5] and [6].

In all our experiments, as stressed in Section 1, the performance is measured using
the throughput and the response time. The throughput is measured considering that
the system is operating in batch mode and that there is a processing queue of 200
queries. The response time is measured assuming that the queries will arrive to the IR
system following an Exponential distribution [7], with mean 500 milliseconds and
simulating 200 queries.

3.2 Replicated and Clustered System Comparison

The results obtained for the simulated clustered and replicated systems are presented
in Table 2. The column Replicated describes the configurations for the studied repli-
cated system. The first number represents the number of replicas, and the second one
represents the number of the distributed query servers. In all the replicated system
configurations, the optimal number of brokers is defined as 3R. The shaded cells rep-
resent the optimal configurations for the replicated and clustered systems. In this case,
the optimal configuration is the one that achieves the best trade-off between the mini-
mal response time and the maximal throughput.

 Performance Comparison of Clustered and Replicated Information Retrieval Systems 131

Regarding the replicated systems, we observe that the throughput increases as the
number of replicas increases due to the higher level of parallelism in the system. At
the same time, the response time of the system is decreasing as the replication in-
creases, except for the last configuration (32x32), where the reduced distribution of
the index in each replication (only 32 query servers) increases the response time to
2658 milliseconds per query (17% more than the optimal configuration).

On the other hand, Table 2 shows that the throughput of the clustered system is
maximised if 3R brokers are used. This configuration outperforms the 2R + 1 con-
figuration in terms of throughput, extending the conclusions obtained in [4] for the
replicated system to the clustered system. The number of brokers does not have an
important repercussion on the response time as the queries are processed nearly se-
quentially, which leads to minimal parallelisation. In a clustered system, the number
of replicas (R) is calculated as the sum of all the replicas through all the clusters (e.g.
18 replicas, obtained from the configuration in Table 1).

Comparing the two types of systems, the results show that a replicated system with
16 replicas will achieve a better throughput and response time than the clustered sys-
tem defined. In both cases the level of parallelism achieved is quite similar (with 16
and 18 parallel groups, respectively). The main benefit achieved with the clustered
system is a reduction in the network traffic, which is crucial if the network is the main
bottleneck of the system. However, the switched network has solved this problem
improving markedly the performance of the replicated system, which is able to out-
perform the clustered system.

This result suggests that the distribution must be used to reduce the response times
and the replication must be used to increase the query throughput of the system. For
example, this is the approach used by the Google web search service [1].

The main conclusion of the above set of experiments is that the performance of a
clustered system (both in throughput and response time) does not improve the per-
formance obtained by the best replicated system. This result is related to the use of a
switched network. The switched network has eliminated the bottleneck in the net-
work, markedly improving the performance of the replicated systems. On the other
hand, the main advantage of a clustered system is the reduction of network traffic,
which is less relevant when a switched network model is used.

Table 2. Throughput (queries/second) and response time (milliseconds) for the clustered and
replicated systems (with the optimal number of brokers as 3R), using a switched network sup-
porting multicast

Clustered
Replicated Throughput

Response
Time Brokers Year

Throughput
Response

Time

1x1024 0.70 4247.83 3R 1997 7.60 2404.11
2x512 1.38 4257.67 3R 1999 3.23 2828.11
4x256 2.69 3231.22 3R 2001 3.59 2960.87
8x128 5.03 2354.92 2R+1 1997 7.17 2380.20
16x64 8.47 2274.09 2R+1 1999 3.11 3165.59
32x32 12.92 2658.93 2R+1 2001 3.43 2863.65

132 F. Cacheda et al.

3.3 Query Topics Change

As we described in the introduction, a clustered system must be configured a-priori
based on the distribution of the queries that the IR system expects to receive. In our
experiments above, the clustered system was configured based on the queries distribu-
tion for the year 1997 (Table 1, second column).

In this section, we study the effect of changes in the topics distribution over time in
the performance of clustered systems. Obviously, the performance of a replicated
system is query independent. Therefore, the performance values obtained for a repli-
cated system do not change: 8.47 queries per second and 2.27 seconds per query on
average, for the optimal configuration (See Table 2, row 16x64). However, the per-
formance of a clustered system when the queries distribution varies can be severely
affected, as we will discuss below.

Indeed, in the experiments reported in Table 2, we also used the query distribution
for the years 1999 and 2001 (Table 1, third and forth column respectively) to simulate
the queries in the clustered system. The results (see Table 2) show more than 50%
throughput reduction in the 3R configuration (from 7.60 queries per second to 3.23
and 3.59 queries per second for the years 1999 and 2001, respectively) and in the 2R
+ 1 configuration (from 7.17 queries per second to 3.11 and 3.43 queries per second
for the years 1999 and 2001, respectively), and an increase in the response time be-
tween 17% and 33%, in both configurations, for the years 1999 and 2001.

The negative effect on the response time is less marked, because each cluster has
been configured with enough query servers per replica to obtain an appropriate re-
sponse time. On the other hand, the changes in the popular topics imply that smaller
clusters will receive more queries, decreasing their throughput, while larger clusters
will receive fewer queries and may have idle periods, decreasing the overall through-
put of the system.

In [5] and [6], the throughput worsening due to the changes in the topics distribu-
tion was also confirmed, although the distribution for the year 2001 was the baseline
and the reduction in the performance was mainly manifested in the year 1997, with
nearly no changes with the year 1999.

The important repercussion of the changes in the queries distribution in the per-
formance of the clustered systems entails a permanent monitoring of the queries sub-
mitted to the IR system and, if necessary, the modification of the clusters configura-
tion. This point raises new research concerns, such as the estimation of the threshold
in the topics change where it is worth modifying the configuration, looking for a bal-
ance between the performance improvement and the cost of modifying the cluster
configuration of the IR system.

4 Discussion

We have shown that the performance obtained (both in terms of throughput and re-
sponse time) for a clustered system does not improve over the one obtained by the
best replicated system.

This result, which in some way contradicts the conclusions in [5] and [6], is related
to the use of a switched network. The main benefit of a clustered system is the reduc-
tion of network traffic. However, the switched network has eliminated the bottleneck

 Performance Comparison of Clustered and Replicated Information Retrieval Systems 133

in the network, markedly improving the performance of the replicated systems, which
exceeds that of the clustered systems. It is interesting to state that the clustered system
results represent a best-case performance as we have assumed that documents can be
split in non-overlapping clusters and queries can be assigned univocally to one cluster.

Moreover, we have illustrated the negative performance effect of the changes over
time in the topics distribution, when a clustered system is used, as opposed to the per-
formance of a replicated system, which is query independent. As a consequence, the
configuration of a clustered system needs to be modified according to the topics distri-
bution and their drift over time. This may prove to be a practical problem in the Web
context, where the information needs of the users and their interest may markedly vary
over time, for example, in reaction to contemporary events and concerns [2].

When building a large-scale IR system, the index distribution is necessary to deal
with a high volume of data (and to keep the response times low) and the parallelisa-
tion is necessary to process multiple queries concurrently. The results obtained in this
work suggest that the replicated systems are the best option for the parallelisation in
terms of performance (throughput and response time) and stability through the time
(as it is query independent).

Finally, it is important to mention that there could be other factors not represented
in these simulations that could improve the performance of the clustered systems. For
example, one benefit of the clustered systems is the reduction in the size of the collec-
tion indexed by each cluster. This may produce a reduction in the number of relevant
results obtained by the IR system, since the final results must be associated with the
relevant cluster for the query. In all the experiments reported in this paper, both types
of systems retrieve exactly the same number of relevant documents for each query.
Nevertheless, in a real clustered system, some documents associated with other less
relevant clusters will not be included and this could reduce the overall response time.
It is however difficult to precisely model this as it depends on factors such as the size
of the cluster, the length of the query and its type. In addition, the number of returned
documents may affect precision and recall. As a consequence, in comparing the clus-
tered and replicated systems, we simulated systems that return the same number of
documents making the comparison fair in terms of precision and recall measures.

5 Conclusions

In this work, we have presented a detailed study of a clustered system and several
replicated systems, comparing their performance in terms of throughput and response
time. Using the extended simulation network model introduced in [4] to represent a
switched network, we can perform a more accurate and realistic evaluation of the two
types of distributed IR systems.

We showed that the throughput and response time for a clustered system do not
improve the values obtained by the best replicated system. Moreover, the performance
of a replicated system is independent of the changes over time in the query topics
whilst there is a negative effect on the clustered system performance. This implies
that the configuration of a clustered system needs to be adapted dynamically to the
topics distribution. A possible future work would be to investigate how to automati-
cally define the optimal configuration of a clustered system over time.

134 F. Cacheda et al.

It is also important to consider that there are other factors that have not been taken
into account, such as the reduction in the number of relevant documents, which may
improve the performance of clustered systems. Another future work would be to study
this effect on the response time and its repercussion in terms of precision and recall.

This work suggests that the replicated IR systems should be used to obtain a better
degree of parallelism and throughput. In this sense, in our future work, we would like
to study different solutions to reduce data interchange through the interconnection
network and the workload on the brokers for the replicated and distributed IR systems.

Acknowledgements

The work of the first and second authors has been partially supported by the Spanish
government under project TSI2005-07730.

The work of the third and fourth authors is funded by a UK Engineering and Physi-
cal Sciences Research Council (EPSRC) project grant, number GR/R90543/01. The
project funds the development of the Terrier Information Retrieval framework (url:
http://ir.dcs.gla.ac.uk/terrier).

We would also like to thank Mark Sanderson and Hideo Joho for giving us access
to the 1TB dataset used for the SPIRIT Project.

References

1. Barroso, L.A., Dean, J., Hölzle, U.: Web search for a planet: The Google cluster architec-
ture. IEEE Micro, 23(2), (2003) 22-28.

2. Beitzel, S.M., Jensen, E.C., Chowdhury, A., Grossman, D., Frieder, O.: Hourly Analysis of
a Very Large Topically Categorized Web Query Log. In Proc. of the 27th Conf. on Research
and Development in Information Retrieval. New York: ACM Press. (2004) 321-328

3. Cacheda, F., Carneiro, V., Plachouras, V., Ounis, I.: Performance Network Analysis for
Distributed Information Retrieval Architectures. In Proc. of 27th European Conf. on In-
formation Retrieval Research (ECIR’05), LNCS Vol, 3408, (2005) 527-529.

4. Cacheda, F., Carneiro, V., Plachouras, V., Ounis, I.: Performance Network Analysis for
Distributed Information Retrieval Architectures. Information Processing and Management
Journal, published on-line (2006)

5. Cacheda, F., Plachouras, V,. Ounis, I.: Performance Analysis of Distributed Architectures
to Index One Terabyte of Text. In Proc. of 26th European Conf. on Information Retrieval
Research, LNCS Vol. 2997, (2004) 394-408.

6. Cacheda, F., Plachouras, V., Ounis, I.: A Case Study of Distributed Information Retrieval
Architectures to Index One Terabyte of Text. Information Processing and Management
Journal, 41(5), (2005) 1141-1161

7. Cacheda, F., Viña, A.: Experiences retrieving information in the World Wide Web. In Pro-
c. of the 6th IEEE Symposium on Computers and Communications. IEEE Computer Soci-
ety, (2001) 72-79

8. Cahoon, B., McKinley, K.S.: Performance evaluation of a distributed architecture for in-
formation retrieval. In Proc. of 19th ACM-SIGIR International Conf. on Research and De-
velopment in Information Retrieval, New York: ACM Press. (1996) 110-118.

9. Frieder, O., Siegelmann, H. T.: On the Allocation of Documents in Multiprocessor Infor-
mation Retrieval Systems. In Proc. of the 14th ACM-SIGIR Conf. on Research and Devel-
opment in Information Retrieval. New York: ACM Press. (1991) 230-239

 Performance Comparison of Clustered and Replicated Information Retrieval Systems 135

10. Hawking, D.: Scalable text retrieval for large digital libraries. Lecture Notes in Computer
Science, Vol. 1324. (1997) 127-146

11. Hawking, D., Thistlewaite, P.: Methods for Information Server Selection. ACM Transac-
tions on Information Systems, Vol. 17(1). (1999) 40-76

12. Jeong, B., Omiecinski, E.: Inverted File Partitioning Schemes in Multiple Disk Systems.
IEEE Transactions on Parallel and Distributed Systems, Vol. 6(2). (1995) 142-153

13. Jones, C. B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M., Weibel,
R.: Spatial information retrieval and geographical ontologies an overview of the SPIRIT
project. In Proc. of the 25th ACM-SIGIR Conf. on Research and Development in Informa-
tion Retrieval. New York: ACM Press. (2002) 387-388

14. Lin, Z., Zhou, S.: Parallelizing I/O intensive applications for a workstation cluster: a case
study. ACM SIGARCH Computer Architecture News, Vol. 21 (5). (1993) 15-22

15. Little, M. C.: JavaSim User's Guide. Public Release 0.3, Version 1.0. University of New-
castle upon Tyne. Retrieved 1 June, 2003. http://javasim.ncl.ac.uk/manual/javasim.pdf

16. Lu, Z., McKinley, K.: Partial collection replication versus caching for information re-
trieval systems. In Proc. of the 25th ACM-SIGIR Conf. on Research and Development in
Information Retrieval. New York: ACM Press. (2000) 248-255

17. Moffat, A., Webber, W., Zobel, J.: Load Balancing for Term-Distributed Parallel Re-
trieval. In Proc. of the 29th ACM-SIGIR Conf. on Research and Development in Informa-
tion Retrieval. New York: ACM Press. (2006) 348-355

18. Moffat, A., Webber, W., Zobel, J., Baeza-Yates, R.: A pipelined architecture for distrib-
uted text query evaluation. Information Retrieval, published on-line. (2006)

19. Moffat, A., Zobel, J.: What does it mean to “measure performance”? In Proc. of the 5th In-
ternational Conf. on Web Information Systems, LNCS Vol. 3306. (2004) 1-12

20. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A High
Performance and Scalable Information Retrieval Platform. In Proc. of ACM SIGIR'06
Workshop on Open Source Information Retrieval. (2006)

21. Ribeiro-Neto, B., Barbosa, R.: Query performance for tightly coupled distributed digital li-
braries. Proc. 3rd ACM Conf. on Digital Libraries. New York: ACM Press. (1998) 182-190

22. Spink, A., Jansen, B. J., Wolfram, D., Saracevic, T.: From e-sex to e-commerce: Web
search changes. IEEE Computer Vol. 35(3). (1998) 107-109

23. Tomasic, A., Garcia-Molina, H.: Performance of inverted indices in shared-nothing distrib-
uted text document information retrieval systems. In Proc. 2nd Inter. Conf. on Parallel and
Distributed Info. Systems. San Diego, California: IEEE Computer Society. (1993) 8-17

A Study of a Weighting Scheme for Information

Retrieval in Hierarchical Peer-to-Peer Networks

Massimo Melucci and Alberto Poggiani

University of Padova
Department of Information Engineering

{massimo.melucci,alberto.poggiani}@dei.unipd.it

Abstract. The experimental results show that the proposed simple
weighting scheme helps retrieve a significant proportion of relevant data
after traversing only a small portion of a peer-to-peer hierarchical peer
network in a depth-first manner. A real, large, highly heterogeneous test
collection searched by very short, ambiguous queries was used for sup-
porting the results. The efficiency and the effectiveness would suggest
the implementation, for instance, in audio-video information retrieval
systems, digital libraries or personal archives.

1 Introduction

A Web search engine (SE) is the main instrument for finding the documents
relevant to user’s need [1]. When some SEs are inter-connected to each other
in an anarchic way, the stores of information may become much large without
big investments. Peer-to-Peer (P2P) Information Retrieval (IR) can succeed in
accessing much larger stores of information. P2P-IR systems perform content-
based search technique across a network of peers. This paradigm favors scal-
ability, increases system resilience, avoids unique points of failure, distributes
indexing and query processing tasks to multiple computing nodes, re-uses pro-
cessing power and memory at low-cost from shared, under utilized resources. In
a digital library system, for instance, a network of peers can support the fed-
eration of heterogeneous, independent information sources without cumbersome
organization and coordination overhead.

The peers have little knowledge about each other, therefore the evidence about
document relevance is rather limited and can definitely be less readily collected
than the evidence collected from centralized or distributed systems. These net-
works can also be very large, yet the bandwidth is rather small. Therefore query
flooding is impracticable and a small portion of the network has to be selected
in order to contact the peers that potentially store relevant documents. What is
needed is a model which ranks documents and peers in a way that the probabil-
ity of reaching all and only relevant data is maximized by minimizing network
traversal. Clearly, then, retrieval modeling in P2P network becomes crucial in
order to improve recall-oriented task completion. In particular, it was found that
term weighting schemes can be tuned in order for improving IR effectiveness [2].

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 136–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 137

........

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

........

........

��
��
��
�� Groups/Ultra−peers

Peers

Documents

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

Fig. 1. A pictorial description of the P2P architecture

This paper reports on the evaluation of a simple weighting scheme for IR
across P2P networks. The weighting scheme was proposed in [3,4] and evaluated
by using the 1988 Associated Press test collection and the TREC-3, TREC-4 and
TREC-5 topics. Although the evaluation in [3,4] gave useful insights about the
effectiveness of the weighting scheme, its size was quite limited and partially com-
parable to the realistic collections. While some research works employed artificial
relevance judgments, the evaluation reported in this paper in contrast employed
a real, large and well-known test collection. The results help draw more stable
conclusions about the effectiveness and the efficiency of the weighting scheme
than the similar conclusions drawn after using medium-size test collections.

Because of the shortage of space, the illustration of an exhaustive back-
ground of this subject is impossible. Some references about motivations,
architectures and approaches to P2P-IR and to distributed IR are, for
example, [5,6,7,8,9,10,11,12,13].

2 The Weighting Scheme

The P2P network is hierarchically organized as three levels – groups, peers and
documents – such that an element of every level belongs to the element of the
upper level. A pictorial description is provided in Fig. 1. How documents, peers,
groups belonging to these levels are scored with respect to a query Q is illustrated
in the following. The peer sends the query to the ultra-peer of its group. The
ultra-peer routes the query to the top ranked peers of its own group, to itself
and to the top-ranked connected neighboring ultra-peers. Every selected peer
ranks its documents with respect to the query and sends them back to the ultra-
peer with the statistics needed to merge the result lists coming from the other
peers. The top-ranked connected neighboring ultra-peers recursively replicate the
process. Time-To-Live (TTL) is decreased by 1 for every query forward. If an
ultra-peer cannot answer the query, the peers of its group are not searched, and
the query is in this case forwarded to every neighboring ultra-peer. When a peer
or an ultra-peer contact a peer, the connected peers are weighted and ranked.

As top-ranked documents, peers and ultra-peers are needed, a ranking scheme
is defined as follows. The ultra-peers u’s are ranked by

w(3)
u =

∑
i∈Q

w
(3)
i,u (1)

138 M. Melucci and A. Poggiani

where w
(3)
i,u is the weight of keyword i in the group led by u — the super-

script identifies the level of the network. Moreover, w
(3)
i,u =

∑
p∈u w

(2)
i,p , pro-

vided w
(2)
i,p is the weight of i in the peer p ∈ u. The latter is computed as

w
(2)
i,p =

(∑
j∈p w

(1)
i,j

)
irf(2)i,u where irf(2)i,u = log(N (2)

u + 0.5)/n
(2)
i,u, N

(2)
u is the num-

ber of peers p in the group led by ultra-peer u, n
(2)
i,u is the number of peers p

whose documents are indexed by i and w
(1)
i,j is the weight of i in the document

j of peer p. The peers of a group have been ranked by

w(2)
p =

∑
i∈Q

w
(2)
i,p . (2)

Lastly, w
(1)
i,j = TFi,j · IDFi,p where TFi,j = log (fi,j,p + 1) /

∑
i∈j log (fi,j,p + 1) ·

Uj,p/(1 + 0.0115 · Uj,p) and IDFi,p = log
(
N

(1)
p − n

(1)
i,p

)
/n

(1)
i,p , Uj,p is the number

of unique terms in the document j, N
(1)
p is the total number of documents in

peer p, n
(1)
i,p is the number of documents in peer p indexed by i, as reported

in [14]. Therefore the score of document j in peer p for the given query Q will be∑
i∈Q

w
(1)
i,j . (3)

3 Experiments

The experiments aimed at measuring the proportion of recall as the portion of
visited network increased. The portion of visited network was function of the
first ultra-peer contacted, the number of times the query is routed to an ultra-
peer, that is the TTL, the number of ultra-peers contacted by an ultra-peer,
and the number of peers to which a query was routed. The baseline experiment
consisted of a local search such that every document has been stored into a single
peer, as it were a traditional centralized IR system. The experiments have been
performed by using the MySQL fulltext capabilities [15].

Test Collection. A P2P network was simulated by using a large test collection
in a laboratory setting. Previous studies used different experimental testbeds.
It was decided to use and organize a well-known test collection so as to have a
realistic P2P network. The choice fell back on DLLC (Digital Libraries Lu and
Callan), i.e. the testbed created at Carnegie Mellon University for evaluating the
performance of content-based retrieval in P2P networks. DLLC is based on the
TREC WT10g Web test collection of the Text Retrieval Conference (TREC),
which is a 10GB, 1.69 million document set. Every document in this collection
contains the HTML code of a webpage. One index on fulltext webpage body
and title was built by our experimental system. For full documentation and
applications, see [10,12,16,17,18,19,20].

Network Topology. Some important remarks and findings about recent snapshots
(Apr. 2004 – Feb. 2005) of Gnutella network reported in [21,22,23] have been in

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 139

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

Number of Leaves

N
um

be
r

of
 U

ltr
ap

ee
rs

 w
ith

 x
 L

ea
ve

s

0 50 100 150 200 250
10

3

10
4

10
5

Group Index

N
um

be
r

of
 D

oc
um

en
ts

0 50 100 150 200 250
0

5

10

15

20

Group Index

N
um

be
r

of
 P

ee
rs

Average

Average

Fig. 2. (a) Distribution of Group Sizes. (b) Distribution of Peers and Documents over
Groups.

this paper taken into account, that is: The node degree in the top-level overlay
does not exhibit a power-law distribution — it has rather a significant spike
around 30, which is the default maximum degree in the most popular Gnutella
implementation (LimeWire and BearShare). There are much fewer peers with a
degree greater than 30. The number of peers with degree lower than 30 is very
significant, and the distribution of degree is quite uniform between 0 and 30. A
significant minority of ultra-peers are connected to less than 30 leaves, which
indicates the availability of open slots for new leaves for joining the overlay. This
clearly contrasts with the power-law degree distribution reported in previous
studies [24].

The 250 peers with the highest number of documents have been elected as
ultra-peers. The ultra-peers have not been assumed to have greater computa-
tional power than peers. For creating the groups, every peer was assigned to one
and only to one randomly chosen ultra-peer. This reflects peers’ behavior in real
Gnutella 0.6 environment — a peer does not select by content for connecting
to the group, but joins the first group selected from a list which answers peer’s
request of connections. Doing so a Gaussian distribution of the number of peers
over the groups was achieved, as depicted in Fig. 2(a), while Fig. 2(b) shows
the distribution of documents and of peers over the groups. The connections
between ultra-peers have been generated randomly. Every ultra-peer has a num-
ber of connection uniformly distributed between 1 and 5; every ultra-peer has
on average three neighbors ultra-peer. In this way the topology resembles the
topology described in [21,22,23].

Queries. Experiments used the topics of the TREC-9 and TREC-2001 Web
tracks [25]. As in [4,10] only the title field of the topics was used for gener-
ating the queries. The reason was that, in real P2P settings, queries are on
average very short [26] and the title meets this condition. On average each topic
in TREC 9 has 47.7 relevant documents while in TREC 2001 has 62.2 relevant
documents as depicted in Fig. 3(a). Fig. 3(b) shows the fraction of the total
number of peers that a query needs to be forwarded to, in order to achieve 100%

140 M. Melucci and A. Poggiani

451 455 460 465 470 475 480 485 490 495 500

1

10

100

1000
TREC 9

Query Number

N
um

be
r

of
 R

el
ev

an
t D

oc
um

en
ts

501 505 510 515 520 525 530 535 540 545 550

1

10

100

1000
TREC 2001

Query Number

N
um

be
r

of
 R

el
ev

an
t D

oc
um

en
ts

Average

Average

1 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60
TREC 9

Topic Number (Sorted)

%
 o

f T
ot

al
 U

ltr
aP

ee
r

P
op

ul
at

io
n

1 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40
TREC 2001

Topic Number (Sorted)

%
 o

f T
ot

al
 U

ltr
aP

ee
r

P
op

ul
at

io
n

Average
Median

Average
Median

Fig. 3. (a) Distribution of Relevant Documents over the Topics. (b) Number of peer
collections needed for 100% recall (sorted per topic figure).

recall. In this case 70% of the queries can fully be answered after contacting only
less than 1% of the total peer population, and 90% needs for contacting not more
than 2%. Of course, these percentages are valid when the peers containing the
relevant documents are known, and should not be confused with the percentages
given in the following. These figures give an idea of the difficulty of the task
studied. Due to the “right” peers are unknown, peer and ultra-peer selection is a
hard task and should work very well so as to make the P2P-IR system effective.

It should also be noted that “real” queries, and not “artificial” queries such as
those employed in other studies, have been used in our experiments. Therefore
“real” relevance assessments have been used thus making the task much more
difficult and results less “good” than the task based on “artificial” queries and
assessments: Our interest was indeed in realistic IR across P2P networks.

Evaluation Settings. The following parameters have been used for testing the
retrieval algorithm: TTL is the number of times a query is routed to an ultra-
peer. If TTL = 1 only the ultra-peer leading the group of the peer to which
the query was submitted is contacted. If TTL = 2 the first ultra-peer and its
m top-ranked neighbors are contacted, and so on. Since the contacted ultra-
peers are ranked by Equation 1, the m top-ranked ultra-peers are selected. In
the experiments m ∈ {1, 2, 3}. The contacted peers are ranked by Equation 2
and the k peers with the highest w

(2)
p values have been matched against the

query, and then selected. In the experiments k ∈ {1, 3, 5, 7, 10}. The retrieved
documents are ranked by using Equation 3 and the n top-ranked documents have
been given back to the ultra-peer. In the experiments it was supposed n = 20, 50
are the most common values set by an end user.

For each chosen combination of values of TTL, m, k, n two runs have been
performed: one for TREC-9 topics and TREC-2001 topics. The statistics have
been averaged over 40 different starting ultra-peers, i.e. each run was repeated
for every starting ultra-peer, with different out-degrees and capability of reaching
other ultra-peers. The starting ultra-peers have been randomly selected and are

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 141

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 6 8 10 12 14 16 18 20

P
R

R

PER

PER vs PRR

Fig. 4. The relationship between PER and PRR

always the same in every simulation. In this way our result are independent of
the peer which originated the queries.

Three quantities have been measured and averaged over the starting ultra-
peers for measuring to what extent the network can efficiently and effectively
retrieve relevant documents: Peer Exploration Ratio (PER) is the ratio between
the average number of selected peers and the total number of peers the network
is composed of, i.e. 2500. Ultra-Peer Exploration Ratio (UPER) is the ratio
between the average number of selected ultra-peers and the total number of
ultra-peers the network is composed of, i.e. 250. Peer Recall Ratio (PRR) is
the ratio between the number of relevant documents retrieved by visiting the
network and the number of relevant documents retrieved by the baseline run.
That is, if N documents are retrieved by visiting the network, the corresponding
baseline run retrieved N documents from the centralized collection.

The relationship between PER and PRR is depicted in Figure 4 on the basis
of the result tables reported in the following. The plot shows an almost-linear
relationship between PER and PRR, although there are some variations which
are explained in the rest of the section.

Weighting Scheme Evaluation Results. The following questions have been
answered: (i) How much should TTL be? (ii) Is ultra-peer ranking effective?
(iii) Is peer ranking effective? The experimental results are reported in the fol-
lowing tables for the TREC-9 topic set — the results for TREC-2001 were similar
and have not been reported here due to the shortage of space. Every table is
organized by TTL, m, k and each row includes the average number of actual con-
tacted peers k̄, the number of documents retrieved by every peer (n), the average
number of actual contacted ultra-peers (m̄), the number of documents retrieved
across the network (Ñ), and the number of relevant documents retrieved across
the network (RDN). For example, the first row of Table 1(a) tells that when (i)
m = 1 ultra-peers are contacted since the query is issued by a peer, (ii) the
ultra-peer does not contact any other ultra-peer (TTL = 1) and (iii) the query

142 M. Melucci and A. Poggiani

Table 1. TTL = 1, 2, m̄ = 1

k n k̄ Ñ RDN PER PRR

1 20 0.9 617.9 3.3 0.04% 7.4%
3 20 2.5 1458.7 4.4 0.10% 5.5%
5 20 3.7 2031.9 4.6 0.15% 4.8%
7 20 4.7 2422.6 4.6 0.19% 4.5%

10 20 5.5 2771.0 4.7 0.22% 4.4%
10 50 5.5 4625.8 5.5 0.22% 4.0%

k n k̄ Ñ RDN PER PRR

1 20 1.8 1332.7 7.9 0.07% 9.8%
3 20 5.0 3114.6 10.9 0.20% 8.2%
5 20 7.6 4310.0 11.3 0.31% 7.2%
7 20 9.6 5110.3 11.4 0.38% 6.9%

10 20 11.4 5804.9 11.7 0.45% 6.8%
10 50 11.4 9862.1 13.8 0.45% 5.9%

(a) TTL=1, m = 1 (b) TTL=2, m = 1

Table 2. TTL = 2, m = 2, 3

k n k̄ Ñ RDN PER PRR

1 20 2.6 1821.4 10.2 0.10% 9.8%
3 20 7.0 4287.7 14.0 0.38% 8.7%
5 20 10.6 5956.5 14.6 0.42% 7.7%
7 20 13.3 7063.6 14.9 0.53% 7.3%

10 20 15.8 8017.5 15.3 0.63% 7.1%
10 50 15.8 13552.0 17.9 0.63% 6.3%

k n k̄ Ñ RDN PER PRR

1 20 3.1 2159.6 11.3 0.12% 10.3%
3 20 8.4 5106.1 15.9 0.34% 8.6%
5 20 12.8 7110.8 16.6 0.51% 7.8%
7 20 16.1 8441.3 16.9 0.64% 7.3%

10 20 19.0 9577.1 17.4 0.76% 7.0%
10 50 19.0 16147.3 20.1 0.76% 6.6%

(a) TTL=2, m = 2 (b) TTL=2, m = 3

is routed to k = 1 top ranked peer of the group led by the ultra-peer, then, 617.9
documents are on average retrieved — the average has been computed over 40
starting ultra-peers; due to n = 20 are selected from the peer and the ultra-peer,
3.3 documents are relevant, thus exploring 0.04% of the network and achieving
7.4% of the recall which would be achieved if every document was collected in
one centralized server.

How much should TTL be? Let us concentrate on a given PER and observe PRR
for different TTL’s (Tables 1 and 2). It can be noted that PRR varies when the
value of PER is reached at different TTL’s; for example, about PER = 2.0% of
peers have been visited by only accessing ultra-peers with m = 3, k = 10, TTL =
3 and PRR was about 11%. A comparable PER was observed with m = 3, k =
5, TTL = 4, but PRR is significantly higher. The same pattern can be observed
for different TTL’s as reported in Tables 2, 3 and 4. It can be concluded that TTL
is affecting effectiveness, provided PER. This suggests that the “best” strategy
would increase the number of “hops” between the ultra-peers, i.e. TTL. In other
words, the values of PRR with similar PER values suggest that a “depth-first
search” (big TTL, small m and k) is better than a “breadth-first search” (small
TTL and big k). Nevertheless, this pattern probably depends on the dataset
and the actual content distribution between different ultra-peers. It was found,
indeed, that different datasets and distributions of relevant data across the peers
lead to opposite conclusions [4]. If the relevant documents were concentrated
in a very few peers, then a depth-first strategy would be less effective than

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 143

Table 3. TTL = 3, 4 and TREC-9 topic set

k n k̄ Ñ RDN PER PRR

m = 1, m̄ = 2.85, UPER = 1.14

1 20 2.8 1979.6 12.9 0.11% 11.9%
3 20 7.5 4592.5 17.4 0.30% 9.9%
5 20 11.3 6326.6 17.9 0.45% 9.0%
7 20 14.1 7480.6 18.1 0.57% 8.4%

10 20 16.7 8444.6 18.5 0.67% 8.1%
10 50 16.7 14303.5 22.2 0.67% 7.5%

m = 2, m̄ = 5.33, UPER = 2.13

1 20 5.2 3767.5 20.7 0.21% 12.2%
3 20 14.4 8822.4 28.7 0.58% 11.1%
5 20 21.8 12212.5 30.1 0.87% 10.0%
7 20 27.4 14477.7 30.7 1.10% 9.8%

10 20 32.3 16356.9 31.2 1.29% 9.5%
10 50 32.3 27596.5 37.5 1.29% 9.7%

m = 3, m̄ = 7.73, UPER = 3.09

1 20 7.6 5447.0 27.6 0.31% 13.1%
3 20 21.1 12842.0 39.1 0.84% 12.2%
5 20 32.1 17867.0 41.0 1.29% 11.7%
7 20 40.4 21240.6 42.3 1.62% 11.5%

10 20 47.5 23984.3 42.9 1.90% 11.2%
10 50 47.5 40302.2 50.7 1.90% 11.6%

k n k̄ Ñ RDN PER PRR

m = 1, m̄ = 3.77, UPER = 1.51

1 20 3.7 2631.6 18.0 0.15% 13.1%
3 20 9.9 6080.1 24.2 0.40% 11.1%
5 20 15.0 8383.7 25.0 0.60% 9.9%
7 20 18.7 9929.6 25.3 0.75% 9.3%

10 20 22.1 11226.3 25.8 0.88% 9.2%
10 50 22.1 19050.1 30.6 0.88% 9.0%

m = 2, m̄ = 9.83, UPER = 3.93

1 20 9.7 7009.1 37.6 0.39% 15.2%
3 20 26.8 16464.7 52.6 1.07% 14.6%
5 20 40.8 22899.9 55.3 1.63% 14.1%
7 20 51.4 27237.8 56.6 2.06% 13.4%

10 20 60.6 30808.3 57.6 2.42% 13.3%
10 50 60.6 52030.4 68.3 2.42% 13.4%

m = 3, m̄ = 17.05, UPER = 6.82

1 20 16.9 12125.9 57.4 0.68% 17.1%
3 20 47.2 28806.6 82.3 1.89% 18.0%
5 20 72.2 40273.3 87.4 2.89% 17.2%
7 20 91.1 48008.6 89.9 3.64% 16.7%

10 20 107.3 54265.9 91.5 4.29% 16.8%
10 50 107.2 91298.8 107.0 4.29% 17.3%

(a) TTL=3 (b) TTL=4

the strategy adopted in these experiments. While clustering would help increase
the concentration of relevant documents in a very few peers and the knowledge
of the location of these relevant documents [7], this technique is infeasible in
realistic or large experimental settings.

Is Ultra-Peer Ranking Effective? The weighting scheme proposed in this paper
aims at reducing the portion of network visited for achieving a high proportion
of recall. Therefore, ultra-peer ranking selects the ultra-peers which lead to the
peers which are rich of relevant documents. If TTL = 1, ultra-peer ranking is
ignored due to only one ultra-peer, i.e. the starting ultra-peer, is contacted inde-
pendently of m. When TTL > 1, every contacted ultra-peer is called for choosing
the “best” ultra-peer out of m connected ultra-peers and ranking is needed.

Let us consider TTL = 2 in Tables 2(a) and 2(b). PRR little increases from
m = 1 to m = 2 and from the latter to m = 3 for a given k; for example, if
k = 1, PRR increases from 9.8% to 10.3% when m = 2 increases to m = 3,
respectively. If TTL = 4, and for k = 1, something similar happens, as reported
in Table 3(b) — PRR increases from 13.1% (m = 1), to 15.2% (m = 2), and
to 17.1% (m = 3). This small increase signifies that considering the second or
the third ranked ultra-peer other than the top-ranked ultra-peer little affects
effectiveness. Our explanation is that the single ultra-peer selected with m = 1

144 M. Melucci and A. Poggiani

Table 4. TTL = 5, 6 and TREC-9 topic set

k n k̄ Ñ RDN PER PRR

m = 1, m̄ = 4.68, UPER = 1.87

1 20 4.9 3248.5 22.4 0.18% 13.6%
3 20 12.3 7483.0 30.1 0.49% 12.2%
5 20 18.4 10317.9 31.3 0.74% 11.0%
7 20 23.1 12229.1 31.8 0.92% 10.5%

10 20 27.3 13824.6 32.4 1.09% 10.3%
10 50 27.3 23493.5 38.2 1.09% 10.1%

m = 2, m̄ = 17.22, UPER = 6.89

1 20 17.1 12346.0 64.6 0.68% 19.0%
3 20 47.3 29109.6 93.0 1.89% 19.8%
5 20 72.1 40572.6 98.4 2.88% 18.7%
7 20 91.0 48350.9 101.0 3.64% 18.4%

10 20 107.7 54799.5 102.7 4.31% 18.4%
10 50 107.7 92637.6 121.7 4.31% 19.0%

m = 3, m̄ = 34.64, UPER = 13.85

1 20 34.5 24855.1 113.2 1.38% 24.9%
3 20 96.7 59182.8 164.4 3.87% 25.9%
5 20 148.1 82810.4 175.9 5.92% 25.9%
7 20 186.9 98779.2 181.6 7.48% 26.2%

10 20 220.3 111784.4 185.0 8.81% 26.3%
10 50 220.3 188350.0 219.8 8.81% 27.4%

k n k̄ Ñ RDN PER PRR

m = 1, m̄ = 5.56, UPER = 2.23

1 20 5.5 3840.6 26.5 0.22% 14.4%
3 20 14.5 8832.1 36.1 0.58% 13.5%
5 20 21.8 12172.7 37.4 0.87% 12.0%
7 20 27.3 14425.7 38.2 1.09% 11.7%

10 20 32.2 16318.3 39.0 1.29% 11.5%
10 50 32.2 27706.4 45.6 1.29% 11.3%

m = 2, m̄ = 28.39, UPER = 11.36

1 20 28.3 20533.9 104.6 1.13% 24.9%
3 20 78.6 48538.5 151.1 3.14% 24.9%
5 20 120.0 67704.0 160.1 4.80% 25.1%
7 20 151.8 80672.3 164.9 6.07% 24.7%

10 20 180.0 91507.1 168.0 7.20% 24.8%
10 50 180.0 154478.6 198.7 7.20% 25.9%

m = 3, m̄ = 59.94, UPER = 23.97

1 20 59.8 43126.5 192.9 2.39% 30.9%
3 20 168.0 102958.4 284.0 6.72% 37.7%
5 20 257.5 144294.2 303.8 10.30% 38.4%
7 20 325.4 172316.9 313.5 13.02% 38.0%

10 20 384.1 195307.3 320.6 15.37% 37.9%
10 50 384.1 329435.7 380.9 15.37% 40.5%

(a) TTL=5 (b) TTL=6

accounts for the largest proportion of PRR and that the second or third top-
ranked ultra-peer is important but to a much less extent than the top-ranked
ultra-peer. Something similar happens for the other TTL’s and for the other k’s,
as reported in Tables 3(a), 4(a) and 4(b).

In general, the first top-ranked ultra-peer accounts for the largest propor-
tion of PRR. This outcome is an evidence supporting the hypothesis that the
weighting scheme is capable for selecting the “best” ultra-peers.

Is Peer Ranking Effective? Once the best ultra-peers have been selected, the best
peers belonging to those groups had to be chosen. The values of PRR achieved
with different k values for the same TTL and m have been computed for evaluat-
ing peer ranking effectiveness. In this way to what extent PRR varies by varying
the number of select peers is measured. The previously cited tables report the
PRR values achieved varying TTL, for each value of k and a fixed value of m.

A different pattern can be observed when the values of PRR are compared by
varying k. The results bear evidence of the initial contribution to PRR of the
one or three top-ranked peers. As the number of top-ranked peers increases, the
values of PRR decreases. This result suggests that the selection of the first top-
ranked peer accounts for a very significant proportion of PRR and that additional
peers are little useful, if not disadvantageous, for increasing the quantity of
relevant documents.

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 145

The negative trend of PRR when k increase is reverted once the exploration
of the network becomes larger due to larger TTL’s and/or m’s. Indeed, Ta-
bles 3(b), 4(a) and 4(b) report that PRR increases if the number of peers in-
creases, yet the contribution of the k-top ranked peers, k > 1, decreases as k
increases — a similar pattern was observed as far concerned the ultra-peers.

One explanation can be provided considering the distribution of relevant
documents, which are concentrated in a very small subset of the peers. If TTL
and m are small, the event that the ultra-peer leading to a group of peers storing
many relevant documents can be reached is very improbable. The query is little
likely to have been routed by the contacted ultra-peer(s) to “relevant” peers.
Therefore increasing k causes an increase of retrieved documents without an in-
crease of relevant documents. On the contrary, if TTL and m are not small, the
contacted ultra-peers may lead to the group of peers storing the relevant docu-
ments. The query is likely to have been routed to the “relevant” peers because
of the higher number of contacted ultra-peers. As the relevant documents may
be concentrated in some of the contacted peers, one group is likely to include
all these peers. Therefore increasing k causes an increase of retrieved relevant
documents.

Conclusions about Effectiveness and Efficiency. In general, the results suggests
that a partial exploration of the network produces levels of recall which should
be regarded as acceptable if the difficulty of the test collection is considered.
Indeed, after contacting about 16% of the peers, a system based on the proposed
weighting scheme can retrieve about 40% of the relevant documents that can be
retrieved by a centralized system, as reported in Table 4(b).

Provided the characteristics of the test collection and of the network topol-
ogy, it is our belief this is an encouraging results. Although the adoption of a
similarity-based algorithm for organizing leaf nodes by topic as performed in
DLLC could improve the routing step, this adoption is not affordable nor is it
realistic with our system — a peer is required the statistics of the full network
for connecting to the right group.

One effective strategy might be: (i) Decide for a “depth-first visit” strategy.
(ii) Two or three at most top-ranked ultra-peers are selected by the ultra-peer
that first received the query. (iii) The contacted ultra-peers contact very few
peers, perhaps only the first top-ranked peer. The contacted peers retrieve in
parallel some documents which are returned to the calling ultra-peer. Because k
is low, the network bandwidth used is relatively small.

Peers and ultra-peers need to communicate to each other some data about
local indexes for helping rank peer and ultra-peer. Because the network is a
hierarchy — every peer connects to one ultra-peer — a peer periodically com-
municates a summary of its own index to one ultra-peer. The summary is a
straightforward list of the term weights computed for every peer — this infor-
mation is directly gathered from the local indexes. Term weight list update is
required only if a new document is added to the peer and the latter decides to
make the document as publicly available. The ultra-peers are connected to a few
others. Every ultra-peer transmits a summary of the summaries received from

146 M. Melucci and A. Poggiani

its own peers to the other ultra-peers. The summary of the summaries is a list
of term weights for every group. For both lists compression algorithms can be
performed thus making synchronization quite fast.

4 Conclusions

This paper covers an empirical study using standard collections in a simulated
P2P testbed. The basic rationale taken for the particular formulas used is the
idea to select ultra-peers, then peers and lastly documents using the same type
of formula. The particular parameters chosen for studying have been consistent
with the characteristics of the P2P networks. In the future non-uniform param-
eters will be investigated. The approach is exploration rather than hypothesis
testing. Although this study is mostly suggestive, it is a reasonable approach at
this stage of the development and may provide results that can immediately be
adopted.

One of the main points made in this paper concerning the efficacy of the
ranking scheme is that the first peer or ultra-peer visited gives a quite large pro-
portion of recall and that subsequent ultra-peers little contribute. It is thought
that this is an evidence of good ranking, yet there may be obviously many more
relevant peers or ultra-peers, as recall is very low after one ultra-peer is visited
— therefore the addition of the next high-ranking peers should also contribute
to recall; these are not contributions as large as the first, but still positive. This
is true, but one should have to do with efficiency because PER would increase
more quickly than PRR, namely, the increase of PER is not compensated by a
significant increase of PRR — such an issue should be considered.

References

1. A. Broder. A taxonomy of Web search. SIGIR Forum, 36(2):3–10, 2002.
2. G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.

IPM, 24(5):513–523, 1988.
3. M. Melucci and R. Castiglion. A weighing framework for information retrieval in

peer-to-peer networks. In Proc. of DEXA Workshop, pages 374–378, Copenaghen,
August 22-26 2005. IEEE Press.

4. M. Melucci and R. Castiglion. An evaluation of a recursive weighing scheme for
information retrieval in peer-to-peer networks. In Proc. of CIKM Workshop on IR
in P2P Networks, pages 9–16, Bremen, Germany, November 4 2005. ACM Press.

5. M. Bawa, G. S. Manku, and P. Raghavan. Sets: Search enhanced by topic-
segmentation. In Proc. of SIGIR. ACM Press, 2003.

6. S. Chernov. Result Merging in a Peer-to-Peer Web Search Engine. PhD thesis,
University of Saarland, February 2005.

7. I.A. Klampanos, V. Poznanski, J. Jose, and P. Dickman. A Suite of Testbeds for
the Realistic Evaluation of Peer-to-Peer Information Retrieval Systems. Proc. of
ECIR, volume 3408 of LNCS. Springer-Verlag.

8. J. Callan. Distributed information retrieval. In W. B. Croft, editor, Advances
in information retrieval, chapter 5, pages 127–150. Kluwer Academic Publishers,
2000.

A Study of a Weighting Scheme for IR in Hierarchical P2P Networks 147

9. L. Gravano, K. Chang, A. Paepcke, and H. Garcia-Molina. STARTS: Stanford
proposal for internet retrieval and search. Technical Report SIDL-WP-1996-0043,
Computer Science Department, Stanford University, 1996.

10. J. Lu and J. Callan. Federated search of text-based digital libraries in hierarchical
peer-to-peer networks. In Proc. of SIGIR, Sheffield, UK, 2004. ACM Press.

11. L. S. Larkey, M. E. Connell, and J. P. Callan. Collection selection and results
merging with topically organized U.S. patents and TREC data. In Proc. of CIKM,
pages 282–289. ACM Press, McLean, Virginia, US 2000.

12. J. Lu and J. Callan. Merging retrieval results in hierarchical peer-to-peer networks.
In Proc. of SIGIR, Sheffield, UK, 2004. ACM Press.

13. L.Si and J. Callan. A semi-supervised learning method to merge search engine
results. ACM TOIS, 21(4):457–491, October 2003.

14. A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In
Proc. of SIGIR, pages 21–29, Zurich, Switzerland, 1996. ACM Press.

15. P. Gulutzan. MySQL’s full-text formulas, January 2006.
http://www.databasejournal.com/features/mysql/article.php/3512461.

16. J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In
Proc. of CIKM, 2003.

17. J. Lu and J. Callan. Peer-to-peer testbed definitions: trecwt10g-2500-bysource-v1
and trecwt10g-query-bydoc-v1, January 2006. http://hartford.lti.cs.cmu.edu/
callan/Data.

18. D. Hawking. Overview of the TREC-9 Web track. In E. M. Voorhes and D. K. Har-
man, editors, Proc. of TREC, pages 87–101, Gaithersburg, Maryland, September
2001. Department of Commerce, NIST.

19. P. Bailey, N. Craswell, and D. Hawking. Engineering a multi-purpose test collection
for Web retrieval experiments. IPM, 39(6):853–871, November 2003.

20. H. Nottelmann and N. Fuhr. Comparing different architectures for query routing
in peer-to-peer networks. In Proc. of ECIR, LNCS, London, UK, 2006. Springer.

21. D. Stutzbach, R. Rejaie, and S. Sen. Characterizing unstructured overlay topologies
in modern P2P file-sharing systems. In Proc. of IMC, pages 49–62, 2005.

22. S. Zhao, D. Stutzbach, and R. Rejaie. Characterizing files in the modern Gnutella
network: A measurement study. In Proc. of MMCN, San Jose, CA, January 2006.

23. D. Stutzbach and R. Rejaie. Characterizing the two-tier Gnutella topology. In Proc.
of SIGMETRICS, pages 402–403, Banff, Alberta, Canada, 2005. ACM Press.

24. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In Proc. of ICS, pages 84–95. ACM Press, 2002.

25. TREC. Text REtrieval Conference, January 2006. http://trec.nist.gov.
26. S. Kwok. P2P searching trends: 2002-2004. IPM, 42(1):237–247, January 2006.

http://www.databasejournal.com/features/mysql/article.php/3512461
http://hartford.lti.cs.cmu.edu/callan/Data
http://hartford.lti.cs.cmu.edu/callan/Data
http://trec.nist.gov

A Decision-Theoretic Model for Decentralised Query
Routing in Hierarchical Peer-to-Peer Networks

Henrik Nottelmann and Norbert Fuhr

Department of Informatics, University of Duisburg-Essen,
47048 Duisburg, Germany

norbert.fuhr@uni-due.de

Abstract. Efficient and effective routing of content-based queries is an emerging
problem in peer-to-peer networks, and can be seen as an extension of the tradi-
tional “resource selection” problem. The decision-theoretic framework for
resource selection aims, in contrast to other approaches, at minimising overall
costs including e.g. monetary costs, time and retrieval quality. A variant of this
framework has been successfully applied to hierarchical peer-to-peer networks
(where peers are partitioned into DL peers and hubs), but that approach considers
retrieval quality only. This paper proposes a new model which is capable of con-
sidering also the time costs of hubs (i.e., the number of hops in subsequent steps).
The evaluation on a large test-bed shows that this approach dramatically reduces
the overall retrieval costs.

1 Introduction

Peer-to-peer (P2P) networks have emerged recently as an alternative to centralised
architectures. The major problem in such networks is query routing, i.e. deciding to
which other peers the query has to be sent for high efficiency and effectiveness. In
contrast to the traditional resource selection problem, this process is inherently decen-
tralised in peer-to-peer networks and based on local knowledge.

The decision-theoretic framework (DTF) [7, 3] computes an optimum selection
based on cost estimations. These cost estimations include several important factors like
retrieval quality, time or money. A user can weight these cost sources for specifying
her own selection policy, e.g. preferring cheap digital libraries (DLs), or high quality
DLs. Resource descriptions, i.e. statistical aggregation of the DLs, are employed for
estimating costs, in particular to approximate the retrieval quality.

[8] presents a heuristic extension of the DTF for hierarchical peer-to-peer networks.
In such a P2P topology, peers are partitioned into low-end DL peers hosting the docu-
ments, and hubs which act as directory peers. Only hubs are responsible for routing; a
DL receiving a query only returns result documents but does not forward the query to
other peers. Costs for hubs are computed by simply aggregating the resource descrip-
tions of all DLs in a certain neighbourhood of that hub, by assuming that these DLs are
merged into a single virtual collection. This approach, however, does not allow to esti-
mate time costs properly: Those costs depend on the peers a selected hub itself selects,
and thus cannot be estimated via simple aggregated statistics.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 148–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Decision-Theoretic Model for Decentralised Query Routing 149

In this paper, we present the first theoretical model for decentralised query routing in
hierarchical P2P networks which considers time costs, and we give experimental results
demonstrating the validity of this model. The basic idea is to estimate the costs of the
DLs a neighbour hub would select in subsequent phases. This estimation is based on
statistical aggregations of the DLs’ content, as well as the distances of the DLs to the
hub. The advantages are two-fold: Hub costs are only based on those DLs the hub po-
tentially selects (i.e., can contribute to the final result). Second, this approach allows us
to take the distances of selected DLs (and, thus, the associated time costs) into account.

This paper is structured as follows: Section 2 briefly describes DTF. An overview
over important aspects of resource selection in peer-to-peer networks is given in sec-
tion 3. Then, section 4 presents a new approach for estimating hub costs which in-
herently also considers the number of hubs associated with the selection of a hub. An
evaluation of the proposed approach is shown in section 5. Section 6 summarises work
related to resource selection in distributed IR.

2 The Decision-Theoretic Framework for Resource Selection

Most resource selection approaches (e.g. CORI) only consider retrieval quality. As an
approximation, they compute a similarity score of each DL to the query, and select a
fixed number of top-ranked libraries. Other aspects like execution time of the DLs are
neglected.

In contrast, the decision-theoretic framework (DTF) [7, 3] is capable of dealing with
different selection criteria, which are unified under the notion of “costs”. As the actual
costs are unknown in advance, expected costs (for digital library DLi when si documents
are retrieved for query q) are regarded instead.

Different sources can be considered:

Effectiveness: Probably most important, a user is interested in getting many rele-
vant documents. In a simple model, effectiveness costs are based on the expected
number si − E[ri(si,q)] of non-relevant documents, where E[ri(si,q)] denotes the
expected number of relevant documents among the si top-ranked documents.

Time: We assume uniform costs for transmitting a result document, thus these costs
can be neglected for selection. As a consequence, the expected costs EC t

i (si) are
based on the initial costs for contacting a DL.

Money: Monetary costs are important for some applications, but can be neglected in
the context of this paper.

These cost sources are weighted by user-specific parameters ce (for effectiveness)
and ct (time) parameters. They allow a user to specify her own selection policy, e.g.
good results vs. fast results. Thus, the expected costs (for digital library DLi when si

documents are retrieved for query q) are computed as:

ECi(si,q) := ce · [si − E[ri(si,q)]]+ ct ·EC t
i (si) . (1)

A user also specifies the total number n of documents to be retrieved out of m
libraries, and the task is to compute an optimum solution (employing the algorithm
presented in [3]):

150 H. Nottelmann and N. Fuhr

s := argmin
∑m

i=1 si=n

m

∑
i=1

ECi(si,q).

Relevance costs are computed in two steps:

1. First, the expected number E(rel|q,DL) of relevant documents in the library is com-
puted based on statistical aggregations (called “resource description”) of the DL.

2. Then, a linearly decreasing approximation of the recall-precision function is used
for computing the expected number E[ri(si,q)] of relevant retrieved documents.

For the first step, the resource descriptions store the DL size |DL| and the average
(expectation) µt = E[w(d,t)|d ∈ DL] of the indexing weights w(d,t) (for document d
and term t). For a query with term weights a(q, t) (summing up to one) and a linear
retrieval model, the expected number E(rel|q,DL) of relevant documents in DL w. r. t.
query q can be estimated as:

E(rel|q,DL) = ∑
d∈DL

Pr(rel|q,d) ≈ ∑
d∈DL

∑
t∈q

a(q, t) ·w(d, t)

= |DL| ·∑
t∈q

a(q, t) · ∑
d∈DL

w(d, t)
|DL|

= |DL| ·∑
t∈q

a(q, t) ·µt , (2)

where Pr(rel|q,d) denotes the probability that document d is relevant.
In a second step, E(rel|q,DL) is mapped onto the expected number E[ri(si,q)] of

relevant retrieved documents. Assuming a linearly decreasing recall-precision function
P : [0,1] → [0,1], P(R) := 1−R, with expected precision E[ri(si,q)]/si and expected re-
call E[ri(si,q)]/E(rel|q,DLi), we can estimate the number of relevant documents when
retrieving si documents:

E[ri(si,q)] :=
E(rel|q,DLi) · si

E(rel|q,DLi)+ si
. (3)

For DTF, the libraries have to return the probabilities of relevance of the result doc-
uments, thus no further normalisation step is required.

3 Resource Selection in Peer-to-Peer Networks

Query routing (i.e., resource selection) is a crucial task in peer-to-peer networks, as con-
tacting all connected peers does not scale [9]. This section introduces several competing
approaches for resource selection in peer-to-peer networks.

3.1 Network Topologies

A direct neighbour P ∈ nb(P′) of a peer P′ is another peer P if and only if there is a
(direct) connection link. The distance between two peers is the minimum number of
hops (i.e., links) required to go from one peer to the other.

A Decision-Theoretic Model for Decentralised Query Routing 151

In this paper, we regard hierarchical peer-to-peer topologies, which are based on
a partition of peers into DL peers (sometimes also called “leaves”) and hubs. DLs
are typically end-user machines which answer but do not forward queries, while hubs
are responsible for routing and, thus, high-bandwidth computers which are nearly per-
manently online. Each DL peer is connected to at least one hub but not to other DL
peers, which reduces the number of messages during query routing (i.e., resource selec-
tion). This results in a simple yet reasonable and efficient topology, called hierarchical
peer-to-peer networks.

In this paper, we focus on HyperCube graphs (HyperCubes for short) [11] . A
(binary) HyperCube is a regular d-dimensional structure, where each peer is connected
to exactly d other peers (one per dimension). Messages arriving via a connection on di-
mension k ∈ {0,1, . . . ,d − 1} can only be forwarded to peers on strictly higher dimen-
sions k′ > k. A consequence is that the dimensions define (starting from an arbitrary
peer) a spanning tree on the network, which ensures that there is exactly one path from
one peer to another peer. It also corresponds to a clearly defined partition of the whole
network.

Positions of missing peers are filled with “virtual peers” (see [11] for details), which
are then replaced by “shortcuts” to all original peers which can be contacted through
virtual peers only. As a consequence, peers can be connected to more or less than d
neighbours.

In this paper, we also ensure that each DL is connected to exactly one hub, so that
(given the HyperCube) there is exactly one path from any hub to any DL in the network
(i.e., cycles do not occur).

3.2 Centralised and Decentralised Selection

A simple selection strategy is to use the P2P network for a “cost estimation collection
phase”, where the query is flooded in a Gnutella-like way through the hub network.
Each hub computes cost estimations of its neighbour DLs, and sends them to the hub
starting the routing process. Then, a single central selection is computed, and the se-
lected DL peers are notified directly. This centralised selection strategy yields a global
optimum, but is rather inefficient (see [9] for Gnutella, and section 5.2 for hierarchical
networks). HyperCubes can improve the cost estimation collection phase as each hub is
connected exactly once (and not multiple times).

In contrast, decentralised selection computes a local optimum selection on every hub
receiving the query, by considering locally available descriptions of all DLs and hubs
in a predefined distance. Thus, a hub decides locally how many documents should be
retrieved from neighbour DLs, and how many documents are to be delivered by neigh-
bour hubs (which itself compute a local selection). This decentralised selection method
produces an overhead as a cost estimation and selection has to be performed on every
hub. On the other hand, this method cuts down the number of hubs that are traversed,
and thus saves time and bandwidth. In HyperCubes, hub descriptions are based on dis-
joint sets of DLs, which should improve the selection accuracy. The following Sec-
tion describes how resource descriptions for hubs can be computed and employed for
decentralised selection.

152 H. Nottelmann and N. Fuhr

4 Cost Estimation for Hubs

A hub description is a representative of the neighbourhood of a hub. Basically, its
statistical characteristics are defined by combining the resource descriptions of a set
of DL peers.1

A naive approach is to combine the documents of all DLs in a neighbourhood in a
large “virtual” collection, and use the description of that collection as the hub descrip-
tion [8]. This, however, has two drawbacks: A hub is not a monolithic DL, its selection
results in further selection steps which ignores most of the DLs in the neighbourhood.
Additionally, time costs (i.e., the number of hops) are not considered in such a setting.

The basic idea presented in this paper is to approximate the selection step in a
selected hub: When we estimate the costs of a hub, we assume that the hub selects
the best DLs in the neighbourhood (but no hubs), and only consider these selected DLs
in the cost estimation. This approach also allows us to estimate the time costs associated
with selecting a hub.

4.1 Hub Resource Descriptions

In the traditional decision-theoretic framework (see section 2), the resource description
contains the average indexing weight µt = E[w(d, t)|d ∈ DL] for each index term t. Time
costs can easily be added for DLs by using a constant value (e.g., one) for the one hop
to the neighbour DL, by setting EC t

i (si) = 1 iff si > 0, and = 0, otherwise.
However, a hub is a representative of a sub-network (a “neighbourhood”), and its

selection results in contacting further peers (DLs and hubs) with additional costs for
those hops. In addition, a term t can occur in DL peers in different distances for a
neighbour hub H, so constant time costs are not sufficient for hubs. In the following,
we show how the content of a resource description is modified for hubs, so that time
costs can be considered as well.

We start with a simple scenario, where a hub H is connected to m libraries DL1, . . . ,
DLm ∈ nb(H). Neighbour hubs H ′ ∈ nb(H) are not considered so far, the approach is
extended to this case in section 4.3. We further assume that resource descriptions are
given for all DLi, i.e. the average indexing weights µt,i = E(t ← d|d ∈ DLi).

Each term t can be regarded as a single-term query. Then, the number Ri(t) =
E(rel|t,DLi) of relevant documents in each DLi can be easily estimated according to
equation (2) as:

Rt,i = E(rel|t,DLi) = |DLi| ·µt,i .

The results are rounded to natural numbers, to ease the further processing steps.
For the hub H under consideration, the discrete empirical distribution Pr(Rt) of the

number of relevant documents is computed over all neighbour DLs. Let us assume a
term t1 for which 4 of the 6 neighbour DLs have 3 relevant documents for t1 and the
2 other neighbour DLs have 5 relevant documents. Then, the resulting distribution is
defined by Pr(Rt1 = 3) = 4/6 and Pr(Rt1 = 5) = 2/6.

1 In peer-to-peer networks, co-operative peers can be assumed, so query-based sampling is not
considered here; each DL returns its description upon request.

A Decision-Theoretic Model for Decentralised Query Routing 153

This distribution Pr(Rt) forms a compact representation of the content of the hub’s
neighbourhood, and is used as the resource description of hub H. In other words, for
each term t a function Pr(Rt = ·) is stored.

4.2 Cost Estimation

At query time, the resource description of hub H is employed for estimating retrieval
costs. Costs for hubs are estimated in 6 subsequent phases, incorporating only neigh-
bour DLs:

1. For the query, the distribution of relevant documents in all DLs is computed.
2. For all DLs, the number of relevant documents is estimated based on the

distribution.
3. The DLs are ranked w. r. t. their number of relevant documents, and the best DLs

are selected.
4. Costs are estimated based on the best selected DLs.
5. Minimum costs are computed.

In the first phase, the distribution Pr(Rq) of the relevant documents Rq = E(rel|q,DL)
(for a query q and a randomly chosen library DL) is computed. Remember that with a
linear retrieval function, we have:

Rq = E(rel|q,DL) = |DL| · ∑
t∈q

a(q,t) ·µt = ∑
t∈q

a(q, t) ·Rt .

Thus, the random variable Rq can be considered as the linear combination of the
random variables Rt . The distribution Pr(Rq) can thus be computed via convolution:

Pr(Rq) = ∑
Rt : Rq=∑t∈q a(q,t)·Rt

∏
t∈q

Pr(Rt).

Here, basically, the probabilities of all possible cases for the Rt which lead to a fixed
value of Rq are summed up, assuming independence of the Rt . (Since the distributions
Pr(Rt) are very sparse, the convolution can be computed reasonably efficiently.) As
an example, assume—in addition to the distribution for term t1 (see section 4.1)—a
second term t2 with Pr(Rt2 = 1) = Pr(Rt2 = 3) = 1/2, and further assume at1 = at2 =
1/2. Then, the case Rq = 2 can only be caused by Rt1 = 3 and Rt2 = 1 with Pr(Rq =
2) = 2/3 ·1/2 = 1/3. Similarly, the case Rq = 3 can be caused by either Rt1 = Rt2 = 3
or by Rt1 = 5 and Rt2 = 1, thus Pr(Rq = 3) = 2/3 · 1/2 + 1/3 · 1/2 = 1/2. Finally,
Pr(Rq = 4) = 2/3 ·1/2 = 1/6 is caused by the case Rt1 = 5 and Rt2 = 3.

In a second step, the frequencies Pr(Rq) and the number m of neighbour DLs are
used for estimating the number of relevant documents for the DLs. E.g., for m = 6 DLs
in total, 2 DLs have 2 relevant document, 3 DL have 3 relevant documents, and the
sixth DL contains 4 relevant documents. Interpolation is used for computing a value for
each DL in cases where the probability for a Rq value does not correspond to a natural
number of occurrences.

Third, the DLs are ranked w. r. t. their number of relevant documents, i.e. R1 ≥ R2 ≥
. . . ≥ Rm. For 1 ≤ l ≤ m, R(l) := ∑l

i=1 Ri denotes the sum of the number of relevant
documents in the top l DLs.

154 H. Nottelmann and N. Fuhr

R=2
R=5

R=2

R=4

R=9

R=5

R=2

R=2

R=3 R=3

R=3

H H

Fig. 1. Hub costs in larger neighbourhoods

In a fourth step, we assume that a hub is the combination of all l selected DLs, i.e.
a hub is considered as a single DL. With the recall-precision function and equation (3),
we can compute the number r(s,R(l)) of relevant documents in the result set when
retrieving s documents from the union of the l selected DLs. Following equation (1),
the costs EC(s, l,R(l)) when l neighbour DLs are selected can be computed as:

ECH(s, l,R(l)) := ce · [s− r(s,R(l))]]+ ct · (l + 1) .

Note that the number of hops equals the number of selected neighbour DLs (each one
can be reached via one hop in a later phase) plus 1 hop for reaching the hub itself.

The final cost estimations can be easily computed in a sixth step:

ECH(s) = min{ECH(s, l,R(l))|1 ≤ l ≤ m}
= min{ce · [s− r(s,R(l))]]+ ct · (l + 1)|1 ≤ l ≤ m} .

These cost estimations can be used in the usual selection process.

4.3 Considering a Larger Neighbourhood

So far, only neighbour DLs are considered for computing the resource description of
a hub. However, hubs typically are connected to other (neighbour) hubs, which them-
selves have DLs (and, potentially, other hubs) attached. We apply a trick and conceptu-
ally replace hubs and their attached DLs by new virtual DLs directly connected to the
hub. Thus, the network structure is “flattened”, and costs can be estimated for all DLs
in the same way, regardless of their distance.

The horizon h defines the maximum distance between the hub H and the DLs to be
considered for its hub description. In section 4.2, only neighbour DLs are considered,
which equals to a horizon h = 1. For a horizon h > 1, the neighbourhood function nb is
extended as follows:

nb1(H) := nb(H),

nbh(H) :=
⋃

H′∈nb(H)

nbh−1(H ′) .

In other words, nbh(H) describes all peers in a distance of exactly h hops (from H).

A Decision-Theoretic Model for Decentralised Query Routing 155

The key idea for considering remote DLs is the following: Costs remain untouched
if such a library DL′

i is replaced by two “virtual” DLs connected directly to H, where
the relevant documents are uniformly distributed over both DLs (i.e., with R/2 relevant
documents): To obtain R relevant documents, two hops (one for each new virtual DL)
are required. For implementing this scheme, the neighbouring hub H ′ has to send its
cumulated statistics about DL′

i ∈ nb(H ′) to hub H. Costs are then estimated as described
in section 4.2, without a need for caring about the distance of DL peers. A similar
approach is used for h > 2, were a DL in distance of h′ ≤ h is replaced by h′ DLs with
R/h′ relevant documents.

An example is shown in figure 1. Here, the DLs directly connected to the hub H
remain untouched. The DL connected to the direct neighbour hub of H (with R = 4 rel-
evant documents) is replaced by two virtual hubs with R = 4/2 = 2, while the DL with
R = 9 connected to the neighbour hub of the neighbour hub (i.e., the DLs in nb3(H)) is
replaced by three virtual DLs with R = 9/3 = 3.

5 Evaluation

The proposed approach has been evaluated on a large test-bed. This sections describes
the setup of the experiments and results in terms of efficiency, effectiveness and costs.

5.1 Experimental Setup

The WT10g collection is used as a basis for our experiments. The topology “cmu”
(taken from [5]) employes a hierarchical P2P network, where the WT10g collection
is divided into 11,485 collections according to the document URLs; 2,500 collections
(containing in total 1,421,088 documents) were chosen randomly, each of them forming
one DL peer. Hubs are formed by similarity of the DL peers, each hub is connected to
13-1,013 DLs (379.8 on average). Neighbour hubs are selected randomly so that each
hub has 1-7 hub neighbours (3.8 on average).

The topology “hc-1” regarded in this paper is a HyperCube derived from the “cmu”
topology in the following way: it consists of 25 hubs as in “cmu” (with dimension
d = 5); each hub is connected to 4–14 other hubs (5.8 on average). Each DL is connected
to exactly one hub, randomly chosen out of the “cmu” connections, so that each hub is
connected to 3–254 DLs (100 on average). Thus, “hc-1” completely avoids cycles and
yields disjoint hub neighbourhoods.

The WT10g collection only provides 100 topics with relevance judgements. For
large P2P networks, more queries are required. Thus, we use 1,000 random queries
(from the test set) generated from title fields of documents. Each query contains up
to 6 terms, the average is 2.9 terms per query. In all experiments, n = 50 documents
are requested. As these queries were created artificially, no relevance judgements are
available. Pseudo-relevance judgements were obtained by combining all 2,500 col-
lections into one centralised collection (using system-wide IDF values), and marking
the 50 top-ranked documents2 for each query as “relevant”. Thus, the experiments

2 Documents are ranked using the same indexing weights and retrieval functions as all DLs.

156 H. Nottelmann and N. Fuhr

measure how well distributed retrieval approximates the centralised collection. Docu-
ment indexing weights are computed based on the BM25 formula [10].

For resource selection, we set ce = 1 in all cases (for effectiveness costs, i.e. the
number of non-relevant documents), and vary the parameter ct to simulate different user
preferences. Similarly, for computing costs after retrieval (the actual costs connected to
the query) we set ce = 1 and use varying parameters for the time component. Please
note that for ct = ce = 1, one hop corresponds to one non-relevant document. For the
same number of documents, selecting an additional DL thus can only be compensated
if that DL returns an additional relevant document. Similarly, for ct = ce

4 = 0.25, four
hops correspond to one relevant document.

For result merging, we assume that a hub propagates the hub-local idf values3 to its
directly connected DLs, and then merge the returned ranking lists according to descend-
ing RSVs.

Table 1. Results for centralised and decentralised resource selection

(a) h = 1

Dec., ct = 0 Cent., ct = 0 Dec., ct = 0.1 Dec., ct = 0.25 Dec., ct = 0.5 Dec., ct = 1

P@10 0.4385 / 0.0% 0.6586 / 50.2% 0.4241 / -3.3% 0.4044 / -7.8% 0.3527 / -19.6% 0.2981 / -32.0%
P@30 0.2087 / 0.0% 0.3774 / 80.8% 0.2171 / 4.0% 0.2206 / 5.7% 0.2072 / -0.7% 0.1856 / -11.1%
MAP 0.1307 / 0.0% 0.2565 / 96.3% 0.1387 / 6.1% 0.1450 / 10.9% 0.1399 / 7.0% 0.1299 / -0.6%

Precision 0.1571 / 0.0% 0.2688 / 71.1% 0.1677 / 6.7% 0.1751 / 11.4% 0.1700 / 8.2% 0.1597 / 1.6%
Recall 0.1354 / 0.0% 0.2576 / 90.3% 0.1435 / 6.0% 0.1493 / 10.3% 0.1438 / 6.2% 0.1325 / -2.1%

#Hops 40.9 / 0.0% 55.5 / 35.5% 23.6 / -42.4% 14.9 / -63.6% 9.8 / -76.0% 6.6 / -83.8%
Costs 35.78 / 0.0% 34.52 / -3.5% 37.54 / 4.9% 38.63 / 8.0% 40.00 / 11.8% 41.98 / 17.3%

(b) h = 2

Dec., ct = 0 Cent., ct = 0 Dec., ct = 0.1 Dec., ct = 0.25 Dec., ct = 0.5 Dec., ct = 1

P@10 0.5694 / 0.0% 0.6586 / 15.7% 0.5560 / -2.4% 0.5278 / -7.3% 0.4797 / -15.8% 0.4198 / -26.3%
P@30 0.3141 / 0.0% 0.3774 / 20.2% 0.3300 / 5.1% 0.3301 / 5.1% 0.3167 / 0.8% 0.2920 / -7.0%
MAP 0.2066 / 0.0% 0.2565 / 24.2% 0.2206 / 6.8% 0.2232 / 8.0% 0.2194 / 6.2% 0.2079 / 0.6%

Precision 0.2360 / 0.0% 0.2688 / 13.9% 0.2520 / 6.8% 0.2559 / 8.4% 0.2536 / 7.4% 0.2448 / 3.7%
Recall 0.2139 / 0.0% 0.2576 / 20.5% 0.2278 / 6.5% 0.2295 / 7.3% 0.2255 / 5.4% 0.2136 / -0.1%

#Hops 45.2 / 0.0% 55.5 / 22.7% 23.3 / -48.4% 14.9 / -67.1% 10.1 / -77.7% 7.2 / -84.2%
Costs 34.10 / 0.0% 34.52 / 1.3% 35.73 / 4.8% 36.84 / 8.1% 38.24 / 12.2% 40.61 / 19.1%

(c) h = 3

Dec., ct = 0 Cent., ct = 0 Dec., ct = 0.1 Dec., ct = 0.25 Dec., ct = 0.5 Dec., ct = 1

P@10 0.6307 / 0.0% 0.6586 / 4.4% 0.6284 / -0.4% 0.6048 / -4.1% 0.5618 / -10.9% 0.4987 / -20.9%
P@30 0.3757 / 0.0% 0.3774 / 0.5% 0.4012 / 6.8% 0.4045 / 7.7% 0.3939 / 4.8% 0.3652 / -2.8%
MAP 0.2541 / 0.0% 0.2565 / 0.9% 0.2765 / 8.8% 0.2822 / 11.1% 0.2816 / 10.8% 0.2688 / 5.8%

Precision 0.2810 / 0.0% 0.2688 / -4.4% 0.3056 / 8.8% 0.3125 / 11.2% 0.3142 / 11.8% 0.3036 / 8.0%
Recall 0.2625 / 0.0% 0.2576 / -1.8% 0.2844 / 8.3% 0.2891 / 10.1% 0.2892 / 10.2% 0.2752 / 4.8%

#Hops 45.0 / 0.0% 55.5 / 23.3% 22.0 / -51.0% 14.4 / -68.1% 10.1 / -77.6% 7.6 / -83.2%
Costs 33.08 / 0.0% 34.52 / 4.4% 34.13 / 3.2% 35.17 / 6.3% 36.62 / 10.7% 39.64 / 19.8%

3 In order to reduce the experimental effort, we used system-wide idf values in our experiments,
since earlier experiments [8] showed that the difference between system-wide and hub-local
idf values is negligible.

A Decision-Theoretic Model for Decentralised Query Routing 157

5.2 Results

Table 1 depicts the results for our HyperCube topology. First, the tables show that
centralised selection (“cent.”) outperforms decentralised variants (“dec.”) in terms of
effectiveness. Compared to ct = 0 (ignoring time costs), precision in the top ranks de-
creases with increasing time costs ct (for a single hop). Precision in lower ranks, mean
average precision (MAP) as well as set-based precision and recall, however, increase up
to ct = 0.5 (for h = 1) or ct = 1 (for h = 3 and the set-based values), before these values
decrease again. As intended, efficiency dramatically increases (i.e., less hubs and DLs
are selected) with increasing ct . Both effects nearly balance so that the overall costs
only slightly increase.

The table also reveals that for any fixed time cost user parameter ct , effectiveness
increases with a larger horizon h. In other words, a larger hub neighbourhood (with
more DLs considered) improves the cost estimation process. This fact shows that our
model makes good use of the knowledge provided. As also can be seen from these
figures, decentralised selection with time costs considered outperforms the two other
approaches.

As a summary, incorporating time costs in the selection process dramatically reduces
the final costs w. r. t. the user’s preference. Moreover, the approach is capable of adjust-
ing to increasing time costs per hop ct so that the final costs increase only marginally.
In addition, broadening the horizon leads to increased retrieval quality and marginally
lower costs.

6 Related Work

In contrast to the decision-theoretic framework (DTF) employed in this paper, most of
the other selection algorithms compute a score for every library. Then, the top-ranked
documents of the top-ranked libraries are retrieved and merged in a data fusion step.

The GlOSS system [4] is based on the vector space model and – thus – does not refer
to the concept of relevance. For each library, a goodness measure is computed which
is the sum of all scores (in the experiments reported, SMART scores) of all documents
in this library w. r. t. the current query. Libraries are ranked according to the goodness
values.

The state-of-the-art system CORI [1] uses the INQUERY retrieval system which
is based on inference networks. The resource selection task is reduced to a document
retrieval task, where a “document” is the concatenation of all documents of one library.
The indexing weighting scheme is quite similar to one employed in DTF, but applied
to libraries instead of documents. Thus, term frequencies are replaced by document
frequencies, and document frequencies by collection frequencies. CORI also covers the
data fusion problem, where the library score is used to normalise the document score.
Experiments showed that CORI outperforms GlOSS [2].

Another ranking approach is based on language models [13]. Basically, the lan-
guage model of the collection is smoothed with a collection-independent (system-wide)
language model, and KL-divergence is used for ranking the DLs. The final document
ranking is computed in a result merging step by using the original (collection-biased)

158 H. Nottelmann and N. Fuhr

document probabilities, the DL scores, a smoothing factor, and Bayesian inversion. The
quality of this approach is slightly better than CORI.

The language model approach has been extended towards hierarchical peer-to-peer
networks in [6] for ranking neighbour peers (leaves and hubs). Hubs are described by
neighbourhood (which is not limited to the directly connected DLs), where the influence
of term frequencies of distant DLs is exponentially decreased. DLs and hubs are se-
lected separately, as DL and hub descriptions are not in the same order of magnitude. A
fixed number of hubs is selected, while a modified version of the semi-supervised learn-
ing algorithm [12] is employed for computing a threshold for the number of selected
leaves.

The decision-theoretic framework has been extended towards peer-to-peer networks
in [8]. There, an extensive discussion of resource selection architectures for peer-to-peer
networks is presented. The architectures are classified based on the underlying resource
selection approach (DTF and CORI as a baseline), design choices like the locality of
knowledge (e.g. IDF values) and selections (centralised vs. decentralised), as well as
the network topology (hierarchical networks with DLs and hubs, distributed hash tables
and HyperCubes). Time costs, however, are not regarded there. The evaluation shows
that DTF slightly outperforms CORI in peer-to-peer networks. Centralised selection
has higher effectiveness than decentralised selection, but has an expensive cost esti-
mation collection phase. Distributed hash tables [14] and HyperCubes can reduce that
effort.

7 Conclusion and Outlook

This paper presents the first theoretical model for decentralised query routing in
hierarchical peer-to-peer networks, which also incorporates time costs (in addition to
traditional retrieval quality measures). For this, the decision-theoretic framework has
been extended to estimate the costs of DLs a neighbour hub would select in subsequent
phases. This estimation is based on statistical aggregations of the DLs’ content, as well
as the distance of the DLs to the hub. The advantages are two-fold: Hub costs are only
based on those DLs which the hub potentially selects (and, thus, can contribute to the
final result). Second, this approach allows us to take the distance of selected DLs (and,
thus, the associated time costs) into account.

The evaluation shows that the new P2P variant of the decision-theoretic framework is
capable to optimise the selection quality when time costs are considered. The final costs
(w. r. t. the user’s preference) are dramatically reduced. Moreover, the approach can
adjust to increasing time costs ct per hop so that the final costs increase only marginally.
Furthermore, broadening the horizon leads to increased retrieval quality and marginally
lower costs.

Here we have tested our model under optimum conditions, in order to demonstrate
its general validity. Future work will concentrate on the development of approxima-
tions for less favourable settings. First, we will replace the empirical term distributions
Pr(Rt) by appropriate theoretical distributions. Another issue is the reduction of the
required knowledge about the neighbourhood when constructing resource descriptions.
Currently, each hub has to provide separate statistics of all DLs in distance 1, for all

A Decision-Theoretic Model for Decentralised Query Routing 159

DLs in distance 2, and so on. As an alternative, approximate aggregated descriptions
will be investigated. In a similar way, we will work on modifications of the approach
for effectively dealing with cycles in the network.

References

[1] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with inference net-
works. In E. A. Fox, P. Ingwersen, and R. Fidel, editors, Proceedings of the 18th Annual
International ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 21–29, New York, 1995. ACM. ISBN 0-89791-714-6.

[2] J. French, A. Powell, J. Callan, C. Viles, T. Emmitt, K. Prey, and Y. Mou. Comparing the
performance of database selection algorithms. In Proceedings of the 22nd International
Conference on Research and Development in Information Retrieval, pages 238–245, New
York, 1999. ACM.

[3] N. Fuhr. A decision-theoretic approach to database selection in networked IR. ACM Trans-
actions on Information Systems, 17(3):229–249, 1999.

[4] L. Gravano and H. Garcia-Molina. Generalizing GIOSS to vector-space databases and
broker hierarchies. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, VLDB’95, Proceed-
ings of 21th International Conference on Very Large Data Bases, pages 78–89, Los Altos,
California, 1995. Morgan Kaufman.

[5] J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In D. Kraft,
O. Frieder, J. Hammer, S. Qureshi, and L. Seligman, editors, Proceedings of the 12th Inter-
national Conference on Information and Knowledge Management, New York, 2003. ACM.

[6] J. Lu and J. Callan. Federated search of text-based digital libraries in hierarchical peer-to-
peer networks. In J. Callan, N. Fuhr, and W. Nejdl, editors, SIGIR Workshop on Peer-to-
Peer Information Retrieval, 2004.

[7] H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval quality
for resource selection. In J. Callan, G. Cormack, C. Clarke, D. Hawking, and A. Smeaton,
editors, Proceedings of the 26th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, New York, 2003. ACM.

[8] H. Nottelmann and N. Fuhr. Comparing different architectures for query routing in peer-
to-peer networks. In ECIR, pages 253–264. Springer, 2006.

[9] J. Ritter. Why Gnutella can’t scale. No, really., 2001.
http://www.darkridge.com/∼jpr5/doc/gnutella.html.

[10] S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at TREC.
In Text REtrieval Conference, pages 21–30, 1992.

[11] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Digital libraries. In 1st Workshop on
Agents and P2P Computing, 2005.

[12] L. Si and J. Callan. A semi-supervised learning method to merge search engine results.
ACM Transactions on Information Systems, 24:457–49, 2003.

[13] L. Si, R. Jin, J. Callan, and P. Ogilvie. Language modeling framework for re-
source selection and results merging. In C. Nicholas, D. Grossman, K. Kalpakis,
S. Qureshi, H. van Dissel, and L. Seligman, editors, Proceedings of the 11th Interna-
tional Conference on Information and Knowledge Management, New York, 2002. ACM.
http://www-2.cs.cmu.edu/∼callan/Papers/cikm02-lsi.pdf.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications. In ACM SIGCOMM, 2001.
http://www.acm.org/sigcomm/sigcomm2001/p12-stoica.pdf .

http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www-2.cs.cmu.edu/~callan/Papers/cikm02-lsi.pdf
http://www.acm.org/sigcomm/sigcomm2001/p12-stoica.pdf

Central-Rank-Based Collection Selection in

Uncooperative Distributed Information Retrieval

Milad Shokouhi

School of Computer Science and Information Technology
RMIT University, Melbourne 3001, Australia

milad@cs.rmit.edu.au

Abstract. Collection selection is one of the key problems in distributed
information retrieval. Due to resource constraints it is not usually feasi-
ble to search all collections in response to a query. Therefore, the cen-
tral component (broker) selects a limited number of collections to be
searched for the submitted queries. During the past decade, several col-
lection selection algorithms have been introduced. However, their perfor-
mance varies on different testbeds. We propose a new collection-selection
method based on the ranking of downloaded sample documents. We test
our method on six testbeds and show that our technique can signifi-
cantly outperform other state-of-the-art algorithms in most cases. We
also introduce a new testbed based on the trec gov2 documents.

1 Introduction

Distributed information retrieval (dir) has attracted considerable research in-
terest during recent years. Centralized search engines are not capable of indexing
the hidden web [Raghavan and Garcia-Molina, 2001]. In addition, it is not feasi-
ble to crawl and index the web documents with the same rate that they change.
Dir has been introduced as a solution to these deficiencies. Dir techniques pro-
vide a search service over non-crawlable pages. They also return the recent ver-
sion of webpages without consuming costly resources for crawling. Distributed
search can be divided into three major steps; Firstly suitable collections are se-
lected for a query. Secondly, the query is sent to the selected collections and they
search their documents for suitable answers. Finally, the results from selected
collections are returned to the broker that then merges them for presentation to
the user.

In this paper, we focus on the collection selection stage. In dir systems, each
collection is represented by a set of documents and vocabularies usually known as
collection summaries or representation sets. In cooperative environments, collec-
tions provide the broker with their term statistics and summaries [Gravano et al.,
1997]. However, in real-life environments such as the web, collections may be
uncooperative. In this case, collections are not willing to share their informa-
tion and the broker should gather small summary sets for each collection by
sampling [Callan and Connell, 2001]. Random queries are sent to each collection
and results are downloaded and stored as collection representation sets.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 160–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Central-Rank-Based Collection Selection in Uncooperative DIR 161

We propose a novel collection selection algorithm that can be used in both
cooperative and uncooperative environments. However, we focus on the latter
scenario as it is more similar to the practical situations. For each entered query,
our method ranks collections according to the ranking of their centrally held
sampled documents. The sampled documents from all collections are gathered
in a single central index. Each query is executed on this index and the collection
weights are calculated according to the ranking of their sampled documents. In
the next sections we show that this simple idea can outperform the state-of-
the-art methods on many testbeds including our new testbed created from the
trec gov2 documents.

2 Collection Selection

For a given query, the broker ranks available collections based on the computed
similarity values for their representation sets. It is not usually feasible to search
all collections for a query. Therefore, the broker selects a few collections that are
more likely to return relevant documents. For this purpose, the broker evaluates
the similarity of the entered query with the collection summaries. These sum-
maries vary from term statistics in cooperative situations [Callan et al., 1995;
Gravano et al., 1997] to a limited number of documents downloaded by sam-
pling for uncooperative environments [Callan and Connell, 2001; Craswell et al.,
2000]. The broker chooses those collections that have a summary similar to the
query.

Introduced by Gravano et al. [1999], gloss uses the document frequency and
weight of each term to select suitable collections. However, gloss uses unrealistic
assumptions such as uniform term weight distribution across all collections. In
cvv [Yuwono and Lee, 1997], the fraction of documents inside each collection
that contain the query terms is used for collection selection.

Cori [Callan et al., 1995] applies inference networks for collection selection. It
has been reported as the most effective method in many papers [Craswell et al.,
2000; Powell and French, 2003], but there are question marks over its effective-
ness [D’Souza et al., 2004b].

Nottelmann and Fuhr [2003] suggest a decision-theoretic framework (dtf)
that selects the best collections while reducing the overall costs such as time
and money. Despite having a theoretical foundation, the reported performance
of dtf is worse than cori for short queries.

During recent years, new collection selection algorithms have been claimed to
produce better results than cori [D’Souza etal.,2004a; Si et al., 2002: Si and
Callan, 2003a: 2004]. Si et al. [2002] developed a language modeling framework
for distributed information retrieval. Their system slightly outperforms cori in
some cases. Redde [Si and Callan, 2003a] ranks the collections based on the
estimated number of relevant documents they contain. Redde has been shown
to be very effective on some testbeds. However, as we show in the next sections,
it produces poor results for some other testbeds.

162 M. Shokouhi

Si and Callan [2004] presented their Unified Utility Maximization (uum)
framework for collection selection. Uum performs slightly better than redde on
some testbeds. However, it uses training data and logistic models that require
human relevance judgments.

We use cori and redde as the benchmarks of our experiments because they
are the two well-known algorithms that do not require training data for collection
selection, and they both can work on uncooperative environments. In the next
section, we introduce a novel approach for selecting collections in dir systems.

3 Central-Rank-Based Collection Selection

In uncooperative environments, collection summaries usually consist of a limited
number of documents downloaded by query-based sampling [Callan and Connell,
2001]. The query is compared to each of these summaries and collections are se-
lected based on the similarity of their summaries with the query [Callan et al.,
1995] or according to the estimated number of relevant documents they contain
[Si and Callan, 2003a]. The ranking of sampled documents contains useful in-
formation that could be applied for selecting suitable collections. The set of all
collection summaries together approximates a global index of documents in all
collections and the ranking of summary documents could be seen as the result
of a query against this index.

We propose central-rank-based collection selection (crcs) as a new method
that ranks collections according to the ranking of their summary documents and
show that it can effectively select suitable collections.

In crcs, an effective retrieval model is applied to the index of all sampled
documents from collections. We refer to this model as the central sample search
engine (csse). For each query, csse ranks the downloaded documents from col-
lections. Then, the weight of each collection is calculated based on the ranks of
its sampled documents that are in the top γ results. We have arbitrarily set γ
to 50 for our experiments. How to identify an optimum value for this number is
left as future work. The documents ranked after γ are less likely to be relevant
and should have no impact on collection weights.

The top γ documents are ranked according to their probabilities of relevance.
Intuitively, the weight of a collection with a sampled document at rank one
should be incremented more than another collection with a sampled document
at rank say 40.

The impact of a sampled document D on the weight of its original collection
c is computed according to the position of that document in the top γ results.
In the simplest form, this can be computed linearly as below:

R(Dj) =
{

γ − j if j < γ
0 otherwise

(1)

where R(Dj) represents the impact of document D at the jth rank of results
returned by csse. The impact of documents decreases linearly according to their
ranks. However, previous studies [Joachims et al., 2005; Manmatha et al., 2001]

Central-Rank-Based Collection Selection in Uncooperative DIR 163

suggest that the importance of documents for users and their probabilities of rel-
evance have a negative exponential relation with the document ranks. Therefore,
it might be more suitable to assign document scores in a negative exponential
manner as follows:

R(Dj) = α exp(−β × j) if Dj ∈ Si (2)

Here, j is the rank of document D. Coefficient parameters α and β are two
constants respectively set to 1.2 and 2.8 in our experiments according to the
suggested figures by Joachims et al. [2005]. We use crcs(l) when the impact
values are computed linearly and crcs(e) when Eq. (2) is applied.

The size of a collection is also important for calculating its final weight. If
two collections contribute the same number of documents in the top-ranked re-
sults, the larger collection is likely to contain more relevant documents due to its
greater size. Collection size is an important factor that has to be considered dur-
ing collection selection. Kl-divergence [Si et al., 2002], redde [Si and Callan,
2003a] and uum [Si and Callan, 2004] all consider a collection size parameter
in their calculations. Since the exact values for collection sizes are not usually
available in uncooperative environments, we recommend that the size of each col-
lection be estimated using the capture-history method [Shokouhi et al., 2006b].

In our experiments, we assume that the size of all collection summaries is the
same (300 documents). In practice, collection summaries might be different in
size. Larger summaries are more likely to contain the query terms, which means
that collections with larger summaries are more likely to be selected for any
given query. To overcome this bias, crcs divides the weight of each collection
by the size of its representation set.

Putting this together, crcs calculates the weight of each collection as below:

Ci =
CH i

CH max × |Si|
×

∑
D∈Si

R(Dj) (3)

where, CH i is the size of collection i estimated by the capture-history method
[Shokouhi et al., 2006b]. We normalize the collection sizes by dividing the size of
each collection by the size of the largest collection involved (CH max). |Si| is the
size of the representation set for collection i that is the number of documents
downloaded by query-based sampling [Callan and Connell, 2001] from that col-
lection. The weight of each collection is calculated by summing up the impact
values for its summary documents. In summary, crcs computes the final weights
of collections as below:

– Csse runs the query and ranks the sampled documents on the broker.
– The top γ documents returned by csse are selected and their impact values

on the weights of their corresponding collections are calculated
– Collections are ranked according to the impact values of their sampled doc-

uments and their estimated sizes.

A similar technique is suggested by Craswell et al. [2000] for collection selec-
tion. In their approach, the broker sends a number of training multi-term probe

164 M. Shokouhi

queries to collections. The top results from each collection are downloaded and
gathered together in a single index. Then, the broker applies an effective re-
trieval model to rank the downloaded documents for the initial training queries.
The search effectiveness of collection are computed according to their contribu-
tion to the top n (they suggested n = 20) results when the query is executed
on the downloaded documents. Our approach is different to their technique in
several ways; they calculate an effectiveness score for each collection according
to its performance for the training queries. The final weight of a collection is
computed by adding its effectiveness factor to the score calculated by a stan-
dard collection selection algorithms such as cori. Unlike our approach, their
suggested technique has not been used independently without relying on other
collection selection methods. Also, while crcs can select effective collections on-
line, the suggested method by [Craswell et al., 2000] cannot capture this without
a sufficient number of offline training queries.

Redde [Si and Callan, 2003a] also uses a similar strategy for collection selec-
tion. However, it ignores the rank difference of documents in the central sample
index and concentrates on selecting collections with the highest number of rel-
evant documents (high recall). In contrast, our novel crcs method focuses on
selecting collections with high-quality documents (high precision).

In the following sections we compare the performance of crcs with the other
state-of-the-art methods on different testbeds.

4 Experimental Testbeds and Evaluation Metrics

Several testbeds have been developed for dir experiments. These testbeds may
be useful for evaluating dir methods for specific applications such as enterprise
search. However, most of them are not suitable for evaluating dir techniques on
the web because:

– The proposed testbeds are usually much smaller than the web collections
and cannot be considered as good instances of the current web servers. The
largest testbed reported so far is about 18 GB used by Hawking and Thomas
[2005]. The other common testbeds are at most one sixth of this size[Powell
and French, 2003: Si and Callan, 2003b:a].

– Collections are generated artificially by allocating each document to a col-
lection according to a predefined criteria. This might be the author name or
the year of publication[Powell and French, 2003; Si and Callan, 2003b;a].

– Collections usually only contain documents from the trec newswire data.
Considering the diversity of topics on the web, testbeds containing only
news-related documents are not sufficient for unbiased evaluations.

In addition to the testbed deficiencies, there is a common defect with re-
lated work in this area; proposed algorithms are usually only tested on a few
testbeds and their robustness has not been evaluated on different test data.
In Section 5, we show that the performance of dir methods vary substantially
on different testbeds. This is consistent with previous work by D’Souza et al.

Central-Rank-Based Collection Selection in Uncooperative DIR 165

Table 1. Testbed statistics

Number of Documents Size
×1000 (MB)

Testbed Size (GB) Min Avg Max Min Avg Max

trec123-100col-bysource 3.2 0.7 10.8 39.7 28 32 42
trec4-kmeans 2.0 0.3 5.7 82.7 4 20 249
100-col-gov2 110.0 32.6 155.0 717.3 105 1126 3891

[2004a] that investigates the impact of testbed characteristics on collection se-
lection algorithms. An algorithm that produces the best results on one dataset
does not necessarily perform as well on another. We also introduce a new testbed
based on the trec gov2 data. Our new testbed is more than six times larger
than the largest dir testbed reported so far; it is about 36 times larger than
trec123-100col-bysource [Powell and French, 2003; Si and Callan, 2003b;a; 2004;
Si et al., 2002], and 55 times larger than trec4-kmeans [Si and Callan, 2003b;
Xu and Croft, 1999]. We test our method on six testbeds, so that we can fairly
compare its performance and robustness with other available approaches. Ta-
ble 1 includes information about the three major testbeds that have been used
in our experiments. The other three testbeds are all generated from trec123-
100col-bysource, thus we do not present them in the table.

– trec4-kmeans (trec4): One hundred collections created from the trec4
data. A k-means clustering algorithm have been used to organize the collec-
tions by topic [Xu and Croft, 1999]. Trec topics 201–250 (description) and
their relevance judgments are used for performance evaluations. Collections
in this testbed are small and the average query length is 7.2 words.

– trec123-100col-bysource (uniform): One hundred collections are created
by organizing the documents from the trec disks 1, 2, and 3 by source
and publication date. It is one of the most popular dir testbeds and has
been used in many papers [Powell and French, 2003; Si and Callan, 2003b;a;
2004; Si et al., 2002]. Trec topics 51–100 (title) are used as queries with the
average length of 3 words per query.

– 100-col-GOV2 testbed (GOV2): In this new testbed, documents from
the largest 100 servers in the trec gov2 data—in terms of the number of
crawled pages—have been extracted and located in one hundred separate
collections. Trec topics 701–750 (title) were used as queries. On average
there are 3.2 words per query. The documents in all collections are from
crawled webpages and the size of this testbed is many times larger than the
current alternatives.

The other three testbeds are generated artificially from the uniform testbed
[Powell and French, 2003; Si and Callan, 2003a; 2004].

– trec123-AP-WSJ-60col (relevant): 24 Associate Press collections in the
uniform testbed are collapsed into a single large APress collection. The same
process is applied to 16 Wall Street Journal collections and they create a large

166 M. Shokouhi

WSJournal collection. The other collections remain unchanged. Two large
collections have higher density of relevant documents for the trec queries.

– trec123-2ldb-60col (representative): Collections in the uniform testbed
are sorted by their name. Every fifth collection starting with the first is
merged into a large “representative” collection. The same process is applied
to every fifth collection starting from the second collection and they form
another large representative collection. The other collections are unchanged.

– trec123-FR-DOE-81col (nonrelevant): The 13 Federal Register and 6
Department of Energy collections in the uniform testbed are collapsed in
two large collections respectively called FR and DOE. The rest of collections
remain as were before. The larger collections have a lower density of relevant
documents.

Collection selection algorithms are often compared using a recall metric Rk

[Powell and French, 2003; Si and Callan, 2003a; 2004]:

Rk =
∑k

i=1 Ei∑k
i=1 Bi

(4)

Here, E is the collection selection ranking (cori, redde, crcs). B is the baseline
ranking that is the relevance based ranking (rbr) [Powell and French, 2003] in
our experiments. Ei and Bi are respectively the number of relevant documents
in the ith ranked collection of E and B.

Choosing collections with a greater number of relevant documents (high re-
call) does not always lead to higher search effectiveness in dir experiments
[Si and Callan, 2003a; 2004]. Therefore, we also assess the effectiveness of al-
gorithms on each testbed using relevance judgments. In all testbeds, we down-
load 300 documents by query-based sampling[Callan and Connell, 2001] for each
collection. Although it has been argued that using static summary sizes for col-
lections is not always recommended [Baillie et al., 2006; Shokouhi et al., 2006a],
we use this number to make our results comparable to other published work in
this area [Callan and Connell, 2001; Craswell et al., 2000; Si and Callan, 2003a;
2004]. Each collection returns at most 100 answers to the broker for the entered
query. We used ssl [Si and Callan, 2003b] algorithm to merge the returned re-
sults from the selected collections. The next section discusses the experimental
results.

5 Results

Figure 1 depicts the performance of different collection selection algorithms on
the trec4 and uniform testbeds. The horizontal axis in these figures shows the
cutoff values, which are the number of collections that are selected for each query.
The goal of collection selection methods is to select a few collections that contain
the best answers. Therefore, we only show the Rk values for cutoffs smaller than
20. This number is consistent with dir experiments that are reported elsewhere
[Si and Callan, 2003a; 2004]. On the trec4 testbed, all methods produce almost

Central-Rank-Based Collection Selection in Uncooperative DIR 167

0 5 10 15 20

Cutoff (trec4)

0.0

0.2

0.4

0.6

0.8

1.0
R

 v
al

ue

CORI
ReDDE
CRCS(l)
CRCS(e)

0 5 10 15 20

Cutoff (uniform)

0.0

0.2

0.4

0.6

0.8

1.0

R
 v

al
ue

Fig. 1. R values for the cori, redde and crcs algorithms on the trec4-kmeans (left)
and trec123-100col-bysource (right) testbeds

0 5 10 15 20

Cutoff (representative)

0.0

0.2

0.4

0.6

0.8

1.0

R
 v

al
ue

CORI
ReDDE
CRCS(l)
CRCS(e)

0 5 10 15 20

Cutoff (relevant)

0.0

0.2

0.4

0.6

0.8

1.0

R
 v

al
ue

Fig. 2. R values for the cori, redde and crcs algorithms on the trec123-2ldb-60col
(left) and trec123-AP-WSJ-60col (right) testbeds

the same Rk values for different cutoff points. For the uniform testbed, however,
redde has a clear advantage while other methods have similar performance.
We show later in this section that the advantage in recall does not have any
significant impact on the final search effectiveness.

The Rk values for the representative and relevant testbeds are illustrated in
Fig. 2. On the representative testbed, the difference between methods is negli-
gible. On the relevant testbed, cori produces far worse results than the other
approaches. Redde and crcs(l) show similar outputs and they both work better
than crcs(e) for smaller cutoff points.

Figure 3 shows the Rk values produced by different methods on the gov2
and non-relevant testbeds. The difference between methods on the non-relevant
dataset is negligible for all cutoff values. On the gov2 testbed, cori selects
collections with more relevant documents for smaller cutoff points. For larger
cutoffs, all methods show similar outputs.

Higher recall values in the collection selection stage do not always lead to
high precision in the final results [Si and Callan, 2003a; 2004]. Therefore, we

168 M. Shokouhi

0 5 10 15 20

Cutoff (nonrelevant)

0.0

0.2

0.4

0.6

0.8

1.0
R

 v
al

ue

CORI
ReDDE
CRCS(l)
CRCS(e)

0 5 10 15 20

Cutoff (GOV2)

0.0

0.2

0.4

0.6

0.8

1.0

R
 v

al
ue

Fig. 3. R values for the cori, redde and crcs algorithms on the trec123-FR-DOE-
81col (left) and 100-col-gov2 (right) testbeds

Table 2. Performance of different methods for the Trec4 (trec4-kmeans) testbed.
Trec topics 201–250 (long) were used as queries.

Cutoff=1 Cutoff=5

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
CORI 0.3000 0.2380 0.2133† 0.1910† 0.3480 0.2980 0.2587 0.2380
ReDDE 0.2160 0.1620 0.1373 0.1210 0.3480 0.2860 0.2467 0.2190

CRCS(l) 0.2960 0.2260 0.2013 0.1810† 0.3520 0.2920 0.2533 0.2310
CRCS(e) 0.3080 0.2400 0.2173† 0.1910† 0.3880 0.3160 0.2680 0.2510

evaluate the search effectiveness of algorithms using the trec queries and rel-
evance judgments. We only report the results for cutoff=1 and cutoff=5. The
former shows the system outputs when only the best collection is selected while
for the latter, the best five collections are chosen to get searched for the query.
We do not report the results for larger cutoff values because cutoff=5 has shown
to be a reasonable threshold for dir experiments on the real web collections
[Avrahami et al., 2006]. The P@x values show the calculated precision on the
top x results.

We select redde as the baseline as it does not require training queries and its
effectiveness is found to be higher than cori and older alternatives [Si and callan,
2003a]. The following tables compare the performance of discussed methods on
different testbeds. We used the t-test to calculate the statistical significance
of difference between approaches. For each table, † and ‡ respectively indicate
significant difference at the 99% and 99.9% confidence intervals between the
performance of redde and other methods.

Results in Table 2 show that on the trec4 testbed, methods produce similar
precision values when five collections are selected per query. The numbers also
suggest that redde is not successful in selecting the best collection. It produces
poorer results than the other methods and the difference is usually significant
for P@15 and P@20.

Central-Rank-Based Collection Selection in Uncooperative DIR 169

Table 3. Performance of collection selection methods for the uniform (trec123-100col-
bysource) testbed. Trec topics 51–100 (short) were used as queries.

Cutoff=1 Cutoff=5

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
CORI 0.2520 0.2140 0.1960 0.1710 0.3080 0.3060 0.2867 0.2730
ReDDE 0.1920 0.1660 0.1413 0.1280 0.2960 0.2820 0.2653 0.2510
CRCS(l) 0.2120 0.1760 0.1520 0.1330 0.3440 0.3240 0.3067 0.2860

CRCS(e) 0.3800‡ 0.3060‡ 0.2613‡ 0.2260† 0.3960 0.3700† 0.3480† 0.3310†

Table 4. Performance of collection selection methods for the representative (trec123-
2ldb-60col) testbed. Trec topics 51–100 (short) were used as queries.

Cutoff=1 Cutoff=5

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
CORI 0.2160 0.2040 0.1773 0.1730 0.3520 0.3500 0.3347 0.3070
ReDDE 0.3320 0.3080 0.2960 0.2850 0.3480 0.3220 0.3147 0.3010
CRCS(l) 0.3160 0.2980 0.2867 0.2740 0.3160 0.3160 0.2973 0.2810
CRCS(e) 0.2960 0.2760 0.2467 0.2340 0.3400 0.3500 0.3333 0.3090

On the uniform testbed (Table 3), crcs(e) significantly outperforms the other
alternatives for both cutoff values. Cori, redde, and crcs(l) show similar per-
formance on this testbed. Comparing the results with the Rk values in Figure 1
confirms our previous statement that selecting collections with a high number
of relevant documents does not necessarily lead to an effective retrieval.

For the representative testbed as shown in Table 4, there is no significant
difference between methods for cutoff=5. Crcs(l), crcs(e) and redde produce
comparable performance when only the best collection is selected. The precision
values for cori when cutoff=1 are shown in italic to indicate that they are
significantly worse than redde at the 99% confidence interval.

On the relevant testbed (Table 5), all precision values for cori are signifi-
cantly inferior to that of redde for both cutoff values. Redde in general pro-
duces higher precision values than crcs methods. However, none of the gaps are
detected statistically significant by the t-test at the 99% confidence interval.

Table 5. Performance of collection selection methods for the relevant (trec123-AP-
WSJ-60col) testbed. Trec topics 51–100 (short) were used as queries.

Cutoff=1 Cutoff=5

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
CORI 0.1440 0.1280 0.1160 0.1090 0.2440 0.2340 0.2333 0.2210
ReDDE 0.3960 0.3660 0.3360 0.3270 0.3920 0.3900 0.3640 0.3490
CRCS(l) 0.3840 0.3580 0.3293 0.3120 0.3800 0.3640 0.3467 0.3250
CRCS(e) 0.3080 0.2860 0.2813 0.2680 0.3480 0.3420 0.3280 0.3170

170 M. Shokouhi

Table 6. Performance of collection selection methods for the non-relevant (trec123-
FR-DOE-81col) testbed. Trec topics 51–100 (short) were used as queries.

Cutoff=1 Cutoff=5

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
CORI 0.2520 0.2100 0.1867 0.1690 0.3200 0.2980 0.2707 0.2670
ReDDE 0.2240 0.1900 0.1813 0.1750 0.3480 0.2980 0.2707 0.2610
CRCS(l) 0.2040 0.1860 0.1813 0.1800 0.3360 0.3220 0.2973 0.2860

CRCS(e) 0.3200† 0.2820† 0.2533† 0.2240 0.3880 0.3600 0.3387† 0.3210†

Table 7. Performance of collection selection methods for the gov2 (100-col-gov2)
testbed. Trec topics 701–750 (short) were used as queries.

Cutoff=1 Cutoff=5

P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
CORI 0.1592† 0.1347† 0.1143† 0.0969† 0.2735 0.2347 0.2041 0.1827
ReDDE 0.0490 0.0327 0.0286 0.0235 0.2163 0.1837 0.1687 0.1551
CRCS(l) 0.0980 0.0755 0.0667 0.0531 0.1959 0.1510 0.1442 0.1286
CRCS(e) 0.0857 0.0714 0.0748 0.0643 0.2776 0.2469 0.2272 0.2122

The results for crcs(l), redde and cori are comparable on the non-relevant
testbed (Table 6). Crcs(e) significantly outperforms the other methods in most
cases. On the gov2 testbed (Table 7), cori produces the best results when
cutoff=1 while in the other scenarios there is no significant difference between
the methods.

Overall, we can conclude that crcs(e) selects better collections and its high
performance remains robust. In none of the reported experiments, the precision
values for crcs(e) were significantly poorer than any other method at the 99%
confidence interval. However, in many cases, the performance of crcs(e) was
significantly better than the second best method at the 99% or 99.9% confidence
intervals. Cori and redde showed variable performance on different testbeds,
each outperforming the other on some datasets.

6 Conclusions

We have introduced a new collection selection method for uncooperative dir en-
vironments. We have shown that our proposed crcs method can outperform the
current state-of-the-art techniques. We investigated the robustness of different
collection selection algorithms and showed that the performance of redde and
cori changes significantly on different testbeds while crcs produces robust
results. We also introduced a new testbed for dir experiments based on the
trec gov2 dataset. Our proposed testbed is about 36 times larger than the
most well-known dir testbeds and more than 6 times larger than the largest
dir testbed ever reported. Moreover, unlike traditional dir testbeds that docu-

Central-Rank-Based Collection Selection in Uncooperative DIR 171

ments are assigned artificially into collections, collections in this testbed contain
downloaded web documents arranged by server.

Experiments reported in this paper are based on the assumption that all
collections are using the same retrieval model with equal effectiveness. However,
in practice, collections often use different retrieval models and have different
effectiveness. We plan to extend our experiments on collections with different
retrieval models. Finally, the most proper values for α, β and γ have not been
investigated and will be explored in our future research.

Acknowledgment

I am grateful to Justin Zobel, for his valuable comments on this work.

References

T. Avrahami, L. Yau, Luo Si, and Jamie Callan. The FedLemur: federated search in the
real world. Journal of the American Society for Information Science and Technology,
57(3):347–358, 2006.

M. Baillie, L. Azzopardi, and F. Crestani. Adaptive query-based sampling of distributed
collections. In SPIRE String Processing and Information Retrieval Symposium, pages
316–328, Glasgow, UK, 2006.

J. Callan and M. Connell. Query-based sampling of text databases. ACM Transactions
on Information Systems, 19(2):97–130, 2001.

J. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with inference
networks. In Proc. ACM SIGIR Conf., pages 21–28, Seattle, Washington, 1995.

N. Craswell, P. Bailey, and D. Hawking. Server selection on the World Wide Web. In
Proc. ACM Conf. on Digital Libraries, pages 37–46, San Antonio, Texas, 2000.

D. D’Souza, J. Thom, and J. Zobel. Collection selection for managed distributed doc-
ument databases. Information Processing and Management, 40(3):527–546, 2004a.

D. D’Souza, J. Zobel, and J. Thom. Is CORI effective for collection selection? an explo-
ration of parameters, queries, and data. In Proc. Australian Document Computing
Symposium, pages 41–46, Melbourne, Australia, 2004b.

L. Gravano, C. K. Chang, H. Garcia-Molina, and A. Paepcke. STARTS: Stanford
proposal for Internet meta-searching. In Proc. ACM SIGMOD Conf., pages 207–
218, Tucson, Arizona, 1997.

L. Gravano, H. Garcia-Molina, and A. Tomasic. GlOSS: text-source discovery over the
Internet. ACM Transactions on Database Systems, 24(2):229–264, 1999.

D. Hawking and P. Thomas. Server selection methods in hybrid portal search. In Proc.
ACM SIGIR Conf., pages 75–82, Salvador, Brazil, 2005.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting
clickthrough data as implicit feedback. In Proc. ACM SIGIR Conf., pages 154–161,
Salvador, Brazil, 2005.

R. Manmatha, T. Rath, and F. Feng. Modeling score distributions for combining the
outputs of search engines. In Proc. ACM SIGIR Conf., pages 267–275, New Orleans,
Louisiana, 2001.

H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval
quality for resource selection. In Proc. ACM SIGIR Conf., pages 290–297, Toronto,
Canada, 2003.

172 M. Shokouhi

A. L. Powell and J. French. Comparing the performance of collection selection algo-
rithms. ACM Transactions on Information Systems, 21(4):412–456, 2003.

S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In Proc. 27th Int. Conf.
on Very Large Data Bases, pages 129–138, Roma, Italy, 2001. Morgan Kaufmann
Publishers Inc.

M. Shokouhi, F. Scholer, and J. Zobel. Sample sizes for query probing in uncooperative
distributed information retrieval. In Proc. Asia Pacific Web Conf., pages 63–75,
Harbin, China, 2006a.

M. Shokouhi, J. Zobel, F. Scholer, and S.M.M. Tahaghoghi. Capturing collection size
for distributed non-cooperative retrieval. In Proc. ACM SIGIR Conf., pages 316–
323, Seattle, Washington, 2006b.

L. Si and J. Callan. Unified utility maximization framework for resource selection. In
Proc. ACM CIKM Conf., pages 32–41, Washington, 2004.

L. Si and J. Callan. Relevant document distribution estimation method for resource
selection. In Proc. ACM SIGIR Conf., pages 298–305, Toronto, Canada, 2003a.

L. Si and J. Callan. A semisupervised learning method to merge search engine results.
ACM Transactions on Information Systems, 21(4):457–491, 2003b.

L. Si, R. Jin, J. Callan, and P. Ogilvie. A language modeling framework for resource
selection and results merging. In Proc. ACM CIKM Conf., pages 391–397, McLean,
Virginia, 2002.

J. Xu and B. Croft. Cluster-based language models for distributed retrieval. In Proc.
ACM SIGIR Conf., pages 254–261, Berkeley, California, United States, 1999.

B. Yuwono and D. L. Lee. Server ranking for distributed text retrieval systems on
the Internet. In Proc. Conf. on Database Systems for Advanced Applications, pages
41–50, Melbourne, Australia, 1997.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 173 – 184, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Results Merging Algorithm Using Multiple Regression
Models

George Paltoglou1, Michail Salampasis2, and Maria Satratzemi1

1 University of Macedonia, Egnatias 156, 54006 Thessaloniki, Greece
2 Technological Educational Institute of Thessaloniki, P.O. BOX 141, 57400 Thessaloniki,

Greece
{gpalt,cs1msa}@it.teithe.gr, maya@uom.gr

Abstract. This paper describes a new algorithm for merging the results of
remote collections in a distributed information retrieval environment. The
algorithm makes use only of the ranks of the returned documents, thus making
it very efficient in environments where the remote collections provide the
minimum of cooperation. Assuming that the correlation between the ranks and
the relevancy scores can be expressed through a logistic function and using
sampled documents from the remote collections the algorithm assigns local
scores to the returned ranked documents. Subsequently, using a centralized
sample collection and through linear regression, it assigns global scores, thus
producing a final merged document list for the user. The algorithm’s
effectiveness is measured against two state-of-the-art results merging
algorithms and its performance is found to be superior to them in environments
where the remote collections do not provide relevancy scores.

Keywords: Distributed Information Retrieval, Results Merging, Algorithms.

1 Introduction

With the proliferation of the Web, it has become increasingly difficult for users to
find relevant information to satisfy their information needs. Often, they are faced with
the decision of choosing amongst several information sources in order to find the
most appropriate that will provide the necessary information. A solution to this
problem is provided by search engines, which give users a starting point in finding
the information they need.

General purpose search engines nonetheless, only offer a limited solution. They
cannot index the whole of the WWW because of its prohibitive size and rate of
growth and thus index only parts of it. In addition to that, a large number of web sites,
collectively known as invisible web [2, 14], are either not reachable by search engines
or do not allow their content to be indexed by them and offer their own search
capabilities. Thus, a user posing a query to general purpose search engines may be
missing on relevant and highly qualitative information.

Distributed Information Retrieval (DIR [3]) offers a possible solution to the above
problems by offering users the capability of simultaneously searching remote
document collections (i.e. search engines or specific sites) through a single interface.

The challenge posed by DIR is on how to combine the results from multiple,
independent, heterogeneous document collections into a single merged result in such

174 G. Paltoglou, M. Salampasis, and M. Satratzemi

a fashion that the effectiveness of the combination approximates or even surpasses the
effectiveness of searching the entire set of documents as a single collection, if one
was possible. This process can be perceived as four separate but often interleaved
sub-processes. The source representation stage [4, 16], in which surrogates of the
available remote collections are created. The source selection [6, 12, 16] stage, in
which a subset of the available information collections is chosen to process the query.
The query submission stage, in which the query is submitted to the selected
collections. The results merging [8, 15] stage, in which the separate results are
combined into a single merged result list which is returned to the user.

The focus of this paper is on the last part of distributed information retrieval
process. Research [3, 6, 8, 15] has shown that the results merging phase is one of the
most important elements in DIR, because it directly affects the response that the users
get in return to their information need. Even if the most appropriate information
sources have been chosen in the previous stages, if the merging isn’t effective the
overall quality of the retrieval process will deteriorate.

The rest of the paper is divided as follows. Section 2 reports on prior work. Section
3 describes the new methodology proposed. Section 4 describes the setup of the
experiments. Section 5 reports and discusses the results and section 6 concludes the
paper, summarizing the findings and presenting ideas for further development.

2 Prior Work

Significant research has been made in distributed information retrieval in recent years.
Most of the focus has been on source selection, but significant progress has also been
made in results merging, too.

The STARTS [9] initiative is an attempt to facilitate the task of querying multiple
document sources through a commonly agreed protocol. It provides a solution for
acquiring resource descriptions in a cooperative environment and thus facilitates
source selection and results merging.

When cooperation from collections is not available (i.e. isolated environments),
techniques have been developed that allow for the estimation of their contents. Query-
based sampling [4] is such a technique that creates samples of the collections through
multiple one-term queries. Through the sample, important statistics concerning the
contents of the collection (such as terms, term frequencies, document frequencies etc)
can be inferred.

Merging the result lists from individual collection is a complex problem not only
because of the variety of retrieval engines that may be used by the individual
collections, but also because of the diversity of collection statistics. Some of the
results merging algorithms that have been proposed in recent years make use only of
the ranked lists of documents returned by the individual collections, while others
assume that the remote collections also return relevancy scores.

One of the first experiments in results merging was made by Voorhees in [17]. In
that work two approaches where tested: one simple interleaving algorithm and a
probabilistic biased c-faced die algorithm. The interleaving approach is based on the
assumption that all chosen collections have the same number of relevant documents
and works by simply interleaving their results one by one. It was found to be highly
ineffective since this assumption is rather improbable in most environments. The

 Results Merging Algorithm Using Multiple Regression Models 175

c-faced die approach produced better results and was considered the most
sophisticated technique that could be adopted in isolated environments in the absence
of both sample collections and relevancy scores. The probabilistic nature of the
algorithm was later re-examined in [18], and various deterministic approaches were
presented.

In environments where the remote collections return not only ranked lists of
documents but also relevancy scores, a variety of approaches have been proposed.
Raw score merging merges the results as they are returned from the remote
collections in a descending order, but it was found to be inefficient since for it to
function properly, it required that the relevancy scores be comparable (i.e. between 0
and 1). The problem of incomparable scores was overcome by normalizing the
returned scores at a common range. This approach produced better results, but the
problem of different corpus statistics, eventually resulted in incomparable scores.

Weighted scores merging overcomes the above issue by assigning each document a
score which is based both on the relevancy of the document itself and the relevancy of
the collection where it belongs. The CORI results merging algorithm [3, 6] is based
on a heuristic weighted scores merging algorithm and is considered state-of-the-art.
The final score of each document is calculated as shown below:

C`i= (Ci-Cmin) / (Cmax-Cmin) (1)

D`= (D-Dmin) / (Dmax-Dmin) (2)

D``= (D`+0.4*D`*C`i) / 1.4 (3)

Equations (1) and (2) are used to normalize the collection and document scores to a
range of 0 to 1 while equation (3) assigns the final weighted document relevancy score.

The work presented in this paper is influenced by the work in [15]. The algorithm
presented in that paper, named semi-supervised learning (SSL), makes use of a
centralized index, comprised of all the sampled documents from the remote
collections. The algorithm takes advantage of the common documents between the
centralized index and the remote collections and their corresponding relevancy scores
to estimate a linear regression model between the two scores.

The work presented in this paper differs from that work considerably in that it does
not rely on relevancy scores returned from the remote collections, only ranked lists of
documents. It is therefore much more efficient in environments where the remote
collection provide minimum cooperation.

The results merging problem is often confused with the metasearch problem,
where a number of information retrieval algorithms pose a query to a single document
collection or multiple similar collections [10]. Most of the approaches under that
context are based on the concept that the more a document appears at the returned
lists of the individual algorithms, the more relevant it is. The work presented in this
paper assumes that the remote collections have no documents in common (i.e. are
non-intersecting), thus making the utilization of the above algorithms inappropriate.

Last but not least, a number of approaches download “on the fly”, partially or fully,
the returned documents in order to produce a final ranking [8]. The advantage of these
methods is that they can estimate “first hand” the relevancy of a document. The
disadvantages are that they have a significant time overhead and increased bandwidth
requirements even if the download is only partial.

176 G. Paltoglou, M. Salampasis, and M. Satratzemi

3 Results Merging Algorithm Using Multiple Regression Models

Most successful results merging algorithms [6, 15] rely on the concept that the remote
collections return relevancy scores along with their ranked lists. However, in most
modern environments, that is not the case. More often, remote collections return only
ranked lists, relying on the fact that the average user has no need for relevancy scores,
since they cannot be directly interpreted. Unfortunately, much less information is
conveyed in rankings. Even if a collection is minimally relevant to a query, and the
returned documents are only remotely relevant themselves, the rankings are the same
as those provided by a very relevant collection returning very relevant documents.

3.1 Maximizing Usage of Local Resources

The motivation behind the results merging algorithm presented in this paper is to
function effectively in environments where the remote collections provide the
minimum of cooperation. By minimum, it is assumed that the remote collections are
able to run queries and return ranked lists of documents, without scores. In order to
achieve the goal of effectiveness, it is important for the algorithm to maximize the
usage of available local resources. The sample collections that are created through
query-sampling are readily available to the algorithm since they are stored locally and
are under the control of the local authority. Their primarily use is for source selection
and are usually discarded afterwards. It was not until the work in [15] that they were
also utilized in later stages of the distributed information retrieval process.

In that work, all the sample documents from the individual collections were
indexed into one single centralized index. The purpose of that index was to function
as a representative of a single global index that would be created if all the documents
were available for indexing. Specifically, the document and term frequency patterns
were expected to resemble those that would be available under a centralized system.

The present work goes a step further and exploits this idea even more by regarding
the sample collection of each remote collection as its representative. Under that
notion, it is assumed that important statistics between the two collections (sample –
remote) share common patterns. It is not assumed, nor is it necessary, that the sample
collection be regarded as a complete representative of the remote collection, only that
the most prominent features of the remote would still be valid in the sample.

3.2 Lack of Relevancy Scores

Previous work [1] attempted to make up for the lack of relevancy scores wherever
that it was encountered by assuming that there is a linear mapping between the ranks
of documents and the relevancy scores. Specifically, in cases where the remote
collections did not return relevancy scores, artificial scores were assigned to the
returned documents, giving a score of 0.6 to the 1st ranked document and decreasing
at a steady rate until assigning a score of 0.4 to the last.

It has been shown in [7] none the less, that the decrease in relevancy is not linearly
connected to the ranking. Specifically, it was shown that a logistic function, with b<0,
would provide a better mapping. According to that work, the probability that
document Di is relevant given its rank xi, is given by the equation:

 Results Merging Algorithm Using Multiple Regression Models 177

(4)

Figure 1 demonstrates the expected correlation between relevancy and ranking.

Fig. 1. Graph demonstrating the expected correlation between rank (x) and probability of
relevance (y). A logistic function with b < 0 was used to generate the S-curve.

Based on the above, the present work moves away from assigning artificial scores
linearly and attempts to estimate the actual graph for each individual collection in
order to produce accurate relevancy scores.

3.3 Estimating Local Relevancy Scores from Rankings

Following the source selection stage, the query is executed at the remote collections
and in parallel on the locally stored samples of the selected collections and on the
centralized index. We have used the inquery retrieval algorithm to query the local
collections and the centralized index but any effective retrieval algorithm would do
(kl divergence [19], okapi [13] etc). For each collection, two lists of documents are
returned, one from the remote collection, containing only a ranked list of documents
and one from the local sample, containing relevancy scores. The result list from the
centralized index is disregarded for the time being, as it is incorporated into the
algorithm at a latter stage. For each collection, the two document lists are compared
and all the common documents are stored along with the rank that they obtained at the
remote collection and the relevancy score at the local sample.

3.3.1 Estimating the S-Curve for Each Collection
Given the common documents found between the remote and the sampled collections,
the algorithm estimates the S-curve for each collection, thus assigning local scores to
the unseen documents returned from the remote collections. Influenced by the work in
[7], we hypothesize that the correlation between the rank X of a document and the
relevancy score Y is given by a logistic function:

(5)

178 G. Paltoglou, M. Salampasis, and M. Satratzemi

Applying the following transformations, we are able to modify the above equation
into a linear one:

Y/(1-Y) = ea+b*X (6)

ln[Y/(1-Y)]=a + b*X (7)

logit[Y]=a + b*X (8)

We need to estimate the parameters a, b of the above model in order to estimate the
S-curve for each collection. Since equation (8) is a linear one, that estimation can be
accomplished through linear regression.

3.3.2 Linear Regression
A linear regression model can be formally stated as:

y=a + b*x + e (9)

where x is the independent variable (in our case, the rank of the document at the remote
collection), y is the dependent variable (the similarity score of the document in the
sample collection), a and b are the parameters of the model and e is the error (see below).

The observations used for the estimation of the model are pairs (xi, yi) i=1,…,n
where xi is the rank of the ith common document, yi is the relevancy score of the
document in the sample collection and n is the number of common documents found.
Under that context, the aim of the model is to estimate parameters a and b that
minimize the error e which represents the difference between the observed values of y
and the ones estimated through the model. The best way to accomplish this is through
least-squares regression analysis. In particular, the algorithm aims at minimizing the
sum of squared residuals S:

(10)

where yi is the observed relevancy score of the ith common document and ŷi is the one
estimated by the model.
The problem can be formalized using matrix terminology as follows:

Y=X*B + e
where

(11)

where n is the number of common documents found. The optimal solution for
parameters a and b is the one that minimizes S in equation (10) and is given by:

B=(X`X)-1X`Y (12)

 Results Merging Algorithm Using Multiple Regression Models 179

In the experiments that were conducted we used only the first 10 common
documents and disregarded the rest. Also, in order to better simulate the decline at the
end of the graph (Fig.1), we inserted a “fake” common document at rank 3000, with
score 0.001. Although these two adjustments were not necessary, they were found to
increase the effectiveness of the algorithm.

The above process is repeated for each collection chosen by the source selection
algorithm. Applying equation (5) with the estimated parameters for each remote
collection, the algorithm assigns local relevancy scores to all the documents returned.

3.4 Estimating Global Relevancy Scores

Having estimated a local score for each document returned from the remote
collections, the algorithm moves to the second phase, which is to estimate global
scores for the returned documents. It is at this stage that the result list returned from
the centralized index comes into use. As previously, the algorithm locates the
common documents returned from the sample collections and the centralized index
and stores their respective scores and fits a linear regression model to the data.

One might question whether linear regression is the best choice, or whether a
polynomial (non-linear) regression would fit the data in a better way. Various reasons
suggested the above decision. First of all, linear regression is consistent with the work
done in [15], where a linear regression model is used to fit the relevancy scores
attained from common documents at the remote collection and at the centralized
index. Also, extensive early experiments showed that the benefit from going from a
linear to a non-linear model would be minimal.

The pairs (xi, yi) i=1,…,m that will serve in the estimation of the parameters a and
b in this case are xi (the score assigned to the ith common document from the sample
collection) and yi (the score assigned to the ith common document from the centralized
index). Again, the preferred methodology for estimating the parameters is the least-
squares regression analysis, for which the optimal solution is given by equation (12).

Having estimated parameters a and b for each collection, the algorithm applies
equation (9) to all the documents returned from the remote collections, using as
independent variable the local score (x) that was attributed to them during the first
phase of the algorithm and producing a final global score (y).

4 Experiment Setup

We used the TREC123 testbed, divided into 100 collections [12], that has been used
extensively in DIR experiments. More information is provided below:

Trec123-100col-bysource: The documents in TREC 1, 2, 3 CDs are divided in 100
non-intersecting collections, organized by source and publication date. The contents
of the collections are somewhat heterogeneous.

Table 1. Statistics about the collection

Number of Documents Name Number of
Collections

Size in GBs
Min Max Avg

Trec123-100col 100 3.2 752 39713 10782

180 G. Paltoglou, M. Salampasis, and M. Satratzemi

For queries, we used the title field from TREC topics 51-150. The average length
of the queries is 3.1, which is typical for web queries.

Table 2. Statistics about the queries

Name Number of
Queries

TREC Topic
Set

TREC Topic
Field

Av. Length in
Words

Trec123-100col 100 51-150 Title 3.1

For the experiments that were conducted, we used query-based sampling [4] for
source representation, sending one-word queries and downloading the first four
documents until a total of 300 documents per collection had been indexed. For source
selection, we used CORI [6], as it is one of the best performing algorithms:

T=df / (df+50+150*cw/avg_cw) (13)

I=log[(|DB|+0.5)/cf] / log[|DB|+1.0] (14)

p(rk/Ci)=b + (1-b)*T*I (15)

where df is the number of documents in collection Ci that contain term rk, cf is the
number of collection that contain term rk, cw is the number of terms in Ci, avg_cw is
the average cw, |DB| is the number of available remote collections and b is the default
belief, set to the default value of 0.4.

An important factor that had to be examined was the retrieval algorithm that would
be used at the remote collections. Two strategies were possible; we could either
assume that all the remote collections operate on the same information retrieval
algorithm, or that those differ. In order to make the experiments more realistic, the
second approach was adopted. Three retrieval algorithms were implemented (inquery
[5], kl-divergence language model [19] and the popular okapi algorithm [13]) and
they were assigned to the remote collections in a round robin fashion. All the
algorithms, including our own, were implemented using the Lemur Toolkit [11].

We also had to carefully consider the range of artificial scores that CORI and SSL
would use. In [1] it was suggested that a good range would be 0.6–0.4. Indeed, after
testing various ranges, it was found that although the differences weren’t significant
that range produced slightly better results.

5 Results

5.1 Number of Common Documents

For the algorithm to function properly, a minimum number of common documents
need to be found between the sample and the remote collections and between the
sample collections and the centralized index. Effectively, since we only utilize the
first 10 common documents between the sample and the remote collections, any more
than 10 are not needed. We report on the number of common documents found in
both phases in a variety of settings below.

 Results Merging Algorithm Using Multiple Regression Models 181

5.1.1 Remote and Sample Collections
Figure 2 shows the number of common documents that were found between the
sample and the remote collections for queries 51-150 when 10 collections were
selected to return 1000 and 300 documents each (left and right graph respectively). In
the first case, the number of common documents is between 20 and 40 in the majority
of queries, but there are 33 occasions out of 1000 (100 queries*10 collections) in
which less than 3 documents were located. For these collections, although regression
would be possible, a “fall-back” strategy was adopted and manufactured scores were
assigned to the returned documents, as in [1].

Fig. 2. Number of common documents found between the sample and the remote collections,
when 1000 and 300 documents were returned from each (left and right graph respectively). The
instances (y axis) refer to the number of times that the number of common documents found
between a sample and a remote collection is as the corresponding interval at the x axis.

When 300 documents are requested, the number of common documents is, as
expected, decreased. In 541 instances out of 1000, 0–10 common documents are
found. The number of occasions where less than 3 documents were located and a
“fall-back” strategy had to be adopted increased to 52, which although higher than in
the previous setting, is still only a small fraction (5.2%).

5.1.2 Sample Collections and Centralized Index
A second question raised is whether enough common documents are found between
the sample collections and the centralized index. Since both the sample collections
and the centralized index are under our control, we have chosen to always request the
maximum number of returned documents. Results are shown on figure 3.

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Common documents

In
st

an
ce

s

Fig. 3. Number of common documents between the samples and the centralized index

182 G. Paltoglou, M. Salampasis, and M. Satratzemi

Although there is still a small number of instances (35 out of 1000) where there are
less than 3 common documents, in the majority of cases enough documents are found
to perform the second stage regression.

5.2 Precision

In distributed information retrieval environments it is usually inefficient to retrieve all
the relevant documents scattered in the remote collections. Especially, when the focus
of the retrieval is on the results merging part of the process, the focus is on precision.

Tables 3 to 5 report the results on precision at rankings 5 to 30 in a variety of
settings. The percentages in parentheses report the difference between the new
algorithm and CORI (left parenthesis) and SSL (right parenthesis) respectively.

Table 3. Precision using 10 collections, each one returning 1000 documents

Precision CORI SSL Multiple Regression Models
At 5 docs: 0.1460 0.1560 0.1620 (+10.9%) (+3.8%)
At 10 docs: 0.1370 0.1350 0.1440 (+5.1%) (+6.6%)
At 15 docs: 0.1260 0.1267 0.1327 (+5.3%) (+4.7%)
At 20 docs: 0.1180 0.1205 0.1260 (+6.7%) (+4.5%)
At 30 docs: 0.1113 0.1103 0.1133 (+1.7%) (+2.7%)

Table 4. Precision using 10 collections, each one returning 300 documents

Precision CORI SSL Multiple Regression Models
At 5 docs: 0.1340 0.1600 0.1780 (+32.8%) (+11.2%)
At 10 docs: 0.1340 0.1470 0.1540 (+14.9%) (+4.7%)
At 15 docs: 0.1333 0.1373 0.1427 (+7.0%) (+3.9%)
At 20 docs: 0.1300 0.1290 0.1335 (+2.7%) (+2.6%)
At 30 docs: 0.1260 0.1177 0.1177 (-6.5%) (+0.0%)

Table 5. Precision using 3 collections, each one returning 300 documents

Precision CORI SSL Multiple Regression Models
At 5 docs: 0.1360 0.1580 0.1740 (+27.9%) (+10.1%)
At 10 docs: 0.1360 0.1300 0.1480 (+8.8%) (+13.9%)
At 15 docs: 0.1293 0.1187 0.1380 (+6.7%) (+16.2%)
At 20 docs: 0.1205 0.1075 0.1255 (+4.1%) (+16.7%)
At 30 docs: 0.1153 0.0947 0.1083 (-6.1%) (+14.4%)

It can be seen that the new results merging algorithm outperforms both CORI and
SSL in most settings, often by a nontrivial margin. Even in settings where the remote
collections return only a limited number of documents (i.e. 300) the new algorithm
still manages to keep the precision at high levels.

 Results Merging Algorithm Using Multiple Regression Models 183

6 Conclusions and Future Work

In this paper a new results merging algorithm was presented. It was designed
explicitly to function effectively in settings where the remote collections return only
ranked lists of documents, without relevancy scores. The effectiveness of the
algorithm was tested against two state-of-the-art algorithms and was found to be
superior to them.

Even more, the algorithm could be implemented to make use of relevancy scores
whenever they are available, combining rank and score in producing the final
document list.

Lastly, a methodology was provided on how to assign scores in environments
where only ranked lists are returned using sampled documents. Although the
particular methodology wasn’t explicitly tested, the performance of the results
merging algorithm indicate that there is at least some merit in it.

Acknowledgements

This work was supported by PENED, measure 8.3, action 8.3.1 under, project number
404, named “Collection fusion algorithms”.

References

1. Avrahami, T. T., Yau, L., Luo Si, Callan, J.: The Fedlemur Project: Federated Search in
the Real World. J. Am. Soc. Inf. Sci. Technol. 57, no. 3 (2006) 347-58

2. Bergman, M.: The deep web: surfacing the hidden value http://www.brightplanet.com/
resources/details/deepweb.html BrightPlanet. (2001)

3. Callan J.: Distributed Information Retrieval, In W.B. Croft, editor, Advances in
information retrieval, Kluwer Academic Publishers, chapter 5, 127-150

4. Callan, J., Connell M.: Query-based Sampling of Text Databases. ACM Trans. Inf. Syst.
19, no. 2 (2001) 97-130

5. Callan, J. P., Croft, W., B., Harding, St., M.: Inquery Retrieval System. 3rd International
Conference on Database and Expert Systems Applications (1992) 78-83.

6. Callan, J., Zhihong, L. U., Croft, W. B.: Searching Distributed Collections With Inference
Networks. SIGIR '95 (1995) 21-28

7. Calve, A. Le, Savoy, J.: Database Merging Strategy Based on Logistic Regression. Inf.
Process. Manage. 36, no. 3 (2000) 341-59

8. Craswell, N., Hawking D., Thistlewaite P. B.: Merging Results from Isolated Search
Engines. Australasian Database Conference (1999) 189-200

9. Gravano, L., Chang, C., Garcia-Molina, H., Paepcke A.: STARTS: Stanford proposal for
internet meta-searching. 20th SIGMOD (1997) 207-218.

10. Lee, J., H.: Analyses of multiple evidence combination. (1997) 267–276
11. Lemur Toolkit http://www.lemurproject.org
12. Powell, A., L., French, J., C., Callan J., Connell, M., Viles, C., L.: The Impact of Database

Selection on Distributed Searching. SIGIR '00 (2000) 232-239
13. Robertson, S., E., Walker, S., Hancock-Beaulieu M., Gatford M.: Okapi at Trec-3. TREC-

3 (1994) 109-126.

184 G. Paltoglou, M. Salampasis, and M. Satratzemi

14. Sherman, C.: Search for the invisible web. Guardian Unlimited (2001)
15. Si L., Callan J.: A Semisupervised Learning Method to Merge Search Engine Results.

ACM Trans. Inf. Syst. 21, no. 4 (2003) 457-91
16. Si L., Callan, J.: Relevant Document Distribution Estimation Method for Resource

Selection. SIGIR '03 (2003) 298-305
17. Voorhees, E. M., Gupta, N. K., Johnson-Laird, B.: The Collection Fusion Problem. TREC-

3 (1994) 500-725
18. Yager, R., R., Rybalov, A.: On the Fusion of Documents From Multiple Collection

Information Retrieval Systems. J. Am. Soc. Inf. Sci. 49, no. 13 (1998) 77-84
19. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad

hoc information retrieval, SIGIR'01 (2001) 334-342.

Segmentation of Search Engine Results for

Effective Data-Fusion

Milad Shokouhi

School of Computer Science and Information Technology
RMIT University, Melbourne 3001, Australia

milad@cs.rmit.edu.au

Abstract. Metasearch and data-fusion techniques combine the rank
lists of multiple document retrieval systems with the aim of improving
search coverage and precision.

We propose a new fusion method that partitions the rank lists of
document retrieval systems into chunks. The size of chunks grows ex-
ponentially in the rank list. Using a small number of training queries,
the probabilities of relevance of documents in different chunks are ap-
proximated for each search system. The estimated probabilities and nor-
malized document scores are used to compute the final document ranks
in the merged list. We show that our proposed method produces higher
average precision values than previous systems across a range of testbeds.

1 Introduction

In traditional information retrieval, a centralized search system is responsible
for crawling and indexing the documents and ranking them for user queries.

In the practice, there are many cases that combining the outputs of multiple
retrieval systems may produce better results than using a single monolithic
system. Metasearch [Meng et al., 2002], distributed information retrieval (DIR)
[Callan, 2000] and data-fusion [Croft, 2000] techniques all combine the results of
different retrieval models to produce a richer rank list.

Compared to centralized search engines, metasearch engines have several ad-
vantages. Some of these benefits, as noted by other researchers [Aslam and
Montague, 2001; Meng et al., 2002; Vogt, 1999] are listed below:

High recall: Compared to centralized search engines, metasearch engines can
provide a broader search coverage over the internet documents. Commercial
search engines index varying portions of the web graph and the amount of overlap
between their sets of indexed documents is small. For example, the amount of
overlap between the indexed documents by Google1 and Yahoo!2 is estimated to
be less than 45% [Bar-Yossef and Gurevich, 2006].
1 www.google.com
2 www.search.yahoo.com

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 185–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 M. Shokouhi

High precision: A document that is returned by multiple search engines for a
query is more likely to be relevant than another document that is returned by
only a single search engine. A previous study suggests that search systems are
not likely to return the same nonrelevant documents [Lee, 1997] while they may
return the same relevant documents. Therefore, the search precision improves
by giving high ranks to documents that are returned by multiple search engines.
This is also known as the chorus effect [Vogt, 1999].

Typically, the top-ranked answers returned by search engines have higher
density of relevant documents compared to the other results. Therefore, a result
list that is generated from the top-ranked documents of different search engines
is more likely to contain relevant documents than the outputs of a single search
engine. This is also known as the skimming effect [Vogt, 1999].

Removal of spam pages: Spam pages can be avoided by combining the results
of multiple search engines. It is unlikely that several search engines return a
particular spam page for a given query [Dwork et al., 2001].

Easy updates: The contents of many web documents such as news pages change
frequently. While centralized search engines cannot update their index with the
same rate, metasearch techniques can be useful for providing a search service
over the most recent documents [Rasolofo et al., 2003].

These benefits were originally suggested for metasearch engines but most of
them are also valid for DIR and data-fusion techniques.

Data-fusion methods merge the results of different ranking functions that are
applied on a single text collection [Aslam and Montague, 2001; Croft, 2000; Fox
and Shaw, 1993; Lee, 1997; Lillis et al., 2006; Vogt, 1999]. In metasearch—also
known as collection fusion—the query is sent to different search engines that
may have different rates of overlap. In other words, data-fusion is a special form
of metasearch where the overlap between search engines is 100% [Vogt, 1999].

When the amount of overlap between search systems is negligible, metasearch
can be classified under the DIR category. Therefore, DIR can be considered as a
special form of metasearch where the overlap between search systems in either
none or negligible [Si and Callan, 2003].

In this paper, we propose a novel data-fusion technique that can effectively
merge the results of different ranking functions that are applied to a single
collection. Our algorithm partitions the rank lists returned by search engines
into separate chunks. The probability of relevance for documents in each chunk
is computed for all search engines. The final score of a document is calculated
according to its probabilities of relevance in multiple result sets. We show that
the merged lists produced by our method have higher mean average precision
compared to the alternatives.

2 Data Fusion

Perhaps, the simplest data-fusion method is the round-robin strategy
[Savoy et al., 1996] or interleaving [Voorhees et al., 1994], where documents re-
turned by all search systems are treated equally and are merged according to

Segmentation of Search Engine Results for Effective Data-Fusion 187

their ranks. The final merged list produced by the round-robin strategy con-
tains the top-ranked documents from all search systems followed by the second
top-ranked documents and so forth. Since the search effectiveness of different
ranking functions is ignored by round-robin, it is not suitable for environments
where both poor and effective search systems are involved. A more sophisticated
model of interleaving is suggested by Voorhees et al. [1995]. In this approach,
the effectiveness of retrieval models is approximated by training queries. The
number of documents that are included in the final merged list from each col-
lection depends on the approximated effectiveness of that model in the training
phase.

Several combination methods are suggested by Fox and Shaw [1993; 1994] to
compute the score of documents that are returned by more than a single search
system. CombSUM and CombMNZ are the most successful of these methods and
are used in many metasearch engines such as Metacrawler [Selberg and Etzioni,
1997] and SavvySearch [Dreilinger and Howe, 1997]. In CombSUM, when a doc-
ument d is returned by multiple retrieval models, all scores are added together
to produce the final score. In CombMIN and CombMAX, respectively the mini-
mum and maximum values among the scores reported by different search systems
are used as the final score. CombMNZ adds all the reported scores for a docu-
ment and multiplies the sum value to the number of retrieval models that have
returned that document (d) as below:

CombMNZ d =
N∑
c

Dc × |Dc > 0| (1)

Here, N is the number of input rank lists for data-fusion and |Dc > 0| is the
number of rank lists that contain the document d. Dc is the normalized score of
document d in the rank list c and is computed as:

Dc =
Sd − Dc

min

Dc
max − Dc

min
(2)

Where Sd is the score of document d in the rank list c before normalization.
Dc

min and Dc
max are the minimum and maximum document scores available in

the rank list. We use CombMNZ as one of our baselines because it is a common
benchmark for the data-fusion experiments [Lee, 1997; Aslam and Montague,
2000; 2001; Manmatha et al., 2001; Lillis et al., 2006].

Lee [1997] proposed a modified version of CombMNZ where document ranks
are used instead of document scores. Linear combination methods for data-fusion
have been investigated [Vogt and Cottrell, 1999; Vogt, 2000; 1999] in which, doc-
uments are merged according to their normalized relevance scores. Both training
data and document scores are needed for calculating the final score of a docu-
ment. A logistic regression model is suggested by Calvé and Savoy [2000] to map
the document ranks to the probabilities of relevance. Their suggested approach
produces slightly better results than linear combination methods.

A probabilistic fusion approach is suggested by Aslam and Montague [2000].
They assume that the the probability of relevance of a document in any given

188 M. Shokouhi

rank is known for each retrieval model. They use those probabilities to calculate
the final document scores for merging. Their suggested method—also known
as Bayes-fuse [Aslam and Montague, 2001]—can produce comparable results
to CombMNZ. Borda-fuse [Aslam and Montague, 2001] is inspired by a voting
algorithm. In Borda-fuse, documents are merged according to their ranks and
no training data is required. Aslam and Montague [2001] showed that the per-
formance of Borda-fuse is usually slightly lower (but comparable) than that of
standard fusion techniques such as CombMNZ. Manmatha et al. [2001] empiri-
cally showed that for a given query, the distributions of scores for relevant and
nonrelevant documents respectively follow normal and exponential curves. They
used curve-fitting techniques to map the document scores to the probabilities
of relevance. Then the outputs of search engines can be merged by averaging
the probabilities of relevance for documents. They showed that their proposed
approach can produce similar results to those of CombMNZ.

In ProbFuse [Lillis et al., 2006], each of the returned rankings is divided into k
consecutive segments. Lillis et al. [2006] empirically showed that for the TREC
adhoc experiments, where each submitted run (rank list) contains 1000 answers
per query, dividing lists into 25 segments produces effective results. That is, for
each rank list, the first 40 answers for a query are considered as the first segment.
Answers 41–80 generate the second segment and so forth. For each search system,
the probability of relevance of documents in each segment is estimated by using
training queries as follows:

P (rel |dc
k) =

∑Q
q=1

|Rk,q|
Sizek

Q
where Sizek = 25 (3)

Here, P (rel |dc
k) represents the probability of relevance of a document (d), that

has been returned in the kth segment of the rank list c. Q is the number of
training queries and |Rk,q| is the number of relevant documents that are returned
in the kth segment of the rank list for the training query q. Once the probabilities
of relevance for each system are calculated, ProbFuse uses them to calculate
the merging scores of documents. The final document scores are calculated by
summing up their probabilities of relevance in all systems (the chorus effect) as:

ProbFused =
N∑
c

P (rel |dc
k)

k
(4)

Where N is the total number of search systems used for data-fusion. ProbFuse
divides the probability of relevance of a document by its segment number (k).
This strategy advantages the documents that appear on the top ranks of each
result set (the skimming effect). ProbFuse is one of the most recent and effective
data-fusion methods. Thus, we use it as one of the baselines in our experiments.

In the following sections we introduce our data-fusion technique and compare
it with two other baselines. We show that our method can produce better merged
lists than the competitive approaches.

Segmentation of Search Engine Results for Effective Data-Fusion 189

3 SegFuse

In this section, we describe SegFuse, our novel data-fusion technique. SegFuse is
a probabilistic data-fusion method that estimates the probabilities of relevance of
documents using a small number of training queries. SegFuse can be summarized
in three steps:

1. For each search system, the returned rank list is partitioned into chunks.
The size of chunks increases exponentially in the rank lists.

2. For each search system, the probability of relevance for documents in each
chunk is estimated using a few training queries.

3. The final score of a document is computed according to its probabilities
of relevance in the rank lists. SegFuse merges the results and ranks the
documents according to their final scores.

As for ProbFuse [Lillis et al., 2006], the outputs of each ranking function
are divided into segments. However, there are two major distinctions between
SegFuse and the suggested approach by Lillis et al. [2006].

First, in ProbFuse, the size of segments is always constant (say 40). Equation
(4) suggests that a document that is returned in the rank 39 of a result set
with the relevance probability of R is advantaged over another document that
is returned at the top-rank of another result set with the relevance probability
of R − ε. This is against the skimming effect which suggests that top-ranked
documents should be advantaged. We propose that the size of segments be varied
exponentially according to the ranks. Therefore, the rank difference of documents
is considered more effectively.

Second, ProbFuse ignores the scores of documents that may be provided by
search systems. We propose the use of the normalized document score values.

In SegFuse, the probability of relevance of a document d returned in the
kth segment of a result set c is calculated by averaging the number of relevant
documents that are returned in that segment for the training queries:

P (rel |dc
k) =

∑Q
q=1

|Rk,q|
Sizek

Q
where Sizek = (10 × 2k−1) − 5 (5)

Here, k is the segment number of document d in the result set c. Q is the total
number of training queries and |Rk,q| is the number of relevant documents that
are returned for the training query q in the kth segment of the result set c. Sizek

is the number of documents that are available in the kth segment of the rank list.
The parameters of the exponential function are chosen empirically according to
our preliminary experiments. For a given result set, the first top five documents
are included in the first segment. Segment two consists of the documents between
ranks 6 to 20. The other segments are defined with an exponential increase in
the size. Note that except for the way that Sizek is calculated, this is the same
equation that is used by ProbFuse in Eq. (3).

The strategy used by SegFuse for calculating the segment size is inspired by
the observations of other researchers regarding that the probabilities of relevance

190 M. Shokouhi

for documents and their importance for users decrease exponentially[Joachims
et al., 2005; Manmatha et al., 2001]. In a given rank list, a few top documents
are usually more important for users [Joachims et al., 2005] and have the highest
probability of relevance [Manmatha et al., 2001]. The difference between docu-
ments becomes negligible as we move towards the bottom of a rank list. There
might be other exponential functions that produce more effective results. But
we leave the investigation of an optimum exponential function as future work.
SegFuse calculates the final score of a document as:

SegFused =
N∑
c

P (rel |dc
k) × Dc + P (rel |dc

k) (6)

Where N is the total number of rank lists that contain the document d. Dc

is the normalized score of document d returned by collection c that is com-
puted by equation (2). Note that, unlike ProbFuse, the scores are not divided by
the segment number. That is because the highly ranked documents are already
advantaged by Eq. (5). Such documents are picked from smaller populations
with higher density of relevant documents compared to those in other segments.
In general, the skimming and chorus effects are implicitly considered by equa-
tions (5) and (6) respectively.

4 Testbeds

To evaluate our model and compare it with other techniques we created two
testbeds from the result sets submitted to the TREC3 and TREC5 conferences.
For the TREC3 experiments [Harman, 1994], 40 runs were submitted by different
participants to the adhoc track for the TREC topics 151–200. We randomly
picked 30 files from the submitted runs. We then assign the selected files into
six groups each containing five submissions.

In the TREC5 conference [Voorhees and Harman, 1996], participants were
asked to submit their results for the adhoc track for two categories A and B. In
CategoryB the queries (TREC topics 251–300) were only executed on a subset
of data. We use the results submitted for CategoryA, where queries are on the

Table 1. Six groups are created from the submitted runs to the TREC3 conference.
Each group contains five runs that are chosen randomly from the results submitted to
the TREC3 adhoc task for topics 151–200.

Run1 Run2 Run3 Run4 Run5
G1 input.assctv2 input.clartm input.rutfua2 input.siems2 input.topic4
G2 input.assctv1 input.brkly6 input.citri2 input.eth001 input.virtu1
G3 input.brkly7 input.citya1 input.eth002 input.nyuir1 input.xerox3
G4 input.acqnt1 input.clarta input.erima1 input.nyuir2 input.padre1
G5 input.citri1 input.lsia0mf input.padre2 input.topic3 input.vtc2s2
G6 input.citya2 input.inq101 input.pircs1 input.siems1 input.vtc5s2

Segmentation of Search Engine Results for Effective Data-Fusion 191

Table 2. Seven groups are created from the submitted runs to the TREC5 conference.
Each group contains five runs that are chosen randomly from the results submitted to
the TREC5 adhoc task for topics 251–300.

Run1 Run2 Run3 Run4 Run5
G1 input.Cor5A2cr input.ibmge2 input.LNmFull2 input.uwgcx1 input.vtwnA1
G2 input.Cor5A1se input.DCU962 input.ibmge1 input.INQ302 input.pircsAAS
G3 input.anu5man4 input.colm1 input.genrl4 input.ibms96b input.KUSG2
G4 input.Cor5M2rf input.DCU964 input.ETHas1 input.gmu96au1 input.ibmgd2
G5 input.Cor5M1le input.erliA1 input.fsclt3 input.gmu96au2 input.pircsAM1
G6 input.city96a1 input.DCU961 input.genrl3 input.LNaDesc1 input.pircsAAL
G7 input.CLCLUS input.genrl1 input.gmu96ma2 input.KUSG3 input.LNaDesc2

complete dataset. In total, there are 61 runs submitted by participants from
which we picked 35 randomly. We then assign the selected files randomly into
seven groups each containing five unique submissions.

Tables 1 and 2 respectively show the names of selected submissions from
TREC3 and TREC5 runs that are used in our experiments. For both testbeds,
the runs in each group (G) are used together for the data-fusion experiments.

5 Experimental Results

We use CombMNZ and ProbFuse as the baselines of our experiments. The former
is a common baseline for data-fusion experiments [Lee, 1997; Aslam and Mon-
tague, 2000; 2001; Manmatha et al., 2001; Lillis et al., 2006] while the latter is
one of the most recent algorithms proposed in this area.

In both TREC3 and TREC5 testbeds, the rank lists assigned to each group
are merged using our SegFuse method and the results are compared with that of
CombMNZ and ProbFuse. There are 50 TREC topics available for each testbed.
For ProbFuse and SegFuse methods that use training queries, we applied different
portions of available query sets for training and testing. For each testbed, we
used different training sizes Q where Q ∈ {5, 10, 15, 20}. That is, 10%–40% of
the available queries in each testbed are used for training and the rest are used
for testing. Although CombMNZ does not use training queries, for the sake of
fair comparison, it was evaluated solely based on the testing subset of queries.

Data-fusion experiments are usually compared by the mean average precision
value and the produced average precision at different recall points [Aslam and
Montague, 2001; Manmatha et al., 2001; Lillis et al., 2006; Vogt, 2000].

Figure 1 depicts the 11-point average precision values obtained for varying
number of testing queries on both testbeds. The curves in each graph are pro-
duced by averaging the precision values of data-fusion runs on the available
groups when the specified number of testing queries are used. For example,
the precision values for SegFuse on the top-left graph are calculated as follows.
First, for each group in Table 1, 10% of the available queries (topics 151–155)
are used for calculating the probabilities of relevance. Once the probabilities are

192 M. Shokouhi

0 0.2 0.4 0.6 0.8 1

Recall
 TREC3 (10% training - 90% testing)

0.0

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
o
n

SegFuse
ProbFuse
CombMNZ

0 0.2 0.4 0.6 0.8 1

Recall
 TREC3 (20% training - 80% testing)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

SegFuse
ProbFuse
CombMNZ

0 0.2 0.4 0.6 0.8 1

Recall
 TREC3 (30% training - 70% testing)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

SegFuse
ProbFuse
CombMNZ

0 0.2 0.4 0.6 0.8 1

Recall
 TREC3 (40% training - 60% testing)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

SegFuse
ProbFuse
CombMNZ

0 0.2 0.4 0.6 0.8 1

Recall
 TREC5 (10% training - 90% testing)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

SegFuse
ProbFuse
CombMNZ

0 0.2 0.4 0.6 0.8 1

Recall
 TREC5 (20% training - 80% testing)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

SegFuse
ProbFuse
CombMNZ

0 0.2 0.4 0.6 0.8 1

Recall
 TREC5 (30% training - 70% testing)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

SegFuse
ProbFuse
CombMNZ

0 0.2 0.4 0.6 0.8 1

Recall
 TREC5 (40% training - 60% testing)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

SegFuse
ProbFuse
CombMNZ

Fig. 1. The precision-recall curves for fusion methods on the TREC3 and TREC5 data

computed, SegFuse merges the submitted runs of each group in a separate list.
Finally, the precision values in the six produced merged lists are averaged to
draw the final curve. The other curves are produced in the same way.

Segmentation of Search Engine Results for Effective Data-Fusion 193

It can be seen that in all experiments, SegFuse has higher precision values
than both baselines. CombMNZ performs slightly better than ProbFuse on the
TREC3 data while an opposite observation can be made on the TREC5 data.
This is consistent with the experiments reported by Lillis et al. [2006]. Since all
graphs in Fig. 1 are produced by calculating the average values among many
groups, the gaps between methods are small. The following sections provide a
detailed analysis of experiments on individual groups. Due to space limitations,
we only include the results for 5 and 20 training queries that are respectively
the minimum and maximum training boundaries in our experiments.

5.1 Analysis of Individual Experiments on TREC3 Data

Table 3 shows the precision values obtained by data-fusion methods on different
groups of TREC3 data. The TREC topics 151–155 are used for training and
computing the probabilities of relevance and topics 156–200 are used for testing
the performance of data-fusion techniques.

The methods are compared using different evaluation metrics. MAP repre-
sents the mean average precision over 11 recall points and is a common metric
for evaluating the data-fusion experiments [Aslam and Montague, 2001; Man-
matha et al., 2001; Lillis et al., 2006; Vogt, 2000]. Therefore, we use the t-test
to measure the statistical significance of differences betwee the MAP values.
The significant differences at the 99% and 99.9% confidene intervals between
the MAP values produced by ProbFuse and other methods are represented by †
and ‡ respectively. Bpref shows how many times judged nonrelevant documents
are returned before the relevant documents [Buckley and Voorhees, 2004]. P@10
is the precision at the top 10 returned documents and MRR is the mean re-
ciprocal rank value showing the position of the first relevant document in the
rank list. For each metric, the method with the highest value is specified with
an underline. The results show that SegFuse has higher MAP and Bpref values
than the baselines for all groups. MRR and P@10 values are comparable for all
methods.

In Table 4, 40% percent of available queries (topics 551–570) are used as the
training data. The produced MAP and Bpref values by SegFuse are better than
the alternatives respectively in all and four of six cases. However, SegFuse is

Table 3. Data-fusion experiments on the TREC3 submitted runs (input files). The
TREC topics 151–155 are used for training while topics 156–200 are used for testing.

CombMNZ ProbFuse SegFuse
MAP Bpref P@10 MRR MAP Bpref P@10 MRR MAP Bpref P@10 MRR

G1 0.422† 0.410 0.746 0.901 0.402 0.390 0.751 0.879 0.433‡ 0.422 0.764 0.915
G2 0.338 0.342 0.673 0.855 0.329 0.331 0.693 0.871 0.342† 0.345 0.695 0.873
G3 0.409 0.395 0.775 0.834 0.417 0.393 0.760 0.892 0.420 0.401 0.771 0.860
G4 0.329‡ 0.331 0.673 0.863 0.303 0.300 0.648 0.806 0.339‡ 0.337 0.664 0.783

G5 0.318 0.328 0.655 0.758 0.323 0.324 0.688 0.845 0.349‡ 0.353 0.686 0.834

G6 0.396 0.389 0.764 0.851 0.389 0.377 0.751 0.818 0.405† 0.393 0.726 0.849

194 M. Shokouhi

Table 4. Data-fusion experiments on the TREC3 submitted runs (input files). The
TREC topics 151–170 are used for training while topics 171–200 are used for testing.

CombMNZ ProbFuse SegFuse
MAP Bpref P@10 MRR MAP Bpref P@10 MRR MAP Bpref P@10 MRR

G1 0.386† 0.377 0.710 0.902 0.356 0.349 0.703 0.861 0.394‡ 0.387 0.710 0.916

G2 0.320 0.322 0.643 0.870 0.305 0.302 0.653 0.879 0.320† 0.321 0.636 0.863
G3 0.380 0.368 0.723 0.806 0.379 0.356 0.716 0.855 0.388 0.373 0.710 0.815

G4 0.286‡ 0.294 0.616 0.819 0.255 0.256 0.583 0.759 0.290‡ 0.292 0.606 0.717

G5 0.279 0.287 0.630 0.739 0.273 0.276 0.616 0.840 0.300‡ 0.306 0.626 0.811

G6 0.362 0.356 0.726 0.838 0.347 0.337 0.730 0.814 0.366‡ 0.356 0.706 0.837

not as successful as other methods for placing the relevant documents at the top
ranks. On average, ProbFuse produces the highest MRR values while CombMNZ
is the dominant method for producing high precision at the top 10 documents.

5.2 Analysis of Individual Experiments on TREC5 Data

Table 5 shows the results of data-fusion methods on the TREC5 data when 10%
of available queries (topics 251–255) are used for training. SegFuse produces the
highest MAP and Bpref values in all experiments. It is also the dominant method
for the MRR metric. The effectiveness of SegFuse and ProbFuse is comparable
in terms of P@10 while CombMNZ clearly performs poorer.

Table 5. Data-fusion experiments on the TREC5 submitted runs (input files). The
TREC topics 251–255 are used for training while topics 256-300 are used for testing.

CombMNZ ProbFuse SegFuse
MAP Bpref P@10 MRR MAP Bpref P@10 MRR MAP Bpref P@10 MRR

G1 0.316 0.299 0.513 0.793 0.338 0.317 0.557 0.800 0.339 0.327 0.522 0.785
G2 0.198 0.194 0.378 0.578 0.185 0.178 0.333 0.534 0.208 0.199 0.377 0.597
G3 0.290 0.291 0.526 0.799 0.329 0.313 0.520 0.772 0.347 0.334 0.553 0.818
G4 0.212 0.200 0.408 0.631 0.236 0.229 0.413 0.643 0.261 0.255 0.475 0.704

G5 0.248 0.245 0.428 0.692 0.247 0.236 0.453 0.645 0.263† 0.259 0.448 0.680
G6 0.278 0.263 0.467 0.704 0.255 0.230 0.440 0.600 0.297 0.283 0.493 0.720
G7 0.281 0.272 0.510 0.722 0.309 0.293 0.522 0.715 0.320 0.310 0.517 0.693

In Table 6, the TREC topics 251–270 are used for calculating the probabil-
ities of relevance and topics 271–300 are used for testing. As in the previous
experiments, SegFuse produces the highest MAP and Bpref values. CombMNZ
and SegFuse produce comparable P@10 values and they both outperform Prob-
Fuse in that metric. CombMNZ is the best method for placing the first relevant
document on the highest ranks. The MRR values for ProbFuse and SegFuse are
comparable although SegFuse is generally better.

Segmentation of Search Engine Results for Effective Data-Fusion 195

Table 6. Data-fusion experiments on the TREC5 submitted runs (input files). The
TREC topics 251-270 are used for training while topics 271–300 are used for testing.

CombMNZ ProbFuse SegFuse
MAP Bpref P@10 MRR MAP Bpref P@10 MRR MAP Bpref P@10 MRR

G1 0.292 0.274 0.512 0.751 0.293 0.272 0.513 0.721 0.305 0.287 0.500 0.747

G2 0.188 0.183 0.371 0.574 0.183 0.172 0.330 0.561 0.198† 0.188 0.363 0.574
G3 0.275 0.271 0.516 0.750 0.314 0.291 0.523 0.787 0.341† 0.322 0.526 0.819
G4 0.220 0.208 0.425 0.660 0.226 0.229 0.393 0.651 0.239 0.229 0.453 0.694
G5 0.233 0.232 0.438 0.707 0.215 0.207 0.430 0.621 0.236† 0.227 0.416 0.677
G6 0.277 0.261 0.493 0.722 0.246 0.222 0.430 0.606 0.282 0.267 0.500 0.699
G7 0.276 0.262 0.522 0.740 0.290 0.271 0.510 0.711 0.309 0.293 0.506 0.695

One may have noticed that the performance of methods have decreased when
using a larger training set. This is due to the distribution of relevant docu-
ments for the TREC topics. For both TREC3 and TREC5 topics, the number
of relevant documents returned by the TREC runs for the first few queries are
higher than the other topics. The fact that the performance of CombMNZ also
decreases—although it does not use training—is further evidence of our claim.

To solve this problem, Lillis et al. [2006] suggested that queries can be rear-
ranged in different random orders. Then, data-fusion experiments can be per-
formed for each random order and the final results are calculated by averaging
the obtained values for different query distributions. However, our aim is not to
prove that more training data can improve the data-fusion but is to show that
SegFuse can effectively merge the rank lists using small volume of training data.

Overall, SegFuse produces higher Bpref and MAP values than other methods.
In both testbeds, the MAP values produced by SegFuse are significantly higher
than ProbFuse. The differences between the MAP values for CombMNZ and
ProbFuse are significant on the TREC3 testbed and insignificant on the TREC5
data. For P@10 and MRR metrics none of the methods have a clear advantage
over the others and the results are usually comparable.

6 Conclusions

We have proposed a new data-fusion method that estimates the probability of
relevance of documents using a small amount of training data. Unlike the major
competitive method ProbFuse, which is less sensitive to the top-ranked doc-
uments, our method pays special attention to the highly ranked documents.
The document scores in SegFuse decrease exponentially, which is consistent
with the importance of documents for users and their probabilities of relevance
[Joachims et al., 2005; Manmatha et al., 2001]. We have shown that our method
always produces higher MAP values than the other two baselines; CombMNZ
and ProbFuse, while generating comparable MRR and P@10 values in general.
The Bpref values are usually better than ProbFuse and comparable to that of
CombMNZ.

196 M. Shokouhi

As future work, we aim to investigate the impact of using a separate segmen-
tation function for each system on the effectiveness of final merged results.

Acknowledgment

I am grateful to Justin Zobel, for his insightful comments on this work.

References

J. Aslam and M. Montague. Bayes optimal metasearch: a probabilistic model for
combining the results of multiple retrieval systems (poster session). In Proc. ACM
SIGIR conf., pages 379–381, Athens, Greece, 2000.

J. Aslam and M. Montague. Models for metasearch. In Proc. ACM SIGIR conf., pages
276–284, New Orleans, Louisiana, 2001.

Z. Bar-Yossef and M. Gurevich. Random sampling from a search engine’s index. In
Proc. 15th Int. Conf. on the World Wide Web, Edinburgh, Scotland, 2006.

C. Buckley and E. Voorhees. Retrieval evaluation with incomplete information. In
Proc. ACM SIGIR conf., pages 25–32, Sheffield, UK, 2004.

J. Callan. Distributed information retrieval. Advances in information retrieval, chapter
5, pages 127–150, 2000.

A. Calvé and J. Savoy. Database merging strategy based on logistic regression. Infor-
mation Processing and Management, 36(3):341–359, 2000.

B. Croft. Combining approaches to information retrieval. Advances in information
retrieval, chapter 1, pages 1–36, 2000.

D. Dreilinger and A. Howe. Experiences with selecting search engines using metasearch.
ACM Transaction on Information Systems, 15(3):195–222, 1997.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the
Web. In Proc. the 10th Int. conf. on World Wide Web, pages 613–622, Hong Kong,
Hong Kong, 2001.

E. Fox and J. Shaw. Combination of multiple searches. In Proc. the second Text
REtrieval Conf., pages 243–252, Gaithersburg, Maryland, 1993. NIST Special Pub-
lication.

E. Fox and J. Shaw. Combination of multiple searches. In Proc. the Third Text
REtrieval Conf., pages 105–108, Gaithersburg, Maryland, 1994. NIST Special Pub-
lication.

D. Harman. Overview of the third Text REtrieval Conference (TREC-3). In Proc. the
third Text REtrieval Conf., pages 1–19, NIST, 1994.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting
clickthrough data as implicit feedback. In Proc. ACM SIGIR conf., pages 154–161,
Salvador, Brazil, 2005.

J. Lee. Analyses of multiple evidence combination. In Proc. the 20th ACM SIGIR
conf., pages 267–276, Philadelphia, Pennsylvania, 1997.

D. Lillis, F. Toolan, R. Collier, and J. Dunnion. ProbFuse: a probabilistic approach to
data fusion. In Proc. ACM SIGIR conf., pages 139–146, Seattle, Washington, 2006.

R. Manmatha, T. Rath, and F. Feng. Modeling score distributions for combining the
outputs of search engines. In Proc. ACM SIGIR conf., pages 267–275, New Orleans,
Louisiana, 2001.

W. Meng, C. Yu, and K. Liu. Building efficient and effective metasearch engines. ACM
Computing Surveys, 34(1):48–89, 2002.

Segmentation of Search Engine Results for Effective Data-Fusion 197

Y. Rasolofo, D. Hawking, and J. Savoy. Result merging strategies for a current news
metasearcher. Information Processing and Management, 39(4):581–609, 2003.

J. Savoy, A. Calvé, and D. Vrajitoru. Information retrieval systems for large document
collections. In Proc. the Fifth Text REtrieval Conf., pages 489–502, Gaithersburg,
Maryland, 1996.

E. Selberg and O. Etzioni. The MetaCrawler architecture for resource aggregation on
the web. IEEE Expert, 12(1):8–14, 1997.

L. Si and J. Callan. A semisupervised learning method to merge search engine results.
ACM Transactions on Information Systems, 21(4):457–491, 2003.

A. Spink, B. Jansen, C. Blakely, and S. Koshman. A study of results overlap and
uniqueness among major web search engines. Information Processing and Manage-
ment, 42(5):1379–1391, 2006.

C. Vogt. How much more is better? characterizing the effects of adding more ir systems
to a combination. In Content-Based Multimedia Information Access (RIAO), pages
457–475, Paris, France, 2000.

C. Vogt. Adaptive combination of evidence for information retrieval. PhD thesis,
University of California, San Diego, 1999.

C. Vogt and G. Cottrell. Fusion via a linear combination of scores. Information
Retrieval, 1(3):151–173, 1999.

E. Voorhees and D. Harman. Overview of the third Text REtrieval Conference (TREC-
5). In Proc. the fifth Text Retrieval Conf., pages 1–28, National Institute of Standards
and Technology, 1996.

E. Voorhees, K. Gupta, and B. Johnson-Larid. The collection fusion problem. In Proc.
the Third Text REtrieval Conf. (TREC-3), pages 95–104, 1994.

E. Voorhees, N. Gupta, and B. Johnson-Laird. Learning collection fusion strategies.
In Proc. ACM SIGIR conf., pages 172–179, Seattle, Washington, 1995.

Query Hardness Estimation Using

Jensen-Shannon Divergence
Among Multiple Scoring Functions

Javed A. Aslam� and Virgil Pavlu

Northeastern University
{jaa,vip}@ccs.neu.edu

Abstract. We consider the issue of query performance, and we propose
a novel method for automatically predicting the difficulty of a query.
Unlike a number of existing techniques which are based on examining
the ranked lists returned in response to perturbed versions of the query
with respect to the given collection or perturbed versions of the collec-
tion with respect to the given query, our technique is based on exam-
ining the ranked lists returned by multiple scoring functions (retrieval
engines) with respect to the given query and collection. In essence, we
propose that the results returned by multiple retrieval engines will be rel-
atively similar for “easy” queries but more diverse for “difficult” queries.
By appropriately employing Jensen-Shannon divergence to measure the
“diversity” of the returned results, we demonstrate a methodology for
predicting query difficulty whose performance exceeds existing state-of-
the-art techniques on TREC collections, often remarkably so.

1 Introduction

The problem of query hardness estimation is to accurately and automatically pre-
dict the difficulty of a query, i.e., the likely quality of a ranked list of documents
returned in response to that query by a retrieval engine, and to perform such pre-
dictions in the absence of relevance judgments and without user feedback. Much
recent research has been devoted to the problem of query hardness estimation,
and its importance has been recognized by the IR community [1,2,3,4,5,6,7]. An
accurate procedure for estimating query hardness could potentially be used in
many ways, including the following:

– Users, alerted to the likelihood of poor results, could be prompted to refor-
mulate their query.

– Systems, alerted to the difficult query, could automatically employ enhanced
or alternate search strategies tailored to such difficult queries.

– Distributed retrieval systems could more accurately combine their input re-
sults if alerted to the difficulty of the query for each underlying (system,
collection) pair [2].

� We gratefully acknowledge the support provided by NSF grants CCF-0418390 and
IIS-0534482.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 198–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Query Hardness Estimation Using Jensen-Shannon Divergence 199

In this work, we propose a new method for automatically predicting the dif-
ficulty of a given query. Our method is based on the premise that different
retrieval engines or scoring functions will retrieve relatively similar ranked lists
in response to “easy” queries but more diverse ranked lists in response to “hard”
queries. As such, one could automatically predict the difficulty of a given query
by simultaneously submitting the query to multiple retrieval engines and ap-
propriately measuring the “diversity” of the ranked list responses obtained. In
order to measure the diversity of set of ranked lists of documents, we map these
rankings to distributions over the document collection, where documents ranked
nearer the top of a returned list are naturally associated with higher distribution
weights (befitting their importance in the list) and vice versa. Given a set of dis-
tributions thus obtained, we employ the well known Jensen-Shannon divergence
[8] to measure the diversity of the distributions corresponding to these ranked
lists.

We extensively tested our methodology using the benchmark TREC collec-
tions [9,10,11,12,13,14,15]. To simulate the ranked lists returned by multiple
retrieval strategies in response to a given (TREC) query, we chose subsets of
the retrieval runs submitted in response to that query in a given TREC. We
then predicted query difficulty using the methodology described and compared
our estimated query difficulty to the difficulty of that query in that TREC, as
measured in a number of standard and new ways. Finally, we compared the
quality of our query difficulty estimates to state-of-the-art techniques [1,6,7],
demonstrating significant, often remarkable, improvements.

The remainder of this paper is organized as follows. We begin by more exten-
sively discussing relevant related work, followed by a presentation of our method-
ology in detail. We then discuss the results of extensive experiments using the
TREC collections. Finally, we conclude with a summary and discussion of future
work.

2 Background and Related Work

Existing work on query hardness estimation can be categorized along at least
three axes: (1) How is query hardness defined?, (2) How is query hardness pre-
dicted?, and (3) How is the quality of the prediction evaluated? In what follows,
we describe our work and related work along these dimensions.

2.1 Defining Query Hardness

One can define query hardness in many ways; for example, queries can be inher-
ently difficult (e.g., ambiguous queries), difficult for a particular collection, or
difficult for a particular retrieval engine run over a particular collection. Other
notions of query difficulty exist as well. In what follows, we discuss two notions
of query harness, which we shall refer to as system query hardness and collection
query hardness.

200 J.A. Aslam and V. Pavlu

System query hardness captures the difficulty of a query for a given retrieval
system run over a given collection. Here the notion of query hardness is system-
specific; it is meant to capture the difficulty of the query for a particular system,
run over a given collection. System query hardness is typically measured by the
average precision of the ranked list of documents returned by the retrieval system
when run over the collection using the query in question.

Examples ofwork considering systemquery hardness include (1)Carmel et al. [3]
and Yom-Tovet al. [1] who investigatemethods for predicting query hardness, test-
ing against the Juru retrieval system, (2) Cronen-Townsend et al. [6] and Zhou and
Croft [7] who investigate methods for predicting query hardness, testing against
various languagemodeling systems, and (3) theRobust track atTREC[13]wherein
each system attempted to predict its own performance on each given query.

Collection query hardness captures the difficulty of a query with respect to
a given collection. Here the notion of query hardness is meant to be largely
independent of any specific retrieval system, capturing the inherent difficulty of
the query (for the collection) and perhaps applicable to a wide variety of typical
systems. Collection query hardness can be measured by some statistic taken
over the performance of a wide variety of retrieval systems run over the given
collection using the query in question. For example, Carmel et al. [3] consider
collection query hardness by comparing the query difficulty predicted by their
method to the median average precision taken over all runs submitted in the
Terabtye tracks at TREC for a given query.

Our work: We consider both system query hardness and collection query hard-
ness and demonstrate that our proposed methodology is useful in predicting
either. In order to test the quality of our methodology for predicting a given
system’s performance (system query harness), one must fix a retrieval system.
In this work, we simply choose the system (retrieval run) whose mean average
precision was the median among all those submitted to a particular TREC; thus,
we consider a “typical” system, one whose performance was neither extremely
high or low. We refer to this measure as the median system AP (med-sys AP).

In order to test the quality of our methodology for predicting collection query
hardness, one must fix a measure for assessing the hardness of a query for a given
collection. In this work, we consider two statistics taken over all runs submitted
to a particular TREC with respect to a given query: (1) the average of the
average precisions for all runs submitted in response to a given query and (2)
the median of the average precisions for all runs submitted in response to a given
query. We refer to the former as query average AP (avgAP) and the latter as
query median AP (medAP).

2.2 Predicting Query Hardness

Cronen-Townsend et al. [6] introduced the clarity score which effectively mea-
sures the ambiguity of the query with respect to a collection, and they show that
clarity scores are correlated with query difficulty. Clarity scores are computed

Query Hardness Estimation Using Jensen-Shannon Divergence 201

by assessing the information-theoretic distance between a language model as-
sociated with the query and a language model associated with the collection.
Subsequently, Zhou and Croft [7] introduced ranking robustness as a measure of
query hardness, where ranking robustness effectively measures the stability in
ranked results with respect to perturbations in the collection.

Carmel et al. [3] proposed the use of pairwise information-theoretic distances
between distributions associated with the collection, the set of relevant doc-
uments, and the query as predictors for query hardness. Yom-Tov et al. [1]
proposed a method for predicting query hardness by assessing the stability of
ranked results with respect to perturbations in the query; subsequently, they
showed how to apply these results to the problem of metasearch [2].

In other related work, Amati et al. [4] studied query hardness and robustness
in the context of query expansion, Kwok [5] proposed a strategy for selecting the
scoring function based on certain properties of a query, and Macdonald et al. [16]
investigated query hardness prediction in an intranet environment.

Our work: While fundamentally different from existing techniques, our work
is related to the methodologies described above in a number of ways. A num-
ber of existing techniques predict query hardness by measuring the stability of
ranked results in the presence of perturbations of the query [1] or perturba-
tions of the collection [7]. In a similar spirit, our proposed technique is based on
measuring the stability of ranked results in the presence of perturbations of the
scoring function, i.e., the retrieval engine itself. We measure the “stability” of the
ranked results by mapping each ranked list of documents returned by a different
scoring function to a probability distribution and then measuring the diver-
sity among these distributions using the information-theoretic Jensen-Shannon
divergence [8]. In a similar spirit, Cronen-Townsend et al. [6] use the related
Kullback-Leibler divergence [17] to compute clarity scores, and Carmel et al. [3]
use the Jensen-Shannon divergence to compute their query hardness predictor.

2.3 Evaluating the Quality of Query Hardness Predictions

In order to evaluate the quality of a query hardness prediction methodology, test
collections such as the TREC collections are typically used. The system and/or
collection hardnesses of a set of queries are measured, and they are compared
to predicted values of query hardness. These actual and predicted values are
real-valued, and they are typically compared using various parametric and non-
parametric statistics. Zhou and Croft [7] and Carmel et al. [3] compute the
linear correlation coefficient ρ between the actual and predicted hardness values;
ρ is a parametric statistic which measures how well the actual and predicted
hardness values fit to a straight line. If the queries are ranked according to the
actual and predicted hardness values, then various non-parametric statistics can
be computed with respect to these rankings. Cronen-Townsend et al. [6] and
Carmel et al. [3] compute the Spearman rank correlation coefficient. Zhou and
Croft [7], Yom-Tov et. al [1], and the TREC Robust track [13] all compute and
report the Kendall’s τ statistic.

202 J.A. Aslam and V. Pavlu

Our work: In the results that follow, we assess the quality of our query hardness
predictions using both the linear correlation coefficient ρ and Kendall’s τ .

3 Methodology

Our hypothesis is that disparate retrieval engines will return “similar” results
with respect to “easy” queries and “dissimilar” results with respect to “hard”
queries. As such, for a given query, our methodology essentially consists of three
steps: (1) submit the query to multiple scoring functions (retrieval engines), each
returning a ranked list of documents, (2) map each ranked list to a distribution
over the document collection, where higher weights are naturally associated with
top ranked documents and vice versa, and (3) assess the “disparity” (collective
distance) among these distributions. We discuss (2) and (3) in the sections that
follow, reserving our discussion of (1) for a later section.

3.1 From Ranked Lists to Distributions

Many measures exist for assessing the “distance” between two ranked lists, such
as the Kendall’s τ and Spearman rank correlation coefficients mentioned earlier.
However, these measures do not distinguish between differences in the “top” of
the lists from equivalent differences in the “bottom” of the lists; however, in the
context of information retrieval, two ranked lists would be considered much more
dissimilar if their differences occurred at the “top” rather than the “bottom” of
the lists.

To capture this notion, one can focus on the top retrieved documents only.
For example, Yom-Tov et al. [1] compute the overlap (size of intersection) among
the top N documents in each of two lists. Effectively, the overlap statistic places
a uniform 1/N “importance” to each of the top N documents and a zero impor-
tance to all other documents. More natural still, in the context of information
retrieval, would be weights which are higher at top ranks and smoothly lower at
lesser ranks. Recently, we proposed such weights [19,20] which correspond to the
implicit weights which the average precision measure places on each rank, and
we use these distribution weights in our present work as well. Over the top c doc-
uments of a list, the distribution weight associated with any rank r, 1 ≤ r ≤ c,
is given below; all other ranks have distribution weight zero.

weight(r) =
1
2c

(
1 +

1
r

+
1

r + 1
+ · · · +

1
c

)
. (1)

3.2 The Jensen-Shannon Divergence Among Distributions

Using the above distribution weight function, one can map ranked lists to distri-
butions over documents. In order to measure the “disparity” among these lists,
we measure the disparity or divergence among the distributions associated with
these lists. For two distributions a = (a1, . . . , an) and b = (b1, . . . , bn), a natural

Query Hardness Estimation Using Jensen-Shannon Divergence 203

and well studied “distance” between these distributions is the Kullback-Leibler
divergence [17]:

KL(p||q) =
∑

i

pi log
pi

qi

However, the KL-divergence suffers two drawbacks: (1) it is not symmetric in
its arguments and (2) it does not naturally generalize to measuring the diver-
gence among more than two distributions. We instead employ the related Jensen-
Shannon divergence [8]. Given a set of distributions {p1, . . . , pm}, let p be the
average (centroid) of these distributions. The Jensen-Shannon divergence among
these distributions is then defined as the average of the KL-divergences of each
distribution to this average distribution:

JS (p1, . . . , pm) =
1
m

∑
j

KL(pj ||p)

An equivalent and somewhat simpler formulation defined in terms of entropies
also exists [8]. In this work, we employ the Jensen-Shannon divergence among the
distributions associated with the ranked lists of documents returned by multiple
retrieval engines in response to a give query as an estimate of query hardness.

4 Experimental Setup and Results

We tested our methodology extensively on multiple TREC datasets: TREC5,
TREC6, TREC7, TREC8, Robust04, Terabyte04, and Terabyte05. The perfor-
mance of our proposed Jensen-Shannon query hardness estimator is measured
against three benchmark query hardness statistics: query average AP (avgAP)
and query median AP (medAP), both measures of collection query hardness, and
median-system AP (med-sys AP), a measure of system query hardness. When
predicting the difficulties of multiple queries in any given TREC, the strength of
correlation of our predicted difficulties with actual query difficulties is measured
by both Kendall’s τ and linear correlation coefficient ρ. We conclude that even
when using few input systems, our method consistently outperforms existing
approaches [1,6,7], sometimes remarkably so.

The ad hoc tracks in TRECs 5–8 and the Robust track in 2004 each employ
a standard 1,000 documents retrieved per system per query on collections of
size in the range of hundreds of thousand of documents. For these collections,
the weight cutoff was fixed at c = 20 in Equation 1; in other words, only the
top 20 documents retrieved by each system received a non-zero weight in the
distribution corresponding to the retrieved list, as used in the Jensen-Shannon
divergence computation. The Terabyte tracks use the GOV2 collection of about
25 million documents, and ranked result lists consist of 10,000 documents each;
for this larger collection and these longer lists, the weight cutoff was set at
c = 100 in Equation 1. This work leaves open the question of how to optimally
set the weight cutoff per system, query, and/or collection.

The baseline statistics query avgAP, query medAP, and the fixed system med-
sys AP are computed among all retrieval runs available. The Jensen-Shannon

204 J.A. Aslam and V. Pavlu

Fig. 1. Query hardness prediction results using five input systems for (top to bottom)
TREC8, Robust04 and Terabyte04. Each dot in these scatter plots corresponds to a
query. The x-axis is actual query hardness as measured by query average AP (left),
query median AP (center), and median-system AP (right). The y-axis is the Jensen-
Shannon divergence computed over the ranked results returned by five randomly chosen
systems for that query.

divergence is computed among 2, 5, 10, 20, or all retrieval runs available. When
less than all of the available runs are used, the actual runs selected are chosen
at random, and the entire experiment is repeated 10 times; scatter plots show
a typical result among these 10 repetitions, and tables report the average per-
formance over all 10 repetitions. We note that in general, the quality of our
query hardness predictions increases rapidly as more system runs are used, with
improvements tailing off after the inclusion of approximately 10 systems.

We compare our Jensen-Shannon query hardness predictions with all three
baseline statistics, for all queries and all collections; in two isolated cases we
excluded queries with zero relevant documents. Figures 1 and 2 show a selection
of the results as scatter plots, separately for JS estimation using five system runs
and for JS estimation using 10 system runs.

Query Hardness Estimation Using Jensen-Shannon Divergence 205

Fig. 2. Query hardness prediction results using 10 input systems for (top to bottom)
TREC8, Robust04 and Terabyte04. Each dot in these scatter plots corresponds to a
query. The x-axis is actual query hardness as measured by query average AP (left),
query median AP (center), and median-system AP (right). The y-axis is the Jensen-
Shannon divergence computed over the ranked results returned by 10 randomly chosen
systems for that query.

Table 1. Kendall’s τ (JS vs. query average AP) for all collections using 2, 5, 10, 20,
and all input systems. All but the last row report 10-run average performance.

Prediction Method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

JS (2 systems) 0.334 0.353 0.436 0.443 0.393 0.339 0.288
JS (5 systems) 0.420 0.443 0.468 0.551 0.497 0.426 0.376
JS (10 systems) 0.468 0.444 0.544 0.602 0.502 0.482 0.406
JS (20 systems) 0.465 0.479 0.591 0.613 0.518 0.480 0.423
JS (all systems) 0.469 0.491 0.623 0.615 0.530 0.502 0.440

Kendall’s τ measures the similarity of two rankings, in our case, the rankings
of the queries in terms of a baseline measure (query average AP, query me-
dian AP, or median-system AP) and the rankings of the queries in terms of our

206 J.A. Aslam and V. Pavlu

Jensen-Shannon estimate. Prediction performance as measured by Kendall’s τ
is given in Tables 1, 2, and 3, and for visual purposes, we graph Tables 2 and 3
in Figure 3. Note that while our scatter plots seem to indicate negative cor-
relation (high Jensen-Shannon divergence implies low query performance), this
indicates positive correlation with the problem as defined (high Jensen-Shannon
divergence implies high query difficulty). As such, we report the corresponding
“positive” correlations in all tables, and we note the equivalent negative corre-
lations in all scatter plots.

Table 2. Kendall’s τ (JS vs. query median AP) for all collections using 2, 5, 10, 20,
and all input systems. All but the last row report 10-run average performance.

Prediction Method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

JS (2 systems) 0.341 0.385 0.452 0.442 0.401 0.338 0.260
JS (5 systems) 0.448 0.475 0.483 0.547 0.510 0.435 0.340
JS (10 systems) 0.483 0.464 0.556 0.585 0.515 0.485 0.366
JS (20 systems) 0.488 0.503 0.610 0.599 0.533 0.496 0.382
JS (all systems) 0.510 0.530 0.634 0.597 0.544 0.520 0.391

Where we could make a direct comparison with prior results (TREC5, TREC8,
Robust04, Terabyte04, and Terabyte05), we indicate the performance reported in
prior work along with references. For past results measuring system query hard-
ness (i.e., correlations between predicted query hardness and the hardness of the
query for a specific system), we compare these prior results against our correla-
tions with the median-system AP, as that would be closest to a fair comparison.
Using 10 input system runs for the Jensen-Shannon computation yield improve-
ments over best previous results of on average approximately 40% to 50%; the
complete Tables 3, 5, and 6 show improvements ranging from 7% to 80%.

Table 3. Kendall’s τ (JS vs. median-system AP) for all collections using 2, 5, 10, 20,
and all input systems. All but the last row report 10-run average performance.

Prediction Method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

[7] clarity 0.311 0.412 0.134 0.171
[7] robust+clarity 0.345 0.460 0.226 0.252
[1] hist. boost. class. .439

JS (2 systems) 0.260 0.276 0.384 0.452 0.387 0.298 0.241
JS (5 systems) 0.350 0.370 0.427 0.525 0.472 0.349 0.318
JS (10 systems) 0.355 0.334 0.476 0.552 0.490 0.408 0.359
JS (20 systems) 0.339 0.365 0.516 0.577 0.498 0.403 0.380
JS (all systems) 0.363 0.355 0.509 0.561 0.512 0.427 0.381

The linear correlation coefficient ρ effectively measures how well actual and pre-
dicted values fit to a straight line; in our case, these actual and predicted values are
the hardness of queries in terms of a baseline measure (query average AP, query

Query Hardness Estimation Using Jensen-Shannon Divergence 207

Fig. 3. Kendall’s τ for JS vs. query median AP (left) and Kendall’s τ for JS vs. median-
system AP (right)

Table 4. Correlation coefficient ρ (JS vs. query average AP) for all collections using 2,
5, 10, 20, and all systems. All but the last row report 10-run average performance.

Prediction method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

JS (2 systems) 0.498 0.456 0.601 0.627 0.555 0.466 0.388
JS (5 systems) 0.586 0.611 0.637 0.736 0.673 0.576 0.516
JS (10 systems) 0.632 0.651 0.698 0.778 0.672 0.642 0.564
JS (20 systems) 0.645 0.677 0.731 0.784 0.688 0.666 0.577
JS (all systems) 0.623 0.698 0.722 0.770 0.695 0.682 0.581

Table 5. Correlation coefficient ρ (JS vs. query median AP) for all collections using 2,
5, 10, 20, and all systems. All but the last row report 10-run average performance.

Prediction method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

[3] Juru(TB04+05) .476

JS (2 systems) 0.495 0.467 0.612 0.622 0.557 0.466 0.366
JS (5 systems) 0.592 0.631 0.654 0.727 0.677 0.586 0.477
JS (10 systems) 0.622 0.678 0.715 0.762 0.676 0.646 0.524
JS (20 systems) 0.630 0.703 0.752 0.769 0.694 0.674 0.541
JS (all systems) 0.600 0.727 0.743 0.755 0.701 0.687 0.543

median AP, or median-system AP) and the hardness of these same queries in terms
of our Jensen-Shannon estimate. Prediction performance as measured by linear
correlation coefficient is presented in Tables 4, 5, and 6. Note the substantial im-
provements over prior results as shown in Tables 5 and 6.

208 J.A. Aslam and V. Pavlu

Table 6. Correlation coefficient ρ (JS vs. median-system AP) for all collections using
2, 5, 10, 20, and all systems. All but the last row report 10-run average performance.

Prediction method TREC5 TREC6 TREC7 TREC8 Robust04 TB04 TB05

[7] clarity 0.366 0.507 0.305 0.206
[7] robust+clarity 0.469 0.613 0.374 0.362

JS (2 systems) 0.425 0.294 0.553 0.595 0.542 0.435 0.338
JS (5 systems) 0.537 0.459 0.609 0.676 0.645 0.490 0.467
JS (10 systems) 0.556 0.469 0.639 0.707 0.659 0.566 0.524
JS (20 systems) 0.562 0.479 0.679 0.724 0.665 0.585 0.545
JS (all systems) 0.567 0.497 0.657 0.702 0.677 0.603 0.541

5 Conclusion and Future Work

Previous work on query hardness has demonstrated that a measure of the stability
of ranked results returned in response to perturbed versions of the query with re-
spect to the given collection or perturbed versions of the collection with respect to
the given query are both correlated with query difficulty, both in general and for
specific systems. In this work, we further demonstrate that a measure of the stabil-
ity of ranked results returned in response to perturbed versions of the scoring func-
tion is also correlated with query hardness, often at a level significantly exceeding
that of prior techniques. Zhou and Croft [7] and Carmel et al. [3] demonstrate
that combining multiple methods for predicting query difficulty yields improve-
ments in the predicted results, and we hypothesize that appropriately combining
our proposed method with other query difficulty prediction methods would yield
further improvements as well. Finally, this work leaves open the question of how
to optimally pick the number and type of scoring functions (retrieval engines) to
run in order to most efficiently and effectively predict query hardness.

References

1. Yom-Tov, E., Fine, S., Carmel, D., Darlow, A.: Learning to estimate query difficulty:
including applications to missing content detection and distributed information re-
trieval. In: SIGIR. (2005) 512–519

2. Yom-Tov, E., Fine, S., Carmel, D., Darlow: Metasearch and Federation using Query
Difficulty Prediction. In: Predicting Query Difficulty - Methods and Applications.
(August 2005)

3. Carmel, D., Yom-Tov, E., Darlow, A., Pelleg, D.: What makes a query difficult? In:
SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, New York, NY, USA, ACM
Press (2006) 390–397

4. Amati, G., Carpineto, C., Romano, G.: Query difficulty, robustness and selective
application of query expansion. In: Proceedings of the 25th European Conference
on Information Retrieval ECIR 2004. (2004)

5. Kwok, K.: An attempt to identify weakest and strongest queries. In: ACM SIGIR’05
Query Prediction Workshop. (2005)

Query Hardness Estimation Using Jensen-Shannon Divergence 209

6. Cronen-Townsend, S., Zhou, Y., Croft, W.: Predicting query performance. In: In
Proceedings of the ACM Conference on Research in Information Retrieval (SIGIR).
(2002)

7. Zhou, Y., Croft, W.B.: Ranking robustness: A novel framework to pre-
dict query performance. Technical Report IR-532, Center for Intelligent
Information Retrieval, University of Massachusetts, Amherst (2006) URL:
http://maroo.cs.umass.edu/pub/web/674.

8. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Infor.
Theory 37 (1991) 145–151

9. Voorhees, E.M., Harman, D.: Overview of the Fifth Text REtrieval Conference
(TREC-5). In: TREC. (1996)

10. Voorhees, E.M., Harman, D.: Overview of the Sixth Text REtrieval Conference
(TREC-6). In: TREC. (1997) 1–24

11. Voorhees, E.M., Harman, D.: Overview of the Seventh Text REtrieval Conference
(TREC-7). In: Proceedings of the Seventh Text REtrieval Conference (TREC-7).
(1999) 1–24

12. Voorhees, E.M., Harman, D.: Overview of the Eighth Text REtrieval Conference
(TREC-8). In: Proceedings of the Eighth Text REtrieval Conference (TREC-8).
(2000) 1–24

13. Voorhees, E.M.: The TREC robust retrieval track. SIGIR Forum 39(1) (2005)
11–20

14. Clarke, C., Craswell, N., Soboroff, I.: The TREC terabyte retrieval track. (2004)
15. Clarke, C.L.A., Scholer, F., Soboroff, I.: The TREC 2005 terabyte track. In: Pro-

ceedings of the Fourteenth Text REtrieval Conference (TREC 2005). (2005)
16. Macdonald, C., He, B., Ounis, I.: Predicting query performance in intranet search.

In: ACM SIGIR’05 Query Prediction Workshop. (2005)
17. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons

(1991)
18. Aslam, J.A., Pavlu, V., Savell, R.: A unified model for metasearch, pooling, and

system evaluation. In Frieder, O., Hammer, J., Quershi, S., Seligman, L., eds.: Pro-
ceedings of the Twelfth International Conference on Information and Knowledge
Management, ACM Press (November 2003) 484–491

19. Aslam, J.A., Pavlu, V., Yilmaz, E.: A statistical method for system evaluation us-
ing incomplete judgments. In Dumais, S., Efthimiadis, E.N., Hawking, D., Jarvelin,
K., eds.: Proceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM Press (August 2006)
541–548

20. Aslam, J.A., Pavlu, V., Yilmaz, E.: Measure-based metasearch. In Marchionini,
G., Moffat, A., Tait, J., Baeza-Yates, R., Ziviani, N., eds.: Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, ACM Press (August 2005) 571–572

Query Reformulation and Refinement Using NLP-Based
Sentence Clustering

Frédéric Roulland, Aaron Kaplan, Stefania Castellani, Claude Roux,
Antonietta Grasso, Karin Pettersson, and Jacki O’Neill

Xerox Research Centre Europe, Grenoble, France

Abstract. We have developed an interactive query refinement tool that helps
users search a knowledge base for solutions to problems with electronic equip-
ment. The system is targeted towards non-technical users, who are often unable
to formulate precise problem descriptions on their own. Two distinct but interre-
lated functionalities support the refinement of a vague, non-technical initial query
into a more precise problem description: a synonymy mechanism that allows the
system to match non-technical words in the query with corresponding technical
terms in the knowledge base, and a novel refinement mechanism that helps the
user build up successively longer and more precise problem descriptions start-
ing from the seed of the initial query. A natural language parser is used both in
the application of context-sensitive synonymy rules and the construction of the
refinement tree.

1 Introduction

In order to reduce service costs and downtime, users of complex electronic devices
are increasingly being encouraged to solve problems for themselves. In order to do
this, users need tools that help them identify appropriate solutions. A number of trou-
bleshooting systems are currently available. Some consist of searchable textual descrip-
tions of problems and associated solutions; searchable documents are relatively easy to
create and maintain, but in order to search effectively in such a knowledge base the
user must be familiar with the content and the terminology used in it. These systems
are therefore more suited to expert troubleshooters than to non-technical users. Other
approaches such as expert systems and decision trees provide more guidance, asking
the user questions rather than simply responding to a query, but such systems are more
expensive to build and maintain.

We have developed a text retrieval system called Pocket Engineer (PE) that is tailored
to searching in troubleshooting knowledge bases. When a user’s initial query returns too
many results, PE automatically proposes a list of expressions that contain either some
of the words of the query, or synonyms thereof (as listed in a thesaurus). When the user
selects one of the expressions, the system proposes a new list of sentence fragments
that are possible extensions of the selected expression. This process can be repeated
indefinitely, until the number of results is small enough for the user to read through
them conveniently.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 210–221, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Query Reformulation and Refinement Using NLP-Based Sentence Clustering 211

The refinement choices are constructed on the fly, using the output of a natural
language parser that has analyzed the knowledge base in a preprocessing step. Since
the refinement choices are generated automatically from natural language documents,
the cost of maintenance is lower than for knowledge-rich approaches such as expert
systems or decision trees; yet by iteratively proposing sets of possible refinements, it
provides a kind of step-by-step guidance. Particularly when combined with a thesaurus
that maps vague, non-technical terms to more precise terms found in the knowledge
base, this guidance can help users with little prior knowledge of the terminology or
content of the knowledge base to find the information they need.

In [13], we described an ethnographic study of professional troubleshooters mediat-
ing between non-technical users and a collection of problem descriptions and associated
solutions, and how the findings from that study informed the design of PE. In the cur-
rent paper, after recalling the type of interaction that PE provides, we present technical
details of the various steps of processing that support this interaction, and explain why
we believe this mechanism is particularly appropriate, compared to other query refine-
ment mechanisms that have been described in the literature, for helping non-technical
users search in a troubleshooting knowledge base.

2 The Query Refinement Process as Seen by the User

Figure 1 shows the PE screen. Initially only the query formulation section at the top of
the screen is visible. The user begins a session by typing a query (“lines across page”
in the example) in the search box. Subsets of the query words for which there are hits
appear underneath the search box; one of these subsets is preselected, but the user can
choose a different one (here the user has chosen “lines”).

In the matched problems area, a list of results that match the query is displayed.
Each result contains a problem description and possibly a short excerpt from an associ-
ated solution description. To the left of this list, in the refinement area, is a navigation
tree. Each node of the tree is labeled with an expression from the retrieved documents.
Clicking on a node reduces the list of results to those that contain all of the expressions
on the path from the root of the tree to the selected node. In the example, clicking on
the node “in image area when making copies” causes the matched problem list to be
reduced to those results containing both the expressions “white lines” and “in image
area when making copies” in the same sentence. Clicking on a node also causes the
children of that node to be displayed, to allow further refinement. When the matched
problem list has been reduced enough for the user to see a problem description that
corresponds to his or her problem, the user can click on the problem description to see
a list of solutions.

In its visual aspect, the PE interface resembles those of clustering search engines,
which help the user navigate a large set of results by factoring them into groups. Indeed,
the term “clustering” is an appropriate description of what the PE refinement tree does
to the retrieved documents; but as will be explained in the next section, the hierarchical
structure of the PE refinement tree is derived from the structure of individual retrieved
sentences, rather than on similarity of vocabulary over entire documents, as is the case
in other document clustering methods.

212 F. Roulland et al.

Fig. 1. Pocket Engineer interface

3 Implementation and Rationale

Having given an overview of the main components of the PE refinement process, we
will now present some details of the implementation, and explain the motivations for
certain decisions in the context of troubleshooting search. The first subsection presents
the underlying objects that we build from the content of the knowledge base, and the
second describes how we use these objects to implement the refinement process seen
by the user.

The knowledge base accessed by PE consists of problem descriptions, each of which
is a single sentence, and solutions, which range from a single sentence to roughly a
page of text. Each problem description is associated with one or more solutions, and
each solution with one or more problem descriptions. Both problems and solutions are
searched for query keywords, but the objects displayed in the “matched problems” area
of the interface are problem descriptions; if query words are matched in a solution, then
all problems associated with that solution are retrieved, and each is considered to be a
separate result. Henceforth, we use the terms “result” and “document” interchangeably
to mean a single problem, possibly paired with one of its associated solutions.

3.1 Preprocessing

Indexing: Lemmatization and Vocabulary Expansion. Each document in the knowl-
edge base is segmented into sentences, and each sentence into words. Each document
is indexed under the lemmata of the words that occur in it, as well as synonyms and
related terms, as listed in a thesaurus, in order to improve the recall of initial queries.
This expansion is performed at indexing time, rather than at query time, in order to al-
low synonymy rules that include constraints on a word’s context in the knowledge base.
A rule can include lexico-syntactic constraints that a sentence must satisfy in order to
be indexed under a given synonym. Each sentence of the knowledge base is parsed, and
the constraints are verified against the results of this analysis. For example, a rule can
state that the synonym “replace” should be added to the index for any sentence in which
the word “change” appears with a direct object whose head is “cartridge,” but not for
sentences where “change” occurs with other direct objects (for example, “change fax
settings”).

Query Reformulation and Refinement Using NLP-Based Sentence Clustering 213

Segmentation of Sentences into Refinement Expressions. As part of the process of
indexing a knowledge base for publication via PE, each sentence is segmented into a
series of expressions of a granularity appropriate for presentation as refinement choices.
This segmentation is performed by rule-based natural language parser [1], using the
parser’s general-purpose grammar plus a layer of PE-specific rules. Grammars for En-
glish, French, Spanish, Portuguese, Italian, and German are in various stages of devel-
opment, with the English and French grammars being the most mature and well-tested.

In writing the rules for identifying refinement expressions, we used the following
rule of thumb: a refinement expression should be a sequence of words that is as short
as possible while containing enough detail and context that users will be able to judge
whether or not the expression is relevant to the problems they are experiencing.

The extent of the refinement expressions identified by our rules corresponds in large
part to the notion of chunk as introduced by Abney [2], though the structure of ver-
bal expressions differs from that typically constructed by shallow parsers. Refinement
expressions do not have recursive structure–while the general-purpose grammar identi-
fies nested constituents, the rules for identifying refinement expressions perform a flat
segmentation based on that structure. When multiple nested expressions in a sentence
fulfill the criteria, the maximal such expression is chosen as a refinement expression.
The rules for English can be summarized as follows:

– A simple noun phrase consisting of a head noun and any preceding determiners
and modifiers, but not including postmodifiers such as prepositional phrases, is a
possible refinement expression. For example,

• lines
• white lines
• white and black wavy lines

are possible refinement expressions, but
• white lines on copies
• white lines when printing

would each be divided into two refinement expressions.
– A prepositional phrase consisting of a preposition and a simple noun phrase as

defined above is a possible refinement expression. For example,
• on paper
• from the document feeder

– An intransitive verb is a possible refinement expression, as is a transitive verb com-
bined with its direct object (more precisely, the simple noun phrase that heads its
direct object). Any auxiliary verbs and adverbs related to a main verb are made part
of the verb’s refinement expression. For example,

• will not open
• release toner particles

– A form of the verb “be” used as a main verb, combined with its subject complement,
constitutes a possible refinement expression. For example,

• is blank
– In a passive construction, the subject (the logical object) and the verb are combined

to form a refinement expression. For example.
• when the document feeder is used

Rules for other languages differ in the details but follow the same general principles.

214 F. Roulland et al.

Normalization of Refinement Expressions. In order to make the refinement tree more
compact and the refinement choices easier to apprehend, PE attempts to group together
refinement expressions that are very similar in meaning, and uses a single node in the
refinement tree to represent all the members of such a group. The grouping is performed
by mapping each expression to a canonical form; expressions with the same canonical
form are grouped together. Two types of transformations are applied: morpho-syntactic
and lexical. The morpho-syntactic normalization consists of dropping function words
such as determiners and auxiliary verbs, transforming passive constructions to active,
and lemmatization, which in English consists of replacing plural nouns with their sin-
gular forms and conjugated verbs with their infinitive. For example, the normalization
process makes the following transformations:

– white lines → white line
– when the document feeder is used → when use document feeder

The lexical normalization uses a thesaurus in which equivalence classes of words and
multi-word expressions are listed; each class has a distinguished synonym which is used
as the canonical form. The system thus uses two distinct thesauri: one lists groups of
equivalent terms for use in normalization of refinement expressions, and the other lists
looser relationships used to enrich the index in order to improve the recall of initial
queries. (The second thesaurus in fact contains the first—equivalences used in normal-
ization are also used for query expansion, but not the reverse.)

3.2 Query-Time Processing

Subquery Selection. If the query contains more than one word, then there may be
hits that contain some but not all of the query words. For each retrieved document, we
identify the sentences that contain one or more query keywords, and we identify query
matches within these sentences. A query match is a contiguous sequence of expressions
(as defined above) each of which contains at least one word of the query.

Subsets of the query words (henceforth “subqueries”) for which there are query
matches are listed below the query box. The subqueries are ranked first by the num-
ber of words they contain, and secondarily by the average frequencies of the words.
The list is truncated to the n best (five in the current prototype) to avoid overwhelm-
ing the user with an exponential number of subqueries in the (relatively rare) case of
a long query. The top-ranked subquery (which is typically the entire query if there are
hits for it) is preselected so that results deemed most likely to be relevant are visible
immediately after the initial query, but the user can change this selection.

Typically, when an information retrieval system determines that no documents match
the user’s entire query, it either returns zero results (in the case of a boolean retrieval
system), or displays a ranked list of results that match parts of the query (in the case of
systems that use a measure of query-document similarity). Our approach is different: PE
gives the user an explicit choice of degraded queries. It is standard practice in informa-
tion retrieval to give less weight to query words that are very frequent in the document
collection, and therefore less discriminative. PE does this, by factoring the number of
hits into the ranking of subqueries, but unlike systems that present a single ranked list
of all of the results, it gives explicit feedback about which keywords it is considering as

Query Reformulation and Refinement Using NLP-Based Sentence Clustering 215

most important, and allows the user to modify that decision. We chose this mechanism
based on two factors. First, before designing PE, we observed users of its predecessor,
called OSA. When no matches for the entire query are found, OSA displays a ranked
list of results that match various parts of the query. In such cases, many of the displayed
results may be irrelevant, and we observed that users were often confused about why
these results were being presented. The PE subquery selection is a way of explaining to
users how the results they are viewing were chosen, as well as allowing them to over-
ride the frequency-based weighting if they see fit. The second reason for the subquery
mechanism is related to our particular clustering method, which will be described next.
If we were to build a single refinement tree for all documents that match any part of
the query, the tree could end up with an inordinately large number of top-level nodes,
which would make it difficult to use.

3.3 The Refinement Tree

The root of the refinement tree is labeled “All problems.” This is the node that is selected
when the tree is first displayed, and selecting it has the effect of selecting all documents
that match the current subquery.

The children of the root are expressions that contain one or more of the words of the
subquery, or synonyms thereof. These expressions are extracted from the matching docu-
ments. Expression boundaries are determined as previously described in Section 3.1. This
level of the tree serves to disambiguate query words that are ambiguous, in two ways.

First, if a query word is ambiguous, and the ambiguity has not already been resolved
implicitly by the presence of other query words, then the expressions containing that
query word often serve as disambiguation choices. For example, the documents in our
knowledge base refer to two different photocopier parts called “document feeder” and
“high-capacity feeder.” (the former handles originals, the latter handles blank paper). If
the user’s query is simply “feeder,” then the expressions “document feeder” and “high-
capacity feeder” will both appear as choices in the first level of the refinement tree. It has
often been observed that users of standard search interfaces pick up terms seen in the
results of an initial query to formulate a subsequent, more precise query. By presenting
multi-word terms that contain one of the user’s query words as refinement choices,
the PE interface anticipates subsequent queries that the user might want to make and
presents them in a concise format, hopefully reducing the time and effort involved in
finding the appropriate term and refining the query.

Secondly, the inclusion of expressions containing synonyms of the query words in-
volves the user explicitly in query expansion. The fact that synonyms are offered as
choices rather than added automatically to the query allows us to use a more extensive
thesaurus: while more aggressive synonym expansion increases recall at the expense of
overall precision, grouping the results for a given synonym in a single subtree allows
users easily to ignore results for synonyms they consider inappropriate. Ours is certainly
not the first system to propose synonyms of query words in a query expansion step (see
Section 5), but we believe we have arrived at an elegant integration of interactive query
expansion into a more general query refinement mechanism.

Nodes in subsequent levels of the tree are also labeled with expressions extracted
from the results, but unlike in the first level these expressions need not contain query

216 F. Roulland et al.

words or their synonyms. Instead, if node n of the tree is labeled with expression e,
then the children of n are labeled with expressions that appear as continuations of e
in the documents associated with n. In the example of Figure 1, “white lines” has the
children “in image area when making copies” and “when printing” because these are
the continuations of “white lines” found in the results.

Recall that clicking on node n selects those results that contain the expressions of n
and all its ancestors (except for the root, whose label is not an expression). Children are
generated to cover all of these results; that is, each result associated with n is associated
with at least one of n’s children. If n’s expression e is the last expression in one of the
result sentences, i.e. e has no continuation in that sentence, then we choose the rightmost
expression in that sentence that is to the left of all expressions already chosen. For
example, the query “fax” yields results including “black bands on faxes” and “blurred
image on faxes.” These results will both be associated with a first-level node labeled
“on faxes,” and each will be associated with a second-level node labeled “black bands
on faxes” or “blurred image on faxes.”

Each node represents a unique normalized expression, which may be realized by
different surface forms in different sentences (see Section 3.1). Since the normalization
process sometimes results in expressions that are ungrammatical or unnatural, we use
surface forms as the labels displayed in the refinement tree. When there are multiple
surface realizations in the knowledge base of a single normalized expression, we choose
one of them arbitrarily to serve as the label.

We hope ultimately to use the syntactic relationships between expressions, rather
than simply their linear order, to define which expressions will be chosen as refinements
for a given node. In principle this could lead to more appropriate choices for results
such as “White lines when printing and when copying.” Whereas the current strategy
presents “when printing” as a refinement of “white lines” and then “and when copying”
as a refinement of “white lines when printing,” it would be more appropriate to have
both “when printing” and “when copying” as refinements of “white lines.” The method
we currently use for building a refinement tree from linear sequences of refinement
expressions does not generalize in a straightforward way to sentences with a branching
structure; making this adaptation, particularly in a way that remains comprehensible in
the face of the inevitable errors and ambiguities in parsing, is a subject of ongoing work.

Note that while the procedure described here could be used to generate a refinement
tree from the results of a query over an arbitrary document collection, the tree generated
for a heterogeneous corpus such as the web would be less useful than that generated for
troubleshooting documents. In generating the refinement tree, we exploit the recurrent
vocabulary and structure that is typical in troubleshooting documents; if the documents
in the collection do not exhibit this recurrent structure, the tree will likely contain many
nodes that represent only one document each.

4 Experimental Results

We evaluated PE in a comparison test against the system it was designed to replace,
called OSA. The testing involved both quantitative measurements and ethnographic
observation. We summarize the results here.

Query Reformulation and Refinement Using NLP-Based Sentence Clustering 217

OSA provides access to the same troubleshooting knowledge base as PE. When a
user submits a query to OSA, the query words are lemmatized, synonyms are applied,
and documents that contain one or more of the query words are returned in a ranked
list. There is a limited refinement mechanism in the form of a few hard-coded multiple-
choice questions (e.g. “Select when the image quality problem occurs: copy, fax, print”),
but we observed that users rarely avail themselves of this mechanism (we hypothesize
that this is related both to the layout of the page and to the choice of questions, which
often seems inappropriate relative to a given query). In these tests OSA thus serves
chiefly as a representative of “classical” information retrieval systems that accept a
keyword query and return a ranked list of results.

Each of fourteen users was asked to play out four predefined troubleshooting scenar-
ios, two judged to be simple and two more complicated. The scenarios were selected
after discussion with professional troubleshooters about problems their users frequently
have. Only problems for which the knowledge base contains a solution were chosen.
(We hypothesize that the PE refinement mechanism would also help users determine
more quickly that no solution to their problem is available, since it factors a potentially
large number of search results into a smaller number of refinement choices that can be
scanned quickly to determine whether any are appropriate. The experiment described
here did not test this hypothesis, but some anecdotal evidence supports it.) As much as
possible the scenarios were presented pictorially (showing what the copies looked like,
what the machine and its interface looked like, etc.) to avoid biasing users’ choice of
query terms. Each user attempted to solve troubleshooting scenarios with first one sys-
tem and then the other. The order in which the systems were presented to the user and of
which scenario was used with which system was varied, to avoid learning and ordering
effects. In addition to recording the number of problems users solved, we administered
a usability questionnaire.

PE showed a statistically significant advantage over OSA in solve rate and user
preference. 71% of the sessions (20 out of 28) using PE ended with the user finding
the right solution, compared to 50% of the sessions (14 out of 28) using OSS1. In
terms of preference, out of the 14 participants, 10 preferred PE, 3 OSA and 1 was in-
different.2

In addition to the quantitative measurements, qualitative observation allowed us to
confirm that many users understood the intended purpose of the navigation tree, and to
identify areas for improvement.

From these initial tests we conclude that compared to a flat list of results, the PE
refinement tree makes it significantly easier for a user to find the document that de-
scribes his or her problem. Due to the complexity and expense of performing this type
of user testing, the number of scenarios used in the first round of testing was necessarily
small; further testing against OSA is planned to confirm the initial results. In addition,
comparative testing against a general-purpose clustering information retrieval system is
planned, in order to test our hypothesis that the PE refinement mechanism is particularly
well-suited to the troubleshooting task.

1 Two-tailed paired samples t-test: p=0,047.
2 Two-tailed test for difference between proportions: p = 0, 008; Kolmogorov-Smirnov test for

assessing distribution normality: p = 0, 01.

218 F. Roulland et al.

5 Comparison of PE with Other Troubleshooting and Information
Retrieval Tools

Existing approaches to the design of on-line troubleshooting systems can be grouped
roughly into two kinds: “knowledge-rich” approaches that make use of domain knowl-
edge e.g. in the form of decision trees or models of the machine, and “knowledge-poor”
approaches based on information retrieval techniques that do not use extensive domain
knowledge. Systems that use knowledge-rich approaches [3,10,14] can prompt the user
with relevant questions, rather than simply processing queries as the user formulates
them, and thus have the potential to be more helpful for naive users, but the knowl-
edge they require can be very expensive to build and maintain over the lifetime of the
system. In Pocket Engineer we have implemented a knowledge-poor approach, but one
that provides more guidance than a conventional information retrieval interface.

In IR-based troubleshooting systems, e.g. Eureka [7], the standard keyword search
paradigm is applied to searching in a collection of solution descriptions. This type of
interface is very familiar to most users, and can be effective for someone who is already
familiar with the contents of the knowledge base and the way important concepts are
expressed therein, but it does not meet the needs of a non-technical user who has a
problem but is unable to generate spontaneously a sufficiently precise description of it.

The AI-STARS system [4] addressed the mismatch between user vocabulary and the
vocabulary of a troubleshooting knowledge base by automatically expanding queries
with synonyms. PE also uses synonyms to bridge the vocabulary gap, but with a re-
finement mechanism that gives the user more control. We believe that this approach
will make the system more robust to contextually inappropriate synonyms. As in any
system, there is a precision vs. recall balance to be maintained, but in cases where an
inappropriate synonym is added to the query, the inappropriate results will be grouped
together in a single branch of the refinement tree, and thus more easily ignored in favor
of more appropriate results. AI-STARS included a number of tools for automatically
identifying potential synonymy relationships by analyzing the text of the knowledge
base and logs of user queries; we are currently developing tools along these lines.

Outside of the troubleshooting domain, there has been a great deal of work on mech-
anisms for helping users view and explore the results of an initial search in ways that
are more useful than a simple ranked list. One early approach was relevance feedback
[15], in which the user is asked to indicate whether each of the top-ranked results is
relevant or not, and new words chosen automatically from the relevant documents are
added to the query. Relevance feedback is designed for retrieval scenarios in which
there are many relevant documents, which is typically not the case in troubleshooting.
A variation is to ask the user to choose candidate keywords directly [6].

Another class of interaction mechanisms partitions search results into groups and
allows the user to narrow down the selection to members of a particular group. Early
attempts based on a fixed clustering of the entire document base failed to improve ac-
cess to relevant documents [8]. The Scatter/Gather technique introduced the possibility
of inducing clusters among only the documents retrieved for a given query, with better
results [8]. Since the Scatter/Gather paper, a host of alternative algorithms for cluster-
ing search results have been proposed, with the goals of improving the speed and/or the
quality of the clustering. Whereas Scatter/Gather and many subsequent systems used

Query Reformulation and Refinement Using NLP-Based Sentence Clustering 219

“polythetic” clustering methods, in which documents are defined to be similar to the
degree that their entire vocabularies overlap, a few more recent systems [5,16,12,9]
have used “monothetic” clustering methods, in which a cluster is defined by a single
term, and all documents in the cluster contain that term. As Sanderson and Croft argue
[16], monothetic methods yield clusters in which it is clear what the documents have in
common with each other, and finding appropriate names for the clusters is not a prob-
lem as it can be in polythetic clustering. In addition, a monothetic method is particuarly
well-suited to the troubleshooting scenario, in which the user is looking not for a col-
lection of documents about a general topic, but the unique document that describes a
particular problem. By using a monothetic clustering, PE generates a refinement tree
that, despite being built by knowledge-poor methods, often helps the user construct a
coherent problem description, rather than simply a collection of more-or-less related
keywords. For example, in Figure 1, from the initial query “lines,” the system proposes
the refinement “white lines,” and from there “white lines when printing.”

Among the systems based on monothetic clustering, that of Edgar et al [9] is perhaps
the most similar to ours. The root of their hierarchy is the initial query term, and the
children of each phrase are longer phrases that contain the parent phrase; for example,
forest → sustainable forest → sustainable forest management. Their notion of phrase
is more general than ours, so that what PE treats as a sequence of phrases might be con-
sidered a single long phrase in [9]. They define phrase boundaries using some simple
heuristics based on stop words and punctuation; we hope that the more sophisticated
NLP used to define phrase boundaries in PE leads to more linguistically appropriate
phrases (this remains to be tested). During the user testing reported in [9], users com-
plained about the fact that Edgar et al.’s system accepted only a single query term, the
term to be used as the root of the refinement tree. In PE, we allow the user to specify
any number of query terms. Only one can be used as the root of the tree, but the others
are taken into account in determining the result set, and for ranking results.

In summary, PE provides a troubleshooting interface that provides searchers with
some guidance, yet doesn’t require hand-crafted knowledge resources. PE provides a
unique integration of a keyword-based query interface with a refinement tree that groups
documents based on both the words and the syntactic structure of individual sentences.

6 Summary and Future Work

We have built a system that enables lay users to find solutions to problems they experi-
ence with a machine. This system reuses a knowledge base that was initially designed
to support expert users. Since lay users are less familiar with the vocabulary used in
the knowledge base, and have less understanding of what sorts of information might be
important for troubleshooting, they often need help formulating useful descriptions of
their problems.

Knowledge-rich approaches to helping users navigate a space of problems and
solutions would have required the creation of a new knowledge base with additional
content, e.g. a decision tree with sequences of questions that can guide a user to the
relevant problem description. This additional content would be expensive to create and
maintain; by generating refinement choices automatically from the original problem

220 F. Roulland et al.

descriptions, our approach allows a similar type of interaction with lower maintenance
costs. The main cost of adapting our system to a new document collection would be
the cost of adapting the grammar, and we expect this cost to remain relatively small
once a general-purpose grammar for the language in question has been written. In our
first trials, the grammar developed for a particular knowledge base proved to be suffi-
cient for processing several other knowledge bases that cover the same subject matter.
Adapting the grammar to a different domain would probably require somewhat more
work; collection-specific grammar adaptations typically involve additions to the lexicon
and rules for specific typographical conventions.

Document clustering approaches are easier to put in place and to maintain than
knowledge-rich approaches, but the type of clustering most information retrieval sys-
tems perform is not well suited to the troubleshooting domain, where there is typically
at most one document in the collection that addresses the user’s problem, not an entire
class of recognizably similar documents. We have thus developed a method based on
finding common expressions among individual sentences, rather than on comparing en-
tire document vocabularies, and makes use of syntactic structure identified by a natural
language parser. The parser can apply lexical and syntactic transformations in order to
discover concepts that are common to multiple sentences even when they are expressed
using different surface forms. This method takes advantage of the particular structure of
a troubleshooting knowledge base, namely the fact that when a query in such a knowl-
edge base returns many results, the retrieved sentences often have a significant degree
of structural and terminological similarity. Our refinement mechanism helps a user iter-
atively build up a more and more detailed description of a problem, without requiring
prior familiarity with the structure and terminology of the knowledge base.

PE includes infrastructure that supports the expansion of queries with context-
sensitive synonymy rules intended to help with the mismatch between user vocabulary
and the vocabulary of the knowledge base, but the thesaurus needed for this functional-
ity has not yet been systematically populated. We expect this functionality to be partic-
ularly effective in combination with the refinement tree, which is structured to make it
easy to ignore results based on inappropriate synonyms. Work is currently ongoing to
automate parts of the thesaurus development process.

Initial user testing indicated that users have more success at finding solutions with
PE than with a classical search mechanism that simply answers a query with a list
of results. Further testing is planned to compare our clustering method with a more
traditional clustering based on similarity of document vocabularies, and to evaluate the
contribution that individual components of the PE functionality, namely the synonymy
mechanism and the novel clustering method, make to the overall performance.

References

1. S. Aı̈t-Mokhtar, J.-P. Chanod and C. Roux: Robustness beyond shallowness: incremental
dependency parsing. NLE Journal, 2002.

2. S. P. Abney: Parsing by Chunks. In R. C. Berwick, S. P. Abney, and C. Tenny, eds., Principle-
Based Parsing: Computation and Psycholinguistics, pp. 257–278. Kluwer Academic Pub-
lishers, Boston, 1991.

Query Reformulation and Refinement Using NLP-Based Sentence Clustering 221

3. D. W. Aha, Tucker Maney, and Leonard A. Breslow: Supporting Dialogue Inferencing in
Conversational Case-Based Reasoning. In Proc. of EWCBR’98.

4. P. G. Anick: Adapting a full-text information retrieval system to the computer troubleshoot-
ing domain. In Proceedings of the 17th Annual international ACM SIGIR Conference on
Research and Development in Information Retrieval, Dublin, Ireland, July 1994. Springer-
Verlag, NY, 349-358.

5. P. G. Anick and S. Tipirneni: The paraphrase search assistant: terminological feedback for
iterative information seeking. In Proceedings of the 22nd annual international ACM SIGIR
conference on Research and development in information retrieval, 1999, 153–159.

6. N. J. Belkin, C. Cool, D. Kelly, S. Lin, S. Y. Park, J. Perez-Carballo, and C. Sikora: Iterative
exploration, design and evaluation of support for query reformulation in interactive informa-
tion retrieval. Information Processing Management, Vol. 37, Num 3 (2001), 403-434.

7. D. G. Bobrow and J. Whalen: Community knowledge sharing in practice: the Eureka story.
In Journal of the Society for Organizational Learning, Vol. 4 Issue 2, 2002.

8. D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey: Scatter/Gather: a cluster-based
approach to browsing large document collections. Proceedings of the 15th Annual inter-
national ACM SIGIR Conference on Research and Development in information Retrieval,
Copenhagen, Denmark, June 1992. ACM Press, New York, NY, 318-329.

9. K.D. Edgar, D.M. Nichols, G.W. Paynter, K. Thomson, and I.H. Witten: A user evaluation
of hierarchical phrase browsing. In Proc. European Conference on Digital Libraries, Trond-
heim, Norway, 2003.

10. F. V. Jensen, C. Skaanning, and U. Kjaerulff: The SACSO system for Troubleshooting of
Printing Systems. In Proc. of SCAI 2001, pp. 67-79.

11. B. H. Kang, K. Yoshida, H. Motoda, and P. Compton: Help Desk System with Intelligent
Interface. In Applied Artificial Intelligence, Vol. 11, Num. 7, 1 Dec. 1997, pp. 611-631(21).

12. D. Lawrie and W. B. Croft and A. Rosenberg: Finding topic words for hierarchical summa-
rization. In SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR conference
on Research and development in information retrieval, 2001, 349–357.

13. J. O’Neill, A. Grasso, S. Castellani, and P. Tolmie: Using real-life troubleshooting interac-
tions to inform self-assistance design. In Proc. of INTERACT, Rome, Italy, 12-16 Sep. 2005.

14. B. Peischl and F. Wotowa: Model-based diagnosis or reasoning from first principles. In IEEE
Intelligent Systems Vol. 18, Num. 3, 2003, pp. 32-37.

15. J. Rocchio: Relevance feedback in information retrieval. In G. Salton (ed.) The SMART Re-
trieval System—Experiments in Automatic Document Processing. Prentice-Hall, 1971.

16. M. Sanderson and B. Croft: Deriving concept hierarchies from text. In SIGIR ’99: Proceed-
ings of the 22nd annual international ACM SIGIR conference on Research and development
in information retrieval, 1999, 206–213.

Automatic Morphological Query Expansion

Using Analogy-Based Machine Learning

Fabienne Moreau, Vincent Claveau, and Pascale Sébillot

IRISA, Campus universitaire de Beaulieu, 35042 Rennes cedex, France
{Fabienne.Moreau, Vincent.Claveau, Pascale.Sebillot}@irisa.fr

Abstract. Information retrieval systems (IRSs) usually suffer from a
low ability to recognize a same idea that is expressed in different forms.
A way of improving these systems is to take into account morphologi-
cal variants. We propose here a simple yet effective method to recognize
these variants that are further used so as to enrich queries. In comparison
with already published methods, our system does not need any exter-
nal resources or a priori knowledge and thus supports many languages.
This new approach is evaluated against several collections, 6 different
languages and is compared to existing tools such as a stemmer and a
lemmatizer. Reported results show a significant and systematic improve-
ment of the whole IRS efficiency both in terms of precision and recall for
every language.

Keywords: Morphological variation, query expansion, analogy-based
machine learning, unsupervised machine learning.

1 Introduction

Information retrieval systems (IRSs) aim at establishing a relation between users’
information needs (generally expressed by natural language queries) and the in-
formation contained in documents. To this end, a commonly used method con-
sists of making a simple match between the query terms and the document words.
A document is said to be relevant if it shares terms with the query. IRSs face
two problems with such a mechanism, mainly bound to the inherent complex-
ity of natural language. The first problem is related to polysemy: a single term
may have different meanings and represent various concepts (e.g. bug: insect or
computer problem); because of term ambiguity, IRSs may retrieve non relevant
documents. The second and dual issue reflects the fact that a single idea may be
expressed in different forms (e.g. bicycle-bike). Therefore, a relevant document
can contain terms semantically close but graphically different. To overcome those
two limitations, a rather natural solution is to perform a linguistic analysis of
documents and queries. Based on natural language processing (NLP) techniques,
it enables to obtain richer and more robust descriptors than simple keywords.
These descriptors are able to highlight the fact that a same word can have
different meanings or undergo variations of form (retrieve ↔ retrieval),
structure (information retrieval ↔ information that is retrieved) or
meaning (seek ↔ search). Among the various types of linguistic analysis that

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 222–233, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Morphological Query Expansion 223

can be applied (i.e. morphological, syntactic or semantic), morphological anal-
ysis appears to be one of the most effective ones to improve IRS performances.
It leads to recognize that words such as produce, produced, producing, and
producer, although graphically different, are actually forms of the same word;
in other terms they are morphological variants. Enabling the match of these
graphically different but semantically close forms can be consequently relevant
in information retrieval (IR).

Morphological variation is a well-known problem in IR and has been exhaus-
tively investigated in the literature (for a state-of-the-art, see [1,2,3,4] for in-
stance). Despite those studies, one main issue remains: the non-portability of
the methods proposed for detecting morphological variants: a majority of them
are developed for one given language and are based on external knowledge (list of
endings, recoding rules, lexicon...); consequently, they cannot be re-used out of
their framework of creation. Considering the potential impact of morphological
information on the performances of IRSs, it is essential to conceive tools that
exceed the limits of existing methods and are adapted to IR data specificities.

Therefore, a simple but effective approach using an unsupervised machine
learning technique is proposed in order to detect morphological variants. This
method has to fulfill the following requirements: it must not require any exter-
nal knowledge or resources; it must be entirely automatic; it must be directly
applicable to various languages. Our acquisition method is used in IR for query
expansion. The goal of our approach is to detect, within a collection of texts,
words that are in morphological relations with the terms of a query and to add
them to it.

The rest of the paper has the following structure: Section 2 presents some
of the approaches existing to take into account morphological variation in IR.
Section 3 describes the method developed for the detection of morphological
variants and its use in an IRS to extend queries. Section 4 details the experiment
results obtained on various collections and discusses them. Finally, Section 5
concludes on the relevance of our method to improve IRS performances.

2 Background: Morphological Variation in IR

There are generally two ways for coping with morphological variation in IR: at
indexing time (conflation approach) or at retrieval time (query expansion). In
the conflation approach, the various forms of a same word (variants) are reduced
to a common form (stem, root or lemma). Thus match between documents and
query is done on the basis of this canonical form. In the expansion method,
documents and queries are indexed with original word forms; and the terms of
a user’s query are expanded with their morphological variants at retrieval time
(see [5] for instance). One usual technique to handle morphological variation is
stemming, which is used to reduce variant word forms to common roots (stems)
[1, for instance]. Other approaches choose more sophisticated tools based on
linguistic methods, like lemmatizers (inflectional morphology) or derivational
analyzers [6,7,8].

224 F. Moreau, V. Claveau, and P. Sébillot

The principal limit of the existing tools is that they are, in most cases, based
on external resources such as affix lists, morphological rules or dictionaries. Con-
sequently, they can only be applied to one very particular language and present a
restricted coverage. Many studies yet suggest to use them in IR [1,3,9, inter alia];
the experiments tend to show the added-value of taking into account morpholog-
ical variants to improve both recall and precision of systems. However, obtained
results depend on numerous factors, like collection language, query length or
document type (general or from specialized fields for example). More generally,
among those studies, very few are compatible with the three requirements given
in introduction as a framework of our work. Some approaches that meet entirely
our constraints rely on statistical techniques, which have the advantage of be-
ing independent of the language and may be unsupervised. Thus, several word
segmentation tools were developed while being mainly based on frequency crite-
ria [10, for instance] or on a N-grams technique [11]. Generally, those statistical
methods, although they answer our requirements, show low reliability for the
detection of morphological variants [12] and their contributions to IR has not
been really proved.

3 New Automatic Acquisition of Morphological Variants
Used to Extend Query in IR

We describe here our method to extract morphological variants from documents.
To fulfill the three requirements enumerated in introduction, our approach is
based on a rather simple but flexible technique better suited to IR specificities.
The principles are the followings: an original technique (cf. Section 3.1) is used to
detect every morphologically related word pairs (joined up by a link of morpho-
logical variation); since we are looking for query extensions, we use it to locate
within the document database all the words that are morphologically related
to one of the terms of the query. All the detected words are then added to this
query for its expansion. The proposed acquisition method is first explained; then
its use within IRSs for query expansion is described in details.

3.1 Learning by Analogy

Our approach for morphological variant acquisition of query terms is based on
a technique initially developed to be used in the field of terminology [13]. Its
principle is simple and based on analogy. Analogy can be formally represented
as A : B .= C : D, which means “A is to B what C is to D”; i.e. the couple A-B
is in analogy with the couple C-D. The use of analogy in morphology, which is
rather obvious, has already been studied [14]. For example, if we have analogies
like connector : connect .= editor : edit, and knowing that connector and
connect share a morpho-semantic link, we can guess a same link between editor
and edit.

The most important feature in learning by analogy is the notion of similarity
that is used to determine if two pairs of propositions —in our case, two pairs

Automatic Morphological Query Expansion 225

of words— are analogous. The similarity notion we use, hereafter Sim, is quite
simple but well fit to many languages in which inflection and derivation are
mainly obtained by prefixation and suffixation. Intuitively, Sim checks that to
go from a word w3 to a word w4, the same “path” of deprefixation, prefixation,
desuffixation and suffixation is needed as to go from w1 to w2. More formally, let
us name lcss(X, Y) the longest common substring shared by two strings X and
Y (e.g. lcss(republishing, unpublished) = publish), X +suf Y (respectively
+pre) being the concatenation of the suffix (resp. prefix) Y to X, and X −suf Y
(respectively −pre) being the removal of the suffix (resp. prefix) Y from X. The
similarity measure Sim can then be defined as follows:

Sim(w1-w2, w3-w4) = 1 if the four following conditions are simultaneously
met: ⎧⎪⎪⎨

⎪⎪⎩
w1 = lcss(w1, w2) +pre Pre1 +suf Suf1, and
w2 = lcss(w1, w2) +pre Pre2 +suf Suf2, and
w3 = lcss(w3, w4) +pre Pre1 +suf Suf1, and
w4 = lcss(w3, w4) +pre Pre2 +suf Suf2

Sim(w1-w2, w3-w4) = 0 otherwise

Prei and Sufi are any character strings. If Sim(w1-w2, w3-w4) = 1, the analogy
w1 : w2

.= w3 : w4 stands, then we can suppose that the morphological relation
between w1 and w2 is identical to the one between w3 et w4.

Our morphological acquisition process checks if an unknown pair is in anal-
ogy with one or several given examples. For instance, we can determine that
the couple rediscovering-undiscovered is in analogy with one example-pair
republishing-unpublished, since the similarity measure defined as follows:⎧⎪⎪⎨

⎪⎪⎩
w1 = publish+pre re +suf ing, and
w2 = publish+pre un +suf ed, and
w3 = discover+pre re+suf ing, and
w4 = discover+pre un+suf ed

worths 1.
For efficiency reasons during analogy search, rather than the word-pair exam-

ples, the prefixation and suffixation operations used in the similarity measure
are stored. Thus, the example-couple republishing-unpublished is not stored
as such, but retained according to the following rule:

w2 = w1 −pre re +pre un −suf ing +suf ed

To show the analogy republishing : unpublished
.= rediscovering :

undiscovered consists in testing that rediscovering-undiscovered verifies
the preceding rule.

As already emphasized in [6], prefixation and suffixation operations considered
in our approach enable to take into account partly the light variations of roots
as long as they are common enough to be present in one of our examples. More
complex variations such the one existing in go-went are of course not supported.
Yet it has been already proved that this simple analogy-based technique is able
to detect morphological variants using examples of semantically and morpholog-
ically related words with a very good coverage and a high degree of accuracy in

226 F. Moreau, V. Claveau, and P. Sébillot

a context of computational terminology (cf. [13]). It is worth noting that it is
moreover possible to identify the semantic link between these variants with ex-
cellent rates of success by annotating each rule with a label of semantic relation.
Those are not used here: although it was shown that some semantic links are
more relevant than others [15], we made the choice to take into account all the
kinds of semantic links (synonymy, hyperonymy...) for query expansion.

3.2 Use for Query Expansion

In order to be operational, the previously presented detection method needs ex-
amples (i.e. morphologically related word couples). Such a supervised property is
not well suited to a use within IR and does not correspond to the fully automatic
aspect of the system in our requirements. To solve this problem, we substitute
this supervision phase by a rustic technique that allows to constitute a set of
word pairs that can be used as examples. This example-pair research proceeds
in the following way:

1. randomly choose one document in the IRS collection;
2. form all the possible word pairs resulting from this document;
3. add to the example set couples w1-w2 such as lcss(w1,w2) > l;
4. return to step 1.

These steps are repeated until the resulting set of example-couples is large
enough; in the experiments described in Section 4, 500 documents were analyzed.
Notice that this operation also supposes that derivation and inflection are mainly
done by prefixation and suffixation operations.

During this phase, it is necessary to avoid building word pairs that are not
valid examples. The correct behavior of our analogy technique relies on it. That
is why we have added two constraints. On the one hand, a minimal length of
common substring l is fixed at a large enough value (in our experiments, l = 7
letters). Thus, the probability to aggregate two words that do not share any link
is reduced. On the other hand, like what was already shown [5], variant search
within a same document maximizes the probability that the obtained two words
belong to the same domain.

At the end of this step, a set of morphologically related word-pair examples
is available; analogy rule learning can be conducted (cf. Section 3.1). It is then
possible to check if unknown word pairs are in derivation or inflection relation.
In our case, we precisely want to retrieve query term variants. Each query term
is thus confronted with each word of the document collection. If a formed pair
is in analogy with one of the example-pairs, then the document word is used
to enrich the query. In order to speed up treatments, analogy rules are in fact
used in a generative way. Words are produced from the query terms according
to prefixation and suffixation operations indicated in the morphological rules
and are kept only if they appear in the index of the collection’s terms. Rule
learning being made off-line, only the morphological variant search for query
terms within the index is made on-line. Search complexity is O(n) where
n is the number of distinct terms in the collection. In our experiments, it

Automatic Morphological Query Expansion 227

takes some tenths of a second using a Pentium 1.5 GHz (512 MB). For
instance, for the original query: Ineffectiveness of U.S. Embargoes or
Sanctions, the result of the expansion will be: ineffectiveness ineffective
effectiveness effective ineffectively embargoes embargo embargoed
embargoing sanctioning sanction sanctioned sanctions sanctionable.

During expansion, only words directly related to query terms are added;
the words themselves related to the extensions are not taken into account.
This voluntary absence of transitivity aims at avoiding propagating errors,
such as reduce → produce → product → productions → production →
reproduction... In our experiments, an average of three variants is added to
each query term. No manual filtering is performed; thus, some extensions are
not relevant. The quality of the extensions is evaluated by measuring their im-
pact on the IRS performances. An intrinsic evaluation, out of the context of use,
turns out to be non relevant to estimate their impact.

4 Experimental Results

This section details the evaluation of our query expansion method. We first
present the various document collections that have been used (Section 4.1), and
then successively describe different experiments: results obtained from French
and English collections (Sections 4.2 and 4.3) are first reviewed; then the impact
of the query length (Section 4.4) is analyzed; and finally the portability of our
approach on other languages (Section 4.5) is evaluated.

4.1 Document Collections

Three different document collections are used for our experiments. The evalua-
tion of our method is carried out for English on a subset of the tipster collection
used in TREC. More precisely the Wall Street Journal subcollection made up of
175,000 documents and a set of 50 queries (from TREC-3) has been chosen. In
order to emulate the usual short-query behavior, only the title field containing
few words has been employed.

The evaluation on French is based on the inist collection, made up of 30
queries and 163,000 documents, which are paper abstracts from various scien-
tific disciplines. The portability of our method is controlled on the elra collec-
tion, made up of 30 queries and 3,511 documents that are questions/answers of
the European Commission, available in French, English, German, Portuguese,
Spanish, and Italian. Short queries (title field) are also chosen for these two col-
lections, except in Section 4.4 where the impact of the query length is studied.
The IRS used is lemur (http://www.lemurproject.org), implemented with
the well-known Okapi-like (BM-25) weighting scheme.

4.2 French Experiments

The first experiment is performed on the French inist collection. In order to
evaluate the added-value of query expansion with morphological variants de-
tected with our method, results are computed with and without extensions.

http://www.lemurproject.org

228 F. Moreau, V. Claveau, and P. Sébillot

Standard IR measures are used for evaluation: precision and recall (com-
puted for several threshold values), interpolated average precision (calculated
at 11 recall points (IAP)), R-precision and non-interpolated average preci-
sion (MAP). For comparison, we also present the results obtained by ap-
plying on the same collection three traditional morphological tools: 2 French
stemmers based on a set of fixed rules of desuffixation — one developed by
Savoy [16], the other is an CPAN Perl adaptation of the Porter algorithm
for French — and a French lemmatizer — part-of-speech tagger treetagger

(http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger).
In contrast with our method, these tools perform by conflation. Results are

given in Table 1 . Those considered as being not statistically significant (using
paired t-test with the condition p-value < 0.05) are indicated in italic. The
average length (number of words, stop-words included) of the queries (|Q|) is
also indicated.

Table 1. Query expansion performances on the inist collection

Without With extension Stemming (Savoy) Stemming (Porter) Lemmatization
extension (improvement %) (improvement %) (improvement %) (improvement %)

|Q| 5.46 16.03 5.2 5.2 5.17

MAP 14.85 18.45 (+24.29%) 17.31 (+16.63%) 15.89 (+7.00%) 17.82 (+20.07%)

IAP 16.89 19.93 (+17.97%) 18.85 (+11.57%) 17.69 (+5.92%) 19.72 (+16.73%)

R-Prec 17.99 21.63 (+20.24%) 19.88 (+10.53%) 18.77 (+4.34%) 19.71 (+9.56%)
P(10) 34.33 38.67 (+12.62%) 36.67 (+6.80%) 34.33 (0%) 39.67 (+15.53%)

P(20) 27.83 31.83 (+14.37%) 29.00 (+4.19%) 26.50 (-4.78%) 31.6 (+13.77%)

P(50) 18.33 21.27 (+16.00%) 20.13 (+9.82%) 18.33 (0%) 20.87 (+13.82)
P(100) 12.23 14.80 (+20.98%) 15.23 (+24.52%) 13.87 (+13.41%) 14.97 (+22.34%)

P(500) 3.88 4.80 (+23.71%) 4.55 (+17.18%) 4.56 (+17.53%) 4.47 (+15.29%)

P(1 000) 2.21 2.68 (+21.30%) 2.53 (+14.80%) 2.54 (+15.26%) 2.48 (+12.39%)

P(5 000) 0.56 0.67 (+20.38%) 0.63 (+13.47%) 0.62 (+11.81%) 0.64 (+15.14%)

R(10) 8.00 8.99 (+12.36%) 8.45 (+5.64%) 8.19 (+2.38%) 9.04 (+13.02%)
R(20) 12.33 14.50 (+17.59%) 12.81 (+3.90%) 12.00 (-2.75%) 13.62 (+10.48%)
R(50) 19.65 24.07 (+22.47%) 20.78 (+5.74%) 19.71 (+0.31%) 21.56 (+9.71%)
R(100) 26.85 32.87 (+22.41%) 31.32 (+16.64%) 29.28 (+9.05%) 31.58 (+17.59%)

R(500) 43.09 53.83 (+24.92%) 49.31 (+14.43%) 50.16 (+16.42%) 49.35 (+14.54%)

R(1 000) 48.43 59.45 (+22.74%) 55.27 (+14.12%) 56.94 (+17.57%) 55.03 (+13.62%)

R(5 000) 59.32 72.20 (+21.71%) 67.22 (+13.31%) 67.82 (+14.32%) 68.20 (+14.96%)

The reported figures show that, for each measure, our query expansion method
obtains very good results that are all statistically significant. For most measures,
query expansion appears not only more effective than stemming or lemmatiza-
tion, but also more stable since several results of the last two techniques have
been found not statistically significant. It is also worth noting that improvements
are distributed on every precision and recall thresholds (from 10 to 5000 docu-
ments). Thus, improvement does not only correspond to a re-ranking of relevant
documents at the head of the result list but also to the obtaining of relevant
documents that would not have been retrieved without query extensions.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger

Automatic Morphological Query Expansion 229

4.3 English Experiments

This experiment proposes to test if the good results obtained for French can also
be observed on English. The preceding experiments are reiterated on the English
tipster collection. Table 2 shows the results obtained compared with those of
a traditional research without extension, and of researches with lemmatization
(using treetagger) and stemming (based on Porter’s stemmer [17]).

Table 2. Query expansion performances on the tipster collection

Without With extension Stemming Lemmatization
extension (improvement %) (improvement %) (improvement %)

|Q| 6.5 16.6 6.48 6.48

MAP 23.15 27.18 (+17.40%) 28.09 (+21.33%) 23.85 (+3.02%)
IAP 25.02 29.44 (+17.65%) 29.71 (+18.73%) 25.68 (+2.63%)
R-Prec 27.52 31.96 (+16.15%) 32.66(+18.69%) 27.68 (+0.59%)
P(10) 39.60 47.00 (+18.68%) 45.00 (+13.63%) 41.40 (+4.54%)
P(20) 36.10 40.90 (+13.29%) 41.00 (+13.57%) 36.60 (+1.38%)
P(50) 28.28 32.80 (+15.98%) 31.72 (+12.16%) 28.68 (+1.41)
P(100) 21.44 25.50 (+18.93%) 23.76 (+10.82%) 22.10 (+3.07%)
P(500) 7.94 9.21 (+15.90%) 8.72 (+9.81%) 8.35 (+5.13%)
P(1 000) 4.66 5.37 (+15.08%) 5.09 (+9.12%) 4.85 (+3.89%)
P(5 000) 1.17 1.31 (+12.21%) 1.30 (+12.10%) 1.22 (+4.09%)
R(10) 10.20 11.18 (+9.52%) 12.77 (+25.13%) 10.68 (+4.66%)
R(20) 16.10 16.82 (+4.46%) 19.36 (+20.24%) 17.79 (+10.45%)
R(50) 29.68 32.41 (+9.18%) 32.84 (+10.65%) 30.43 (+2.53%)
R(100) 39.48 44.59 (+12.95%) 43.86 (+11.09%) 41.61 (+5.40%)
R(500) 61.11 67.68 (+10.74%) 67.82 (+10.98%) 62.46 (+2.20%)
R(1 000) 68.68 75.50 (+9.92%) 74.81 (+8.92%) 69.28 (+0.87%)
R(5 000) 80.59 87.66 (+8.77%) 87.22 (+8.22%) 81.20 (+0.75%)

The results are positive. The contribution of our approach using query expan-
sion on English is important since the observed gain on the IRS performances
is ranging from 4 and 18% according to the measures. Although improvements
are sometimes slightly lower than those observed for stemming, they are all
statistically significant and constant for all measures. These observations high-
light the robustness of our method, and its ability of self-adaptation to English.
Other experiments are proposed in Section 4.5 in order to precisely evaluate its
portability.

4.4 Impact of Query Length

In order to measure impact of the query length on our expansion method, the
French experiment is repeated using the other fields of inist queries so as to
cope with increasingly long queries. In this collection, a query is associated with
a set of concepts, each one being represented in a distinct field. The fields are

230 F. Moreau, V. Claveau, and P. Sébillot

added one by one to the original query (i.e. the title field). Figure 1 shows
results according to the query length that is measured in number of words be-
fore expansion. The IRS performance is measured by non-interpolated average
precision.

 14

 16

 18

 20

 22

 24

 6 8 10 12 14 16

N
on

−
in

te
rp

ol
at

ed
 a

ve
ra

ge
 p

re
ci

si
on

 (
%

)

Query length (average number of words)

IRS without modification
IRS with extensions

IRS with Savoy’s stemming
IRS with lemmatization

Fig. 1. Precision evolution according to the query length

Broadly speaking, these results prove the interest of taking into account the
morphological variants whatever the query length and the morphological process.
Among the three evaluated techniques, our approach for query expansion has
yet shown better results than stemming and lemmatization.

4.5 Portability

The principal asset of our approach compared with other existing tools is its
portability. It is supposed to be directly usable on any language whose mor-
phology is done by prefixation and suffixation. In order to establish the truth of
this assertion, Table 3 presents the results obtained on the elra collection for
German, English, Spanish, French, Italian and Portuguese. For each language,
variation (expressed as a percentage) compared to the same search without query
extension is indicated.

Results are all very positive since improvements given by query extensions are
ranging from 10 to 20% according to languages and measures. As for the other
experiments, this gain concerns all precision and recall thresholds. However, for
low thresholds (10 to 50 documents), some not statistically significant figures seem
to indicate results varying from one query to another. In contradiction with what
is usually claimed in some studies, we would like to emphasize here some original
remarks. First, query extension with morphological variants has more impact for
English, which is generally seen as a morphologically poor language, than for so-
called richer languages like Spanish, Italian... It also appears that it is German that

Automatic Morphological Query Expansion 231

Table 3. Query extension performances on different languages

Languages

German English Spanish French Italian Portuguese

MAP +16.25% +17.52% +10.03% +11.89% +10.45% +9.69%

IAP +15.93% +16.66% +8.70% +10.99% +9.79% +9.25%

R-Prec +3.03% +10.23% +7.97% +9.43% +10.23% +6.20%
P(10) +10.68% +7.03% 0% +3.53% +2.54% 0%
P(20) +8.33% +3.62% +7.41% +6.85% +11.15% +4.38%
P(50) +6.69% +8.23% +13.40% +13.85% +13.48% +8.31%

P(100) +9.54% +14.31% +16.76% +16.24% +18.98% +14.24%

P(500) +13.18% +20.49% +18.13% +17.19% +18.94% +23.35%

P(1 000) +12.97% +21.60% +20.32% +18.26% +22.13% +24.64%

R(10) +6.82% +2.90% +1.88% +5.43% -0.67% -0.47%
R(20) +5.95% +3.27% +7.40% +7.36% +7.82% +7.55%
R(50) +11.12% +8.48% +7.72% +10.82% +7.37% +6.21%
R(100) +11.87% +13.23% +10.14% +10.11% +8.93% +9.39%

R(500) +16.45% +21.68% +14.49% +12.69% +14.31% +17.71%

R(1 000) +18.15% +20.93% +17.38% +13.20% +18.35% +19.23%

benefits the most from the extension technique; this is most probably related to
the fact that frequent word agglutinations are better taken into account by our ap-
proach (the pair Menschenrechte-Menschenrechtsorganisation for instance).

4.6 Discussion

Reported experimental results have shown that our approach for morphologi-
cal variant detection and its use in query expansion significantly improves IRS
performances. Its portability has been demonstrated: good results are observed
even for languages that are traditionally found to be morphologically poor. These
conclusions are distinct from those in several studies of the same field [18, for
instance]. Moreover, contrary to what is sometimes observed in other studies,
query length appears to have almost no impact on the results: improvement is
constant and comparable for query lengths between 5 and 15 words.

Our method for enriching query terms with their morphological variants is
nevertheless not perfect. Some terms actually related to query terms are not
detected. For instance, for the English collection, our method did not allow to
find the variant hazard related to the original term hazardous nor the term
paid related to the conjugated verb pays of the initial query. These errors are
avoided by the methods based on resources, thus explaining why in some cases
results obtained by Porter’s stemmer are better. What is on the other hand
more prejudicial for query extensions is that non relevant terms can be some-
times added. Concerning this last point, several cases can be distinguished. First,
some detected words are not semantically related to the original term; the mor-
phological link is fortuitous or no longer used, like composition-exposition for
instance. Then, some polysemous terms cause errors that are difficult to avoid.

232 F. Moreau, V. Claveau, and P. Sébillot

For example, production and reproduction, detected as morphologically re-
lated, are indeed linked in result production and result reproduction but
not in fish reproduction. To limit the impact of these errors, words that are
themselves related to extensions are not used to enrich queries. This voluntary
absence of transitivity aims at avoiding propagating errors. For this reason, the
approach by expansion seems more flexible than the conflation method in which
production and reproduction together with their variants would all be trans-
formed to one single form.

5 Conclusion

In this paper, we have proposed a simple and original technique, relying on an
analogy-based learning process, able to automatically detect morphological vari-
ants within documents and use them to expand query terms. This morphological
expansion approach yields very good results. It rivals and even almost always
outperforms results obtained with existing tools such as rule-based stemmer or
lemmatizer, and also provides more stable performances. Moreover, contrary to
most existing techniques, our method is fully unsupervised and thus can be used
for many languages; in this paper, we successfully used it on English, French,
German, Italian, Portuguese and Spanish test collections.

From a broader point of view, the conclusions of our experiments confirm those
generally claimed in state-of-the-art studies since taking into account morpholog-
ical variation always improves IRS performances, whatever the language. How-
ever, our results go against what is sometimes concluded. Indeed, we have shown
that morphology can improve IRS performances whatever the query length or the
morphological complexity of language providing that a flexible enough method
is used.

This paper opens many future prospects that need further consideration. As
further studies, there might be some added-values not to include all variants re-
lated to a query term but only retain the most relevant ones. Expansion decision
could be thus based on the level of confidence of detected analogy (according to
its productivity for instance) and on the importance of the query term directly
or indirectly related. It would also be interesting to work on the weighting of the
variants that are added to the original query and to integrate it in the ranking
function. Reported results on studied languages require to checked and consoli-
dated on other collections and to be extended to other languages. Finally, within
a framework of translinguistic IR, a similar approach based on analogy used for
translation of specialized terms is being studied.

References

1. Harman, D.: How Effective is Suffixing? Journal of the American Society for
Information Science 42 (1991) 7–15

2. Kraaij, W., Pohlmann, R.: Viewing Stemming as Recall Enhancement. In: Pro-
ceedings of the 19th ACM International Conference on Research and Development
in Information Retrieval (SIGIR), Zürich, Switzerland (1996)

Automatic Morphological Query Expansion 233

3. Hull, D.: Stemming Algorithms - A Case Study for Detailed Evaluation. Journal
of the American Society of Information Science 47 (1996) 70–84

4. Moreau, F., Sébillot, P.: Contributions des techniques du traitement automatique
des langues à la recherche d’information. Research report, IRISA, Rennes, France
(2005)

5. Xu, J., Croft, W.B.: Corpus-Based Stemming Using Cooccurrence of Word Vari-
ants. ACM Transactions on Information Systems 16 (1998) 61–81

6. Gaussier, E.: Unsupervised Learning of Derivational Morphology from Inflectional
Corpora. In: Proceedings of Workshop on Unsupervised Methods in Natural Lan-
guage Learning, 37th Annual Meeting of the Association for Computational Lin-
guistics (ACL), College Park, United-States (1999)

7. Vilares-Ferro, J., Cabrero, D., Alonso, M.A.: Applying Productive Derivational
Morphology to Term Indexing of Spanish Texts. In Gelbukh, A., ed.: Computa-
tional Linguistics and Intelligent Text Processing. Springer-Verlag (2001) 336–348

8. Moulinier, I., McCulloh, J.A., Lund, E.: West Group at CLEF 2000: Non-English
Monolingual Retrieval. In: Proceedings of the Workshop of Cross-Language Eval-
uation Forum, CLEF 2000, Lisbon, Portugal (2000)

9. Fuller, M., Zobel, J.: Conflation-Based Comparison of Stemming Algorithms. In:
Proceedings of the 3rd Australian Document Computing Symposium, Sydney, Aus-
tralia (1998)

10. Goldsmith, J.A., Higgins, D., Soglasnova, S.: Automatic Language-Specific Stem-
ming in Information Retrieval. In: Proceedings of Workshop of Cross-Language
Evaluation Forum (CLEF), Lisbon, Portugal (2001)

11. Frakes, W.B.: Stemming Algorithms. In Frakes, W.B., Baeza-Yates, R., eds.: Infor-
mation Retrieval: Data Structures and Algorithms. Prentice Hall (1992) 131–160

12. Savoy, J.: Morphologie et recherche d’information. Technical report, Neuchâtel
University, Neuchâtel, Switzerland (2002)

13. Claveau, V., L’Homme, M.C.: Structuring Terminology by Analogy Machine Learn-
ing. In: Proceedings of the International Conference on Terminology and Knowl-
edge Engineering (TKE), Copenhagen, Denmark (2005)

14. Hathout, N.: Analogies morpho-synonymiques. Une méthode d’acquisition au-
tomatique de liens morphologiques à partir d’un dictionnaire de synonymes. In:
Proceedings of 8ème conférence annuelle sur le traitement automatique des langues
naturelles (TALN), Tours, France (2001)

15. Voorhees, E.M.: Query Expansion Using Lexical-Semantic Relations. In: Proceed-
ings of the 17th ACM International Conference on Research and Development in
Information Retrieval (SIGIR), Dublin, Ireland (1994)

16. Savoy, J.: A Stemming Procedure and Stopword List for General French Corpora.
Journal of the American Society for Information Science 50 (1999) 944–952

17. Porter, M.F.: An Algorithm for Suffix Stripping. Program 14 (1980) 130–137
18. Arampatzis, A., Weide, T.P.V.D., Koster, C.H.A., Van Bommel, P. In: Lin-

guistically Motivated Information Retrieval. Volume 69. M. Dekker, New York,
United-States (2000) 201–222

Advanced Structural Representations for

Question Classification and Answer Re-ranking

Silvia Quarteroni1, Alessandro Moschitti2, Suresh Manandhar1,
and Roberto Basili2

1 The University of York, York YO10 5DD, United Kingdom
{silvia,suresh}@cs.york.ac.uk

2 University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy
{moschitti,basili}@info.uniroma2.it

Abstract. In this paper, we study novel structures to represent infor-
mation in three vital tasks in question answering: question classification,
answer classification and answer reranking. We define a new tree struc-
ture called PAS to represent predicate-argument relations, as well as a
new kernel function to exploit its representative power. Our experiments
with Support Vector Machines and several tree kernel functions suggest
that syntactic information helps specific task as question classification,
whereas, when data sparseness is higher as in answer classification, study-
ing coarse semantic information like PAS is a promising research area.

1 Introduction

Question answering (QA) can be seen as a form of information retrieval where
one or more answers are returned to a question in natural language in the form
of sentences or phrases. The typical QA system architecture consists of three
phases: question processing, document retrieval and answer extraction [1].

In question processing, useful information is gathered from the question and
a query is created; this is submitted to an information retrieval engine, which
provides a ranked list of relevant documents. From these, the QA system must
extract one or more candidate answers, which can then be reranked following
various criteria such as their similarity to the query. Question processing is usu-
ally centered around question classification (QC), the task that maps a question
into one of k expected answer classes. Such task is crucial as it constrains the
search space of possible answers and contributes to selecting answer extraction
strategies specific to a given answer class. Most accurate QC systems apply su-
pervised machine learning techniques, e.g. Support Vector Machines (SVMs) [2]
or the SNoW model [3], where questions are encoded using various lexical, syn-
tactic and semantic features; it has been shown that the question’s syntactic
structure contributes remarkably to the classification accuracy.

The retrieval and answer extraction phases consist in retrieving relevant doc-
uments [4] and selecting candidate answer passages [5,1] from them. A further
phase called answer re-ranking is optionally applied. It is especially relevant in
the case of non-factoid questions, such as those requiring definitions, where the

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 234–245, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Advanced Structural Representations for QC and Answer Re-ranking 235

answer can be a whole sentence or paragraph. Here, too, the syntactic structure
of a sentence appears to provide more useful information than a bag of words.

An effective way to integrate syntactic structures in machine learning
algorithms is the use of tree kernel functions [6]. Successful applications of these
have been reported for question classification [2,7] and other tasks, e.g. rela-
tion extraction [8,7]. However, such an approach may be insufficient to encode
syntactic structures in more complex tasks such as computing the relationships
between questions and answers in answer reranking. The information provided
by parse trees may prove too sparse: the same concept, expressed in two different
sentences, will produce different, unmatching parses. One way to overcome this
issue is to try to capture semantic relations by processing shallow representa-
tions like predicate argument structures proposed in the PropBank (PB) project
[9] (www.cis.upenn.edu/∼ace). We argue that semantic structures can be used to
characterize the relation between a question and a candidate answer.

In this paper, we extensively study new structural representations, namely
parse trees, bag-of-words, POS tags and predicate argument structures for
question classification and answer re-ranking. We encode such information by
combining tree kernels with linear kernels. Moreover, to exploit predicate ar-
gument information - which we automatically derive with our state-of-the-art
software - we have defined a new tree structure representation and a new kernel
function to process its semantics. Additionally, for the purpose of answer classi-
fication and re-ranking, we have created a corpus of answers to TREC-QA 2001
description questions obtained using a Web-based QA system.

Our experiments with SVMs and the above kernels show that (a) our approach
reaches state-of-the-art accuracy on question classification and (b) PB predica-
tive structures are not effective for question classification but show promising
results for answer classification. Overall, our answer classifier increases the rank-
ing accuracy of a basic QA system by about 20 absolute percent points.

This paper is structured as follows: Section 2 introduces advanced models to
represent syntactic and semantic information in a QA context; Section 3 explains
how such information is exploited in an SVM learning framework by introduc-
ing novel tree kernel functions; Section 4 reports our experiments on question
classification, answer classification and answer reranking; Section 5 concludes on
the utility of the new structure representations and sets the basis for further
work.

2 Advanced Models for Sentence Representation

Traditionally, the majority of information retrieval tasks have been solved by
means of the so-called bag-of-words approach augmented by language modeling
[10]. However, when the task requires the use of more complex semantics the
above approach does not appear to be effective, as it is inadequate to perform
fine-level textual analysis. To overcome this, QA systems use linguistic processing
tools such as syntactic parsers to produce sentence parse trees. In our study
we exploited two sources of syntactic information: deep syntactic parsers – the

www.cis.upenn.edu/~ace

236 S. Quarteroni et al.

outcome of a well-studied technology [6,11] – and shallow semantic parsers, only
recently the object of a consistent body of work.

2.1 Syntactic Structures

The syntactic parse tree of a sentence is a hierarchical representation of the
syntactic relationships between its words. In such tree, each node with its chil-
dren is associated with a grammar production rule, where the symbol at the
left-hand side corresponds to the parent and the symbols at the right-hand
side are associated with the children. The terminal symbols of the grammar are
always associated with the leaves of the tree.

Parse trees have often been applied in natural language processing applica-
tions requiring the use of grammatical relations, e.g. extraction of subject/object
relations. It has been shown [2,7] that syntactic information outperformed bag-
of-words and bag-of-n-grams on question classification in QA. The advantage
of computing parse tree-based sentence similarity with respect to purely lexical
approaches is that trees provide structural relations hard to compute otherwise.

However, when approaching complex QA tasks, the use of parse trees has some
limitations. For instance in definitional QA candidate answers can be expressed
by long and articulated sentences or even paragraphs. Since the information
encoded in a parse tree is intrinsically sparse, it does not contribute well to com-
puting the similarity between such answers; shallow semantics however, being
a more “compact” source of information, could prevent the sparseness of deep
structural approaches and the noise of bag-of-word models.

2.2 Semantic Structures

Initiatives such as PropBank (PB) [9] have led to the creation of vast and
accurate resources of manually annotated predicate argument structures1. Us-
ing these, machine learning techniques have proven successful in Semantic Role
Labeling (SRL), the task of attaching semantic roles to predicates and their
arguments. SRL is a fully exploitable technology: our SVM-based SRL system
achieves a 76% accuracy on PB data [12]. Attempting an application of SRL
to QA seems natural, as pinpointing the answer to a question relies on a deep
understanding of the question and answer’s semantics.

Let us consider a typical PB annotation for a sentence, such as: [ARG0

Compounded interest] [pred computes] [ARG1 the effective interest rate for

an investment] [ARGM−TMP during the current year].

Such shallow semantic annotation is a useful information source. For instance,
the PB annotation of a similar sentence would be: [ARGM−TMP In a year][ARG1

the bank interest rate] is [pred evaluated] by [ARG0 compounded interest].

Such annotations can be represented via tree structures as those in Figure 1,
which we call PASs. These attempt to capture the semantics of both sentences.
1 The PB corpus contains 300,000 words annotated with predicative information on top

of the Penn Treebank 2 Wall Street Journal texts. For each predicate, the expected
arguments are labeled sequentially from ARG0 to ARG5, ARGA and ARGM .

Advanced Structural Representations for QC and Answer Re-ranking 237

PAS

ARG0

compounded interest

rel

compute

ARG1

the effective interest rate for an investment

ARGM-TMP

during a year

PAS

ARG0

compounded interest

rel

evaluate

ARG1

bank interest rate

ARGM-TMP

in a year

Fig. 1. Predicate argument structures of two sentences expressing similar semantics

We can improve such representation by substituting the arguments with their
most important word – often referred to as the semantic head – as in Figure 2.
It seems intuitive that data sparseness can be remarkably reduced by using this
shallow representation instead of the BOW representation.

PAS

ARG0

interest

rel

compute

ARG1

rate

ARGM-TMP

year

PAS

ARG0

interest

rel

evaluate

ARG1

rate

ARGM-TMP

year

Fig. 2. Improved predicate argument structures of two different sentences

Knowing that parse trees and PASs may improve the simple BOW represen-
tation, we face the problem of representing tree structures in learning machines.
Section 3 introduces a viable representation approach based on tree kernels.

T1

NP

DT

a

NN

dog

T2

NP

DT

a

NN

cat

f1

NP

DT

a

NN

f2

NP

DT NN

f3

DT

a

Fig. 3. T1 and T2 with their fragments f1, f2 and f3 derived by the kernel function

3 Syntactic and Semantic Tree Kernels

As mentioned above, encoding syntactic/semantic information represented by
means of tree structures in the learning algorithm is problematic. One possible
solution is to use as features of a structure all its possible substructures. Given
the combinatorial explosion of considering the subparts, the resulting feature
space is usually very large. To manage such complexity we can define kernel
functions that implicitly evaluate the scalar product between two feature vectors
without explicitly computing such vectors.

Below, we report the tree kernel function devised in [6] computing the num-
ber of common subtrees between two syntactic parse trees and a new version
evaluating the number of semantic structures shared between two PASs.

238 S. Quarteroni et al.

3.1 Syntactic Tree Kernel

Given two trees T1 and T2, let {f1, f2, ..} = F be the set of substructures (frag-
ments) and Ii(n) be equal to 1 if fi is rooted at node n, 0 otherwise. We define

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

Δ(n1, n2) (1)

where NT1 and NT2 are the sets of nodes in T1 and T2, respectively and Δ(n1, n2) =∑|F|
i=1 Ii(n1)Ii(n2). The latter is equal to the number of common fragments rooted

in nodes n1 and n2. We can compute Δ as follows:

1. if the productions at n1 and n2 are different then Δ(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have leaf

children (i.e. they are pre-terminals symbols) then Δ(n1, n2) = 1;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-

terminals then

Δ(n1, n2) =
nc(n1)∏

j=1

(1 + Δ(cj
n1

, cj
n2

)) (2)

where nc(n1)2 is the number of children of n1 and cj
n is the j-th child of node n.

As proved in [6], the above algorithm allows to evaluate Eq. 1 in O(|NT1 |×|NT2|).
A decay factor λ is usually added by changing the formulae in (2) and (3) to3:

2. Δ(n1, n2) = λ,
3. Δ(n1, n2) = λ

∏nc(n1)
j=1 (1 + Δ(cj

n1
, cj

n2
)).

For instance, Figure 3 shows two trees and the substructures they have in
common. It is worth to note that the fragments of the above Syntactic Tree
Kernel (STK) are such that any node contains either all or none of its children.
Consequently, [NP [DT]] and [NP [NN]] are not valid fragments. This limita-
tion makes it unsuitable to derive important substructures from the PAS tree.
The next section shows a new tree kernel that takes this into account.

3.2 Semantic Tree Kernel

As mentioned above, the kernel function introduced in Section 2 is not sufficient
to derive all the required information from trees such as the PAS in Fig. 2: we
would like to have fragments that contain nodes with only part of the children,
e.g. to neglect the information constituted by ARGM-TMP. For this, we need
to slightly modify the PAS and to define a new kernel function.

First, we change the PAS into the PAS+ structure as shown in Figure 2(a).
Each slot node accommodates an argument label in the natural argument order.
2 Note that, since the productions are the same, nc(n1) = nc(n2).
3 A normalization in the kernel space, i.e. K′(T1, T2) = K(T1,T2)√

K(T1 ,T1)×K(T2,T2)
, ensures a

similarity score between 0 and 1.

Advanced Structural Representations for QC and Answer Re-ranking 239

PAS

SLOT

ARG0

interest

*

SLOT

rel

compute

SLOT

ARG1

rate

*

SLOT

ARGM-TMP

year

SLOT

null

(a)

PAS

SLOT

ARG0

interest

*

SLOT

rel

compute

SLOT

ARG1

rate

*

SLOT

null

SLOT

null

(b)

PAS

SLOT

ARG0

interest

*

SLOT

null

SLOT

ARG1

rate

*

SLOT

null

SLOT

null

(c)

PAS

SLOT

ARG0

SLOT

rel

compute

SLOT

ARG1

rate

*

SLOT

null

SLOT

null

(d)

Fig. 4. A PAS+ with some of its fragments

Since diverse predicates or their different use may involve a different number of
arguments, we provide additional slots, filled with null arguments. The figure
shows just one slot to complete a structure of 5 arguments. More slots can be
added to manage the maximum number of arguments that a predicate can have.
The leaf nodes are filled with a wildcard character, i.e. *. They may alternatively
accommodate additional information. The slot nodes are used in such a way that
the adopted tree kernel function can generate fragments containing one or more
children like for example those shown in frames (b), (c) and (d). As previously
pointed out, if the arguments were directly attached to the root node, the kernel
function would only generate the structure with all children (or the structure
with no children, i.e. empty).

Second, we observe that the above approach generates many matches with
slots filled with the null label. To solve this problem, we have set a new step 0:

0. if n1 (or n2) is a pre-terminal node and its child label is null, Δ(n1, n2) = 0;

and by subtracting one unit to Δ(n1, n2), in step 3:

3. Δ(n1, n2) =
∏nc(n1)

j=1 (1 + Δ(cj
n1

, cj
n2

)) − 1,

The new Δ in Eq. 1 defines a new kernel4 that we call Shallow Semantic Tree
Kernel (SSTK).

4 Experiments

The purpose of our experiments is to study the impact of the new structure rep-
resentations introduced earlier for QA tasks. In particular, we focus on question
classification and answer reranking for Web-based QA systems.
4 By induction, it can be proven that SSTK applied to PAS+ generates the space of

all possible k-ary relations derivable from a set of k arguments.

240 S. Quarteroni et al.

In the question classification (QC) task, we extend previous studies, e.g. [2,7],
by testing a set of previously designed kernels and their combination with our
new Shallow Semantic Kernel. SVMs are the learning machines used to build the
multi-class classifiers based on the SSK, the kernel combinations being the sum
of the individual models. This operation always produces a valid kernel [13].

In the answer reranking task, we approach the problem of detecting descrip-
tion answers (among the most complex in the literature [14,15]). We learn binary
answer classifiers based on question-answer pairs constructed by querying our
Web QA system, YourQA [16], with the same questions as the test set used
in the QC experiment. Our experiments with different kernel combinations on
question-answer pairs allow us to select the best performing classifier, which in
turn is used to re-rank answers. The resulting ranking is compared with the
ranking provided by Google and by YourQA.

4.1 Question Classification

As a first experiment, we focus on question classification (QC), because of its
great impact on the quality of a QA system and because it is a widely approached
task for which benchmarks and baseline results are available [2,3].

QC is defined as a multi-classification problem which consists in assigning
an instance I to one of n classes, which generally belong to two types: fac-
toid, seeking short fact-based answers (e.g. name, date) or non-factoid, seek-
ing e.g. descriptions or definitions (see e.g. the taxonomy in [3]). We design
a question multi-classifier by using n binary SVMs combined according to the
ONE-vs-ALL scheme, where the final output class is the one associated with the
most probable prediction. Question representation is based on the following fea-
tures/structures: parse tree (PT), bag-of-words (BOW), bag-of-POS tags (POS)
and predicate argument structure (PAS). We implemented the proposed kernels
in the SVM-light-TK software available at ai-nlp.info.uniroma2.it/moschitti/
which encodes the tree kernel functions in SVM-light [17]5. The PAS structures
were automatically derived by our SRL system [12].

As benchmark data, we use the question training and test set available at:
l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/, where the test set are the TREC 2001
test questions6 [18]. We refer to this split as UIUC.

The performance of the multi-classifier and the individual binary classifiers is
measured with accuracy resp. F1-measure. To collect more statistically signifi-
cant information, we run 10-fold cross validation on the 6,000 questions.

Question Classification Results. Table 1.(a) shows the accuracy of different
question representations on the UIUC split (Column 1) and the average accuracy

5 We adopted the default regularization parameter (i.e., the average of 1/||x||) and
tried a few cost-factor values to adjust the rate between Precision and Recall on the
development set.

6 The benchmark is manually partitioned according to the coarse-grained question
taxonomy defined in [3] – i.e. ABBR, DESC, NUM, HUM, ENTY and LOC – and
contains 5,500 training and 500 test instances.

ai-nlp.info.uniroma2.it/moschitti/
l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/

Advanced Structural Representations for QC and Answer Re-ranking 241

± standard deviation on the cross validation splits (Column 2) whereas Table
1.(b) reports the F1 for the individual classes using the best model, PTBOW.
The analysis of the above data suggests that:

Firstly, the STK on PT and the linear kernel on BOW produce a very high
result, i.e. about 90.5%. This is higher than the best outcome derived in [2],
i.e. 90%, obtained with a kernel combining BOW and PT. When our BOW is
combined with STK, it achieves an even higher result, i.e. 91.8%, very close
to the 92.5% accuracy reached in [3] by using complex semantic information
derived manually from external resources. Our higher results with respect to [2]
are explained by a highly performing BOW, the use of parameterization and
most importantly the fact that our model is obtained by summing two separate
kernel spaces (with separate normalization), as mixing BOW with tree kernels
does not allow SVMs to exploit all its representational power.

Secondly, model PTBOW shows that syntactic information can be beneficial
in tasks where text classification is vital, such as QA. Here, syntax can give a
remarkable contribution in determining the class of a question; moreover, the
lexical information (BOW) has a limited impact due to the little number of
words forming a question.

Thirdly, the PAS feature does not provide improvement. This is mainly due
to the fact that at least half of the training and test questions only contained
the predicate “to be”, for which a PAS cannot be derived by our PB-based shal-
low semantic parser. Also, PT probably covers most of the question’s semantic
information encoded by PAS.

Next, the 10-fold cross-validation experiments confirm the trends observed in
the UIUC split. The best model is PTBOW which achieves an average accuracy
of 86.1%. This value is lower than the one recorded for the UIUC split. The
explanation is that the test set in UIUC is not consistent with the training set
(it contains the TREC 2001 questions) and it includes a larger percentage of
easily classified question types, e.g. the numeric (22.6%) and description classes
(27.6%) while their percentage in training is 16.4% and 16.2%, respectively. This
shows the importance of cross-validation results that, given the very low values of
the standard deviation, also suggest that the superior accuracy of the PTBOW
over the BOW model is statistically significant.

Finally, for individual binary classification, the most accurate is the one
carried out for NUM, which generally exhibits easily identified cues such as
“how much/many”. The more generic ENTY type proves hardest in both the
UIUC and cross-validation experiments, while LOC and HUM remain well-
classified in both cases also thanks to their regular patterns (“where” and “who”
identifiers).

4.2 Answer Classification and Reranking

Question Classification does not allow to fully exploit the predicate argument
potential since questions tend to be short and with no predicates. A different
scenario is answer classification, i.e. deciding if a passage/sentence correctly an-
swers the question: here, the semantics that the classifier has to generate are

242 S. Quarteroni et al.

Table 1. Accuracy of the question classifier with different feature combinations and
performance of the best classifier by question class

(a)

Features Acc Acc
(UIUC) (xval.)

PT 90.4 84.8±1.4
BOW 90.6 84.7±1.4
PAS 34.2 43.0±2.2
POS 26.4 32.4±2.5
PTBOW 91.8 86.1±1.3
PTBOWPOS 91.8 84.7±1.7
PASBOW 90.0 82.1±1.5
PASBOWPOS 88.8 81.0±1.7

(b)

Q. class P R F1 F1
(UIUC) (UIUC) (UIUC) (xval.)

ABBR 87.5 77.8 82.4 78.5± 7.0
DESC 95.8 99.3 97.5 84.6±2.3
ENTY 73.6 83.0 78.0 75.7±1.3
HUM 89.6 92.3 90.9 86.8±2.0
LOC 86.6 85.2 85.7 88.9±1.5
NUM 99.0 86.7 92.5 94.2±1.4

Multi-Class. Accuracy 91.8 86.1±1.3

not constrained to a small taxonomy and the length of an answer may make the
representation based on PT too sparse.

We learn answer classification with a binary SVM which determines if a answer
is correct for the target question: consequently, the classification instances are
the 〈question, answer〉 pairs. Each pair component can be encoded with PT,
BOW, POS and PAS representations and processed with the previous kernels.

The output of the binary classifier can be used to rerank the list of candidate
answers of a QA system. Starting from the top answer, each instance is classified
based on its correctness with respect to the question. If it is classified as correct
its rank is unchanged; otherwise it is pushed down, until a lower ranked incorrect
answer is found.

As output of the basic QA we use Google rank along with the YourQA [16]
system. YourQA uses the Web documents corresponding to the top 20 Google
results for the question. Then, each sentence in each document is compared to
the question to compute the Jaccard similarity, which, in the answer extraction
phase, is used to select the most relevant sentence. A passage of up to 750 bytes
is then created around the sentence and returned as an answer.

As test data, we collected the 138 TREC 2001 test questions labeled as
“description” and for each, we obtained a list of answer paragraphs extracted
from Web documents using YourQA. Each paragraph sentence was manually
evaluated according to whether it contained an answer to the corresponding
question; moreover, to simplify the classification problem, we isolated for each
paragraph the sentence which obtained the maximal judgment (in case more
than one sentence in the paragraph had the same judgment, we chose the first
one). We collected a corpus containing 1123 sentences, 401 of which – labeled as
“+1” – answered the question either concisely or with noise; the rest – labeled
as “-1”– were either irrelevant to the question or contained hints relating to the
question but could not be judged as valid answers7.
7 For instance, given the question “What are invertebrates?”, the sentence “At least

99% of all animal species are invertebrates, comprising . . . ” was labeled “-1” , while
“Invertebrates are animals without backbones.” was labeled “+1”.

Advanced Structural Representations for QC and Answer Re-ranking 243

Answer Classification and Reranking Results. To gather statistically
significant data, we ran 5-fold cross-validation, with the constraint that two
pairs 〈q, a1〉 and 〈q, a2〉 associated with the same question q could not be split
between training and testing. The answer classification experiment results are
in Tab. 2.

We note that: first, the contribution of the POS feature in answer classification
is much higher than in question classification and even outperforms the PT
feature (see Table (a)). This is because on the one side we work with Web data,
a noisy input wich can drastically reduce parser performance; on the other,
POS tagging is a more robust operation and yields less errors. Moreover, while
question classification is a multi-classification task where the POS feature must
be used to determine a semantic category, definition answer classification is a
binary classification task – hence statistically simpler.

Second, although the accuracy of PAS as a standalone was inferior to that of
PT, when coupled with BOW it yielded higher accuracy8; in this case, its ability
to generalize the answer information allowed to overcome the erroneous/noisy
information provided by the PT on Web data.

Table 2. Answer classifier with different feature combinations, baseline classifiers
accuracy and MRR of the best reranker compared to the baseline

(a)

Features P R F1

PT 56.4 70.0 59.6±4.0
BOW 58.5 85.9 69.3±6.6
POS 52.4 84.1 64.0±5.9
PAS 52.4 71.1 58.6±5.6
PTBOW 59.8 79.7 68.1±8.0
PASBOW 64.1 79.2 70.7±5.9
PTBOWPOS 63.8 71.7 67.4±7.6
PASBOWPOS 64.4 75.2 69.2± 6.5

(b)

Baseline P R F1

Gg@1 39.7 9.4 15.2±3.1
QA@1 45.3 10.9 17.6±2.9

Gg@all 35.8 100 52.7±6.2
QA@all 35.8 100 52.7±6.2

Gg QA Reranker

MRR 54.8±6.7 60.1±4.1 79.2±0.9

Third, we compared the answer classifier with two baselines built using the
YourQA and Google rankings. For this, we considered the top N ranked results
as correct definitions and the remaining ones as incorrect for different values of
N . Table 2.(b) shows the results for N = 1 and the maximum N (all), i.e. all the
available answers. Each measure is the average of the Precision, Recall and F1
of the three systems on the cross-validation splits. The F1 of Google (Gg) and
YourQA (QA) are greatly outperformed by the classifier, even when all answers
are considered (N = all) and the low standard deviations ensure the statistical
relevance of the results.
8 Although the standard deviation in this case is high, as the complexity can vary

across splits, since the PAS and PASBOW models are similar, the standard deviation
of their difference is lower, i.e. 2.03. When we performed the t-test on such value,
we confirmed that PASBOW is superior to BOW with a 90% level of confidence.

244 S. Quarteroni et al.

Finally, we implemented the simple re-ranking algorithm described previously
and assessed its performance with the MRR9 metric adopted in TREC 200110.

YourQA’s MRR outperforms the Google MRR (Tab. 2.(b), last row) as Google
ranks are based on whole documents, not on single passages, so documents where
no passage contains all of the question’s keywords may be ranked higher than
others containing them all. When the answer classifier is applied to improve the
QA ranking, MRR reaches .792, rising by nearly 20 points.

Related Work on Definitional QA. Unfortunately, no results are known to
the authors concerning a Web-based answer classifier for the same question set
and few are available on the performance computed over description questions
alone on the NIST corpus; for instance, NTT’s system achieved an MRR of .247
on description questions using a heuristic searching for appositions [15].

Interesting related work on definition answer reranking [20] was conducted by
comparing the use of an SVM classifier predictions to induce a ranking and of
the Ranking SVM algorithm [17]. In [21], ranks were computed based on the
probabilities of biterm language models generating candidate answers.

5 Conclusion

In this paper, we introduce new structures to represent textual information
in three question answering tasks: question classification, answer classification
and answer reranking. We define a new tree structure called PAS to represent
predicate-argument relations, which we automatically extract using our SRL
system. We also introduce a new kernel function to exploit its representative
power.

Our experiments with SVMs and such new functions suggest that syntac-
tic information helps specific tasks such as question classification. On the other
hand, the coarse-grained semantic information contained in PAS gives promising
results in answer classification, which suffers more from data sparseness. More-
over, our simple answer reranker, based on the answer classifier output, obtains
a 20% more accurate ranking than our baseline QA system.

In the future, we will study the utility of PASs for other tasks affected by noisy
data and apply a true SVM reranker trained with the proposed information.

References

1. Kwok, C.C.T., Etzioni, O., Weld, D.S.: Scaling question answering to the web. In:
WWW. (2001)

2. Zhang, D., Lee, W.S.: Question classification using support vector machines. In:
Proceedings of SIGIR, ACM Press (2003)

9 The Mean Reciprocal Rank is defined as: MRR = 1
n

∑n
i=1

1
ranki

, where n is the
number of questions and ranki is the rank of the first correct answer to question i.

10 Although since the TREC 2003 definition track [19] answers were expected in the
form of bags of information “nuggets”, we still believe the MRR meaningful for QA.

Advanced Structural Representations for QC and Answer Re-ranking 245

3. Li, X., Roth, D.: Learning question classifiers: The role of semantic information.
Journal of Natural Language Engineering (2005)

4. Collins-Thompson, K., Callan, J., Terra, E., Clarke, C.L.: The effect of document
retrieval quality on factoid question answering performance. In: Proceedings of
SIGIR, New York, NY, USA, ACM Press (2004)

5. Pasca, M.: Open-Domain Question Answering from Large Text Collections. CSLI
Studies in Computational Linguistics (2003)

6. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: ACL. (2002)

7. Moschitti, A.: Efficient convolution kernels for dependency and constituent syn-
tactic trees. In: Proceedings of ECML. (2006)

8. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.
JMLR (2003)

9. Kingsbury, P., Palmer, M.: From treebank to propbank. In: Proceedings of LREC.
(2002)

10. Allan, J., et al.: Challenges in information retrieval and language modeling. In:
Workshop at University of Amherst. (2002)

11. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of NAACL.
(2000)

12. Moschitti, A., Coppola, B., Giuglea, A.M., Basili, R.: Hierarchical semantic role
labeling. In: Proceedings of the CoNLL 2005 shared task. (2005)

13. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press (2004)

14. Cui, H., Kan, M.Y., Chua, T.S.: Generic soft pattern models for definitonal ques-
tion answering. In: Proceedings of SIGIR. (2005)

15. Kazawa, H., Isozaki, H., Maeda, E.: NTT question answering system in TREC
2001. In: Proceedings of TREC. (2001)

16. Quarteroni, S., Manandhar, S.: User modelling for adaptive question answering
and Information Retrieval. In: Proceedings of FLAIRS. (2006)

17. Joachims, T.: Making large-scale SVM learning practical. In Schölkopf, B., Burges,
C., Smola, A., eds.: Advances in Kernel Methods - Support Vector Learning. (1999)

18. Voorhees, E.M.: Overview of the TREC 2001 QA track. In: TREC. (2001)
19. Voorhees, E.M.: Overview of TREC 2003. In: TREC. (2003)
20. Xu, J., Cao, Y., Li, H., Zhao, M.: Ranking definitions with supervised learning

methods. In: Special interest tracks and posters of WWW, New York, NY, USA,
ACM Press (2005)

21. Chen, Y., Zhou, M., Wang, S.: Reranking answers from definitional question an-
swering using language models. In: Proceedings of ACL. (2006)

Incorporating Diversity and Density in Active

Learning for Relevance Feedback

Zuobing Xu, Ram Akella, and Yi Zhang

University of California, Santa Cruz, CA, USA, 95064

Abstract. Relevance feedback, which uses the terms in relevant doc-
uments to enrich the user’s initial query, is an effective method for
improving retrieval performance. An associated key research problem is
the following: Which documents to present to the user so that the user’s
feedback on the documents can significantly impact relevance feedback
performance. This paper views this as an active learning problem and
proposes a new algorithm which can efficiently maximize the learning
benefits of relevance feedback. This algorithm chooses a set of feedback
documents based on relevancy, document diversity and document den-
sity. Experimental results show a statistically significant and appreciable
improvement in the performance of our new approach over the existing
active feedback methods.

1 Introduction

Information retrieval has traditionally been based on retrieving documents which
match user’s query in content. It is well known that the original query formula-
tion does not always reflect the user’s intent. In other words, merely matching
words (or ”terms”) in the original query and the document may not be an effec-
tive approach, as the word overlap alone may not capture the semantic intent of
a query. In particular, without detailed knowledge of the collection make-up, and
of the retrieval environment, most users find it difficult to formulate information
queries that are well designed for retrieval purposes. This suggests that the first
retrieval operation can be conducted with a tentative initial query, which re-
trieves a few useful documents for user to evaluate their relevance. Based on the
relevance evaluation and the initial query, we construct a new improved query
to retrieve more relevant documents in subsequent operations.

The above retrieval process is well known as relevance feedback process [1,2].
There are two major problems while using relevance feedback framework. First,
how to select first set of documents to be presented to the user for feedback.
Second, how to effectively utilize the relevant feedback information to reformu-
late the query. Much of the previous research on relevance feedback focuses on
the second problem of feedback query updating for a given set of feedback doc-
uments by choosing important topic related terms from the relevant documents
and expanding the original query based on the chosen terms.

However, how to choose a good set of documents is not well studied in the
information retrieval community, although an effective approach has much po-
tential to further enhance retrieval performance. Most of the earlier relevance

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 246–257, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Incorporating Diversity and Density in Active Learning 247

feedback systems usually ignore the first problem and choose top ranked docu-
ments for feedback. This ignores many important factors that affect the learning
results. Recently, Shen and Zhai [3] presented this problem as an active feedback
framework and derived several practical algorithms based on the diversity of the
feedback documents. Their algorithms take into account of the document di-
versity by clustering retrieved documents or choosing documents with a certain
ranking gap. In our paper, we proposed a new active feedback approach which
comprehensively considers relevance, diversity and density of the feedback doc-
uments. We call this new active feedback algorithm Active-RDD (denoting
Active Learning to achieve Relevance,Diversity and Density).

Active feedback is essentially an application of active learning in ad hoc
information retrieval. Active learning has been extensively studied in supervised
learning and other related context. Cohn et al. [4] proposed one of the first sta-
tistical analysis of active learning, demonstrating how to construct queries that
maximize the error reduction by minimizing learners’ variance. They developed
their method for two simple regression problems in which this question can be
answered in closed form. Both the Query by Committee (QBC) algorithm [5] and
Tong’s version space method [6] are based on choosing a sample which is close to
classification boundary. Both of their methods have been applied to text classi-
fication problems. To avoid choosing outliers, McCallum and Nigam [7] modify
the QBC method to use the unlabeled pool for explicitly estimating document
density. Batch mode active learning, which selects a batch of unlabeled examples
simultaneously, is an efficient way to accelerate the learning speed. In [8], Brinker
presented a new approach that is especially designed to construct batches by in-
corporating a diversity measure. Besides the above application area, supervised
learning, active learning has also been recently applied to adaptive information
filtering [9].

One major drawback of the above methods is their computational complexity,
which prevents us from using them directly in the information retrieval task.
This paper explores how to overcome this problem by designing an efficient
active learning algorithm (Active-RDD) for relevance feedback. Because most of
the well motivated active learning approaches choose data samples by implicitly
or explicitly considering the uncertainty, density or diversity of data samples,
we designed the new algorithm to explicitly capture these important factors
by integrating document relevancy, document density measure and document
diversity measure. We apply the proposed algorithm to the language modeling
retrieval framework and evaluate the effectiveness of the proposed technique on
two benchmark data sets. The experimental results demonstrate the statistical
validated performance improvement of our algorithm over existing algorithms.

The remainder of this paper is organized as following. In section 2, we first
analyze the important elements that influence retrieval performance and derive
an efficient active learning algorithm for document selection based on these el-
ements. In section 3, we discuss the experimental setting and the experimental
results. In Section 4, we conclude with a description of our current research, and
present several future research directions for further work.

248 Z. Xu, R. Akella, and Y. Zhang

2 Active Learning Algorithm

2.1 Algorithm Intuition

The goal of active relevance feedback is to improve retrieval performance by
actively selecting feedback documents for user evaluation. Here we will first
illustrate the intuition underlying our new approach.

Relevant documents directly reflects a user’s search interest, and the current
relevance feedback algorithms based on language modeling only rely on the in-
formation contained in relevant feedback documents. So choosing relevant docu-
ments for evaluation will effectively direct the second round search results to the
user’s intent. Initially, when a query is input into a retrieval engine, we do not
know the true relevance of documents until we get feedback from the user. The
only criteria to judge the relevance of a document during an initial pass is the
relevance score given by retrieval engine. The relevance score of a document is
calculated based on the similarity between the initial query and the document.
Considering the above two facts, we will choose documents with high relevance
scores. The traditional relevance feedback method Top K selects the top k ranked
documents for feedback. Although the Top K algorithm is in line with our hy-
pothesis, which is that relevant documents are good for learning, it is not the
best strategy from a learning perspective. For instance, if there are two identical
documents among the top ranked documents, the improvement of second round
retrieval performance achieved by choosing both documents is equivalent to the
improvement achieved by choosing any one of them. In the next section, we will
analyze another important factor on choosing feedback documents to avoid this
redundancy problem in the previous example.

The Top K approach does not take into account of the redundancy between
selected feedback documents: this redundancy results from very similar (and
near duplicated) documents. Thus, in our active learning approach, we need to
capture diversity of feedback document set in the algorithm. The Gapped Top
K algorithm [3] increases the diversity of feedback documents by selecting the
top K documents with a ranking gap G in between any two documents. Another
heuristic method to increase diversity is the Cluster Centroid algorithm [3], which
groups retrieved documents into K clusters and chooses one representative doc-
ument from each cluster. Our Active-RDD algorithm, which is different from the
above two methods, maximizes the diversity of feedback document set by explic-
itly maximizing the distance between new document and selected documents.

If the selection criterion only takes into account the relevance score and diver-
sity of the batch document set, it loses the benefit of the implicit modeling of the
data distribution. For instance, such selection criteria may select documents that
lie in unimportant, sparsely populated regions. Labeling documents in high den-
sity regions or in low density regions gives the query feedback algorithm different
amounts of information. To avoid choosing outliers, we aim to select documents
in high density regions. Choosing relevant documents in high probability density
regions will retrieve more relevant documents in the subsequent round, which
leads to a better retrieval performance.

Incorporating Diversity and Density in Active Learning 249

Finally, in order to combine the above three factors, we build a linear combi-
nation of all the measures and proceed in the following way to construct a new
feedback document set. To reduce the computation, we select K feedback docu-
ment from the top L ranked documents. For instance, the reasonable sizes of L
and K could be 100 and 6 respectively. Let I denote the set of unlabeled docu-
ments that have not yet been selected for evaluation, we incrementally construct
a new feedback document set S. The selection scheme can be described as follows:

1 : S = 0
2 : repeat
3 :

di = arg max
di∈I /∈S

[(α)relevance(di)+(β)density(di)+(1−α−β)diversity(di, S)] (1)

4 : S = S ∪ di

5 : Until size(S) = K

where relevance(di) is the relevance score of document di, density(di) is the
density performance measure around document di, and distance(di, S) is the
distance between document di and the existing feedback document set S . α ∈
[0, 1], β ∈ [0, 1] are weighting parameters. Setting α = 1 restores the Top K
approach; if β = 1, the algorithm selects feedback document only based on its
density performance measure; whereas if α = 0 and β = 0, the algorithm focuses
exclusively on maximizing the diversity of selected document set. In the following
sections, we will explain how we calculate the above three factors in detail.

2.2 Relevance Measure

Language modeling approaches to information retrieval have received recogni-
tion for being both theoretically well founded, and showing excellent retrieval
performance and effective implementation in practice. In this paper, we apply
language modeling approach using KL divergence measure for our basic retrieval
model. Suppose that a query q is generated by a generative model p(q|θQ) with
θQ denoting the parameters of the query unigram language model. Similarly, we
assume that a document d is generated by a generative model p(d|θD) with θD

denoting the parameters of the document unigram language model. The query
unigram language model and document unigram language model are smoothed
multinomial models in language modeling. If θ̂Q and θ̂D are the estimated query
language model and document language model respectively, then the relevance
score of document d with respect to query q can be calculated by negative
KL-divergence[10]. KL-divergence is calculated by the formula below:

KL(θ̂Q‖θ̂D) =
∑
w

p(w|θ̂Q) log
p(w|θ̂Q)

p(w|θ̂D)
(2)

Where p(w|θ̂Q) is the probability of generating word w by query language
model θ̂Q; p(w|θ̂D) is the probability of generating word w by document language
model θ̂D.

250 Z. Xu, R. Akella, and Y. Zhang

The retrieval engine ranks all the documents according to their negative KL-
divergence scores. In the Active-RDD algorithm, we use the negative
KL-divergence measure, which is given by first round search, as relevance score.

2.3 Document Density Measure

Document density is one of the important factors in the defined active selection
scheme. Owing to the large scale of the document collection, estimating docu-
ment probability density in the whole collection is computationally unachievable.
To reduce the computation, we only measure the density performance of the top
L documents in the initial retrieval results.

We approximate the density in a region around a particular document by
measuring the average distance from that document to all the other documents.
Distance between individual documents is measured by J-Divergence[11]. KL
divergence is a non symmetric measure between two probability mass func-
tions, while J-Divergence obtains the symmetry by adding two KL divergences as
described in (2). The formula of J-Divergence is as follows:

J(di||dj) = KL(di||dj) + KL(dj||di) (3)

Consequently, the average J divergence between a document di and all other
documents measures the degree of overlap between di and all other documents.
In other words, large average J divergence indicates that the document is in
low document density region. Thus we use negative average J divergence (4) to
approximate document density performance measure, which reflects the closeness
of this document to the other documents. The reason we use this measure is to
normalize the value of density performance measure to be on the same scale of
the relevance score.

density(di) =
−1
|D|

∑
dh∈D

J(di||dh) (4)

2.4 Diversity Measure

The metric we use to measure the distance between a document and a document
set is the minimum distance between the document and any document in the
set. This method corresponds to the single linkage method in hierarchical clus-
tering literature. The single linkage method has the advantage of efficient time
complexity, and it also ensures that the new document is different from all the
selected documents.

To normalize all components in the overall metric to be of comparable values,
we use J divergence to measure the distance between candidate document and
selected documents. To maximize the combined score of relevance score, density
performance measure and diversity measure, which is shown in (1), we employ
the following incremental strategy: Given a set of unlabeled documents, we start
with document d1 which has the highest combined score of relevance score and

Incorporating Diversity and Density in Active Learning 251

density performance measure; then we add a new document d2 to our set S = d1∪
d2, which maximize the combined score of relevance score, density performance
measure and diversity measure. We continue by adding new documents until the
size of the selected documents reaches the predefined size.

The individual influence of each factor can be adjusted by the weighting
parameters α and β. The combined strategy can be implemented very efficiently.
Recalculating the distance between an unselected document and every single
document already added in the feedback document set to evaluate the maxi-
mum distance between the unselected document and the document set results
in quadratic computational time depending on the feedback document size. We
cache the maximum distance of all the unselected documents from selected doc-
ument set and update the score only if the distance between the newly added
document and the unselected document is larger than the stored maximum. We
only need to compute distance once for every unselected document instead of
already selected documents number. If we are choosing K documents from top
L retrieved documents, the computation complexity in this part is reduced from
O(K2L) to O(KL). The complete pseudo code of an efficient implementation of
the algorithm is given in Table 1.

The Maximal Marginal Relevance ranking algorithm [12] (MMR) is a greedy
algorithm for ranking documents based on relevance ranking score and at the
same time avoiding redundancy. Our Active-RDD algorithm extends the MMR
algorithm by adding an extra term, which reflects the document density. In
[3], Shen and Zhai proposed the MMR algorithm to solve the active feedback
problem, but they have not implemented that algorithm.

2.5 Query Updating Algorithm

Based on user’s relevance judgment on feedback document, we use the divergence
minimization model [13] to update query. The divergence minimization model
minimizes the divergence between the query model and the relevant feedback
documents. Let R = d1, . . . , dn be the set of relevant feedback documents. We
define the empirical KL-divergence between the feedback query model θF and the
relevant feedback documents R = d1, . . . , dn as the average divergence between
the query model and relevant feedback document model.

De(θF , R) =
1

|R|

n∑
i=1

D(θF ‖θi) (5)

We subtract the negative divergence between the query language model and
collection model to remove the background information. Considering all the
above conditions, we derive the following empirical divergence function of a feed-
back query model:

θF = argmin
θF

1
|R|

{
n∑

i=1

D(θF ‖θi) − λD(θF ‖p(.|C))

}
(6)

252 Z. Xu, R. Akella, and Y. Zhang

Table 1. Active-RDD Algorithm

input:
α (relevance coefficient)
β (density coefficient)
K (size of feedback document set for evaluation)
L (size of document set from which we choose K documents)
D = (d0, . . . dL−1) (permutation of 0, . . . , L − 1)
R = (r0, . . . rL−1) (relevance score of each document)

output:
D = (d0, · · · dL−1) (permutation of 0, . . . , L − 1)

relevance = array[L]
maxDis = array[L]
for j = 0 to L − 1 do

relevance(j) = R(j)
Calculate document density performance using (4)
maxDis(j) = 0

end for
for k = 0 to K − 1 do

maxIndex = k
maxValue = 0
for all j = k to L do

value= (α) relevance(j) + (β)density(j) + (1 − α − β)maxDis(j)
if value > maxValue then

maxValue = value
maxIndex = j

end if
end for
swap (dmaxIndex, dk)
for all j = k + 1 to L do

distance = J(dj ||dk)
if distance > maxDis(j) then

maxDis(j) = distance
end if

end for
end for

Here p(.|C) is the collection language model and λ ∈ [0, 1) is the weighting
parameter. Taking the first derivative of (6) with respective to p(w|θF), we will
get the simple closed form solution.

p(w|θF) ∝ exp(
1

1 − λ

1
|R|

n∑
i=1

log p(w|θi) − λ

1 − λ
log p(w|c)) (7)

To exploit θF in our KL-divergence retrieval model, we interpolate it with the
original query model θQ to obtain updated model θ′Q ,

θ′Q = (1 − μ)θQ + μθF (8)

Incorporating Diversity and Density in Active Learning 253

and then use the updated query θ′Q to score document di by negative KL-
divergence.

3 Experiment Methodology and Experimental Results

To evaluate our Active-RDD algorithm described in previous sections, we use
two different TREC data sets. The first one is TREC HARD 2005 Track, which
contains the full AQUAINT collection; the second one is TREC HARD 2003
Track, which use part of AQUAINT data plus two additional datasets (Congres-
sional Record (CR) and Federal Register (FR)). We do not have the additional
data set in TREC HARD 2003 Track. Our results are comparable to other pub-
lished TREC HARD 2003 results, although the data is a little different. For both
tracks, we use all the 50 topics which have relevance judgments. We use only the
titles of the topic description, because they are closer to the actual queries used
in real applications.

We employ the Lemur Toolkit[14] as our retrieval system and KL-Divergence
language retrieval model as our baseline retrieval model. We compare the Active-
RDD algorithm with the existing active feedback algorithms such as Top K,
Gapped Top K and Cluster Centroid. For all the algorithms, we select (K) = 6
feedback documents from top (L) = 100 documents. All the parameters in the
query updating model are fixed at the default values in The Lemur Toolkit[14].

To measure the performance of an active relevance feedback algorithm, we
use two standard ad hoc retrieval measures: (1) Mean Average Precision (MAP),
which is calculated as the average of the precision after each relevant document
is retrieved, reflects the overall retrieval accuracy. (2) Precision at 10 documents
(Pr@10): this measure does not average well and only gives us the precision for
the first 10 documents. It reflects the utility perceived by a user who may only
read up to top 10 documents.

In the following sections, we use cross-validation for Active-RDD algorithm
and Gapped Top K algorithm, and then statistically compare the Active-RDD
algorithm with existing algorithms.

3.1 Cross Validation

Coefficients α and β play an important role on selecting the feedback documents.
How to select these coefficients significantly impacts the overall algorithm per-
formance. In order to have a fair comparison, we pursue 5-fold cross-validation
on the Active-RDD algorithm and Gapped Top K algorithm, and compare their
cross-validation performance (CVP) with Cluster Centroid and Top K algorithm
performance,(these algorithms are consequently parameter free in this setting).

We separate 50 queries into 5 parts, where each part contains 10 queries.
For the kth set of queries, we train parameters to optimize the retrieval perfor-
mance for the other 4 sets of queries, and use this set of the parameters to test
on kth set of queries to obtain the retrieval performance measure for kth part.

254 Z. Xu, R. Akella, and Y. Zhang

We do this for k = 1, 2, 3, 4, 5 and the cross-validation performance is the average
performance on the 5 test query sets. The cross-validation experimental results
are shown in Table 2.

From Table 2, we conclude that the cross-validation performance of our
Active-RDD algorithm is better than the Gapped Top K algorithm. Furthermore,
we will compare these cross-validation performances with the Cluster Centroid
algorithm and Top K algorithm.

Table 2. Cross-validation comparison of Active-RDD and Gapped Top K approaches.
CVP indicates cross-validation performance, which is the average value of the MAP
and Pr@10 on test data.

Active-RDD Gapped Top K

HARD 2003
MAP MAP Pr@10 Pr@10 MAP MAP Pr@10 Pr@10
Train Test Train Test Train Test Train Test

Folder 1 0.3855 0.3566 0.5925 0.6700 0.3676 0.3295 0.5450 0.6400

Folder 2 0.3954 0.3169 0.6325 0.5100 0.3792 0.2831 0.5950 0.4400

Folder 3 0.3966 0.3119 0.6225 0.5300 0.3747 0.3013 0.5925 0.4500

Folder 4 0.3793 0.3812 0.6275 0.5500 0.3594 0.3189 0.5750 0.5100

Folder 5 0.3416 0.5319 0.5650 0.7800 0.3175 0.5299 0.5275 0.7100

CVP 0.3797 0.6080 0.3525 0.55

HARD 2005
MAP MAP Pr@10 Pr@10 MAP MAP Pr@10 Pr@10
Train Test Train Test Train Test Train Test

Folder 1 0.2675 0.2356 0.5575 0.5400 0.2496 0.2634 0.5450 0.6400

Folder 2 0.2583 0.2722 0.5550 0.5700 0.2309 0.2821 0.5525 0.6100

Folder 3 0.2489 0.3097 0.5325 0.6400 0.2508 0.2584 0.5600 0.5800

Folder 4 0.2673 0.2362 0.5700 0.4900 0.2594 0.2238 0.5875 0.4700

Folder 5 0.2634 0.2519 0.5600 0.5300 0.2569 0.2339 0.5750 0.5200

CVP 0.2611 0.5540 0.2523 0.5640

3.2 Comparison of Different Active Learning Algorithms

To evaluate the effectiveness of different document selecting approaches, we
compare the performance of the non-feedback approach baseline with Top K,
Gapped Top K , Cluster Centroid and our Active-RDD algorithm, all of which
are feedback based algorithms. The performance of the Active-RDD and the
Gapped Top K algorithm are the cross-validation performance in the previous
section.

From Table 3, we can see that all these feedback algorithms perform better
than the baseline non-feedback retrieval. All the results show that the underly-
ing relevance feedback mechanism is very effective. From the results, our active
learning algorithm Active-RDD outperforms Top K algorithm significantly, and
it also performs better than other active feedback approaches at the statistical
significance level 10% in most cases.

Incorporating Diversity and Density in Active Learning 255

Table 3. Average performance of different active learning approaches. The best per-
formance is shown is bold. We compare our Active-RDD algorithm with the Top K
algorithm, the Gapped Top K algorithm and the Cluster Centroid algorithm, and per-
centage improvements over these three existing algorithms are shown in column 7,8,9
respectively. A double star(**) and a single star(*) indicate that the performance of
our active learning algorithm is significantly better than the existing method used in
the corresponding column (Top K, Gapped Top K or Cluster Centroid) according to
Wilcoxon signed rank test at the level of 0.05 and 0.1 respectively.

Baseline Top K Gap K Cluster RDD
Improv. Improv. Improv.

Method over over over
Top K Gap K Cluster

HARD MAP 0.3150 0.3508** 0.3525** 0.3771 0.3797 8.07% 7.72% 0.69%
2003 pr@10 0.5000 0.5380** 0.5500** 0.5760** 0.6080 13.01% 10.55% 5.56%

HARD MAP 0.1919 0.2367** 0.2523 0.2369* 0.2611 10.31% 3.49% 10.22%
2005 pr@10 0.4340 0.4800** 0.5640 0.5420** 0.5540 15.42% −1.77% 2.21%

0.5 0.6 0.7 0.8 0.9 1
0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

Feedback interpolation Parameter mu

M
ea

n
 A

ve
ra

g
e

P
re

ci
si

o
n

Comparison of MAP for Different mu on TREC 2003

Top K

Gap K

Cluster

RDD

0.5 0.6 0.7 0.8 0.9 1
0.52

0.54

0.56

0.58

0.6

0.62

Feedback interpolation Parameter mu

P
re

ci
si

o
n

 a
t

10

Comparison of PR@10 for Different mu on TREC 2003

Top K
Gap K
Cluster
RDD

0.5 0.6 0.7 0.8 0.9 1
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Feedback interpolation Parameter mu

M
ea

n
 A

ve
ra

g
e

P
re

ci
si

o
n

Comparison of MAP for Different mu on TREC 2005

Top K

Gap K

Cluster

RDD

0.5 0.6 0.7 0.8 0.9 1
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Feedback interpolation Parameter mu

P
re

ci
si

o
n

 a
t

10

Comparison of PR@10 for Different mu on TREC 2005

Top K
Gap K
Cluster
RDD

Fig. 1. Sensitivity of average performance of different active learning algorithm on μ

3.3 Performance Sensitivity of Feedback Interpolation Parameter μ

Owing to the nature of explicit feedback, the relevant feedback documents judged
by the user are more reliable. This intuition leads to adding more weight to
the feedback interpolation parameter μ in (8). In the previous experiments, we
set μ = 0.5 as the Lemur Toolkit[14] default setting. We did another set of

256 Z. Xu, R. Akella, and Y. Zhang

experiments by increasing μ, and the results are shown in Fig. 1. The results
indicate that setting μ = 0.7 gives the Active-RDD algorithm best performance
(with performance improvement of 1−2%). The curves are fairly flat and indicate
relative insensitivity around the optimal value of feedback parameters, which is
a desirable pattern.

4 Conclusions

This paper explores the problem of how to select a good set of documents to ask
user for relevance feedback. This paper presents a new efficient active learning
algorithm, which dynamically selects a set of documents for relevance feedback
based on the documents’ relevancy, density and diversity. We evaluate the algo-
rithm on TREC2005 HARD dataset and TREC2003 HARD dataset. The exper-
imental results show that our algorithm significantly outperforms the existing
Top K, Gapped Top K and Cluster Centroid algorithms.

There are several interesting research directions that may further improve
relevance feedback under the active learning framework: first, making full use
of users’ feedback by learning from non-relevant documents; second, learning
different active learning parameters for different queries; and third, combining
implicit feedback with active learning.

Acknowledgments

We would like to acknowledge support by Cisco, University of California’s MI-
CRO Program, CITRIS, and UARC. We also appreciate discussions with asso-
ciated colleagues.

References

1. Harman, D.: Relevance feedback revisited. In: Proceedings of the 15th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. (1992) 1–10

2. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback.
Journal of the American Society for Information Science 41(4) (1990) 133–168

3. Shen, X., Zhai, C.: Active feedback in ad hoc information retrieval. In: Proceed-
ings of the 28th annual international ACM SIGIR conference on Research and
development in information retrieval. (2005) 55–66

4. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
In: Advances in Neural Information Processing Systems. Volume 7., The MIT Press
(1995) 705–712

5. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query
by committee algorithm. Machine Learning 28(2-3) (1997) 133–168

6. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. In: Proceedings of 17th International Conference on Machine
Learning. (2000) 999–1006

Incorporating Diversity and Density in Active Learning 257

7. McCallum, A., Nigam, K.: Employing EM and pool-based active learning for text
classification. In: Proceedings of the Fifteenth International Conference on Machine
Learning. (1998) 350 – 358

8. Brinker, K.: Incorporating diversity in active learning with support vector ma-
chines. In: Proceedings of the Twentieth International Conference on Machine
Learning . (2003) 59–66

9. Zhang, Y., Xu, W., Callan, J.: Exploration and exploitation in adaptive filtering
based on bayesian active learning. In: Proceedings of 20th International Conf. on
Machine Learning. (2003) 896–903

10. Lafferty, J., Zhai, C.: Document language models, query models, and risk mini-
mization for information retrieval. In: Research and Development in Information
Retrieval. (2001) 111–119

11. Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions
on Information Theory (1) (1991) 145–151

12. Carbonell, J.G., Goldstein, J.: The use of MMR, diversity-based reranking for re-
ordering documents and producing summaries. In: Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. (1998) 335–336

13. Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to
information retrieval. In: Proceedings of the Tenth ACM International Conference
on Information and Knowledge Management. (2001) 403–410

14. (The lemur toolkit) http://www.lemurproject.org.

http://www.lemurproject.org

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 258 – 270, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Relevance Feedback Using Weight Propagation
Compared with Information-Theoretic Query Expansion

Fadi Yamout, Michael Oakes, and John Tait

School of Computing and Technology,
University of Sunderland, U.K.

{Fadi.Yamout,Michael.Oakes,John.Tait}@sunderland.ac.uk

Abstract. A new Relevance Feedback (RF) technique called Weight
Propagation has been developed which provides greater retrieval effectiveness
and computational efficiency than previously described techniques. Documents
judged relevant by the user propagate positive weights to documents close by in
vector similarity space, while documents judged not relevant propagate
negative weights to such neighbouring documents. Retrieval effectiveness is
improved since the documents are treated as independent vectors rather than
being merged into a single vector as is the case with traditional vector model
RF techniques, or by determining the documents relevancy based in part on the
lengths of all the documents as with traditional probabilistic RF techniques.
Improving the computational efficiency of Relevance Feedback by considering
only documents in a given neighbourhood means that the Weight Propagation
technique can be used with large collections.

Keywords: Relevance Feedback, Rocchio, Ide, Deviation From Randomness.

1 Introduction

In a typical Information Retrieval (IR) system, the terms in a user’s query are matched
with the terms in each of the documents using a similarity metric, and an initial
ranked list of the best matching documents is presented to the user [1]. With
Relevance Feedback (RF), the user is able to mark which of the retrieved documents
were relevant, and which were not relevant [2]. In some systems, the users are
allowed to submit a real-valued relevance score for each document [3], but this paper
will consider only binary (relevant / not relevant) feedback.

Using positive RF alone, index terms are taken from documents judged relevant,
and added to the initial query. The reformulated query can be resubmitted to the
system, and the search process is repeated. Using negative as well as positive RF,
index terms found in documents judged not relevant are removed from the query. It
has been found that the evidence of negative judgements does not improve the
retrieval performance of standard RF techniques [4].

In this paper we describe a new RF technique called Weight Propagation (WP),
which is both computationally more efficient and produces better retrieval results.
The structure of the remainder of this paper is as follows: in Section 2 we review the
RF techniques, and in Section 3 we describe the WP technique in general. Specific
variants of WP are described in Section 4, namely WPI and WPR (inspired by Ide and

 RF Using WP Compared with Information-Theoretic Query Expansion 259

Rocchio respectively), and WPY (the main focus of this paper, where we consider
only the maximum weight propagated to each document). In our experiments, WPY
outperformed both WPI and WPR, so WPY alone will be discussed in the rest of this
paper. In Section 5 we describe the results of experiments with the TREC WT18G test
collection to demonstrate the retrieval effectiveness of the WPY technique.

2 Relevance Feedback Techniques

The earliest work on RF by Rocchio [5] was based on the vector space model. In the
vector space model, weights are assigned to the terms to reflect their importance
within documents. Salton and McGill [1] showed that the best results were obtained
by multiplying the term frequency by the inverse document frequency. Ide [6]
produced a modified version. Rocchio and Ide merge relevant and nonrelevant
documents into a single query vector rather than assessing each one separately. This
might affect precision. In addition, Rocchio inspects all the documents.

Rochio and Ide’s techniques compute the mathematical average of the relevant
documents term weights and store the results in a single vector, and also compute the
mathematical average of the non-relevant documents and store them in a different
vector. The 2 vectors and the original query vector are merged into single vectors,
which are consequently merged into a single query vector. Clearly, this will probably
require more run-time to answer the query than the proposed approach especially for
large document collection since the baseline must check all the documents in the
collection, whereas WPY needs to check only few documents. We will address both
of these problems in the following sections.

In this paper, RF was also tested using other models. Robertson and Sparck-Jones
[7] proposed the probabilistic model. They adjusted the individual term weight based
on the distribution of these terms in relevant and non-relevant documents retrieved in
response to queries; for more explanation of the mathematics involved, see [8].
Documents and queries in the probabilistic model are also viewed as vectors with a
weight given by a probability.

Probabilistic models have been extended in different models; Okapi [9], Statistical
Language Modeling (SLM) [10], and Deviation from Randomness (DFR)
[11][12][13]. The term weighting in the DFR, DFRweight, is derived by measuring the
divergence of the actual term distribution from that obtained under a random process.
We have chosen Divergence approximation of the binomial (D) normalized with
Ratio B of two binomial distributions (B) and the documents length are normalized
using normalization 2 (2) [13]. This framework produces different non parametric
models forming alternative baselines to the standard tf*idf model.

DFRweight = NORM * keyFrequency * (TF*log (f/p) + 0.5 * log
(2π*TF*(termFrequency -TF)/ termFrequency))

(1)

where

- NORM = (termFrequency + 1) / (documentFrequency * (TF + 1))
- termFrequency is the term frequency in the Collection
- documentFrequency: The document frequency of the term
- keyFrequency is the term frequency in the query

260 F. Yamout, M. Oakes, and J. Tait

- TF = tf * log (1 + (c * averageDocumentLength) / docLength)
- tf is the term frequency in the document
- c is set to 1.28 (default for the WT18G)
- f = TF / termFrequency
- p = 1 / numberOfDocuments

For the relevant process, Information-theoretic query expansion [11][12] is used
where the topmost documents to be assessed are called “Elite_set T of documents”
and the most informative terms are selected by using the information-theoretic
Kullback-Leibler divergence function (KL).

KL = KL_f * log (KL_f / KL_p) (2)

where

- KL_f = termFrequencyElite / SumDocumentLengthElite
- KL_p = termFrequency / SumDocumentLength
- termFrequencyElite is the term frequency in the elite_set T
- SumDocumentLengthElite is the sum of the document lengths in the elite_set T
- termFrequency is the term frequency in the Collection
- SumDocumentLength is the sum of the document lengths in the Collection

The values of KL are then combined with the initial term frequency of the term
within the query as follows:

Tfqexp = keyFrequency / Maxtf_Q + β * KL / MaxKL (3)

where
- keyFrequency is the term frequency in a query
- Maxtf_Q is the maximum number of occurrences of a term in a query
- β is set to 0.5
- KL is the information-theoretic Kullback-Leibler divergence function KL
- MaxKL is the highest KL value in the elite_set T

and the new term weighting function RFweight, used in the second retrieval, is given by

RFweight = Tfqexp * DFRweight (4)

In this paper, Rocchio, Ide, and KL are used as models for our baseline
comparisons. Other version of tf*idf might work better than tf*idf or DFR and this
will improve the results of the query. However, any improvement in the query will
consequently affect the results of the relevance feedback process. Therefore, the
baseline and WPY will profit from this improvement since both techniques are tested
on the same list of documents retrieved from the initial query.

3 The Weight Propagation Technique

The RF techniques used in this paper use Weight Propagation (WP), where
documents judged relevant propagate positive weights to nearby documents in vector
similarity space, and documents judged not relevant propagate negative weights to
nearby documents [14]. The propagation of relevance in documents is not recursive:

 RF Using WP Compared with Information-Theoretic Query Expansion 261

for two relevant documents, the propagation is computed separately and then merged.
Although the WP technique has never been used before for query reformulation,
similar techniques have been used in other areas of computer science, such as the
system presented by Sander et al. [15], used for task allocation in multi-agent
systems. The system enables these agents to move toward tasks and away from other
agents based on weight propagation founded on a distance between them. In
Chakrabarti et al [16] also, a new technique was devised to locate resources relevant
to the user information needs from an enormous amount of information found in the
World Wide Web. The technique is based on the “HITS algorithm” [17] composed of
a sampling component and a weight-propagation component. The pages with the
highest weights are considered relevant. Related techniques have been also used by
Melnik et al. [18] to assess the similarity of database schemas, and by Cortes in
identifying “communities of interest” in statistical fraud detection [19].

The WP technique is illustrated in Figure 1. “doc1” has been judged relevant, and
thus propagates positive weights to “doc2”, “doc3” and “doc4”, while “doc4”, which
has been judged not relevant, propagates negative weights to each of the other three
documents. The weights, both positive and negative, propagated to each document are
summed, and the documents with the highest weights are retrieved as a result of this
relevance feedback. We call this process a first-order propagation, and the set of
documents retrieved with the highest weights, the top_set.

Fig. 1. Documents propagating positive and negative weights

The weights propagated from a document to other documents in the neighbourhood
are influenced by how far away those documents are from the given document in
vector similarity space. For example, a document that is close to a relevant one is
affected more than a distant document. The weight propagated, wij, from a document i
to a document j, is based on the distance between the two documents as defined by the
equation:

wij = 1 / distance (document i, document j) (5)

where

- wij is the weight propagated from a document i to a document j
- distance (document i, document j) is the conceptual distance between document i
and document j.

doc1

Relevant doc3

doc2 doc4

Non-Relevant

doc1 propagates
positive weights

doc4 propagates
negative weights

262 F. Yamout, M. Oakes, and J. Tait

If the conceptual distance is estimated by the numeric cosine similarity measure,
then the propagation is not measured as the inverse distance since documents that
have high similarity ought to propagate large weights (equation 6). In this paper, the
cosine similarity measure is used.

wij = similarity (document i, document j) (6)

Since the weight magnitude is based on the distance between documents, therefore,
the weight propagated to a distant document is insignificant. To reduce the time
complexity, it would be enough for the document to propagate weights only to nearby
documents.

The time complexity for performing RF is O (n) [20] where n is the number of
documents in the collection. The time complexity for the WP technique is O (q n'),
where q is the number of documents most highly ranked in the original hit list and
marked relevant or non-relevant by the user, and n’ is the number of documents found
in close proximity to each of the retrieved documents and consequently affected by
the propagation. The user chooses the value of q. Previous experiments [21][22] have
shown that the user will mark on average 10 to 20 documents as relevant or non
relevant, however the improvement in effectiveness will be quite significant if we can
just mark a small number of documents as relevant or non-relevant, and then
propagate the weights. The value of n’ could be used as a threshold to determine the
number of documents affected by the propagation, or alternatively one could stipulate
the maximum distance allowed for a document to propagate to other documents in the
neighbourhood. In our experiments, performance was best when n' was not more than
28. WPY Improves the computational efficiency of Relevance Feedback by
considering only documents in a given neighbourhood which means that the Weight
Propagation technique is faster. Therefore, WPY is sufficiently efficient to work in a
search engine, taking into account the size of the WWW and the speed users expect.

A similarity matrix is constructed to store the distances between the documents.
Let G = <N, A> be a connected graph, where N is the set of nodes and A is the set of
edges. Consider N to represent the documents in the database and the edges to be the
distances between them in a symmetric distance matrix D = [distance (i, j)], used to
store the distances between any two documents i and j. The values stored in the
matrix are computed using the cosine similarity. An optimisation, which allows this to
be done with acceptable computational efficiency and minimum space, will be
described in section 4.2.

4 Experimental Design

The weight propagation technique is inspired by both the Rocchio and the Ide
techniques. WP inspired by Rocchio (WPR) takes the following format:

wt = wi + (1/r) Σ wr - (1/n) Σ wn. (7)

where

- wt is the total weights propagated from neighbourhood documents
- wi is the weight derived from the initial query
- r is the number of relevant documents

 RF Using WP Compared with Information-Theoretic Query Expansion 263

- wr is the weight propagated from relevant documents
- n is the number of non-relevant documents
- wn is the weight propagated from non-relevant documents

In a second variant of WP, inspired by Ide (WPI), weight propagation is taken to be

wt = wi + Σ wr - Σ wn. (8)

where the variables wt,wi,wr, and wn are the same as in (7).
A third variant of WP, WPY, the primary focus of this paper (Figure 2), and counts

only the maximum weight propagated to the document. The system, as a result,
produces better results than summing all the weights or computing their averages. A
third variant of WP, WPY, the focus of this paper, counts only the maximum weight
propagated to the document. The system, as a result, produces better results than
summing all the weights or computing their averages. The theoretical reason behind
this is because the weight propagated from a nearby document, which should
evidently be significant, will be affected severely when averaged with a weight
propagated from a distant document. This statement is proved experimentally in
section 5.

Fig. 2. WP expressed in 3 variant ways

As with the baseline, an additional weight, wi which is derived from the initial
query, affects positively the results. In the Rocchio technique for example, the initial
query is added to the results of the reformulated query. To apply a similar concept in
the WP technique the average weight wavg propagated from the relevant documents is
computed as follow:

AVGweight= Σ w / Σ top_set (9)

where

Σ w is the total weights of the documents in the top_set
Σ top_set is the number of documents in the top_set

Subsequently, AVGweight is added to the top T documents proportionally, where
the first document at the top receives wavg, the second document receives
(wavg – 1xwavg/T), the third receives (wavg – 2xwavg/T) and the Tth document receives
wavg/T. The idea is to give more weight to the highly ranked documents originally
retrieved by the initial query. The variable T is a threshold that could vary between

 Inspired by Ide (WPI):
 Weight accumulated
 at docs = sum(wp, wq,…, wr)

docp

docr

docq docs

wp

wq

wr

.

Inspired by Rocchio(WPR):
 Weight accumulated
 at docs = avg(wp, wq,…, wr)

 A third variant (WPY):
 Weight accumulated
 at docs = max(wp, wq,…, wr)

Weights propagated to docs

264 F. Yamout, M. Oakes, and J. Tait

1 and n which is the number of documents in the test collection. In our experiments, T
gives better results when set to n. The WPY technique can be improved by making
the documents, in the top_set, to propagate themselves to nearby documents. We call
this a second-order weight propagation technique, as an extension process to the first-
order propagation explained earlier in this paper, and have used this technique in this
paper. The time complexity becomes O (q n’ n’’) where n’’ if the number of
documents found in close proximity to each of the documents affected by the
propagation in the first-order. A document that propagates further to nearby
documents is chosen based whether its weight is larger than AVGweight which is the
average weight of the documents in the top_set. The average weight could be
modified further by multiplying it by a constant ε such as

AVGweight= ε x AVGweight (10)

where AVGweight is the same as in equation 9. In our experiments, the best results were
given when ε was set to 0.94 when pseudo-relevance feedback was employed. We
could propagate one-step further as a third-order weight propagation technique, but
this would require further computation and would degrade further the efficiency of
the technique.

4.1 Clustering

The web documents in TREC WT18G were clustered by the bisecting k-means
partitional clustering technique [23] to improve search efficiency since large test
collections were being used. The k-means algorithm partitions a large collection of
documents into s subsets of highly similar documents.

Clustering will not materially affect the retrieval effectiveness of WPY since the
weight magnitude is based on the distance between documents and the weight
propagated to distant documents is insignificant. Therefore, it is enough for the
document to propagate only to the nearest ones. As a result, it is more efficient to
cluster the documents into clusters and compute the similarity measure between the
documents in each of these clusters rather than computing the similarity measure
between all the documents. Consequently, the space required by and the time needed
to compute the symmetric distance matrix for all the documents was significantly
reduced from n by n to n_clusteri by n_clusteri, where n_clusteri is the number of
documents found in clusteri, since we will end up having a smaller symmetric
distance matrix for each cluster. The space required to store the similarity matrices is
further reduced from n_clusteri by n_clusteri to n_clusteri by n' (n' is the maximum
number of documents to which weights are propagated for each document, which was
12 in our experiments).

Clustering does not require any additional overhead for the WPY technique since
it also takes place in both the baseline techniques (Rocchio, Ide, and KL), where
given a query vector q, the closest matching cluster is found by computing and
comparing the cosine values (similarity measures) between the query vector and the
centroid vectors in order to find the one that exhibits a sufficiently high cosine

 RF Using WP Compared with Information-Theoretic Query Expansion 265

similarity with the query. Once this is found, only the documents in that cluster are
compared to the query. This reduces the number of comparisons needed to retrieve
the documents1.

4.2 Residual Collection

For our experiments, we have employed the residual collection technique [24] where
the documents initially judged relevant by the user are removed from the collection
before evaluation, and consequently, the precision and recall measures are calculated
on the remaining documents in the collection (residual collection).

4.3 Pseudo-relevance Feedback vs. Simulated-Relevance Feedback

The TREC WT18G test collection is provided with query-document relevance
judgments. Some techniques do not require users to be physically present and give
feedback at every single iteration. The simulated-feedback technique [25], for
instance, selects from the top-ranked documents the documents found in the
relevance-judgment list, and considers them as relevant before reformulating the
query and the remaining documents not selected are considered as negative
judgments. Pseudo-relevance feedback [25], or as it was called when it was originally
proposed [26], local feedback, is used for the feedback process. In a Pseudo-relevance
feedback, the query is reformulated based on the assumption that the top-ranked
documents are relevant. That is, as if these documents were shown to a user and the
user considers them all relevant. Thus, the reformulation is done without the
intervention of the user. In this paper, we have used both pseudo and simulated
relevance-feedback.

5 Results and Analysis

The experiments were conducted on the TREC WT18G test collection distributed by
CSIRO [27]. Many of the documents in WT18G that are in foreign languages were
removed in order to reduce the processing time (35,051 documents). We also have
used an enhanced Stemmer algorithm [28] for the indexing process. Rocchio Ide and
KL techniques were compared against the WPY method. The assessments were done
as follows: For each query, an initial document ranking was obtained. Ten retrieved
documents (N=10) were taken from the top of the ranked list and used for one
iteration of query reformulation. A comparison between Standard TFIDF and DFR

1 The similarity matrix must be created as an overhead or it could be avoided if the distances

between the documents are calculated online. This involves calculating the distances between
the relevant and non-relevant documents chosen by the user and the rest of the documents.
This is repeated for each relevance feedback iteration. The time complexity is in O (n) but is
further reduced to O(n_clusteri) where n_clusteri is the number of documents found in
clusteri since the documents are clustered as explained above. Computing the distances
online will gradually construct the similarity matrix and the system will avoid recomputing
the distance between documents if their results are previously computed and stored in the
similarity matrix.

266 F. Yamout, M. Oakes, and J. Tait

models showed that the precision with DFR was better than the precision with TFIDF
at most recall levels.

5.1 Pseudo-relevance Feedback Using Rocchio and Ide Based TFIDF

WPY gave better precision than the baselines when tested on the TREC WT18G
collection. When Rocchio and Ide were employed, precision was better at low
recall levels. This means that the user will retrieve documents that are more
relevant particularly on the first pages of search hits as is preferable in a search
engine. It should be noted that WPY gave the best results when ε was equal
to 0.80.

An important result is presented in this section. When propagating to few
documents, for instance. The baselines performed better at low recall levels. When
the number of propagated documents increases, the recall level increases as well
(Table 1). The performance of the system kept improving as the number of
propagated documents was increased to 11, but no further improvement was noted
after that, as shown in Table 1. In Figure 3, WPY performs better than the baselines
at all recall levels for 12 propagated documents, which means WPY performs
better.

WT18G - (Pseudo Feedback, N=10)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

P
re

ci
si

on

Rocchio
Ide
WP(21)
WP(22)
WP(23)
WP(24)
WP(25)

WP (>11)

Rocchio
Ide

Fig. 3. Propagating over 11 documents (ε = 0.80)

Table 1. Results from propagating to different documents against Rocchio and Ide based
TFIDF using Pseudo-relevance Feedback (ε = 0.80)

R
ec

al
l

L
ev

el

R
oc

ch
io

Id
e

W
PY

(2
)

W
PY

(3
)

W
PY

(4
)

W
PY

(5
)

W
PY

(6
)

W
PY

(7
)

W
PY

(8
)

W
PY

(9
)

W
PY

(1
0)

W
PY

(1
1)

W
PY

(>
11

)

Prec@10 0.482 0.484 0.463 0.542 0.575 0.569 0.570 0.575 0.566 0.564 0.560 0.562 0.593

Prec@30 0.358 0.357 0.117 0.232 0.272 0.270 0.287 0.286 0.342 0.361 0.352 0.352 0.407

MAP 0.271 0.271 0.139 0.186 0.217 0.233 0.236 0.243 0.255 0.259 0.261 0.270 0.318

 RF Using WP Compared with Information-Theoretic Query Expansion 267

5.2 Pseudo-relevance Feedback with KL Based DFR

When DFR was considered with ε = 0.94, and for fewer than 11 propagated
documents, it was not clear whether WPY outperformed KL (see Table 2). However,
for 11 propagated documents or more, the precision for WPY performed better than
baselines at all recall levels (Figure 4). WP and KL both perform equally well at
P@10 when the value of ε was first set to 1.00. However, WP performed better than
KL at P@10 when ε = 0.94.

WT18G - (Pseudo Feedback, N=10)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

P
re

ci
si

on

KL
WP(21)
WP(22)
WP(23)

WP(24)
WP(25)

WP (>11)

KL

Fig. 4. Propagating over 11 documents (ε = 0.94)

Table 2. Results from propagating to different documents using against KL based DFR using
Pseudo-relevance Feedback (ε = 0.94)

R
ec

al
l

L
ev

el

K
L

W
PY

(2
)

W
PY

(3
)

W
PY

(4
)

W
PY

(5
)

W
PY

(6
)

W
PY

(7
)

W
PY

(8
)

W
PY

(9
)

W
PY

(1
0)

W
PY

(1
1)

W
P

Y
(>

11
)

Prec@10 0.488 0.493 0.535 0.520 0.512 0.504 0.500 0.500 0.512 0.510 0.510 0.533

Prec@30 0.324 0.167 0.254 0.317 0.387 0.368 0.381 0.391 0.384 0.383 0.379 0.388

MAP 0.240 0.152 0.187 0.217 0.238 0.247 0.259 0.265 0.271 0.279 0.281 0.318

5.3 Relevance Feedback Using Simulated-Relevance Feedback

When the same experiments were repeated with Simulated-relevance feedback
(positive and negative), WPY performed better than when pseudo-relevance was
employed. With Rocchio and Ide, the performance of the system kept improving as
the number of propagated documents was increased to 11, but no further improvement
was noted after that (Table 3). However, WPY performed better in simulated-
relevance feedback than in pseudo-relevance feedback and outperformed KL at all
recall levels (Table 4).

268 F. Yamout, M. Oakes, and J. Tait

Table 3. Results from propagating to different documents against Rocchio and Ide based
TFIDF using Positive and Negative simulated-relevance feedback (ε = 0.80)

R
ec

al
l

L
ev

el

R
oc

ch
io

Id
e

W
PY

(2
)

W
PY

(3
)

W
PY

(4
)

W
PY

(5
)

W
PY

(6
)

W
PY

(7
)

W
PY

(8
)

W
PY

(9
)

W
PY

(1
0)

W
PY

(1
1)

W
PY

(>
11

)

Prec@10 0.507 0.507 0.451 0.538 0.587 0.592 0.580 0.584 0.583 0.581 0.576 0.583 0.580

Prec@30 0.369 0.372 0.105 0.248 0.294 0.287 0.268 0.288 0.357 0.373 0.365 0.370 0.402

Po
s.

MAP 0.279 0.278 0.133 0.183 0.219 0.239 0.235 0.241 0.254 0.260 0.260 0.272 0.313

Prec@10 0.401 0.429 0.447 0.504 0.549 0.543 0.463 0.481 0.482 0.482 0.467 0.470 0.523

Prec@30 0.279 0.302 0.097 0.240 0.287 0.282 0.279 0.281 0.329 0.354 0.364 0.372 0.379 N
eg

.

MAP 0.228 0.239 0.133 0.183 0.211 0.227 0.216 0.224 0.226 0.237 0.239 0.251 0.309

Table 4. Results from propagating to different documents against KL based DFR using
Positive and Negative simulated-relevance feedback (ε = 1.10)

R
ec

al
l

L
ev

el

K
L

W
PY

(2
)

W
PY

(3
)

W
PY

(4
)

W
PY

(5
)

W
PY

(6
)

W
PY

(7
)

W
PY

(8
)

W
PY

(9
)

W
PY

(1
0)

W
PY

(1
1)

W
PY

(>
11

)

Prec@10 0.488 0.420 0.514 0.513 0.565 0.550 0.599 0.573 0.605 0.609 0.606 0.605

Prec@30 0.330 0.058 0.091 0.186 0.253 0.294 0.320 0.309 0.353 0.369 0.403 0.421

Po
s.

MAP 0.242 0.117 0.148 0.165 0.186 0.212 0.233 0.233 0.251 0.256 0.262 0.318

Prec@10 0.445 0.488 0.561 0.581 0.618 0.598 0.612 0.582 0.585 0.588 0.594 0.679

Prec@30 0.293 0.067 0.126 0.224 0.288 0.322 0.354 0.366 0.410 0.405 0.432 0.529

N
eg

.

MAP 0.218 0.132 0.157 0.181 0.209 0.223 0.245 0.239 0.253 0.267 0.274 0.321

6 Conclusions

In this paper, we have developed a new technique for RF, called WPY, which uses
Weight Propagation where positive and negative weights are propagated to
documents in a given vicinity. Both the Rocchio and the Ide technique inspire the
technique. This new technique improves precision relative to the baselines since the
documents are treated as independent vectors rather than being merged into a single
vector, as is the case with Ide and Rocchio or by partially determining the documents
relevancy based on all documents’ lengths as with conventional probabilistic RF
techniques. In addition, the WPY approach consumes less computation time since it
inspects only nearby documents as opposed to Rocchio, Ide and KL that examine all
the documents. A second-order weight propagation technique is employed where the
documents that receive the highest weights are to propagate weights themselves to
nearby documents. The experiments were conducted on the TREC WT18G test
collection using pseudo, positive and negative feedback. In future, the experiments
will be repeated using different models in DFR in addition to the Latent Semantic
Index model rather than the traditional lexical matching used in this paper. We will
also test a third (as opposed to second) order weight propagation to determine whether
retrieval performance will improve.

 RF Using WP Compared with Information-Theoretic Query Expansion 269

References

1. Salton G & McGill M J (1983). Introduction to modern information retrieval. New York :
McGraw Hill

2. Baeza-Yates R & Ribeiro-Neto B (1999). Modern information retrieval (pp. 10). New
York: Addison-Wesley.

3. Zhou X S & Hunag T S (2001). Small sample learning during multimedia retrieval using
bias map, in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hawaii, Dec.

4. Dunlop M D (1997). The effect of accessing non-matching documents on relevance
feedback. ACM Transactions on Information Systems, 15(2):137-153

5. Rocchio G Jr. (1971). Relevance feedback in information Retrieval. Chapter 14. In G.
Salton (Ed.), The SMART Retrieval System: Experiments in Automatic Document
Processing. Prentice Hall

6. Ide E (1971). New experiments in relevance feedback. Chapter 16. In G. Salton (Ed.).: The
SMART Retrieval System: Experiments in Automatic Document Processing, Prentice Hall

7. Robertson S E & Sparck-Jones K (1976). Relevance weighting of search terms, Journal of
the American Society of Information Science, pp.129-146

8. van Rijsbergen C J (1979). Information retrieval, Buttersworth, London
9. Robertson S E, Walker S, & Beaulieu M M (1998). Okapi at TREC-7: automatic ad hoc,

filtering, VLC and interactive track. In Proceedings of the 7th Text Retrieval Conference
(TREC7), Nist Special Publication 500-242, pages 253-264, Gaithersburg, MD, USA

10. Zhai C and Lafferty J (2001). A study of smoothing methods for language models applied
to ad hoc information retrieval. In Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 334-
342, New Orleans, LA, USA

11. Amati G, Carpineto C, & Romano G (1992). Italian monolingual information retrieval
with prosit. In Proceedings of CLEF (Cross Language Evaluation Forum 2002, pages 182-
191, Rome, Italy

12. Amati G, Carpineto C, & Romano G (2001). Fub at Trec-10 web track: A probabilistic
framework for topic relevance term weighting. In Proceedings of the 10th Text REtrieval
Conference (TREC-10), NIST Special Publication 500-250, pages 182-191, Gaithersburg,
MD, USA

13. Amati G & van Rijsbergen C J (2002). Probabilistic models of information retrieval based
on measuring divergence from randomness. ACM Transactions on Information Systems,
20(4):357-389

14. Yamout F, Oakes M & Tait J (2006). Relevance feedback using weight propagation.
Proceedings of the 28th Annual International ACM-SIGIR Conference on Research and
Development in Information Retrieval

15. Sander P.V., Peleshchuk D., and Grosz B J. (2002) “A Scalable, Distributed Algorithm for
Efficient Task Allocation”, AAMAS’02, July 15-19, 2002, Bologna, Italy

16. Chakrabarti S., Dom B. E., Gibsony D., Kleinbergz J., Kumar R., Raghavan P.,
Rajagopalan S., and Tomkins A., (1999) “Mining the Link Structure of the World Wide
Web”, IEEE Computer, August 1999.

17. Kleinberg J. M. (1999) “Authoritative Sources in a Hyperlinked Environment” J. ACM,
6(5):604–632, September 1999.

18. Melnik S, Garcia M, Hector; Rahm, & Erhard. (2002), Similarity flooding.: A versatile
graph matching algorithm and its application to schema matching. In the proceedings of
the 18th ICDE Conference

270 F. Yamout, M. Oakes, and J. Tait

19. Cortes C, Pregibon D & Volinsky C (2001). Communities of interest. Proceedings of IDA
2001 - Intelligent Data Analysis.

20. Yamout F, Moghrabi I & Oakes M (2004). Query and relevance feedback in latent
semantic index with reduced time complexity. IASTED International Conference on
Database Applications - DBA

21. Harman D (1992). Relevance feedback revisited. In proceedings of the Fifth International
SIGIR Conference on Research and Development in IR pp. 1-10

22. Rose D & Stevens C (1996) V-twin: A lightweight engine for interactive use. In NIST
Special Publication 500-238: The 5th Text Retrieval Conference (TREC-5), pages 279-290

23. Steinbach M, Karypis G & Kumar V (2000). A comparison of document clustering
techniques. In KDD Workshop on Text Mining

24. Ruthven I & Lalmas M (2003). A survey on the use of relevance feedback for information
access systems. knowledge engineering review. Vol 18. Issue 2. pp 95-145

25. Efthimiadis N E (1996). Query expansion. In Annual Review of Information Systems and
Technology, Vol. 31, pp. 121-187.

26. Croft W B & Harper D J (1979). Using probabilistic models of document retrieval without
relevance information. Journal of Documentation, 35(4), 285-295

27. CSIRO TREC Web Tracks homepage. (2001). www.ted.cmis.csiro.au/TRECWeb/
28. Yamout F, Demachkieh R, Hamdan G, Sabra R (2004). Further Enhancement to the

Porter’s Stemming Algorithm – TIR 2004 - Germany

A Retrieval Evaluation Methodology for

Incomplete Relevance Assessments

Mark Baillie1, Leif Azzopardi2, and Ian Ruthven1

1 Department of Computing and Information Sciences,
University of Strathclyde, Glasgow, UK

{mb, ir}@cis.strath.ac.uk
2 Department of Computing Science,
University of Glasgow, Glasgow, UK

leif@dcs.gla.ac.uk

Abstract. In this paper we a propose an extended methodology for
laboratory based Information Retrieval evaluation under incomplete rel-
evance assessments. This new protocol aims to identify potential uncer-
tainty during system comparison that may result from incompleteness.
We demonstrate how this methodology can lead towards a finer grained
analysis of systems. This is advantageous, because the detection of un-
certainty during the evaluation process can guide and direct researchers
when evaluating new systems over existing and future test collections.

1 Introduction

In this study we revisit the implications on system comparisons that arise
from incomplete relevance assessments, and in particular the assumption that
unassessed documents are not relevant. Instead of assuming unassessed docu-
ments are not relevant [1], or more recently, removing documents that are not
judged when estimating performance [2], we propose an alternative approach:
to quantify the proportion of unassessed documents in a system’s ranked list.
This leads to a complementary evaluation methodology, which uses a new set
of measures that quantify uncertainty during system comparison. This method-
ology provides a guide for both researchers who re-use collections, and also for
designers of new test collections. Adopting such an approach is important as
researchers can detect potential uncertainty during evaluation, and also identify
strategies for addressing this uncertainty. In this paper, we illustrate the utility
of this evaluation methodology, as well as highlighting the implications of us-
ing particular performance metrics, related to the depth of measurement, under
incomplete assessments.

Before introducing this new approach we first provide some context by re-
viewing the running debate on incompleteness, and the subsequent implications
for the comparison of systems. We then introduce the proposed methodology
which augments the current evaluation protocol (Section 2). Next, we provide
an empirical analysis of this approach across a range of existing test collections
(Section 3). Finally, we conclude with a discussion of the implications of this
study (Section 4).

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 271–282, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

272 M. Baillie, L. Azzopardi, and I. Ruthven

1.1 Background

Modern test collections adhere to a well defined model often referred to as the
Cranfield paradigm [3]. A corpus that follows this model will consist of a col-
lection of documents, statements of information need (named topics), and a set
of relevance judgements listing the documents that should be returned for each
topic. To ensure fair system comparisons, a number of key assumptions are made
within this framework such as (i) the topics are independent, (ii) all documents
are judged for relevance (completeness), (iii) these judgements are representa-
tive of the target user population, and (iv) each document is equally important
in satisfying the users information need. These assumptions are made to ensure
fair comparison of system performance, although to develop an “ideal” collection
where these assumptions hold is unrealistic. Factors such as collection size and
available (human) resources dictate to what degree these assumptions do hold.

As a consequence these assumptions are often relaxed while compensating for
any potential uncertainty that could be introduced such as system bias. For ex-
ample, system pooling was proposed to address the intractability of the complete-
ness assumption [4]. Pooling is a focused sampling of the document collection that
attempts to discover all potentially relevant documents with respect to a search
topic e.g. approximate the actual number of relevant documents for a given topic.
To do so, a number of (diverse) retrieval strategies are combined to probe the doc-
ument collection for relevant documents. Each system will rank the collection for
a given topic, then the top λ documents from the subsequent ranked lists are col-
lated 1, removing duplicates, to form a pool of unique documents. All documents
in this pool are then judged for relevance by an assessor(s) using specified criteria
such as topicality or utility. In the case of TREC [3], the assessor(s) use the topic
statement for guidance when determining which documents are topically relevant
or not. The remaining unassessed documents are assumed to be not relevant. This
assumption follows the argument put forward by Salton, that by using a range of
different IR systems the pooled method will discover “the vast majority of relevant
items” [1]. This argument is based on the assumption of diminishing returns i.e.
because many runs contribute to the system pool it is highly likely that the ma-
jority of relevant documents, or those documents representative of relevant docu-
ments, are returned through pooling. If this assumption holds then there is little
need to assess those documents not pooled.

There has been much debate about the validity of this assumption. Initially
this assumption was applied to smaller collections such as Cranfield and CACM.
However, as Blair has posited [5], the percentage of documents not assessed for
a given topic with respect to a modern collection could be up to 99%, leaving a
very large proportion of unassessed relevant documents undiscovered. However,
Voorhees and Harman highlight a key point [6], that as pooling is a union of
many different ranking approaches and because only relative system performance
is measured, if the number of systems contributing to a pool is sufficiently large
1 The cut off λ is known as the pooling depth. The measurement depth k refers to

the document cut off used when estimating retrieval performance e.g. Precision at k
documents.

A Retrieval Evaluation Methodology for Incomplete Relevance Assessments 273

and these systems are diverse, bias towards one or a set of systems should be
minimised, even if all relevant documents were not discovered. Absolute system
performance may not be accurately estimated using incomplete relevance assess-
ments, but the relative performances of systems can be fairly compared. This is
related to the argument by Salton, where as long as the conditions remain even
for all systems, then the relative differences between systems can be compared
fairly and with a high degree of certainty.

When using pooling to estimate recall it is difficult to ascertain whether the
majority of relevant documents have been discovered. There have been a number
of empirical studies that have attempted this across collections such as TREC.
Zobel defined a method to extrapolate the potential numbers of unassessed rele-
vant documents, concluding that the assumption of unassessed documents being
not relevant was unfounded [7]. He approximated that a large percentage of
relevant documents were still to be discovered, especially across topics where a
large number of relevant documents were already found through pooling. There-
fore, it is not clear what impact the potential proportion of relevant unassessed
documents may have on system comparisons.

For this very reason, the effect that pooling has on system comparison has
been investigated in the context of relevant document recall, focusing upon sev-
eral different areas of the completeness assumption and system pooling. These
studies have investigated issues such as the effect on system comparison and
the subsequent uncertainty when using incomplete relevance judgements [2,3,7],
efficient pooling strategies [7,8,9,10], automatically generated relevance assess-
ments [11,12], and the importance of significance testing during system compar-
ison [13]. A running theme throughout these studies is that it is still unclear
whether the now standard assessment procedure of pooling, and the resultant
evaluation measures adopted, does indeed impact upon the fair and unbiased
comparison of retrieval systems and to what extent, if any. For example, a re-
cent investigation of the TREC Robust-HARD 2005 collection identified system
bias, which was a result of both a shallow pool depth, and (potentially) similar
runs forming the system pool [14]. The outcome was a bias in the collection
favouring systems that gave more weight to query terms that appeared in the
title of a document over other approaches. Although this does not necessarily
indicate a failing of system pooling it motivates the need for a more robust evalu-
ation protocol which considers aspects such as pooling, the measurement depth,
and the status of unassessed documents during evaluation.

1.2 Focus of This Study

Based on an analysis of these studies, we posit that uncertainty remains when
comparing the relative performance of systems as a result of the status of
unassessed documents (being not relevant). One of the cited limitations with
laboratory studies is the large amount of subjectivity or uncertainty in such
evaluations. The nature of the scientific method demands as much objectivity
and certainty as possible. After analysing the history of retrieval evaluation we
believe that the status of unassessed documents and the resulting suitability of

274 M. Baillie, L. Azzopardi, and I. Ruthven

comparing systems with varying levels of assessed documents is still an open
issue. We are especially motivated by the recommendations of Zobel [7], who
warned researchers when evaluating new systems across existing test collections
for cases where performance could be underestimated. However, a standard pro-
tocol for detecting such cases has not been proposed as of yet. We therefore
propose a new methodology for quantifying uncertainty during system compar-
isons that may exist because of incomplete relevance assessments. By doing so,
we can determine when it is possible to fairly compare two systems using current
measures, especially those systems that do not contribute to the pool. Instead of
compensating for or ignoring potential uncertainty during system comparisons
due to incompleteness, we believe that the proportion of unassessed documents
should be captured and reported. Reporting this information can be a useful
source of information to help quantify the confidence, accuracy and/or relia-
bility of system performance. By capturing such information, we can determine
whether two systems are compared under similar conditions, and flag those cases
when one system may have an advantage over another due to a particular con-
dition found in a test collection.

2 Capturing the (un)certainty of System Performance

We hypothesise that the certainty associated with estimating a measurement of
a systems performance at a depth k is proportional to the number of documents
that have been assessed at that depth. Conversely, the uncertainty is proportional
to the number of documents that have not been assessed. The larger proportion
of assessed documents contained in a ranked list, the more confident we are in the
estimate of a systems performance at the corresponding measurement depth. For
example, when comparing the performance of two systems, if all documents have
been assessed in the ranked list of both systems then we have the ideal situation
of completeness i.e. the performance estimates for both systems were made with
a high degree of certainty. If the ranked lists of both systems are incomplete, but
contain similar proportions of assessed documents, then confidence in the rela-
tive comparison of both systems would also be high. However, if one system has a
substantially lower proportion of assessed documents than another, then the per-
formance estimate of that system is based on limited information relative to the
other. It is these cases that we wish to detect, where the conditions for both sys-
tems are not even resulting in a higher degree of uncertainty in the comparison.

2.1 Measure of Assessment

We propose to capture uncertainty by calculating the proportion of assessed
documents in a ranked list. Let A be the set of assessed documents in a collection
of N documents, and X be the set of retrieved documents by a system for
that topic. Then Assessment Precision Ap can be defined as the probability of
retrieving judged documents:

Ap =
|X ∩ A|

|X |

A Retrieval Evaluation Methodology for Incomplete Relevance Assessments 275

where |X ∩ A| is the number of documents in the set defined by the intersection
of X and A, and |X | is the number of documents in X . Assessment Precision
relates to the confidence we place, or the certainty of a performance estimate,
given a ranked result list. Note that uncertainty associated with the estimate is
the complement, 1−Ap. We now refer to uncertainty and certainty through this
measure, where a high Assessment Precision value relates to high certainty and
low uncertainty.

This measure is exactly the definition for standard Precision except with re-
spect to assessed as opposed to relevant documents. Consequently, for every
Precision and Recall measure there is a corresponding Assessment measure. The
Average Assessment can be computed by taking the average over all ranks where
an assessed document occurred. The Mean Average Assessment (MAA) then
provides a summary of the assessment over all topics placing more emphasis
on systems with assessed documents higher in the ranked list. This metric is
analogous to Mean Average Precision (MAP), and could be used in situations
where it is important to identify whether there is a difference in the propor-
tion of assessed documents at higher ranks between systems when estimating
MAP2.

It should also be noted that the Assessment Precision metrics are functionally
related to the corresponding Precision metrics. This relationship is because A is
the union of the set of assessed relevant documents and assessed non relevant
documents. Therefore a system retrieving more assessed documents is likely to
have a higher Precision, because assessed documents are more likely to be rel-
evant. Also, when systems have low levels of Ap there is increased uncertainty
in the Precision score, and any subsequent comparison, because of the high
proportion of unassessed documents. It is important to consider this context
during the evaluation. Assessment Precision provides this context explicitly by
capturing the proportion of assessed documents used to estimate the retrieval
performance. In this paper, we concentrate on applying Ap to fairly compare
systems, and leave these other issues regarding Ap for future research.

2.2 System Evaluation Decision Matrix

We now illustrate how Assessment Precision can be integrated into the current
evaluation protocol. We motivate the introduction of the System Evaluation
Decision matrix in the form of an example system comparison. We wish to test
the performance P(), which denotes the Precision at a given measurement depth
k (i.e. P@10, MAP, etc.), of two systems s1 and s2 over a test collection with
incomplete relevance assessments.

2 We have focused on Precision based metrics in this paper although quantifying the
level of assessment can be extended to included other types of measures. For example,
bpref has recently been proposed as a measure for incomplete collections [2], which
removes all unassessed documents during estimation of performance. Note that, bpref
itself does not quantify the proportion of assessed documents that are removed but
a corresponding Ap measure could be derived to complement such a metric.

276 M. Baillie, L. Azzopardi, and I. Ruthven

Case 3

P(s1) >>P(s2)
A(s1)<<,==A(s2)

or
P(s1)<<P(s2)

A(s1)==,>>A(s2)

Reject null hypothesis that s1 is equal to
s2, with a low degree of uncertainty

Case 4

P(s1)>>P(s2)
A(s1)>>A(s2)

or
P(s1)<<P(s2)
A(s1)<<A(s2)

Reject null hypothesis that s1 is equal to
s2, with a high degree of uncertainty

Case 2

P(s1)==P(s2)
A(s1)<<A(s2)

or
P(s1)==P(s2)
A(s1)>>A(s2)

Accept null hypothesis that s1 is equal to
s2, with a high degree of uncertainty

Case 1

P(s1)==P(s2)
A(s1)==A(s2)

or
P(s1)==P(s2)
A(s1)==A(s2)

Accept null hypothesis that s1 is equal to
s2, with a low degree of uncertainty

Fig. 1. System Evaluation Decision Matrix for system comparison

We have the following research hypothesis:

H0 : P (s1) = P (s2)
H1 : P (s1) �= P (s2)

To determine the level of confidence we can place on this test, we test the supple-
mentary hypothesis using a correspondingAssessmentPrecisionmetric A(), which
denotes the Ap at a corresponding measurement depth k (i.e. A@10, MAA, etc.):

H0 : A(s1) = A(s2)
H1 : A(s1) �= A(s2)

This forms a contingency table of four possible outcomes of interest displayed in
Figure 1. Significance is denoted as either no difference (==) or the significant
differences (<<, >>) i.e. s1 is significantly better (>>) than s2. We assume that
statistical significance is determined using an appropriate test such as Wilcoxon
sign rank test, paired T-test or ANOVA [13].

For Case 1, the null hypothesis that P (s1) == P (s2) and A(s1) == A(s2)
cannot be rejected. We define this a “strong” case because the level of assessment
for both s1 and s2 are equal, that is the proportion of information used to
estimate performance was comparable.

For Case 2, the null hypothesis that P (s1) == P (s2) cannot be rejected as
well, however, the proportion of information used to estimate the performance of
both systems was not comparable. In other words, the result list of one system

A Retrieval Evaluation Methodology for Incomplete Relevance Assessments 277

was comprised of a significantly larger proportion of assessed documents than the
other, causing a degree of uncertainty in this comparison. It is unknown from this
test whether, under comparable conditions, the null hypothesis P (s1) == P (s2)
would still hold or not. We therefore define this as a “weak” case.

For Case 3, also a “strong” case, the null hypothesis that P (s1) == P (s2)
is rejected. We can place a high degree of confidence in this outcome as we
have either a scenario where both systems share similar proportions of assessed
documents, or in special scenarios the system with significantly higher perfor-
mance has significantly fewer documents assessed than the other system. In other
words, even with further information about this system it could not match (or
better) the opposing system. Finally, for Case 4, another “weak” case, the null
hypothesis that P (s1) == P (s2) is rejected, although, we cannot place a high
degree of confidence in this outcome, as the system with significantly higher per-
formance also reported a significantly larger proportion of assessed documents.
This does not indicate that the system with a smaller proportion of assessed
documents would share similar performance under equal conditions, but instead
flags a potential problem with this comparison.

Of the weaker outcomes Case 2 is particularly interesting as both systems
have similar performance, but this performance is based on different propor-
tions of assessed documents. What is interesting is that the system with signifi-
cantly less assessed documents could potentially be retrieving a wider diversity
of documents, with respect to the pool, and some of these documents may be
relevant [7]. A subsequent research question would be to investigate why the
systems perform as well as each other. As both systems have equal system per-
formance but unequal levels of assessment, this system may potentially improve
performance when compared under even conditions. Further investigation may
provide stronger supporting evidence.

At this stage a number of steps could be taken. If the goal of the comparison
is precision orientated then system comparison could be made at a shallower
measurement depth to ensure the likelihood of parity. By doing so we are as-
suming that at shallower depths systems will have relatively equal proportions
of documents assessed. If both systems have contributed to the pooling process
then this assumption would hold up until pooling depth has been reached, how-
ever, if a system has not contributed to the pool this may not be the case. The
previous step may lead to the creation of test collections with an emphasis on
shallow measurement depth [13]. If the goal is to compare a minimal number of
systems using shallow measurements, where re-usability of the test collection is
not important, such a strategy could also be adopted by research groups. For
example, provided with enough resources, further checking of the unassessed
documents can be made, adopting strategies such as that outlined by Carterette
et al. [8]. Alternatively, comparisons could be made across different test collec-
tions where conditions remain even. This step assumes such collection(s) exist,
although collections can be evaluated for such properties using the suite of As-
sessment measures. Finally, this reinforces the need when building test collections
to include novel systems in the pooling process [14].

278 M. Baillie, L. Azzopardi, and I. Ruthven

3 Experimental Analysis

To demonstrate the application of the Assessment Precision measure within the
evaluation process we conducted an empirical analysis to evaluate both its util-
ity, and to provide further justification for its introduction. Our first objective
was to examine the officially submitted runs to TREC over a number of collec-
tions, spanning a range of years 3. By using the official runs we could investigate
the level of uncertainty during performance comparisons of runs included in the
system pool across these collections. Our second objective was to evaluate the
implications of measurement depth with respect to the level of assessment be-
tween systems at various cut off values. Using the Assessment Precision metrics,
we were investigating what effect using a measurement depth deeper than the
pooling depth may have on system comparisons. This is related to the argument
that relative system performance can be compared if the conditions remain even
for both systems. We then focused our attention on runs from particular collec-
tions, such as the Robust-HARD 2005 4, which has been identified as potentially
problematic to use due to title bias [14]. The aim is to better understand the
problems cited with this collection, with particular focus on runs that both
weight topic titles and runs that do not.

For each collection we first analysed each possible pair-wise system compari-
son of the officially submitted runs using the decision matrix (see Table 1). To
test for significance across all systems we used the ANOVA test. If significant
differences in terms of performance and assessment across the systems of a col-
lection were found, we performed a followup Bonferroni multiple comparisons
to identify which systems differed significantly both in terms of performance
and assessment. We repeated this experiment across numerous Performance and
Assessment Precision metrics, spanning a range of measurement depths; includ-
ing the Performance metrics P@10, P@30, P@100, P@500, P@1000, MAP, and
the Assessment Precision metrics Ap@10, Ap@30, Ap@100, Ap@500, Ap@1000,
MAA. For each metric, we counted the number of comparisons that fell into
each outcome i.e. Cases 1-4 (see Figure 1 for an outline of each case). Table 1
presents the proportion of overall system comparisons that fall into each case.
Rows indicate different test collections while columns represent different mea-
sures, increasing by measurement depth. Each entry represents the proportion of
system comparisons that fall into that case e.g. for the TREC 3 @10 entry, 69%
of pair-wise system comparisons fall in Case 1, 7% in Case 2, 17% in Case 3 and
7% in Case 4, where there were 780 pair-wise comparisons performed overall.

The first thing we were interested in was the proportion of significant pair-
wise differences in terms of system performance across the various test collec-
tions, specifically to test what extent increasing measurement depth had on this
proportion. The table provides the proportion of both “strong” and “weak” sig-
nificant differences between systems for each metric. From the reported results,
a noticeable trend was that for the majority of collections where the proportion

3 See http://trec.nist.gov/results.html
4 This collection combined runs from Robust 2005 and HARD 2005 to form the pool.

A Retrieval Evaluation Methodology for Incomplete Relevance Assessments 279

Table 1. The proportion of comparisons for each case across the TREC collections

@10 @30 @100 @500 @1000 MAP/AA

TREC 3 0.69 0.07 0.67 0.14 0.58 0.32 0.44 0.49 0.41 0.57 0.64 0.13
780 0.17 0.07 0.11 0.09 0.05 0.05 0.00 0.06 0.00 0.02 0.04 0.19

TREC 4 0.72 0.12 0.65 0.16 0.43 0.39 0.35 0.48 0.33 0.5 0.5 0.25
528 0.16 0.00 0.19 0.00 0.05 0.13 0.02 0.15 0.01 0.16 0.02 0.24

TREC 6 0.60 0.16 0.55 0.26 0.45 0.42 0.45 0.44 0.44 0.45 0.6 0.2
3081 0.13 0.11 0.10 0.10 0.033 0.10 0.01 0.10 0.00 0.10 0.02 0.18

TREC 8 0.70 0.04 0.69 0.07 0.52 0.31 0.51 0.36 0.57 0.33 0.57 0.22
8000 0.19 0.06 0.17 0.07 0.01 0.16 0.00 0.13 0.00 0.10 0.04 0.18

WEB 04 0.35 0.00 0.03 0.25 0.02 0.19 0.01 0.19 0.01 0.19 0.02 0.37
561 0.65 0.00 0.42 0.30 0.51 0.28 0.53 0.26 0.53 0.27 0.40 0.20

ROBUST 03 0.83 0.01 0.74 0.09 0.55 0.2 0.52 0.22 0.57 0.17 0.65 0.14
2145 0.03 0.13 0.01 0.16 0.00 0.25 0.00 0.26 0.00 0.27 0.00 0.21

ROBUST 05 0.77 0.12 0.66 0.23 0.53 0.38 0.57 0.35 0.60 0.31 0.68 0.19
1485 0.07 0.03 0.07 0.04 0.00 0.10 0.00 0.08 0.00 0.08 0.00 0.13

HARD 05 0.71 0.20 0.66 0.25 0.57 0.39 0.57 0.42 0.57 0.42 0.72 0.18
2775 0.05 0.05 0.05 0.04 0.00 0.04 0.00 0.02 0.00 0.01 0.00 0.10

of significant differences decreased as the measurement depth increased, the ex-
ception being the Robust 2003 collection. This trend is the converse of the in-
tuition stated in [7], whereby increasing measurement depth also increased dis-
crimination between systems. The intuition is that good systems will continue
to retrieve relevant documents beyond the pooling depth, which will have been
discovered by other runs. From these results it would appear that discrimination
between the set of systems lessens as the measurement depth increases. For some
collections such as TREC-3, 6, 8 and the Web 2004 collections this becomes more
stated as measurement depth is increased beyond the pooling depth.

We then examined the proportion of significant differences between systems
that fall into either the “strong” or “weak” case. A common trend across col-
lections was that, as measurement depth increased, the proportion of “strong”
comparisons decreased while the proportion of “weak” cases increased. To il-
lustrate, consider first P@10 for the TREC-3 collection in Table 1. We find a
smaller proportion of comparisons falling into the “strong” case in contrast to
P@30 (17% to 11%). Conversely there is an increase in “weak” cases from 7%
to 8.7%. This trend remains as we continue increasing measurement depth to-
wards P@1000. Using MAP, which is calculated over all 1000 documents, 3.7 %
significant differences are “strong” compared to 19% “weak” cases. This trend
is common across the other collections, and appears to be an indication of the
amount of information that is used to estimate system performance. Increasing
measurement depth results in a higher level of uncertainty in system comparison.

A similar trend is also followed for system comparisons where the null hypoth-
esis that both systems have equal performance cannot be rejected. As measure-
ment depth increases, the proportion of “strong” cases decreases, resulting in a

280 M. Baillie, L. Azzopardi, and I. Ruthven

Fig. 2. Comparison of runs from Robust 2003 (top) and Robust 2005 (bottom)

larger proportion of cases where one system has a significantly larger number of
assessed documents than another.

We then examined in closer detail what conditions would result in a swap from
a “strong” to “weak” comparison and vice versa when increasing measurement
depth. As a case study we present a comparison of two sets of systems from the
Robust 2003 (Figure 2, top) and Robust 2005 tracks (Figure 2, bottom). In both
figures we display both the P@ (left) and Ap@ (right) metrics at various ranks
for both systems. Error bars are displayed to show variation across the set of
topics and significance between systems.

The first example (Figure 2, top), illustrates a comparison of systems where
conditions remain relatively even for both systems across various ranks. Sys-
tem s1 has significantly higher precision than s2 up until P@500. If we examine
assessment, s1 also has higher assessment but not significantly so with the ex-
ception of A@100. This example illustrates that even with systems that have
comparable conditions in terms of assessment, the practice of using a measure-
ment depth larger than the pooling depth can cause uncertainty in comparisons
such as at A@100.

We also examined two runs from the Robust 2005 track where it has been
identified that there is a bias in the collection towards documents that have
query terms in the title [14]. The two runs were from the same research group,
with system s3 placing emphasis on keywords appearing in the title of docu-
ments, while s4 uses an external collection to expand the original query. Initially
system s4 reports significantly higher precision across the 50 topics. As the mea-
surement depth increases this improvement becomes marginal until both runs

A Retrieval Evaluation Methodology for Incomplete Relevance Assessments 281

share similar performance. If we examine the levels of assessment across the same
ranks, we find that assessment is equal until we reach A@100, then s4 decreases
in assessment with respect to s3. For this collection the pool depth is 47.

This result reflects the findings in [14], where the performance of s4 is under-
estimated once a larger measurement depth is used. System s3 begins to return
more assessed (and relevant) documents than s4, which in turn is returning more
unique and unassessed documents. From the study of Zobel [7], who investigated
the rate of discovering new relevant documents beyond pool depth, it is uncer-
tain if both systems shared similar levels of assessed documents that performance
would converge.

4 Discussion and Conclusion

In this paper we argued that uncertainty should be identified during the evalua-
tion process when using incomplete relevance judgements. We therefore proposed
a new set of metrics based on the level of assessment which can be used to provide
an indication of uncertainty during system comparisons. If the level of assessment
between systems is similar, we believe that a fair comparison can be made, oth-
erwise uncertainty has been introduced into the evaluation. By using the System
Evaluation Decision matrix we can make stronger claims of significance (or not),
and guide subsequent research to decide when further testing is required (e.g.
shallower measurement depth, different collections, etc.). The advantage is those
comparisons that may not be fair can be detected and investigated accordingly.

During the course of our empirical study, where we employed the extended
evaluation methodology, we found evidence to suggest that the use of a measure-
ment depth larger than the pooling depth weakens claims of significance in per-
formance. This was a concern that was previously raised, but not confirmed, by
Zobel [7]. Our results indicate that as the measurement depth increases beyond
the pooling depth, uncertainty across many system comparisons also increases,
and interestingly, the discrimination between systems weakens. Consequently,
this supports the conclusions drawn by Sanderson and Zobel [13], who stated
that metrics which consider early precision such as P@10 can be used to accu-
rately discriminate between systems.

This decrease in discrimination at deeper measurement depths may result
from the higher variation is performance estimates across topics stemming from
the lack of assessment at these depths. Also, the majority of systems, what
Aslam and Savell refer to as the “popular” systems [11], appear to discover a
similar proportion of relevant documents once the measurement depth increases.
However, the performance of the best systems may still be underestimated be-
cause they return documents than are unique to the documents returned by the
“popular” systems. In general the relative rankings of systems tend to remain
stable across measurement depths and varying levels of incompleteness. How-
ever, it is those cases where a system changes in ranking because of the effects of
incompleteness that should to be detected, in particular, comparisons resulting
in Case 2 in the decision matrix. This is because it is these systems, which are

282 M. Baillie, L. Azzopardi, and I. Ruthven

novel and considerably different to the “popular” systems, that require more
consideration during evaluation.

In this paper we have introduced an extended retrieval evaluation method-
ology which uses Assessment Precision to determine whether comparisons be-
tween competing systems are made under similar conditions. The adoption of
this methodology leads to a fine grained analysis during the evaluation as the
necessary context is provided to draw firmer conclusions. Future work will ex-
amine the implications and usage of this methodology in greater detail as well
as investigate issues relating to Assessment Precision such as the relationship
between Precision and the level of assessment.

Acknowledgements

We would like to thank Fabio Crestani, Kalervo Järvelin, David Harper, and the
anonymous reviewers for their valuable comments.

References

1. Salton, G.: The state of retrieval system evaluation. Information Processing Man-
agement 28 (1992) 441–449

2. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In:
Proceedings of the 27th ACM SIGIR Conference. (2004) 25–32

3. Voorhees, E.M., Harman, D.K., eds.: TREC: Experiment and Evaluation in Infor-
mation Retrieval. MIT Press, Cambridge, Massachusetts 02142 (2005)

4. Spärck-Jones, K., Van Rijsbergen, C.J.: Report on the need for and provision of
an “ideal” information retrieval test collection. Technical report, British Library
Research and Development Report 5266, University of Cambridge. (1975)

5. Blair, D.C.: Some thoughts on the reported results of TREC Information Process-
ing Management 38 (2002) 445–451

6. Voorhees, E., Harman, D.: Letters to the editor. Information Processing Manage-
ment 39 (2003) 153–156

7. Zobel, J.: How reliable are the results of large-scale information retrieval experi-
ments? In: Proceedings of the 21st ACM SIGIR. (1998) 307–314

8. Carterette, B., Allan, J., Sitaraman, R.: Minimal test collections for retrieval
evaluation. In: Proceedings of the 29th ACM SIGIR, Seattle, WA (2006) 268–275

9. Cormack, G.V., Palmer, C.R., Clarke, C.L.A.: Efficient construction of large test
collections. In: Proceedings of the 21st ACM SIGIR. (1998) 282–289

10. Sanderson, M., Joho, H.: Forming test collections with no system pooling. In:
Proceedings of the 27th ACM SIGIR. (2004) 33–40

11. Aslam, J.A., Savell, R.: On the effectiveness of evaluating retrieval systems in the
absence of relevance judgments. In: Proceedings of the 26th ACM SIGIR, Toronto,
Canada (2003) 361–362

12. Soboroff, I., Nicholas, C., Cahan, P.: Ranking retrieval systems without relevance
judgments. In: Proceedings of the 24th ACM SIGIR. (2001) 66–73

13. Sanderson, M., Zobel, J.: Information retrieval system evaluation: effort, sensitivity,
and reliability. In: Proceedings of the 28th ACM SIGIR. (2005) 162–169

14. Buckley, C., Dimmick, D., Soboroff, I., Voorhees, E.: Bias and the limits of pooling.
In: Proceedings of the 29th ACM SIGIR Conference, Seattle, WA (2006) 619–620

Evaluating Query-Independent Object Features
for Relevancy Prediction�

Andres R. Masegosa1, Hideo Joho2, and Joemon M. Jose2

1 Department of Computer Science and A.I., University of Granada, Spain
2 Department of Computing Science, University of Glasgow, UK

andrew@decsai.ugr.es, {hideo,jj}@dcs.gla.ac.uk

Abstract. This paper presents a series of experiments investigating the effec-
tiveness of query-independent features extracted from retrieved objects to predict
relevancy. Features were grouped into a set of conceptual categories, and indi-
vidually evaluated based on click-through data collected in a laboratory-setting
user study. The results showed that while textual and visual features were useful
for relevancy prediction in a topic-independent condition, a range of features can
be effective when topic knowledge was available. We also re-visited the original
study from the perspective of significant features identified by our experiments.

1 Introduction

There has been a growing interest in leveraging contexts in different aspects of Inter-
active Information Retrieval (IIR) systems [1,2,3]. While the IR community might not
have a consensus regarding what exactly a context is, the progress has been made on
the understanding of IR in contexts. For example, Ingwersen and Järvelin [4] propose
a model of context stratification which includes a wide range of features in the infor-
mation seeking and retrieval environment. The model offers structured focus for the
work on finding the potentially significant contexts to improve the performance of IIR
systems. Some of the proposed strata relevant to this work are: work task features;
interaction features; and document features.

One way to identify significant contextual features is to investigate their relationship
to the relevancy of retrieved objects. For example, Kelly and Belkin [5] found that
the reading time of documents can vary significantly across the topics, thus, it can be
difficult to predict the document relevancy. Fox et al. [6] applied a machine learning
technique to model the interaction features with respect to the document relevancy.
Another way to find significant features is to observe the effect of features in an IR
technique such as relevance feedback. For instance, White, et al. [7] investigated the
effects of topic complexity, search experience, and search stage in the performance of
implicit relevance feedback. Furthermore, the relationship between the context strata
is important to understand the significance of features. For example, Freund, et al. [8]
suggest that the document genres can be indicative of the type of topics in a workplace
environment.
� This work was supported by ALGRA project (TIN2004-06204-C03-02), FPU scholarship

(AP2004-4678) and EPSRC (Ref: EP/C004108/1).

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 283–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

284 A.R. Masegosa, H. Joho, and J.M. Jose

In this paper, we present a series of experiments investigating the effectiveness of
query-independent object features to predict document relevancy. Our evaluation was
based on experimental data collected in a laboratory-based user study with 24 partici-
pants searching four different topics. Participants were asked to bookmark a document
when perceived relevant information was found. Object features were extracted from
click-through documents and bookmarked documents. The objective of using such data
was two-fold: First, we can decrease the uncertainty of users’ underlying information
needs inferred from interaction data, compared to a search engine’s transaction log.
Second, we were interested in re-visiting the result of the original study from the per-
spective of significant features identified by the experiments.

The rest of this paper is structured as follows. Section 2 describes our methodol-
ogy to extract a set of potential object features, and other operations to improve the
performance of the relevancy prediction. Section 3 presents a series of experiments in-
vestigating the effectiveness of the object features. Section 4 discusses the implications
of our findings. Finally, Section 5 concludes the paper with future work.

2 Methodology

This section describes our methodology used to extract object features and other oper-
ations applied to the features to improve the performance of relevancy prediction. An
overview of the classifiers used in our experiment and performance measures is also
discussed.

2.1 Conceptual Categories of Object Features

The first step to find effective features for relevancy prediction was to identify candi-
date features that can be extracted from retrieved documents. Based on some informal
experimentation and literature survey, we have identified approximately 150 object fea-
tures. To increase the understanding of candidate features in relevancy prediction, we
then grouped them into a set of conceptual feature categories. The structure used for the
categorisation is shown in Table 1.

As can be seen, there are four main categories: Document textual features, visual/
layout features, structural features, and other selective features. The objective of the
main categories was to group candidate features into a set of independent functionality
played in a document. Therefore, we do not claim that our categorisation is ideal for
all applications. On the contrary, the structure of features should be revised as an in-
vestigation progresses. Nevertheless, the structure shown in Table 1 was a good starting
point for us to investigate the effectiveness of object features. An overview of the main
categories is as follows.

Document textual features: This category consists of features that are related to tex-
tual contents of documents. The examples of features include the number of words
in a document and anchor texts, number of upper-case words, number of digits,
Shannon’s entropy value [9] for a document and anchor texts.

Visual/Layout features: This category consists of features that are related to visual
or layout aspects of documents. There are three sub categories: Visual appearance

Evaluating Query-Independent Object Features for Relevancy Prediction 285

Table 1. Conceptual categories for object features

Main Category Sub category Code Feature size

Document textual features DOC 14
Visual/Layout features Visual Appearance V-VS 28

Visual HTML tags V-TG 27
Visual HTML attributes V-AT 16

Structural features STR 18
Other selective features Selective words in anchor texts O-AC 11

Selective words in document O-WD 11
Selective HTML tags O-TG 7
Selective HTML attributes O-AT 16

includes features such as the number and dimension of (background) images and
foreground/background colours; HTML Tags includes a set of HTML tags such as
font, li, and table; HTML attributes includes attributes used across the HTML
tags such as style, border, and face.

Structural features: This category consists of features that are related to hyperlink
and site structure of documents. The examples include the depth of document in a
URL, the number of outlinks, PageRank scores.

Other selective features: This category consists of features that are not necessarily fit
into the above categories. There are four sub categories: Selective words in docu-
ment includes the presence of selective words such as address, search, and help;
Selective words in anchor texts is the same as above but extracted from only anchor
texts; Selective HTML tags includes a set of HTML tags such as form, object,
and script; Selective HTML attributes includes lang, onclick, src, etc.

Extraction of the features were carried out by a mixture of tools such as [10] and
[11]. The following sections describe a proposed methodology to build classifier, to
select significant features, and finally, to validate the results.

2.2 Probabilistic Classification Approach

The classification problem can be seen as an ability of predicting a given feature of an
object using another set of features of the same object. In the probabilistic classification
paradigm, the classification problem can be described by two types of random variables:

Class Variable: C. This random variable is the variable to be predicted. This variable
contains one state for each possible prediction �C � �c1� ���� ck�. In our case, �C �

�Relevance� Non � Relevance�.
Predictive/Attribute Variables: X � �X1� X2� ���� Xn�. Each variable has a set of possi-

ble states (discrete variables) or continuous values (continuous variables). For sim-
plicity, we are only going to talk about discrete variables. Then, �Xi � �xi j1 � ���� xi jk�

is the set of possible states of the Xi random variable. In our case, X is the set of
variables described in Section 2.1.

286 A.R. Masegosa, H. Joho, and J.M. Jose

In this model, our objective is to learn the following probability distribution:

P(C�X1� X2� ���� Xn) � �P(c1�X1� ���� Xn)� ���� P(ck�X1� ���� Xn)�

In other words, the probability of the class variable given the set of attributes vari-
ables. The prediction of the class (Relevance or Non-Relevance) is based on the high-
est a posteriori probability. This probability distribution is estimated by a set of data
D � �D1� ���� DM�, where each Di contains an instantiation of the predictive features and
the class for the object number i:

Di � �x1 j1 � x2 j2 � ���� xn jn� c j�

In our study, a great number of attribute variables were continuous. However, the
literature suggests that the performance of the classifiers can be more robust when
the variables are discrete data. Therefore, we used the equal frequency discretisation
method [12] to split the continuous variables into 10 intervals.

Another aspect to consider in the classification was the balance of the class variable
distribution (i.e., the portion of relevant and non-relevant documents in a data set). An
imbalance data is known to deteriorate the performance of a classifier [13]. We took
the following approach to address the issue. When there were a large number of cases,
we randomly removed the cases from the larger class until the portion was balanced.
When there were a small number of cases, we used a resampling method to balance
the data. Although this resampling method was a good technique to correct imbalanced
data, it was also possible to over-estimate the performance of the classifier. We used
AUC measure [12] to detect the over-estimation.

2.3 Classifiers Used

While a single Bayesian network approach was used by [6], we were interested in using
several classifiers and reporting the result of the best performing classifier. This was
because a single classifier was unlikely to show the significance of attribute variables in
a complex dependency structure. We selected four classifiers that have been proved to
be successful in machine learning classification. An overview of the classifiers used in
our experiments is as follows.

Naive Bayes [14] . This is one of the well known probabilistic classifiers. The main
assumption in this model is that all attribute variables depend on the class variable
and they are independent of each other.

AODE [15]. This classifier can use multiple representations of a problem space to pre-
dict the class variable. A disadvantage is that this classifier can not show an explicit
relationship between variables.

HNB [16]. This classifier creates a hypothetical variable to represent the relationship
between the attribute variables. The resulted representation is then used to predict
the class variable. HNB inherits the structural simplicity of Naive Bayes and can be
trained without mining the dependency structure.

K2-MDL. This classifier is a variant of Bayesian networks classifier [17] where the
structure is learnt by the K2 algorithm [18].

Evaluating Query-Independent Object Features for Relevancy Prediction 287

2.4 Feature Selection Scheme

The feature selection in the supervised classification paradigm is to find a minimum
set of attribute variables that can achieve the best performance. The selection of signif-
icant features in the problem space can prevent the classifiers from introducing noisy
evidences in the training stage. The feature selection can also reduce the number of
variables to be considered in the problem space, thus, it can facilitate our understanding
of significant variables.

While several techniques have been proposed for the feature selection [19], we used
a wrapper method which can select a set of the best features based on the AODE clas-
sifier. The actual selection process was similar to the cross validation method described
in the following section. The final set of features was generated by the features that
were selected at least N% of the repeated cross validation process. We used 50%, 80%,
and 90% as the cutoff levels in the feature selection. We found that the overall perfor-
mance did not vary significantly over the cutoff levels. Therefore, we only report the
results of 90% in the experiment since it consists of the smallest number of significant
features.

2.5 Classification Validation Scheme

With the aim of provide a robust estimation of the accuracy of a classifier, the set of
data was partitioned in two separated sets. The training data set was used to build the
classifier and the test data set was used to estimate the performance. The K-fold-cross
validation method was used to partition the data set as follows. The data set D was
divided in K random subsets with the same size �D1� ���� DK�, thus, the validation process
was repeated K times. In other words, in the step i with i � 1���K a training data set was
defined Ti � D � Di and the subset Di was used as a test set and the accuracy was
measured based on them. The mean of the K accuracy measures was reported as the
final estimated performance of the classifier. In our study, a 10 fold-cross validation was
repeated 10 times to measure the performance (i.e., based on 100 repeated estimations).

3 Experiments

This section presents a series of experiments which investigated the effectiveness of
query-independent contextual features to predict the relevancy of click-through doc-
uments. The accuracy of prediction is defined by the portion of correct prediction in
the total number of click-through documents. The correct prediction is a sum of the
true positive and true negative cases (i.e., predicting a relevant document as relevant,
and predicting a non-relevant as non-relevant). For example, when the data consist of
50 relevant and 50 non-relevant documents, and when 30 relevant and 40 non-relevant
documents are correctly predicted, then the performance is 70%1.

Throughout this section, the results are presented in two groups of data set. The first
group is based on all click-through data without the distinction of individual topics. The
second group is based on the data within individual topics. The former is referred to as

1 30R�40NR
50R�50NR �

70
100 � �7.

288 A.R. Masegosa, H. Joho, and J.M. Jose

Table 2. Baseline performance of relevancy prediction

Click-through Relevant Non-Rel Baseline (%) Balanced (%)
No topic 737 375 362 50.9

Topic 1 203 123 80 60.6 50.0
Topic 2 173 83 90 52.1
Topic 3 154 69 85 55.2
Topic 4 207 100 107 51.7

the topic-independent set, and the latter is referred to as the topic-dependent set. This
grouping enables us to examine the effect of topic knowledge in relevancy prediction,
and how the effectiveness of the features differs in the two conditions.

The section is structured as follows. First, the baseline performance of relevancy pre-
diction is established by looking at the portion of relevant/non-relevant documents in
the click-through data set. Second, the effect of contextual features in each category
is examined. Then, the effects of several operations on the contextual features are pre-
sented: feature selection, feature combination, and use of highly relevant documents.

3.1 Baseline Performance

A total of 1038 click-through documents were extracted from our user study of 24 par-
ticipants searching four different search topics [20]. Of those, 375 were unique relevant
and 362 were unique non-relevant documents. Therefore, the baseline performance of
relevancy prediction was set to 50.9% in the topic-independent set (denoted as No topic
in the tables). The portion of relevant/non-relevant documents varied across the four
topics. The baseline performance was taken from whichever the higher portion of rele-
vance, as shown in Table 2.

Note that a relatively large difference was found between the number of relevant and
non-relevant documents in Topic 1. To measure an accurate performance of the classi-
fiers, we generated a balanced data set by a random sampling for Topic 1 (shown in the
6th column of Table 2). In the following analysis, the performance based on the balanced
set is used for Topic 1. No change was found to be necessarily for the rest of the data set.

3.2 Effect of Contextual Features

The first experiment examined the effect of contextual features in the individual context
categories. In this experiment, the classifiers used only the features defined in each cat-
egory to predict the relevancy, and the same procedure was repeated for all categories.
The performance of relevancy prediction was compared to the baseline performance
and the relative improvement was shown in Table 3. The bottom row of the table shows
the average improvement across the four topics (but not including the topic-independent
set). The statistically significant differences are highlighted in bold in the table. We used
the t-test (p � �05) for the statistical tests throughout the study.

As can be seen, the features in the DOC and V-AT categories were found to be useful
for improving the relevancy prediction in the topic-independent set. While the V-VS
category was found to be effective in Topic 1, the overall effect of individual categories

Evaluating Query-Independent Object Features for Relevancy Prediction 289

Table 3. Effect of contextual features

DOC V-VS V-TG V-AT STR O-AC O-WD O-TG O-AT Mean
No topic 50.9 +5.7 +2.5 +2.2 +3.9 +0.4 +1.2 -2.1 -0.9 +2.2 +1.7

Topic 1 50.0 +4.1 +11.3 -2.7 +4.2 +2.0 +5.7 -4.0 +3.1 +2.7 +2.9
Topic 2 52.1 +0.3 +7.3 +6.1 -2.2 +2.9 -9.2 -4.3 +2.0 +4.8 +0.9
Topic 3 55.2 +0.6 +4.4 -2.6 +5.4 +1.1 +8.1 -0.8 +4.8 +6.3 +3.0
Topic 4 51.7 -5.1 -2.6 +0.6 +2.3 +2.1 +1.4 +3.1 +0.6 -0.7 +0.2

Mean +1.1 +4.6 +0.7 +2.7 +1.7 +1.4 -1.6 +1.9 +3.1 +1.7

appeared to be weak across the topics. Furthermore, the performance of most categories
appeared to be inconsistent across the topics. The exceptions were the STR and O-TG
categories, but the differences were not significant. The following sections present the
effects of several operations on the features to improve the performance.

3.3 Effect of Feature Selection

In the previous experiment, all features were used to predict the document relevancy in
the individual categories. One way to improve the performance is to use only a subset
of features that are likely to contribute to the prediction, which is called a feature se-
lection. There are several methods of the feature selection. In this study, we used the
features that were selected 90% of times in the repeated tests on the training set. The
feature selection was carried out in the indivdual categories and the result of relevancy
prediction is shown in Table 4.

Table 4. Effect of feature selection with 90% cutoff

DOC V-VS V-TG V-AT STR O-AC O-WD O-TG O-AT Mean
No topic 50.9 +4.6 +1.4 +3.1 +3.8 +2.4 +2.9 +2.0 +0.3 +1.1 +2.4

Topic 1 50.0 0.0 +1.4 +10.8 +7.4 +11.5 +6.1 +5.8 +4.1 +3.8 +5.6
Topic 2 52.1 0.0 -3.8 +5.8 +4.8 +5.2 +3.7 +0.9 +2.6 -9.0 +1.1
Topic 3 55.2 0.0 +8.4 0.0 +6.2 +0.7 +10.1 -1.4 +6.4 -3.3 +3.0
Topic 4 51.2 +2.3 0.0 +3.5 +1.3 +5.8 +5.4 +8.6 -1.5 +5.4 +3.4

Mean +1.4 +1.5 +4.6 +4.7 +5.1 +5.6 +3.2 +2.4 -0.4 +3.1

From the far right column (Mean) of Table 4, there appears to be an overall positive
effect of the feature selection, compared to Table 3. However, in the topic-independent
set, the performance of the significant categories (i.e., DOC and V-AT) was degraded
by the feature selection. This suggests that a greater number of the features should be
considered in the individual categories when no topic knowledge was available for the
relevancy prediction.

On the other hand, a significant improvement was found in several categories of the
topic-dependent sets when the feature selection was carried out. The results show that,
for example, Topic 1 is likely to benefit from the features in the V-TG and STR categories.
What is more important is that the significant category is likely differ across the topics.

290 A.R. Masegosa, H. Joho, and J.M. Jose

Table 5. Effect of feature combination

Best Cat Combined High Rel
No topic 50.9 +5.7 +5.6 +11.6

Topic 1 50.0 +11.5 +10.3
Topic 2 52.1 +5.8 +9.2
Topic 3 55.2 +10.1 +9.9
Topic 4 51.7 +8.6 +2.2

Mean +7.4

In fact, no single category contributed to a significant improvement on more than one
topic. Topic 2 appeared to be a particularly difficult topic to find effective features. This
suggests that the effectiveness of query-independent features is fairly topic-dependent.

3.4 Effect of Feature Combination

So far, we have examined the performance of the individual feature categories. The
features selected in the previous experiment appeared to have a varied effectiveness over
the topics. We further investigated the performance of the context features by combining
the selected features into a single category. The advantage of the feature combination is
that the classifiers do not have to find a particular category for the relevancy prediction.
The result is shown in Table 5. In the table, the performance of the best category in the
previous experiment is shown in the 3rd column (Best Cat), and the performance of the
combined feature is shown in the 4th column.

As can be seen, the overall performance of the feature combination appears to be
comparable to the best performing category in the previous experiment, except Topic 4.
And, the effect appears to be consistent across the two data sets. In particular, Topic 2
was found to benefit from the feature combination significantly. The mean value of four
topics (the bottom row of Table 5) suggests that the performance of combined feature is
likely to be more consistent than any single feature category. We also tested the different
cutoff levels (50%, 80%, and 90%) of the feature selection before the combination, and
a similar performance was found over the cutoff levels.

3.5 Effect of Highly Relevant Documents

The last experiment in this paper looked at the effect of highly relevant documents for
the relevancy prediction. In the literature, the importance of highly relevant documents
has been suggested in the evaluation of IR systems [21]. In this study, the highly relevant
documents were determined when the document was judged as relevant by at least two
participants in the same topic. While this criterion was not based on a graded relevance
judgement, it enabled us to select a reasonable number of relevant documents whose
relevancy was shared by participants.

There were a total of 96 documents that were judged by at least two participants.
Of those, 69 were relevant and 27 were non-relevant. Similar to Topic 1’s data set, we
needed to balance the portion of relevant /non-relevant documents for the this analysis.

Evaluating Query-Independent Object Features for Relevancy Prediction 291

Table 6. Effect of highly relevant documents (without feature selection)

DOC V-VS V-TG V-AT STR O-AC O-WD O-TG O-AT Mean
All rel 50.9 +5.7 +2.5 +2.2 +3.9 +0.4 +1.2 -2.1 -0.9 +2.2 +1.7

High rel 50.0 +15.2 +15.5 +16.7 +8.2 �+12.0 +4.9 +0.3 +11.6 +6.2 +9.8
�An over-estimation was detected in this result, thus, not considered.

We used a replacement method which was often used in machine learning (See
Section 2.2). The method is known to be robust to measure the performance in a similar
situation, and to detect any anomalies in the results.

The effect of highly relevant documents is shown in Table 6. We only report the re-
sult of the topic-independent set since the data was too small to measure the individual
topic performance. As can be seen, the significant improvements were found in several
categories when the highly relevant documents were targeted for the relevancy predic-
tion. The result also shows that the features from a wider range of categories can be
considered for the prediction in the topic-independent set. We also measured the ef-
fect of feature combination based on the highly relevant documents, and the result is
shown in the 5th column of Table 5. As can be seen, a respectable improvement can
be achieved without selecting the best performing category. These results show that the
use of highly relevant documents can be a more effective way to predict the document
relevancy than the other methods examined in this study. This is interesting because the
classifiers usually perform worse when the size of the training data decreases.

4 Discussion

This section discusses the implications of our experimental results. We also re-visit the
result of the original user study from the perspective of the significant features identified
by the experiments.

4.1 Effectiveness of Query-Independent Features

The findings from our experiments have several implications for the use of query-
independent object features to predict the document relevancy. First, the set of effective
features can be different when the prediction is performed with/without topic knowl-
edge. In the topic-independent set, the textual document features and visual/layout
HTML attributes are likely to be significant to predict the document relevancy. In
our experimental conditions, the feature selection or feature combination were found
to make little improvement on the performance. However, a simple filtering to select
highly relevant documents was found to be effective to improve the performance. In the
topic-dependent set, on the other hand, many categories can be effective for the rele-
vancy prediction. However, the effectiveness of individual categories can vary across
the topics. The results show that the feature selection and feature combination can be
effective for improving the performance in this set. Another implication of our results is
that an additional classifier for a topic detection should be used supplementary to the rel-
evance prediction. Such a two-stage approach would allow us to use a topic-dependent
significant category effectively, thus, can be promising to improve the performance.

292 A.R. Masegosa, H. Joho, and J.M. Jose

Table 7. Minimum set of significant features�

Topic 1 Topic 2 Topic 3 Topic 4
Topic Dust allergy in Music piracy Petrol price Art galleries and

workplace on Internet change museums in Rome

DOC
V-VS imageBDiskSize
V-TG meta, li
V-AT
STR URL-Levels PR-Page, link

HtmlLink URL-Domain
numlinksAnchor

O-AC contact contact search
email help help
search email tel

O-WD search, address
O-TG
O-AT
�The significant features with 90% cutoff is highlighted with bold. The rest are
based on 80% cutoff in the feature selection.

Our preliminary test to predict the four topics using the relevancy classifier showed an
accuracy of between 45 to 60% with the average of 55%. A further investigation is
under way for the integrated approach.

The results also suggest that the textual document features such as the entropy are
rarely effective within the individual topics. This was contrast to their performance in
the topic-independent set. Our speculation is that the entropy and other document level
features might have a low discriminating power to separate relevant documents from
non-relevant. Other features that occur less frequently in the data set appear to have a
higher discriminating power. Therefore, a similar phenomenon that motivates the idea
of inverse document frequency [22] might be applicable to indicate the significance of
query-independent features. This also supports our approach to use a range of objects’
features to predict the document relevancy.

4.2 Re-examination of the Original Study

Our experiments were based on the experimental results of a user study carried out in a
laboratory setting. A motivation for using such data was to decrease an uncertainty of
users’ underlying information needs in the experiments. A distinct objective was to re-
examine the result of the original study from the perspective of the significant features
identified by the experiments. In this section, we discuss the findings of such analysis.
Table 7 shows the minimum set of the query-independent features that contributed to
a significant improvement in the individual topics. The minimum set was determined
by the multiple cutoff levels (80% and 90%, See Section 2.4) in the feature selection to
increase the number of indicative features.

In Topic 1, participants were asked to find the information on the potential solution
to dust allergy in a workplace. Some perceived relevant documents contained a list of

Evaluating Query-Independent Object Features for Relevancy Prediction 293

steps to reduce the dust inside a building. Therefore, the li tag in the visual feature
category was a significant indicator of the document relevancy. The depth of document
in a web site appeared to vary in this topic compared to the other topics. As discussed
before, Topic 2 was a difficult topic to find significant features. In this topic, partici-
pants were asked to find the information on the damage of music piracy on Internet.
The structural features in this topic suggest that participants were able to find relevant
information in the top ranked documents from a limited number of URL domains. The
most unexpected result was Topic 3 where the disk size of background images (imageB-
DiskSize) was found to be a significant indicator of the document relevancy. A close
examination showed that the background image information was more helpful for pre-
dicting non-relevant documents than relevant documents. The selective words in the
anchor texts appeared to be useful for this topic. The result of Topic 4 was also inter-
esting. We initially expected that the visual features were likely to be significant in this
topic, but this was not the case. Instead, the selective words in a document were found
to be a significant indicator of the document relevancy. We speculate that since most
click-through documents contained a variety of images in this topic, their discriminat-
ing power was lower than we had expected. However, since participants were asked to
find the information on a particular location, the words such as address was found to
be significant.

As can be seen, the result of the re-examination of the original work was a mixture
of re-assurance and puzzlement. More importantly, however, the significant features
appeared to offer us a pointer for the further examination of the original study. In this
sense, the re-examination of the original work based on the significant features can
supplementarily used in the evaluation of user studies.

5 Conclusion and Future Work

This paper presented a series of experiments which investigated the effectiveness of the
query-independent features to predict the document relevancy. The experimental results
from a user study were used to extract the various features of retrieved objects. Our re-
sults show that the document-level textual features and visual features can be indicative
of the document relevancy in an topic-independent situation. The use of highly relevant
documents can improve the performance significantly. When the type of topics was
known, a wider range of features can be effective for the relevancy prediction. How-
ever, the effectiveness of the features is likely to vary across the topics. Overall, these
findings highlight the importance of investigating the significance of objects’ features
from the perspective of the topics and aggregated relevance assessments.

In this study, we investigated the features from retrieved objects. We are conducting
a similar experiment based on the interaction features in the other parts of the user logs,
searchers features gained from the participants” background information and finally,
subjective perceptions on the topic characteristics established by the questionnaires.
We anticipate that the features from the additional context strata can facilitate the un-
derstanding of the original user study. We also plan to evaluate the features extracted
from another user study to investigate the robustness of the significant features identi-
fied by this study.

294 A.R. Masegosa, H. Joho, and J.M. Jose

References

1. Ingwersen, P., Belkin, N.: Information retrieval in context - IRiX: workshop at SIGIR 2004.
SIGIR Forum 38(2) (2004) 50–52

2. Ingwersen, P., Järvelin, K.: Information retrieval in context: IRiX. SIGIR Forum 39(2)
(2005) 31–39

3. Ruthven, I., Borlund, P., Ingwersen, P., Belkin, N., Tombros, A., Vakkari, P., eds.: Proceed-
ings of the 1st IIiX Symposium, Copenhagen, Denmark (2006)

4. Ingwersen, P., Järvelin, K.: The Turn: Integration of Information Seeking and Retrieval in
Context. Springer (2006)

5. Kelly, D., Belkin, N.J.: Display time as implicit feedback: understanding task effects. In:
Proceedings of the 27th SIGIR Conference, Sheffield, United Kingdom, ACM Press (2004)
377–384 1009057.

6. Fox, S., Karnawat, K., Mydland, M., Dumais, S., White, T.: Evaluating implicit measures
to improve web search. ACM Transactions on Information Systems 23(2) (2005) 147–168
1059982.

7. White, R.W., Ruthven, I., Jose, J.M.: A study of factors affecting the utility of implicit
relevance feedback. In: Proceedings of the 28th SIGIR Conference, Salvador, Brazil, ACM
(2005) 35–42

8. Freund, L., Toms, E.G., Clarke, C.L.A.: Modeling task-genre relationships for ir in the
workspace. In: Proceedings of the 28th SIGIR Conference, Salvador, Brazil, ACM (2005)
441–448

9. Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of
Illinois Press, Urbana, Illinois (1949)

10. (Html parser. ”http://htmlparser.sourceforge.net/”)
11. (Firefox add-ons. ”https://addons.mozilla.org/”)
12. Duda, R.O., Hart, P.E.: Pattern Classification. Wiley Interscience (2000)
13. Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intelligent

Data Analysis 6(5) (2002) 429–449
14. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley Sons, New

York (1973)
15. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive bayes: aggregating one-dependence

estimators. Mach. Learn. 58(1) (2005) 5–24
16. H. Zhang, L.J., Su, J.: Hidden naive bayes. In: Proceedings of the Twentieth National

Conference on Artificial Intelligence (AAAI-05), (AAAI Press(2005).)
17. Pearl, J.: Probabilistic Reasoning with Intelligent Systems. Morgan & Kaufman, San Mateo

(1988)
18. Cooper, G., Herskovits, E.: A bayesian method for the induction of probabilistic networks

from data. Machine Learning 9 (1992) 309–347
19. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2)

(1997) 273–324
20. Joho, H., Jose, J.M.: Slicing and dicing the information space using local contexts. In: Pro-

ceedings of the First Symposium on Information Interaction in Context (IIiX), Copenhagen,
Denmark (2006) 111–126

21. Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant documents.
In: Proceedings of the 23rd SIGIR Conference., Athens, Greece, ACM (2000) 41–48

22. Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation 28(1) (1972) 11–21

The Utility of Information Extraction

in the Classification of Books

Tom Betts, Maria Milosavljevic, and Jon Oberlander

School of Informatics, University of Edinburgh,
2 Buccleuch Place, Edinburgh EH8 9LW, UK

tom@4angle.com, {mmilosav,jon}@inf.ed.ac.uk
http://www.inf.ed.ac.uk

Abstract. We describe work on automatically assigning classification
labels to books using the Library of Congress Classification scheme. This
task is non-trivial due to the volume and variety of books that exist.
We explore the utility of Information Extraction (IE) techniques within
this text categorisation (TC) task, automatically extracting structured
information from the full text of books. Experimental evaluation of per-
formance involves a corpus of books from Project Gutenberg. Results
indicate that a classifier which combines methods and tools from IE and
TC significantly improves over a state-of-the-art text classifier, achieving
a classification performance of Fβ=1 = 0.8099.

Keyword: Information Extraction, Named Entity Recognition, Book
Categorisation, Project Gutenberg, Ontologies, Digital Libraries.

1 Introduction

Books have long been classified in ontologies to help users locate relevant titles.
The emergence of digital libraries and on-line resellers has released the classi-
fication of books from the constraints of a physical space, allowing the use of
multi-labelling, and even folksonomies.1 This is very useful, since books are often
inconsistently classified in different systems, or not satisfactorily classified at all.

Text categorisation (TC) is the task of classifying texts, based on their content,
into one or more predefined categories. Popular applications include filtering e-
mail messages for spam, or indexing newswire articles. Information Extraction
(IE) is a process by which we can identify structure within unstructured nat-
ural language text. The IE task consists of a series of subtasks, one of which
is Named Entity Recognition (NER), which is concerned with finding entities
within a text such as people, locations and organisations. Intuitively, we expect
that reducing unstructured text into a structured format should provide leverage
in TC. Although there has been considerable research in both TC and IE, only
a limited amount of work has combined them. We have found no other work
which uses content-based categorisation on full-text books or large texts. Our

1 See, for example www.librarything.com

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 295–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.inf.ed.ac.uk
www.librarything.com

296 T. Betts, M. Milosavljevic, and J. Oberlander

approach is closest to [12] in terms of representation, combining phrases (where
we use named entities) with bag-of-words; cf. the models discussed in Section 3.

Here, we set out to show that by using IE, information derived automatically
from the full text of books can lead to good TC performance. We first determine
the type of information that can easily be extracted from books using NER.
Second, we explore how this information can be incorporated into a TC task
and develop a framework for its inclusion. Finally, we show that the use of this
information leads to a statistically significant improvement in performance when
compared to a state-of-the-art text classifier.

2 Motivation and Context

Major players in the text industry have a considerable interest in the digitisation
of books. For example, Amazon.com are scanning books for their ‘Search Inside
the Book’ programme, the Million Book Project at Carnegie Mellon has scanned
over 600,000 texts2 and Google is expected to digitise 10.5 million books for their
Google Books project [4]. For the purpose of this work, we use books from Project
Gutenberg,3 which contains over 19,000 copyright-free electronic texts.

Categorising books is non-trivial due to subjectivity and the sheer volume and
variety of titles available. Manual classification is time consuming and, therefore,
impractical for large collections such as digital libraries or online retailers, who
stock millions of different titles. Hence, content-based classification may prove
a useful alternative. However, the challenges of heterogeneity and scalability
distinguish this problem from traditional automated text categorisation. For
example, the length of full-text books may be orders of magnitude greater than
newswire stories or e-mail messages classified in past work.

In this work, we use the Library of Congress Classification4 (LoCC), an on-
tology for categorising books according to their subject, used by most academic
and research libraries. Although LoCC was created to satisfy the constraints of
a physical library, it can also be used to categorise digital collections. Because
a library cannot contain many copies of the same book, books are traditionally
placed into only one or at most two LoCC categories. But digital collections have
no such constraints, and in fact, assigning multiple categories is highly desirable
in order to help diverse users locate relevant books. Nürnberg et al. [13] provide
further detail on the differences between digital and physical libraries.

2.1 Approaches to Book Categorisation

Manually categorising books has long been the concern of librarians. They assign
books to predefined categories from hierarchical ontologies such as LoCC or the
Dewey Decimal Classification. Early work on the automated categorisation of
library texts (not necessarily books) focussed on the content of abstracts [2].
2 http://www.library.cmu.edu/Libraries/MBP FAQ.html
3 http://www.gutenberg.org
4 As outlined at http://www.loc.gov/catdir/cpso/lcco/lcco.html

http://www.library.cmu.edu/Libraries/MBP_FAQ.html
http://www.gutenberg.org
http://www.loc.gov/catdir/cpso/lcco/lcco.html

The Utility of IE in the Classification of Books 297

A more recent approach to categorising books has been to use structured
metadata, such as titles or subject headings—a less hierarchically structured
form of subject annotation for books [8,9,6]. Frank and Paynter’s [6] work is
closest to ours, taking a machine learning approach to categorisation. Using Li-
brary of Congress Subject Headings, they report an accuracy of ∼ 55% when
categorising 50,000 books into 4214 categories. However, their classification is
based on curated metadata, which may be susceptible to annotator inconsis-
tency; by contrast, our approach is content-based. Mooney and Roy [11] use
content-based text categorisation in a recommender system for books. They use
both structured metadata and unstructured text for categorisation, but limit
the use of text to product descriptions, editorial and user reviews.

3 Methods and Tools

Our central hypothesis is that structured information that can be automatically
extracted from unstructured book texts is useful for the purpose of categorising
them. In testing this hypothesis, we use Named Entity Recognition (NER) in
addition to a standard bag-of-words approach. NER can be achieved with good
performance, suffers acceptable domain coupling, and should be computation-
ally tractable [5]. Furthermore, named entities can provide important cues to the
topic of a text. Thus, we pursue NER as a technique for the extraction of struc-
tured information, and we use pre-existing tools to extract entities from each
book text. We explore the use of names of people, organisations, locations and
dates, based on the assumption that these entities should help to discriminate
between the categories in our corpus.

3.1 Corpora

We use full-text books from Project Gutenberg, using their published LoCC
as the ‘gold standard’. Gutenberg texts have been assigned a LoCC including
schedule, denoted by the first letter (e.g. D: History: General and Eastern Hemi-
sphere), and subclass, denoted by subsequent letters (e.g. DA: History: General
and Eastern Hemisphere: Great Britain, Ireland, Central Europe). In order to ex-
periment with the extraction of structured information from the available texts,
and effectively assess its usefulness in categorisation, we created two corpora
containing all English texts from a subset of Gutenberg categories.

Our development corpus is used to experiment with and develop our classi-
fiers. It includes 810 texts from 28 categories, including subclasses of schedules B
(Philosophy, Psychology, Religion) and D (History: General and Eastern Hemi-
sphere). These categories are selected based on their availability, the intuition
that named entities may discriminate classes, and their content-based similarity.

Our extended corpus (comprising 1029 texts in 52 categories) combines
the development corpus with texts from schedules H (Social sciences) and Q
(Science). This provides further texts which may exhibit similarity with the
development corpus; however, we do not manually alter our models specifically
to discriminate H or Q categories. There are no features that exploit domain

298 T. Betts, M. Milosavljevic, and J. Oberlander

knowledge specific to these categories. Schedule Q, containing physical science
subcategories, poses challenges by adding subject diversity, disparate linguistic
style and texts which may not be easily discriminated by named entities.

3.2 Models for Representing Texts

In order to assess the utility of named entities in our categorisation task, we
created three models that can be used to represent a text:

BOW Model: Bag-of-Words The firstmodel uses a multinomial bag-of-words
to represent the text. This model is considered state-of-the-art for TC, and is
the baseline against which we evaluate other techniques.

NER Model: Bag-of-Named-Entities There have been several efforts to find
more sophisticated representations of texts that capture additional ‘knowl-
edge’ or ‘meaning’ present in a text. Techniques include the use of n-gram
phrases [10,15,7,12,3] and word senses [15,12] instead of words. We create a
representation of each book text as a variant of a bag-of-phrases, using n-gram
entities extracted with NER. The classification of entities is exploited so that
entities with the same string value, but different types (e.g. Chelsea-LOC and
Chelsea-PER), are treated as different features.

GAZ Model: Generalising Named Entities One apparent difficulty with
the use of phrases in TC is that they suffer from inferior statistical qual-
ities when compared to word-based models [12,14]. A named entity model
will have similar problems, since it is not clear that the same named entity
will be observed across texts. An attempt is made to reduce sparse data diffi-
culties by generalising the observed named entities into a smaller number of
synthetic features. We incorporate domain knowledge to create features that
exploit ontological structure. For example, we observe that the subclasses
of schedule D (History) are organised by geographical region. Features are
created using geographic gazetteers, defined according to the region of each
category. For subclasses of schedule B (Philosophy, Psychology, Religion),
we can use gazetteers of names of relevant people and organisations.

Although we evaluate the baseline BOW, NER and GAZ models individually,
previous work with phrases for TC [12,10] has combined a bag-of-words feature
space with phrases to overcome their inferior statistical qualities [14]. We use a
similar approach, creating a continuous feature space by combining the feature
spaces of individual models. The models are:

NER-GAZ combines the feature spaces of NER and GAZ, exploiting GAZ as
smoothing, as discussed above;

BOW-NER combines NER features with the baseline BOW feature space,
helping to reduce the negative effects of phrase-based representations, such
as lack of partial matching and misclassified or missing named entities; and,

BOW-NER-GAZ involves the combination of all three individual models.

The Utility of IE in the Classification of Books 299

3.3 Classifier Configurations

This task is a multiclass problem because Gutenberg texts are only assigned one
of the available LoCC. We evaluate two approaches to multiclass classification.

Multiclass. This requires training a single classifier to distinguish between all
categories, where the objective function we optimise is the accuracy of classifica-
tion when assigning one of many categories. This classifier exploits the mutual
exclusivity of class labels during training, whereas binary classifiers combined
in one-vs-all classification (described below) treat category assignment decisions
independently (it is only during the final assignment that mutual exclusivity is
exploited). The classifier used in these experiments is a multiclass generalisation
of SVM, SVMmulticlass[17].

One-vs-All. We evaluate one-vs-all classification because it can assign multiple
labels to a book (motivated in Section 2). Unfortunately, training and evaluating
classifiers combined using one-vs-all may be computationally expensive, due to
the need to use one classifier per category. However, it follows that the complexity
of individual classifiers should be relatively low (compared to the direct approach
described above). We use multiple instances of SVMlight[16].

We make classifications by selecting the classification that we are most con-
fident about5 and pursue two approaches to category assignment. A relaxed
classification is made by assigning the category of the classifier outputting the
largest positive value. A forced classification is made by assigning the ‘least
bad’ classification—selecting the largest value, regardless of whether positive or
negative. The relaxed classifier, which comes closest to generalising to a multi-
label classification task, guarantees that at most one category is assigned, but
does not guarantee to assign any. The intuitive result of forcing a classification
would be an improvement in recall, but at the expense of precision.

3.4 Term Reduction and Feature Selection

Initial experiments were conducted using the entire feature space, and even with
our relatively small corpus, execution was prohibitively slow. Two processes can
reduce the size of models—the removal of infrequent terms and feature selection.

Term reduction involves removing terms that occur with high or low frequency.
Due to the scale of texts being represented, we opt for maximum reduction,
removing terms that occur fewer than five times in the corpus [14]. This provides
an initial reduction in model size but is not sufficiently aggressive. However, it is
a vital process because the technique that we use for feature selection, χ2 [19],
cannot provide accurate estimates for low frequency terms.

We use χ2 to estimate the lack of independence between class labels and
features. In particular, we use Yang and Pedersen’s [19] definition of χ2

max to
obtain a single value for each feature. Features are sorted by χ2

max, and the n (a
variable in our experiments) largest are selected for inclusion in a model.
5 Direct comparisons are made between binary classifiers even though we would not

expect these confidences to be normalised, as discussed in Section 5.

300 T. Betts, M. Milosavljevic, and J. Oberlander

3.5 Evaluation

There is considerable choice of metrics for performance evaluation, including
micro-averages, a per-document metric, and macro-averages, performing aver-
aging over categories. Given that a motivation for this work is a reduction in
human effort required to categorise texts, it follows that a goal is accurate clas-
sification of as many texts as possible, rather than accurate classification of as
many categories, since the latter could result in the accurate categorisation of
very few texts. Evaluation and optimisation, therefore, focus on micro-average
performance. Fβ=1 is used as the primary metric for binary decisions and we oc-
casionally discuss this in terms of precision and recall to provide further insight.

4 Results

Due to the quantity of metrics used for analysing experimental output, it is not
feasible to comprehensively document all our results in this paper. For clarity,
situation-specific visualisations and statistics are included to facilitate this dis-
cussion, and an overview of micro-Fβ=1 for each classifier, displaying results for
every model, is provided in Fig. 1. A comprehensive account of the results can
be found in [1]. Unless otherwise stated, metrics quoted are micro-averages. The
best result obtained using our baseline model was Fβ=1 = 0.7914, and this was
improved to Fβ=1 = 0.8099 when incorporating named entities.

4.1 Baseline: Bag-of-Words

We begin this evaluation with our baseline, noting that micro-Fβ=1 is indicated
in Fig. 1. Both classifiers that guarantee to make exactly one classification, one-
vs-all forced (Fig. 1A) and direct multiclass (Fig. 1C) classifiers, exhibit rel-
atively straightforward optimisation of Fβ=1, which increases as features are
added. However, for the forced one-vs-all classifier, performance begins to fall
after 5000 features, labelled (a). In the relaxed one-vs-all classifier (Fig. 1B),
Fβ=1 performance begins a continuous decline after only 500 features, indicated
(b). Between points (b) and (c), Fβ=1 falls from 0.7264 to 0.6564, which corre-
sponds to a fall in the number of correct classifications from 507 to 405. This
can be explained by a fall in certainty of classifications as the number of features
increases. It follows that the classifier makes fewer category assignments, and
precision increases, because the most ‘uncertain’ texts were those most likely
to be incorrectly classified. Increasing the number of model features eventually
reduces the ability of classifiers to generalise because the trained classifiers will
tend to overfit, given our limited training data. This is also true for forced one-
vs-all classifiers. Continuing to force classifications leads to a decrease in Fβ=1,
which we observe at point (a). From Fig. 1C we can see that multiclass classifi-
cation appears to avoid overfitting (in the limited dimensions that we explore),
and may be more robust because class assignment decisions are dependent on
one another, whereas local decisions in one-vs-all classifiers are independent.

The Utility of IE in the Classification of Books 301

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of features in model

M
ic

ro
−

av
er

ag
e

F 1
(A) Forced One−vs−All

BOW
NER1
BOW−NER
BOW−NER−GAZ
NER−GAZ

(a)(e)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of features in model

M
ic

ro
−

av
er

ag
e

F 1

(B) Relaxed One−vs−All

BOW
NER1
BOW−NER
BOW−NER−GAZ
NER−GAZ

(c)
(b)(d)

(f)

0 5000 10000 15000 20000 25000 30000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of features in model

M
ic

ro
−

av
er

ag
e

F 1

(C) Multiclass

BOW
NER1
BOW−NER
BOW−NER−GAZ
NER−GAZ

(g)

Fig. 1. Micro-average Fβ=1 as number of features is varied for each classifier configu-
ration (one per plot) and document model (all models per plot)

302 T. Betts, M. Milosavljevic, and J. Oberlander

Comparing the classifier configurations, we observe that one-vs-all classifiers
achieve respectable performance with very few dimensions, whereas multiclass
classifiers require larger representations. Multiclass and one-vs-all forced clas-
sifiers exhibit the best Fβ=1, which is broadly similar between them (∼ 0.79),
suggesting that the requirement for assigning exactly one class can be effectively
exploited. Although the relaxed classifier performs worst overall, it achieves a
precision of 0.955, the highest in the evaluation, but at the expense of recall.

4.2 Combining Models

In this section we evaluate the hybrid models, discussed in Section 3.2, that
facilitate the combination of features from individual models.

NER-GAZ: Named Entities With Smoothing. Motivating the GAZ model
in Section 3.2, we discussed the need for smoothing of NER model features to
prevent overfitting. By combining features from NER and GAZ, we hope to im-
prove recall in the NER model. In Fig. 1A and 1B we observe a general rise in
Fβ=1 when comparing the NER-GAZ and NER models, which we attribute to to
an increase in average recall. Although generally NER-GAZ offers improvements
over the NER model, optimal Fβ=1, indicated (d) and (e), is only marginally
improved (relaxed), or not at all (forced). However, the generally increased Fβ=1
offered by NER-GAZ is desirable in order to aid generalisation without exhaus-
tive searches of parameter space. As seen in Fig. 1C, multiclass classification
appears largely unaffected by the addition of GAZ features to the NER model.

BOW-NER and BOW-NER-GAZ: Combining Word and Named En-
tity Based Models. By including named entities in addition to word-based
features, we hope to improve precision without reducing recall. When evaluat-
ing performance of optimised models (summarised in Table 1), both appear to
improve performance over any of their constituents. Furthermore, for one-vs-all
classifiers this improvement appears substantial. We can see from the model per-
formance in Fig. 1A and 1B that these models tend to perform similarly to their
BOW counterparts. Given that the BOW feature space is denser, this is perhaps
unsurprising, and indicates that BOW features have greater influence over the
performance of these hybrid models than NER or GAZ features.

In Fig. 1A we see that forced one-vs-all classifiers exhibit consistent improve-
ment for BOW-NER and BOW-NER-GAZ models, compared to the baseline
BOW model. They also improve relaxed classifiers when the number of features
included in the model is < 6000, labelled (f); however, with more features a
BOW classifier outperforms the combined models. As previously discussed for
the baseline, overall performance of relaxed classifiers suffers from poor recall.
Compounding this with the precision-improving characteristics of NER features
may be the cause of this eventual decline in combined model performance. The
opposite appears true of multiclass classification, in which Fβ=1 grows more
slowly for the combined models than the baseline. In fact, multiclass does not
benefit from the combined models until the final dimension that we sample, la-
belled (g), where the combined models offer marginal improvement.

The Utility of IE in the Classification of Books 303

Table 1. Development corpus: optimal micro-Fβ=1

Model One-vs-All (Forced) One-vs-All (Relaxed) Multiclass
Features Fβ=1 Features Fβ=1 Features Fβ=1

BOW 5000 0.7901 500 0.7264 20000 0.7914
NER 500 0.6765 50 0.6676 20000 0.7198
GAZ 28 0.6407 28 0.6499 28 0.5802
NER-GAZ 1000 0.6765 25 0.6689 20000 0.7222
BOW-NER 5000 0.8074 1000 0.7424 30000 0.7926
BOW-NER-GAZ 5000 0.8099 1000 0.7447 30000 0.7938

4.3 Development Corpus: Discussion of Results

Table 1 contains the optimal parameters (number of features in the model)
for every model and classifier configuration, and the respective development
corpus Fβ=1. For comparison, a näıve classifier could obtain Fβ=1 = 0.1843 on
the development corpus by classifying every document as the most numerous
category. We note that the BOW-NER-GAZ model consistently produces the
best Fβ=1. Although the improvements for the combined feature spaces do not
always appear substantial over their discrete constituents, it is satisfying that the
combined models at least exhibit the improvements intended by design. NER-
GAZ improves recall and categorisation performance on texts from unpopular
categories (over the NER model), and the BOW-NER and BOW-NER-GAZ
models improve the baseline model by enhancing precision, which in many cases
leads to an increase in Fβ=1.

Statistical Significance. In order to determine whether the performance in-
creases reported between models and our baseline are likely to have occurred by
chance, we perform statistical significance testing. We use the micro sign test
(or s-test) [18], which compares two systems (A and B) based on the binary de-
cisions that they make. This test evaluates models at a micro level, which aligns
with our aim to optimise micro-Fβ=1. The s-test produces a (one-sided) P-value
for the hypothesis that system A performs better than system B. A subset of
the results of this testing are given in Table 2. A smaller P-value indicates a
more significant result, and we assume that a P-value > 0.1 indicates that the
improvement reported for system A over B is not statistically significant. Using
the s-test, we find that two results are significant, and these are both forced
one-vs-all classifications. The BOW-NER-GAZ model offers the most significant
improvement over the baseline, indicated by the smallest P-value.

4.4 Extended Corpus Evaluation

We analyse classification performance on our extended corpus, as introduced in
Section 3.1. Models were trained and evaluated using the parameters established
on the development corpus. The results are given in Table 3.

304 T. Betts, M. Milosavljevic, and J. Oberlander

Table 2. Statistical significance test results for development corpus using s-test

System A System B Classifier s-testa

BOW-NER BOW Forced One-vs-All >
BOW-NER-GAZ BOW Forced One-vs-All �
BOW-NER BOW Relaxed One-vs-All ∼
BOW-NER-GAZ BOW Relaxed One-vs-All ∼
BOW-NER BOW Multiclass ∼
BOW-NER-GAZ BOW Multiclass ∼

a where “�” indicates P-value ≤ 0.05; “>” indicates
0.05 < P-value ≤ 0.10; and “∼” indicates P-value > 0.10

Table 3. Extended corpus: micro-Fβ=1 based on development corpus parameters

Model One-vs-All (Forced) One-vs-All (Relaxed) Multiclass
Features Fβ=1 Features Fβ=1 Features Fβ=1

BOW 5000 0.6673 500 0.6359 20000 0.6683
NER 500 0.2917 50 0.4761 20000 0.6341
GAZ 28 0.3522 28 0.3506 28 0.3844
NER-GAZ 1000 0.5141 25 0.4907 20000 0.55
BOW-NER 5000 0.7092 1000 0.6360 30000 0.6761
BOW-NER-GAZ 5000 0.7092 1000 0.6360 30000 0.6761

It is encouraging to see similar patterns between these results and those for
the development corpus given in Table 1. In particular, we see that both BOW-
NER and BOW-NER-GAZ models achieved equal or better performance than
the baseline, and in the case of forced one-vs-all and multiclass classifiers, this
improvement was larger than that reported for the development corpus. It is
interesting that the BOW-NER and BOW-NER-GAZ models performed iden-
tically for all classifiers. Further inspection reveals that no GAZ features were
selected for use in the BOW-NER-GAZ model, presumably because these fea-
tures are noisy, given that they are not tailored to the new categories.

Although performance is universally worse than for the development corpus,
this is to be expected, and we cannot isolate the cause of this penalty. The
extended corpus is a harder corpus to categorise: it has more categories; the new
categories are poorly populated with texts; it contains subcategories that are
less likely to be easily discriminated using named entities; and we do not tailor
our approach to this corpus as we did during development.

5 Conclusions and Further Work

Our classification system makes progress towards the classification of books us-
ing their full text. The extraction of structured data from full-text books, using

The Utility of IE in the Classification of Books 305

Information Extraction, is explored and evaluated for the purpose of assigning
a single LoCC to each text. Furthermore, the techniques developed can be gen-
eralised to assign multiple category labels to a single text, although this is not
evaluated here and is left for further work. In addition to assigning a categorisa-
tion, the extracted metadata (such as dates, and names of people and locations)
may be useful for creating domain specific interfaces, such as maps for browsing
the distribution of geographic entities, or timelines for browsing dates.Examples
can be seen in the Perseus Digital Library and Gutenkarte.6

We have seen that there are implications for precision and recall when se-
lecting classifiers, and that we can make very precise classifications using a
relaxed one-vs-all classifier, or gain higher recall by selecting a forced archi-
tecture. Furthermore, we have also seen that one-vs-all classifiers require far
fewer features than multiclass classifiers to perform optimally. This is also true
of NER models, which required fewer dimensions to achieve optimal perfor-
mance. This observation may be critical for the scalability of a solution to larger
corpora.

We also found that in one-vs-all classifiers, adding features tended to be pre-
cision improving, but at the expense of recall, leading to a fall in Fβ=1. This
overfitting is most likely an artifact of limited training data. Of the architec-
tures, direct multiclass classification appears to be the most robust and in the
feature space sampled, we found little evidence of overfitting. However, given
that the data is partitioned differently for each binary classifier used in one-vs-
all, the respective hyperplanes and distances from hyperplanes to data points
(and hence confidences) will not be normalised by default. Although it is not
expected to affect the consistency of our results, it may be suboptimal to make
decisions by direct comparison of these output confidences.

We found that combining our models based on named entities with bag-of-
words representations resulted in an increase in performance over the baseline
system, and furthermore, that this improvement has some statistical significance.
We expect that these techniques could be widely applied to text categorisation
and that the results described may not be specific to books.

Following the work in [6], we intend to develop mechanisms for evaluating the
degree of incorrectness in misclassifications of books. In particular, we note that
many misclassifications are in fact too general or too specific rather than strictly
incorrect. In order to assess the utility of a less strict classification metric, we
aim to define a ‘lenient’ metric as partial success, whereby, for example, a text
from category DA may have been classified as D, or vice versa. We will then use
this in order to assess the extent to which a classifier appears to make at least
partially correct decisions.

Acknowledgments

The authors would like to thank Robert Japp and Sharon Givon for their input
in this work.
6 http://www.perseus.tufts.edu and http://www.gutenkarte.org

http://www.perseus.tufts.edu
http://www.gutenkarte.org

306 T. Betts, M. Milosavljevic, and J. Oberlander

References

1. Betts, T.: Using Text Mining to Place Books into an Ontology. Masters thesis,
University of Edinburgh, Edinburgh, UK. (2006)

2. Borko, H.: Measuring the reliability of subject classification by men and machines.
American Documentation. 15 (1964) 268–273

3. Caropreso, M.F., Matwin, S., Sebastiani, F.: A learner-independent evaluation of
the usefulness of statistical phrases for automated text categorization. In: Text
Databases and Document Management: Theory and Practice. Idea Group Pub-
lishing. (2001) 78–102

4. Crane, G.: What Do You Do with a Million Books? D-Lib Magazine. 12:3 (2006)
5. Curran J.R., Clark, S.: Language independent NER using a maximum entropy

tagger. In: Proceedings of CoNLL-03, the Seventh Conference on Natural Language
Learning. Edmonton, Canada. (2003) 164–167.

6. Frank, E., Paynter, G.W.: Predicting library of congress classifications from library
of congress subject headings. J. of the American Society for Information Science
and Technology. 55:3 (2004) 214–227

7. Fürnkranz, J.: A study using n-gram features for text categorization. Technical
Report OEFAI-TR-9830, Austrian Institute for Artificial Intelligence. (1998)

8. Hamill, K.A., Zamora, A.: The Use of Titles for Automatic Document Classifica-
tion. J. of the American Society for Information Science. 31:6 (1980) 396–402

9. Larson, R.R.: Experiments in automatic Library of Congress Classification. J. of
the American Society for Information Science. 43:2 (1992) 130–148

10. Mladenić, D., Globelnik, M.: Word sequences as features in text learning. In: Pro-
ceedings of ERK-98, the Seventh Electrotechnical and Computer Science Confer-
ence. Ljubljana, Slovenia. (1998) 145–148

11. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text
categorization. In: Proceedings of DL-00, 5th ACM Conference on Digital Libraries.
San Antonio, US. (2000) 195–204

12. Moschitti, A., Basili, R.: Complex linguistic features for text classification: a com-
prehensive study. In: Proceedings of ECIR’04, Sunderland, UK. (2004)

13. Nürnberg, P.J., Furuta, R., Leggett, J.J., Marshall, C.C., Shipmann, F.M.: Digi-
tal Libraries: Issues and Architectures. In: Proceedings of the 1995 ACM Digital
Libraries Conference. Austin, TX. (1995) 147–153

14. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys. 34:1 (2002) 1–47

15. Scott, S., Matwin, S.: Feature engineering for text classification. In: Proceedings
of ICML-99. Bled, Slovenia. Morgan Kaufmann Publishers. (1999) 379–388

16. Joachims, T.: SVMlight 6.01, http://svmlight.joachims.org (2004)
17. Joachims, T.: SVMmulticlass 1.01,

http://svmlight.joachims.org/svm multiclass.html (2004)
18. Yang, Y., Liu, X.: A re-examination of text categorization methods. Proceedings

of the 22th ACM SIGIR. Berkley, US. (1999) 42–49
19. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-

rization. In: Proceedings of ICML-97. Nashville, US. (1997) 412–420

http://svmlight.joachims.org
http://svmlight.joachims.org/svm_multiclass.html

Combined Syntactic and Semantic Kernels

for Text Classification

Stephan Bloehdorn1 and Alessandro Moschitti2

1 Institute AIFB, University of Karlsruhe, Germany
bloehdorn@aifb.uni-karlsruhe.de

2 University of Rome ‘Tor Vergata’, Italy
moschitti@info.uniroma2.it

Abstract. The exploitation of syntactic structures and semantic back-
ground knowledge has always been an appealing subject in the context
of text retrieval and information management. The usefulness of this
kind of information has been shown most prominently in highly special-
ized tasks, such as classification in Question Answering (QA) scenar-
ios. So far, however, additional syntactic or semantic information has
been used only individually. In this paper, we propose a principled ap-
proach for jointly exploiting both types of information. We propose a
new type of kernel, the Semantic Syntactic Tree Kernel (SSTK), which
incorporates linguistic structures, e.g. syntactic dependencies, and se-
mantic background knowledge, e.g. term similarity based on WordNet,
to automatically learn question categories in QA. We show the power
of this approach in a series of experiments with a well known Question
Classification dataset.

1 Introduction

Text Classification (TC) systems [1], which aim at automatically classifying tex-
tual input into categories according to some criterion of interest are a major
application domain of modern machine learning techniques. Pioneered by [2],
Support Vector Machines (SVMs) have been heavily used for text classification
tasks, typically showing good results. In the simplest case, such systems use the
standard bag-of-words feature representation which encodes the input as vec-
tors whose dimensions correspond to the terms in the overall training corpus.
The inner product (or the cosine) between two such vectors is used as kernel
hence making the similarity of two documents dependant only on the amount of
terms they share. This approach has an appealing simplicity and has produced
good results in cases where sufficient training data is available. However, several
modifications to this rather flat representation have been shown to improve the
overall performance in selected scenarios. In particular, there has been interest
in incorporating information about (i) the syntactic structure of the input texts
and (ii) the semantic dependencies within the used terminology.

Kernel-based learning algorithms like Support Vector Machines have become
a prominent framework for using such a-priori knowledge about the problem do-
main by means of a specific choice of the employed kernel function. On the one

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 307–318, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

308 S. Bloehdorn and A. Moschitti

hand, Tree Kernels [3,4] have been used as a powerful way to encode the syntac-
tic structure of the textual input in the form of parse trees and have shown good
results in many natural language applications. On the other hand, Semantic
Smoothing Kernels [5,6,7] exploit background information from semantic refer-
ence structures such as WordNet to make different, though semantically similar,
terms contribute to the overall similarity of the input instances. Intuitively, the
power of this kind of kernels is most apparent when too little training data is
available to build stable models by counting occurrences of identical terminol-
ogy only. While both approaches seem intuitive and powerful, language draws
from both syntax and lexical semantics, therefore, finding principled techniques
for combining kernels on linguistic structures, e.g. Tree Kernels, with Semantic
Kernels appears to be a promising research line.

In this paper, we propose a new type of kernel, the Semantic Syntactic Tree
Kernel (SSTK), which exploits linguistic structure and background knowledge
about the semantic dependencies of terms at the same time. More technically,
the proposed kernel uses semantic smoothing to improve the matching of tree
fragments containing terminal nodes.

We show the power of this approach in a series of experiments from the Ques-
tion Classification (QC) domain. Question Classification [8] aims at detecting
the type of a question, e.g. whether it asks for a person or for an organization
which is critical to locate and extract the right answers in question answering
systems. A major challenge of Question Classification compared to standard
Text Classification settings is that questions typically contain only extremely
few words which makes this setting a typical victim of data sparseness. Previ-
ous work has shown that Tree Kernels as well as Semantic Smoothing Kernels
were individually capable of improving effectiveness in QC tasks. Our evalua-
tion studies confirm these findings and indicate a consistent further improvement
of the results when the proposed combined kernel is used. Our new Syntactic
Semantic Tree Kernel improves the state-of-the-art in Question Classification,
which makes it a prototype of a possible future full-fledged natural language
kernel.

The remainder of this paper is structured as follows. Section 2 introduces
kernel methods and some related work. Sections 3, 4 and 5 describe the design
of the Semantic Smoothing Kernels, Tree Kernels and the combined Semantic
Syntactic Tree Kernels, respectively. Section 6 gives an account on the perfor-
mance of these in a series of evaluation experiments from the QC domain. We
conclude in section 7 with a summary of the contributions, final remarks and a
discussion of envisioned future work.

2 Kernel Methods and Related Work

Support Vector Machines [9] are state-of-the-art learning methods based on the
older idea of linear classification. The distinguishing feature of SVMs is the the-
oretically well motivated and efficient training strategy for determining the sep-
arating hyperplane based on the margin maximization principle. In our context,

Combined Syntactic and Semantic Kernels for Text Classification 309

however, the interesting property of SVMs is their capability of naturally incor-
porating data-specific notions of item similarity by means of a corresponding
kernel function. Formally, any function κ that X satisfies κ(x, z) = 〈φ(x), φ(z)〉,
is a valid kernel, whereby X is the input domain under consideration and φ
is a suitable mapping from X to a feature (Hilbert-) space F . Kernels can
be designed by either choosing an explicit mapping function φ and incorpo-
rating it into an inner product or by directly defining the kernel function κ
while making sure that it complies with the requirement of being a positive
semi-definite function. Several closure properties aid the construction of valid
kernels from known valid kernels. In particular, kernels are closed under sum,
product, multiplication by a positive scalar and combination with well-known
kernel modifiers. In particular, a given kernel κ can be normalized using the
cosine normalization modifier given by κ′(x, y) = (κ(x, y)) / (

√
κ(x, x)

√
κ(y, y))

to produce kernel evaluations (i.e. similarity measures) normalized to absolute
values between 0 and 1. The reader is referred to the rich literature for fur-
ther information on SVMs and kernel methods, e.g. [10] for a comprehensive
introduction.

Lexical semantic kernels were initially introduced in [5] using inverted path
length as a similarity measure and subsequently revisited in [11,12], each time
based on different design principles. Semantic kernels based on superconcept
representations were investigated in [6] and [7]. As an alternative, [11] have put
Semantic Kernels into the context of Latent Semantic Indexing.

Tree Kernels were firstly introduced in [3] and experimented with the Voted
Perceptron for the parse-tree re-ranking task. The combination with the original
PCFG model improved the syntactic parsing. In [13], two kernels over syntactic
shallow parser structures were devised for the extraction of linguistic relations,
e.g. person-affiliation. To measure the similarity between two nodes, the Contigu-
ous String Kernel and the Sparse String Kernel were used. In [14] such kernels
were slightly generalized by providing a matching function for the node pairs.
The time complexity for their computation limited the experiments on a data set
of just 200 news items. In [15], a feature description language was used to extract
structural features from the syntactic shallow parse trees associated with named
entities. The experiments on named entity categorization showed that too many
irrelevant tree fragments may cause overfitting. In [16] Tree Kernels were firstly
proposed for semantic role classification. The combination between such kernel
and a polynomial kernel of standard features improved the state-of-the-art.

To our knowledge, no other work has so far combined the syntactic and se-
mantic properties of natural language in a principled way as proposed in our
approach.

3 Semantic Similarity Kernels

In this section we describe the first component of our new kernel, the Seman-
tic Smoothing Kernel, which combines semantic similarity of terms with the
standard bag-of-words representation.

310 S. Bloehdorn and A. Moschitti

Table 1. Measures of semantic similarity

Inverted Path Length:

simIPL(c1, c2) =
1

(1 + d(c1, c2))α

Wu & Palmer:

simWUP (c1, c2) =

2 dep(lso(c1, c2))

d(c1, lso(c1, c2)) + d(c2, lso(c1, c2)) + 2 dep(lso(c1, c2))

Resnik:
simRES(c1, c2) = − log P (lso(c1, c2))

Lin:

simLIN (c1, c2) =
2 log P (lso(c1, c2))

log P (c1) + log P (c2)

3.1 Semantic Networks and Similarity

The formal description of semantic kernels requires the introduction of some
definitions. We denote terms as t1, t2, . . . ∈ T and concepts as c1, c2, . . . ∈ C;
we also sometimes use the somewhat informal disambiguation operator c(·) to
map terms to concept representations. To compute useful notions of semantic
similarity among the input terms, we employ semantic reference structures which
we call, for simplicity, Semantic Networks. These can be seen as directed graphs
semantically linking concepts by means of taxonomic relations (e.g. [cat] is-a
[mammal]). Research in Computational Linguistics has led to a variety of well-
known measures of semantic similarity in semantic networks.

The measures relevant in the context of this paper are summarized in table 1.
These measures make use of several notions. (i) The distance (d) of two concepts
c1 and c2, is the number of superconcept edges between c1 and c2. (ii) The depth
(dep) of a concept refers to the distance of the concept to the unique root node1.
(iii) The lowest super ordinate (lso) of two concepts refers to the concept with max-
imal depth that subsumes them both. (iv) The probability P (c) of encountering a
concept c which can be estimated from corpus statistics. When probabilities are
used, the measures follow the trail of information theory in quantifying the infor-
mation concept (IC) of an observation as the negative log likelihood. We point the
interested reader to [17] for a detailed and recent survey of the field.

3.2 Semantic Similarity Kernels Based on Superconcepts

In this section, we introduce a class of kernel functions defined on terms that can
be embedded in other kernels that make (in whatever way) use of term matching2.
1 If the structure is not a perfect tree structure, we use the minimal depth.
2 For simplicity, we will restrict our attention on defining kernel functions for concepts

and leave the details of the consideration of lexical ambiguity to the next section.

Combined Syntactic and Semantic Kernels for Text Classification 311

Table 2. Weighting Schemes for the Superconcept Kernel κS

full No weighting, i.e. SC(c̄)j = 1 for all superconcepts cj of c̄ and SC(c̄)j = 0
otherwise.

full-ic Weighting using information content of SC(c̄)j , i.e. SC(c̄)j =
simRES(c̄, cj).

path-1 Weighting based on inverted path length, i.e. SC(c̄)j = simIPL(c̄, cj) for
all superconcepts cj of c̄ and SC(c̄)j = 0 otherwise using the parameter
α = 1.

path-2 The same but using the parameter α = 2.
lin Weighting using the Lin similarity measure, i.e. SC(c̄)j = simLIN (c̄, cj).
wup Weighting using the Wu&Palmer similarity measure, i.e. SC(c̄)j =

simWUP (c̄, cj).

Definition 1 (Superconcept Kernel). The Superconcept Kernel κS for two
concepts ci, cj ∈ C is given by κS(ci, cj) = 〈SC(ci), SC(cj)〉, whereby SC(·) is
a function C → R|C| that maps each concept to a real vector whose dimensions
correspond to (super-)concepts present in the employed semantic network and
the respective entries are determined by a particular weighting scheme.

This idea, recently investigated in [7], is based on the observation that the more
two concepts are similar the more common superconcepts they share. A similar
approach has been proposed in [6], however focusing on the simple case of giving
the superconcepts in the mapping full and equal weight while varying the number
of superconcepts that are considered.

Obviously, κS is a valid kernel as it is defined explicitly in terms of a dot prod-
uct computation. So far, however, we have left the details of the function SC(·)
that maps concepts to its superconcepts unspecified. In the same way as in ear-
lier work [7], we have investigated the use of different weighting schemes for the
representation of the superconcepts motivated by the following considerations:

1. The weight a superconcept SC(c̄)j receives in the vectorial description of
concept c̄ should be influenced by its distance from c̄.

2. The weight a superconcept SC(c̄)j receives in the vectorial description of
concept c̄ should be influenced by its overall depth in the semantic network.

We have used the measures of semantic similarity introduced in table 1 as
weighting schemes, summarized in table 2. The different weighting schemes be-
have differently wrt the above motivations. While full does not implement any
of them, full-ic considers rationale 2 while path-1 and path-2 consider rationale
1. The schemes lin and wup reflect combinations of both rationales. The super-
concept kernel κS can normalized to [0, 1] in the usual way using the cosine
normalization modifier.

The concept kernel κS(·, ·) can be used directly in conjunction with the stan-
dard linear kernel by means of a simple Semantic Smoothing Kernel.

Definition 2 (Semantic Smoothing Kernel). The Semantic Smoothing Ker-
nel κS for two term vectors (input texts) x, z ∈ X is given by κŜ(x, z) = x′C′KSCz

312 S. Bloehdorn and A. Moschitti

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N

NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought
…

Fig. 1. A tree with some of its fragments

where KS is a square symmetric matrix whose entries represent the kernel evalua-
tions between the concepts and C denotes the matrix that encodes the evaluations of
the disambiguation function C that maps concept dimensions to term dimensions
that constitute the input space X.

4 Tree Kernels for Syntactic Structures

The main rationale behind Tree Kernels is to represent trees in terms of their
substructures (fragments). The kernel function then counts the number of tree
subparts common to both argument trees. We define a tree as a connected di-
rected graph with no cycles. Trees are denoted as T1, T2, . . .; tree nodes are
denoted as n1, n2, . . .; and the set of nodes in tree Ti are denoted as NTi . We
denote the set of all substructures (fragments) that occur in a given set of trees
as {f1, f2, . . .} = F . As the structures we will work with are parse trees, each
node with its children is associated with the execution of a grammar production
rule. The labels of the leaf nodes of the parse trees correspond to terms, i.e.
terminal symbols, whereas the preterminal symbols are the parents of leaves. As
an example Figure 1 in section 4 shows a parse tree of the sentence fragment
‘‘brought a cat’’ with some of its substructures.

Definition 3 (Tree Kernel (Collins & Dufy, 2001)). Given two trees T1
and T2 we define the (Subset-) Tree Kernel as:

κT (T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

Δ(n1, n2)

where Δ(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an indicator function
which determines whether fragment fi is rooted in node n.

Δ is equal to the number of common fragments rooted at nodes n1 and n2.
We can compute it more efficiently as follows:

1. if the productions at n1 and n2 are different then Δ(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have leaf chil-

dren (i.e. the argument nodes are pre-terminals symbols) then Δ(n1, n2) = 1;

Combined Syntactic and Semantic Kernels for Text Classification 313

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then

Δ(n1, n2) =
nc(n1)∏

j=1

(1 + Δ(chj
n1

, chj
n2

)).

where nc(n1) is the number of children of n1 and chj
n is the j-th child of node

n. Note that, since the productions are the same, nc(n1) = nc(n2). Of course,
the kernel can again be normalized using the cosine normalization modifier.
Additionally, a decay factor λ can be added by modifying steps (2) and (3) as
follows:

2. Δ(n1, n2) = λ,
3. Δ(n1, n2) = λ

∏nc(n1)
j=1 (1 + Δ(chj

n1
, chj

n2
)).

As an example, Figure 1 shows a parse tree of the sentence (fragment) ‘‘bought
a cat’’ with some of the substructures that the tree kernel uses to represent it3.

5 Designing Semantic Syntactic Tree Kernels

The Tree Kernel introduced in the previous section relies on the intuition of
counting all common substructures of two trees. However, if two trees have simi-
lar structures but employ different though related terminology at the leaves, they
will not be matched. From a semantic point of view, this is an evident drawback
as ‘‘brought a cat’’ should be more related to ‘‘brought a tomcat’’ than
to ‘‘brought a note’’.

In analogy with the semantic smoothing kernels for the bag-of-words kernel as
described in section 3.2, we are now interested in also counting partial matches
between tree fragments. A partial match occurs when two fragments differ only
by their terminal symbols, e.g. [N [cat]] and [N [tomcat]]. In this case the
match should give a contribution smaller than 1, depending on the semantic
similarity of the respective terminal nodes. For this purpose, we first define the
similarity of two such tree fragments.

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, f2 ∈ F , we define the Tree Fragment Similarity Kernel as4:

κF(f1, f2) = comp(f1, f2)
nt(f1)∏
t=1

κS(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 differs from f2 only in the terminal
nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the
t-th terminal symbol of fi (numbered from left to right).
3 The number of such fragments can be obtained by evaluating the kernel function be-

tween the tree with itself.
4 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

314 S. Bloehdorn and A. Moschitti

Conceptually, this means that the similarity of two tree fragments is above zero
only if the tree fragments have an identical structure. The fragment similarity is
evaluated as the product of all semantic similarities of corresponding terminal
nodes (i.e. sitting at identical positions). It is maximal if all pairs have a similarity
score of 1. We now define the overall tree kernel as the sum over the evaluations
of κF over all pairs of tree fragments in the argument trees. Technically, this
means changing the summation in the second formula of definition 3 as in the
following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and
T2 we define the Semantic Syntactic Tree Kernel as:

κT (T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

Δ(n1, n2)

where Δ(n1, n2) =
∑|F|

i=1
∑|F|

j=1 Ii(n1)Ij(n2)κF (fi, fj).

Obviously, the naive evaluation of this kernel would require even more compu-
tation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then Δ(n1, n2) =
λκS(ch1

n1
, ch1

n2
),

as the first condition of the Δ function definition (Section 4), where label(ni)
is the label of node ni and κS is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch1

n1
and ch1

n2
)

and such children are words and (b) Step 2 is no longer necessary.
Beside the novelty of taking into account tree fragments that are not identical

it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.

6 Experimental Evaluation

In a series of experiments we aimed at showing that our approach is effective
for IR and text mining applications. For this purpose, we experimented with
the TREC question classification corpus for advanced retrieval based on the
Question Answering paradigm.

6.1 Experimental Setup

The long tradition of QA in TREC has produced a large question set used by
several researchers which can be exploited for experiments on Question Classi-
fication. According to [8], we can define question classification “to be the task

Combined Syntactic and Semantic Kernels for Text Classification 315

that, given a question, maps it to one of k classes, which provide a semantic con-
straint on the sought-after answer”. Such questions are categorized according to
different taxonomies of different grains. We consider the same dataset and classi-
fication problem as described in [18,8]. The dataset consists of free text questions
and is freely available5. It is divided into 5,500 questions6 for training and the
500 TREC 10 questions for testing. Each of these questions is labeled with ex-
actly one class of the coarse grained classification scheme (see [18]) consisting
of the following 6 classes: Abbreviations, Descriptions (e.g. definition and man-
ner), Entity (e.g. animal, body and color), Human (e.g. group and individual),
Location (e.g. city and country) and Numeric (e.g. code and date).

We have implemented the kernels introduced in sections 3–5 within the SVM-
light-TK software available at ai-nlp.info.uniroma2.it/moschitti/ which en-
codes tree kernel functions in SVM-light [19]. In all experiments, we used the
noun hierarchy of WordNet7 as the underlying semantic network. For word sense
disambiguation, we used a simplifying assumption in mapping each term to its
most frequent noun sense (if it exists). Note that this approach implies an in-
herent word sense disambiguation side effect, likely to have a negative impact
on the results. The results can also be seen as a pessimistic estimate. Kernel
similarities that were undefined because of a missing mapping to a noun synset
were implicitly assumed to take the default values (i.e. zero for distinct and one
identical terms respectively).

6.2 Evaluation of Superconcept Smoothing Kernels

In a first experiment we investigated the effect of simply smoothing term features
based on the idea of the Semantic Smoothing Kernel. Questions were prepro-
cessed using the usual steps, namely tokenization, lemmatization and stoopword-
removal leading to a total number of 8,075 distinct TFIDF-weighted features.
We performed binary classification experiments on each of the 6 question types
for different settings of the ’soft margin’ parameter c. Table 3 summarizes the
absolute macro F1 as well as the micro F1 values obtained in the question clas-
sification setting. The best values per setting of c are highlighted.

The results indicate that the smoothing of the term features considerably
affects the performance compared to the simple linear kernel baseline. According
to the results, the lin scheme seems to achieve the best overall performance with
a relative improvement of 9.32% for the macro F1 value in the case of c = 3 (i.e.
the setting for which the linear kernel achieves its maximum). For a more detailed
description of these experiments, refer to [7]. For QC, however, the traditional
bag-of-words (bow) appears to be somewhat insufficient as it ignores structure
and function words that are likely to influence the results.

5 http://l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/
6 These are selected from the 4500 English questions published by USC (Hovy et al.,

2001), 500 questions annotated for rare classes and the 894 questions from TREC 8
and TREC 9.

7 http://wordnet.princeton.edu/

ai-nlp.info.uniroma2.it/moschitti/
http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/
http://wordnet.princeton.edu/

316 S. Bloehdorn and A. Moschitti

Table 3. Absolute macro and micro F1 results for QC, for different values of c and
different semantic smoothing kernels. The best results per setting of c are highlighted.

macro-averaging
soft margin parameter c

kernel 0.1 0.2 0.3 1.0 2.0 3.0
linear 0.21 0.38 0.47 0.62 0.63 0.64

full 0.38 0.49 0.55 0.61 0.61 0.68
full-ic 0.53 0.53 0.53 0.62 0.55 0.55
path-1 0.25 0.42 0.51 0.64 0.64 0.64
path-2 0.22 0.39 0.47 0.63 0.65 0.64
lin 0.36 0.49 0.56 0.64 0.62 0.70
wup 0.34 0.49 0.54 0.62 0.61 0.69

micro-averaging
soft margin parameter c

kernel 0.1 0.2 0.3 1.0 2.0 3.0
linear 0.09 0.25 0.34 0.55 0.57 0.58

full 0.27 0.38 0.45 0.55 0.56 0.68
full-ic 0.47 0.46 0.47 0.60 0.49 0.48
path-1 0.14 0.32 0.40 0.57 0.58 0.59
path-2 0.08 0.28 0.37 0.57 0.59 0.58
lin 0.27 0.37 0.47 0.57 0.57 0.69
wup 0.23 0.37 0.45 0.56 0.56 0.68

Table 4. Accuracy of SSTK on QC, for different values of λ parameter and different
semantic smoothing kernels. The best λ settings are highlighted.

Accuracy

λ parameter 0.4 0.05 0.01 0.005 0.001
linear (bow) 0.905

string matching 0.890 0.910 0.914 0.914 0.912

full 0.904 0.924 0.918 0.922 0.920
full-ic 0.908 0.922 0.916 0.918 0.918
path-1 0.906 0.918 0.912 0.918 0.916
path-2 0.896 0.914 0.914 0.916 0.916
lin 0.908 0.924 0.918 0.922 0.922
wup 0.908 0.926 0.918 0.922 0.922

6.3 Evaluation of Syntactic Semantic Tree Kernels

In these experiments, we used the same experimental setup as used in [18] as it
contains the most comprehensive comparison of experiments on the QC corpus
introduced above. As literature results are given in terms of the accuracy of the
multi-classification of the TREC questions, to compare with them, we designed
a multiclassifier based on the scores of the SVMs. For each questions, we selected
the class associated with the maximum score.

In this experiment, we compared the linear kernel based on bag-of-words (this
time including function words), the original STK and the new SSTK as intro-
duced in Section 5 with different term similarities8. The question parse trees
were obtained by running the Charniak’s parser. Table 4 reports the results of
the multiclassifier based on SSTK. Column 1 shows the type of similarity used
in the semantic syntactic tree kernel function, where string matching means

8 We again used the superconcept kernels as term similarities, however, in contrast to
the previous section we used normalized versions.

Combined Syntactic and Semantic Kernels for Text Classification 317

that the original tree kernel is used. Columns from 2 to 6 report the accu-
racy of the multiclassifier according to several values of the λ parameter9 (see
Section 5).

We note that (a) our basic Syntactic Tree Kernel improves the state-of-the-art
accuracy, i.e. 91.4% vs. 90% of [18], (b) this is further improved when we use
one of the semantic smoothing kernel and (c) the Wu-Palmer similarity achieves
the highest accuracy, i.e. 92.6%.

7 Conclusion

In this paper, we have investigated how the syntactic structures of natural lan-
guage texts can be exploited simultaneously with semantic background knowl-
edge on term similarity. For this purpose, we have proposed a new family of
kernels called Semantic Syntactic Tree Kernels (SSTK) that is based on Tree
and Semantic Smoothing Kernels. We have motivated this class of kernels by
counting all compatible tree fragments of two parse trees weighted by their joint
terminology. To our knowledge, no other work has so far combined the syntac-
tic and semantic properties of natural language in such a principled way. We
conducted a series of experiments on the TREC question classification data.
Our results indicate that the newly proposed Semantic Syntactic Tree Kernels
outperform the conventional linear/semantic kernels as well as tree kernels im-
proving the state of the art in Question Classification. In the future, it would
be interesting to study different models of lexical semantics, e.g. latent semantic
kernels, with kernels based on different syntactic/semantic structures.

References

1. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1) (2002) 1–47

2. Joachims, T.: Text categorization with Support Vector Machines: learning with
many relevant features. In: Proceedings of ECML, Chemnitz, DE (1998)

3. Collins, M., Duffy, N.: Convolution kernels for natural language. In: NIPS, MIT
Press (2001)

4. Moschitti, A.: Efficient convolution kernels for dependency and constituent syn-
tactic trees. In: Proceedings of ECML, Berlin, Germany. (2006)

5. Siolas, G., d’Alche Buc, F.: Support Vector Machines based on a semantic kernel
for text categorization. In: IJCNN. Volume 5. (2000)

6. Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., Weikum, G.:
Word sense disambiguation for exploiting hierarchical thesauri in text classifica-
tion. In: PKDD. (2005)

9 We preliminary selected the best cost-factor (parameter j) on the validation set and
then experimented with different λ values. We also noted that the parameter c is
not critical when tree kernels are used. This means that the accuracy does not vary
too much and the highest value seems to be achieved with the default SVM-light
setting.

318 S. Bloehdorn and A. Moschitti

7. Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A.: Semantic kernels for text
classification based on topological measures of feature similarity. In: Proceedings
of ICDM. (2006)

8. Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th Inter-
national Conference on Computational Linguistics (COLING). (2002)

9. Vapnik, V., Golowich, S.E., Smola, A.J.: Support vector method for function
approximation, regression estimation and signal processing. In: NIPS. (1996)

10. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press (2004)

11. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent Semantic Kernels. Journal of
Intelligent Information Systems 18(2-3) (2002) 127–152

12. Basili, R., Cammisa, M., Moschitti, A.: A semantic kernel to exploit linguistic
knowledge. In: AI*IA: Advances in Artificial Intelligence. (2005)

13. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.
Journal of Machine Learning Research (2003)

14. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In:
Proceedings of ACL. (2004)

15. Cumby, C., Roth, D.: Kernel methods for relational learning. In: Proceedings of
the Twentieth International Conference (ICML 2003). (2003)

16. Moschitti, A.: A study on convolution kernels for shallow semantic parsing. In:
proceedings of ACL. (2004)

17. Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic
relatedness. Computational Linguistics 32(1) (2006) 13–47

18. Zhang, D., Lee, W.S.: Question classification using Support Vector Machines. In:
Proceedings of SIGIR. (2003)

19. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel
Methods. (1999)

Fast Large-Scale Spectral Clustering by

Sequential Shrinkage Optimization

Tie-Yan Liu1, Huai-Yuan Yang2,�, Xin Zheng3,�, Tao Qin3,�,
and Wei-Ying Ma1

1 Microsoft Research Asia, 4F, Sigma Center, No. 49, Zhichun Road, Haidian
District, Beijing, 100080, P.R. China

2 Peking University, Beijing, 100871, P.R. China
3 Tsinghua University, Beijing, 100084, P.R. China

Abstract. In many applications, we need to cluster large-scale data
objects. However, some recently proposed clustering algorithms such as
spectral clustering can hardly handle large-scale applications due to the
complexity issue, although their effectiveness has been demonstrated in
previous work. In this paper, we propose a fast solver for spectral clus-
tering. In contrast to traditional spectral clustering algorithms that first
solve an eigenvalue decomposition problem, and then employ a clustering
heuristic to obtain labels for the data points, our new approach sequen-
tially decides the labels of relatively well-separated data points. Because
the scale of the problem shrinks quickly during this process, it can be
much faster than the traditional methods. Experiments on both synthetic
data and a large collection of product records show that our algorithm
can achieve significant improvement in speed as compared to traditional
spectral clustering algorithms.

1 Introduction

Clustering, which refers to the unsupervised identification of groups of similar
data objects, has been a long-studied research topic in the machine learning com-
munities. And many different clustering algorithms have been proposed. Among
these algorithms, the recently-proposed spectral clustering algorithm is one of the
most promising methods, especially for those datasets with latent structure [2][8].

However, in many applications nowadays, we need to cluster large-scale data
objects. In this scenario, traditional spectral clustering algorithms will suffer
from high computational complexity, which restricts their wide applications. To
our knowledge, most of the existing work on spectral clustering only focused on
the theoretical part and leave the computational issues to the numerical solvers.
As a result, there is no efficient implementation of spectral clustering.

In order to tackle this problem, we need to understand why spectral cluster-
ing is time consuming. Traditional spectral clustering algorithms consist of two
steps: 1) relax the original formulation of spectral clustering that is a discrete

� This work was performed at Microsoft Research Asia.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 319–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

320 T.-Y. Liu et al.

optimization problem, to continuous optimization, and solve it to get the contin-
uous embedding of data objects by eigenvalue decomposition (EVD); 2) employ
a clustering heuristic, such as k-means, to obtain the discrete label from the
continuous embedding. The computational complexities of both steps are not
negligible. Step 1 (EVD) is an expensive process even if employing the state-of-
the-art EVD solvers. For example, the computational complexity of Lanczos [4]
and Preconditioned Conjugate Gradient methods [3][5][6] is O(kn2m), where k
is the number of eigenvectors to be computed, n is the number of data points
and m is the number of iterations. It is clear that this is a heavy computational
load. And in Step 2, if k-means [13] is employed, the computational complexity
is O(knr), where r is the number of iterations. This is also a considerable part
of the overall complexity.

Based on the above analysis, if we want to accelerate spectral clustering, we
need to accelerate EVD solver, and/or save the computations for the clustering
heuristics such as k-means. For this purpose, we monitored the iterative process
of spectral clustering. As a result, we found that some data points converge to
their true embeddings quickly, while it take a relatively longer time for others
to converge. Furthermore, it is those data points which are easy to separate (i.e.
they have very strong correlations with some points and very weak correlations
with others) that converge fast. Based on this observation, we propose that it is
not necessary to treat all the data points equally while getting the solution of
spectral clustering. The iterations for those well-separated points can stop early
while others stop later. In addition, considering that the original clustering task
is actually defined in the discrete space (i.e. what we want is the label of the
data objects rather than the embeddings), we even argue that it is not necessary
to spend so much time on getting precise solution for the continuous relaxation.
Instead, once the embeddings are good enough for the clustering purpose, we
can stop without any influence on the final results.

Based on the above discussions, we propose a very fast spectral clustering
algorithm in this paper. Technically, instead of solving the relaxed continuous
optimization and clustering the embeddings, we recover the discrete solution
of the original problem directly by an iterative method. That is, we start the
optimization process with an EVD solver. Note that, instead of using it to get
the precise eigenvectors, we will stop early after only a few iterations. Then we
identify some already-well-converged data points, and fix their embedding val-
ues to discrete labels. Note that their values will not be changed in the future
iterations of the optimization, so the scale of the subsequent optimization prob-
lem is reduced. By use of this shrinkage strategy sequentially, we can get the
discrete labels of all the data points eventually. In such a way, we not only avoid
over-computing of precise EVD solution, but also avoid additional computations
of the clustering heuristics. Experimental results show that our algorithm can
achieve significant improvement in speed as compared with traditional spectral
clustering algorithms.

The rest of paper is organized as follows: in Section 2, some concepts of
spectral clustering are reviewed; in Section 3, our algorithm, named Sequential

Fast Large-Scale Spectral Clustering by Sequential Shrinkage Optimization 321

Shrinkage Optimization (SSO), is introduced. Experimental results are reported
in Section 4, which show that our algorithm can improve the efficiency of spec-
tral clustering by much without significant accuracy reduction. Conclusions and
future work are given in Section 5.

2 Review of Spectral Clustering

In spectral clustering, the dataset to be clustered is usually represented by a
weighted graph G = (V, E, W), where V is the set of data objects; E is the set
of edges between data objects and eij is used to denote the weight of an edge in
E; and W denotes a diagonal matrix which diagonal elements are the weights of
the data objects. We further define the adjacency matrix of the graph G as M :

Mij =
{

eij if < i, j > ∈ E
0 otherwise (1)

Then the clustering problem can be regarded as a graph partitioning problem,
which objective is to find clusters V1, V2, V3, . . . such that the sum of the edge
weights between different clusters are minimized.

2.1 Mathematical Formulation of Spectral Clustering

The simplest case of spectral clustering is two-way spectral clustering, which
minimizes the objective function defined as below:

obj(V1, V2) = cut(V1,V2)
weight(V2) + cut(V2,V1)

weight(V1) (2)

where
cut(V1, V2) =

∑
i∈V1,j∈V2,<i,j>∈E eij (3)

weight(Vi) =
∑

j∈Vi
Wj (4)

Different definitions of W will yield different spectral clustering algorithms [2].
In particular, if the weight of a data object is defined by its weighted degree, the
corresponding algorithm is called Normalized Cut; while if the weight is defined
as the unweighted degree (number of edges), the corresponding algorithm is
named Ratio Cut, etc. For simplicity, we will only discuss Normalized Cut in
this paper, but all the results apply to other versions of spectral clustering.

By defining indicators of data objects as follows,

q(i) =

⎧⎨
⎩

+
√

η2
η1

if i ∈ V1

−
√

η1
η2

if i ∈ V2
(5)

where η1 = weight(V1), η2 = weight(V2), We can rewrite the objective (2) in a
formulation of Rayleigh quotient,

min qT Lq
qT Wq

, s.t. qT We = 0 (6)

322 T.-Y. Liu et al.

where L = W − M . If we relax the above discrete optimization problem to a
continuous version, the solution of q is equal to the eigenvector associated with
the second smallest eigenvalue of the generalized eigenvalue problem Lv = λWv.
Similarly, one can prove that k-way spectral clustering corresponds to solving
the k smallest eigenvalues and their corresponding eigenvectors.

2.2 Existing Solvers for Spectral Clustering

As mentioned in the introduction, most spectral clustering algorithms leave EVD
problem to existing numerical EVD solvers. Although EVD has been extensively
investigated for decades, it is still the most time-consuming component of spec-
tral clustering. State-of-the-art EVD solvers can be categorized into three classes:
local EVD solvers, global EVD solvers and extreme EVD solvers. Power method
is the simplest local EVD solver, which only computes the maximum eigenvalue
and its associated eigenvector [1]. QR-decomposition method is a typical global
EVD solver [4], which computes all the eigenvalues and eigenvectors. Extreme
EVD solvers only compute several extreme (smallest or largest) eigenvalues and
the corresponding eigenvectors [12]. Typical examples include Lanczos [10] and
Preconditioned Conjugate Gradient (PCG) methods [5][6][12]. Considering the
process of spectral clustering, it is clear that extreme EVD solvers are most
suitable for spectral clustering. To our knowledge, the computation complex-
ity of Lanczos and PCG is O(kn2m), where k is the number of eigenvalues to
compute, n is the number of data objects and m is the number of iterations.
Besides, the obtained eigenvectors should be further clustered, which yield ad-
ditional computational load. For example, if we employ k-means to fulfill this
task, another O(knr) computation complexity is added, where r denotes the
number of iterations. In order to make spectral clustering algorithms scalable
enough for real-world applications, we need to accelerate both of the aforemen-
tioned computations. This is the motivation of our proposed sequential shrinkage
optimization method.

3 Sequential Shrinkage Optimization (SSO)

In this section, we describe our fast implementation for spectral clustering, i.e.
Sequential Shrinkage Optimization (SSO). First of all, we will recall Conjugate
Gradient (CG) algorithm and then propose an SSO algorithm based on non-linear
CG. After that, we provide an even faster SSO algorithm based on linear CG.

3.1 Linear and Non-linear Conjugate Gradient (CG)

CG[4] has been one of the most important algorithms in numerical algebra and
continuous optimization. Original (linear) CG algorithms solve the following
quadratic optimization problem:

min f(q) = 1
2qT Aq − bT q + c (7)

Fast Large-Scale Spectral Clustering by Sequential Shrinkage Optimization 323

After applying some preconditioning techniques, Preconditioned CG (PCG)
is recognized as one of the state-of-the-art methods for quadratic optimization.
In the rest of this paper, we use CG and PCG interchangeably, because all the
preconditioning techniques can be apply to any version of CG. Although (linear)
CG is originally designed for quadratic problem (7), many CG-based algorithms
have also been developed to solve general continuous optimization problems.
These algorithms are called non-linear CG (NLCG) [4][7]. As a special case,
generalized EVD problem can also be solved by NLCG, because it is equivalent
to a continuous optimization problem as follows

min qT Aq, s.t. qT Wq = 1 (8)

To our knowledge, many variations of NLCG-based EVD solvers are among
the state-of-the-art EVD solvers, including PCG [5], LOBPCG [5][6], etc. Also
Lanczos, the most famous extreme EVD solver, has also been shown to be a kind
of NLCG method [4]. To summarize, both CG optimizer and NLCG-based EVD
solver are the state of the art in their fields. Therefore, we will base our further
discussions upon these two algorithms.

3.2 Non-linear SSO

In this subsection, we propose a fast spectral clustering algorithm, which is
named as non-linear sequential shrinkage optimization (NLSSO). When using
NLCG to solve eigenvectors, some interesting and informative phenomena imply
that it is possible to accelerate the clustering procedure. Actually, we monitored
the process how the variable q of problem (6) gradually approximate the precise
eigenvector of Lv = λWv. As a result, we observed that the variables correspond-
ing to those well-separated data objects will converge relatively faster than other
variables. And their absolute values are usually larger than other variables. This
shows that these variables can be easily identified and then the optimization
of them can be stopped earlier without influencing the final clustering results
by much. In this way, the scale of the subsequent optimization can be reduced
and the efficiency can be improved. Actually this is not only an implementation
trade-off. It is also reasonable in the theoretical view, which is to be elaborated
on in the next subsection. Based on the above observations, our NLSSO method
works as follows. In the beginning of our algorithm, we start with NLCG to
optimize the objective (6). After a few iterations (e.g. < 1% of the problem scale
n), we obtain an initial guess of the final solution to q. According to this initial
guess, we fix those largest positive variables to a certain positive value (positive
label) and the smallest negative variables to a certain negative value (negative
label). In other words, the well-separated points will be fixed early and will not
be further optimized. In particular, we denote q1 and q2 the fixed and unfixed
part of q, containing p and n−p elements respectively. Without loss of generality,
we suppose that

q = [q1, q2]T (9)

324 T.-Y. Liu et al.

Since the solution q should be conjugate orthogonal to e (See (6)), when we
fix the values of the variables in q1, we need to guarantee that at the end of each
iteration step, q1 is conjugate orthogonal to e1 [9], i.e.

qT
1 We1 = 0 (10)

For this purpose, for each fixed variable i, we set its value as follows.

q
(i)
1 =

⎧⎨
⎩

+
√

η2
η1

q
(i)
1 > 0

−
√

η1
η2

q
(i)
1 < 0

(11)

where η1 =
∑

q
(i)
1 >0,i∈V F Wi, η2 =

∑
q
(i)
1 <0,i∈V F Wi

After that, according to (9), we divide the matrix L and W into blocks as
below

L =
[

L1 L12
L21 L2

]
, W =

[
W1

W2

]
(12)

where L1, L12, L21, L2 are p-by-p, p-by-(n−p), (n−p)-by-p, and (n−p)-by-(n−p)
matrices; and rewrite the objective function (6) as a function of q2.

min

⎡
⎣ q1

q2

⎤
⎦T ⎡

⎣ L1 L12
L21 L2

⎤
⎦

⎡
⎣ q1

q2

⎤
⎦

⎡
⎣ q1

q2

⎤
⎦T ⎡

⎣ W1
W2

⎤
⎦

⎡
⎣ q1

q2

⎤
⎦

,

s.t.

[
q1
q2

]T [
W1

W2

] [
e1
e2

]
= 0

(13)

Or,
min T (q2) = qT

2 L2q2+2qT
1 L12q2+qT

1 L1q1

qT
2 W2q2+qT

1 W1q1
(14)

s.t. qT
2 W2e2 + qT

1 W1e1 = 0 (15)

As mentioned above, equation (10) holds because of the settings in (11). There-
fore, constraint (15) can be gradually satisfied when more and more variables are
fixed. Approximately speaking, we leave constraint (15) apart. Then problem (14)
itself becomes a continuous optimization problem. It is clear that this problem
can be solved using NLCG algorithm. If we further solve (14) with NLCG, after
another several iterations, we can fix more variables according to the same crite-
rion as mentioned above. In this way, the scale of the optimization problem is re-
duced throughout the whole optimization procedure. Moreover, the labels of data
objects are naturally obtained without further clustering (see (11)).

3.3 Linear SSO

Although NLSSO can speed up spectral clustering, the nonlinear nature of
NLCG still makes NLSSO inefficient. Actually, the reason why we use NLCG to

Fast Large-Scale Spectral Clustering by Sequential Shrinkage Optimization 325

solve problem (14) is that this problem has been beyond the capability of linear
CG. In order to tackle this challenge, we propose adopting some linearization
strategies so that NLCG in each step of NLSSO can be replaced with linear CG,
which is much faster. In particular, we remove the denominator of (14) and only
preserve its numerator which has the similar format to (7)

H(q2) = qT
2 L2q2 + 2qT

1 L12q2 + qT
1 L1q1 (16)

We can prove that in certain conditions, problem (14) and problem (16) are
almost equivalent. More precisely, the optima of problem (16), q∗2 , and the optima
of problem (14), q∗∗2 , satisfie q∗∗2 = λq∗2 . It is not difficult to understand that this
kind of scaling transformation will not affect the clustering results. Therefore, in
such a way, we actually get a linear optimization algorithm which can lead to an
almost-the-same solution with the original non-linear problem. In the following
paragraphs, we will discuss in which condition (14) and (16) can be equivalent.
For this purpose, we introduce proposition 1.

Proposition 1. Denote q∗∗2 the optima of (14), and q∗2 the optima of (16). Then
we have q∗∗2 ≈ λq∗2 , if W2L

−1
2 ≈ I.

Proof. Omit due to space restriction.

It is clear that if L2 is strongly dominant diagonal, we will have W2L
−1
2 ≈ I.

However, in most cases, this is not natually guaranteed. To solve the problem, we
propose using a preprocessing step to mandatorily make the condition satisfied.
And we prove that such a preprocessing will not change the final embeddings of
spectral clustering owing to preposition 2.

Proposition 2. If q and λ are a pair of eigenvector and eigenvalue of the gen-
eralized eigenvalue problem:

Lq = λWq (17)

Then q is also an eigenvector of the following generalized eigenvalue problem:

(L + tW)q = λ+t
t+1 (W + tW)q (18)

Proof. Omitted due to space restriction.

With proposition 2, we can add tW to both W and L with a sufficiently large
t, without affecting the resultant eigenvectors. This makes L dominant diagonal
and thus W2L

−1
2 ≈ I, i.e. the condition of preposition 1 is satisfied. As a result,

except the first NLCG initialization, all other NLCG can be replaced with CG.
In such a way, the speed of convergence can hence be improved a lot since (14)
is a quadratic problem and CG performs very well on it.

326 T.-Y. Liu et al.

4 Experimental Results

In this section, we report our experimental results to show the efficiency and
effectiveness of our proposed LSSO algorithm. For comparison, CG-based and
Lanczos-based Normalized Cut methods were also tested. Note that since we
mainly discussed the two-way clustering problem in this work, all the algorithms
are compared based on their two-way versions. LSSO and CG-based EVD solver
were implemented using Fortran 90 without any advanced code optimization.
Lanczos-based EVD solver was implemented by the function eigs() in MATLAB
6.5. In order to get as high speed as possible, we generate a C++ project using
Visual C++ 6.0 which calls the function eigs() from MATLAB Library. Note
that MATLAB Library has been commercially optimized. In our experiments,
two criteria are used for evaluation: error rate and time cost. The error rate is
defined as the ratio of miss-classified data points with respect to the groundtruth
labels, and time cost is measured with ”seconds”. In the first experiment, we show
the working procedure of our algorithm with a toy problem, and then compare
the precision and speed of our LSSO algorithm with the reference algorithms on
a larger and more complicated synthetic dataset. In the second experiment, we
used a real-world product database from a commercial e-shopping website for
further evaluation.

4.1 Toy Problems

In this subsection, we first constructed a two-circle dataset with 500 data points
(see Fig.1) to show how our approach works. Note that the former 300 points
belong to the outer circle, while the latter 200 belong to the inner circle.

Fig. 1. A two-circle dataset

For this dataset, the second smallest eigenvector of Lv = λWv is plotted in
dashed line, while the clustering label is plotted in solid line in Fig.2(a). Then, we
plot the working procedure of LSSO in Fig.2(b)-(d). In these subfigures, x-axis
represents the number of data points, and the y-axis represents their embedding

Fast Large-Scale Spectral Clustering by Sequential Shrinkage Optimization 327

Fig. 2. Working procedure of EVD-based spectral clustering (a) and LSSO at the end
of iterations 3 (b), 6 (c) and 16 (d)

Fig. 3. Two extreme cases in the Density Datasets: (a) the No.1 Density Dataset and
(b) the No.20 Density Dataset

values. The unfixed variables are plotted in dashed line, while the fixed are in solid
line. We can see that at the end of iteration 3, 6, and 16, the unfixed variables
sequentially shrink and the fixed variables converge to the groundtruth labels.

Secondly, we compare LSSO with CG-based and Lanczos-based spectral clus-
tering methods. For this purpose, we constructed a group of datasets, which
covers different kinds of data distributions. Each dataset contains two Gaussian
balls in the 2-D Euclidean space. For ease of reference, we refer these datasets as
”Density Datasets”. In ”Density Datasets”, each ball contains 2000 data points.
The distance between the centers of the two balls is 20. The variance of the right
ball is fixed to 1, while the variance of the left ball changes from 1/10 to 10 so
as to generate 20 datasets. The two extreme datasets (the No.1 dataset and the
No.20 dataset) are shown in Fig.3, and the comparison of error rate / time cost
is plotted in Fig.4, in which the x-axis represents the number of the data set in
this group (i.e. from No.1 to No.20).

328 T.-Y. Liu et al.

Fig. 4. (a) Error rate and (b) time cost comparison for the Density Datasets

From the above experimental results we can see that on the one hand, LSSO
has similar or even better accuracy (in terms of error rate) as compared to
Lanczos and CG based spectral clustering methods. On the other hand, in most
cases, LSSO is much faster than Lanczos and CG based methods.

4.2 Product Data Clustering

In this subsection, we report the experimental results on a real-world product
database, which is the backend database of a commercial e-shopping website.
There are over 5 million product records in this database, which have been man-
ually classified into 20 categories. Each product record has a short description
of no more than 256 words. As for the descriptions of these records, we first
lowered the upper-case characters and then removed stop words such as articles,
prepositions, pronouns and conjunctions. Then we used term frequency to build
the feature vectors so as to use the inner product in the vector space to calcu-
late the weights in the adjacency matrix. In order to evaluate our algorithm, we
sampled the product database and constructed a subset with 5000 records for
each category. For ease of reference, this subset is named by ”Dataset 5000”.
Note that the records in this dataset may have multiple labels. We conducted
experiments on every pair of categories, and got ten different sub experiments.
The error rate and time cost for each sub experiment are listed in Fig.5, where
the x-axis corresponds to the ID of the sub experiments (see Table.1). Note
that for the implementation of our LSSO method, we fix 50% of the remaining
variables when performing sequential shrinkage.

From Fig.5, we can see that our algorithm can lead to a significant improvement
in speed over the CG and Lanczos-based spectral clustering methods. At the same
time, the error rate of our approach is also lower than CG and Lanczos-based algo-
rithms for some sub experiments. This is very interesting, since we have expected
that there will be more or less accuracy loss for LSSO because of the sequential
shrinkage. The reason for this result may be that, when the well-separated data
points are fixed, they will serve as prior knowledge, and the successive clustering
may become semi-supervised and thus has better clustering results.

Fast Large-Scale Spectral Clustering by Sequential Shrinkage Optimization 329

Table 1. ID of experiments

ID Pair of Categories ID Pair of Categories
1 C1 − C2 6 C2 − C4

2 C1 − C3 7 C2 − C5

3 C1 − C4 8 C3 − C4

4 C1 − C5 9 C3 − C5

5 C2 − C3 10 C4 − C5

Fig. 5. (a) Error rate and (b) time cost comparison for Dataset 5000

To sum up, through the above experiments, we find that LSSO is better than
the reference algorithms in most cases, especially for large scale datasets, in terms
of both faster speed and higher performance. We also assert that our approach
can scale up for much larger datasets if the sparseness of data is employed. Due to
parallelizability of matrix-vector multiplication, our approach can also be easily
applied to distributed system.

5 Conclusions

Spectral clustering has met great challenges when handling large datasets since
both its space and computational complexities have been bottlenecks. In this
paper, we proposed our solution to speeding up spectral clustering, and demon-
strated the effectiveness of our approach in many two-way clustering examples.
Although we have not covered how our approach applies to k-way spectral clus-
tering due to space restriction, it is actually not very difficult to generalize the
idea of sequential shrinkage optimization to the k-way case. Besides, regarding
that we only discuss how to accelerate spectral clustering in this paper, we will
also work on reducing the space complexity of spectral clustering in the future.
Our ultimate goal is to make spectral clustering not only a theoretically beautiful
algorithm, but also a practically workable technique.

330 T.-Y. Liu et al.

References

1. Bunk B.: Conjugate Gradient Algorithm to Compute the Low-lying Eigenvalues of
the Dirac Operator in Lattice QCD. Computer Physics Communication (1994)

2. Ding C.: A Tutorial on Spectral Clustering. ICML 21 (2004)
3. Feng, Y. T., Owen, D. R. J.: Conjugate Gradient Methods for Solving the Small-

est Eigenpair of Large Symmetric Eigenvalue Problems. International Journal for
Numerical Methods in Engineering (1996)

4. Golub, G. H., Loan, C. F. V.: Matrix Computations. John Hopkins University
Press (1996)

5. Knyazev, A. V.: Toward the Optimal Preconditioned Eigensolver: Locally Opti-
mal Block Preconditioned Conjugate Gradient Method. SIAM Journal of Scientific
Computing (2001)

6. Knyazev, A. V.: Preconditioned eigensolvers: practical algorithms. Technical Re-
port: UCD-CCM 143, University of Colorado at Denver (1999)

7. Nocedal, J., Wright, S. J.: Numerical Optimization. Springer Series in Operations
Research (2000)

8. Ng, A. Y., Jordan, M. I., Weiss, Y.: On Spectral Clustering: Analysis and an
Algorithm. NIPS 14 (2001)

9. Shi J., Malik J.: Normalized Cuts and Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22 (2000): 888-905

10. Sorensen, D. C.: Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale
Eigen-value Calculations. Parallel Numerical Algorithms (1995)

11. Stanimire, T., Langou, J., Canning, A., et al.: Conjugate-Gradient Eigenvalue
Solvers in Computing Electronic Properties of Nanostructure Architectures. Tech-
nical Report, UT-CS-05-559, The University of Tennessee Knoxville (2005)

12. Yang, X. P., Sarkar, T. K., Arvas, E.: A Survey of Conjugate Gradient Algorithms
for Solution of Extreme Eigen-problems of a Symmetric Matrix. IEEE Transactions
on Acoustics, Speech, and Signal Procesing, 37 (1989): 1550-1556

13. Yu, S. X., Shi, J. B.: Multi-class Spectral Clustering. ICCV 9 (2003)

A Probabilistic Model for Clustering Text

Documents with Multiple Fields

Shanfeng Zhu1, Ichigaku Takigawa1, Shuqin Zhang2, and Hiroshi Mamitsuka1

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
{zhusf,takigawa,mami}@kuicr.kyoto-u.ac.jp

2 Department of Mathematics, The University of Hong Kong, Hong Kong
sqzhang@hkusua.hku.hk

Abstract. We address the problem of clustering documents with mul-
tiple fields, such as scientific literature with the distinct fields: title,
abstract, keywords, main text and references. By taking into consid-
eration of the distinct word distributions of each field, we propose a new
probabilistic model, Field Independent Clustering Model (FICM), for
clustering documents with multiple fields. The benefits of FICM come
not only from integrating the discrimination abilities of each field but
also from the power of selecting the most suitable component proba-
bilistic model for each field. We examined the performance of FICM on
the problem of clustering biomedical documents with three fields (title,
abstract and MeSH). From the genomics track data of TREC 2004 and
TREC 2005, we randomly generated 60 datasets where the number of
classes in each dataset ranged from 3 to 12. By applying the appropriate
configuration of generative models for each field, FICM outperformed a
classical multinomial model in 59 out of the total 60 datasets, of which
47 were statistically significant at the 95% level, and FICM also outper-
formed a multivariate Bernoulli model in 52 out of the total 60 datasets,
of which 36 were statistically significant at the 95% level.

1 Introduction

Document clustering has become an increasingly important text mining and
information retrieval technique due to the abundance of text documents, such
as emails, news, web pages, and scientific articles [1]. As an unsupervised learning
method, it can explore text collections without any prior knowledge by group-
ing documents into different topics, which assists in the navigation and loca-
tion of the documents of interest. Clustering approaches can be divided into
partitional (flat) clustering and hierarchical clustering [6]. In a partitional clus-
tering approach, based on some optimization criterion, documents are binned
into K disjoint groups (often given as an a priori parameter). On the con-
trary, in a hierarchical clustering method, the obtained clusters are organized
into a tree structure. In terms of the algorithms used for clustering, we can
also divide the partitional clustering methods into two categories, discrimi-
native (similarity-based) methods, and generative (model-based) methods [14].

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 331–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

332 S. Zhu et al.

In contrast to similarity-based methods, (probabilistic) model-based methods
usually have less computational complexity, and they provide an intuitive expla-
nation for each cluster through a corresponding model [14]. Various model-based
clustering algorithms have already been proposed to tackle the problem of clus-
tering high dimensional and very sparse text documents, such as multivariate
Bernoulli [8], multinomial [8], and von Mises-Fisher models [2].

Here we focus on probabilistic model-based partitional clustering algorithms.
Existing model-based algorithms consider each document as an integrated
object, whereas in many cases a document actually consists of several distinct
fields. One typical example is scientific documents, which are composed of multi-
ple fields, such as title, abstract, keywords, main text, and references. Since each
field has a distinguished role in presenting the idea of a document, these fields
have different distributions over different vocabularies. In fact, the title, which
consists of around 10 words, usually summarizes the topic of a document, while
the abstract, which uses between 100 to 200 words, often briefly describes the
motivation, a proposed solution, and experiment results. Assuming that each
field has a distinct word distribution, we propose a new probabilistic model,
which we call the Field Independent Clustering Model (FICM), where each field
of a document is independently generated given the specific cluster to which the
document belongs. In addition, each field can be modelled by the most suit-
able probabilistic model, instead of using the same model for all fields. Thus
FICM takes advantage of both the discrimination ability of each field and the
power of selecting the best model for each field. Rigouste et al. proposed the
multinomial mixture model for document clustering, where each document is
generated by a mixture of multinomial models [11]. In contrast, we focus on doc-
uments with multiple fields, where different fields can be generated by different
models.

We examined our model by applying it to the problem of clustering biomed-
ical scientific documents, which has been gaining increasing interest in bioin-
formatics. The largest public biomedical literature database is MEDLINE [12],
which provides many informative fields, including PubMED ID, Title, Authors,
Institution, Source, Journal Subset, MeSH (Medical Subject Headings) and Ab-
stract. Out of these fields, we selected the three most important ones: Title,
Abstract and MeSH. MeSH is a controlled vocabulary thesaurus defined by the
National Library of Medicine [10] and includes a set of description terms orga-
nized in a hierarchical structure which are used to index articles in the MED-
LINE database. Considering the wide usage of classic multivariate Bernoulli and
multinomial models, we compared the performance of FICM with these models
in clustering 60 randomly generated datasets from TREC2004 and TREC2005
genomics track data, where the number of classes in each datasets ranges from
3 to 12. Our experimental results showed that with suitable configurations of
generative models for each field, FICM outperformed the classical multivari-
ate Bernoulli model and the multinomial model significantly in the majority of
cases.

A Probabilistic Model for Clustering Text Documents with Multiple Fields 333

2 FICM for Clustering Documents with Multiple Fields

In this section after introducing the classical multivariate Bernoulli model and
multinomial model for clustering text documents, we propose FICM for cluster-
ing text documents with multiple fields.

2.1 Notations

We first give the notations used in this paper. Let D be a set of documents,
and d be a random variable for a document in D. Let Z be the set of classes
(topics) of D, and z be a random class variable in Z. C is the set of fields, and
c is a variable representing a specific field in C. In this work, this could be a
title, abstract or MeSH. Let Dc be a set of documents only considering field c,
and dc be field c (e.g. title) of a document d. We denote W as the set of words
appearing in D, Wc as the set of words appearing in Dc, and w as a word. Let
Nw,d be the frequency of w appearing in d, and Nw,dc be the frequency of w
appearing in dc. Let Bw,d be 1 if w appears in d, otherwise 0. Let Bw,dc be 1 if
w appears in dc, otherwise 0.

2.2 Multivariate Bernoulli Model

The multivariate Bernoulli model only considers whether a word occurs or not
in a document. That is, each document is represented by a binary vector. For a
document d in class z, the probability of w appearing in d is p(w|z), while the
probability of the absence of w in d is 1 − p(w|z). Each word in a document is
assumed to be independent generated given the cluster the document belongs
to, and each document in the data set is also assumed to be independent gen-
erated. We then try to maximize the log-likelihood of generating the whole set
of documents D. The maximum likelihood estimators of this model can be ob-
tained by the following EM (Expectation and Maximization) algorithm, which
repeats the E- and M-steps alternately until some stopping condition is satisfied.
In the M-step, we employ a Laplacian prior to avoid zero probabilities, which
also belongs to maximum a-posteriori (MAP) parameter estimation. In the later
models, similar techniques will also be employed.

Probabilistic Structure:

L(D) =
∑
d∈D

log p(d) =
∑
d∈D

log
(∑

z∈Z

p(z)p(d|z)
)

=
∑
d∈D

log
(∑

z∈Z

(
p(z)

∏
w∈d

p(w|z)Bw,d(1 − p(w|z))1−Bw,d

))

E-step:

p(z|d) ∝ p(z) p(d|z) = p(z)
∏
w∈d

(
p(w|z)Bw,d(1 − p(w|z))1−Bw,d

)

334 S. Zhu et al.

M-step: (with Laplacian smoothing)

p(z) ∝
∑
d∈D

p(z|d), p(w|z) =
1 +

∑
d∈D p(z|d) · Bw,d

2 +
∑

d∈D p(z|d)

2.3 Multinomial Model

In contrast to the multivariate Bernoulli model, the multinomial model considers
the number of occurrences of each word w in document d and assumes that given
a cluster z, it can generate each word in a document independently with con-
straint

∑
w∈W p(w|z) = 1. Please note that both multivariate Bernoulli model

and multinomial model treat all occurrences of a word in the same way, without
considering what field they occur in. The probabilistic structure of multinomial
model and its corresponding E- and M-steps are shown below.

Probabilistic Structure:

L(D) =
∑
d∈D

log p(d) =
∑
d∈D

log
(∑

z∈Z

p(z)p(d|z)
)

=
∑
d∈D

log
(∑

z∈Z

(
p(z)

∏
w∈d

p(w|z)Nw,d

))

E-step: p(z|d) ∝ p(z) p(d|z) = p(z)
∏
w∈d

p(w|z)Nw,d

M-step: (with Laplacian smoothing)

p(z) ∝
∑
d∈D

p(z|d), p(w|z) =
1 +

∑
d∈D p(z|d) · Nw,d

|W | +
∑

w′∈W

∑
d∈D p(z|d) · Nw′,d

2.4 FICM

The basic idea of FICM is that each component field of a document is indepen-
dently generated by an underlying probabilistic model given the cluster to which
the document belongs. Although in practice a document may not fully obey this
rule, this kind of independence assumption has been widely used and has been
found to be very successful in machine learning algorithms [9]. In fact, this kind
of assumption is also utilized in classical multivariate Bernoulli and multinomial
models, which assume that each word in a document is independently generated
by some underlying probabilistic model. Under this assumption, the probability
of generating a document d is given as follows:

p(d) =
∑
z∈Z

p(z)p(d|z) =
∑
z∈Z

p(z)
∏
c∈C

p(dc|z)

A Probabilistic Model for Clustering Text Documents with Multiple Fields 335

Here p(dc|z) is the probability of generating the set of words that appear in
field c given the underlying cluster z. The strength of FICM comes from the inte-
gration of the clustering ability of each field, which can be improved by choosing
a good probabilistic model for each field. FICM is more like a framework, since
the specific implementation of FICM depends on the probabilistic model used
for each field. Let Cb be the set of fields modelled by the multivariate Bernoulli
model, and Cm be the set of fields modelled by the multinomial model. We can
derive the probabilistic structure of FICM as below, and can show the E- and
M-steps of the EM algorithm to estimate the parameters of this model.

Probabilistic Structure:

L(D) =
∑
d∈D

log p(d) =
∑
d∈D

log
(∑

z∈Z

p(z)p(d|z)
)

=
∑
d∈D

log
(∑

z∈Z

(
p(z)

∏
c∈Cb

p(dc|z) ×
∏

c′∈Cm

p(d′c|z)
))

=
∑
d∈D

log
(∑

z∈Z

(
p(z)

∏
c∈Cb

∏
w∈dc

p(w|z, c)Bw,dc (1 − p(w|z, c))1−Bw,dc

×
∏

c′∈Cm

∏
w∈dc′

(p(w|z, c′)Nw,d
c′)

))

E-step:

p(z|d) ∝ p(z) p(d|z) = p(z)
∏

c∈Cb

p(dc|z) ×
∏

c′∈Cm

p(d′c|z)

= p(z)
∏

c∈Cb

∏
w∈dc

(
p(w|z, c)Bw,dc × (1 − p(w|z, c))1−Bw,dc

)
∏

c′∈Cm

∏
w∈dc′

(p(w|z, c′)Nw,dc′)

M-step: (with Laplacian smoothing)

p(z) ∝
∑
d∈D

p(z|d),

p(w|z, c) =
1 +

∑
d∈D p(z|d) · Bw,dc

2 +
∑

d∈D p(z|d)
if c ∈ Cb,

p(w|z, c′) =
1 +

∑
d∈D p(z|d) · Nw,dc′

|Wc′ | +
∑

w′∈W

∑
d∈D p(z|d) · Nw′,dc′

if c′ ∈ Cm

In the simplest case, we can use the same probabilistic model for all fields,
such as Cb = C or Cm = C, which we call a Fielding Bernoulli Model or Fielding
Multinomial Model, respecitively.

336 S. Zhu et al.

3 Experimental Results

3.1 Evaluation Criteria

We used an external measure to assess the quality of the clustering algorithms
by assuming that we already know the correct labeling of each document. That
is, we evaluated the performance of the clustering algorithms by comparing the
predicted clustering result with the correct (true) class labeling. Several external
measures have been proposed to evaluate the quality of clustering, such as purity,
average entropy, precision, recall, F-measure and mutual information [3]. Since
mutual information has been deemed as a superior measure over other measures,
such as purity and entropy which have a bias of favoring a large number of
clusters, we also used it as the measure in our work [14, 15]. The definition of
normalized mutual information is given by the following formula,

NMI =
I(X ; Y)√

H(X) · H(Y)
,

where X and Y are the predicted clusters and the correct class labels, respec-
tively, I(X ; Y) is the mutual information between X and Y , and H(X) and
H(Y) are the entropy of X and Y, respectively. Zhong et al. [14, 15] proposed a
sample estimate to calculate NMI,

NMI =

∑
h,l nh,l log(n·nh,l

nhnl
)√

(
∑

h nh log nh

n)(
∑

l nl log nl

n)

where n is the total number of documents in the whole collection, nh is the
number of documents in class h (standard), nl is the number of documents in
cluster l (predicted), and nh,l is the number of documents in both class h and
cluster l. The NMI value ranges from zero to one, where an NMI value of zero
means that the result is equal to the almost random partitioning, and an NMI
value of one means that the result is almost identical to the true class labeling.

3.2 Dataset

We used the datasets obtained from the TREC1 genomics track 2004 and 2005 [4,
5]. Both of these include an ad hoc retrieval task, which requires an information
retrieval system to return documents relevant to specific information needs. The
documents for both the 2004 and 2005 ad hoc retrieval tasks are a 10-year
(from 1994 to 2003) MEDLINE subset, which has a total of 4,591,008 records.
In the genomics tracks of each year, 50 topics were formulated by real biologists
as information needs. For each topic, the top records returned by each retrieval
system were pooled and further assessed by biologists to determine the relevance
of the result.

After eliminating the documents that are related to more than one topic or
have any empty fields (title, abstract or MeSH), we obtained 39 (total 4400
1 http://trec.nist.gov/

A Probabilistic Model for Clustering Text Documents with Multiple Fields 337

documents) and 24 (total 2317 documents) topics that have 10 or more relevant
documents in TREC 2004 and 2005, respectively. We then randomly generated
30 different datasets for each year by choosing three or more topics2 for each
generated dataset. For each specific class number, three different datasets have
been generated. Similar methods of randomly generating test datasets from a
base dataset have also been adopted by other researchers [13]. We emphasize
that our datasets must have high quality, since the topic of each document
was examined by the biologists. The name of each dataset is encoded by the
combination of the year of the TREC data from which it was generated, the
number of topics in the dataset and the order of the dataset in all datasets with
the same number of topics from the same year, such as “200503a”, “200408b” and
“200512c”. For example, “200503a” means that this dataset, which is generated
from TREC 2005, is the first one of those having three classes.

From the TREC data, we extracted not only the whole text of each record,
but also three distinct fields (title, abstract and MeSH) of each record. In the
pre-processing step, we removed stop words and used the Porter’s stemming
algorithm to tokenize documents. Similar to the work by Zhong et al. [15], we
also removed those words that appear in less than three documents. For each
field, we also removed the words that appear in less than three documents. Due
to space limitations, we only show the statistical information of six example
datasets, and the minimum, maximum and mean of all the 60 datasets in Table 1.
We can see that these 60 datasets vary greatly in some important characteristics:
the number of documents varies from 92 to 1608, the number of classes from 3
to 12, the balance from 0.021 to 0.789 and the number of distinct words in each
dataset from 710 to 3993, which makes it a very good testbed for comparing
different clustering algorithms.

3.3 Experimental Settings

We used NMI to compare the performance of FICM with the others. When
we use the multivariate Bernoulli model and documents with the title field only,
the abstract field only, the MeSH field only and all fields, we call the models (and
the results) bert, bera, berm, and berw, respectively. We call the Fielding Bernoulli
model fber. Similarly, when we use the multinomial model, the corresponding
names are mnst, mnsa, mnsm, mnsw and fmns. For fair comparisons, we fixed
the number of iterations in the EM algorithms at 30 for all cases. In addition, K,
the number of classes, was given as a priori parameter for all models. Further-
more, to reduce the possible bias caused by a random initial partition, we ran
each experiment 100 times, and the averages, standard deviations and paired
t-test were computed for comparison.

FICM allows us to assign a different probabilistic model to each field. In this
experiment, we focused on the following two settings: one is to assign the multi-
nomial model to the title and abstract fields, and the multivariate Bernoulli
model to the MeSH field, which is denoted as fmmb; and the other is to assign

2 The maximum number is 12.

338 S. Zhu et al.

Table 1. Summary of some example datasets and the minimum, maximum and mean
of all 60 datasets randomly generated from the TREC genomics track 2004 and 2005.
Nd is the number of documents, W is the number of distinct words (tokens), K is the
number of classes, Nl is the average number of words in each document, Balance is the
size ratio of the smallest class to the largest class, Nt (Na, Nm) is the average number
of words in the title(abstract, MeSH) field, and Wt(Wa, Wm) is the number of distinct
words in the title(abstract, MeSH) field.

Data Nd W K Nl Balance Nt Na Nm Wt Wa Wm

200403a 102 711 3 126.1 0.7895 5.7 81.6 33.7 88 616 206
200503a 570 2109 3 142.3 0.2203 7.7 97.5 34.6 336 1920 532
200408a 710 2593 8 156.1 0.1217 7.8 108.7 37.2 480 2401 685
200508a 453 2013 8 143.5 0.0798 7.6 101.6 31.3 328 1825 551
200412a 1295 3625 12 166.2 0.0216 9 112.3 43 776 3349 1013
200512a 1357 3187 12 145.7 0.0211 8.7 101.6 34 658 2937 852

min of all 60 92 710 3 126.1 0.0211 5.7 81.6 30.3 76 604 205
max of all 60 1608 3993 12 177.8 0.7895 9.8 120.3 49 902 3710 1171
mean of all 60 776.5 2511.9 7.5 154.3 0.0889 8.2 105.5 38.1 470.3 2304.7 697.1

the multinomial model to the title field, and the multivariate Bernoulli model
to the abstract and MeSH fields, which is denoted as fmbb. That is, we fixed the
multinomial and multivariate Bernoulli models to the title and MeSH fields, re-
spectively. The reason for this is as follows: MeSH terms are originally organized
in a hierarchical structure, but this hierarchical information is lost in the multi-
nomial model and the multivariate Bernoulli model, which treat every word in a
flat way. Some general words, such as “human” and “genetics”, would appear in
the MeSH field very frequently, meaning that these words might not be useful for
clustering. We think that the multinomial model, which favors frequent terms
in clustering, might get stuck in this situation, while the multivariate Bernoulli
model, which considers binary occurrences only, might be more robust against
this situation. On the other hand, words in the title field are all important to
capture the document topic. In this situation, the multinomial model, in which
the probability for generating each distinct word sums to 1, would be more suit-
able than the multivariate Bernoulli model, which has to deal with each word
independently.

3.4 Results

Comparison of bert, bera, berm, berw, fber and fmbb
We first examined the performance of the clustering models based on the mul-
tivariate Bernoulli model, and fmbb which replaces the Bernoulli model for the
MeSH field in fber with the multinomial model. Table 2 shows the result from
six example datasets as well as the average over all 60 datasets. In this table, the
model achieving the highest NMI is bolded. The fmbb model achieved the high-
est average NMI of 0.736 for all 60 datasets, which was followed by fber achieving
0.733, and berw achieving 0.714. Not surprisingly, berw, which uses the Bernoulli

A Probabilistic Model for Clustering Text Documents with Multiple Fields 339

Table 2. Performance in terms of NMI (mean±standard deviation) for six example
datasets and the average of all 60 datasets

Data bert bera berm berw fber fmbb
200403a .667±.12 .818±.12 .886±.13 .846±.12 .876±.12 .888 ±.09
200503a .667±.11 .784±.17 .578±.11 .733±.18 .752±.18 .760±.19
200408a .671±.07 .765±.06 .756±.05 .808 ±.04 .820±.05 .834±.04
200508a .705±.05 .842±.06 .817±.04 .860±.05 .849±.05 .864±.04
200412a .557±.06 .708±.05 .668±.04 .741±.05 .739±.05 .763±.05
200512a .534±.06 .604±.06 .520±.04 .595±.05 .635±.05 .643±.05
Mean of all 60 .638±.06 .700±.07 .670±.05 .714±.06 .733±.06 .736±.06

Table 3. Paired t-test in performance comparison over all 60 sets at the 95% level

berw> bert berw > bera berw> berm fber> berw fmbb> berw fmbb> fber
(+ 47

49 , - 9
11) (+ 29

42 , - 5
18) (+ 44

51 , - 4
9) (+ 30

52 , - 0
8) (+ 36

52 , - 1
8) (+ 7

40 , - 3
20)

model on the whole text was better than any of bert, bera, or berm, which uses
only one field. Furthermore, Table 3 shows the paired t-test indicating the sta-
tistical significance of improvements. The threshold of the p-value for the paired
t-test is set to 0.05. For each examined hypothesis, e.g. that model x outperforms
model y (x > y), we compared the performance of x with y in each dataset by
paired t-test, and then retrieve a pair of two numbers (+a

b , − c
d), which means

that x outperforms y in b datasets, of which a cases are statistically significant,
and y outperforms x in d datasets, of which c cases are statistically significant.
For our experiment, b + d = 60, and x > y is true only when a > c and b > d.
Hereafter we will call this pair SPair. Table 3 indicates that berw outperformed
bert, bera and berm significantly. We are especially interested in the comparison
among berw, fber and fmbb, which utilize all three fields for clustering. We found
that both fber and fmbb outperformed berw, being statistically significant in the
majority of cases, while fmbb was slightly better than fber, which was proved by
SPair (+ 7

40 , - 3
20). The results can be summarized as the performance ordering3

of the compared models: fmbb > fber > berw > (bert, bera, berm).

Comparison of mnst, mnsa, mnsm, mnsw, fmns and fmmb
Second, we examined the performance of the clustering models based on the
multinomial model, and fmmb which replaces the multinomial model for the
MeSH field in fmns with the multivariate Bernoulli model. Similarly, the exper-
imental results are shown in Tables 4 and 5. Based on the average result of all
60 datasets in Table 4, fmmb achieved the highest NMI of 0.735, which was
followed by fmns achieving 0.718 and mnsw achieving 0.712. We further inves-
tigated the significance of these improvements in Table 5. The mnsw method

3 We put bert, bera and berm in the same bracket, since we have no interest in com-
paring the performance of Bernoulli models over different fields.

340 S. Zhu et al.

Table 4. Performance in terms of NMI (mean±standard deviation) for some example
datasets and average of all 60 datasets

Data mnst mnsa mnsm mnsw fmns fmmb
200403a .850±.09 .865±.13 .858±.07 .879±.10 .878±.12 .872±.14
200503a .667±.13 .700±.16 .507±.06 .716±.18 .715±.18 .756±.18
200408a .769±.04 .798±.04 .737±.04 .809±.05 .818±.04 .834±.05
200508a .821±.04 .825±.05 .771±.04 .822±.04 .834±.04 .861 ±.04
200412a .746±.04 .765±.04 .678±.03 .774±.03 .784±.04 .800±.04
200512a .645±.03 .670±.04 .458±.04 .670 ±.04 .674±.04 .692±.04
mean of all 60 .711±.05 .704±.06 .623±.04 .712±.05 .718 ±.06 .735 ±.06

Table 5. Paired t-tests over all 60 datasets at the 95% level

mnsw>mnst mnsw>mnsa mnsw>mnsm fmns>mnsw fmmb>mnsw fmmb>fmns
(+ 25

32 , - 21
28) (+ 19

41 , - 7
19) (+ 55

58 , - 1
2) (+ 11

50 , - 1
10) (+ 47

59 , - 0
1) (+ 38

56 , - 0
4)

outperformed mnsa and mnsm clearly, but surpassed mnst slightly, suggesting
that only a few distinguished words in the title can be very effective for docu-
ment clustering. On the other hand, fmmb outperformed both mnsw and fmns
significantly by SPairs (+ 47

59 , - 0
1) and (+ 38

56 , - 0
4), while fmns was slightly better

than mnsw by SPair (+ 11
50 , - 1

10). In this round of comparison, we obtained the
following:fmmb > fmns > mnsw > (mnst, mnsa, mnsm).

Summarization
In the above two rounds of experiments, compared with the classical multivariate
Bernoulli model berw and multinomial model mnsw, the direct extension of them
via FICM (fber and fmns, respectively) could improve the clustering performance
in the majority of the datasets. This was especially significant in the case of fber,
which achieved a higher NMI value than berw in 52 out of all 60 datasets, of
which 30 are statistically significantly at the 95% level. Furthermore, by choosing
the most suitable probabilistic model for each field other than the same model for
all fields, we could obtain even better clustering results. This was proved by the
performance improvement of fmmb over fmns, and the performance improvement
of fmbb over fber. Overall, fmmb outperformed mnsw in 59 out of all 60 datasets,
of which 47 are statistically significant at the 95% level, and fmbb outperformed
berw in 52 out of 60 datasets, of which 36 are statistically significant. This
indicates that FICM is methodologically significantly better against the existing
models, which is attributed to the integration of discrimination ability of each
field that consists of distinct word distribution, and the power of choosing the
suitable generative model for each field.

Discussion
To maximize the performance of FICM, the choice of a suitable generative model
for each field becomes a crucial problem. We have shown that choosing the multi-

A Probabilistic Model for Clustering Text Documents with Multiple Fields 341

nomial model and the multivariate Bernoulli model for the title and MeSH fields,
respectively, achieves best clustering results. This choice was also justified by the
signicant improvement of mnst over bert in terms of SPair (+ 47

51 , - 6
9) and that of

berm over mnsm in terms of SPair (+ 51
55 , - 2

5). Regarding the abstract field, the
choice of the model did not affect the significant difference in performance. We
summarize these results in the first three columns in Table 6. We then compared
the performance of fmbb with fmmb with respect to the number of classes (top-
ics) in the datasets. More precisely, we split the 60 datasets into two, by the
number of topics. If the number of topics was less than 8, fmbb outperformed
fmmb in 27 out of all 30 cases, of which 19 were statistically significant at the
95% level, and on the contrary, when the number of topics was 8 or more, fmmb
outperformed fmbb in 24 out of 30 cases, of which 20 were statistically significant
at the 95% level. This result is summarized in Table 6 as well. Using the same
split datasets, we found a similar tendency of the performance between mnsa
and bera. That is, bera outperformed mnsa, having SPair (+ 23

25 , - 3
5) for datasets

with less than eight topics, while mnsa outperfomed bera, having SPair (+ 19
22 ,

- 2
8) for the other datasets. This interesting correspondence further verified that

the strength of FICM comes from the power of the discrimination ability of each
field. As shown in Table 6, we can choose fmbb for clustering datasets that are
relatively small with few topics, and fmmb for clustering datasets that are rela-
tively large with more topics. This is also consistent with McCallum and Nigam’s
findings that the multivariate Bernoulli model performs very well on datasets of
small vocabulary size, but that the multinomial model usually performs better
on datasets of large vocabulary size [8].

Table 6. Paired t-test results in the comparison of bert with mnst, bera with mnsa,
berm with mnsm, and fmbb with fmmb over all 60 sets

mnst>bert mnsa>bera berm>mnsm fmbb>fmmb fmbb>fmmb fmmb>fmbb
topics < 8 # topics >= 8

(+ 47
51 , - 6

9) (+ 25
33 ,- 22

27) (+ 51
55 ,- 2

5) (+ 21
33 ,- 22

27) (+ 19
27 ,- 1

3) (+ 20
24 ,- 2

6)

4 Conclusion and Future Work

The strength of FICM comes from the integration of the discrimination ability
of each field and the power of choosing the most suitable generative model for
each field. Our experimental results show that a direct extension of the classical
multivariate Bernoulli and multinomial models using all fields could already
achieve a better performance, and by configuring each field with a suitable model,
we could obtain further better clustering results. Here the number of documents
in each dataset ranges from 92 to 1680. Although it may be the most frequent
case in practice, we would like to examine the performance of FICM on some
larger datasets in the future. It would also be very interesting to apply FICM on
other types of text documents, which requires us to use some prior knowledge
or preliminary experiments to choose a suitable model for each field.

342 S. Zhu et al.

Acknowledgements

This work is supported in part by JSPS (Japan Society for the Promotion of
Science) Postdoctoral Fellowship. We also would like to thank anonymous re-
viewers for very helpful suggestions.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison Wesley,
New York. (1999)

2. Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.: Generative Model-based Clustering of
Directional Data. the proceedings of the SIGKDD’03, (2003) 19-28

3. Ghosh, J.: Scalable clustering methods for data mining, Handbook of data mining,
editor: Ye, N., Erlbaum, L. (2003)

4. Hersh, WR., Bhupatiraju, RT., Ross, L., Johnson, P., Cohen, AM., Kraemer, DF.:
TREC 2004 Genomics Track Overview. the proceedings of the Thirteenth Text
REtrieval Conference (TREC 2004). editor: Voorhees, EM. and Buckland, LP.
(2004)

5. Hersh, WR., Cohen, A., Bhupatiraju, RT., Johnson, P., Hearst, M.: TREC 2005
Genomics Track Overview. the proceedings of the Fourteenth Text REtrieval Con-
ference (TREC 2005), editor: Voorhees, EM. and Buckland, LP. (2005)

6. Jain, AK., Murty, MN., Flynn, PJ.: Data Clustering: A Review. ACM Computing
Surveys. 31(3) (1999) 264–323

7. Meila, M., Heckerman, D.: An Experimental Comparison of Model-Based Cluster-
ing Methods. Machine Learning. 42(1/2) (2001) 9–29

8. McCallum, A., Nigam, K.: A comparsion of event models for naive Bayes text
classification. AAAI Workshop on Learning for Text Categorization. (1998) 41–48

9. Lewis, DD.: Naive (Bayes) at forty: the independence assumption in information
retrieval. Proceedings of ECML-98.

10. Nelson, SJ., Schopen, M., Savage, AG., Schulman, J., Arluk, N.: The MeSH Trans-
lation Maintenance System: Structure, Interface Design, and Implementation. Pro-
ceedings of the 11th World Congress on Medical Informatics. editor: Fieschi, M. et
al. (2004) 67–69

11. Rigouste, L., Cappé, O., Yvon, F.: Evaluation of a Probabilistic Method for Unsu-
pervised Text Clustering. International Symposium on Applied Stochastic Models
and Data Analysis,Brest, France. (2005)

12. Wheeler, D. et al.: Database resources of the National Center for Biotechnology
Information Nucl. Acids Res. 33 (2005) D39–D45

13. Yoo, I., Hu, X.: A comprehensive comparison study of document clustering for
a biomedical digital library MEDLINE. ACM/IEEE Joint Conference on Digital
Libraries, JCDL 2006, editor: Marchionini, G. et al. (2006) 220–229.

14. Zhong, S., Ghosh, J.: A unified framework for model-based clustering. Journal of
Machine Learning Research. 4 (2003) 1001–1037

15. Zhong, S., Ghosh, J.: Generative model-based document clustering: a comparative
study. Knowledge and Information Systems. 8(3) (2005) 374–384

Personalized Communities in a Distributed

Recommender System

Sylvain Castagnos and Anne Boyer

LORIA - Université Nancy 2
Campus Scientifique - B.P.239

54506 Vandoeuvre-lès-Nancy Cedex, France
{sylvain.castagnos, anne.boyer}@loria.fr

Abstract. The amount of data exponentially increases in information
systems and it becomes more and more difficult to extract the most rel-
evant information within a very short time. Among others, collaborative
filtering processes help users to find interesting items by modeling their
preferences and by comparing them with users having the same tastes.
Nevertheless, there are a lot of aspects to consider when implementing
such a recommender system. The number of potential users and the confi-
dential nature of some data are taken into account. This paper introduces
a new distributed recommender system based on a user-based filtering al-
gorithm. Our model has been transposed for Peer-to-Peer architectures.
It has been especially designed to deal with problems of scalability and
privacy. Moreover, it adapts its prediction computations to the density
of the user neighborhood.

1 Introduction

With the development of information and communication technologies, the size
of information systems all over the world has exponentially increased. Conse-
quently, it becomes harder and harder for users to identify relevant items in a
reasonable time, even when using a powerful search engine. Collaborative fil-
tering techniques [1] are a good way to cope with this difficulty. It amounts to
identifying the active user to a set of persons having the same tastes, based
on his/her preferences and his/her past actions. This system starts from the
principle that users who liked the same items have the same topics of interest.
Thus, it is possible to predict the relevancy of data for the active user by taking
advantage of experiences of a similar population.

There are several fundamental problems when implementing a collaborative
filtering algorithm. In this paper, we particularly pay attention to the following
significant limitations for industrial use:

– scalability and system reactivity: there are potentially several thousand users
and items to manage in real time;

– intrusions into privacy: we have to be careful to be as unintrusive as possible
and at least to guarantee the anonymity of users;

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 343–355, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

344 S. Castagnos and A. Boyer

– novelty in predictions: according to the context, users want to have more
or less new recommendations. Sometimes their main concern is to retrieve
the items that they have high-rated, even if it means having less new rec-
ommendations. This is why we introduce an adaptive minimum-correlation
threshold of neighborhood which evolves in accordance with user expecta-
tions.

We propose an algorithm which is based on an analysis of usage. It relies on
a distributed user-based collaborative filtering technique. Our model has been
integrated in a document sharing system called ”SofoS”.1

Our algorithm is implemented on a Peer-to-Peer architecture because of the
document platform context. In a lot of companies, documents are referenced
using a common codification that may require a central server2 but are stored
on users’ devices. The distribution of computations and contents matches the
constraints of scalability and reactivity.

In this paper, we will first present the related work on collaborative filtering
approaches. We will then introduce our Peer-to-Peer user-centered model which
offers the advantage of being fully distributed. We called this model ”Adaptive
User-centered Recommender Algorithm” (AURA). It provides a service which
builds a virtual community of interests centered on the active user by selecting
his/her nearest neighbors. As the model is ego-centered, the active user can
define the expected prediction quality by specifying the minimum-correlation
threshold. AURA is an anytime algorithm which furthermore requires very few
computation time and memory space. As we want to constantly improve our
model and the document sharing platform, we are incrementally and modularly
developing them on a JXTA platform3.

2 Related Work

In centralized collaborative filtering approaches, finding the closest neighbors
among several thousands of candidates in real time without offline computations
may be unrealistic [2]. By contrast, decentralization of data is practical to comply
with privacy rules, as long as anonymity is fulfilled [3]. This is the reason why
more and more researchers investigate various means of distributing collaborative
filtering algorithms. This also presents the advantage of giving the property of
profiles to users, so that they can be re-used in several applications.4 We can
mention research on P2P architectures, multi-agents systems and decentralized
models (client/server, shared databases).

There are several ways to classify collaborative filtering algorithms. In [4],
authors have identified, among existing techniques, two major classes of algo-
rithms: memory-based and model-based algorithms. Memory-based techniques
1 SofoS is the acronym for ”Sharing Our Files On the System”.
2 This allows to have document IDs and to identify them easily.
3 http://www.jxta.org/
4 As the owner of the profile, the user can apply it to different pieces of software. In

centralized approaches, there must be as many profiles as services for one user.

Personalized Communities in a Distributed Recommender System 345

offer the advantage of being very reactive, by immediately integrating modi-
fications of users profiles into the system. They also guarantee the quality of
recommendations. However, Breese et al. [4] are unanimous in thinking that
their scalability is problematic: even if these methods work well with small-sized
examples, it is difficult to change to situations characterized by a great num-
ber of documents or users. Indeed, time and space complexities of algorithms
are serious considerations for big databases. According to Pennock et al. [5],
model-based algorithms constitute an alternative to the problem of combina-
torial complexity. Furthermore, they perceive in these models an added value
beyond the function of prediction: they highlight some correlations in data, thus
proposing an intuitive reason for recommendations or simply making the hy-
potheses more explicit. However, these methods are not dynamic enough and
they react badly to insertion of new contents into the database. Moreover, they
require a penalizing learning phase for the user.

Another way to classify collaborative filtering techniques is to consider user-
based methods in opposition to item-based algorithms. For example, we have
explored a distributed user-based approach within a client/server context in [6].
In this model, implicit criteria are used to generate explicit ratings. These votes
are anonymously sent to the server. An offline clustering algorithm is then ap-
plied and group profiles are sent to clients. The identification phase is done on
the client side in order to cope with privacy. This model also deals with sparsity
and scalability. We highlight the added value of a user-based approach in the
situation where users are relatively stable, whereas the set of items may often
vary considerably. On the contrary, Miller et al.[7] show the great potential of
distributed item-based algorithms. They propose a P2P version of the item-item
algorithm. In this way, they address the problems of portability (even on mobile
devices), privacy and security with a high quality of recommendations. Their
model can adapt to different P2P configurations.

Beyond the different possible implementations, we can see there are a lot
of open questions raised by industrial use of collaborative filtering. Canny [3]
concentrates on ways to provide powerful privacy protection by computing a
”public” aggregate for each community without disclosing individual users’ data.
Furthermore, his approach is based on homomorphic encryption to protect per-
sonal data and on a probabilistic factor analysis model which handles missing
data without requiring default values for them. Privacy protection is provided
by a P2P protocol. Berkovsky et al. [8] also deal with privacy concern in P2P
recommender systems. They address the problem by electing super-peers whose
role is to compute an average profile of a sub-population. Standard peers have
to contact all these super-peers and to exploit these average profiles to compute
predictions. In this way, they never access the public profile of a particular user.
We can also cite the work of Han et al.[9], which addresses the problem of privacy
protection and scalability in a distributed collaborative filtering algorithm called
PipeCF. Both user database management and prediction computation are split
between several devices. This approach has been implemented on Peer-to-Peer
overlay networks through a distributed hash table method.

346 S. Castagnos and A. Boyer

In this paper, we introduce a new hybrid method called AURA. It combines
the reactivity of memory-based techniques with the data correlation of model-
based approaches by using an iterative clustering algorithm. Moreover, AURA is
a user-based model which is completely distributed on the user scale. It has been
integrated in the SofoS document platform and relies on a P2P architecture in
order to distribute either prediction computations, content or profiles. We design
our model to tackle, among others, the problems of scalability, and privacy.

3 SofoS

SofoS is a document platform, using a recommender system to provide users with
content. Once it is installed, users can share and/or search documents, as they do
on P2P applications like Napster. We conceive it in such a way that it is as open
as possible to different existing kinds of data: hypertext files, documents, music,
videos, etc. The goal of SofoS is also to assist users to find the most relevant
sources of information efficiently. This is why we add the AURA recommender
module to the system. We assume that users can get pieces of information either
by using our system or by going surfing on the web. SofoS consequently enables
to take visited websites into account in the prediction computations.

We are implementing SofoS in a generic environment for Peer-to-Peer services,
called JXTA. This choice is motivated by the fact it is greatly used in our research
community.

In [7], the authors highlight the fact that there are several types of possible
architectures for P2P systems. We can cite those with a central server (such
as Napster), random discovery ones5 (such as Gnutella or KaZaA), transitive
traversal architectures, content addressable structures and secure blackboards.

We conceived our model with the idea that it could be adapted to different
types of architectures. However, in this paper, we will illustrate our claims by
basing our examples on the random approach even if others may have an added
value. The following subsection aims at presenting the AURA Algorithm.

3.1 AURA Algorithm

We presume that each peer in SofoS corresponds to a single user on a given
device.6 For this reason, we have conceived the platform in such a way that users
have to open a session with a login and a password before using the application.
In this way, several persons can use the same computer (for example, the different
members of a family) without disrupting their respective profiles. That is why
each user on a given peer of the system has his/her own profile and a single ID.
The session data remain on the local machine in order to enhance privacy. There
is no central server required since sessions are only used to distinguish users on
a given peer.
5 Some of these architectures are totally distributed. Others mixed centralized and

distributed approaches but elect super-peers whose role is to partially manage sub-
groups of peers in the system.

6 We can easily distinguish devices since SofoS has to be installed on users’ computers.

Personalized Communities in a Distributed Recommender System 347

For each user, we use a hash function requiring the IP address and the login
in order to generate his/her ID on his/her computer. This use of a hash function
H is suitable, since it has the following features:

– non-reversible: knowing ”y”, it is hard to find ”x” such as H(x) = y;
– no collision: it is hard to find ”x” and ”y” such as H(x) = H(y);
– knowing ”x” and ”H”, it is easy to compute H(x);
– H(x) has a fixed size.

In this way, an ID does not allow identification of the name or IP address of
the corresponding user. The communication module uses a IP multicast address
to broadcast the packets containing addressees’ IDs. In order to reduce the in-
formation flow, we can optionally elect a super-peer which keeps a list of IDs
whose session is active: before sending a message, a peer can ask if the addressee
is connected. If the super-peer has no signal from a peer for a while, it removes
the corresponding ID from the list.

Users can both share items on the platform and integrate a feedback about
websites they consult. Each item has a profile on the platform. In addition to the
available documents, each peer owns 7 pieces of information: a personal profile,
a public profile, a group profile and 4 lists of IDs (list ”A” for IDs of peers
belonging to its group, list ”B” for those which exceed the minimum-correlation
threshold as explained below, list ”C” for the black-listed IDs and list ”O” for
IDs of peers which have added the active user profile to their group profile). An
example of the system run is shown on figure 1.

Fig. 1. Run of AURA

In order to build the personal profile of the active user ua, we use both explicit
and implicit criteria. The active user can always check the list of items that
he/she shares or has consulted. He/She can explicitly rate each of these items
on a scale of values from 1 to 5. The active user can also initialize his/her personal
profile with a set of criteria7 proposed in the interface in order to partially face
the cold start problem. This offers the advantage of completing the profile with
more consistency and of finding similarities with other users more quickly, since
everyone can fill the same criteria rating form.
7 Ideally, the set of items in the criteria set should cover all the implicit categories

that users can find on the platform.

348 S. Castagnos and A. Boyer

We assume that, despite the explicit voluntary completion of profiles, there are
a lot of missing data. We consequently add to AURA a user modeling function,
as we did in [6]. The explicit ratings and the estimated numerical votes constitute
the active user’s personal profile. The public profile is the part of the personal
profile that the active user accepts to share with others.

The algorithm also has to build a group profile. It represents the preferences of
a virtual community of interests, and has been especially designed to be as close
as possible to the active user’s expectations. In order to do that, the peer of the
active user asks for the public profiles of all the peers it can reach through the
platform. Then, for each of these profiles, it computes a similarity measure with
the personal profile of the active user. The active user can indirectly define a
minimum-correlation threshold which corresponds to the radius of his/her trust
circle (cf. infra, figure 2).

Fig. 2. Virtual community centered on ua

If the result is lower than this fixed threshold which is specific to each user, the
ID of the peer is added to the list ”A” and the corresponding profile is included
in the group profile of the active user, using the procedure of table 1.

Table 1. Add a public profile to the group profile

Procedure AddToGroupProfile(public profile of un)
W = W + |w(ua, un)|
for each item i do

(ul,i) = (ul,i) ∗ (W − |w(ua, un)|)
(ul,i) = ((ul,i) + w(ua, un) ∗ (un,i))/W

end for
With: (ul,i) the rating for item i in the group profile;

(un,i) the rating of user n for item i;
W the sum of |w(ua, ui)|, which is stored;
w(ua, un) the correlation coefficient between the active user ua and un.

We used the Pearson correlation coefficient to compute similarity, since the
literature shows it works well [10]. Of course, if this similarity measure is higher
than the threshold, we add the ID of the peer to the list ”B”. The list ”C” is
used to systematically ignore some peers. It enables to improve trust – that is

Personalized Communities in a Distributed Recommender System 349

to say the confidence that users have in the recommendations – by identifying
malicious users. The trust increasing process will not be considered in this paper.

When his/her personal profile changes, the active user has the possibility to
update his/her public profile pa. In this case, the active peer has to contact every
peer8 whose ID is in the list ”O”. Each of these peers re-computes the similarity
measure. If it exceeds the threshold, the profile pa has to be removed from the
group profile, using the procedure of table 2. Otherwise, pa has to be updated
in the group profile, that is to say the peer must remove the old profile and add
the new one.

Table 2. Remove a public profile from the group profile

Procedure RemoveToGroupProfile(old profile of un)
W = W − |w(ua, un)|
for each item i do

(ul,i) = (ul,i) ∗ (W + |w(ua, un)|)
(ul,i) = ((ul,i) − w(ua, un) ∗ (un,i))/W

end for

By convention, we use the notation < id, p > for the peer-addition packet,
that is to say new arrivals. < id, p, s > corresponds to the packet of a peer which
is already connected and sends data to a new arrival. ”s” is the threshold value.
There is no need to specify the threshold value in the peer-addition packet, since
there is a default value (|correlation| >= 0). At last, < id, pt−1, pt, s > is the
notation for the update packet. In each of these packets, the first parameter
corresponds to the ID of the source of the message. In order to simplify the
notation, we do not include the addressees’ ID in figure 3.

Fig. 3. Example of user interactions

Figure 3 illustrates how the system works. In this example, we consider 3
of the 5 users from figure 1. We show the registers of the active user ua and
8 A packet is broadcasted with an heading containing peers’ IDs, the old profile and

the new public profile.

350 S. Castagnos and A. Boyer

the user u4. At time t1, the active user ua tries to contact, for the first time,
other peers by sending his/her public profile and his/her ID to neighbors. This
is the packet < ida, pa >. u3 receives the packet and answers at t2. ua computes
the distance between the public profiles p3 and pa. As the Pearson coefficient is
inevitably within the default threshold limit, ua adds id3 to his/her list ”A”. If
the computed correlation coefficient is higher than ”s3” which is the threshold
of u3, ua adds id3 to his/her list ”O”. Meanwhile, some of the reached peers will
add pa to their list ”A” if the correlation is higher than their threshold (this is
the case for u3). At time t2, u4 arrives on the platform and sends a packet to
u3. At time t3, u3 replies to u4 and sends the packet of u4 to peers that he/she
already knows. ua receives it and adds id4 to his/her list ”A”. He/She also adds
id4 to the list ”O”, since u4 is a new arrival and has a default threshold. At
time t4, ua consequently gives his/her public profile to u4. At the same time, u4
has changed his/her threshold and considers that ua is too far in the user/item
representation space, that is to say the correlation coefficient between ua and u4
exceeds the limit. Thus, u4 adds ida in the list ”B”. In the packet < ida, pa, sa >,
”sa” allows u4 to know that he/she must complete the list ”O” with ida. At last,
u4 updates his/her public profile. Afterwards, he/she notifies the change to the
IDs in the list ”O”. This is the packet < ida, p4,t4 , p4,t5 , s4 >. p4,t4 and p4,t5 are
respectively the old and new public profiles of u4. When ua receives this packet,
he/she updates the list ”O” by removing id4 since s4 is too high for him/her.

3.2 Adaptive Minimum-Correlation Threshold

As shown in the previous subsection, the active user can indirectly define the
minimum-correlation threshold that other people must reach in order to be a
member of his/her community (radius of the circle on figure 2). Concretely, a
high correlation threshold means that users taken into account in prediction
computations are very close to the active user. Recommendations will be con-
sequently extremely similar to his/her own preferences. On the contrary, a low
correlation threshold sets forth the will of the active user to stay aware of gener-
alist information by integrating distant users’ preferences. In this way, the user
avoids freezed suggestions by accepting novelty. In the SofoS interface, a slide
bar allows the active user to ask for personalized or generalist recommendations.
This allows AURA to know the degree to which it can modify the threshold9.
The default threshold value is 0, which means that we take all the peers into
account. The default step of threshold is 0.1, but it can be adapted to the density
of population.

As shown in figure 4, we split the interval of the Pearson coefficient’s pos-
sible values [−1; +1] into subsets. For each subset, we keep the count of peers
which have got in touch with the active user and whose correlation coefficient is

9 By ”threshold”, we mean the minimum absolute value of Pearson coefficients to con-
sider in the group profile computation. For example, if the system sets the threshold
to 0.1, it means that only peers ui whose correlation coefficient |w(ua, ui)| is higher
than 0.1 will be included in the group profile of the active user.

Personalized Communities in a Distributed Recommender System 351

contained in the interval corresponding to the subset. Thus, when a user sends
a packet to ua, the Pearson coefficient is computed in order to know if the ac-
tive user’s group profile has to be updated according to the threshold value. At
the same time, we update the corresponding values in the population distribu-
tion histogram. For example, if ua receives an update packet and the Pearson
coefficient changes from 0.71 to 0.89, we decrement the register of the interval
[0.7; 0.8) and we increment the register of the interval [0.8; 0.9). In this way, we
constantly have the population density for each interval.

Fig. 4. Adaptive threshold based on density

When the total number of users whose Pearson coefficient is higher than
(threshold+0.1) exceeds a given limit (dashed line on figure 4), we increase the
threshold. If there are too many users in the next subset, the threshold increase
is lower. For the moment, the maximum threshold value is 0.2 for users who
want a high degree of novelty and 0.9 for those who expect recommendations
close to their preferences.10 These values have been arbitrarily chosen. We plan
to do statistical tests to automatically determine the ideal thresholds according
to the context.

4 Discussion

In order to define the degree of privacy of our recommender system, we refer to 4
axes of personalization [11]. Cranor assumes that an ideal system should be based
on an explicit data collection method, transient profiles, user initiated involvment
and non-invasive predictions. In our system, the users have complete access to
their preferences. They have an effect on what and when to share with others.
Only numerical votes are exchanged and the logs of user actions are transient.
Even when the active user did not want to share his/her preferences, it is possible
to do predictions since public profiles of other peers are temporarily available on
the active user device. Each user has a single ID, but the anonymity is ensured by
the fact that there is no table linking IDs and identities. This privacy-enhanced
process requires more network traffic than in [8], but it allows the system to
perform user-centered rather than community-centered predictions.

10 That is to say they want to retrieve items that they have high-rated

352 S. Castagnos and A. Boyer

As regards scalability, our model no longer suffers from limitations since the
algorithms used to compute group profiles and predictions are in o(b), where b is
the number of commonly valuated items between two users, since computations
are made incrementally in a stochastic context. In return, AURA requires quite
a lot of network traffic. This is particularly true if we use a random discovery
architecture. Other P2P structures can improve communications [7].

Furthermore, we assume that quality of predictions in real situation should be
better – providing that we found enough neighbors – since the virtual community
of interests on each peer is centered on the active user (cf. infra, figure 2). We can
influence the degree of personalization by adjusting the threshold according to
the density of the active user’s neighborhood. The system just has to increase the
threshold in order to ensure users to retrieve the items that they have high-rated
among their recommendations. To highlight this phenomenon, we generated a
rating matrix of 1,000 users and 1,000 items. The votes follow a gaussian law and
we can see the average number of neighbors as regards Pearson coefficient scaling
on figure 5. We randomly removed 20% of these votes and applied the AURA
algorithm. Then, we compute the Recall which measures how often a list of
recommendations contains an item that the user have already rated in his/her
top 10. When increasing the threshold in the system, this measure becomes
higher.

Fig. 5. On the left, average distribution of users as regards Pearson coefficient. On the
right, recall as threshold grows.

We have also evaluated our model in terms of prediction relevancy. We used
the Mean Absolute Error (MAE). MAE is a widely used metric which shows the
deviation between predictions and real user-specified values. Consequently, we
computed the average error between the predictions and 100,000 ratings of the
GroupLens test set11.

We simulate arrivals of peers by progressively adding new profiles. As shown
on figure 6, we get predictions as good as using the PocketLens algorithm [7].
PocketLens relies on a distributed item-based approach. This comparison con-

11 http://www.grouplens.org/

Personalized Communities in a Distributed Recommender System 353

Fig. 6. MAE as neighborhood size grows

sequently demonstrates that AURA provides as relevant results as a performant
item-based collaborative filtering.

At last, we compared our recommender system with two centralized algorithms
(Item-Item [2] and the Correlation-based Collaborative Filter CorrCF [12]) to il-
lustrate the added value of the distributed approach. In order to determine the
computation times of these algorithms, we have generated random public profiles
with different numbers of items. In this simulation, the votes of each user follow a
Gaussian distribution centered on the middle of the representation space. More-
over, only 1% of data in the generated profiles is missing.12 Since the Item-Item
and CorrCF are centralized, we first aggregate the profiles in a vote matrix.

The results of the tests in term of computation time are shown in the table 3.
The announced times for the AURA algorithm do not include the duration
required to scan the network in search of public profiles. Of course, the difference
between AURA and the two others is mainly due to the fact that we use as many
peers as users for computations. However, these results illustrate the considerable
gain in comparison with centralized techniques. AURA allows to do real-time
predictions. There is no need to do offline computations since we can take into
account 10,000 profiles and 150 items in less than an half-second. Moreover, the
system does not have to wait until all similarity measures end. As the algorithm
is incremental, we can stop considering other peers at any moment.

Table 3. Computation times of three collaborative filtering algorithms

Items 100 150 1000
Users AURA CorrCF It-It AURA CorrCF It-It AURA CorrCF It-It

200 0”01 2”60 2”14 0”01 3”17 2”71 0”07 11”09 52”74

1,000 0”03 30”22 8”56 0”05 40”68 12”84 0”30 3’06” 3’25”

10,000 0”31 7:30’ 1’22” 0”48 - 2’05” 1”90 - 49’28”

100,000 3”04 - - - - - - - -

12 Only 1% of missing data is not realistic but can potentially increase the computation
time what is interesting in this case.

354 S. Castagnos and A. Boyer

5 Conclusion

SofoS is a document sharing platform including a recommender system. To cope
with numerous problems specific to information retrieval, we proposed a Peer-to-
Peer collaborative filtering model which is totally distributed. It allows real-time
personalization and manages the degree of personalization that users want. We
implement it on a JXTA platform which has been used by researchers all over
the world. We show in this paper that we can deal with important problems such
as scalability, privacy and quality. We highlight the benefits of our system by
doing offline performance analysis. We plan on validating these points by testing
our model with real users in real conditions.

Our algorithm is anytime and incremental. Contrary to PocketLens, our model
is user-based because we consider that the set of items can change. Even if an
item is deleted, we can continue to exploit its ratings in the prediction computa-
tions. Moreover, the stochastic context of our model allows the system to update
the modified profiles instead of resetting all the knowledge about neighbors. At
last, our model is very few memory-consuming because it does not need to store
any neighbors’ ratings, similarity matrix, dot product matrix and so on. It only
requires the sum of pearson coefficients and four lists of user IDs.

Currently, we are developing our protocols further to cope with other lim-
itations, such as trust and security aspects by using specific communication
protocols as in [13].

References

1. Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave
an information tapestry. In: Communications of the ACM, Special Issue on Infor-
mation Filtering. Volume 35(12)., ACM Press (1992) 61–70

2. Sarwar, B.M., Karypis, G., Konstan, J.A., Reidl, J.: Item-based collaborative
filtering recommendation algorithms. In: World Wide Web. (2001) 285–295

3. Canny, J.: Collaborative filtering with privacy. In: IEEE Symposium on Security
and Privacy, Oakland, CA (May 2002) 45–57

4. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the fourteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-98), San Francisco, CA (July 1998)

5. Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by
personality diagnosis: a hybrid memory- and model-based approach. In: Proceed-
ings of the sixteenth Conference on Uncertainty in Artificial Intelligence (UAI-
2000), San Francisco, USA, Morgan Kaufmann Publishers (2000)

6. Castagnos, S., Boyer, A.: A client/server user-based collaborative filtering algo-
rithm: Model and implementation. In: Proceedings of the 17th European Confer-
ence on Artificial Intelligence (ECAI2006), Riva del Garda, Italy (August 2006)

7. Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: Toward a personal recommender
system. In: ACM Transactions on Information Systems. Volume 22. (July 2004)

8. Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Hierarchical neighborhood topology
for privacy enhanced collaborative filtering. In: in CHI 2006 Workshop on Privacy-
Enhanced Personalization (PEP2006), Montreal, Canada (April 2006)

Personalized Communities in a Distributed Recommender System 355

9. Han, P., Xie, B., Yang, F., Wang, J., Shen, R.: A novel distributed collabora-
tive filtering algorithm and its implementation on p2p overlay network. In: Proc.
of the Eighth Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD04), Sydney, Australia (May 2004)

10. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating
“word of mouth”. In: Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems. Volume 1. (1995) 210–217

11. Cranor, L.F.: Hey, that’s personal! In: the International User Modeling Conference
(UM05). (2005)

12. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: Grouplens: An
open architecture for collaborative filtering of netnews. In: Proceedings of ACM
1994 Conference on Computer Supported Cooperative Work, Chapel Hill, North
Carolina, ACM (1994) 175–186

13. Polat, H., Du, W.: Svd-based collaborative filtering with privacy. In: Proc. of ACM
Symposium on Applied Computing, Cyprus (2004)

Information Recovery and Discovery in

Collaborative Web Search�

Maurice Coyle and Barry Smyth

Adaptive Information Cluster, School of Computer Science & Informatics,
University College Dublin, Belfield, Dublin 4, Ireland

{maurice.coyle,barry.smyth}@ucd.ie

Abstract. When we search for information we are usually either trying
to recover something that we have found in the past or trying to discover
some new information. In this paper we will evaluate how the collabo-
rative Web search technique, which personalizes search results for com-
munities of like-minded users, can help in recovery- and discovery-type
search tasks in a corporate search scenario.

1 Introduction

Finding new ways to improve the quality of Web search engines has the potential
to have a significant impact when it comes to helping people to find the right
information at the right time. Modern web search engines face a number of
challenges, such as the scale and growth rate of the Web and the needs and
expertise of the average Web user. For example, Web search engines experience
difficulties in disambiguating the vague queries that are now commonplace in
Web search; the typical search query might only contain 2 or 3 keywords, which
rarely help to clearly identify the searcher’s needs [11].

The result has been an intensive research effort to develop new techniques
for improving Web search quality. Early successes are now well known with,
for example, Page & Brin [2] famously incorporating page connectivity informa-
tion into result ranking in what came to be a unique feature of Google. Many
researchers have sought recently to include context information as a way to im-
prove the selection and ranking of search results with some explicitly requesting
such information from searchers [1,8], while others infer context implicitly by ob-
serving a user’s actions or activities [3,6]. Indeed to many, the next generation of
search technology will focus on the provision of personalized search, by learning
about the long-term preferences of users and inferring their short-term needs, in
order to promote results that are likely to be more relevant to individuals.

When we think about search it is often useful to distinguish between two
types of search activity. Many search sessions are focused on information recov-
ery in the sense that the searcher is looking for information that they have seen
before or that they have previously searched for and found. Alternatively, there
� This material is based on works supported by Science Foundation Ireland under

Grant No. 03/IN.3/I361.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 356–367, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Information Recovery and Discovery in Collaborative Web Search 357

are those sessions that are focused on information discovery in the sense that
the searcher is looking for new information. O’Day and Jeffries [10] highlight
how searcher behaviour often combines elements of recovery and discovery as
searchers often engage in series’ of interconnected searches over time and explore
topics in an undirected fashion. [7] presents the results of a limited laboratory
study which shows that searchers’ ability to refind information is based on their
familiarity with the search task and the frequency with which they perform the
same or similar tasks. [14] presents the results of an analysis of query logs which
show that users frequently engage in re-finding behaviour. While the analyses
in [7,10,14] focus on the individual searcher, in this paper we consider similar
behaviours within a community of related searchers and show how the search
patterns of such communities can be harnessed to provide useful assistance dur-
ing individual search sessions.

The field of exploratory search (see [16]) seeks to aid users in acquiring and
aggregating new information. In that context, Marchionini [9] distinguishes be-
tween three related types of search activity: lookup is concerned with fact
retrieval or known item search and is analogous to recovery-oriented search,
while learning and investigating activities are more exploratory in nature and
can be viewed as being discovery-oriented. In [15] the concept of interaction his-
tories is introduced to demonstrate that users’ information discovery through
browsing can be enhanced by leveraging past users’ actions. As stated in that
work, “we all benefit from experience; preferably someone else’s”.

In this paper we utilise an approach to personalized Web search known as
collaborative Web search (CWS), described in detail in [12,13], which is specifi-
cally designed to aid in the recovery and discovery of information by harnessing
the search patterns of a community of like-minded searchers. CWS is designed to
work in concert with some underlying search engine(s), post-processing result-
lists to better match the inferred interests of the community. In short, results
that have been selected by community members in the past are likely to be pro-
moted for similar queries in the future. Since, using CWS, searchers benefit from
the searching histories of their community members, the learning- and discovery-
oriented searching tasks that have been performed by community members in
the past can be leveraged so that when future users perform similar tasks, they
are more recovery-oriented.

Other work using the core CWS technique [12,13] has focused on a particular
architecture and promotion mechanism. In this paper we will make a number
of contributions. First, to tackle some problems experienced by CWS imple-
mentations in the past such as reduced usage due to user mistrust and poor
performance, we will describe a new proxy-based architecture that facilitates
improved integration opportunities with underlying search engines. Second, we
will describe recent interface work that goes beyond the simple promotion of
results to explore how such promotions should be communicated or explained
to searchers and the type of information that can make up such explanations.
Finally, we will describe the results from a recent live-user trial of CWS in a
corporate search context that, for the first time, looks specifically at how CWS

358 M. Coyle and B. Smyth

promotions aid in the recovery and discovery of information and shows how
leveraging the search histories of other users for these promotions is preferable
to using only individuals’ searching histories.

2 Collaborative Web Search

Collaborative Web search (CWS) complements the results of an underlying
search engine by promoting results that are likely to be relevant to the com-
munity’s interests and preferences. While the basic CWS approach has been
described in other work [13], we will review the core technique in this section
and describe how we have extended it to accommodate a more flexible deploy-
ment architecture and a novel explanation-oriented interface.

2.1 Community-Based Promotion

For a target search query, CWS combines a default result-list, RS , from a stan-
dard search engine with a set of recommended (promoted) results, RP , drawn
from the community’s past search history. To do this the search histories of a
given community, C, of users (C = {U1, ..., Un}) are stored anonymously in a hit-
matrix, HC , such that each row corresponds to some query qi and each column
to some selected result page pj. The value stored in HC

ij refers to the number of
times that page pj has been selected for query qi by members of C.

Each hit-matrix acts as a repository of community search experiences: the
results that the community members have found to be relevant for their queries.
When responding to a new target query, qT , HC is used to identify and rank
results that have been regularly selected in the past. These results can then
be promoted ahead of any results returned by the underlying search engine
according to their estimated relevance with respect to the community’s interests.

The relevance of a result pj in relation to a query qi can be estimated by
the relative frequency that pj has been selected for qi in the past, as shown in
Equation 1. More generally, we can pool the results that have been selected for
queries that are similar to qT (see Equation 2) and rank each result according to
the weighted model of relevance (see Equation 3, where WRel(pj, qT , q1, ..., qn)
represents the weighted relevance score of page pj for query qT and Exists(pj , qi)
is a function whose value is 1 if Hij is non-zero and 0 otherwise), which weights
each individual result’s relevance by the similarity of the associated query to qT .

Relevance(pj, qi) =
Hij∑
∀j Hij

(1)

Sim(q, q′) =
|q ∩ q′|
|q ∪ q′| (2)

WRel(pj, qT , q1, ..., qn) = (3)∑
i=1...n Relevance(pj, qi) • Sim(qT , qi)∑

i=1...n Exists(pj , qi) • Sim(qT , qi)

Information Recovery and Discovery in Collaborative Web Search 359

Although CWS depends on the underlying search service to provide relevant
results somewhere in the result list for a given query, it enhances any search
service in a number of ways. Firstly, since CWS can return results that have
been selected for similar queries, relevant results which may not have appeared
at all for the target query can be included. Also, if a relevant result is not returned
in the first page of results, the chances of a searcher finding it diminish greatly.
With CWS, there only needs to be a small minority of determined searchers
willing to forage for these relevant results and select them so that in subsequent
searches, they can be promoted to the first result page.

2.2 A Proxy-Based Architecture for Collaborative Web Search

In this paper we detail an architecture for implementing CWS which provides
for a more seamless and flexible integration with existing search engines. CWS
has previously been implemented as a form of meta-search, post-processing the
results of some underlying search engine(s) and presenting these re-ranked re-
sults through a dedicated search interface. The problem with this approach is the
need to convince users to try an alternative search service and learn a new search
interface. The architecture presented here facilitates a very different form of inte-
gration with an underlying search engine, by using a proxy-based approach (see
Figure 1) to intercept queries on their way to the underlying search engine and
manipulate the results that are returned from this engine back to the searcher;
basically users get to use their favourite search engine in the normal way, but
CWS promotions are incorporated into the result-lists directly via the proxy.

Fig. 1. Proxied architecture for a CWS system

360 M. Coyle and B. Smyth

Briefly, the proxy agent (currently a standard Squid1 proxy) operates to trans-
parently filter URL requests from all configured browsers. In this case, the proxy
redirects Google requests (e.g. query submissions, result selections, etc.) to the
CWS server. For example, consider a user Ui submitting query qT to Google.
This request is redirected to the CWS whereupon two things happen. First, the
query is passed on to Google and the result-list RS is returned in the normal
way. Second, in parallel the query is also used to generate a ranked set of promo-
tion candidates, RP from U ′

is community hit matrix, as outlined above. These
promotion candidates are annotated by the explanation engine (see Section 2.3)
to present the searcher with a graphical representation of their community his-
tory. Result lists RP and RS are merged and the resulting list Rfinal is returned
to the user; typically this merge involves promoting the k (e.g., k = 3) most
relevant promotions to the head of the result-list.

Figures 2 and 3 present example screen shots for the result-list returned by
Google for the query ‘Michael Jordan’. In the case of Figure 2 we see the default
Google result-list, with results for the basketball star dominating. In Figure 3,
however, we see a result-list that has been modified by our proxy-based version
of CWS, trained by a community of artificial intelligence and machine learning
researchers. The results appear to be standard Google results but now we see
that the top 3 results are promotions for the well-known Berkeley professor.

Fig. 2. The result list returned by Google in response to the query ‘michael jordan’

2.3 An Explanation-Oriented Interface

One of the contributions of this paper relates to the manner in which promoted
results are presented to the searcher. We propose that there are potential ben-
efits to be gained from exposing the searcher to the search history of a pro-
moted result, to help them better understand the reasons behind its promotion.

1 http://www.squid-cache.org

Information Recovery and Discovery in Collaborative Web Search 361

Fig. 3. The result list returned by CWS in response to the query ‘michael jordan’ issued
within a community with a shared interest in computer science. The extra explanation
information available by mousing over each promoted result icon type is also shown.

Thus, we introduce an explanation engine to the CWS architecture, which anno-
tates promoted results with one or more explanation icons designed to capture
different aspects of the result’s community history. Specifically, three basic types
of explanation icon are used: popularity icons convey the overall selection pop-
ularity of a result among the target community; recency icons indicate how
recently the result has been selected by a community member and can help the
searcher to judge how current a particular promotion might be; finally, related
queries icons indicate whether the result in question has been previously selected
by the community for any queries that are related (similar) to the current target
query.

In Figure 3 we can see how each of the top 3 promotions are annotated
with different subsets of the above icons, depending on the selection history of
the result in question. Moreover, ‘mousing-over’ an explanation icon will reveal
additional explanatory detail to the searcher; see Figure 3. For example, mousing-
over the related queries icon will present a list of the most common related queries
that have led to selections for the result in question. These related queries can
themselves be selected by the searcher to initiate a new search.

3 Evaluation

The current proxy-based architecture and explanation-oriented interface has
been used as the basis of a long-term trial of the CWS approach in a corpo-
rate search scenario. In this section we will describe recent results drawn from
this trial, paying particular attention to promoted results and the origin of these
promotions as indicators of recovery and discovery behaviour on the part of
searchers. Specifically, we are interested in how CWS can help to aid recovery
and discovery tasks among the community of searchers. For an evaluation of the
utility of the explanation icon enhancements to the CWS interface, see [4].

362 M. Coyle and B. Smyth

3.1 Setup

The objective of this trial was to explore the impact of CWS in a realistic search
setting. The trial participants included the 70+ employees, aged from their early
20s to early 50s, of a local Dublin software company. The CWS architecture was
configured so that all Google search requests were redirected through the CWS
system. The search experience was based on the standard Google interface, with
a maximum of 3 results promoted (and annotated with explanations) in any
session; if more than 3 promotions were available then un-promoted results were
annotated with explanation icons but left in their default Google position.

As evidence in favour of the new proxy-based architecture, feedback from trial
participants has been positive, both in terms of the availability of the familiar
Google interface and search response times. This contrasts with previous trials,
which involved a custom interface, as participants were often reluctant to learn
the new search interface or to depart from their trusted Google. The results
presented here are drawn from just over 10 weeks of usage (from 27-07-2006 to
09-10-2006) and cover a total of 12,621 individual search sessions.

One of the challenges in evaluating new search technologies in a natural setting
is how to evaluate the quality of individual search sessions. Ideally we would
like to capture direct feedback from users as they search when it comes to the
relevance of search results (promotions versus standard results in this case). For
example, it would be relatively straightforward to ask users to provide feedback
during each session or as they selected specific results. Unfortunately, this was
not possible in the current trial because participants were eager to ensure that
their search experience did not deviate from the norm, and were unwilling to
accept pop-ups, form-filling or any other type of direct feedback.

As an alternative, we will use an indirect measure of search session relevance,
based on the concept of a successful session [12,13]. A successful session is defined
as one where at least one search result was selected, indicating that the searcher
found at least one (apparently) relevant result. While this is a relatively crude
measure of overall search performance it allows us to compare search sessions
in a systematic way. Finally, in investigating recovery and discovery behaviours,
we will refer to the clickthru probability of promotion types (see Section 3.3 for
a description of the different types of promotions that were considered). This
represents the chance that a promotion of a given type will be selected, and
is calculated as the number of promotions of that type that were selected as a
percentage of the total number of promotions of that type that were displayed.

3.2 Success Rates: Discovery vs Recovery Tasks

To begin with we compare search sessions with promotions (promoted sessions)
to search sessions without promotions (standard sessions) in terms of their suc-
cess rates. During the course of the 10 week trial, approximately 22% of sessions
were promoted sessions and the success rates are presented in Figure 4. These
results indicate that, on average, sessions with promotions are more likely to be
successful (62%) than standard sessions (48%) containing only Google results, a
relative benefit of almost 30% due to the community-based promotion of results.

Information Recovery and Discovery in Collaborative Web Search 363

Fig. 4. The success rates for sessions containing promotions compared to those without
promotions

This difference in success rates also speaks to some basic differences when it
comes to recovery and discovery tasks. Standard sessions can be considered to
be examples of users engaging in discovery tasks because neither they nor their
colleagues have searched for similar information previously, otherwise promo-
tions would have been made based on these past sessions. Of course this view is
somewhat simplified because potentially there are standard sessions which are
recovery tasks but whose related queries occurred before the start of the trial.

Intuitively, discovery is likely to represent a more challenging search task com-
pared to recovery. In the case of the latter the searcher is likely to remember
something about queries that they may have used in the past to locate a par-
ticular result. The same is obviously not true in discovery, since there are no
such past queries. Thus, we would expect a higher success rate for recovery type
sessions than discovery type sessions. This intuition is borne out by the higher
success rates of promoted sessions. Promoted sessions are likely to include many
recovery type sessions because the promotions will come from the past sessions of
the current searcher. However some promoted sessions are also likely to contain
promotions from the past sessions of other users. From the current searcher’s
perspective these are discovery sessions, because they themselves have not pre-
viously searched for this information before. However, from the perspective of
the community as a whole, they are more like recovery sessions, because others
have successfully searched for this information before. We will see in a later sec-
tion how CWS can effectively transform a challenging discovery task (for a given
searcher) into a more manageable recovery task, by promoting the selections of
others, and in so doing improve their success rates.

3.3 Promotion Frequency and Clickthru Probability

Ultimately in this paper we are interested in better understanding the source of
promotion success as it relates to recovery and discovery tasks. For any given
search session, promotions may originate from the target searcher’s own past

364 M. Coyle and B. Smyth

search sessions (we will refer to these as self promotions) or from the search
sessions of other community members (we will refer to these as other promo-
tions). We also consider promotions that have originated both from the searcher’s
own past and from the past sessions of others; a self & other promotion.

As mentioned briefly in the section above, sessions containing self promotions
are related to recovery tasks for the searcher, whilst sessions containing only the
promotions of others are discovery tasks from the viewpoint of the searcher. The
key issue is the relative value of these different types of promotions. To begin
with, in the bar graph in Figure 5, we show the overall frequency of each type
of promotion and their selection rates. In total, during the course of the trial
nearly 5000 individual promotions were made and Figure 5 tells us that about
75% of these were self promotions with just over 20% coming from the search
sessions of other users. We also see that over all of the promotions that were
selected, just under 60% of these were self promotions whereas nearly 40% were
from other users. This is interesting since the frequency of self promotions tell
us that searchers are often engaged in recovery-type search activity. However,
despite this apparent focus on recovery we find users frequently selecting results
that have been previously selected by other users (other promotions).

In this way CWS promotions are helping users to discover new information
even during recovery tasks; information that, presumably, they had previously
missed. This is clarified in the line graph in Figure 5, where we present the
overall probability that a given promotion type will be selected. We see that self
promotions are only selected about 12% of the time, whereas the promotions
from other community members are selected more than twice as often (25%).

We are finding that in a very practical sense, the past search behaviour of
other users is proving to be twice as useful - when it is available - as the past
search behaviour of the current searcher. In a corporate setting this is important,
given the time that the average knowledge-worker spends (or wastes) searching

Fig. 5. Percentage of all promotions and selected promotions that had each source type
(bars); probability that a result from each source will be selected (line)

Information Recovery and Discovery in Collaborative Web Search 365

for information. According to a recent IDC report [5], the average knowledge-
worker spends 25% of their time searching for information and an enterprise
employing 1,000 knowledge workers will waste nearly $2.5 million per year (at
an opportunity-cost of $15 million) due to an inability to locate and retrieve
information. Different employees have different levels of search expertise and
these results suggest that CWS has an important role to play when it comes to
sharing this expertise, because everyone can benefit from the searches of others.

3.4 A Session-Based Analysis

The previous results present averages over all promotions and as such do not tell
us about the promotion success at the level of individual search sessions, which is
arguably more important when it comes to understanding granular search tasks.
To begin with, we measure the relative success rates of sessions containing the 3
types of promotions (see the bar graph in Figure 6). For sessions that contain self
promotions only (approximately 75% of promoted sessions), we find that they
are successful just under 60% of the time. In contrast, about 23% of sessions
contain promotions that only come from other users, and more than 65% of
these sessions are successful. Finally, for the 2% of sessions that contain both
types of promotions (self & other) we find success rates in excess of 71%.

These results reconfirm the value of promotions (of other users in particular).
Remember from Figure 4 that the baseline average success rate of standard
sessions (in which discovery tasks are likely to dominate) is only 48%. Using
(self) promotions to aid recovery increases success rates from 48% to almost 60%,
a 25% relative increase. Using the promotions of others to effectively convert a
discovery task into a recovery task (from the standpoint of the searcher) increases
the success rate even further, to over 65%, a relative increase of more than 35%.

Fig. 6. The success rates for sessions containing promotions for each promotion source
type (bars) and the probability that a session containing promotions from a given
source will result in one of the promotions being selected (line)

366 M. Coyle and B. Smyth

Finally, it is worth considering the probability that at least one promotion will
be selected from these promoted session types (see the line graph in Figure 6), as
an analogue to the clickthru probabilities presented in the previous section. For
example, we see that on average, in sessions that only contain self promotions,
there is a 30% probability that any one of these promotions will be selected. In
contrast, for sessions containing the promotions of other searchers, this selection
probability almost doubles to nearly 60%. And in sessions with both self and
other promotions, the selection probability grows to nearly 70%.

4 Conclusions

Collaborative Web search seeks to improve the quality of an underlying search
engine by promoting results that have been previously selected by a community
of searchers. In this paper we have introduced a new architecture for collab-
orative Web search and an explanation-based interface for the presentation of
promoted results. In addition, we have presented the results of a live-user trial
and considered their implications from the perspective of how they relate to
recovery and discovery activity among searchers in a corporate search setting.

The strength of CWS is twofold: (1) it helps to highlight previously selected
results (from similar past queries) in recovery tasks; (2) it helps to convert some
discovery tasks into recovery tasks by highlighting the promotions of other com-
munity members. In relation to (1) the success rate increases by 25% (from 48%
to 60%) and in relation to (2) the success rate increases by more than 35% (from
48% to above 65%). Thus we can conclude that this type of community-based
result promotion is providing useful assistance to searchers and, in particular,
that the past sessions of other users are playing a particularly powerful role when
it comes to making result recommendations; searchers are more than twice as
likely to select the promotions of others - when they are made - than their
own.

These benefits can have a significant impact on many search scenarios. Our
results indicate that CWS can assist searchers in at least 25% of their sessions,
improving their success rates by an average of 30%, which is an improvement of
nearly 8% across all sessions. Translating these improvements into saved search
time can have a significant impact on enterprise productivity. For example, using
the data in [5] suggests an annual saving for a 1,000-employee company of up to
$200,000 and a recovered opportunity-cost of up to $1.2 million.

References

1. Krishna Bharat. SearchPad: Explicit Capture of Search Context to Support Web
Search. In Proceedings of the Ninth International World-Wide Web Conference
(WWW ’00), pages 493–501. North-Holland Publishing Co., 2000.

2. Sergey Brin and Larry Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

Information Recovery and Discovery in Collaborative Web Search 367

3. J. Budzik and K. Hammond. User Interactions with Everyday Applications as
Context for Just-In-Time Information Access. In Proceedings of the 3rd Inter-
national Conference on Intelligent User Interfaces (IUI ’00), pages 44–51. ACM
Press, 2000.

4. M. Coyle and B. Smyth. On the Community-Based Explanation of Search Results.
In Proceedings of the 10th International Conference on Intelligent User Interfaces
(IUI ’07), page (in press). ACM Press, 2007. Hawaii, U.S.A.

5. Susan Feldman and Chris Sherman. The High Cost of Not Finding Information.
In (IDC White Paper). IDC Group, 2000.

6. L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and
E. Ruppin. Placing search in context: the concept revisited. In Proceedings of
the 10th International Conference on the World Wide Web (WWW ’01), pages
406–414. ACM Press, 2001.

7. Robert G. Capra III and Manuel A. Pérez-Quiñones. Using web search engines to
find and refind information. Computer, 38(10):36–42, 2005.

8. E. Glover, S. Lawrence, M. D. Gordon, W. P. Birmingham, and C. Lee Giles. Web
Search - Your Way. Communications of the ACM, 44(12):97–102, 2000.

9. Gary Marchionini. Exploratory search: from finding to understanding. Communi-
cations of the ACM, 49(4):41–46, 2006.

10. Vicki L. O’Day and Robin Jeffries. Orienteering in an information landscape: how
information seekers get from here to there. In Proceedings of the SIGCHI conference
on Human factors in computing systems (CHI ’93), pages 438–445, New York, NY,
USA, 1993. ACM Press.

11. Craig Silverstein, Monika Henzinger, Hannes Marais, and Michael Moricz. Analysis
of a Very Large AltaVista Query Log. Technical Report 1998-014, Digital SRC,
1998.

12. Barry Smyth, Evelyn Balfe, Oiśın Boydell, Keith Bradley, Peter Briggs, Maurice
Coyle, and Jill Freyne. A Live-user Evaluation of Collaborative Web Search. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI ’05), pages 1419–1424. Morgan Kaufmann, 2005. Edinburgh, Scotland.

13. Barry Smyth, Evelyn Balfe, Jill Freyne, Peter Briggs, Maurice Coyle, and Oiśın
Boydell. Exploiting query repetition and regularity in an adaptive community-
based web search engine. User Modeling and User-Adapted Interaction: The Jour-
nal of Personalization Research, 14(5):383–423, 2004.

14. Jaime Teevan, Eytan Adar, Rosie Jones, and Michael Potts. History repeats itself:
repeat queries in yahoo’s logs. In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval (SIGIR
’06), pages 703–704, New York, NY, USA, 2006. ACM Press.

15. A. Wexelblat and P. Maes. Footprints: History-Rich Web Browsing. In Proceedings
of the Third International Conference on Computer-Assisted Information Retrieval
(RIAO ’97), pages 75–84, 1997. Montreal, Quebec, Canada.

16. Ryen W. White, Bill Kules, Steven M. Drucker, and Monica M.C. Schraefel. Sup-
porting exploratory search. Communications of the ACM Special Issue., 49(4),
2006.

Collaborative Filtering Based on Transitive

Correlations Between Items

Alexandros Nanopoulos

Department of Informatics, Aristotle University of Thessaloniki, Greece

Abstract. With existing collaborative filtering algorithms, a user has
to rate a sufficient number of items, before receiving reliable recommen-
dations. To overcome this limitation, we provide the insight that correla-
tions between items can form a network, in which we examine transitive
correlations between items. The emergence of power laws in such net-
works signifies the existence of items with substantially more transitive
correlations. The proposed algorithm finds highly correlative items and
provides effective recommendations by adapting to user preferences. We
also develop pruning criteria that reduce computation time. Detailed
experimental results illustrate the superiority of the proposed method.

1 Introduction

Collaborative Filtering (CF) is a method that provides personalized recommen-
dations, based on suggestions of users with similar preferences. CF helps users
to identify interesting information, especially when the number of items renders
their individual examination prohibitive.

CF was initially developed for information-filtering systems, which allowed
users to find relevant documents based on previous comments by other users,
e.g., the Information Tapestry project [5]. During the recent years, following its
success, the use of CF has been extended to several new domains. In the World-
Wide-Web, non-guided search usually returns numerous irrelevant results. Active
Filtering (AF) [10] is a type of CF that tries to solve this problem by allowing
users to form lists of commonly used links and recommend them to others. CF
has also attracted significant attention in the area of retail and especially in e-
commerce [9,14]. In these areas, CF matches preferences of the target user with
those of similar users, based on purchase or browsing patterns, e.g., Amazon,
TiVo. Finally, CF has been proposed for Web personalization, by customizing
the content and structure of a web site to meet the specific needs of users [11].

CF algorithms often are categorized either as memory-based or as model-
based. Memory-based algorithms operate directly on user-preference data and
make predictions based on the most similar past users. In the following, data
pertaining to user preferences are called ratings. Model-based algorithms first
develop a model from the training data, which is then used to make predictions.
Research results and practical experience have reported that memory-based al-
gorithms attain good performance in terms of accuracy [2,7]. Moreover, they
are simple, since in contrast to model-based algorithms, they do not require

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 368–380, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Collaborative Filtering Based on Transitive Correlations Between Items 369

complex tuning of parameters. These characteristics have yield to the wide ac-
ceptance of memory-based CF algorithms in many real-world applications, most
notably Amazon [9]. Recent research has attempted to combine these two classes,
e.g., [17,19].

Motivation. With a memory-based CF algorithm, a new user has to rate a suf-
ficient number of items, before the algorithm is able to provide reliable and ac-
curate recommendations. However, in most real-world applications of CF, e.g., e-
commerce, web-personalization, it is crucial for users to receive good recommenda-
tions at the early steps of their interaction. Without this requirement, factors like
customer attraction, retention, or satisfaction are significantly affected. Therefore,
the aforementioned problem consists one of the main limitations of memory-based
algorithms. The reason is that these algorithms use only direct correlations be-
tween items or users, which are imprecise when the new user has not rated many
items. The problem is further intensified by the effect called sparsity, which occurs
because past users tend to rate only a very small fraction of items.

Following a different direction, we identify that direct correlations between
items can be viewed as a kind of network. In this framework, the way items are
connected through paths, can be considered as transitive correlations between
them. Moreover, we recognize that some items are significantly more connected
with others via paths. This property is a valuable source of information when
existing ratings do not suffice, and designates the suitability of such items for
recommendation purposes. These issues have not been examined so far in a sim-
ilar framework. What is, therefore, required is a new method that will take them
into account in order to significantly improve the quality of recommendations.

Contribution. In this paper, we propose a novel algorithm, which considers
the issues discussed previously. Our contributions are summarized as follows: (a)
We provide the insight that, when considering the direct correlations between
items as a network, some items clearly emerge to be substantially more accessible
from others through paths. (b) We define the notion of accessibility matrix, which
helps to find separately for each item, the items that are more reachable from
it. This differs from existing network analysis methods, which only find highly
accessible items at global level. The reason is that, given a new user, we want to
recommend items that are most reachable from (correlated with) the items he
has already rated, thus to adapt to his preferences. (c) To clearly understand the
characteristics of the proposed approach, we analyze the distribution of values in
accessibility matrixes and detect that it tends to form power laws. This fact ver-
ifies our assumption about the existence of items that are much highly accessible
than others. (d) To address issues pertaining to the time required to form the
accessibility matrix, we develop pruning criteria that reduce the search space.
(e) We present detailed experimental results that compare the performance of
the proposed method against existing memory-based CF algorithms and existing
network analysis methods, using real and synthetic data sets.

The rest of this paper is organized as follows. Section 2 summarizes the related
work. The proposed approach is described in Section 3. In Section 4 we describe

370 A. Nanopoulos

the qualitative characteristics of our method, whereas experimental results are
given in Section 5. Finally, Section 6 concludes this paper.

2 Related Work

Memory-based CF includes user-based methods and item-based methods. User-
based methods [2,6,13] use ratings from similar users to make predictions for
a new user. In contrast, item-based methods [4,15] rely on similarity between
items instead of users. Previous research [4,9,15] has shown the clear advantage
of item-based versus user-based methods. Thus, for comparison purposes, we
consider the method proposed in [15], which is henceforth denoted as IB.

Preference about items can be expressed either explicitly on a rating scale,
e.g., 1–5, or implicitly, by recording user actions, like “page visited” or “item
purchased”. The latter approach results to binary-valued log-archives, which
can be conceptualized as ratings on the 0/1 scale. In this scale, 1 represents
‘relevance’ or ‘likeness’ similarly to the notion of ‘relevance’ in text retrieval [18].
Since users are unlikely to provide explicit ratings (they may consider it as
annoying or time demanding) [3], the implicit, so-called “log-based”, acquisition
of user preferences makes CF more favorable in practice. For this reason, we focus
on this category and assume that ratings are binary. However, it is possible to
extend the proposed approach for multi-scale ratings as well.

Recent research has considered the sparsity problem. Schein et al. [16] propose
to combine content and collaborative data under a single probabilistic frame-
work. For binary ratings, Huang et al. [8] use transitive associations between user
and items in the bipartite user-item graph. Transitive associations are formed
by spreading activation algorithms. Experiments in [8] show that this method
outperforms IB (and other classic CF algorithms) when data are very sparse,
but otherwise its performance degrades due to the over-activation effect. Differ-
ently from [8], our approach considers transitive correlations between items, not
between users and items. Thus, it does not rely on complex spreading activation
schemes, but naturally extends the widely accepted item-based algorithms with
the notion of transitive correlations. Also, our focus is not on data sparsity in
general, but on how to provide good recommendations when the new user has
not rated a sufficient number of items (a case of the cold-start problem [16]).
Finally, to address sparsity, Papagelis et al. [12] propose a kind of social net-
work, and they find transitive associations between users in the form of trust
inferences. Their approach extends user-based methods, whereas we focus on
item-based methods, because of their advantage over user-based methods.

3 Proposed Methodology

3.1 Network Formation

In this section we describe how to form a network based on direct correlations
between items. Assume that I is the domain of all items. As described, we assume

Collaborative Filtering Based on Transitive Correlations Between Items 371

boolean transactions. A set, Y , of items rated with 1 by a user, is denoted as
transaction, thus Y ⊆ I. D henceforth denotes a collection of user transactions.
To measure correlation between items, we need some simple definitions.

Definition 1 (Occurrence probability). The occurrence probability for a set
of items X ⊆ I, denoted as P (X), is defined as the relative number of D’s
transactions that contain X, i.e.: P (X) = |{Y |Y ∈D,X⊆Y }|

|D| .

When X = {i}, i ∈ I (X is a singleton), then P (X) = P ({i}) denotes the
occurrence probability of item i.

Definition 2 (Conditional occurrence probability). Let i, j be two items
of I. Given the occurrence of i, the conditional occurrence probability of j is
defined as C(j|i) = P ({i,j})

P ({i}) .

C(j|i) measures the correlation between each pair of items i, j. A network G
can be formed as a directed weighted graph, where for each item i ∈ I we have
a corresponding vertex in G. Between two items i, j we have an arrow in G if
C(j|i) > 0. To an arrow between i and j we assign a weight equal to C(j|i).

Example 1. Assume a collection of 7 past transactions, depicted in Figure 1a
(with IDs a − g). The corresponding network is depicted in Figure 1b. For in-
stance, there is an arrow from vertex 1 to vertex 3 with weight 0.33, because
P ({1}) = 3/7, P ({3}) = 4/7, and P ({1, 3}) = 1/7. Therefore, the weight is
equal to C(3|1) = P ({1, 3})/P ({1}) = 1/3. In the inverse direction, the arrow is
from vertex 3 to vertex 1 with weight 0.25. There is no arrow from vertex 1 to
vertex 2, because C(2|1) = 0.

7

4

3

2

1 6

5

5 1 6

1 5

3 7 2

4 7 3

2 3

7 4 2

1 3 7 6

(a)

(b)

(c)

(d)

(e)

(f)

(g)

6 (2 3)

(a) (b)

new

.33

.67 .5

.33

.67

.33

.67

.25

.5

.25

.25

.75

.5

.51

1 .5

1 .67

.5
.5

.5 .5

.75

.25
.25

Fig. 1. Example of network formation

3.2 Computing the Accessibility

In a network G, a path p = 〈i1, . . . , in〉 of length n, is a sequence of successive
arrows of the form ij → ij+1 between n items of G. For a path p, s(p) denotes

372 A. Nanopoulos

the starting item of p and e(p) the ending item. A path p implies a transitive cor-
relation between items s(p) and e(p). To measure the amount of correlation, we
assume that the transition from item s(p) to item e(p) through path p, represents
a Markov chain, thus we define the corresponding transitive probability.

Definition 3 (Transitive probability). For two items i1 and in for which
there exist a path p = 〈i1, . . . , in〉, we define the transitive probability through p

as T (i1, in|p) =
∏n−1

j=1 C(ij+1|ij), ij ∈ p, 1 ≤ j ≤ n.

Example 2. In the network of Figure 1b, for the path p = 〈1, 3, 2〉, we have
that T (1, 2|p) = C(3|1) · C(2|3) = 1/3 · 1/2 = 0.167.

To measure how accessible is an item from another item, we define the acces-
sibility matrix based on the notion of acyclic path. A path p = 〈i1, . . . , in〉 is
acyclic when no vertex appears more than once within it, i.e., ij �= ik for j �= k.

Definition 4 (Accessibility matrix). For two items i, j ∈ I, let P(i, j) be the
set of all acyclic paths for which s(p) = i and e(p) = j. We form the accessibility
matrix A, whose elements are given as A(i, j) =

∑
∀p∈P(i,j)

T (i, j|p).

A(i, j) measures the overall transitive correlation between items i and j. Notice
that A is not symmetric. Since we are interested in transitive correlations, the
diagonal of A matrix is of no use and henceforth is omitted.

Example 3. For the network of Figure 1b, to compute A(1, 2), we measure the
transitive probability of all 34 acyclic paths that connect item 1 to item 2 (their
lengths are between 3 and 7). This is depicted in Figure 2a. Next, we take the
summation, which results to A(1, 2) = 2.27. In the same way, we can compute
the entire accessibility matrix A, which is given in Figure 1b.

Path T(1,2|Path)
1 → 3 → 2 0.167
1 → 7 → 2 0.167

1 → 3 → 4 → 2 0.042
1 → 3 → 7 → 2 0.125
1 → 6 → 3 → 2 0.167

...
...

1 → 5 → 6 → 7 → 4 → 3 → 2 + 0.021
A(1, 2) = 2.27

(a)

1 2 3 4 5 6 7
1 - 2.27 2.19 1.83 1.22 1.43 2.19
2 2.27 - 2.21 1.44 1.98 1.81 2.17
3 1.65 1.66 - 1.39 1.43 1.31 2.04
4 2.75 2.16 2.78 - 2.39 2.19 2.51
5 1.82 2.96 2.86 2.39 - 1.60 2.86
6 2.15 2.71 2.63 2.19 1.60 - 2.62
7 1.65 1.63 2.04 1.25 1.43 1.31 -

(b)

Fig. 2. (a) Example of how to compute A(1, 2). (b) The resulting A matrix.

To form the accessibility matrix, for the moment we simply assume that we
take into account all acyclic paths between each pair of vertexes. These paths are
derived by performing a traversal over the network. In Section 3.4 we describe
the use of pruning criteria that constrain the number of examined paths.

Collaborative Filtering Based on Transitive Correlations Between Items 373

3.3 Generating Recommendations

To find which items to recommended to a new user, we propose the PB algorithm:

Algorithm: PB
Input : the domain of items I, the current transaction X of the new user, the

accessibility matrix A, the required number of recommendations M .
Output : M recommended items.
1. For each j ∈ I we define its R(j) value as follows:

R(j) =

⎧⎨
⎩

∑
∀i∈X

A(i, j), j �∈ X

0, otherwise.

2. Recommend the M items with the highest R(j) value.

We call this algorithm Path-based (PB), because it is based on the consider-
ation of accessibility through paths. Intuitively, PB recommends the items with
the highest overall accessibility from the items of the current transaction. In
case that only M ′ < M items have a positive R(j) value, we resolve the tie by
selecting the remaining M − M ′ items j (j �∈ X) that have the highest overall
occurrence probability

∑
∀i∈X P ({i, j}).

Example 4. In the example of Figure 1a, assume that the transaction of the
new user is X = {6}. Also assume that we want to recommend M = 2 items.
From Figure 2b we find that A(6, 2) and A(6, 3) are the two highest values in
the 6-th row of matrix A. Therefore, the two recommended items are 2 and 3.

3.4 Pruning Criteria

The number of all acyclic paths between the vertexes of a directed graph (net-
work) grows exponentially with the size of the graph. To manage the computa-
tional cost, we develop three pruning criteria that drastically reduce the number
of considered paths without affecting the detection of the most accessible items.
Recall that paths are formed with a traversal of the network. All criteria are
applied to the current path that is extended at each step of this procedure. The
description of the criteria follows.

Maximum path length (L). We stop the extension of the current path when
its length exceeds a parameter L. In a long path, the transitive probability
between its two ends decreases rapidly. By omitting a long paths, we exclude
small transitive probability, thus the values in the accessibility matrix are not
much affected.

Maximum conditional probability (C). We stop the extension of the current path
p when the value C(s(p), e(p)|p) is less than a parameter C (0 ≤ C ≤ 1). This cri-
terion acts complementary to the previous one and filters out short paths which
do not have a significant transitive probability between their ending vertexes.

374 A. Nanopoulos

Maximum fraction of followed neighbors (N). When extending the current path
p, we consider only a fraction N (0 ≤ N ≤ 1) of neighboring vertexes, i.e., those
for which exists an arc from e(p) to them. This criterion reduces the search
space of the graph-traversal procedure. We have examined several heuristics
about how to select neighbors, e.g., select the N neighbors with the highest con-
ditional probability w.r.t. the current node. However, we did not find significant
differences among them. For this reason we use the most simple one, that is, we
select at random among them.

4 Understanding the Characteristics of PB

4.1 Distribution of Values in the Accessibility Matrix

To understand the characteristics of PB, and the motivation behind it, we exam-
ine the distribution of values inside the accessibility matrix A. We use several real
data sets that are related with various application areas of CF (retail, web per-
sonalization, etc). Due to space constaints, we present results for the following:
(a) The BMS-POS data set (POS): contains several years worth of point-of-sale
data from a large electronics retailer.1 (b)The Clarknet log file (Clarknet): two
week’s worth of HTTP requests to the site of ClarkNet access provider (log was
processed to create transactions).2 (c) The Entree Chicago Recommendation
Data (Entree): a record of user interactions with the Entree Chicago restaurant
recommendation system.3

We start by examining the distribution of occurrence probabilities P (i) for all
items i. The results are illustrated in Figure 3. In all plots, the horizontal axis
contains the values of occurrence probabilities, whereas the vertical axis contains
the number of items (denoted as count) that have a particular occurrence prob-
ability. Both axes are plotted in logarithmic scale. We additionally include the
corresponding fitting curves (mean square error, linear or quadratic, depending
on the case).

For the POS data set, the distribution follows a power law, because in the log-
log scale it shows itself to be linear. This means that we can easily distinguish
a set of few items that appear substantially more frequently than the others.
For the Entree data set, although the distribution is not uniform, it does not
follow a power law. The distribution for Clarknet is between the previous two
cases: it does not follow a power law, but it is more skewed than the case of
Entree. Therefore, the three examined data sets represent three different degrees
of skewness in terms of the distribution of occurrence probabilities.

Next, we examine the distribution of values inside the accessibility matrix.
The results are depicted in Figure 4 (to ease the presentation, the zero values
are omitted; in all measurements L was set to 6). In the horizontal axis, each
point represents a value in the accessibility matrix (denoted as accessibility),

1 Available at http://fimi.cs.helsinki.fi/data/
2 Available at http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html
3 Available at: http://kdd.ics.uci.edu/databases/entree/entree.html

Collaborative Filtering Based on Transitive Correlations Between Items 375

−3 −2.5 −2 −1.5 −1 −0.5

0

0.5

1

1.5

2

2.5

3

log
10

(occurrence prob.)

lo
g

1
0
(c

o
u
n
t)

POS data set

(a)

−4 −3.5 −3 −2.5 −2 −1.5
0.5

1

1.5

2

2.5

3

log
10

(occurrence prob.)
lo

g
1

0
(c

o
u
n
t)

Clarknet data set

(b)

−2.8 −2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4

0

0.5

1

1.5

2

log
10

(occurrence prob.)

lo
g

1
0
(c

o
u
n
t)

Entree data set

(c)

Fig. 3. Distribution of occurrence probabilities for (a) POS, (b) Clarknet, (c) Entree

−3 −2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

1.5

2

2.5

log
10

(accessibility)

lo
g

1
0
(c

o
u
n
t)

POS data set

(a)

−0.5 0 0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

log
10

(accessibility)

lo
g

1
0
(c

o
u
n
t)

Clarknet data set

(b)

−2.5 −2 −1.5 −1 −0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

log
10

(accessibility)

lo
g

1
0
(c

o
u
n
t)

Entree data set

(c)

Fig. 4. Distribution of accessibility values for (a) POS, (b) Clarknet, (c) Entree

whereas the vertical axis contains the number (denoted as count) of items that
have a particular accessibility. As previously, both axes are in logarithmic scale
and the plots include the corresponding fitting curves. For all three data sets,
the distribution follows a power law, as it presents a linear trend in the log-log
scale. It means that correlations between items are formed in way that some few
items become clearly distinguishable from the others by having a significantly
larger number of transitive correlations. Therefore, it is possible for PB to detect
such items.

4.2 Qualitative Comparison

In this section we present a qualitative comparison of PB, through which we
understand better the characteristics of PB and its advantage against other
possible solutions.

A simple heuristic is to recommend the items with the highest occurrence
probability values. Henceforth, this heuristic is called MF. For instance, in the
example of Figure 1, MF recommends items 3 and 7. MF opts that the most

376 A. Nanopoulos

“popular” items will be preferred by the new user as well. We previously observed
that P (i) values do not always follow a power law. Hence, we may not be able
to find a small set of distinguished items based on their occurrence probability.
Moreover, MF provides recommendations independently from the items that the
new user has already rated. In contrast, PB takes into account the preferences
of the new user, because it recommends the items that are more correlated with
those already rated.

IB [4,15] considers only direct correlations between items. For example, for the
case in Figure 1, IB recommends items 1 and 5, because they have the smallest
cosine distance with the already rated item 6. However, as described, these direct
correlations may be imprecise when the user has not rated many items. Since
IB looks only for direct correlations, differently from PB, it cannot reach items
like 2.

Finally, we can develop a heuristic that is based on existing methods for
network analysis, and the most prominent case is Page Rank. Therefore, we can
form a matrix with probabilities of direct transition between each pair of items4

and recommend the items with the highest Page Rank. Henceforth, this heuristic
is called PR. In the example of Figure 1, the two items with the highest Page
Rank are 1 and 3. Although PR considers transitive correlations, similarly to
MF, it does not take into account the items that the new user has already rated.
Thus, PR ignores the fact that item 2 is the more accessible from item 6 (the
already rated) but is not the most globally accessible item.

In the following section we present experimental results that validate the
presented qualitative comparison.

5 Experimental Results

In our experiments we compared all examined algorithms (PB, MF, IB, PR) using
the real data sets that were described in the previous section. Since we consider
binary ratings (see Section 2), our objective is to predict the relevant items. Thus,
the examined evaluation metric is not the mean square error (MSE). Instead,
we employ precision, recall, and F measure (denoted as F1), which are widely
accepted in information retrieval. Assume that an algorithm recommends to a
user a set of items S1, whereas the user, after the recommendation, actually rates
a set of items S2. Precision is the ratio (S1 ∩ S2)/|S1|, whereas recall is (S1 ∩
S2)/|S2|. F1 is an even combination of them: F1 = 2·precision·recall/(precision+
recall). We separately measured the sensitivity of PB against the pruning criteria
and their impact on its execution time.

For PB, the default value for L is 4, for C is 0.3, and for N is 0.6. The rest
parameters for all algorithms were tuned to the best values, e.g., the number
of nearest neighbors required by IB, convergence tollerance for PR, etc. Each
measurement is the result of 5-fold cross validation. Every transaction in the
evaluation set is divided into two parts. The first part, denoted as past, contains
the items that are treated as known and are used to generate recommendations.
4 For each item, the sum of probabilities has to be normalized to the range [0, 1].

Collaborative Filtering Based on Transitive Correlations Between Items 377

Their number is denoted as past size and is given as percentage relatively to
the transaction size. The second part contains the items that are treated as
unknown, i.e., those we want to predict.

In our first measurement we examine the precision versus recall that results by
varying the number of recommended items. For the POS data set the results are
illustrated in Figure 5a (past size is 10%). As mentioned, for POS the distribution
of P (i) values follows a power law. This is the best case for MF, because it can
effectively distinguish the appropriate items to recommend. In contrast, because
of the small past size and the skewed distribution of P (i), IB cannot detect precise
direct correlations and its resulting precision and recall are very low. PB is able
to overcome this problem, because it considers transitive correlations. Thus, its
performance is comparable to MF’s. With increasing past size for the POS data
set (Figure 5b), IB improves its performance but is still clearly outperformed by
the others. For larger past size, PB attains a small improvement over MF, as it
can find more and better transitive correlations.

0.2 0.25 0.3 0.35 0.4 0.45

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
POS data set

recall

p
re

c
is

io
n

PB

MF

IB

(a)

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Clarknet data set

recall

p
re

c
is

io
n

PB

IB

MF

(c)

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Entree data set

recall

p
re

c
is

io
n

PB
IB
MF

(e)

20 30 40 50 60
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
POS data set

past size (perc.)

F
1

PB
IB
MF

(b)

5 10 15 20 25 30 35 40 45
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Clarknet data set

past size (perc.)

F
1

PB
IB
MF

(d)

20 40 60 80 95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Entree data set

past size (perc.)

F
1

PB
IB
MF

(f)

Fig. 5. Results for precision vs. recall and F1

Next we examine the Clarknet data set. The results for precision versus recall
are illustrated in Figure 5c (past size is 10%). Since the distribution of P (i) val-
ues does not follow a power law, the precision/recall values of MF substantially
degrade, compared to the case of POS data set. In contrast, for IB we notice a

378 A. Nanopoulos

significant improvement. Nevertheless, PB compares favorably to the other al-
gorithms. The reason is that, as we saw, both in POS and Clarknet, there exist
items with much higher accessibility than others, thus PB can detect and provide
them as good recommendations, in both cases. Focusing on the impact of past
size (Figure 5d), we see that for the problem we are interested, i.e., quality of
recommendation for small past size, PB is superior. When past size gets signifi-
cantly large, as expected, PB and IB converge to the same performance, because
IB becomes able to detect precise direct correlations. Analogous conclusions are
derived for the Entree data set (Figures 5e–f).

To further understand the impact of data set’s characteristics, we examined
synthetic data generated with the system of [1] and in particular the T10I4D100K
data set (see [1] for the notation). We modified the generator and by assuming
a mapping of items into consecutive integer numbers, we impose that, for item
i, the occurrence probability is P (i) = 1/

∑
∀j∈I(1/j−θ) · 1/i−θ. The first factor

is the normalization constant, whereas θ (0 ≤ θ ≤ 1) controls the amount of
skewness (θ = 0 results to uniform distribution, θ = 1 to pure Zipf distribu-
tion). The resulting F1 values versus θ are illustrated in Figure 6a. As expected,
with increasing θ, the performance of MF improves substantially, because the
distribution of P (i) becomes more skewed. In contrast, F1 for IB and PB slightly
reduces, as the number of direct and transitive correlations reduces when some
items appear significantly more frequently than the others. Nevertheless, PB
present the best F1 in all cases.

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Synthetic data set

θ

F
1

PB
IB
MF

(a)

2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6
Synthetic data set

density (perc.)

F
1

PB
IB
MF

(b)

5 10 15 20 25
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2
Clarknet data set

#recommendations

lo
g

1
0
(F

1
)

PB
PR

(c)

Fig. 6. (a) F1 vs. θ (amount of skewness), (b) F1 vs. density, (c) PB vs. PR

We also examined the impact of density, i.e., the percentage of rated items, by
varying the average number of items in the transactions. The resulting F1 versus
density (given as percentage of |I|) are illustrated in Figure 6b. In this mea-
surement, the past size increases proportionally to the average transaction size.
Therefore, for higher density, F1 values for IB and PB converge to the same point.
However, in most real-world applications, density values are quite low (sparsity).

The comparison of PB against PR is presented separately, because PR pre-
sented the worst performance among all algorithms. For the Clarknet data set,

Collaborative Filtering Based on Transitive Correlations Between Items 379

we measured F1 against the number of provided recommendations. Figure 6c
depicts the results, where F1 values are given in logarithmic scale. This results
shows the inadequacy of PR, which, differently from PB, does not take into
account the user preferences.

Finally, we measured the sensitivity of PB against the pruning criteria. Due
to space limitations, we present results only for the Clarknet data set, whereas
analogous results were obtained for the other data sets. For Clarknet data set,
the resulting F1 versus threshold L, C, and N are given in Figures 7a, b, and c,
respectively. In the same figures we also plot (using the right vertical axis) the
relative execution time for the formation of the accessibility matrix. For L, very
small values do not allow PB to capture transitive correlations. However, after
an adequate value, F1 stabilizes. In contrast, execution time increases rapidly
with increasing L. Therefore, we need to select an appropriately small value.
Analogous reasoning holds for N . Regarding C, higher values reduce execution
time. However, very high values should be avoided, because they prevent the
formation of transitive relations. In general, we notice that for a wide range
of all threshold values, F1 for PB does not change abruptly, a fact that indi-
cate its robustness. To support the feasibility of PB, we mention that for the
Clarknet data set, when using the default values for the pruning thresholds, the
absolute execution time for the formation of accessibility matrix was less than
1 min.

2 3 4 5 6 7
0.25

0.3

0.35

0.4

0.45

L

F
1

2 3 4 5 6 7
1

1.5

2

2.5

3

T
im

e
 (

re
la

ti
v
e
)

Time

F1

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

F
1

0 20 40 60 80 100
1

1.05

1.1

1.15

C

T
im

e
 (

re
la

ti
v
e
)

F1
Time

(b)

20 40 60 80 100
0.3

0.4

0.5

N (perc.)

F
1

20 40 60 80 100
1

2

3

T
im

e
 (

re
la

ti
v
e
)

F1
Time

(c)

Fig. 7. F1 vs.: (a) L, (b) C, (c)N

6 Conclusions

We have addressed the problem of how to provide qualitative recommendations
when the new user has not rated a sufficient number of items. We have proposed a
novel CF algorithm that finds transitive correlations in a network formed by the
direct correlations between the items. With measurements on real data we have
examined the characteristics of the proposed method and justified our approach.
Detailed experimental results have illustrate its superiority over existing CF
methods. In our future work we will examine how to enrich the proposed network
of correlations with information about the content, and the combination of the
proposed method with a transitive closure algorithm.

380 A. Nanopoulos

References

1. R. Agrawal and R. Srikant. Fast algorithms mining association rules in large
databases. Technical Report RJ 9839, IBM Almaden Research Center, San Jose
California, 1994.

2. J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms
for collaborative filtering. In Proc. Conf. on Uncertainty in Artificial Intelligence,
pages 43–52, 1998.

3. M. Claypool, M. W. P. Le, and D. C. Brown. Implicit interest indicators. In Proc.
IUI Conf., 2001.

4. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms.
ACM Trans. on Information Systems, 22(1):143–177, 2004.

5. D. Goldberg, D. Nichols, M. Brian, and D. Terry. Using collaborative filtering to
weave an information tapestry. ACM Communications, 35(12):61–70, 1992.

6. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework
for performing collaborative filtering. In Proc. ACM SIGIR Conf., pages 230–237,
1999.

7. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering
recommender systems. ACM Trans. on Information Systems, 22(1):5–53, 2004.

8. Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to alle-
viate the sparsity problem in collaborative filtering. ACM Trans. on Information
Systems, 22(1):116–142, 2004.

9. G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

10. D. Maltz and K. Ehrlich. Pointing the way: Active collaborative filtering. In Proc.
CHI Conf., pages 202–209, 1995.

11. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Improving the effectiveness of
collaborative filtering on anonymous web usage data. In Proc. Workshop Intelligent
Techniques for Web Personalization, pages 53–60, 2001.

12. M. Papagelis, D. Plexousakis, and T. Kutsuras. Alleviating the sparsity problem of
collaborative filtering using trust inferences. In Proc. iTrust Conf., pages 224–239,
2005.

13. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An
open architecture for collaborative filtering on netnews. In Proc. Conf. Computer
Supported Collaborative Work, pages 175–186, 1994.

14. B. Sarwar, G. Karypis, J. Konstan, and R. J. Analysis of recommendation algo-
rithms for e-commerce. In Proc. ACM Electronic Commerce Conf., pages 158–167,
2000.

15. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proc. WWW Conf., pages 285–295, 2001.

16. A. I. Schein, A. Popescul, and L. H. Ungar. Methods and metrics for cold-start
recommendations. In Proc. ACM SIGIR Conf., 2002.

17. J. Wang, A. P. de Vries, and M. J. Reinders. Unifying user-based and item-based
collaborative filtering approaches by similarity fusion. In Proc. ACM SIGIR Conf.,
2006.

18. J. Wang, A. P. de Vries, and R. M. J. T. A user-item relevance model for log-based
collaborative filtering. In Proc. ECIR Conf., page 3748, 2006.

19. G. Xue, C. Lin, and Q. e. Yang. Scalable collaborative filtering using cluster-based
smoothing. In Proc. ACM SIGIR Conf., pages 114 – 121, 2005.

Entropy-Based Authorship Search in
Large Document Collections

Ying Zhao and Justin Zobel

School of Computer Science and Information Technology, RMIT University
GPO Box 2476V, Melbourne, Australia
{yizhao,jz}@cs.rmit.edu.au

Abstract. The purpose of authorship search is to identify documents written by
a particular author in large document collections. Standard search engines match
documents to queries based on topic, and are not applicable to authorship search.
In this paper we propose an approach to authorship search based on information
theory. We propose relative entropy of style markers for ranking, inspired by the
language models used in information retrieval. Our experiments on collections
of newswire texts show that, with simple style markers and sufficient training
data, documents by a particular author can be accurately found from within large
collections. Although effectiveness does degrade as collection size is increased,
with even 500,000 documents nearly half of the top-ranked documents are correct
matches. We have also found that the authorship search approach can be used for
authorship attribution, and is much more scalable than state-of-art approaches in
terms of the collection size and the number of candidate authors.

1 Introduction

The purpose of authorship search (AS) is to find within a large collection the docu-
ments that appear to have been written by a given author. That is, given documents of
known authorship, the task is to find other documents by the same author. AS has not
previously been widely investigated, but is related to authorship attribution (AA), the
task of identifying the authorship of unknown documents given a corpus of known au-
thorship. AA and AS are valuable in applications such as plagiarism detection, literary
analysis, and forensics. However, none of the AA approaches has been scaled to large
document collections. For example, for the Federalist Papers, the authorship of 65 doc-
uments is explored [17]. Holmes et al. used 17 journal articles [13], while Koppel et al.
used 21 English books [19]. Diederich et al. used a collection with seven authors and
around 100 texts for each author [8]. Hoover’s collection had 50 documents [14]. We
previously used 4900 documents, so far the largest AA collection [28,30].

Our method for AS is motivated by information retrieval (IR) techniques, where
matching is determined by computing the similarity between queries and documents,
but there are significant differences. A key difference is choice of index terms; IR tech-
niques make use of content-bearing words, while in AS it is necessary to identify style
markers. We explore use of function words and part-of-speech (POS) tags. Another

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 381–392, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

382 Y. Zhao and J. Zobel

potential difference is choice of similarity measure. We propose relative entropy as the
similarity measure for AS, inspired by the language models used in IR.

For data, we use collections of 10,700 to 500,700 newswire articles from the TREC
collections. Our results show that, with sufficiently large queries, matching documents
can be found from within large collections. While results are mixed, with even the
largest document collection precision in the top 10 is 44.2%. The best results were
achieved with stop words; use of style markers was less effective, while standard simi-
larity measures were, compared to relative entropy, nearly useless. We also investigated
the applicability of the proposed AS approach to AA, finding that, with a large volume
of text by an unattributed author, authorship could be identified with reasonable reli-
ability, greatly improving on previous methods. With less training text and on larger
collections, the accuracy of attribution was not as good. Overall, however, we have
demonstrated for the first time the feasibility of AA and AS on large document collec-
tions. As we have since shown for a small collection, the method is also highly effective
for literature [29].

2 Document Search

IR systems are used to search for documents that satisfy users’ information needs [2].
Current IR systems usually deal with large and heterogeneous collections and typically
take as input queries of a few words, returning as a response a list of documents deemed
most likely to be relevant. Search involves two stages, index term extraction and simi-
larity computation. For documents in English, indexing involves separating the text into
words, case-folding, stopping, and stemming [32].

Various models have been proposed as bases for measurement of similarity between
documents and queries. One is the vector-space model [2], where items are represented
as vectors. The assumption is that similar documents should be separated by a relatively
small angle. Plausibly a similar assumption would apply to AS: given appropriate style
markers, the distribution of style markers in the documents by an author should be
similar. An alternative are models used to derive estimates for the probability that a
document is relevant to a query. The BM25 model is one of the most successful prob-
abilistic models in IR [24]. Whether such a model is suitable for AS is, intuitively, not
clear, but given the success of BM25 in IR it is reasonable to consider its use for AS.

Language models, also based on probability theory, were originally motivated by
tasks such as speech recognition. These models are used to estimate the probability
distributions of words or word sequences. In IR, language models are used to estimate
the likelihood that a given document and query could have been generated by the same
model [7]. Given a document d and a model �d inferred from d, language models
estimate the probability that model �d could have generated the query q. Smoothing
techniques are applied to assign probabilities for missing terms [6,12,27].

Although language models have elements that are counter-intuitive (suggesting, for
example, that queries comprised of common words are more likely than queries com-
prised of words that are specific to a given document), they are a high effective approach
to IR. In this paper a key contribution is exploration of whether language models are
suitable for AS.

Entropy-Based Authorship Search in Large Document Collections 383

3 Authorship Attribution

The purpose of AA is to identify documents that are written by a particular author. A
range of AA methods have been proposed in recent research. Despite the differences
amongst all these approaches, the framework of an AA technique involves two stages
in general: extraction of document representations and making attribution decisions.

Document representations are comprised of style makers. Both lexical and gram-
matical style markers have been proposed for AA. A simple approach is to use lexical
markers, that is, function words and punctuation symbols [8,13,15]. More sophisticated
syntactic and grammatical components can be extracted by natural language process-
ing (NLP) techniques, such as part-of-speech (POS) tags [16,25]. However, these more
advanced style markers do not necessarily produce better performance for AA [30]. A
particular issue is that the idiosyncratic grammatical patterns that are particular to an
author may not be identified due to the lack of observations of such patterns in the pro-
cess of training the parser. That is, NLP is not only error prone, but is likely to make
errors on the most significant elements of the data.

In the attribution stage a variety of classification methods have been investigated.
Principle component analysis (PCA) has been used in several approaches to AA [5,13].
Hoover [14] examined the scalability of PCA to large corpora or multi-class AA, in
which the number of author candidates is greater than 2, finding only 25% accuracy
given 50 samples by a total of 27 authors, suggesting that PCA would not scale to large
numbers of authors.

Machine learning approaches such as support vector machines (SVMs) [8,18] are
considered to be competitive alternatives for AA. SVMs are effective when provided
with sufficient samples and features. However SVMs are not always superior to other
methods when given small number of samples for training, which is often the case
in AA. Computational cost is another issue of SVMs. Bayesian networks are less effec-
tive and more computationally expensive than SVMs [11,23].

Language models have also been proposed for AA. Benedetto et al. used a compress-
ion-based language model [4], based on a standard compression suite; however, Good-
man [9] was unable to reproduce the result, and the method is not plausible. A Markov
model has also been applied to AA by Khmelev et al. [17], in which the features are
individual characters. Good accuracy was achieved on data collected from the Guten-
berg project, but the accuracy may be overestimated, due to the duplicate texts provided
by Gutenberg. For example the number of distinct texts by Burroughs is only 9, but
Khmelev et al. included 25 of his works in their experiments.

Most of these AA methods are not directly applicable to search tasks. In a search
system a query is evaluated by ranking the similarities measured between the query and
each document individually in the collection. The result is a list of top-ranked docu-
ments. In contrast to search, there is no ranking required for AA; instead, an explicit
decision is made for each unknown document individually. Documents are required
for training to learn a model for a particular author in AA. There is no document-by-
document calculation involved. AA techniques have not been applied to search prob-
lems. In this paper we propose what we believe is the first AS mechanism.

384 Y. Zhao and J. Zobel

4 Relative Entropy for Authorship Search

In AA and AS, the underlying assumption is that there are patterns or characteristics
of an author’s writing that can be automatically extracted and then used to distinguish
their work from that of others. Given appropriate style markers, the distribution with
which they are observed should be similar in all of the author’s documents, regardless
of topic. Distributions can be compared via their entropy, and we therefore propose use
of the Kullback-Leibler divergence (KLD, or relative entropy) as a similarity measure
for AA. The distributions need to be estimated, and we propose use of the language
models that have been successfully applied in IR [6,20,27]. We used a similar approach
for AA [30], but it was not clear that such an approach could be used for AS.

Entropy measures the uncertainty of a random variable X, where, in this applica-
tion, each x � X could be a token such as a word or other lexical feature, and p (x) is
the probability mass function of X. The KLD quantifies the dissimilarity between two
distributions. In the context of AS, we can build entropy models for the queries and
the documents. The differences between query models and document models can be
measured by relative entropy as:

KLD (d��q) �
�

x�X

pd (x) log2
pd (x)
pq (x)

(1)

The divergence is calculated between the query and every document in the collection.
The documents whose entropy has the lowest divergence from the query are the most
likely to share authorship and thus should be the highest ranked. However, if p(x) is zero
for some symbol the divergence is undefined. To address this issue, we use Dirichlet
smoothing to estimate probabilities [27]:

p̂d (x) �
fx�d

� � �d�
�

�

� � �d�
pB (x) (2)

Here x are the style markers used for document representations and fx�d is the frequency
of token x in document d. The notation �d� �

�
x�d fx�d represents the number of token

occurrences in d, and pB (x) is the probability of the token x in the background model,
which provides statistics on the tokens. The parameter � controls the mixture of the
document model and the background model. The background probabilities dominate
for short documents, in which the evidence for the in-document probabilities is weak;
when the document is longer then the influence of the background model is reduced.
In principle the background model could be any source of typical statistics for token
occurrences.

Additionally, a set of style markers is required. Some researchers have found that
function words are effective [1,8,13,15,18], while use of part-of-speech tags has also
been considered [30]. We make use of both kinds of marker, but, in agreement with our
earlier work [30], find that function words are superior.

5 Experiments

As data, we use collections of documents extracted from the TREC corpus [10]. There
are large numbers of documents included in TREC that can be used to evaluate the

Entropy-Based Authorship Search in Large Document Collections 385

proposed search technique, as the author is identified. We believe that this data presents
a difficult challenge for AA or AS, as, compared to novelists or poets, journalists do not
necessarily have a strong authorial style, and the work may have been edited to make it
consistent with a publication standard.

We develop three collections of documents to evaluate the proposed AS system,
which consist of 10,700, 100,700, and 500,700 documents respectively. We call these
the 10k-collection, 100k-collection, and 500k-collection. The documents in the 10k-
collection and 100k-collection are from the AP subcollection of TREC; the
500k-collection consists of documents from AP, WSJ, and SJM. Metadata, including
author names is discarded. As authors, we select the seven1 that we earlier used for
AA [28,30]. These authors are regular contributors to AP and each of them has over
800 documents in the TREC corpus. We randomly select 100 documents of each author
and include them as part of each of the collections, giving in total the extra 700 doc-
uments in each case. All queries and documents are pre-processed to obtain the style
markers that are applied to the system; query construction is discussed below. The back-
ground models of different types of style markers used in all experiments are derived
from the AP collection of over 250,000 documents; an alternative would have been to
use the collection as the background model in each case, but we decided to hold the
background model constant across all experiments.

We evaluate our proposed authorship search system from several perspectives. Scala-
bility is examined by considering effectiveness on collections of different sizes. We run
the experiments with different kinds of style marker. The differences between KLD-
based search and other retrieval techniques are tested. Finally we explore use of the AS
approach as an AA method.

Feasibility and scale in size. In the first experiment we examine whether AS is feasible
for small and large collections. The first seven queries used in this experiment are gen-
erated by concatenating 500 randomly selected documents written by each of the seven
authors. These documents are distinct from the 100 documents that are included as part
of each collection. We call these the 500-document queries. The style markers are func-
tion words. The next seven queries are formed by concatenating the 100 documents that
are included in the collection; we call these the 100-included queries.

The numbers of correct matches in the top-100 ranked documents are in Table 1, for
the 10k-collection. Amongst the 500-document queries, those based on the documents
of Currier and Dishneau are the most effective, while the query based on the documents
of Beamish is much less effective. The 100-included queries are slightly better than
500-document queries in most cases, despite being based on less text, and are highly
consistent with the 500-document queries, suggesting that the style of some authors is
easier to identify than that of others.

Overall precision and recall is plotted in Figure 1, based on the 500-document queries
on all three collections. We achieve average p@10 (precision at 10 documents re-
trieved) of 84.2% on the 10k-collection, 74.2% on the 100k-collection, and 30.0% on
the 500k-collection. Thus, while the density of correct matches falls from 1% to 0.02%,

1 The authors are Barry Schweid, Chet Currier, Dave Skidmore, David Dishneau, Don Kendall,
Martin Crutsinger, and Rita Beamish.

386 Y. Zhao and J. Zobel

Table 1. The number of correct matches in the top 100 documents in response to each query, on
the 10k-collection

Number of correct answers in top 100
Schweid Currier Skidmore Dishneau Kendall Crutsinger Beamish

500-document 48 61 35 61 44 52 30
100-included 59 58 49 61 46 56 37

0 20 40 60 80 100

Recall

0

20

40

60

80

100

Pr
ec

is
io

n

10K
100K
500K

Fig. 1. Precision versus recall for 500-document queries on each of the three collections: 10k,
100k, and 500k

effectiveness drops more slowly. Achievement of high recall is much more difficult with
the largest collection, but the results show that, with a large query, AS is indeed feasible
on even half a million documents.

Another dimension of scale is the volume of training data available. In the experi-
ments above we had a large volume of text per author. With less text, effectiveness may
decline. For each author we constructed 5 100-document queries and 25 20-document
queries; average results are shown in Figure 2. It can be seen that reducing the amount
of training data does indeed reduce effectiveness. For low levels of recall, queries of
100 documents (whether 100-included or queries comprised of another 100 documents)
lead to reasonable effectiveness; indeed, whether or not the documents are included has
a surprisingly low effect on the results, demonstrating that style as measured by function
words must be moderately consistent within the work of an author. However, queries of
20 documents are much less effective. While reasonable numbers of correct documents
are still found in the top 10 to 50 answers, subsequent results are poor.

Style markers. In text categorization, documents are usually indexed or represented by
topic words occurred in the documents [3,21,22,26]. However, in AA whether topic
words are appropriate style markers is controversial; some researchers have used them,
but most have not. In this experiment we contrasted use of function words and topic
words for AA, using the 10k-collection. Results are shown in Figure 3. In this figure,
the uppermost curve uses the 500-document queries and is the same as in Figure 1;
the dashed line is the comparable results for queries of topic-words; and the solid line
is based on topic words and the 100-included queries. As can be seen, AS with topic

Entropy-Based Authorship Search in Large Document Collections 387

0 20 40 60 80 100

Recall

0

20

40

60

80

100

Pr
ec

is
io

n

500: baseline
Included-100
100
20

Fig. 2. Effectiveness for queries composed of 20–500 documents, on the 10k-collection

0 20 40 60 80 100

Recall

0

20

40

60

80

100

Pr
ec

is
io

n

S(500)
T(500)
T(Included-100)

Fig. 3. Comparison of using different indexing methods: function words versus topic words on
10k-collection

words completely failed for authorship search; results are little better than random. The
results show that the topic words are misleading in characterizing authors’ writing style.

Other kinds of style marker are more plausible. For the next experiment, we used
NLTK (a natural language toolKit)2 has been applied to extract part-of-speech (POS)
tags from documents. That is, in this approach, each document is represented by a
stream of POS tags. We used a list of 183 POS tags, then indexed documents with
function words, POS tags, and both combined. Results are shown in Figure 4.

Function words consistently lead to greater effectiveness than POS tags, which is
consistent with our previous work in AA [30]. The combination of function words and
POS tags leads to even greater effectiveness. With the smallest 10k-collection, func-
tion words are almost as good as the combined features, and both of them achieve
the same p@10 of 84.2%. However, with larger collections the advantage of combina-
tion increases. On the 500k collection, function words achieve 30.0% p@10; addition
of POS tags increases this to 44.2%. These results show that, even though POS tags
by themselves do not yield good effectiveness, they are helpful additional evidence of
style.

2 Available from http://nltk.sourceforge.net/index.html

http://nltk.sourceforge.net/index.html

388 Y. Zhao and J. Zobel

0 20 40 60 80 100

Recall

0

20

40

60

80

100

Pr
ec

is
io

n

S
POS
S-POS

Collection: 10K-Collection

0 20 40 60

Recall

0

20

40

60

Pr
ec

is
io

n S
POS
S-POS

Collection: 500K-Collection

Fig. 4. Effectiveness of different style markers on the 10k (upper) and 500k (lower) collections,
using the 500-included queries

KLD ranking versus other measures. In this experiment we compare similarity mea-
sures. In addition to KLD we used three measures that have been successfully used
in IR, including BM25 and the vector-space measures BB-BCI-BCA and BB-ACB-
BCA [31,32].

Results are in Figure 5. The IR similarity measures are surprisingly poor — none has
proved suitable for AS. The BM25 measure is slightly better than the other two vector
space models but none is usable. The reason why these measures are ineffective for AS
is unclear and needs further investigation.

Applicability to authorship attribution. In this experiment we examine whether our AS
approach can be used for AA. Instead of returning a list of documents that are judged
likely to have the same authorship as to the query, an explicit authorship is returned
corresponding to the query.

The proposed AA approach is as follows. We have a query for which authorship is
unknown. Using search, a list of l top-ranked documents is returned. These are of known
authorship, with k distinct authors and for each author a a count fa of the number of
documents by a in the list; thus l �

�
a fa.

A simple way to attribute authorship is to select a with the largest fa. More strictly,
a threshold t where 0 � t � 1 can be selected so that the query can be assigned to
a particular author a if a � argmaxa(fa) and fa�l � t. Increasing t should reduce the
likelihood of incorrect attribution.

Entropy-Based Authorship Search in Large Document Collections 389

0 20 40 60 80 100

Recall

0

20

40

60

80

100

Pr
ec

is
io

n

KLD
BB-BCI-BCA
BB-ACB-BCA
Okapi

Fig. 5. Effectiveness of different similarity measures on 10k-collection, using the 500-document
queries

To test these methods we built two collections from the AP data. The 10k-vote collec-
tion includes 10,000 documents from 342 authors, and the 100k-vote collection consists
of 100,000 documents by 2229 authors. In both collections, 100 documents of each of
the seven test authors are included. Overall the number of texts per author varies from
1 to 835. In both collections more than 10% of the distinct authors have written over
100 documents each. All documents in 10k-vote have identified authorship, while in
the 100k-vote collection more than 90% of the texts have identified authorship. As style
markers we use the combination of function words and POS tags.

Results from previous experiments show that it is feasible to search for documents
written by the same author as that of the query, given a group of documents of known
authorship as the query. In this experiment the authorship of the query is unknown and
is to be identified. In this experiment, 500-document queries are unreasonably large.
We experimented with queries that are formed from individual documents and from
10-document sets; none of the query documents are in the collections.

Results are shown in the Table 2, using the threshold t � 0 so that attribution is made
to the authorship of the biggest fa. Evaluation is based on the top l ranked documents,
for l from 10 to 100. As can be seen, queries can be effectively attributed using the
10k-vote collection using only the top 10 documents retrieved; with both 1-document
and 10-document queries, increasing l is not helpful.

With 1-document queries, the overall correctness of attribution is 51.0%. Previous
methods achieve this accuracy only on small collections. Greater attribution effective-
ness is achieved with 10-document queries, giving overall 74.3% correct attribution.

Table 2. Voting results for authorship attribution, showing the number of queries (1-document and
10-document queries) correctly attributed, on the 10k-vote collection, in the top 10, 20, 40, 60,
80, and 100 answers retrieved. There were 700 1-document queries and 70 10-document queries.

Number of answers retrieved
Queries Nq 10 20 40 60 80 100
1-doc 700 357 343 334 346 335 337

10-doc 70 52 55 58 56 55 56

390 Y. Zhao and J. Zobel

Table 3. Voting-based AA results for each author; for each author there are 100 1-document
queries and 10 10-document queries on 10k-vote and 20 1-document queries and 5 10-document
queries on 100k-vote. On the 100k-vote collection, for some authors only negligible numbers of
correct documents were found; these are shown as negl.

Number correctly attributed / Average correct in top 10
Collection Schweid Currier Skidmore Dishneau Kendall Crutsinger Beamish
10k-vote Q1�doc/100 39/3.2 69/9.2 36/4.4 76/9.8 58/4.8 54/5.5 25/2.7

Q10�doc/10 8/3.6 10/8.0 1/2.0 10/10.0 10/7.4 10/6.3 3/3.0
100k-vote Q1�doc/20 negl. 14/4.8 negl. 15/5.2 8/2.9 negl. negl.

Q10�doc/5 negl. 3/7.0 negl. 5/7.4 5/4.4 negl. negl.

There has been no previous attempt at multi-class AA with more than a few authors.
Both the number of authors and the size of the collection are much more substantial
than in all previous AA work.

We have observed strong inconsistencies amongst queries based on the work of dif-
ferent authors. Results extracted from top-10 lists are shown in Table 3. As can be
observed, queries using documents by Currier and Dishneau are more effective than
other queries, not only in accuracy of AA but also in confidence. This observation is
consistent with results from previous search experiments.

The confidence is indicated by the average number of correct documents in the top-k
ranked list. For instance, on the 10k-vote collection, the 100 1-document queries of
Dishneau can be correctly attributed at 76% accuracy, providing around 98% confi-
dence. Note that, unsurprisingly, the effectiveness of attribution for the 10-document
queries is generally better than for the 1-document queries.

We also tested the proposed method on the 100k-vote collection, which has over
2000 known authors. This experiment is much less successful, with near-zero accuracy
in four of the seven cases. Interestingly, these failures correspond to the results of lower
confidence on the 10k-vote collection. For queries based on documents by Currier and
Dishneau, the attribution accuracies are respectively 70% and 75%, suggesting 48%
and 52% confidence. Again, use of 10-document queries leads to greater effectiveness.
However, it can be seen that AA on large collections with large numbers of authors
remains a challenge.

6 Conclusion

We have explored the novel task of authorship search. Our proposal is that simple
entropy-based statistics and characterization of documents by distributions of style
markers can be used to find documents by an author, given some training documents by
that author.

Our experiments show that such a method can be highly successful for collections
of moderate size. The proposed similarity measure, the Kullback-Leibler divergence,
which is used to compute relative entropy, is far more effective than standard measures
drawn from information retrieval. As style markers, both function words and part-of-
speech tags are effective; for large collections, combined use of both kinds of marker

Entropy-Based Authorship Search in Large Document Collections 391

led to even better results. Reasonable effectiveness can be achieved on collections of
even half a million documents.

To our knowledge our approach is the first that is able to search a large collection
for documents written by a particular author. The success of the method is highlighted
by the fact that we have used experimental data, newswire articles, that we regard as
challenging for this task: in contrast to material drawn from sources such as literature,
we would not expect human readers to be aware of strong stylistic differences between
the authors.

The proposed search approach can also be applied to author attribution. Previous
methods struggle to correctly attribute authorship when given more than a few hun-
dred documents or more than a few authors. Our method has reasonable accuracy with
10,000 documents and several hundred authors. While it did not successfully scale fur-
ther in our experiments, this approach is nonetheless much more effective than previous
methods and is a clear demonstration that authorship attribution can be applied on real-
istic collections.

References

1. H. Baayen, H. V. Halteren, A. Neijt, and F. Tweedie. An experiment in authorship attribution.
6th JADT, 2002.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley Long-
man, May 1999.

3. R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. Distributional word clusters vs. words
for text categorization. J. Mach. Learn. Res., 3:1183–1208, 2003.

4. D. Benedetto, E. Caglioti, and V. Loreto. Language trees and zipping. The American Physical
Society, 88(4), 2002.

5. J. N. G. Binongo. Who wrote the 15th book of Oz? an application of multivariate statistics
to authorship attribution. Computational Linguistics, 16(2):9–17, 2003.

6. S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language
modeling. In A. Joshi and M. Palmer, editors, Proc. 34th Annual Meeting of the Association
for Computational Linguistics, pages 310–318. Morgan Kaufmanns, 1996.

7. W. B. Croft and J. Lafferty. Language Modeling for Information Retrieval. Kluwer Academic
Publishers, Norwell, MA, USA, 2003.

8. J. Diederich, J. Kindermann, E. Leopold, and G. Paass. Authorship attribution with support
vector machines. Applied Intelligence, 19(1-2):109–123, 2003.

9. J. Goodman. Extended comment on language trees and zipping, 2002.
10. D. Harman. Overview of the second text retrieval conf. (TREC-2). Information Processing

& Management, 31(3):271–289, 1995.
11. D. Heckerman, D. Geiger, and D. Chickering. Learning bayesian networks: the combination

of knowledge and statistical data. Machine Learning, 20:197–243, 1995.
12. D. Hiemstra. Term-specific smoothing for the language modeling approach to information

retrieval: the importance of a query term. In Proc. 25th ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 35–41. ACM Press, 2002.

13. D. I. Holmes, M. Robertson, and R. Paez. Stephen Crane and the New York Tribune: A case
study in traditional and non-traditional authorship attribution. Computers and the Humani-
ties, 35(3):315–331, 2001.

14. D. L. Hoover. Statistical stylistics and authorship attribution: an empirical investigation.
Literary and Linguistic Computing, 16:421–444, 2001.

392 Y. Zhao and J. Zobel

15. P. Juola and H. Baayen. A controlled-corpus experiment in authorship identification by
cross-entropy. Literary and Linguistic Computing, 2003.

16. A. Kaster, S. Siersdorfer, and G. Weikum. Combining text and linguistic doument representa-
tions for authorship attribution. In SIGIR workshop: Stylistic Analysis of Text For Information
Access, August 2005.

17. D. V. Khmelev and F. Tweedie. Using markov chains for identification of writers. Literary
and Linguistic Computing, 16(4):229–307, 2002.

18. M. Koppel and J. Schler. Exploiting stylistic idiosyncrasies for authorship attribution. In Ex-
ploiting Stylistic Idiosyncrasies for Authorship Attribution. In IJCAI’03 Workshop on Com-
putational Approaches to Style Analysis and Synthesis, 2003.

19. M. Koppel and J. Schler. Authorship verification as a one-class classification problem. In
Proc. 21st Int. Conf. on Machine Learning. ACM Press, 2004.

20. O. Kurland and L. Lee. Corpus structure, language models, and ad hoc information retrieval.
In Proc. 27th ACM SIGIR Conf. on Research and Development in Information Retrieval,
pages 194–201. ACM Press, 2004.

21. Y. S. Lai and C. H. Wu. Meaningful term extraction and discriminative term selection in
text categorization via unknown-word methodology. ACM Transactions on Asian Language
Information Processing, 1(1):34–64, 2002.

22. D. D. Lewis, Y. M. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text
categorization research. J. Mach. Learn. Res., 5:361–397, 2004.

23. B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization and Beyond. MIT Press, 2002.

24. K. Spark Jones, S. Walker, and S. E. Robertson. A probabilistic model of information re-
trieval: development and comparative experiments. Inf. Process. Manage, 36(6):779–840,
2000.

25. E. Stamatatos, N. Fakotakis, and G. Kokkinakis. Computer-based authorship attribution
without lexical measures. Computers and the Humanities, 35(2):193–214, 2001.

26. Y. M. Yang. A study on thresholding strategies for text categorization. In Proc. 24th ACM
SIGIR Conf. on Research and Development in Information Retrieval, pages 137–145. ACM
Press, 2001.

27. C. X. Zhai and J. Lafferty. A study of smoothing methods for language models applied to
information retrieval. ACM Transaction on Information System, 22(2):179–214, 2004.

28. Y. Zhao and J. Zobel. Effective authorship attribution using function word. In Proc. 2nd
AIRS Asian Information Retrieval Symposium, pages 174–190. Springer, 2005.

29. Y. Zhao and J. Zobel. Search with style: authorship attribution in classic literature. In
Proc. 30th ACSC Thirtieth Australasian Computer Science Conference, page to appear. ACM
Press, 2007.

30. Y. Zhao, J. Zobel, and P. Vines. Using relative entropy for authorship attribution. In Proc.
3rd AIRS Asian Information Retrieval Symposium, pages 92–105. Springer, 2006.

31. J. Zobel and A. Moffat. Exploring the similarity space. ACM SIGIR Forum, 32(1):18–34,
Spring 1998.

32. J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys,
38:1–56, 2006.

Use of Topicality and Information Measures to Improve
Document Representation for Story Link Detection

Chirag Shah� and Koji Eguchi��

National Institute of Informatics (NII)
Tokyo 101-8430, Japan

{chirag,eguchi}@nii.ac.jp

Abstract. Several information organization, access, and filtering systems can
benefit from different kind of document representations than those used in tra-
ditional Information Retrieval (IR). Topic Detection and Tracking (TDT) is an
example of such a domain. In this paper we demonstrate that traditional methods
for term weighing does not capture topical information and this leads to inad-
equate representation of documents for TDT applications. We present various
hypotheses regarding the factors that can help in improving the document repre-
sentation for Story Link Detection (SLD) - a core task of TDT. These hypotheses
are tested using various TDT corpora. From our experiments and analysis we
found that in order to obtain a faithful representation of documents in TDT do-
main, we not only need to capture a term’s importance in traditional IR sense, but
also evaluate its topical behavior. Along with defining this behavior, we propose
a novel measure that captures a term’s importance at the corpus level as well as
its discriminating power for topics. This new measure leads to a much better doc-
ument representation as reflected by the significant improvements in the results.

1 Introduction

Document representation is one of the most common and crucial stages of an informa-
tion organization and access system. Several methods and models of document
representation have been proposed based on the target application. Examples include
vector space representations [1], probabilistic language models [2], graph-based [3,4],
etc. Some of them are general enough to be applicable to almost any IR-based appli-
cation. However, some tasks demand a different approach to document representation.
Topic Detection and Tracking (TDT) [5] is one such domain. In this paper we analyze
the peculiarities of TDT and propose a novel approach for document representation. In
particular, we focus on term weighing and use Story Link Detection (SLD), a core task
of TDT, as the target application.

We can identify three major components in an IR implementation on the system side:

1. The units of representation
2. The method of weighing these units
3. Matching criteria between a query and documents or document and document

� Now with University of North Carolina at Chapel Hill, USA.
�� Now also with Kobe University, Japan.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 393–404, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

394 C. Shah and K. Eguchi

There have been a few studies focusing on the first of these components that demon-
strated that using named entities as units of representation is a good idea for TDT
applications [6,7,8]. Some studies suggested using noun phrases along with named
entities [9]. There are also many popular methods for weighing the terms such as TF
[10], TFIDF [1], etc. A considerable amount of work has also been done on compar-
ing two streams of text that includes cosine similarity [1], information-theoretic dis-
tance [11,12], etc. In this paper our focus is on the second aspect - the ways to weigh
the given units. Therefore, throughout our experiments we will use the same units (all
the words), and the same matching criteria (cosine similarity of two texts).

We started this work by using some traditional IR methods for document represen-
tation for SLD task. As we moved from one method of term weighing to another, we
realized their shortcomings. Our experiments and analysis showed that none of the tra-
ditional methods captured the topical information to weigh the terms, which we found
was essential for TDT domain. This led us into investigating a better way to capture and
incorporate such information. The main contributions of our work reported here are this
realization and the methods that emerged from it.

The rest of the paper is organized as the following. In the next section we provide
some background of TDT domain and more details of SLD task. This section highlights
the uniqueness of TDT and motivates for considering non-traditional measures for term
weighing. In section 3 we present our hypotheses regarding term weighing and describe
the systems that we implemented to test these hypotheses. The results obtained from
TDT corpora are shown and a unique approach that combines a term’s usual importance
as well as its topical significance is proposed. Additional results and analysis are given
in section 4. We finally conclude the paper with some pointers to the future work in
section 5.

2 Background

In this section we review the TDT research and provide more specifics of SLD task. We
also show the uniqueness of TDT tasks and contrast with traditional IR systems. With
this explanation, we try to motivate the use of topical information to represent the news
stories.

2.1 TDT

The Topic Detection and Tracking (TDT) research has provided a standard platform
for addressing event-based organization of broadcast news and evaluating such systems
[5]. The governing motivation behind such research was to provide a core technology
for a system that would monitor broadcast news and alert an analyst to new and in-
teresting events happening around the world. The research program of TDT focuses
on five tasks: story segmentation, first story detection, cluster detection, tracking, and
story link detection. Each is viewed as a component technology whose solution will
help address the broader problem of event-based news organization. The details of each
of these tasks are beyond the scope of this paper. We, instead, want to focus on the
general characteristics of TDT and specific details of the story link detection task.

Use of Topicality and Information Measures to Improve Document Representation 395

To appreciate the unique nature of TDT, it is important to understand the notion of
a topic. In TDT, a topic is defined to be a set of news stories that are strongly related
by some seminal real-world event. For instance, when hurricane Katrina hit the coast,
it became the seminal event that triggered a new topic. The stories that discussed the
origin of this hurricane, the damage it did to the places, the rescue efforts, etc. were all
parts of the original topic. Stories on another hurricane (occurring in the same region or
time) could make up another topic. This shows an important contrast with typical IR.
Along with hurricane Katrina, a query “hurricane” will bring up the documents about
other hurricane related events. On the other hand, for the query “hurricane Katrina”,
some of the stories that followed the original event of hurricane Katrina may not be
considered as “about” hurricane Katrina by the traditional IR measures and would be
ranked very low in the retrieval set.

This contrast indicates that the notion of an event-based topic is narrower than a
subject-based topic; it is built upon its triggering event. Hereafter, we focus on dealing
with an event-based topic rather than a subject-based. A typical topic would have a start
time and it would fade off from the news at some point of time. Since it is a specific
event, it happened not only at some particular time, but in a specific location, and usually
with an identifiable set of participants. In other words, a topic is well defined in scope
and possibly in time. In this paper we would ignore the temporal nature of a topic and
just focus on the scope.

2.2 SLD

The Story Link Detection task evaluates a TDT system that detects if two stories are
“linked” by the same event. For TDT, two stories are linked if they discuss the same
event. Unlike other TDT tasks, link detection was not motivated by a hypothetical
application, but rather the task of detecting when stories are linked is a “kernel” function
from which the other TDT tasks can be built.

The Uniqueness of SLD. For this task, a set of pairs of documents are given to compare
with each other and we need to declare if they are on the same topic, i.e., event-based
topic as defined in section 2.1. It is important to note that although this might seem
similar to finding the document similarity, there is a fine difference here. It is possible
that two documents do not share many common terms but belong to the same topic. It is
also possible that two documents may have several terms that match with one another,
but they talk about different topics. We illustrate this with an example. Figure 1 shows
excerpts from two stories of different topics. The matching terms between them are
highlighted. If we run any regular term-based representation for these documents, we
are likely to get a match while comparing them. However, we can see that they are
actually talking about different events and therefore, not on the same topic.

Evaluation. The performance of any TDT system is characterized in terms of the prob-
abilities of missed detection (PMiss) and false alarm errors (PFa) [13]. These error
probabilities are linearly combined into a single detection cost, CDet, by assigning costs
to missed detection and false alarm errors and specifying an a priori probability of a
target. The resulting formula is

CDet = (CMiss ∗ PMiss ∗ PTarget + CFa ∗ PFa ∗ (1 − PTarget)) (1)

396 C. Shah and K. Eguchi

Fig. 1. Example of two stories on different topics getting a match with a word-based technique

where PMiss = No. of missed detection/No. of targets, PFa = No. of false alarms/No.
of non-targets, Cmiss and CFa are the costs of a missed detection and a false alarm,
respectively, and are pre-specified, PTarget is the a priori probability of finding a target.

This detection cost is then normalized as given below.

(CDet)Norm =
CDet

MIN(CMiss ∗ PTarget, CFa ∗ (1 − PTarget))
(2)

Recent Work on SLD. Although SLD is considered to be the core technology for
almost all of the tasks in TDT, not much has been done specifically for SLD. The efforts
have rather been focused on more practical applications such as new event detection
and tracking. The following list enumerates some of the latest trends as demonstrated
by various sites for SLD task in TDT 2004 [10].1

– Vector Space Model. This was used by CMU1, NEU1, UIowa4, and UMass2 sys-
tems. NEU used TF weighting unlike more popular TFIDF weighting. CMU’s
system was same as their 2002 submission with re-tuned decision thresholds. CMU
also submitted two variations of their baseline: HIGHP submission, which manu-
ally adjusts the decision thresholds of the baseline system towards higher precision
(i.e. lower false alarm rate), and HIGHR submission, which manually adjusts the
decision thresholds of the baseline system towards higher recall (i.e. lower miss
rate). Another variation was UIowa3 system, which created the vectors using noun
phrases.

1 The systems are identified with run-tags here as per their official NIST submission. For details,
see [10].

Use of Topicality and Information Measures to Improve Document Representation 397

– Relevance Models. UMass1 and UMass3 systems used this technique. Relevance
model [11] uses the new story as the query and all the past stories as the corpus
[14]. It then performs retrieval and expands the new story with top words. Finally,
the similarity between the models of the new story and the training stories (from
past stories) is computed using Kullback-Leibler (KL) divergence.

– Voting Scheme. CMU’s MULTI submission used a majority voting scheme among
five separate similarity measures. Three of these measures were similarity ratio,
Mountford coefficient, and the Lance-Williams measure. The other two similarity
measures were windowed versions of the Mountford coefficient and a BLEU-like
symmetric n-gram overlap measure (giving equal weight to unigrams and bigrams).

– Graph Comparison. UIowa1 system used Cook-Holder graph similarity on noun
phrases for finding the similarity between stories.

– Edit Distance Based Similarity. UIowa2 system used normalized Levenshtein edit
distance-based similarity for comparison.

3 Hypotheses and Proposed Methods

In this section we present various hypotheses about the factors that can affect the docu-
ment representation. To be specific, these hypotheses are relating to the term weighing
schemes.

3.1 Hypothesis-1: Capturing a Term’s Importance at the Document and/or
Collection Level Provides a Faithful Representation

Method-1. TFIDF on all the words - Baseline TFIDF based representation of doc-
uments is widely used in document similarity [1], document classification [15], and
document clustering [16] literature. We adopt this approach as our baseline, which is a
typical bag-of-words approach. TF values were found using the following equation.

TF (t, d) =
TF raw(t, d)

TF raw(t, d) + 0.5 + 1.5∗DocLen(d)
Avg DocLen

(3)

where TF raw(t, d) is the raw frequency of term t in a given document d, DocLen(d)
is the length of the given document, and Avg DocLen is the average length of the
documents. IDF values were found using the following formulation.

IDF (t) = log

(
N + 1

Nt + 0.5

)
(4)

where N is the total number of documents in the corpus and Nt is the number of docu-
ments in which term t occurs.

We construct vectors for each document using TF (t, d) × IDF (t) and then find
cosine between two vectors. This score becomes the similarity measurement for the
given documents. If this score is above the threshold, then the given pair of stories are
said to be on the same topic. Later we shall see how to derive this threshold from the
training data.

398 C. Shah and K. Eguchi

Method-2. Information Content (IC) Information content (IC) of a term t is found
using the following equation.

IC(t) = −log2(P (t|C)) (5)

where P (t|C) is the probability of term t occurring in corpus C which is defined as

P (t|C) =
freq(t)

Total number of terms in C
(6)

where freq(t) is the frequency of term t in the given corpus.

Method-3. Pointwise KL (PKL) divergence scores KL divergence or its variations
are widely used in language modeling framework [11,12]. In general, it is useful for
finding how different two probability distributions are. We conjectured that the further
a term’s behavior is different from the behavior of the world, the more useful it is for the
representation. In other words, if a term is unique, it is more important than those terms
that are not, such as stopwords. This intuition can easily be converted in a language
modeling framework that uses pointwise KL divergence [17,18]. The traditional KL
divergence, modified for pointwise computation, results in the following formulation.

PKL(t, d) = P (t|d)log
(

P (t|d)
P (t|C)

)
(7)

where PKL(t, d) is the pointwise KL divergence between document d and collection C
with respect to term t, P (t|d) is the probability of term t occurring in a given document
d, and P (t|C) is the probability of t occurring in C, which is calculated as given in
equation (6). P (t|d) is computed as the following.

P (t|d) =
TF (t, d)

Total number of terms in d
(8)

We implemented these three weighing schemes using TDT2 corpus as training and
TDT3 corpus for testing2. This means that for method 1, IDF values for all the terms
were found using TDT2 (training corpus) and combined with TF values found using
TDT3 (testing) to compute the TFIDF scores. For method 2, we found the informa-
tion content of each term using TDT2 and used it to represent the terms of TDT3. For
method 3, P (t|C) values were calculated using TDT2 corpus and P (t|d) using TDT3.
The results of these systems are displayed in Figure 2. It is important to note here that
the lower the cost is, the better the system is.

3.2 Hypothesis-2: Capturing the Topical Nature of a Term Provides a Better
Representation for TDT-Like Applications

We realized that in none of the methods tried before, the information about topics is
explicitly captured. It seemed interesting and useful to us to see what would happen if

2 This is based on the assumption that we cannot know how the whole corpus is, in advance, in
the context of TDT.

Use of Topicality and Information Measures to Improve Document Representation 399

Fig. 2. Comparison of normalized detection cost for various systems and corpora

we incorporate such information while weighing the terms. However, it was not clear
to us how exactly we could go about defining and capturing topicality. Following are
two possible methods of doing so. They are based on some intuition, but by no means
the best ways to capture topicality of terms.

Method-4. Topicality scores We started with a very simple approach of defining and
capturing topicality. Our formulation was basically derived from the following intuition.

– In the documents on the same topic, a term that occurs frequently is more useful
than the terms that are not very frequent.

– A term that is more frequent in a topic and less frequent in other topics is more
useful.

It can be seen that the desired characteristics of a topical terms are very similar to the
formulation of TFIDF - the first point is similar to finding TF and the second point is
similar to finding IDF. However, there are some basic differences here, which are mainly
in point two. In case of normal IDF, we are interested in calculating how frequently the
term occurs in the entire corpus, whereas in the formulation that we gave here, we are
interested in finding how frequent the term is in the documents of different topics. This
is translated in the following formula.

Topicality(t) = (Probability of t occurring in a topic) (9)

×(Probability of t not occurring in any other topic)

= maxC

(
P (t|Ti) · Pj �=i(t|Tj)

)
(10)

= maxC (P (t|Ti) · (1 − Pj �=i(t|Tj))) (11)

Here, Ti is i-th topic. We can compute P (t|Ti) as the following.

P (t|Ti) =
Frequency of t in the documents of topic Ti

Total number of terms in topic Ti
(12)

400 C. Shah and K. Eguchi

Method-5. Topical Information Content. Earlier we proposed to use information
content of a term as a mean to find its weight in document representation. This infor-
mation content was measured with respect to the corpus. We now change it slightly to
evaluate it with respect to the topics. This new measure is defined below.

TIC(t) = maxC (−log(P (t|Ti))) (13)

where P (t|Ti) is the probability of term t given topic Ti. Once again, we used TDT2
corpus for training and TDT3 for testing. This means that for method 4, the Topicality
was computed using TDT2 corpus and used for representing TDT3 terms. Similarly, for
method 5, the information content with respect to the topics was found on TDT2 and
used for TDT3. The results along with the previous three systems are shown in Figure 3.

Fig. 3. Comparison of normalized detection cost for various systems and corpora

As we can see from these results that using only topical information resulted in better
performance over the baseline, but did not give any advantage over the other methods
of term weighing that did not use topical information. However, if the importance of a
term in the collection and that in a topic are two relatively orthogonal factors, then we
might be able to combine them in a way that would outperform a method that uses only
one of them. Thus, we came up with the following hypothesis.

3.3 Hypothesis-3: Combining a Term’s Importance at Collection Level and Its
Topicality Provides a Better Representation Than That of Either of Them
Used Separately

Method-6. Topical KL (TKL) divergence scores. We now approach our pointwise
KL (PKL) divergence calculation with topicality in the formulation. Earlier we defined
the PKL divergence with respect to the document and the corpus. Now we will measure
it with respect to the topic and the corpus. This new formulation is given below.

Use of Topicality and Information Measures to Improve Document Representation 401

TKL(t) = maxC

[
P (t|Ti)log

(
P (t|Ti)
P (t|C)

)]
(14)

where Ti is a topic and C is the corpus. Once again, we find the scores for each topic
for a given term and take the maximum. While representing a document, each term is
weighted by its corresponding topical KL divergence score.

We found both P (t|T) and P (t|C) using our training corpus TDT2 and used these
values to compute a term’s weight on TDT3 corpus. The result obtained by this sys-
tem along with all the previous systems is displayed in Figure 4. As we can see, our
proposed approach obtains the least cost. The actual values of these costs are given in
Table 1.

Fig. 4. Comparison of normalized detection cost for various systems and corpora

To measure how significant these changes were, we used standard two-tailed paired
t-test (parametric) as well as McNemar’s statistical significance test [19] (non-
parametric). McNemar’s test uses only the number of discordant pairs, that is, the pairs
for which we have different decisions in given two techniques. Let us define the pairs
that transferred from YES to NO to be R and the pairs that transferred from NO to YES
to be S. We then calculated the Chi-Square value using the following equation.

χ2 =
(|R − S| − 1)2

R + S
(15)

Since McNemar’s test also calculates the p value, we can put these two things to-
gether and claim that if there were really no association between the given techniques,
there is probability p of chance that the observed odds ratio would be so far from 1.0
(no association) as given by the Chi-Square above.

402 C. Shah and K. Eguchi

Table 1. Cost for various systems. Training on TDT2, testing on TDT3

System Normalized detection cost Improvement over the baseline

TFIDF scores (baseline) 1.7758 –
Information content 0.9971 43.85%
PKL divergence 0.8570 51.74%
Topicality scores 1.0197 42.58%
Topical information content 1.1526 35.09%
Topical KL scores 0.7749 56.36%

Table 2 shows results of significance tests using these two methods on the basis of
the baseline results using TFIDF scores for term weighing. The results indicate that the
improvements of our methods can be said to be statistically significant than that of the
baseline system.

Table 2. Results of significance tests

System Two tailed paired t-test McNemar’s test
p-value p-value

Information content 0.0000 0.0000
PKL divergence 0.0000 0.0000
Topicality scores 0.0000 0.0000
Topical information content 1.13e-103 7.47e-307
Topical KL scores 0.0000 0.0000

4 Additional Experiments and Analysis

In order to support our hypothesis-3 with additional empirical results, we carried out
experiments using TDT4 corpus, too. This corpus is significantly different than TDT2
and TDT3 corpora. The results of our baseline, plain topicality, and topical KL systems
with TDT4 corpus are given in Tables 3 and 4. As we can see, using merely topicality
scores does worse than the baseline, but our proposed system of topical KL scores still
outperforms the baseline. Since the testing corpus differs quite a bit from the training
corpora in these experiments, the improvements achieved by our proposed method are
not as dramatic as the results reported in Table 1, but they are still significant. Table 5
shows how the improvements given by our topical KL scores are significant comparing
with the baseline method using TFIDF scores. The results indicate that the improve-
ments of our method can still be said to be statistically significant than that of the
baseline method.

We found these results interesting and tried to do further analysis. It turns out that al-
though the vocabulary of TDT4 is not very different than those of TDT2 and TDT3, the
nature of the topics is quite different. Thus, using only topical information from TDT2

Use of Topicality and Information Measures to Improve Document Representation 403

Table 3. Training on TDT2, testing on TDT4

System Normalized Cost Improvement over the baseline

TFIDF scores (baseline) 1.1104 –
Topicality scores 1.1392 -2.59%
Topical KL scores 1.0383 6.49%

Table 4. Training on TDT3, testing on TDT4

System Normalized Cost Improvement over the baseline

TFIDF scores (baseline) 0.9254 –
Topicality scores 0.9915 -7.14%
Topical KL scores 0.8983 2.93%

Table 5. Results of significance tests

Training Testing Two tailed paired t-test McNemar’s test
p-value p-value

TDT2 TDT4 0.0000 0.0000
TDT3 TDT4 0.0000 2.46e-05

or TDT3 on TDT4 corpus hurts the performance. On the other hand, our proposed
system that uniquely combines the topical as well as the overall corpus information still
does the best. This indicates the robustness of our proposed approach.

5 Conclusion

In this paper we presented a novel approach for term weighing that incorporated a term’s
importance at the collection level at the same time capturing its topicality. With our
analysis and experiments, we showed that traditional IR techniques of term weighing
do not consider the topical information, which is essential for TDT tasks. We selected
SLD as our target application, which is a core task of TDT. Through a set of hypotheses
testing, experiments, and analysis we realized that while traditional IR methods of term
weighing do not capture topical information explicitly, the information that they provide
is still very useful. We then proposed a unique way of combining topical information
with the information that a traditional IR term weighing scheme provides. This method
consistently outperformed the baseline across all the TDT corpora. Another advantage
of this model is that since it is based on well-studied information theoretic and proba-
bilistic frameworks, it becomes easier and more effective to analyze and understand it.

The experiments reported here are done for SLD. However, since SLD is at the core of
TDT, we conjecture that our proposed methods, which gave significant improvements,
should help in other TDT tasks as well.

404 C. Shah and K. Eguchi

References

1. Salton, G., ed.: Automatic Text Processing: The Transformation, Analysis and Retrieval of
Information by Computer. Addison-Wesley (1989)

2. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Re-
search and Development in Information Retrieval. (1998) 275–281

3. Tomita, J., Hayashi, Y.: Improving Effectiveness and Efficiency of Web Search by Graph-
based Text Representation. In: Proceedings of The Ninth World Wide Web Conference.
(2000)

4. Collins-Thompson, K., Callan, J.: Query expansion using random walk models. In: CIKM.
(2005)

5. Allan, J., ed.: Topic Detection and Tracking. Kluwer Academic Publishers (2002)
6. Allan, J., Jin, H., Rajman, M., Wayne, C., Gildea, D., Lvrenko, V., Hoberman, R., Caputo,

D.: Topic-based novelty detection. Technical report, Center for Language and Speech Pro-
cessing, John Hopkins University (1999)

7. Kumaran, G., Allan, J.: Text classification and named entities for New Event Detection. In:
Proceedings of ACM SIGIR. (2004) 297–304

8. Shah, C., Croft, W.B., Jensen, D.: Representing Documents with Named Entities for Story
Link Detection (SLD). In: CIKM. (2006)

9. Eichmann, D.: Experiments with tracking / detection / etc. using entities and noun phrases.
Technical report, University of Iowa (2001)

10. Fiscus, J., Wheatley, B.: Overview of the tdt 2004 evaluation and results. Technical report,
NIST (2004)

11. Lavrenko, V., Croft, W.B.: Relevance-based language models. In: Proceedings of the 24th
annual international ACM SIGIR conference. (2001) 120–127

12. Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to infor-
mation retrieval. In: Proceedings of the 10th International Conference on Information and
Knowledge Management. (2001) 403–410

13. Fiscus, J.G., Doddington, G.R.: Topic detection and tracking evaluation overview. In Allan,
J., ed.: Topic Detection and Tracking. Kluwer Academic Publishers (2002) 17–32

14. Lavrenko, V., Allan, DeGuzman, J.E., LaFlamme, D., Pollard, V., Thomas, S.: Relevance
models for topic detection and tracking. In: Proceedings of Human Language Technologies
Conference. (2002) 104–110

15. Lewis, D.D.: Evaluating and optmizing autonomous text classification systems. In Fox, E.A.,
Ingwersen, P., Fidel, R., eds.: Proceedings of SIGIR-95, 18th ACM International Conference
on Research and Development in Information Retrieval, Seattle, US, ACM Press, New York,
US (1995) 246–254

16. Kanungo, T., Mount, D.M., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.Y.: An efficient
k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Analysis
and Machine Intelligence 24 (2002) 881–892

17. Tomokiyo, T., Hurst, M.: A Language Model Approach to Keyphrase Extraction. In: Pro-
ceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition and
Treatment. (2003) 33–40

18. Kelly, D., Diaz, F., Belkin, N.J., Allan, J.: A User-Centered Approach to Evaluating Topic
Models. In: Proceedings of the 26th European Conference on Information Retrieval (ECIR
2004). (2004) 27–41

19. Gillick, L., Cox, S.: Some Statistical Issues in the Comparison of Speech Recognition
Algorithms. In: Proceedings of IEEE’s ICASSP 1989. (1989) 532–535

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 405 – 417, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Ad Hoc Retrieval of Documents with Topical Opinion

Jason Skomorowski and Olga Vechtomova

University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
{jcskomor, ovechtom}@uwaterloo.ca

Abstract. With a growing amount of subjective content distributed across the
Web, there is a need for a domain-independent information retrieval system that
would support ad hoc retrieval of documents expressing opinions on a specific
topic of the user’s query. In this paper we present a lightweight method for ad
hoc retrieval of documents which contain subjective content on the topic of the
query. Documents are ranked by the likelihood each document expresses an
opinion on a query term, approximated as the likelihood any occurrence of the
query term is modified by a subjective adjective. Domain-independent user-
based evaluation of the proposed method was conducted, and shows statistically
significant gains over the baseline system.

1 Introduction

Users searching for information on the Web may have more complex information
needs than simply finding any documents on a certain subject matter. For instance
they may want to find documents containing other people’s opinions on a certain
topic, e.g. product reviews, as opposed to documents with objective content, such as
technical specifications. In this work we address the problem of ad hoc retrieval of
documents that express opinion on a specific topic. There exist a large number of
documents with opinionated content on the Web, however they are scattered across
multiple locations, such as individual websites, Usenet groups and web logs
(“blogs”). If a person wants to find opinions on a certain subject they have to go to
specific websites which might contain such content, for instance, IMDb for film re-
views or Amazon for the reviews of books and CDs. Alternatively, they may add
words with subjective connotation, such as "review" and "opinion", to their queries.
However, it is obvious that only a small fraction of documents expressing opinion on
a topic would actually contain words such as “review” or “opinion”. There is a clear
need for a domain-independent search engine that would support ad hoc retrieval of
documents containing opinion about the topic expressed in the user’s query. This
paper sets to fill this need by proposing a domain-independent method for ad hoc
retrieval of documents containing opinion about a query topic.

We propose a lightweight method for ad hoc retrieval of documents which express
subjective content about the topic of the query. Documents are ranked by the likeli-
hood each document expresses an opinion on a query term, approximated as the
likelihood the query term occurrences in a document are modified by subjective ad-
jectives. For our experiments we use a manually constructed list of subjective adjec-
tives, proposed in [1]. Our method calculates the probability of a noun at a certain
distance from an adjective being the target of that adjective. Probabilities at different

406 J. Skomorowski and O. Vechtomova

distances are precomputed using a parsed training corpus. As part of our approach we
have also developed a method of locating a noun modified by an adjective (i.e. resolv-
ing an adjective target), which demonstrated high accuracy in our evaluation.

While many elements of language can be used to express subjective content, adjec-
tives are one of the major means of expressing value judgement in English. Our ap-
proach of using adjectives as markers of subjective content targeted at the concept
expressed in the query relies on the assumption that users frequently want to find
opinions about a single entity, such as a product, person, company, travel destination,
activity, etc. Such an entity is typically expressed as a noun, a noun phrase or a ger-
und (a verb with -ing suffix which can act as a noun), and consequently queries of this
type consist of either a single query term or a phrase. While it is true that users may
be interested in opinions about more complex subjects, such as "The effect of global
warming on the environment", opinions on such subjects are likely to be expressed by
a greater diversity of more complex language structures (clauses, entire sentences or
even paragraphs), and therefore require more sophisticated discourse processing tools.
These types of queries are outside the scope of the current work.

In this work we also propose a method of topical opinion ranking by the likelihood
a document expresses opinions on the collocates of the query terms, i.e. words
strongly associated with them in the corpus. The rationale is that an author may ex-
press opinion about an entity indirectly, by referring to its related concepts, such as
parts or attributes of the car as opposed to the car itself.

The proposed approach is well suited to real-time document retrieval: the computa-
tionally expensive task of resolving adjective targets in the training corpus and calcu-
lating probabilities of subjective adjectives modifying nouns at various distances is
done once at pre-search time, whereas at search time the system only needs to find
instances of query terms and subjective adjectives, as well as distances between them.

The rest of the paper is organised as follows: in section 2 we review related work,
in section 3 we describe our methodology, including adjective target resolution algo-
rithms and document ranking methods. Section 4 presents evaluation, section 5 dis-
cusses the evaluation results, and section 6 concludes the paper and outlines future
research directions.

2 Related Work

Although sentiment and subjective language represent a growing research area, work
on identifying language that is both subjective and on topic is limited. Hurst and Ni-
gam [2] propose a method of identifying sentences that are relevant to some topic and
express opinion on it. First, to determine if a document is relevant to a topic, they use
a machine learning approach, trained on hand-labeled documents, and if the classifier
predicts the whole document as topically relevant, they apply the same classifier to
predict topical relevance of each sentence. For the sentences predicted topically rele-
vant, they apply sentiment analyser, which relies on a set of heuristic rules and a
hand-crafted domain-specific lexicon of subjective words, marked with polarity (posi-
tive or negative). Yi et al. [3] propose to extract positive and negative opinions about
specific features of a topic. By feature terms they mean terms that have either a part-
of or attribute-of relationships with the given topic or with a known feature of the

 Ad Hoc Retrieval of Documents with Topical Opinion 407

topic. Their method first determines candidate feature terms based on structural heu-
ristics then narrows the selection using either the mixture language model, or the log-
likelihood ratio. A pattern-dependent comparison is then made to a sentiment lexicon
gathered from a variety of linguistic resources.

There exists a larger body of research directed towards document classification by
sentiment polarity [4, 5, 6, 7]. The focus of these works is on classifying reviews as
either positive or negative. A review can be viewed as an example of topical subjec-
tivity with the writer's opinion being a subjective expression on the topic of the item
being reviewed. Pang et al. [6] evaluate several machine learning algorithms to clas-
sify film reviews as either containing positive or negative opinions. Dave et al. [4]
propose and evaluate a number of algorithms for selecting features for document
classification by positive and negative sentiment using machine learning approaches.
Turney [7] proposes an unsupervised algorithm for classifying reviews as positive or
negative. He proposes to identify whether a phrase in a review has a positive or nega-
tive connotation by measuring its mutual information with words “excellent” and
“poor”. A review’s polarity is predicted from the average semantic orientation (posi-
tive or negative) of the phrases it contains. The method, evaluated on 410 reviews
from Epinions in four different domains, showed accuracy between 66% and 84%
depending on the domain. Hu and Liu [5] developed a method of identifying frequent
features of a specific review item, and finding opinion words from reviews by extract-
ing adjectives most proximate to the terms representing frequent features. This paper
is most closely related to our approach because of its use of adjective proximity.

3 Methodology

In order to determine whether an opinion is given on a topic, we need not only to iden-
tify subjectivity in the document, but determine if that subjectivity is being directed at
the topic in question. Adjectives have often been defined in terms of their use as a direct
noun modifier, and while Baker favours a more general definition for his crosslinguistic
study, he agrees that this generalisation holds across "a great many languages" [8]. Not
only do adjectives tend to have clear targets, they also are one of the primary means of
expressing opinions. While the role played by the adjective can vary widely between
languages, value judgement is among the four core semantic types associated with this
part of speech [9]. Support for this is found in a study by Bruce and Wiebe which shows
the presence of adjectives correlates with subjectivity [10].

The general approach of our work is to rank documents by the likelihood that a
document expresses an opinion on a query term, approximating it as the likelihood
that the query term occurrences in a document are modified by subjective adjectives.
Instead of applying syntactic parsing at search time in order to determine whether a
query term instance is the target of a subjective adjective in a document, which is
computationally expensive, we instead chose to use a training corpus with marked
adjective targets to calculate probabilities that each position outstanding from a sub-
jective adjective contains its target noun. At search time we only have to determine
the distance between an instance of the query term and the nearest subjective adjec-
tive, and look up the probability that the adjective modifies a noun at this distance.
The document score is then calculated as the sum of such probabilities. For this

408 J. Skomorowski and O. Vechtomova

approach we need: a list of subjective adjectives; positional information of index
terms in documents; the probability that an adjective modifies a noun at a given dis-
tance from it; a corpus where adjectives and their targets are marked for calculating
such probabilities.

A list of subjective adjectives can be created manually or automatically, for exam-
ple, using machine learning techniques. In our work we used a list of 1336 subjective
adjectives manually composed by Hatzivassiloglou and McKeown [1]. There also
exist many automatic methods of learning subjective language [e.g., 11, 12], which
can be used instead. Positional information of index terms in a document is recorded
in a typical IR system's index, and therefore is easily obtainable. To calculate the
probability that an adjective modifies a noun at a certain distance we need a corpus
with marked adjectives and their targets. Such corpus, however, is not available. The
method of resolving adjective targets also does not exist. Therefore we developed our
own method of resolving adjective targets, which is presented in Section 3.1.

3.1 Resolving Adjective Targets in English

English adjectives are characteristically used either attributively or predicatively [13].
Attributive usage is where a noun is modified directly, typically premodified (e.g., the
blue sky). Predicative usage links the adjective to the subject with a copular verb such
as "be" (e.g., the sky is blue). Other, less frequent constructions include objective
complements of verbs, such as "make" and "prove" (e.g., made the sky blue), resulta-
tive secondary predicates [8] (e.g., dyed the sky blue), and degree phrases [14] (e.g.,
blue as the sky; more blue than the sky).

Since we do not require maximum precision for our application, we will focus our
target resolution on only the most frequent usages, attributive and predicative. For
identifying resultative secondary predicates we need to have a list of verbs that can be
used in such constructs, which is unavailable. Determining the specifics of other us-
ages of adjectives is complicated by the numerous syntactic applications of "as",
"than", "make" and other words involved in these constructs.

In order to identify what part of a sentence is being modified by a given adjective,
syntactic information is needed. For our approach, we need to know the part of speech
(POS) of words and the boundaries of noun phrases, therefore we require a POS tag-
ger and a parser. After evaluating a variety of tools, the SNoW Shallow Parser [15]
was found to have a good balance of precision and speed.

3.1.1 Resolving Attributive Use of Adjectives
In the attributive case, a noun phrase to which the adjective refers is the one contain-
ing it. In order to determine noun phrase boundaries we use the parser. Manually
examining a random sample of 200 subjective adjectives used attributively, we found
that the parser fails to find appropriate phrase boundaries in 6.5% of these instances.
Most errors involve the parser ending the noun phrase because it has mistagged a
noun usage as verb, or erroneously saw an adjective where none exists. A notable
limitation of this approach is that it does not account for other noun phrases poten-
tially modified by the adjective via coordinate conjunctions, prepositional phrases,
and other constructs. However, it is difficult to identify the correct target in such con-
structs without the knowledge of their meaning, as demonstrated by the following
examples:

 Ad Hoc Retrieval of Documents with Topical Opinion 409

− Sudbury is famous for its colourful culture and people. (the people are colourful);
− The artist uses colourful pastels and charcoal. (the charcoal is not colourful);
− A delicious bowl of ice cream. (the ice cream is delicious);
− A ridiculous amount of pasta. (the pasta is not ridiculous).

3.1.2 Resolving Predicative Use of Adjectives
If an adjective occurs outside of a noun phrases, it is likely to be used predicatively.
In this case we then read back from the adjective to see if there is a copular verb1
present before it and, if so, assume the preceding noun phrase to be the subject of that
verb and thus predicatively modified by the adjective in question. We employ a vari-
ety of measures to improve the accuracy of this approach:

− Only cases where the parser tags the copular verb as actually being used as a verb
are considered.

− Clauses delimited from the verb by commas are bypassed when searching for the
subject (e.g. The ice-cream, prepared fresh this afternoon, is delicious).

− Situations where there is an intervening noun between the adjective and copular
verb are not counted as a predicative construct, because it is most likely that the ad-
jective is used as an objective complement of a different verb (e.g., The ice-cream
is made with strawberries and is quite delicious).

− Noun phrases preceded with prepositions are skipped when looking for a potential
target as these form a prepositional phrase and are not the subject of the link verb
(e.g., The ice-cream in the fridge is old.).

The evaluation of the predicative adjective target resolution algorithm was con-
ducted on the random sample of 200 subjective adjectives used predicatively in the
AQUAINT corpus. The target noun phrase was identified correctly in the 86% of
cases. The 11% of errors were due to the parser error. One frequent cause of the
parser error was that contractions of "not" such as "wasn't" and "didn't" were errone-
ously tagged as nouns. Only 3% of the errors were caused by our method. While some
potential heuristics present themselves, further refinement will be left to later work as
additional precision is not necessary to explore search applications and is made irrele-
vant by parser error.

3.2 Statistics on Adjective Usage

Using the above method and a corpus of text, we can calculate the probability of a
noun being the target of an adjective at a certain distance from it. A noun is consid-
ered to be the target of an adjective when it is the head of the noun phrase that the
adjective modifies as determined by the method described in Section 3.1. We consider
the last noun in the noun phrase as the head.

The probability Pi that a noun is the target of (i.e. modified by) an adjective at dis-
tance i is calculated according to Eq. 1:

1 We used a list of copular verbs from [16].

 (1)i
i

i

T
P

K
=

410 J. Skomorowski and O. Vechtomova

Where: Ti – the total number of nouns which are targets of any subjective adjective
separated by distance i; Ki - total number of nouns separated by distance i from a
subjective adjective.

For example, in calculating the probability P1 that a noun is the target of an adjec-
tive which immediately precedes it in text (i.e. noun is located in position 1 relative to
the adjective), “deep sea” would count towards T1 because the adjective “deep” modi-
fies the noun “sea”. On the other hand, “exciting sea adventure” would not count
towards T1, because the adjective “exciting” does not modify “sea”, but “adventure”,
which is the head of the noun phrase “sea adventure”. Both examples would count
towards K1, because in both of them we have a noun immediately preceded by an
adjective.

Table 1. Probabilities of a noun being modified by an adjective at different distances

All adjectives Subjective adjectives Distance (i) of
noun from
adjective

Proper
nouns

Common
nouns

All nouns Proper
nouns

Common
nouns

All nouns

-10 0.0026 0.0011 0.0012 0.007 0.0024 0.0026
-9 0.003 0.0016 0.0017 0.0084 0.0033 0.0036
-8 0.0037 0.0021 0.0022 0.0098 0.0048 0.0051
-7 0.0052 0.0031 0.0032 0.0141 0.0068 0.0072
-6 0.0073 0.0045 0.0047 0.0194 0.01 0.0105
-5 0.0112 0.0065 0.0069 0.031 0.0147 0.0156
-4 0.0206 0.0105 0.0112 0.061 0.025 0.027
-3 0.0414 0.0218 0.0232 0.1265 0.0545 0.0585
-2 0.0568 0.0294 0.0313 0.1657 0.0712 0.0765
-1 0.0077 0.0029 0.0033 0.0068 0.0014 0.0017
1 0.331 0.6689 0.6451 0.1971 0.5886 0.5666
2 0.1775 0.1741 0.1743 0.1283 0.1517 0.1504
3 0.1761 0.0489 0.0579 0.1133 0.04 0.0441
4 0.0911 0.0143 0.0197 0.0441 0.0123 0.0141
5 0.0326 0.0041 0.0061 0.017 0.0034 0.0042
6 0.0109 0.0014 0.0021 0.0073 0.0011 0.0014
7 0.0041 0.0005 0.0008 0.0028 0.0004 0.0005
8 0.0022 0.0002 0.0004 0.0021 0.0002 0.0003
9 0.0012 0.0001 0.0002 0.0013 0.0001 0.0001

10 0.0004 0.0001 0.0001 0.0002 0 0

Table 1 contains the probabilities of nouns which, at some position relative to an
adjective at position 0, are the target of that adjective. We only calculated probabili-
ties for positions of +/-10 words away from an adjective, based on the average sen-
tence size of 21 words. The probabilities were calculated from the AQUAINT corpus.

As can be seen from Table 1, the position immediately following a subjective ad-
jective (position 1) has the highest probability (0.5666) of containing the target of the
adjective (see the last column of Table 1). Position with the next highest probability
of containing the target is one word away following the adjective (position 2), which
is due to the cases where the target is the head of a longer noun phrase with an inter-
vening modifier. Position -2 has the next highest probability of containing the target
noun of a subjective adjective, which represents predicative use of adjectives.

 Ad Hoc Retrieval of Documents with Topical Opinion 411

Out of all adjectives, 77% are used attributively and 9% predicatively. When re-
stricted to subjective adjectives, the count becomes 65% attributive and 20% predica-
tive. One explanation for the larger proportion of subjective adjectives used predica-
tively compared to all adjectives may be that subjectivity is more often directed at
proper nouns. Proper nouns do not usually take prenominal adjectives [17], so this
attributive usage would need to be written predicatively instead (e.g., one is more
likely to say "tall person" or "Jane is tall", but less likely "tall Jane").

3.3 Document Ranking

The goal of our method is to rank documents by the likelihood that they express opin-
ions on the query concept. Our method, therefore, attempts to rank documents by
topical subjectivity, i.e. expression of opinion about the query topic. Document rank-
ing is performed by locating all instances of subjective adjectives2 in the document
and computing the aggregate probability that they refer to occurrences of the query
term based on the precomputed probabilities described in the previous section.

In more detail a document score is calculated as follows: first the user's query term
(or phrase) is used to find a set of top N ranked documents using a best-match IR
system. In each document all instances of the query term and subjective adjectives are
identified. For each occurrence of the query term, we determine if there are any sub-
jective adjectives within 10 words either side, and note the distance separating them.
The probability of a subjective adjective referring to a query term instance occurring i
words away is referenced from precomputed statistics3 (Table 1). We use the sum of
these probabilities as the probability that the document contains an opinion on the
query topic. The sum of probabilities is calculated according the inclusion-exclusion
formula [18] for n non-mutually exclusive events (Eq. 2):

Where, Ai – co-occurrence of a query term with a subjective adjective at distance i

in the document; P(Ai) – precomputed probability (from Table 1) that at distance i a
subjective adjective modifies a noun.

The instance of the inclusion-exclusion formula for three events (i.e. three query
term – subjective adjective co-occurrence pairs) is presented in Eq. 3:

3.4 Collocates of Query Terms as Opinion Targets

A document can express opinion not directly about the concept represented by the query
term, but about related concepts, which can be more general or specific. For example an
author may talk subjectively about a film by expressing opinions on the actors' perform-
ance or a particular scene or work of the director in general. Another example would be

2 We used a list of manually tagged subjective adjectives from [1].
3 In the evaluation we used proper noun statistics as most of the user queries were proper

nouns.

1
1

1

() () () () ... (1) (...)
n

n
i i i j i j k n

i i j i j ki

P A P A P A A P A A A P A A+

< < <=

= − + − + −∑ ∑ ∑∪ (2)

() () () () () () () () i j k i j k i j i k j k i j kP A A A P A P A P A P A A P A A P A A P A A A∪ ∪ = + + − − − + (3)

412 J. Skomorowski and O. Vechtomova

someone giving a review of an automobile model by talking about its specific features
or components, such as fuel efficiency, comfort, engine or accumulator.

In this work we propose a method of using collocates, words significantly co-
occurring in the contexts of query terms in the corpus, as representatives of concepts
related to the query topic. Specifically, our approach consists of first finding collo-
cates of a query term, and then calculating a document score which is an aggregate
probability that subjective adjectives modify the original query term instances plus
instances of their collocates. The next section describes the method used for collocate
selection.

3.4.1 Collocate Selection Method
A large number of statistical methods have been used to find and rank collocates, such
as Mutual Information [19], Z-score [20], Log-Likelihood ratio and chi-square test
[21]. We can view the problem of finding related terms for opinion scoring as similar
to query expansion. The difference is that we do not explicitly add additional terms to
the query, but use their probabilities of being the target of a subjective adjective as
additional evidence that the document expresses opinion on the query topic.

It is outside of the scope of the present work to evaluate different term association
measures, therefore we chose to use one term association measure, Z-score, which
showed good performance in query expansion experiments [20]. Systematic compari-
son of different term selection measures is left for future work. Z-score is a statistic
for hypothesis testing, i.e. for assessing whether a certain event is due to chance or
not. When used for collocation selection, Z-score tests whether the co-occurrence of
two words is due to other factors than chance. It is similar to a t-score measure as
proposed by Church et al. [19].

We used the method for extracting collocates and calculating Z-score as proposed
in [20]. The procedure and parameters we used for selecting collocates are as follows:
in the 50 top ranked documents retrieved in response to the user's query term, all
terms surrounding instances of the query term within the windows of 20 words (10
words either side of the query term instance) are extracted. In cases where windows
surrounding query term instances overlap, terms are extracted only once. All extracted
terms are then ranked according to the modified Z-score in Eq. 4 [20], and up to 12
top-ranked terms are selected for the use in our method. All collocates with Z-score
less than the significance threshold of 1.6 were rejected.

Where: R – the set of top retrieved documents; fr(x,y) – joint frequency of x and y

in R; fc(y) – frequency of y in the corpus; fr(x) – frequency of x in R, vx(R) – average
window size around x in the relevant documents; N – corpus size.

More information about the modified Z-score and its derivation can be found in
[20]. The values chosen for the parameters in our study (the window size and the
number of Z-ranked collocates selected) are those that showed best results in the
query expansion experiments by [20]. It is left for future work to systematically
evaluate which parameters perform best in our task.

() () ()
(,)

() () ()

c r x
r

c r x

f y f x v R
f x y

NZ
f y f x v R

N

−
= (4)

 Ad Hoc Retrieval of Documents with Topical Opinion 413

Table 2 shows a list of collocates selected for the sample of queries submitted by
users in our evaluation experiment, which will be described in the next section.

Table 2. Collocates selected for a sample of queries submitted by users in the evaluation
experiment

Bill Gates wealth, dynamite, Microsoft, rich, interview, Napoleon, dollars, he, man, person, short, say

Egypt ancient, guardian, pyramids, tour, arab, egyptian, travel, Nile, Cairo, modern, country,
history

J.K. Rowling Bloomsbury, Potter, Harry, author, interview, book, books, site

JDeveloper Oracle, 10g, soa, oc4j, Webgalileo, Oracle9i, ide, bpel, clover, jsf, adf, java

iPod nano, Apple, iTunes, grayscale, 30gb, generation, mini, dock, gb, shuffle, applecare,
playback

3.4.2 Document Ranking Using Collocates
After the set of collocates of the query term is selected, a score is calculated for each
of the top N documents retrieved in response to the user's query as follows: in each
document all instances of the query term, collocates and subjective adjectives are
identified. For each occurrence of the query term and collocates, determine if there
are any subjective adjectives within 10 words and note the distance separating them.
For each subjective adjective get the probability from precomputed statistics (section
3.2) that it refers to a query term or a collocate instance occurring i words away. Ag-
gregate probabilities are calculated according to Eq. 2 (section 3.3).

4 Evaluation

We conducted a user-based evaluation of the proposed approach. Altogether 33 users,
solicited from the University of Waterloo graduate student mailing list, voluntarily
participated in the evaluation. The form requesting users to submit their queries con-
tained the following instructions:

"Please enter a word or phrase identifying some person/item/entity, about which
you are curious to see opinions. This should complete the sentence: "I'd like to know
what the Web thinks of ____________".

The form also contained a text field where users were asked to enter a more de-
tailed description of their information need for future analysis.

We used Google to retrieve the initial set of documents in response to the users'
queries. The retrieved documents consist of all results obtainable via the Google API
up to one thousand. Because of the limit on the number of documents that Google can
return per day via its API, it was not possible to simulate the search process in real
time. Users were therefore asked to come back in a few days after query submission
in order to do the relevance judgements. Each user submitted one query, and in total
for 33 queries 1192 documents were judged.

We evaluated two methods of ranking documents by topical opinion: "Opinion"
method using only original query terms (section 3.3); "Collocation opinion" method
using original query terms plus their collocates (section 3.4.2).

414 J. Skomorowski and O. Vechtomova

The baseline against which the above two methods are evaluated is the original
Google ranking. The reason for selecting Google as the baseline is that it is one of the
most widely used state-of-the-art Web search engines, which users may use to satisfy
their opinion information needs. Also, to our knowledge there is no publicly available
Web search engine which specifically retrieves documents containing opinions on the
subject of the user's query.

For each topic, up to the top 1000 documents retrieved by Google are re-ranked us-
ing "Opinion" and "Collocation Opinion" methods. Top 15 ranked documents from
each of the three ranked document sets, the "Opinion", "Collocation Opinion" and
Google, are extracted, and presented in the random order to the user. By randomizing
the order in which documents in the three sets are presented to the user, we ensure
that the user is unable to infer which method was used to retrieve each document. It
also removes the possibility of user bias due to ranking order. The decision of includ-
ing only the top 15 documents from each of the three retrieved sets in the results list
was made so that the relevance judgement task was not too time-consuming for users.
Users were asked to judge the full text of each document in the list as one of the
following:

1. Containing an opinion about the query topic ("query relevance");
2. Containing an opinion about something closely related to the query topic ("rele-

vance to a related topic");
3. Containing no opinion about the query or related topics.

5 Results

The performance of two methods "Opinion" and "Collocation Opinion" was evaluated
by means of Precision at 10 retrieved documents (P@10) and Precision at 15 retrieved
documents (P@15) using "query relevance" and "relevance to a related topic" judge-
ments. Results are presented in Table 3.

Table 3. Evaluation results (* indicates that a run has a statistically significant difference from
the baseline, paired t-test, P<0.05)

Query relevance Relevance to a related
topic

Method

P@10 P@15 P@10 P@15
Google (baseline) 0.3758 0.3717 0.5424 0.5455
Opinion 0.5182* 0.4990* 0.6636* 0.6626*
Collocation opinion 0.4727* 0.4747* 0.6363* 0.6404*

As can be seen from Table 3 all runs significantly (paired t-test, P<0.05) improved
performance of topical opinion retrieval over the baseline. The use of only query
terms in estimating the likelihood of the document expressing opinion on the query
topic performs better than the use of collocates. Using query relevance judgements,
out of 33 queries, "opinion" ranking method improves P@15 of 24, deteriorates 6,
and does not affect 3 queries, while "collocation opinion" method improves P@15 of

 Ad Hoc Retrieval of Documents with Topical Opinion 415

21 queries, deteriorates 6, and does not affect 6 (Fig. 1). In P@10 "opinion" method
improves performance in 21 cases, deteriorates 6, and does not affect 6, while "collo-
cation opinion" improves the performance of 20 queries, deteriorates 10, and does not
affect 3. Using related topic judgements, "opinion" improves P@15 of 24, deteriorates
6, and does not affect 3 queries, while "collocation opinion" method improves P@15
of 23 queries, deteriorates 7, and does not affect 3 queries. In P@10 "opinion" method
improves performance in 22 queries, deteriorates 6, and does not affect 5. "Colloca-
tion opinion" also improves P@10 of 22 queries, but deteriorates 11.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

la
pt

op
s

go
og

le

w
eg

da
n

M
os

es

so
ftw

oo
d

lu
m

be
r d

is
pu

te

JD
ev

el
op

er
iP

od

Bill
G
at

es

go
og

le

N
E
C

A
C
C
U
S
YN

C
LC

D
71

V

In
th

e
Aer

op
la
ne

ov
er

th
e

S
ea

fa
ci
al

ha
ir

Eas
te

rn
S
na

ke
-N

ec
ke

d
Tu

rtl
e

ch
ee

se

in
tu

os
3

E
gy

pt

G
eo

rg
e

B
us

h

U
ltr

aS
ha

rp
20

01
FP

Fi
re

fly

Bill
G
at

es

M
ap

le
Le

af
s

ch
ee

se
ca

ke

U
lti
m

at
e

Fris
be

e

ni
nt

en
do

ds

R
ob

er
t J

or
da

n

B
ill

C
lin

to
n

D
an

dy
W

ar
ho

ls

J.
K. R

ow
lin

g
iP

od

W
ik
ip
ed

ia

W
at

er
lo
o

m
dm

a

sh
ah

ra
m

Opinion Collocation Opinion

Fig. 1. Precision at 15 (P@15) results for Opinion and Collocation Opinion ("Query Rele-
vance" judgements) relative to the baseline

Our analysis also shows that "collocation opinion" method has better P@10 than
"opinion" in 8 queries in the "query relevance" judgements, however it has better
P@10 in 10 queries in the "related topic relevance" judgements. This suggests that the
"collocation opinion" method may be more suitable for situations where the user's
information need is broad, and she may be interested in documents expressing opin-
ions on subjects related to the query topic.

As can be seen from Fig. 1, the topics that benefit most from the “Collocation
Opinion” method are those where the author is likely to express opinion about related
concepts, such as features or characteristics of the topic entity. For instance, the topic
“iPod” performed better with the use of collocates. Some of the collocates selected for
this topic represent features of iPod, namely “playback” and “shuffle”, and it is likely
that authors express their opinion about iPod through such features. Examples of other
topics that performed better with “Collocation Opinion” are “Google”, “Wikipedia”,
“Intuos3” and “Bill Gates”.

416 J. Skomorowski and O. Vechtomova

6 Conclusions and Future Work

In this paper we proposed a computationally lightweight algorithm for topical opinion
retrieval. As an element of our technique, we developed a method for adjective target
resolution in English, which demonstrated high accuracy. We conducted a thorough
user-based evaluation of the developed method in an unrestricted domain using Web
as the corpus. Comparison of the developed method to a state-of-the-art search engine
(Google) shows statistically significant gains, demonstrating that the system is useful
in resolving genuine topical opinion needs of real users. Since at present no domain-
independent topical opinion search engine exists, our experiment demonstrates poten-
tial uses of such a system, and the types of queries that people may ask.

In addition to the subjectivity of adjectives, the system could incorporate additional
metainformation on each adjective, including polarity (positive and negative) and
intensity. This would enable more expressive queries to be formulated, limiting which
subset of adjectives is applied. For example, a company might be most interested in
the superlatively negative comments about its brand, or a consumer might prefer a
balance of both positive and negative opinions to find more thorough product evalua-
tions. A metric for opinion quality is one direction for this line of research and could
incorporate other indicators of a substantiated rather than casual opinion. We plan to
evaluate the above methods and their further extensions by means of user-based
evaluations and test collections such as the one created in the Blog track of TREC.

References

1. V. Hatzivassiloglou and K. R. McKeown, Predicting the semantic orientation of adjec-
tives. In Proceedings of the Thirty-Fifth Annual Meeting of the Association for Computa-
tional Linguistics, pp. 174-181, 1997.

2. M. Hurst and K. Nigam, Retrieving topical sentiments from online document collections.
In Proceedings of the 11th conference on document recognition and retrieval, 2004.

3. J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack, Sentiment analyzer: extracting senti-
ments about a given topic using natural language processing techniques. In Proceedings of
the 3rd IEEE International Conference on Data Mining, 2003.

4. K. Dave, S. Lawrence, and D. M. Pennock, Mining the Peanut Gallery: Opinion Extrac-
tion and Semantic Classification of Product Reviews. In Proceedings of the 12th World
Wide Web Conference, 2003.

5. M. Hu and B. Liu, Mining opinion features in customer reviews. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2004.

6. B. Pang, L. Lee, and S. Vaithyanathan, Thumbs up? Sentiment classification using ma-
chine learning techniques. In Proceedings of the 2002 conference on empirical methods in
natural language processing, 2002.

7. P. D. Turney, Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification of reviews. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL'02), pp. 417-424, 2002.

8. M. C. Baker, Lexical categories: verbs, nouns and adjectives. Cambridge University Press,
2003.

9. R. M. W. Dixon and A. Y. Aikhenvald, Adjective classes. A crosslinguistic typology.
Oxford University Press, 2004.

 Ad Hoc Retrieval of Documents with Topical Opinion 417

10. R. F. Bruce and J. M. Wiebe, Recognizing subjectivity: a case study in manual tagging.
Natural Language Engineering, vol. 5, no. 2, pp. 187-205, 1999.

11. J. Wiebe, Learning subjective adjectives from corpora. In Proceedings of the 17th National
Conference on Artificial Intelligence, pp. 735-740, 2000.

12. P. D. Turney and M. L. Littman, Unsupervised learning of semantic orientation from a
hundred-billion-word corpus. Tech. Rep. EGB-1094, National Research Council Canada,
2002.

13. S. Greenbaum, The Oxford English grammar. Oxford University Press, 1996.
14. P. Rijkhoek, On Degree Phrases and Result Clauses. PhD thesis, University of Groningen,

Groningen, 1998.
15. X. Li and D. Roth, Exploring evidence for shallow parsing. In Proceedings of the Annual

Conference on Computational Natural Language Learning, 2001.
16. J. Sinclair (Ed.) Collins Cobuild English Grammar. Harper Collins, 1990.
17. Z. Vendler, Adjectives and nominalizations, p. 86. Mouton & Co. N.V., The Hague, 1968.
18. J. Pitman, Probability, p. 559. Springer-Verlag, New York, 1993.
19. K. Church, W. Gale, P. Hanks, and D. Hindle, Lexical substitutability. In: Atkins B.T.S.

and Zampoli A. (eds.) Computational Approaches to the Lexicon. Oxford University
Press, 1994. pp. 153-177.

20. O. Vechtomova, S. E. Robertson, and S. Jones, Query expansion with long-span collo-
cates. Information Retrieval, vol. 6, pp. 251-273, 2003.

21. D. Manning and H. Schütze, Foundations of Statistical Natural Language Processing, The
MIT Press, Cambridge, Massachusetts, 1999.

Probabilistic Models for Expert Finding

Hui Fang and ChengXiang Zhai

University of Illinois at Urbana-Champaign, IL, USA
{hfang,czhai}@cs.uiuc.edu

Abstract. A common task in many applications is to find persons who
are knowledgeable about a given topic (i.e., expert finding). In this paper,
we propose and develop a general probabilistic framework for studying
expert finding problem and derive two families of generative models (can-
didate generation models and topic generation models) from the frame-
work. These models subsume most existing language models proposed
for expert finding. We further propose several techniques to improve the
estimation of the proposed models, including incorporating topic expan-
sion, using a mixture model to model candidate mentions in the sup-
porting documents, and defining an email count-based prior in the topic
generation model. Our experiments show that the proposed estimation
strategies are all effective to improve retrieval accuracy.

1 Introduction

The problem of expert finding is concerned with finding the experts on a specified
topic. This problem has many real-world applications. For example, organizers
of a conference need to assign submissions to the PC members based on their
research interests and expertise. Customer service of a company needs to decide
which staff should be assigned to solve a given complaint. Currently, people have
to manually identify the experts, which is obviously labor-intensive and time-
consuming. Thus, it would be very interesting to study how to automatically
identify experts for a specified expertise area.

As a retrieval task, expert finding has recently attracted much attention
mostly due to the launching of the Enterprise track [4,11] of TREC [12]. The
task setup in the Enterprise track includes the following three components: (1) a
supporting document collection; (2) a list of expert candidates, which are speci-
fied by names and emails; (3) a set of topics (i.e., descriptions of expertise). The
task of expert finding is to rank the expert candidates for a given topic query
based on the information from the data collection. Expert finding is similar to
the traditional ad hoc retrieval task in the sense that both tasks are to find rele-
vant information items for a given topic. The key challenge in expert finding is to
infer the association between a person (i.e., candidate expert) and an expertise
area (i.e., topic) from the supporting document collection.

Participants in the Enterprise track have tried various methods. The methods
mainly fall into two categories: profile-based methods and document-based meth-
ods. In profile-based methods [5,1,7,2], researchers would first build a term-based

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 418–430, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Probabilistic Models for Expert Finding 419

expertise profile (called document reorganization in [5]) for each candidate, and
rank the candidate experts based on the relevance scores of their profiles for
a given topic by using traditional ad hoc retrieval models. In document-based
methods [3,2,8], instead of creating such term-based expertise profiles, the re-
searchers use the supporting documents as a “bridge” and rank the candidates
based on the co-occurrences of topic and candidate mentions in the supporting
documents. However, the existing methods are not general and usually rely on
heuristics, such as rule-based methods to detect the candidate mentions in the
supporting documents, to achieve reasonable retrieval accuracy.

In this paper, we develop a general probabilistic framework for studying
expert finding. We derive two families of generative models based on the frame-
work - candidate generation models and topic generation models. The derived
models are analogous to the probabilistic models derived in [6] for traditional
ad hoc retrieval. These models cover most existing probabilistic models for ex-
pert finding, including probabilistic versions of both profile-based and document-
based methods [3,2,1,8]. We further develop several techniques to improve the
estimation of the proposed models, including incorporating topic expansion, us-
ing a mixture model to put different weights on the matching of different rep-
resentations of an expert candidate, and defining a candidate prior for topic
generation models based on the counts of email matches in the supporting doc-
uments. Evaluation on two standard TREC test collections shows that both
families of models perform well empirically. In addition, we discover that how
the judgements are made can affect the relative performance of different models.
Experiment results also show that putting different weights on the matching of
different representations of candidates with a simple mixture model is beneficial.
Furthermore, it is also beneficial to compute the candidate prior for topic gener-
ation models based on the email counts in the supporting documents. However,
topic expansion only improves the performance slightly when optimized.

2 A Probabilistic Framework for Expert Finding

Recognizing the similarity between expert finding and the traditional ad hoc
retrieval task, we can apply the probabilistic ranking principle [10] to develop
a general probabilistic framework for expert finding. Specifically, we will rank
the candidates according to the probability that a candidate is “relevant” to the
topic (i.e., expertise) specified in a query, and the key challenge is to compute
this probability.

Formally, suppose S = {d1, ..., d|S|} is a collection of supporting documents.
Let t = t1, t2, ..., tn be the description of a topic, where ti is a term in the
description. Let c be an expert candidate whose email and name are denoted as
e(c) and n(c), respectively. Let R be a binary random variable to denote relevance
(1 for relevant and 0 for non-relevant). Given a query t and an expert candidate
c, we are interested in estimating the conditional probability p(R = 1|c, t), i.e.,
the probability that candidate c is relevant to topic t. After using odds ratio to
rank the candidates and applying the Bayes’ Theorem we have

420 H. Fang and C. Zhai

p(R = 1|c, t) rank= p(R=1|c,t)
p(R=0|c,t)

rank= p(c,t|R=1)
p(c,t|R=0) (1)

where rank= means “equivalence for ranking the candidates”.
We now discuss two different ways to factor the conditional probabilities

p(c, t|R = 1) and p(c, t|R = 0). They correspond to two different families of
probabilistic models, which are referred to as candidate generation models and
topic generation models, respectively. The high-level derivation is in spirit the
same as in [6] if we take a topic (i.e., t) as Q and a candidate (i.e., c) as D.

2.1 Candidate Generation Models

One way to factor the conditional probabilities in Equation 1 is as follows:

p(c, t|R = 1)

p(c, t|R = 0)
=

p(c|t, R = 1)p(t|R = 1)

p(c|t, R = 0)p(t|R = 0)

Here we assume that an expert candidate c is “generated” by a probabilistic
model based on a query t. Thus, this family of probabilistic models is referred
to as candidate generation models.

Since p(t|R = 1) and p(t|R = 0) are independent of the candidates, they can
be ignored for the purpose of ranking candidates. Thus, the general retrieval
function of the candidate generation model is:

p(R = 1|c, t) rank=
p(c|t, R = 1)
p(c|t, R = 0)

,

where p(c|t, R = 1) is the probability of candidate c given the “expert generative
model” topic t, while p(c|t, R = 0) is the probability of c given the “non-expert
generative model” of t. Thus the main question is how to estimate p(c|t, R = 1)
and p(c|t, R = 0).

For p(c|t, R = 1), we may use the supporting documents to connect t and c
in the following way:

p(c|t, R=1)=
∑
d∈S

p(c|d, t,R=1) × p(d|t,R=1) ≈
∑
d∈S

p(c|d, R=1) × p(d|t,R=1) (2)

Here we assume that t and c are independent given the document d and the
event R = 1. Intuitively, this formula is quite reasonable: p(d|t, R = 1) allows us
to model the probability that a document d matches a topic t while p(c|d, R =
1) allows us to model the probability that a supporting document mentions
a candidate c. A document d with higher values for both p(c|d, R = 1) and
p(d|t, R = 1) would contribute more to the estimation of p(c|t, R = 1), which
intuitively makes sense. Indeed, this is essentially to exploit the co-occurrences
of the topic terms and candidate mentions in the supporting documents, an idea
already used in the existing work [2,3],

Unfortunately, it is not immediately clear how we should estimate p(c|t, R =
0), the “non-expert” model for topic t. The difficulty comes from the fact that

Probabilistic Models for Expert Finding 421

we do not have evidence for a candidate not to be an expert for t. Thus as
a possibly inaccurate simplification, we simply assume that p(c|t, R = 0) is
uniformly distributed, leaving more accurate estimation as our future work. This
assumption allows us to drop p(c|t, R = 0) and rank candidates solely based on
p(c|t, R = 1), which we estimate using Equation 2.

To compute p(d|t, R = 1) efficiently, we apply Bayes’ Theorem and rewrite
the equation in the following way:

p(c|t, R = 1) =
∑
d∈S

p(c|d, R = 1) × p(t|d, R = 1)p(d|R = 1)∑
d′∈S p(t|d′, R = 1)p(d′|R = 1)

Since
∑

d′∈S p(t|d′, R = 1)p(d′|R = 1) is the same for all the candidates, it can
be dropped for ranking. p(d|R = 1) can be regarded as a prior on d that can be
exploited to favor a certain type of documents (e.g., email messages) in S. For
simplicity, we assume that p(d|R = 1) is uniform, which leads to

p(R = 1|c, t) rank
=

∑
d∈S

p(c|d, R = 1) × p(t|d,R = 1), (3)

where p(t|d, R = 1) is the probability that the topic t is relevant to the document
d and p(c|d, R = 1) is the probability that the candidate c is mentioned in the
document d. Both of them can be computed efficiently by using an existing
probabilistic retrieval model[14].

The candidate generation model shown in Equation 2 covers the two-stage
model proposed in [3] as a special case and can be regarded as a probabilistic
version of the document-based approaches to expert finding.

2.2 Topic Generation Models

The other way to factor the conditional probabilities in Equation 1 is as follows:

p(c, t|R = 1)

p(c, t|R = 0)
=

p(t|c,R = 1)p(c|R = 1)

p(t|c,R = 0)p(c|R = 0)

Here a topic t is assumed to be “generated” by a probabilistic model based
on an expert candidate c, thus we call this family of probabilistic models topic
generation models. The general retrieval function of topic generation models is:

p(R = 1|c, t) rank=
p(c|R = 1)
p(c|R = 0)

× p(t|c, R = 1)
p(t|c, R = 0)

,

where p(t|c, R = 1) is the probability of topic t according to the “expertise topic
model” of candidate c, p(t|c, R = 0) is the probability of topic t according to
“non-expertise topic model” of candidate c, p(c|R = 1) is the prior probability
that c is an expert, and p(c|R = 0) is the prior probability that c is not an
expert. The expert finding problem is thus reduced to the problem of estimating
these probabilities.

As in the case of candidate generation models, we make a possibly inaccurate
simplification assumption that p(t|c, R = 0) is uniform due to the lack of appro-
priate data for estimating it. Thus the major task is to estimate p(t|c, R = 1), the

422 H. Fang and C. Zhai

probability that t describes the expertise of candidate c. We discuss two possi-
ble ways to estimate it: profile-based estimation and document-based estimation,
which correspond to the two categories of the existing methods for expert finding.

Profile-based estimation: The idea of profile-based estimation is to first es-
timate an expertise profile language model θc for every expert candidate c, and
then compute the likelihood of t given the profile language model θc, i.e.:

p(t|c, R = 1) ≈ p(t|θc, R = 1) (4)

Naturally, the key challenge is to estimate expertise profile θc for a candidate.
One possible estimation method proposed in [2] is as follows:

p(t|θc, R = 1) =
∏
ti∈t

p(ti|θc, R = 1)count(ti,t) (5)

=
∏
ti∈t

(
∑
d∈S

p(ti|d, R = 1)p(d|c, R = 1))count(ti,t) (6)

where count(ti, t) is the count of term ti in the query t. This model (i.e., Model 1
in [2]) was shown to perform consistently worse than the other model in [2], but
no clear explanation was given. When viewing the method in our probabilistic
framework, we see that a main reason why this method does not work well
is because the estimation of p(ti|θc, R = 1) is not accurate. Specifically, the
problem lies in that a supporting document matching candidate c well (i.e., with
a high value of p(d|c, R = 1)) may not necessarily support that the candidate
is an expert on a topic (i.e., p(t|d) may be low). Based on Equation 6, as long
as document d contains one query term ti and mentions the candidate c, the
document would be regarded as a useful document to support that c is an expert
on topic t. This is clearly inaccurate because the document might not match the
whole query concept even though it matches one query term very well.

Based on this analysis, it would be reasonable to hypothesize that when we
selectively use the documents that truly reflect the expertise of candidate c, in-
stead of using every document in the collection as shown in Equation 7, such
profile-based estimation will perform better. We have not further explored this
direction; instead, we will use the document-based estimation method (to be
described below) in our experiments.

Document-based estimation: Instead of creating an expertise profile lan-
guage model, we could use supporting documents to connect a candidate and
a topic as in the candidate generation models. Specifically, making similar as-
sumptions as we have made in estimating candidate generation models, we have

p(t|c, R = 1) =
∑
d∈S

p(t|d, c, R = 1) × p(d|c, R = 1) ≈
∑
d∈S

p(t|d, R = 1) × p(d|c, R = 1).

Thus, the expert candidates can be ranked according to

p(R = 1|c, t) rank
=

p(c|R = 1)

p(c|R = 0)
×

∑
d∈S

(p(t|d, R = 1) × p(d|c, R = 1)) (7)

Probabilistic Models for Expert Finding 423

Similarly, we rewrite p(d|c, R = 1) in terms of p(c|d, R = 1), which can be
efficiently computed by treating representations of the candidate c as a query
and using a standard probabilistic retrieval method to compute p(c|d, R = 1).
In addition, as in the candidate generation models, we assume p(d|R = 1) is
uniform, which leads to

p(R = 1|c, t) rank
=

p(c|R = 1)

p(c|R = 0)
×

∑
d∈S

(p(t|d, R = 1) × p(c|d, R = 1)∑
d′∈S p(c|d′, R = 1)

), (8)

where p(c|R = 1) is the prior probability that a candidate c is an expert, p(c|R =
0) is the prior probability that a candidate is not an expert, p(t|d, R = 1) is the
probability that topic t is discussed in document d, and p(c|d, R = 1) is the
probability that an expert candidate c is mentioned in the document d.

Comparing the two models in Equations (3) and (8), a main difference is
that the topic generation model contains a candidate normalizer, N(c) =∑

d∈S p(c|d, R = 1), while the candidate generation model does not. Since a
larger N(c) indicates a more popular c, this normalizer would penalize a pop-
ular candidate. As we will show in Section 3, this normalization factor could
provide an explanation for the performance difference between the two models.

The Model 2 proposed in [2] and the model used in [8] are both special cases
of the model we presented in Equation 7 when p(c|R = 1) and p(c|R = 0)
are assumed to be uniform. As we will show later, it is possible to specify a
non-uniform prior to improve retrieval accuracy.

2.3 Estimation of Component Models

So far, we have derived two families of generative models, as shown in Equa-
tion 3 and Equation 8. They contain the following three component models:
(1) p(c|d, R = 1), the probability that candidate c is mentioned in document
d; (2) p(t|d, R = 1), the probability that topic t is discussed in document d;
(3) p(c|R = 1) and p(c|R = 0), the prior probabilities of a candidate. We now
discuss how we estimate each of them.

Modeling candidate mentions p(c|d, R = 1): In general, p(c|d, R = 1) can be
computed by treating the description of candidate c (e.g., name and/or email)
as a query and using a standard retrieval method to score document d.

The simplest method is to concatenate the email e(c) and the name n(c) to
form a query to represent candidate c. p(c|d, R = 1) could thus be computed as

p(c|d, R = 1) = p(“e(c), n(c)′′|d, R = 1) (9)

However, intuitively, a name and an email have different characteristics. For
example, using email alone to identify an expert could generate high-precision re-
sults, while using name alone to identify an expert may lead to high-recall results
due to partial matching of names. Thus intuitively, to achieve the best results,
it would be reasonable to combine them with appropriate weights. To capture

424 H. Fang and C. Zhai

this intuition, we propose to model p(c|d, R = 1) using a mixture model involv-
ing both p(e(c)|d, R = 1) and p(n(c)|d, R = 1). That is, p(c|d, R = 1) can be
computed as

p(c|d, R = 1) = λe · p(e(c)|d, R = 1) + (1 − λe) · p(n(c)|d, R = 1), (10)

where λe is the weight of the email model. Since e(c) and n(c) are both text,
p(e(c)|d, R = 1) and p(n(c)|d, R = 1) can be computed using query generation
retrieval model with Dirichlet prior smoothing as described in [14].

Modeling topic-document relationship p(t|d, R = 1): Since t is a piece of
text, p(t|d, R = 1) can be computed using the query generation retrieval method
with Dirichlet prior smoothing [14]. However, the original topic description t
tends to be quite short, so it may not be informative. We thus propose to use
some pseudo feedback method (e.g., the model-based feedback method proposed
in [13]) to estimate an enriched topic query model θt, and incorporate this query
model into our candidate finding model through generalizing the topic likelihood
p(t|d, R = 1) as the cross entropy of the query model θt and the document model
θd estimated based on d using Dirichlet prior smoothing. That is,

p(t|d,R = 1) ∝ exp(
∑
w

p(w|θt)log(p(w|θd)). (11)

Clearly, if we set θt to the empirical word distribution in t, this would be equiv-
alent to the original topic likelihood.

Setting the candidate prior p(c|R=1)
p(c|R=0) : p(c|R = 1) and p(c|R = 0) are the prior

probabilities of a candidate. In most existing work [3,2], they are assumed to be
uniform. However, as shown in Section 3, reasonable prior can help improve the
retrieval accuracy.

Based on Bayes’ Theorem, we can rewrite the candidate prior as

p(c|R = 1)
p(c|R = 0)

rank=
p(R = 1|c)
p(R = 0|c) =

p(R = 1|c)
1 − p(R = 1|c) ,

where p(R = 1|c) is the probability that a candidate is an expert. To estimate
it, we may reasonably assume that a candidate whose email has been mentioned
many times has a high prior probability of being an expert. We adapt a formula
that is similar to BM25 term frequency normalization formula [9], i.e., p(R =
1|c) ∝ count(e(c),S)

2×count(e(c),S)+β . Thus, the candidate prior is

p(c|R = 1)

p(c|R = 0)
∝ count(e(c), S)

count(e(c), S) + β
, (12)

where count(e(c), S) is the count of mentions of the email of candidate c in the
collection S, and β is the parameter to control the skewness of the prior. A larger
β would reduce the skewness of the prior (i.e., leading to a weaker prior), thus
it can be interpreted as being inversely proportional to our confidence in this
prior.

Probabilistic Models for Expert Finding 425

3 Experiments

We evaluate the proposed models on two TREC enterprise collections [4] - (1)
Ent05: W3C corpus with topics EX01-EX50. The topics are the names of work-
ing groups. This is the collection used in the Enterprise track of 2005. (2) Ent06:
W3C corpus with topics EX51-EX105. The topics are contributed by the par-
ticipants of enterprise track in 2006, and represent the real world information
need. This is the collection used in the Enterprise track of 2006.

We use the entire corpus, and only the titles of topic descriptions. We have
done minimal preprocessing, where we apply stemming with a Porter stemmer
and no stop word is removed. We evaluate the methods with mean average pre-
cision (MAP), which is the official evaluation measure of expert finding task in
enterprise track. We conduct six sets of experiments. First, we evaluate the pro-
posed models, and compare them with the baseline models. Second, we examine
the effectiveness of using a mixture model (i.e., Equation 10) to model the can-
didate mentions. Third, we study the effectiveness of topic expansion described
in Equation 11. Fourth, we demonstrate the effectiveness of candidate prior pro-
posed in Equation 12. Fifth, we examine the parameter sensitivity. Finally, we
compare our results to the official TREC runs.

3.1 Comparison of Proposed Models

In Table 1, we compare the optimal performance of the proposed two models
with a state-of-the-art baseline model. “Cand-gen (mixture)” is the candidate
generation model (Equation (3)) estimated using the mixture model in Equation
(10). “Topic-gen (mixture+prior) ” is the topic generation model (Equation (8))
estimated using the mixture model in Equation (10) and the prior in Equation
(12). In both models, p(t|d, R = 1) is computed using query generation model
with Dirichlet prior smoothing as described in [14]. “Baseline”is the topic gen-
eration model in Equation (8) estimated using Equation 9 and a uniform prior;
this model is essentially similar to the model 2 proposed in [2].

Table 1. Performance comparison of different models

Models Ent05 Ent06

Baseline 0.151 0.191

Cand-gen (mixture) 0.186 0.449
Topic-gen (mixture+prior) 0.196 0.334

Table 1 shows that our proposed models perform much better than the base-
line model. In addition, the optimal performance of topic generation model on
Ent05 is 0.196, which is better than the best reported performance (i.e., 0.1894)
of a similar model using rule-based name matching (i.e., Model 2 in [2]).

Compared with topic generation model, the candidate generation model per-
forms slightly worse on Ent05 but much better on Ent06. When looking into it,

426 H. Fang and C. Zhai

Table 2. Average popularity of candidates

Judgements Results of Topic-gen Results of Cand-gen

Ent05 0.91 1.18 2.27

Ent06 2.37 1.21 2.02

we found that such performance difference may be caused by the different ways
of creating judgements in these two years’ Enterprise track. In Ent05, the topics
are the names of working groups, and the judgements are independent of the doc-
ument collection. But in Ent06, the topics are contributed by the participants,
and the judgements are created based on the information from the document
collection. Such different ways of creating judgements directly affect the charac-
teristics of the relevant experts, especially their occurrences in the collection (i.e.,
the popularity of the experts). Using the normalizer N(c) =

∑
d∈S p(c|d, R = 1)

as a measure of candidate popularity, we show some popularity statistics in Ta-
ble 2. We see that, as expected, the relevant experts in Ent06 are more popular
in the collection compared with those identified in Ent05, which means that we
should expect penalizing popular experts to help more (or harm less) for Ent05
than for Ent06. Indeed, the fact that the topic-generation model performs better
than the candidate-generation model on Ent05 but worse on Ent06 suggests that
such penalization is beneficial for Ent05 but harmful for Ent06; this is because
the two models differ mainly in the penalization of popular candidates as dis-
cussed in Section 2. From Table 2, we can also see that the average popularity
of the candidates returned by the topic-generation model is indeed much lower
than that returned by the candidate-generation model.

It is surprising that the different ways of how Ent05 and Ent06 are created
can affect the relative performance of the two models, making it interesting to
further explore how to create appropriate test collections for expert finding.

3.2 Effectiveness of Mixture Model for Candidate Mentions

We discussed two ways to model candidate mentions as shown in Equation 9
(denoted as “merge”) and in Equation 10 (denoted as “mixture”). We compare
these two estimations and report the results in Table 3. The results show that
it is more effective to use a mixture model to model the candidate mentions.

Table 3. Effectiveness of mixture model for candidate mentions

Ent05 Ent06

Cand-gen merge 0.130 0.280
mixture 0.186 (43%) 0.449 (60%)

Topic-gen (prior) merge 0.155 0.193
mixture 0.196 (26%) 0.334 (73%)

Probabilistic Models for Expert Finding 427

3.3 Effectiveness of Topic Expansion

We proposed two possible ways to model the topic-document relationship: (1)
“query likelihood”, which is the query generation model described in [14]; (2)
“feedback”, which is the model-based feedback method described in [13]. We
compare these two strategies and report the optimal performance in Table 4.
The results show that topic expansion consistently improves the performance
when optimized, but the performance improvement is smaller compared with
the performance improvement in traditional ad hoc retrieval problem [13].

Table 4. Effectiveness of topic expansion

Ent05 Ent06
query likelihood expansion query likelihood expansion

Cand-gen(mixture) 0.186 0.196 (5%) 0.449 0.465 (4%)

Topic-gen(mixture+prior) 0.196 0.204 (4%) 0.334 0.359 (7%)

3.4 Effectiveness of Candidate Prior in Topic Generation Models

In the topic generation models, we proposed to compute the candidate prior
based on the counts of email using Equation 12, which is denoted to as “email-
prior”. In contrast, most existing work assumes that the candidate prior is
uniform, which is denoted as “uniformprior”. Table 5 shows the performance
difference between these two strategies. As shown in Table 5, incorporating
email-based prior could improve the performance. It is interesting that when
we estimate the candidate mentions with the mixture model as in Equation 10,
the email-based prior improves the performance more.

Table 5. Performance comparison for candidate prior

Topic-gen Ent05 Ent06

merge uniformprior 0.151 0.191
emailprior 0.155 (3%) 0.193 (1%)

mixture uniformprior 0.172 0.204
emailprior 0.196 (14%) 0.334 (64%)

3.5 Parameter Sensitivity

There are four parameters in both candidate generation models and topic genera-
tion models: μt, μe, μn and λe. Topic generation models have one extra parameter
for the candidate prior, i.e., β.

μt, μe and μn are the Dirichlet prior smoothing parameters used to compute
p(t|d, R = 1), p(e(c)|d, R = 1) and p(n(c)|d, R = 1), respectively. We examine
the parameter sensitivity for these three parameters in Figure 1. In every case, we

428 H. Fang and C. Zhai

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
A

P

mu_t

Parameter sensitivity for mu_t

Ent05-cand-gen
Ent05-topic-gen

Ent06-cand-gen
Ent06-topic-gen

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
A

P

mu_e

Parameter sensitivity for mu_e

Ent05-cand-gen
Ent05-topic-gen

Ent06-cand-gen
Ent06-topic-gen

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
A

P

mu_n

Parameter sensitivity for mu_n

Ent05-cand-gen
Ent05-topic-gen

Ent06-cand-gen
Ent06-topic-gen

Fig. 1. Performance Sensitivity of μt(upper), μe (lower left) and μn (lower right)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

M
A

P

lambda_e

Parameter sensitivity for lambda_e

Ent05-cand-gen
Ent05-topic-gen

Ent06-cand-gen
Ent06-topic-gen

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

1 2 3 4 5 6 7 8 9 10

M
A

P

beta

Parameter sensitivity for beta

Ent05-topic-gen Ent06-topic-gen

Fig. 2. Performance Sensitivity of λe(left) and β (right)

change the value of one parameter while fixing the value of the other parameters.
The plots show that the performance is relatively more stable to the change of
μe compared with the change of μt and μn. It is interesting that the optimal
values of μ’s are generally around 100, which is much smaller than 2000, the
recommended value in traditional ad hoc retrieval [14].

λe controls the relative weight on email matching to name matching (as in
Equation 10). We now examine how it affects the performance. The left plot in
Figure 2 shows that the performance is relatively stable when λe < 0.9.

β is a prior confidence parameter defined in Equation 12. The right plot in
Figure 2 shows the parameter sensitivity curve of this parameter. We observe
that the optimal values of β are different for the two data sets. Larger β leads

Probabilistic Models for Expert Finding 429

to better performance in Ent06, while it leads to worse performance in Ent05.
Such observation implies that we could be more confident in the prior on Ent05
than on Ent06, which might be related to the different characteristics of two sets
of queries. We leave the further analysis as our future work.

3.6 Comparison with TREC Results

Our best results are 0.204 for Ent05 and 0.465 for Ent06 as shown in Table 4.
Compared with the official results of the TREC Enterprise track [4,11], our best
results would be in the top 5 for Ent05 and top 10 for Ent06. The top performing
systems tend to use various kinds of heuristics, which we did not use. Since our
models are general and orthogonal to many of these heuristics, we can expect
our models to perform even better when we add these heuristics.

4 Conclusions and Future Work

In this paper, we present a general probabilistic framework to solve the problem
of expert finding. We derive two families of generative models, i.e., candidate gen-
eration models and topic generation models. These models cover most existing
probabilistic models for expert finding. To improve the estimation of the proposed
models, we further propose the following three techniques: (1) a mixture model for
modeling the candidate mentions, which allows us to put different weights on dif-
ferent representations of an expert candidate; (2) topic expansion for modeling
the topic document relationship, which expands the original queries with more
informative terms; (3) email-based candidate prior, which provides a better esti-
mation of prior probability that a candidate is an expert. Empirical results have
demonstrated the effectiveness of the proposed models and estimation strategies.

There are many interesting future research directions. First, we need to study
how to automatically set all the parameters through statistical estimation. Sec-
ond, we could explore alternative ways to estimate the components in the models.
Finally, it would be interesting to study how to estimate a reasonable expertise
profile for every expert candidate in a principled way since such profiles can
potentially be used for many other tasks in addition to expert finding.

Acknowledgments

This material is based in part upon work supported by the National Science
Foundation under award numbers IIS-0347933 and IIS-0428472. We thank Lixin
Zhou and three anonymous reviewers for their useful comments.

References

1. L. Azzopardi, K. Balog, and M. de Rijke. Language modeling approaches for
enterprise tasks. In Proceedings of TREC-05, 2006.

2. K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding in
enterprise corpora. In Proceedings of SIGIR-06, 2006.

430 H. Fang and C. Zhai

3. Y. Cao, J. Liu, S. Bao, and H. Li. Research on expert search at enterprise track
of trec2005. In Proceedings of TREC-05, 2006.

4. N. Craswell, A. P. de Vries, and I. Soboroff. Overview of the trec-2005 enterprise
track. In Proceedings of TREC-05, 2006.

5. Y. Fu, W. Yu, Y. Li, Y. Liu, M. Zhang, and S. Ma. Thuir at trec 2005: Enterprise
track. In Proceedings of TREC-05, 2006.

6. J. Lafferty and C. Zhai. Probabilistic relevance models based on document and
query generation. Language Modeling and Information Retrieval, Kluwer Interna-
tional Series on Information Retrieval, 13, 2003.

7. C. Macdonald, B. He, V. Plachouras, and I. Ounis. University of glasgow at trec
2005: Experiments in terabyte and enterprise tracks with terrier. In Proceedings of
TREC-05, 2006.

8. D. Petkova and W. B. Croft. Umass notebook 2006: Enterprise track. In Proceed-
ings of TREC-06, 2007.

9. S. Robertson and S. Walker. Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In Proceedings of SIGIR’94, 1994.

10. S. E. Robertson. The probability ranking principle in ir. Journal of Documentation,
33(4):294–304, Dec. 1977.

11. I. Soboroff, A. P. de Vries, and N. Craswell. Overview of the trec 2006 enterprise
track. In Proceedings of TREC-06, 2007.

12. E. Voorhees and D. Harman, editors. Proceedings of Text REtrieval Conference
(TREC1-9). NIST Special Publications, 2001. http://trec.nist.gov/pubs.html.

13. C. Zhai and J. Lafferty. Model-based feedback in the language modeling approach
to information retrieval. In Proceedings of CIKM-01, 2001.

14. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to ad hoc information retrieval. In Proceedings of SIGIR-01, 2001.

Using Relevance Feedback in Expert Search

Craig Macdonald and Iadh Ounis

Department of Computing Science,
University of Glasgow, G12 8QQ, UK

{craigm,ounis}@dcs.gla.ac.uk

Abstract. In Enterprise settings, expert search is considered an impor-
tant task. In this search task, the user has a need for expertise - for
instance, they require assistance from someone about a topic of inter-
est. An expert search system assists users with their “expertise need” by
suggesting people with relevant expertise to the topic of interest. In this
work, we apply an expert search approach that does not explicitly rank
candidates in response to a query, but instead implicitly ranks candi-
dates by taking into account a ranking of document with respect to the
query topic. Pseudo-relevance feedback, aka query expansion, has been
shown to improve retrieval performance in adhoc search tasks. In this
work, we investigate to which extent query expansion can be applied in
an expert search task to improve the accuracy of the generated ranking
of candidates. We define two approaches for query expansion, one based
on the initial of ranking of documents for the query topic. The second
approach is based on the final ranking of candidates. The aims of this
paper are two-fold. Firstly, to determine if query expansion can be suc-
cessfully applied in the expert search task, and secondly, to ascertain if
either of the two forms of query expansion can provide robust, improved
retrieval performance. We perform a thorough evaluation contrasting the
two query expansion approaches in the context of the TREC 2005 and
2006 Enterprise tracks.

1 Introduction

In large Enterprise settings with vast amounts of digitised information, it is often
important that a user is not only be able to identify documents that are relevant
to a topic of interest, but also to find people that have relevant expertise to the
topic. People are a critical source of information because they can explain and
provide arguments about why specific decisions were made [5]. Hence, in addition
to classical document Information Retrieval (IR) systems, there is a growing
interest in the research community to build accurate expert search systems. An
expert search system aids a user in their “expertise need” by identifying people
with relevant expertise to the topic of interest.

The retrieval performance of an expert search system is very important. If an
expert search system suggests incorrect experts, then this could lead the user
to contacting these people inappropriately. Similar to document IR systems,
the accuracy of an expert search system can be measured using the traditional

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 431–443, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

432 C. Macdonald and I. Ounis

IR evaluation measures: precision, the accuracy of suggested candidate experts;
and recall, the number of candidate experts with relevant expertise retrieved.
Expert search was a retrieval task in the Enterprise tracks of the Text RE-
trieval Conferences (TREC) since 2005 [4], aiming to evaluate expert search
approaches.

Pseudo-relevance feedback (PRF) [10] has been used in adhoc search tasks
to improve the performance of document IR systems. PRF describes the pro-
cess of automatically examining top-ranked documents in an IR system ranking,
and using information from these documents to improve the ranking of docu-
ments. This is done by assuming that the top-ranked documents are relevant,
and using information from this ‘pseudo-relevant set’ to improve the accuracy
of the ranking by expanding on the initial query and re-weighting the query
terms1.

In this paper, we explore how query expansion can be applied in an expert
search task. To this end, we experiment with an expert search system that is
based on the voting model for expert search [8]. In this model, documents are
firstly associated with candidates to represent the candidates expertise. Then the
voting model considers the ranking of documents with respect to the query, in
order to generate an accurate ranking of candidates. The voting model for expert
search is interesting for these experiments, as we can apply query expansion using
the underlying ranking of documents as the pseudo-relevant set. Moreover, we
investigate how query expansion can be applied if the ranking of candidates is
used as the pseudo-relevant set. We call these approaches document-centric, and
candidate-centric query expansion respectively.

In this work, our objectives are two fold: firstly, to determine if query ex-
pansion can be successfully applied in expert search; and secondly, to analyse
both forms of query expansion, allowing conclusions to be drawn concerning
the applicability and effectiveness of both approaches. In order to fully under-
stand the applicability of query expansion, we experiment using two statistically
different models from the Divergence from Randomness (DFR) framework for
extracting informative terms from the pseudo-relevant set - one model based
on the Bose-Einstein statistics and is similar to Rocchio [10], and one based on
Kullback-Leibler divergence [1]. Furthermore, we experiment using two different
voting techniques for ranking candidates, using the topics and relevance assess-
ments for the W3C collection from the TREC 2005 and 2006 Expert Search
tasks. Conclusions are drawn across the two voting techniques applied.

Section 2 provides further detail on the model for expert search that we em-
ploy in this work, and demonstrates the baselines achieved using this approach.
Section 3 defines how query expansion can be applied to expert search. We
experimentally investigate both approaches for query expansion in Section 4.
Section 5 investigates the effect of varying the parameters of query expansion,
to assess the maximum potential and stability of each approach. Section 6 pro-
vides concluding remarks and suggestions for future work.

1 In this work, we use the terms pseudo-relevance feedback and query expansion
interchangeably.

Using Relevance Feedback in Expert Search 433

2 Expert Search

Modern expert search systems for Enterprise settings work by using documents
to form the profile of textual evidence for each candidate. The candidate’s profile
represent the expertise of the candidate expert to the expert search system.
This documentary evidence can take many forms, such as intranet documents,
documents or emails authored by the candidates, or even emails sent by the
candidate or web pages visited by the candidate (see [8] for an overview). In this
work, the profile of a candidate is considered to be the set of document associated
with the candidate. These candidate profiles can then be used to rank candidates
automatically in response to a query.

This work uses the voting approach for expert search proposed by Macdonald
& Ounis in [8], which considers the problem of expert search as a voting process.
Instead of directly ranking candidates, it considers the ranking of documents,
with respect to the query Q, denoted by R(Q). The ranking of candidates can
then be modelled as a voting process, from the retrieved documents in R(Q)
to the profiles of candidates: every time a document is retrieved and is associ-
ated with a candidate, then this is a vote for that candidate to have relevant
expertise to Q. Each document retrieved by the IR system, that is associated
with the profile of a candidate, can be seen as a vote for that candidate to have
relevant expertise to the query topic. The ranking of the candidate profiles can
then be determined by aggregating the votes of the documents. Eleven voting
techniques for ranking experts were defined in [8], which each employ various
sources of evidence that can be derived from the ranking of documents with
respect to the query topic. In this work, we only use the CombSUM and exp-
CombMNZ voting techniques, because they provide robust results on the W3C
collection. The CombSUM technique ranks candidates by considering the sum of
the relevance scores of the documents associated with each candidate’s profile.
Hence the relevance score of a candidate expert C with respect to a query Q,
score cand(C, Q), is:

score cand(C, Q) =
∑

d∈ R(Q)∩ profile(C)

score(d, Q) (1)

where profile(C) is the set of documents associated with candidate C, and
score(d, Q) is the relevance score of the document in the document ranking
R(Q). For expCombMNZ, the relevance score of a candidate C’s expertise to a
query Q is given by:

score candexpCombMNZ(C, Q) = ‖R(Q) ∩ profile(C)‖
·

∑
d ∈ R(Q)∩ profile(C)

exp(score(d, Q)) (2)

where ‖R(Q)∩ profile(C)‖ is the number of documents from the profile of can-
didate C that are in the ranking R(Q), and exp() is the exponential function.
expCombMNZ is similar to CombSUM, but also includes a second component

434 C. Macdonald and I. Ounis

which takes into account the number of documents in R(Q) associated to each
candidate, hence explicitly modelling the number of votes made by the docu-
ments for each candidate. The exponential function boosts candidates that are
associated to highly scored documents (strong votes).

In the remainder of this section, we define the strong baselines that we deploy
for our experiments. Secondly, we provide details on two statistically different
query expansion (QE) techniques based on the Divergence from Randomness
(DFR) framework. We employ two QE techniques in our experiments to ensure
our drawn conclusions are general.

2.1 Baselines

In this section, we define our experimental setup, and the baselines we use in
this work. Our experiments are carried out in the setting of the Expert Search
tasks of the TREC Enterprise track, 2005 and 2006. The TREC W3C collec-
tion is indexed using Terrier [9], removing standard stopwords and applying the
first two steps of Porters stemming algorithm. Initial experimental results have
shown that applying only this weaker form of stemming results in increased high
precision without degradation in mean average precision (MAP) for this task.

Next, we generate the profiles of documentary evidence of expertise for the
candidates: for each candidate, documents which contain an exact match of the
candidates full name are used as the profile of the candidate.

From the two TREC expert search tasks, we have a total of 99 topics with rele-
vance assessments. Documents are ranked using the DLH13 document weighting
model from the DFR framework. The DLH13 document weighting model is a
generalisation of the parameter-free hypergeometric DFR model in a binomial
case [2,7]. The hypergeometric model assumes that the document is a sample,
and the population is from the collection. For the DLH13 document weighting
model, the relevance score of a document d for a query Q is given by:

score(d, Q) =
∑
t∈Q

qtw

tf + 0.5
·
(

log2(
tf · avg l

l
· N

F
) (3)

+ 0.5 log2
(
2πtf(1 − tf

l
)
))

where tf is the term frequency of the term t in document d, F is the frequency
of the query term in the collection and N is the number of documents in the
collection. l is the length of the document d in tokens, and avg l is the average
document length in the whole collection. The query term weight qtw is given
by qtf/qtfmax. qtf is the query term frequency. qtfmax is the maximum query
term frequency among the query terms.

We chose to experiment using DLH13 because it has no term frequency nor-
malisation parameter that requires tuning, as this is assumed to be inherent to
the model. Moreover, DLH13 performs robustly on many collections and tasks
without any need for parameter tuning [7]. By applying DLH13, we remove the
presence of any term frequency normalisation parameter in our experiments.

Using Relevance Feedback in Expert Search 435

In this work, we could also experiment with other weighting models. However,
it was shown that the relative performance rankings of the voting techniques
were concordant across a selection of weighting models, on the same W3C col-
lection [8]. This infers that conclusions drawn using one document weighting
model should be applicable to any other state-of-the art model.

Table 1 shows the retrieval performances achieved by the baseline expert
search approach we employ in this paper. We report MAP and P@10 evaluation
measures. The retrieval performance is reported on the TREC 2005 and 2006
topics. In addition, we also report the median run of MAP for each year (the
median P@10 runs are not available). As apparent from Table 1, the voting

Table 1. Baseline performances of CombSUM and expCombMNZ, using the DLH
weighting model, on the 2005 and 2006 TREC Enterprise track, expert search tasks.
For TREC 2005, topics only had one fields, while for TREC 2006, we use title-only
(short) queries. Mean average precision (MAP) and Precision at 10 (P@10) measure
are reported. The MAP median runs of all participants from the respective year of
TREC are given. Moreover, the best result for each measure are emphasised.

TREC 2005 TREC 2006

MAP P@10 MAP P@10

Median 0.1402 - 0.3412 -
CombSUM 0.2037 0.3240 0.5188 0.6388
expCombMNZ 0.2037 0.3100 0.5502 0.6837

techniques are clearly performing well above the median run for both years.
Moreover, these results for the TREC 2005 Enterprise task are similar to those
of the 3rd top group participating that year. For TREC 2006, the ranking results
are not yet publicly available, but with such a large margin over the median run,
these results appear strong. The voting approach is robust and general, as it is
not dependent on heuristics based on the used enterprise collection.

In [3], Balog et al. defined a language modelling approach for expert search.
However, in contrast to the voting approach by Macdonald & Ounis, their ap-
proach can only be applied in a language modelling setting. The voting model
approach is more flexible, because any approach (including language modelling)
can be used to generate the document ranking R(Q). However, there are some
similarities between the two approaches. In particular, for the voting approach,
if Hiemstra’s language modelling approach [6] was used to generate R(Q), and
CombSUM applied to combine the scores for candidates, then this would be
identical to the candidate ranking formula of Equation (4) in [3]. For this rea-
son, we do not experiment using the Balog et al. language modelling approach,
as its characteristics are encapsulated in the CombSUM voting technique2.

2 In fact, experimental evaluation of Balog et al’s approach on the same profile set,
provides similar results to Hiemstra’s language model combined with CombSUM
voting technique.

436 C. Macdonald and I. Ounis

Because the voting approach allows any IR technique to be used to generate
the ranking of documents R(Q), we wish to determine the extent to which
the performance of the approach can be improved by increasing the quality
of the document ranking. An obvious way to apply QE is to use the top-ranked
documents in R(Q) as the pseudo-relevant set. However, we also propose an
alternative approach for applying query expansion, namely using the top-ranked
candidates as the pseudo-relevant set.

2.2 Query Expansion Models

In our investigation into query expansion (QE) in expert search, we need to
determine if the QE model employed has any effect on the conclusions concerning
our two approaches for query expansion. Hence, we employ two statistically
different QE models from the DFR framework [1], known as term weighting
models, for extracting informative terms from the pseudo-relevant set of top-
ranked documents. DFR term weighting models measure the informativeness
of a term by considering the divergence of the term occurrence in the pseudo-
relevant set from a random distribution.

Terrier provides various DFR-based term weighting models for query expan-
sion. We experiment with two term weighting models to understand the impor-
tance of the choice of model. One term weighting model, known as Bo1, is based
on Bose-Einstein statistics and is similar to Rocchio [1]. The other is based on
the Kullback Leibler (KL) divergence between the pseudo-relevant set sample
and the collection. In Bo1, the informativeness w(t) of a term t is given by:

w(t) = tfx · log2
1 + Pn

Pn
+ log2(1 + Pn) (4)

where tfx is the frequency of the term in the pseudo-relevant set, and Pn is given
by F

N . F is the term frequency of the query term in the whole collection and N
is the number of documents in the collection.

Alternatively, w(t) can be calculated using the Kullback Leibler divergence
term weighting model [1]:

w(t) = Px · log2
Px

Pc
(5)

where Px = tfx

lx
and Pc = F

tokenc
. lx is the size in tokens of the pseudo-relevant

set, and tokenc is the total number of tokens in the collection. Note that unlike
Bo1, KL uses the size of the pseudo-relevant set while measuring divergence.

Using either Bo1 or KL to define w(t), the top exp term informative terms
are identified from the top exp doc ranked documents, and these are added to
the query (exp term ≥ 1, exp doc ≥ 2). The default setting for these parameters
is exp doc = 3 and exp term = 10, suggested by Amati in [1] after extensive
experiments. Finally, for both the Bo1 and KL term weighting models, the query
term frequency qtw of an expanded query term is given by [1]:

qtw = qtw +
w(t)

wmax(t)
(6)

Using Relevance Feedback in Expert Search 437

where wmax(t) is the maximum w(t) of the expanded query terms. qtw is initially
0 if the query term was not in the original query.

3 Applying QE in Expert Search Task

Our work concerns the applicability of QE to expert search. The application
of QE in adhoc search tasks is known to improve retrieval performance. Using
the voting model described in Section 2, it can be seen that the quality of the
generated ranking of candidates is dependent on how well R(Q) ranks documents
associated with relevant candidates. Then any improvement in the quality of
the document ranking should improve the accuracy of the retrieved candidate
ranking, because the document ranking votes will be more accurate, and hence
the aggregated ranking of candidates will be more accurate.

We call document-centric query expansion, the approach that considers the
top-ranked documents of the document ranking R(Q) as the pseudo-relevant
set. We hypothesise that the candidate ranking generated by applying a vot-
ing technique to the refined document ranking will have increased retrieval
performance, when compared to applying the voting technique to the initial
R(Q).

Moreover, we propose a second approach called candidate-centric query expan-
sion where the pseudo-relevant set is taken from the final ranking of candidates
generated by a query. If the top-ranked candidates are defined to be the pseudo-
relevance set, then we can extract informative terms from the corresponding
candidate profiles, and use these to generate a refined ranking of documents.
In using this expanded query, we hypothesise that the document ranking will
become nearer to the expertise area of the initially top-ranked candidates, and
hence the generated candidate ranking will likely include more candidates with
relevant expertise.

In the following section, we assess the usefulness of both forms of QE com-
pared to the baseline approaches defined in Section 2. It is of note that typi-
cally, each candidate profiles will many associated documents. Hence, applying
candidate-centric QE will consider far more tokens of text in the top-ranked
candidates, than applying document-centric QE. In particular, Table 2 details
the statistics of the documents of the W3C collection, and the document candi-
date associations we use in this work. Of particular note is the size in tokens of
profiles compared to documents - the average profile size is 76 times larger than
the average document, while the largest candidate profile is a massive 444 times
larger than the largest document in the collection. Due to the large difference be-
tween candidate profiles and documents, it is possible that the default settings of
exp doc = 3 and exp term = 10 may not be suitable for candidate-centric query
expansion. In the remainder of the paper, we assess whether the default settings
are in fact suitable for document-centric and, in particular, candidate-centric
query expansion.

438 C. Macdonald and I. Ounis

Table 2. Statistics of the W3C collection, and of the candidate-document associations
used in this work

W3C Collection

Number of Documents 331,037
Size of Collection (tokens) 310,720,411
Average size of a Documents (tokens) 9,385
Largest Document (tokens) 50,001

Number of Candidates 1,092
Size of all Candidate Profiles (tokens) 779,840,190
Average size of a Candidate Profile (documents) 913
Average size of a Candidate Profile (tokens) 714,139
Largest Candidate Profile (documents) 88,080
Largest Candidate Profile (tokens) 22,182,816

4 Experimental Results

Table 3 shows the results of document-centric and candidate-centric forms of
QE, using both the Bo1 and KL term weighting models. For both Bo1 and KL,
the default setting of extracting the top exp term = 10 most informative terms
from the top exp doc = 3 ranked documents or candidates [1] is applied. Statisti-
cally significant improvements from the baselines are shown using the Wilcoxon
signed rank test. At first inspection, it appears that query expansion can be
successfully applied in an Expert Search task to increase retrieval performance.

Table 3. Results for query expansion using the Bo1 and KL term weighting models.
Results are shown for the baseline runs, with document-centric query expansion
(DocQE) and candidate-centric query expansion (CandQE). The best results for each
measure, term weigthing model and voting technique combination are emphasised.
Statistically significant improvements (p ≤ 0.05) over the corresponding baseline are
marked by *, while significant improvements (p ≤ 0.01) are denoted **.

TREC 2005 TREC 2006

MAP P@10 MAP P@10

Baselines
CombSUM 0.2037 0.3240 0.5188 0.6388
expCombMNZ 0.2037 0.3100 0.5502 0.6837

Bo1

DocQE
CombSUM 0.1742 0.2860 0.5216 0.6510
expCombMNZ 0.2185 0.3340* 0.5606 0.6959

CandQE
CombSUM 0.1473 0.2240 0.4203 0.5388
expCombMNZ 0.1760 0.2500 0.4554 0.5939

KL

DocQE
CombSUM 0.1805 0.2880 0.5296 0.6490
expCombMNZ 0.2231* 0.3400** 0.5689* 0.7020

CandQE
CombSUM 0.1627 0.2560 0.5195 0.6265
expCombMNZ 0.2031 0.3100 0.5600 0.6592

Using Relevance Feedback in Expert Search 439

Moreover, the document-centric QE outperforms the candidate-centric QE on
both MAP and P@10, in all settings. It is possible that the default setting
of exp doc and exp term used is not suitable for candidate-centric query ex-
pansion, because of the size of the candidate profiles being considered in the
pseudo-relevant set. In particular, it can be seen that applying document-centric
QE results in an increase over the baseline for the TREC 2006 topics, and when
using expCombMNZ for the TREC 2005 topics - some of these improvements
are statistically significant (p <= 0.05). Compared to the respective baselines,
applying candidate-centric QE results in a degradation in performance for most
settings using the TREC 2005 topics. Document-centric QE provides an increase
in MAP and P@10 over the baselines, except when using CombSUM for the
TREC 2005 topics.

Overall, the KL term weighting model performs better in terms of MAP and
P@10 when compared to the baselines, than Bo1 achieves. This is interesting
as previous thorough experiments on various test collections shows that Bo1
performs consistently better than KL on adhoc search tasks [1]. Note also, that
applying document-centric QE to expCombMNZ will always results in an in-
crease in performance if it increased the performance of the CombSUM baseline.
This can be explained by the fact that the generated refined document ranking
by applying QE is identical. It appears then that expCombMNZ is better than
CombSUM at converting the refined document ranking into a ranking of candi-
dates, in line with the same results for unrefined document rankings. Moreover,
this follows the persistent high performance of expCombMNZ observed by Mac-
donald & Ounis in [8]. QE using documents has been well tested in classical IR
systems, so it is no surprise that it performs well here in increasing the quality
of the document ranking. However, as discussed in Section 3, candidate profiles
are many times larger than standard documents, so it is possible that the default
setting of exp term = 10, exp doc = 3 is not as suitable for candidate-centric
QE. In the next section, we assess the extent to which the setting of the QE
parameters can affect the retrieval performance of either forms of QE.

5 Effect of Query Expansion Parameters

In this section, we investigate the extent to which the parameters for QE have
an effect on the retrieval performance of the expert search task. The parameters
of query expansion are exp doc, the number of top-ranked documents or candi-
dates to be considered as the pseudo-relevance set, and exp term, the number
of informative terms to be added to the query. To fully investigate their effect,
we perform a large-scale evaluation of many parameter combinations. We aim
to conclude if one of document-centric or candidate-centric QE is more stable
with respect to various parameter settings, and to have a better comparison of
the two forms of QE, as well as the term weighting model employed.

For these experiments, we use the expCombMNZ voting technique, using only
the TREC 2006 topics, as this is the best performing setting (see Section 4). To
assess the stability of the approaches with respect to exp term and exp doc, we

440 C. Macdonald and I. Ounis

 0
 5

 10
 15

 20
 25

 30

 2 4 6 8 10 12 14 16 18 20

 0.55
 0.555
 0.56

 0.565
 0.57

 0.575
 0.58

MAP

’TREC 2006, expCombMNZ, Bo1 DocQE’

Terms
Documents

MAP

(a) Document-Centric Query Expansion

 0
 5

 10
 15

 20
 25

 30 2 4 6 8 10 12 14 16 18 20

 0.34
 0.36
 0.38
 0.4

 0.42
 0.44
 0.46
 0.48
 0.5

 0.52
 0.54

MAP
’TREC 2006, expCombMNZ, Bo1 CandQE’

Terms
Candidates

MAP

(b) Candidate-Centric Query Expansion

Fig. 1. Surface plots of MAP for expCombMNZ, using the Bo1 term weighting model,
when the exp doc documents or candidates and exp term terms query expansion pa-
rameters are varied

vary them and record the MAP of the generated run. In particular, we vary
2 ≤ exp doc ≤ 20 and 1 ≤ exp term ≤ 30. This generates a matrix of 570 points
per setting. Figures 1 & 2 present surface plots of the Bo1 and KL QE settings,
using the expCombMNZ voting techniques. In each figure, (a) uses document-
centric query expansion, and (b) uses candidate-centric query expansion3. From
the Figure 1 (a), shows that the number of document used as the pseudo-relevant
set in document-centric QE has some effect on the retrieval performance of the
generated ranking of candidates. In particular, it appears that using the 3 top-
ranked documents is not a good setting, as can be seen from the crevice running
across the surface plot on exp doc = 3; exp doc = 2 and exp doc ≥ 4 are better
settings. With respect to terms considered in the document-centric QE, using less
than 10 terms means a drop-off in MAP, while for exp term ≥ 10, the retrieval
performance is stable. Indeed, the best performance achieved in Figure 1 (a) is
MAP 0.5799, for exp term = 16 and exp doc = 15, compared to 0.5606 from
Table 3, with default setting (exp term = 10, exp doc = 3).

Figure 1 (b) shows that as more terms are considered in candidate-centric
QE, the MAP degrades. In particular, expanding the query by only 1 term
(m = 1), still does not achieve the baseline MAP of 0.5502 from Table 3. In this
case, varying the number of candidate profiles considered by the QE mechanism
has little affect for a low number of terms. As the number of terms increases
to 30, considering less profiles is favoured. The best setting on this figure is
exp term = 2 and exp doc = 6, which gives a markedly better MAP of 0.5306,
compared to the default setting of 0.4554.

For Figure 2, the patterns are similar for the Bo1 term weighting model
as in Figure 1 (a). Again, the crevice for exp term = 3 is apparent. In addi-
tion, there is also a slight crevice in MAP at exp term = 11 for exp doc > 10.
For candidate-centric query expansion (Figure 2 (b)), as the number of terms
considered increases, there is again a decrease in MAP, but not as noticeable
as in Figure 1 (b). Moreover, MAP is not as stable as exp term increases.

3 Note that some figures have different orientation to allow easier viewing.

Using Relevance Feedback in Expert Search 441

 0
 5

 10
 15

 20
 25

 30

 2 4 6 8 10 12 14 16 18 20

 0.555
 0.56

 0.565
 0.57

 0.575
 0.58

 0.585

MAP

’TREC 2006, expCombMNZ, KL DocQE’

Terms
Documents

MAP

(a) Document-Centric Query Expansion

 0
 5

 10
 15

 20
 25

 30 2 4 6 8 10 12 14 16 18 20

 0.51
 0.52
 0.53
 0.54
 0.55
 0.56
 0.57

MAP
’TREC 2006, expCombMNZ, KL CandQE’

Terms

Candidates

MAP

(b) Candidate-Centric Query Expansion

Fig. 2. Surface plots of MAP for expCombMNZ, using the KL term weighting model,
when the exp doc documents or candidates and exp term terms query expansion pa-
rameters are varied

Best settings for Figure 2 are (a) exp term = 24, exp doc = 20 (MAP 0.5827),
and (b) exp term = 6, exp doc = 3 (MAP 0.5627), compared to the default
settings of 0.5689 and 0.5600 respectively.

Overall, our large-scale experiments has allowed us to draw some conclu-
sions concerning the applicability and stability of both forms of query expan-
sion. Document-centric QE performs robustly, although exp doc and exp term
should not be too small - in particular a fairly flat MAP surface is exhibited for
exp term ≥ 6 and exp doc ≥ 10. For candidate-centric query expansion, more
profound influencing of MAP is apparent as exp doc and exp term are varied.
From our experiments, 3 ≥ exp doc ≥ 8 and expterm ≤ 5, exhibit the most
stable MAP surfaces for this form of query expansion. In particular, the quality
of terms decreases rapidly, which is possibly due to the large and varied size of
candidate profiles. In summary, overall it appears that document-centric QE is
the more stable and effective of the two approaches.

6 Conclusions

We have investigated pseudo-relevance feedback QE in an Enterprise expert
search setting. It was shown how query expansion can be applied in two dif-
ferent manners in the context of the voting approach for expert search, namely
document-centric and candidate-centric QE. Experiments were carried out using
two different voting techniques, and two different query expansion term weight-
ing models. Topics from the TREC 2005 and 2006 Enterprise track Expert Search
tasks were used. The results showed that firstly, QE can be successfully applied
in expert search and secondly, using the default setting for query expansion,
document-centric QE outperforms candidate-centric QE.

By performing a large-scale evaluation of the effect of the QE parameter set-
tings, we observed that document-centric QE is stable with exp term ≥ 6 and
exp doc ≥ 10. In contrast, candidate-centric QE was observed to be stable with

442 C. Macdonald and I. Ounis

respect to the number of candidate profiles considered (exp doc), but increasing
the number of expansion terms caused degradations in retrieval performance.
Overall, the document-centric QE was more stable and consistently outper-
formed candidate-centric QE. The major difference when performing candidate-
centric QE is that candidate profiles can be extremely large when compared to
the documents considered in document-centric QE. We hypothesise that modern
QE techniques struggle to identify informative terms when presented with such
a large sample. In particular, the more terms identified by candidate-centric QE,
the worse the retrieval performance. This also explains the better performance
of the KL term weighting model for candidate-centric QE, as KL accounts for
the size of the pseudo-relevant set when measuring the informativeness of terms.

Another possible explanation for the less stable performance of candidate-
centric QE is due to ‘topic drift’. A candidate profile contains many documents
that represent the various interests of a candidate. When candidate-centric QE is
performed, the expanded query terms may describe other common, not relevant
interests of the candidates in the pseudo-relevant set, causing more candidates
with these incorrect interests to be retrieved erroneously. Topic drift is less likely
to occur with document-centric QE as documents are smaller and more likely to
be about a single topic.

In the future, we would like to develop advanced forms of QE suitable for
use for candidates. This would combine the best properties of document-centric
and candidate-centric QE by only considering the top-ranked documents from
the top-ranked candidates profiles as the pseudo-relevant set. An alternative
possible approach for extracting informative terms from top-ranked candidate
profiles might involve clustering the profile documents in each profile, to identify
important interest areas of the candidates.

References

1. G. Amati. Probabilistic Models for Information Retrieval based on Divergence
from Randomness. PhD thesis, Department of Computing Science, University of
Glasgow, 2003.

2. G. Amati. Frequentist and bayesian approach to information retrieval. In Advances
in Information Retrieval, 28th European Conference on IR Research, ECIR 2006,
pages 13–24. Springer, April 2006.

3. K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding in
enterprise corpora. In Proceedings of the 29th ACM SIGIR 2006, pages 43–50,
Seattle, WA. August 2006.

4. N. Craswell, A. P. de Vries, and I. Soboroff. Overview of the TREC-2005 Enterprise
Track. In Proceedings of the 14th Text REtrieval Conference (TREC-2005), 2005.

5. M. Hertzum and A. M. Pejtersen. The information-seeking practices of engineers:
searching for documents as well as for people. Inf. Process. Manage., 36(5):761–778,
2000.

6. D. Hiemstra. Using language models for information retrieval. PhD thesis, Centre
for Telematics and Information Technology, University of Twente, 2001.

7. C. Macdonald, B. He, V. Plachouras, and I. Ounis. University of Glasgow at TREC
2005: Experiments in Terabyte and Enterprise tracks with Terrier. In Proceedings
of 14th Text REtrieval Conference (TREC 2005), 2005.

Using Relevance Feedback in Expert Search 443

8. C. Macdonald and I. Ounis. Voting for candidates: Adapting data fusion techniques
for an expert search task. In Proceedings of the 15th ACM CIKM 2006. Arlington,
VA. November 2006.

9. I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Lioma. Terrier:
A high performance and scalable information retrieval platform. In Proceedings of
the OSIR Workshop 2006, pages 18–25, August 2006.

10. J. Rocchio. Relevance feedback in information retrieval. Prentice-Hall, Englewood
Cliff. NJ.

Using Topic Shifts for Focussed Access to XML

Repositories

Elham Ashoori and Mounia Lalmas

Queen Mary, University of London
London, E1 4NS, UK

{elham,mounia}@dcs.qmul.ac.uk

Abstract. In focussed XML retrieval, a retrieval unit is an XML ele-
ment that not only contains information relevant to a user query, but
also is specific to the query. INEX defines a relevant element to be at
the right level of granularity if it is exhaustive and specific to the user’s
request – i.e., it discusses fully the topic requested in the user’s query
and no other topics. The exhaustivity and specificity dimensions are both
expressed in terms of the “quantity” of topics discussed within each ele-
ment. We therefore propose to use the number of topic shifts in an XML
element, to express the “quantity” of topics discussed in an element as a
mean to capture specificity. We experimented with a number of element-
specific smoothing methods within the language modelling framework.
These methods enable us to adjust the amount of smoothing required
for each XML element depending on its number of topic shifts, to cap-
ture specificity. Using the number of topic shifts combined with element
length improves retrieval effectiveness, thus indicating that the number
of topic shifts is a useful evidence in focussed XML retrieval.

1 Introduction

Content-oriented XML1 retrieval systems aim at supporting more precise access
to XML repositories by retrieving XML document components (the so-called
XML elements) instead of whole documents in response to users’ queries. There-
fore, in principle, XML elements of any granularity (for example a paragraph
or the section enclosing it) are potential answers to a query, as long as they
are relevant. However, the child element (paragraph) may be more focussed on
the topic than its parent element (the section), which may contain additional
irrelevant content. In this case, the child element is a better element to retrieve
than its parent element, because not only it is relevant to the query, but it is
also specific to the query. Thus the aim of an XML retrieval system is to provide
a focussed access to XML repositories by returning the most appropriate units
of retrieval for a given query.

To identify what constitutes a most appropriate unit of retrieval, INEX, the
initiative evaluation for XML retrieval (e.g., [6]) defined relevance in terms of

1 XML stands for eXtensible Markup Language – see http://www.w3.org/

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 444–455, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using Topic Shifts for Focussed Access to XML Repositories 445

two dimensions, exhaustivity and specificity, each defined on a graded scale.
These two dimensions are respectively defined as “how exhaustively an element
discusses the topic of request” and “how focussed an element is on the topic of
request (i.e., discusses no other irrelevant topics)” [5]. The combination of these
two relevance dimensions is used to identify relevant elements that are both
exhaustive and specific to the user’s query.

In IR, the main factors that affect the importance of a term in a text – in terms
of how good it is at representing the content of the text – are the term frequency,
the inverse document frequency, and the document length. To incorporate the
“specificity” dimension in XML retrieval, we propose to exploit the “number of
topic shifts” as another factor affecting the importance of a term in a text. We
incorporate the “number of topic shifts” in the smoothing process within the
language modelling framework. In the language modelling approach, smoothing
refers to adjusting the maximum likelihood estimator for the element language
model so as to correct inaccuracy arising from data sparseness. In the smoothing
process, the probability of terms seen in an element are discounted mainly by
combining the element language model with the collection language model, thus
assigning a non-zero probability to the unseen terms.

We use “Dirichlet smoothing” approach [14] as the smoothing framework.
Dirichlet smoothing is one of the popular document-dependent smoothing meth-
ods. Using this approach in XML retrieval enables us to adjust the amount of
smoothing dynamically by the features of elements (e.g. length, topic shifts). In
this work, we explore various ways to incorporate topic shifts in the smoothing
process, either individually or combined with the length of XML elements. We
investigate whether using topic shifts individually, or combined with length pro-
vides a better smoothing approach for the focussed access to XML documents.

The paper is organised as follows. Section 2 discusses related work. In section
3, we define the notion of topic shifts and how we calculate it. In section 4, we
describe the language modelling formalism used to perform focussed retrieval.
Section 5 describes the methodology used to compare the proposed topic shifts-
based smoothing process, including the INEX test collection used to carry out
this investigation. The experiments and results are discussed in Section 6. Section
7 concludes the paper, with some thoughts for future work.

2 Related Work

The language modeling approach to IR is a sound and flexible framework, not
only in content-oriented XML retrieval (e.g., [9,13,12]), but also for IR research
in general [3]. The basic idea of this approach is to estimate a language model
for each document, and rank documents with respect to the likelihood that the
query can be generated from the estimated language models. Retrieval perfor-
mance of language modelling approaches have been shown to be sensitive to
the smoothing parameters both in ad hoc IR [14] and in XML retrieval [9].
Although smoothing is essential in language modelling due to data sparseness,
Zhai et al. [14] introduced another role for it. They showed that the effects of

446 E. Ashoori and M. Lalmas

smoothing is very sensitive to the type of queries (long, short) which results in
a new role for smoothing, query modelling, to “explain the common and non-
informative words in a query”. Following the query modelling role of smoothing,
Hiemstra [8] introduced the term-specific smoothing and used feedback docu-
ments for estimating term-specific smoothing parameters.

In the context of ad hoc XML element retrieval, Kamps et al. [9] used a
multinomial language model, with Jelinek-Mercer smoothing which is a linear
interpolation of the element language model and the collection model. In this
approach the smoothing parameter is fixed for all elements. They showed that
the smoothing parameter indirectly introduces a length bias by increasing the
importance of the presence of query terms in the retrieved elements. In this ap-
proach, the optimal amount of smoothing depends on the relevance assessments.
If during assessment, the assessors favor the longer elements in the collection,
little smoothing is required. More precisely, it was shown that a high amount
of smoothing leads to the retrieval of shorter elements. This work is different
from ours as we propose an element-dependent smoothing approach, where the
amount of smoothing can be dynamically adjusted according to features of el-
ements (in this paper, length, topic shifts). This allows us to investigate the
effect of topic shifts (and element length) by making them “parameters” of the
language modeling framework2.

3 Topic Shifts

In this section, we describe how we measure the number of topic shifts of the
elements forming a XML document. We use the number of topic shifts in an
XML element, to express the “quantity” of topics discussed in an element. For
this purpose, both the logical structure and a semantic decomposition of the
XML document are needed. Whereas the logical structure of XML documents is
readily available through their XML markup, their semantic decomposition needs
to be extracted. To achieve that, we apply a topic segmentation algorithm based
on lexical cohesion, TextTiling3 [7], which has been successfully used in several
IR applications (e.g., [2]). The underlying assumption of topic segmentation
algorithms based on lexical cohesion is that a change in vocabulary signifies that
a topic shift occurs. This results in topic shifts being detected by examining the
lexical similarity of adjacent text segments.

TextTiling is a linear segmentation algorithm that considers the discourse
unit to correspond to a paragraph, and therefore subdivides the text into multi-
paragraph segments. TextTiling is performed in three steps. In the first step,
after performing tokenization, the text is divided into pseudo-sentences of size W ,
called token-sequences. Next, these token-sequences are grouped together into
blocks of size K. The gap between two adjacent blocks constitutes a potential
2 This work is also different from ours, as the former is concerned with the task of

estimating the relevance of XML elements, and not the focussed access to XML
elements (see Section 5).

3 http://elib.cs.berkeley.edu/src/texttiles/

Using Topic Shifts for Focussed Access to XML Repositories 447

boundary for a semantic segment. To identify the actual boundaries, a depth
score is computed for each potential boundary, by using the similarity scores
assigned to the neighbouring gaps between blocks, and by applying a smoothing
process. The algorithm determines the number of segments, referred to as tiles,
by considering segment boundaries to correspond to gaps with depth scores above
a certain threshold. The detected boundaries are then adjusted to correspond to
the actual discourse unit breaks, i.e., the paragraph breaks.

The semantic decomposition of an XML document is used as a basis to cal-
culate the number of topic shifts in each XML element forming that document.
We consider that a topic shift occurs (i) when one segment ends and another
segment starts, or (ii) when the starting (ending) point of an XML element
coincides with the starting (ending) point of a semantic segment.

The number of topic shifts in an XML element e in document d is defined as:

actual topic shifts(e, d) + 1 (1)

where actual topic shifts(e, d) are the actual occurrences of topic shifts in el-
ement e of document d. We are adding 1 to avoid zero values. With the above
definition, the larger the number of topic shifts, the more topics are discussed in
the element, which would indicate that the content of element is less focussed
with respect to the overall topic discussed in the element. By considering the
number of topic shifts occurring in an element instead of the number of topics
discussed (in our case modelled as the number of tiles), we are able to distin-
guish the cases where the topic shift occurs not within the actual content of an
element, but at its boundaries.

4 Element-Specific Smoothing Using Topic Shifts

Since XML elements of any granularity are potential answers to a query, we
estimate a language model for each XML element in the collection. The ele-
ment language model is smoothed using a Dirichlet prior [14] with the collection
language model as the reference model.

If we estimate a language model for each element, then the relevance of an
element e to a given query q is computed as how likely the query can be gener-
ated from the language model for that element. We rank elements based on the
likelihood for a query q = (t1, t2, ..., tn) to be generated from an element e as:

P (t1, .., tn|e) =
n∏

i=1

(
c(ti, e) + μP (ti|C)

μ + |e|) (2)

=
n∏

i=1

((1 − μ

μ + |e|)
c(ti, e)

|e| +
μ

μ + |e|P (ti|C)) (3)

=
n∏

i=1

((1 − αe)Pml(ti|e) + αeP (ti|C)) (4)

448 E. Ashoori and M. Lalmas

where

– ti is a query term in q,
– c(ti, e) is the number of occurrences of the query term ti in element e,
– μ is a constant,
– |e| is the number of terms in element e,
– Pml(ti|e) = c(ti,e)

|e| is the probability of observing term ti in element e, esti-
mated using the maximum likelihood estimation,

– P (ti|C) = ef(ti)∑
t ef(t) is the probability of observing query term ti in the col-

lection where ef(t) is the number of XML elements in which the term t
occurs.

– αe = μ
μ+|e| is an element-dependent constant which is related to how much

probability mass will be allocated to unseen query terms, i.e., the amount of
smoothing.

Since the maximum likelihood estimator will generally underestimate the
probability of any term unseen in the element, the main purpose of smooth-
ing is to improve the accuracy of the term probability estimation. If we are
concerned with the exhaustivity dimension of relevance, then we may expect
that most of the query terms to appear in an element for the element to be
retrieved. In this case, one would expect that the term probability estimates
are more reliable for long elements as they contain more terms compared to the
short elements. Therefore, a shorter element needs to be more smoothed with
the collection model compared to a longer element. This shows that a higher
value of αe is needed to capture exhaustivity in small elements. Smoothing with
Dirichlet prior (Equation 4) satisfies this requirement as the value of αe depends
on the length of the elements.

The above smoothing process is reasonable if we are not concerned with the
specificity dimension. In INEX, specificity is automatically measured by calcu-
lating the ratio of the relevant content in an XML element (see Section 5). This
implies that unseen terms are less of an issue for small elements compared to
the above case. Therefore a smaller amount of smoothing (a lower value of αe)
is needed to capture specificity in small elements than the amount of smooth-
ing required to capture exhaustivity. Due to this contradictory behaviour in the
required amount of smoothing – if we want to capture both exhaustivity and
specificity – Equation 4 in its current version cannot be used to capture both
relevance dimensions if only length is taken into account.

To accommodate for the specificity dimension, we propose to set αe, the
amount of smoothing, to be proportional to the number of topic shifts in the
element. The idea of incorporating topic shifts in this manner originates from
the fact that if the number of topic shifts in an element is low and an element is
relevant, then it is likely to contain less non-relevant information compared to
the case where a high number of topic shifts exists.

It might be argued that in general, when the length of an element increases,
it is highly likely that it will discuss more topics. However, this is not always
the case, as it was shown in [1], where the number of topic shifts of parent

Using Topic Shifts for Focussed Access to XML Repositories 449

elements was compared to that of their children. Even though the length from
children to their parents increases, the number of topic shifts in the majority
of cases stays the same, i.e. it does not vary when the length increases. As
topic shifts and length are two distinct evidences [1], we explore several ways to
compute the element-dependent constant αe (amount of smoothing) in Equation
4 as a function of its length, its number of topic shifts and a combination of
both. We replace length by the number of topic shifts in the original formula
to compare how these two retrieval settings are useful to capture exhaustivity.
Next, we replace the length with the inverse of length and inverse of topic shifts
to capture specificity. Finally we combine length and topic shifts in a retrieval
setting to capture both exhaustivity and specificity. We, thus, experiment with
five different retrieval approaches:

1. αe = μ
μ+|e| implies that longer elements need less smoothing. This approach

is the original Bayesian smoothing with Dirichlet priors. We refer to this
approach as our baseline approach (L).

2. αe = μ
μ+1/|e| implies that shorter elements need less smoothing. This means

that the presence of a query term in an element is rewarded if the number
of terms in the element is small. We refer to this approach as (1/L).

3. αe = μ
μ+|T | implies that elements with a high number of topic shifts need

less smoothing. We refer to this approach as (T).
4. αe = μ

μ+1/|T | implies that elements with a lower number of topic shifts need
less smoothing. This means that the presence of a query term in an element
is rewarded if the number of topic shifts in the element is low. We refer to
this approach as (1/T).

5. αe = μ

μ+ |e|
|T |

implies that elements should be smoothed based on the average

number of terms per topic shifts of element. This is an approximation of
the average number of terms per topic in an XML element. In this way,
we return back to the normal interpretation of smoothing in Equation 4
but we consider a more refined version of length. In this case we differentiate
between two elements with equal length and different numbers of topic shifts
so that the presence of a query term in element with a lower number of topic
shifts is rewarded. We refer to this approach as (L/T).

5 Methodology

In our work, we use the INEX-2005 test collection. The INEX collection, Version
1.8, contains 16,819 scientific articles from 24 IEEE Computer Society journals,
marked up in XML, consisting of over 10 million elements of varying length.

We use the title field of the 29 content-only (CO) topics of Version 2005-003
of the INEX 2005 data set4. CO topics are requests that ignore the document
structure and contain only content related conditions, and at this stage of our
work, are sufficient for our investigation. We evaluate our approaches against

4 In INEX 2005, these topics are referred to as CO+S.

450 E. Ashoori and M. Lalmas

the relevance assessments Version adhoc2005-assessments-v7. For INEX 2005,
exhaustivity is measured on a 3 + 1 -point scale: highly exhaustive (e=2), some-
what exhaustive (e=1), not exhaustive (e=0) and too small (e=?). In this work,
we ignore too small elements. The specificity dimension is automatically mea-
sured on a continuous scale [0,1], by calculating the ratio of the relevant content
of an XML element after the assessors highlighted text fragments containing
only relevant information.

The official evaluation metrics employed in INEX 2005 are the eXtended
Cumulated Gain (XCG) metrics [10], which include the user-oriented measures
of extended cumulated gain (nxCG[i]) and the system-oriented effort-precision/
gain-recall measures (MAep). For a given rank i, nxCG[i] reflects the relative
gain the user accumulated up to that rank, compared to the gain he/she could
have attained if the system would have produced the optimum best ranking.

The effort-precision ep at a given gain-recall value gr is defined as the number
of visited ranks required to reach a given level of gain relative to the total
gain that can be obtained. The non-interpolated mean average effort-precision,
MAep, is calculated by averaging the effort-precision values measured at natural
recall-point, i.e., whenever a relevant XML element is found in the ranking.

INEX employs quantization functions to combine the two graded relevance
dimensions, by providing a relative ordering of the various combinations of e-s
values and a mapping of these to a single relevance scale in [0, 1], as required by
the XCG metrics. In INEX 2005, two quantization functions were used:

fstrict(e, s) :=
{

1 if e = 2 and s = 1,
0 otherwise. (5)

fgeneralised(e, s) :=
{

e ∗ s if e ∈ {1, 2},
0 otherwise. (6)

The strict quantization function fstrict is used to evaluate retrieval methods
with respect to their capability of retrieving highly exhaustive and highly specific
elements (e=2, s=1). The generalised quantization function fgeneralised credits
elements according to their degree of relevance, hence allowing modelling varying
levels of user satisfaction gained from not fully specific and highly exhaustive
elements, i.e., less relevant elements.

The retrieval task addressed in this work is focussed XML retrieval. INEX
has defined various XML retrieval scenarios, each corresponding to a specific
task. In the focussed task, the aim is for XML retrieval systems to return to the
user a non-overlapping ranked list of the most exhaustive and specific elements
on a relevant path5. The five approaches described in the previous section will
rank elements, for example, considering the number of topic shifts. They will,
however, not produce an overlap-free ranking. There are sophisticated ways to
remove overlapping elements (e.g., [11]). In this work we restrict ourselves to a
5 A relevant path is a path within the XML tree of a given XML document, whose

root node is the root element and whose leaf node is a relevant element that has no
or only irrelevant descendants.

Using Topic Shifts for Focussed Access to XML Repositories 451

post-filtering on the retrieved ranked list by selecting the highest scored element
from each of the paths, as our main interest here is to investigate how the
proposed smoothing approaches can help retrieval effectiveness.

To calculate the number of topic shifts in each XML element, our first step
is to decompose the INEX XML documents into semantic segments through
the application of TextTiling. We consider the discourse units in TextTiling to
correspond to paragraph XML elements. We considered paragraph elements to
be the lowest possible level of granularity of a retrieval unit. Although this can
be viewed as collection-dependent and might change from one collection to the
next, it is likely that for many XML content-oriented collections, meaningful
content will occur mainly at paragraph level and above.

We set the TextTiling parameters to W = 10 and K = 6, which is based on
a heuristic setting W ∗ K to be equal to the average paragraph length (in terms
of the number of terms) [7]. After the application of TextTiling, we compute the
number of topic shifts in elements.

6 Experiments and Results

In this section, we report on the experiments, and their results, that were carried
out in order to investigate the effects of topic shifts in the smoothing process. We
experiment with a wide range for μ between [0, 20000] to study the behaviour of
each individual retrieval approach. To compare the five smoothing approaches
(L, 1/L, T, 1/T, L/T), we select a best run (in terms of MAep) for each approach
and then compare the behaviour of these best runs based on nxCG.

For each of the approaches, the top 1500 ranked elements are returned as
answers for each of the CO topics. For the user-oriented evaluation, we report
nxCG at three different early cut-off points (10, 25, 50). In addition, the nxCG
graphs for both the full rank and the early rank levels are given. For the system-
oriented evaluation, MAep is reported. For both evaluations, both strict and
generalised quantization functions are used.

To determine whether the differences in performance between two approaches
are statistically significant, we use the bootstrapping significance testing [4].
Improvements at confidence levels 95% and 99% over the baseline are respectively
marked with + and ++. Similarly, decreases in performance at confidence level
of 95% and 99% are marked with − and −−.

Table 1 shows a summary of the results. This table presents, for each quanti-
zation function, the results for both the user- and the system-oriented evaluation
of the five retrieval approaches, with the L approach acting as the baseline.

We first consider the results in terms of mean average effort precision (MAep),
shown in Figure 1 and the last column of Table 1.

Under the generalised quantization function, the MAep ranks L/T approach
followed by L above the other approaches reflecting that on average the user
needs to spend less effort when scanning the output of L/T to achieve the
same level of gain. However the difference is not significant. To obtain a better
understanding we look at the performance at different values for parameter μ.

452 E. Ashoori and M. Lalmas

Table 1. Focussed retrieval task: MAep and nxCG at different cut-off points consid-
ering L as baseline

Approach μ nxCG@10 nxCG@25 nxCG@50 MAep
General

L μ = 256 0.2634 0.2387 0.2258 0.0938
1/L μ = 0.01 0.2333(-11%) 0.2358(-1.2%) 0.2198(-2.5%) 0.0911(-2.9%)
T μ = 7 0.2638(0.1%) 0.2391(1.6%) 0.2187(-3.1%) 0.0899(%-4.2)
1/T μ = 0.15 0.2388(-9.3%) 0.2297(-3.7%) 0.2138(-5.3%) 0.0894(-4.7%)
L/T μ = 448 0.2603(-1.1%) 0.2506(4.9%) 0.2424(7.4%) 0.0992(5.8%)

Strict
L μ = 256 0.069 0.1295 0.1351 0.029
1/L μ = 0.01 0.0863(25%) 0.15(15.8%) 0.1513(12%) 0.0305(5.2%)
T μ = 8 0.069(0%) 0.1333(2.9%) 0.1411(4.4%) 0.0251(-13.4%)
1/T μ = 0.7 0.0863(25%) 0.1515(17%) 0.1688(25%) 0.0304(4.8%)
L/T μ = 1280 0.0687(-0.4%) 0.1446(11.7%) 0.1843(36.4%)(++) 0.0308(6.2%)

Figure 1(b) shows the mean average effort precision for μ between [0, 20000]. We
observe that L/T approach shows better performance than L regardless of the
values of μ, which indicates that elements with equal length and smaller number
of topic shifts require less smoothing. This is due to the fact that in the L/T
approach, the presence of a query term in an element with a lower number of
topic shifts is rewarded.

Under the strict quantization function, results show that L/T , 1/L, and 1/T
are the most effective approaches with almost the same MAep, whereas T did
not perform particularly well. The 1/T approach considers less smoothing for
elements with fewer number of topic shifts represented by the lower value for
αe. The 1/L approach is in the opposite direction of the standard Dirichlet
smoothing and considers more smoothing for the larger elements. These results
support the argument in Section 4 in which we suggested that the Dirichlet
smoothing in its standard formulation is not sufficient to satisfy the “specificity”
dimension of relevance. These results show that for retrieving highly specific
and highly exhaustive elements, in the strict case, less smoothing is required
for elements that are either small or contain fewer number of topic shifts than
those that are longer or contain a higher number of topic shifts. Similar to the
observed behaviour for the generalised quantization function, L/T shows better
performance than L in most of the values of μ.

Overall, the L/T approach, where the number of topic shifts combined with
length affects the amount of smoothing, performs better than other retrieval
approaches when evaluated using the system-oriented measures.

Next, we focus on the user-oriented evaluation and discuss the results obtained
using the nxCG measure, shown in Figure 2 and Table 1. Under the generalised
quantization function, the baseline approach, L, shows better performance at
the very early ranks (1% ranks) (see Figure 2(d)). For the other rank posi-
tions, the combination of length and topic shifts (L/T) is the most effective
approach (see Figure 2(c)). These approaches are useful to satisfy a user who
also gains from less relevant elements, i.e., not fully specific and highly exhaustive
elements. However, for retrieving highly specific and highly exhaustive elements,
the strict case, both 1/L and 1/T approaches improve the results at the early cut-

Using Topic Shifts for Focussed Access to XML Repositories 453

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.001 0.01 0.1 1 10 100 1000 10000

M
A

ep

μ

L/T
L

1/L
1/T

T

(a) strict

 0.06

 0.08

 0.1

 0.001 0.01 0.1 1 10 100 1000 10000

M
A

ep

μ

L/T
L

1/L
1/T

T

(b) general

Fig. 1. Mean Average effort precision (MAep) for different element-specific smoothing
approaches

off points 10 and 25, where we get (+25%,17.8%) and (25%,15%) improvements,
respectively (see Table 1). Similar to the system-oriented evaluation, these re-
sults again support our argument in Section 4, i.e. the smoothing process should
be treated differently depending on the relevance dimensions.

To conclude, the use of the number of topic shifts led to improvement of
performance particularly when combined with element length, thus indicating
that the number of topic shifts is a useful evidence in focussed XML retrieval.

454 E. Ashoori and M. Lalmas

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nx
C

G

Rank as %

L/T
L

1/L
1/T

T

(a) strict

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

nx
C

G

Rank as %

L/T
L

1/L
1/T

T

(b) strict,early ranks

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nx
C

G

Rank as %

L/T
L

1/L
1/T

T

(c) general

 0.22

 0.24

 0.26

 0.28

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

nx
C

G

Rank as %

L/T
L

1/L
1/T

T

(d) general,early ranks

Fig. 2. Evaluation based on normalised eXtended Cumulated Gain (nxCG)

7 Conclusion

INEX defines a relevant element to be at the right level of granularity if it is
exhaustive to the user request – i.e., it discusses fully the topic requested in the
user’s query – and it is specific to that user request – i.e., it does not discuss other
topics. The exhaustivity and specificity dimensions are both expressed in terms
of the “quantity” of topics discussed within each element. We therefore use the
number of topic shifts in an XML element, to express the “quantity” of topics
discussed in an element. We experimented with a number of element-specific
smoothing methods within the language modelling framework. These methods
enable us to adjust the amount of smoothing required for each XML element
with respect to the specificity and exhaustivity dimensions of relevance. Using
the number of topic shifts combined with element length improved retrieval
effectiveness, thus indicating that the number of topic shifts is a useful evidence
in focussed XML retrieval. Our other finding was that the smoothing process
should be treated differently if we are concerned with the specificity dimension.

For our future work, our first aim is to go beyond the element level for
smoothing and provide a term-specific smoothing based on the number of topic
shifts and the distribution of the terms inside XML elements. Secondly, we will

Using Topic Shifts for Focussed Access to XML Repositories 455

investigate the effects of applying the proposed smoothing approach on the
Wikipedia XML collection, which is the collection used in INEX 20066. On an-
other direction, we will investigate whether other segmentation algorithms are
better suited for XML documents, and whether we can eventually obtain other,
more effective means to calculate the number of topic shifts of XML elements.

Acknowledgments

This work was carried in the context of INEX, an activity of the DELOS Network
of Excellence.

References

1. E. Ashoori, M. Lalmas and Theodora. Tsikrika. Examining Topic Shifts in Content-
Oriented XML Retrieval, submitted, 2006.

2. C. Caracciolo and M. de Rijke. Generating and retrieving text segments for focused
access to scientific documents. In Proceedings ECIR 2006, pages 350–361, 2006.

3. W. B. Croft and J. Lafferty. Language Modeling for Information Retrieval. Kluwer
Academic Publishers, 2003.

4. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall,
1993.

5. N. Fuhr and M. Lalmas. Report on the INEX 2003 Workshop, Schloss Dagstuhl,
15-17 December 2003. SIGIR Forum, 38(1):42–47, June 2004.

6. N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, editors. Advances in XML Information
Retrieval and Evaluation: Fourth Workshop of the INitiative for the Evaluation of
XML Retrieval (INEX 2005), 2006.

7. M. A. Hearst. Multi-paragraph segmentation of expository text. In Proceedings of
the 32nd Association for Computational Linguistics, pages 9–16, 1994.

8. D. Hiemstra. Term-specific smoothing for the language modeling approach to
information retrieval: the importance of a query term. In Proceedings of the 25th
ACM SIGIR Conference, pages 35–41, 2002.

9. J. Kamps, M. de Rijke, and B. Sigurbjörnsson. The importance of length normal-
ization for XML retrieval. Information Retrieval, 8(4):631–654, 2005.

10. G. Kazai and M. Lalmas. INEX 2005 Evaluation Metrics. In Fuhr et al. [6].
11. V. Mihajlovic, G. Ramı́rez, T. Westerveld, D. Hiemstra, H. E. Blok, and A. P.

de Vries. TIJAH Scratches INEX 2005: Vague Element Selection, Image Search,
Overlap, and Relevance Feedback. In Fuhr et al. [6].

12. P. Ogilvie and J. Callan. Hierarchical language models for XML component re-
trieval. In Proceedings of the INEX 2004 Workshop, pages 224–237, 2005.

13. G. Ramirez, T. Westerveld, and A. P. de Vries. Using structural relationships for
focused XML retrieval. In Proceedings FQAS 2006, 2006.

14. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to ad hoc information retrieval. In Proceedings of the 24th ACM SIGIR conference,
pages 334–342, 2001.

6 http://inex.is.informatik.uni-duisburg.de/2006/index.html

Feature- and Query-Based Table of Contents

Generation for XML Documents

Zoltán Szlávik, Anastasios Tombros, and Mounia Lalmas

Department of Computer Science,
Queen Mary University of London

Abstract. The availability of a document’s logical structure in XML
retrieval allows retrieval systems to return document portions (elements)
instead of whole documents. This helps searchers focusing their attention
to the relevant content within a document. However, other, e.g. sibling
or parent, elements of retrieved elements may also be important as they
provide context to the retrieved elements. The use of table of contents
(TOC) offers an overview of a document and shows the most important
elements and their relations to each other. In this paper, we investigate
what searchers think is important in automatic TOC generation. We
ask searchers to indicate their preferences for element features (depth,
length, relevance) in order to generate TOCs that help them complete
information seeking tasks. We investigate what these preferences are,
and what are the characteristics of the TOCs generated by searchers’
settings. The results have implications for the design of intelligent TOC
generation approaches for XML retrieval.

1 Introduction

As the eXtensible Markup Language (XML) is becoming increasingly used,
retrieval engines that allow search within collections of XML documents are
being developed. In addition to textual information, XML documents provide a
markup that allows the representation of the logical structure of XML documents
in content-oriented retrieval. The logical units, called elements, are encoded in
a tree-like structure by XML tags. The logical structure allows retrieval systems
to return document portions that may provide better searcher satisfaction, as
the retrieved information will be more focussed.

XML retrieval has received large interest over the last few years, mainly
through the INEX initiative [5,4]. The interactive aspect of XML IR has re-
cently been investigated through the interactive track at INEX (iTrack) [16,10].
One of the findings of the iTrack was the importance of the hierarchically struc-
tured presentation of documents and elements in the result list, and the table
of contents of the documents [9,8]. The table of contents (TOC), in particular,
provided context to the retrieved elements. The use of TOCs offered an overview
of the document structure and showed the relevant elements and their relations
to each other. This was appreciated by many searchers [11].

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 456–467, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Feature- and Query-Based TOC Generation for XML Documents 457

In the systems used in the iTrack, TOCs had two main limitations: i) they
were static, i.e. the same TOCs for a given document were displayed for all
searcher queries, and ii) they were manually defined, i.e. before the documents
were used in the systems, they had to be analysed and several (types of) elements
selected to be included in TOCs, and this selection was not automatic.

These limitations were verified in [13,14], where it was also investigated what
a useful TOC should be like according to searchers of an interactive IR system.
It was found that a TOC should reflect which elements are possibly relevant to
the searchers’ queries, i.e. TOC items of relevant elements are more important
to be shown in the TOC than those of non relevant ones. It was also found that
the display of a TOC should depend on the length of the elements, e.g. longer
sections are more important to include in the TOC. Another finding was that it
is important to consider how deeply an element is in the document structure, i.e.
for most of the XML documents currently being used in XML retrieval, a one or
two-level deep TOC is probably too shallow, while four or five level deep TOCs
may sometimes be too deep to help searchers with their information seeking task.

Based on the above, in this work we follow an approach to automatically
generate “dynamic” TOCs by considering the characteristics of XML documents
and the searcher’s query. The TOC generation algorithm is inspired by early text
summarisation (sentence extraction) systems (e.g. [3,17]). We consider features of
elements such as their length, depth and relevance and combine these in order to
determine whether an element should have a reference in the TOC. Our approach
allows us to create a TOC for any XML document, and the TOC will be biased
towards the searcher’s query. In this paper, we investigate how this approach
can be used in a user-oriented system, and what features are more important
in TOC generation than others according to searchers. We also examine what
the size of a TOC should be so that searchers can find the relevant information
effectively.

To answer these questions, we created a system. Searchers were asked to
consider information seeking tasks and to find relevant information within XML
documents. They were allowed to adjust the importance of element features (i.e.
length, depth, relevance). By adjusting these, searchers were able to alter the
characteristics of the current TOC and the aim was to generate an appropriate
TOC for documents in the context of the current query. We recorded these
searcher preferences along with questionnaires and analysed them.

The system and the methodology followed are described in Section 2, followed
by the detailed description of the TOC generation algorithm (Section 3). Section
4 presents and analyses the results, and we close with discussion and conclusions
in Section 5.

2 Experimental Setup

We followed a methodology that is based on simulated work task situations [1].
Searchers were given work task descriptions so they could search for relevant
information. During their search, they were asked to identify the best TOC of

458 Z. Szlávik, A. Tombros, and M. Lalmas

the current document with respect to the current work task by adjusting the
importance of element features.

Searchers were asked to read the work task descriptions, proceed to the doc-
ument view of as many documents as they wish, and adjust their preferences
for three element features (length, relevance, depth) and a threshold by moving
sliders on the interface. By adjusting the sliders, searchers were able to alter the
characteristics of the current TOC. When they felt that the displayed TOC was
helpful enough to assist them in finding relevant information, they could move
on to the next document or topic.

Participants were asked to fill in questionnaires before and after the experi-
ment, they were given detailed introduction to what their task was and no time
restrictions to finish the experiment were imposed. After filling in the entry ques-
tionnaire and having read the introduction, searchers were presented with the first
topic description and links to the corresponding relevant documents (Figure 1).
The order of the displayed topics was randomised to avoid any effect caused by
one particular order.

Fig. 1. A topic description and links to its documents

After choosing a document, the document view was shown (Figure 2). This
consisted of four main parts:

– on the left, sliders associated with element features were shown. These needed
to be adjusted by searchers to generate TOCs;

– on the bottom left, the generated TOC was shown;
– on the right hand side, the contents of the document or element was pre-

sented. These changed when searchers clicked on an item in the TOC;
– on the top left corner, links to the topic description, next topic and final

page were displayed.

By clicking on the ‘finish’ link, the exit questionnaire was shown, where we
recorded information about the searchers’ perception of the system and TOC
generation, e.g. the strategies searchers used when adjusting the sliders on the
main screen.

Documents from two XML document collections - IEEE and Wikipedia [2]
- were used1. Ten topics that were available for these collections were selected
by random and converted into work task descriptions. This gave us five work

1 These are the test collections used in INEX.

Feature- and Query-Based TOC Generation for XML Documents 459

Fig. 2. Screen shot of the main screen with sliders, TOC and element display

tasks for each collection. For each topic, three to five relevant documents were
selected. Relevant documents were obtained by formulating queries from the
topic descriptions, running these queries in the TopX system2 [15] and selecting
the most relevant documents from the result list. The retrieval status values of
elements were saved to be used in the TOC generation (Section 3). Documents
of various sizes were selected, the shortest document contained 334 bytes of text
while the longest 49KB. We made an effort to select documents from both collec-
tions for a particular topic; there were only two topics where relevant documents
were found in both collections.

As a result of the topic and document selection, 33 documents and 10 topics
were selected from the two collections. These provide an appropriate level of
diversity thus ensuring that our results are not biased by topic and document
selection.

3 TOC Generation

In this section, the algorithm to generate TOCs is described. The algorithm aims
to identify among a set of XML elements, those that will form the TOC. It makes
use of an element score that is calculated for every element in consideration. If the
score of an element is higher than a certain threshold value (described below),
the element is considered as a TOC element. Ancestors of such elements, i.e.
2 TopX is the system used in INEX for the collection exploration phase.

460 Z. Szlávik, A. Tombros, and M. Lalmas

elements higher in the XML hierarchy, are also used to place the TOC elements
into context. For example, a section reference in a TOC without the chapter
it is in would be just ‘floating’ in the TOC. These selected elements’ titles are
displayed as TOC items. If no title is available, the first 25 characters of the
text are shown. The ancestor-descendant relation of elements is reflected, as in
a standard TOC, by indentation (Figure 2).

The score of an element is computed using three features of the element: its
depth, length and relevance. The first two are element-based features, whereas
the third is query-based. These features have been shown to be important char-
acteristics in various XML retrieval tasks [4], although other features can be also
taken into account.

Depth score. Each element receives a depth score between zero and one, based
on where it is in the structure of the document. In our case, an article element
is always at depth level one (i.e. it is the root element in the tree structure).
Descendants of a depth level one element are at depth level two (e.g. /arti-
cle[1]/section[4]), etc. [13] found that elements at depth level three of a TOC
were the most important to access the relevant content whereas the adjacent
levels (two and four) were found less important, and so on. Sigurbjörnsson ([12],
Ch. 8) also found, using the IEEE collection, that searchers mostly visited level
2-3 elements while looking for relevant information. Hammer-Aebi et al.[6] con-
firmed that searchers found the highest number of relevant elements at levels two
to four. Since the latter work used a different XML collection (Lonely Planet
[18]), the importance of these levels seems to be general for XML collections.
To reflect these findings, the following scoring function was used to calculate an
element’s depth score (Equation 1):

Sdepth(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if depth(e) = 3,
0.66 if depth(e) ∈ {2, 4},
0.33 if depth(e) ∈ {1, 5},
0 otherwise

(1)

where Sdepth(e) denotes the depth score of element e.

Length score. Each element receives a length score, which is also normalised
to one. The normalisation is done on a logarithmic scale [7], where the longest
element of the document, i.e. the root element, receives the maximum score of
one (Equation 2):

Slength(e) =
log(TextLength(e))

log(TextLength(root))
(2)

where Slength(e) is the length score of element e, root is the root element of the
document structure and TextLength denotes the number of characters of the
element.

Relevance score. A score between zero and one is used to reflect how relevant
an element is to the current search topic. The scores were those given by the

Feature- and Query-Based TOC Generation for XML Documents 461

search engine used in INEX for the collection exploration [15] (i.e. a normalised
retrieval status value). The RSVs are obtained in the document selection phase
(described in Section 2).

Feature weighting. The scores of the above three features are combined so that
we can emphasize the importance of a feature over another. This is done by
using a weighted linear combination of the feature scores (Equation 3). Searchers
are allowed to set the weights themselves. This allows us to investigate what
searchers find important in TOC generation, and also, to determine what weights
should be used to generate TOCs based on such features.

S(e) =
∑
f∈F

W (f) · Sf (e) (3)

where S(e) denotes the overall score of element e, F is the set of the three
features, W (f) is the weight of feature f and Sf (e) denotes the score that is
given to element e based on its feature f .

Threshold. To determine the lowest score an element must achieve in order to
be included in the TOC, we use a threshold value. As well as the feature weights
described above, this value is set by the searchers of the system. This allows us
to determine what the desirable size of a TOC should be. In our algorithm, if the
threshold is set to 100% only elements with the maximum depth, relevance and
length scores will be included in the TOC (i.e.

∑
Sf (e) = 1). If the threshold is

set to zero, every element with greater than zero score will be in the TOC. We
use a default value of 50%.

4 Results and Analysis

In this section we describe and analyse the results of our experiment. We start
with results regarding participation (Section 4.1) followed by a detailed analysis
of the collected data. We investigate what slider values were set and what were
the main characteristics of the generated TOCs when searchers were finished
with a document (Section 4.2), whether there were differences in terms of pref-
erences among searchers (Section 4.3) and whether differences could be found
among documents of the two collections and among the topics used (Section 4.4).

4.1 Participation and Questionnaires

50 searchers, mainly with a computer science background, responded to our call
for participation. To record information only from searchers who spent a sig-
nificant amount of time participating in the experiment (thus providing usable
data), we filtered the log data so that only those involving at least three differ-
ent documents were kept and analysed. As a result, 31 searcher sessions were
analysed where participants used an average of 7.74 (out of the the maximum
ten) topics and 15.58 (out of the maximum 33) documents. This gave us 483

462 Z. Szlávik, A. Tombros, and M. Lalmas

different settings. The slider values after a searcher finished with a document
were considered as a single setting.

In the post experiment questionnaires, searchers indicated how easy they had
found to learn and understand the usage of the system. On a seven point scale,
they indicated an average of 4.85 and 4.64 respectively, where 1 meant ‘was not
easy at all’ and 7 meant ‘it was extremely easy’. This shows that the use of the
system was not an issue in our study. In the same scale, searchers indicated an
average value of 3.71 for the question ‘How easy was it to set up the sliders to
get a good table of contents?’ which shows that getting the desired TOC took
some effort. In their comments, searchers indicated various understandings of
the sliders, but most of them had a strategy how to set them up and, according
to the logs, all of the searchers used the sliders extensively.

4.2 Sliders and TOC Characteristics

On average, the depth, length and threshold slider values were around the default
value (50), while the relevance slider was in a higher average position (75.79).
The standard deviation of the depth, relevance and length sliders was the same
(25), and the threshold slider had a lower (15) standard deviation. This indicates
that searchers found the relevance feature to select TOC elements more impor-
tant than the other two. Indeed, the importance of relevance to access the rele-
vant content is the most intuitive of the three features, but results indicate that
other features also needed to be considered if one wanted to place the relevant
elements into context, i.e. to show related contents.

The average threshold slider value of 50% with standard deviation of 15 shows
that the agreement among searchers regarding the threshold was higher than
those of the three features. In addition, we did not find a tendency of different
slider values for documents of various sizes, thus the average values seem to be
appropriate for XML documents of any size in our setting.

An average TOC consisted of 19 items which is, on average, 8.16% of all the
elements in the original XML document. We examined how the size of the TOCs
is related to the size of the documents. Since there was high correlation between
the length of the documents and the number of elements they contained, we use
these two measures as ‘size’ interchangeably. We found that the more elements a
document contained, the smaller the proportion of the number of TOC elements
to the number of document elements was (Figure 3). This means that a long
document does not necessarily need a long TOC. This is because a too long
TOC does not help searchers gain an overview of the contents of the document
because they need to gain an overview of the contents of the TOC first. This
clearly indicates that a TOC generation algorithm has to perform particularly
well for longer documents, as the TOC algorithm is much more selective in
element items in longer documents.

To also examine the distribution of the length of elements in the TOCs and
in the documents, we created five size categories based on the length of text in
elements (Figure 4.a). We found that the distribution of element lengths of doc-
uments (light gray in Figure 4.a) follows a bell curve where most of the elements

Feature- and Query-Based TOC Generation for XML Documents 463

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

Number of elements in a document

R
at

io
 o

f
el

em
en

ts
 in

 T
O

C
s

an
d

 d
o

cu
m

en
ts

Fig. 3. Number of elements in the documents and the TOC elements’ ratio to it

cover 10-100 characters of text, i.e. there are many elements with the size of a
short sentence. Elements longer than 10KB are very rare in our documents, such
elements can be e.g., the root (i.e. article) element of a long document.

The distribution of the length of elements included in the TOCs (dark gray
in Figure 4.a) is also a bell curve having its peak at the category of 100-1000
character long elements. Slightly shorter and longer elements are less frequent
in the TOCs while very long and very short elements do not occur frequently
in the TOCs. This shows that the length distribution of the elements in the
documents and TOCs is of the same nature, only the parameters are different.
The implication of this is that a TOC has to be constructed to reflect the original
structure of the document.

We also examined the distribution of depth levels in the TOCs and document
elements. (Figure 4.b). We considered eight depth levels because deeper than
the eighth level there were very few, if any, elements in a document, and none of
the displayed TOCs were deeper than seven levels. The distribution of element
depths of documents follows, similar to the length distribution, a bell curve:
most of the elements are between the fourth and sixth level, there is only one

-15

5

25

45

65

85

105

0-10 10-100 100-1000 1000-10000 10000 <

Size categories (in characters)

N
u

m
b

er
 o

f
it

em
s/

el
em

en
ts

 in
 t

h
at

 c
at

eg
o

ry

.

TOC items Elements in documents

Size categories (in characters)

N
um

be
ro

fi
te

m
s/

el
em

en
ts

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Depth levels

N
u

m
b

er
 o

f
it

em
s/

el
em

en
ts TOC items

Elements in documents

Depth levels

N
um

be
ro

fi
te

m
s/

el
em

en
ts

TOC items
elements in docs

(a) (b)

Fig. 4. TOC items and document elements at various size categories (a) and depth
levels (b)

464 Z. Szlávik, A. Tombros, and M. Lalmas

element at level one (which is the root element of a document’s tree structure)
and very few elements are below the seventh level. The depth distribution of
the TOC elements is still a bell curve with the peak at level three and four,
which is consistent with a finding in [14]. In other words, the depth distribu-
tion found in the TOCs and documents are the same, only the parameters are
different.

Considering both the length and depth distributions, the TOCs reflect the
main characteristics of the documents. The TOCs can therefore be viewed as
extracts of the document structure, so not only is the algorithm based on sum-
marisation but the output of it is also a summary (i.e. that of the document
structure).

4.3 Searchers

Searchers used different slider setting strategies to generate the best TOC.
Nonetheless, the majority of them did set the relevance slider high. This high
view of relevance was confirmed in the post experiment questionnaires. The
questionnaires show that the relevance slider was usually set first, which also
shows its importance. Some of the searchers set the length, depth and relevance
sliders first and changed the threshold slider slightly document after document.
In this process, setting the most appropriate threshold was found difficult for
most searchers, especially because they had an ‘ideal’ TOC in their minds that
was to be reached by adjusting the sliders. According to the questionnaires, an
ideal TOC contained those, and only those, elements that had been found use-
ful when searchers had been experimenting with the settings for the TOC of
the current document. Although not all of them followed these strategies, the
TOCs generated did not differ very much for different searchers: apart from a
few searchers, the TOCs were not longer than twenty items, and searchers also
seemed to agree in terms of length categories and depth levels (Figure 5). Based
on the above, it seems that the size of a TOC does not significantly depend on
individuals. Indeed, a TOC should rarely contain more element references than

Length categories

A
ve

ra
ge

nu
m

be
r o

fT
O

C
ite

m
s

(a) (b)

Fig. 5. Number of TOC items at (a) various length categories and (b) depth levels for
searchers

Feature- and Query-Based TOC Generation for XML Documents 465

some fixedvalue, in our case twenty. Our study shows that it is important to
select the best (maximum) twenty elements, appropriately.

4.4 Collections and Topics

We investigated the possible differences between TOCs generated for docu-
ments of the two collections. There were slightly more documents used from
the Wikipedia collection (20) than from the IEEE (13), and therefore 158 slider
values were examined for the IEEE collection and 325 for Wikipedia documents.
We did not find differences in the average slider values with respect to the two
collections; settings for one collection also seemed satisfactory for the other.

The generated TOCs’ characteristics were not significantly different either.
Although the structure of the two collections’ documents are similar to each
other, we do not expect that these results will be different for other XML docu-
ments. This is because documents of XML collections must have exactly one root
element, which has several child elements etc., so we expect that the algorithm
described in this paper can be used for any XML documents.

We also investigated whether there were differences in settings and TOCs
among the ten topics. The distribution of the slider values did not reveal great
differences: the relevance values were always higher than that of other sliders and
the depth-length-threshold triplet’s order was slightly different for some topics
but these were always closely around the default value of 50. This shows that for
the ten topics we used, searchers did not need to use very different settings to
obtain an acceptable TOC. However, the number of topics does not guarantee
that we covered a wide enough range of topics and task types. To compare the
results for different task types (e.g. finding background information vs. answering
a question), more topics are needed from different task types.

The number of TOC elements were between 14 and 27 for 8 of the 10 topics,
which is around 9% of the number of elements in the documents. There was one
topic (w2) for which the average number of TOC elements was as low as 7, and
for another topic (w5), this number was 32. These two extreme values are closely
related to the number of elements the topics’ documents had, i.e. documents for
(w2) were very short while documents for (w5) contained the longest document.
This shows that longer documents may require longer TOCs, but since the ratio
of the number of elements in TOCs and documents is different for shorter and
longer documents (see Figure 3), size differences in the TOCs should not be
linearly proportional to document sizes.

5 Discussion and Conclusions

We have studied searchers’ preferences of element features in automatic TOC
generation for XML retrieval. The features and searchers’ preferences (as weights)
can be used to select those elements that will form the TOC. We have considered
three features: depth, length of the elements and their relevance to the current
query. We have conducted a user study to investigate which of these features are

466 Z. Szlávik, A. Tombros, and M. Lalmas

important in TOC generation, and what are the characteristics of TOCs that
were generated by searchers’ feature preferences.

Our algorithm offers a mapping from the set of elements in the document
to that of the TOC, where the most important elements of the documents are
selected as TOC elements and the distribution of length and depth of elements
remains very similar. The result of the mapping is an extract of the document
structure, which, by organising it into a table of contents, can be used to help
searchers find relevant content inside an XML document.

In this study, we found that a TOC generation algorithm like the one intro-
duced in this paper has to consider the relevance of an element, i.e. it should be
highly query-biased. The other two element features used, i.e. length and depth
of an element, should also be considered and the weight of these two should be
lower than that of the relevance feature. It is also understood that TOCs should
not be large in size, i.e. longer documents should still have a relatively small
TOC. This also shows that automatic TOC generation has to be more care-
fully designed when dealing with longer documents. To ensure better results,
the TOC algorithm can be extended to include other element features such as
e.g. tag names, titles of elements.

Our data also suggest that the size of a TOC does not significantly depend on
individual searchers. The selection of the most important elements is much more
important, and here may be worth considering searchers’ individual preferences.
We suggest that if a TOC algorithm selects more than a certain number (e.g. 20)
of TOC elements (e.g. 30), the top scored elements (i.e. top 20) should be kept
regardless of what threshold value the algorithm uses. If the number of TOC
elements is lower than this number (e.g. 10), these elements should be used to
construct the TOC.

During the analysis of the collected data we learned that searchers had several
strategies to get the best TOCs. Although not every one of the searchers under-
stood the concepts of the features completely, they actively used the sliders and
created TOCs that, according to questionnaires, were suitably good to access
the relevant content more easily.

To conclude, we have developed an algorithm to automatically generate tables
of contents for XML documents. The algorithm uses features of elements to
select those that will form the TOC. Different TOCs are generated for different
queries which we think may help searchers access the relevant content more
quickly. In our experiment, we investigated which features are important in TOC
generation, and what are the characteristics of TOCs that are generated by
searchers’ feature preferences.

The work presented here is part of a wider work that aims at developing and
evaluating methods that summarise the content and the structure of documents
for structured document retrieval. We believe that the effective combination
of the two types of summarisation can help searchers focus on only the useful
contents of the documents, decrease the time searchers spend on finding relevant
elements, and thus, increase user satisfaction.

Feature- and Query-Based TOC Generation for XML Documents 467

Acknowledgments

The authors wish to acknowledge the participants of the study. This work was
partly funded by the Nuffield Foundation (grant NAL/01081/G) and the DE-
LOS, Network of Excellence in Digital Libraries.

References

1. P. Borlund. The IIR evaluation model: a framework for evaluation of interactive
information retrieval systems. Information Research, 8(3), 2003.

2. L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. SIGIR Forum, 40(1):64–
69, 2006.

3. H. P. Edmundson. New methods in automatic extracting. J. ACM, 16(2):264–285,
1969.

4. N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, editors. Proceedings of INEX 2005,
volume 3977, 2006.

5. N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors. Proceedings of INEX 2004,
volume 3493, 2005.

6. B. Hammer-Aebi, K. W. Christensen, H. Lund, and B. Larsen. Users, structured
documents and overlap: interactive searching of elements and the influence of con-
text on search behaviour. In Proceedings of IIiX, pages 46–55, 2006.

7. J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length normalization in XML
retrieval. In Proceedings of ACM SIGIR, pages 80–87, 2004.

8. J. Kamps and B. Sigurbjörnsson. What do users think of an XML element retrieval
system? In Fuhr et al. [4], pages 411–421.

9. H. Kim and H. Son. Users interaction with the hierarchically structured presenta-
tion in XML document retrieval. In Fuhr et al. [4], pages 422–431.

10. B. Larsen, S. Malik, and A. Tombros. The interactive track at INEX 2005. In Fuhr
et al. [4], pages 398–410.

11. S., C.-P. Klas, N. Fuhr, B. Larsen, and A. Tombros. Designing a user interface
for interactive retrieval of structured documents - lessons learned from the INEX
interactive track. In Proceedings of ECDL 2006, pages 291–302, 2006.

12. B. Sigurbjörnsson. Focused Information Access using XML Element Retrieval. PhD
thesis, Faculty of Science, University of Amsterdam, 2006.

13. Z. Szlávik, A. Tombros, and M. Lalmas. Investigating the use of summarisation
for interactive XML retrieval. In F. Crestani and G. Pasi, editors, Proceedings of
ACM SAC-IARS’06, pages 1068–1072, 2006.

14. Z. Szlávik, A. Tombros, and M. Lalmas. The use of summaries in XML retrieval.
In Proceedings of ECDL 2006, pages 75–86, 2006.

15. M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile query engine
for TopX search. In Proceedings of VLDB, pages 625–636, 2005.

16. A. Tombros, B. Larsen, and S. Malik. The interactive track at INEX 2004. In Fuhr
et al. [5], pages 422–435.

17. A. Tombros and M. Sanderson. Advantages of query biased summaries in infor-
mation retrieval. In Proceedings of ACM SIGIR, pages 2–10, 1998.

18. R. van Zwol, G. Kazai, and M. Lalmas. INEX 2005 multimedia track. In Fuhr
et al. [4], pages 497–510.

Setting Per-field Normalisation

Hyper-parameters for the Named-Page Finding
Search Task

Ben He and Iadh Ounis

Department of Computing Science
University of Glasgow

United Kingdom
{ben,ounis}@dcs.gla.ac.uk

Abstract. Per-field normalisation has been shown to be effective for
Web search tasks, e.g. named-page finding. However, per-field normali-
sation also suffers from having hyper-parameters to tune on a per-field
basis. In this paper, we argue that the purpose of per-field normalisation
is to adjust the linear relationship between field length and term fre-
quency. We experiment with standard Web test collections, using three
document fields, namely the body of the document, its title, and the
anchor text of its incoming links. From our experiments, we find that
across different collections, the linear correlation values, given by the
optimised hyper-parameter settings, are proportional to the maximum
negative linear correlation. Based on this observation, we devise an au-
tomatic method for setting the per-field normalisation hyper-parameter
values without the use of relevance assessment for tuning. According
to the evaluation results, this method is shown to be effective for the
body and title fields. In addition, the difficulty in setting the per-field
normalisation hyper-parameter for the anchor text field is explained.

1 Introduction

In Information Retrieval (IR), it is a crucial issue to rank retrieved documents
in decreasing order of relevance. A recent survey on the query logs from real
Web search engine users concluded that the users rarely look beyond the top
returned documents [9]. Therefore, it is important to rank the highly relevant
documents at the top of the retrieved list. Usually, the document ranking is
based on a weighting model. In particular, most weighting models apply a term
frequency (tf) normalisation method to normalise term frequency, the number
of occurrences of the query term in the document.

Various tf normalisation methods have been proposed in the literature, e.g.
the pivoted normalisation [16] in the vector space model [15], the normalisation
method of the BM25 weighting model [13], normalisation 2 [1] and normalisa-
tion 3 [1,8] in the Divergence from Randomness (DFR) framework [1]. All the
above mentioned normalisation methods normalise term frequency according to
document length, i.e. the number of tokens in the document. Each of the above

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 468–480, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Setting Per-field Normalisation Hyper-parameters for the Named-Page 469

mentioned normalisation methods involve the use of a hyper-parameter. The
setting of these hyper-parameter values usually has an important impact on the
retrieval performance of an IR system [2,7,8].

Recently, Robertson et al. and Zaragoza et al. proposed the per-field normali-
sation technique, which normalises term frequency on a per-field basis [14,18], by
extending BM25’s normalisation method [13]. The resulting field-based weight-
ing model is called BM25F. Using BM25F, the retrieval process is performed
on indices of different document fields, such as body, title, and anchor text
of incoming links. Following [14,18], Macdonald et al. extended the PL2 DFR
weighting model, by employing the per-field normalisation 2F [10]. Compared
with tf normalisation on a single field, on one hand, per-field normalisation can
significantly boost the retrieval performance, particularly for Web search [12,18].
On the other hand, per-field normalisation has a hyper-parameter for each doc-
ument field used. Therefore, per-field normalisation has more hyper-parameters
than tf normalisation on a single index of the whole collection, which requires a
heavier training process to set the hyper-parameter values. Similarly to tf nor-
malisation on a single field, the setting of the hyper-parameter values of per-field
normalisation can significantly affect the retrieval performance. In particular, the
optimal hyper-parameter setting of a document field, which provides the best
retrieval performance, varies across different collections [12]. As a consequence,
training is required on each given new collection to guarantee an effective re-
trieval performance.

In this paper, we study how the per-field normalisation hyper-parameter set-
ting is related to the resulting retrieval performance. Our study follows Harter
and Amati’s idea that there is a linear relationship between term frequency and
document length [1,6]. This linear relationship is indicated by the linear corre-
lation between these two variables [1,6]. The study of this paper is focused on a
typical Web search task, namely the named-page finding search task [17]. The
main contributions of this paper are two-fold. First, we provide a better un-
derstanding in per-field normalisation. we suggest that the purpose of per-field
normalisation is to adjust the linear relationship between term frequency and
field length, i.e. the number of tokens in the field. This is our main argument.
Experiments are conducted to study how per-field normalisation adjusts this lin-
ear relationship. Second, we devise and evaluate an automatic hyper-parameter
setting method for the per-field normalisation hyper-parameters. The proposed
method does not need relevance assessment for tuning, making it particularly
practical in an operational and realistic setting.

The rest of this paper is organised as follows. Section 2 introduces the current
main per-field normalisation techniques. Section 3 describes our main argument
in this paper. Sections 4 and 5 describe the experimental methodology for in-
vestigating the linear relationship between field length and term frequency, and
analyse the experimental results, respectively. Section 6 devises an automatic
method for setting the per-field normalisation hyper-parameter values, which
is evaluated is Section 7. Finally, Section 8 concludes the paper and suggests
possible future work.

470 B. He and I. Ounis

2 Per-field Normalisation

In the context of field-based retrieval, Robertson et al. proposed the idea of
normalising term frequency on a per-field basis [14]. The extended BM25 field-
based weighting model, called BM25F, assigns the relevance score of a document
d for a query q as follows:

score(d, q) =
∑
t∈q

w(1) (k1 + 1)tfn

k1 + tfn

(k3 + 1)qtf
k3 + qtf

(1)

where qtf is the query term frequency. k1 and k3 are parameters. The default
setting is k1 = 1.2 and k3 = 1000 [13]. w(1) is the idf factor, which is given by:

w(1) = log2
N − Nt + 0.5

Nt + 0.5

where N is the number of documents in the whole collection. Nt is the document
frequency of term t.

The above BM25F’s weighting function is the same as the one of BM25 [13].
Instead of normalising term frequency on a single index, BM25F applies a per-
field normalisation method to assign the normalised term frequency tfn [18]:

tfn =
∑

f

wf · tfnf =
∑

f

wf · tff

(1 − bf) + bf · lf
avg lf

(2)

where wf is the weight of a field f , which reflects the relative contribution of a
field to the document ranking. tfnf is the normalised term frequency on field
f . tff is the frequency of the query term in the field f of the document. bf is
the term frequency normalisation hyper-parameter of field f . lf is field length,
namely the number of tokens in field f of the document. avg lf is the average
length of field f in the collection.

Moreover, following [18], Macdonald et al. extended the PL2 weighting model
to cope with different document fields, within the Divergence from Randomness
(DFR) probabilistic framework [1]. The idea of the DFR framework is to infer the
informativeness of a query term in a document by measuring the divergence of
the term’s distribution in the document from a random distribution. The larger
the divergence is, the more informative the query term is in the document. The
PL2F field-based weighting model has the following weighting function:

score(d, q) =
∑
t∈q

qtw · 1
tfn + 1

(
tfn · log2

tfn

λ
+ (λ − tfn) · log2 e

+0.5 · log2(2π · tfn)
)

(3)

where λ is the mean and variance of a Poisson distribution. It is given by
λ = tfc/N . tfc is the frequency of the query term in the collection, and N is the

Setting Per-field Normalisation Hyper-parameters for the Named-Page 471

number of documents in the collection. In PL2F, the normalised term frequency
tfn is given by the so-called Normalisation 2F as follows:

tfn =
∑

f

wf · tfnf =
∑

f

(
wf · tff · log2(1 + cf · avg lf

lf
)
)
, (cf > 0) (4)

where cf is the hyper-parameter of field f. tfnf is the normalised term frequency
on field f . lf is the length of field f in the document, and avg lf is the average
field length in the collection. wf is the weight of field f . In the above Normali-
sation 2F, the term frequency is normalised in each field, and each field f has a
hyper-parameter cf with a field weight wf . The above normalisation 2F is based
on the assumption that term density is decreasing with document length [1].

In addition, the PL3 weighting model [1,8], which applies the Dirichlet priors
for tf normalisation, can be extended in a similar way to deal with field-based
retrieval. The resulting field-based PL3 weighting model has the same weighting
function as PL2F in Equation (3). The normalised term frequency tfn is given
by Normalisation 3F as follows:

tfn =
∑

f

wf · tfnf =
∑

f

(
wf ·

tff + μf · tfcf

lcf

lf + μf
· μf

)
(5)

where wf and tff are the weight and term frequency of field f in the document,
respectively. tfnf is the normalised term frequency on field f . μf is the hyper-
parameter of field f . lcf is the number of tokens in field f in the whole collection.
lf is the field length in the document. tfcf is the frequency of the query term in
field f in the whole collection.

As shown by previous experiments, compared with applying tf normalisa-
tion on a single index, per-field normalisation is particularly effective for Web
search, such as named-page finding [12,18]. However, per-field normalisation has
an associated hyper-parameter for each document field. The setting of these
hyper-parameters is a crucial issue, which has an important impact of the re-
trieval performance. In this paper, this issue is studied by following the idea of
measuring the linear relationship between field length and term frequency [6,1].
Based on this idea, we further understand the purpose of per-field normalisation,
as described in the next section.

3 The Purpose of Per-field Normalisation

In the context of tf normalisation on a single index, Harter [6] and Amati [1]
suggested that document length and term frequency have a linear relationship.
Such a linear relationship can be indicated by the linear correlation between these
two variables. Following their idea, in the context of per-field normalisation, we
suggest that field length and term frequency also have a linear relationship,
which can be indicated by the linear correlation between them. In this paper,

472 B. He and I. Ounis

following the definition of correlation in [4], the linear correlation between field
length and normalised term frequency is given by:

ρ(tfnf , lf) =
COV (tfnf , lf)
σ(tfnf)σ(lf)

(6)

where tfnf is the normalised term frequency on field f , and lf is the field length.
COV stands for covariance and σ stands for the standard deviation. Note that
the use of a tf normalisation method changes term frequency. Therefore, the
normalised term frequency, instead of term frequency, is considered in our study.

We suggest that the aim of tf normalisation on a document field is to adjust the
linear relationship between field length and term frequency. Applying different
hyper-parameter settings results in different correlation values, which indicate
different degree of linear dependence between field length and term frequency.
In our study, we investigate how per-field normalisation affects the correlation
ρ(tfnf , lf). In particular, from our experiments, we expect to find a pattern
that may help in proposing an automatic method in setting the hyper-parameter
values, without using relevance assessment for tuning.

4 Experimental Setting and Methodology

Our experiments are conducted using Terrier [11]. Two TREC Web test collec-
tions, namely the .GOV and the .GOV2 collections, are used in our experiments.
These two collections are the only currently available ones for the named-page
finding task. The .GOV collection is a 1.25 million pages crawl of the .gov do-
main. The .GOV2 collection is a later crawl of the .gov domain, which contains
25,205,179 Web documents and 426 Gigabytes of uncompressed data1. This col-
lection has been employed in the TREC Terabyte track since 2004. In addition,
a named-page finding task has been run in the Terabyte track since 2005. .GOV2
is currently the largest TREC test collection. The indices of these two collec-
tions are created with the body, anchor text and title fields, respectively. Porter’s
stemmer and standard stopword removal are applied.

The test queries used are the 525 topics used in the TREC 2002-2004 Web
track named-page finding tasks [17] on the .GOV collection, and the 252 topics
used in the TREC 2005 Terabyte track named-page finding task [3] on the .GOV2
collection. The evaluation measure used is mean reciprocal rank (MRR), which
is the official measure in TREC for the named-page finding task [17].

In our experiments, we investigate the linear relationship between field length
and normalised term frequency. This linear relationship is indicated by the linear
correlation between these two variables. Three field-based weighting models in
the literature, namely PL2F, BM25F and PL3F, are used in this study.

The first step of the experiments is to optimise the three weighting models
used, which provides a basis for our study. For each of the field-based weight-
ing models, we need to optimise six parameters, namely the hyper-parameters

1 Information of the collections can found at http://ir.dcs.gla.ac.uk/test collections/

Setting Per-field Normalisation Hyper-parameters for the Named-Page 473

Table 1. The optimal hyper-parameter settings and weights of the body, anchor text,
and title fields, using three field-based weighting models, on the two collections used

Coll. Body Anchor Title Body Anchor Title Body Anchor Title

PL2F (cf) BM25F (bf) PL3F (μf)

.GOV 0.8 15.0 5.5 0.85 0.10 0.45 300 50000 10
.GOV2 1.2 2.6 2.6 0.85 0.90 0.50 300 40 20

PL2F (wf) BM25F (wf) PL3F (wf)

.GOV 1 1.1 4.6 1 8.1 12.4 1 0.4 18.2
.GOV2 1 3.4 2.6 1 6.0 8.6 1 1.1 12.0

and the weights of the three indexed document fields. Our optimisation pro-
cess follows the one for BM25F applied in [18]. However, we apply manual data
sweeping, instead of automatic optimisation, as applied in [18]. This is because
in our previous experiments, we found that the manual data sweeping with a
small enough granularity can usually lead to a better optimised retrieval per-
formance than automatic optimisation. Following [18], we set the field weight of
body to 1 to reduce the cost of optimisation. For the remaining five parameters,
the optimisation process is described as follows:

1. On each field, we optimise the hyper-parameter of the field, while disabling
the other two fields. The optimised hyper-parameter setting are obtained
by multiple-step data sweeping with from-large-to-small granularities. Data
sweeping is performed within a reasonable range of values. This range is
[1, 32] for PL2F, (0, 1] for BM25F and (0, 100000] for PL3F. The minimal
granularity is 0.1 for PL2F, 0.05 for BM25F and 10 for PL3F.

2. We optimise the field weights of body and title by a two-step two-dimensional
data sweeping within [0, 20], while setting the hyper-parameter values to the
ones optimised in the first step. The granularities in the two data sweeping
steps are 1 and 0.1, respectively.

We only briefly describe the optimisation process, for lack space. The obtained
optimised parameter values are provided in Table 1.

The second step of the experiments is to investigate the linear relationship
between field length and normalised term frequency. This linear relationship
is indicated by ρ(tfnf , lf), the linear correlation between these two variables.
In particular, we study how the optimised hyper-parameter values are related
to ρ(tfnf , lf). For the three different document fields used, we plot the hyper-
parameter values against ρ(tfnf , lf), in order to study how the linear relationship
between tfnf and lf varies on different document fields. We also look at the
proportion of the optimal ρ(tfnf , lf) value to the maximum ρ(tfnf , lf) value
with respect to all possible hyper-parameter values. By doing this, we expect to
find a pattern that may indicate the optimal hyper-parameter setting, which can
lead to a practical approach for setting the hyper-parameter values. The analysis
of the related experimental results are provided in the next section.

474 B. He and I. Ounis

5 The Linear Relationship Between Field Length and
Normalised Term Frequency

Table 1 contains the optimised hyper-parameter values and field weights after the
data sweeping process. From Table 1, we observe that, across the two collections
used, on one hand, for the body and title fields, the optimised hyper-parameter
settings are relatively similar. On the other hand, for the anchor text field, the
hyper-parameter settings are largely different across the two collections used (e.g.
40 vs. 50000 using PL3F). A possible explanation is that the weighting models
used assume a random distribution of a query term in the collection. This as-
sumption is usually true for written text, such as body and title. Differently from
these two fields, the anchor text of a Web page is extracted from its incoming
links. Eiron & McCurley concluded that the anchor text of a Web page usually
has only one or two repeatedly occurring unique terms [5]. Consequently, in the
anchor text field, the curve of a query term’s distribution looks like a Beta(0.5, 2)
distribution2 [4], because a query term usually has a large number of occurrences
in the anchor text of some Web pages, and does not appear at all in the anchor
text of other Web pages. Therefore, the optimised hyper-parameter setting for
the anchor text field is unpredictable and can be largely different across different
collections.

Next, we study the linear relationship between field length and normalised
term frequency. Figure 1 (see page 475) plots the linear correlation between
these two variables. From Figure 1, we find that the linear correlation ρ(tfnl, lf)
varies with the use of different hyper-parameter values. In particular, in all the
cases, the plotted curve has a lowest point, which corresponds to the maximum
negative ρ(tfnl, lf) value. To further analysis the linear relationship between field
length and normalised term frequency, Table 2 provides the resulting ρ(tfnf , lf)
values of the optimised hyper-parameter settings. The values in parenthesis are
the ratiof that is given by:

ratiof =
ρopt(tfnf , lf)
ρmax(tfnf , lf)

(7)

where ρopt(tfnf , lf) is the ρ(tfnf , lf) value given by the optimised hyper-
parameter setting. ρmax(tfnf , lf) is the maximum negative ρ(tfnf , lf) value
that corresponds to the lowest points in the curves in Figure 1.

From Table 2, for the body and title fields, we find that the ρopt(tfnf , lf)
value seems to be proportional to the maximum negative ρ(tfnf , lf) value. The
ratiof for the body and title fields are similar to each other. For the anchor text
field, we do not have the same observation, probably because of the repeatedly
occurring tokens of the query terms in this field. Based on the observation from
Table 2, in the next section, we devise an automatic method for estimating the
hyper-parameter values of the body and title fields. For the anchor text field, we
simply apply the optimised hyper-parameter setting after data sweeping.

2 Beta(0.5, 2) distribution refers to a Beta distribution with α = 0.5 and β = 2.

Setting Per-field Normalisation Hyper-parameters for the Named-Page 475

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−0
.5

−0
.4

−0
.3

−0
.2

−0
.10

0.
1

0.
2

c f

ρ(tfnf, lf)

B
od

y
A

nc
ho

r t
ex

t
Ti

tle

(a
)

N
o
rm

a
li
sa

ti
o
n

2
o
n

.G
O

V

0
0.

2
0.

4
0.

6
0.

8
1

−0
.5

−0
.4

−0
.3

−0
.2

−0
.10

0.
1

0.
2

b f

ρ(tfnf, lf)

B
od

y
A

nc
ho

r t
ex

t
Ti

tle

(b
)

B
M

2
5
’s

n
o
rm

a
li
sa

ti
o
n

m
et

h
o
d

o
n

.G
O

V

10
1

10
2

10
3

10
4

−0
.5

−0
.4

−0
.3

−0
.2

−0
.10

0.
1

0.
2

μ f

ρ(tfnf, lf)

B
od

y
A

nc
ho

r t
ex

t
Ti

tle

(c
)

N
o
rm

a
li
sa

ti
o
n

3
o
n

.G
O

V

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−0
.3

−0
.2

5

−0
.2

−0
.1

5

−0
.1

−0
.0

50

0.
050.

1

c f

ρ(tfnf, lf)

Bo
dy

An
ch

or
 te

xt
Ti

tle

(d
)

N
o
rm

a
li
sa

ti
o
n

2
o
n

.G
O

V
2

0
0.

2
0.

4
0.

6
0.

8
1

−0
.4

−0
.3

−0
.2

−0
.10

0.
1

0.
2

0.
3

b f

ρ(tfnf, lf)

B
od

y
A

nc
ho

r t
ex

t
Ti

tle

(e
)

B
M

2
5
’s

n
o
rm

a
li
sa

ti
o
n

m
et

h
o
d

o
n

.G
O

V

10
1

10
2

10
3

10
4

−0
.3

5

−0
.3

−0
.2

5

−0
.2

−0
.1

5

−0
.1

−0
.0

50

0.
050.

1

μ f

ρ(tfnf, lf)

Bo
dy

An
ch

or
 te

xt
Ti

tle

(f
)

N
o
rm

a
li
sa

ti
o
n

3
o
n

.G
O

V
2

F
ig

.1
.
T

h
e

li
n
ea

r
co

rr
el

a
ti
o
n

ρ
(t

f
n

f
,l

f
)

a
g
a
in

st
th

e
tf

n
o
rm

a
li
sa

ti
o
n

h
y
p
er

-p
a
ra

m
et

er
s

o
n

th
e

tw
o

co
ll
ec

ti
o
n
s

u
se

d

476 B. He and I. Ounis

Table 2. The optimal ρ(tfnf , lf) values and the corresponding ratiof for the three
document fields. Mean ratio refers to the mean of the ratiof values over the three
weighting models used. Side specifies on which side of the curves (in Figure 1) the
optimal ρ(tfnf , lf) value locates.

ρbody (ratiobody) ρanchor (ratioanchor) ρtitle (ratiotitle)

Coll. PL2F

.GOV -0.3232 (0.9364) 0.002456 (-0.01629) -0.4265 (0.9699)
.GOV2 -0.2543 (0.9447) -0.03282 (0.4361) -0.2332 (0.9688)

Side Increasing Increasing Decreasing

Coll. BM25F

.GOV -0.3389 (0.9763) 0.04932 (-0.3263) -0.4325 (0.9414)
.GOV2 -0.2697 (0.9947) -0.07142 (0.9393) -0.2489 (0.7385)

Side Decreasing Decreasing Increasing

Coll. PL3F

.GOV -0.3097 (0.8918) 0.1658 (-1.0967) -0.4546 (0.9886)
.GOV2 -0.2527 (0.9313) -0.02301 (0.3898) -0.3157(0.9312)

Side Increasing Increasing Decreasing

Coll. Mean ratio

.GOV 0.9348 -0.4798 0.9666
.GOV2 0.9568 0.5884 0.8795

6 Method prop for Setting the Per-field Normalisation
Hyper-parameter Values

In the previous section, across the two collections used, we found that on both
the body and title fields, the optimal ρ(tfnf , lf) value is proportional to the max-
imum negative ρ(tfnf , lf) value. Therefore, on these two fields, we can estimate
the hyper-parameter value, which gives a ρ(tfnf , lf) value that is proportional
to the ratiof value (see Table 2). Using the above suggested solution, we make
the following hypothesis:

Hypothesis H(prop): For the given body or title field, across different
collections, the optimal hyper-parameter values provide a constant ra-
tio of the optimal ρ(tfnf , lf) value divided by the maximum negative
ρ(tfnf , lf) value.

The above Hypothesis H(prop) implies that, for a given body or title field, the
optimal ρ(tfnf , lf) value is proportional to the maximum negative ρ(tfnf , lf)
value. Using Hypothesis H(prop), for a given collection, we can estimate the
hyper-parameter value that satisfies ρ(tfnf , lf) = ρmax(tfnf , lf) · ratiof , where
ρmax(tfnf , lf) is the maximum negative ρ(tfnf , lf) value. ratiof is given by
Equation (7). On the two collections used, the ratiof values of body and title
are listed in Table 2. We denote the above described approach by method prop.

To apply method prop, we need to create a bidirectional mapping between
a hyper-parameter and ρ(tfnf , lf). Each ρ(tfnf , lf) value should correspond to

Setting Per-field Normalisation Hyper-parameters for the Named-Page 477

a unique hyper-parameter value, and vice versa. In fact, from Figure 1, we can
see that a ρ(tfnf , lf) value corresponds to two different hyper-parameter values:
One is on the increasing side of the curve, and the other is on the decreasing
side of the curve. Therefore, by looking at the curves in Figure 1, we identify at
which side of the curve the optimal ρ(tfnf , lf) value is located (see Table 2).

For the application of method prop, we need a training collection to obtain
the assumed constant ratiof . The training process for computing this constant
ratiof needs to be done only once. For a given new collection, we do not need any
associated relevance judgement. Finally, we apply the hyper-parameter setting
that results in the ratiof value on the given query set, instead of optimising the
hyper-parameter by maximising the retrieval performance using relevance judge-
ment. For a given collection, the tuning process takes place before the retrieval
process. There is no additional overhead during retrieval. We evaluate method
prop in the next section.

7 Evaluation of Method prop

For evaluating method prop, we conduct a two-fold holdout evaluation on the two
collections, namely .GOV and .GOV2. In each fold of the holdout evaluation, we
use one collection for training, in order to compute the assumed constant ratiof

value. The other collection is used for testing. The assumed constant ratiof value
is the mean of the ratiof values of the three weighting models used, obtained
on the training collection (see the mean ratiof values in Table 2). In addition to
the test queries used in Section 5, we also experiment with the 181 latest TREC
topics used in the TREC 2006 named-page finding task. Note that method prop
is only applied for the body and title fields. For the anchor text field, we apply
the optimised hyper-parameter setting obtained by data sweeping.

We compare the retrieval performance obtained using the hyper-parameter
setting, estimated by method prop, with the optimised retrieval performance us-
ing data sweeping. We suggest that a large (>5%) and statistically significant
difference between the obtained MRRs indicates a failure of method prop in esti-
mating the hyper-parameter setting. Otherwise, we conclude that method prop
is effective for the named-page finding retrieval task, when different document
fields are used. The statistical test used is the sign test3.

The evaluation results are listed in Table 3. In two cases, we observe that the
estimated hyper-parameters result in MRRs that are higher than the optimised
ones by data sweeping (see the MRR values in italic in Table 3). We suggest that
this is because the optimisation procedure optimises the hyper-parameter of each
document field separately. However, the optimised hyper-parameter setting of
each individual field may not necessarily lead to the optimised retrieval perfor-
mance, when different fields are summed up together. From Table 3, we observe
that in all the nine cases, method prop provides a retrieval performance that is
as good as the one optimised by data sweeping. We find no large (5%) difference

3 For MRR, the sign test is more appropriate than the Wilcoxon test.

478 B. He and I. Ounis

Table 3. Evaluation results for method prop. Columns body and title provides the
hyper-parameter settings for the body and title fields, estimated by method prop.
MRR(opt) and MRR(prop) are the MRRs obtained by data sweeping and by method
prop, respectively. diff. is the difference between the two MRR values in percentage.
p-value is given by the sign test.

Topics body title MRR(opt) MRR(prop) diff (%) p-value

PL2F

TREC 2002-2004 on .GOV 0.62 1.03 0.7294 0.7018 -3.78 3.03e-05
TREC 2005 on .GOV2 1.34 21.65 0.4341 0.4522 +4.17 0.0422
TREC 2006 on .GOV2 1.06 20.54 0.4736 0.4733 ≈ 0 0.630

BM25F

TREC 2002-2004 on .GOV 0.81 0.63 0.7142 0.7145 ≈ 0 0.497
TREC 2005 on .GOV2 0.69 0.17 0.4738 0.4522 -4.56 0.583
TREC 2006 on .GOV2 0.74 0.19 0.4405 0.4392 ≈ 0 0.798

PL3F

TREC 2002-2004 on .GOV 170 2.40 0.6390 0.6140 -3.91 0.0115
TREC 2005 on .GOV2 291 27.23 0.3721 0.3751 ≈ 0 0.00259
TREC 2006 on .GOV2 234 23.59 0.4470 0.4259 -4.72 1.03e-07

between MRR(opt) and MRR(prop). Therefore, we conclude that method prop,
based on Hypothesis H(prop), is effective on the two collections used.

To summarise, in a practical setting, the assumed constant ratiof value is
obtained on a training collection for once. For a given new collection, we rec-
ommend applying method prop for the body and title fields without the use
of relevance assessment. For the anchor text field, we recommend applying an
empirical hyper-parameter setting.

8 Conclusions and Future Work

In this paper, we have provided a better understanding of per-field normali-
sation, based on Harter and Amati’s idea that there is a linear relationship
between term frequency and document length. We argue that the purpose of
per-field normalisation is to adjust the linear relationship between term fre-
quency and field length. Based on this argument, we have conducted a study of
setting the per-field normalisation hyper-parameters, based on experimentation
on two TREC Web collections for named-page finding. From the experiments, we
have the following important finding: For the body and title fields, using three
different field-based weighting models, the optimal ρ(tfnf , lf) value, given by
the optimised hyper-parameter value, is proportional to the maximum negative
ρ(tfnf , lf) value across the two collections used. Another important finding is
that the optimised hyper-parameter setting for the anchor text field are largely
different across the two collections used. We suggest that this is because of the
repeatedly occurring tokens of the query terms in the anchor text field. Based
on the above findings, we proposed an automatic setting method for setting the

Setting Per-field Normalisation Hyper-parameters for the Named-Page 479

per-field normalisation hyper-parameters, called method prop, for the body and
title fields. The proposed method does not require relevance assessment for tun-
ing. According to the evaluation results, method prop was shown to be effective
on the two test collections used, with 958 associated test queries. For the ap-
plication of method prop in practise, we recommend applying method prop for
the document fields of written text, such as the body and title fields. For the
anchor text field, we recommend applying an empirical hyper-parameter setting,
obtained by training using relevance assessment.

The reported experiments in this paper were conducted for the named-page
finding retrieval task, on two different TREC collections, including the large-
scale .GOV2 collection. We have also conducted experiments for ad-hoc retrieval
on various TREC test collections, from which we had similar observations with
those in this paper. For lack of space, we only focus on the named-page finding
retrieval task in this paper. In the future, We will further study if method prop is
general enough to cope with other Web search tasks, in the context of field-based
retrieval. Moreover, because of the repeatedly occurring terms in anchor text,
it is difficult to estimate the hyper-parameter setting for this field. A possible
solution is to apply an absolute discount on the term frequency in this field,
before per-field normalisation is applied. We will also investigate this issue in
future work.

References

1. G. Amati. Probabilistic Models for Information Retrieval based on Divergence from
Randomness. PhD thesis, University of Glasgow, 2003.

2. A. Chowdhury, M. C. McCabe, D. Grossman, and O. Frieder. Document normal-
ization revisited. In Proceedings of ACM SIGIR 2002.

3. C. Clarke, F. Scholer, and I. Soboroff. Overview of the TREC-2005 Terabyte Track.
In Proceedings of TREC 2005.

4. M. DeGroot. Probability and Statistics. Addison Wesley, 2nd edition, 1989.
5. N. Eiron and K. McCurley. Analysis of anchor text for web search. In Proceedings

ACM SIGIR 2003, 2003. URL: http://mccurley.org/papers/anchor.pdf.
6. S. Harter. A probabilistic approach to automatic keyword indexing. PhD thesis,

The University of Chicago, 1974.
7. B. He and I. Ounis. Term frequency normalisation tuning for BM25 and DFR

model. In Proceedings of ECIR 2005, 2005.
8. B. He and I. Ounis. A study of the Dirichlet Priors for term frequency normalisa-

tion. In Proceedings of ACM SIGIR 2005, 2005.
9. B. Jansen and A. Spink. How are we searching the World Wide Web? a comparison

of nine search engine transaction logs. Information Processing & Management,
42(1), 2006.

10. C. Macdonald, B. He, V. Plachouras, and I. Ounis. University of Glasgow at TREC
2005: experiments in Terabyte and Enterprise tracks with Terrier. In Proceedings
of TREC 2005.

11. I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Lioma. Terrier:
A high performance and scalable Information Retrieval platform. In Proceedings
of ACM SIGIR OSIR Workshop 2006.

480 B. He and I. Ounis

12. V. Plachouras. Selective Web Information Retrieval. PhD thesis, University of
Glasgow, 2006.

13. S.E. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC-7: automatic ad hoc,
filtering, VLC and interactive. In Proceedings of TREC 7, 1998.

14. S.E. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple
weighted fields. In Proceedings ACM CIKM 2004.

15. G. Salton. The SMART Retrieval System. Prentice Hall, New Jersey, 1971.
16. A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In

Proceedings of ACM SIGIR 1996.
17. E. Voorhees. TREC: Experiment and Evaluation in Information Retrieval. The

MIT Press, 2005.
18. H. Zaragoza, N. Craswell, M. Taylor, S. Saria, and S.E. Robertson. Microsoft

Cambridge at TREC 13: Web and Hard Tracks. In Proceedings of TREC 2004.

Combining Evidence for Relevance Criteria:

A Framework and Experiments in Web Retrieval

Theodora Tsikrika and Mounia Lalmas

Department of Computer Science, Queen Mary, University of London, UK
{theodora, mounia}@dcs.qmul.ac.uk

http://qmir.dcs.qmul.ac.uk

Abstract. We present a framework that assesses relevance with respect
to several relevance criteria, by combining the query-dependent and
query-independent evidence indicating these criteria. This combination
of evidence is modelled in a uniform way, irrespective of whether the
evidence is associated with a single document or related documents. The
framework is formally expressed within Dempster-Shafer theory. It is
evaluated for web retrieval in the context of TREC’s Topic Distillation
task. Our results indicate that aggregating content-based evidence from
the linked pages of a page is beneficial, and that the additional incorpo-
ration of their homepage evidence further improves the effectiveness.

Keywords: Dempster-Shafer theory, topic distillation, best entry point.

1 Motivation, Background, and Aim

In ad hoc Information Retrieval (IR), multiple criteria are applied when assess-
ing the relevance of documents. The relevance criterion at the heart of IR, and
the one usually employed by IR systems, is the topical relevance (or topicality) of
documents [1]. From a user’s perspective, though, empirical studies have reached
a consensus that users are influenced by beyond topical factors when assessing
retrieved documents [1]. Therefore, IR systems need to consider beyond topical
relevance criteria. For instance, on the Web, due to its size and unregulated
nature, users desire authoritative information, without explicitly stating so.

An IR system assesses relevance by using evidence of relevance in its retrieval
function. In essence, each source of evidence indicates relevance with respect to
a specific criterion. For instance, content-based evidence is used for capturing a
document’s topicality. In web environments, link-based query-independent evi-
dence, such as a page’s PageRank [2], indicates a page’s authority. Algorithms
such as HITS [11], on the other hand, express a query-dependent view of a page’s
authority, i.e. its topical authority. In addition, URL-based query-independent
evidence (e.g. URL length [14] or URL types [12]) is used for assessing a page’s
“homepageness” [5] (i.e. how likely it is for a page to be a site’s homepage).

To assess relevance that reflects various criteria, IR systems combine
evidence indicating the criteria of interest. The predominant combination of ev-
idence approaches that incorporate, in a principled manner, evidence indicating

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 481–493, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

482 T. Tsikrika and M. Lalmas

beyond topical criteria are probabilistic frameworks. These estimate the belief in
relevance given query-dependent and query-independent features. For instance,
in language modelling frameworks (e.g. [12]), prior probabilities of relevance,
estimated using query-independent features, are embedded in the framework,
and combined with the (content-based) language modelling probability. Other
frameworks (e.g. [7]) transform each feature’s value into a feature-based rele-
vance score, and subsequently linearly combine all available relevance scores.

Our aim is similar: to estimate, in a principled manner, the belief in relevance,
when various criteria are of interest, by combining the (query-independent and
query-dependent) features indicating these (or any combination of these) crite-
ria. However, unlike others, our aim also is to estimate the belief in each of the
relevance criteria of interest by decomposing relevance into the criteria involved.
For instance, for web retrieval, by decomposing relevance into topicality, author-
ity and homepageness, the combination of evidence for relevance criteria allows
us to estimate the belief, for each page, in being each of the following: on the
topic, a topical authority, a topical homepage, a topical authoritative homepage,
and any other possible combination of these criteria.

In addition, since on the Web, and other hyperlinked environments, users
browse, they assess a web page in terms of the information it contains, and
the information it provides access to [4,11], i.e. as an entry point to the Web’s
structure. In particular, when many interlinked pages from the same site are
retrieved, users would rather not be presented with all of them, but with only a
Best Entry Point (BEP) [4] to the site, i.e. a page at a suitable level in the site’s
hierarchy providing access, by browsing, to the relevant information in the site.

For instance, BEPs could correspond to homepages, viewed as good entry
points for users to follow the flow of information in the site, or to be presented
with an overview of its content [9]. To identify BEPs as topical homepages, web
IR systems could combine content-based and homepage evidence. Alternatively,
they could assess each page in terms of its own features and those of the pages
it provides access to. Such approaches aggregate the features of each page with
those of its linked pages, by propagating them through the site’s structure [4].

The aggregation can be performed by propagating: (i) term weights [10,15] or
(ii) relevance scores [13,15]. The former identifies BEPs with respect to topical-
ity, whereas the latter is able to capture multiple relevance criteria, depending
on the relevance scores incorporated in the aggregation. For instance, by aggre-
gating relevance scores indicating the topicality and authority of pages, we can
model BEPs that provide access to pages containing authoritative information
on a topic. This flexibility has not been fully exploited in the context of the
Web, where relevance scores reflecting only a single criterion, e.g. content-based
relevance scores reflecting topicality [13,15,5,6], are usually aggregated.

Therefore, our aim is twofold: (i) to assess relevance with respect to relevance
criteria, by combining the evidence indicating these criteria, and (ii) to model
this combination of evidence in a uniform way, irrespective of whether the evi-
dence is associated with a single information item (e.g. a single web page) or with
related information items (e.g. linked web pages). Although our aim is to provide

Combining Evidence for Relevance Criteria 483

a framework applicable to various environments, we focus on web retrieval, where
we assess each web page as an entry point with respect to any relevance criterion,
given either its own features, or also those of its linked pages.

To estimate the belief in relevance by combining the available evidence, vari-
ous formalisms for reasoning with uncertainty can be employed. We explore the
possibility of modelling our framework using Dempster-Shafer theory of evidence
[17], an alternative formalism to probability theory. We consider this theory to
be useful at the conceptual design level, and for providing guidance in express-
ing and performing the combination of evidence. We apply our framework to a
web retrieval task, TREC’s Topic Distillation [5,6], an informational task con-
cerned with retrieving for a broad topic key resources, interpreted as BEPs (that
correspond to homepages) of sites providing credible information on the topic.

Section 2 introduces Dempster-Shafer theory. The framework, expressed within
this theory, is described in Section 3. It is evaluated for TREC’s Topic Distillation
task. Section 4 describes the experimental setting, and presents and discusses the
results of the experiments. Section 5 provides some concluding remarks.

2 Dempster-Shafer Theory of Evidence

Dempster-Shafer (DS) theory of evidence is a formalism for representing, manip-
ulating and revising degrees of belief rendered by multiple sources of evidence to
a common set of propositions. It concerns the same concepts as those considered
by Bayesian probability theory. It does not rely, though, on the probabilistic
quantification of degrees of belief, but on a more general system based on belief
functions. This theory was developed by Shafer [17], based on Dempster’s ear-
lier work [8]. We summarise the necessary background of the theory, by adopting
Shafer’s [17] initial terminology, notation and interpretation of the formalism.

Frame of discernment. Suppose we are concerned with the value of some
quantity θ and the set of its possible values is Θ. In DS theory, this set Θ of
exhaustive and mutually exclusive events is called frame of discernment. There
is an one-to-one correspondence between subsets of Θ and propositions. The
propositions of interest could be: “the value of θ is in A”, A⊆Θ. If A={a}, a∈Θ,
the proposition is expressed as “the value of θ is a” and constitutes an elementary
proposition. Non-elementary propositions are disjunctions of elementary ones.

Basic probability assignment. The belief committed to a proposition given
some evidence is quantified by a function m :2Θ → [0,1] called a basic probability
assignment (bpa). Bpas can assign belief to any proposition in the frame and
not only to the elementary ones. No belief can ever be assigned to the false
proposition (m(∅)=0) and the sum of all bpas must equate 1:

∑
A⊆Θ m(A)=1.

The quantity m(A) represents the belief committed exactly to A, which due to
lack of evidence (ignorance) cannot be committed to any proper subset of A.

Belief assignments are carried out only for propositions for which there is
evidence. Consequently, committing belief to a proposition A does not necessarily
imply that the remaining belief is committed to its negation ¬A. Therefore,

484 T. Tsikrika and M. Lalmas

if m(A)=0.6, and there is no further evidence for or against A or any other
proposition in Θ, then, the remaining 1− 0.6 = 0.4 is assigned to the frame:
m(Θ)=0.4. This represents a state of ignorance and implies that this remaining
belief could be assigned to any proposition in Θ, when new evidence becomes
available. Complete ignorance with respect to the frame Θ is represented by the
vacuous bpa: m(Θ)=1 and m(A)=0, ∀A⊂Θ. In any case, if m(A)>0, A is called
a focal element. The focal elements and associated bpa define a body of evidence.

We can also obtain a δ-discounted bpa mδ (0≤δ≤1) from the original bpa m
as follows: mδ(A)=δ∗m(A), ∀A⊂Θ and mδ(Θ)=δ∗m(Θ)+1−δ. The discounting
factor δ represents a form of knowledge on the reliability of the body of evidence.

Belief function. Given a body of evidence with bpa m, one can compute the
total belief committed to a proposition A ⊆ Θ. This is done with a belief function
Bel : 2Θ
→ [0, 1] defined upon m, so that it considers the belief assigned to the
more specific propositions (i.e. to the subsets) of A: Bel(A) =

∑
B⊆A m(B).

Dempster’s combination rule. This rule aggregates two distinct bodies of
evidence, with bpas m1 and m2, defined within the same frame Θ, into one
body of evidence defined by a bpa m on the same frame: m(A) = m1 ⊕m2(A) =∑

B∩C=A m1(B)m2(C)
1−∑

B∩C=∅ m1(B)m2(C) . The rule is commutative and associative. It computes a
measure of agreement between two bodies of evidence concerning propositions
discerned from a common frame. It focuses only on propositions that both bodies
of evidence support. The numerator is the sum over all conjunctions that support
a proposition. The denominator is a normalisation factor ensuring m is a bpa.
Combining bpa m1 with a vacuous bpa mv, has no effect on m1: m1⊕mv =m1.

3 Combining Evidence for Relevance Criteria

This section presents our framework, expressed within DS theory, for modelling
the combination (and aggregation) of evidence (features) for relevance criteria.
Our presentation focuses on web retrieval. In Section 3.1, we assess the relevance
of each page, given either its own features, or also those of its linked pages,
without considering what the underlying criteria are. In Section 3.2, we extend
our framework and explicitly consider the criteria of interest. In both cases, we
consider that the features’ values have been transformed to relevance scores.

3.1 The Basic Framework: Combining Evidence for Relevance

We define the frame of discernment Θ in terms of the relevance criteria of interest.
When we only consider the relevance of web pages without explicitly specifying
the underlying criteria, the elements of Θ are defined as the mutually exclusive
propositions θ0 ={¬R} and θ1 ={R}. Proposition {R} reflects “a good point to
enter for accessing R information”, R being relevant. Each page x, referred to
as object ox, is represented by a body of evidence defined in Θ. Its associated
bpa mx(A) quantifies the belief in A⊆Θ, given all available evidence for x.

Combining Evidence for Relevance Criteria 485

Representation. When a single source of evidence of relevance is available,
mx({R}) (denoted mx(R) for simplicity) quantifies the degree to which this evi-
dence indicates that this is a good point to enter to access relevant information.
Suppose page x has a relevance score 0.6 given evidence e, then mx(R)=0.6. The
remaining belief is assigned to Θ, mx(Θ)=0.4, representing that, at this stage,
we have no further evidence for any other proposition in Θ. The total belief is
Belx(R) =mx(R). Suppose page y has a zero relevance score given evidence e.
A first approach is to associate oy with a vacuous bpa my(Θ)=1. This expresses
complete ignorance with respect to Θ, i.e. we consider that our evidence does not
allow us to assign any belief in {R} or {¬R}. However, we do know that, given
evidence e, page y was assessed as non relevant. This can be used to express our
belief in {¬R}. Therefore, a second approach is to set 0<my(¬R)<1.

When more than one source of evidence is available for each page, a separate
bpa is defined in terms of each source of evidence taken into account. Suppose that
page z is assigned relevance score 0.6 given evidence e1, and relevance score 0.7
given evidence e2. Then, page z is represented by 2 separate bpas: mz:e1(R)=0.6
(mz:e1(Θ)=0.4) and mz:e2(R)=0.7 (mz:e2(Θ)=0.3).

Combination. To combine the available evidence associated with a page, we
combine the bodies of evidence using Dempster’s combination rule. For instance,
given page z as above, the combination yields mz =mz:e1 ⊕mz:e2 , with mz(R)=
(mz:e1(R)∗mz:e2(R)+mz:e1(R)∗mz:e2(Θ)+mz:e1(Θ)∗mz:e2 (R))/1 = 0.6∗0.7+
0.6∗0.3+0.4∗0.7 = 0.88 and mz(Θ)= (mz:e1(Θ)∗mz:e2(Θ))/1 = 0.4∗0.3 =0.12.

Aggregation. To assess each page in terms of its own features and those of the
pages it provides access to, we aggregate the bodies of evidence of linked pages
belonging to the same site using Dempster’s combination rule.

Consider the web sites in Figure 1. Each page i, referred to as object oi, is
represented by a body of evidence in Θ and its associated bpa is mi. Given the
evidence from page p (site A) and its linked children pages ck, k = 1, ..., 5, the
aggregation is expressed as: mp,c1−5 = mp ⊕ mc1 ⊕ ... ⊕ mc5 .

As the user enters site A at page p, the actual information accessed is the one
contained in p. The information contained in its children should be considered as
“potential” [13], since the user needs to traverse the links in order to fully access
it. Hence, the contribution of evidence from the children as a whole should be
weighed appropriately, to reflect the uncertainty associated with their propaga-
tion to the parent page. This is expressed with a propagation (or fading [13])
factor, and is modelled by a discounted bpa. For instance, the bpa associated
with the aggregate oc1−5 , formed from the children of page p, is mprop

c1−5
, where

prop is the propagation factor. This is expressed as: mp,c1−5 =mp⊕mprop
c1−5

.
We can also express the contribution of each child ock

in forming the aggregate.
The extent of this contribution, referred to as accessibility (acc) [16], is modelled
by a discounted bpa macck

ck
. The bpa for c1−5 is: mc1−5 =macc1

c1
⊕...⊕macc5

c5
. Thus,

the belief in {R} is (see also the definition of discounted bpas):

486 T. Tsikrika and M. Lalmas

Fig. 1. Examples of linked pages in web sites

Table 1. Examples of aggregation methods applied to site A

Aggregation method acc1 Aggregation method accn Aggregation method notR
Site A mi(·) Beli(·) mi(·) Beli(·) mi(·) Beli(·)
oi R ¬R Θ R R ¬R Θ R R ¬R Θ R
oc1 0.8 0 0.2 0.8 0.16 0 0.84 0.16 0.8 0 0.2 0.8
oc2 0.6 0 0.4 0.6 0.12 0 0.88 0.12 0.6 0 0.4 0.6
oc1−2 0.92 0 0.08 0.92 0.261 0 0.739 0.261 0.92 0 0.08 0.92
oc3 0 0 1 0 0 0 1 0 0 0.1 0.9 0
oc1−3 0.92 0 0.08 0.92 0.261 0 0.739 0.261 0.91 0.01 0.08 0.91
oc4 0 0 1 0 0 0 1 0 0 0.1 0.9 0
oc1−4 0.92 0 0.08 0.92 0.261 0 0.739 0.261 0.90 0.02 0.08 0.90
oc5 0 0 1 0 0 0 1 0 0 0.1 0.9 0
oc1−5 0.92 0 0.08 0.92 0.261 0 0.739 0.261 0.89 0.03 0.08 0.89
op 0 0 1 0 0 0 1 0 0 0.1 0.9 0
op,c1−5 0.92 0 0.08 0.92 0.261 0 0.739 0.261 0.88 0.04 0.08 0.88

mc1−5(R) = (acc1 ∗ mc1(R)) ⊕ ... ⊕ (acc5 ∗ mc5(R)) (1)
mp,c1−5(R) = mp(R) ⊕ (prop ∗ mc1−5(R)) (2)

To determine the BEP in a site with respect to relevance, we rank the pages in
the site by their total belief in {R}: Bel(R) = m(R).

Aggregation methods. By appropriately setting the accessibility and propa-
gation factors, we can express various aggregation methods.

Suppose that only pages c1, c2 (site A) and pages y1, y2 (site B) are assigned
non-zero relevance scores given all available evidence e, i.e. are retrieved given
evidence e. Suppose also that the bpas for these retrieved pages (given evidence
e) are: mc1(R)=my1(R)=0.8 and mc2(R)=my2(R)=0.6. and that we associate
the non-retrieved pages with vacuous bpas: mj(Θ)=1, j={p,c3,c4,c5,x,y3}.

Method acc1 sets the accessibility of each child, i.e. its individual contribution
to the aggregation, equal to 1. The aggregation of objects oc1 , oc2 (site A) yields
object oc1−2 (Table 1). The belief of the aggregate object in {R}, mc1−2(R)=0.92,
is greater than that of either of its component objects. Since, the non-retrieved
children, oc3 , oc4 and oc5 , are associated with vacuous bpas, their aggregations
with oc1−2 , for forming oc1−5 , leave mc1−2 unaffected, i.e. mc1−5(R)=mc1−2(R)=
0.92. Similarly for site B, my1−3(R)=my1−2(R)=0.92. If the propagation factor
is uniformly set across sites (e.g. prop = 1), the belief in pages p and x is the
same, despite having different numbers of non-retrieved children. Method acc1
considers only the contribution of the retrieved children.

To model page x as a better BEP than page p, since it provides access to less
non-relevant information, we need to consider the non-retrieved pages. One way

Combining Evidence for Relevance Criteria 487

is to set the propagation factor prop= 1
n (n is the number of children). Another

is to set the accessibility acc= 1
n (method accn in Table 1). With a propagation

factor uniformly set across sites (e.g. prop = 1), page x is now considered a
better BEP than page p (mx,y1−3(R) = 0.416 > 0.261 = mp,c1−5(R)). Method
accn greatly discounts the contribution of the children in the aggregation.

Method notR explicitly takes into account the non-retrieved pages, by mod-
elling them not with a vacuous bpa, but with a bpa that assigns belief to {¬R}.
Suppose mj(¬R) = 0.1, j = {p,c3,c4,c5}. We set acc = 1 and form object oc1−2

as before. Objects oc1−2 , oc3 support conflicting propositions. Their aggregation
erodes the beliefs in them, and mc1−2(R)=0.92 becomes mc1−3(R)= (mc1−2(R)∗
mc3(R) + mc1−2(R) ∗ mc3(Θ) + mc1−2(Θ) ∗ mc3(R))/(1 − mc1−2(R) ∗ mc3(¬R) −
mc1−2(¬R)∗mc3(R)) = (0.92∗0+0.92∗0.9+0.08∗0)/(1−0.92∗0.1−0∗0) = 0.91
(Table 1). Greater values of mi(¬R) for non-retrieved pages lead to even greater
erosion. Also, the more non-retrieved children are included in the aggregation,
the more the belief in {R} is reduced. By setting prop=1, mp,c1−5(R)=0.88<
0.90=mx,y1−3(R). The values of m(¬R) can be determined experimentally or by
evidence reflecting, for instance, the system’s reliability or the query’s difficulty.

This aggregation of linked pages belonging to the same site can be performed
in an ascending manner (bottom-up propagation), starting from the pages
deepest in the site’s hierarchy. To remove the cycles from the site’s structure, we
construct a sitemap tree (similarly to [15]), using only Down type links (i.e. those
linking pages with those below in the site’s directory path [9]). Alternatively,
we can perform an 1step propagation, by considering for each page only its
immediate neighbours (not necessarily just those connected with Down links).

3.2 The Extended Framework: Combining Evidence for Relevance
Criteria

In this section, we explicitly consider the criteria underlying relevance.
Frame of discernment. The frame Θ is constructed based on the set of criteria
of interest: E = {e1, · · · , eE}. The mutually exclusive elementary propositions
of Θ are all the possible Boolean conjunctions of all the elements ei ∈ E, con-
taining either ei or ¬ei. There are 2E elements in Θ, each denoted as θb1b2···bn ,
with b1b2 · · · bn an n-bit binary number, such that θb1b2···bn corresponds to the
proposition “x1 ∧ x2 ∧ · · · ∧ xn”, where xi =ei if bi =1, and xi =¬ei if bi =0.

Suppose the criteria of interest are topicality (T), authority (A), and homepa-
geness (HP): E = {T, HP, A}. Then, the propositions forming the frame Θ are
listed in Table 2. For instance, θ111 corresponds to {T∧HP ∧A}, reflecting that
a page is “a good point to enter to access homepages containing authoritative
information on the topic”. Analogously, {T ∧A} reflects that a page is “a good
point to enter to access topical and authoritative information”. Therefore, θ111
provides a more refined representation of the notion of topical relevance com-
pared to {T∧A}, {T ∧HP} or {T }. In this work, we focus on E={T,HP}. (Due
to space limitations, we do not report on criterion {A}, that we also considered.)

Representation. Consider we have two sources of evidence for each page: one
capturing topicality {T }, and the other homepageness {HP}. Then, each page is

488 T. Tsikrika and M. Lalmas

Table 2. Propositions forming the frame of discernment Θ in the extended framework

θ000 ¬T ∧ ¬HP ∧ ¬A θ010 ¬T ∧ HP ∧ ¬A θ100 T ∧ ¬HP ∧ ¬A θ110 T ∧ HP ∧ ¬A
θ001 ¬T ∧ ¬HP ∧ A θ011 ¬T ∧ HP ∧ A θ101 T ∧ ¬HP ∧ A θ111 T ∧ HP ∧ A

Table 3. Combination in the extended
frame

Site A mi(·) Beli(·)
oi T HP T ∧HP Θ T HP T ∧HP
oc1:C 0.8 0 0 0.2 0.8 0 0
oc1:U 0 0.6 0 0.4 0 0.6 0
oc1 0.32 0.12 0.48 0.08 0.8 0.6 0.48
oc2:C 0.6 0 0 0.4 0.6 0 0
oc2:U 0 0.7 0 0.3 0 0.7 0
oc2 0.18 0.28 0.42 0.12 0.6 0.7 0.42

Table 4. Aggregation in the extended
frame

Site A mi(·) Beli(·)
oi T HP T ∧HP Θ T HP T ∧HP
oc1 0.32 0.12 0.48 0.08 0.8 0.6 0.48
oc2 0.18 0.28 0.42 0.12 0.6 0.7 0.42
oc1−2 0.11 0.07 0.81 0.01 0.92 0.88 0.81
oc3 0 0 0 1 0 0 0

...
op,c1−5 0.11 0.07 0.81 0.01 0.92 0.88 0.81

represented by two separate bpas. Suppose the content-based (C) score, for page
c1 (site A), reflecting its topicality, is 0.8 and its URL-based (U) one, reflecting
its homepageness, is 0.6. Then, we have mc1:C and mc1:U (Table 3).

Combination. The combination mc1 = mc1:C ⊕ mc1:U (Table 3) assigns belief
to propositions {T }, {HP}, and their conjunction {T ∧HP}. Given the initial
belief mc1:C(T)=0.8, we were unable to draw any finer distinction about the type
of topicality supported, i.e {T ∧HP} or {T ∧¬HP}. Once evidence for {HP}
became available, some of this initial belief was assigned to subset {T ∧HP},
but the total belief in {T }, Belc1(T)=mc1(T)+mc1(T∧HP)=0.8, remained the
same. We also combine the evidence for oc2 : mc2 =mc2:C ⊕mc2:U (Table 3).

Aggregation. Suppose we use aggregation method acc1. The aggregation
mc1−2 =mc1 ⊕mc2 (Table 4) further redistributes the belief among non-disjoint
propositions. The aggregation in terms of Bel is not affected by this distribution
of belief, since it is only concerned with the total belief assigned to propositions.
For instance, Belc1−2(T)=Belc1(T)⊕Belc2(T)=0.8 ⊕ 0.6=0.92. Furthermore,
this, in essence, corresponds to Belc1:C(T)⊕Belc2:C(T)=0.8⊕0.6=0.92, i.e. the
aggregation in terms of Bel, irrespective of the additional evidence incorporated,
produces the same results as if a single source is considered. Aggregating with
oc3 , oc4 , oc5 , and op, while setting prop=1, leads to mp,c1−5 (Table 4).

When multiple evidence are aggregated, we can produce many rankings using
the belief Bel in different propositions, and determine BEPs with respect to
different criteria. For instance, Bel(T) identifies BEPs for accessing topically
relevant pages, while Bel(T ∧HP) BEPs for accessing topical homepages.

Advantages of using DS theory include assigning belief to criteria for which
there is evidence, rather than, of necessity, to every criterion. Also, we can assign
belief to a set of propositions, without having to distribute belief among its
individual propositions. Finally, the relaxation of the law of additivity (m(A)+
m(¬A)≤1) allows us to flexibly represent web pages given the available evidence.

Combining Evidence for Relevance Criteria 489

4 Experiments

We perform evaluation experiments using the .GOV corpus and the topics and
relevance assessments from TREC’s Topic Distillation (TD) task (50 topics from
TD2003 [5] and 75 topics from TD2004 [6]). We index the pages in the collec-
tion by combining their content and incoming anchor text. We apply stopword
removal and stemming and use the weighting scheme and retrieval component
employed in InQuery [3]. This content-based retrieval approach (C) is our base-
line. To select the BEP from each site, we group, by their domain name, the top
500 pages retrieved by C, and apply aggregation approaches to each group.

We perform the aggregation in our extended DS framework with criteria of
interest topicality (T) and homepageness (HP), i.e. we form Θ based on E =
{T,HP}. In Section 4.1, we focus on topicality and rank the pages by their
Bel(T). In Section 4.2, we also consider their homepageness and rank them by
their Bel(T∧HP). The belief m{T } is quantified by the content-based relevance
score (C), whereas m{HP} by a query-independent URL-based relevance score
(U), computed using each page’s URL path length: 1

log2(urlpathlen+1) [14].
We apply the following aggregation methods : DS acc1(prop), DS accn(prop),

and DS notR(prop, notT), where prop is the propagation factor, and notT the
belief experimentally assigned to proposition {¬T } for pages not in the top 500
retrieved by C: m(¬T)=notT . We compare these DS aggregations to linear com-
bination (LC) aggregations, which can be considered to derive from equations
(1) and (2) (Section 3.1), by replacing DS combination (⊕) with addition (+).
These aggregation methods are LC acc1(prop) and LC accn(prop).

For each of these aggregation methods (DS acc1,LC acc1,DS accn,LC accn,DS
notR), we apply the propagation strategies : bottom-up and 1step Down. These
two strategies consider only the Down type links and our results indicate that
they perform similarly. Therefore, we only present the more efficient 1step Down
propagation. We also apply 1step propagation by aggregating linked pages con-
nected with all, not only Down, types of intra-site links (1step All).

To tune parameters prop and notT , we use TD2003 as our training set, with
TD2004 becoming our test set. Tuning prop involved an exploration from 0.1
to 1 at step 0.1, and tuning notT an exploration from 0.1 to 0.9 at step 0.1.
These tunings aimed at maximising P@10. We select P@10 because, in TD2003,
mean average precision (MAP) and R-precision (precision at R, R = number of
relevant documents for a query) are more sensitive than P@10 [18]. We also set
prop= 1

n (n=number of children) which led to poor results and is not reported.
In all the presented tables, the effectiveness values improving over the base-

line are depicted in bold. Statistically significant results, indicated by a ∗, are
determined by applying a Wilcoxon matched-pairs signed ranks test (α=0.05).

4.1 Experiments in Aggregating Evidence for Topicality

First, we select the BEP from each site with respect to topical relevance criteria,
i.e. we select pages that provide access to topically relevant information. To this
end, we aggregate, in a DS or linear manner, the content-based relevance scores of

490 T. Tsikrika and M. Lalmas

Table 5. Aggregating content-based evidence (top 500 pages retrieved by C)

TD2004 MAP P@5 P@10 R-Prec.
C (baseline) 0.1237 0.2187 0.1893 0.1622

BEP DS acc1 1step Down prop = 0.1 0.1064 0.2480* 0.2013 0.1628
1step All prop = 0.1 0.1347 0.2827* 0.2187* 0.1974*

BEP LC acc1 1step Down prop = 0.1 0.0998 0.2213 0.1947 0.1537
1step All prop = 0.1 0.1136 0.2453* 0.2120* 0.1873*

BEP DS accn 1step Down prop = 0.9 0.0977 0.2213 0.1880 0.1541
1step All prop = 0.1 0.1121 0.2373* 0.2027 0.1638

BEP LC accn 1step Down prop = 0.8 0.0981 0.2213 0.1880 0.1541
1step All prop = 0.1 0.1121 0.2453* 0.2013 0.1579

BEP DS notR 1step Down prop = 0.2 notT = 0.1 0.1069 0.2373 0.2000 0.1566
1step All prop = 0.1 notT = 0.1 0.1116 0.2533* 0.2067* 0.1669

linked pages. Previous research has already indicated that the within-site linear
aggregation of content-based relevance scores is effective for Topic Distillation
[15]. Our objectives are: (i) to examine the effectiveness of this aggregation when
modelled within our DS framework (and also compare it to a linear aggregation)
and (ii) to gain an insight into the workings of the aggregation, by studying the
effect of the various aggregation methods and propagation strategies.

In the training set, for most propagation strategies (except for DS accn and
LC accn for 1step Down), the lower the contribution of the children as a whole
(determined by the propagation factor), the better the results. The best results
were achieved for prop=0.1. Also, the more links were considered (1step All vs.
1step Down), the more the effectiveness improved, suggesting that evidence from
pages connected with all types of links is beneficial. We applied each propagation
strategy, with its most effective parameter(s) for each aggregation method, to our
test set (Table 5). Our training set observation, that considering low contributing
evidence from all children is beneficial, is confirmed by our test set results.

While the contribution of the children pages as a whole is determined by
prop, the contribution of each individual child is determined by the aggregation
method. Method acc1 considers only the children retrieved by C. Method accn
greatly discounts the contribution of each child and thus is indirectly affected by
the non-retrieved children. Method DS notR is directly affected by non-retrieved
children, with their contribution expressed through notT .

In the training set, acc1 was the most effective method, followed by notR,
whereas accn did not perform particularly well. These observations are confirmed
by the test set results, indicating that although the contribution of the retrieved
children should be low (expressed through low prop values), it should not be
too greatly discounted (as achieved by accn). This is further supported by DS
notR being most effective for low notT values, i.e. notT=0.1, which discount the
contribution of retrieved pages more gradually than accn (see Table 1). The most
effective methods, DS acc1, LC acc1, and DS notR, for 1step All, improve P@10
significantly over the baseline, with DS acc1 1step All also improving MAP.

Overall, our results confirm previous findings that aggregating content-based
evidence from the retrieved children of a web page is beneficial for Topic Dis-
tillation [15,5,6]. Our framework allowed us to study these aggregations further,

Combining Evidence for Relevance Criteria 491

indicating that the contribution of the retrieved children should be low, but not
too greatly discounted. In addition, considering only the immediate neighbours
is sufficient, with the most effective and robust strategy (1step All) taking into
account all linked (immediate) children. These findings apply for both DS and
linear aggregations, with the DS aggregation performing comparatively better.
Our DS framework also provides the expressiveness and flexibility to incorporate
evidence for additional relevance criteria, e.g. homepageness, discussed next.

4.2 Experiments in Combining and Aggregating Evidence for
Topicality and Homepageness

These experiments aim at assessing relevance with respect to topicality (T)
and homepageness (HP) relevance criteria, by considering the available evidence
capturing each criterion, i.e. the content-based (C) and URL-based (U) scores of
web pages. First, we combine, for each page, its two scores, producing, in essence,
a reranking of the C baseline. Next, we express within our DS framework the
aggregation of these two scores of linked pages belonging to the same site. In that
way, we identify each site’s BEP as the page that provides access to homepages
containing topically relevant information. We denote this aggregation as T⊕HP.

The combination of the C and U scores is performed in our DS framework
and compared to a linear combination. The DS combination is expressed as
m(T)⊕m(HP) resulting in belief also assigned to m(T ∧HP) (see Table 3). We
rerank the top 500 pages retrieved by C in terms of Bel(T ∧HP)=m(T ∧HP).
Since this corresponds, in essence, to a multiplication of the C and U scores, we
denote it as CU. The linear combination is expressed as C +w∗U . We tune w in
TD2003 for values 0.1 to 1 at step 0.1, and achieve the best results for w=0.2.

Both combinations improve significantly over C in TD2004 (Table 6), confirm-
ing the usefulness of homepage evidence for this task [5,6]. They are also more
effective than the aggregations of content-based evidence (see Table 5). Next, we
perform the T⊕HP aggregation, using CU and C+0.2U as baselines.

Our training set results for the T⊕HP aggregation indicate that, when also
considering homepage evidence, the contribution of the retrieved children is still
beneficial, but should be greatly discounted. In fact, accn was the most effec-
tive followed by notR and then acc1, with all achieving their best results for
prop = 0.1. Also considering only few of the children might be sufficient, since
1step Down performed comparably to 1step All. We apply the most effective
approaches for the T⊕HP aggregation to the test set (Table 6). Our training set
observations are confirmed by our test set results. The most effective method is
accn, with 1step Down improving P@10 significantly over all baselines. Method
notR is slightly less effective, but still improves, though not significantly, over
the baselines, whereas acc1 only improves over the content-based baseline (C).

Previous research has examined either the aggregation of content-based ev-
idence from linked pages, or the combination of content-based and homepage
evidence for a single page. We integrate these approaches, and indicate that by
incorporating beyond content-based evidence when aggregating linked pages, as
modelled by our DS framework, we can further improve the effectiveness.

492 T. Tsikrika and M. Lalmas

Table 6. Combining/Aggregating content- and URL-based evidence (top 500 pages
retrieved by C)

TD2004 MAP P@5 P@10 R-Prec.
C (baseline for CU and C+0.2U) 0.1237 0.2187 0.1893 0.1622
CU (baseline for BEP T⊕HP approaches) 0.1478* 0.2827* 0.2227* 0.1881*
C+0.2U (baseline for BEP T⊕HP approaches) 0.1504* 0.2827* 0.2213* 0.1752

BEP T⊕HP DS acc1 1step Down prop = 0.1 0.0971 0.1947 0.1800 0.1623
1step All prop = 0.1 0.1014 0.2267 0.1920 0.1663

BEP T⊕HP DS accn 1step Down prop = 0.1 0.1312 0.2720 0.2413* 0.1985
1step All prop = 0.1 0.1287 0.2773 0.2373 0.2027

BEP T⊕HP DS notR 1step Down prop = 0.1 notT = 0.9 0.1238 0.2560 0.2387 0.1934
1step All prop = 0.1 notT = 0.1 0.1245 0.2773 0.2200 0.1876

5 Conclusions

We proposed a framework that assesses relevance with respect to any of the rel-
evance criteria of interest, by combining the evidence indicating these criteria,
derived both from a web page and its linked web pages. We estimate the belief
in relevance and perform this combination using Dempster-Shafer (DS) theory
of evidence. The expressiveness and flexibility of the framework is demonstrated
by the ease with which the combination with respect to any relevance crite-
rion is expressed, the aggregation of evidence from linked pages is incorporated,
and negated evidence can be considered. We evaluated the framework in the
context of TREC’s Topic Distillation task, and in terms of the topicality and
homepageness relevance criteria. Our experiments indicated the effectiveness of
aggregating content-based evidence on their own, or together with homepage
evidence, and allowed us to study the workings of aggregation methods.

References

1. C. L. Barry. User-defined relevance criteria: An exploratory study. JASIS,
45(3):149–159, 1994.

2. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

3. J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval system. In
DEXA’92, pp. 78-83.

4. Y. Chiaramella. Information retrieval and structured documents. In European
Summer School in IR, volume 1980 of LNCS, pages 286–309, 2001.

5. N. Craswell and D. Hawking. Overview of the trec-2003 web track. In TREC-2003.
6. N. Craswell and D. Hawking. Overview of the trec-2004 web track. In TREC-2004.
7. N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor. Relevance weighting for

query independent evidence. In SIGIR’05, pages 416–423, 2005.
8. A. Dempster. A generalization of bayesian inference. Journal of Royal Statistical

Society, 30:205–247, 1968.
9. N. Eiron and K. S. McCurley. Untangling compound documents on the web. In

ACM Hypertext and Hypermedia conference, pages 85–94, 2003.
10. N. Fuhr, M. Lalmas, S. Malik, and Z. Szlavik, editors. Proceedings of INEX 2004.
11. J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the

ACM, 46(5):604–632, 1999.

Combining Evidence for Relevance Criteria 493

12. W. Kraaij, T. Westerveld, and D. Hiemstra. The importance of prior probabilities
for entry page search. In SIGIR’02, pages 27–34, 2002.

13. M. Marchiori. The quest for correct information on the web: hyper search engines.
In Proceedings of the 6th WWW conference, pages 1225–1235, 1997.

14. V. Plachouras and I. Ounis. Usefulness of hyperlink structure for query-biased
topic distillation. In SIGIR’04, pages 448–455, 2004.

15. T. Qin, T.-Y. Liu, Z. X.-D., Z. Chen, and W.-Y. Ma. A study of relevance propa-
gation for web search. In SIGIR’05, pages 408–415, 2005.

16. T. Roelleke, M. Lalmas, G. Kazai, I. Ruthven, and S. Quicker. The accessibility
dimension for structured document retrieval. In ECIR’02, pages 382–402, 2002.

17. G. Shafer. A mathematical theory of evidence. Princeton University Press, 1976.
18. I. Soboroff. On evaluating web search with very few relevant documents. In SIGIR

’04, pages 530–531, 2004.

Classifier Fusion for SVM-Based Multimedia

Semantic Indexing

Stéphane Ayache, Georges Quénot, and Jérôme Gensel

Laboratoire d’Informatique de Grenoble (LIG)
385 rue de la Bibliothéque - BP 53
38041 Grenoble - Cedex 9 France

Abstract. Concept indexing in multimedia libraries is very useful for
users searching and browsing but it is a very challenging research problem
as well. Combining several modalities, features or concepts is one of the
key issues for bridging the gap between signal and semantics. In this pa-
per, we present three fusion schemes inspired from the classical early and
late fusion schemes. First, we present a kernel-based fusion scheme which
takes advantage of the kernel basis of classifiers such as SVMs. Second,
we integrate a new normalization process into the early fusion scheme.
Third, we present a contextual late fusion scheme to merge classification
scores of several concepts. We conducted experiments in the framework
of the official TRECVID’06 evaluation campaign and we obtained signif-
icant improvements with the proposed fusion schemes relatively to usual
fusion schemes.

1 Introduction

In order to retrieve multimedia documents from huge digital libraries, the needs
for concept-based indexing are rapidly growing. Finding concepts in multimedia
documents, such as video sequences, is one of the main objectives of the content-
based semantic indexing community. Hence, new issues are arising on the com-
bination (fusion) of several features, modalities and/or intermediate concepts to
obtain a better accuracy of concept detection. For instance, an efficient fusion
scheme must enhance concept indexing in multimedia documents by merging
visual and textual modalities, color and texture modalities, or global and local
features. Using a generic framework, usual approaches propose either to merge
data on a concatenated vector before achieving classification [1, 2], or to per-
form several classification and then to merge confidence scores using a higher
level classifier [6, 11] by the means of a stacking technique [16]. Called “early”
and “late” fusion [13], those approaches are easy to implement and provide state
of the art performance. However, such fusion schemes are not always able to
outperform unimodal classifiers, especially when one of the modalities provide
much better accuracy than the others or when one has to handle imbalanced in-
put features. Such situations are particularly frequent in the field of multimedia
indexing due to the diversity of concepts with regard to the extracted features.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 494–504, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Classifier Fusion for SVM-Based Multimedia Semantic Indexing 495

Using kernel-based classifier, for instance a Support Vector Machine, recent
approaches have been proposed to take advantage of some useful kernel proper-
ties. They aim to merge features at the kernel level before performing the concept
classification. Kernel-based data fusion has been successfully applied in biology
to the problem of predicting the function of yeast proteins [8]. [8, 15] propose
efficient algorithms to learn simultaneously the parameters of each unimodal
kernel and the parameters of the combining function.

In this paper, we study and compare three fusion schemes in the scope of
semantic video indexing. The first one takes advantage of some useful kernel
properties, we present a simple algorithm which merges unimodal kernels before
performing the concept classification using a SVM classifier. In such a way,
features are combined at the earliest possible step using a kernel-based classifier.
The second fusion scheme is derived from the early fusion scheme. We normalized
each individual feature vectors so that their average norm becomes equal in order
to reduce the problem of imbalanced input features. The third fusion scheme is a
late-like fusion scheme; it performs fusion at the concept level taking into account
the classification scores of 39 concepts from visual and textual modalities.

In Section 2, we briefly present Support Vectors Machines and some required
knowledge about kernels. In section 3, we describe the proposed fusion schemes
and give some background information for formally comparing them with other
fusion schemes. In section 4, we describe the experiments conducted using the
TRECVID’06 [7] corpus and metrics.

2 Kernel-Based Classifier

Kernel-based methods have provided successful tools for solving many recogni-
tion problems, such as KFD, KPCA or SVM [12]. One of the reasons of this
success is the use of kernels which overcome the problem of non-linearly sepa-
rable data sets by mapping the initial problem into a higher dimensional space.
The main idea behind kernel-based classifiers is that the similarity between ex-
amples in a data set gives much information about the patterns that may be
present in these data.

2.1 Support Vector Machines

Support Vector Machines (SVM) have shown their capacities in pattern recog-
nition and have been widely used for classification in CBIR. SVM is formalized
as an optimization problem which finds the best hyperplane separating relevant
and irrelevant vectors by maximizing the size of the margin between both sets.
The use of a kernel allows the algorithm to find the maximum-margin hyper-
plane in a transformed feature space. The transformation may be non-linear and
the transformed space may be of higher dimensionality than the original one.
Thus, though the classifier separator is a hyperplane in the high-dimensional fea-
ture space it may be non-linear in the original input space. Furthermore, if the
kernel used is a Gaussian radial basis function, the corresponding feature space
is a Hilbert space of infinite dimension. Maximum margin classifiers are well

496 S. Ayache, G. Quénot, and J. Gensel

regularized and the infinite dimension does not spoil the results. In a two-class
case, the decision function for a test sample x has the following form:

g(x) =
∑

i

αiyiK(xi,x) − b

where K(xi,x) is the value of a kernel function for the training sample xi and
the test sample x, yi the class label of xi (+1 or −1), αi the learned weight
of the training sample xi, and b is a learned threshold parameter. The training
samples with weight αi > 0 are usually called “support vectors”.

2.2 Kernel Matrices

A kernel matrix is a similarity matrix where each entry represents a measure
of similarity between two sample vectors, and must be positive definite (i.e.
satisfy the Mercer’s condition) to ensure that the optimization problem is convex.
Therefore, a clever choice of the kernel (or similarity) function is essential to
obtain a positive definite kernel matrix. Nevertheless, some unproved positive
definite kernels such as EMD-based kernels or Log kernels have been successfully
used in image recognition [18, 3].

Kernel matrices satisfying the Mercer’s condition have interesting properties
which provide modularity and derivation of kernels from other kernels. If K and
K ′ are kernels, then the following are also kernels (not exhaustive):

– aK + bK ′, for a > 0 and b ≥ 0
– K × K ′, where × is the entrywise product

The most commonly used kernel function with SVM classifier in multimedia
indexing is the RBF kernel defined as follow:

K(x,y) = e−
‖x−y‖2

2σ2

where ‖ . ‖ denotes the L2 norm, x and y are two sample vectors, and σ the width
of the Gaussian kernel, generally determined using cross-validation. RBF kernels
have exhibited good generalization properties in many classification problems.
However, the use of a simple Euclidian distance implies small variations on the
kernel value in high dimensional feature spaces.

3 Fusion Schemes

We present in this section three fusion schemes inspired from the usual early and
late fusion schemes. Those schemes use a classifier to learn the relations between
modality components at different abstraction levels.

Figure 1 describes the process of early and late fusion schemes. The feature
extraction (FE) process extracts and creates a vector for each modality of the
video item. We show the SVM process as two main steps: first, the construction
of the Kernel, then the Learning or Classification (L / C) processes aims to
assign a classification score to the video item.

Classifier Fusion for SVM-Based Multimedia Semantic Indexing 497

(a) Early Fusion

(b) Late Fusion

Fig. 1. Classical Early and Late Fusion schemes

Merging all the descriptors into a single flat classifier leads to a fully integrated
fusion strategy since the fusion classifier obtains all the information from all
sources. The advantage of such a scheme is its capacity to learn the regularities
formed by the components independently from the modalities. Also, it is easy to
use as it just consists in concatenating the various data in a single vector. The
main disadvantage is the use of a unique approach (classifier and/or kernel) to
merge different types of information. Assuming a RBF kernel and two sample
vectors x and y from sets of features 1 and 2, the classical early fusion scheme
leads to the following kernel:

K(x,y) = e−
‖x−y‖2

2σ2 = e−
‖x1−y1‖2+‖x2−y2‖2

2σ2

= e−
‖x1−y1‖2

2σ2 e−
‖x2−y2‖2

2σ2

This formulation shows that using a SVM classifier with RBF kernels, an early
fusion scheme is equivalent to multiply unimodal kernels which share the same σ
parameter. The σ parameter is often fixed by cross validation, it is then optimal
for the concatenated vectors, but not necessary for each modality

498 S. Ayache, G. Quénot, and J. Gensel

A late Fusion is performed on top of several classifiers. It has been presented
using different formalisms, such as meta-classification which aims to re-classify
the classification results made by other classifiers [9]. The closest theory to il-
lustrate a late Fusion is the Stacking Ensemble learning [16] which is part of
the ensemble methods [5]. The idea behind Ensemble learning methods (e.g.
bagging, boosting, stacking) is to improve the generalization by training more
than one model on each problem (e.g. train 10 SVM instead of just one) and
then to combine their predictions by averaging, by voting or by other methods.
Using staking, the combination is achieved by a final classifier which provides
the final result. Hence, in the context of multimedia indexing, the late fusion
scheme consists in performing a first classification separately on each modality
and then in merging the outputs using a higher level classifier. In such a way,
in contrast with the early fusion, one can use different classifier algorithms and
different training sets according to the modalities. Furthermore, the late fusion
scheme also allows to combine various classifiers for the same modality. However,
the significant dimensional reduction induced by the stacked classifiers might be
a disadvantage as the fusion classifier cannot fully benefit from the correlation
among the sources of information.

3.1 Kernel Fusion

Kernel combination is a current active topic in the field of machine learning.
It takes benefit of Kernel-based classifier algorithms. Advantages of merging
modalities at kernel level are numerous. First, it allows to choose the kernel
functions according to the modalities. For instance, histograms of colors can take
advantage of specific histogram matching distances. Likewise, textual modality
can be categorized using appropriate kernels such as String Kernels [10] or Word-
Sequence kernels [4].

Kernel fusion also allows to model the data with more appropriate parameters.
Merging modalities using an early fusion scheme leads to model the data using
a single kernel function. Consequently, when using a RBF kernel, a single σ
parameter is expected to “fit” properly the sample vectors relations, whereas
it makes much more sense to train a combined RBF kernel using one σ per
modality. Combination of unimodal kernels leads to keep as much information
as possible from each modality. A combined RBF kernel has the following form:

Kc(x,y) = F (Km(xm,ym)(1≤m≤M))

where Kc(x,y) is the combined kernel value for samples x and y, (Km)1≤m≤M

are the considered unimodal RBF kernels, F is the combining function over the
M modalities, xm and ym are the sample vectors for modality m. Figure 2 shows
the kernel fusion process, the unimodal kernels are merged using a fusion function
in order to create the multimodal kernel. Then, learning and classification steps
aim to assign a classification score to the video item.

One of the main issues in the current kernel research is the learning of such
combined kernels. Called Multiple Kernels Learning, it aims to learn at the

Classifier Fusion for SVM-Based Multimedia Semantic Indexing 499

Fig. 2. Kernel Fusion scheme

same time the parameters of all the unimodal kernels and the parameters of
the combining function [15]. In our experiments, we used a very simple strategy
to create combined kernels. The following algorithm describes the steps to simply
create combined kernels:

1. Construct each unimodal kernels Km,
2. Perform cross-validation on each unimodal kernels to fix their parameters,
3. Construct the combined kernel using the F combining function,
4. Perform cross-validation to optimize the parameters of F .

This algorithm assumes that the best parameters of unimodal kernels are suitable
enough to allow efficient generalization of the combined kernel.

Combining individual kernels using a product operator is highly comparable
to the classic early scheme where feature vectors are just concatenated. The
difference is that by performing kernel fusion, each modality m is associated to
its own kernel parameters (ie: σm. Furthermore, due to the product operator, this
combination might lead to sparse kernels and provide poor generalization. We
used the sum operator instead of the product operator to try to avoid too sparse
kernel representations. Summing unimodal kernels should be more suitable for
concept detection when extracted features from a single modality are noisy and
lead to incorrect detection.

We actually combine unimodal kernels by linear combination (weighted sum).
Using RBF unimodal kernels, combined kernels are defined by the following
formula:

Kc(x,y) =
∑
m

wm e
− ‖xm−ym‖2

2σ2
m

where σm is the RBF parameter of kernel m and wm is the weight of the asso-
ciated modality. The wm’s can be fixed a priori or by cross-validation. In the
conducted experiments, we optimized the wm’s on the training set.

500 S. Ayache, G. Quénot, and J. Gensel

3.2 Normalized Early Fusion

The number of extracted features depends upon the modalities and the type of
the features. Hence, an early fusion scheme based on simple vector concatenation
is much affected by the vector which has the highest number of inputs. Such
fusion should have an impact on the classification, especially with a RBF kernel
which is based on Euclidian distance between each training sample.

In traditional SVM implementation, a normalization process is integrated and
aims to transform each input in the same range (e.g. [0..1], [−1..1]) in order to un-
bias the Euclidian distance. But, for the scope of merging features, this normal-
ization doesn’t take into account the number of input from the source features.
The goal of normalized early fusion scheme is to avoid the problem of imbal-
anced features inputs by reprocessing each feature vectors before concatenation.
We normalized each entry of the concatenated vector so that the average norm
of each source vector is about the same. The normalization formula becomes:

xi′ =
xi − mini

(maxi − mini) ×
√

Card(xi)

where xi is an input of the feature vector x, mini and maxi are respectively the
minimum and maximum value of the ith input among the training samples and
Card(xi) is the number of dimensions of the source vector of xi.

3.3 Contextual-Late Fusion

Usual late fusion scheme first classify each concept using individual modalities
and then merge the scores in a second layer of classifier. Here, we generalize
this scheme by considering more than a single concept. Contextual information
has been widely exploited in multimedia indexing [14, 11]. Here, the second layer
(stacked) classifier is able to exploit the contextual relation between the different
concepts. This proposed scheme merges each unimodal classification score from
a set of several concepts, in order to exploit both multimodal and conceptual
contexts.

Assume that we have M modalities (e.g. visual, audio and text) and C con-
cepts (e.g. Car, Face, Outdoor, Bus, etc). The stacked classifier merges M scores
to classify the C concepts in the classic late fusion scheme. The late context
fusion scheme merges M × C classification scores to classify the C concepts.

4 Experiments

We have evaluated and compared the presented fusion schemes in the frame-
work of the TRECVID’06 evaluation campaign. The objective of the “high level
feature extraction task” is to find video shots containing a visual appearance
of 39 predefined concepts (high level features). For each concept, an ordered
list of 2000 relevant shots should be returned by the competing systems. The
Inferred Average Precision (IAP) [17] on the returned lists computed using the

Classifier Fusion for SVM-Based Multimedia Semantic Indexing 501

trec eval tool is used as the evaluation metric. We compare the three proposed
fusion schemes with the commonly used early and late fusion schemes, as well as
with unimodal approaches. We have extracted features from visual and textual
modalities; we present them in the following section.

4.1 Visual and Text Features

The features used in this evaluation are mid-level semantic features. Visual fea-
tures are based on the concatenation of several intermediate concept classifica-
tion scores detected at a patch level. Those visual “local concepts” are automat-
ically extracted in each key frame, which are split into 260 (20 × 13) overlapping
patches of 32 × 32 pixels. Local descriptors (low-level features) include: color (9
color momentum in RGB space), texture (8 orientation × 3 scales Gabor filters)
and motion vector (extracted by optical flow). An SVM classifier is trained in
order to detect a set of 15 visual concepts (eg: vegetation, sky, skin, etc.) selected
from the LSCOM ontology. Those intermediate concepts have been selected as
they can be extracted at patch level. For each of the 39 concepts, we manu-
ally associated a subset of 6 intermediate visual concepts. Thus, visual feature
vectors contain 1560 dimensions (6 × 260).

Text features are derived from speech transcription result. We used 100 cat-
egories of the TREC Reuters collection to classify each speech segment. The
advantages of extracting such concepts from the Reuters collection are that
they cover a large panel of news topics like the TRECVID collection and they
are obviously human understandable. Thus, they can be used for video search
tasks. Examples of such topics are: economics, disasters, sports and weather.
The Reuters collection contains about 800000 text news items in the years 1996
and 1997.

We constructed a vector representation for each speech segment by applying
stop-list and stemming. Also, in order to avoid noisy classification, we reduced
the number of input terms. While the whole collection contains more than 250000
terms, we have experimentally found that considering the top 2500 frequently
occurring terms gives the better classification results on Reuters collection. We
built a prototype vector of each topic category on Reuters corpora and apply a
Rocchio classification on each speech segment. Such granularity is expected to
provide robustness in terms of covered concepts as each speaker turn should be
related to a single topic. Our assumption is that the statistical distributions of
the Reuters corpus and of TRECVID transcriptions are similar enough to obtain
relevant results. Finally, the vector of text features has 100 dimensions. More
explanation about those features can be found in [2].

4.2 Comparison of Fusion Schemes

The goal of the experiment is to study how imbalanced input features and large
difference on the performance of unimodal classifiers are managed by the various
fusion schemes. We show the results for unimodal runs and we compare all
proposed fusion schemes and the usual early and late schemes. The 20 following

502 S. Ayache, G. Quénot, and J. Gensel

concepts have been assessed for the TRECVID’06 evaluation campaign: Sports,

Weather, Office, Meeting, Desert, Mountain, Waterscape, Corporate Leader, Police / Security,

Military, Animal, Computer / TV Screen, US Flag, Airplane, Car, Truck, People Marching,

Explosion / Fire, Maps, Chart.
The results presented in this paper are based on those 20 concepts. We do not

study here each individual concepts result due to lack of space. The table 1 shows
the Mean Inferred Average Precision (MIAP) obtained from the 20 assessed
concepts. The two first entries refer to the unimodal runs, the two following
correspond to the state of the art fusion schemes. The three fusion schemes
described in this paper are shown in bold. We also show the median MIAP
obtained from all of the TRECVID’06 participants.

Table 1. Mean IAP of the 20 TRECVID’06 concepts

Visual 0.0634

Text 0.0080

Classical Early Fusion 0.0735

Classical Late Fusion 0.0597

Normalized Early Fusion 0.0884
Kernel Fusion 0.0805

Contextual Late Fusion 0.0753
Median 0.0680

Unimodal Runs
We observe that the two unimodal runs are very different in terms of accuracy;
the visual based classification is almost 7 times higher than text based concept de-
tection. This is probably due to the nature of the assessed concepts, which seems
to be hard to detect using text modality. The difficulty to detect concepts from
the text modality is also probably due to the poor quality of automatic speech
transcription (and translation) in some videos of the collection. This point is ac-
tually interesting for the evaluation of the ability of the various fusion schemes to
handle such heterogeneous data. The features we want to merge lead to different
accuracies and are also imbalanced regarding the number of input features.

Classic Early and Late Fusion Schemes
The two classical fusion schemes do not merge unimodal features similarly. While
early fusion is able to outperform both unimodal runs, the late fusion scheme
achieves poorer accuracy than the visual run. It might be due to the low number
of dimensions handled by the stacked classifier. The early fusion scheme exploits
context provided by all of the local visual features and the textual features. The
gain obtained by such fusion means that those two modalities provide distinct
kind of information. The merged features are, somehow, complementary.

Early Based Fusion Schemes
The gain obtained by the normalized fusion schemes is the most important
compared to other fusion schemes. Processing the unimodal features by

Classifier Fusion for SVM-Based Multimedia Semantic Indexing 503

re-equilibrating them according to the number of dimensions is determining fac-
tor in order to significantly outperform unimodal runs. In such a way, despite
the different number of dimensions, both the visual and textual modalities have
the same impact on concept classification. This normalization process leads to
a gain of almost 17% (in MIAP) comparing to the classic early fusion scheme,
which simply normalizes input in a common range, and 28% comparing to the
best unimodal run.

The gain obtained by the kernel fusion scheme is less significant than the
gain obtained by the normalized fusion run. However, when comparing to the
classic early fusion, it seems that a combination using sum operator leads to
better accuracy than multiplying kernels (which is somehow what the classic
early fusion do). Furthermore, it is important to notice that the σ parameters
are selected first by cross-validation on unimodal kernels and that we optimize
the linear combination separately. We can expect that an integrated framework
which learns simultaneously σm and wm parameters should lead to better results.

Contextual-Late Fusion Scheme
Contextual-Late fusion is directly comparable with the classical late fusion sche-
me. This fusion scheme take into account the context from the score of other
concepts detected in the same shot. By doing so, the context from other concepts
leads to a gain of 26%. Furthermore, we observe that the MIAP obtained using
the late contextual fusion scheme is almost the same as the one obtained for
the classical early fusion scheme. In order to go further in this study, it could
be interesting to evaluate the impact of the number and/or accuracy rate of
concepts used in the context.

We notice that both of unimodal runs lead to poorer accuracy than the median
of TRECVID’06 participants. This may be due to the basic and not so optimized
features used in our experiments. However, the gain induced by the three fusion
schemes presented in this paper lead to better accuracy than the median. We
think that an optimization in the choice of descriptors for each modality could
enhance the accuracy rate of both unimodal and multimodal runs.

5 Conclusion

We investigated three fusion schemes derived from the classical early and late fu-
sion schemes when using SVM classifier. We have shown that all of the presented
strategies perform in average better than the best unimodal run on the concept
detection task of TRECVID’06. Furthermore, those fusion schemes outperform
the median of TRECVID’06 participants over all of their runs. Kernel fusion
schemes make it possible to take advantage of individual modalities, with a set
of suitable parameters. Normalized early fusion is a good way to re-equilibrate
the influence of individual modalities. Finally, the Contextual-Late fusion allows
integration of context information from unimodal classification score of other
concepts.

We studied influences of those fusion schemes on a set of 20 concepts, and
did not analyzed individual concepts variations. As argued in [14], it is possible

504 S. Ayache, G. Quénot, and J. Gensel

that one strategy performs differently than other depending the nature of the
concepts. It could be interesting to go further in this direction. Also, the nature
of the combined feature differs depending of the fusion schemes: early fusion is
based on low- or intermediate-level features, where late fusion merges unimodal
classification scores of high-level features. It could be interesting to merge those
two heterogeneous kind of features in an integrated fusion scheme.

Bibliography

[1] S. Ayache, G. Quénot, J.Gensel, and S. Satoh. CLIPS-LSR-NII experiments at
TRECVID 2005. In proceedings of TRECVID Workshop, 2005.

[2] S. Ayache, G. Quénot, J.Gensel, and S. Satoh. Using topic concepts for semantic
video shots classification. In proceedings of CIVR, 2006.

[3] S. Boughorbel, J. Tarel, and N. Boujemaa. Conditionally positive definite kernels
for SVM based image recognition. In proceedings of ICME, 2005.

[4] N. Cancedda, E. Gaussier, C. Goutte, and J.-M. Renders. Word-sequence kernels.
Journal of Machine Learning Research, 2003.

[5] T. G. Dietterich. Ensemble methods in machine learning. In Lecture Notes in
Computer Science, 2000.

[6] G. Iyengar and H. Nock. Discriminative model fusion for semantic concept detec-
tion and annotation in video. In proceedings of ACM Multimedia, 2003.

[7] W. Kraaij, P. Over, T. Ianeva, and A. F. Smeaton. TRECVID 2006 – An Introduc-
tion, 2006. http://www-nlpir.nist.gov/projects/tvpubs/tv6.papers/tv6intro.pdf.

[8] G. R. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble. Kernel-
based data fusion and its application to protein function prediction in yeast. In
Proceedings of the Pacific Symposium on Biocomputing, pages 300–311, 2004.

[9] W. Lin, R. Jin, and A. Hauptmann. Meta-classification of multimedia classifiers.
In Proceedings of First International Workshop on Knowledge Discovery, 2002.

[10] H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. J. C. H. Watkins. Text classi-
fication using string kernels. NIPS, 2000.

[11] M. Naphade. On supervision and statistical learning for semantic multimedia
analysis. Journal of Visual Communication and Image Representation, 2004.

[12] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[13] C. Snoek, M. Worring, and A. Smeulders. Early versus late fusion in semantic
video analysis. In proceedings of ACM Multimedia, 2005.

[14] C. G. Snoek, M. Worring, J.-M. Geusebroek, D. C. Koelma, F. J. Seinstra, and
A. W. Smeulders. The semantic pathfinder for generic news video indexing. In
Proceedings of ICME, 2006.

[15] S. Sonnenburg, G. Ratsch, and C. Schafer. A general and efficient multiple kernel
learning algorithm. In proceedings of NIPS, 2005.

[16] D. H. Wolpert. Stacked generalization. Journal of Neural Networks, 1990.
[17] E. Yilmaz and J. A. Aslam. Estimating average precision with incomplete and

imperfect judgments. In Proceedings of CIKM, 2006.
[18] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels

for classification of texture and object categories: A comprehensive study. Beyond
Patches workshop, In proceedings of conjunction with CVPR, 2006.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 505 – 516, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Search of Spoken Documents Retrieves Well
Recognized Transcripts

Mark Sanderson and Xiao Mang Shou

Department of Information Studies, University of Sheffield, Western Bank, Sheffield, S10
2TN, UK

{m.sanderson, x.m.shou}@shef.ac.uk

Abstract. This paper presents a series of analyses and experiments on spoken
document retrieval systems: search engines that retrieve transcripts produced by
speech recognizers. Results show that transcripts that match queries well tend to
be recognized more accurately than transcripts that match a query less well.
This result was described in past literature, however, no study or explanation of
the effect has been provided until now. This paper provides such an analysis
showing a relationship between word error rate and query length. The paper
expands on past research by increasing the number of recognitions systems that
are tested as well as showing the effect in an operational speech retrieval
system. Potential future lines of enquiry are also described.

1 Introduction

The Spoken Document Retrieval (SDR) track was part of TREC from 1997 (TREC 6)
to 2000 (TREC 9). During this period, substantial research and experimentation was
conducted in speech retrieval. The work focused on retrieval of radio and TV
broadcast news: high quality recordings of generally clearly spoken scripted speech.
The overall result of the track (as reported in the summary paper by Garofolo et al,
2000) was that retrieval of transcripts generated by a speech recognition system was
almost as effective as retrieval of transcripts generated by hand with proper expansion
techniques. Garofolo et al also presented results showing that there appeared to be a
relationship between WER and retrieval effectiveness. They showed that for topics
where retrieval was effective, WER of retrieved items tended to be low. The authors
speculated that hard to recognize documents may also be hard to retrieve.

A more detailed analysis of the reasons for the success of spoken document
retrieval was described by Allan in his review of SDR research (2002). Allan pointed
out that documents that were most relevant to a query were ones that had query words
repeated many times (i.e. the words had a high term frequency - tf - within the
document). The repetition of query words within a document provided to the
recognition system multiple opportunities to spot the query words correctly.
Documents that contained query words only once may not have had such word
occurrences spotted by a recognizer and therefore were less likely to be retrieved,
however, such documents were also less likely to be relevant to the query; failing to
retrieve them was not particularly important. Actually the failure to recognize single
occurrences of terms in non relevant documents may offer an advantage in SDR over
text retrieval as the speech document will not be retrieved. Allan reported that

506 M. Sanderson and X.M. Shou

retrieval from spoken document collections with a high Word Error Rate (WER)
resulted in poorer effectiveness than that resulting from retrieval over a collection
with a low WER. Allan also reported that this inverse relationship between WER and
retrieval effectiveness was linear.

Following on from those the two review papers, additional analysis of the SDR
track data was conducted by Shou, Sanderson and Tuffs (2003) who reported work
describing the variation of the word error rates of retrieved documents across ranking.
In the paper, it was shown that across the groups who submitted runs to the TREC
SDR track, top ranked documents in each run had a lower WER than documents that
were further down the ranking. Some speculations on the reasons for this effect were
provided, but little evidence of a reason was reported. This paper provides such
evidence.

The paper starts with an overview of past work, followed by a series of
experiments that expand on the work reported in the 2003 paper.

2 Past Work

Beyond Garofolo et al’s observation of a relationship between effective topics and
WER, little past work on the relationship between effectiveness, document rank and
word error in recognized transcripts has been reported. However, some related
research has been published, which is now described.

In the internal working of a speech recognition system, an audio segment of speech
is recognized into a lattice of possible text strings, each string a hypothesis of what
was spoken. The hypotheses are compared to the acoustic and language models stored
in the speech recognizer. Based on both models, a confidence score is assigned to
each word in each hypothesis, signifying the probability that the word was spoken.
The sequence of words with the highest scores is chosen as the text string the
recognizer will output. It can be expected that the higher score assigned to a word, the
more confident one can be that the recognizer’s selection was correct. Zechner and
Waibel investigated summarization of spoken documents (2000) and use of
confidence scores to improve summarization quality. Their summarizer ranked
passages of a spoken document by their similarity to the overall document. Summary
quality was computed by counting the number of relevant words (manually identified
in human transcription) found within the summary. It was found that if the ranking
formula was adjusted to prefer passages holding words with high confidence scores,
the quality of the summaries increased by up to 15%. With Zechner and Waibel an
approximation of word error rate (i.e. the confidence scores) was used to influence a
ranking algorithm to improve the quality of the top ranked passages. Given such
success, one might assume that similar use of confidence scores in information
retrieval ranking algorithms would also be beneficial. However, attempts to improve
retrieval effectiveness through use of the scores have at best been marginally
successful (see Siegler et al, 1998, Johnson et al, 1999).

Sanderson and Crestani conducted preliminary investigations of retrieval from a
collection composed of both hand transcribed (containing only human errors) and
speech recognized documents (with a level of word error within them) (1998). Two

 Search of Spoken Documents Retrieves Well Recognized Transcripts 507

versions of each spoken document were placed into a collection, one hand transcribed
and one speech recognized. By having pairs of identical documents in the collection,
the only difference in the two sub-sets of the mixed collection was the errors in the
speech recognized set. If one was to retrieve on such a collection, any difference in
rank positions of documents from the two subsets would be due to the error in the
second set. Sanderson and Crestani reported that retrieval from such a collection
resulted in the hand transcribed documents being retrieved at higher rank positions
than the speech recognized documents. By experimenting with two retrieval ranking
algorithms, Sanderson and Crestani were able to show the predominant reason for the
hand transcribed documents being ranked higher than the recognized was due to word
errors reducing the tf weight assigned to words in the recognized documents, therefore
making such a document receive a lower score than that assigned to hand transcribed
when ranking documents relative to a query. Sanderson and Crestani assumed that
documents in the recognized collection had a uniform word error rate and did not
explore the effect of different word error rates across such a collection. Neither was
the investigation run across a range of retrieval systems or outputs from other speech
recognition systems. Further research in retrieval from similar forms of collection was
conducted by Jones and Lam-Adesina (2002).

3 Experiments on the Extent of the Effect of WER and Rank
Position

In their paper, Shou, Sanderson and Tuffs (2003) presented evidence of variation of
WER across rankings. That work is expanded on here. In the past paper, the speech
recognized transcripts of the one hundred hours of audio data making up the TREC-7
SDR collection were collected from six of the groups participating in the speech
track. In addition, the runs submitted by each group were also gathered: these hold the
ranked list of documents retrieved for each topic by each group’s retrieval system.
The collection had an accompanying accurate manually generated text transcript,
which allowed WERs to be computed for each document at each rank position for
each topic within each collected transcript. A scatter plot of the WER of retrieved
documents against their rank position was produced for each of the six transcripts. In
addition, one of the six transcripts, from AT&T, had two forms of retrieval system
search over it, which resulted in seven plots. The seven data sets are now described.

1. derasru-s1, UK Defence Evaluation and Research Agency (DERA, Nowell, 1998).
Here a large vocabulary continuous speech recognizer (50,000 word vocabulary
plus 500 bigrams) developed by DERA was used to generate the transcript. Its
average word error rate was 66.4%. Retrieval was based on the Okapi system. The
topics of the TREC track were syntactically tagged. Certain syntactic patterns were
used to identify keywords of the topic text. Selected topic keywords were
expanded with synonyms and sometimes with hypernyms taken from the WordNet
thesaurus. When keywords were ambiguous, the commonest synset was chosen to
provide expansion terms.

508 M. Sanderson and X.M. Shou

2. derasru-s2: using the same retrieval set up as derasru-s1, the speech recognizer had
an additional processing step, which reduced the error rate to 61.5%. Here the
audio data was segmented into different streams depending on the quality of audio
recording found within parts the TREC spoken document collection. Audio
recordings identified as being speech over telephones for example were recognized
differently from segments judged to be recorded to a higher quality.

3. att-s1, AT&T. Recognition was performed using an in-house speech recognition
system that produced transcripts with a 32.4% WER. The vocabulary size of the
system was not stated in the paper describing the AT&T submission to TREC
(Singhal et al, 1998). Retrieval was based on the SMART retrieval system with a
phrase identification process operating on TREC topic text and pseudo-relevance
feedback used to expand topics with additional terms. The form of feedback used
was a method referred to as collection enrichment: here the first search of the
pseudo-relevance feedback stage was conducted on a large collection of news
articles and not the relatively small SDR collection.

4. att-s2. For the second AT&T submitted run, the same recognition system was used,
but retrieval was altered to include a document expansion step. Here in the same
manner that topic text was expanded using pseudo relevance feedback, each
recognized transcript was expanded, by searching a large collection of newspaper
texts with the transcript text as a query. The transcript was expanded with terms
found to commonly co-occur in top retrieved newspaper articles. This run
produced better retrieval results than att-s1.

5. dragon-s1, Dragon systems and the University of Massachusetts. This was a
combined submission using a speech recognizer from Dragon and retrieval using
the UMass Inquery retrieval system (Allan et al, 1998). The recognizer used a
57,000 word vocabulary. It produced transcripts with an error rate of 29.8%. Prior
to retrieval, topic text was processed to locate phrases, which were then searched as
phrases. Certain proper nouns were expanded with synonyms. A form of pseudo
relevance feedback (known as local context analysis) was used to expand topic
texts with additional terms taken from the recognized transcript collection.

6. shef-s1, University of Sheffield with collaborators at Cambridge University
(Abberley et al, 1998). Recognition was performed using the Abbot recognizer
system with a vocabulary of 65,532 words producing a transcript with a 35.9%
WER. Retrieval was performed with a locally built IR system using Okapi-style
BM25 weights.

7. cuhkt-s1, University of Cambridge (Johnson et al, 1998). Recognition was
performed using the HTK speech toolkit recognizing from 65,000 word
vocabulary. The resulting transcript had a 24.8% WER. Retrieval used the Okapi
system using BM25 weights. Expansion of selected topic terms with synonyms and
with additional terms using pseudo-relevance feedback was used, as was phrase
spotting in topic text. Matches on proper nouns and nouns were preferred over
adjectives, adverbs and verbs as this strategy was found to bring improvements in
retrieval effectiveness.

As can be seen from the descriptions, the seven runs represent a relatively diverse set
of retrieval and recognition approaches. The average WER of the transcripts ranged

 Search of Spoken Documents Retrieves Well Recognized Transcripts 509

from 24.8% to 66%. Note that two further recognizer transcripts were produced and
archived in this year of TREC, nist-b1 and nist-b2 (Garofolo et al, 1999). However,
no associated retrieval runs performed on these transcripts were located and so were
not used in this experiment.

3.1 The Experiment

For each run, rankings for each of the 23 topics (51-73) were gathered from the TREC
web site. NIST’s sclite software was used to calculate the WER of each document
retrieved in the top 200 rank positions. Since sclite only calculates WER based on
speaker id, the original recognized transcripts were modified by replacing speaker ids
with document ids so that WER could be measured on each document. After
obtaining WER of each story across all systems, the average error at each rank
position across the 23 queries was calculated and graphed.

0

20

40

60

80

100

120

140

160

1 21 41 61 81 101 121 141 161 181

Fig. 1. Document rank (x-axis) vs. word error
rate (y-axis) for dragon-s1 system

0

5

10

15

20

25

30

35

40

1 21 41 61 81 101 121 141 161 181

Fig. 2. Graph of Figure 1 with y-axis adjusted
to focus on majority of retrieved documents

The graph (in Figure 1) shows a slight increase in error rate for recognized
documents at higher ranks. A small set of documents with a very a high error rate
across the ranking was observed (the twelve points at the top of the scatter plot). The
reason for this effect was investigated and found to be related to mistaken insertions
of large amounts of text into short documents by the recognizer (such erroneous
documents were found in all six transcripts). Ignoring these few high error rate
documents by focusing the scatter plot on the main band of documents reveals the
trend of increasing error rate more clearly. It can be seen that top ranked documents
(those on the left side of the graph) have a lower word error rate than those ranked
further down the ranking. The plot such as that shown in Figure 2 was repeated for all
other six runs and is displayed in Figure 3 – 8. Across all runs, the average WER for
the very top ranked documents (those in the top 10) is lower than the WER for
documents in the wider part of the ranking. Such differences in WER are also shown
in Table 1 where the average WER is calculated in the top 10, 50 and 200 rank
positions and it can be seen that for all recognizers and runs WER is lower for higher
ranked documents.

510 M. Sanderson and X.M. Shou

0

10

20

30

40

50

60

70

80

1 21 41 61 81 101 121 141 161 181

Fig. 3. derasru-s1, rank vs. WER

0

10

20

30

40

50

60

70

80

1 21 41 61 81 101 121 141 161 181

Fig. 4. derasru-s2, rank vs. WER

0

5

10

15

20

25

30

35

40

1 21 41 61 81 101 121 141 161 181

Fig. 5. att-s1, rank vs. WER

0

5

10

15

20

25

30

35

40

1 21 41 61 81 101 121 141 161 181

Fig. 6. att-s2, rank vs. WER

0

5

10

15

20

25

30

35

40

1 21 41 61 81 101 121 141 161 181

Fig. 7. shef-s1, rank vs. WER

0

5

10

15

20

25

30

35

40

1 21 41 61 81 101 121 141 161 181

Fig. 8. cuhtk-s1, rank vs. WER

The slight, though consistent trend measured across all data sets provides evidence
that when retrieving speech recognized documents, those with lower word error rates
tend to be ranked higher. The trend also appears to occur independent of the mix of
retrieval strategies used across the runs (e.g. different weighting schemes, use of
pseudo-relevance feedback, use of document expansion, etc) and independent of the
accuracy of the speech recognizer used.

 Search of Spoken Documents Retrieves Well Recognized Transcripts 511

Table 1. Word Error Rate differences for top 10, 50 and 200 retrieved documents

Run Average WER
in top 10 (%)

Average WER
in top 50 (%)

Average WER
in top 200 (%)

derasru-s1 57.1 58.8 62.8
derasru-s2 50.5 53.1 56.2
att-s1 25.5 27.4 29.1
att-s2 24.8 26.8 29.0
dragon-s1 22.8 25.1 26.9
shef-s1 28.4 32.7 33.4
cuhtk-s1 20.6 22.2 23.4

Although the trend is consistent across the data sets, it is not immediately clear
what the cause of such a trend is: one explanation is that top ranked documents tend
to contain a broader range of query words than those documents ranked lower.
Another explanation mentioned by Sanderson and Shou (2002) is that transcripts of
spoken documents containing query words assigned a high tf weight – which tend to
be ranked highly by retrieval systems – often have a lower overall WER. Determining
which of these possible causes might explain the observed effect was the subject of
the next experiment.

4 Determining the Cause of the Effect

As valuable as it can be to examine the search output of other research groups’
retrieval systems (as was conducted in Section 3), analyzing the ranked output of a
system that one has no access to is often limiting. This is because a common
consequence of such analysis is the discovery that new experiments need to be
conducted to generate different versions of the data, which requires access to the
retrieval system of other research groups, something that is rarely possible. Therefore,
in order to conduct more detailed analysis of WER in retrieved documents, the six
recognized transcripts used in the experiment of Section 3 along with the two NIST
transcripts (nist-b1 and nist-b2) were indexed and searched so that new search output
could be created for further experimentation. The aim of the experiments was to
examine the relationship between WER, tf weights and the number of words in
common between a query and a document.

In the experiment, the average WER of top ranked documents retrieved by queries
of different length was measured. The TREC-7 SDR collection holds only 23 topics.
In order to produce a larger number of topics of different lengths, (non-stop) words
were randomly sampled without repeated words from each of the topics. The number
of words sampled was varied, producing sets of topics of length 1, 2, 5, 10 and 15.
Each of the 23 topics was sampled 1,000 times for each of the five different lengths.
The queries were submitted to two versions of the GLASS search engine, an in house
IR system that implements Robertson et al’s BM25 ranking algorithm (1995) as well
as a simple quorum scoring (coordination level matching) algorithm that ranks
documents by the number of query words found in a matching document (making no
use of tf, idf weights or of document length normalization). No relevance feedback or
other expansion methods were employed in both algorithms. The tables of the results

512 M. Sanderson and X.M. Shou

Table 2. The average WER measured across the ten top ranked documents retrieved by quorum
scoring for each of the 1,000 topics randomly sampled

Topic
length

cuhtk-
s1

dragon98-
s1

att-
s1

shef-
s1

nist-
b1

nist-
b2

derasru-
s2

derasru-
s1

1 19.3 22.0 22.2 25.8 26.7 39.5 51.4 52.3

2 18.9 22.7 22.1 25.9 26.4 39.1 50.6 52.7

5 16.7 21.0 21.1 23.9 24.3 38.0 44.6 48.6

10 15.9 19.7 20.4 22.1 23.5 36.9 42.9 47.1

15 15.5 19.6 19.9 21.2 23.0 36.7 42.1 46.4

Table 3. Precision at 10 measured in the retrieved documents shown in Table 2

Topic
length

cuhtk-
s1

dragon98-
s1

att-
s1

shef-
s1

nist-
b1

nist-
b2

derasru-
s2

derasru-
s1

1 0.06 0.07 0.06 0.06 0.05 0.05 0.06 0.06

2 0.09 0.08 0.09 0.09 0.08 0.07 0.07 0.07

5 0.20 0.18 0.19 0.19 0.18 0.15 0.17 0.17

10 0.26 0.23 0.26 0.25 0.24 0.20 0.21 0.23

15 0.28 0.24 0.27 0.27 0.25 0.21 0.21 0.23

Table 4. The average WER measured across the ten top ranked documents retrieved by BM25
for each of the 1,000 topics randomly sampled

Topic
length

cuhtk-
s1

dragon98-
s1

att-
s1

shef-
s1

nist-
b1

nist-
b2

derasru-
s2

derasru-
s1

1 18.1 21.7 22.3 25.3 25.7 39.0 46.9 51.0

2 17.8 22.2 22.4 25.2 25.2 39.2 46.3 50.7

5 17.2 21.1 22.2 24.4 23.9 38.7 44.3 50.6

10 17.2 20.9 21.9 24.1 24.1 38.8 43.0 49.4

15 16.9 20.7 21.9 23.9 24.1 38.4 42.1 48.9

Table 5. Precision at 10 measured in the retrieved documents shown in Table 4

Topic
length

cuhtk-
s1

dragon98-
s1

att-
s1

shef-
s1

nist-
b1

nist-
b2

derasru-
s2

derasru-
s1

1 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.08

2 0.16 0.15 0.15 0.15 0.15 0.13 0.13 0.13

5 0.30 0.28 0.28 0.28 0.28 0.24 0.25 0.27

10 0.36 0.35 0.35 0.35 0.35 0.29 0.31 0.33

15 0.37 0.36 0.35 0.36 0.36 0.30 0.33 0.33

 Search of Spoken Documents Retrieves Well Recognized Transcripts 513

of this experiment are shown in Table 2 and Table 4, which record average WER and
Table 3 and Table 5, which display precision measured at rank ten.

As can be seen, across all eight transcripts for both form of ranking algorithm, as
the length of topic increases, the WER measured in the top ranked documents
reduces, while precision at 10 increases. This effect is consistent for both forms of
ranking algorithm used. From the result with the quorum scoring, it can be concluded
that the reduction in WER shown in Table 2 was caused by the change in top ranked
documents: as topic length increases the top ranked documents hold more query
words. Documents that match on a broader range of query words tend to have a lower
WER. While a relationship between the rank position of recognized documents and
their WER was observed in the past, to the best of our knowledge a causal effect has
not been determined before. From the results in Table 2, we conclude that the process
of retrieval itself is locating documents that have a lower WER.

Table 6. Comparison of average word error rate (WER) measured across the eight transcripts
shown in Table 2 and in Table 4

Topic length av. WER BM25 av. WER Quorum difference ttest (p)

1 31.3 32.4 -1.2 0.058

2 31.1 32.3 -1.2 0.057

5 30.3 29.8 0.5 0.099

10 29.9 28.6 1.4 **0.001

15 29.6 28.1 1.6 **0.001

The number of words in common between a document and a query is not the full
story, however, as it can be seen that for topics of length one, for all but one
transcript, WERs are lower using BM25 ranking (Table 4) than when using quorum
scoring (Table 2). Here, top ranked documents retrieved by a single word query using
BM25 are those documents in the collection that contain the query word repeated the
most number of times (normalized by document length). Observing a query word
repeated many times in a document would appear to be an indicator that that
document was recognized well. The comparison of WERs is summarized in Table 6.
The amount of WER reduction is relatively small and for topics of length one or two
the difference is not significant. In comparing the error rates across the two ranking
algorithms for longer queries (five, ten or fifteen words) the quorum scoring
algorithm retrieves documents with lower WERs and for the longest queries lengths,
the differences between quorum and BM25 are significant.

However, it must be remembered that quorum scoring though retrieving documents
with low WERs is not retrieving the most relevant documents as across the Tables,
precision at ten is consistently higher for BM25 ranking. We believe that this effect is
due to BM25 top ranked documents matching on fewer query words than the
documents top ranked by quorum scoring but with higher tf, which means a query
word is repeatedly recognized, so BM25 has the effect of ranking higher documents
with fewer matching terms.

514 M. Sanderson and X.M. Shou

5 Experiments with Manual Calculation of WER on Top Ranked
SpeechBot Snippets

To provide further confirmation of the results in Section 4, measurements were made
of the word error rate in the snippets of top ranked transcripts retrieved by a publicly
available spoken document retrieval system, SpeechBot (Van Thong et al, 2000;
Moreno et al 2000). We would like to test whether the correlation between word error
rate and document ranking could be generally applied to other systems using different
speech recognition technologies. A white paper published on the engine’s Web site
(Quinn, 2000) described that the engine indexed streaming spoken audio using a
speech recognizer. Several thousand hours of audio data were crawled and stored in a
searchable collection composed of mainly US-based radio stations producing
predominantly news, current affairs and phone-in shows. The snippets in the result list
summary presented by SpeechBot were brief sections of speech transcript that
strongly matched a user query; most likely selected by a within document passage
ranking approach.

The WER of each retrieved snippet was computed by manually comparing the
snippet text with human listening to the corresponding part of the audio recording
noting any inserted, deleted or substituted words. The WER was calculated using the
total number of errors divided by the total number of words in the returned snippets.
This method was consistent with NIST’s WER calculation tool sclite which was used
in the TREC SDR track. Because the majority of the SpeechBot collection was audio
news, 34 current affair queries were created for the experiment. The number of words
in the examined snippets ranged from twenty to forty. It was found that audio files
were not available with some of the retrieved results (usually occurring with old audio
recordings dated before 1999 or with the recordings of certain shows). The authors
were made aware that a number of the transcripts used by SpeechBot for certain radio
programs like PBS’s News Hours are manually written transcripts and not generated
by an SR system (Quinn, 2000), such transcripts were also ignored. Therefore, 311
out of a possible 350 snippets were assessed, the average WER measured within the
snippets was 19.29%, and the standard deviation was 14.04%. Among the snippets,
the maximum calculated WER was 68.75% while the minimum was 0%. The
measured rate was substantially lower than the estimated 50% WER reported to exist
across the whole SpeechBot collection (Quinn, 2000). This constitutes further
evidence of the retrieval process assigning high rank to well recognized documents.

6 Conclusions and Future Work

This paper described experiments that demonstrated that when there is variability in
the word error rate across the documents of a speech recognized collection, retrieval
systems tend to retrieve highest documents with low word error. This effect was
demonstrated through experimentation on an operational spoken document retrieval
system as well as a series of analyses across multiple speech recognizers and retrieval
algorithms. It was shown that documents holding many query words tend to have low
WER.

 Search of Spoken Documents Retrieves Well Recognized Transcripts 515

We plan to extend our investigation to other retrieval research areas where
documents containing varying levels of error are retrieved. Research topics such as
retrieval of transcripts produced by Optical Character Recognition (OCR) of scanned
document images or retrieval of documents translated into a different language may
be worthy of further investigation. When retrieving OCR’ed documents,
understanding if the top ranked are more readable or are the product of a better scan
would be a straightforward experiment to undertake. A potentially more intriguing
question is if in the context of cross language information retrieval, if top ranked
documents are better translated than those retrieved further down the ranked list. To
the best of our knowledge, this question has not been addressed within the cross
language research community.

References

Abberley, D., Renals, S. and Cook, G. (1998) Retrieval of broadcast news documents with the
THISL system; In Proceeding IEEE ICASSP, 3781-3784

Allan, J., Callan, J. Sanderson, M., Xu, J. (1998) INQUERY and TREC-7 in the proceeding of
the 7th Text REtrieval Conference (TREC 7)

Allan, J. (2002) Perspectives on Information Retrieval and Speech, in Information Retrieval
Techniques for Speech Applications, Coden, Brown and Srinivasan, editors, Lecture Notes
in Computer Science, Volume 2273 1-10.

Garofolo, J.S., Voorhees, E.M., Auzanne, C.G.P., Stanford, M., Lund, B.A. (1999) TREC-7
Spoken Document Retrieval Track Overview and Results, in the Proceedings of the DARPA
Broadcast News Workshop

Garofolo J.S., Auzanne, C.G.P., Voorhees, E.M. (2000) The TREC Spoken Document
Retrieval Track: A Success Story; Proceeding of RIAO

Johnson, S.E., Jourlin, P., Moore, G.L., Spärck Jones, K., Woodland, P.C. (1998) Spoken
Document Retrieval For TREC-7 At Cambridge University, in the proceeding of the 7th
Text REtrieval Conference (TREC 7)

Johnson, S.E., Jourlin, P., Spärck Jones, K., Woodland, P.C. (1999): Spoken Document
Retrieval for TREC-8 at Cambridge University, in the proceedings of the 8th Text REtrieval
Conference (TREC 8)

Jones, G.J.F. and Lam-Adesina, A.M. (2002) An Investigation of Mixed-Media Information
Retrieval, in the proceedings of the 6th European Conference on Research and Development
for Digital Libraries (ECDL), 463-478

Moreno, P., Van Thong, P.M., Logan, B., Fidler, B., Maffey, K., Moores, M. (2000)
SpeechBot: A Content-based Search Index for Multimedia on the Web, in the proceedings
of the 1st IEEE Pacific-Rim Conference on Multimedia, (IEEE-PCM 2000)

Nowell, P. (1998) Experiments in Spoken Document Retrieval at DERA-SRU, in the
proceeding of the 7th Text REtrieval Conference (TREC 7)

Quinn, E. (2000) SpeechBot: The First Internet Site for Content-Based Indexing of Streaming
Spoken Audio Technical Whitepaper, Compaq Computer Corporation, Cambridge,
Massachusetts, USA

Robertson, S Walker, S Jones, MM Hancock-Beaulieu (1995) Okapi at TREC-3, in the
proceeding of the 3rd Text REtrieval Conference (TREC 3)

Sanderson, M., Crestani, F, (1998) Mixing and Merging for Spoken Document Retrieval, in the
proceedings of the 2nd European Conference on Digital Libraries; Heraklion, Greece.
Lecture Notes in Computer Science N. 1513, Springer Verlag, 397-407

516 M. Sanderson and X.M. Shou

Sanderson, M., Shou, X.M. (2002) Speech and Hand Transcribed Retrieval; Lecture Notes in
Computer Science N.2273, Information Retrieval techniques for Speech Application,
Springer, 78-85

Shou, X.M., Sanderson, M., Tuffs, N. (2003) The Relationship of Word Error Rate to
Document Ranking, in the proceedings of the AAAI Spring Symposium Intelligent
Multimedia Knowledge Management Workshop, Technical Report SS-03-08, ISBN 1-
57735-190-8, 28-33.

Siegler, M., Berger, A., Witbrock, M., Hauptmann, A. (1998): Experiments in Spoken
Document Retrieval at CMU, In the proceedings of the 7th TREC conference (TREC-7)

Singhal, A., Choi, J., Hindle, D., Lewis, D.D., Pereira, F. (1998) AT&T at TREC-7, in the
proceeding of the 7th Text REtrieval Conference (TREC 7)

Van Thong, J.M., Goddeau, D., Litvinova, A., Logan, B., Moreno, P. Swain, M. (2000)
SpeechBot: A Speech Recognition based Audio Indexing System for the Web in the
proceedings of the International Conference on Computer-Assisted Information Retrieval,
Recherche d'Informations Assistee par Ordinateur (RIAO2000) 106-115

Zechner, K., Waibel, A. (2000) Minimizing Word error rate in Textual Summaries of Spoken
Language, in the proceedings of NAACL-ANLP-2000, 186-193

Natural Language Processing for Usage Based

Indexing of Web Resources

Anne Boyer and Armelle Brun

INRIA Lorraine - BP 239 - 54506 Vandœuvre lès Nancy, France
{boyer, brun}@loria.fr

Abstract. The identification of reliable and interesting items on Inter-
net becomes more and more difficult and time consuming. This paper is
a position paper describing our intended work in the framework of mul-
timedia information retrieval by browsing techniques within web nav-
igation. It relies on a usage-based indexing of resources: we ignore the
nature, the content and the structure of resources. We describe a new ap-
proach taking advantage of the similarity between statistical modeling of
language and document retrieval systems. A syntax of usage is computed
that designs a Statistical Grammar of Usage (SGU). A SGU enables re-
sources classification to perform a personalized navigation assistant tool.
It relies both on collaborative filtering to compute virtual communities
of users and classical statistical language models. The resulting SGU is
a community dependent SGU.

1 Introduction

The amount of available information has exponentially increased in the last years
due to the development of information and communication technologies and the
success all over the world of Internet applications. Therefore the identification of
reliable and interesting items becomes more and more difficult and time consum-
ing, even for skilled people using dedicated tools, such as powerful search engines.
Due to the huge amount of online resources, the major difficulty is nevermore
to know if a pertinent document is available but to identify the more reliable
and interesting items among the overwhelming stream of available information.
A key factor of success in information retrieval and delivery is the development
of powerful tools easy-to-use for a large audience.

Different approaches for resources retrieval use to be explored, such as con-
tent analysis, keywords indexing and identification, topic detection, etc. [1]. A
major difficulty inherent to such approaches is that one keyword may have dif-
ferent meanings, or not, dependent of the user, his/her context and the history
of his/her past navigations. Moreover two different keywords may have similar
meanings, depending on the context. Expressing a query is a difficult task for
many people and a lot of research and industrial projects deal with query as-
sistance. Furthermore automatic indexing of multimedia resources is still a hard
research problem. To cope with these difficulties (query expression, multimedia

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 517–524, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

518 A. Boyer and A. Brun

indexing, etc.) we decide to investigate another way by ignoring the content, the
nature, the format and the structure of resources.

This paper describes our intended work, relying on our past researches both on
collaborative filtering [2,3] and statistical language modeling [4,5]. Our objective
aims at providing a new web browsing tool based on an analysis of usage. This
tool enables multimedia information retrieval by browsing techniques without
expressing any query. It means that users are modelized without requiring any
preferences elicitation. This approach enables to easily manage heterogeneous
items (video, audio, textual, multimedia) with a single treatment, this is an
advantage since classical methods require dedicated tools for resource tagging.

We plan to extract frequent patterns of consultations by taking advantage of
the analogy between language-based statistical modeling and resource retrieval.
These frequent patterns will allow the design of syntax of usage, relying on the
hypothesis that there is logic and coherency defining implicit ”rules” inside a
navigation. The resulting Statistical Grammar of Usage (SGU) enables a classi-
fication, clustering and selection of resources to design personalized filtering.

In the next section, the problem of retrieving resources when browsing is
stated and our approach based on the use of statistical language models is
detailed. The following section presents the most popular statistical language
models and their appropriateness to web browsing. Section 4 puts forward the
community-based Statistical Grammar of Usage we design. Then, discussion and
perspectives conclude the paper.

2 Principle of Our Web Browsing Tool

Our web browsing tool helps users during a navigation process: it suggests the
pertinent items to a specific user, given his/her past navigation and his/her
context. The aim is to compute the pertinence of any resource. The pertinence
of a resource is defined as the interest of a user for it and allows to compute
predictions of resources (the highest the pertinence of a resource is, the highest
is its probability to be suggested to the user).

First, we hypothesize an implicit search, it means that the active user has
no explicit queries to formulate. Secondly, we consider as a consultation the
sequence of one or more items, dedicated to a given search. A multi-navigation is
the mix of different consultations within a single browsing process. A resource
is any item (textual, audio, video or multimedia document, web page, hyper-
link, forum, blog, website, etc.), viewed as an elementary and indivisible entity
without any information about its format, its content or any semantic or topic
indexing. The only data describing a priori a resource is a normalized mark
called identifier, enabling to identify and to locate it. Our approach relies on
an analysis of usage. A usage is any data, explicitly or implicitly left by the
user during navigation. For example, history of consultation, click-stream or log
files are implicit data about the interest of the visited items for the active user.
This measure can be either an explicit information as votes, annotations or any
estimation computed from implicit data [6].

Natural Language Processing for Usage Based Indexing of Web Resources 519

An advantage of our approach is that it only takes into account a measure of
the user’s interest for a given resource, which is directly linked to the pertinence
criterion: the user’s satisfaction. Let us remember that we decide to ignore any
structural or thematic information about a resource. Our approach computes a
personalized indexing of resources not in terms of its intrinsic nature but in terms
of a more subjective but more reliable and pertinent criterion, i.e. the user’s
context, preferences and habits. It is the reason why this approach manages
heterogeneous resources with a single treatment.

The question to solve is the following: how to estimate the a priori pertinence
of a resource for a given user. The difficulty relies on sparsity of data: we don’t
have any appreciation of a resource if this user has not seen it and usually many
resources have not been seen by this user. To compute the a priori pertinence of
a resource, we plan to design a grammar of usage. As a grammar of language
is the set of rules describing the relation between words, a grammar of usage is
the set of rules describing the relation between resources. A grammar of language
estimates if a word is pertinent given the beginning of a sentence. A grammar of
usage allows to estimate if a resource is relevant for a specific user given his/her
previous consultations. There is no a priori grammar of usage, as Internet is
a dynamic and moving environment. A means to cope with the difficulty of
designing an a priori grammar is the use of a statistical approach based on
usage analysis. As huge usage corpora are available (log files, clickstream, etc.)
it makes it possible to explicit regularities in terms of resource consultations. This
statistical approach can be investigated in a similar way to language modeling
based on statistical models.

The resulting grammar is called a Statistical Grammar of Usage (SGU).
It enables the computation of the probability of a resource given the active user
and his/her sequence of navigation. This probability measures the pertinence of
the resource. A SGU, if trained on the whole usage corpus, is a general grammar
since it is learned for all users in all contexts. The accuracy of such a grammar
is insufficient and furthermore, the presupposed logic and coherency between
users becomes a too strong and unrealistic hypothesis. Given two users, it seems
unlikely that they exhibit the same resource consultation behavior: the SGU has
to be personalized. Nevertheless, learning a user-specific SGU requires a large
amount of data for each user and it is irrealistic to wait for collecting enough
data to train it. It is the reason why we will determine groups of users with
similar behavior called communities. Thus we plan to compute a SGU for
each community and design a community-based SGU. Users are preclassified
into a set of coherent communities, in terms of resource consultation behavior.
Collaborative filtering techniques are a means to build coherent communities in
terms of usage. This gathering can be compared to topic classification in natural
language processing.

The principle of collaborative filtering techniques [7] amounts to identifying
the active user to a set of users having the same tastes and, that, based on
his/her preferences and his/her past visited resources. This approach relies on a
first hypothesis that users who like the same documents have the same topics of

520 A. Boyer and A. Brun

interests and on a second hypothesis that people have relatively constant likings.
Thus, it is possible to predict resources likely to match user’s expectations by
taking advantage of experience of his/her community.

A first comment on usual collaborative filtering techniques is that the struc-
ture of navigation is ignored. However, this aspect can be crucial in some ap-
plications such as web browsing. For example, a user may not like a resource
because he/she has not previously read a prerequisite resource. Thus the SGU
will submit a resource when it becomes pertinent for a user, for example when
he/she has read all prerequisites. As statistical language models emphasize the
order of words in sentences, it seems interesting to determine if such models and
collaborative filtering can be used together to improve the quality of suggestions.

3 Statistical Language Models

3.1 Overview of Statistical Language Models

The role of a statistical language model (SLM) is to assign a likelihood to a given
sentence (or sequence of words) in a language [8]. A SLM is defined as a set of
probabilities associated to sequences of words. These probabilities reflect the
likelihood of those sequences. SLM are widely used in various natural language
applications such as automatic translation, automatic speech recognition, etc.
Let the word sequence W = w1, . . . , wS . The probability of W is computed as
the product of the conditional probabilities of each word wi in the sentence. To
estimate these probabilities, a vocabulary V = {wj} is stated. The probability
of the sequences of words are trained on a training text corpus.

3.2 How Can Web Browsing Take Advantage of SLM?

Web browsing and statistical language modeling domains seem to be similar in
several points. First, statistical language modeling uses a vocabulary made up
of words. This set can be viewed as similar to the set of resources R of the web.
Then, the text corpus is made up of sentences of words, they can be viewed as
similar to the sequences of consultations of the usage corpus. A sequence of S
words in a sentence is similar to a sequence of consultation of S resources. Finally,
the presence of a word in a sentence mainly depends on its previous words, as
the consultation of a resource mainly depends of the preceding consultations.

Given these similarities, we can naturally investigate the exploitation of SLM
into a web browsing assistant. As noticed in the previous section, these models
have the characteristic that the order of the elements in the history is crucial.
This aspect may be important for specific resources in web browsing.

However, we have to notice that web browsing and natural language processing
have two major differences. The first one is that it is possible that a user may
mix different queries within a single history (we will call this ”multi-navigation”)
but it is unrealistic to mix different sentences when speaking or writing. This
first remark brings us to consider a generalization of SLM to integrate ”multi-
navigation” in the browsing process. The second one is that natural language

Natural Language Processing for Usage Based Indexing of Web Resources 521

exhibits strongest constraints: each word in a sentence is important and deleting
or adding a word may change the meaning of the sentence. Web browsing is not
so sensitive and adding or deleting a specific resource within a navigation may
have no impact. Then we will have to consider permissive models, able to take
into account less constrained histories such as navigation has.

3.3 n-Grams Language Models

Due to computational constraints and probability reliance, the whole history
hi of wi cannot be systematically used to compute the probability of W .
Classical SLM aim at reducing the size of the history while not decreasing
performance.

n-grams models reduce the history of words to their n − 1 previous words.
These models are the most commonly used in most of natural language appli-
cations. n-grams model can be directly used in web browsing assistance. In the
previous section, we put forward that the quality of the model will be increased
if it is dedicated to a community and trained on the corresponding community
usage corpus. Thus, the usage corpus is split into community usage corpora and
a model is trained on each community corpus.

Let a community cj and a sequence of consultations of resources hj = Rj1, . . . ,
Rji−1. For each resource Ri ∈ R, the n-grams model computes the probability
Pn(Ri | Ri−n+1, . . . , Ri−1, cj). The history hj is reduced to the n − 1 last re-
sources consulted, other resources are discarded. Thus, this model assumes that
the consultation of a resource Ri does not mainly depend on resources consulted
far from Ri.

As previously mentioned, the behavior of users is less constrained than lan-
guage: adding or deleting a resource in a sequence of consultations has a lower
influence on the result of the search than adding or deleting a word in a sentence.
This model does not ideally match our retrieval problem since the history con-
sidered is the exact sequence of consultations Ri−n+1 . . . Ri−1, that may be too
restrictive in the general case. However, this model may be suitable for frequent
sequences of consultations, that can be considered as “patterns of consultation”.
They are assigned a high probability, thus increasing the probability of resources
inside such sequences. It should be interessant to take into account, in a more
adequate way, such “patterns of consultations”.

As n-grams models exhibit strong constraints, we are also interested in more
permissive models. Trigger-based language models seem to me more adequate to
less constraint histories such as navigation.

3.4 Trigger-Based Language Models

Trigger-based models [9] aim at considering long-time dependence between two
words (wx and wy for instance). Dependence is measured by Mutual Information
(MI) [10]. This measure can easily integrate long-time dependence by using a
distance parameter d. d is the maximum number of words occurring between wx

and wy , a window of d words is thus considered.

522 A. Boyer and A. Brun

A couple (wx,wy) with a high MI value means that wx and wy are highly
correlated and the presence of wx raises the probability of occurrence of wy, at a
maximal distance of d words. (wx,wy) is named a trigger. This model considers
only highly correlated pairs of words (corresponding to high MI values), useless
pairs are discarded. The resulting set is called S.

Given history hj = w1, . . . wi−1, the trigger model computes the probability
of wi as:

Pt(wi | hj) =

∑
wj∈hj

δwj ,wi,hj ,S∑
wj∈hj

∑
wt∈V δwj ,wt,hj,S

(1)

with δwj,wi,hj,S =
{

1 (wj , wi) ∈ S and dj(wj , wi) ≤ d
0 otherwise

where dj(wj , wi) is the distance between wj and wi, in terms of words in hj .
In our web browsing assistant tool, the trigger model is made up of trig-

gers of resources (Rx,Ry). The consultation of Rx triggers the consultation of
Ry, at a maximal distance of d resources. As MI measure is not symmetric
(MI(Rx; Ry) �= MI(Ry; Rx)), this model integrates order between resources,
that may be crucial for specific resources.

The advantage of such a model is the long-time dependence between both
resources. In a consultation, two resources can be viewed with various values
of distance without changing the meaning of the consultation. Trigger models
enable to modelize this kind of influence, when the value of the distance between
items is not discriminant but the order of occurrence is meaningful. Such a
model is less constrained than n-grams models and seems to be adequate to the
navigation problem.

Similarly to n-grams model, a trigger-model is developed for each community
cj . MI values are computed for each couple of resources and for each community.
A set of the most related triggers (Scj) is extracted for each community cj.

The probability of a resource Ri, given the community cj , its corresponding set
of triggers Scj and the sequence of consultation of resources hj = R1, . . . , Ri−1 is:

Pt(Ri | hj , cj) =

∑
Rx∈hj

δRx,Ri,hj ,Scj∑
Rx∈hj

∑
Ry∈R δRx,Ry,hj,Scj

(2)

with δRx,Ri,hj,Scj
=

{
1 (Rx, Ri) ∈ Scj and dj(Rx, Ri) ≤ d
0 otherwise

where dj(Rx, Ri) is the distance between Rx and Ri in history hj .

4 Towards a Community-Based SGU

The SGU we propose in this article has the advantage of considering both the
community of the active user and his/her consultation history (sequence of con-
sultation), whereas state of the art models usually exploit the set of consulta-
tions. The use of this model relies on two steps:

Natural Language Processing for Usage Based Indexing of Web Resources 523

4.1 Determination of the Community of the Active User

The first objective is to compute a set of user communities based on an analysis
of usage. To achieve this goal, we use collaborative filtering techniques. The set
of users is split into classes by using a recursive k-means like algorithm [2], the
similarity between two users is estimated as the mean of the distance for each
commonly voted resource [11]. The whole corpus is then split into community
sub-corpora. Each one is made up of usage of any user of the community. A user
is then assigned to the closest community using the same similarity measure.

4.2 Computation of the Probability of a Resource

Given the community cj of user Uj , and his history hj , the computation of
the probability of a resource Ri relies on three sub-models based on language
models presented in section 4. The first sub-model computes the probability
Pn(Ri | hj , cj), by exploiting the probabilities of resources sequences of the
n-grams model. The second sub-model is the trigger model, it computes the
probability Pt(Ri | hj , cj). The last sub-model is devoted to resources out of the
training corpus. A probability a priori Pa(Ri | cj) is set to each resource Ri ∈ R.
The resulting model, that can be viewed as a community-based SGU, computes
the linear combination of the three previously described sub-models.

P (Ri | hj , cj) = λnPn(Ri | hj , cj) + λtPt(Ri | hj , cj) + λaPa(Ri | cj) (3)

where λ are optimized with EM algorithm [12] on a development corpus.
Thus, given a user Uj and his/her history hj , we first have to determine the

community cj he/she belongs to. Then, the probability of any available resource
is computed given the SGU learned for this community.

Then, the N most likely resources are selected. The systematic selection of
resources in the same subset of likely items avoids the introduction of novelty
in resources suggestion. To enable novelty in suggestion, we randomly select
a subset of unlikely resources (SUR) that is added to the previous subset of
N likely resources (SLR) to build the set of candidates (SC). We determine
the suggested resources for a specific user using a roulette wheel. We assign a
sector of the wheel to any resource in SC; the size of this sector is proportional
to the probability of occurrence of this resource as given by the SGU. One or
several resources from SC are then drawn independently using this roulette wheel
principle and are submitted to user Uj .

5 Discussion and Perspectives

This paper aims at describing a new web browsing assistant, based on usage and
natural language processing. This approach exempts the difficult task of content
indexing and facilitates heterogeneous resources management. Similarities be-
tween SLM and web browsing are put forward, therefore the integration of SLM
is investigated. The resulting model is a Statistical Grammar of Usage (SGU).

524 A. Boyer and A. Brun

As a single SGU may be unefficient, it has to be personalized. To tackle sparsity
of data, a preclassification of users into communities is performed. Community-
based SGU are then proposed. A second contribution consists in the design of
community-based SGU, predicting the sequentiality of resources during navi-
gation. Moreover, a community-based SGU builds an a posteriori structure of
navigation based on the subjective but reliable measure of pertinence of a re-
source for a user. Consequently it performs a personalized indexing of resources,
based on usage analysis.

As collaborative filtering techniques used to build communities and triggers
used to suggest resources have both proved their efficiency in their respective
domain, a first perspective is the validation of the community-based SGU in
terms of quality of predictions in web browsing. A second perspective is the use of
the community-based SGU to compute a personalized classification of resources,
depending not only on topics but also on user’s preferences and context.

References

1. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, ACM Press,
New York, 1999.

2. S. Castagnos and A. Boyer, “A client/server user-based collaborative filtering algo-
rithm model and implementation,” in Proceedings of the 17th European Conference
on Articial Intelligence (ECAI 2006), Riva del Garda, Italy, august 2006.

3. S. Castagnos and A. Boyer, “Frac+: A distributed collaborative filtering model
for client/server architectures,” in 2nd conference on web information systems and
technologies (WEBIST 2006), Setbal, Portugal, 2006.

4. K. Smäıli, A. Brun, I. Zitouni, and J.P. Haton, “Automatic and manual cluster-
ing for large vocabulary speech re cognition: A comparative study,” in European
Conference on Speech Communication and Technology, Budapest, Hungary, 1999.

5. A. Brun, K. Smäıli, and J.P. Haton, “Contribution to topic identification by us-
ing word similarity,” in International Conference on Spoken Language Processing
(ICSLP2002), 2002.

6. P. Chan, “A non-invasive learning approach to building web user profiles,” in 5th
International Conference on Knowledge Discovery and Data Mining - Workshop
on Web Usage Analysis and User Profiling, San Diego, USA, august 1999.

7. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl, “Evaluating collaborative filter-
ing recommender systems,” ACM Transactions on Information Systems (TOIS),
vol. 22, no. 1, pp. 5–53, january 2004.

8. R. Rosenfeld, “Two decades of statistical language modeling: Where do we go from
here,” 2000.

9. R. Rosenfeld, “A maximum entropy approach to adaptative statistical language
modeling,” Computer Speech and Language, vol. 10, pp. 187–228, 1996.

10. N. Abramson, Information Theory and Coding, McGraw-Hill, New-York, 1963.
11. U. Shardanand and P. Maes, “Social information filtering: algorithms for automat-

ing ”word of mouth”,” in Proceedings of the ACM CHI’95 - Conference on Human
Factors in Computing Systems, 1995, vol. 1, pp. 210–217.

12. A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” J. of the Royal Statistical Society, vol. 39, 1977.

Harnessing Trust in Social Search�

Peter Briggs and Barry Smyth

Adaptive Information Cluster,
School of Computer Science & Informatics,

University College Dublin, Ireland
{firstname.surname}@ucd.ie

Abstract. The social Web emphasises the increased role of millions of
users in the creation of a new type of online content, often expressed
in the form of opinions or judgements. This has led to some novel ap-
proaches to information access that take advantage of user opinions and
activities as a way to guide users as they browse or search for informa-
tion. We describe a social search technique that harnesses the experiences
of a network of searchers to generate result recommendations that can
complement the search results that are returned by some standard Web
search engine.

1 Introduction

The world of the Web has changed in some very important ways recently. As
if to emphasise this new “release” we have the all too frequently hyped Web
2.0 designation, but, more importantly, we can see how these changes are being
driven by the (re-)establishment of the end-user as a critical component of the
Web experience. The people-power driving this social Web extends beyond the
content-layer and into the computational-layer that underpins a new breed of
information access technologies such as social search engines. Put simply, social
search techniques attempt to harness the views, opinions, and behaviour of users
to improve Web search. This includes the new generation of social tagging and
bookmarking services, which allow users to label and share all sorts of content,
from pictures (Flickr) to news articles (Digg) and from blogs (Technorati) to
Web pages (Del.icio.us). However, the concept also includes a range of funda-
mentally new search engine technologies, which attempt to use human relevance
judgments to replace or augment more traditional forms of algorithmic search.

In this paper we focus on a novel approach to social search, one that is in-
formed by the idea that, when we search, frequently there will have been other
people who have previously searched for the same or similar information. As
such, these people, or more precisely their search histories, can be used to make
useful recommendations for our current search. We describe a model of social
search that has evolved from the Collaborative Web Search (CWS) approach

� This material is based on works supported by Science Foundation Ireland under
Grant No. 03/IN.3/I361.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 525–532, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

526 P. Briggs and B. Smyth

described by [7], which harnesses the search patterns of communities of like-
minded searchers in order to identify relevant results for promotion. While CWS
assumes a centralised community-based search engine, in this paper we describe
a distributed model of collaborative Web search in which groups of searchers
are organised as a peer-to-peer search network that facilitates inter-searcher
co-operation at search time. We also describe and evaluate how an explicit model
of user-user trust drives the evolution of the search network, enabling the propa-
gation of queries through the network and influencing the rank of recommended
results in the final result-list.

2 Social Information Access

2.1 Social Navigation and Recommendation

Human judgement can come in a variety of forms and be harnessed in many
different ways. Perhaps the simplest form of human judgement relates to link-
following behaviour as users browse: the selection of a particular link to follow can
be viewed as an expression of interest in the link by the user. Many researchers
have sought to record and leverage this type of information to adapt the structure
of a Web site according to a user’s navigation preferences. For example, the work
of Smyth & Cotter [9] describes such an approach to personalizing the structure
of mobile portals. The browsing behaviour of users has also been used to indicate
important sections of online documents [3], and to construct navigation trails
for users [11,2].

Many recommendation technologies have always relied very directly on the
judgments of groups of users as the basis for their recommendations. For ex-
ample, automated collaborative filtering (ACF) [6,4] is a popular approach to
social recommendation in which users are profiled according to the ratings that
they attach to particular content items. These ratings can take the form of
explicit judgments on the part of users — e.g. the PTV system’s [8] profiles
comprised manually rated TV programs. Alternatively, ACF systems can infer
judgments by monitoring other user activities — e.g. Amazon converts pur-
chasing behaviours into judgments. To generate a set of recommendations for a
particular user, an ACF system will identify a set of similar users — users whose
ratings are highly correlated with the target user — and suggest items that these
similar users have liked in the past, avoiding items that they have disliked. Of
particular relevance, [5] discusses the role of trust in such recommender systems.

2.2 Social Search

Human judgments have played a role in Web search for some time. Google’s
PageRank [1] technique harnesses human judgments through link analysis. More
directly, an early search engine called DirectHit ranked results by their selection
popularity. This idea that human relevancy judgments may help to improve Web
search is a powerful concept, and has led to the development of a number of so-
called social search initiatives. For example, the work of [10] builds user profiles

Harnessing Trust in Social Search 527

from the bookmark collections of users in order to implement a collaborative
filtering style approach to search result recommendation.

Recent research has sought to take the concept of social search one step fur-
ther. For example, the work of [7] on collaborative Web search (CWS) is espe-
cially important in this paper. CWS is a meta-search engine that focuses on a
community-based approach to Web search in which each search community is
made up of a set of like-minded searchers; for example, a motoring Web site
will attract an ad-hoc community of car enthusiasts. CWS stores the search
behaviour of a community of like-minded users in a matrix (hit-matrix, HC)
such that HC(i, j) is the number of times that the members of a community
C have selected page pj for query qi. When a new query qT is submitted by a
community member, a set of result recommendations is generated by selecting
results that have been submitted for similar queries; ultimately these recommen-
dations are promoted within the result-list returned by some underlying search
engine. Query similarity is typically measured in terms of query-term overlap
(see Equation 1) and results are ranked by their weighted relevance. The rel-
evance of pj to qi is calculated as the proportion of times that pj has been
selected for qi (see Equation 2), and these local relevance values are combined
across all similar queries and weighted by the similarity of these queries to qT ;
see Equation 3.

Sim(q, q′) =
|q ∩ q′|
|q ∪ q′| (1)

Relevance(pj, qi) =
HC(i, j)∑
∀j HC(i, j)

(2)

WRel(pj, qT , q1, ..., qn) =
∑

i=1...n Relevance(pj, qi) • Sim(qT , qi)∑
i=1...n Exists(pj , qi) • Sim(qT , qi)

(3)

3 A Distributed Model of Collaborative Web Search

The key contribution of this paper is to recast the centralised model of CWS
as a network of search partners connected by trust-weighted linkages that will
evolve over time. Accordingly, search communities emerge as a consequence of
network evolution, avoiding the need for the pre-defined communities required
by the current model of CWS described by [7].

3.1 Building a Trust-Enhanced Search Network

Our new network-based model of CWS associates each user u with a hit-matrix,
Hu, which locally stores their personal search history. In turn each user is sup-
ported by a CWS agent that works in the usual way (as outlined in the previous
section) to generate recommendations from their personal hit-matrix (and an
underlying search engine) in response to their queries. Of course, the limitation

528 P. Briggs and B. Smyth

is that these recommendations are now drawn from an individual user’s personal
search history, instead of a much richer community search history. The solution
is to facilitate the sharing of recommendations between user search agents in a
collaborative fashion. Thus we need to connect individual search agents to form
a search network. Connected search agents can cooperate directly during future
searches as queries and results are propagated across these connections.

3.2 Trust-Based Ranking

By connecting two users uT and uS , we can allow them to collaborate during
future searches so that when uT enters a new query, recommendations can come
from his/her own hit-matrix but also from the hit-matrix of uS ; we will discuss
query propagation through the network in the next section. For now it is impor-
tant to understand that the strength of the connection between a pair of users
is based on the response of one user to recommendations from another.

The trust score between users uT and uS is determined by the proportion of uS ’s
recommendations that uT has selected; see Equation 4, where SelRecs(uS, uT) is
the number of times that uT has selected one of uS’s recommended results, and
NumRecs(uS, uT) is the total number of recommendations made by uS to uT ;
note that Trust(uT , uS) �= Trust(uS, uT) so the search network takes the form of
a directed graph; see Figure 1.

Trust(uT , uS) =
SelRecs(uS, uT)

NumRecs(uS, uT)
(4)

Recommendations that originate from users with high trust scores should be
considered more reliable than recommendations that originate from users with
lower trust scores. This is captured by the trust-based relevance formula shown
in Equation 5; a recommendation from uS to uT is weighted by the level of
trust that uT has for the recommendations of uS based on past experiences.

Fig. 1. Example of a search network

Harnessing Trust in Social Search 529

The final list of result recommendations can then be ranked according to their
trust-weighted relevance scores as in the standard model of CWS.

TRel(uT , uS, pj , qT , q1, ..., qn) = Trust(uT , uS) • WReluS(pj , qT , q1, ..., qn) (5)

3.3 Query Propagation

In our search network, users are not all interconnected; for example, in Figure
1 we see that user uT is connected to users u1 and u4. However, this does not
mean that uT is limited to receiving recommendations from only these two di-
rectly connected users. We allow queries to propagate through the network at
search time, along chains of connected users, with recommendations propagated
back to the target user. In this way, a query qT submitted by uT is first prop-
agated to u1 and u4 and then on to users u2, u3, and u5, and so on, as shown
in Figure 1. If a user has recommendations for qT then these are returned to
the intermediary who passed on the query, and so on back up the chain to uT .
Recommendations that originate from an indirect search partner are weighted
with a trust score that is the combination of the trust scores of the sequence
of partners along the chain. Thus, as shown in Equation 6, when uT is con-
nected to uS by a sequence of user connections, u1, ..., un, then the trust score
between uT and uS (used in the relevance calculation, Equation 5) is given by
Trust′(uT , uS).

Trust′(uT , uS) = Trust(uT , u1) • ... • Trust(un, uS) (6)

3.4 Maintaining the Search Network

Our model allows for the creation of new links if users happen to select results
that have been recommended by a distant search partner. For instance, in
Figure 1, uT selects a recommendation from u2, thereby leading to the cre-
ation of a new link between uT and u2. Currently we are exploring a variety
of heuristics for determining the initial trust scores of such connections. At the
end of each search session the selections of the target user, in this case uT , are
used to update the trust scores of all users who contributed a recommendation.
If a user contributed a recommendation that has been selected then their trust
score will increase, if not it will decrease. Once again, we are currently evaluat-
ing a number of different trust models as alternatives to the proportional model
described in Equation 4. In addition, we can use a simple threshold model to
delete connections between users if their trust-scores fall below a certain level,
thus eliminating the influence of low-quality agents within the network. This is
an important point because it also provides a useful mechanism for dealing with
malicious users and search spam. Such users will suffer from falling trust scores
and will eventually become disconnected from the search network as recommen-
dation providers.

530 P. Briggs and B. Smyth

4 Evaluation

4.1 Setup

The data for our evaluation comes from the profiles of 50 users of the online so-
cial bookmarking site Del.icio.us. For each user we view their bookmarked pages
as proxies for search results that they are interested in, and the tags they asso-
ciate with these pages as the queries that they might have used when searching
for these pages. In order to achieve some degree of overlapping user interest,
we downloaded the profiles of the top 50 users who tagged http://www.foaf-
project.org (the home page of the Friend of a Friend project for encouraging
the use of machine-readable metadata to express online relationships between
people). For each user, we retrieved all of their bookmarked URLs and the tag(s)
used to label them. On average we downloaded 406 bookmarked pages and tag-
sets for each user, with each profile containing an average of 242 unique tags
(or queries). We then created a hit-matrix for each user, associating every book-
marked page with its respective queries (tags) to simulate a search history for
each individual. Each user hit-matrix and CWS agent serves as a node on our
search network and below we describe the initialisation of this network.

For the purposes of this experiment we are primarily interested in the ability of
a network of collaborating searchers to generate relevant recommendations from
their hit-matrices, and so in what follows we do not rely on an underlying search
engine to produce complete result-lists. We adopt a leave-one-out approach to
the evaluation: for each user we simulate a search for each one of their queries, qT ,
in each case temporarily removing that row from their hit-matrix, and comparing
the recommended search results from the search network to the known selections
that this user has made for this query. A result rS suggested by some user uS ,
for a query qT submitted by user uT , is considered relevant if and only if rS is
actually contained within the hit-matrix of uT as a selection for qT . In this way we
can measure precision and recall for each qT by comparing the recommendations
made to uT to this user’s prior selections for qT .

This method is repeated for a number of iterations, each iteration or epoch
replaying the leave-one-out strategy for all users to allow the trust scores, which
start out at 0.5 for all connected users, to evolve. In the initial stages of the
experiment each network node (user) is connected to 10 other user nodes at
random. During the experiment, the calculation of trust scores between users is
delayed until such time that at least 10 recommendations have been exchanged
between those users, ensuring that there is sufficient recommendation history
between them to calculate a reliable trust score.

4.2 The Evolution of Search Performance

Ultimately we are interested in the ability of the search network to deliver im-
proved search performance as it evolves, and so we compute the average precision

Harnessing Trust in Social Search 531

Fig. 2. (a) Precision vs. recall for result-lists sizes (k) from 1 to 10. Numbers alongside
epoch-1 nodes indicate the value of k for this precision-recall pair. (b) F-measure for
k = 1...10. (c) Percentage of sessions with ≥ 1 relevant top-k result.

and recall scores for the recommended result-lists of varying sizes (k = 1...10)
at the end of each epoch. We present the results for epochs 1,5,10,15, and 20 as
a standard precision and recall graph in Figure 2(a). The first thing to note is
that the precision and recall values are very low, but this is more an artifact of
the strict test for relevance used in this experiment (it requires that both the
result recommender and the target user labelled the recommended URL with
the same tag/query) than a reflection of search quality. Nevertheless, we see
marked increases in the precision and recall statistics of the search network as
it evolves over epochs. Figure 2(b) looks at the F-measure (the harmonic mean
of precision and recall) over epochs, and again shows that the quality of the
recommendations made by the network improves over time.

In Figure 2(c) we present an alternative performance graph which computes
the average percentage of sessions that include at least one relevant result within
the top k recommendations in sessions where recommendations are actually
made. Once again we see a steady increase as the search network evolves. For ex-
ample, during epoch 1, successful results are found in the top result-list position
about 3% of the time, rising to just over 9% of the time if we consider the top
10 result-list positions. By epoch 20, this success rate has more than doubled for
k = 1, with a success rate of over 6% at this position, and increased to nearly
11% for the top 10 results.

532 P. Briggs and B. Smyth

5 Conclusions

Social search techniques attempt to harness human judgments as a way to guide
search. In this paper we have built on the work of [7] and the collaborative Web
search technique, one of the shortcomings of which has been the need for pre-
defined communities of searchers. We have introduced a new distributed model of
CWS that generates community-focused search result recommendations from a
network of trusted search partners. Communities develop over time, and prelim-
inary experimental evidence supports the view that as trust relationships evolve
the recommendations become increasingly accurate. A number of issues remain
to be resolved. For example we have described one approach to initialising and
updating the search network at search time and highlighted a number of options
for alternatives. Our future work will look to explore these alternatives and pro-
vide a more comprehensive evaluation of different options, and to examine the
scalability of our network model as the number of users increases.

References

1. S. Brin and L. Page. The Anatomy of a Large-Scale Web Search Engine. In
Proceedings of the 7th International World-Wide Web Conference, volume 30, pages
107–117. Networks and ISDN Systems, 1998.

2. R. Farzan and P. Brusilovsky. Social Navigation Support Through Annotation-
Based Group Modeling, volume 3538. Springer, 2005.

3. W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless. Edit Wear and Read
Wear. In CHI ’92: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 3–9, New York, NY, USA, 1992. ACM Press.

4. J.A. Konstan, B.N Miller, D. Maltz, J.L. Herlocker, L.R. Gorgan, and J. Riedl.
GroupLens: Applying Collaborative Filtering to Usenet News. Communications of
the ACM, 40(3):77–87, 1997.

5. P. Massa and P. Avesani. Trust-Aware Collaborative Filtering for Recommender
Systems. In CoopIS/DOA/ODBASE (1), pages 492–508, 2004.

6. U. Shardanand and P. Maes. Social Information Filtering: Algorithms for Au-
tomating ”Word of Mouth”. In Proceedings of the Conference on Human Factors
in Computing Systems, pages 210–217. ACM Press, 1995. New York, USA.

7. B. Smyth, E. Balfe, J. Freyne, P. Briggs, M. Coyle, and O. Boydell. Exploiting
Query Repetition and Regularity in an Adaptive Community-Based Web Search
Engine. User Modeling and User-Adapted Interaction: The Journal of Personal-
ization Research, 14(5):383–423, 2004.

8. B. Smyth and P. Cotter. PTV: Intelligent Personalised TV Guides. In Proceedings
of the 12th Conference on Innovative Applications of Artificial Intelligence. (IAAI-
2000). AAAI Press, 2000.

9. B. Smyth and P. Cotter. Personalized Adaptive Navigation for Mobile Portals. In
ECAI, pages 608–612, 2002.

10. A. Voss and T. Kreifelts. SOAP: Social Agents Providing People with Useful
Information. In Proceedings of the International ACM SIGGROUP Conference on
Supporting Group Work, pages 291–298. ACM Press, 1997.

11. A. Wexelblat and P. Maes. Footprints: History-Rich Web Browsing. In Proceedings
of the Third International Conference on Computer-Assisted Information Retrieval,
1997. Montreal, Quebec, Canada.

How to Compare Bilingual to Monolingual

Cross-Language Information Retrieval

Franco Crivellari, Giorgio Maria Di Nunzio, and Nicola Ferro

Department of Information Engineering – University of Padua
Via Gradenigo, 6/a – 35131 Padova – Italy
{crive, dinunzio, ferro}@dei.unipd.it

Abstract. The study of cross-lingual Information Retrieval Systems
(IRSs) and a deep analysis of system performances should provide guide-
lines, hints, and directions to drive the design and development of the
next generation MultiLingual Information Access (MLIA) systems. In
addition, effective tools for interpreting and comparing the experimen-
tal results should be made easily available to the research community.
To this end, we propose a twofold methodology for the evaluation of
Cross Language Information Retrieval (CLIR) systems: statistical anal-
yses to provide MLIA researchers with quantitative and more sophisti-
cated analysis techniques; and graphical tools to allow for a more quali-
tative comparison and an easier presentation of the results. We provide
concrete examples about how the proposed methodology can be applied
by studying the monolingual and bilingual tasks of the Cross-Language
Evaluation Forum (CLEF) 2005 and 2006 campaigns.

1 Introduction

The growing interest in MultiLingual Information Access (MLIA) is witnessed by
the international activities which promote the access, use, and search of digital
contents available in multiple languages and in a distributed setting, that is, dig-
ital contents held in different places by different organisations. In particular, the
Cross-Language Evaluation Forum (CLEF)1 aims at evaluating MLIA systems
which operate on European languages in both monolingual and cross-lingual
contexts. The experimental evaluation carried out on MLIA systems takes on
a twofold meaning: on the one hand, it should provide guidelines, hints, and
directions to drive the design and development of the next generation MLIA
systems; on the other hand, effective tools for interpreting and comparing the
experimental results should be made easily available to the community.

We focus our attention on the study of cross-lingual IRSs and on a deep
analysis of performance comparison between systems which perform monolin-
gual tasks, i.e. querying and finding documents in one language, with respect to
those which perform bilingual tasks, i.e. querying in one language and finding
documents in another language.

1 http://www.clef-campaign.org/

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 533–540, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.clef-campaign.org/

534 F. Crivellari, G.M. Di Nunzio, and N. Ferro

The work presented in this paper aims at improving the current way of com-
paring bilingual and monolingual retrieval, which is basically a comparison of
two averages of performance measures, and strives to provide better methods and
tools for assessing the performances. A twofold methodology for the evaluation
of CLIR systems is proposed: statistical analyses to provide MLIA researchers
with quantitative and more sophisticated analysis techniques; graphical tools to
allow for a more qualitative comparison and an easier presentation of the results.
We discuss an example of application of the proposed methodology by study-
ing the monolingual and bilingual tasks of the CLEF 2005 and 2006 campaigns.
Note that these application examples also serve the purpose of validating the
proposed methodology in a real setting.

The paper is organized as follows: Section 2 introduces the proposed methodol-
ogy; Section 3 describes the experimental setting used for applying the proposed
methodology, provides the application examples and reports the experimental
results; finally, Section 4 draws some conclusions and provides an outlook for
future work.

2 Cross-Lingual Comparison Methodology

A common method used to evaluate how good bilingual retrieval systems are is
to compare results against monolingual baselines. The Mean Average Precision
(MAP) is often used as a summary indicator among different performance fig-
ures available in Information Retrieval. For example, the overviews of the last
CLEF workshops report figures where the MAP of a bilingual IRS is around
80% of the MAP of a monolingual IRS for the main European languages [1,2,3].
Even the recent literature on CLIR evaluation [5] compares performances be-
tween a monolingual baseline MAP and a MAP of bilingual approach. However,
some hints of a deeper analysis can be found: statistical and query-by-query
performance analyses.

In order to go beyond the simple comparison of MAP values between mono-
lingual and bilingual performances, we propose a comparison methodology con-
sisting of two complementary techniques which are both based on a comparison
of results on single topics: a deep statistical analysis of both the monolingual
and the bilingual tasks, described in Section 2.1; and a graphical comparison of
both the monolingual and the bilingual tasks, described in Section 2.2.

2.1 Statistical Analysis Methodology

As pointed out by [4], a statistical methodology for judging whether measured
differences between retrieval methods can be considered statistically significant
is needed and, in line with this, CLEF usually performs statistical tests on the
collected experiments [1,2] to assess their performances. On the other hand,
these statistical tests are usually aimed at investigating the differences among the
experiments within the same task, e.g. the monolingual French experiments alone
or the bilingual French experiments alone, but they do not perform any kind of

How to Compare Bilingual to Monolingual CLIR 535

cross-task analysis, i.e. some kind of direct comparison between monolingual and
bilingual tasks.

Given the average performance for each single topic of the monolingual and
bilingual task, we want to study the distribution of these performances and
employ different statistical tests to verify the following conditions:

1. the distributions of the performances are similar. This suggests that bilingual
systems behave in a similar way with respect to monolingual ones, which
represent our empirical baseline of the best attainable performances;

2. the variances of the two distributions are similar. This suggests that even
though the passing from one language to another causes a decrease in the
performances, the effect of the translation does not increase the dispersion
of performances, which would add more uncertainty;

3. the mean of the two distributions are different and, in particular, the mean
of the monolingual distribution is greater than the mean of the bilingual one.
This suggests some loss of performances due to the effect of the translations
from one language to another.

Note that we do not aim to demonstrate whether all these conditions simulta-
neously hold or not. Rather, we want to develop an analysis methodology which
allows researchers to gain better insights into these conditions. We can anticipate
here from Section 3 that these conditions do not hold simultaneously for all the
monolingual and bilingual tasks we have analysed even though the general claim
is usually complied with.

In order to verify the first condition, since the distribution of the experiments
is unknown, we can adopt a quantile-quantile plot, which allows us to compare
the distribution of the monolingual experiments with respect to the distribution
of the bilingual experiments. In a quantile-quantile plot the quantiles of the two
distributions are increasingly ordered and compared and, if the samples do come
from the same distribution, the plot will be linear.

The last two conditions are analyzed and studied by means of statistical tests
for the equality of two variances and for the equality of two means; the tests
that are used in the paper (the F-test and the t-test, respectively) assume that
collected data are normally distributed. Therefore, before proceeding, we need
to verify the normality of the involved distributions by using graphical tools for
inspection (i.e. the boxplot, or the normality plot) or normality tests (i.e. the
Lilliefors test, or the Jarque-Bera test). However, if the normality assumption is
violated, a transformation of the data should be performed. The transformation
for proportion measures that range from 0 to 1 is the arcsin-root transformation
which Tague-Sutcliffe recommends for use with precision/recall measures.

After the check on the normality of data, a test for the equality of variances,
the F-test, is carried out to check whether the distributions have the same vari-
ance or not, and this step allows us to verify the second condition. Finally, in
order to assess whether the mean of the monolingual performances is greater
than the bilingual one, a t-test is used. In particular, since we have two paired
sets (monolingual and bilingual) of m measured values, where m is the number
of topics, the paired t-test is used to determine whether they differ from each

536 F. Crivellari, G.M. Di Nunzio, and N. Ferro

other in a significant way under the assumptions that the paired differences are
independent and identically normally distributed. This step allows us to verify
the third condition reported above.

2.2 Graphical Comparison Methodology

The graphical tool which allows us to easily compare the performances for each
topic of the monolingual and bilingual tasks, and to gain a visual explanation of
the behavior of the two distributions, first needs a retrieval effectiveness measure
to be used as a performance indicator. Then, we compute a descriptive statistic
for the selected measure for each topic. In our case, the average precision and the
mean were used, respectively. Finally, we increasingly order the monolingual top-
ics by the computed descriptive statistic; the bilingual topics are ordered in the
same order as the monolingual ones, because we are performing a topic-by-topic
comparison and we want to compare a monolingual topic with the correspond-
ing bilingual one. Note that ordering of the bilingual topics is usually different
from what we would obtain if we increasingly ordered the bilingual topics by the
computed descriptive statistic. From this ordered data we can produce two plots
which provide us with an indicator for summarizing the trend of the monolingual
and bilingual distributions. Examples of these plots are shown in Figure 1. For
space reasons, the graphical examples are limited to only two plots.

Figure 1a shows the first plot where, for each topic, the monolingual perfor-
mances on the x-axis, ordered increasingly, are plotted against the corresponding
bilingual performances on the y-axis. If monolingual and bilingual behave in a
similar way, the points are placed close and around the bisector of the first
and third quadrant; on the other hand, if the monolingual performs better than
the bilingual, the points are shifted towards the right whereas they are shifted
symmetrically if the bilingual performs better than the monolingual. This plot
provides us with a qualitative estimate about whether the three conditions intro-
duced in the previous section hold: in that case, the plot would appear roughly
linear and the points would be shifted towards the right. It is important to stress
that this plot resembles a quantile-quantile plot but with an important differ-
ence: in a quantile-quantile plot the two distributions are independently ordered
by their increasing quantiles, while in this plot the bilingual distribution is in
the same order as the monolingual one.

Figure 1b presents a different view of the same data: for each topic on the
x-axis, we plot on the y-axis both the monolingual (circles) and the bilingual
performances (squares). This representation allows us to directly inspect the
differences of the performances in a topic-by-topic fashion and provides us with
hints about which topics require a deeper investigation because, for example,
performances are too low or differences in the performances are too great. More-
over, this plot also allows us to qualitatively assess the three conditions reported
in the previous section: in that case, the bilingual points would have a trend
roughly similar to the monolingual ones and they would be below the monolin-
gual ones.

How to Compare Bilingual to Monolingual CLIR 537

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Monolingual vs Bilingual comparison

Monolingual mean of average precision

B
ili

ng
ua

l m
ea

n
of

 a
ve

ra
ge

 p
re

ci
si

on

(a) Example of direct comparison.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

topic

m
ea

n
of

 a
ve

ra
ge

 p
re

ci
si

on

Monolingual vs Bilingual comparison topic by topic − Linear Fit

monolingual
monolingual linear fit
bilingual
bilingual linear fit

(b) Comparison on French 2006 data.

Fig. 1. Example of monolingual vs bilingual French 2006 comparison plots

Figure 1b also shows an example of linear fit: if the three conditions intro-
duced in the previous section hold, the two straight lines would have roughly
the same slope and the bilingual line would be right shifted with respect to the
monolingual one.

3 Experimental Setting

The experimental collections and experiments used are fully described in [1,2].
In the CLEF 2005 and 2006 campaigns the languages of the target collection

used for the monolingual and bilingual tasks were the same: Bulgarian, English,
French, Hungarian, and Portuguese. However, we decided to take only those
experiments of a bilingual task that have English as the source language in
order to remove outliers from the data (for example extremely low performances
due to very difficult languages such as Hindi or Amharic). Moreover, since we
needed a sufficient number of experiments for each task to have reliable statistical
analyses, we selected the tasks with the most experiments. These constraints led
use to choose monolingual French (38 experiments for 2005 and 27 for 2006),
monolingual Portuguese (32 experiments for 2005, 37 for 2006), bilingual French
(12 experiments for 2005, 8 for 2006), and bilingual Portuguese (19 experiments
for 2005, 18 for 2006). Remember that each one of these tasks has 50 topics.

For each task, we built a matrix n×m of n experiments and m topics where at
position (i, j), with 1 ≤ i ≤ n and 1 ≤ j ≤ m, we have the average precision (AP)
of experiment e1 on topic tj . Then, we took the mean of the transformed perfor-
mances by columns, that is, we took the average performances for each topic. As
a result we had a vector for each task, like: vT

task = [mean1 mean2 . . . meanm],
where mean1 is the mean calculated for the first column, that is, the first topic
of the task. The aim of the experimental analysis is to study the distribution of
the mean of both the monolingual and bilingual tasks and compare them.

538 F. Crivellari, G.M. Di Nunzio, and N. Ferro

Table 1. Variance tests (F-tests) and Two-samples Paired t-test on CLEF 2005 data.
Values in bold indicate hypotheses rejected.

H0 : σ2
mono = σ2

bili H0 : σ2
mono <= σ2

bili H0 : σ2
mono => σ2

bili

French p-value 0.8281 0.5859 0.4141

Portuguese p-value 0.9661 0.4831 0.5169

H0 : μmono = μbili H0 : μmono <= μbili H0 : μmono => μbili

French p-value 0.8532 0.4266 0.5734

Portuguese p-value 0.0000 0.0000 1.0000

The results presented are divided into years (2005 and 2006) and language
(French and Portuguese). First the result of the normality test is presented, then
the results of the analysis of variance are shown, and finally the analysis of the
mean is discussed. Each calculation was carried out using MATLAB (version 7.2
R2006a) and MATLAB Statistics Toolbox (version 5.2 R2006a).

3.1 Statistical Analysis Methodology

Since the data resulted normal after a normality test, no arcsin-root transfor-
mation was adopted. In all the analyses, an alpha level of 5% was used.

CLEF 2005. The first analysis examines the variances of the data of the mono-
lingual and the bilingual tasks. In Table 1, the results for the monolingual French
vs bilingual French and the monolingual Portuguese vs bilingual Portuguese are
presented. All the hypotheses are shown, starting from the most important one:
the variances of the monolingual, σ2

mono, and the bilingual, σ2
bili, are equal. The

other two hypotheses are important because the outcome shows that it is better
not to reject them instead of accepting the alternative hypothesis which is, in
those cases, σ2

mono is either greater or less than σ2
bili.

The second analysis considers the means of the monolingual, μmono, and bilin-
gual, μbili, performances. Even though the hypothesis stated in Section 2.1, that
is, the mean of the monolingual performances are better than the bilingual ones,
is the main one, we believe it is important to consider all the aspects of the
analysis. For this reason, we have presented the results for all the hypotheses
in Table 1. It is interesting to see the differences between the French tests that
result all in favor of the null hypothesis, that is to say it is preferable never
to accept the alternative hypotheses that μmono is either greater or less than
μbili. On the other hand, the analysis of Portuguese tasks shows that with the
combination of all the hypotheses there is strong evidence that the mean of the
performance of the monolingual Portuguese is greater than the bilingual one.

CLEF 2006. The analyses of the variances of the data of the monolingual
and the bilingual tasks are shown in Table 2 for both the monolingual French
vs bilingual French and the monolingual Portuguese vs bilingual Portuguese.
All the tests confirm the hypothesis that the variances of the monolingual and
bilingual tasks are equal.

How to Compare Bilingual to Monolingual CLIR 539

Table 2. Variance tests (F-tests) and Two-samples Paired t-test on CLEF 2006 data.
Values in bold indicate hypotheses rejected.

H0 : σ2
mono = σ2

bili H0 : σ2
mono <= σ2

bili H0 : σ2
mono => σ2

bili

French p-value 0.8019 0.4009 0.5991

Portuguese p-value 0.4270 0.7865 0.2135

H0 : μmono = μbili H0 : μmono <= μbili H0 : μmono => μbili

French p-value 0.6860 0.3430 0.6570

Portuguese p-value 0.0001 0.0001 0.9999

The two-samples paired t-test on the mean of the performances, shown in
Table 2, confirm the outcome of the CLEF 2005: the tests on the French tasks
are all in favor of the null hypothesis, that is to say the means are equal; the tests
on the Portuguese tasks confirm that there is strong evidence that the mean of
the performance of the monolingual Portuguese is greater than the bilingual one.

3.2 Graphical Comparison Methodology

In addition to the statistical analyses, we also present an effective graphical
tool that gives a visual explanation of the behavior of the distributions of the
monolingual and bilingual performances. Figures and plots were already shown
in Section 2.2 and we cannot report the complete set of plots here for space
reasons. On the other hand, we would like to comment on those plots in the
light of the statistical analyses carried out in the previous section.

First, testing whether two distributions have similar shape and testing the
normality of data can be done by means of standard tools such as the quantile-
quantile plot and the normal probability plot. The quantile-quantile plots show
that any monolingual-bilingual pair, both for French and Portuguese, has a reg-
ular linear trend, that is to say the shapes of the distributions are similar. The
normal probability plot also shows the same regularity, which is sometimes vio-
lated along the tails of the distributions.

Second, the analysis of the performance on single topics can be appreciated in
Figure 1: Figure 1a shows the performances on French 2006 data, ordered in the
way explained in Section 2.2. This plot shows that there is a strong correlation
between monolingual and bilingual performances; this correlation is above 0.80
for each pair of French, Portuguese tasks. Moreover, the cloud of points is located
around the bisector of the first and third quadrant (above and below it) which
means that, in this case, it is difficult to decide whether the monolingual is better
than the bilingual or not. This confirms the results of the test on the means for
French. Instead, the plot for the Portuguese (not shown here) shows a cloud of
points which is more below than above the line, confirming that the monolingual
Portuguese performs generally better than the bilingual.

In Figure 1b, a linear interpolation of the French 2006 tasks is performed.
The two lines are very close and cross themselves; this figure clearly shows that
even the linear interpolation of the monolingual and bilingual French data gives a

540 F. Crivellari, G.M. Di Nunzio, and N. Ferro

positive response to the question that, in this case, the monolingual and bilingual
performances are equal. Notice that we also have an indication of when the
monolingual performance is better or worse than the bilingual; for example,
for low performances bilingual performs better than monolingual while for high
performances monolingual performs better.

4 Conclusions and Future Work

In this paper, we proposed a methodology which exploits both statistical analyses
and graphical tools for the evaluation of MLIA systems. The statistical analysis
provides MLIA researchers guidelines to drive the design and development of the
next generation MLIA systems; the graphical tool provides a means to interpret
experimental results and to present the results to other research communities
easily. We provided concrete examples about how the proposed methodology can
be applied by the analysis of the monolingual and bilingual tasks of the CLEF
2005 and 2006 campaigns.

Acknowledgements

The work reported in this paper has been partially supported by the DELOS
Network of Excellence on Digital Libraries, as part of the Information Soci-
ety Technologies (IST) Program of the European Commission (Contract G038-
507618). The authors would like to warmly thank Carol Peters, coordinator of
CLEF, for her continuous support and advice.

References

1. G. M. Di Nunzio, N. Ferro, G. J. F. Jones, and C. Peters. CLEF 2005: Ad Hoc Track
Overview. In Accessing Multilingual Information Repositories: Sixth Workshop of
the Cross–Language Evaluation Forum (CLEF 2005). Revised Selected Papers, pages
11–36. LNCS 4022, Springer, Heidelberg, Germany, 2006.

2. G. M. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. CLEF 2006:
Ad Hoc Track Overview. In Working Notes for the CLEF 2006 Work-
shop. http://www.clef-campaign.org/2006/working notes/workingnotes2006/
dinunzioOCLEF2006.pdf, 2006.

3. J. Gonzalo and C. Peters. The Impact of Evaluation on Multilingual Text Retrieval.
In Proc. 28th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2005), pages 603–604. ACM Press, New
York, USA, 2005.

4. D. Hull. Using Statistical Testing in the Evaluation of Retrieval Experiments. In
Proc. 16th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR 1993), pages 329–338. ACM Press, New
York, USA, 1993.

5. J. Wang and D.W. Oard. Combining Bidirectional Translation and Synonymy for
Cross-Language Information Retrieval. In Proc. 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2006), pages 202–209. ACM Press, New York, USA, 2006.

http://www.clef-campaign.org/2006/working_notes/workingnotes2006/dinunzioOCLEF2006.pdf
http://www.clef-campaign.org/2006/working_notes/workingnotes2006/dinunzioOCLEF2006.pdf

Multilingual Text Classification Using Ontologies

Gerard de Melo and Stefan Siersdorfer

Max Planck Institute for Computer Science, Saarbrücken, Germany
{demelo,stesi}@mpi-inf.mpg.de

Abstract. In this paper, we investigate strategies for automatically clas-
sifying documents in different languages thematically, geographically or
according to other criteria. A novel linguistically motivated text repre-
sentation scheme is presented that can be used with machine learning
algorithms in order to learn classifications from pre-classified examples
and then automatically classify documents that might be provided in
entirely different languages. Our approach makes use of ontologies and
lexical resources but goes beyond a simple mapping from terms to con-
cepts by fully exploiting the external knowledge manifested in such re-
sources and mapping to entire regions of concepts. For this, a graph
traversal algorithm is used to explore related concepts that might be rel-
evant. Extensive testing has shown that our methods lead to significant
improvements compared to existing approaches.

1 Introduction

Text classification (TC) is the process of associating text documents with the
classes considered most appropriate, thereby distinguishing topics such as parti-
cle physics from optical physics. Research in this area, despite the considerable
amount of work on cross-lingual information retrieval, has almost entirely ne-
glected cases of documents being provided in multiple languages. Apart from
truly multilingual environments as in large parts of Africa, people all over the
world work with a lingua franca such as English or Spanish in addition to their
native languages. Therefore, most applications of TC, e.g. digital libraries, news
wire filtering as well as web page and e-mail categorization, also turn out to
be interesting applications of multilingual text classification (MLTC), where
documents given in different languages are to be classified by topic or similar
criteria.

In this paper, we provide linguistic arguments against existing approaches
and devise a novel solution that exploits background knowledge from ontolo-
gies and lexical resources. Section 2 discusses related work in this area, followed
by Section 3, which briefly recapitulates fundamental ideas in TC and deliv-
ers arguments against existing approaches. Section 4 then presents Ontology
Region Mapping as an alternative, which is then evaluated in Section 5, while
the concluding section outlines the implications for continued research in this
area.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 541–548, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

542 G. de Melo and S. Siersdorfer

2 Related Work

There has been research on MLTC in the case of enough training documents
being available for every language [1,2], however such scenarios are not partic-
ularly interesting as they can be resolved with separate monolingual solutions.
A more universal strategy is to use translation to ensure that all documents are
available in a single language [3,4,5], which also corresponds to the dominant
approach in cross-lingual information retrieval (CLIR) [6]. However, our work
shows that translations alone entail suboptimal TC results. An alternative ap-
proach to monolingual TC [7,8,9] and CLIR [10] related to the path pursued in
our work relies on ontologies or thesauri to construct concept-based representa-
tions. While some authors pay respect to hypernyms and other directly related
concepts [11,12,13], our approach is apparently the first to use an activation
spread model in TC or CLIR. Multilingual solutions based on latent semantic
analysis (LSA) have also been studied [14,15], however LSA differs from our
approach in that it does not use formal background knowledge, but rather iden-
tifies concepts implicitly present in a set of documents, computed statistically
by detecting terms with similar occurrence patterns.

3 Background

A classification is an assignment of class labels to objects such as text docu-
ments, and automatic text classification is the process of establishing and de-
ploying classifiers that approximate text classifications made by human experts.
When a set of pre-classified training documents is available, and an appropriate
representation of their contents as numerical feature vectors is constructed, one
of several learning algorithms can be employed to learn a classification, e.g. the
Support Vector Machine (SVM) [16], which distinguishes two classes by using
the hyperplane that maximizes the distance to the closest positive and nega-
tive examples as a binary decision surface. The conventional way of establishing
the vector space for text documents involves well-known techniques such as stop-
word removal and stemming as preprocessing steps to computing TF-IDF values
that are used to construct feature vectors based on the bag-of-words model [17].

Machine translation has been proposed as an ad hoc means of making mul-
tilingual document sets amenable to such TC processing [3]. However, certain
drawbacks of the bag-of-words model then become particularly severe, e.g. when
Spanish ‘coche’ is generally mapped to ‘car ’, whereas French ‘voiture’ is trans-
lated to ‘automobile’, the learning algorithm remains unaware of the synonymy.
Consider also that AltaVista Babel Fish [18] translates Spanish ‘Me duele la
cabeza’ to ‘It hurts the head to me’, which does not contain the word ‘headache’.

Simple concept mappings have been used for alternative text representations
in monolingual TC. Rather than using the original terms, one considers the con-
cepts associated with their meanings as e.g. captured by WordNet [19]. Although
the idea of mapping from several languages to language-neutral concepts seems
particularly attractive, it may have a detrimental effect on the efficiency. For in-
stance, lemmatizing inflected words to their base forms means that the distinct

Multilingual Text Classification Using Ontologies 543

base forms of ‘protected ’ and ‘protection’ prevent the two from being identified.
Furthermore, WordNet lists many senses of the word ‘school ’, of which, in TC,
at least seven should be seen as a thematic cluster rather than being distin-
guished, including school as an educational institution, as a building, as the
process of being educated, etc. The idiosyncrasies of different languages pose
additional problems, e.g. the English term ‘woods’ is much narrower than the
French ‘bois’, so the two might not be mapped to the same concept. In Japanese
and Chinese, there are separate words for older and younger sisters. German (as
well as several other languages) allows for almost arbitrary compounds such as
‘Friedensnobelpreisträgerin’ (woman awarded the Nobel Peace Prize).

4 Ontology Region Mapping

As all of the problems mentioned above involve terms being treated as distinct
despite being closely related, we present Ontology Region Mapping (ORM) as a
novel approach, where ontologies are construed as semantic networks in which
entire regions of related concepts are considered relevant, rather than just indi-
vidual ones. Our approach first maps terms to the concepts they are immediately
associated with and then explores further related concepts.

4.1 Ontologies and Ontology Mapping Functions

An ontology is a theory of what possesses being in the world or in a domain. For
our purposes, the requirements are a set of concept identifiers (concept terms)
and a function τ providing information about how they are connected. For a
concept term c, τ(c) should deliver a finite set of entries (ci, ri, wi), where ri

indicates the type of relation (hypernymy, antonymy, etc.), ci is a concept term,
and wi ∈ [0, 1] is a relation weight specifying to what degree c and ci are related.

Additionally, we construct ontology mapping functions that map document
terms t from languages such as Spanish to such concepts, returning a set of pairs
(c, w) where c is a concept term that possibly represents t’s meaning and w is c’s
weight, i.e. the degree of relevance of c estimated with respect to the local context
in which t occurred (the words surrounding t in the document). In our implemen-
tation, the functions look up terms in the English and Spanish WordNet [20],
which serve as our ontological resources, using the lemmatized base form when
no entry exists for the inflected form. In order to determine to what degree the
concepts listed in WordNet for a term t are relevant in a particular context, part-
of-speech information determined via morphological analysis is used to eliminate
certain candidates. The remaining ones are then distinguished using an existing
word sense disambiguation technique [21], where additional context strings are
constructed for the candidate concepts by concatenating their human language
description provided by WordNet with the respective descriptions of their imme-
diate holonyms, hyponyms, as well as two levels of hypernyms. The similarity of
two context strings for a document term t and a concept, respectively, is assessed
by creating feature vectors for them using bag-of-words TF-IDF weighting and

544 G. de Melo and S. Siersdorfer

then applying the cosine measure. Our approach deviates from [21] in that we do
not merely select the concept with the highest score because many related senses
might be equally relevant when classifying. Instead, all candidate concepts are
maintained with their cosine values, normalized with respect to the sum of all
values, as their respective weights.

4.2 Weight Propagation

The mapping functions map document terms to the concept terms that imme-
diately represent their respective meanings. ORM, however, not only maps to
individual concepts but to entire regions of concepts by propagating a part of
a concept’s weight to related concepts. For every relation type r, an associated
relation type weight βr ∈ [0, 1) is used, e.g. 0.8 for hypernym concept terms and
0.2 for hyponym terms. If a mapping function linked a document term to some
concept term c0 with weight 1.0, the relation type weights mentioned above
would provide the direct parent hypernym of c0 a weight of 0.8, the grandparent
would obtain 0.64, and so on, until the values fall below some predetermined
threshold. The amount of weight passed on is additionally also governed by the
fixed relation weights stored in the ontology (cf. Section 4.1). When multiple
paths from a starting concept term c0 to another term c′ exist, the path that
maximizes the weight of c′ is chosen. For this, Algorithm 4.1, inspired by the A*
search algorithm [22], traverses the graph while avoiding cycles and suboptimal
paths (see Fig. 1).

Fig. 1. Suboptimal paths: If c0 has weight 1.0 and 80% is passed to hypernyms and
40% for similarity, then the direct path from c0 to c′ would only yield a weight of
0.5 · 0.4 = 0.2 for c′, whereas for the indirect path we have (1.0 · 0.8)2 = 0.64

The algorithm’s objective is to determine the optimal weights for related con-
cepts and then accordingly update global concept term counts ctcc that represent
the sum of all weights assigned to a concept while processing an entire document.
A list of nodes to be visited is maintained, sorted by weight and initially only
containing the starting concept c0 in conjunction with its weight wc0 . The node c
with the highest weight is then repeatedly removed from this list and the counter
ctcc is incremented by c’s weight. The algorithm evaluates all neighbours of c,
computes their weights and adds them to the list, provided the new weight is
greater than a pre-determined threshold wmin as well as any previously computed
weight for that particular neighbour. A parameter space search heuristic can be
used to empirically determine suitable values for wmin and the βr values. It can
be shown that this algorithm always chooses the optimal weight and terminates
if the parameter constraints are fulfilled. In order to decrease the runtime, one

Multilingual Text Classification Using Ontologies 545

Algorithm 4.1. Ontology-relation-based feature weighting

Input: initial concept c0 with weight wc0 from an ontology with relation function τ ,
initial term counts ctcc for concept terms c, a relation type weight βr < 1 for every
relation type r, weight propagation threshold wmin > 0

Objective: update concept term counts ctcc for all relevant concepts c from ontology
1: weightc0

← wc0 , weightc ← −∞ for all c �= c0

2: open ← {c0}, closed ← ∅
3: while open �= ∅ do
4: choose concept c with greatest weightc from open
5: open ← open\{c}, closed ← closed ∪ {c} � Move c to closed
6: ctcc ← ctcc + weightc � increase concept term count
7: for each relation entry (ci, ri, wi) ∈ τ (c) do � visit neighbours ci of c
8: w ← βri · weightc · wi

9: if w ≥ wmin and ci �∈ closed then � proceed only if over threshold
10: open ← open ∪ {ci}
11: weightci

← max{weight ci
, w}

may add a |closed | < k condition to the while-loop, causing the algorithm to
visit only k highest-ranking concepts.

4.3 General Procedure

Instead of multilingual ontologies, one may also use translated documents. In both
cases, each document is tokenized and stop words are removed using a fixed list,
resulting in a sequence of terms d = (d1, . . . , dl). For each term, an appropriate
mapping function then returns a list of corresponding concepts with associated
weights. These are then each submitted as input to Algorithm 4.1 with their re-
spective weight such that the concept term counts ctcc of any additionally relevant
concept terms are updated, too. Despite the non-integral values of these concept
term counts, one can proceed to compute concept TF-IDF scores similar to those
in conventional TC. While a normalization of the ctcc to concept term frequencies
ctf (d, c) is straightforward, the notion of occurrence required for document fre-
quencies does not emanate from our definition of concept term counts as it does in
the case of conventional term counts, for it is unclear whether concept terms with
a minuscule weight qualify as occurring in the document. We thus use a threshold
α ∈ [0, 1] and define ctfidf α(d, c) as ctf (d, c) · log 1

cdf α(c) , where cdf α(c) returns
the fraction of all training documents for which ctcc > α is obtained. The feature
space is then constructed by associating each concept term with a separate dimen-
sion, and the respective ctfidf α values can be used to create feature vectors, which
are finally normalized. Though not ordinarily covered by mapping functions, tech-
nical terms as well as names of people or organizations, for instance, might be cru-
cial when categorizing a document. Hence, an extended setup may be considered,
where the ctcc are combined with conventional term counts. The ctfidf α values are
then computed globally with respect to all such term counts and the feature space
has dimensions for concept terms as well as for stems of original document terms.

546 G. de Melo and S. Siersdorfer

5 Evaluation

5.1 Experimental Setup and Tuning

In order to evaluate our solution we performed a large number of cross-lingual
tests using the SVMlight implementation [23] of Vapnik’s SVM with its default
settings. We imported WordNet 2.1 [19] for the English language, and addition-
ally applied mapping tables [24] to the Spanish WordNet [20] to synchronize the
two resources. A Japanese version of WordNet does not exist, so only translation-
based approaches were tested in that case. All translations were performed by
AltaVista’s Babel Fish Translation service [18].

Two datasets were extracted from Reuters Corpus Vol. 1 and 2 (RCV1,
RCV2) using English training (RCV1) and Spanish test documents (RCV2):
one based on topic codes and another one on geographical codes (industry codes
could not be used due to inconsistencies between RCV1 and RCV2). An addi-
tional dataset with Japanese test documents was generated from Wikipedia [25].
As virtually all TC problems can be reduced to binary ones [17], we tested 105
binary problems per dataset, resulting from 15 randomly selected classes, with
100 training and 600 test documents (Wikipedia: 300) per setup, also selected
randomly, however with equal numbers of positive and negative examples in or-
der to avoid biased error rates. A separate validation set was generated based
on the same principles as our Reuters topic dataset and then used to tune the
relation type weights for hypernyms, holonyms, derivations, etc., as well as other
parameters. We chose a value of 0.5 for the α in our ctfidf α formula. For each
setup, we also determined the most suitable numbers of features for feature se-
lection based on Information Gain, which turned out to be 1000 for Ontology
Region Mapping (ORM).

5.2 Results and Discussion

First of all, Table 1 shows that the conventional bag-of-words method without
any translation whatsoever (B) worked surprisingly well, probably due to named
entities and because of the relatedness of English and Spanish. Nonetheless, the
error rates are unsatisfactory for production use and similar results cannot be
achieved for arbitrary language pairs. For Japanese, in fact, this method could
not be used directly as advanced tokenization heuristics would be required. As
expected, the translation approach T leads to significant improvements.

Applying ORM clearly is beneficial to efficiency compared with a simple con-
cept mapping setup without propagation (CM). The error rates depend on the
ontology employed. Better results than with the English/Spanish WordNet setup
(CM and ORM) may be obtained by using our ORM approach with translations
(TORM), even more so by also including the document terms in the final rep-
resentation (TORM+T). This is a positive result, implying that ORM with the
freely available English WordNet as well as translation software, which also tends
to be more available than multilingual lexical resources, suffices for MLTC, as
in the case of Japanese, for which a WordNet version currently does not exist.

Multilingual Text Classification Using Ontologies 547

Table 1. Test Results for Reuters English-Spanish and Wikipedia English-Japanese
datasets (micro-averaged F1 scores in %, average error rates in % with 95% con-
fidence intervals) where B: conventional bag-of-words method without translations,
CM: simple concept mapping approach without weight propagation, ORM: Ontol-
ogy Region Mapping, ORM+B: Ontology Region Mapping combined with bag-of-
words, T: bag-of-words from English translations, TCM/TORM/TORM+T: same
as CM/ORM/ORM+B but with English translations as input

Reuters Spanish
Topics Geography

F1 error rate F1 error rate

B 80.97 18.61 ±0.30 81.86 18.12 ±0.30
CM 89.23 10.49 ±0.24 85.74 14.58 ±0.28
ORM 89.53 10.36 ±0.24 87.33 12.97 ±0.26
ORM+B 91.88 8.04 ±0.21 91.92 8.22 ±0.21

T 90.96 8.80 ±0.22 88.76 11.43 ±0.25
TCM 90.75 9.06 ±0.22 91.12 9.16 ±0.23
TORM 91.12 8.74 ±0.22 93.89 6.28 ±0.19
TORM+T 92.46 7.43 ±0.20 94.44 5.68 ±0.18

Wikipedia
Japanese

F1 error rate

T 86.26 14.00 ±0.38
TCM 85.38 15.10 ±0.40
TORM 86.67 13.52 ±0.38
TORM+T 87.29 12.86 ±0.37

For news and encyclopedic articles, outperforming the T method is a rather
difficult task in light of the considerable discriminatory power of the terms in
the introduction paragraphs. Nonetheless, our methods delivered superior results
that are statistically significant. Geographical references, in contrast, are often
less explicit, so our methods pay off even more. Given that the relation type
weights were tuned with respect to the Reuters topic-based validation set, we
may presume that even better results than the ones indicated are achievable.

6 Conclusions and Future Work

In the past, many attempts to use natural language processing for monolingual
TC have failed to deliver convincing results [17]. A linguistic analysis led us to
a novel approach called Ontology Region Mapping, where related concepts, too,
are taken into consideration when mapping from terms to concepts, so additional
background knowledge is exploited, which is particularly useful in multilingual
settings. Our experimental evaluation confirmed our intuitions.

In the future, we would like to devise strategies for constructing multilin-
gual resources that integrate more background knowledge and better reflect the
semantic relatedness of concepts than WordNet. Additionally, a more sophisti-
cated word-to-concept mapping setup could be used that recognizes compounds
and disambiguates better. Finally, it could be explored how well ORM performs
for multilingual information retrieval and text clustering. Indeed, we believe
our feature weighting approach or extensions of it to have a wide range of in-
teresting applications, in multilingual as well as monolingual settings, because
it captures the general meaning of a text more adequately than established
schemes.

548 G. de Melo and S. Siersdorfer

References

1. Bel, N., Koster, C.H.A., Villegas, M.: Cross-lingual text categorization. Proc.
ECDL 2003 (2003) 126–139

2. Garćıa Adeva, J.J., Calvo, R.A., de Ipiña, D.L.: Multilingual approaches to text
categorisation. Europ. J. for the Informatics Professional VI(3) (2005) 43 – 51

3. Jalam, R.: Apprentissage automatique et catégorisation de textes multilingues.
PhD thesis, Université Lumière Lyon 2, Lyon, France (2003)

4. Olsson, J.S., et al.: Cross-language text classification. Proc. SIGIR 2005 (2005)
645–646

5. Rigutini, L., et al.: An EM based training algorithm for cross-language text cate-
gorization. In: Proc. Web Intelligence 2005, Washington, DC, USA (2005) 529–535

6. Oard, D.W., Dorr, B.J.: A survey of multilingual text retrieval. Technical report,
University of Maryland at College Park, College Park, MD, USA (1996)

7. de Buenaga Rodŕıguez, M., et al.: Using WordNet to complement training infor-
mation in text categorization. Proc. 2nd RANLP (1997)

8. Moschitti, A., Basili, R.: Complex linguistic features for text classification: a com-
prehensive study. Adv. in IR, Proc. ECIR 2004 (2004)

9. Ifrim, G., Theobald, M., Weikum, G.: Learning word-to-concept mappings for
automatic text classification. Proc. 22nd ICML - LWS (2005) 18–26

10. Verdejo, F., Gonzalo, J., Peñas, A., et al.: Evaluating wordnets in cross-language
text retrieval. Proceedings LREC 2000 (2000)

11. Scott, S., Matwin, S.: Text classification using WordNet hypernyms. Proc. Worksh.
Usage of WordNet in NLP Systems at COLING-98 (1998) 38–44

12. Bloehdorn, S., Hotho, A.: Boosting for text classification with semantic features.
Proc. Worksh. on Mining for/from the Semantic Web at KDD 2004 (2004) 70–87

13. Ramakrishnanan, G., et al.: Text representation with WordNet synsets using soft
sense disambiguation. Ing. systèmes d’information 8(3) (2003) 55–70

14. Gliozzo, A.M., et al.: Cross language text categ. by acq. multil. domain models
from comp. corpora. Proc. ACL Worksh. Building and Using Parallel Texts (2005)

15. Dumais, S.T., et al.: Automatic cross-language retrieval using latent semantic
indexing. AAAI Symposium on CrossLanguage Text and Speech Retrieval (1997)

16. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA (1995)

17. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1) (2002) 1–47

18. AltaVista: Babel fish translation. http://babelfish.altavista.com/ (2006)
19. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database (Language, Speech,

and Communication). The MIT Press (1998)
20. Farreres, X., Rigau, G., Rodŕıguez, H.: Using WordNet for building WordNets.

Proc. Conf. Use of WordNet in NLP Systems (1998) 65–72
21. Theobald, M., Schenkel, R., Weikum, G.: Exploiting structure, annotation, and

ontological knowledge for automatic classification of XML data. 6th Intl. Worksh.
Web and Databases (2003) 1–6

22. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, USA (1995)

23. Joachims, T.: Making large-scale support vector machine learning practical. Ad-
vances in Kernel Methods: Support Vector Machines (1999)

24. Daudé, J., et al.: Making Wordnet mappings robust. Proc. Congreso de la Sociedad
Española para el Procesamiento del Lenguage Natural (SEPLN) (2003)

25. Wikimedia Foundation: Wikipedia. http://www.wikipedia.org/ (2006)

http://babelfish.altavista.com/
http://www.wikipedia.org/

Using Visual-Textual Mutual Information and
Entropy for Inter-modal Document Indexing

Jean Martinet and Shin’ichi Satoh

National Institute of Informatics
Multimedia Information Research Division

Tokyo, Japan
{jean, satoh}@nii.ac.jp

Abstract. This paper presents a contribution in the domain of auto-
matic visual document indexing based on inter-modal analysis, in the
form of a statistical indexing model. The approach is based on inter-
modal document analysis, which consists in modeling and learning some
relationships between several modalities from a data set of annotated
documents in order to extract semantics. When one of the modalities is
textual, the learned associations can be used to predict a textual index
for visual data from a new document (image or video). More specifically,
the presented approach relies on a learning process in which associa-
tions between visual and textual information are characterized by the
mutual information of the modalities. Besides, the model uses the in-
formation entropy of the distribution of the visual modality against the
textual modality as a second source to select relevant indexing terms. We
have implemented the proposed information theoretic model, and the re-
sults of experiments assessing its performance on two collections (image
and video) show that information theory is an interesting framework
to automatically annotate documents.

Keywords: Indexing model, mutual information, entropy, inter-modal
analysis.

1 Introduction

The increasing amounts of multimedia information is almost useless if users
have no mean to efficiently access specific information they search. There is a
crucial need to index multimedia documents in order to provide efficient ac-
cess to them. Given this huge quantity of information, the indexing process
must be automated. A promising approach to automatically annotate multime-
dia documents is to exploit the information redundancy across modalities with
inter-modal analysis [1]. In human-computer interaction, a modality refers to the
type of communication channel used to convey or acquire information. Multi-
modality is defined in [2] as “the capacity of the system to communicate with a
user along different types of communication channels and to extract and convey
meaning automatically”. In multimedia content analysis, however, a modality
rather refers to the nature of a signal. A modality, which is embedded in one

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 549–556, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

550 J. Martinet and S. Satoh

medium1, is the particular way in which the information is encoded for presen-
tation to humans. Multi-modal (or more specifically inter-modal) analysis refers
to the process of combining several modalities – for instance in a synergistic (col-
laborative) way, in order to automatically extract semantics. In particular, when
one of the modalities is textual, inter-modal analysis can be used to automati-
cally annotate other modalities. For instance, for image and video annotation,
the visual modality contains the visual part of image and video documents, and
textual modality contains textual any resource that can be used as a description
of the content of the document (e.g. document name, annotation, text from a
web page containing the document, open and closed captions, etc.) Applications
of inter-modal analysis include automatic document – or image region – annota-
tion, organization of a document collection, and text illustration (finding visual
documents related to a given text in order to illustrate it).

We introduce in this paper an information theoretic framework for the task of
indexing visual data. Our approach uses mutual information as a measure of the
strength of the dependency between modalities. Besides, we consider Shannon’s
information entropy [3] of the distribution of the visual modality over the textual
modality as a quality criterion to select annotation keywords. Intuitively, the
quality of a keyword refers to its discriminative power in selecting images. The
entropy provides a straightforward way to unify two aspects of a distribution,
namely the size of its range, and its uniformity. Given some visual data, a textual
annotation can be generated according to both the strength of the dependency
with the visual data and the quality of the annotation.

2 Related Work

A number of approaches have been proposed to discover relationships between
several modalities. In particular, much effort has been made to learn associa-
tions between visual features and text from an annotated data set and to apply
the learned association to predict annotation keywords for unseen documents.
Different models and machine learning techniques have been developed for this
purpose. For instance, the co-occurrence model of by Mori et al. [4] counts co-
occurrences between annotation keywords and image features in a train set, and
generates keywords for test images according to the highest co-occurrence val-
ues. Later, the problem has also been examined using statistical machine trans-
lation ([5] and [6]) where an analogy is made with the problem of translating
words from a source language (visual features) to a target language (annotation
keywords). Other models such as Latent Dirichlet Allocation (LDA) [7] and rel-
evance language models [8] have been applied to automatic image annotation.
Information theory has been used by Salton [9] to measure the extent to which
two index terms i and j deviate from independence, by evaluating the Expected
Mutual Information Measure (EMIM). Information theory has also been used
to multi-modal signal analysis. In particular, the mutual information measure
1 Used as the singular of media. Note that a single medium – using one type of

communication channel – may contain several modalities.

Using Visual-Textual Mutual Information and Entropy 551

(while being often used in machine learning for feature selection), has also been
applied to multi-modal analysis, namely for the problem of volumetric medical
image registration ([10]). This problem consists in aligning data from different
sources (magnetic resonance images and tomography images for instance), each
taken as a modality. In this case, one wants to maximize mutual information to
increase the dependency between features and to minimize the mapping error
between modality feature spaces.

In the section 3 and 4, we describe how we use the mutual information and
entropy in the proposed annotation model. In the section 6, we show and discuss
experimental results, and the section 7 gives a conclusion.

3 Visual-Textual Mutual Information

We choose to demonstrate the proposed approach in the specific context where
the modalities are visual and textual. Documents are represented with a pair
of low-level visual feature data and textual data, written D = (F , A), where
F = {f1, . . . , fn} denotes the set of quantized feature vectors of the visual
modality and A = {a1, . . . , am} denotes the set of annotation keywords of the
textual modality. Feature vectors are clustered, quantized, and further identified
by their closest centroid so that the visual modality can be represented with a
reasonably small number of discrete visual descriptors. Considering visual feature
vectors and annotation keywords as binary random variables Fi and Aj denoting
the occurrence of fi and aj in F and A respectively, we are interested in finding
the dependency between Fi and Aj in order to predict an annotation A from
the feature set F of a new document. The prediction is generated using two
sources: the mutual information of Fi and Aj , and the conditional entropy of
the distribution of the feature vectors given a keyword.

The mutual information of Fi and Aj measures the mutual dependency of the
two random variables by quantifying the distance between the joint distribution
of Fi and Aj and the product of their marginal distributions. Formally, the
mutual information I(Fi, Aj) of Fi and Aj is defined as:

I(Fi, Aj) =
∑

k∈{0,1}

∑
l∈{0,1}

p(Fi = k, Aj = l)log
(

p(Fi = k, Aj = l)
p(Fi = k)p(Aj = l)

)
(1)

where p(Fi, Aj) is the joint probability distribution of Fi and Aj , and p(Fi)
and p(Aj) are the marginal probability distributions of Fi and Aj respectively.
The mutual information, which is a non-negative and symmetric measure, equals
to 0 when Fi and Aj are independent. A high value indicates a strong depen-
dency. The maximum value is reached when the random variables are identical:
Fi and Aj always occur in the same context, which means that all information
conveyed by Fi is shared by Aj . The annotation model uses the mutual infor-
mation to represent the strength of associations between visual feature vectors
and keywords.

552 J. Martinet and S. Satoh

4 Entropy of Feature Vectors Distribution

An intuitive understanding of the information entropy relates to the amount
of uncertainty about an event associated with a given probability distribution.
Considering the distribution of the visual feature vectors associated to an an-
notation keyword, the entropy measures the uncertainty of this association. If
we note F |aj the random variable yielding the conditional distribution of visual
feature vectors in the context of aj , then p(F = fi|aj) (or p(fi|aj)) is the prob-
ability of fi being associated to aj . The information entropy of the distribution
of F |aj is defined as:

H(F |aj) = −
n∑
i

p(fi|aj) × log (fi|aj)) (2)

This entropy can be seen as a unified measure of both the number of feature
vectors to which the keyword is associated and the uniformity (flatness) of the
distribution. A large range together with a flat distribution will result in a high
entropy. In this case, the annotation keyword is scattered across visual feature
vectors and there is no preferential association with some particular feature vec-
tors. The maximum value corresponds to the case where the keyword is uniformly
distributed over feature vectors. Inversely, a small range and a sharp distribution
will result in a low entropy. In this case, the annotation keyword is considered
accurate and discriminative from an annotation point of view. The minimal value
is 0, corresponding to the case where the keyword is associated with one feature
vector with probability 1. This value also corresponds to the unlikely case where
the keyword is associated with no feature vector. The proposed model uses en-
tropy to select accurate and discriminative annotation keywords, that is to say
keywords with low entropy.

5 Annotation Model for an Unknown Image

Both mutual information and entropy contribute to select annotation keywords
for a new image. The first source measures the local quality L(F , aj) of a keyword
aj as a descriptor of the document D = (F , ∅) to be annotated, for which A is
unknown:

L(F , aj) =
n∑
i

I(Fi, Aj) (3)

This value is high when aj is a good descriptor of F . The second source quantifies
the global quality G(aj) of a keyword aj in the context of the whole document
collection, regardless of the new specific document to be annotated:

G(aj) =
1

H(F |aj) + ε
(4)

The value ε added under the ratio guaranties that the denominator is never 0.
This value is high when aj is associated with few visual feature vectors, meaning
that it is a good discriminator of the images of the collection.

Using Visual-Textual Mutual Information and Entropy 553

Given a new document D for which only the set of visual feature vectors
F = {f1, . . . , fn} is known, we define the prediction weight w(F , aj) of an
annotation keyword aj as follows:

w(F , aj) = L(F , aj) × G(aj) (5)

Annotation keywords for a new image are generated according to the equation 5.
The justification of using two sources if inspired by the standard tf.idf weight-

ing scheme [12] widely used in text retrieval, in the sense that a keyword can be
considered a “good” annotation keyword if it both describes well the image and
discriminates well documents in the collection.

6 Experimental Results

In this section, we describe and discuss the results of experiments carried out
to assess the efficiency of the proposed annotation model. Low-level visual fea-
tures include standard color and texture descriptors. Vectors of dimension 168
are composed with 128-bin HSV histograms and 40 Gabor wavelet coefficients.
Vectors are extracted from 32 × 32 fixed size square patches from images, and
clustered and quantized using a variation of ISODATA algorithm. Euclidean
distance is used for the clustering algorithm and quantization process.

The performance of the proposed model has been evaluated with two anno-
tated data collections: one containing still images from a home photograph col-
lection and the other containing keyframes extracted from a collection of video
news. The still images are drawn from a personal home photographs collection,
which have been thoroughly annotated manually. A dedicated ontology describ-
ing landscapes elements and general physical objects likely to appear in home
photographs has been defined for this collection. This ontology is composed with
196 entries, and the collection contains 800 annotated images, with an average of
6.7 annotation keywords per image. The video collection is a subset of TRECVID
2004 data provided by NIST which is composed with CNN and ABC broadcast
news videos. The keyframes provided by CLIPS-IMAG are used for the visual
modality. For the textual modality, the experiments are based on keywords de-
rived from automatic speech recognition transcripts provided by LIMSI. Words
from raw speech transcripts are tagged with Schmid’s probabilistic part-of-speech
tagger [13], and only the base form (lemma) of nouns are kept in the annotation
vocabulary. In total, the vocabulary is composed with over 4.000 words, and this
collection contains about 10.000 annotated keyframes, with an average of 4.63
annotation keywords per image. Each collection is randomly divided in train and
test sets with proportion 0.7 and 0.3 respectively.

The proposed approach is compared with two models: a co-occurrence model
counting the co-occurrence values between feature vectors and keywords, and a
Naive Bayes classifier estimating the conditional posterior probability p(Aj |F)
of keywords given a set of feature vectors from a test image. The test documents
are annotated with the proposed model (resp. co-occurrence model, Naive Bayes
classifier) by generating words with highest prediction weight(resp. co-occurrence

554 J. Martinet and S. Satoh

values, conditional posterior probabilities). We consider the case where the num-
ber of predicted keywords is equal to the number of ground truth annotation
keywords, and the case where the number of predicted keywords is fixed. Pa-
rameters for the 3 models are estimated on the train set, and the performance is
evaluated by comparing image ground truth annotations and predictions of the
models in the test set.

(a) (b)

Fig. 1. Evaluation results for the image collection, in the two cases of generated pre-
diction length: (a) variable-length annotation, (b) fixed-length annotation

The figure 1 (resp. 2) shows evaluation results for the image (resp. video) test
collection. We used standard evaluation measures to assess the performance of
the models : the prediction precision of a document is the number of correct
prediction words divided by the number annotation words. The average predic-
tion precision (app) is the prediction precision averaged for all documents in the
test set. Average recall and precision values are evaluated for all words in the
annotation vocabulary, used as a single term query.

Results show that the information theoretic model is globally more efficient
that the two other models in terms of the considered evaluation measures. The
model gives the highest app and average recall values for the two collections.
However, for the video collection (figure 2), these values are comparable the
co-occurrence model.

As for the Naive Bayes classifier, while it achieves highest average precision
values for the image collection, the average precision values are comparable to
the two other models for the video collection. In general, for all models the recall
is higher for the case of fixed-length prediction. This is because the fixed length
is set to 10, which is larger than the average ground truth annotation length.
Therefore, images are annotated with more keywords and more images are re-
trieved. In this case, as one can expect, the precision is decreased, particularly

Using Visual-Textual Mutual Information and Entropy 555

for the video collection. We note that all values are lower for the video collection.
Indeed, one can expect less evidence in the association between the keyframes
and the ASR output than for the manually annotated image collection.

(a) (b)

Fig. 2. Evaluation results for the video collection, in the two cases of generated pre-
diction length: (a) variable-length annotation, (b) fixed-length annotation

We selected those two collections are because they are very different in terms
of type and quality of image, and annotation process. While the first one is
composed with high quality photographs with an accurate manual description
of the visual content, the second one is composed with average quality keyframes
with an automatic annotation process extracted from the speech, which is more
loosely related to the visual content.

We highlight that for the video collection, we do not filter high or low fre-
quency words as the entropy measure selects relevant words according to the
visual feature distribution, independently from their frequency. Indeed, a high
frequency word can be given the same entropy value as a low frequency word it
is always observed in the same context. But in the general case, high frequency
words are associated more sparsely with feature vectors, yielding higher entropy.

7 Conclusion

This paper describes a document indexing model based on inter-modal analysis.
This model is based on the mutual information of visual and textual modalities
and on the entropy of the distribution of visual features for annotation keywords.
The model uses these two sources to generate annotation keywords for a new
document. The main contribution of this work is to demonstrate the efficiency
of a first approach of an information theoretic approach for the problem of
automatic indexing.

556 J. Martinet and S. Satoh

We believe that information theory is a dedicated framework for semantic
extraction from inter-modal analysis, which requires more investigations. Further
research includes a refinement of the annotation value definition, in order to
integrate a selection of “best” (or more representative) feature vectors from a
new image before generating the annotation.

Acknowledgments

The authors wish to thank Prof. Yves Chiaramella for the image test collection.
Jean Martinet is supported by the Japan Society for the Promotion of Science.

References

1. Cees G.M. Snoek and Marcel Worring. Multimodal video indexing: A review of
the state-of-the-art. Multimedia Tools and Applications, 25(1):5–35, 2005.

2. L. Nigay and J. Coutaz. A Design Space for Multimodal Systems: Concurrent
Processing and Data Fusion. In Proceedings of INTERCHI ’93, pages 172–178.
ACM Press: New York, 1993.

3. C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

4. Y. Mori, H. Takahashi, and R. Oka. Image-to-word transformation based on divid-
ing and vector quantizing images with words. In In MISRM’99 First International
Workshop on Multimedia Intelligent Storage and Retrieval Management, 1999.

5. Kobus Barnard, Pinar Duygulu, and David Forsyth. Recognition as translating
images into text. In Internet Imaging IX, Electronic Imaging, 2003.

6. Muhammet Bastan and Pinar Duygulu. Recognizing objects and scenes in news
videos. In Proceedings of International Conference on Image and Video Retrieval
(CIVR 2006), 2006.

7. David Blei and Michael Jordan. Modeling annotated data. In 26th International
Conference on Research and Development in Information Retrieval (SIGIR’03),
New York, 2003.

8. J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image annotation and retrieval
using cross-media relevance models. In Proceedings of the ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 119–126, 2003.

9. G. Salton, C. Buckley, and C. T. Yu. An evaluation of term dependence models in
information retrieval. In SIGIR ’82: Proceedings of the 5th annual ACM conference
on Research and development in information retrieval, pages 151–173, New York,
NY, USA, 1982. Springer-Verlag New York, Inc.

10. William M. Wells, Paul Viola, Hideki Atsumi, and Shin Naka jima. Multi-modal
volume registration by maximization of mutual information. Medical Image Anal-
ysis, 1(1):35–51, 1996.

11. T. Butz and J.-Ph. Thiran. Multi-modal signal processing: An information theo-
retical framework. Technical Report 02.01, Signal Processing Institute (ITS), Swiss
Federal Institute of Technology (EPFL), 2002.

12. G. Salton. The SMART Retrieval System. Prentice Hall, 1971.
13. Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In In-

ternational Conference on New Methods in Language Processing, Manchester, UK,
1994. unknown.

A Study of Global Inference Algorithms in
Multi-document Summarization

Ryan McDonald

Google Research
76 Ninth Avenue, New York, NY 10011

ryanmcd@google.com

Abstract. In this work we study the theoretical and empirical properties of var-
ious global inference algorithms for multi-document summarization. We start by
defining a general framework for inference in summarization. We then present
three algorithms: The first is a greedy approximate method, the second a dynamic
programming approach based on solutions to the knapsack problem, and the third
is an exact algorithm that uses an Integer Linear Programming formulation of the
problem. We empirically evaluate all three algorithms and show that, relative to
the exact solution, the dynamic programming algorithm provides near optimal
results with preferable scaling properties.

1 Introduction

Automatically producing summaries from large sources of text is one of the oldest
studied problems in both IR and NLP [7,13]. The expanding use of mobile devices
and the proliferation of information across the electronic medium makes the need for
such technology imperative. In this paper we study the specific problem of producing
summaries from clusters of related documents – commonly known as multi-document
summarization. In particular, we examine a standard paradigm where summaries are
built by extracting relevant textual units from the documents [5,9,11,18].

When building summaries from multiple documents, systems generally attempt to
optimize three properties,

– Relevance: Summaries should contain informative textual units that are relevant to
the user.

– Redundancy: Summaries should not contain multiple textual units that convey the
same information.

– Length: Summaries are bounded in length.

Optimizing all three properties jointly is a challenging task and is an example of a
global inference problem. This is because the inclusion of relevant textual units relies
not only on properties of the units themselves, but also properties of every other textual
unit in the summary. Unlike single document summarization, redundancy is particularly
important since it is likely that textual units from different documents will convey the
same information. Forcing summaries to obey a length constraint is a common set-up in
summarization as it allows for a fair empirical comparison between different possible

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 557–564, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

558 R. McDonald

outputs [1,12]. It also represents an important “real world” scenario where summaries
are generated in order to be displayed on small screens, such as mobile devices.

The global inference problem is typically solved in two ways. The first is to optimize
relevance and redundancy separately. For example, the work of McKeown et al. [14]
presents a two-stage system in which textual units are initially clustered, and then rep-
resentative units are chosen from each cluster to be included into the final summary. The
second approach is to treat the problem truly as one of global inference and optimize all
criteria in tandem. Goldstein et al. [9] presented one of the first global models through
the use of the maximum marginal relevance (MMR) criteria, which scores sentences
under consideration as a weighted combination of relevance plus redundancy with sen-
tences already in the summary. Summaries are then created with an approximate greedy
procedure that incrementally includes the sentence that maximizes this criteria. More
recently, Filatova and Hatzivassiloglou [8] described a novel global model for their
event-based summarization framework and showed that inference within it is equiva-
lent to a known NP-hard problem, which led to a greedy approximate algorithm with
proven theoretical guarantees. Daumé et al. [6] formulate the summarization problem
in a supervised structured learning setting and present a new learning algorithm that
sets model parameters relative to an approximate global inference algorithm.

In this work we start by defining a general summarization framework. We then
present and briefly analyze three inference algorithms. The first is a greedy approximate
method that is similar in nature to the MMR algorithm of Goldstein et al. [9]. The sec-
ond algorithm is an approximate dynamic programming approach based on solutions to
the knapsack problem. The third algorithm uses an Integer Linear Programming (ILP)
formulation that is solved through a standard branch-and-bound algorithm to provide
an exact solution. We empirically evaluate all three algorithms and show that, relative
to the exact solution, the dynamic programming algorithm provides competitive results
with preferable scaling properties.

2 Global Inference

As input we assume a document collection D = {D1, . . . , Dk}. Each document con-
tains a set of textual units D = {t1, . . . , tm}, which can be words, sentences, para-
graphs, etc. For simplicity, we represent the document collection as the set of all textual
units from all the documents in the collection, i.e., D = {t1, . . . , tn} where ti ∈ D iff
∃ ti ∈ Dj ∈ D. We let S ⊆ D be the set of textual units constituting a summary.

We define two primary scoring functions,

1. Rel(i): The relevance of textual unit ti participating in the summary.
2. Red(i, j): The redundancy between textual units ti and tj . Higher values corre-

spond to higher overlap in content.

These scoring functions are completely arbitrary and should be defined by domain
experts. For instance, scores can include a term to indicate similarity to a specific
query for query-focused summarization or include terms involving entities, coherence,

A Study of Global Inference Algorithms in Multi-document Summarization 559

domain specific features, etc. Scores can also be set by supervised learning algorithms
when training data is available [18]. Finally, we will define the function l(i) to indicate
the length of textual unit ti. Length is also arbitrary and can represent characters, words,
phrases, etc. As in most summarization studies, we assume that as input an integer K ,
for which the length of any valid summary cannot exceed.

Formally the multi-document summarization inference problem can be written as:

S = arg max
S⊆D

s(S) = arg max
S⊆D

∑
ti∈S

Rel(i) −
∑

ti,tj∈S, i<j

Red(i, j) (1)

such that
∑
ti∈S

l(i) ≤ K

We refer to s(S) as the score of summary S. We assume that redundancy scores are
symmetric and the summation of scores is over i < j to prevent counting each more
than once. If desired, we could unevenly weight the relevance and redundancy scores to
prefer one at the expense of the other. It is also worth mentioning that the redundancy
factors in Equation 1 are pairwise. This is a slight deviation from many systems, in
which the redundancy of unit ti is calculated considering the rest of the summary in its
entirety. For now, we have simplified the redundancy factor to a sum of pairwise rela-
tionships because it will allow us to define an Integer Linear Programming formulation
in Section 2.1. In turn, this will allow us to compare our approximate algorithms to an
upper bound in performance.

It can be shown that solving the inference problem in Equation 1 is NP-hard. For
space reasons we omit the proof. It is not difficult to show that the major source of
intractability are the redundancy terms from. When the redundancy terms are removed,
the problem is still NP-hard and can be shown to be equivalent to the 0-1 knapsack
problem [4]. There does exist a O(Kn) algorithm for solving the knapsack problem,
but this only makes it pseudo-polynomial, since K is represented as log K bits in the
input. However, for the summarization problem K is typically on the order of hundreds,
making such solutions feasible. We will exploit this fact in Section 2.1.

2.1 Global Inference Algorithms

Greedy Algorithm. A simple approximate procedure to optimizing Equation 1 is to
begin by including highly relevant textual units, and then to iteratively add new units
that maximize the objective. This algorithms is outlined in Figure 1a and is a variant of
MMR style algorithms. The advantage of this algorithm is that it is simple and compu-
tationally efficient. The runtime of this algorithm is in the worst case O(n log n + Kn)
due to the sorting of n items and because each iteration of the loop takes O(n) and
the loop will iterate at most K times. This assumes the unlikely scenario when all sen-
tences have a length of one. In practice, the loop only iterates a small number of times.
We also assume that calculating s(S) is O(1) when it is really a function of loop itera-
tions, which again makes it negligible.

It is not difficult to produce examples for which this greedy procedure will fail.
In particular, the choice of including the most relevant sentence in the summary

560 R. McDonald

Input: D = {t1, . . . , tn}, K

(a) Greedy Algorithm
1. sort D so that Rel(i) > Rel(i + 1) ∀i
2. S = {t1}
3. while

∑
ti∈S l(i) < K

4. tj = arg maxtj∈D−S s(S ∪ {tj})
5. S = S ∪ {tj}
6. return S

(b) Knapsack Algorithm
1. S[i][0] = {} ∀1 ≤ i ≤ n
2. for i: 1 . . . n
3. for k: 1 . . . K
4. S′ = S[i − 1][k]
5. S′′ = S[i − 1][k − l(i)] ∪ {ti}
6. if s(S′) > s(S′′) then
7. S[i][k] = S′

8. else
9. S[i][k] = S′′

10. return arg maxS[n][k], k≤K s(S[n][k])

Fig. 1. (a) A greedy approximate algorithm. (b) A dynamic programming algorithm based on a
solution to the knapsack problem.

(Figure 1a, line 2) can cause error propagation. Consider the case of a very long and
highly relevant sentence. This sentence may contain a lot of relevant information, but
it may also contain a lot of noise. Including this sentence in the summary will help
maximize relevance at the cost of limiting the amount of remaining space for other
sentences.

Dynamic Programming Algorithm. To alleviate this problem we devise a dynamic
programming solution. Recall that the input to the problem is a set of textual units,
D = {t1, . . . , tn}, and an integer K . Let S[i][k], where i ≤ n and k ≤ K , be a
high scoring summary of exactly length k that can only contain textual units in the set
{t1, . . . , ti}. Figure 1b provides an algorithm for filling in this table. This algorithm is
based on a solution to the 0-1 knapsack problem [4]. In that problem the goal is to fill
a knapsack of capacity K with a set of items, each having a certain weight and value.
The optimal solution maximizes the overall value of selected items without the total
weight of these items exceeding K . Clearly if one could ignore the redundancy terms
in Equation 1, the summarization problem and knapsack problem would be equivalent,
i.e., value equals relevance and weight equals length. Of course, redundancy terms are
critical when constructing summaries and we cannot ignore them.

The crux of the algorithm is in lines 4-10. To populate S[i][k] of the table, we con-
sider two possible summaries. The first is S[i − 1][k], which is a high scoring summary
of length k using textual units {t1, . . . , ti−1}. The second is a high scoring summary
of length k − l(i) plus the current unit ti. S[i][k] is then set to which ever one has
highest score. The knapsack problem is structured so that the principle of optimality
holds. That is, if for i′ < i and k′ ≤ k, if S[i′][k′] stores the optimal solution, then
S[i][k] will also store the optimal solution. However, the additional redundancy factors
in the multi-document summarization problem, which are included in the score calcu-
lations of line 6, break this principle making this solution only approximate for our
purposes.

The advantage of using a knapsack style algorithm is that it eliminates the errors
caused by the greedy algorithm inserting longer sentences and limiting the space for fu-
ture inclusions.The runtime of this algorithm is O(Kn) if we again assume that s(S) ∈
O(1). However, this time K is not a worst-case scenario, but a fixed lower-bound on

A Study of Global Inference Algorithms in Multi-document Summarization 561

maximize
∑

i αiRel(i) −
∑

i<j αijRed(i, j)

such that ∀i, j: (1) αi, αij ∈ {0, 1} (4) αij − αj ≤ 0
(2)

∑
i αil(i) ≤ K (5) αi + αj − αij ≤ 1

(3) αij − αi ≤ 0

Fig. 2. ILP formulation of global inference

runtime. Even so, most summarization systems typically set K on the order of 100 to
500, making such solution easily computable (see Section 3). Note also that the cor-
rectness of the algorithm as given in Figure 1 is based on the assumption that there is
a valid summary of every length k ≤ K . It is not difficult to modify the algorithm and
remove this assumption by checking that both S′ and S′′ truly have a length of k.

One additional augmentation that can be made to both the greedy and knapsack
algorithms is the inclusion of a beam during inference. This was implemented but found
to have little impact on accuracy unless a beam of substantial size was used.

ILP Formulation. It would be desirable to compare the previous two algorithms with
an exact solution to determine how much accuracy is lost due to approximations. For-
tunately there is a method to do this in our framework through the use of Integer Linear
Programming (ILP). ILP techniques have been used in the past to solve many intractable
inference problems in both IR and NLP. This includes applications to relation and en-
tity classification [17], sentence compression [3], temporal link analysis [2], as well as
syntactic and semantic parsing [15,16].

An ILP is a constrained optimization problem, where both the cost function and
constraints are linear in a set of integer variables. Solving arbitrary ILPs is an NP-hard
problem. However, ILPs are a well studied optimization problem with efficient branch
and bound algorithms for finding the optimal solution. Modern commercial ILP solvers
can typically solve moderately large optimizations in a matter of seconds. We use the
GNU Linear Programming kit1, which is a free optimization package.

The multi-document global inference problem can be formulated as the ILP in
Figure 2. In this formulation we include indicator variables αi and αij , which are 1
when a textual unit or pairs of textual units are included in a summary. The goal of
the ILP is to set these indicator variables to maximize the payoff subject to a set of
constraints that guarantee the validity of the solution. The first constraint simply states
that the indicator variables are binary. The second constraint states that for all sentences
included in the summary, the sum of their lengths must be less than our predefined
maximum. Constraints (3) to (5) ensure a valid solution. Constraints (3) and (4) simply
state that if the summary includes both the units ti and tj then we have to include them
individually as well. Constraint (5) is the inverse of (3) and (4).

2.2 Implementation Details

When implementing each algorithm it is important for the scale of the score functions
to be comparable. Otherwise, the algorithms will naturally favor either relevancy or

1 http://www.gnu.org/software/glpk/

562 R. McDonald

redundancy. Furthermore, there are quadratically many redundancy factors in a sum-
mary score compared to relevance factors. Depending on the scoring functions this can
lead to summaries with a small number of very long sentences or a lot of very short
sentences. One way to avoid this is to add new constraints specifying a desired range
for sentence lengths. Alternatively, we found that replacing every score with its z-score
alleviated many of these problems since that guaranteed both positive and negative val-
ues. When scores are predominantly negative, then the algorithms return summaries
much shorter than K . This is simply fixed by changing the constraints to force sum-
mary lengths to be between K-c and K , where c is some reasonably sized constant.

In the ILP formulation, the number of constraints is quadratic in the total number
of textual units. Furthermore, the coefficient matrix of this problem is not unimodu-
lar [17]. As a result, the ILP algorithm does not scale well. To alleviate this problem,
each algorithm passed through a preprocessing stage that sorted all textual units by rel-
evance. Every textual unit not in the top 100 was discarded as unlikely to be in the final
summary. In this way, all algorithms ran under the same conditions.

3 Experiments

In this study we used sentences as textual units. Each textual unit, document and doc-
ument collection is represented as a bag-of-words vector with tf*idf values. Length
bounds are always in terms of words. In addition to the three algorithms described in
this paper, we also ran a very simple baseline that is identical to the greedy algorithm,
but does not include redundancy when scoring summaries.

We ran two primary sets of experiments, the first is on generic summarization and
the second query-focused summarization. Results are reported using the ROUGE eval-
uation package [12]. ROUGE is a n-gram recall metric for an automated summary rela-
tive to a set of valid reference summaries. We report ROUGE-1 and ROUGE-2 scores,
which capture unigram and bigram recall.

In the generic setting, a system is given a document collection D, and length bound
K , and is asked to produce a summary that is most representative of the entire document
collection. For these experiments, we used the DUC 2002 data set [10]. This data set
contained 59 document collections, each having at least one manually created summary
for lengths 50, 100, 200. We define the score functions as follows:

Rel(i) = POS(ti, D)−1 + SIM(ti, D) (where ti ∈ D and D ∈ D)

Red(i, j) = SIM(ti, tj)

where POS(t, D) is the position of textual unit t in document D and SIM(a, b) is the
cosine similarity between two vectors. Relevance scores prefer sentences that are near
the beginning of documents and are maximally informative about the entire document
collection. Again, these score functions are general and we only use these particular
scoring criteria because the data is drawn from news sources.

Results are shown in Table 1a. The first thing to note is that incorporating redun-
dancy information does improve scores, verifying previous work [8,9]. Next, we see
that scores for the sub-optimal knapsack algorithm are very near scores for the exact ILP
algorithm and are even sometimes slightly better. This is due to the fact that redundancy

A Study of Global Inference Algorithms in Multi-document Summarization 563

Table 1. (a) Results for generic summarization experiments using DUC 2002 data set. Each cell
contains the ROUGE-1 and 2 scores (R1 / R2). (b) Results for query-focused summarization
experiments using DUC 2005 data set.

(a)
Summary Length

50 100 200

Baseline 26.6 / 5.3 33.0 / 6.8 39.4 / 9.6
Greedy 26.8 / 5.1 33.5 / 6.9 40.1 / 9.5
Knapsack 27.9 / 5.9 34.8 / 7.3 41.2 / 10.0
ILP 28.1 / 5.8 34.6 / 7.2 41.5 / 10.3

(b)
Baseline 34.4 / 5.4
Greedy 35.0 / 5.7
Knapsack 35.7 / 6.2
ILP 35.8 / 6.1

scores are more influential in the ILP solution. Highly relevant, but semantically differ-
ent, sentences will often contain identical terms (i.e., person names or places). These
sentences are then forced to compete with one another when constructing the summary,
when it may be desirable to include them both. The final point we will make is that
the greedy algorithms performance is consistently lower than the knapsack algorithm.
An analysis of the resulting summaries suggests that indeed long sentences are getting
included early, making it difficult to add relevant sentences later in the procedure.

The query-focused setting requires summaries to be relevant to a particular query that
has been supplied by the user. For these experiments, we used the DUC 2005 data sets
[5]. This data consists of 50 document collections, each with a corresponding query. For
each collection and query, multiple manually constructed summaries of 250 words were
provided. The redundancy score of the system remained unchanged from the previous
experiment. However, for a document collection D and query Q, the relevance score
was changed to the following:

Rel(i) = SIM(ti, Q) + SIM(ti, D)

Thus, relevance is an equally weighted combination of similarity to the query and sim-
ilarity to the entire document collection. Results are shown in Table 1b. Again we see
that the knapsack algorithm outperforms the greedy algorithm and has a score compa-
rable to the ILP system.

Another important property of these systems is the efficiency in which they produce
a summary relative to a document collection. For document collections with 50 textual
units (i.e., |D| = 50), the greedy, knapsack and ILP algorithms take 5, 8 and 25 seconds
on average to produce a summary. For document collections with 100 textual units, the
algorithms take 7, 16 and 282 seconds. This trend for the ILP solution as |D| grows,
making it infeasible to use for large real world data sets.

4 Conclusions

In this work we studied three algorithms for global inference in multi-document sum-
marization. We found that a dynamic programming algorithm based on solutions to the
knapsack problem provided optimal accuracy and scaling properties, relative to both a
greedy algorithm and an exact algorithm that uses Integer Linear Programming.

564 R. McDonald

References

1. Document Understanding Conference (DUC). http://duc.nist.gov
2. P. Bramsen, P. Deshpande, Y.K. Lee, and R. Barzilay. Inducing temporal graphs. In Pro-

ceedings of the Empirical Methods in Natural Language Processing (EMNLP), 2006.
3. J. Clarke and M. Lapata. Models for sentence compression: A comparison across domains,

training requirements and evaluation measures. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), 2006.

4. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press/
McGraw-Hill, 1990.

5. H.T. Dang. Overview of duc 2005. In Proceedings of the Document Understanding Confer-
ence (DUC), 2005. http://duc.nist.gov

6. Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction. 2006.
In Submission.

7. H.P. Edmundson. New methods in automatic extracting. Journal of the Association for
Computing Machinery, 1(23), 1968.

8. E. Filatova and V. Hatzivassiloglou. A formal model for information selection in multi-
sentence text extraction. In Proceedings of the International Conference on Computational
Linguistics (COLING), 2004.

9. J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz. Multi-document summarization by
sentence extraction. In Proceedings of the ANLP/NAACL Workshop on Automatic Summa-
rization, 2000.

10. U. Hahn and D. Harman, editors. Proceedings of the Document Understanding Conference
(DUC), 2002. http://duc.nist.gov

11. J. Kupiec, J. Pedersen, and F. Chen. A trainable document summarizer. In Proceeding of
the Annual Conference of the ACM Special Interest Group on Information Retrieval (SIGIR),
1995.

12. C.Y. Lin and E. Hovy. Automatic evaluation of summaries using n-gram cooccurrence statis-
tics. In Proceedings of the Joint Conference on Human Language Technology and North
American Chapter of the Association for Computational Linguistics (HLT/NAACL), 2003.

13. P.H. Luhn. The automatic creation of literature abstracts. IBM Journal of Research and
Development, 2(2), 1959.

14. K. McKeown, J. Klavansn, V. Hatzivassiloglou, R. Barzilay, and Eleazar Eskin. Towards
multidocument summarization by reformation: Progress and prospects. In Proceedings of
the Annual Conference of the American Association for Artificial Intelligence (AAAI), 1999.

15. V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Semantic role labeling via integer linear
programming inference. In Proceedings of the International Conference on Computational
Linguistics (COLING), 2004.

16. S. Riedel and J. Clarke. Incremental integer linear programming for non-projective depen-
dency parsing. In Proceedings of the Empirical Methods in Natural Language Processing
(EMNLP), 2006.

17. D. Roth and W. Yih. A linear programming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Conference on Computational Natural Language Learn-
ing (CoNLL), 2004.

18. S. Teufel and M. Moens. Sentence extraction as a classification task. In Proceedings of the
ACL/EACL Workshop on Intelligent Scalable Text Summarizaion, 1997.

Document Representation Using Global

Association Distance Model

José E. Medina-Pagola, Ansel Y. Rodŕıguez, Abdel Hechavarŕıa,
and José Hernández Palancar

Advanced Technologies Application Center (CENATAV),
7th Avenue # 21812 % 218 and 222, Siboney, Playa, Havana City, Cuba

{jmedina,arodriguez,ahechavarria,palancar}@cenatav.co.cu

Abstract. Text information processing depends critically on the proper
representation of documents. Traditional models, like the vector space
model, have significant limitations because they do not consider semantic
relations amongst terms. In this paper we analyze a document represen-
tation using the association graph scheme and present a new approach
called Global Association Distance Model (GADM). At the end, we com-
pare GADM using K-NN classifier with the classical vector space model
and the association graph model.

1 Introduction

Nowadays, due to the rapid scientific and technological advances, there are great
creation, storage and data distribution capacities. This situation has boosted
the necessity of new tools to transform this big amount of data into useful
information or knowledge for decision makers. This transformation process is
known as Knowledge Discovery in Databases (KDD).

Recent studies and analyses have concluded that complex data require a high
number of components to be completely described. this data has to be embedded
in high-dimensional spaces (from tens to thousands dimensions). Examples are
spectrophotometer data, gene expression data, pictures and texts. In this paper,
we focus our analysis on textual data and their representation.

The representation model that is used affects critically almost any text pro-
cessing task; like information retrieval, classification, clustering, summarization,
question-answering, etc. The vector space model is the classic one and by far the
most used model. Nevertheless, some studies have shown that the weakness of this
model is to leave out semantic complexity of the textual data.

As terms appear related to other terms in any document, their meanings
strongly depend on the meanings of the surrounding terms; even more, term
meanings emerge from mutual sense reinforcement. If we assume that sentences
are the main semantic unit in texts, then mutual sense reinforcements or as-
sociations amongst their terms should be the strongest possible. Nevertheless,
it is well known that these reinforcements or associations are feasible in other
contexts as, for instance, paragraphs or groups of them. The association graph
scheme is an approach that includes this consideration.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 565–572, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

566 J.E. Medina-Pagola et al.

In this paper we propose a new document representation model using the
mutual sense reinforcement among terms, called Global Association Distance
Model (GADM). Section 2 is dedicated to related work. In section 3 we analyze
the strengths and weaknesses of the Association Graph Model. In section 4 we
describe GADM. Experimental results are discussed in the last section.

2 Related Work

Document categorization, clustering and information retrieval tasks are often
based on a good data representation. At a high level, the manipulation of textual
data can be described as a series of processing steps that transform the original
document representation to another one, simpler and more useful to be processed
automatically by computers.

This usually involves enriching the document content by adding information,
using background knowledge, normalizing terms, etc. At the start of the process,
the textual data may exist as a paper, for instance, and the final representation of
the preprocessing could be a straight ASCII text enriched with some additional
information. This preprocessing final representation is used to represent data in
a useful way for computer calculation.

These terms could be organized in different forms but, in general, they are
considered as groups or bags of words, usually structured using a vector space
model [1]. In this model, the term sequences, or their syntactical relations, are not
analyzed; therefore, they are considered as unigrams supposing an independence
of their occurrences.

In the vector space model, each document is a vector of terms. The val-
ues of these vectors could be assumed as weights, considering the following
interpretations [2]:

– Boolean: Each term is associated with a Boolean value representing whether
it is present or not in a document.

– Tf (Term Frequency): Each term is associated with a frequency of appearance
in a document, absolute or normalized.

– Tf-Idf (Term Frequency - Inverse Document Frequency): The term is associ-
ated with its frequency, adjusted by the inverse of the number of documents
containing each term.

These vectors of terms are used in a second stage, among other tasks, to
analyze the similarities between documents, or groups of them, using different
measures as the cosine, applied to the angle between the vectors, defined as [2]:

sim(di, dj) = cos(di, dj) =
(di • dj)

||di|| ∗ ||dj ||
=

∑
wir ∗ wjr√∑
w2

ir ∗
∑

w2
jr

, (1)

where di, dj are the vectors of documents i, j, ||di||, ||dj|| the norms of the
vectors, and wir, wjr are the term weights in the vectors di, dj, respectively.
Other common measures are Dice and Jaccard coefficients.

Document Representation Using Global Association Distance Model 567

Alternative approaches to the vector space model are the language models.
These consider the probabilities of occurrence of a phrase S in a language M ,
indicated by P (S/M). However, the phrases are usually reduced to one term,
assuming again unigrams and independence among them. An example of this
model is the Kullback-Leibler Divergence (a variation of the cross-entropy), de-
fined as:

D(di||dj) =
∑

P (t/di)log
P (t/di)
P (t/dj)

. (2)

This expression could be combined in both directions to obtain a similarity
measure, as was pointed out by Feldman and Dagan [3].

Other implementation is the proposal of Kou and Gardarin [4]. This pro-
posal is a kind of language model, considering the similarities between two doc-
uments as:

sim(di, dj) = di • dj =
∑

r

wirwjr +
∑

r

∑
s�=r

wirwjs(tr • ts), (3)

where wir and wjs, using Kou-Gardarin terminology, are the term weights in
document vectors di, dj , respectively, and (tr • ts) is the a priori correlation
between terms tr and ts. Actually, the authors included in the first part of the
expression the self-correlation in tr, considering that (tr • tr) = 1. The authors
propose the estimation of the correlation through a training process. As can
be noticed, those correlations express the probabilities P (tr, ts/M) of phrases
containing the terms tr, ts in a language M . Besides, that expression could be
reduced to the cosine measure (normalized by the length of the vectors) if the
term independence is considered and, for that reason, the correlation (tr • ts) is
zero.

Another vector space model is the Topic-based Vector Space Model (TVSM)
[5]. The basic premise of the TVSM is the existence of a space R which only has
positive axis intercepts. Each dimension of R represents a fundamental topic.
It is assumed that all fundamental topics are independent from the others. In
this model, each document is represented as a vector of term-vectors; each term-
vector is a set of weights between the term and the fundamental topics.

The approaches mentioned above are variants of the Generalized Vector Space
Model proposed by S.K.M Wong et al. [6]. In their work, they expressed that
there was no satisfactory way of computing term correlations based on automatic
indexing scheme.

We believe that up to the present time that limitation has not been solved yet.
Although several authors have proposed different methods of recognizing term
correlations in the retrieval process, those methods try to model the semantic
dimension by a global distribution of terms, but not with a local evaluation of
documents.

In general, it could be assumed that the better the semantic representation
of the information retrieved and discriminated, the better this information is
mined.

568 J.E. Medina-Pagola et al.

3 Association Graph Model

The Association Graph Model assumes that a same term in two documents could
designate different concepts [7]. Besides, two terms could have different relations,
according to the subject of each document, and those relations could exist only
in the context of some documents, forming a specific group, and regardless of
the relations in a global dimension or language.

In order to model the relation between two terms in a document, the shortest
physical distance between those terms was considered. The basic premise of this
model can be expressed as follows: Two documents should be closer if the number
of common terms is greater and the shortest physical distances among them in
each document are similar.

Considering the distance by paragraph, without ignoring the natural co-
occurrence when appearing in the same sentence, and considering: (pr, nr),
(ps, ns), the paragraph and sentence numbers of terms tr and ts respectively,
the physical distance between these terms in a document i is defined as follows:

Di
rs =

{
1 (r = s) ∨ [(pr = ps) ∧ (nr = ns)]

|pr − ps| + 2 Othercase
. (4)

Observe that the minimum value of Di
rs, as could be expected, is not zero, but

one. This consideration is only a convenient assumption to expressions defined
further on.

According to this, a document is modeled by a graph, where the vertices
are the distinguished terms and the edges are their relations, weighted by their
distances. Notice that this is a full connected graph, where any term has some
relation (stronger or not according to the distance) with the others.

In spite of the fact that the physical distance between two terms is the basic
notion that supports the association graph scheme, the model proposed included
the frequency of the terms.

Therefore, Association Graph Model was defined as a graph representation
weighed by vertex, considering the weights of the distinguished terms, and by
edge, considering the physical distance between the adjacent terms. As the main
components of any graph are the edges, and trying to synthesize in a couple of
value the strength of the association, the vector Ai

rs was proposed as the edge
weight of the related terms tr, ts in a document i, defined as:

Ai
rs =

(
wi

r√
Di

rs

,
wi

s√
Di

rs

)
(5)

where wi
r and wi

s are the weights of the terms tr and ts, respectively, in a
document i.

Since the weight Ai
rs is a two-dimensional vector, the association strength is

evaluated as the Euclidean norm ||Ai
rs||. In this case, the strength is greater

if the term weights are greater and the distance between the terms is shorter.
Besides, the upper value of the edge weight is (wi

r, w
i
s) and the lower tends to

(0, 0) when the distance is very long.

Document Representation Using Global Association Distance Model 569

As an association graph does not possess a structural or spatial representation,
the similarity between two documents was defined considering each graph as a
set of edges. The measure proposed is called Weighted Coverage and it is defined
as follows.

sim(di, dj) =
1
2

∑
tr,ts∈Tij

Sij
rs||Ai

rs||

∑
tr,ts∈Ti

||Ai
rs||

+
1
2

∑
tr ,ts∈Tij

Sij
rs||Aj

rs||

∑
tr,ts∈Tj

||Aj
rs||

, (6)

The weight Sij
rs represents a similarity measure between Ai

rs and Aj
rs. This

weight is defined as:

Sij
rs = cos(Ai

rs, A
j
rs) ∗ (1 − 1

2
(||Ai

rs|| − ||Aj
rs||)2) (7)

where the first part of the expression represents the cosine between those vectors,
defined in a similar way as (1).

Although this model shows good performances, at least in classification tasks,
it has some drawbacks: this model intrinsically keeps the frequency point of
view, conserving the basis of the vector space model; the experimental results
of this model are not clearly better than in the vector space model; and the
computational, temporal and spatial costs of this model is relatively higher than
vector space model. Aiming at solving these drawbacks, other assumptions, also
based on the association graph scheme, were analyzed.

4 Global Association Distance Model

In order to evaluate the effect of the frequency over the weighted coveragemeasure,
an experiment was performed, considering and removing the frequency in (5). But,
this experiment produced an amazing result: the performance of the association
graph model when it includes term frequency was very similar to the one removing
the frequency. These results suggested that frequency does not seem to be such an
important term feature, and only the physical distance between terms is enough.

The above observation led us to analyze the basic premise of the association
graph scheme and to consider other assumptions that simplify the complexity of
the association graph model.

We know that in the classical vector space model the term relevance is as-
sumed by the number of occurrences in a document. Nevertheless, if we want
to include its semantic context, we should consider not only its occurrence but
also its co-occurrences (and association strength) with other terms in sentences,
paragraphs and so on. For that reason, we keep the expression (4), taking the
formula 1/

√
Drs - we omited superindex i only for simplicity considerations - as

a similarity expression for evaluation purposes.

570 J.E. Medina-Pagola et al.

In order to simplify the association graph model, based on a set of weigthed
edges, we consider the preliminary ideas of the vector space model proposed by
Salton, i.e. to consider ”a document space consisting of documents ... , each iden-
tified by one or more index terms ... weighted according to their importance” [1].
In our case, the importance of a term tr in a document d is related to its global
association strength and can be calculated as follows.

gtr =
∑
ts∈d

1√
Drs

(8)

Therefore, Global Association Distance Model can be defined as a vector space
model where each term is weighted by their global association strength. So, a
document d can be modeled by a vector −→

d .

−→
d = (gt1 , ..., gtn) (9)

It is not difficult to understand that the similarity measure in this model can
be calculated by any of the measures defined for the classic vector space model.
Up to the present time, we have only considered the cosine measure (1).

5 Experiments and Analysis

In order to evaluate the proposed model, TREC-51 in Spanish and Reuter-217582

in English corpora were used, considering topic classification. TREC-5 is a AFP
news corpus with 695 news published during 1994-1995 and classified in 22 topics.
Reuter 21758 is a Reuters LTD news corpus with 21758 news classified in 119
topics; due to memory restrictions we randomly selected 800 news items. All news
were preprocessed, normalizing and lemmatizing their terms with TreeTager [8].

We compared the Global Association Distance Model (GADM) with the stan-
dard Vector Space Model (VSM) and the Association Graph Model (AGM). A
K-NN classifier was used with k = 1, 5, 10, 15, 20. The experimental evaluation
was done using k-fold with k = 10.

Three evaluation measures of performance are commonly used for a single
category or topic [9]: Precision is the quotient of the correctly assigned and the
ones assigned to the category, Recall is the quotient of the correctly assigned
and the ones belonging to the category; and F − measure = 2∗Recall∗Precision

Recall+Precision .
For evaluating the performance average across categories, there are two con-

ventional methods:

– Macro-averaging performance: Scores are computed by a simple average of
the performance measures for each category. Macro-averaged performance
score gives equal weights to every category or topic, regardless of its
frequency.

1 http://trec.nist.gov/pubs/trec5
2 ftp://canberra.cs.umass.edu/pub/reuters

Document Representation Using Global Association Distance Model 571

– Micro-averaging performance: Scores are computed by first accumulating
the corresponding variables in the per-category expressions, and then using
those global quantities to compute the scores. Micro-averaged performance
score gives equal weights to every document.

Tables 1 and 2, and their corresponding Fig. 1(a) and Fig.1(b), show the
experiment results.

As can be noticed 1, GADM mostly outperforms both models: VSM and
AGM, for all values of k. This shows that the use of a vector of global association
strengths can actually improve the performance of document processing, at least
for classification tasks using K-NN. Although these results are only preliminaries,

Table 1. AFP classification results (F-measure)

k Macro-averaging performance Micro-averaging performance

VSM AGM GADM VSM AGM GADM

1 0.618342 0.621376 0.628072 0.852003 0.864963 0.874922

5 0.613379 0.618476 0.619129 0.872003 0.876437 0.873555

10 0.597129 0.576622 0.597338 0.859100 0.856458 0.864963

15 0.574918 0.551977 0.583869 0.844880 0.848993 0.863341

20 0.538896 0.523529 0.551356 0.828865 0.831809 0.846111

Table 2. Reuters classification results (F-measure)

k Macro-averaging performance Micro-averaging performance

VSM AGM GADM VSM AGM GADM

1 0.042262 0.042397 0.045202 0.662500 0.642500 0.682500

5 0.035451 0.034263 0.039288 0.703750 0.686250 0.717500

10 0.031761 0.028553 0.033216 0.710000 0.681250 0.731250

15 0.027341 0.026778 0.029069 0.705000 0.676250 0.716250

20 0.025304 0.023235 0.026642 0.698750 0.672500 0.706250

Macro-averaging Micro-averaging Macro-averaging Micro-averaging

(a) AFP (b) Reuters

Fig. 1. Classification results (F-measure)

572 J.E. Medina-Pagola et al.

they show that our proposed model presents a good behavior and seems to be a
better solution considering a semantic approach.

6 Conclusion

In order to achieve a better document representation, we have proposed a new con-
cept named global association strength, which uses semantic relations amongst
terms in documents. Also, we presented a new document representation model
named Global Association Distance Model, with a complexity no greater than the
classic vector space model, and showing better results in documents classifications.

The experiment results have shown interesting improvements. Although other
experiments must be done, the proposed model gives promising results and opens
new branches of work.

References

1. Salton, G.: The SMART Retrieval System - Experiments in Automatic Document
Processing. Prentice-Hall, Englewood Cliffs, New Jersey, (1971).

2. Berry, M.: Survey of Text Mining, Clustering, Classification and Retrieval. Springer,
(2004).

3. Feldman, R., Dagan, I.: Knowledge Discovery in Textual Databases (KDT). In Proc.
of the first International Conference on Data Mining and Knowledge Discovery,
KDD’95, Montreal, (1995) 112–117.

4. Kou, H., Gardarin G.: Similarity Model and Term Association for Document Catego-
rization. NLDB 2002, Lecture Notes in Computer Science, Vol. 2553, Springer-Verlag
Berlin Heidelberg New York, (2002) 223–229.

5. Becker, J., Kuropka, D.: Topic-based Vector Space Model. In Proc. of Business
Information Systems (BIS) 2003, (2003).

6. Wong, S.K.M, Ziarko W. and Wong, P.C.N.: Generalized Vector Space Model in
Information Retrieval. Proc. of the 8th Int. ACM SIGIR Conference on Research
and Development in Information Retrieval, New York, ACM 11 (1985).

7. Medina-Pagola, J.E., Guevara-Martinez, E., Hernández-Palancar, J., Hechavarŕıa-
Dı́az, A., Hernández-León, R.: Similarity Measures in Documents using Association
Graphs. In Proc. of CIARP 2005, Lecture Notes in Computer Science, Vol. 3773,
(2005) 741–751.

8. Schmid, H.: Probabilistic Part-Of-Speech Tagging Using Decision Tree. In: Interna-
tional Conference on New Methods in Language Processing, Manchester, UK (1994)

9. Yang Y.: An evaluation of statistical approaches to text categorization. Journal of
Information Retrieval, Vol. 1, No. 1/2, (1999) 67–88.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 573 – 580, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Sentence Level Sentiment Analysis in the Presence of
Conjuncts Using Linguistic Analysis

Arun Meena and T.V. Prabhakar

Department of Computer Science and Engineering,
Indian Institute of Technology, Kanpur

208016 Kanpur, UP, India
{arunm, tvp}@iitk.ac.in

Abstract. In this paper we present an approach to extract sentiments associated
with a phrase or sentence. Sentiment analysis has been attempted mostly for
documents typically a review or a news item. Conjunctions have a substantial
impact on the overall sentiment of a sentence, so here we present how atomic
sentiments of individual phrases combine together in the presence of conjuncts
to decide the overall sentiment of a sentence. We used word dependencies and
dependency trees to analyze the sentence constructs and were able to get results
close to 80%. We have also analyzed the effect of WordNet on the accuracy of
the results over General Inquirer.

Keywords: Sentiment analysis, favorability analysis, text mining, information
extraction, semantic orientation, text classification.

1 Introduction

In recent years, there has been a rapid growth of web-content, especially on-line dis-
cussion groups, review sites and blogs. These are highly personal and typically ex-
press opinions. To organize this information, automatic text categorization and identi-
fication of sentiment polarity is very useful. Most work done in this field has been
focused on topic based categorization, which is sorting the documents according to
their subject content.

Sentiment classification is a special case of text categorization problem, where the
classification is done on the basis of attitude expressed by the authors. Sentiment
analysis requires a deep understanding of the document under analysis because the
concern here is how the sentiment is being communicated. Previous attempts in solv-
ing this problem, for example [2], [4] focused on the use of machine learning methods
(N-gram, etc.), ignoring the importance of language analysis which is being used to
communicate sentiments. Therefore, we need to find new methods to improve the
sentiment classification exploring the linguistic techniques.

Our work differs from earlier work in four main aspects: (1) our focus is not on
classifying each review as a whole but on classifying each sentence in a review. (2)
We give more consideration/importance to the language properties of the sentence
and in understanding the sentence constructs, for each sentence we recognize the
subjects of the feeling and the feature being described. (3) We concentrate on the
effects of conjunctions and sentence constructions which have not been researched for

574 A. Meena and T.V. Prabhakar

sentiment analysis. (4) Our method does not need a training set since it depends on
linguistic analysis.

2 Previous Work

The cornerstone on sentiment analysis is Pang and Lee’s 2002 paper [2]. The authors
of that paper compare Naive Bayes, Maximum Entropy, and Support Vector Machine
approaches to classify sentiment of movie reviews. They explain the relatively poor
performance of the methods as a result of sentiment analysis requiring a deeper un-
derstanding of the document under analysis. Document level sentiment classification
assumes the whole document to have a single overall sentiment [1], [9], [11], [15].

In [14] the authors assigned sentiment to words, but they relied on quantitative in-
formation such as the frequencies of word associations or statistical predictions of
favorability. A number of researchers have also explored learning words and phrases
with prior positive or negative polarity (another term is semantic orientation) [1],
[10]. Although we use a similar technique we don’t limit ourselves to any limited
word list, instead we use WordNet to find the semantic orientation of the words which
are not found in the General Inquirer word list.

An approach similar to ours is taken by Matsumoto, et al. in [3]. The authors of
that paper recognize that word order and syntactic relations between words are ex-
tremely important in the area of sentiment classification, and therefore it is imperative
that they are not discarded. They construct a dependency tree for each sentence and
then prune them to create subtree for classification.

Our work is most close to this work but still has a great deal of difference as we are
not training on the trees - we use POS-tagging and dependency trees to analyze the
sentence constructs. We analyze the effects of conjunctions in detail on the overall
semantic orientation of the sentence. Our analysis is not confined to adjectives and
verbs as we have also dealt with nouns, adverbs, conjunctions and prepositions which
act as feeling words or affect the sentiment of the phrase.

3 Sentiment Analysis

The essential issue in sentiment analysis is to identify how sentiments are expressed
in texts and whether the expressions indicate positive (favorable) or negative (unfa-
vorable) opinions towards the subject. Thus, sentiment analysis involves identification
of sentiment expressions, polarity and strength of the expressions and their relation-
ship to the subject.

Often times, two words that are syntactically linked in a sentence are separated by
several words. In these cases, small N valued N-gram models would fail at extracting
a correlation between the two words, but we have used typed dependencies and de-
pendency tree to deal with Non-Local Dependency Problem.

Another problem is The Word Sense Disambiguation Problem, consider two sen-
tences I love this story, this is a love story, the first sentence is communicating posi-
tive sentiment, whereas the second sentence is an objective statement with neutral
sentiment. By looking at the typed dependencies of the words (love, story) in the first

 Sentence Level Sentiment Analysis 575

sentence, one can identify that they have a direct object relation {dobj(love-2, story-4)}
which identifies it as a sentence with a sentiment, while in the second sentence
{nn(story-5, love-4)} love just acts as an noun modifier to the word story, stating that
the story is a love story identifying it as an objective sentence.

Role of Conjunctions: A conjunction is a word that links words, phrases, or clauses,
and it may be used to indicate the relationship between the ideas expressed in a clause
and the ideas expressed in rest of the sentence. They play a vital role in deciding the
overall polarity of a sentence. They often change the sentiment into the opposite
orientation or add in the strength of the sentiment.

For example, The Pacifica is exceptionally quiet most of the time, but it suffers
some engine blare under hard acceleration. If we only consider the word exception-
ally, we will mistake the sentiment for positive. However, the word but in the sen-
tence changes its sentiment orientation, actually it is negative. The difficulty with
conjunctions is that they can occur almost anywhere in the structure of a sentence and
therefore demands a thorough analysis of the sentence construct as we need to find
the main clause in a sentence in order to decide the sentence level polarity.

4 Sentiment Classification (Evaluation)

Step1 does the POS-tagging, generates the dependency tree and gives the typed de-
pendencies of the words, for this the “Stanford Lex-Parser” [7] is used. We then
select the feeling words (a feeling word is anchored by some substantive meaning and
describes an author’s attitude towards the subject). In Step 2 and 3, we determine the
presence of a conjunction and if present we identify all the individual phrases contain-
ing sentiments. Step 4 calculates the polarity of individual phrases using the default
polarity calculation method with the help of the general inquire word list [13] or
WordNet to get the semantic orientation of the words.

Fig. 1. Steps in the process of sentiment classification using our system

 INPUT
(Sentence)

POS-Tagging
Create Dependency Tree

Determine if conjunction
analysis is required

STEP 1

STEP 2

OUTPUT
(Phrases with sentiments)

(Overall sentiment of the sentence)

Apply conjunction rules
(depends on step 2)

STEP 5

STEP 6

Identify phrases containing
sentiments

STEP 3

STEP 4

Calculate polarities of
individual phrases.

(Use DPC/ML)

Polarities of
individual words

(Use GI/Wordnet)

STEP 4.1

576 A. Meena and T.V. Prabhakar

If a conjunction is found, Step 5 applies a rule (which we created with a very com-
prehensive list of conjunctions) to the sentence depending upon the type of conjuncts.
The rules help in deciding the main clause of the sentence, i.e. the phrase that will
decide the overall polarity of the sentence. If no conjunction is found, then the default
method for finding the polarity of sentiment expression is used. Finally, in Step 6 the
total polarity of the sentence is decided.

4.1 Conjunction Analysis

Full syntactic parsing plays an important role to extract sentiments correctly, because
the local structures obtained by a shallow parser are not always reliable [8]. We start
by passing the current sentence to the lex-parser, the output of the lex-parser is the
dependency tree with POS tagging and the typed dependencies of the words.

Example: Following example explains the process of sentiment classification with the
help of dependency tree and the typed dependencies of the words in a sentence. The
tagset used is the penn-tagset, where JJ=adjective, NN=noun, VP=verb phrase etc.

Example 1. Supergirl is definitely a terrific DVD package, but a very lousy movie

(ROOT
 (S
 (NP (NNP Supergirl))
 (VP (VBZ is)
 (ADVP (RB definitely))
 (NP
 (NP (DT a) (JJ terrific)
 (NNP DVD) (NN package))
 (, ,)
 (CC but)
 (NP (DT a) (RB very) (JJ lousy)
 (NN movie))))
 (. .)))

nsubj(package-7, Supergirl-1)
cop(package-7, is-2)
advmod(package-7, definitely-3)
det(package-7, a-4)
amod(package-7, terrific-5)
nn(package-7, DVD-6)
det(movie-13, a-10)
advmod(movie-13, very-11)
amod(movie-13, lousy-12)
conj_but(package-7, movie-13)

In this example, if we just analyze the whole sentence with the default polarity cal-
culator the result will be {+1 (terrific, package); -1 (lousy, movie)}. (The word lousy
is not present in the GI word list, so the semantic orientation of this word will be
searched using the WordNet as described in the section 4.3). Therefore the total polar-
ity of the sentence is {+1 -1 = 0} neutral, but from the sentence it is clear that the
author didn’t like the movie so the orientation should be negative.

Now, as we have incorporated the effects of conjunction in the sentiment analysis,
the analysis will be somewhat different. The individual polarities of both the phrases
will be as above, but the two phrases are connected by a conjunction but joining (ter-
rific package, lousy movie), which are (NP, NP). Comparing the tags and the con-
juncts with the rules from the rule file, it’s clear that the second phrase is the main

 Sentence Level Sentiment Analysis 577

clause and therefore it will be used to decide the overall polarity of the sentence
which is negative (-1).

4.2 Conjunction Rules

We have compiled rules to analyze the effects of more than 80 conjunctions (includ-
ing all types of conjunctions) with 10 rules on average for each conjunction. A sample
rule is given below:

Table 1. Rules for usage and effects of the conjunction but

<conjunction id="but" class="CC" subClass="ADVERSATIVE">
<rule LC="NN" RC="NN" result="!RC" />
<rule LC="JJ" RC="JJ" result="RC" />
<rule LC="S" RC="S" result="RC" />
………………..

</conjunction>

The rule is for the conjunction but, it also shows the class and subclass of the con-
junction. Each rule tag describes a rule for different conjuncts, according to the first
rule if the left clause and right clause of the conjunction are NN; for example every-
one/NN but/CC John/NN is/VBZ present/JJ, the polarity for the right NN will be op-
posite of the polarity of the left NN. Therefore, as the sentence is positive towards
everyone so it is negative toward John, this is what the rule describes. Similarly we
can conclude for other rules.

4.3 Default Polarity Calculation (DPC)

We start the polarity classification by identifying the Positive and Negative words
using the General Inquirer (GI) [13]. While determining the orientation of a word, if a
word is not found in the GI list, we search that word in the WordNet dictionary and
all the synonyms are searched for semantic orientation in the GI word list (as syno-
nyms generally have same semantic orientation) which helps us in determining the
polarity of the word. While calculating polarity of a word we have also considered
effects of negations (good is positive, while not good is negative) [12]. Further effects
of words like very, little, rather etc. which intensifies or decreases the polarity of a
word have been analyzed.

One problem with the method of counting positive and negative terms is that we
may need to remove the suffix of a given term in order to see if it exists in our list of
terms. To do this we are using the stemming algorithm of “Stanford Lex-Parser” [7].

4.4 Overall Sentiment Determination

Once we get the individual polarities of the phrases, we decide the polarity of the
sentence as described earlier. The product review analysis is also possible with this
Sentiment Analyzer; you can even provide specific subject or subjects to find the
polarity.

578 A. Meena and T.V. Prabhakar

Example 2. An example explaining how conjunctions change the whole sentiment of the
sentence

[INPUT]
The notchy gear box was a worry and needed some time getting used to, but today with a

three month old Aveo I can safely say it was no problem.

[OUTPUT]
Finding Polarity:

notchy: -1 {gear box}
worry: -1 {gear box}

Conjunction Found [and]: Current Polarity = -2
Conjunction Found [but]: Current Polarity= 0

problem: -1 (preceding no found) : +1 {gear box, worry}
 Total Polarity: [-1 and 0 but +1]
 and(-1, 0) = -1
 but(-1, +1) = +1
 Final Polarity: +1

Once each sentence in a given text is evaluated, combining sentence level ratings
to a global score is still a tough problem.

Summarization of the results depends on the query type, i.e you may want to have
all the phrases containing the sentiments or you may need the polarity of the entire
sentence then the polarities of individual phrases will be combined together using
conjunction analysis to find the overall sentiment of the sentence.

5 Experimental Results

Our experiments use car reviews as the dataset, compiled from different car review
sites like http://www.motortrend.com, http://wardsautoworld.com, etc. The dataset
contains more than 10,000 pre-labeled sentences, 5000 positive and 5000 negative.

We will first look at the results of the machine learning algorithms. There were
more than 60% (40,000/64,000) sentences in the movies review dataset with one or
more than one conjunction and as expected the results were very poor (less than
40%). It is clear from the results that the algorithm trained on the documents can’t be
used for the sentence level analysis; further the machine learning can’t be efficiently
used for sentences with conjunction(s).

Table 2. Results of learning algorithm (Naïve Bayes) in presence of one or more conjunctions

Tested on sentences with Trained with No Conjuncts Trained with Conjuncts

No Conjunction 70% 73%

Conjunction(s)
1 Conjunction 51% 58%

More than 1 Conjunctions 40% 55%

 Sentence Level Sentiment Analysis 579

Our system gave a poor result with the movie dataset i.e. just 39%, as the reviews
were labeled at document level. There were many sentences with overall negative
polarity in the positive reviews and vice-versa.

For the evaluations, we check whether the polarity of the sentiment is appropriately
assigned to the given subject in each input in terms of the sentiment expression in the
output, and calculated the precision and recall.

Table 3. Accuracy of the various classification algorithms considered in this paper

 Machine Learning DPC Conjunction Analysis
 GI GI with

WordNet
GI GI with

WordNet

Sentences with
No Conjuncts

72% 54% 66% … …

Sentences with
Conjuncts

56% 39% 51% 62% 78%

6 Conclusions and Future Work

From Table 3, we can observe that use of WordNet substantially enhances the accu-
racy of the sentiment analysis. We can also see that conjunction analysis improves the
sentiment classification by more than 25% and it is clear from the results that Ma-
chine learning algorithm is superior to DPC. Performing base level sentiment analysis
using a learning algorithm and employing conjunct analysis for combing these phrase
level sentiments to sentence level sentiments appears will result in better accuracy.

Our current system requires manual development of sentiment lexicons, and we
need to modify and add sentiment terms for new domains, so automated generation of
the sentiment lexicons in order to reduce human intervention in dictionary maintenance
will also be our priority. This will improve precision and recall for new domains.

We believe that our major challenge is in the conjunction rules; we need to find a
way of dealing with situations for which there is no rule specified. In addition we can
implement named identity tagging for domain specific information and it should help
remove objective sentences to a greater extent.

References

1. Peter Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsuper-
vised Classification of Reviews. In Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages 417-424, 2002.

2. B. Pang, L. Lee, S. Vaithyanathan, ”Thumbs up? Sentiment Classification using Machine
Learning Techniques,” Proceedings of the 2002 Conference on Empirical Methods in
Natural Language Processing, 2002.

3. S. Matsumoto, H. Takamura, M. Okumura,”Sentiment Classification using Word Sub-
Sequences and Dependency Sub-Tree,” Proceedings of PAKDD, 2005.

4. B. Pang, L. Lee,”Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales,” Proceedings of the ACL, 2005.

580 A. Meena and T.V. Prabhakar

5. Yu, Hong and Vasileios Hatzivassiloglou. 2003. Towards answering opinion questions:
Separating facts from opinions and identifying the polarity of opinion sentences. In Pro-
ceedings of EMNLP.

6. Tetsuya Nasukawa, and Jeonghee Yi, “Sentiment Analysis: Capturing Favorability Using
Natural Language Processing” K-CAP’03, October, 2003, pp. 70-77.

7. The Stanford Natural Language Processing Group (http://nlp.stanford.edu/software/lex-
parser.shtml)

8. Kanayama Hiroshi, Nasukawa Tetsuya and Watanabe Hideo. Deeper Sentiment Analysis
Using Translation Technology, pp. 4-5.

9. Kushal Dave, Steve Lawrence, and David M. Pennock, “Mining the peanut gallery: Opin-
ion extraction and semantic classification of product reviews,” in Proceedings of the 12th
International World Wide Web Conference (WWW-2003), 2003.

10. Vasileios Hatzivassiloglou and Kathleen R. McKeown, “Predicting the semantic orienta-
tion of adjectives,” in Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics (ACL-1997), 1997.

11. Bo Pang and Lillian Lee, “A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts,” in Proceedings of the 42th Annual Meeting of
the Association for Computational Linguistics (ACL-2004), 2004.

12. Livia Polanyi and Annie Zaenen. Contextual valence shifters. In Proceedings of the AAAI
Symposium on Exploring Attitude and Affect in Text: Theories and Applications (pub-
lished as AAAI technical report SS-04-07), 2004.

13. Philip J. Stone, Dexter C. Dunphy, Marshall S. Smith, Daniel M. Ogilvie, and associates.
The General Inquirer: A Computer Approach to Content Analysis. The MIT Press, 1966.

14. S. Morinaga, K. Yamanishi, K. Teteishi, and T. Fukushima. Mining product reputations on
the web. In Proceedings of the ACM SIGKDD Conference, 2002.

15. Beineke, Philip, Trevor Hastie, Christopher Manning, and Shivakumar Vaithyanathan.
2004. Exploring sentiment summarization. In AAAI Spring Symposium on Exploring At-
titude and Affect in Text: Theories and Applications (AAAI tech report SS-04-07).

PageRank: When Order Changes

Massimo Melucci and Luca Pretto

University of Padova
Department of Information Engineering

{massimo.melucci,luca.pretto}@dei.unipd.it

Abstract. As PageRank is a ranking algorithm, it is of prime interest
to study the order induced by its values on webpages. In this paper
a thorough mathematical analysis of PageRank-induced order changes
when the damping factor varies is provided. Conditions that do not allow
variations in the order are studied, and the mechanisms that make the
order change are mathematically investigated. Moreover the influence
on the order of a truncation in the actual computation of PageRank
through a power series is analysed. Experiments carried out on a large
Web digraph to integrate the mathematical analysis show that PageRank
— while working on a real digraph — tends to hinder variations in the
order of large rankings, presenting a high stability in its induced order
both in the face of large variations of the damping factor value and in
the face of truncations in its computation.

1 Introduction

As PageRank is an algorithm to rank webpages or websites, questions regarding
the order induced by PageRank values are in principle of interest in many real-
life applications. Our main contribution regards a mathematical analysis of the
situations in which a variation of the value of the damping factor α forces a
variation in the order induced by PageRank. More precisely, if px(α) denotes
the PageRank of the page x when the damping factor is α, it is our interest to
answer questions such as: If pi(α) < pj(α), does α1 such that pi(α1) > pj(α1)
exist? What are the mechanisms that cause changes in the order, and what are
the mechanisms that hinder them? Do digraphs in which a change is impossible
exist? Which webpages are likely to be favoured to the detriment of others by
a change in α? What is the influence on the order of a truncation in the actual
computation of PageRank through a power series? Experiments were carried out
on a large Web digraph to integrate the mathematical analysis and to test the
hypothesis that the order induced by the PageRank values computed on the
whole digraph is significantly different from the order induced by the PageRank
values computed on the local, smaller digraph around every webpage.

To study the problem of PageRank-induced order changes with a mathemati-
cal perspective is technically much more difficult than studying PageRank value
changes. When value changes are studied, in fact, a linear system is under investi-
gation, but when order changes are examined linearity is lost, so that traditional
linear algebra tools become useless.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 581–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

582 M. Melucci and L. Pretto

2 Preliminary Results

The basic facts on PageRank used in this paper can be found in [4].
Let us denote by W the transition probability matrix of the Web Markov

chain, i.e. the Markov chain represented by the Web digraph after the dangling
nodes problem is addressed. In order to obtain irreducibility and aperiodicity,
the Web Markov chain is modified: when in a state i, an existing arc is followed
with probability α, while a jump towards a randomly chosen state is performed
with probability 1−α, where α ∈ [0, 1) is the damping factor. This modification
of the Web Markov chain will be called PageRank Markov chain, and its associ-
ated digraph will be called PageRank digraph. The PageRank vector is the limit
probability vector of the PageRank Markov chain; it can be obtained by solving

p(α) =
(1 − α)

N
1 + αWT p(α) (1)

where N is the total number of webpages under consideration and 1 is an N × 1
vector of ones. Moreover, each entry of p(α) is a continuous function in the
interval [0, 1) [1].

Let us denote by I the identity matrix. When α < 1, I − αWT is non-
singular [5, Lemma B.1], and so (1) gives

p(α) =
(1 − α)

N
(I − αWT)−11 . (2)

The inverse matrix (I−αWT)−1 can be expressed as (I−αWT)−1 = I+αWT +
α2(WT)2 + · · · =

∑+∞
n=0 αn(WT)n and so by considering expression (2) we get:

p(α) =
(1 − α)

N

(
+∞∑
n=0

αn(WT)n

)
1 . (3)

Since the order induced by PageRank is affected neither by the factor (1 − α)
nor by the first member of the sum, what governs the order is the power series

α(WT)
1
N

1 + α2(WT)2
1
N

1 + · · · + αn(WT)n 1
N

1 + · · · (4)

Let us denote by Pr[A] the probability of the event A. It is worth noting that the
generic term (WT)n 1

N 1 gives a vector whose entry j is the probability Pr[x(n) =
j] that the Web Markov chain x(·) is in state j after n steps, when the initial
distribution of the chain is the uniform one. Therefore the order induced by
PageRank depends on the transitory behaviour of the Web Markov chain. In
order to understand the behaviour of PageRank-induced order when α varies,
Formula (4) must be considered under different points of view — this is what
will be done in the following sections. From Formula (4) it is straightforward to
observe that two pages i, j do not change their relative order when the damping
factor varies if Pr[x(n) = i] ≥ Pr[x(n) = j] or Pr[x(n) = i] ≤ Pr[x(n) = j] for
n = 1, 2, 3, . . ., when the initial distribution of the chain is the uniform one.

PageRank: When Order Changes 583

3 When the Order May Change

3.1 Global Behaviour

Let us focus our attention on the global behaviour of order changes when the
damping factor varies from 0 to 1. The changes that occur on the basis of the
general, i.e. global, structure of the digraph, independently from its specific,
‘local’, characteristics will henceforth be known as ‘global’ changes.

Let us consider first the case α ≈ 0. To study order problems mathematically
in this case, it is convenient to write

p(α) =
(1 − α)

N
(I − αWT)−11 =

(1 − α)
N

(1 + αWT 1 + o(α)1) . (5)

When α ≈ 0, but α �= 0, the pages’ relative order is governed by the vector
WT 1, that is, for the generic page i, by the sum

∑
h→i

1
dh

, where dh is the out-
degree of page h and ‘h → i’ indicates that the sum is extended to all and only
the pages which have at least one link to page i. In the rest of this paper this
quantity will be called the weighted in-degree of page i. PageRank’s continuity
and Formula (5) allow one to state that if page i has a weighted in-degree greater
than page j, then pi(α) > pj(α), at least when α ≈ 0.

Let us consider now the other extreme, that is the case α ≈ 1. In this case,
the study can be carried out by considering the PageRank Markov chain. It is
known that the limit limα→1− p(α) exists, and that when α → 1− the PageRank
value of all the states that in the Web Markov chain are inessential is 0, that is,
all the PageRank values are swallowed up by the closed communicating classes
of the Web Markov chain, that is by the rank sinks of the Web Markov chain [1].

These results, showing that a global PageRank shift occurs from inessential
towards essential states when α moves from 0 to 1, suggest that this shift can
change the PageRank-induced order. Of course, this can happen if in the Web
Markov chain inessential states exist. Studies on the Web digraph structure show
that this is the case; indeed, most of the states are inessential [2]. In the case
of a Web Markov chain with inessential states this shift of PageRank might not
generate an order change (comparing the two cases α ≈ 0 and α ≈ 1) only in
rather pathological cases, practically impossible in the Web digraph structure:
this could happen, indeed, if the PageRank shift did not influence the PageRank-
induced order present when α ≈ 0. In Figure 1(a) a Web Markov chain with a
rank sink is depicted, from which it is easy to obtain: p1(α) = p2(α) = p3(α) =
1−α

5 , p4(α) = 1+2α−3α2

5 , p5(α) = 1+α+3α2

5 so that an order change between
page 4 and 5 occurs when α = 1/6. In Figure 1(b), on the contrary, no order
change occurs when α moves from 0 to 1, because the initial order persists even
when all the PageRank values are swallowed up by the rank sink.

3.2 Local Behaviour

Hitherto it has been shown that PageRank-induced order is governed by the
weighted in-degree of each page when α ≈ 0, and by the swallowing-up in the

584 M. Melucci and L. Pretto

1
11

1

15

4

321 1

2

1

1

(a) (b)

Fig. 1. A Web Markov chain with a rank sink which causes a change in order (a), and
a Web Markov chain with a rank sink without changes in order (b)

rank sinks when α ≈ 1. What happens between these two extremes? More pre-
cisely: Are the order changes that may occur when α moves from 0 to 1 only
due to a PageRank shift towards the rank sinks (global influence), or might they
also be due to a local influence, different from the one seen up to now? The
following example shows that global influence on its own cannot explain all the
PageRank-induced order changes.

Example 1. Let us consider the Web digraph structure in Figure 2. Since this

3

21

4

1/4

1/41/4
1/4 1

1 1

Fig. 2. A strongly connected Web digraph in which the PageRank-induced order
changes when the damping factor varies

digraph is strongly connected, that is the Web Markov chain it represents is
irreducible, no PageRank shift towards a rank sink can occur. Nevertheless, the
PageRank-induced order of the pages of the digraph changes when α varies. In
fact, elementary computations give:

p3(α) = p1(α)(1 + 2α)

p4(α) = p1(α)(1 + α + 2α2)

and so, while p1(α) is always less than the other PageRank values, p3(α) > p4(α)
when α < 1/2 and p3(α) < p4(α) when α > 1/2. Note that the symmetry of the
digraph gives: p1(α) = p2(α).

PageRank: When Order Changes 585

These order changes can be explained with reference to the local structure
of the digraph. For the purposes of the present analysis it should be noted that
in (3) the PageRank-induced order is governed by:

α(WT)1 + α2(WT)21 + · · · + αn(WT)n1 + · · ·

Let us focus our attention on two pages i and j. As regards page i there is:

α
∑

h1→i

1
dh1

+ α2
∑

h2→h1

∑
h1→i

1
dh2

1
dh1

+ · · · +

+αn
∑

hn→hn−1

∑
hn−1→hn−2

· · ·
∑

h1→i

1
dhn

1
dhn−1

· · · 1
dh1

+· · · . (6)

which is a weighted sum; the generic member

B(n, i) =
∑

hn→hn−1

∑
hn−1→hn−2

· · ·
∑

h1→i

1
dhn

1
dhn−1

· · · 1
dh1

gives the sum of the probabilities of all and only the paths that end in page i
after n steps. Formula (6) shows that the sums of the probabilities of the paths
that end in page i — which in their turn depend on the topology of the digraph
and on the weights of the links — govern the order induced locally by PageRank.
More precisely, when local behaviour is under examination, only that subgraph
of the Web digraph which is made up of the pages that lead to page i should
be considered. This digraph will henceforth be referred to as the back digraph
of page i. Now, when α is close to 0 the order is governed by the part of the
back digraph near the page, while when α is close to 1 a broader part should be
considered.

Definition 1. The back digraph of page i expands at step n with regard to page
j if B(n, i) > B(n, j). B(n, i) − B(n, j) is the size of the expansion.

Now, it can be easily proved that the two pages i and j may change their relative
order when α varies only if an expansion change between the back digraphs of
pages i and j takes place, that is only if n and m exist such that the back digraph
of page i expands at step n with regard to page j, and the back digraph of page
j expands at step m with regard to page i. This fact gives a necessary condition
for an order change to take place; note that, for instance, in the Web digraph in
Figure 2, the back digraph of page 3 expands with regard to page 4 at step 1,
while the back digraph of page 4 expands with regard to page 3 at step 2.

On the other hand, this condition is far from being a sufficient condition for
a local change in order to take place. This fact has essentially two causes:

1. The size of the expansions should be considered; for example, an expansion
of the back digraph of page i with regard to page j with a size s cannot
be compensated for by a subsequent expansion of the back digraph of page
j with regard to page i with a smaller size. Moreover, as a consequence

586 M. Melucci and L. Pretto

of the damping effects of the damping factor, the size of the compensating
expansion necessarily gets bigger the further the subsequent expansion is
from the first.

2. The more subsequent expansions of the back digraph of page i with regard
to page j take place, the harder it becomes for page j to compensate for
these expansions, and so allow an order change.

4 Effects of Truncation

The mathematical analysis expounded up to now is also of use in throwing light
on another important question: how is the PageRank-induced order affected
by a truncation in PageRank computation? The power series (3) computes the
PageRank of each webpage after an infinite number of iterations. For obvious
reasons, the computation has to be stopped after a finite number n, that is, the
power series has to be truncated. Such a truncation may affect the PageRank
value of each webpage, although to varying extents. Can this truncation also
affect the relative order of the pages?

It should be noted that, from a mathematical point of view, when local be-
haviour is studied, our attention is focused on the first few terms of (3) — a
truncation, in a sense — while when global behaviour is under examination, our
attention ranges over the whole series, i.e. the terms with a very high value of
n are also considered. So when a truncation at step n occurs, only those local
effects involving expansion that take place no later than at step n are taken into
consideration, while global effects are wholly ignored. While the effects of partly
ignoring the expansions depend on the local structure of the Web digraph, and
so cannot be completely foreseen, the mathematical analysis on global behaviour
shows that, when α is near to 1, the webpages belonging to a rank sink are liable
to be the most damaged, that is, their PageRank-induced ranking positions tend
to be lower than they would be if no truncation occurred.

5 Experiments

The experiments fundamentally aimed at investigating: (1) The correlations be-
tween the various PageRank-induced rankings computed for different values of α,
and (2) the correlation between the PageRank-induced ranking and the ranking
induced by a truncated computation of PageRank.

In every experiment the correlations between rankings were assessed by Ken-
dall’s τ [3]. The experiments were carried out on the 10GB Web Track (WT10g)
test collection of the Text Retrieval Conference (TREC).

The results were computed as follows. First, the value of Expression (4) was
computed for α = 0.1, 0.5, 0.8 and for n = 50 — for n = 50 it was observed that
a ranking no longer changes, i.e., the value of the sum can vary but the relative
order does not. Then the value of Expression (4) was computed for the same α’s
and for n = 1, 2, 5, 10, 50. τ was then computed for each α between each pair of
rankings, that is, the ranking after n = 50 and the ranking after a different n.

PageRank: When Order Changes 587

Table 1. Correlation between 10-page subrankings with α = 0.1, 0.5 and n = 1, 2, 5, 10

From To n = 1 n = 2 n = 5 n = 10

1 N 0.999 1.000 1.000 1.000

1 10 0.956 0.956 0.956 0.956
11 20 0.733 0.956 1.000 1.000
21 30 0.556 0.911 0.956 0.956
31 40 0.600 0.911 1.000 1.000
41 50 0.733 0.911 1.000 1.000
51 60 0.200 1.000 1.000 1.000
61 70 0.600 0.822 1.000 1.000
71 80 0.022 0.911 1.000 1.000
81 90 0.289 0.822 0.956 0.956
91 100 0.556 0.956 1.000 1.000

From To n = 1 n = 2 n = 5 n = 10

1 N 0.997 0.998 0.998 1.000

1 10 0.867 0.956 0.956 0.956
11 20 0.644 0.778 0.911 1.000
21 30 -0.644 -0.467 0.822 0.956
31 40 0.289 0.244 0.644 0.956
41 50 -0.022 0.022 0.467 0.911
51 60 -0.022 -0.022 0.778 0.956
61 70 0.378 0.511 0.733 1.000
71 80 0.111 0.111 0.511 0.956
81 90 0.156 0.244 0.778 1.000
91 100 0.333 0.289 0.511 1.000

α = 0.1 α = 0.5

As regards the complete N -webpage rankings, the results are reported in the
first line of Tables 1 and on the left of Table 2 for α = 0.1, 0.5, 0.8, respectively
— in the first line, N means that all the webpages were involved in computing
the correlation.

Another analysis was conducted by investigating the behaviour of the sub-
rankings computed at every 10 webpages of the ranking sorted by decreasing
final PageRank values pi’s. At this aim the correlation with the ranking induced
by p

(n)
i ’s — PageRank values after n steps — was computed. The results are

reported in Table 1 for α = 0.1 and α = 0.5 and on the left of Table 2 for
α = 0.8. The correlations increased as n increased, as one would expect.

The influence of α on the variation of the correlations observed at different
subrankings was less strong, as shown in Table 2 which reports the correla-
tions between the subrankings at α = 0.1 after n = 50 steps and the ones at

Table 2.

From To n = 1 n = 2 n = 5 n = 10

1 N 0.998 0.998 0.997 0.996

1 10 0.244 0.289 0.200 0.333
11 20 0.511 0.511 0.600 0.911
21 30 0.244 0.200 0.333 0.778
31 40 0.022 0.067 0.022 0.511
41 50 -0.244 -0.467 -0.422 0.378
51 60 -0.156 0.067 0.289 0.733
61 70 -0.111 -0.111 -0.022 0.333
71 80 0.200 0.200 0.422 0.022
81 90 -0.111 -0.111 -0.289 0.200
91 100 0.289 0.156 0.156 0.156

From To α = 0.5 α = 0.8

1 N 0.999 0.998

1 10 0.911 0.778
11 20 0.289 0.111
21 30 0.689 0.600
31 40 -0.022 -0.200
41 50 0.689 0.556
51 60 0.778 0.733
61 70 0.244 0.244
71 80 0.511 0.467
81 90 0.333 0.200
91 100 -0.200 -0.289

Correlation between 10-page sub-
rankings with α = 0.8 and n =
1, 2, 5, 10.

Correlation between 10-page sub-
rankings with n = 50, α = 0.1 and
subrankings with α = 0.5, 0.8.

588 M. Melucci and L. Pretto

α = 0.5, 0.8 after n = 50 steps; for example the correlations between the rank-
ing after n = 50 steps with α = 0.1 and the ranking after n = 50 steps with
α = 0.5 is reported in the third column of Table 2. In particular, if α = 0.8, the
convergence of τ to the state of perfect correlation is quite slow.

To sum up, the experiments showed that PageRank-induced order is stable
enough if the damping factor is close to 0 and when a truncation in the com-
putation is effected after n steps. As far as concerns the top ranked webpages,
some instability can be observed if α tends to 1.

To test if the damping factor affects the final ranking, the correlation was also
computed between the rankings at n = 50 and at different α’s independently of
n. It was found that the correlations were very high if all the N webpages were
involved in the computation, whereas the correlations varied if the subrankings
were instead considered.

When all the N webpages were considered, the experiments showed that
PageRank-induced order is considerably stable in large digraphs, both when
variations in the damping factor values take place and when a truncation in the
computation is effected. The experiments showed that the effects of PageRank
shift towards rank sinks are negligible in large digraphs, at least if α is not close
to 1.

The whole body of these considerations suggests that the PageRank definition
has a mathematical structure that naturally tends to hinder order changes in
practice. Moreover, the influence of the back digraph near each page is predom-
inant, especially when α is not too large.

References

1. P. Boldi, M. Santini, and S. Vigna. PageRank as a function of the damping factor.
In Proc. of WWW, pages 557–566. ACM, May 2005.

2. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. In Proc. of WWW,
2000.

3. M. Kendall. Rank Correlation Methods. Charles Griffin & Co. Ltd., fourth edition,
1975.

4. A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press, Princeton, 2006.

5. E. Seneta. Non-negative Matrices and Markov Chains. Springer, New York, second
edition, 1981.

Model Tree Learning for Query Term Weighting
in Question Answering

Christof Monz

Department of Computer Science
Queen Mary, University of London

Mile End Road, London E1 4NS, United Kingdom
christof@dcs.qmul.ac.uk

www.dcs.qmul.ac.uk/˜christof

Abstract. Question answering systems rely on retrieval components to identify
documents that contain an answer to a user’s question. The formulation of queries
that are used for retrieving those documents has a strong impact on the effective-
ness of the retrieval component. Here, we focus on predicting the importance of
terms from the original question. We use model tree machine learning techniques
in order to assign weights to query terms according to their usefulness for identi-
fying documents that contain an answer. Incorporating the learned weights into a
state-of-the-art retrieval system results in statistically significant improvements.

1 Introduction

Current question answering systems rely on document retrieval as a means of identi-
fying documents which are likely to contain an answer to a user’s question. The doc-
uments returned by the retrieval engine are then further analyzed by computationally
more expensive techniques to identify an answer to a given question.

The effectiveness of the retrieval component is critical for the performance of a ques-
tion answering system: If the retrieval system fails to find any relevant documents for a
question, further processing steps to find an answer will inevitably fail as well.

In particular, the way queries are formulated has a strong impact on retrieval effec-
tiveness. Boolean retrieval is especially sensitive to query formulation. Using all content
words from the question for the query can steer the retrieval process in a wrong direc-
tion. For example, consider the question What is the abbreviation for the London stock
exchange?. It seems natural to include the word abbreviation in a boolean query like:

(1) abbreviation AND london AND stock AND exchange

However, most documents that contain an answer to this question express it in the form
of ‘. . . London Stock Exchange (LSE). . . ,’ not using the term abbreviation or one of its
morphological variants at all. Hence, in boolean retrieval, a query such as (1) might be
too strict and retrieve no documents at all.

Vector-space retrieval is less strict with respect to presence or absence of query terms
in documents, but a similar problem arises. Even vector-space retrieval approaches will
prefer documents containing the term abbreviation over those that do not contain it,

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 589–596, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

590 C. Monz

although, as discussed above, most documents providing an answer to the question
above do not contain it. The reason is that the term abbreviation receives a high term
weight, because it is much less frequent in the collection than the other terms and is
therefore considered a well-discriminating term for this query.

Our approach tries to predict the importance of a term for a given question by ap-
plying machine learning techniques. The learned importance weights are then used to
improve the retrieval engine. Learning query term weights is appealing in the context
of question answering because a user’s information need is expressed as a well-formed
sentence as opposed to sets of keywords, used in regular information retrieval.

2 Related Work

Previous work on query formulation for question answering has mainly been done for
Web question answering. Brill et al. [2] focus on formulating query strings that approx-
imate the way an answer is likely to be expressed. This involves automatically mapping
the syntax of an interrogative to the syntax of a declarative sentence. Documents are
required to either match one of the strings or the boolean query. However, they do not
address the issue of term weighting.

Paşca [11] does address the issue of term selection and term relevance. His work
is closely related to the work presented in this paper. For query formulation, he dis-
tinguishes between three types of terms: high-relevance, medium-relevance, and low-
relevance query terms. Deciding which class a given term belongs to is based on a
number of rules, some of which are also integrated in our approach.

Although machine learning techniques have been used before to find answer extrac-
tion patterns, see, e.g., [8,14], they have not been applied before to query formulation
in the context of question answering. On the other hand, machine learning has been
applied to query formulation in the context of ad hoc retrieval. Cooper et al. [4] use
logistic regression to assign weights to matching clues, such as the number of times a
query term occurs in the query, the number of times a query term occurs in a document,
the idf score of a matching term, and the number of distinct terms common to both query
and document. [3] did apply machine learning techniques for selecting query terms, but
it was done in the context of relevance feedback retrieval.

The work by Mayfield and McNamee [9] and Agichtein et al. [1] is to some extent
complementary to our work as it expands retrieval queries with terms or phrases that are
likely to be found in the context of phrases which are of the expected answer type. While
the approach in [9] is based on simple co-occurrence statistics, [1] also incorporate the
BM25 retrieval weighting scheme to assign weights to the expansion phrases.

3 Optimal Query Term Selection

In this section we estimate the effect query formulation, in the form of term selection,
can have on retrieval performance, by using the TREC-9, TREC-10, and TREC-11 data
sets consisting of 500 different questions each and the AQUAINT document collection.

For evaluating the retrieval effectiveness, we used NIST’s judgment files. Each file
indicates for each submitted answer-document-id pair, whether the answer is correct.

Model Tree Learning for Query Term Weighting in Question Answering 591

Questions with no correct answer were disregarded. The documents that are known to
contain a correct answer form the gold standard for our evaluation, which contains 480,
433, and 455 questions for TREC-9, TREC-10, and TREC-11, respectively.1

In order to compute the optimal term selection for each question, we compare all
possible ways of selecting terms from a question. That is, given a question q in which
the set of terms T occurs, we consider all possible subsets of T , and evaluate the re-
spective performances. More formally, the set of term selection variants (tsv) is defined
as tsv(q) � POW(T)� ���. For each question in the three data sets, we determined the
query variant with the highest average precision. Table 1 shows the performance gains
that can be achieved by using an oracle to pick the optimal query variant.

Table 1. Comparison of the a@n scores of optimal retrieval queries to baseline runs

TREC-9 TREC-10 TREC-11
a@n Lnu.ltc opt Lnu.ltc opt Lnu.ltc opt

a@5 0.700 0.823 (+17.6%)� 0.649 0.749 (+15.4%)� 0.523 0.690 (+31.9%)�
a@10 0.785 0.890 (+13.4%)� 0.734 0.815 (+11.0%)� 0.626 0.767 (+22.5%)�
a@20 0.845 0.921 (+9.0%)� 0.801 0.887 (+10.7%)� 0.705 0.824 (+16.9%)�
a@50 0.914 0.956 (+4.6%)� 0.875 0.924 (+5.6%)� 0.795 0.881 (+10.8%)�

In the context of question answering, it is common to measure the effectiveness of
a retrieval system in terms of answer-at-n (a@n) which is the percentage of questions
for which the system returned at least one document containing an answer in the top-n
ranked documents. For our baseline we did not use blind relevance feedback, as Monz
[10] has shown that simple Lnu.ltc weighting with stemming outperforms approaches
using blind feedback for question answering.

As one could expect, query formulation has a significant impact on the overall per-
formance of a retrieval system, even if query formulation is just based on term selection
without expanding the queries with semantically related terms. This comparison shows
that much can be gained from better query formulation, but, of course the problem of
identifying an optimal query without having any relevance assessments remains open.
In the remainder we explore ways to solve this issue.

Two retrieval methods a and b are compared by one-tailed statistical significance
testing, using the bootstrap method [5]. Improvements at a confidence level of 95% are
marked with “�” and at a confidence level of 99% with “�”.

4 Computing Query Term Weights

Our approach is to use the different query variants of a question to distinguish between
terms that help retrieve relevant documents, and terms that harm the retrieval effective-
ness for that particular question.

In the previous section, we considered only one single best-performing query variant,
but often there are several almost equally well-performing query variants. Looking at

1 The original TREC-9 data set contains 243 questions that are re-formulations of the questions
in the main TREC-9 set. For our experiments, these variants were disregarded.

592 C. Monz

the ranked query variants, reveals that some terms occur more frequently in higher-
ranked variants than other terms.

An analysis of the distribution of query terms over the ranked query variants allows
one to assign a weight to each query term: If a term occurs mainly in query variants
that have a high average precision it should receive a high weight, whereas a term
that occurs mainly in query variants that have a low average precision should receive
a low weight. Thus, the weight of a query term depends on two factors: The average
precisions of the query variants in which the term occurs (its presence weight: w�(t)),
and the average precisions of the query variants in which the term does not occur (its
absence weight: w�(t)). Presence and absence weights are normalized by the sum of the
average precisions of all query variants, so the weights will range between 0 and 1.

Given a question q and all its query variants tsv(q), the presence weight of term t
(w�(t)) is computed as:

w�(t) �

�
q�
�tsv(q)�t�q�

avg prec(q�)

�
q�
�tsv(q)

avg prec(q�)
(2)

The absence weight of term t (w�(t)) is computed as:

w�(t) �

�
q�
�tsv(q)�t�q�

avg prec(q�)

�
q�
�tsv(q)

avg prec(q�)
(3)

The presence and absence weights of a term t, can be combined into a single weight
by subtracting the absence weight from the presence weight, which we call the gain of
term t: gain(t) � w�(t)�w�(t). If a query term has a positive gain it should be included
in the query, but excluded if its gain is negative.

This approach of computing term weights assumes that terms occur independently
of each other. This assumption does not hold in practice, but it is commonly used in
information retrieval and allows us to simplify the computation of term weights.

5 Representing Terms by Feature Sets

In the previous section, the computation of the term weights was based on the distribu-
tion of the terms themselves over the query variants. This is problematic for two reasons.
First, the same term can have a high gain in one query, and a low gain in another. Sec-
ond, if the learning algorithm is based on the surface terms themselves, it cannot assign
weights to terms that did not occur in the training data. The first problem is a direct
consequence of the term independence assumption. It could be solved by conditioning
the weight of a term on a number of terms that also occur in the question, but then data
sparseness becomes even more of an issue.

One way to address both problems is to represent terms and their contexts in a more
abstract manner. Here, we use a set of features that represent certain characteristics of a
term and its role in a question. The list of features contains information about the term’s
part-of-speech, whether it semantically includes other terms in the question, the type

Model Tree Learning for Query Term Weighting in Question Answering 593

of question it occurs in, etc. As mentioned above, some of the features capture aspects
inherent to a term, such as part-of-speech, while others capture contextual aspects, such
as semantic inclusion. Table 2 lists all features. The features question focus, superlative,
quoted, number of leaves, modified noun, and person name are based on [11].

Table 2. List of features for question words

Feature Value Feature Value

part-of-speech Penn Treebank part-of-speech
tag

location Whether the word is part of a lo-
cation name

question focus Whether the word is part of the
question focus

abbreviation Whether the word is an abbrevi-
ation

superlative Whether the question contains a
superlative adjective

upper case Whether the word starts with an
uppercase letter

question class A fixed list of question classes classif. word Whether the word was used to
classify the question

multpl. occurr. Whether the word occurs more
than one in the question

person name What part of a person’s name is
the word, if applicable

quoted Whether the word occurs be-
tween quotation marks

honorific Whether the word is a honorific
term (e.g., Dr.)

modified noun Whether the word is a noun that
is preceded (modified) by an-
other noun

no. edges The number of edges pointing to
a word in the dependency parse
graph of the question

term ratio 1/m, where m is the number of
unique terms in the question

hypernym Whether the word is a hypernym
of another question word

no. leaves The number of hyponyms in
WordNet that do not have any
further hyponyms

relative idf The relative idf compared to the
other words in the question

Most of the features in Table 2 are fairly general and self-explanatory, but some are
more specific and do require some further explanation.

The focus of a question is a phrase describing a semantic type of which the answer
is an instance. For example, in the question In what country did croquet originate?, the
focus is country. The answer to this question, which is France, is an instance of country.
Whether a word is part of the question focus affects query formulation, because many
documents containing an answer to the question do not explicate the instance relation.

Classifying words help determine the type of a question. E.g., in the question What
province is Calgary located in?, the word located indicates that the question is a loca-
tion question. However, words that are good indicators for question classification, are
infrequent in answers as expressed in documents. For instance, it is rather unlikely that
the word located is used in a declarative sentence answering this question.

The number of incoming edges refers to the dependency parse graph of the question
which is generated by MINIPAR [7]. If a word has a larger number of incoming edges,
several words in the question are in a modifier or argument relationship with this word,
and therefore it is more likely to play a central role in the question. For each word in any
question, the features listed in Table 2 are extracted automatically, by using off-the-shelf
tools, including a POS tagger, dependency parser, and named-entity recognizer.

594 C. Monz

6 Learning Term Weights

Instead of using some heuristics for predicting the query term importance we apply
machine learning techniques to assign a weight to each term in the question, where
the actual query that is used for retrieval will include these weights. The input for the
learning algorithm is the set of feature vectors as described in the previous section, and
the classes are the terms’ gains as described in Section 4.

For the purpose of learning term weights, the machine learning algorithm should
learn to predict the degree of the query term’s usefulness for query formulation. Deci-
sion trees, naive Bayes, and linear regression, all allow for interval classification and
generate transparent classification rules.

Naive Bayes classification is known to be well-performing for nominal classification,
but performs badly for interval classification [6].

The best-known algorithm for decision tree learning is Quinlan’s C4.5 [13], but C4.5
cannot deal with cases where the class to be learned is not a label, but a real number.
M5 [12], on the other hand, which is an extension of C4.5, does allow for this type of
continuous classification, also referred to as regression.

The M5 algorithm builds model trees combining conventional decision tree learn-
ing with the possibility of linear regression models at the leaves of the tree. The
resulting representation is transparent because the decision structure is clear and the
regression models are normally easily interpretable. The idea of model trees is largely
based on the concept of regression trees. The advantage of M5 is that model trees
are generally much smaller than regression trees and have proved to be more accu-
rate in a number of tasks; see [12]. M5 is suited for learning query term weights
because it combines decision tree learning with linear regression, which allows it to
consider dependencies between features. The learning algorithm used here, is M5� [15],
which is a reconstruction of Quinlan’s M5 algorithm. M5� is part of the WEKA ML
package [16].

7 Results

For our experiments, the weight of a query term depends on two factors: The frequency
of a term in a document, and the collection frequency, i.e., the number of documents
containing that term. If we want to integrate the learned term weights, as described
above, the computation of the retrieval status value (RSV) has to be adapted appropri-
ately. We use the learned query term weights in combination with the original retrieval
status value that resulted from computing the similarity between a query q and a doc-
ument d according to the Lnu.ltc weighting scheme, which results in the new retrieval
status value: RSVL, which is defined as follows:

RSVL(q�d) �
�

t�q�d

RSV(q�d) �weight(fr(t�q)) � idf(t)

Here, fr(t�q) is the feature representation of term t in query q, and weight(fr(t�q)) is the
learned weight, which results from applying the M5� model tree to t’s feature vector.
RSV(q�d) is the document similarity according to the Lnu.ltc weighting scheme, and

Model Tree Learning for Query Term Weighting in Question Answering 595

idf(t) is the idf value of term t, i.e., log2(N�df t), where N is the collection size and df t
is the number of documents containing t.

For the evaluation three different model trees were generated, one for each of the
TREC data sets. The model tree for assigning weights to terms in the TREC-9 data set
was trained on feature representations of words from TREC-10 and TREC-11 (2854
instances), the model tree for the TREC-10 data set used feature representations from
TREC-9 and TREC-11 (3167 instances), and the model tree for the TREC-11 data set
used feature representations from TREC-9 and TREC-10 (2769 instances).

First, we considered the performance with respect to the answer-at-n (a@n) measure.
Table 3 shows the results of using learned query terms weights in contrast to the Lnu.ltc
baseline. The improvements are rather modest, although still statistically significant in
some cases.

Table 3. Comparison of the a@n scores of learned-weights retrieval (LWR) to the baseline

TREC-9 TREC-10 TREC-11
a@n Lnu.ltc LWR Lnu.ltc LWR Lnu.ltc LWR

a@5 0.700 0.727 (+3.7%)� 0.649 0.654 (+0.1%) 0.523 0.547 (+4.6%)�

a@10 0.785 0.806 (+2.7%)� 0.734 0.730 (-0.1%) 0.626 0.637 (+1.8%)
a@20 0.845 0.863 (+2.1%) 0.801 0.804 (�0�0%) 0.705 0.732 (+3.8%)�

a@50 0.914 0.908 (-0.1%) 0.875 0.859 (-1.8%) 0.795 0.815 (+2.5%)

8 Conclusions

In this paper we investigated to what extent it is possible to learn query term weights for
better query formulation. As we have seen in Section 3, keyword selection has a strong
impact on the performance of the retrieval component. In order to learn query term
weights, we considered all possible ways of selecting terms from the original question
for query formulation, and used the performance results of each possible formulation in
order to determine individual query term weights.

Query terms are represented as sets of features on which the M5� model tree learn-
ing algorithm is trained. The resulting model trees confirm some of the heuristics and
intuitions for keyword selection than can be found in the literature; see, e.g., [11].
The improvements are modest for a@n, yet statistically significant in some cases, and
stayed behind the potential improvements optimal query selection can yield. On the
other hand, our term weight learning approach yields significantly better results than the
baseline for mean average precision. Hence question answering systems that are more
sensitive to the rank and number of a retrieved document can benefit from using our
approach.

In some cases the issue of whether a term is helpful for retrieving answer documents
simply depends on idiosyncrasies of the documents that contain an answer, but we do
not believe that this had a noticable impact on our results as we used large and varied
training data to generalize properly.

596 C. Monz

References

1. Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning to find answers to questions
on the web. ACM Transactions on Internet Technology, 4(2):129–162, 2004.

2. Eric Brill, Susan Dumais, and Michelle Banko. An analysis of the AskMSR question-
answering system. In Proceedings of Emperical Methods in Natural Language Processing
(EMNLP 2002), pages 257–264, 2002.

3. Hsinchun Chen, Ganesan Shankaranarayanan, Linlin She, and Anand Iyer. A machine learn-
ing approach to inductive query by examples: An experiment using relevance feedback, ID3,
genetic algorithms, and simulated annealing. Journal of the American Society for Informa-
tion Science, 49(8):693–705, 1998.

4. William Cooper, Aitao Chen, and Frederic Gey. Full text retrieval based on probalistic equa-
tions with coefficients fitted by logistic regression. In Proc. of the 2nd Text REtrieval Con-
ference, pages 57–66, 1993.

5. Brad Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1):1–
26, 1979.

6. Eibe Frank, Leonard Trigg, Geoffrey Holmes, and Ian H. Witten. Naive bayes for regression.
Machine Learning, 41(1):5–25, 2000.

7. Dekang Lin. Dependency-based evaluation of minipar. In Proceedings of the Workshop on
the Evaluation of Parsing Systems, 1998.

8. Lucian Vlad Lita and Jaime Carbonell. Unsupervised question answering data aquisition
from local corpora. In Proceedings of the Thirteenth Conference on Information and Knowl-
edge Management (CIKM 2004), pages 607–614, 2004.

9. James Mayfield and Paul McNamee. JHU/APL at TREC 2005: QA retrieval and robust
tracks. In Ellen M. Voorhees and Lori P. Buckland, editors, Proceedings of the Fourteenth
Text REtrieval Conference (TREC 2005), 2005. NIST Special Publication: SP 500-266.

10. Christof Monz. Document retrieval in the context of question answering. In Fabrizio Se-
bastiani, editor, Proceedings of the 25th European Conference on Information Retrieval Re-
search (ECIR-03), LNCS 2633, pages 571–579. Springer, 2003.

11. Marius Paşca. High-Performance Open-Domain Question Answering from Large Text Col-
lections. PhD thesis, Southern Methodist University, 2001.

12. John R. Quinlan. Learning with continuous classes. In Proceedings of the 5th Australian
Joint Conference on Artificial Intelligence, pages 343–348, 1992.

13. John R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
14. Deepak Ravichandran and Eduard Hovy. Learning surface text patterns for a question an-

swering system. In Proceedings of the 40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 41–47, 2002.

15. Yong Wang and Ian H. Witten. Induction of model trees for predicting continuous classes. In
Proceedings of the Poster Papers of the European Conference on Machine Learning (ECML),
pages 128–137, 1997.

16. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, 1999.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 597 – 604, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Examining Repetition in User Search Behavior

Mark Sanderson1 and Susan Dumais2

1 Department of Information Studies, University of Sheffield, Sheffield, S1 4DP, UK
2 Microsoft Research, Redmond, Redmond, WA, USA

m.sanderson@shef.ac.uk, sdumais@microsoft.com

Abstract. This paper describes analyses of the repeated use of search engines.
It is shown that users commonly re-issue queries, either to examine search
results deeply or simply to query again, often days or weeks later. Hourly and
weekly periodicities in behavior are observed for both queries and clicks.
Navigational queries were found to be repeated differently from others.

1 Introduction

With the advent of large scale logging of user’s activities on search engines, analysis
of those logs has produced much valuable information. Early examples of such work
come from Broder (2002), who highlighted the differing forms of queries that users of
Web search engines issue. He classified queries into navigational queries (where the
goal is to find a particular web site); informational queries (where the user is seeking
information on a particular topic) and transactional queries (where the user is looking
to find sites, which themselves have to be searched to locate required information).

In almost a decade of research in web search engine query logs much of the
published work has analyzed small samples of logs often from a single day. The many
works of Jansen & Spink (summarized in their 2006 paper) cover no more than a
sample of a days worth of activity from a particular search engine. Although such
analyses provide insights about short-term interactions with search engines, they do
not shed light on longer-term patterns, which are of interest in this paper.

An early log study by Silverstein et al. (1998) summarized characteristics of almost
a billion queries collected over a 43 day period of time. However, the authors did not
specifically look at temporal effects or individual usage over time. A temporal
analysis of queries covering a week’s worth of data was recently reported by Beitzel
et al. (2004). Their analyses focused on daily periodicities for queries in different
topical categories. More recently, Teevan et al. (2006) examined the search behaviors
of 114 anonymized users over the course of one year. In this work, users’ repetition of
queries and items clicked on in search result lists were of interest. Teevan et al. found
that across the year, 33% of user queries were repetitions of queries previously issued
by the same user. Repetition across users was lower at around 18%. Teevan et al. also
separated out navigational queries, which they defined as queries issued at least twice
and where the same URL was clicked in the result list for each query. They found that
71% of repeated queries were navigational; if duplicate repeat queries were
eliminated, this number fell to 47%. They also examined clicks: the item a user chose
in the search result list. They found that 29% of clicks recorded in the logs had been
clicked on by the same user before. Teevan et al. identified different patterns of
repetition and described types of user search behavior that fitted the patterns.

598 M. Sanderson and S. Dumais

From this study, it was clear that search repetition is common. A more detailed
study of repetition was undertaken in this paper to better understand search behavior
over time with the goal of improving the search experience. We started with simple
measurements of the repetition of queries and clicks, but it became clear that many
forms of repetition in user behavior exist. Therefore the analysis was broadened to
explore repetition and periodicities in general.

2 Data Set Examined

The query log analyzed was gathered from a major Web search engine for a 3 month
period, from 9th Jan. – 13th Apr. 2006, consisting of approximately 3.3 million queries
and 7.7 million search result clicks gathered from 324,000 unique users. Users were
selected from a voluntary opt-in feedback system. The query text and the date/time
when the query was received by the search engine were recorded. In addition, the
URL of items in the search result list that were clicked on, the query that generated
that result list, and the rank position of the clicked item were recorded. When users
retrieved additional search results for a query, such events were treated as a separate
query. This differs from Teevan et al.’s work where all identical queries issued by a
user less than thirty minutes apart were treated as the same query. Their approach
attempted to capture the notion of a search session. Any such approximation of
sessions is prone to error, so we choose to examine the query data in its rawer form.

Users were identified by an anonymised ID associated with a user account on a
particular PC. As is the case with most log analyses, if a user has more than one
computer each with the opt-in feedback system working, they have multiple IDs.
Conversely, if more than one person used the same account on a PC, they were
amalgamated into a single user.

3 Initial Analysis of Query and Click Repetitions

The first analysis conducted on this data replicated the initial analyses of Teevan et al.
determining the level of repetition in queries and in clicked results. Of the 3.3 million
queries submitted, 1.62 million were unique to a single user (although many queries
were repeated across users); the rest (1.68 million) were submitted more than once by
a user. Repeat queries represented a little over 50% of all the queries submitted. This
compares to the 33% observed by Teevan et al. We speculate that the different
proportion of repeat queries is due to the difference in definition of what counts as a
repeat query. The repeated queries were examined to determine how many were
navigational queries. Based on Teevan et al.’s definition (same query and same URL
click), around 80% of the 1.68 million repeat queries were navigational queries. This
compares with the 71% observed by Teevan et al. From this analysis and those
published before, it is clear that users repeat queries often on a search engine.

The search result clicks of users were also examined. Of the 7.6 million clicks
recorded in the three month period, 1.3 million (17.5%) were found to be clicks
accessed more than once by individual users. Within that group of repeat clicks, 83%

 Examining Repetition in User Search Behavior 599

were from the same query, and 17% were from different queries. A similar ratio of
repeat clicks from same or different queries was found by Teevan et al.

We next examined temporal differences in click patterns over time, which Teevan
and colleagues did not analyze. Specifically, we examined the number of repeat clicks
over time as well as whether repeat clicks were more or less likely to come from the
same query as the time between repeat clicks increased.

3.1 Change in Repetition for Varying Differences in Time

Figure 1 shows a histogram of the counts of repeated clicks as a function of the
number of days between the two clicks. The numbers of same click pairs steadily
declines as the difference in time between the click events grows – searchers are more
likely to click on the same URL in close temporal proximity. The curve drops off
smoothly for several months and then more suddenly around 90 days due to
windowing effects in the query logs which cover only 94 days.

1

10

100

1000

10000

100000

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Δ (days)

fr
eq

. o
f o

cc
u

rr
e

n
ce

Fig. 1. Histogram of counts of same click
events in the query log binned by the Δ in
days between the two events. Note in all
graphs in the paper, the number of paired
events = the number of events-1.

1

10

100

1000

10000

100000

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Δ (days)

fr
eq

. o
f o

cc
u

rr
e

n
ce

Fig. 2. As Figure 1, with the addition of: same
click pairs resulting from the same query
(middle curve); same click pairs resulting
from different queries (lower curve)

The repeat click data was sub-divided into two sets, click pairs resulting from the
same query and click pairs resulting from different queries. Figure 2 shows this
breakdown. The upper of the two new lines shows click pairs resulting from the same
query; the lower line shows clicks resulting from different queries. As can been seen
in the graph, the number of repeat clicks from different queries is substantially lower
than from the same query. The gap between the two lines decreases slightly as the
difference in time between clicks grows. Table 1 charts the proportional difference
between the two curves, calculated by the following formula

Queries Total
Queries)Different -Queries (Same

As the Δ between the paired events of a user clicking on a particular search result
URL grows, the user is more likely to reach that URL via a different search query.

600 M. Sanderson and S. Dumais

Table 1. Table of the percentage relative difference between the same query and different
query lines in Figure 2

Δ (days) 0 14 28 42 56 70
Relative difference 80% 79% 77% 76% 77% 74%

3.2 Periodicities in Repetitions

It can also be seen in the histograms in Figures 1 and 2 that there is a seven day
periodicity in the data. From this data we can infer that if a user uses a search engine
on a particular day of the week, they are more likely to re-use the engine on the same
day in the following weeks. The weekly periodicity is observable for pairs of click
events that occur months apart. A more detailed analysis of the log data revealed that
the periodicity was due to a weekend effect. Users who access the search engine on a
weekend are more likely to use the engine again on a weekend than on a weekday. It
was found that if one observes a user event on a weekend, the probability of that
user’s next event also happening on a weekend was 55% (by chance, the probability
was 28.6%, 2/7). For weekdays, the probability of the next event also occurring on a
weekday was 81%, by chance it was 71% (5/7). The frequency of occurrence of search
events on the engine was also different for each day (see Table 2). This combination
of factors leads to the observed periodicity.

Table 2. Distribution of queries by days of the week

Sun Mon Tues Wed Thurs Fri Sat
14% 16% 15% 15% 14% 13% 13%

Recalling the definition of user set out in Section 2 (an ID associated with a user
account on a particular PC), we conclude that accounts on a PC used for searching on
a weekday tend to be used more for searching on other weekdays and that accounts
used on a weekend tend to be used more on other weekends.

4 Further Temporal Analysis

From the histogram in Figure 1, it was clear that a number of factors were influencing
the shape of the graph: the 94 day windowing effect (which caused the slope and
sharp tail off) and the weekend effect (which caused the 7 day periodicity). Therefore,
we further analyzed the data using a series of normalizations to remove such effects.

4.1 Normalizing the Data

In order to examine just the windowing effect in the data (independent of any
repetition), query events in the log were randomly paired ignoring which user or
query they came from. A histogram of the events binned by the number of days
between the two events is shown in Figure 3. The windowing effect is clear. We can
now use this curve to remove the windowing artifact from other analyses. Queries
issued by the same user were randomly paired. A histogram of this plot is shown in

 Examining Repetition in User Search Behavior 601

Figure 4: both the windowing and weekend effects are present. To remove the
windowing effect, the data in Figure 4 was normalized using the randomly paired data
in Figure 3 producing the graph in Figure 5. The normalization formula is shown
below: the count c at a certain Δi (expressed as a fraction of the total counts) is
divided by a similarly calculated fraction from the normalizing data.

⎟
⎠

⎞
⎜
⎝

⎛ ΔΔ⎟
⎠

⎞
⎜
⎝

⎛ ΔΔ ∑∑
==

94

0

94

0

)()()()(
t

ti
t

ti cncncc

1

10

100

1000

10000

100000

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Δ (days)

fr
eq

. o
f o

cc
u

rr
e

n
ce

Fig. 3. Histogram of randomly paired events

1

10

100

1000

10000

100000

1000000

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Δ (days)

fr
eq

. o
f o

cc
u

rr
e

n
ce

Fig. 4. Histogram of randomly paired events
from the same user

In this normalized view, the horizontal line in Figure 5 crossing the y-axis at 1 is
where the data points in Figure 3 would be plotted. Anything appearing above or
below the line constitutes a deviation from the norm. Plots above the line are events
occurring more often than found in the normalizing data; in contrast, anything plotted
below occurs less often.

0.1

1

10

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Δ (days)

n
o

rm
al

iz
e

d
 fr

eq
. o

f
o

cc
.

Fig. 5. Normalized histogram of events from the same user (Figure 4 normalized by data in
Figure 3). Y-axis is a normalized count of the number of events in each bin.

From these graphs it can be seen that if a user issues a query to a search engine, the
chances of them issuing another query on the same day (Δ=0) is 3-4 times more likely
than would be expected by chance. Users are more likely than chance to re-use the
search engine after issuing a query for a period of up to 20-21 days. Two search

602 M. Sanderson and S. Dumais

events by the same user with a difference greater than 21 days are less likely to occur
than would be expected by chance. This graph shows that on average, users’ search
engine use tends to be bursty. If we observe users searching, we are likely to observe
them searching again relatively soon, probably within the next three weeks; beyond
that time, however, there is an increasing chance they may not be observed again.

4.2 Analyzing Query Repetition

Replicating the methodology used above, we examined user behavior with repeated
queries. Events in the logs from the same user issuing the same query were randomly
paired and a histogram of those events binned by the time difference in days was
plotted. The graph produced was normalized by the data in Figure 4, so as to
eliminate the windowing & weekend effects as well as the burstiness of user search
behavior. The results are shown in Figure 6, where it can be seen that users re-issuing
of queries to a search engine is more bursty than user search engine re-use. If a user
issues a particular query, they are likely to re-issue that query again within the
following 7 days. After that, however, the chance of observing the same query from
the same user reduces. Users appear to have a limited interest in pursuing a particular
query. Whether this is because the user’s information need was satisfied or because
the user gave up is left for study in future work.

0.1

1

10

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Δ (days)

n
o

rm
a

liz
e

d
 fr

e
q

. o
f o

cc
.

Fig. 6. Normalized histogram of counts of the
same user issuing the same query

0.1

1

10

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Δ (days)

n
o

rm
a

liz
e

d
 fr

e
q

. o
f o

cc
.

Fig. 7. Normalized histogram of repeat
navigational queries issued by the same user

4.2.1 Examining Query Types
We examined whether the pattern of query repetition observed so far varied for
different query types. Based on heuristics like those identified by Teevan et al. and by
Lee et al. (2005), we generated a list of navigational queries. Queries in the logs that
matched items in this list were randomly paired and normalized by the data used to
generate the graph in Figure 6. The results are shown in Figure 7. As can be seen, if a
user issues a navigational query, we are less likely to observe the same query being
issued again within a few days than would be expected from general repeat query
behavior by users (Figure 6). Thus the burst of repeat queries observed in Figure 6
appears due to non-navigational queries, which tend to be more information seeking
focused. From this examination of the data sets, we conclude that repeat query
behavior is different depending on the nature of the users’ query. Navigational queries

 Examining Repetition in User Search Behavior 603

are less likely to be repeated by users within a few days than queries with a more
information seeking focus, and navigational queries are more likely to be repeated at
later points in time.

A final aspect of repeat searching behavior was examined: queries repeatedly
submitted to a search engine by different users. For this analysis, search requests from
different users were examined. It was found that certain such queries occurred in
bursts. Within this set, queries that were topical for the time period covered by the
query logs such as “April fools day” and “spring cleaning tips” were found as well as
novelty or news queries such as “33-pound cat”, “Grammy music awards”, “testing of
a scramjet engine”, etc. It was found that such queries had a higher than expected
frequency of occurrence for around 1-2 weeks.

5 Hourly Analysis of User Queries

The presence of hourly periodicities in user behavior was also examined. The data
used to produce Figure 6 was re-binned to hourly differences between events to
produce the results in Figure 8. As can be seen, users’ use of search engines follows a
strong 24 hour periodicity. Users who query at a particular time on one day are likely
to query at that same time on a different day. The data in Figure 6, which shows
repeated queries from the same user, was similarly re-binned (shown in Figure 9).
Remembering that the data in Figure 6 was normalized to remove windowing &
weekend effects as well as user search periodicities, it is striking that users issuing the
same query seem to show a stronger 24 hour periodicity in their behavior than is
observed in general user search behavior.

0.1

1

10

0 168 336 504

Δ (hours)

n
o

rm
a

liz
ed

 fr
eq

. o
f o

c
c.

Fig. 8. Histogram of the first 22 days of
randomly paired query log events from the
same user. Note points on the x axis mark out
weeks.

0.1

1

10

0 168 336 504

∆ (hours)

n
o

rm
a

liz
ed

 fr
eq

. o
f o

c
c.

Fig. 9. Histogram of the first 22 days of
randomly paired events from the same user
issuing the same query

It is not entirely clear why users repeatedly searching with the same query would
be more likely to do so at the same time of day. A preliminary examination of these
regular queries revealed that some queries seemed to be associated with a particular
time of day, such as queries related to a TV show (e.g. “deal or no deal”, “american
idol”). Others appeared to be queries that a user issued regularly to monitor a
particular event or topic (e.g. queries for lotteries; see also Kellar et al., 2006 for a

604 M. Sanderson and S. Dumais

description of monitoring queries). Although there was no quality to these queries that
in themselves would indicate they should be issued at a common hour, there was an
indication in the data that the peaks were more likely to occur on weekdays than on
weekends. One might speculate that during the week, times when search engines are
used are regulated by the structure of people’s work and school lives. The exact
reason for this periodicity is left to future work.

6 Conclusions and Future Work

This paper presented an analysis of repetitions in user search behavior. Many queries
and URL clicks are repeated over time. Users show both seven day and 24 hour
periodicities in their use of search engines and these periods repeat and stay consistent
over many weeks. Use of search engines is also bursty with users tending to
repeatedly use search engines within a short period of time (e.g. a few weeks). Users
re-issuing queries displayed an even stronger burstiness, although for navigational
queries, the opposite was observed with users unlikely to re-issue navigational queries
within a few days of first issuing the query. Queries that are repeatedly issued by
different users were also examined and found to be related to temporally varying
events or news (see also Vlachos et al., 2004).

The work in this paper constitutes a preliminary analysis of the topic of repetitions in
user interactions with search engines. All analyses presented in this paper, described the
general behavior of a large user population. We have not yet examined the variation
within the averages and the degree to which individuals deviate from the norm. It is also
unclear to what extent the periodicities that we have observed are related uniquely to
search engine use or are a reflection of general use of the Web or even of general
computer use. An examination of such behavior would be one avenue of future work.

References

Andrei Broder. A taxonomy of web search. SIGIR Forum 36(2), Fall 2002, 3-10, 2002.
Steven M. Beitzel, Eric C. Jensen, Abdur Chowdhury, David A. Grossman and Ophir Frieder:

Hourly analysis of a very large topically categorized web query log. ACM SIGIR 2004, 321-
328, 2004.

Bernard J. Jansen, Amanda Spink: How are we searching the World Wide Web? A comparison
of nine search engine transaction logs. Information Processing and Management, 42(1),
248-263, 2006.

Melanie Kellar, Carolyn Watters and Michael Shepherd. A goal-based classification of web
information tasks. ASIST, 2292-2315, 2006.

Uichin Lee, Zhenuy Lui and Junghoo Cho. Automatic identification of user goals in web
search. WWW 2005, 391-400, 2005.

Craig Silverstein, Monica Henzinger, Hannes Marais and Michael Moricz. Analysis of a very
large web search engine query log. DEC SRC Technical Note 1998-014, 1998.

Jaime Teevan, Eytan Adar, Rosie Jones and Michael Pott. History repeats itself: Repeat queries
in Yahoo’s logs. ACM SIGIR 2006, 703-704, 2006.

Michail Vlachos, Christopher Meek, Zografoula Vagena, Dimitris Gunopulos. Identifying
similarities, periodicities and bursts for online search queries. ACM SIGMOD 2004,
131-142, 2004.

Popularity Weighted Ranking for Academic

Digital Libraries

Yang Sun and C. Lee Giles

Information Sciences and Technology
The Pennsylvania State University
University Park, PA, 16801, USA

Abstract. We propose a popularity weighted ranking algorithm for aca-
demic digital libraries that uses the popularity factor of a publication
venue overcoming the limitations of impact factors. We compare our
method with the naive PageRank, citation counts and HITS algorithm,
three popular measures currently used to rank papers beyond lexical
similarity. The ranking results are evaluated by discounted cumulative
gain(DCG) method using four human evaluators. We show that our pro-
posed ranking algorithm improves the DCG performance by 8.5% on
average compared to naive PageRank, 16.3% compared to citation count
and 23.2% compared to HITS. The algorithm is also evaluated by click
through data from CiteSeer usage log.

Keywords: weighted ranking, citation analysis, digital library.

1 Introduction

Effectively indexing and retrieving information from large document databases
continues to be a challenging task. Automated digital libraries make it easier for
users to access and use these databases. In Web search, PageRank [14] and HITS
[9] algorithms created to measure importance or authority as a ranking factor
showed a great success compared to lexical similarity measures. Citation count is
also widely used in evaluating the importance of a paper. However, unweighted
citation counting often does not accurately describe the impact of papers [11].

The publication process of academic papers makes the citation graph much
different from the Web graph. First, publication date and content of papers usu-
ally do not change over time whereas those of the Web pages can. Second, the
typical citation graph of academic papers is an acyclic digraph without loops
(there are rare exceptions to this). It is also common that a paper does not
cite future papers. (Except in unusual cases where papers can cite unpublished
work that is published later. In that case these papers can be treated as multi-
ple versions.) Thus, the interpretation of the naive PageRank algorithm would
be problematic[13,17]. We introduce a popularity factor weighted ranking algo-
rithm based on PageRank with significantly improved performance for ranking
academic papers. Our contributions are as follows:

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 605–612, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

606 Y. Sun and C.L. Giles

– We define a new popularity factor that reflects the influence of publication
venues and overcomes the limitations of a venue’s impact factor.

– A popularity factor weighted ranking score of a paper in the proposed rank-
ing method is defined by the weighted citations from other papers and the
popularity factor of its publication venue and is implemented on the CiteSeer
metadata.

– A user study with four evaluators shows the improved performance of this
new algorithm. We also use clickthrough data from CiteSeer usage log to
validate the results.

2 Weighted Ranking

According to information foraging theory[15], users of information retrieval sys-
tems will evaluate the value of documents by information cues (such as title,
author, venue, citation count, publication date of a paper in academic digital li-
braries) and follow the most valuable document. The more cues they encounter,
the better they can evaluate the value. Lexical similarity only shows a limited
information cue about a document. Citation count as an information cue is usu-
ally considered to be strongly correlated to academic document impact [12].
Although it is widely used in academic evaluation, citation count has limitations
which make it less precise. The citation count of an individual paper by itself
does not reflect the different citation structure in each discipline[19]. The papers
with high impact and the ones with low impact are treated the same in citation
count [4].

2.1 Weighted Ranking Method

In our research users are modeled as optimal information foragers who evaluate
the cost of pursuing a document by information cues and follow the most valuable
document [15]. According to this user model, the reference in a high impact
paper will have a high probability to be followed by users. The citations of
a paper should be viewed as weighted links. Not only the count of citations
but also the impact of citations matters in this sense. Furthermore, the quality
of the publication venue where a document is published is also an important
information cue for users to evaluate the value of a document.

Popularity Factor. All serious research publication venues have a peer review
process for publishing papers. It is fair to consider that the impact of a paper
is partially reflected by where the paper is published. Impact factors of journals
are widely used in evaluating the quality of publication venues[3]. There are
limitations about the definition and the usage of impact factors. The impact
factor is not normalized across research areas[6]. The calculation of an impact
factor only considers a 3 year period. But important papers may receive many
citations after 3 years[18]. Conferences are not considered in the calculation.
Conferences often play very important roles in computer and information science
research because of their timeliness and popularity.

Popularity Weighted Ranking for Academic Digital Libraries 607

We introduce the popularity factor to consider venue as an information cue
and to reflect the influence of a publication venue. The popularity factor is
defined based on citation analysis of publication venues. Note that the popularity
factor does not distinguish journals from conference or workshop proceedings.
The popularity factor of a publication venue v in a given year is defined by
Equation 1:

PF (v, t) =
nv

N
∗

∑
i∈P

PF (i, t) × w(i)
N(i)

. (1)

where PF(v,t) is the popularity factor of publication venue v in a given year t, P
is the set of publication venues i which cite v in that year, and nv is the number
of papers published in venue v in that year. If N is the total number of papers
published in that year in a particular discipline, nv/N represents the probability
of a reader having access to a paper published in the publication venue v. Let
w(i) be the weight which represents the frequency that venue i cites venue v. N(i)
is the total number of references generated by venue i, and PF(v,t) is normalized
so their squares sum to 1 for reasons of convergence:

∑
v(PF (v, t))2 = 1 and

has a range from 0 to 1 with larger values ranked higher. In our definition, a
discipline is considered as a collection of related publication venues. The number
of total papers in a discipline can be obtained by counting all the papers in all
venues of the discipline. Multiple popularity factor values for one venue may
occur in different disciplines.

According to our definition, this popularity factor differs from the impact
factor by considering the impact of all publication venues, recent to long ago
papers, and the probability of reader access. These differences overcome several
shortcomings of the impact factor and provide a robust and reliable measure for
publication venues. The popularity factor is computed with a simple iterative
algorithm and achieve convergence point after 18 iterations [9,14]. Top 5 venues
ranked by popularity factors in 2004 based on our database (includes primarily
Computer Science and Engineering papers) is listed in Table 1.

Table 1. Popularity factors for computer science venues in 2004. Conferences and
journals are both included.

Popularity factor Name

0.05868 INFOCOM

0.04277 ACM SIGPLAN

0.04027 ACM SIGCOMM

0.02731 Human factors in computing systems

0.02622 Mobile computing and networking

Ranking Score. A paper will nearly always be cited after it is published.
A citation relationship in a published document should not change over time
(revisions to technical reports may be an exception). Figure 1 illustrates the
temporal effect of citation graphs.

608 Y. Sun and C.L. Giles

Fig. 1. A schematic illustration of a citation graph. Each circle represents a paper.
Arrows represent citations. It can be seen that citation graphs typically do not have
backward citations. They are acyclic digraphs.

With the popularity factor and temporal effect, we define the ranking score
R(dT) of an academic paper d at a previous time T in Equation 2 as

R(dT) = PF (vdT) +
∑

t>T,dt∈D

R(dt)
N(dt)

. (2)

where R(dt) is the ranking score of a paper dt which is published at time t and
cite paper dT . D is the set of papers which cite dT . N(dt) is the number of
references in paper dt. PF (vdT) is the popularity factor of the publication venue
v where paper dT is published. The ranking score has a range of 0 to very large
numbers. The vector PF is considered as an initial score of a paper when there
is no citation record for this paper. This ranking assumes that the ranking score
of a previously published paper will not have any impact on later published ones.
Our algorithm does not permit bidirectional citations. If a paper is cited before
it is published (no a common case), the paper will be considered to have two
versions and the two versions will have separate rankings. The citation graph
can be constructed as a function of publication time because of the temporal
property of papers. The adjacency matrix of the graph can be then sorted and
form a strict upper triangular matrix. Then, the equation of ranking scores can
be written to a system of n linear equations with n unknowns, which has a single
unique solution. As such there are no convergence issues. Notice that the ranking
function has a computational complexity of O(nm) where n is the number of
papers in the database and m is the average citations to a paper. m typically
ranges from 0 to less than 50000 with a power law distribution for academic
papers [16], making the ranking algorithm scalable for large digital libraries.
The evaluation method and the results are discussed in the next section in order
to demonstrate how our algorithm improves the ranking performance.

3 Evaluation

Evaluating the quality of ranking algorithms used in an information retrieval
system is a nontrivial problem[5,7]. Most evaluation methods involve human

Popularity Weighted Ranking for Academic Digital Libraries 609

evaluators judging the relevance of the retrieved documents to specific queries.
In this research we compare our ranking method to naive PageRank, citation
count and HITS using discounted cumulative gain method with four human
evaluators. Two of the evaluators were graduate students from computer science
department whose research interest is in data mining and Web search. One is
a research programmer who has experience on machine learning program de-
velopment. The other evaluator is a software engineer with Master’s degree in
computer science. The four ranking algorithms are implemented in a basic in-
formation retrieval system which indexes 536,724 papers’ metadata from the
CiteSeer database[1] using Lucene[2] in which tf-idf is used as the basic rank-
ing function. The evaluation is expected to compare the performance of the
re-ranking functions beyond lexical similarity. Top 5 ranked papers by our algo-
rithm with comparison to naive PageRank, citation count and authority scores
of HITS are shown in Table 2.

Table 2. Ranking scores of the top 5 papers in computer science

Title Weighted PageRank Citation HITS

The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine - Brin (1998)

0.13504 0.11924 521 0.89659

Boosting a Weak Learning Algorithm By
Majority - Freund (1995)

0.07568 0.06363 174 0.27771

A Tutorial on Learning With Bayesian Net-
works - Heckerman (1996)

0.04321 0.04048 203 0.20106

Irrelevant Features and the Subset Selec-
tion Problem - John (1994)

0.04097 0.05434 290 0.14429

Dynamic Itemset Counting and Implication
Rules for Market Basket Data - Motwani
(1997)

0.03944 0.04392 232 0.43546

3.1 Evaluation Method

Discounted cumulative gain (DCG) [8,20] measure considers the ranking of pa-
pers in addition to the relevant score from evaluators. The assumption in DCG
is the lower the ranked position of a paper the less valuable it is for the user
because the less likely it is going to be examined by users. Human evaluators are
required to rate the ranked papers with a score from 0 to 2, where 0 represents
non relevance, 1 represents marginal relevance, and 2 represents high relevance.
The DCG value is computed separately at each relevance level. The agreement
among evaluators is examined by kappa statistics to show the confidence level by
using the evaluation results. The kappa statistic is a standard measure of agree-
ment with categorical data to access the degree to which two or more raters
agree in assigning data to categories [10].

Fifty queries were selected from the CiteSeer query log. Papers are ranked by
the four ranking algorithms separately in addition to the tf-idf lexical similarity
measure. Top twenty papers are mixed and presented to four human evaluators
(using four evaluators is considered enough for DCG evaluation methods [8,20]).

610 Y. Sun and C.L. Giles

3.2 Results

Kappa Measure. The agreement among the four evaluators was examined for
each of the 50 queries. The average kappa agreement among the four evaluators
is 53% which is considered to be in the level of moderate agreements [10].

Precision Recall. The precision-recall curves at different relevance levels for
the four algorithms using standard methods [8] are presented in Figure 2.

Fig. 2. Precision-Recall of the four ranking algorithms at relevance level 1(a) and 2(b)

DCG. The DCG vector curves for ranks 1-20 is shown in Figure 3. The DCG
scores are shown in Table 3. Both the curve and statistics show that our algo-
rithm significantly outperforms the other three algorithms for documents ranked
after rank 10.

Fig. 3. DCG at various document rankings

3.3 Validity of Results

To validate the results, a pairwise measure of each ranking algorithm is calculated
using the clickthrough data extracted from CiteSeer usage log. For any pair of
papers, if the clickthrough rate of the high-ranked paper is larger than the low-
ranked paper, we consider this pair is correctly ranked. The average pairwise
accuracy of each algorithm is listed in Table 4.

Popularity Weighted Ranking for Academic Digital Libraries 611

Table 3. The DCG score for the four ranking algorithms

Our Algorithm naive PageRank Citation Count HITS

DCG @ rank 1 1.3 1.54 1.28 1.05

DCG @ rank 5 3.49 3.33 2.87 2.49

DCG @ rank 10 4.18 3.71 3.24 3.06

DCG @ rank 15 4.69 3.86 3.49 3.25

DCG @ rank 20 4.86 3.86 3.71 3.36

Ave. DCG(1-10) 3.28±0.87 3.12±0.68 2.69±0.62 2.35±0.64

Ave. DCG(10-20) 4.68±0.16 3.85±0.04 3.54±0.14 3.25±0.11

Table 4. Average pairwise accuracy based on Clickthrough data

Our Algorithm naive PageRank Citation Count HITS

Ave. accuracy 74.18% 70.29% 67.1% 67.13%

4 Discussion and Conclusions

A new weighted ranking score of a paper was defined by the weighted citations
from other papers and the popularity factor of its publication venue. A ranking
system based on the Lucene index and Citeseer metadata was built and was used
to evaluate our algorithm with comparison to other popular ranking algorithms.

The algorithm is evaluated by DCG method using human evaluators and
we compare its results to the ranking of naive PageRank, citation counts and
HITS. The comparison results show that the weighted ranking algorithm im-
proves the DCG ranking performance by 8.5% compared to naive PageRank,
16.3% compared to citation count and 23.2% compared to HITS. We also use
the clickthrough data from CiteSeer usage log to validate the results. This leads
us to believe that our weighted ranking algorithm is more accurate than those
currently being used.

Our evaluation experiment shows that the user agreement on paper rankings
is not very high. Effective personalized ranking algorithms would most likely
satisfy the diversity of most user information needs.

References

1. Citeseer, http://citeseer.ist.psu.edu.
2. D. Cutting, “The Lucene Search Engine,” http://lucene.apache.org/, 2006.
3. E. Garfield, “The impact factor,” Current Contents, 25, 3-7, 1994.
4. S. Harnard, “The New World of Webmetric Performance Indicators: Mandating,

Monitoring, Measuring and Maximising Research Impact in the Open Access Age,”
Proc. of the 1st ECSP in Biomedicine and Medicine, 2006.

5. D. Hawking, N. Craswell, P. Thistlewaite, and D. Harman, “Results and chal-
lenges in Web search evaluation,” Proc. of the 8th International World Wide Web
Conference, 1321-1330, 1999.

612 Y. Sun and C.L. Giles

6. F. Hecht, B. Hecht, and A. Sandberg, “The journal “impact factor”: a misnamed,
misleading, misused measure,” Cancer Genet Cytogenet, 104(2), 77-81, 1998.

7. D. Hull, “Using statistical testing in the evaluation of retrieval experiments,” Pro-
ceedings of the 16th annual international ACM SIGIR Conference, 329-228, 1993.

8. K. Jarvelin and J. Kekalainen, “IR evaluation methods for retrieving highly rele-
vant documents,” Proc. of the 23rd SIGIR conference, 41-48, 2000.

9. J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal of
ACM, 48, 604-632, 1999.

10. R. J. Landis and G. G. Koch, “The measurement of observer agreement for cate-
gorical data,” Biometrics, 33, 159-174, 1977.

11. S. Lehmann, B. Lautrup, and A. D. Jackson, “Citation networks in high energy
physics,” Physical Reivew E68, 026113 (2003).

12. F. Narin, “Evaluative bibliometrics: The use of publication and citation analysis
in the evaluation of scientific activity,” Cherryhill, N.J.: Computer Horizons, 1976.

13. Z. Nie, Y. Zhang, J. Wen, and W. Ma, “Object-Level Ranking: Bringing Order to
Web Objects,” Proc. of the 14th International World Wide Web Conference, 2005.

14. L. Page and S. Brin, “The PageRank citation ranking: bringing order to the web,”
tech. report SIDL-WP-1999-0120, Stanford University, Nov. 1999.

15. P. Pirolli and S. Card, “Information foraging in information access environments,”
Proc. of the SIGCHI conference, 51 - 58, 1995.

16. S. Redner, “How Popular is Your Paper? An Empirical Study of the Citation
Distribution,” European Physical Journal B, 4, 131-134, 1998.

17. M. Richardson, A. Prakash, and E. Brill, “Beyond PageRank: Machine Learning
for Static Ranking,” Proc. of the 15th International World Wide Web Conference,
2006.

18. P. Seglen, “Why the impact factor of journals should not be used for evaluating
research,” British medical journal, 314(7079), 498-502, 1997.

19. Thomson and Corporation, “In Cites: Analysis Of” http://www.in-
cites.com/analysis/, 2005.

20. E. Voorhees, “Evaluation by Highly Relevant Documents,” Proc. of the 24th annual
international ACM SIGIR conference, 74-82, 2001.

Naming Functions for the Vector Space Model

Yannis Tzitzikas and Yannis Theoharis

Computer Science Department, University of Crete, Greece, and
Institute of Computer Science, FORTH-ICS, Greece

{tzitzik, theohari}@ics.forth.gr

Abstract. The Vector Space Model (VSM) is probably the most widely
used model for retrieving information from text collections (and recently
from over other kinds of corpi). Assuming this model, we study the prob-
lem of finding the best query that ”names” (or describes) a given (un-
ordered or ordered) set of objects. We formulate several variations of this
problem and we provide methods and algorithms for solving them.

1 Introduction

This paper elaborates on the ”naming problem” i.e. the problem of finding a
query (or the best query) that describes (names) a given (unordered or ordered)
set of objects. The motivation for studying this problem is that several varia-
tions of it are useful in a number of tasks (e.g. for relevance feedback, document
representation learning). In addition, naming functions can be exploited for pro-
viding flexible information access services, for instance, they can be exploited
for realizing the context-based interaction scheme described in [9].

More precisely, naming functions can be exploited for supporting an alterna-
tive query formulation process. The user selects a number of objects (i.e. a set A′)
and asks the system to formulate the query that ”describes” these objects. The
system returns a query q′ and subsequently the user can change it in a way that
reflects his/her information need. Roughly this resembles the Query By Example
(QBE) process in relational databases. It also resembles the relevance feedback
mechanisms in IR systems. For example, consider a user who has formulated
a query q and has been given an answer A. She can select a subset A′ of the
current answer A consisting of those elements of A which she finds relevant to
her information need. Subsequently, the system has to change appropriately the
query. Notice that here the user is not directly driven to the answer of the new
query (as it is done in classical relevance feedback mechanisms). Instead, she is
given the new query, so she has the opportunity to modify it before submitting
it for evaluation. Probably this (intermediate step) could alleviate the problem
of unexpected results that frequently occur after a feedback cycle. Notice that
if A′ ⊆ A then it is like giving explicit negative relevance feedback (to the el-
ements of A − A′), and ”tacit” positive relevance feedback (to the elements of
A′). However, this interaction scheme is more general than the classical feedback
mechanisms of IR as it allows giving positive feedback to documents not already
in the current answer. In addition, naming functions can help users to be attuned

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 613–620, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

614 Y. Tzitzikas and Y. Theoharis

with the indexing and query language of the system. It is not hard to foresee ad-
ditional applications of naming functions, in building mediators (metasearchers)
and in cross-language retrieval. For these reasons, we believe that the naming
problem deserves separate attention and analytical elaboration.

The rest of this paper is organized as follows. Section 2 states the naming
problem and Section 3 provides solutions assuming the vector space model. Sec-
tion 4 reports some experimental results. Finally, Section 5 concludes the paper
and identifies issues for further research.

2 The Naming Problem

An IR system S, hereafter source, can be viewed as a function S : Q → A where
Q is the set of all queries that S can answer, and A is the set of all answers to
those queries, i.e. A={ S(q) | q ∈ Q}. As the focus is given on retrieval queries,
it is assumed that A is a subset of P(O), the powerset of O, where O is the set
of all objects stored at the source. In order to capture sources that return sets of
ranked objects (based on best-match retrieval models), we shall use B’s to denote
ordered answers (and A’s for unordered ones). Given an ordered set B, we use
B(k) to denote the first k elements of B and B{k} to denote the set of elements
that appear in B(k). We shall also use the notation {B} to denote the set of
elements that appear in B (in other words {B} = B{|B|}). So if B = 〈o1, o2, o3〉
and B′ = 〈o3, o2, o1〉, then we can write {B} = {B′}. Furthermore, we use B|A
to denote the restriction of B on the set A, i.e. the ordered set obtained if we
exclude from B those elements that do not belong to A. Similarly, {B}|A denotes
the restriction of {B} on the set A, i.e. the unordered set obtained if we exclude
from {B} those elements that do not belong to A.

2.1 The Naming Problem for Unordered Sets

Def. 1. A query q is an exact name of A and we write q=n(A), if S(q){|A|}=A.

This means that the first |A| elements of S(q) are occupied by elements of A.

Def. 2. A query q is the best upper name of A and we write q = n+(A), if there
exists m ≥ |A|, such that S(q){m}|A = A, where m is the minimum possible.

This means that the restriction of the set of the first m (m ≥ |A|) elements of
S(q) over A is A.

Def. 3. A query q is the best lower name of A and we write q = n−(A), if there
exists 0 < m ≤ |A|, such that S(q){m} ⊆ A, where m is the maximum possible.

This means that the first m (m ≤ |A|) elements of S(q) are occupied by elements
of A. However, more often than not, non of these three names exists. For this
reason below we define a more relaxed definition, which generalizes both upper
and lower name definitions.

Def. 4. A query q is a relaxed name of A and we write q = ñ(A), if |S(q){m}∩
A| = j, where m ≥ j > 0.

Naming Functions for the Vector Space Model 615

If m = j = |A| then q is an exact name. If m > j = |A|, then q is an upper name
(the best one, if m is the least possible). If m = j < |A|, then q is a lower name
(the best one, if m is the greatest possible).

2.2 The Naming Problem for Ordered Sets

Here we elaborate on the naming problem for ordered sets. Specifically, we con-
sider weakly ordered sets as this captures both sets and linearly ordered sets. We
use 〈o1, o2, o3〉 to denote a linearly ordered answer where o1 is the most relevant
object, and 〈o1, {o2, o3}, o4〉 to denote a weakly ordered answer where o2 and o3
are equally relevant (e.g. they have the same degree of relevance).

Def. 5. Let B be a weakly ordered set. A query q is:

– an exact name of B (and we write q = n(B)), if S(q)(|{B}|) = B.
– the best upper name of B (and we write q = n+(B)), if S(q)(m)|{B} = B,

where m is the minimum possible.
– the best lower name of B (and we write q = n−(B)), if S(q)(m) = B(m),

where m is the maximum possible (and m > 0).
– a relaxed name of B (and we write q = ñ(B)), if S(q)(j)|{B(m)} = B(m),

where m is the maximum and j is the minimum possible (and m > 0).

3 Naming Functions for the Vector Space Model

The Vector Space Model (VSM) is one of the classical models for information
retrieval over text collections and has been recently used for information retrieval
over XML documents [2] and ontology-based sources [3]. Let T = {t1, . . . , tk} be
the set of different words that appear in the documents of the collection O (we
ignore stemming, stopwords). According to the VSM, the degree of relevance
equals the cosine of the angle between the vectors q and oj.

3.1 Naming Functions for Unordered Sets

As one can imagine, it is very difficult to find the upper name for a given set of
objects assuming the classical index structures that IR systems and Web search
engines currently use (i.e. inverted files). However, several methods could be
used to find an approximate upper name, the most well known example being
the best query of the Rocchio method [6]. To be more specific, below we list a
number of conditions that a candidate query q could satisfy:

(a) minimizes the maximum distance between q and an element of A,
(b) minimizes the average distance between q and the elements of A,
(c) is the result of subtracting from a query q1 that satisfies (b) a query q2 that
minimizes the average distance between itself and all those elements not in A.

A query that satisfies (b) is q = 1
|A|

∑
d∈A d. A query that satisfies (c) is

q = 1
|A|

∑
d∈A d − 1

|Obj\A|
∑

d/∈A d, what is called ”best query” on which the

616 Y. Tzitzikas and Y. Theoharis

standard Rocchio method for relevance feedback is based on. A query that sat-
isfies (a) is q = 1

2 (a1 + a2), where a1, a2 are the most distant (i.e., less similar)
documents of A.

Note that none of these methods guarantees that the resulting query is the
best upper name (as defined in Def. 2). In particular, (a) can be better than
(b), as depicted in Figure 1 (left). In this case, A comprises 3 elements, i.e., a1,
a2 and a3. y is an element that does not belong to A. o is the query vector
that method (b) yields, while u is the one that method (a) yields. Obviously,
o will rank documents in the rank 〈a2, a1, y, a3〉, while u will rank them as
follows, 〈a2, {a1, a3}, y〉. Also, (a) can be better than (c), as depicted in Figure 1
(right). In that case y1, y2 are documents not in A, o is the query vector that
method (c) yields, while u is the one that method (a) yields. Note that the vector
q2 = y1 + y2 (i.e.,

∑
d/∈A d) has the same direction as q1 = 1

3 (a1 + a2 + a3) (i.e.,∑
d∈A d) and thus the resulting query o will rank the documents in the rank

〈a2, a1, {y1, y2}, a3〉, while u will rank them as follows, 〈y2, a2, {a1, a3}, y1〉. The
latter is a better upper name than the former according to Def 2, because it has
m=4, while the former has m=5.

We should stress that the query yielded from method (a) can be evaluated
more efficiently than the queries yielded by the other two methods, since it only
comprises the words of the two most distant documents.

Methods (b), (c) yield a relaxed name. Specifically, and with respect to Def. 4,
we can say that method (b) attempts to maximize j, irrespective of the value
of m. On the other hand, method (c) attempts to maximize j and minimize
m − j simultaneously. Hence, method (c) yields a better approximation of the
best lower name than (b).

Τ1

Τ2

a1

a2

a3

ο

u

γ1

γ2

Τ1

Τ2

a1

a2

a3

o

u

γ

(a) can be better than (b) (a) can be better than (c)

Fig. 1. Different methods to approximate the upper name

Bellow, we elaborate on the method (a) to approximate the upper name. Let
a1 and a2 be the most distant (less similar) elements of A, i.e. cos(a1, a2) =
min({cos(a, b) | a, b ∈ A}). Since the measure of similarity equals the cosine
between the corresponding vectors and the maximum angle between two docu-
ment vectors equals π

2 (because the vector coordinates are positive) and cosine

Naming Functions for the Vector Space Model 617

is monotonically decreasing (with maximum value at 0 and minimum at π
2),

it follows that the most distant documents will be those that form the bigger
angle. If there exist more than one such pairs a1, a2, then we choose arbitrarily
one of them. The two less similar vectors of A define the area(a1, a2), which
is the geometric space of all vectors of [0, 1]|T | such that ∀b ∈ area(a1, a2),
|(b̂, a1)| < |(â1, a2)| and |(b̂, a2)| < |(â1, a2)|. As one can easily see, every
query q ∈ area(a1, a2) ranks each document of area(a1, a2) higher than either
a1 or a2. The query that minimizes the maximum distance between q and an
element of A is the vector qA = 1

2 (a1 +a2) whose direction is that of the vector
that corresponds to the composed force of a1 and a2. So we can decide whether
there is an exact name in two steps:

(1) We find the vectors a1 and a2, i.e.:

(a1, a2) = arga,a′ min({cos(a, a′) | a, a′ ∈ A})

(2) we check if there are documents in area(a1, a2) that do not belong to A
and how many they are. Let denote with n the number of these documents.
If n = 0, then the exact name exists and it equals to qA, i.e. n(A) = qA.
Otherwise, i.e. if n > 0, then there is not an exact name, because, since
qA ∈ area(a1, a2), it ranks each of these n documents of O \ A higher than
either a1 or a2.

Clearly, the cost of Step (1) is O(|A|2), while the second step of the algorithm
costs O(|O|) time, since we need to iterate over the whole collection in the worst
case. However, in most cases (and with the availability of an index) we can just
evaluate the query qA and see if the first |A| elements of the answer is A.

Let’s now consider the case where there is not an exact name. In that case we
would like to find an upper name and a lower name (ideally the best ones). Note
that qA (as defined earlier) will not rank first the elements of A, however it will
rank the elements of A quite high. Specifically, it will be S(qA){|A| + n}|A = A,
i.e. qA is an upper name of A. One can easily see that qA is definitely the best
upper name because for any other query q, if S(q){j}|A = A then certainly
j ≥ |A| + n.

Finding the best lower name means finding a query q that ranks first the
biggest number of elements of A, i.e. finding the maximum m (m ≤ |A|) such
that S(q){m} ⊆ A. One expensive solution that would certainly yield the lower
name would be to find the biggest subset of A that has an exact name (using the
method presented earlier). The time complexity of this method is exponential
with respect to |A|.

Another method is presented next. For each pair b, b′ ∈ (O\A)
⋂

area(a1, a2)
we first investigate the area(b, b′): we want only elements of A to be there and
if this is the case we compute their number. At the end we select the pair that
gave the bigger number and consider as lower name the ”composed force” of that
pair1. The time complexity of this method is O(|O|3), since all possible pairs of

1 If there were an element not in A, then the result of this query would contain it.

618 Y. Tzitzikas and Y. Theoharis

(b, b′) are |O|2 and for such pair the method iterates over the whole collection in
the worst case. Again a multidimensional index would greatly reduce the cost of
computing (O \ A)

⋂
area(a1, a2) as well as the cost for computing area(b, b′).

3.2 Naming Functions for Ordered Sets

A common subproblem implied by all variations of the naming problem is to
investigate how many documents of B are topologically located in the ”right”
order. For instance, if B = 〈a1, a2, a3〉 and a3 rests in area(a1, a2), then there
doesn’t exist an exact name for B. Let ai be the i-th in order document of B (a1
stands for the most relevant and a|{B}| for the less relevant document of B), i.e.
B = 〈a1, ..., a|B|〉. It is evident that a relaxed name exists, if ∃i s.t. 2 ≤ i ≤ |B|
and sim(a1, a2) ≥ ... ≥ sim(a1, ai). In that case a1 is the relaxed name of
B. If i = |B| then a1 is an upper or an exact name of B. Specifically, it is an
exact name of B, if S(a1)(|B|) = B, otherwise it is an upper name of it. Finally,
if i < |B| and S(a1)(i) = B(i), then a1 is a lower name of B. The algorithm
LinearlySorted, shown below, returns the maximum i.

The complexity of Alg. LinearlySorted is O(|B|). To check whether a1 is a
lower or upper or exact name, a query evaluation step is needed. If B is not
a linear ordered but a weakly ordered set, e.g. 〈{a1, a2}, a3〉, then we treat the
class of the most highly ranked elements in B (in our example the set {a1, a2})
as we did in Section 3.1, i.e. we try to find an exact name of it. This results
in a query q{a1,a2} that is either an exact or an upper name. Then, we replace
in B the set {a1, a2} with q{a1,a2} and use the algorithm LinearlySorted with
some slight modifications. Specifically, we view B as a linear order of sets, i.e.
B = 〈c1, ..., cj〉, where ci ⊆ O and let |B| = j. The variation of the algorithm
LinearlySorted for this case is the algorithm WeaklySorted shown below.

Alg. LinearlySorted
Input: B
(1) M := 1
(2) for i = 2 to |{B}| do
(3) if sim(a1, ai) > M
(4) then return i-1
(5) else M := sim(a1, ai)
(6) return i

Alg. WeaklySorted
Input: B = 〈c1, ..., cj〉
(1) M := 1
(2) for i = 2 to |B| do
(3) X := max({sim(n(c1), ak) | ak ∈ci})
(4) if X > M then return i-1
(5) else M := X
(6) return i

4 Experimental Evaluation

We have implemented naming functions on top of the experimental Web Search
Engine, GRoogle (http://groogle.csd.uoc.gr:8080/groogle/), in order to investi-
gate whether our approach can be applied on large collections. Experiments were
carried out on a ”normal” PC (Pentium IV 3.2GHz, 512MB RAM, Suse Linux
v9.1). We used a collection crawled from www.csd.uoc.gr and www.ics.forth.gr.
We considered two subsets of it, one consisting of 1,000 documents and 40,000
terms and another consisting of 5,000 documents and 250,000 terms. In order to

Naming Functions for the Vector Space Model 619

select the documents that play the role of the answer set A (or B for ordered
sets), we formulated a random query and defined A and B using the first 10/100
documents. We repeated our experiment 10 times and computed the average
times. Recall that the computation of naming functions comprises two steps: a)
find the name query, b) find what kind of name (upper/exact) this query is. The
second step requires evaluating the name query, and clearly this depends on the
underlying IR system. Since the name computed at the first step is certainly an
upper name for the case of unordered sets (and relaxed name for the case of or-
dered sets), it is reasonable to measure separately the first step. Also, note that
for ordered sets we always consider the first document of B as name and thus, the
cost of the first step is negligible. Table 1 reports the execution times (ta denotes
the time to find the query, tb the time to evaluate it and tc the time to identify
what kind of name the query is). Recall that T denotes the vocabulary of the
collection. The main conclusion drawn is that the most costly task is to evaluate
the name query in order to decide whether it is an upper/exact name. For this
reason and in order to show the effect of the length of the computed name, we
evaluated it once by considering only the 5 better (i.e., more weighted) terms
and once more with the 10 better terms. Issues for reducing the query evalua-
tion time are beyond the scope of this paper. From the results of the evaluation
we can say that our method is efficient. Specifically, the cost of the first step
depends only on the size of A and not on the collection. Concerning the effect of
the vocabulary size, the cost of the first step is independent of it, more precisely
it depends on the vocabulary of the documents in A (for the computation of the
inner product of two vectors we only consider the non-zero coordinates of the
vectors, which are usually much less than the vocabulary size).

Table 1. Execution times for computing names of unordered and ordered sets

Collection Naming Functions (in sec)

Unordered Ordered

|O| |T | |{A}| ta tb(query terms) tc ta tb(query terms) tc

1K 40K 10 0.015 1.566 (5) - 3.174 (10) 0.001 0 1.878 (5) - 3.575 (10) 0.008

1K 40K 100 0.328 1.56 (5) - 3.176 (10) 0.005 0 1.624 (5) - 3.192 (10) 0.004

5K 255K 10 0.015 112.1 (5) - 262.5 (10) 0.001 0 131.2 (5) - 264.7 (10) 0.048

5K 255K 100 0.328 116.0 (5) - 251.1 (10) 0.006 0 153.4 (5) - 271.1 (10) 0.152

5 Concluding Remarks

Naming functions for taxonomy-based sources were originally proposed in [8]
and were subsequently exploited for defining a flexible interaction scheme for
information sources [9]. However, they were defined only for sources that return
sets of objects. In this paper we formulated the naming problem for sources
that return ordered sets of objects. Subsequently, we provided algorithms for
computing naming functions appropriate for systems that are based on the vector
space model. Somehow related work includes [4,7,1].

620 Y. Tzitzikas and Y. Theoharis

Although we provided polynomial algorithms for the naming function prob-
lem, they are by no means optimal and a lot of work has to be devoted for finding
more efficient algorithms and appropriate indexing structures that would allow
the application of this interaction scheme on large corpi of documents. For in-
stance, indexes like [5] could be exploited for speeding up the computation of
naming functions.

Another issue for further research and experimental investigation is how we
could shorten the usually long queries that are computed by the naming func-
tions. For instance, a user might prefer to receive only short queries, e.g. queries
that contain at most k terms. One method to address this requirement would
be to reformulate the naming problem by introducing one additional parameter
(i.e. the maximum number of terms desired). An alternative approach (followed
in the Section 4) would be to present to the user only the best k terms of the
queries that the current naming functions compute, i.e. the k terms having the
highest weights. The relative evaluation of these two approaches is an open issue.

Acknowledgement. This work was partially supported by the EU project
CASPAR (FP6-2005-IST-033572).

References

1. R. S. Bot and Y. B. Wu. ”Improving Document Representations Using Relevance
Feedback: The RFA Algorithm”. In Procs of the 13th ACM intern. Conf. on Infor-
mation and Knowledge Management, Washington, USA, 2004.

2. Vinay Kakade and Prabhakar Raghavan. ”Encoding XML in Vector Spaces”. In
Proceedings of the 27th European Conference on Information Retrieval, Santiago de
Compostela, Spain, 2005.

3. Latifur Khan, Dennis McLeod, and Eduard Hovy. “Retrieval effectiveness of an
ontology-based model for information selection”. The International Journal on Very
Large Data Bases, 13(1):71–85, January 2004.

4. Massimo Melucci. ”Context Modeling and Discovery Using Vector Space Bases”. In
Proceedings of the 14th ACM international Conference on Information and Knowl-
edge Management, Bremen, Germany, 2005.

5. G. Qian, S. Sural, Y. Gu, and S. Pramanik. Similarity between Euclidean and
cosine angle distance for nearest neighbor queries. Proceedings of the 2004 ACM
symposium on Applied computing, pages 1232–1237, 2004.

6. J.J. Rocchio. “Relevance Feedback in Information Retrieval”. In G. Salton, editor,
The SMART Retrieval System. Prentice Hall, Englewood Cliffs, NJ, 1971.

7. Xuehua Shen, Bin Tan, and ChengXiang Zhai. ”Implicit User Modeling for Per-
sonalized Search”. In Proceedings of the 14th ACM international Conference on
Information and Knowledge Management, Bremen, Germany, 2005.

8. Y. Tzitzikas and C. Meghini. “Ostensive Automatic Schema Mapping for Taxonomy-
based Peer-to-Peer Systems”. In 7th Intern. Workshop on Cooperative Information
Agents, CIA-2003, pages 78–92, Helsinki, Finland, August 2003.

9. Y. Tzitzikas, C. Meghini, and N. Spyratos. “A Unified Interaction Scheme for
Information Sources”. J. of Intelligent Information Systems, 26(1):75–93, Jan. 2006.

Effective Use of Semantic Structure in XML

Retrieval

Roelof van Zwol1 and Tim van Loosbroek2

1 Yahoo! Research, Barcelona, Spain
2 Utrecht University, Department of Computer Science, Utrecht, The Netherlands

Abstract. The objective of XML retrieval is to return relevant XML
document fragments that answer a given user information need, by ex-
ploiting the document structure. The focus in this article is on auto-
matically deriving and using semantic XML structure to enhance the
retrieval performance of XML retrieval systems. Based on a naive ap-
proach for named entity detection, we discuss how the structure of an
XML document can be enriched using the Reuters 21587 news collection.

Based on a retrieval performance experiment, we study the effect of
the additional semantic structure on the retrieval performance of our
XSee search engine for XML documents. The experiment provides some
initial evidence that an XML retrieval system significantly benefits from
having meaningful XML structure.

1 Introduction

With XML becoming the de-facto standard for tagging content and exchanging
information over the Internet, it becomes possible to exploit the structure of
a document when searching for information. However, the mainstream of the
XML document collections available today are based on a mixture of HTML-
based presentation tags and logical tags, such as chapter, section, and image.
These types of tags have little to no semantic meaning to the users.

The success of XML search engines not only depends on efficient and effective
retrieval strategies, but also on the availability of meaningful structure in the
document collections being searched, and the capability of the user to use this
structure as part of his information need [11]. The focus in this article is on (1)
automatically deriving semantic (∼ meaningful) structure based on named entity
detection, and (2) evaluating the impact of the additional semantic structure on
the retrieval performance of XML retrieval systems, and in particular on our
XSee search engine [12].

INEX, the Initiative for the evaluation of XML retrieval [4] provides an in-
ternational forum for the evaluation of XML element retrieval systems. The
objective is to exploit the available structural information in documents, to im-
plement a more focused retrieval strategy and to return document components,
the so called XML elements - instead of complete documents - in response to
a user query. This has its impact on all facets of the retrieval process: query
formulation, retrieval strategy, and result presentation.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 621–628, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

622 R. van Zwol and T. van Loosbroek

Within INEX, the user information need is expressed in different formats,
using content-only or content-and-structure approaches. The content-only (CO)
approach reflects the keyword based approach commonly used for information
retrieval on the Internet. The content-and-structure (CAS) approach uses a com-
bination of textual and structural clues, expressed in NEXI [8]. NEXI is the query
language adopted by INEX, and is heavily based on XPath. If structural clues
are provided in the information need, it is open to the system to use these clues
in a strict (SCAS) or vague (VCAS) fashion.

The effect of having semantic structure in both the information need and
document structure is studied in a small-scale retrieval performance experiment,
of which the results are presented here.

Organization

Section 2 elaborates on the motivation for the research presented in this article
and formulates the two hypotheses that will be put to the test. In Section 3 our
approach for named entity detection and semantic tagging of the Reuters 21587
news collection is presented. The retrieval model of our XSee search engine is
presented in Section 4, to provide some insights in the underlying theories used
for XML retrieval. Section 5 describes the setup and results of the experiment,
while the conclusions are presented in Section 6.

2 Motivation and Hypotheses

The underlying motivation for the research described in this article is that using
the structure of an XML document allows the system to more effectively retrieve
relevant fragments of information. As in passage retrieval, returning only those
pieces of information to the user for a given information need allows the user
to work more efficiently. One advantage of XML retrieval over passage retrieval
should be that the available document structure improves answering the user’s
information need. Recent work by [7] on using XML document structure re-
veals that using structural clues (hints) using a vague interpretation is not by
definition aiding the retrieval performance, as the user is bad at guessing where
in the document the information should be found. As a consequence, we be-
lieve that the underlying document structure should be meaningful to the user,

Fig. 1. Types of XML structure

to allow him to effectively use the structure of
a document in the information need. Unfor-
tunately, this is not the case for the majority
of the available XML document collections.

In Figure 1 a classification of XML element
types is given in three categories based on
the nature of the encapsulated content. Tra-
ditionally HTML is used to present the con-
tents of a document, allowing the author to
make appealling presentations for the reader.

Effective Use of Semantic Structure in XML Retrieval 623

Typical examples of such elements are h2, b, and i tags, which allow the author
to emphasize on particular phrases of text. In XML collections these tags are
still used, together with a set of logical elements such as section, image, and
title. Logical elements are frequently used in XML standards such as docbook,
and newsML to define the role of a text fragment. However, logical elements still
miss the expressive power of what is defined here as semantic structure. Intu-
itively, semantic elements label the contents of a text. This can be a large XML
fragment, such as a cultural description of a destination, or a textual phrase
that identifies a person or location. The latter are typical examples of semantic
elements, which can automatically be derived using named-entity detection.

Semantic tagging of large XML fragments is a complex task, which is hard
to derive automatically. A number of initiatives employed in the Semantic Web
movement address this issue, but in general it is assumed to be a task for the
author.

2.1 Hypotheses

The main objective of this article is to find evidence that having a richer semantic
document structure contributes to the retrieval performance of XML retrieval
systems. Therefore the following two hypotheses have been defined.

Hypothesis 1 : XML retrieval systems can effectively exploit structure
to increase retrieval performance.

The first hypothesis states that an XML retrieval system, in this case XSee,
benefits from additional structure that is present in a document, even if the user
information request does not contain structural clues. The underlying assump-
tion is that the XML retrieval systems use a ranking mechanism that prefer
small elements containing relevant information, over larger elements with the
same amount of relevant information. In the case of named entities, the XML
retrieval systems should be able to judge such elements to be too small to be rel-
evant units of information to be returned to the users, since they do not provide
the contextual information needed to answer a user information need [6].

Hypothesis 2 : XML retrieval systems can effectively exploit semantic
structure to increase retrieval performance, when this structure is
used by the user.

Hypothesis 2 extends Hypothesis 1, by focusing on those cases where structural
clues form part of the information request.

3 Named Entity Detection and Semantic Tagging of the
Reuters News Collection

In this section we’ll give a summary of our naive approach for named entity
detection. A more extensive description and evaluation of the approach can be
found in [9]. Furthermore, we discuss the effect of the semantic enrichment on
the structure of the Reuters news collection.

624 R. van Zwol and T. van Loosbroek

Automated detection of named entities in text has been practised for a long
time and many different and sophisticated approaches [3,1] are available today.
Using linguistic, syntactic, or document patterns a set of machine learned ex-
traction rules is normally derived that allow for the detection of named entities
in a set of documents. In these cases, an annotated training set is needed to
bootstrap the system.

The approach used for named entity detection here, is based on a combination
of heuristically derived rules and pre-defined thesauri. The first step focuses on
the detection of possible candidates using regular expressions that aim at finding
sequences ofwords starting with a capital. The second step involves eliminating po-
tential false-positives, e.g. words found at the beginning of a sentence and are un-
likely tobepart of a namedentity.Next,weusedictionaries of person, company, and
organization names to categorize the named entities, as well as gazetteers for the
identification of place names. In the final step of the named entity detection phase,
contextual clues are used to categorize the remaining (un-identified) candidates.
Examples of such contextual clues are: ”...minister”, ” ... organization ...”, ”... inc.”,
etc. Those candidates that were not successfully recognized are abandoned.

Based on the derived set of named-entities, the Reuters collection is ex-
tended by tagging the matching text fragments with the corresponding named-
entity tags. Table 1 provides some statistics, which show how the structure
and content of the Reuters 21587 collection is affected by our approach. In
total four new element types have been added to the collection, using the ap-
proach for named-entity detection as described above, e.g. person, company,
organization, location. From Table 1 it can be seen that it duplicates the
number of XML elements in the collection, and drastically reduces the average
(text) size of the leaf nodes. In [9] the quality of the named-entity detection is
evaluated. It is clear that this approach is far from optimal, and fails to classify a
huge number of named entities, which results in a low recall. However, it proved
to be an accurate approach for maintaining a high precision in classifying named
entities, e.g. avoiding false-positives. We believe that the latter is crucial to the
success of effective use of semantic (∼ meaningful) structure in XML retrieval.

Table 1. Collection statistics for Reuters 21587

Original Semantic
documents 20841 20841

XML elements 209135 427854
avg. leaf size 23.6 10.6

max. node depth 3 4
avg node depth 2.6 3.42
unique elements 6 11

4 The XSee XML Search Engine

The XSee XML SEarch Engine [12] is built for participation in INEX 2006. In
this section, a brief overview of the internals of the XSee system is given to

Effective Use of Semantic Structure in XML Retrieval 625

provide insight into the particulars of an XML retrieval system in general, but
also as a reference for the explanation of the results of the experiment described
in Section 5.

Data Structure. During the indexing phase, an inverted file is derived from the
XML collection containing the triples (file, path, term). This inverted file is
processed into the following data structure:

NodeTermWeight(node id, term weight)
TermIndex(term, stemmed term, start, end)
Node(id, parent, name, file, path, depth, size)

NodeTermWeight is a large table, that contains an entry for each term that is
contained by a node. The entry stores the unique id of that node, together with
the termweight for that term/node combination, the table is sorted on term. The
TermIndex contains an entry for each unique term, its stemmed variant, and a
start-/end- position that specificies a continuous slice of the NodeTermWeight
table, which contains the selected node/termweights for that term. The Node ta-
ble contains information about each node, such as its id, parent node id, element
name, file, the unique path to that node, the path depth, and number of terms
contained by that node, respectively.

Retrieval Model. At indexing time, a termweight for a term q and a node n is
calculated using:

termweight(n, q) =

{
tfn,q

TFq
, if is leaf(n),

tfn,q

TFq
+

∑
c∈children(n) Dnode · termweight(c, q)

(1)

For a leaf node, the weight of a term is determined using the term frequency of
that term within the node divided by the number of times the term occurs in
the document collection. If the node is not a leaf, the termweight also depends
(recursively) on the termweight of its children. The influence of a term occuring
in one of its children is reduced via the node decay Dnode. Typical values for
Dnode are in the range [0.09..0.39], as is heuristically determined.

At query time, the relevance score of a node for a given query Q is calcu-
lated as:

rsv(n, Q) = F
|{q|q∈Q ∧q∈contains(n,q)}|
term ·

∑
q∈Q

termweight(n, q) (2)

For each queryterm q in the query, it is determined whether this term is contained
in the node. The sum over the corresponding termweights is taken and multiplied
by the termfactor Fterm to the power of the number of unique query terms
occuring in node n. This assures that nodes containing all the query terms will
be pushed to the top of the ranking.

This simple model proves to be effective in terms of retrieval performance [12],
but also allows for better scalability compared to the GPX and B3-SDR mod-
els [5,11], which are based on the same principles.

626 R. van Zwol and T. van Loosbroek

5 Experiment

In this section the setup and results of the retrieval performance experiment are
described.

5.1 Setup

For the experiment we have used two versions of the Reuters 21587 collection
of news items. One version without the semantic markup (Original), and one
version with the semantic markup (Semantic), as discussed in Section 3. Fur-
thermore we have created a set of 15 topics that describe information needs
containing named entities. For each topic a description, narrative, and three dif-
ferent title versions are available, as shown in Example 5.1.

Example 1. Topic 14

Description: Find out what the connection is between Intel and IBM.
Narrative: IBM decided to use Intel processor chips inside their PCs.
CO-title: IBM Intel
CAS-title: //par[about(., IBM) and about(., Intel)]
Sem. CAS-title: //par[about(.//company, IBM) and about(.//company, Intel)]

The CO-title only contains keywords, while the CAS-title specifies the desired
element of retrieval. Finally, the Semantic CAS-title specifies that both IBM and
Intel are companies.

The methodology used to evaluate our ideas on effective use of semantic tag-
ging for XML retrieval is based on the TREC evaluation procedure. We will
therefore use binary relevance judgements, which are determined at XML ele-
ment level, and have been gathered with TERS [10], a general purpose testbed
for the evaluation of retrieval systems, which implements the blind pooling re-
view method for collecting the judgements. If an XML element is considered
relevant, all its ancestors are also by definition relevant.

Instead of evaluating multiple search engines, we’ll only discuss the results of
our XSee XML retrieval engine. For creating the assessment pools we have used
an additional XML retrieval engine and selected the top 100 results of each topic
into the assessment pool. This will not guarantee that the relevance judgements
are complete. Therefore, and also based on the small number of topics used,
we’ll report the binary preference (bpref) besides the commonly accepted mean
average precision (MAP) and recall-precision curves. In [2] it is discussed that the
binary preference is more stable in such situations, and therefore more reliable.

5.2 Results

Table 2.a shows the MAP and bpref for the CO-title based runs on both col-
lections. For both measures, the results on the Semantic collection are better
than the Original collection. In fact we found that the differences are significant
using a T-test (MAP: t[15] = −3.090, p < 0.01). This means that we have found

Effective Use of Semantic Structure in XML Retrieval 627

evidence to support our first hypothesis, which stated that the XSee system
can effectively exploit structure to improve on retrieval performance. In more
detail, the precision at document cutoff graph of Figure 2.a shows how this im-
pacts the precision of the ranking. With the exception of the first item in the
ranking, the results on the Semantic collection are always better. At current we
have no plausible explanation for the dip at the top of the ranking.

Investigation of the performance on the (strict) CAS-based runs is split in
three categories. One CAS-title run on the Original collection, and two CAS-
title runs on the Semantic collection. Of the two runs, one uses the semantic
clues as part of the information request.

The results of Table 2.b show that best results are obtained with the semantic
CAS-title run on the Semantic collection. Second best is the CAS-title run on
the Semantic collection. In both cases we find that the results are significantly
different (MAP: t[15] = −2.817, p < 0.015 and t[15] = −2.475, p < 0.030).
The comparison of the CAS-title runs on both collections provides supporting
evidence for our first hypothesis, as was the case for the CO-based runs. While
based on the comparison of the two different CAS-title runs on the Semantic
collection we can conclude that our XSee system can effectively exploit semantic
structure to increase retrieval performance, when this structure is used by the
user (Hypothesis 2). Inspecting the graph that plots the precision at document
cutoff values for the CAS-title runs (Figure 2.b) shows that use of semantic clues
in the information need on the Semantic collection is has a particularly positive
influence on the precision at the top of the ranking.

Table 2. Summary

(a) CO titles (b)CAS titles
Original Semantic

MAP 0.3418 0.3867
bpref 0.5558 0.5846

Semantic
CAS title CAS title CAS title

on Original on Semantic on Semantic
MAP 0.4624 0.4963 0.6378
bpref 0.687 0.7072 0.7182

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
re

ci
si

on

After X elements retrieved

Reuters Original
Reuters Semantic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
re

ci
si

on

After X elements retrieved

CAS-title on Reuters Original
CAS-title on Reuters Semantic

Semantic CAS-title on Reuters Semantic

(a) CO-titles (b) CAS-titles

Fig. 2. Precision at document cutoff values

628 R. van Zwol and T. van Loosbroek

6 Conclusions

In this article we have shown in which cases our XSee search engine for XML
retrieval can effectively exploit the available structure. Furthermore, we have
pleaded for more meaningful and semantic structure in XML documents, and
have indicated how this can be achieved using named entity recognition. For
this approach to be effective, we believe that aiming at a high precision in the
tagging process is more crucial to the effectiveness of XML retrieval, than having
a high recall in terms of full named entity detection coverage.

Based on a small-scale retrieval performance experiment we have found evi-
dence that XML retrieval systems, and XSee in particular, can effectively exploit
the additional structure (Hypothese 1) as it allows for identifying and retrieving
more relevant XML elements in the top of the ranking. This is especially true,
when the users specify semantically structured clues in the information request
on the semantic Reuters collection, as stated in Hypothesis 2.

References

1. Alias-i. Lingpipe - http://www.alias-i.com/lingpipe/, 2006.
2. Chris Buckley and Ellen M. Voorhees. Retrieval evaluation with incomplete infor-

mation. In SIGIR’04, pages 25 – 32. ACM Press, 2004.
3. M. Ciaramita and Y. Altun. Named-Entity Recognition in Novel Domains with

External Lexical Knowledge. In Workshop on Advances in Structured Learning for
Text and Speech Processing (NIPS 2005), 2005.

4. N. Fuhr, M. Lalmas, S. Malik, and G. Kazai. Advances in XML Information
Retrieval and Evaluation, volume 3977 of LNCS. Springer-Verlag, 2006.

5. Shlomo Geva. GPX : Gardens point XML information retrieval at INEX 2005. In
Advances in XML Information Retrieval, volume 3977 of LNCS, 2006.

6. Georgina Ramirez, Thijs Westerveld, and Arjen P. de Vries. Using small XML
elements to support relevance. In SIGIR’06, pages 693–694. ACM Press, 2006.

7. Andrew Trotman and Mounia Lalmas. Why Structural Hints in Queries do not Help
XML-Retrieval. In SIGIR’06, Seatle, Washington, USA, August 2006. ACM Press.

8. Andrew Trotman and Börkur Sigurbjörnsson. Narrowed Extended XPath I
(NEXI). In Advances in XML Information Retrieval, number 3493 in LNCS, pages
16–40, 2005.

9. Tim M. van Loosbroek. An ad hoc approach for creating a semantic enhanced
document collection. Master’s thesis, Department of Computer Sciences, Utrecht
University., April 2006.

10. Herre van Oostendorp and Roelof van Zwol. Google’s ”im feeling lucky”, truly a
gamble? In Web Information Systems - WISE’04, pages 378–390, November 2004.

11. Roelof van Zwol. B3-SDR and effective use of structural hints. In Advances in XML
Information Retrieval, volume 3977 of LNCS, Dagstuhl, Germany, 2006. Springer.

12. Roelof van Zwol. XSee: Structure Xposed. In Advances in XML Information
Retrieval, LNCS, Dagstuhl, Germany. To appear, 2007. Springer.

http://www.alias-i.com/lingpipe/

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 629 – 636, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Searching Documents Based on Relevance and Type

Jun Xu1, Yunbo Cao1, Hang Li1, Nick Craswell2, and Yalou Huang3

1 Microsoft Research Asia, No. 49 Zhichun Road, Beijing, China
2 Microsoft Research Cambridge, UK

3 Nankai University, No. 94 Weijin Road, Tianjin, China
{junxu, Yunbo.Cao, hangli, nickcr}@microsoft.com,

yellow@nankai.edu.cn

Abstract. This paper extends previous work on document retrieval and
document type classification, addressing the problem of ‘typed search’.
Specifically, given a query and a designated document type, the search system
retrieves and ranks documents not only based on the relevance to the query, but
also based on the likelihood of being the designated document type. The paper
formalizes the problem in a general framework consisting of ‘relevance model’
and ‘type model’. The relevance model indicates whether or not a document is
relevant to a query. The type model indicates whether or not a document
belongs to the designated document type. We consider three methods for
combing the models: linear combination of scores, thresholding on the type
score, and a hybrid of the previous two methods. We take course page search
and instruction document search as examples and have conducted a series of
experiments. Experimental results show our proposed approaches can
significantly outperform the baseline methods.

1 Introduction

Traditionally, the document search problem can be described as follows. The user
submits a query to the search system and the search system attempts to return
documents that the user will find relevant. In many cases, the user not only has an
idea of what ‘document content’ they are looking for, but also what ‘type of
document’. For example, sometimes users know that they want to search for
information from technical papers, homepages, or instruction documents.

In this paper we consider a setting for search, which we refer to as ‘typed search’.
In typed search, we ask the user to enter a query as usual and at the same time allow
them to designate the document type which they want. Then the system returns
documents that are not only relevant to the query, but also likely to be of the
designated type. Assuming the user indeed will be more satisfied by documents of the
requested type, a typed search system is potentially more effective than a system
where the user can not specify a document type.

Web search engines like Google, MSN Search, and Yahoo! already provide search
by type features, but usually in cases where a perfect distinction can be made between
types. For example, by selecting scopes such as Image search or News search the user
can specify the type of result that they require. Similarly there may be operators such
as ‘filetype:pdf’. Not all document types are easily specified, and in some cases it

630 J. Xu et al.

may even be difficult for humans. In this paper we consider useful document types
where it is not easy to make a perfect type classifier.

A number of papers considered the need for document genre classification and the
development of type classifiers[14],[15]. This paper considers the problem of typed
search, assuming that a type has already been identified that is helpful to end-users
and a classifier can be developed. For this specific search problem past research was
limited to search on special types of documents such as homepage [1],[2],[7],[13].

This paper aims at being a thorough investigation of this search problem. We
choose two document types as examples in our experiments, namely course page
search (search for course web pages of colleges) and instruction document search
(search for instruction documents). We try to answer the following three questions
which we think are crucial for constructing typed search systems. (1) Is it possible to
develop a general framework for typed search? (2) What is the best strategy for
combining the relevance information and type information? (3) Is it possible to
construct typed search systems that are easily to be extended to different types and are
easily adapted to different domains?

For our general framework, we propose the use of two probabilistic models for
typed search: relevance model and type model. The former represents the relevance of
documents to queries, and the latter represents the likelihood of documents of being
the designated type. In our experiments we use BM25 as relevance model and
Logistic Regression as type model.

We propose three methods for combing the relevance and type models: linear
combination, thresholding, and a hybrid method using both thresholding and linear
combination. We found that linear combination and thresholding can work well with
the default parameter settings. Hybrid can take advantage of the other two strategies
and works best, but it needs parameter tuning.

Our methods outperform the baselines on both instruction document search and
course page search. It is also possible to conduct domain adaptation, applying a type
model trained on one corpus to a separate corpus. Therefore, it is feasible to create
generic typed search systems.

2 Related Work

Our work on document types is related to work on identifying and classifying
documents by genre, such as [6],[10][14],[15]. We use the term ‘type’ to indicate
maximum generality. Our framework can be applied for any given type of document,
even if not everyone would agree that it constitutes a distinct ‘genre’. Some authors
use ‘genre’ and ‘type’ interchangeably, defining genre as: a document type based on
similarity of form and purpose [4].

Homepage search can be regarded as a specific typed search. Much research work
was conducted on that issue. For instance, TREC had a task called ‘home/named page
finding’[2]. Many systems were developed for the task [1],[7],[13]. In homepage
search, both relevance information and type information are needed in web pages
ranking. For example, information about the URL can be used to indicate type [13],
because homepages tend to have shallow URLs ending in ‘/’. In [16], users have the
option of specifying some concepts (e.g., a catalog, a call for paper, etc.) of interest
when submitting a query.

 Searching Documents Based on Relevance and Type 631

Table 1. Two views of documents

 Relevant Irrelevant

Designated type A B

Not designated type C D

Our experiments apply BM25[11] and Logistic Regression[5]. BM25 was
introduced as part of Okapi, a system for document retrieval with a probabilistic
approach. Specifically, BM25 attempts to rank documents in order of decreasing
probability of relevance. Logistic Regression (LR) is one model for classification. LR
outputs probability values rather than confidence scores in classification.

3 Problem Description

The search system has a mechanism allowing users to designate the types of
documents which users can search. The type of a document (or web page) represents
the genre or the functional category of the document. Users can use a menu or a
special search operator to designate document types.

If the user knows what type of document they wish to find, they can select that
type. They then type a search query as usual. The search system receives the query
and the document type. It automatically retrieves and ranks documents on the basis of
not only relevance but also likelihood of being the specified type.

Typed search is useful for helping users to find information. Traditional
information retrieval conducts search on the basis of relevance of documents to the
query [8],[9][12]. Similarly, typed search needs to assure that the retrieved documents
are relevant to the query. However, typed search also needs to assure that the
retrieved documents belong to the designated document type. Table 1 shows two
views of documents. From Table 1, we see that A is the set of documents that we
want to collect in typed search. By introducing types into search, one can drastically
reduce the numbers of documents returned to users.

Various document types can be considered such as resume, blog, homepage, email,
etc. For a recent example of a detailed study of document types, see [4]. Here, we
assume that the search provider (e.g., librarian, search engine designer) can identify
typed searches that are valuable to users, and apply our typed search approach.

4 Our Approach

4.1 General Framework

We propose a general framework for ranking in typed search. Given a query q and a
document d, we rank the documents with the conditional probability Pr(, | ,)r t q d ,
where r and t take 1 or 0 as values and they denote ‘relevant or not’ and ‘in the same
type or not’. In instruction document search, for example, 1t = means that a document
is an instruction document. In typed search, we rank documents using the probability
scores of documents.

Here, we assume that r and t are conditionally independent given q and d. We
further assume that t is only dependent on d, not on q. Hence we have,

632 J. Xu et al.

Pr(, | ,) Pr(| ,) Pr(| ,) Pr(| ,) Pr(|)r t q d r q d t q d r q d t d≈ ⋅ ≈ ⋅ (1)

We take Equation (1) as a general model for typed search. We call the two sub-
models),|Pr(dqr

and)|Pr(dt
‘relevance model’ and ‘type model’, respectively.

The relevance model judges whether or not a document is relevant to the query. The
type model judges whether or not a document is in the designated document type.

4.2 Relevance Model and Type Model

Given a query and a document, the relevance model outputs a relevance score. In
typed search, for a given query, we create a list of <document, relevance_score> pairs
using the relevance model.

In this paper, we employ BM25[11] as the relevance model. In practice, for
indexing, we index the title and the body of a document separately, calculate a BM25
score for each, then linearly combine the scores. We view this combination of scores
for the title and the body as the relevance_score.

Given a document, the type model outputs a type score. In typed search, we create
a list of <document, type_score> pairs using the type model.

We take a statistical machine learning approach to constructing a type model. More
specifically, given a training data set

1{ , }n
i iD x y= , we construct a model Pr(|)y x that

can minimize the number of errors when predicting y given x (generalization error).
Here

ix X∈ and {1, 1}iy ∈ − . x represents a document and y represents whether or not a

document is a document in the designated type. When applied to a new document x,
the model predicts the corresponding y and outputs the score of the prediction. In this
paper, we adopt Logistic Regression[5] as our type model. Logistic Regression
calculates the ‘type probability’ of Pr(1|)y x= a document.

In our approach, we actually use the type_score of a document:

Pr(1|)
_ log

1 Pr(1|)

y x
type score

y x

==
− =

 (2)

4.3 Combining Strategy

We propose three strategies for combing the scores calculated by the relevance and
type models. They are linear combination, thresholding, and hybrid respectively. We
rank documents using the combined scores in typed search.

In linear combination, we calculate ranking_score by linearly interpolating
relevance_score and type_score.

_ _ (1) _ranking score type score relevance scoreλ λ= ⋅ + − ⋅ , (3)

where [0,1]λ ∈ is a parameter. In thresholding, we calculate ranking_score by

descretizing type_score to 1 or 0 based on a predetermined threshold.

_ if r(1|)
_

0 otherwise

relevance score P y x
ranking score

θ= >⎧
= ⎨
⎩

. (4)

Here [0,1]θ ∈ is threshold. In cases where we are certain of our type_score we can
apply a strict threshold, as is the case for News search on the Web (all pages that are

 Searching Documents Based on Relevance and Type 633

not news are strictly filtered out). If we are less confident about our type_score we
can apply a lower threshold or try the linear combination strategy.

In hybrid method, we calculate ranking_score using both linearly combination and
thresholding. Here [0,1]λ ∈ and [0,1]θ ∈ are parameters.

⎩
⎨
⎧ >=⋅−+⋅

=
 otherwise 0

)|1r(if _)1(_
_

θλλ xyPscorerelevancescoretype
scoreranking

(5)

How to determine the parameter values (λ and θ) is an issue we need to consider. In
linear combination, by default can be set as 0.5, since Equation (3) is equivalent to
Equation (1), when λ=0.5. In thresholding, θ can also be set as 0.5 by default, since
the document is likely to belong to the type when Pr(y=1|x)>0.5. In our experiments,
we found that nearly best search performances can be achieved when λ and θ are 0.5.
In the hybrid method, however, λ and θ have to be tuned empirically.

5 Experiments

In our first experiment, the document type is ‘course page’, a page describing a
course, as would be available on a university website. In the second experiment, the
document type is ‘instruction document’, for example an online manual.

As the first baseline method, we solely use the scores of BM25 to conduct ranking.
This can also be seen as an extreme case of our proposed approach in which the
parameter λ in Equation (3) equals 0.

As the second baseline method, we solely use the scores of Logistic Regression in
ranking, as explained in Section 4.2. This baseline is the other extreme case of our
proposed approach, when the parameter λ in Equation (3) equals 1.

As the third baseline method, we add keywords to queries and employ BM25. For
course search, we combine the original query words with the keyword ‘course’ to
generate a new query. (We tried to use other keywords, but they did not work well).
For instruction document search, we combine the query with ‘howto’ and ‘how to’.

As the fourth baseline method, we use BM25 to conduct ranking, then employ
rules to filter the results. As rules, we implement the major features in the type model.

The third and fourth baselines are the simplest ways of combining type information
and relevance information in typed search ranking. Hereafter, we denote the four
baseline methods as ‘BM25’, ‘Logistic Regression’, ‘BM25 + Keyword’, and ‘BM25
+ Heuristics’. (We denote our methods as ‘Combined (linear)’, ‘Combined
(thresholding)’, and ‘Combined (hybrid)’.)

We make use of MAP (Mean Average Precision) and MRR (Mean Reciprocal
Rank) for evaluation of typed search.

5.1 Course Page Search

Data Set
We used ‘Four Universities Data Set’1 in the experiment. The 8,282 WWW-pages in
the data set were assigned to six category labels (Course, Student, Staff, Department,
Project, and Other). In our case, course pages are positive examples.

1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

634 J. Xu et al.

0.54890.5863

0.73410.7361

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Lambda

MAP
MRR

0.5530
0.5310

0.7517
0.7413

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Theta

MAP
MRR

Fig. 1. Performance linear combination
w.r.t. λ for course page search.

Fig. 2. Performance of thresholding w.r.t.
θ for course page search.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lambda
Theta

MAP

MRR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MAP MRR

Logistic Regression

BM25

BM25 + Keyword

BM25 + Heuristics

Combined (thresholding)

Combined (linear)

Combined (hybrid)

Fig. 3. Performance of hybrid w.r.t. λ and θ
for course page search

Fig. 4. Performance of course page search

As search queries, we collected the course names from the web sites of the Computer
Science department of CMU2 and MIT Open Courseware, Electrical Engineering and
Computer Science3.For each query, we retrieved at most top 100 course web pages. The
retrieved web pages were judged manually by human annotators whether they are really
relevant to the query one by one. In this way, all the retrieved documents for each query
got the labels A, B, or C-D as in Section 3. Our final query set contains 52 queries. On
average, a query has 7.8 relevant web documents.

Experiment on Typed Search
We compared the performances of the typed search ranking methods. We randomly
divided queries into four even subsets and carried out 4-fold cross-validation. The
result reported below are thus those averaged over the four trials.

We tried various values for the parameter λ and θ in our methods of linear
combination, thresholding and hybrid. Fig. 1, Fig. 2, and Fig. 3 show the performance
curves when the parameters changes. The best result is accomplished by hybrid, if we
happen to know the parameter values.

Fig. 4 shows the results of our proposed methods (linear combination, thresholding,
and hybrid method) together with baseline methods. Our methods perform much

2 https://acis.as.cmu.edu/gale2/open/Schedule/SOCServlet?Formname=ByDept
3 http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/index.htm

 Searching Documents Based on Relevance and Type 635

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MAP MRR

Logistic Regression

BM25

BM25 + Keyword

BM25 + Heuristics

Combined (thresholding)

Combined (linear)

Combined (hybrid)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MAP MRR

Logistic Regression

BM25

BM25 + Keyword

BM25 + Heuristics

Combined (thresholding)

Combined (linear)

Combined (hybrid)

Fig. 5. Performance of instruction search Fig. 6. Performance of domain adaptation.

better than baselines. The results indicate that the traditional information retrieval
approach cannot solve the problem of ‘typed search’ well. Our approach of combing
type information and relevance information is effective.

It is not surprising to see that the baseline ‘BM25’ cannot work well for the task,
because it is designed for search of relevant documents. As we have discussed in
Section 3, typed search needs consider both relevance and document type. For a
similar reason, it is also not surprising to observe that the baseline ‘Logistic
Regression’ cannot achieve good result.

For ‘BM25+Keyword’, it is hard to construct a query that can filter out documents
that not belong to the desired type. For ‘BM25+Heuristics’, it is hard to make a
combination between BM25 and rules. Thus, employing probabilistic models for both
relevance and type ranking, as in our approach, appears to be a reasonable choice.

5.2 Instruction Document Search

In the experiment, we investigated typed search applied to instruction document. We
created a document set by crawling from the intranet of an international company.
We also collected all the real queries about instruction document search from the
query log of a search engine on the intranet.

We created a dataset which contains 50 queries, similar to Section 5.1. 61
documents are labeled with A, 352 with B, and the others with C-D. We conducted
experiment with 5-fold cross-validation. The results are reported in Fig. 5. Our
methods outperform baseline methods for instruction document search.

5.3 Domain Adaptation for Instruction Document Search

In the experiment, we tested whether a generic model can be constructed for typed
search. Specifically, we investigated whether a type model trained on intranet can still
work well on TREC W3C corpus [3].

We created a data set which contains 50 queries, similar to Section 5.1. Among the
documents, 74 are labeled with A, 361 with B and others with C-D. Fig. 6 shows
the results. The experimental results show that our method achieves good result on the
TREC W3C corpus, although the type model is trained on a different domain.

636 J. Xu et al.

6 Conclusions

In the paper, we have studied ‘typed search’ – search of documents based not only on
relevance, but also document type. Our typed search framework combines two
models: a relevance model and type model. We employed BM25 and Logistic
Regression as the relevance model and the type model, respectively. Three methods
are proposed for combining the models to obtain a final ranking score. Using course
page search and instruction document search as examples, we have conducted
experiments with real-world data. Experimental results indicate that our proposed
approaches are effective for typed search and perform significantly better than the
baselines. Experimental results also indicate that our proposed approach can perform
consistently well across different domains.

References

1. Craswell, N., Hawking, D., and Robertson S.E.: Effective site finding using link anchor
information. In: Proc. of the 24th SIGIR conference, New Orleans, USA. (2001), 250-257

2. Craswell, N. and Hawking, D.: Overview of the TREC-2004 Web Track. In: NIST Special
Publication: 500-261, the Thirteen Text REtrieval Conference. (2004)

3. Craswell, N., Vries, A., and Soboroff, I.: Overview of the TREC-2005 Enterprise Track.
The Fourteenth Text Retrieval Conference. (2005)

4. Freund, L., Toms, E.G., and Clarke, C.L.: Modeling task-genre relationships for IR in the
workplace. In: Proc. of the 28th ACM SIGIR Conference, Salvador, Brazil. (2005)

5. Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning.
Springer, New York (2001)

6. Kessler, B., Nunberg G., and Schutze, H.: Automatic Detection of Text Genre. In: Proc. of
the 35th Association for Computational Linguistics, Madrid, Spain. (1997), 32–38

7. Kraajj, W., Westerveld, T., and Hiemstra, D.: The Importance of Prior Probabilities for
Entry Page Search. In: Proc. of the 25th ACM SIGIR conference. (2002)

8. Mizzaro, S: Relevance: The whole history. Journal of the American Society for
Information Science 48(9): (1997), 810-832

9. Mizzaro, S: How many relevancies in information retrieval? Interacting With Computers,
10(3):305-322, Vol. 10. (1998) 321-351.

10. Rauber, A. and Müller-Kögler, A.: Integrating automatic genre analysis into digital
libraries. In: Proc. of the 1st ACM/IEEE Joint Conf. on Digital Libraries. Virginia, USA.
(2001), 1-10.

11. Robertson, S.E., Walker, S., Beaulieu, M.M., Gatford, M., and Payne, A.: Okapi at TREC-
4. In: Proc. of the 4th Text REtrieval Conference. (1996), 73-96

12. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill (1983).
13. Song, R., Wen, J.R., Shi, S., Xin, G., Liu, T.Y., Qin, T., Zheng, X., Zhang, J., Xue, G., and

Ma, W.Y.: Microsoft Research Asia at Web Track and Terabyte Track of TREC 2004. In:
NIST Special Publication: 500-261, the 13th Text REtrieval Conference. (2004)

14. Voorhees, E.: Overview of the TREC 2003 Question Answering Track. In: Proc. of the
12th Annual Text Retrieval Conference. (2003).

15. Zaragoza, H., Craswell, N., Taylor, M., Saria, S., and Robertson, S.: Microsoft Cambridge
at TREC 13: Web and Hard Tracks. In the 13th Text REtrieval Conference. (2004)

16. Matsuda, K. and Fukushima, T.: Task Oriented World Wide Web Retrieval by Document
Type Classification. In: Proc. of the 8th CIKM. Kansas, USA. (1999)

Investigation of the Effectiveness of Cross-Media

Indexing

Murat Yakıcı and Fabio Crestani

i-lab group
Department of Computer and Information Sciences

University of Strathclyde
26 Richmond Street, Livingstone Tower, G1 1XH, Glasgow, UK

{murat.yakici, fabio.crestani}@cis.strath.ac.uk

Abstract. Cross-media analysis and indexing leverage the individual
potential of each indexing information provided by different modalities,
such as speech, text and image, to improve the effectiveness of infor-
mation retrieval and filtering in later stages. The process does not only
constitute generating a merged representation of the digital content, such
as MPEG-7, but also enriching it in order to help remedy the impreci-
sion and noise introduced during the low-level analysis phases. It has
been hypothesized that a system that combines different media descrip-
tions of the same multi-modal audio-visual segment in a semantic space
will perform better at retrieval and filtering time. In order to validate
this hypothesis, we have developed a cross-media indexing system which
utilises the Multiple Evidence approach by establishing links among the
modality specific textual descriptions in order to depict topical similarity.

1 Introduction

A major challenge lies in developing representations suitable for crossing media
and languages in the processes of retrieval, filtering, categorization and summari-
sation. The process of cross-media indexing consists of building relationships
among concepts extracted from different modalities such as image, speech and
text while reducing their weaknesses. A robust indexing model could reconcile
and recognize the relationships among concepts identified in these individual
modalities and build not only a unified representation but also enrich the de-
scriptions. Therefore, a cross-media analysis system should aim at minimising
uncertainty, imprecision and inconsistency across the indexing performed by the
single modalities. The aim of the EU-IST Reveal-This (R-T) project is to de-
sign, develop, test a complete umbrella infrastructure that will integrate a whole
range of information access technologies across media and languages. A criti-
cal objective of the project is to benefit from multi-modal analysis and indexing
techniques that can extend the possibilities of content push and pull technologies
and increase the quality of content provided. In order to address the challenges
mentioned previously and leverage the potential of different modalities, we have
developed a prototype cross-media indexing system as part of the project. The

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 637–644, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

638 M. Yakıcı and F. Crestani

prototype implements a standard way of identifying, accessing, manipulating,
storing and retrieving semantic links between modalities. The prototype sys-
tem constitutes the last layer of the chain of processing in the Cross-Media
Analysis and Indexing subsystem of the R-T system. It utilises the Multiple Ev-
idence approach by establishing links among the modal descriptions in order to
depict topical similarity in the semantic textual space. The prototype’s input
is a merged representation of the high-level features that are extracted by the
speech processing component (speaker turns, transcriptions, persons, topics), the
text-processing component (named entities, terms, facts), the image processing
component (faces, key-frames, visual features), the image and the text catego-
rizers. The media files were automatically segmented to form stories. After this
stage, the descriptions are merged. This representation is further processed by
the our prototype to produce a unified view of the content and enrichment.

In this study, we want to know whether cross-media indexing using Multi Ev-
idence approach is effective or not. We admit that, neither cross-media indexing
is an easy task nor such a question can be answered quickly. Therefore, we break
down the question into several testable hypotheses and investigate them one by
one.

We state our generic hypothesis as whether Multi Evidence approach performs
better over a baseline system given the processed test collection, queries and
graded relevance judgements. We also state specific hypotheses as follows:

1. No modality is dominant over other modalities, which means every modality
has a significant contribution for effective retrieval.

2. Imprecision in the speech modality (recognition errors) can be remedied by
other modalities for effective retrieval.

3. Document expansion may remedy the imprecision of speech modality.

We now gave an overview of the cross-media indexing task, the project and the
prototype system as well as our research questions. In the rest of the paper, we
describe the indexing models, the evaluation strategy that is followed for our
hypotheses and the prototype and discuss our initial results. The last section
summarises key points of the paper and explores future directions.

2 Indexing Model

The prototype utilises Dempster-Shafer’s Theory of Evidence [1] approach for
establishing links among the modal descriptions in order to depict topical sim-
ilarity in the textual space. The theory has been extensively studied in image
retrieval [2] and structured document retrieval [3], but has never been applied
in such a context.

Dempster’s work lays the foundations of a non-Bayesian theory of probability
which was then extended by Shafer. The theory combines two or more bodies
of evidence defined with in the same frame of discernment T into one body of
evidence. We used the work of Lalmas [3] in a slightly different way. In our ap-
plication of the model, we consider different modalities as sources of evidences.

Investigation of the Effectiveness of Cross-Media Indexing 639

A document d containing a term t’s existence in a modality m is counted as an
evidence to support the topical similarity hypothesis. Therefore, each modality
is treated as a probability density function also called as Base Probability As-
signment (BPA). For the details of our approach and a short review of related
work, please refer to our previous works [4,5].

3 Evaluation

Evaluating the accuracy and robustness of individual processing modalities should
be done in their own domain and with specially crafted test beds. However, when it
comes to evaluating the performance of the merged and enriched representation
of these processors, one needs to find a solution. In an attempt to validate our
arguments and thus our prototype system, we considered construction of a test
collection using expert users. For building such a collection, one would need to
have a set of “documents” (these are video/radio segments which we call stories),
a set of queries and a set of documents that have been found to be relevant to
the queries (having exhaustively gone through the collection and found that these
were all relevant documents contained in the collection).

3.1 Building of the Test Collection

For the purposes of the project, we collected TV and radio broadcast parallel
content in English and Greek languages, approximity 30+30 hours that cov-
ers news(40%), politics(21%) and travel(35%) domains. The collection contains
multi-modal documents of different genre that guarantees a significant variety
in modality-specific characteristics.

We reserved a subset of four-hours English version of the content for gener-
ating cross-media representations, queries and relevance judgements to be used
in testing specifically our cross-media indexing prototype (see table 1). Despite
being relatively small, our intention was to have a data collection completely
annotated with graded expert relevance judgements. Admittedly, manual anno-
tation of every single segment is a labour and time intensive task especially when
using non-binary relevance judgements. This is one of the trade-offs of building
a test collection one would confront. Due to the same reasons, we were not able
to manually create transcriptions and annotate feature in different modalities.
Contribution of the manual transcripts and feature annotation are valuable to
make a data set complete. These would provide us an established data set for
comparison with other work for improving and evaluating individual and corpo-
rate performances. The lack of these led us to consider using other well known
collections that can be acquired to test some of our other hypotheses.

Nevertheless, considering the characteristics of the modalities and the content
of our collection, we created a set of 87 queries. Three experts were involved in the
annotation task. They were asked to go through the collection exhaustively for
each query and manually annotate categories and provide relevance judgements.
The experts were also asked to justify their judgements when considering stories

640 M. Yakıcı and F. Crestani

Table 1. Description of the collection used for testing Cross-Media Indexing prototype

The subset of the test collection
Domain Medium Duration Stories
Politics (EU Plenary sessions
and Press Conferences)

Radio - -
Video 01:09:58 31

News
Radio - -
Video 00:44:26 33

Travel
Radio 00:28:12 24
Video 03:01:44 188

Video sub-total 03:46:10 252

Radio sub-total 00:28:12 24

Grand total 04:14:23 276

as “partially relevant” to indicate how strict/lenient they had been in their
judgements. The segments that were not mentioned at all were assumed to be
judged as irrelevant by the annotators.

For the analysis of the media files (subset collection), we have defined a process
work-flow so that every time one of the processors is improved, a new version of
the collection could be regenerated. This approach enabled us to resolve depen-
dencies amongst the processing modules and more importantly test the effects
of relative improvements of individual processors and their contribution to the
overall enriched representation.

3.2 Retrieval Experiments

In order to assess the performance of our model, we prepared a baseline system
which utilised the Vector Space Model and tf-idf weighting scheme. Both systems
were run using using the same query set over the processed content on every
single modality and multiple modalities (see section 1 for extracted features).
Figure 1 depicts the precision vs. recall values from our experiments utilising
multiple modalities.

The results suggest that our Dempster-Shafer (DS) approach is performing
significantly worse than the baseline system at the high recall end. At the high
precision end, the results seem to be identical. Before drawing any quick con-
clusions and rejecting our general hypothesis, we wanted to make sure whether
root cause of the problem was our proposed model. Despite being better than DS
model, the precision and recall values for the baseline system does not seem very
high either. This may also be the result of factors such as the size of the collection
or the imprecision of individual modalities. Further analysis of our empirical re-
sult also showed that there is no positive performance contribution of modalities
that are other than speech by which we reject our first and second hypothesis.
Although not significantly, in some cases it was observed that modalities other
than speech altogether had decreased the performance in both the baseline and
the DS system. In other words, running both systems using speech only content
yielded better performance. Given our set-up and experiments, we conclude that

Investigation of the Effectiveness of Cross-Media Indexing 641

Fig. 1. Precision vs. Recall values for the Baseline and the Dempster-Shafer systems

speech modality seems to be dominant over other modalities. This might be due
to three reasons in addition to the above mentioned ones:1) Test queries might
be biased towards speech 2) Size of the vocabulary is larger in this modality
3) Reducing every single modality to textual space may not be appropriately
capture relations.

In order to understand the effects of queries (at least partially), we analysed
the Mean Average Precision (MAP) values of both systems to see for which
queries the performance of the prototype decreases or increases. The queries
were grouped according to their domain. We took the difference between the
baseline system’s MAP values and DS’s. The positive values showed that base-
line system’s performance is better than DS for the specific queries. This is
particularly the case for the queries belonging to the travel domain. Although
not conspicuous at first sight, DS performs slightly better for politics domain.
From our prior knowledge we know that, acoustics of politics domain is totally
different from other domains. We also know that the ASR module is well trained
in this domain and not very well in others. Therefore, it is not surprising to see
the speech processor doing better job in politics than news and travel. However,
DS seems to be competitive in news domain as well. This diversity may well be
one of the reasons for not catching up with baseline.

3.3 Discussion

Given that speech is dominant over all other modalities and there is no sig-
nificant contribution from them, we returned to our third specific hypothe-
sis. Admittedly, ASR (Dasr) is less accurate than manual transcripts (Dmt).
As mentioned before, document expansion techniques can be employed to rea-
sonably repair the ASR where the expanded representation(Dasrexp) is closer
to the original speech(Dorg) representation (bearing in mind that manual
transcripts may be slightly different than original speech). Therefore, ideally
a retrieval model would return the same document if we have an ASR repre-
sentation which is closer to original document. We formalise this assumption

642 M. Yakıcı and F. Crestani

as Dorg ≈ Dmt > Dasrexp > Dasr. However, we also acknowledge that docu-
ment expansion models should be used carefully as they may insert terms to the
document which might move up non-relevant documents higher in the ranking.

3.4 Document Expansion from Web

Singhal et.al [6] makes several assumptions for using document expansion for
Spoken Document Retrieval and advices that using a parallel corpus is benefi-
cial for obtaining good results. Given the purposes and dimensions of our project,
acquiring a parallel corpus which has the same period of time and diversity of
domains is an unrealistic assumption. However, in order apply document ex-
pansion with some corpus that might show some resemblance in topicality, we
decided to use WWW.

Initially, Google search engine results were utilised to expand each story in the
collection. Unlike running ASR documents as queries themselves [6], we selected
top 10 representative and discriminative terms to be used as queries from the
speech modality of the stories. The selection of terms was done by a slightly
different algorithm using Kullback-Leibler Divergence measure applied in [7].

KL is typically used for measuring the difference between two probability
distributions [8]. When applied to the problem of measuring the distance between
two term distributions as in Language Modelling [9], KL estimates the relative
entropy between the probability of a term t occurring in the actual collection Θc

(i.e. p(t|Θc)), and the probability of the term t occurring in the estimated Topic
Language Model Θd (i.e. p(t|Θd)). KL is defined as,

KL(Θd||Θc) =
∑
t∈V

p(t|Θd)log
p(t|Θd)
p(t|Θc)

(1)

where,

p(t|Θc) =
n(t, Θc)∑

t∈Θc
n(t, Θc)

(2)

and,

p(t|Θd) =
n(t, d) + α

(
∑

t∈d n(t, d)) + α
(3)

The expression n(t, d) is the number of times term t occurs in a document d.
The sparsity problem within the Θd is handled by Laplace smoothing. A non-
zero constant α is introduced to alleviate the zero probability [9]. The smaller
the KL divergence the closer the document is to the actual collection. A zero
KL score indicates two identical distributions.

In our case, we are interested in each term t’s contribution to the KL score
for a document d, instead of determining the difference between two term dis-
tributions. The greater the contribution to the document model the higher the
KL score will be. Therefore, for each term t’s the contribution is calculated as
in the following:

KLd(t) = p(t|Θd)log
p(t|Θd)
p(t|Θc)

(4)

Investigation of the Effectiveness of Cross-Media Indexing 643

The top 20 ranked terms in a document model are then ranked further ac-
cording to each term’s representative (generality) and discriminative (specificity)
properties. The first p(t|Θd) part in the equations 4 determines the representa-
tiveness and the later log component determines the disciminativeness. This
approach makes it possible to measure the effectiveness of the two categories
of terms in addition to our main objectives. Top ten qualifying terms are then
used as queries to be submitted to the search engines. The contents of the first
ten links were gathered and each story’s speech content was expanded using
the formula suggested by [10] and applied in [6] without additional weights. We
continued our experiments using the base index (BI), base index extended by
representative queries (IRQ) and base index extended by discriminative queries
(IRD). Figure 2 depicts the precision and recall values for baseline and DS over
BI, IRQ and IDQ indexes. Although not significantly different than the baseline,
it is observed that DS system shows some improvement over the IRQ index on
the left hand side graph.

Fig. 2. The graph on the left illustrates the precision and recall values for Baseline,
DS and DS expanded with Representative and Descrimitive queries. The graph on the
right hand side illustrates the precision values in various levels.

In addition to these experiments, we had also indexed ASR only and its ex-
panded versions using Terrier system to run other 8 retrieval models [11]. We
found out that there is no significant performance improvement for each retrieval
model over these three indexes (F=1.694, Significance=0.184). The results also
suggest that none of the retrieval models perform significantly better than the
other ones (F=0.80, Significance=0.999).

4 Conclusions and Future Work

In this paper, our approach to cross-media indexing and our initial experiments
were presented. Given the available parameter space it is quite early to say

644 M. Yakıcı and F. Crestani

that Dempster-Shafer approach is not working. The hypothesis of cross-media
indexing and the models in use are still an open research area. There are many
issues, variables and problems yet to be tackled for a reliable system performance.
There might be other cross-media models that can combine different modalities
in their own feature space or equalize them in one modality such as text.

We will be working on various ways to improve the processes such as “cross-
media” query generation and document expansion models provided in this study.
In order to further investigate the effects of document expansion models using
web, we acquired TDT-2 and AQUAINT collections.

References

1. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
2. Jose, J.M., Harper, D.J.: A retrieval mechanism for semi-structured photographic

collections. In: Proceedings of the DEXA, Springer-Verlag (1997)
3. Lalmas, M., Moutogianni, E.: A Dempster-Shafer indexing for the focussed retrieval

of a hierarchically structured document space: Implementation and experiments on
a web museum collection. In: Proceedings of RIAO, Paris, France (2000)

4. Yakici, M., Crestani, F.: Design of a cross-media indexing system. In: Proceedings
of ECDL. (2006) 477–480

5. Yakici, M., Crestani, F.: Design and implementation of a cross-media indexing
system for the reveal-this system. In: Proceedings of Axmedis Conference. (2006)

6. Singhal, A., Pereira, F.: Document expansion for speech retrieval. In: Proceedings
of ACM SIGIR’99, Berkeley, California, United States, ACM Press (1999)

7. Baillie, M., Elsweiler, D., Nicol, E., Ruthven, I., Sweeney, S., Yakici, M., Crestani,
F., Landoni, M.: University of Strathclyde: the i-labs first big day out at TREC
HARD. In Voorhees, E.M., Buckland, L.M., eds.: Proceedings of the Fourteenth
Text Retrieval Conference (TREC-14), NIST Special Publication (2005)

8. Kullback, S.: Information theory and statistics. Wiley, New York (1959)
9. Xu, J., Croft, W.B.: Cluster-based language models for distributed retrieval. In:

Proceedings of ACM SIGIR’99, New York, NY, USA, ACM Press (1999) 254–261
10. Rocchio, J.J.: Relevance feedback in information retrieval. In Salton, G., ed.: The

SMART retrieval system: experiments in automatic document processing, Engle-
wood Cliffs, NJ, USA, Prentice-Hall (1971) 313 – 323

11. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A
High Performance and Scalable Information Retrieval Platform. In: Proceedings
of ACM SIGIR’06, Workshop on Open Source Information Retrieval (OSIR 2006).
(2006)

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 645 – 652, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improve Ranking by Using Image Information

Qing Yu, Shuming Shi, Zhiwei Li, Ji-Rong Wen, and Wei-Ying Ma

Microsoft Research Asia
{qingyu, shumings, zli, jrwen, wyma}@microsoft.com

Abstract. This paper explores the feasibility of including image information
embedded in Web pages in relevance computation to improve search
performance. In determining the ranking of Web pages against a given query,
most (if not all) modern Web search engines consider two kinds of factors: text
information (including title, URL, body text, anchor text, etc) and static ranking
(e.g. PageRank [1]). Although images have been widely used to help represent
Web pages and carry valuable information, little work has been done to take
advantage of them in computing the relevance score of a Web page given a
query. We propose, in this paper, a framework to contain image information in
ranking functions. Preliminary experimental results show that, when image
information is used properly, ranking results can be improved.

Keywords: Web search, image information, image importance, relevance.

1 Introduction

Web search engines commonly evaluate Web pages based on two factors [1]: text
relevance scores, and static ranks. The former describes how relevance a page is
according to the text contents of a page; and static rank is a query-independent page
quality measurement. Multimedia information (especially images) carries valuable
information and plays an important role in representing a Web page to end users, just
like the saying goes “a picture is worth a thousand words.” However, for some reason,
current Web search engines are prone to discard multimedia information within Web
pages in computing relevance scores, and therefore lose some important pieces of
information of the original Web pages.

In this paper, we study the problem of how to leverage image information within
Web pages to improve Web search rankings from two aspects. On one side, the
relevance between an image and a text query is evaluated based on the automatically
extracted image annotation. On the other side, we deduce an image’s importance for a
page by analyzing the image’s content. Finally the two aspects of an image are
combined by a multi-evidence combination method.

2 Our Approach

In this section, we provide a detailed description of our approach. First, because
images cannot be used directly for indexing and retrieval, it is required to annotate
each image by assigning some pieces of text to them. Then, for each image, its
relevance score to a query can be computed on its text description by adopting

646 Q. Yu et al.

existing document retrieval techniques. Third, we use a machine learning approach to
compute each image’s importance in its Web page, as different images in a Web page
play different roles and therefore have different levels of importance. In the fourth
step, we compute an overall image score for a Web page based on all images’
information in the page. And this score is then combined, in the final step, with other
evidence of the page to get the final score, which is ultimately used for ranking. In the
following sections, we will describe the steps in a little more detail.

2.1 Image Annotation and Relevance Score Computation

Ideally, in order to use image information for text search, we must acquire precise
equivalent text information represented by an image and then index these text
segments. However, it can be difficult (if not impossible) to automatically get the
precise text representation of an image. Fortunately, some research work [3][8] has
shown that ALT text, URL and surrounding text from an image can be treated as
approximate text presentation of the image, as shown in Fig.1. We have chosen to
employ these text segments as the approximate image annotation. With this kind of
annotation, each image can be transformed into a small structured document with
multiple text fields. The precision of approximate annotation is a key factor in the
final performance of our approach. If some incorrect text descriptions are added to an
image, the calculated image relevance score would have bias. In paper [2], the author
discusses some kinds of surrounding text extraction methods. In this paper, we adopt
a rule-based DOM-tree parsing method, which focuses on dealing with table
elements. Extensive engineering efforts were made, which are ignored here due to
space limitation. Although not perfect, we found that the extracted surrounding text is
commonly acceptable image description.

Fig. 1. Image text fields and annotations

In the previous step, each image has been represented by a structured document
with multiple text fields. Therefore, existing IR techniques for structured document
retrieval can be employed to compute a relevance score for each image. A simple
approach is to separately calculate a relevance score for each text field separately and
then linearly combine the scores. Further, assuming the text fields of an image are Fi
(i=0, 1, …, m), the relevance score for the image can be computed as

∑
=

⋅=
m

i
ii RwR

1

,where wi is the weight of field Fi, and Ri is the relevance score of field

 Improve Ranking by Using Image Information 647

Fi with respect to a query. For each field, the relevance score Fi can be computed by
adopting some existing IR models. We use the BM25 formula [9],

1

1

(1) (,)
()

((1)) (,)

i
i

it Q
i

i

k tf t F
R W t

fl
k b b tf t F

avfl
∈

+ ⋅= ⋅
⋅ − + ⋅ +

∑

(1)

where tf is the occurrence frequency of the term t within a specific field Fi, fli and avfli
are field length and average filed length of Fi, and k1 and b are two parameters. W(t) is

the term weight, which can be computed by
() 0.5

log
()

N df t

df t

− +
,where N is the total

fields number of all contained images in a collection and df(t) is the number of
structured documents containing term t.

2.2 Image Importance Computation

Images within a Web page tend to be highly heterogeneous in terms of their
functionality and importance [4]. Types of images include topical images (images which
help to clarify the main topic of a Web page), advertising images, banners, logos,
formatting images, and others. Some of them carry more detailed information than
others and are therefore judged more important to their contained page. By contrast,
some images are inserted into a page only for decoration, advertisement or navigation,
and therefore are relatively less important, or even harmful when used for ranking. To
make best use of image information in general Web search, it is required to differentiate
between important and less important images. We use a real-valued score, called image
importance score, to depict the importance of an image within a Web page. We adopt a
machine learning approach to automatically learn the importance score based on three
kinds of features: image level, page level, and site level, as listed in Table 1.

Table 1. Features used for computing image importance scores

Feature kind Feature name
Image level size, width/height ratio, blurriness, contrast, colorfulness, photo vs. graphic
Page level relative pos, relative size, relative width/height ratio
Site level IsInnerSite, FrequencyInSite

Image level features are extracted from the image content. Features contained in
this category include size, width/height ratio, blurriness, contrast, colorfulness, and
others. These features are mainly used to represent the quality of an image1. Page
level features are used to describe the relationship between an image and the page
containing it, or the relationship between different images within the same page.
Feature RelativePos is used to describe the relative horizontal and vertical position of
an image in a Web page. Relative positions are used to achieve comparable results
among different Web pages. Feature Relative size represents the percentage of the

1 We ignore image low-level features such as color histogram in this paper for two reasons:

First, it is relatively expensive to include them in the feature set, as they are typically high-
dimensional data. Second, they are relatively less informational to our scenario.

648 Q. Yu et al.

image area covering the Web page. And the relative width/height ratio feature
describes the relationship between the image shape and the page shape. Site level
features are mainly used to represent the relationship between an image and the Web
site containing it. The IsInnerSite presents whether the URL of the image is on the
same site as its hosting page. Many advertising images and other non-important
images are located on different sites from the page on which they are displayed. The
FrequencyInSite represents the number of times the image appears in (the different
Web pages of) the given site. Its functionality is just like DF (document drequency:
the number of documents contain a term within a collection) in ranking functions in
information retrieval.

We use a machine learning method to deduce the image importance. And a model
is trained from pre-labeled training sample set T. Each labeled sample (image) can be
expressed as (xi,j, yi,j), where xi,j is the extracted features vector of the image i in the
page j and yi,j is its labeled importance (degree). We crawled 2,000 Web pages and the
images contained within them (total 6,152 images). Each image is assigned an
important level, namely 0 (useless), 1(important) and 2 (highly important). To train

the model, we need to find a function f such that
2

, ,(,)
()i j i jy T

f y
∈

−∑ x
x is minimized.

We use linear Ranking-SVM [7] to solve this problem.

2.3 Page’s Overall Image Score

After getting an image’s relevance score R and importance weight I, we can naturally
compute the image’s overall score by IRS ⋅= . However a Web page commonly
contains multiple images, so a function f is needed to combine all images together to
get the page’s overall image score. The most straightforward way of computing the
overall image score is summing all image scores. Another simple way is using the
maximal image score as the overall image score. These two straightforward methods
both have their apparent disadvantages. Web pages typically have various numbers of
images. If we sum scores directly the resulting overall image score would be
unreasonably higher for pages that contain many images. Considering page A having
an image of score 1.0 and page B having 20 images of score 0.1 each, it is apparently
not feasible to assign the overall image score for page B as 2.0 (=0.1*20, twice of
page A’s score). The disadvantage of the maximum method is that it loses a lot of
information by only considering the most important image in each Web page.

In this paper, we utilize the homogeneous evidence combination technique [10] to
combine the image relevance scores. In a little more detail, the following formula is
adopted,

(2)

where , and c is a parameter controlling the degree of

discount.
After computing a page’s overall image score Simage, we can simply combine it

linearly with the page’s text relevance score Stext and static rank Sstatic:
1 2 3total img text staticS S S Sλ λ λ= ⋅ + ⋅ + ⋅ , where 1321 =++ λλλ .

 Improve Ranking by Using Image Information 649

Most image related applications require much computation. However our approach
can be implemented efficiently. Among all steps of our approach, only the image
relevance score computation is done online. Web pages typically have lots of images,
and the processing for them may be costly. So we first remove noisy images before
online computation. This pre-processing step increases efficiency greatly with little
impact on search quality.

3 Experiments

Experimental Setup. In order to examine our method, we crawled Web pages and
their images from a large website2. This website contains huge number of Web pages
that cover plenty of information and various Web page types and styles. We totally
crawled about 7M Web pages, with about 25% pages containing images (after
removing noisy images). We randomly selected 83 queries from the query log of the
site search engine. These queries were manually classified into 13 categories. For
each query, we labeled the top 30 results returned by each ranking algorithm, which is
tested in follow experiments, by assigning each page a relevance value from 1
(meaning ‘poor match’) to 5 (meaning ‘perfect match’). We adopted the nDCG metric
[6] to measure the performance. In our experiments, the discount factor b was fixed to
2 and the gain values for levels (from 1 to 5) were 0, 1, 3, 7 and 15, respectively.

Overall Results. The baseline retrieval system adopts the BM25 formula to compute
relevance scores on the body, title, anchor, and URL fields. And the resultant text
score is linearly combined with the PageRank [1] score to get the baseline score. For
our approach, the overall image score is computed and is linearly combined with the
baseline score. All the algorithms are tested under the optimal parameters. To
effectively find approximate optimal parameter settings in the algorithm, we take an
iterative approach. For each iteration step, we free two parameters for tuning (by grid
search) and fix other parameters. The Table 2 shows the preliminary comparison of
the baseline method and our method. The search performance is improved when
image information is considered. Such preliminary experimental results verify that
image information could be useful for improving web search performance.

From Figure 2, we can further observe that image information is especially useful
for queries on which the baseline system does not perform well. We divide all queries
into five ranges based on the performance of the baseline system. We can clearly see
that the performance improvement is significant on those queries whose baseline
performance is very low. On the contrast, for queries over which the baseline system
already behaves well, little performance improvement can be achieved (we can see
that the performance even slightly decreased on queries in the [0.8, 1] range). And for
queries in most queries ranges, the performance is improved moderately by including
image information.

2 http://www.msn.com. We didn’t use TREC dataset in our experiments because they only

contain the plain text of Web pages (while images were not downloaded). Even the latest
dataset was generated two years ago, and many pages and their images may have been
deleted, so we can’t re-crawl the required images.

650 Q. Yu et al.

Query Categories. Queries can be divided into some categories according to certain
criteria. It is not difficult to imagine that different categories of queries may see
different degrees of performance improvement when considering image information.
To achieve a better understanding of it, we manually classified the queries into 13
categories3. The categories and the performance improvements (measured by
nDCG@3) for each category are shown in Table 4. We can see�the improvements are
relatively high for some categories such as information resources, services, people, and
others. While the performance on some categories remains unchanged or becomes
slightly worse. If the queries can be automatically classified into some categories (we
must admit that it is hard to do) and be assigned different combination weights of
image scores and baseline scores, the overall performance would be further improved.

Table 2. General Performance Comparison

nDCG Baseline With
Image

%

@1 0.616 0.638 3.56%
@3 0.604 0.641 6.08%
@5 0.588 0.622 5.70%

@10 0.535 0.548 2.45%

Table 3. Stat. of avg importance for
different labeling levels (nDCG@3)

Labeled Relevance
Level

Total
importance

5 (Best) 1.022

4 0.547

3 0.454

2 0.832

1 0.397

Table 4. Performance improvements for
different query categories (nDCG@3)

Category Query # Improve %

Information
resources

6 0.166 35.40%

Services 6 0.166 35.40%

People 10 0.057 9.75%

Products 9 0.047 12.44%

Knowledge 7 0.042 6.63%

Geography 6 0.031 6.17%

Entertainment 14 0.028 4.45%

Companies 6 0.003 0.47%

Hobby 5 0.000 0.00%

Holiday /Events 5 0.000 0.00%

Navigational 5 -0.021 -2.43%

Others 13 0.000 0.00%

Alternative Techniques. As we have seen from Section 2, our approach is comprised
of several steps. Although straightforward methodologies are used in some steps,
technologies used in some other steps are crucial to achieve such performance gains.
Firstly, we adopted a machine learning approach to automatically compute image
importance from a Web page. Fig.3 illustrates the effect of it by comparing an
alternative way which simply uses uniform image importance. We can see that,
although the “uniform importance” approach performs slightly better than the baseline,
differentiating image importance can bring great performance improvement. In the
overall image score computation step, we use the homogeneous evidence combination
technique to compute a page’s overall image score based on all image information on
the page. Fig. 4 shows the performance of various methods described in section 2.3. As

3 Some queries belong to more than one category.

 Improve Ranking by Using Image Information 651

expected, our approach behaves the best among them. In our approach, we compute an
overall image score against a given query for each page. That is, we adopt a query-
dependent approach. A simpler and attractive way is to use image information as
query-independent page quality evidence [5]. A primary precondition to do so is that
good search results should be more likely to contain high-quality images. Does this
precondition actually hold? To answer this question, we provide statistics on labeled
search results data. Table 3 summarizes the mean of a page’s total importance for each
relevance level, which is the sum of the importance of all images within a page and can
indicate whether the page contains high-quality images. We can observe from the table
that, although the best search results (with label 5) are commonly more likely to
contain high-quality images than other levels, this assumption does not hold for some
other levels (e.g. the quality of images in level-2 pages is on average higher than the
quality of images in level-3 and 4). Fig.5 shows the experimental results of the above
query-independent image usage. It is clear from the figure that this kind of usage is
quite ineffective relative to our query-dependent approach.

-0.011(1.22%)

0.038(5.53%)0.030(6.22%)

0.052(18.5%)

0.129(168%)

-0.020

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1

Original nDCG@3 (baseline)

P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t
(
n
D
C
G

@
3
)

Fig. 2. Performance improvement on queries
with different baseline performance ranges

0.588

0.603585

0.622

0.560

0.580

0.600

0.620

0.640

baseline uniform

importance

our

approach

n
D
C
G

@

3

Fig. 3. Effect of differentiating image
importance

0.588

0.61679

0.608297

0.622

0.570

0.580

0.590

0.600

0.610

0.620

0.630

baseline sum max non-linear

combination

n
D
C
G

@

3

Fig. 4. Performance comparison among various
image score combination techniques

0.588

0.596498

0.622

0.57

0.58

0.59

0.6

0.61

0.62

0.63

baseline query

independent

usage

our approach

n
D
C
G
@
3

Fig. 5. The performance of using image
information as query-independent evidence

4 Related Work

In the image retrieval field, some work has been done on keyword-based image
indexing and search [2][3][8]. These systems extract text information related to an

652 Q. Yu et al.

image as its annotation from its host web page. Then, images are indexed by using
their text information. In content-based image retrieval [11], the contents of images are
used to calculate the similarity between a query image and some candidate images.

Some methods are proposed, which uses images as a query independent evidence
of page quality, such as [5]. Differently, our method is to explore the semantic
information of images and to give their information an importance score. Some works
give different weights for different parts of text on a page based on visual information
such as font size, color, bold attributes or Web blocks [12]. However, these methods
give different weights to text, but they don’t use extra information besides text.

5 Conclusion

The important role of images in helping representing Web pages motivates us to
utilize image information for relevance ranking. Computing a query-dependent
overall image score for a Web page based on all images embedded in it has distinct
advantage. Experimental results show that when image information is used properly,
ranking performance can be improved. And our approach is practical and can be
simply integrated into existing Web search engines.

References

1. Brin, S., and Page, L. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
WWW-7, 1998

2. Cai, D., He, X., Li, Z., Ma, W.Y., and Wen, J.R. Hierarchical Clustering of WWW Image
Search Results Using Visual, Textual and Link Information. In Proc. Of the 12th ACM
international conference on Multimedia, 2004.

3. Frankel, C., Swain, M., and Athitsos, V. Webseer: an Image Search Engine for the World
Wide Web. University of Chicago Technical Report TR96-14, 1996.

4. Hu, J., and Bagga, A. Categorizing Images in Web Documents. SPIE Document
Recognition and Retrieval (DR&R X), Santa Clara, January 2003.

5. Ivory, M.Y., and Hearst, M.A. Improving Web Site Design. IEEE Internet Computing, v.6
n.2, p.56-63, March 2002

6. Jarvelin, K. and Kekalainen, J. IR evaluation methods for retrieving highly relevant
documents. In SIGIR 2000.

7. Joachims, T. Optimizing Search Engines Using Clickthrough Data. In: Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining.

8. Lempel, R., and Soffer, A. PicASHOW: Pictorial Authority Search by Hyperlinks on the
Web. In Proc. 10th Int. World Wide Web Conf., pp. 438-448, Hong Kong, China, 2001.

9. Robertson, S.E., Walker, S., and Beaulieu, M. Okapi at TREC–7: Automatic Ad-hoc,
Filtering, VLC and Filtering Tracks. In Proceedings of TREC’99.

10. Shi, S., Song, R., and Wen, J.R. Latent Additivity: Combining Homogeneous Evidence.
Technique report, MSR-TR-2006-110, Microsoft Research, August 2006.

11. Smith, J.R. and Chang, S. VisualSeek: A Fully Automated Content-Based Image Query
System. In Proc. ACM Conf. Multimedia, ACM Press, New York, 1996.

12. Song, R., Liu, H., Wen, J.R., and Ma, W.Y. Learning Block Importance Models for Web
Pages. WWW’2004.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 653 – 660, 2007.
© Springer-Verlag Berlin Heidelberg 2007

N-Step PageRank for Web Search

Li Zhang1, Tao Qin2, Tie-Yan Liu3, Ying Bao4, and Hang Li3

1 Department of Mathematics, Beijing Jiaotong University,
Beijing, 100044, P.R. China

li.zhang1982@gmail.com
2 MSPLAB, Dept. Electronic Engineering, Tsinghua University

Beijing, 100084, P.R. China
tsintao@gmail.com

3 Microsoft Research Asia, No. 49, Zhichun Road, Haidian District,
Beijing, 100080, P.R. China

{tyliu,hangli}@microsoft.com
4 Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Beijing, 100080, P.R. China
ybao@amss.ac.cn

Abstract. PageRank has been widely used to measure the importance of web
pages based on their interconnections in the web graph. Mathematically
speaking, PageRank can be explained using a Markov random walk model, in
which only the direct outlinks of a page contribute to its transition probability.
In this paper, we propose improving the PageRank algorithm by looking N-step
ahead when constructing the transition probability matrix. The motivation
comes from the similar “looking N-step ahead” strategy that is successfully
used in computer chess. Specifically, we assume that if the random surfer
knows the N-step outlinks of each web page, he/she can make a better decision
on choosing which page to navigate for the next time. It is clear that the
classical PageRank algorithm is a special case of our proposed N-step
PageRank method. Experimental results on the dataset of TREC Web track
show that our proposed algorithm can boost the search accuracy of classical
PageRank by more than 15% in terms of mean average precision.

1 Introduction

PageRank [6] is one of the most successful link analysis algorithms for Web search.
PageRank simulates a random walk on the web graph (nodes in the graph represent
web pages, and edges represent hyperlinks), and uses the stationary probability of
visiting each webpage to represent the importance of that page. Consider a random
surfer that is visiting web page a at present. At each of successive steps, the surfer
will proceed from page a to a web page randomly chosen from all the pages that a
links to. Take Fig.1 for instance. There are three hyperlinks starting from page a to
pages b, c and d respectively. The surfer will then visit each of these three pages with
a probability of 1/3. In other words, the transition probability of this Markov random
walk only depends on the information of the page that is currently being visited.

To our knowledge, however, such a Markov model is not always the best choice
in many real-world applications. Take computer chess game for example. The key to

654 L. Zhang et al.

the winning of computer “Deep Blue” [2] over human is that it can predict all the
situations within much more steps than a human being can do at the same time. That
is, if one knows more information, he/she may have more opportunities to make the
right decision. Similarly, we argue that if the surfer in the PageRank model can have
more information than the direct outlinks, (for example, how many pages one can
find by N-step jumps after choosing one of the direct outlinks), he/she may choose
his/her next step with quite different probabilities in order to maximize his/her
information gain. This is just the motivation of our proposed N-step PageRank
method. It is clear that this N-step PageRank is a generalized version of classical
PageRank.

Fig. 1. Illustration of N-step

To better elaborate on this new method, in Section 2, we will briefly introduce the
classical PageRank algorithm. Then in Section 3, we will give the mathematical
formulation of the N-step PageRank and prove how it can be effectively computed.
Experimental results are reported in Section 4. Finally, we give the conclusions and
future work in the last section.

2 PageRank Review

Since our N-step PageRank is based on PageRank, we shall introduce PageRank in
this section.

The directed link graph of the Web is usually modeled as ,G V E=< > , where
V={1,2, …, n} is the set of vertices, the elements of which correspond to all the pages
on the Web; { }, | ,E i j i j V= < > ∈ is the set of edges, the elements of which

correspond to the links between web pages (from page i to page j).
Based on this modeling, we can further define the adjacency matrix A of the link

graph as follows,

1 , ,
:

0 ,i j

i f i j E
a

otherwise

< >∈⎧
= ⎨
⎩

 (1)

That is, if there is a hyperlink from page i to page j, aij=1; otherwise, aij=0.

 N-Step PageRank for Web Search 655

Most link analysis algorithms are based on this adjacency matrix, including
PageRank. PageRank simulates a random walk process on the Web to calculate the
importance of each web page. Suppose there is a surfer in an arbitrary page. At each
step, he/she can transit to one of the destination pages of the hyperlinks on the
current page with probability α or to another page randomly in the graph with
probability 1-α . Normalize each non-zero row of the adjacency matrix A with its
sum, we will get an initial transition matrix P. Dealing with zero rows1, we will get a
probability transition matrix P . Then the above random walk behavior can be
modeled as

()1P P Uα α= + − (2)

Where U is a uniform probability transition matrix, all elements of which equal to 1/n
(n is the dimension of U).

If we use ()1 2, , ,
T

nπ π π π= to denote the stationary distribution of the

probability transition matrix P , by the ergodic theory [3], we have:

1 -1 ()

{visiting at the -th step}
k 0 k=0

1 1
lim lim : , . .

m m k

i k ijim m
E I p a s

m m
π

−

→∞ →∞=

⎧ ⎫ = =⎨ ⎬
⎩ ⎭
∑ ∑ (3)

With the above interpretations, it is reasonable to assume that the more clicks on a
webpage, the more important it is. Then the clicking ratio can be interpreted as a
measurement of the relative importance of web pages. Thus the stationary distribution

()1 2, , ,
T

nπ π π π= can be regarded as the rank scores of the web pages. In fact, π

can be computed through the following iterative process.

(1) ()
T

t P tπ π+ = (4)

Furthermore, it has been proved that the stationary value of π corresponds to the

principal eigenvector of
T

P when
T

P has its unique principal eigenvalue [5].
For clarity, we will denote the above PageRank algorithm [6] as classical

PageRank in the following discussions.

3 N-Step Pagerank

In classical PageRank, when the surfer chooses the next webpage, he/she uses only
the information of direct outlinks of the current page, i.e., chooses one of the outlink
pages with equal probability. In other words, classical PageRank assumes that
outlinks are non-distinguishable to the surfer. In this paper, we argue that outlinks can
actually be distinguished from many aspects. For example, the surfer may find more
useful information or more hyperlinks to new pages after clicking one outlink than the

1 If the sum of a row is 0, the elements in this row are all given value 1/n after normalization [5].

656 L. Zhang et al.

other. Inspired by the “look N-step ahead” strategy in a computer chess, we propose
using the information contained in the next N-step surfing to represent the information
capacity of an outlink, and thus distinguish different outlinks. To make it clearer, we
take Fig.1 for example.

Suppose a user is browsing webpage a. According to the classical PageRank
algorithm, when he selects the next webpage, he can only choose from b, c, and d
with equal probability. In our N-step PageRank algorithm, the user has more
information to decide which page to select. That is, he also knows outlinks of page
b, c, and d. For the case of looking 2-step ahead, the probabilities that he selects b,
c, and d can be defined as proportional to the outlink numbers of b, c, and d. That
is, pab=4/9, pac=3/9, and pad=2/9. For the case of looking 3-step ahead, the
probabilities that he selects b, c, and d will be proportional to the number of web
pages he can reach after the next two steps. Recursively, we can come to the
conclusion that for the case of looking N-step ahead, the probabilities that the surfer
selects b, c, and d are proportional to the number of web pages he can reach after
the next (N-1) steps.

3.1 Transition Matrix ()nP

After the above intuitive explanation of N-step PageRank method, we will give the
expression of the corresponding transition probability matrix. Actually, for two

arbitrary vertexes i and j, we have
(1)

{(,) ()}

(1)

(,) ()

1()
N

j i j e G

N
k

i k e G

dN
ij d

p
−

∈
−

∈

= ∑ , where ()N
jd is the vertex

number after vertex j jump N steps, and (0) (1,1, ,1)T
nd = … .

Theorem 1. The transition matrix of N-step PageRank algorithm P(N) can be
computed as following:

() () 1 (1)()N N NP D AD− −= (5)

where A is the adjacent matrix of the directed graph G, D(N) is a diagonal matrix

generated by the vector ()Nd , () (1) (0)N N Nd Ad A d−= = , the elements in ()Nd is the
vertex number after each vertex jumps N steps2

Proof: Considering

(1) (1) (1)
11 1 12 2 1

(1) (1) (1)
(1) 21 1 22 2 2

(1) (1) (1)
1 1 2 2

, , ,

, , ,

, , ,

N N N
n n

N N N
N n n

N N N
n n nn n

a d a d a d

a d a d a d
AD

a d a d a d

− − −

− − −
−

− − −

⎡ ⎤× × ×
⎢ ⎥

× × ×⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥× × ×⎣ ⎦

,

2 () 1()ND − is the extended inverse matrix, and if a certain diagonal element in ()ND is 0, the

corresponding element in () 1()ND − is 0.

 N-Step PageRank for Web Search 657

we have

(1)(1) (1)
111 1 12 2

() () ()
1 1 1

(1)(1) (1)
221 1 22 2

() 1 (1) () () ()
2 2 2

(1) (1) (1)
1 1 2 2

() () ()

, , ,

, , ,
()

, , ,

NN N
n n

N N N

NN N
n n

N N N N N

N N N
n n nn n

N N N
n n n

a da d a d

d d d

a da d a d

D AD d d d

a d a d a d

d d d

−− −

−− −

− −

− − −

⎡ ⎤×× ×
⎢ ⎥
⎢ ⎥
⎢ ⎥×× ×
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥× × ×
⎢ ⎥
⎣ ⎦

Note that () ()N Nd Ad= , and () (1)

1

n
N N

i ij j
j

d a d −

=

=∑ , then it is easy to verify that

1
{(,) ()}

1

(,) ()

1() () 1 (1)()
N
j i j e G

N
k

i k e G

dN N N
ij d ij

p D AD
−

∈
−

∈

− −⎡ ⎤= = ⎣ ⎦∑

The above theorem shows that we can easily get the transition matrix P(N) of N-step
PageRank from the adjacent matrix A. Since D is a diagonal matrix, and some of its
diagonal elements may be zeros, the matrix P(N) is more sparse than the initial matrix
P in classical PageRank which can be used to speed the computation of the stationary
distribution.

3.2 Convergence Rate

Similar to the classical PageRank algorithm, we can obtain irreducible random matrix
()NP from ()NP . According to the ergodic theory [3], the corresponding Markov

chain has a unique stationary distribution ()Nπ , and () () ()()N N T NPπ π= . We still

use ()Nπ to measure the importance of web pages. We can use power iteration

method to compute the final distribution ()Nπ , just like equation (5). In this sub
section, we will discuss the convergence rate of the corresponding power iteration
method.

Theorem 2. The stationary distribution is

() () () () 1() (() (1))N N T N N
i i nn

i D

P r eπ α π α π α
∈

= + + −∑ ,

where () (0)Nπ denotes the initial vector of the iteration, () ()N tπ denotes the vector

after t steps of iteration, and D is a collection of nodes,

()

1

{ | 0, }
n

N
ij

i

D i p i V
=

= = ∈∑

658 L. Zhang et al.

And the convergence rate is

() () () ()

1 1
() (0) 2N N t N N ttπ π α π π α− ≤ − ≤

Proof: Omitted since the proof process is very similar to that of classical PageRank.

4 Experimental Results

4.1 Settings and Results

To compare our N-step PageRank algorithms with classical PageRank (PR) [6], we
chose the topic distillation task in Web track of TREC 2003 as the benchmark. For
each query, we first use BM25 [7] to get a list relevance pages. We then choose the
top 2000 pages from this list, and combine the relevance score with importance score
as follow:

tan(1)combination impor ce relevancescore score scoreα α= − × + ×

To evaluate the search accuracy, we adopted two widely-used criteria in our
experiments: mean precision at n (P@n) [8], and mean average precision (MAP) [8].

The MAPs of two PageRank algorithms under investigation are shown in Fig.2.
We can see that our 2-step PageRank almost uniformly outperforms classical
PageRank, which shows the effectiveness of considering multi-step hyperlink
information.

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3

alpha

M
A

P

2-Step PageRank Classical PageRank

Fig. 2. Search accuracy comparison

We list the best performance of these two algorithms in Table 1 for further
comparison. From this table, the best performance of 2-step PageRank is much better
than classical PageRank. The MAP of 2-step PageRank is more than 2.5 points higher

 N-Step PageRank for Web Search 659

than that of classical PageRank, which corresponds to over 15% relative
improvement. And 2-step PageRank gets more than 6% relative improvement over
classical PageRank in terms of P@10. Note that the combination of importance score
and relevance score overcomes the relevance score only, which implies the value of
link analysis.

Table 1. Comparison of different ranking algorithm

Ranking methods Best MAP Best P@10
Relevance only 0.1243 0.104
2-step PageRank + relevance 0.1891 0.134
PageRank + relevance 0.1639 0.126
Best Result on TREC2003 [1] 0.1543 0.128

4.2 The Influence of Loops

Real-world Web graph may contain loops. One may argue that these loops will
influence the result of N-step PageRank algorithm, and the hyperlink structure is too
complex to quantify this influence. For example, in Fig.3, the loop b u v b will
make web page b double counted when computing the outdegree of web page b in
3-step PageRank.

Fig. 3. Illustration of circle in 3-step outlinks

To investigate the influence of the loop, we conducted a small experiment on the
case of N=2. After eliminating loops while counting the 2-step outlinks of a webpage,
we find the ranking result is almost the same as the previous result. We will
investigate more complicated cases in our future work.

5 Conclusions and Future Work

Inspired by the computer chess, in this paper, we pointed out that the random walk
model in classical PageRank algorithm could be improved by considering more

660 L. Zhang et al.

information. Specifically, we modified the transition matrix of classical PageRank
algorithm by using multi-step outlink information, and proposed the N-step PageRank
algorithm. Experiments on the topic distillation task of TREC2003 showed that the
new algorithm outperforms the classical PageRank algorithm.

In the future work, we plan to investigate the following problems:

(1) We have not given an explicit relationship between the stationary distribution
of N-step PageRank and that of classical PageRank in this paper. Though the
transition matrices of the two algorithms seem not very complex, they cannot
represent each other by elementary transformation. As a result, it is not clear what
will happen to the corresponding eigenvectors.

(2) As aforementioned, the “look N-step ahead” model is to leverage more
information when computing page importance. Actually the proposed N-step
PageRank algorithm is just a simple implementation. We will study how to make use
of other information, such as website structure.

Acknowledgments

We would like to thank anonymous reviewers for their hard work.

References

1. Craswell, N., Hawking, D. (2003). Overview of the TREC 2003 Web Track, in the twelfth
Text Retrieval Conference (TREC 2003).

2. Hsu, F.-h. Behind Deep Blue, Princeton University Press, Princeton, NJ, 2002.
3. Kallenberg, O. Foundations of Modern Probability, Page152.
4. Kleinberg, J. Authoritative sources in a hyperlinked environment, Journal of the ACM, Vol.

46, No. 5, pp. 604-622, 1999.
5. Ng, A. Y., Zheng, A. X., and Jordan, M. I. Link analysis, eigenvectors, and stability. In

Proc. 17th International Joint Conference on Artificial Intelligence, 2001.
6. Page, L., Brin, S., Motwani, R., and Winograd, T. The PageRank citation ranking: Bringing

order to the web, Technical report, Stanford University, Stanford, CA, 1998.
7. Robertson, S. E. Overview of the okapi projects, Journal of Documentation, Vol. 53, No. 1,

1997, pp. 3-7.
8. Salton, G. and McGill, M. J. Introduction to Modern Information Retrieval. McGraw-Hill,

1983.

Authorship Attribution Via Combination of Evidence

Ying Zhao and Phil Vines

School of Computer Science and Information Technology, RMIT University
GPO Box 2476V, Melbourne, Australia

{yizhao,phil}@cs.rmit.edu.au

Abstract. Authorship attribution is a process of determining who wrote a par-
ticular document. We have found that different systems work well for particular
sets of authors but not others. In this paper, we propose three authorship attribu-
tion systems, based on different ways of combining existing methodologies. All
systems show better effectiveness than the state-of-art methods.

1 Introduction

Authorship attribution systems use stylistic elements to classify documents according
to authorship. Apart from solving literary disputes, it is being used in forensics, to
identifying authorship of emails, postings on newsgroup, and can be used to provide
legal support [1,4]. In this paper we have studied the effect of combining different attri-
bution systems in various ways. Rather than simply providing a marginal performance
improvement, we have found a principled way of combining methods that leads to a
statistically significant improvement in classification effectiveness. Additionally, when
a number of different models all attribute a document to the same author, we can have a
higher degree of confidence in regard to the correctness of the attribution. This is likely
to be important in legal situations.

In our previous work the results showed that different methods seem to provide more
effective discrimination for some author pairs but not others [12]. We conjecture that
some authors have stylistic habits that result in the use of one form of style markers in a
manner that is more distinctive than others. In this paper we propose three systems, all
based on the principle of using Kullback-Leibler diverence, can be combined [12].

2 Background

There are two main steps involved in any authorship attribution system: feature extrac-
tion, and classification based on the extracted features. The simplest test is two-class
authorship attribution, where a document is classified according to whether it is more
similar to one of the two pre-defined authors. An alternative evaluation is the some-
what harder multi-class classification problem where a classification decision is made
amongst n authors, where n � 2. In this paper we evaluated the proposed systems on
both types of attribution tasks.

The extraction of stylometric features is the key aspect of effective authorship attri-
bution. Both lexical markers, such as function words and punctuation symbols [2,5,11],

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 661–669, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

662 Y. Zhao and P. Vines

and more advanced grammatical markers obtained using natural language processing
(NLP) [3,7,12] have been proposed. On the other hand a variety of different classifica-
tion methods have been used, including support vectors machines (SVMs) [5], Bayesian
networks [9,11], and principal component analysis (PCA) [3,6]. In previous work we
have proposed an entropy and uni-gram language model based technique for authorship
attribution. The method has outperformed the state-of-art techniques, including SVM
and bayesian networks. The core algorithm of computation is reviewed below, followed
by the description of 3 new proposed systems. All systems are an improvement of the
baseline results1 achieved previously.

The technique we have used involves building language models for each set of train-
ing documents and for the test document, based on a set of pre-defined features.In
this work, we have experimented with four different types of features. Function words
(FW), Part-of-speech tags (POS),2 Function words with the corresponding POS tags
(F/P),and Function words in a first order Markov model (2Gram).

Once the language models are constructed, we use Kullback Lieblier divergence to
measure the difference in the models for the training documents and the individual
test documents to be attributed. Kullback-Leibler divergence is used to calculate the
relative entropy thus quantifying the difference between two distributions. We incorpo-
rate language models for approximation of feature distributions into the computation of
Kullback-Leibler divergence. Formally, the divergence-based model is given by:

KLD (pd��pC) �
�

c�C�d

���������
�

fc�d
� � �d�

�

�

� � �d�
pB(c)

�
� log2

fc�d

���d� �
�

���d� pB(c)
fc�C

���C�
�

�

���C�
pB(c)

��������	 (1)

where pC is the model built from a group of training texts that are of a particular author
category and pd is the single document model, with which the document is to be identi-
fied. Since a given document will not normally contain all the features of each type that
we pre-defined, a smoothing technique is used to estimate the likelihood of missing fea-
tures in the documents. Dirichlet Prior, also known as Bayesian Smoothing [8], is one
of the most effective smoothing approaches in IR [10]. It re-allocates the probabilities
using the collection model pB (c). � is a smoothing parameter to adjust the significance
of feature c from pB (c). In general for short documents, the background probabilities
dominate, on the principle that the in-document authorial evidence is weak; as the docu-
ment length grows, however, the influence of the background model diminishes. Choice
of an appropriate value for � is a tuning stage in the use of this model. The document
with unknown authorship is assigned to the author model that has the smallest diver-
gence calcuated amongst all available author models.

3 Methodology

We have previously experimented with systems that build single models using multi-
ple feature types, but with little success [12]. It seems that the distinguishing features

1 The baseline results related to this work has been re-presented in Table 1.
2 We use NLTK (a Natural Language ToolKit) package that is available from http://nltk.
sourceforge.net/index.html

http://nltk.sourceforge.net/index.html
http://nltk.sourceforge.net/index.html

Authorship Attribution Via Combination of Evidence 663

m1 m2 m4m3

Test

Training

Voting System

A2A1

Vote
Vote

VoteVote

Attribution is made to "A1":
Vote(A1) = 0.75
Vote(A2) = 0.25

feature
model

Fig. 1. The voting system

m1

m2 m4

m3

Best Model M

Attribution

Results

Prediction

Test

Training

Two-Stage Model Prediction System

Processing

Fig. 2. The prediction system

m1 m2 m4m3

Test

Training

Additive System

Results

+ + +

q1
q2 q3 q4

Fig. 3. The additive system

peculiar to given author combinations have a greater tendency to be overwhelmed by
other features. In this paper we propose three authorship attribution systems, all based
on different ways of combining the evidence resulting from models that use a single
feature type for classification.

3.1 Voting System

The idea of the voting system is simple: several different methods are used to attribute
a document with unknown authorship to an author. The author that gets the most votes
wins. In this system, each model is built based on a different type of style markers. The
framework of the voting system is depicted in Figure 1.

Given several types of style markers �m1 � � �m j�, we need to build and train j fea-
ture models for each author candidate Ai. The divergence is then measured between a
document model and an author model that consists of j different feature models:

Vote(Ai) � � j

�i Argmin i KLD

� j (d) � � j (Ai)

��
(2)

According to Equation 2, a document with unknown authorship d gets one vote for
author Ai from feature model � j, if the divergence between d and Ai for feature model
� j is the smallest amongst all author candidates. Therefore each author Ai can receive
at most j votes. Vote(Ai) is the number of votes that are received by a particular author
Ai (Vote(Ai) � j).

664 Y. Zhao and P. Vines

Informally, the author with the most votes wins. Formally, a document d can be
attributed to a particular author Ai:

d � Ai if
Vote (Ai)

���
� t (3)

where ��� � j, which is the number of the feature models available. t is a threshold for
making the attribution that has the value in the range of (0� 1]. The value of t depends
on the number of author candidates and the number of types of feature models. Addi-
tionally t determines the strictness of the voting system. The bigger the value of t, the
more strict the system is. Using binary authorship attribution as an example, a typical
range of values for t is: t � �����2	 if ��� is an even number, otherwise t � �����2	.

The methodology of this approach also provides a principled way of merging various
approaches with little modification while enhancing the attribution accuracy and the
reliability of the results.

3.2 Two-Stage Model Prediction System

In the previous voting system, both the training and testing samples are modeled based
on individual types of style markers for each individual author. In contrast we propose
a two-stage model prediction system, which is less expensive in terms of computational
cost compared to that of the voting system. The outline of the two-stage model predic-
tion system is shown in Figure 2.

Based on the observation that different types of style markers are more effective for
different authors [12]. The idea of this model is to dynamically predict the best feature
model for each attribution task individually, and then use predicted feature model for
attribution. Given j different types of style markers available for the system, feature
models �1 � � � � j are built. The training documents for each author are then split into
two groups. The first group is used to train each of the feature models. The second group
is used as test data to determine which model has the most effective discrimination
ability amongst a pair, or group of authors. That feature model is then used to attribute
the documents with unknown authorship.

3.3 Additive System

The additive system uses the same modeling process as the voting system. The outline
of the additive system is shown in the Figure 3. For both training and test samples, full
modeling is required for each author and each individual type of style markers.

However the additive system is different from the voting system in that different rules
are used for the final attribution. Rather than giving a unit vote by each feature model,
we calculate the “size” of the vote in accordance with the magnitude of divergence that
each feature model produces. For example, three models might slightly favor author A,
whereas one model may favor author B. In the simple voting model, this would select
author A whereas in this model, author B may be selected if the divergence measured
by one feature model is small enough. In our experiments we have effectively summed
the divergences produced by each feature model (by setting q j � 1� j), however it is
possible that in a more sophisticated system we may also assign a different weight

Authorship Attribution Via Combination of Evidence 665

q j to each of the models. Formally, this model measures divergence, and attributes a
document as follows:

KLD (d � Ai) �
�

j

q j

KLD

� j (d) � � j (Ai)

��
where

�
j q j � 1 (4)

From which the document d is attributed to author Ai, if i � Argmini KLD (d � Ai).

4 Experiments and Results

The experimental setup is consistent with our previous work, [12,11]. Seven newswire
authors are selected. Each author has contributed over 800 documents and therefore
is considered to have reasonable style in writing. The average document length is 724
words. All experiments in this paper are based on this collection of AP newswire arti-
cles. Our baseline results were shown in Table 1.

In this paper we have applied all 4 types of style markers to the three proposed
systems. Therefore j � 4, and the value i refers to the number of authors that are to be
differentiated in the experiments.

Voting system. We implemented the voting system as described in Figure 1. We have
experimented with binary authorship attribution using both three and four different
types of feature models. Thus, the threshold t is set at t � 0�5 (t � 1 or t � 0�75 when
voting with 4 feature models; t � 1 or t � 0�67 when voting with 3 feature models).
Results are shown in Table 2, given different number of sample documents for training.

In Table 2, Recvoting shows the percentage of total number of test documents that
were attributed with correct authorship, and is somewhat akin to a recall measure. Since
this system requires a threshold to be met before a document can be attributed, some
documents remain unattributed if they do not meet the threshold. Prevoting shows the
number of documents that were correctly attributed with authorship as a percentage of
those for which attribution decisions were made (i.e. that meet the threshold, and is
somewhat akin to a measure of precision). It can be seen that when the best 3 feature
models are used and a lower threshold t � 0�67 is set, the system performs better than
the baseline, in terms of percentage of documents correctly attributed. On the other
hand, if the highest threshold t � 1 is used, we can have a higher degree of confidence
that the attributed documents have been done so correctly — up to 98.7%—using 4
feature models with sufficient training samples.

Table 1. The effectiveness (the percentage of test documents attributed with correct authorship)
for 2, 3, 4, and 5-class attribution. The data is extracted from the AP collection [11], with function
words as features, using Dirichlet smoothing.

25 training docs 100 training docs 400 training docs
N FW POS F/P 2Gram FW POS F/P 2Gram FW POS F/P 2Gram
2 88.2 87.9 87.3 82.0 91.7 89.5 90.7 87.1 92.8 89.6 92.1 92.6
3 81.8 82.1 81.1 72.0 86.6 83.7 85.9 79.5 88.3 84.1 88.1 88.1
4 77.1 78.0 76.7 64.9 82.7 79.8 82.2 74.3 84.9 80.4 85.2 84.8
5 73.5 74.8 73.2 59.6 79.7 76.9 79.2 70.5 82.2 77.5 82.9 82.1

666 Y. Zhao and P. Vines

Table 2. The effectiveness of the voting system on binary authorship attribution. Results are
compared to the best results of using individual feature.

25 Training docs 100 Training docs 400 Training docs
4/1 4/.75 3/1 3/.67 4/1 4/.75 3/1 3/.67 4/1 4/.75 3/1 3/.67

Recvoting 70.9 86.0 79.6 89.2 75.7 90.2 83.6 92.2 81.1 92.1 83.6 92.9
Prevoting 95.4 91.5 93.9 89.2 97.9 94.7 96.0 92.2 98.7 95.2 95.7 92.9

Table 3. The effectiveness of using the two-stage model prediction system for 2, 3, 4, and 5-class
authorship attribution tasks

Mc (# of combinations)
N Class FW POS FW/POS 2GramFW Mc(pre) Acc. Acc.(Pre)
2 (/21) 6 4 4 7 9 92.3 93.5
3 (/35) 10 4 9 12 21 87.5 88.8
4 (/35) 11 3 16 9 19 83.8 85.2
5 (/21) 5 1 12 3 11 80.9 82.4

overall (/112) 33 12 40 32 60

Finally, instead of implementing a new model voting system from scratch, the
methodology provides a principled way of integrating existing approaches with little
modification of the approach itself. Researchers have proposed many different ways
to perform authorship attribution [3,5,6,9]. However the open challenge is the lack of
benchmarks and consistent experimental setup, which has led difficulties to compare
these approaches. The proposed voting system is a plausible alternative to make use of
existing approaches as far as possible. There is no need to modify the approach itself,
instead the output can be used as the input to the the voting system.

Two-stage model prediction system. We implemented the two-stage model prediction
system described in Section 3.2. 400 training samples are used in total so as to be
comparable with other experiments, however, these are divided into two sets. As shown
in Figure 2, the first set is used to train each of the feature models and the second set is
used to predict the best feature model to use for that author combination. The system is
evaluated with both binary and multi-class authorship attribution, results are presented
in Table 3.

As shown in Table 3, 9 correct predictions are made out of 21 attribution tasks in total
for binary classification. In cases where the best system was not chosen, the second best
system was usually chosen and in these instances there was usually not a lot if difference
between the top systems. Importantly the prediction system avoids choosing a system
that is particularly bad for a given author combination.

We have experimented with authorship attribution tasks from 2-class up to 5-class
authorship attribution across all possible author combinations. Thus we have in total 112
attribution tasks, given 7 authors in total (C2

7 � C3
7 � C4

7 � C5
7). The likelihood for an

individual type of style markers to be the best choice of the task is 35.7% (40/112)
in the experiment. In contrast, by model prediction the likelihood can be increased to

Authorship Attribution Via Combination of Evidence 667

Table 4. The comparison between results from additive system and the best baseline results

25 training docs 100 training docs 400 training docs
Mselected 2 3 4 5 2 3 4 5 2 3 4 5
FW+POS 90.3 85.4 81.7 78.6 92.6 88.3 85.3 82.9 92.9 88.6 85.0 82.9
FW+F/P 88.4 82.2 77.8 74.3 91.6 86.5 82.8 79.8 92.7 88.3 85.1 82.6
FW+2Gram 87.3 80.0 74.6 70.2 92.2 86.9 82.8 79.5 95.0 91.9 89.5 87.6
POS+F/P 89.5 84.2 80.4 77.3 92.5 88.4 85.4 82.9 92.9 89.0 86.2 83.9
POS+2Gram 86.2 78.6 73.0 68.5 91.3 85.4 81.2 77.8 95.1 92.1 89.7 89.6
F/P+2Gram 87.3 80.6 75.6 71.6 91.8 86.5 82.7 79.7 95.2 92.4 90.2 88.4
-FW 88.8 83.2 79.0 75.7 92.7 88.1 84.7 81.9 95.5 92.7 90.7 89.0
-POS 88.8 82.8 78.4 74.8 92.6 87.8 84.3 81.5 95.5 92.8 90.8 89.3
-FW/POS 89.1 83.3 78.9 75.3 93.0 88.2 84.5 81.5 95.7 93.2 91.2 89.6
-2Gram 89.4 84.0 80.0 76.7 92.5 88.8 85.2 82.8 93.1 89.0 86.0 83.5
all 89.4 83.9 79.8 76.5 93.1 88.7 85.4 82.7 95.7 93.2 91.5 90.0

53.6% (60/112). Approximately 18% improvement is achieved in terms of the proba-
bility of picking up the best feature model for a particular attribution task.

On the other hand, the overall attribution accuracies are also improved by the two-
stage model prediction system. On average around 1.5% improvement is achieved in
terms of the overall accuracy, shown as the last column in Table 3.

Additive system. Finally we implemented additive system. We evaluated the system by
varying the number of feature models and the number of available training samples that
are provided to the system. Given 4 types of features in total, we provided all possible
combinations of features, the numbers of combinations are, C2

4, C3
4, and C4

4. Results of
the experiments are presented in Table 4, given different number of training samples. In
the table a “+” indicates the combination of individual types of style markers, while “-”
indicates the exclusion of that type of style markers.

It can be seen that the additive system gives the best effectiveness amongst all three
proposed systems. The best result is achieved by modeling all 4 types of features
with 400 documents per author as the training data. 90% effectiveness is achieved for
the most difficult 5 class attribution test. This is an 8% improvement on the best result
achieved using any of the individual models with the same experimental setup as shown
in Table 1. In addition, as mentioned earlier, these results are also far superior that that
which can be obtained simply by a combination of different types of style markers into
one model [12].

In addition the choice of style markers affects the effectiveness of the additive system.
Given sufficient 400 training samples for instance, we observed that the combination
of “FW/POS” and “2GramFW” gives the best results amongst all feature model pairs.
While using all types of features but “FW/POS” gives the best results of any three types
of feature models. Table 5 shows the results of significance tests between the perfor-
mance of the best baseline system from Table 1, and the best additive system using all
feature models. The additive system performs significantly better, especially with the
harder multi-class attribution tasks, with which the p-values are extremely small.

668 Y. Zhao and P. Vines

Table 5. The significance test between the best baseline results and the best additive modeling
results across all attribution tasks. (400 documents for training).

2 class 3 class 4 class 5 class
p-value 0.018 Y 1.291e�7 Y 2.053e�13 Y 5.177e�13 Y

5 Conclusions

We have shown in this paper that there is no one type of style markers that always works
the best for all attribution tasks. The suitability of the types of style markers is author
dependent and task dependent. Importantly, it is shown from previous work that simply
adding more features into a given model does not guarantee better results.

We propose three systems in this paper that effectively make use of the advantages
of different types of style markers. The results achieved by these systems, especially
the additive system, are shown to be significantly more effective than any previous
method based on an individual type of style markers. In addition, the voting system
provides a principled way of integrating existing approaches with little modification
while enhancing the attribution performance. Finally the two-stage model prediction
system is much less expensive in terms of computational cost, while providing with not
only higher attribution accuracy but also better choices of style markers in relation to a
particular attribution task.

References

1. S. Argamon, M. Saric, and S. S. Stein. Style mining of electronic messages for multiple
authorship discrimination: First results. In Proc. 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 475–480. ACM Press, 2003.

2. H. Baayen, H. V. Halteren, A. Neijt, and F. Tweedie. An experiment in authorship attribution.
6th JADT, 2002.

3. H. Baayen, H. V. Halteren, and F. Tweedie. Outside the cave of shadows: Using syntactic
annotation to enhance authorship attribution. Literary and Linguistic Computing, 11(3):121–
132, 1996.

4. C. E. Chaski. Computational stylistics in forensic author identification. In SIGIR workshop:
Stylistic Analysis of Text For Information Access, August 2005.

5. J. Diederich, J. Kindermann, E. Leopold, and G. Paass. Authorship attribution with support
vector machines. Applied Intelligence, 19(1-2):109–123, 2003.

6. D. I. Holmes, M. Robertson, and R. Paez. Stephen Crane and the New York Tribune: A case
study in traditional and non-traditional authorship attribution. Computers and the Humani-
ties, 35(3):315–331, 2001.

7. A. Kaster, S. Siersdorfer, and G. Weikum. Combining text and linguistic doument representa-
tions for authorship attribution. In SIGIR workshop: Stylistic Analysis of Text For Information
Access, August 2005.

8. D. Mackay and L. Peto. A hierarchical dirichlet language model. Nat. Lang. Eng., 1(3):289–
307, 1995.

Authorship Attribution Via Combination of Evidence 669

9. A. Sarkar, A. D. Roeck, and P. H. Garthwaite. Term re-occurrence measures for analyzing
style. In SIGIR workshop: Stylistic Analysis of Text For Information Access, August 2005.

10. C. X. Zhai and J. Lafferty. A study of smoothing methods for language models applied to
information retrieval. ACM Transaction on Information System, 22(2):179–214, 2004.

11. Y. Zhao and J. Zobel. Effective authorship attribution using function words. In Proc. 2nd
AIRS Asian Information Retrieval Symposium, pages 174–190. Springer, 2005.

12. Y. Zhao, J. Zobel, and P. Vines. Using relative entropy for authorship attribution. In Proc.
3rd AIRS Asian Information Retrieval Symposium. Springer, 2006. 92-105.

Cross-Document Entity Tracking

Roxana Angheluta and Marie-Francine Moens

Katholieke Universiteit Leuven
roxana.angheluta@student.kuleuven.be,marie-france.moens@law.kuleuven.be

1 Introduction

The main focus of current work is to analyze useful features for linking and
disambiguating person entities across documents. The more general problem of
linking and disambiguating any kind of entity is known as entity detection and
tracking (EDT) or noun phrase coreference resolution. EDT has applications in
many important areas of information retrieval: clustering results in search en-
gines when looking for a particular person; possibility to answer questions such
as “Who was Woodward’s source in the Plame scandal?” with “senior admin-
istration official” or “Richard Armitage” and information fusion from multiple
documents. In current work person entities are limited to names and nominal en-
tities. We emphasize the linguistic aspect of cross-document EDT: testing novel
features useful in EDT across documents, such as the syntactic and semantic
characteristics of the entities. The most important class of new features are con-
textual features, at varying levels of detail: events, related named-entities, and
local context. The validity of the features is evaluated on a corpus annotated for
cross-document coreference resolution of person names and nominals, and also
on a corpus annotated only for names.

2 Corpora

In order to build a dedicated corpus for the task, we downloaded and annotated
articles linked by GoogleNews (http://news.google.com/) - further called
GoogleNews corpus. After removing erroneous articles and cleaning the HTML
source code, the final corpus contained 103 articles (statistics in table 1, second
column). Documents were parsed, parse trees were manually corrected and
annotated for coreference resolution of person names both within- and across-
documents.1 We tested also some of the features on the corpus mentioned in [2]2

- further called Named-entity corpus (statistics in table 1, third column).

3 Features

Each mention is characterized by a number of features. Some of them (called
indirect features) are not used directly in coreference resolution, but rather in
the computation of other features. Most of the indirect features were computed
1 For within-document coreference annotation we used WordFreak [6] and followed the

guidelines defined in the Message Understanding Conference MUC7 [3].
2 Available from: http://l2r.cs.uiuc.edu/˜cogcomp/Data/MIRROR/

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 670–673, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://news.google.com/

Cross-Document Entity Tracking 671

Table 1. Corpora used in the experiments

GoogleNews Named-entity

Total number of documents 103 294

Average document length (words) 516 882

Total number of person mentions 3169 4237

Names 1621 4237
Nominals 1548 -

Average number of person mentions per document 30.76 14.41

Total number of entities 607 1323

using OpenNlp package [4]. They include: head noun phrase (head NP), head
noun, part of speech (POS) tags, position and type of mention: NE or nominal.
Other features are used directly in cross-document coreference resolution. They
are grouped in different classes as follows:

Compatibility features: In order for two mentions to match, they have to
agree in gender and number. The gender is computed heuristically using lists
of first names and titles and also WordNet [7] synsets. The number is detected
from the POS tag of the head noun.

String matching features: We have used a normalized substring matching
between the head NPs of the two mentions.

Contextual features: Various contextual features that are based on the re-
dundancy of the data signal coreference relations. They are the focus of current
work and they are valid only across documents.

1. Events: If two documents speak about the same event3, entities appearing in
them have higher chances to corefer. In current experiments, for the Named-
entity corpus, documents are clustered into events using a similarity function
based on the vocabulary: cosine between vectors of tf*idf weighted terms.
For the GoogleNews corpus, we use the events detected automatically by
Google.

2. Local context: Another contextual feature is the local context of mentions
(as in [1]). In current experiments we have used the sentence to which the
mention belongs. The cosine between vectors of terms weighted with tf*idf
is used as the similarity measure, binned in the interval [0-1].

3. Related named-entities (NE): At a more fined-grained level than events
and local contexts, one can look at the named-entities related to the current
mention. Often, a person can be fully described by the entities related to it,
such as other persons, locations, organizations. We look at named-entities
that are present inside the same sentence as the mention. The similarity
between two mentions is computed as the normalized number of common
related named-entities.

3 Defined in the Topic Detection and Tracking challenge [5]: the same topic happening
in the same time in the same place.

672 R. Angheluta and M.-F. Moens

4 Similarity Function and Algorithm

The similarity function between mentions works as follows: compatibility features
are first used as hard constraints for non-coreference and then string matching
and contextual features are linearly combined into a final similarity metric, nor-
malized in [0,1]. The similarity function is extended to a proximity measure be-
tween coreference chains: hard constraints for mentions remain hard-constraints
for the chains, based on at least one pair of mentions. Additionally, 2 more con-
straints are imposed: 1) name compatibility i.e. the most representative name
from each chain, if it exists, should be the same and 2) head compatibility i.e.
the chains should have at least one pair of mentions with the same head noun.
The final metric for compatible chains is computed as a linear combination of the
maximum similarity between pairs of mentions for strings and related named-
entities, and the similarity between the concatenation of the local contexts.

The clustering algorithm used is a variant of single-pass to solve the problem
of dependency on the order of the input.4 For GoogleNews corpus, we assume
that within-document coreference resolution has been solved, we cluster cor-
rect coreference chains inside documents. For the Named-entity corpus we clus-
ter mentions. We compare our results with a baseline: cluster within-document
coreference chains/mentions using only local context.5

5 Evaluation and Results

Similarly with [2], we evaluated with the F-measure applied to pairs of objects
which corefer: F = 2PR

P+R , where P=Precision=percentage of correctly predicted
pairs and R=Recall=percentage of correct pairs that have been predicted.

The best result on GoogleNews corpus has been obtained using string-matching,
events and local context: 67.72% F-measure. The baseline got a very low result
(9.52%), signaling that local context alone is not a very discriminative feature for
person entity disambiguation and linking. Relative contribution of each of the non-
compatibility features is represented in table 26. For each combination of features
we show the best run in terms of feature weights. We begin with all features and
iteratively remove them one by one so that we get the best performance. The result
obtained using all features is 66.37% while the result obtained using only compat-
ibility features is 40.67%.

In the Named-entity corpus we cluster mentions. We tested 2 combinations of
features: string and string + events. String-matching features alone are already
responsible for 78.64% of the F-measure. When adding events the results increase
up to 90.38% F-measure, which is comparable with the figures reported in [2]: for
persons, they obtained 87.4 %, 92.7% and 90.5% F-measure, depending on the
4 The threshold has been tuned empirically for the run involving only string-matching

and the same value was kept for the other experiments. Feature weights have been
varied, multiple experiments have been run for the same combination of features.

5 No efforts have been made to tune the threshold specifically for the baseline.
6 Compatibility features have been used in all runs except the baseline.

Cross-Document Entity Tracking 673

Table 2. F-measure obtained by clustering coreference chains on the GoogleNews
corpus. Different combinations of features are considered, eliminating at each step the
feature whose removal leads to best performance.

String-matching Local context Events Related NE All

53.69 64.22 64.51 67.72 66.37

53.46 64.21 66.69
46.79 63.00

None 40.67

model used. Our results confirm that names are easy to link and to disambiguate,
based only on string-matching features. Although the corpus is not really suited
for event detection (documents are far away in time), preclustering documents
proved to be a useful feature. Also in this corpus, the baseline obtained a low
score: 16.53% F-measure.

6 Conclusions

In this paper, we focused on cross-document entity tracking or noun phrase coref-
erent resolution with regard to person entities, where we restricted the problem
to proper name and nominal description disambiguation and linking. We have
suggested a number of features useful for linking coreference chains across doc-
uments, some of which are novel, i.e., clustering documents according to events
and related named-entities. We have evaluated their usefulness on two corpora.
From the results, we concluded that string-matching features are the most rel-
evant for detecting cross-document links, followed by local context, events and
related named-entities. Names are the easiest to be resolved and string-matching
features alone yield high results. Local contexts alone are not discriminative.

References

1. Bagga, A., Baldwin, B.: Entity-Based Cross-Document Coreferencing Using the Vec-
tor Space Model In Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics and the 17th International Conference on Computational
Linguistics (COLING-ACL’98), pp. 79-85, August 1998.

2. Li, X., Morie, P., Roth, D.: Robust Reading: Identification and Tracing of Am-
biguous Names: Discriminative and Generative Approaches In Proceedings of the
Annual Meeting of the North American Association of Computational Linguistics
(NAACL), pp. 17-24, 2004.

3. MUC-7 Coreference Task Definition (version 3.0) Message Understand-
ing Conference Proceedings, 1998. http://www.itl.nist.gov/iaui/894.02/
related projects/muc/proceedings/muc 7 toc.html

4. OpenNlp http://opennlp.sourceforge.net/
5. Topic Detection and Tracking http://www.nist.gov/speech/tests/tdt/
6. WordFreak http://wordfreak.sourceforge.net/
7. Felbaum, C. (ed.) WordNet: An Electronic Lexical Database ISBN-10:0-262-06197-X

http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.html

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 674 – 677, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Enterprise People and Skill Discovery Using Tolerant
Retrieval and Visualization

Jan Brunnert, Omar Alonso, and Dirk Riehle

Hasso Plattner Institut, Potsdam, Germany
jan@brunnert.de

SAP Research, Palo Alto, USA
{omar.alonso, dirk.riehle}@sap.com

Abstract. Understanding an enterprise’s workforce and skill-set can be seen as
the key to understanding an organization’s capabilities. In today’s large
organizations it has become increasingly difficult to find people that have
specific skills or expertise or to explore and understand the overall picture of an
organization’s portfolio of topic expertise. This article presents a case study of
analyzing and visualizing such expertise with the goal of enabling human users
to assess and quickly find people with a desired skill set. Our approach is based
on techniques like n-grams, clustering, and visualization for improving the user
search experience for people and skills.

1 Introduction

Expertise identification requires data which is usually scattered among different
enterprise systems, such as groupware, address books or human resources systems.
Accessing this data is often difficult and not aimed at exploring organizational
capabilities by topic. Search functionality is often string-based and many searches
have to be submitted until the user can put together a mental picture of how different
topics relate and who the relevant employees are. Enterprise people search is of
critical importance: when decisions during a business workflow require an expert,
when a co-worker needs help or when assisting customers it is critical to quickly find
people that have certain expertise or interests. Cohen et al. [1] pointed out that it is
crucial to understand where in the company expertise resides in order to establish
efficient communication. By having a visual overview of the expertise map, the
knowledge quality in an organization can be assessed. As outlined by Ashrafi et al.
[2] understanding the quality of knowledge in an organization can be used to sense
opportunities, develop strategies and implement them effectively and efficiently.

The goal in our case study was to implement a search and visualization application
designed to be powerful yet easy to use. Search and retrieval capabilities have been
identified by Stein and Zwass [3] as being of importance to the success of an
enterprise knowledge management. Because the spelling of names is not always
apparent in large international organizations, we had to apply forgiving search
strategies. The application provides a novel interface that improves the user
experience. Skills can be browsed using visual interaction components like a tag
cloud and a graph visualizing connections between tags. A secondary objective of the
project was to evaluate how quickly one can bootstrap such an application using only
open source components.

 Enterprise People and Skill Discovery Using Tolerant Retrieval and Visualization 675

2 Tolerant Retrieval and Cluster Clouds

Users frequently enter imprecise queries that contain spelling errors or, in the case of
names, phonetic variations. By using n-grams the application returns good search
results even when terms or names were misspelled or not clearly known. Providing a
result set with similar terms, users can quickly identify the correct term even when
they are uncertain what they are looking for and initiate browsing from this starting
point. Employees usually provide very coarse-grained, generic keywords describing
their area of expertise, while users will search for very fine-grained, specific skills [4].
Also, in international organizations like SAP, the spelling of names is not often clear.
A meaningful tag cloud of skills is automatically generated as proposed by John and
Seligman in [5].

Fig. 1. AJAX auto complete-search, user list, tag clouds, and topic-graph visualization

By clustering the tags around the most frequent terms into sets of related terms the
total number of visible keywords is reduced into fewer, more meaningful entities.
These skill-clusters are automatically discovered from the supplied set of keywords.
For each keyword the total number of elements in a cluster determines the size of the
cluster. This clustered set can now be displayed in a tag cloud that projects the size to
the keywords’ font-size, giving an intuitive view on the importance of a given skill.
When drilling down, the application will shows terms similar to the selected tag, in
effect showing the keywords that are contained in the cluster and relevant users
having these skills are shown. When selecting users, their skills are shown in the
visualization pane for further exploration. To support the user on their mental journey,
the user’s navigation path is always visible and the breadcrumbs can be used to return
to previous steps.

The clustering algorithm starts by picking the most frequently used keyword and
then searches for terms having a similarity value (as determined by the trigram
module) within a certain range. The total number of occurrences of these words is
then calculated and saved with the picked keyword. All words identified in this step
are removed from the set of available words. This process iterates until no more
words can be found. The total number is cluster generated from the data set is 2880.

676 J. Brunnert, O. Alonso, and D. Riehle

The application also puts terms in relation to each other in order to visualize them in a
graph. We decided to generate the graph based on keyword co-occurrence as
suggested by Widdows et al [6] with the edges being weighted by number of co-
occurrences. Two keywords are connected when one or more person has specified
both keywords in their profile (6355 pairs were identified in the production set).

3 Architecture and Implementation

The browser client follows a two-view paradigm: for every action the user takes,
relevant data is displayed in all view modules. For example, when selecting a term,
matching persons are shown and the tag cloud is repopulated with related tags.
Likewise, selecting a person shows the person’s keywords for further drilling down.
The entire interface is built on the Dojo toolkit [7]. All rendering is done in these
visualization components, so that the client application just has to pass on the data
received from the server into the visualization modules. The result is a design where

model, view and controller are nicely
separated. A custom tag cloud
component was developed to make the
use of tag clouds easier in other
applications. It automatically adjusts
font-size within a given range
depending on a tag’s associated weight
and features a fade-over effect for an
increased visual browsing experience.
The graph connecting keywords based
on their co-occurrence in persons’
profiles is displayed using the prefuse
toolkit, which uses a force-based
algorithm to align the graph [8].

A back-end had to be built to accept
data from multiple data sources that are
loaded into a single database. In the
prototype, keywords are extracted from
free-text fields in an XML dump of the

corporate address book. The data is then loaded into a PostgreSQL relational database.
The database schema contains trigram indexes on the person names and keywords,
which is made possible by the pg_trgm [9] module. The database currently contains all
of SAP’s employees world-wide, around 41000 keywords (15000 distinct) showing the
power of the setup on a real-life production dataset. The backend provides facilities to
cluster similar keywords and determine the importance of the cluster in the
organization. This is accomplished by having a stored procedure in the database. Co-
occurrence is also done close to the database using a PL/pgSQL procedure.

Search queries coming from the AJAX-interface are passed on to the PostgreSQL
backend via the web server application layer. The returned JSON data can be used to
drive multiple visualization modules. Data is served to the prefuse applet in a similar
way, providing XML data of edges and nodes in the graph, derived from the co-
occurrence data.

Prefuse
Applet

Peoplesearch
AJAX-Client

Browser

TagCloud
Component

dojo Toolkit

Graph Data Provider
HTTP Search

Interface
Apache/PHP

Server

RHTTP/
XML

RHTTP/
JSON

Trigram
Search

(pg_trgm)
PostgreSQL

Data Cleaner/
Loader

R

App package
(HTML/CSS/JS)

Raw XML
Data

R
R

Relational
Data

Cooccurence
Procedure

Trigram
Index

Clustering
Procedure

R HTTP

R

Client

Application
Tier

Database
Tier

Fig. 2. Architectural Overview

 Enterprise People and Skill Discovery Using Tolerant Retrieval and Visualization 677

4 User Evaluation

A preliminary evaluation survey was conducted among users to get feedback on the
prototype. From the ten users that responded to the questionnaire, all reported that the
tool was useful compared to the existing system. In a scale 1 to 5 (1=bad,
5=excellent), the people search feature averaged 3.4, the skill search 3.8, the cluster
cloud 3.87, and the graph visualization 3.4. For the short development lifecycle of the
prototype, the results are encouraging.

5 Future Work

The next step is the integration of additional data sources like documents collections
with rich meta-data [10], e-mail archives [11] and publications [12]. Temporal and
spatial search mechanisms are also planned.

References

[1] Cohen, W.M., and Levinthal, D.A. “Absorptive Capacity: A New Perspective on
Learning and Innovation” Administrative Science Quarterly (35:1), 1990, 128-152

[2] Ashrafi, N. et al. “Boosting Enterprise Agility via IT Knowledge Management
Capabilities” Proceedings of the 39th Hawaii International Conference on System
Sciences, 2006

[3] Stein, E.W. and Zwass, V. “Actualizing Organizational Memory with Information
Systems“ Information Systems Research (6:2), 1995, 85-117

[4] Balog, K. et al. “Formal Models for Expert Finding in Enterprise Corpora” SIGIR’06,
Seattle, WA, USA.

[5] John, A. and Seligmann, D. “Collaborative Tagging and Expertise in the Enterprise”
WWW 2006, Edinburgh, UK.

[6] Widdows, D. et al. “Visualisation Techniques for Analysing Meaning” Fifth International
Conference on Text, Speech and Dialogue, Brno, Czech Republic, 2002, 107-115.

[7] http://dojotoolkit.org/
[8] http://www.prefuse.org/
[9] http://www.sai.msu.su/~megera/postgres/gist/

[10] Reichling, T. et al. “Matching Human Actors based on their Texts: Design and
Evaluation of an Instance of the ExpertFinding Framework” GROUP’05, Sanibel Island,
FL, USA.

[11] Campbell, C.S. et al. “Expertise Identification using Email Communications” CKIM’03,
New Orleans, LA, USA.

[12] Tho, Q.T. et al. “A Web Mining Approach for Finding Expertise in Research Areas”
Proceedings of the 2003 International Conference on Cyberworlds (CW’03).

Experimental Results of the Signal Processing

Approach to Distributional Clustering of Terms
on Reuters-21578 Collection

Marta Capdevila Dalmau and Oscar W. Márquez Flórez

University of Vigo, Telecommunication Engineering School,
Signal and Communications Processing Dpt.

Rúa Maxwell s/n, Campus Universitario, 36310 Vigo, Spain
{martacap, omarquez}@gts.tsc.uvigo.es

http://www.gts.tsc.uvigo.es

Abstract. Distributional Clustering has showed to be an effective and
powerful approach to supervised term extraction aimed at reducing the
original indexing space dimensionality for Automatic Text Categorization
[2]. In a recent paper [1] we introduced a new Signal Processing approach
to Distributional Clustering which reached categorization results on 20
Newsgroups1 dataset similar to those obtained by other information-
theoretic approaches [3][4][5]. Here we re-validate our method by showing
that the 90-categories Reuters-21578 2 benchmark collection can be in-
dexed with a minimum loss of categorization accuracy (around 2% with
Näıve Bayes categorizer) with only 50 clusters.

Keywords: Automatic text categorization, Distributional clustering,
Signal processing, Variance, Correlation coefficient.

1 Introduction

In the field of Automatic Text Categorization, the high dimensionality and data-
sparseness of the indexing term space is problematic for most of the categorizers
commonly used [2]. Distributional Clustering [3][4][5] is a supervised clustering
technique that has shown to be very effective at reducing the document indexing
space with residual loss in categorization accuracy.

We recently introduced [1] a new approach to Distributional Clustering based
on techniques commonly used in Signal Processing [6] in Communications Engi-
neering and validate its performance towards 20 Newgroups dataset, obtaining
similar results as the ones published by other information-theoretic approaches
[3][4][5].

Here we re-confirm the potential of our Signal Processing approach to Dis-
tributional Clustering of terms on Reuters-21578 benchmark collection, which
differs from the 20 Newsgroups dataset in its uneven distribution over categories.
1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 678–681, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.gts.tsc.uvigo.es

Distributional Clustering of Terms on Reuters-21578 Collection 679

2 Method

In text categorization, we are given a pre-labelled training set of documents3.
In base of this information, any term tk can then be characterized by its prob-
ability distribution function over the discrete variable category C defined in
{c1, ..., c|C|}, |C| being the number of distinct categories, that is

fk : ci �→ fk(ci) = P (ci|tk) with
|C|∑
i=1

fk(ci) = 1 (1)

In our Signal Processing approach, we interpret tk as being a probabilistic sig-
nal that encloses the random variable category. At a first stage, all signals that
present a very flat distribution, and thus have a low variance4, are not infor-
mative of the variable category and will be considered as noisy signals that can
be eliminated with virtually no loss of information. Subsequently, signals with
similar probability distribution can be clustered together since they contain the
same category information. The degree of similarity between signals is measured
by the correlation coefficient which estimates the interdependence between both
signals (equals 0 if they are statically independent and, in the other extreme,
+-1 if they are linearly dependent).

Correlation coefficient:5 ρfjfk
� 1

σfj σfk

E[(fj − mfj)(fk − mfk
)] (2)

Initially we have adopted an agglomerative hard clustering6 algorithm [1]
inspired by the method proposed in [3]. We have implemented three further
variants of this algorithm. The static window of dimension M (M being the
final number of clusters) used in the original algorithm has been dynamically
expanded in order to avoid the merging of poorly correlated clusters in case
no other merging could be done. This implies the implementation of a dynamic
window expansion/compression approach. Furthermore, soft clustering7 has been
implemented in both static and dynamic window approaches.

3 Experimental Scenario

We have used a common subset of the Reuters-21578 ModApté training/test
partition which only considers the set of 90 categories with at least one positive
training example and one positive test example. The distribution of categories in

3 In the following, we are using the classic bag-of-words indexing [2].
4 The variance provides a measure of the spread of the values of fk relative to its

mean mfk
and is defined as σ2

fk
� E[(fk − mfk

)2] = E[fk
2] − mfk

2.
5 E[] denotes the expectation operation and mfk

= E[fk] the mean of fk.
6 Hard clustering allocates each term to a single cluster.
7 In a soft clustering approach a single term can belong to more than one cluster (i.e.

clusters may overlap).

680 M. Capdevila Dalmau and O.W. Márquez Flórez

this corpus is highly skewed, with 36.7% of the documents in the most common
category (i.e. label ’earn’), and overlapped (i.e. a document may have a multi-
category tag).

After removing stopwords (using the list provided by Weka8 software) and
non-alphabetical words, the collection training set is indexed by 32,539 words.
Upon this, we further eliminated terms occurring in less than 4 documents or
appearing less than 4 times in the whole dataset. The variance threshold has
been empirically set to 0.002, which ends in 10,859 informative words (7,483 if
we use the sample variance introduced in next paragraph), resulting after the
elimination of noisy words.

We applied our four clustering variants on the former Reuters-21578 ModApté
pre-processed training set. We have used both the variance and correlation coef-
ficient as defined in the probabilistic approach of section 2 and also under an sta-
tistical interpretation that assumes equi-probable categories9 (i.e. P (ci) = 1

|C|).
The initial threshold for the correlation coefficient was set to its maximum value
1 and its decremental step in the contraction phase of the dynamic window ap-
proaches was empirically set to 0.00001. Finally, the whole collection of docu-
ments has been indexed in the resulting space of clusters. The quality of the
clustering has then been evaluated quantitatively by means of the categoriza-
tion accuracy of the well-known multinomial Näıve Bayes classifier [2] over the
test set. The results obtained have been referenced to analogous categoriza-
tion accuracy of the same pre-processed collection (removal of stopwords and
non-alphabetical words) indexed in the feature space resulting from classic In-
formation Gain and Chi-square term selection functions10.

Fig. 1. Categorization accuracy of Distributional Clustering vs. Information Gain and
Chi-square with Näıve Bayes categorizer. Dispersion and similarity measures used:
(left) variance and correlation coefficient. (right) sample variance and sample correla-
tion coefficient, i.e. assuming equi-probable categories.

8 Our clustering implementation is based in the Weka 3 Data Mining Software [7].
9 Statiscal measures are referred as sample variance and sample correlation coefficient.

10 For graphical simplicity only the curves corresponding to Static window hard clus-
tering and Dynamic window soft clustering algorithms are represented in figure 1.

Distributional Clustering of Terms on Reuters-21578 Collection 681

4 Discussion of Results and Conclusions

Figure 1 shows similar results to the ones obtained by the previous researches
on Distributional clustering [1][3][4][5] using 20 Newsgroups dataset (i.e. the
20-categories Newsgroups dataset can be indexed with only 20 clusters). In par-
ticular, when using the statistical measures (right side of figure 1), the curves
corresponding to our Distributional clustering algorithms present an abrupt ini-
tial increase up to 50 clusters (accuracy 67-68%) and from there they asymptot-
ically get to an accuracy of around 70%. In other words, the indexing space can
be reduced from the original 32,539 words to 50 clusters (i.e. three orders of mag-
nitude) with a residual loss of categorization accuracy of 2%. The 90-categories
Reuters-21578 collection can thus be painlessly indexed with only 50 clusters.

The curves showed in the left side of figure 1 correspond to the proper prob-
abilistic measures and show a softer evolution: with small number of clusters
(less than 50) the clustering works better than with the statistical assumption,
while the other way round occurs from this point on. The interpretation of these
results is heavily concerned by the fact that Reuters-21578 is such an unevenly
distributed collection: categorization errors in most common categories have a
strong impact on overall categorization accuracy.

We are currently deepening our research on this aspect, introducing other
measures of similarity. We are also working on the tuning of the clustering pa-
rameters such as the variance threshold and the dynamic window contraction
step in order to optimize the overall categorization results. Finally, we are plan-
ning the design of a full categorizer based on our Signal Processing approach.

Acknowledgments. For this research Marta Capdevila was supported in part
by a predoctoral grant from the Xunta de Galicia regional government (Spain).

References

1. Marta Capdevila, Oscar W. Márquez: A signal processing approach to distributional
clustering of terms in automatic text categorization. Proceedings of INSCIT2006, I
Int. Conf. on Multidisciplinary Information Sci. and Tech., 2006.

2. Fabrizio Sebastiani: Machine Learning in Automated Text Categorization. ACM
Computing Surveys, Vol. 34, No. 1, pp. 1-47, March 2002.

3. L.Douglas Baker, Andrew Kachites McCallum: Distributional Clustering of Words
for Text Classification. Proceedings of SIGIR-98, 21st ACM International Confer-
ence on Research and Development in Information Retrieval, 1998

4. Noam Slonim, Naftali Tishby: The Power of Word Clusters for Text Classification.
23rd European Colloquium on Information Retrieval Research, 2001

5. Inderjit S. Dhillon, Subramanyam Mallela, Rahul Kumar: A Divisive Information-
Theoretic Feature Clustering Algorithm for Text Classification. Journal of Machine
Learning Research 3 1265-1287, 2003

6. A. Bruce Carlson: Communication Systems an Introduction to Signals and Noise in
Electrical Communications. McGraw-Hill Book Company, third edition, 1986

7. Ian H. Witten and Eibe Frank: Data Mining: Practical machine learning tools and
techniques. 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

Overall Comparison at the Standard Levels of

Recall of Multiple Retrieval Methods with the
Friedman Test

José M. Casanova1, Manuel A. Presedo Quindimil2, and Álvaro Barreiro1

1 IRLab, Department of Computer Science
2 Department of Mathematics,

University of A Coruña,
Campus de Elviña s/n, 15071, A Coruña, Spain

{jcasanova,mpresedo,barreiro}@udc.es
http://www.dc.fi.udc.es/irlab/

Abstract. We propose a new application of the Friedman statistical test
of significance to compare multiple retrieval methods. After measuring
the average precision at the eleven standard levels of recall, our applica-
tion of the Friedman test provides a global comparison of the methods.
In some experiments this test provides additional and useful information
to decide if methods are different.

1 Introduction

Evaluation is a basic need in Information Retrieval (IR). In order to assess
whether a retrieval method performs better than others or not, it is necessary to
apply a test of significance, because metrics comparisons are strictly valid for the
same collection and queries. The tests of significance determine if the difference
is not caused by chance based on statistical evidence. Different applications of
these tests have been described [1] and widely used in IR. Evaluation is still an
open issue that affects the basis of IR. Recent work assesses that “significance
substantially increases the reliability of retrieval effectiveness” [2].

The Friedman test is a non parametric statistical significance test that can
be employed with ordinal data [3]. In the ordinary use of this test, it is applied
to the Mean Average Precision (MAP) or other metrics using the query as the
block variable [4,5]. We propose to use the Friedman test to compare multiple
retrieval methods using the eleven standard levels of recall as the block variable.
This new application of the Friedman test provides a global comparison through
the levels of recall.

2 The Friedman Test

The Friedman significance test [6] allows the comparison of multiple methods,
in situations where the random variable is ordinal (rank-order) and the block
variables are mutually independent.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 682–685, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Overall Comparison at the Standard Levels 683

Let b be the number of blocks, k the number of methods to be compared
and X the random variable. The function R(Xij) returns the rank of method
j in the i-th block. In case of tied values, the final rank is the average of the
corresponding tied ranking scores. Let Rj =

∑b
i=1 R(Xij) be the sum of ranks

for a method. Then the following values A and B are calculated as:

A =
b∑

i=1

k∑
j=1

R(Xij)2 B =
1
b

k∑
j=1

R2
j (1)

The statistic T is defined as:

T =
(b − 1)[B − bk(k + 1)2/4]

A − B
(2)

The null hypothesis states that the methods are the same and it is rejected
at an α level of significance if the quantile 1 − α of the F distribution (Fisher-
Snedecor distribution) with (k−1) and (b−1)(k−1) degrees of freedom is greater
than T .

Paired comparisons among the methods are done when the null hypothesis is
rejected. If methods i and j are significantly different the following inequality is
satisfied:

|Rj − Ri| > t1−α/2

[
2b(A − B)

(b − 1)(k − 1)

] 1
2

, (3)

where t1−α/2 is the 1 − α/2 quantile of the t-distribution with (b − 1)(k − 1)
degrees of freedom.

3 The Friedman Test with the Standard Levels of Recall
as the Block Variable

The Friedman test has been used to determine if differences in MAP and other
precision metrics are significant, always using the query as the block variable. We
propose a novel application of the Friedman test using as the random variable
(Xij) the interpolated average precision at eleven standard levels of recall, i.e.
the level of recall acts as the block variable. Intuitively, using the Friedman test
as described allows a global comparison of the common precision/recall figures,
but with the support of a test of significance. The results obtained with this new
test can be different than those obtained when MAP acts as the random and
the query as the block variable.

We motivate our evaluation method in the need of an analytical method to
compare precision/recall curves. Our approach uses only the information of the
ranking position for each method at the 11 standard levels of recall.

The independence assumption regarding the precision at the 11 standard levels
of recall may not always hold. If values were dependent, an statistical method
for the analysis of repeated measurements [7] could be applied instead of the
Friedman test.

684 J.M. Casanova, M.A. Presedo Quindimil, and Á. Barreiro

4 Experimental Results

To illustrate the use of this test we compared the behaviour of several smoothing
methods for language models in the ad-hoc retrieval task. We tried to assess if the
following methods described in [8] are different: Jelinek-Mercer (jm), Dirichlet
(dir) and absolute discount (ad). The implementation was developed using the
retrieval framework Lemur Toolkit1.

After setting up the best smoothing parameters, we ran the different retrieval
methods. Then we computed the MAP and the interpolated average precision
at every standard level of recall to evaluate the results. In order to analyse if
there was a significant difference among the three smoothing methods we apply
the Friedman test to the MAP values and for each of the precisions values at
the eleven levels of recall using the query as the block variable. The level of
significance of the tests was fixed at α = 0.05.

For example, for WEB8 collection (TREC small web) using the titles from
topics 401-450 with the smoothing parameters jm λ = 0.01, ad ρ = 0.80 and
dir μ = 2200, the Friedman test using the query as the block variable shows
that MAP values are significantly different for the three methods, and average
interpolated precision values are also significant for the eleven standard levels
of recall and the three methods. The Friedman test using the level of recall as
the block variable also shows that there are significant differences for the three
methods. After doing paired comparisons, the test of MAP values reveals that
Dirichlet is better than the other two methods. The tests applied to the precisions
at the levels of recall indicate that Dirichlet is significantly better than absolute
discounting for all levels of recall and that is better than Jelinek-Mercer for six
of the eleven levels. The Friedman test using the recall level as the block variable
confirms that Dirichlet is significantly better than the other methods.

Now we describe another scenario where the proposal presented in this paper
complements the information provided by previous tests. For the FBIS collection
(TREC disk 5) using only the titles from topics 351-400 with the smoothing
parameters jm λ = 0.05, ad ρ = 0.75 and dir μ = 4000, the Friedman test
using the query as the block variable only finds significant differences among
the three methods for precision values at levels of recall from 0.40 to 0.80 and
at level 1.00, but it does not find significantly different MAP values. Paired
comparisons support that Dirichlet performs better than the other two methods.
The Friedman test using the level of recall as the block variable indicates that
the three methods are significantly different, and paired comparisons also show
that Dirichlet performs better than the others. Therefore, in this experiment the
use of the recall level as the block variable for the Friedman test reinforces that
Dirichlet is the smoothing algorithm that outperforms all others.

Another interesting experiment is the following. For the LATIMES collection
(TREC disk 5) using the title, description and narrative from topics 351-400
with the smoothing parameters jm λ = 0.80, ad ρ = 0.75 and dir μ = 3000,
the Friedman test using the query as the block variable shows that MAP values

1 http://www.lemurproject.org

Overall Comparison at the Standard Levels 685

are no significantly different for the three methods, and average interpolated
precision values are only significant at the levels of recall of 0.30, 0.70 and 0.80.
The Friedman test using the level of recall as the block variable also shows that
there are not statistically significant differences among the three methods.

5 Conclusions and Further Work

We proposed a new application of the Friedman significance test using the levels
of recall as the block variable. The use of this variant gives additional information
to previous applications of the Friedman test that used the query as the block
variable. This way the test provides an approximation to the comparison of the
precision/recall curves. We illustrated the method, giving evidence that in fact
in some experiments the proposed test helps to decide whether the methods are
different or not. We plan to apply our method using the collection as the block
variable and the MAP or other single measure as the random variable because
this ensures the independence assumption. An alternative to our method for the
cases where independence may not hold could be the application of statistical
methods for the analysis of repeated measurements. Future work will also address
the problem of determining the utility of the test of significance following the
methodology introduced by Zobel in [9].

Acknowledgements. The work reported here was cofunded by the SEUI and
FEDER funds under the project MEC TIN2005-08521-C02-02 and “Xunta de
Galicia” under project PGIDIT06PXIC10501PN. José M. Casanova is supported
by a grant of DXID of the “Xunta de Galicia”. We also thank the support of the
“Galician Network of NLP & IR” Ref. 2006/03.

References

1. Hull, D.: Using statistical testing in the evaluation of retrieval experiments. In:
Proc. of ACM SIGIR ’93. (1993) 329–338

2. Sanderson, M., Zobel, J.: Information retrieval system evaluation: effort, sensitivity,
and reliability. In: Proc. of ACM SIGIR ’05. (2005) 162–169

3. Sheskin, D.: Handbook of parametric and nonparametric statistical procedures.
Chapman & Hall/CRC (2000)

4. Hull, D.: Stemming algorithms: A case study for detailed evaluation. JASIS 47(1)
(1996) 70–84

5. Kekäläinen, J., Järvelin, K.: The impact of query structure and query expansion on
retrieval performance. In: Proc. of ACM SIGIR ’98. (1998) 130–137

6. Conover, W.: Practical Nonparametric Statistics. 2ed edn. John Wiley & Sons, Inc
(1980)

7. Davis, C.: Statistical Methods for Analysis of Repeated Measurements. Springer-
Verlag NY, Inc (2002)

8. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM Trans. Inf. Syst. 22(2) (2004) 179–214

9. Zobel, J.: How reliable are the results of large-scale information retrieval
experiments? In: Proc. of ACM SIGIR ’98. (1998) 307–314

Building a Desktop Search Test-Bed

Sergey Chernov1, Pavel Serdyukov2,
Paul-Alexandru Chirita1, Gianluca Demartini1, and Wolfgang Nejdl1

1 L3S / University of Hannover, Appelstr. 9a D-30167 Hannover, Germany
2 Database Group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

{chernov, chirita, demartini, nejdl}@l3s.de,
serdyukovpv@cs.utwente.nl

Abstract. In the last years several top-quality papers utilized temporary Desk-
top data and/or browsing activity logs for experimental evaluation. Building a
common testbed for the Personal Information Management community is thus
becoming an indispensable task. In this paper we present a possible dataset de-
sign and discuss the means to create it.

1 Introduction

In the last years several top-quality papers utilized Desktop data and / or activity logs
for experimental evaluation. For example, in [4], the authors used indexed Desktop re-
sources (i.e., files, etc.) from 15 Microsoft employees of various professions with about
80 queries selected from their previous searches. In [3] Google search sessions of 10
computer science researchers have been logged for 6 months to gather a set of realistic
search queries. Similarly, several papers from Yahoo [2], Microsoft [1] and Google [5]
presented approaches to mining their search engine logs for personalization. We want
to provide a common public Desktop specific dataset for this research community.

The most related dataset creation effort is the TREC-2006 Enterprise Track 1. Enter-
prise search considers a user who searches the data of an organisation in order to com-
plete some task. The most relevant analogy between the Enterprise search and Desktop
search is the variety of items which compose the collection (e.g., in the TREC-2006 En-
terprise Track collection e-mails, cvs logs, web pages, wiki pages, and personal home
pages are available). The biggest difference between the two collections is the pres-
ence of personal documents and especially activity logs (e.g., resource read / write time
stamps, etc.) within the Desktop dataset.

In this paper we present an approach we envision for generating such a Desktop
dataset. We plan our new dataset to include activity logs containing the history of each
file, email or clipboard usage. This dataset will bring a basis for designing and evaluat-
ing of special-purpose retrieval algorithms for different Desktop search tasks.

2 Dataset Design

File Formats and Metadata. The data for the Desktop dataset will be collected among
the participanting research groups. We are going to store several file formats: TXT,

1 http://www.ins.cwi.nl/projects/trec-ent/

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 686–690, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.ins.cwi.nl/projects/trec-ent/

Building a Desktop Search Test-Bed 687

Table 1. Logged Application and File Formats

Application File Format

Acrobat Reader PDF files
MS Word DOC, TXT, RTF
MS Excel XSL
MS Powerpoint PPT
MS Internet Explorer HTML
MS Outlook PST
Mozilla Firefox HTML
Mozilla Thunderbird MSF and empty extension, mbox format

Table 2. Timeline and Permanent Logged Information

Permanent Information Applied to

URL HTML
Author All files
Recipients Email messages
Metadata tags MP3
Has/is attachment Emails and attachments
Saved picture’s URL and saving time Graphic files

Timeline information

Time of being in focus All files
Time of being opened All files
Being edited All files
History of moving/renaming All files
Request type: bookmark, clicked link, typed URL HTML
Adding/editing an entry in calendar and tasks Outlook Journal
Being printed All files
Search queries in Google/MSN Search/Yahoo!/etc. Search fields in Internet browsers
Clicked links URL
Text selections from the clipboard Text pieces within a file and the filename
Bookmarking time Bookmarks in Internet browsers
Chat client properties Status, contact’s statuses, sent filenames and links
Running applications Task queue
IP address User’s address and addresses user connects to
Email status Change between “received” and “read” status

HTML, PDF, DOC, XLS, PPT, MP3 (tags only), JPG, GIF, and BMP. Then, each group
willing to test its system would submit 1-2 Desktop dumps, using logging tools for a
number of applications listed in the Table 1.

The set of logged applications can be extended in the future. Loggers save the infor-
mation which we describe in Table 2.

Data Gathering. As the privacy issue is very important here, we propose two options
for possible information gathering.

1. Optimistic approach. We assume there are volunteers ready to contribute some of
their personal information to the community, given that this information would be re-
distributed only among a restricted group of participants. As a test case, we gave two
laptops to students for half a year. They were able to use them for free, but the condition
was that all the information on these laptops will be available for future research. They
were also warned not to store highly private information like passwords or credit card
numbers. As this approach worked well, we expect that all participating groups will
find similar reasonable incentives to attract more volunteers.

688 S. Chernov et al.

2. Pessimistic approach. While some people are ready to share information with their
close friends and colleagues, they do not like to disclose it to outsiders. For this case,
there is a way to keep information available only for a small number of people: Personal
data is collected from participating groups by some coordinators and preprocessed into
the publicly available uniform XML format. Every group can adapt its search prototypes
to this format and submit binary files to the coordinators. Runs are then produced locally
by a coordinator and results are sent back to the participants. This way, only trusted
coordinators have access to the actual documents, while it is possible for all participants
to evaluate their results. Similar schemes has been tested in TREC Spam Track 2, and
it might be a necessary solution for future TREC tracks as well, whenever they involve
highly private data (i.e. medical, legal, etc.).

3 Relevance Assessments and Evaluation

As we are aiming at real world tasks and data, we want to reuse real queries from
Desktop users. Since every Desktop is a unique set of information, its user should be
involved in both query development and relevance assessment. Thus, Desktop contrib-
utors should be ready to give 10 queries selected from their everyday tasks. This also
solves the problem of subjective query evaluation, since users know best their informa-
tion needs.

In this setting queries are designed for the collection of a single user, but some more
general scenarios can be designed as well, for example finding relevant documents in
every considered Desktop. It is thus possible to see the test collection as partitioned
in sub-collections that represent single Desktops with their own queries and relevance
assessments. This solution would be very related to the MrX collection used in the
TREC SPAM Track, which is formed by a set of emails of an unknown person.

The query can have the following format:

– <num> KIS01 </num>
– <query> Eleonet project deliverable June</query>
– <metadataquery>date:June topic:Eleonet project type:deliverable

</metadataquery>
– <taskdescription>I am combining new deliverable for the Eleonet project.

</taskdescription>
– <narrative> I am looking for the Eleonet project deliverable, I remember that the

main contribution to this document has been done in June. </narrative>

We include the <metadataquery> field so that one could specify semi-structured
parameters like metadata field names, in order to narrow down the query. The set of
possible metadata fields would be defined after collecting the Desktop data.

The Desktop contributors must be able to assess pooled documents 6 months after
they contributed the Desktop. Moreover, each query will be supplemented with the
description of context (e.g., clicked / opened documents in the respective query session),
so that users could provide relevance judgments according to the actual context of the

2 http://plg.uwaterloo.ca/∼gvcormac/spam/

http://plg.uwaterloo.ca/~gvcormac/spam/

Building a Desktop Search Test-Bed 689

query. As users know their documents very well, the assessment phase should go faster
than normal TREC assessments. For the task of known-item search, the assessments are
quite easy, since only one (at most several duplicates) document is considered relevant.
For the adhoc search task we expect users to spend about 3-4 hours to do relevance
assessment per query.

4 Proposed Tasks

1. AdHoc Retrieval Task. Ad hoc search is the classic type of text retrieval when the
user believes she has relevant information somewhere. Several documents can contain
pieces of necessary data, but she does not remember whether or where she stored them,
and she is not sure which keywords are best to find them.

2. Known-Item Retrieval Task. Targeted or known-item search task is the most com-
mon for the Desktop environment. Here the user wants to find a specific document on
the Desktop, but does not know where it is stored or what is its exact title. This docu-
ment can be an email, a working paper, etc. The task considers that the user has some
knowledge about the context in which the document has been used before. Possible ad-
ditional query fields are: time period, location, topical description of the task in which
scope the document had been used, etc.

3. Folder Retrieval Task. It is very popular among users to have their personal items
topically organized in folders. Later they may search not for a specific document, but
for a group of documents in order to use it later as a whole - browse them manually,
reorganize or send to a colleague. The retrieval system should be able to estimate the
relevance of folders and sub-folders using simple keyword queries.

5 Conclusion

Building a Desktop IR testbed seems to be more challenging than creating a Web Search
or an XML Retrieval dataset. In this paper we presented the concrete parameters for
defining the features of such a Desktop Dataset and discussed the possible means for
creating it, as well as utilizing it for algorithm assessments.

References

1. E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning user interaction models for predict-
ing web search result preferences. In SIGIR ’06: Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information retrieval, pages 3–10,
New York, NY, USA, 2006. ACM Press.

2. R. Kraft, C. C. Chang, F. Maghoul, and R. Kumar. Searching with context. In WWW ’06:
Proceedings of the 15th international conference on World Wide Web, pages 477–486, New
York, NY, USA, 2006. ACM Press.

3. F. Qiu and J. Cho. Automatic identification of user interest for personalized search. In WWW
’06: Proceedings of the 15th international conference on World Wide Web, pages 727–736,
New York, NY, USA, 2006. ACM Press.

690 S. Chernov et al.

4. J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via automated analysis of
interests and activities. In SIGIR ’05: Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 449–456, New
York, NY, USA, 2005. ACM Press.

5. B. Yang and G. Jeh. Retroactive answering of search queries. In WWW ’06: Proceedings of
the 15th international conference on World Wide Web, pages 457–466, New York, NY, USA,
2006. ACM Press.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 691 – 694, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Hierarchical Browsing of Video Key Frames

Gianluigi Ciocca and Raimondo Schettini

DISCo, Università degli Studi di Milano-Bicocca
Via Bicocca degli Arcimboldi 8, 20126, Milano, Italy
{ciocca,schettini}@disco.unimib.it

Abstract. We propose an innovative, general purpose, method to the selection
and hierarchical representation of key frames of a video sequence for video
summarization. It is able to create a hierarchical storyboard that the user may
easily browse. The method is composed by three different steps. The first
removes meaningless key frames, using supervised classification performed by
a neural network on the basis of pictorial features and a visual attention model
algorithm. The second step provides for the grouping of the key frames into
clusters to allow multilevel summary using both low level and high level
features. The third step identifies the default summary level that is shown to the
users: starting from this set of key frames, the users can then browse the video
content at different levels of detail.

1 Introduction

The growing interest of consumers in the acquisition of and access to visual
information has created a demand for new technologies to represent, model, index and
retrieve multimedia data. Very large databases of images and videos require efficient
algorithms that enable fast browsing and access to the information pursued [1]. We
focus our attention here on the creation of a visual summary using still images, called
key frames, extracted from the video. Key frame based video representation views
video abstraction as a problem of mapping an entire segment to some small number
of representative images. The extraction of key frames must be automatic and content
based so that they maintain the salient content of the video while avoiding all
redundancy. Regardless of the key frame extraction strategy adopted (e.g. [2], [3], [4]),
the visual summaries obtained may contain uninteresting and meaningless key frames,
overexposed and underexposed key frames; close-ups with very few details, etc.
Moreover, successive very similar key frames can be extracted disturbing the visual
summary since they convey the same information. Finally, summaries formed by
hundreds or even thousands of key frames are dispersive since they require intensive
browsing. We propose an innovative method for the selection and hierarchical
representation of key frames of a video sequence for video summarization.

2 Proposed Method

The method presented in this paper makes it possible to create exhaustive and not
redundant visual video summaries. The method comprises three steps (Figure 1): the

692 G. Ciocca and R. Schettini

Level of PresentationKey Frames GroupingKey Frames Removal

Unprocessed
Visual Summary

Reduced
Visual Summary

Image
Quality

"Informativeness"

Feature
Extraction

Neural Network
Classi fication

Pictorial
Features

Semantic
Features

Feature
Extraction

Hierarchical
Clustering

Decision Tree
Classi fication

Visual Summaries
Hierarchy

Fisher's
 Analysis

Default
Visual Summary

Visual Attention
Model

Fig. 1. The pipeline of the proposed method

first removes the meaningless key frames, the second groups the key frames into
clusters, and the third identifies the default summary level.

2.1 Detection of Meaningless Key Frames

To remove meaningless key frames, we extract a set of features that describe them in
terms of quality and information supplied. To assess the image quality we have
chosen some of the features used in assessing the quality of images taken by digital
cameras, such as the percentage of dark and bight pixels, for identifying overexposed
and underexposed images; the dynamic range of the image, for detecting flat-looking
images; and the color balance. The amounts of information that key frames convey, is
assessed via a visual attention algorithm to detect the Regions of Interest (ROI) from
a saliency map [5]. Only portions of the input image associated with relevant
information are detected. Intuitively if the percentage of ROIs is low or the ROIs are
distributed outside the central part of the image, the corresponding key frame should
be discarded. Actually, a trained neural network classifier makes the decision for
discarding a key frame. The neural network has eight input nodes that correspond to
the computed features, two hidden layers with eight nodes each, and a single final
node whose output could be interpreted as the probability that the processed key
frame should be discarded. The learning process is based on the back-propagation
algorithm with bias terms and momentum [6].

2.2 Hierarchical Key Frames Representation

Similar key frames are grouped by a hierarchical clustering algorithm. Initially each
key frame corresponds to a cluster and represents it. The clustering is performed
analyzing only pairs of consecutive clusters in order to retain their temporal ordering.
At each step, the two clusters with the smallest maximum pair-wise distance
(complete link strategy) are merged. The representative key frame of the cluster

 Hierarchical Browsing of Video Key Frames 693

resulting by the merging of two clusters is selected between the two representative
frames and corresponds to the key frame with higher percentage of ROIs. Two
clusters are compared using both low-level and high-level features. Low-level
features are used to describe the pictorial content of the key frames while high-level
features describe their semantic content. The low level features used are the color
histogram, the wavelet statistics and the edge’s direction histogram [4]. The high level
features are obtained applying the classification strategies proposed in [7] where the
images are classified as indoor, outdoor or close-up images. Instead of assigning an
image to a single class we have chosen to use the probabilities that a given image
belong to each of the three classes as a semantic histogram signature. The similarity
degree between two clusters is the combination of the normalized similarity degrees
computed on both the low level and high level features. The representative key frames
are used to visually represent the clusters in the hierarchical visual summary. The
clusters are arranged according to the chronology of the representative key frames.

2.3 Optimal Video Summary

The idea underlying the strategy for detecting the optimal summary level is that the
frame differences used in merging the clusters in the previous step be considered
merging costs, that is, the costs of reducing the summary by one key frame. In the
initial phase of the clustering process, the costs will be relatively small, that is, the
merged clusters will have small merging costs because the representative key frames
are similar, and their merging will not significantly reduce the summary information
contents. As clustering continues, the merging costs will increase, meaning that the
representative key frames will be increasingly dissimilar, and their merging will result
in a summary with fewer information contents. We select the level at which the
merging costs rise significantly as the level of the optimal summary. The summaries
at lower levels contain more key frames and redundant information. The summaries at
higher levels contain few key frames. We apply the Fisher’s discriminant analysis [8],
to the sequence of increasing merging costs that minimizing the intra-group
differences while maximizing their inter-group separation, makes it possible to define
low and high merging costs. The global maximum in the Fisher’s analysis curve
corresponds to the default clustering level in the summary presentation. If the
maximum is very close to the initial or ending clustering levels, we assume that, for
that summary, the default presentation summary do not differ from the original
summary.

3 Results and Conclusions

Since all the summary’s post processing steps (removal of meaningless key frames
and classification) rely on semantic information which no objective quality measure
can effectively incorporate, the post-processing algorithm was heuristically tested by
domain experts on a set of videos belonging to [9]. These experts manage video
footages on a daily basis, manually extracting relevant information the videos to use
for content cataloging and publication through distributed channels. The test set was
composed of 14 non-professional videos, about 4 hours of footage. The experts

694 G. Ciocca and R. Schettini

evaluated the processed summary in terms of compactness, and information contents
as well as the effectiveness of the multilevel summary. They judged the results
positive, thus our post-processing pipeline has been used in the AESS archive. Some
results can be found at http://www.ivl.disco.unimib.it/Activities/VideoIndexing.html.
As the post-processing algorithm does not use previous knowledge about the video
contents, nor is any assumption made about the input data, it can be used in different
domains as a general purpose algorithm. Nevertheless, some improvements can be
made. The key frame removal stage could be extended with more pictorial quality
features in order to better cover the many factors that can cause a user to reject a
frame (e.g. wrong skin tone, half faces, etc…). The hierarchical key frame grouping
stage could also be extended. We have introduced three generic classes for the
classification of the key frames but more classes can be added in the decision trees to
enlarge the semantic dictionary.

References

1. Dimitrova, N., Zhang, H., Shahraray, B., Sezan, M., Huang T., Zakhor, A.: Applications of
video-content analysis and retrieval. IEEE MultiMedia, 9(3), (2002), 44-55.

2. Hanjalic A., Lagendijk R. L., Biemond J.: A new Method for Key Frame Based Video
Content Representation. Image Databases and Multimedia Search, World Scientific, 1998.

3. Han S., Yoon K., and Kweon I.: A new Technique for Shot Detection and Key Frames
Selection in Histogram Space. Proc. 12th W. on Im. Pr. and Im. Und., (2000), 475-479.

4. Ciocca, G., Schettini, R. Dynamic key-frame extraction for video summarization. Journal of
Real-Time Image Processing, 1(1), (2006) 69-88.

5. Corchs, S., Ciocca, G., Schettini, R., Deco, G.: Video Summarization Using a
Neurodynamical Model of Visual Attention. IEEE Int. W. MM. Sig. Proc., (2004), 71-74.

6. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error
Propagation. Parallel Distributed Processing, MIT Press, Volume 1, (1986), 318-362.

7. Schettini, R., Brambilla, C., Cusano, C., Ciocca, G.: Automatic classification of digital
photographs based on decision forests. Int. J. Patt. Rec. and A. I., 18(5), (2004), 819-846.

8. Fisher, R. A.: The use of multiple measures in taxonomic problems. Ann. Eugenics,
Volume 7, (1936), 179-188.

9. AESS, Archivio di Etnografia e Storia Sociale: http://aess.itc.cnr.it/index.htm.

Active Learning with History-Based Query

Selection for Text Categorisation

Michael Davy� and Saturnino Luz

Department of Computer Science,
Trinity College Dublin

{Michael.Davy, Saturnino.Luz}@cs.tcd.ie

Abstract. Automated text categorisation systems learn a generalised
hypothesis from large numbers of labelled examples. However, in many
domains labelled data is scarce and expensive to obtain. Active learning
is a technique that has shown to reduce the amount of training data
required to produce an accurate hypothesis. This paper proposes a novel
method of incorporating predictions made in previous iterations of active
learning into the selection of informative unlabelled examples. We show
empirically how this method can lead to increased classification accuracy
compared to alternative techniques.

1 Introduction

Automated text categorisation [1] systems are designed to label unseen docu-
ments into a set of predefined categories. They use inductive learning algorithms
to construct a hypothesis of the target concept from a given set of labelled ex-
amples (training data) which can then be used to classify unseen data. The more
labelled training data available to the learner the greater the chances of inducing
an accurate hypothesis (PAC learnability [2]). However, there are many domains
where labelled data is difficult to obtain while unlabelled data is abundant.

Active Learning [3] has shown to significantly reduce the number of exam-
ples required to induce an accurate hypothesis. In this paper we examine the
query selection function of active learning, which is responsible for selecting in-
formative unlabelled examples. This paper proposes a method of incorporating
classifier predictions from previous iterations of active learning into the query
selection function. We show how this method can lead to increased accuracy over
alternative techniques in text classification problems.

2 Active Learning

Traditional learning techniques are passive since they have no control over the
training data - it is simply supplied to them. Passive learners require large
amounts of training data to ensure there are enough informative examples for
� Supported by the Irish Research Council for Science Engineering and Technology.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 695–698, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

696 M. Davy and S. Luz

the induction of an accurate hypothesis. Active learning gives the learner control
over its training data. An active learner is supplied with a small amount of ini-
tial training data but can supplement this by selecting informative unlabelled
examples and requesting their correct labels from an oracle. Labels are obtained
only for the selected examples which equates to labelling only the informative
examples, thereby reducing the number of labelled examples required.

Algorithm 1. Generic Active Learner

Input: tr - training data
Input: ul - unlabelled examples

for i = 0 to stopping criteria met do
Φi = Induce(tr) // Induce classifier
s = QuerySelect(ul, Φi) // select query example
l = Oracle(s) // Obtain query’s label
ul ← ul \ {s} // remove example from ul
tr ← tr ∪ {(s, l)} // update training data

Output: C = Induce(tr)

Algorithm 1 outlines a generic active learner. In each iteration a probabilistic
classifier (Φi) is induced from all the known labelled data. The classifier is used
to give predictions on the unlabelled data (ul). A query example (s) is selected,
removed from the unlabelled data1 and true label (l) requested from the oracle.
The training data is updated with the newly labelled example and the next
iteration begins. The final output is a classifier trained on all labelled data.

3 History Based Query Selection

The success of active learning relies on its ability to detect informative unlabelled
examples. Uncertainty Sampling (US) [3] is perhaps the best known method for
query selection. The query is selected as the unlabelled example for which the
current classifier is most uncertainty about (s = argminx∈ul |Φi(x) − 0.5|).

Each iteration of active learning produces predictions for the unlabelled ex-
amples. These predictions are ephemeral, that is, after the query example has
been selected they are discarded. We propose a novel method which stores and
utilises the historical predictions in order to find informative unlabelled exam-
ples. Predictions for a particular unlabelled example can be retrieved for all
iterations of active learning to date allowing us to study their variance. Below
we propose two methods that incorporate historical predictions into the query
selection function.

1 We use Pool-Based active learning.

Active Learning with History-Based Query Selection for Text Categorisation 697

History Uncertainty Sampling. (HUS) is an extension to US where we re-
define uncertainty as the sum of the uncertainty of the last k predictions, as
shown in Equation 1. Unlabelled examples are ranked according to their HUS
value and the query example is selected as the one which has the lowest value.

s = arg min
x∈ul

k∑
j=1

(|Φi−j(x) − 0.5|) (1)

History KLD. The past k predictions can be thought of as the output of a
committee of size k. In this context we can measure uncertainty as the disagree-
ment among committee members using Kullback-Leibler divergence to the mean
[4]. The KL divergence of a particular example (x) for a committee (of k mem-
bers) is calculated as in Equation 2, where the class distribution of an individual
committee member is Pm(C|x) and the mean distribution of the committee is
given by Pavg(C|x) = (

∑
m Pm(C|x))/k. The KL divergence between two class

distributions P1(C) and P2(C) with categories C = {c1, . . . , c|C|} is given in
Equation 3.

KLD(x) =
1
k

k∑
m=1

D(Pm(C|x)||Pavg(C|x)) (2)

D(P1(C)||P2(C)) =
|C|∑
j=1

P1(cj) log
P1(cj)
P2(cj)

(3)

s = arg max
x∈ul

KLD(x) (4)

We rank the unlabelled examples according to Equation 4 and select the highest
value example. History KLD will select those examples which have erratic label
assignments.

4 Experimental Results

We used the four one-v-one binary problems of the 20 Newsgroup dataset as
given in [5]. Documents were tokenised on non-word characters, stopwords re-
moved and stemming applied using the Porter algorithm. Feature selection was
not performed. In each iteration of active learning we selected just one query
example. The classifier used was a 2-Nearest Neighbour using a normalised linear
kernel. Initial training data consisted of 4 positive and 4 negative examples. The
history depth (k) was tested for k = {2, 3, 5, 7}.

Figure 1 shows the Macro-averaged accuracy from 10 trials of 10-Fold cross
validation where active learning is halted after 100 iterations. In all four problems
accuracy was increased when using HKLD. Accuracy increases over US using
HKLD were (A) 2.178%, (B) 0.946%, (C) 2.027% and (D) 3.887%. All increases
are statistically significant using a paired t-test (α = 0.05). We believe HUS does
not improve accuracy as it fails to capture the variation in class prediction.

698 M. Davy and S. Luz

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20 40 60 80 100

 (A) Atheism-Religion

 US
 HKLD

 HUS 0.76
 0.78

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94

 0 20 40 60 80 100

 (B) Baseball-Cryptography

 US
 HKLD

 HUS

 0.56
 0.58

 0.6
 0.62
 0.64
 0.66
 0.68

 0.7
 0.72
 0.74

 0 20 40 60 80 100

 (C) Graphics-X

 US
 HKLD

 HUS
 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100

 (D) Windows-Hardware

 US
 HKLD

 HUS

Fig. 1. 20NG results with history depth (k = 3). Accuracy is given on the Y axis and
the iterations of active learning is given on the X axis. Active learning was stopped
after 100 iterations.

5 Conclusions and Future Work

Incorporating history information using HKLD can lead to increased accuracy
when compared to US. The depth of history used can have an impact on the
improvement obtained when using the history methods. We wish to explore ways
to select an optimal history depth in addition to early stopping mechanisms for
the active learning process.

References

1. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Com-
puting Surveys (CSUR) 34(1) (2002) 1–47

2. Mitchell, T.: Machine Learning. McGraw-Hill Higher Education (1997)
3. Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. Proceedings

of the 17th International ACM SIGIR (1994) 3–12
4. McCallum, A., Nigam, K.: Employing EM in Pool-Based Active :earning for Text

Classification. Proceedings of the 15th International Conference on Machine Learn-
ing (1998) 350–358

5. Schohn, G., Cohn, D.: Less is more: Active learning with Support Vector Machines.
Proceedings of the 17th International Conference on Machine Learning (2000)
285–286

Fighting Link Spam with a Two-Stage Ranking

Strategy

Guang-Gang Geng, Chun-Heng Wang, Qiu-Dan Li, and Yuan-Ping Zhu

Key Laboratory of Complex System and Intelligent Science, Institute of Automation
Chinese Academy of Sciences, Beijing 100080, P.R. China

{guanggang.geng,chunheng.wang,qiudan.li,yuanping.zhu}@ia.ac.cn

Abstract. Most of the existing combating web spam techniques focus
on the spam detection itself, which are separated from the ranking pro-
cess. In this paper, we propose a two-stage ranking strategy, which makes
good use of hyperlink information among Websites and Website’s intra
structure information.The proposed method incorporates web spam de-
tection into the ranking process and penalizes the ranking score of po-
tential spam pages, instead of removing them arbitrarily. Preliminary
experimental results show that our method is feasible and effective.

1 Introduction

Link spam is something trying to unfairly gain a high ranking on a search engine
for a web page without improving the user experience, by mean of trickily ma-
nipulating the link graph. The issue of link spam is important not only because
it can render significant gains in the rankings of target pages, but also because
many instances of it are very hard to detect [5].

So far, most of the techniques for combating link spam, especially classification
based techniques, focus on the spam detection itself [1][3][6][7]. In these litera-
tures, web spam identification is regarded as the preprocessing step of ranking,
which increases the CPU burden. Additionally, with removing the “spam”, the
left “cleaning data” holds more dangling pages and no inlink pages; furthermore,
because of no definite criteria to judge the web spam, arbitrarily removing de-
tected “spam pages” may lead to some potential useful pages never be retrieved.

According to the fact that users generally only explore the first few search
engine results, by analyzing the characteristics of link spam, we propose a two-
stage ranking strategy, which makes full use of inter-sites hyperlinks information
and intra-site structure information.

2 Two-Stage Ranking Strategy

Several link spams are depicted in Fig. 1, where a website is denoted by a dash
rectangular; the solid rectangular represent webpages, and the line with arrow
denotes hyperlink.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 699–702, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

700 G.-G. Geng et al.

Page1

Page2

page3

Page6

Page5

Page7

Page4

Website1 Website2

(a)

W
eb

site3

Websi te

P
age3

P
age2

P
age1

P
age5

P
age4

P
age7

P
age6

(b)

Fig. 1. Typical Link Spams. (a). A Link Alliance and (b). A Link Farm.

By exploiting the link structures of link spam, we find that pages in the spam
farm are densely connected, and many common pages exist in both the inlinks
and outlinks of these pages. The site level close connection relationship is also
ubiquitous in link alliance, such as Fig. 1.(a). On the other hand, supporters of
a reputable page should not overly depend on one another, i.e. they should be
spread across different quality. One possible way to combat web spams is to de-
crease the influence of intra-site links and penalize the overly dependent relation
in the web graph. This is just the motivation of our paper. In this section, a
two-stage ranking strategy is proposed.

Site Level Web Model and Page Level Web Model. The site level Web
model is defined as a directed graph: GS = (VS , ES) , where VS represents the set
of websites; and ES = {< i, j, k > |i, j ∈ VS , k ∈ N} is the collection hyperlinks
between websites, k is the number of hyperlink.

For penalizing the densely connection relationship between Websites, we de-
fine the adjacent matrix A of the site level web graph as follows:

Aij =
{

logm (k + t), if < i, j, k >∈ ES

0, otherwise (1)

where m ∈ N , t is a regulated parameter.
Correspondingly, the page level Web model is defined as: GP = (VP , EP) ,

where VP = {1, 2, · · · , n} is the collection of pages; and EP ={< i, j > |i, j ∈ VP }
is the set of edges, each of which represents a hyperlink. Different from tradi-
tional Web model, the model doesn’t take the intra-site hyperlinks into account.
For convenience, we denote the website as Site(Pi), where page i lies.

Site Level Link Analysis. Site Level Link Analysis is similar to the original
PageRank algorithm in spirit. We first construct a probability transition matrix
M by renormalizing each row of A. The importance of website Si is denoted as
SR(Si), which can be computed as follows:

SR(Si) = ε1/N + (1 − ε1) · ∑
<j,i,k>∈ES

(SRj · Mji) (2)

where ε1 is a dampening factor; N is the number of nodes in GS .

Fighting Link Spam with a Two-Stage Ranking Strategy 701

Page Importance. G. R. Xue et al. [2] proposed a Dissipative Heat Conduc-
tance model to compute the importance of the pages in a hierarchical structure.
However, they treated all hyperlinks identically. We argue that different hyper-
links should have different weights in the voting process.

The weight of the hyperlink from page r to page l is denoted as Wrl, which
is computed with the formula:

Wrl =
{

1/(1 + ln(Lr · Ll)), if < r, l >∈ EP

0, otherwise (3)

where Lr and Ll is the level of page r and page l in respective website. If page
r is on the highest level, let Lr = 1. And Lr increases by one when r goes down
to the next level of the website tree.

According to the weighted adjacent matrix, firstly normalize the weights of
outlinks from the same website with their sum and get a new weight matrix W .
Secondly, use the formula (4) to penalize the hyperlinks from one site to a single
page.

W rl = W rl · logm (k + m − 1)/k, (4)

where k is the link number of Site(Pr) to page l. Then the page importance can
be computed as follows:

PRl = ε2/N + (1 − ε2) · ∑
<r,l>∈EP

(W rl · SR(Site(Pr))), (5)

Compared with the iterative PageRank [4] algorithm, once gets the SR value,
the page importance can be computed in one step with formula (5).

3 Experiments

The collection of experiments is a set of 16,367,815 pages from the .cn domain,
downloaded in 2005. Some obvious content spams have been removed with some
heuristic rules provided by [6] in preprocessing stage. Given the large size of the
collection, instead of classifying all the pages into spam and normal, we firstly
return the ranking results, then with 11 postgraduates inspected a few pages
of the websites manually to classify the result page. They also found the most
relevant documents from the returned results as relevance pages, with 50 queries
from the daily life. The average relevant documents of every query is 13.75.

In experiment, BM2500 [8] was used as the relevance weighting function. The
top 2000 results according to the relevance score were chosen, and then the
relevance(BM) and importance(PR) were combined as: μ ·BMi +(1−μ) ·PRi.

Fig. 2 shows the comparison of the average spam number in the top n ranked
results, using our algorithm and PageRank. We can see that the proposed two-
stage ranking method can effectively penalize the web spam, especially in the top
20 ranked documents. According to the fact that users generally only explore the
first few search engine items, the results is inspiring, in spite of the performance
dropping when more top ranked results are considered.

702 G.-G. Geng et al.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Top−Ranked Document

S
pa

m
 N

um
be

rs

Two−stage Rank
PageRank

Fig. 2. Comparison of the Average Link
Spam Number in the Top n Ranked Results

PageRank

0.35

0 .05

 0 .1

0 .15

 0 .2

0 .25

 0 .3

 0

P
re

ci
si

on

P@10 MAP

Two - stage Rank ing

Fig. 3. Comparison of IR Precision

As we can see in Fig. 3, the proposed algorithm significantly outperforms
PageRank on average precision and P@10 by 10.7% and 8.1% respectively. All
the data in Fig. 2 and Fig. 3 are obtained with the same parameters, i.e. ε1 =
ε2 = 0.15, m = 2.71828, t = m − 1 and μ = 0.85.

4 Conclusions

In this paper, a two-stage ranking strategy was proposed, which penalized link
spams with inter-sites hyperlinks information and intra-site structure informa-
tion. Experimental results showed that the proposed method punished the spam
pages well and improved the retrieval precision effectively.

References

1. A. A. Benczúr, K. Csalogány, T. Sarlós, and M. Uher. Spamrank: Fully Automatic
Link Spam Detection. In Proc. of AIRWeb’05, Chiba, Japan, May 2005.

2. G. R. Xue, Q. Yang, H. J. Zeng, Y. Yu, and Z. Chen. Exploiting the Hierarchical
Structure for Link Analysis, In Proc. of SIGIR’05, Salvador,Brazil, Auguest 2005.

3. A. L. C. Carvalho, P.A. Chirita, E.S. Moura, P. Calado, and W. Nejdl. Site Level
Noise Removal for Search Engines. In Proc. of the World Wide Web conference,
May 2006.

4. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Stanford Digital Library Technologies Project, 1998.

5. Z. Gyöngyi, and H. G. Molina. Link Spam Alliances. Technical Report, September
2005.

6. A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting Spam Web Pages
through Content Analysis. In Proc. of the World Wide Web conference, May 2006.

7. L. Becchetti, C. Castillo1 D. Donato1, S. Leonardi, and R. Baeza-Yates. Using Rank
Propagation and Probabilistic Counting for Link Based Spam Detection. In Proc.
of WebKDD’06, August 2006.

8. Robertson, S. E. Overview of the Okapi Projects. Journal of Documentation, Vol.
53, No. 1, 3-7, 1997.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 703 – 707, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improving Naive Bayes Text Classifier Using Smoothing
Methods

Feng He and Xiaoqing Ding

Dept. of Electronic Engineering, Tsinghua University, 100084, Beijing, China
State Key Laboratory of Intelligent Technology and Systems

Abstract. The performance of naive Bayes text classifier is greatly influenced
by parameter estimation, while the large vocabulary and scarce labeled training
set bring difficulty in parameter estimation. In this paper, several smoothing
methods are introduced to estimate parameters in naive Bayes text classifier.
The proposed approaches can achieve better and more stable performance than
Laplace smoothing.

1 Introduction

Text categorization is the task of automatically assigning one or more predefined
class labels to new text document. Many machine learning approaches have been
introduced for text categorization in the literature [1]. Naive Bayes (NB) classifier is a
kind of simple Bayesian classifier. It assumes that the occurrence of each word in a
document is independent of the position and neighbors of that word.

 Two types of NB text classifiers have been extensively compared in [2]. Since
the multinomial model is almost uniformly better than the Bernoulli model, we will
focus on the multinomial model text classifier. The multinomial model is a generative
model. It uses labeled document sets to estimate the parameters in training. New text
document is labeled with the class which is most likely to generate the document
according to the learned model.

In real life tasks, the vocabulary often contains tens of thousands of words. Since
making labels for training documents by human labor is tedious and time consuming,
usually, it’s hard to collect enough labeled document sets for training. This data
sparseness problem brings difficulty in parameter estimation for NB text classifier.
Various feature selection methods have been proposed for text categorization [3], by
which, only a reduced size of vocabulary are used for model training and testing.
These feature selection methods have demonstrated their effectiveness in text
categorization. However, in real life application, often it’s hard to determine the
suitable feature size for text classifier.

Actually, the multinomial model is a unigram language model [2]. In language
modeling, n-gram model is also subjected to the data sparseness problem. Several
smoothing methods have been proposed to tackle this [4]. The smoothing techniques
not only avoid zero probability for unseen words, but also achieve an improved
estimation for the whole model. Thus, in this paper, these smoothing methods are
introduced from language modeling area to estimate the parameters in NB text
classifier.

704 F. He and X. Ding

2 Multinomial Naive Bayesian Model

In multinomial model, regardless of the words’ position and context in documents,
each document is expressed as a vector of word weights with dimension |V|, where V
denotes the vocabulary. We denote a document as di, i = 1, 2, …D, where D is the total
number of training documents, denote a word as wt, t = 1, 2, ...|V|, denote the class
labels as cj, j = 1, 2,…C, where C is the total number of classes, and denote the number
of times word wt occurring in document di as n(wt, di). According to the independence
assumption, document di is represented as (n(w1, di), n(w2, di), …n(w|V|, di)). The class
conditional probability of the document is given by the multinomial distribution, as
follows:

| |
(,)

| |
1

1

| | !
(|) (| |) (|)

(,)!

t i

V
n w di

i j i t jV
t

t i
t

d
P d c P d P w c

n w d =

=

= ∏
∏

,

wherein, P(wt|cj) is the probability of each word in each class. To avoid zero
probability, conventionally, Laplace smoothing is applied to estimate P(wt|cj):

| |

1

1 (,)

(|)
| | (,)

i i

i j

t i
d c

t j V

t i
t d c

n w d

P w c

V n w d

∈

= ∈

+
=

+

∑

∑ ∑
 .

Based on the learned multinomial model, new document is labeled as the class
which has the highest posterior probability, by applying Bayes rule, we have:

| |

1

() arg max(log () (|) log (|))
j

V

i j t i t j
c t

C d P c P w d P w c
=

= +∑ .

3 Smoothing Algorithms

These smoothing methods aim to redistribute the probability mass by discounting the
probabilities of words seen and assigning the extra probability mass to words unseen.
These smoothing algorithms include absolute smoothing, Good-Turing smoothing,
linear smoothing and Witten-Bell smoothing, listing below:

Absolute Smoothing Good-Turing Smoothing

0

0

, 0

(|)

, 0

ab k j
i

i

r
r

T
P w c N

r
T N

δ

δ
>

−⎧ >⎪
⎪= ⎨
⎪ =⎪
⎩

∑i
i

*

g t

1

0

r
, 0 r

T
r

P (|) , r
T

N
, r 0

N T

k j

K

w c K

⎧
< ≤⎪

⎪
⎪= >⎨
⎪
⎪ =⎪
⎩

The small constant δ in absolute smoothing has already been determined in
previous study [5], arriving at:

1 1 2N /(N 2N)δ = + .

 Improving Naive Bayes Text Classifier Using Smoothing Methods 705

Linear Smoothing Witten-Bell Smoothing

1

ln 1

0

N
(1) , 0

V
(|) N

, 0
V (V)

k j

i
i

r
r

T
P w c

r
N

>

⎧ − >⎪
⎪= ⎨

=⎪ −⎪⎩
∑

i

i

 0
wt

0

0 0

, 0
V-N

(|)
V-N

, 0
N (V-N)

k j

r
r

T
P w c

r
T

⎧ >⎪ +⎪= ⎨
⎪ =
⎪ +⎩ i

Wherein, (,)
j

k
d c

r n w d
∈

= ∑ ;
| |

1

(,)
j

V

k
k d c

T n w d
= ∈

= ∑ ∑ ;

| |

1

((,))
j

V

i k
k d c

N I n w d i
= ∈

= =∑ ∑ , 1
I x

0

x is true

x is false

⎧
⎨
⎩

，
（ ）=

，
.

4 Experimental Results

This section validates the performance of the newly introduced smoothing algorithms
by empirically comparing them with Laplace smoothing. The experiments are
conducted on Chinese text documents.

Data set and Performance measure
The data set comprises the documents of 10 topic classes from the corpus of China
Encyclopedia. It contains 18,478 text documents. Each document is assigned a single
topic label. Among the 10 topic classes, the largest one is military affairs, which
consists of 2683 documents, while the smallest one is sports, which consists of 700
documents. Since there is no natural delimiter between Chinese words, using a
dictionary of 119,817 vocabularies, the popular maximum matching method is
performed to segment Chinese texts into word strings. Then, stop-words and words
that occur only once are removed. After this tokenization, the data set has a
vocabulary size of 138,743. For this multi-label single-class categorization task, we
adopt classification accuracy as our performance measure.

Experiments and Results
NB text classifier is performed with randomly selected train-test splits. To focus on the
issue of parameter estimation, in particular, the effect of size of train set and size of
feature on probability estimation in NB text classifier, gradually, we change the size of
training set by varying the ratio of train set to the whole data set from 1% to 90%, and,
change the number of features obtained by information gain method [3] from 500
words to full vocabulary. We run 10 training and testing trials under each feature size
and training set size, and take the average accuracy as result reported here.

Figure 1 shows results in the condition that the ratio of training set to whole data set
is 90%. Here, these smoothing methods have similar performance, except that linear
smoothing is slightly inferior. Figure 2 and 3 show results for the training ratio of 2%
and 1% respectively. We can see, as the feature size increases, the accuracy obtained
from Laplace smoothing and linear smoothing decrease evidently, while for other
methods, the performances are stable, relatively immune to the change of feature size.
Even with full vocabulary, the other three methods can achieve results comparable to
the Laplace smoothing with optimally chosen feature size. We also conduct
experiments on other training set ratio, limited by the length, they are not shown here.

706 F. He and X. Ding

Figure 4 shows results for different training ratio, with feature size optimally selected
under each training ratio. The traditional Laplace method is slightly but consistently
inferior to the proposed smoothing methods, except the linear smoothing method.

Fig. 1. A comparison of smoothing
methods for different feature size, while the
ratio of training set to whole data set is 90%

Fig. 2. A comparison of smoothing methods
for different feature size, while the ratio of
training set to whole data set is 2%

Fig. 3. A comparison of smoothing methods
for different feature size, while the ratio of
training set to whole data set is 1%

Fig. 4. A comparison of smoothing methods
for different training set size, while the feature
sizes are optimally selected under each given
size of training set

5 Conclusion and Future Works

In this paper, several smoothing algorithms popularly applied in language modeling
are introduced for parameter estimation in NB text classifier. The effectiveness of
these smoothing methods is demonstrated through empirical study. The proposed
approaches can avoid the burden of repeating feature selection procedure to determine
the suitable feature size, especially in case of small training set, thus, achieving
substantial improvement over the standard NB text classifier. Even without the

 Improving Naive Bayes Text Classifier Using Smoothing Methods 707

computation intensive feature selection process, the proposed smoothing methods can
obtain experimental results comparable to the Laplace smoothing with optimally
chosen feature size. Future works include apply these smoothing algorithms to data
sets other than Chinese corpus. Further, we will continue to study the scarce labeled
training set issue in text categorization.

References

[1] F.Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys,
34(1), pp. 1–47, 2002.

[2] A.McCallum and K.Nigam, A comparison of event models for naive Bayes text
classification, In AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41–48.

[3] Y.Yang and J.O.Pedersen, A comparative study on feature selection in text categorization,
In D.H.Fisher, editor, Proceedings of ICML’97, pp. 412–420, Nashville, US, 1997.

[4] S.F.Chen, J.Goodman, An empirical study of smoothing techniques for language modeling,
In Joshi, A., Palmer, M., eds. Proceedings of Annual Meeting of the ACL’96, pp. 310–318,
1996.

[5] Ney, Hermann, Ute Essen, and Reinhard Kneser, On structuring probabilistic dependences
in stochastic language modeling. Computer, Speech, and Language, pp.1-38, 1994.

Term Selection and Query Operations

for Video Retrieval

Bouke Huurnink and Maarten de Rijke

ISLA, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{bhuurnin,mdr}@science.uva.nl

Abstract. We investigate the influence of term selection and query
operations on the text retrieval component of video search. Our main
finding is that the greatest gain is to be found in the combination of
character n-grams, stemmed text, and proximity terms.

1 Introduction

Widespread availability of digital video technology has led to increasing amounts
of digital video data. Evidently, we need retrieval systems and algorithms to help
us search through it. Automated Speech Recognition (ASR) transcripts are often
the only text information source available for video search; the challenge is that
this text is subject to speech recognition errors and that the spoken language
used is substantially different from that in written query text. Additionally,
written queries may request information contained in the visual modality.

Past experiments have shown that ASR transcriptions of video are a valuable
source of information [8]. Despite this fact, most research in video retrieval cen-
ters around multimodal analysis. Typically, only standard text retrieval methods
are used for search of speech extracted from video. As part of an agenda aimed
at optimizing the textual components of video retrieval, we report on experi-
ments with different types of text representation for video retrieval. Specifically,
we consider character n-grams (i.e., sub-word units), stemming, and proximity
terms (i.e., multi-word units) and determine their impact on text retrieval effec-
tiveness for video search. Our main finding is that video retrieval performance
can be significantly improved through combination of term selection strategies.

2 Experimental Setup

For evaluation purposes we use the TREC Video Retrieval Evaluation (TREC-
VID) [8] datasets from 2003–2006. The combined dataset yields over 300 hours of
news broadcast video which has been automatically segmented into over 190,000
shots—the basic units of retrieval. It is accompanied by 95 topics, each consisting
of a short natural language description of the visual content that is desired from
relevant shots. For each topic a ground truth has been manually created. Other
components of the TRECVID dataset utilised for our retrieval experiments

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 708–711, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Term Selection and Query Operations for Video Retrieval 709

include ASR transcripts, machine translation text, and news story boundary
annotations, all of which have been generated automatically.

Each shot is associated with the (English language) transcription of words
spoken during that shot, as well as the transcription of the news story in which
it occurs. By incorporating the surrounding news story we compensate for the
temporal mismatch between the occurrence of an entity in speech and its occur-
rence in the associated video. We focus on the effects of textual term selection
for video retrieval. Therefore we choose to use an existing, well researched, vec-
tor space model as our retrieval mechanism, rather than tweaking parameters
for this specific task. Indexing and retrieval is done using Lucene [4]. Evaluation
of the ranked shots is done using Mean Average Precision (MAP) [8].

3 Experiments

We ran three sets of experiments, one on character n-gram tokenization, one on
stemming, and one on the use of proximity terms. For each set of experiments we
determine the winning algorithm and perform a comparison to the text baseline.
Our baseline representation is an index containing words as they occur in the
ASR with stopwords removed. To see to what extent the representation methods
just listed have complementary effects, we ran several combination experiments.

Character N-Gram Tokenization. Character n-gram tokenization has been shown
to boost retrieval in certain situations [5]. E.g., the use of character 4-grams has
proved useful for retrieval from English newspapers [2]. We investigate the effects
of n-gramming at different sizes of n (and in different combinations). We follow
the tokenization strategy used in [5], creating overlapping, cross-word character
n-grams, using values for n from 3 to 7.

Stemming. For our stemming experiments we used the Porter stemming algo-
rithm [7] to normalise morphological variants of words.

Proximity Terms. Our third set of experiments follows [6], who found the use
of proximity to be beneficial in web queries, prioritising results in which query
words occur close together. Here we experiment with word n-grams, varying the
magnitude of n and the proximity required between query words. We investigate
the effects of retrieving consecutive sequences of 1 to 7 query terms, and com-
binations thereof. We also explore the effects of proximity terms—where terms
are required to occur in a window of n words—and vary the window size.

Run Combinations. Here, we evaluate all linear combinations of runs produced
using the optimal term selection strategies determined in the previous three
experiments [3].

4 Results and Analysis

Table 1 provides an overview of the best performing settings for each of the
methods identified in the previous section, and for their combinations. Due to

710 B. Huurnink and M. de Rijke

Table 1. Best performing settings per method and for combinations; Δ indicates the
percentage change compared to the baseline. Significant changes are indicated with
∗ and ∗∗ (two-tailed Wilcoxon Matched-pair Signed-Ranks Test, improvements at the
0.05 and 0.01 level, respectively).

Individual Combinations
Method MAP Δ Methods MAP Δ

Baseline 0.0609 – Char. n-grams 0.0596 −2.1
Char. n-grams 0.0574 −5.7 Char. n-grams + stem. 0.0647 +6.3
Stemming 0.0647 +6.2 Char. n-grams + Prox. terms 0.0616 +1.2
Prox. terms 0.0627∗ +3.0 Prox. terms + stem. 0.0658 +8.2

Char. n-grams + stem. + Prox. terms 0.0691∗∗ +13.5

Fig. 1. (Left): Per-topic change in average precision compared to the baseline, using
stemming. (Right): Per-topic change in average precision compared to the baseline,
using the grand combination strategy. Topics sorted in descending order by change
over the baseline.

space limitations we cannot provide detailed tables per method; instead, we
briefly discuss the findings per group of experiments.

Character N-Gram Tokenization. The best performing method here is 5-grams
(which differs from the best settings reported in [2,5], who found 4-grams to be
optimal). It performs below the baseline, but not significantly. The best perform-
ing combination of character n-gram tokenizations combines 4, 6, and 7-grams
and performs somewhat better, but still below the baseline.

Stemming. Retrieval on stemmed ASR text outperformed all single n-gram tech-
niques, with a MAP of 0.0647; the difference with the baseline was not significant,
though: as Figure 1(Left) suggests, all gains were offset by losses of practically
the same size.

Proximity Terms. Proximity terms (allowing up to 10 non-query term to occur be-
tween query terms) outperformed the baseline, and did so significantly, as they did
in [6]. The best results were achieved by using 2 word sequences for the proximity
query, and combining these with the baseline run (i.e., “1 word sequences”).

Combinations. Turning to combinations of different methods, we observe that the
following best combinations all outperformed the baseline (but not significantly):
character n-grams plus stemming, character n-grams plus proximity terms, and
proximity terms plus stemming. The grand combination that combines runs
created using the best settings for each of character n-gramming, stemming,

Term Selection and Query Operations for Video Retrieval 711

and proximity terms results in a run that significantly outperforms the baseline
(at the 0.01 level). Figure 1(Right) shows the change in topic average precision
values using the final grand strategy. Space does not allow an analysis of the
effects on individual topics, but it is evident that the majority of topics show an
increase in performance.

5 Conclusion

We examined whether term selection alone can be used to significantly improve
video retrieval performance. We see that the textual component of video retrieval
is similar to other forms of retrieval in that the use of proximity term pairs sig-
nificantly improves retrieval effectiveness. Stemming also improves performance,
while character n-gramming proves not to be directly useful for video retrieval.
However, a combination of character n-grams, stemmed terms, and proximity
terms results in the best performance.

In future work we plan to explore further avenues for improving the effec-
tiveness of textual search for video retrieval. These include query and document
expansion techniques [9] and the linking of textual topics to visual detectors [1].

Acknowledgments

Both authors were supported by the Netherlands Organization for Scientific
Research (NWO) MUNCH project under project number 640.002.501. Maarten
de Rijke was also supported by NWO under project numbers 017.001.190, 220-
80-001, 264-70-050, 354-20-005, 600.065.120, 612-13-001, 612.000.106, 612.066.-
302, 612.069.006, 640.001.501, and by the E.U. IST programme of the 6th FP
for RTD under project MultiMATCH contract IST-033104.

References

1. C.G.M. Snoek, B. Huurnink, L. Hollink, M. de Rijke, G. Schreiber and M. Worring
Adding semantics to detectors for video retrieval. Journal paper (submitted).

2. V. Hollink, J. Kamps, C. Monz, and M. de Rijke. Monolingual document retrieval
for European languages. Inf. Retr., 7(1-2):33–52, 2004.

3. J. Kamps and M. de Rijke. The effectiveness of combining information retrieval
strategies for European languages. In Proc. 19th Annual ACM Symp. Applied Com-
puting, pages 1073–1077, 2004.

4. Lucene. The Lucene search engine, 2006. http://lucene.apache.org/.
5. P. McNamee and J. Mayfield. Character n-gram tokenization for European language

text retrieval. Inf. Retr., 7(1-2):73–97, 2004.
6. G. Mishne and M. de Rijke. Boosting web retrieval through query operations. In

Proc. ECIR 2005, LNCS 3408, pages 502–516. 2005.
7. M. F. Porter. An algorithm for suffix stripping. In Readings in Information Retrieval,

pages 313–316. 1997.
8. A.F. Smeaton, P. Over, and W. Kraaij. TRECVID: Evaluating the effectiveness of

information retrieval tasks on digital video. In ACM Multimedia, 2004.
9. E. Voorhees and J. Garofolo. Retrieving noisy text. In E. Voorhees and D. Harman,

editors, TREC: Experiment and Evaluation in Information Retrieval. 2005.

http://lucene.apache.org/

An Effective Threshold-Based Neighbor

Selection in Collaborative Filtering

Taek-Hun Kim and Sung-Bong Yang

Dept. of Computer Science, Yonsei University
Seoul, 120-749, Korea

{kimthun,yang}@cs.yonsei.ac.kr

Abstract. In this paper we present a recommender system using an
effective threshold-based neighbor selection in collaborative filtering. The
proposed method uses the substitute neighbors of the test customer who
may have an unusual preferences or who are the first rater. The exper-
imental results show that the recommender systems using the proposed
method find the proper neighbors and give a good prediction quality.

1 Introduction

A recommender system utilizes in general an information filtering technique
called collaborative filtering. Since collaborative filtering is based on the ratings
of the neighbors who have similar preferences, it is very important to select the
neighbors properly to improve prediction quality.

Collaborative filtering is widely used for the recommender systems, however,
many issues in collaborative filtering remain unresolved such that privacy, user’s
trust, attribute, scalability, sparsity, so called the cold start problem and the
first rater problem[5].

In this paper we show that the recommender systems using an effective
threshold-based neighbor selection. The proposed method consists of two stages
for selecting the neighbors. In the first stage we find the best n substitute neigh-
bors according to the test customer. And then we find the proper neighbors using
the threshold which is the correlation of similarities and dissimilarities based on
the substitute neighbors.

The experimental results show that the proposed recommender system selects
meaningful neighbors for the high prediction quality. Therefore the proposed
system can be a choice to solve the first rater problem in collaborative filtering.

2 An Effective Threshold-Based Neighbor Selection

The threshold-based neighbor selection method selects the neighbors who belong
to a certain range with respect to the similarities of the preferences. The number
of neighbors selected by this method varies because it selects neighbors according
to a certain threshold value δ.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 712–715, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Effective Threshold-Based Neighbor Selection in Collaborative Filtering 713

We propose an effective threshold-based neighbor selection method in col-
laborative filtering and we call it SNS. It is designed for solving the first rater
problem in collaborative filtering and can be applied the clustering-based recom-
mender systems. The proposed method utilizes the substitute neighbors of the
test customer in the process of finding the neighbors for high prediction quality.

SNS finds the best n substitute neighbors. It then searches the proper neigh-
bors who have similarities either larger than δH or smaller than δL, where δH and
δL are some threshold values for the Pearson correlation coefficients. Note that
as the threshold values changes, so does the size of the neighbors. The pseudo
code for SNS is shown in Algorithm 1.

Algorithm 1. A pseudo code for SNS

1: Unmark all the customers in the input dataset S ;
2: n = N ; {n is for counting of the number of substitute neighbors N}
3: while (n is not 0) do
4: Find the substitute neighbor s who has the best similarity with the test customer

t, in the dataset S ;
5: Mark s;
6: Insert s into Q ;

{Q holds temporarily the neighbors for a threshold-based search}
7: Add s to Neighbors;
8: Subtract 1 from n;
9: end while

10: while (Q is not empty) do
11: Delete w from Q ;
12: for each unmarked neighbor x of w do
13: if the weight similarity between x and w is either greater than δH or less than

δL then
14: Mark x ;
15: Add x to Neighbors;
16: end if
17: end for
18: end while
19: return Neighbors;

3 Experimental Results

In the experiments we used the MovieLens dataset of the GroupLens Research
Center[3]. We used two types of evaluation metrics which are prediction ac-
curacy metrics and recommendation list accuracy metrics. One of the statis-
tical prediction accuracy metrics is MAE. MAE is the mean of the errors of
the actual customer ratings against the predicted ratings in an individual pre-
diction [2]. Precision and recall are also used for evaluating recommendation
list in the information retrieval community[1]. And the standard F-measure
is used in order to evaluate the quality as a single measure[4]. It is given by
Equation (1).

714 T.-H. Kim and S.-B. Yang

F−measure =
2 · Precision · Recall

Precision + Recall
. (1)

For the experiment, we have chosen randomly 10% of customers out of all
the customers in the dataset as the test customers. The rest of the customers
are regarded as the training customers. For each test customer, we chose ten
different movies randomly that are actually rated by the test customer as the
test movies. The final experimental results are averaged over the results of ten
different test sets for a statistical significance.

For comparing the recommender systems, we have implemented three recom-
mender systems for the experiments. The first system is collaborative filtering
with the threshold-based neighbor selection, called TNS. The second one is
collaborative filtering with the clustering-based neighbor selection, called CNS.
The third one is collaborative filtering with the proposed refined threshold-based
neighbor selection, called SNS.

For TNS and SNS, three different systems have been implemented. The first
system is TNS(or SNS) with positive neighbors (TNSp(SNSp)). The second one
is TNS(or SNS) with negative neighbors (TNSn(SNSn)). And the last one is
TNS(or SNS) with both positive and negative neighbors (TNSa(SNSa)). For
SNS, we have implemented n different settings according to the best n substitute
neighbors (SNSn). For CNS, we have used the k-means clustering method for
the clustering.

The experimental results are shown in Table 1 and Table 2. We determined the
parameters which gave us the smallest MAEs and the largest precision, recall,
and F-measure through various experiments.

The experimental results show us that SNS have an approximate performance
to TNS. For both TNS and SNS, TNSa(SNSa) is outperform other systems
for both the prediction accuracy and the recommendation list accuracy. For
SNSa, SNS1

a is the better than SNSn
a for the prediction accuracy but not for

recommendation list accuracy.
For the clustering-based recommender systems, the clustering-based systems

are worse prediction qualities than the threshold-based systems. However TNS
and SNS are approximate performance just like non-clustering systems show.

These fact means that the proposed neighbor selection is very useful to the
recommender systems because it can be substituted for the threshold-based

Table 1. The experimental results

MAE Precision Recall F − measure

TNSp 0.739936 0.739142 0.773789 0.755284
TNSn 0.814013 0.688163 0.726987 0.706330
TNSa 0.739440 0.740468 0.776128 0.756053
SNS1

p 0.739697 0.739770 0.773321 0.755274
SNS1

n 0.848319 0.685816 0.721465 0.702517
SNS1

a 0.739494 0.740010 0.777172 0.756606
SNSn

a 0.739503 0.741065 0.773923 0.756849

An Effective Threshold-Based Neighbor Selection in Collaborative Filtering 715

Table 2. The experimental results based on the clustering

MAE Precision Recall F − measure

CNS 0.750977 0.733624 0.769937 0.751082
TNSa 0.750465 0.733748 0.770103 0.751082
SNS1

a 0.750563 0.733922 0.770679 0.751355
SNSn

a 0.750787 0.734199 0.770657 0.751665

neighbor selection. Therefore, it could be used the recommender systems to
solve the first rater problem.

4 Conclusions

Although collaborative filtering can be regarded as a good choice for a recom-
mender system, there is still much more room for improvement in prediction
quality. In this paper we proposed an effective threshold-based neighbor selec-
tion that uses substitute neighbors to find the proper neighbors. The substitute
neighbors are the neighbors of the test customer who may have an unusual pref-
erences or who is the first rater.

The experimental results show that the proposed recommender system finds
meaningful neighbors using substitute neighbors and it is also useful for clustering-
based recommender systems. Therefore the clustering-based collaborative filter-
ing using the proposed method could be a choice to the very large scale dataset
problem and also the first rater problem.

Acknowledgements

We thank the GroupLens Research Center for permitting us to use the Movie-
Lens dataset. This work has been supported by the BK21 Research Center for
Intelligent Mobile Software at Yonsei University in Korea.

References

1. H. Nguyen, P. Haddawy: The Decision-Theoretic Interactive Video Advisor. Pro-
ceedings of the Conference on UAI. (1999)

2. J.S. Breese, D. Heckerman, and C. Kadie: Empirical Analysis of Predictive Algo-
rithms for Collaborative Filtering. Proceedings of the Conference on UAI. (1998)

3. MovieLens dataset, GroupLens Research Center, url: http://www.grouplens.org/.
4. R.J. Mooney, L. Roy: Content-Based Book Recommending Using Learning for Text

Categorization. Proceedings of the ACM Conference on Digital Libraries. (2000)
5. N.Yamamoto, M. Saito, M. Miyazaki, H.Koike. Recommendation Algorithm

Focused on Individual Viewpoints. Proceedings of the Conference on CCNC. (2005)

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 716 – 719, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Combining Multiple Sources of Evidence in XML
Multimedia Documents: An Inference Network

Incorporating Element Language Models

Zhigang Kong and Mounia Lalmas

Department of Computer Science, Queen Mary, University of London
{cskzg, mounia}@dcs.qmul.ac.uk

Abstract. This work makes use of the semantic structure and logical structure
in XML documents, and their combination to represent and retrieve XML mul-
timedia content. We develop a Bayesian network incorporating element lan-
guage models for the retrieval of a mixture of text and image. In addition, an
element-based collection language model is used in the element language model
smoothing. The proposed approach was successfully evaluated on the INEX
2005 multimedia data set.

1 Introduction

We believe that structure can play an essential role in the retrieval of multimedia con-
tent in XML multimedia documents. The proposed approach makes use of the seman-
tic structure and logical structure in XML documents, and their combination for rep-
resenting and retrieving XML multimedia document content.

This work develops a general framework for combining multiple sources of evi-
dence from various structured elements in XML multimedia documents. The multi-
media content here refers to any type of multimedia data or a mixture of text and mul-
timedia data. An element language model is applied upon each XML element. The
framework combines the language models associated with the elements used to per-
form the retrieval of the multimedia content, using the Inference network model. An
element-based smoothing method for the element language model is proposed.

The general framework has been applied in the context of a retrieval task based on
a mixture of text and image retrieval on the INEX 2005 Multimedia collection [4].

2 The Proposed Approach

XML documents are composed of structured elements that are nested within each
other in a hierarchical tree. There are logical relationships between these nested ele-
ments. The elements logically surrounding a given element can be used to provide
additional sources of evidence for representing this given element. In addition, the
elements closer to it in the document hierarchy could provide more accurate represen-
tation than those further away.

XML document contents are surrounded by text markups. These, which here refer
to the element names, can provide meaningful semantics that can be viewed as
metadata describing the nature of the element. This semantics can also be used for the

 Combining Multiple Sources of Evidence in XML Multimedia Documents 717

representation and retrieval of elements. We call the structure based on the meaning-
ful markup semantic structure.

The two types of structures are based on different characteristics. The former is
identified according to document logical hierarchy and the latter is classified accord-
ing to the semantics of the markups (the name of the elements). They work in differ-
ent ways to represent multimedia contents in XML documents. It would be expected
that the combination of these two types of representations could lead to better effec-
tive retrieval of multimedia content than that based on only one of them.

We can directly query the semantically structured elements as well as query the
multimedia data. This can be viewed as a retrieval of a mixture of text and multimedia
data. Each semantically structured element (or the multimedia data) is represented by
its logically surrounding elements (as shown in the left network of figure 1).

Furthermore, there could be other semantic structures (not the queried structures)
in the XML documents. We can further structure the elements logically surrounding a
queried element into semantic ones and non-semantic ones (as presented in the right
network of figure 1). This could improve the representation based on the surrounding
elements.

We use the first method (the left network of the figure 1) in this work as the test
collection is not suitable for evaluating the second method. Due to the nested tree
structure of XML documents, those structured elements are disjoint from each other
so that they have non-overlapping content.

3 An Inference Network Incorporating Element Language Models

The inference network framework was explicitly designed for combing multiple rep-
resentations and retrieval algorithms [1]. However, the heuristic estimation formulas
(such as tf-idf) used in [3] do not correspond well to real probabilities. To address this
[1, 2] incorporate the language model in the Bayesian network. We follow this idea
but apply it to XML multimedia retrieval.

Figure 1 shows the Bayesian network combining the structured elements. In the
networks, the node D models a document. The one or more nodes S model the queried
elements, the element containing multimedia data and/or the semantically structured
elements. The nodes between D and S model the elements logically surrounding the
queried elements (the S nodes), where own is the queried element itself, 1st is its par-
ent element, and so on. The Q node models a query and the I node models the infor-
mation need.

The probability of a structured element can be estimated as the probability of it
generating the query. In this work, the Dirichlet prior smoothing is used for the
smoothing:

() () ()()∏
∈

+=
qt

CtPetPeqP ||| 21 λλ (1); () ()
e

etf
etP

,
| = (2); (3)

where μ is a parameter set to the average length of the same type of structured ele-
ments in the collection; for example, it is the average length of <history> elements in
the collection when querying //history. e is the length of the element. ()etf , is the
occurrences of a query term in the element.

μ
λ

+
=

e

e
1 μ

μλ
+

=
e2

718 Z. Kong and M. Lalmas

()CtP | is a collection language model used for smoothing. However, we focus on
estimating the structured elements instead of the entire document. Therefore, we
compute the ()CtP | as the probability of observing the term in the collection of the
same type of queried elements. For our previous example, it is the probability of ob-
serving the term in all <history> elements in this collection. This is called an element-
based collection language model.

We use the #WAND operator in the combination as using #WSUM can result in
the smoothing component having no influence on the ranking [2].

own 1st

S1

I

S2

own 1st

Q1 Q2

…

…

… … …

…

own 1st

1st S1-1

own

I

S1 S2

Q1 Q2

1st

1st S2-1

DD

Fig. 1. The Bayesian networks for combining structured elements

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

combining

further combining

Fig. 2. Combining structured elements

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

smoothing with collection language model

smoothing with element-bsaed collection language model

Fig. 3. Using different reference models

4 Retrieving a Mixture of Text and Image

We evaluate our approach using the INEX 2005 multimedia collection, which con-
sists of 2633 images in 462 XML documents. It contains INEX CAS topics made of
content and structural constraints. This work directly queries the image element and
the structural constraints (viewing them as semantic structures).

Figure 2 shows the results of our approach. At first, we combine the semantically
structured elements using their own contents. Then we further combine the logically
surrounding elements to estimate their probabilities. The MAP and precision@10 are
0.4079 and 0.4105 in the former and 0.4408 and 0.4158 in the latter. Compared with
the best official submission of the INEX 2005 multimedia track, the latter increases
by 58.62% (MAP) and 33.91% (precision@10).

 Combining Multiple Sources of Evidence in XML Multimedia Documents 719

Further combining the logically surrounding elements of each semantically struc-
tured element achieves 8.07% improvement. We perform experiments to study each
semantically structured element (as a query contains several structural constraints). The
elements are grouped according to their depth. The results show that combining sur-
rounding elements increases by 56.38% (MAP) and 31.86% (precision@10) for 2
depth elements, and 16.46% (MAP) and 30.73% (precision@10) for 3 depth elements.

The overall improvement of combining the logically surrounding elements is much
lower than improvement of each structured element. This is due to most (12 out of 19)
of the topics query for the document root element (/destination), which can not be im-
proved. For those not querying for root element, the overall improvement is 16.00%,
which increases 98.27% over that (8.07%) of all topics. Therefore, we can expect fur-
ther improvement in the overall performance as there are only 7 topics not querying
the document root element.

Figure 3 shows the results using different reference models in the smoothing. The
first uses the standard collection language model and the second uses our element-
based collection language model. The MAP of the former is 0.4184 and that of the lat-
ter is 0.4408. The latter increases 5.35% over the former.

As discussed above, most topics query for a document root element. In this situa-
tion, the element-based collection language model is the same as the standard collec-
tion language model. When restricted to topics not querying for a root element, the re-
sults show that the MAP of using element-based collection language model increases
by 16.10% over that of using standard collection language model. Therefore, we ex-
pect the element-based collection language model to lead to improved effectiveness.

5 Conclusions and Future Work

This work makes use of the combination of semantic structure and logical structure in
XML documents to represent and retrieve XML multimedia content. An inference
network incorporating element language models was developed. In addition, we used
an element-based collection language model. The experiments performed on the
INEX 2005 multimedia collection showed promising results. Future work needs to be
carried out into the use of the framework within a larger XML multimedia document
collection.

References

1. Croft , W. B. (2000). Combining approaches to information retrieval. In W. B. Croft, editor,
Advances in Information Retrieval, pages 1--36. Kluwer Academic Publishers.

2. Metzler, D. and Croft, W. B. (2004). Combining the language model and inference network
approaches to retrieval, IP&M, 40(5):735-750.

3. Turtle, H. and Croft, W. (1991). Evaluation of an inference network-based retrieval model.
ACM TOIS, 9(3):187–222.

4. van Zwol, R., Kazai, G, and Lalmas, M. (2006). INEX 2005 multimedia track. Advances in
XML Information Retrieval and Evaluation, INEX 2005 Workshop.

Language Model Based Query Classification

Andreas Merkel and Dietrich Klakow

Spoken Language Systems
Saarland University

D-66123 Saarbrücken, Germany

Abstract. In this paper we propose a new way of using language models
in query classification for question answering systems. We used a Bayes
classifier as classification paradigm. Experimental results show that our
approach outperforms current classification methods like Naive Bayes
and SVM.

1 Introduction

Unlike most current information retrieval systems, which just return documents
to keyword queries, a question answering (QA) system tries to return an accu-
rate answers to natural language questions. So, the step of retrieving relevant
documents is just a part of a complex QA system. In order to simply find the one
correct answer such a system has to ”understand” the meaning of a question. For
example, if the question is ”In what country is Luxor?”, the answer should be a
country name and not a date. That means the question has to be analyzed in a
separate step. There, the question is classified into several semantic categories.
This categorization not only helps to find and verify the answer by reducing
the search space but also may determine the search strategies for further QA
modules ([1]).

Normally, most QA systems just use no more than 20 coarse classes for classi-
fication, but in this paper we decided to use the taxonomy proposed by [1] which
takes 6 coarse and 50 fine grained classes into account We used the fine grained
classification in our experiments because they showed that they are more use-
ful to locate and verify answers. Based on this categorization we used a Bayes
classifier with language models as classification paradigm. We show that this
approach outperforms systems in current literature.

2 Methods

2.1 Language Models for Classification

Next we have to introduce a suitable classification framework. Ponte and Croft
suggested in [3] language models to information retrieval from text collections
and showed that they can outperform more traditional methods. We want to
propose to use this technique also in the classification of questions.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 720–723, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Language Model Based Query Classification 721

As already mentioned we used the Bayes classifier as categorization paradigm.
The Bayes classifier is defined by

ĉ = argmaxcP (Q|c)P (c) (1)

which provides minimum error rate if all probabilities are exactly known. Here,
P (Q|c) is the probability of a question Q and a given semantic class c. P (c) is
the prior for that class. The probability of P (Q|c) is a language models trained
on the class c. In case of unigram language models P (Q|c) is calculated as the
product of P (w|c) for all w in Q. The major advantage of the language modeling
(LM) approach is that a huge amount of techniques are available to estimate
and smooth probabilities even if there is just little training data available. On
average, there are only about 100 training questions per question type.

Unlike in previous work ([5]) we do not assume a uniform prior. P (c) can
be considered as a unigram language model on semantic classes. As all classes
are seen at least four times and therefore sufficiently often, there is no need for
smoothing at all and relative frequencies can be used to estimate the language
model.

Next we will describe how to estimate the probability P (w|c). It is essential
to avoid zero probabilities because that would exclude specific terms from the
classification. Hence language model smoothing methods come into play.

2.2 Absolute Discounting

Absolute discounting and its variants are the most popular smoothing techniques
in speech recognition. It is defined by

Pδ(w|c) =
max (N(w, c) − δ, 0)∑

w N(w, c)
+

δB∑
w N(w, c)

PBG(w|c) (2)

where N(w, c) is the frequency of observations of the term w together with
class c. PBG(w|c) is a background model used for smoothing, δ is the smoothing
parameter and B denotes how often N(w, c) is larger than δ.

2.3 Dirichlet Prior

Using a Dirichlet prior results in

Pμ(w|c) =
N(w, c) + μPBG(w|c)∑

w N(w, c) + μ
(3)

where μ is a smoothing parameter to be determined on the development data.

2.4 Linear Interpolation

Linear interpolation was first introduced by Jelinek and Mercer [2] and hence
some people refer to it also as Jelinek-Mercer smoothing. It is defined by

Pλ(w|c) = (1 − λ)
N(w, c)∑
w N(w, c)

+ λPBG(w|c) (4)

722 A. Merkel and D. Klakow

where N(w, c) are frequencies on the training data, λ is a smoothing parameter
to be tuned on the development data.

3 Experiments

3.1 Data

For classification we used 6 coarse and 50 fine grained classes as defined in [1]. So,
for example, the coarse class LOCATION contains the fine classes city, country,
mountain, other and state whereas HUMAN consists of group, individual, title
and description and so on. As training data for our experiments we used the
5,500 questions provided by the Cognitive Computing Group at University of
Illinois at Urbana Champaign1. For the evaluation task we used the TREC 10 2

dataset consisting of 500 questions. Both training and test sets are labeled with
the corresponding coarse and fine classes.

3.2 Results

As some examples for our experiments Fig. 1 shows the results for the classifica-
tion with linear interpolation and absolute discounting as smoothing methods.
The x-axis shows the interpolation weight and on the y-axis the accuracy is
printed.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ac
cu

ra
cy

lambda

Linear Interpolation

fine grained

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ac
cu

ra
cy

delta

Absolute Discounting

fine grained

Fig. 1. Accuracy vs. interpolation weight for linear interpolation (a) and absolute
discounting (b)

The plot on the left hand side (a) shows the linear interpolation smoothing
method. It has a maximum near λ = 0.2 and is relatively independent to the
interpolation weight. The graph on the right hand side shows the absolute dis-
counting method. In contrast to the linear interpolation it strongly depends on
the discounting parameter and has it maximum at δ = 1.

1 http://l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/
2 http://trec.nist.gov/

Language Model Based Query Classification 723

Table 1 compares results from [4] with the proposed LM approach for various
machine learning algorithms. They used two different feature sets (bag-of-words
and bigram features), so we always print the better result. Our LM approach uti-
lizes optimized bigram features. In particular, we used a log-linear interpolation
between a bigram and a unigram distribution.

Table 1. Comparison of various algorithms (Naive Bayes, ... SVM) investigated in [4]
with the proposed language model based approach, denoted by LM in the table

Algorithm Accuracy Error Rate

Naive Bayes 67.8% ±2.5%

Neural Network 68.8% ±2.5%

Decision Tree 77.0% ±2.1%

SVM 80.2% ±2.0%

LM 80.8% ±2.0%

The table shows that our approach is much better than Naive Bayes. This
difference is probably due to the used smoothing techniques. The SVM is the
best algorithm from [4] however it is outperformed by the LM approach by a
small margin. But in terms of error rate it is not significantly better than SVM.
The exact error rates are shown in the last column of the table.

4 Conclusion

In this paper we showed a language modeling approach for query classification
based on a Bayes classifier. We experimented with different smoothing methods
and various unigram and bigram models. As result we showed that our proposed
approach outperforms current categorization methods. So it is significantly bet-
ter than a classification with Decision Trees and as good as SVM.

References

1. Xin Li and Dan Roth. Learning Question Classifiers. In Proceedings of the 19th
International Conference on Computational Linguistics (2002).

2. Hermann Ney, Ute Essen and Reinhard Kneser On Structuring Probabilistic De-
pendencies in Stochastic Language Modeling. In Computer Speech and Language 8
(1994) 1-38.

3. Jay M. Ponte and Bruce Croft A Language Modeling Approach to Information
Retrieval. In Proceedings SIGIR (1998).

4. Dell Zhang and Wee Sun Lee Question Classification using Support Vector Ma-
chines. In Proceedings SIGIR (2003).

5. Chengxiang Zhai and John Lafferty A Study of Smoothing Methods for Language
Models Applied to Ad Hoc Information Retrieval. In Proceedings SIGIR (2001).

Integration of Text and Audio Features

for Genre Classification in Music Information
Retrieval

Robert Neumayer and Andreas Rauber

Vienna University of Technology
Institute for Software Technology and Interactive Systems

{neumayer,rauber}@ifs.tuwien.ac.at

Abstract. Multimedia content can be described in versatile ways as
its essence is not limited to one view. For music data these multiple
views could be a song’s audio features as well as its lyrics. Both of these
modalities have their advantages as text may be easier to search in and
could cover more of the ‘content semantics’ of a song, while omitting
other types of semantic categorisation. (Psycho)acoustic feature sets, on
the other hand, provide the means to identify tracks that ‘sound simi-
lar’ while less supporting other kinds of semantic categorisation. Those
discerning characteristics of different feature sets meet users’ differing
information needs. We will explain the nature of text and audio feature
sets which describe the same audio tracks. Moreover, we will propose
the use of textual data on top of low level audio features for music genre
classification. Further, we will show the impact of different combinations
of audio features and textual features based on content words.

1 Introduction

The large-scale adoption of new business models for digital audio material is hap-
pening already. What many content providers and online music vendors are still
missing are appropriate means of presenting their media to their users according
to different information needs. Amazon1 or last.fm2 have shown the potential of
recommendation engines based on the mining of transactional data.

It further is an intrinsic need for every Music Information Retrieval system to
include not only recommendation or playlist generation engines, but also possi-
bilities for searching and browsing. Music Information Retrieval has made huge
progress in terms of devising sophisticated descriptors for the acoustic content
of music. Research in this direction facilitates numerous content-based search
scenarios, such as query by humming, or organisation tasks, such as genre classi-
fication, playlist generation, and browsing access by perceived sound similarity.

Song lyrics cover semantic information about a song’s contents on a level
that could never be covered by audio features only. Many users may rather
1 http://www.amazon.com
2 http://www.last.fm

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 724–727, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integration of Text and Audio Features for Genre Classification 725

be interested in songs that cover similar topics than sound alike. Some musical
genres, such as e.g. Christmas candles, can only be detected by including textual
features, as they occur across many different musical genres and the definition
of the genre itself is rather done on a topic level.

We thus combine both textual as well as audio information for music genre
classification, i.e. automatically assigning musical genres to tracks based on audio
features as well as content words in song lyrics.

The remainder of this paper is organised as follows. Section 2 provides a brief
overview of related work. This is followed by a description of our classification
experiments in Section 3, as well as outlook on current work in Section 4.

2 Related Work

The area of Music Information Retrieval has been heavily researched, particu-
larly focusing on audio feature extraction. First experiments with content-based
Music Information Retrieval were reported in [1] as well as [6], the focus be-
ing on automatic genre classification of music. In this paper we use a modified
version of the Rhythm Patterns features, previously used within the SOMeJB
system [5]. Based on that feature set, [2] shows that the Statistical Spectrum
Descriptors yield relatively good results at a manageable dimensionality.

A sophisticated semantic and structural analysis including language identi-
fication of songs based on lyrics is conducted in [4]. Artist similarity based on
song lyrics is performed in [3], pointing out that similarity retrieval using lyrics
is inferior to acoustic similarity. It is also suggested that a combination of lyrics
and acoustic similarity could improve results, further motivating the research
reported in this paper.

3 Experiments

Due to the lack of public benchmark corpora, we created a parallel corpus of
audio and song lyrics files of a music collection of 9.758 titles organised into
41 genres. Class sizes ranged from only a few songs for the ‘Classical’ genre to
about 1.900 songs for ‘Punk Rock’. In order to utilise the information contained
in music for genre classification, we describe sets of audio features derived from
the waveform of audio tracks as well as the bag-of-word features for song lyrics.

3.1 Audio Features

Three features were computed from audio tracks in standard PCM format with
44.1 kHz sampling frequency (e.g. decoded MP3 files). Rythm Patterns (RP) [5],
also called Fluctuation Patterns, denote a matrix representation of fluctuations
on critical bands (parts of it describe rhythm in the narrow sense), resulting in a
1.440 dimensional feature space. Statistical Spectrum Descriptors (SSDs, 168 di-
mensions) are statistical moments derived from a psycho-acoustically transformed
spectrogram [2]. Rhythm Histograms (RH, 60 dimensions) are calculated as the
sums of the magnitudes of each modulation frequency bin of all 24 critical bands.

726 R. Neumayer and A. Rauber

Table 1. Classification accuracies for different types and combinations of audio features
and features based on lyrics. The experiments A1 - A3 denote audio-only, L1 - L4
lyrics-only, and C1 - C3 features combined from audio and lyrics feature sets. The
type column shows the types of feature sets used, dimensionality notes the resulting
dimensionality of the data.

Name Type Dimensionality Classification Accuracy
A1 RH. 60 .3100

A2 SSD. 168 .4168

A3 RP. 1440 .4128

L1 LYRICS 60 .2451

L2 LYRICS 168 .3204

L3 LYRICS 1440 .4445

L4 LYRICS 3000 .4708

C1 LYRICS + RH 120 .3268

C2 LYRICS + SSD 336 .4817

C3 LYRICS + RP 2880 .4841

3.2 Lyrics Features

For every piece of music, three lyrics portals were accessed, using artist name
and track title as queryies. If the results from lyrc.com.ar were of reasonable size,
these lyrics were assigned to the track. If lyrc.com.ar fails, sing365lyrics.com will
be checked for validity, then oldielyrics.com.

All lyrics were processed using the bag-of-words model and weighted by tfidf
information. Feature selection was done via document frequency thresholding,
i.e. the omittance of terms that occur in a very high or very low number of
documents. For the matrices used for the experiments terms occurring in more
than half of the documents were omitted, the lower threshold was then adjusted
to meet the desired dimensionality. Downscaling was performed to different di-
mensionalities matching the dimensionalities of the audio feature spaces.

3.3 Classification Results

Table 1 shows classification accuracies for a set of experiments based on audio
and lyrics features as well as combinations thereof. Experiments were performed
by Weka’s implementation of Support Vector Machines for ten-fold stratified
cross validation. Results shown are the macro averaged classification accuracies.

Results show that a combination of lyrics and audio features improves overall
classification performance. The best results were achieved by the ‘LYRICS +
RP’ setting (C3), closely followed by the ‘LYRICS + SSD’ experiment (C2).
The higher-dimensional the data for the lyrics experiments is, the higher is its
classification accuracy, implying that there is even more discriminating informa-
tion contained in lyrics (see experiments L1 - L4), which is not covered in this
context because of the limitations of the simple concatenation approach. For
combination experiments (C1 - C3) we use balanced combinations of features,

Integration of Text and Audio Features for Genre Classification 727

i.e. the dimensionality of the lyrics component always equals the dimensionality
of the audio feature component.

For statistical significance testing we used a paired T-test for a significance
level of α = .05. Results showed that A2 performs better than A1 (p = .0143),
but there is no significant difference between A2 and A3 (p = .9353). Further,
it is shown that C3 performed better than both A2 (p = .1934) and L3 (p =
.0129). However, the results are not significantly different from experiment L4
(p = .1755), leading to the conclusion that high-dimensional lyrics data only is a
strong basis for a classifier. Hence a classifier based on differing numbers of lyrics
than audio features, e.g. more dimensions in the lyrics than in the audio space,
might further improve classification accuracy. Yet, by combining lyrics and audio
(C2) the same performance was achieved at a fraction of the dimensionality.

4 Conclusions and Future Work

We showed that the combination of multi-modal features for information re-
trieval increases classification accuracy. Future work will deal with better means
of combining classification results. Ensemble methods might prove useful, over-
coming the limitation of implicit feature weighting encountered in the current
setting. Additionally, stylistic features for text genre classification are currently
being integrated.

References

1. Jonathan Foote. An overview of audio information retrieval. Multimedia Systems,
7(1):2–10, 1999.

2. Thomas Lidy and Andreas Rauber. Evaluation of feature extractors and psycho-
acoustic transformations for music genre classification. In Proceedings of the Sixth
International Conference on Music Information Retrieval (ISMIR 2005), pages 34–
41, London, UK, September 11-15 2005.

3. Beth Logan, Andrew Kositsky, and Pedro Moreno. Semantic analysis of song lyrics.
In Proceedings of the 2004 IEEE International Conference on Multimedia and Expo,
ICME 2004, 27-30 June 2004, Taipei, Taiwan. IEEE, 2004.

4. Jose P. G. Mahedero, Álvaro Mart́ınez, Pedro Cano, Markus Koppenberger, and
Fabien Gouyon. Natural language processing of lyrics. In MULTIMEDIA ’05:
Proceedings of the 13th annual ACM international conference on Multimedia, pages
475–478, New York, NY, USA, 2005. ACM Press.

5. Andreas Rauber, Elias Pampalk, and Dieter Merkl. Using psycho-acoustic models
and self-organizing maps to create a hierarchical structuring of music by musical
styles. In Proceedings of the 3rd International Symposium on Music Information
Retrieval, pages 71–80, Paris, France, October 13-17 2002.

6. George Tzanetakis and Perry Cook. Marsyas: A framework for audio analysis.
Organized Sound, 4(30), 2000.

Retrieval Method for Video Content in Different

Format Based on Spatiotemporal Features

Xuefeng Pan1,2, Jintao Li1, Yongdong Zhang1, Sheng Tang1, and Juan Cao1,2

1 Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100080, China

{xfpan,jtli,zhyd,ts,caojuan}@ict.ac.cn
2 Graduate School of Chinese Academy of Sciences,

Beijing 100080, China

Abstract. In this paper a robust video content retrieval method based
on spatiotemporal features is proposed. To date, most video retrieval
methods are using the character of video key frames. This kind of frame
based methods is not robust enough for different video format. With
our method, the temporal variation of visual information is presented
using spatiotemporal slice. Then the DCT is used to extract feature of
slice. With this kind of feature, a robust video content retrieval algorithm
is developed. The experiment results show that the proposed feature is
robust for variant video format.

1 Introduction

With the advances in multimedia and Internet applications, techniques for video
retrieval are in increasing demand. The existing approaches in clip-based re-
trieval with visual cues are mainly based on image retrieval techniques. The
most common of these are (1) to use color histogram of key frames (2) to match
key frames using color, texture combined with motion information and (3) to
use correlation between frames using ordinal measure [1]. As pointed out in [2],
ordinal measures based techniques give better performance in comparing with
color or motion based methods. But the number of partitions is critical when
there existing display format changed contents [3].

It is known that two video clips with same content but compressed in different
formats may have distinct color or texture characteristics. The color or texture
based features used in image matching are no longer fit for retrieval the same
video content in different format. Due to this consideration, we present a retrieval
method based on spatiotemporal slice for matching video clips with same content
but in different format in this paper. A spatiotemporal slice is a collection of scans
in the same position of every frame which indicates the coherency of the video
[5]. Ngo used the color and texture of spatiotemporal slice for video clustering
and retrieval in [4]. But the retrieval for video content in different format was
not discussed in Ngo’s paper. In this paper, we will develop a method using the
low-frequency AC DCT coefficients of spatiotemporal slice blocks to match video
clips with the same content but compressed in different formats.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 728–731, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Retrieval Method for Video Content in Different Format 729

2 Clips Retrieval

The horizontal slice which is the collection of scans at the middle row of every
frame is used in our method. The slice is converted into gray image and the height
of slice is resized to N×N . Then the resized gray slice is segmented into N blocks.
By analyzing these blocks with discrete cosine transform (DCT), the variation
information of video clip is generated. A sample of grayed slice and blocks are
shown in Figure 1. In this way we can transform clip retrieval problem into block

Fig. 1. Grayed slice and blocks from a video clip (n=32)

sequence matching problem. Because most energy of DCT is compacted on low-
frequency AC DCT coefficients, the first P low-frequency AC DCT coefficients of
each block are gathered to form a feature vector for the blocks and video content.
Let CQ = (Q1, Q2, · · · , Qm) and CT = (T1, T2, · · · , Tn)(m ≤ n) denote feature
vector group of the query clip Q and the target clip T . Qi =< Qi[0], ..., Qi[P −
1] >denotes the feature vector of the ith block. We use Video Feature Vector
Similarity (V FV S) to locate Q in T . The matching process is as the following
steps.

(1) Shift CQ along CT from the beginning of CT . Let Ci
T = (Yi, Yi+1, ···, Yi+m−1)

denote some part of CT that has the same block number as CQ starting at block
i(i ≤ n − m + 1).
(2) Compute the V FV S between CQ and Ci

T using:

V FV S(Ci
T , CQ) = 1 −

∑L
i=1 d(Ci

T , CQ)∑L
i=1 (abs(Ci

T) + abs(CQ))
(1)

Where d(·) is the distance metric defined on feature vector (here L1 distance
is applied), and abs(·) is the sum of the absolute value of elements of feature
vector.
(3) The local maximums of the V FV S(CQ, Ci

T)(i = 0, · · · , n − m + 1) values
which above a certain threshold are taken as matches.

3 Experiments and Discussion

In this part we present the effectiveness of the proposed algorithm with experi-
mental results.

730 X. Pan et al.

Firstly, a 30 minutes MPEG-1 video is divided into 24 equal clips and the
boundaries of each query clip are the multiple of block size N . Then each clip
is taken as query clip Q. The algorithm proposed in section 2 is used to locate
Q in original video T . In the experiments, all clips are correctly located. The
similarity between Q and sub sequences of T is presented in Table 1.

Table 1. Query clips locating with aligned block boundary

Similarity Mean Stdev.

Ssame 1.0 0.0
Sdiff 0.232157 0.041292

Note: Ssame: similarity between the query clips and the located clips having the
same content; Sdiff : similarity between the query clips and other clips having
different content; Mean is the average value of the similarity; Standard Deviation.
Stdev. is the standard deviation of the similarity.

Table 2. Query clips locating with unaligned block boundary

Similarity Mean Stdev.

Ssimi 0.573746 0.169228
Sdiff 0.226036 0.033999

Note: Ssimi: the larger one of similarity value between the query clips and clips
start at frame 32m and 32(m+1); Sdiff : similarity between the query clips and
other clips.

Because the feature used in this paper is slice block based, in practice, the
block boundaries of query clips may not aligned with the block boundaries of
target video. In experiments, the block size is set as N = 32. We chose the sub
sequences of target clip T starting at frame 32m + i, (i = 0, 1, 2,...,31)as query
clips Q. So the block boundary of query clips Q and target clip T are not aligned.
The similarity between Q and sub sequences of T is presented in Table 2. Further
more, the minimum of Ssame is 0.40695. This is larger than Mean+4×Stdev of
Sdiff in Table 1. The similarity between Q and sub sequences of T is assumed to
obey Gaussian distribution. According to the properties of Gaussian distribution,
the proposed method can tell the same content as Q from the different content
of Q with the probability larger than 0.9999. Four query clips Q are transcoded
into 3 different formats. The average similarity between Q and reformatted clips
Q′ are presented in Table 3. The threshold of similarity for clip matching is set
at 0.4 to locate the position of query clip Q in target clip T . In experiment we
locate all the 12 reformatted clips in T with no false positive.

Retrieval Method for Video Content in Different Format 731

Table 3. Similarity between original clips and reformatted clips

Reformatted clip Similarity

352 × 288 in AVI 0.88623
320 × 180 in AVI 0.87302

320 × 180 in MPEG1 0.90397

4 Conclusion and Future Work

A robust video content retrieval method is proposed in this paper. The proposed
method adopts a novel feature extraction scheme for video content representa-
tion. It differs from most existing video retrieval methods in that it is no longer
using the character of every single frame. The spatiotemporal features extracted
with slice DCT are sensitive to clip content variation and robust to video for-
mat changing. With this kind of feature, we develop a robust video clip retrieval
algorithm. The experiment results show that the proposed feature is robust for
variant video format.

There are still things to do with our method. For example, the feature can be
more compact, the feature vector matching method can be more efficient. The
next target is to revise the method in this paper for large scale video data.

Acknowledgements. This work is supported by the Key Project of Beijing
Natural Science Foundation (4051004), and Beijing Science and Technology
Planning Program of China (D0106008040291, Z0004024040231).

References

1. Xian-Sheng Hua, Xian Chen, Hong-Jiung Zhnng: Robust Video Signature Based
on Ordinal Measure, International Conference on Image Processing (2004).
Page(s):685-688

2. Arun Hampapur, Ki-Ho Hyun, Ruud Bolle: Comparison of Sequence Matching Tech-
niques for Video Copy Detection. Proc. Storage and Retrieval for Media Databases,
Jan. 2002, Page(s): 194-201

3. Changick Kim, Bhaskaran Vasudev: Spatiotemporal Sequence Matching for Effi-
cient Video Copy Detection, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 15, No. 1, January 2005, Page(s):127-132

4. Chong-Wah Ngo, Ting-Chuen Pong, Hong-Jiang Zhang: On Clustering and Retrieval
of Video Shots through Temporal Slices Analysis, IEEE Transactions on Multimedia,
Vol. 4, No. 4, December 2002, Page(s):446-458

5. Peng. S. L, Medioni. G, Interpretation of image sequences by spatio-temporal
analysis, Workshop on Visual Motion, March 1989. Page(s):344-351

Combination of Document Priors in Web

Information Retrieval

Jie Peng and Iadh Ounis

Department of Computing Science, University of Glasgow, United Kingdom
{pj, ounis}@dcs.gla.ac.uk

Abstract. Query independent features (also called document priors),
such as the number of incoming links to a document, its PageRank, or the
length of its associated URL, have been explored to boost the retrieval ef-
fectiveness of Web Information Retrieval (IR) systems. The combination
of such query independent features could further enhance the retrieval
performance. However, most current combination approaches are based
on heuristics, which ignore the possible dependence between the docu-
ment priors. In this paper, we present a novel and robust method for
combining document priors in a principled way. We use a conditional
probability rule, which is derived from Kolmogorov’s axioms. In partic-
ular, we investigate the retrieval performance attainable by our combi-
nation of priors method, in comparison to the use of single priors and a
heuristic prior combination method. Furthermore, we examine when and
how document priors should be combined.

1 Introduction

In Information Retrieval (IR), a document can have query-dependent and query-
independent features. Query-dependent features relate to the characteristics of
the document, which are specific to the queries and cannot be used before we
receive the queries (e.g. the relevance of the document content to a given query).
Query-independent features, also referred to as document priors, are features
that do not depend on the queries. These document priors can be used to en-
hance the retrieval performance of a Web IR system, regardless of the query. For
example, the number of incoming links to a document (Inlinks), its PageRank,
or the length of its associated URL have been shown to be useful in some Web
search tasks, such as the Homepage finding and Named Page finding tasks [2] [3].

The language modelling approach to IR provides an elegant framework to inte-
grate single document priors into the retrieval process [3]. However, it is not clear
how several document priors should be combined in a principled way. Indeed,
most previous work considered either combining document prior probabilities in
a heuristic way, usually assuming that document priors are independent from
each other [3], or handtuning a linear combination of the priors [4]. Indeed, doc-
uments with a high PageRank score usually have a high number of incoming
links, suggesting that the PageRank and Inlinks priors are often correlated. In
addition, handtuning a linear combination of prior scores is heuristic, and not

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 732–736, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combination of Document Priors in Web Information Retrieval 733

very practical in a realistic setting, where relevance judgements are not always
available. In this paper, we present a novel and robust method for combining doc-
ument priors in a principled way. We use a conditional probability rule, which
is derived from Kolmogorov’s axioms. The objective of the paper is two-fold:
Firstly, we examine how effective our proposed method for the combination of
priors is compared with the usually adopted heuristic approach. Secondly, we in-
vestigate whether the combination of document priors leads to a better retrieval
performance compared to a baseline with and without the use of single priors.
In particular, we examine when document priors should be combined.

2 Use of Single Priors in Language Modelling

In language modelling, the probability P (D|Q) of a document D being generated
by a query Q is estimated as follows [1]:

P (D|Q) =
P (D) · P (Q|D)

P (Q)
(1)

P (D) is a document prior probability. P (Q) can be ignored since it does not
depend on the documents and, therefore, does not affect the ranking of docu-
ments. P (Q|D) is given by [1]: P (Q|D) =

∑n
i=1 log(1 + λ·tf(ti,d)(

∑
t cf(t))

(1−λ)cf(ti)(
∑

t tf(t,d))),
where λ is a constant given between 0 and 1. n is the number of query terms.
tf(ti, d) is the term frequency of query term ti in a document d;

∑
t tf(t, d) is

the length of document d, i.e. the number of tokens in the document; cf(ti) is
the term frequency of query term ti in the collection, and

∑
t cf(t) is the total

number of tokens in the collection.
In the above language modelling approach, the document prior P (D) usually

refers to a single document prior probability. This prior can be omitted from
Equation (1), if all documents have a uniform prior. However, it is possible to
consider multiple priors for each given document. In this case, it is important
to combine the document prior probabilities in a principled way, taking into
account the possible dependence between the considered document priors. In the
next section, we propose a novel method for appropriately combining document
priors.

3 Combination of Multiple Document Priors

For combining document priors, most of the current approaches either assume
that the document priors are independent [3], or handtune a linear combination
of the priors [4]. In the case the priors are assumed to be independent, the
following formula is often used to combine two document priors p1 and p2:

P (D)p1⊕p2 = P (D)p1 · P (D)p2 (2)

where P (D)p1 is the document prior probability related to prior p1; P (D)p2 is
the document prior probability related to prior p2; P (D)p1⊕p2 is the document
prior probability referring to the combination of both priors p1 and p2.

734 J. Peng and I. Ounis

However, as mentioned in Section 1, the document priors are not necessarily
independent. Therefore, we propose a different approach for combining the prior
probabilities. We use a conditional probability rule that is based on Kolmogorov’s
axioms, given as follows:

P (D)p1⊕p2 = P (P (D)p2 |P (D)p1) · P (D)p1 (3)

where P (D)p1 is the document prior probability related to prior p1, called the
base prior probability; P (P (D)p2 |P (D)p1) is the conditional probability related
to prior p2, given the prior p1; P (D)p1⊕p2 is the joint probability of both priors
p1 and p2 occurring.

Note that the above conditional probability rule can be easily extended to
more than two priors. P (P (D)p2 |P (D)p1) can be estimated from a set of rele-
vance judgements as follows: Firstly, we divide the prior probability P (D)p1 into
several equal size bins on a logscale. Secondly, inside each bin, we divide the
prior probability P (D)p2 into several equal size subset bins, again on a logscale.
Finally, the conditional probability of P (P (D)p2 |P (D)p1) in each subset bin is
the number of target documents divided by the number of documents in that
subset bin.

4 Experiments and Analysis

In this paper, we consider four well-established document priors, namely
Page-Rank (PR), information-to-noise ratio (ITN) [5], document length (DL),
and the document URL score [3]. We use the standard .GOV Web test collection,
and its corresponding TREC 2003 and TREC 2004 Homepage and Named Page
finding topic and relevance assessment sets. The official evaluation measure for
both tasks is the Mean Reciprocal Rank (MRR).

Firstly, we assess the performance of each of the four single priors (see Table 1).
Our baseline (BL) is a language modelling approach, where all documents have
a uniform prior probability. From Table 1, we can see that, in general, the single
document priors can improve the retrieval performance on the used tasks. The
only exception is the ITN prior, which leads to a degradation of the retrieval
performance in most cases.

Secondly, we investigate the combination of every pair of priors using our
proposed combination approach, and compare it to the performance of the cor-
responding single priors. Note that the used base prior probability is important
in Equation (3). From Table 1, we observe that several combinations of docu-
ment priors lead to an enhanced MRR score, when we use an effective document
prior as base. In particular, combining the best single priors usually leads to an
enhanced retrieval performance, compared to their single use.

Finally, we compare our proposed method to a heuristic combination ap-
proach, where the priors are assumed to be independent. From Table 1, we
observe that our combination way generally outperforms the heuristic method,

Combination of Document Priors in Web Information Retrieval 735

Table 1. MRR for the Named Page and Homepage tasks. We use λ = 0.9 in all
experiments. The best retrieval performance is highlighted in bold, and the base prior
probabilities are highlighted in italic. Runs statistically different from the best run
(Wilcoxon Matched-Pairs Signed-Ranks Test, p < 0.05) are underlined. Note that for
lack of space, only the most commonly used priors for each task are combined.

Named Page Finding Homepage Finding

MRR MRR

TREC 2003 TREC 2004 TREC 2003 TREC 2004

BL 0.4366 0.3533 BL 0.2363 0.1200
BL+PR 0.4539 0.3588 BL+PR 0.4339 0.3558
BL+DL 0.4546 0.4116 BL+URL 0.4738 0.3976
BL+ITN 0.4186 0.3583 BL+ITN 0.1980 0.0980

Our Proposed Method

BL+PR+DL 0.3730 0.3117 BL+PR+URL 0.5247 0.4062
BL+DL+PR 0.4732 0.4365 BL+URL+PR 0.5424 0.4446
BL+PR+ITN 0.3755 0.3098 BL+PR+ITN 0.4059 0.3385
BL+ITN+PR 0.4894 0.4021 BL+ITN+PR 0.3889 0.3696
BL+DL+ITN 0.4787 0.4130 BL+URL+ITN 0.4729 0.4133
BL+ITN+DL 0.4377 0.3495 BL+ITN+URL 0.4615 0.3508

Priors Independence Assumption Method

BL+PR +DL 0.4674 0.4065 BL+PR+URL 0.5409 0.4110
BL+PR+ITN 0.4815 0.3867 BL+PR+ITN 0.3526 0.3166
BL+DL+ITN 0.4232 0.3704 BL+URL+ITN 0.4551 0.3470

when the best of the two combined document priors is used as the base prior.
The only exception is related to the ITN prior, when it is used as a base prior
to combine with the PageRank or URL prior. This combination seems to work
very well. Further investigation is required to understand the behaviour of ITN.
Overall, our proposed technique can always outperform the heuristic method.

The above results are consistent across both used retrieval tasks. In addition,
we observe that, excepting for the TREC 2003 Named Page finding task, using
the two best single priors leads to the best overall MRR performance.

5 Conclusion

We have investigated the retrieval performance attainable with query-independent
features, in the form of document prior probabilities on twoWeb search tasks, using
a standard Web test collection. We showed that our proposed conditional combi-
nation method increases the retrieval performance over the respective single pri-
ors, when we use the two best-performing single priors. In addition, we observed
that our technique can always outperform a heuristic method, which assumes the
independence of priors.

736 J. Peng and I. Ounis

References

1. Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis. (2001)
2. Kamps, J., Mishne, G., de Rijke, M.: Language Models for Searching in Web Cor-

pora. In Proc. of TREC 2004, Gaithersburg, MD, (2004)
3. Kraaij, W., Westerveld,T., Hiemstra, D.: The Importance of Prior Probabilities for

Entry Page Search. In Proc. of SIGIR 2002, Finland, (2002)
4. Metzler, D., Strohman, T., Zhou, Y., Croft, W.B.: Indri at TREC 2005: Terabyte

Track. In Proc. of TREC 2005, Gaithersburg, MD, (2005)
5. Zhu X.L., Gauch, S.: Incorporating Quality Metrics in Centralized / Distributed

Information Retrieval on the WWW. In Proc. of SIGIR 2000, Athens, (2000)

Enhancing Expert Search Through
Query Modeling

Pavel Serdyukov1, Sergey Chernov2, and Wolfgang Nejdl2

1 Database Group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
2 L3S / University of Hannover, Appelstr. 9a D-30167 Hannover, Germany
serdyukovpv@cs.utwente.nl, {chernov, nejdl}@l3s.de

Abstract. An expert finding is a very common task among enterprise search
activities, while its usual retrieval performance is far from the quality of the Web
search. Query modeling helps to improve traditional document retrieval, so we
propose to apply it in a new setting. We adopt a general framework of language
modeling for expert finding. We show how expert language models can be used
for advanced query modeling. A preliminary experimental evaluation on TREC
Enterprise Track 2006 collection shows that our method improves the retrieval
precision on the expert finding task.

1 The Expert Finding Task

New challenges for the information retrieval research community are posed by the
emerging field of Enterprise Search [2]. The diversity of complex information needs
within a typical enterprise together with heterogeneity of Intranet data make it difficult
to improve the quality of search in general. Instead, researchers concentrate on sev-
eral important search tasks. One important example of such a task is finding a relevant
expert within an organization. This problem implies that user needs to find the most
knowledgeable expert to answer her query personally. User submits several keywords
to a local Intranet search engine and receives a set of experts, ranked by their likelihood
to be an expert for the query. The current developments in expert search are driven by
the Expert Finding task within the TREC 2006 Enterprise Track initiative 1. So far, one
of the most comprehensive descriptions of the problem and possible solutions using
language modeling approach is presented in [1]. We also adopt a theoretically-sound
language modeling method, while using different techniques for the model estimation
and ranking.

Numerous ad-hoc query expansion and language model based query modeling meth-
ods operate on the top-k ranked documents. At the same time, nobody applied these
methods in the scope of expert finding task, what appears to be an omission in our
opinion. Our algorithm allows performing a query modeling which consists of pseudo-
relevance feedback and query expansion. To the best of our knowledge, this is the first
study of query modeling applied to the expert search task. The preliminary evalua-
tion on the official TREC Enterprise Track 2006 test collection shows that our method
improves the retrieval performance.

1 http://www.ins.cwi.nl/projects/trec-ent/wiki/index.php

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 737–740, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.ins.cwi.nl/projects/trec-ent/wiki/index.php

738 P. Serdyukov, S. Chernov, and W. Nejdl

2 Expert Finding as a 2-Step Process

A comprehensive description of a language modeling approach to expert finding task is
presented in [1]. We adopt the notation from this work and omit some details of model
estimation; an interested reader can refer to the original paper. The Step-1 of our expert
finding method is similar to Model 1 approach from [1], while The Step-2 contains the
actual refinement and is essentially the core of our proposal.

2.1 Step 1: Using Language Model for Expert Ranking

The basic idea of language modeling is to estimate a language model for each expert,
and then to rank experts by cross-entropy of estimated query model w.r.t. expert lan-
guage model [3]. In our setup, each document d in the collection is associated with a
candidate ca, the association is defined as a(d, ca). Expert finding problem according
to a probability ranking principle in IR is rephrased as: “What is the probability of a
candidate ca to be an expert given the query q?” Each candidate ca is represented by
a multinomial probability distribution p(t|ca) over a term vocabulary. Expert language
model θca is computed as the maximum likelihood estimate of a term generation proba-
bility, smoothed by the background language model. The query q is also represented by
the probability distribution p(t|q), and a query language model is denoted as θq . So, the
system output should contain the ranking of candidates in descending order of cross-
entropy between language models θq and θca. A cross-entropy of query w.r.t. expert
models is computed as shown in Eq.1:

ExpertScoreca(q) = −
∑
t∈q

p(t|θq) log p(t|θca) (1)

The top-k experts with the highest scores are returned to the system (not to the user)
as a result of a Step 1, where k is set empirically. So far we described the state-of-art
approach, while Step 2 contains our enhancement for the expert search.

2.2 Step 2: Expert Ranking Refinement Using Query Modeling

In order to model a user query more precisely we need a source of additional knowl-
edge about her information need. Traditionally, top-k documents for the query served
in IR as such a source and were used to build an expanded and detailed query model.
Expert search is a task which differs noticeably from a standard document retrieval.
Users search not for the specific pieces of information, but for people who are actually
generators and/or collectors of the information. It means that despite the query can be
very specific, the experts in this topic can have an expertise in related topics too. More-
over, the broader their expertise, the higher are chances that they can consult on a more
specific question. Therefore, we need to utilize two evidences about user information
need in the context of expert finding task:

1. The top-k documents retrieved from the whole collection (using classic LM
approach to document retrieval)

2. The top-k persons which we could consider relevant experts (retrieved on a Step 1).

Enhancing Expert Search Through Query Modeling 739

The first source enriches our knowledge about the initial user information need.
Whereas second one makes it less specific and relaxes a query towards a broader topic.
So, as a new query model we use a mixture of two query models: document-based
(DocumentBasedNewθq) built on top-k documents and expert-based (ExpertBased
Newθq) built on top-k experts:

p(t|Newθq) = λp(t|DocumentBasedNewθq) + (1 − λ)p(t|ExpertBasedNewθq)
(2)

For the both query models estimation, instead of the methods proposed in [1], we
use a principled and theoretically-sound method by Zhai and Lafferty from [3], which
in our previous experiments for distributed IR outperformed other similar algorithms.

Once it is computed, we mix the new query model with an initial query to prevent a
topic drift. As a result, we build a new expert ranking using expanded query and term
generation probabilities. In Eq.3 we again measure a cross-entropy, but using a new
query model:

NewExpertScoreca(q) = −
∑
t∈q

p(t|Newθq) log p(t|θca) (3)

3 Preliminary Results and Discussion

In our experiments we used the W3C collection, provided by the TREC 2006 Enterprise
Track, and the Lucene2 open source information retrieval library. We indexed the mail-
ing lists of W3C dataset3 and searched for the Title query part of the official topics of the
Expert Finding task 2006. The comparison between precision at first 10 results (P@10)
of baseline method (Step 1 only) and our method (Step 1 and Step 2) is presented on
the Fig. 1 and Fig. 2.

Performance comparison between the baseline language modeling

mehtod and query modeling approach

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
Queries

P
re

c
is

io
n

 a
t

1
0

 (
P

@
1

0
)

Baseline
Query Modeling

Fig. 1. Performance of the baseline language modeling ranking and query modeling approach

2 http://lucene.apache.org/
3 For a rapid experimental setup we used only the mailing list part, while we are planning to

evaluate our method on the whole collection later.

http://lucene.apache.org/

740 P. Serdyukov, S. Chernov, and W. Nejdl

Performance comparison between the baseline language modeling
mehtod and query modeling approach

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Queries

P
re

c
is

io
n

 a
t

1
0
 (

P
@

1
0
)

Query Modeling w.r.t. baseline

Fig. 2. Difference in performance of the baseline language modeling ranking and query modeling
approach

We observe that the improvement of our method is promising, while not significant
in the current experiment. Our method is effective when an average precision is high
already at the step 1, and fails where average precision is below median. This is ex-
plainable since our method uses best top-k experts and documents from the Step 1 for
the following query modeling. If the initial ranking is poor, the query modeling is poor
too. But the precision for the best queries was improved by 10-20%, so this method is
suitable to apply on top of already effective retrieval systems. It appears that a predic-
tion of query performance could be crucial for a query modeling. The further study of
the expert-search-specific query modeling and predicting of a query performance is the
main focus of our future research.

References

1. K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding in enterprise
corpora. In SIGIR ’06: Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. Seattle, USA, pages 43–50. ACM
Press, 2006.

2. D. Hawking. Challenges in enterprise search. In Proceedings of the Australasian Database
Conference ADC2004, pages 15–26, Dunedin, New Zealand, 2004.

3. C. Zhai and J. D. Lafferty. Model-based feedback in the language modeling approach to infor-
mation retrieval. In CIKM’01: Proceedings of the 2001 ACM CIKM International Conference
on Information and Knowledge Management, Atlanta, Georgia, USA, November 5-10, 2001,
pages 403–410, 2001.

A Hierarchical Consensus Architecture

for Robust Document Clustering

Xavier Sevillano, Germán Cobo, Francesc Aĺıas, and Joan Claudi Socoró

Department of Communications and Signal Theory
Enginyeria i Arquitectura La Salle. Ramon Llull University. Barcelona (Spain)

{xavis,gcobo,falias,jclaudi}@salle.url.edu

Abstract. A major problem encountered by text clustering practition-
ers is the difficulty of determining a priori which is the optimal text
representation and clustering technique for a given clustering problem.
As a step towards building robust document partitioning systems, we
present a strategy based on a hierarchical consensus clustering architec-
ture that operates on a wide diversity of document representations and
partitions. The conducted experiments show that the proposed method
is capable of yielding a consensus clustering that is comparable to the
best individual clustering available even in the presence of a large num-
ber of poor individual labelings, outperforming classic non-hierarchical
consensus approaches in terms of performance and computational cost.

1 Introduction

The low availability of labeled document collections has made document cluster-
ing techniques become a necessary tool to organize unlabeled corpora according
to their thematic contents. However, finding a thematically meaningful partition
of an unlabeled document collection is not a straightforward task. This is mainly
due to the difficulty of blindly choosing the optimal document representation and
clustering method that, for a given a clustering problem, ensure the best match
between the true labeling of the documents and the partitioning results.

That is, the performance of document clustering systems requires finding
representations of documents that reflect their contents to a maximum extent.
Unfortunately, it is difficult to determine a priori the optimal type of represen-
tation and its dimensionality given a particular document clustering problem.
We call this situation the data representation dependence effect. Moreover, the
application of different clustering methods on the same data often yields different
partitions. This gives rise to what we call the algorithm dependence effect.

Due to both effects, obtaining the optimal partition of an unlabeled corpus
on a single run of a clustering algorithm fed by a specific text representation is a
rather challenging aim. Allowing for these circumstances, in this work we define
a generic framework for deriving a robust partition of a document collection
by building a cluster ensemble upon a wide range of text representations and
partitions, following a hierarchical consensus strategy. This proposal is a step
towards setting text clustering practitioners free from the obligation of blindly
choosing a single document representation and clustering technique.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 741–744, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

742 X. Sevillano et al.

2 Hierarchical Consensus Clustering Architecture

The hierarchical consensus clustering architecture is a modular and flexible pro-
posal that allows to obtain a robust partition of the document collection subject
to clustering. In this paper, it is assumed that the only knowledge available is
the number of clusters we want to group the documents in (i.e. the expected
number of thematic categories). Figure 1 depicts the specific implementation of
the hierarchical consensus clustering architecture employed in this work.

X

LSA

[Dmin…Dmax]

LSA
D

min

LSA
D

max

KM

j = 1…N
runs

KM

j = 1…N
runs

LSA
D

min

consensus

LSA

consensus

Final

consensus

F

’LSAD
min

LSA
D

max

consensus

ICA

[Dmin…Dmax]

ICA
D

min

ICA
D

max

KM

j = 1…N
runs

KM

j = 1…N
runs

ICA

consensus

ICA
D

min

consensus

ICA
D

max

consensus

NMF

[Dmin…Dmax]

NMF
D

min

NMF
D

max

KM

j = 1…N
runs

KM

j = 1…N
runs

NMF

consensus

NMF
D

min

consensus

NMF
D

max

consensus

…

KM

j = 1…N
runs 1

N
runs

…

…
…

… …

…
…

…

… …

…
…

…

… …

…
…

…

1

N
runs

1

N
runs

1

N
runs

1

N
runs

1

N
runs

1

N
runs

’LSAD
max

’ICAD
min

’ICAD
max

’NMFD
min

’NMFD
max

’’
LSA

’
terms

’’
ICA

’’
NMF

Terms

consensus

Fig. 1. Hierarchical consensus clustering architecture using k-means (KM) clustering
and document representations based on terms, LSA, ICA and NMF

In this paper, the document corpus is initially represented in a term-based
vector space (term-by-document matrix X), using the tfidf weighting scheme
[4]. However, it is a commonplace that the efficiency of clustering systems can
be improved by the use of document representations based on feature extraction
techniques [5]. Therefore, alternative document representations are derived by
applying Latent Semantic Analysis (LSA) [1], Independent Component Analysis
(ICA) [2] and Non-negative Matrix Factorization (NMF) [3], with dimensional-
ities D ranging from Dmin to Dmax. The interval [Dmin, Dmax] should be wide
enough so that the optimal dimensionality of each representation is included in
it, but need not be equal for all the representations.

Subsequently, diverse partitions are created by running the k-means (KM) al-
gorithm Nruns times with random centroid initialization on each distinct repre-
sentation1, yielding what we call individual clusterings, denoted as λ1, . . . , λNruns

1 A more generic strategy for introducing algorithm diversity at this stage would
consist in applying distinct clustering algorithms on the same data.

A Hierarchical Consensus Architecture for Robust Document Clustering 743

in figure 1. These clusterings form a cluster ensemble which is fed into a first
consensus stage, which possibly allows us to overcome the algorithm dependence
effect. As a result, a consensus labeling for each distinct document representation
is obtained (e.g. for LSA, {λ′

LSA
Dmin

, . . . , λ′
LSADmax }, or λ′

terms for terms).
Next, the labelings corresponding to each feature extraction based document

representation method are fed into a second consensus stage, which yields a
single labeling per representation scheme (i.e. λ′′

LSA, λ′′
ICA and λ′′

NMF in figure 1).
Finally, these labelings (together with λ′

terms) are used for building the final
consensus clustering λF. Hopefully, λF will be very similar to the best individual
clustering available, thus overcoming the data representation dependence effect.

3 Experiments and Discussion

Experiments have been conducted on the miniNewsgroups corpus, a subset of
the 20 Newsgroups document collection that contains 100 documents from each
newsgroup. More specifically, six categories of the miniNewsgroups corpus have
been used in the following experiments (comp.graphics, rec.autos, sci.crypt,
misc.forsale, talk.politics.misc and talk.religion.misc).

In order to build the consensus clusterings, we have compared the following
consensus functions: Cluster-Similarity Partitioning Algorithm (CSPA), Hyper-
Graph Partitioning Algorithm (HGPA) and Meta-Clustering Algorithm (MCLA)
[6]. The tunable parameters of the hierarchical architecture depicted in figure 1
have been set to Dmin = 2, Dmax = 50 and Nruns = 30, hence giving rise to a
total of 4440 individual clusterings. Clustering results are evaluated in terms of
the F1 measure [4] with respect the true category membership of each document.

Figure 2a presents the F1 measure of the individual and consensus clusterings
at the first stage of the hierarchy on a particular case (LSA with D = 20). It
can be observed that fairly diverse F1 measure values are achieved across the 30
KM algorithm runs, which somehow emulates the algorithm dependence effect.
However, the MCLA and CSPA consensus functions are capable of keeping close
to the best individual clusterings, while HGPA does not.

In figure 2b, the results of building a LSA consensus clustering on the labelings
output by the previous consensus stage are presented, illustrating the influence
of the document representation dimensionality. Again, the MCLA and CSPA
consensus functions yield λ′′

LSA clusterings which are very close or even slightly
better than the best clustering input to the consensus function.

Finally, the consensus λF is evaluated by means of the F1 measure histogram
depicted in figure 2c, thus comparing the final labeling output by each consensus
function to each one of the 4440 individual clusterings. Once more, the MCLA
and CSPA are the best performing consensus functions. But more important,
their ability to keep track of the best input clusterings is notable, as there are
only 11 (out of 4440) individual clusterings superior to the λF consensus clus-
tering derived through MCLA (19 for CSPA). In other words, the proposed
hierarchical consensus clustering architecture has yielded (using the MCLA or
CSPA consensus functions) a final clustering that is better than the 99.5% of
the individual clusterings, achieving a F1 measure that, in relative terms, is

744 X. Sevillano et al.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

run

F
1

LSA (D=20)

Individual

'(CSPA)

'(HGPA)

'(MCLA)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

dimension

F
1

LSA

'(CSPA)

''(CSPA)

'(HGPA)

''(HGPA)

'(MCLA)

''(MCLA)

0.4 0.6 0.8

50

100

150

F1

c
lu

s
te

ri
n

g
 c

o
u

n
t

F1 histogram

HGPA CSPA MCLA

 (a) (b) (c)

Fig. 2. F1 measure of consensus clusterings: (a) across 30 runs of the KM algorithm,
(b) across the [Dmin = 2, Dmax = 50] dimensionality range, and (c) F1 histogram
comparison between the final consensus and individual clusterings

only a 5.5% worse than the best individual clustering. These results reflect high
robustness against the data representation and algorithm dependence effects.

Deeper evaluation requires comparing the proposed hierarchical architecture
with the classic flat consensus approach (i.e. operating on the 4440 individual
clusterings at once). The execution of flat consensus via the MCLA function
was halted due to huge memory requirements, whereas the computation of its
hierarchical counterpart took 72 seconds of CPU time under Matlab R2006a on
a PC P4 3GHz/1GB RAM. As regards hierarchical CSPA and HGPA consensus,
their computation was 3 to 13 times faster than flat consensus. Moreover, our
hierarchical proposal obtains higher F1 scores (relative increases as high as 38%).

To conclude, this paper has presented a novel strategy for robust document
clustering by means of an open hierarchical consensus clustering architecture
that operates on highly diverse document representations and partitions. As a
result, a final consensus labeling comparable to the best input clustering can be
obtained, even in the presence of many poor clusterings. The proposed hierar-
chical architecture outperforms classic non-hierarchical consensus approaches in
terms of both performance and computational cost.

References

[1] Deerwester, S., Dumais, S.-T., Furnas, G.-W., Landauer, T.-K. and Harshman,
R.: Indexing by Latent Semantic Analysis. Journal American Society Information
Science, Vol. 6, Nr. 41 (1990) 391–407

[2] Kolenda, T., Hansen, L.K. and Sigurdsson, S.: Independent Components in Text.
In: Girolami, M. (ed.): Advances in Independent Component Analysis. Springer-
Verlag, Berlin Heidelberg New York (2000) 241–262

[3] Lee, D.D. and Seung, H.S.: Learning the Parts of Objects by Non-Negative Matrix
Factorization. Nature, 401, pp. 788–791 (1999)

[4] Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Com-
puting Surveys 34(1), 1-47 (2002)

[5] Shafiei, M., Wang, S., Zhang, R., Milios, E., Tang, B., Tougas, J. and Spiteri, R.: A
Systematic Study of Document Representation and Dimension Reduction for Text
Clustering. Technical Report CS-2006-05. Dalhousie University (2006)

[6] Strehl, A. and Ghosh, J.: Cluster Ensembles – A Knowledge Reuse Framework for
Combining Multiple Partitions. JMLR, Vol. 3, (2002) 583–617

Summarisation and Novelty: An Experimental

Investigation

Simon Sweeney1, Fabio Crestani1, and David E. Losada2

1 Dept. Computer and Information Sciences
University of Strathclyde, Glasgow, Scotland, UK

{simon, fabioc}@cis.strath.ac.uk
2 Depto. de Electrónica y Computacion

Universidad de Santiago de Compostela, Spain
dlosada@usc.es

1 Generating Novel Summaries

The continued development of mobile device technologies, their supporting
infrastructures and associated services is important to meet the anytime, any-
where information access demands of today’s users. The growing need to deliver
information on request, in a form that can be readily and easily digested on the
move, continues to be a challenge.

Automatic text summarisation is a potential solution to achieving device-
friendly content for devices that have limited display screens. An effective way
to produce a short summary maybe to include only novel information. However,
producing a summary that only contains novel sentences (assuming we employ
sentence extraction to build summaries) might imply a loss of context. In this
paper we considered summarisation with novelty detection, where information is
not only condensed but also attempt is made to remove redundancy. We adopted
two strategies to produce summaries that incorporate novelty in different ways;
an incremental summary (SumNi) and a constant length summary (SumNc).
We compared the performance of groups of users with each of the test systems.
The aim was to establish whether a summary that contains only novel sentences
provides sufficient basis to determine relevance of a document, or do we need to
include additional sentences in the summary to provide context?

Key decisions made at the outset, which influence the production of sum-
maries, relate to the number of summary levels and the length of summaries.
We restrict the number of summary levels to 3, primarily to avoid overburdening
users in the experimental tasks. In terms of summary length, for each document
a number of sentences equal to 7% of its length (with a minimum of 2 sentences
and maximum of 6 sentences) were used [2]. Finally, we make use of a simi-
lar approach to NewWords in [1] as our first attempt to take account of novelty
when building summaries. For a full description of the algorithm used to produce
the experimental summaries please refer to an extended version of this paper to
appear.

The starting point for generating our novel summaries is an initial seed sum-
mary, Sum1, which is a query-biased summary. The query-biased summarisation

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 745–748, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

746 S. Sweeney, F. Crestani, and D.E. Losada

system used to produce the summaries for the experiment was the same as that
described in [3]. The length of this query-biased summary, l1, is determined as
a percentage of the original document length. Given a ranked set of sentences,
sr1 , sr2 , ..., srn (relevance-based ranking), Sum1 is composed of the top l1 sen-
tences ordered as they appear in the original document.

Subsequent summaries are generated to include only novel information, and
reflect previously seen summary content. To avoid the presentation of material
that the user has already seen the focus is on the sentences which, in the original
(relevance-based) rank, were ranked right after the ones selected for Sum1. There
are two different ways to produce the next summaries. The first method increases
length (Ni) and increments the size of the next summary to be l2, = K * l1,
where K = 2, for example, as is the case reported here. This method produces a
new summary where all of the material which appeared in Sum1 is also present
in SumNi2 . The second method maintains a constant length (Nc) and takes
a very different approach producing a new summary, SumNc2, whose size l2
is equal to l1. The idea here is to avoid the presentation of material that the
user has already seen, and instead focus on the sentences which, in the original
(relevance-based) rank, were ranked right after the ones selected for Sum1. That
is, SumNc2 will be composed of sentences selected from srl1+1 , srl1+2 , ..., srn . In
contrast, the increasing length method includes both the new sentences and the
material already seen, which we consider as the context.

To estimate how novel the candidate sentences are, a history log, composed
of previously seen sentences is formed. Each candidate sentence has a relevance
score greater than zero. Sentences with a zero relevance score are not included
to remove those sentences considered ‘not relevant’ which, may be novel but
off-topic with respect to the query. Next, a WordsSeen list is generated from
the history log. The novelty score is based on the proportion of new words
with respect to the WordsSeen and compared to all words in the sentence. We
compute this as the count of the number of new words divided by the sentence
size, including only those words in the sentence that have been stopped and
stemmed. To combine the novelty score with the relevance-based score we apply
weighting to the novelty score to emphasise novelty scoring over the previous
scoring matrix for a sentence. The final score for a candidate sentence is then, the
sum of the novelty score with the existing relevance score. Candidate sentences
are then ranked according to the combined score.

On the basis of the score ranking and on the required size, a summary is
produced. The top scoring candidate sentences form the final summary. The
final stage of the process involves reordering summary sentences according to
their ordinal position as they occurred in the original document.

2 Experimental Investigation

The documents used in the experiment were taken from the AQUAINT collection
and consisted of newswire stories. A total of 5 randomly selected TREC queries
and for each query, the 10 top-ranking documents were used as an input for

Summarisation and Novelty: An Experimental Investigation 747

summary generation. The experimental measures to assess the effectiveness of
user relevance judgements were the time to complete the task, precision (P), recall
(R) and decision-correctness (DC). We define DC as the sum of the number of
documents marked correctly as relevant, plus the number of documents correctly
marked as non-relevant out of the total number of documents marked for that
query.

We recruited 20 users to form four experimental groups for the user study.
Participants were recruited from members of staff and postgraduate students of
the Department of CIS at the University of Strathclyde. For the experiment,
each user was given 5 queries, and for each query, the top 10 retrieved docu-
ments. These 10 documents were represented as 5 documents summarised using
a technique which included novelty, SumN , and 5 summarised using a baseline
technique that did not use novelty detection, SumB, which were query-biased
summaries. For each document there are three levels of summary, Sum1, Sum2,
and Sum3.

The experimental procedure can be described as follows. Following an ini-
tial briefing users were presented with a list of 5 queries. The title and the
description of each query (i.e., the ‘title’ and ‘description’ fields of the respective
TREC topic1) provided the necessary background to their ‘information need’
to allow users to make relevance judgements. For each query, an initial period
was allowed to read and digest the query details. Following this, the first of the
10 documents were presented to users, and timing for that specific document
started. Users were shown documents from the list where the content for a doc-
ument consisted of the level 1, 2 and 3 summaries (e.g. SumNc1, SumNc2, and
SumNc3). Having seen summary SumNc3 users’ were required to make a de-
cision as to whether to mark the document as relevant, or non-relevant. After
indicating their decision users were presented with the first summary of the next
document. The process was repeated until all queries had been evaluated. Once
all query tasks were completed a simple online questionnaire was given to the
users. The key quantitative data of interest, user decisions and the individual
summary timing data, were recorded in log files.

We now report results from the experiment. Due to restrictions of space we are
unable to present a full analysis of all the data produced during the experimen-
tation. Table 1 provides a view of the results in the context of the experimental
methodology, depicting the allocation of users to groups and associated summary

Table 1. Average performance across all queries for the different summary types

Group Type DC P R Time (secs)

1 & 4 SumBi 0.764 0.822 0.845 66
2 & 3 SumBc 0.768 0.850 0.798 53
2 & 3 SumNi 0.776 0.809 0.852 64
1 & 4 SumNc 0.760 0.803 0.752 63

1 Examples of TREC topics are available at http://trec.nist.gov/data/testq eng.html

748 S. Sweeney, F. Crestani, and D.E. Losada

types. The results show a slight increase in DC and R performance with sum-
maries that provide novelty with additional context, SumNi. For P, the baseline
summary with a constant length, SumBc, performs best. However, the margins
of improvement are somewhat minimal. Appropriate statistical tests found no
significance difference in the overall results for the different approaches.

Interestingly, the margin of difference in the time spent on SumNi compared
to SumNc does not agree with what we might normally expect. A possible rea-
son to explain the similarity in viewing times could be that users may skim the
longer summaries, glancing over familiar parts, content already seen, and in-
stead focusing on the new parts. The baseline summaries follow a more expected
pattern, though again the margin of difference is small.

A further observation from the table is the similarity in time spent viewing
summaries between SumNi and SumNc, compared to the greater level of sep-
aration observed between SumBi and SumBc. It could be argued then, when
we increase the size of the summary, using the baseline approach the user takes
more time to digest it whereas, the increasing length summary reads better if it
was constructed using novelty.

3 Conclusions and Future Work

In conclusion, findings from the user study suggest that there is little difference
in performance (DC, P and R) between novel summaries that include context
(SumNi) and those that contain only novel information (SumNc). Therefore,
for mobile information access where issues of bandwidth and screen size are
paramount then we can conclude that an effective way to produce a short sum-
mary is to build one that includes only novel information. However, the lack of
improvement over the baseline does place doubt over the merit of building novel
summaries and will require more investigation.

Extensions to the work we have presented include investigating the perfor-
mance of a more refined approach to novelty detection beyond a simple count of
new words. In addition, a further point of interest being to study the effects of
permitting users to make decisions at any levels; to investigate summary level
preference and if there is a corresponding impact on accuracy.

References

1. J. Allan, C. Wade, and A. Bolivar. Retrieval and novelty detection at the sentence
level. In Proceedings of ACM SIGIR’03, pages 314–321, Toronto, Canada, July 2003.

2. S. Sweeney and F. Crestani. Effective search results summary size and device screen
size: Is there a relationship? Information Processing and Management, 42(4):1056–
1074, 2006.

3. S. Sweeney, F. Crestani, and A. Tombros. Mobile Delivery of News using Hierar-
chically Query-Biased Summaries. In Proceedings of ACM SAC’02, pages 634–639,
Madrid, Spain, March 2002.

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 749 – 752, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Layered Approach to Context-Dependent User
Modelling

Elena Vildjiounaite and Sanna Kallio

VTT Technical Research Centre of Finland, Kaytovayla 1, 90580, Oulu, Finland
{FirstName.LastName}@vtt.fi

Abstract. This works presents a method for explicit acquisition of context-
dependent user preferences (preferences which change depending on a user
situation, e.g., higher interest in outdoor activities if it is sunny than if it is
raining) for Smart Home – intelligent environment, which recognises contexts
of its inhabitants (such as presence of people, activities, events, weather etc) via
home and mobile devices and provides personalized proactive support to the
users. Since a set of personally important situations, which affect user
preferences, is user-dependent, and since many situations can be described only
in fuzzy terms, we provide users with an easy way to develop personal context
ontology and to map it fuzzily into common ontology via GUI. Backward
mapping, by estimating the probability of occurrence of a user-defined
situation, allows retrieval of preferences from all components of the user model.

Keywords: User Model, Context Awareness, Smart Home.

1 Introduction

Context dependency of user preferences in Information and Multimedia Retrieval was
first explored by location-based services, and after that other context types, such as
time and social context (people co-located together), were shown to be useful for TV
[1] and movie [2] recommendations and for tourist guides [3]. However, these works
do not aim at explicit acquisition of long-term context-dependent user preferences due
to large diversity of interests and situations, which affect interests. Nevertheless
methods of explicit acquisition of user preferences, including context-dependent ones,
are needed because users want to stay in control of the system and to configure the
most important settings. (Users expressed the requirement to stay in control during
user study [4] in Amigo project [5], developing user services for home environment.)

Currently explicit acquisition of long-term context-dependent preferences is being
developed only for certain applications, such as personalising behaviour of mobile
phones [6] and configuring, how Smart Home should record users’ conversations and
events [7]. Configuring these applications usually requires users to look through many
contexts, predefined by an application designer, and to find values for each aspect
(when, where, who etc) of each situation. Consequently, each situation is described as
a chain of fairly low-level context types and values, such as in the rule “if <location is
home> AND <device charger is charging, then…” [6]. User studies have shown that
users are not willing to build long chains even in mobile phone applications, based on
a few context types only [6], and thus this approach is not suitable for future smart

750 E. Vildjiounaite and S. Kallio

environments, capable of recognition of many context types. Furthermore, this
approach makes difficult to use as a context source user calendar entries, expressed in
custom terms. This work suggests a method to create context – dependent user
profiles via GUI, which provides a convenient way to define personal fuzzy concepts
of context ontology and to map them into predefined ontology and sensor data.

2 Context-Dependent User Model and Context Reasoning

An intelligent information retrieval agent aims at providing users with answers to
their queries in such a way that these answers are on top of the results’ list (it is
especially important for small screens of mobile devices), and even at anticipating the
users’ needs by collecting and presenting information/ multimedia, which users need
in a current situation, proactively, e.g., by showing appropriate advertisements or
news. In order to do it, an agent needs user model in a form “context” – “preferences
for this context”. The Amigo system can acquire user preferences in different ways:

• explicit modelling: users can set preferences via GUI: e.g., high interest in
comedies and no interest in thrillers if a user is accompanied with kids (as
opposite to his usual high interest in thrillers); high interest in ICT topics if a
user writes a document in a work office; high interest in recipes for open fire
cooking if a user is hosting a barbecue party in near future.

• stereotypes-based modelling: preference values for common situations can be
set by application designers, such as high interest in near future buses from an
airport if a user is in the airport and searches for a bus schedule via his phone.

• dynamic modelling: learning preferences from observations of user actions,
e.g., that a user is more interested in inexpensive hotels in rural area when he
searches from home before holidays, and that the same person prefers hotels
in city centre when searching for hotels from work location for a business trip.

In order to react to users information needs, the system should recognize users’
current and future contexts via physical (e.g., location) and logical (e.g., entries in a
user calendar) sensors and to find corresponding preferences. The problem is, that
context recognized by the physical sensors is usually expressed as a set of designer-
defined descriptors (e.g., numerical values of time, street address, IDs of devices
around a user etc), which is inconvenient for users, because they think in higher-level
personal semantic descriptors. On the other hand, logical sensors often provide data in
such personal terms (e.g., in one user’s calendar a “Masks” entry denotes her child’s
birthday masquerade party; and before and during “Masks” event this user needs
information about new food recipes, games and rental of costumes). Thus, we suggest
to allow users to add own (custom) terms to ontology of context descriptors, provided
by application designers, because it helps in mapping between different sources of
information (physical sensors and stereotypes provide raw data or data in designer-
defined terms, whereas logical sensors – in personal terms, see Fig.1), and because it
saves the users from the need to build long chains of context descriptors manually as
many times as they set different preference values for some situation. Instead, users
need to edit a set of designer-defined context descriptors, built by an application for
them, only when they add a new (custom) term.

 A Layered Approach to Context-Dependent User Modelling 751

Fig. 1. Layers of Context-Dependent User Model

Since as a regular (annual) event, a “Masks” party can be described only fuzzily (a
party at home, with 8-12 guests about 4-12 years old, on Saturday or Sunday 2-10
days after the child’s birthday), we developed a GUI for explicit acquisition of user
preferences, which allows users to define such personal fuzzy contexts and to set
preferences for any personal or predefined context term, as well as for combination of
contexts. GUI presents to the users a tree of preference keys and a context ontology
tree; and sets a default value 0 for all keys initially. The users can set as many
different values for the same key in different contexts as they want by attaching one
or several contexts to each value. Users can also set context-independent preferences:
the value with no contexts attached is treated as valid always, except for the contexts
which degree of similarity with the attached context exceeds certain threshold. Fig.2
shows how the user sets context-dependent and independent values for different
information topics and specifies when he needs information on these topics.

Fig. 2. GUI for acquisition of user preferences, which allows users to express context-
dependency of their preferences and to create personal fuzzy concepts of context ontology

752 E. Vildjiounaite and S. Kallio

Fig.2 also shows that when the users define personally important contexts by
adding custom terms under existing concepts of context ontology (as well as when
users specify preferences for such personal contexts), a list of subcomponents of a
personal context is shown in a separate window, so that the users can edit the values.
To which set of subcomponents the custom context is split, depends on its parent in
context ontology tree: e.g., for a parent of a new term “Masks”, “PartyAtHome”
concept, the most important components are indoors location and participants. For
“Masks” event also month and approximate day of week (weekend) are known, but
for many other personal events they take a default value “any time”.

Mapping from sensor data into custom contexts (for retrieval of user preferences)
is done by Context Reasoning module, which takes as an input current context and
interaction history, both expressed in designer-defined terms (context comes as a set
of triples: context value - time stamp - confidence) and in terms of logical sensors,
and estimates the probability that a certain situation occurs now, or in a near future.

3 Conclusions and Future Work

This work presented the layers of user model for context-aware applications, aiming
at delivering desired information/ multimedia to users in different situations. Since
users want to control such applications, we propose a method to set context-dependent
preferences via GUI, which serves two goals: first, provides users with a convenient
way to express preferences for personally important situations in custom terms; and
second, helps in context recognition when custom terms are encountered e.g. in a user
calendar. Next, we will collect more data of using it in different applications.

Acknowledgments. This work was done in EU Amigo project (contract IST-004182).

References

1. Ardissono, L., Gena, C., Torasso, P., Bellifemine, F., Chiarotto, A., Difino, A., Negro, B.,
User Modeling and Recommendation Techniques for Personalized electronic Program
Guides, Personalization and User Adaptive Interaction in Digital Television, 6, 2004, 3-26.

2. Adomavicius, G., Sankaranarayanan, R., Sen, Sh., Tughilin, A., Incorporating Contextual
Information in Recommender Systems Using a Multidimensional Approach, ACM Trans.
Inf. Syst., 23(1), 2005, 103-145.

3. Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P., Intrigue: Personalized
Recommendation of Tourist Attractions for Desktop and Handset Devices, in Applied
Artificial Intelligence, 17(8-9) pp. 687-714, 2003

4. http://www.amigo-project.org
5. Röcker, C., Janse, M., Portolan, Streitz, N., User Requirements for Intelligent Home

Environments: A Scenario-Driven Approach and Empirical Cross-Cultural Study, 2005.
6. Korpipää, P., Häkkilä, J., Kela, J., Ronkainen, S., Känsälä, I., Utilising Context Ontology in

Mobile Device Application Personalisation, Proc. MuM 2004, 133-140.
7. Truong, Kh., Huang, E., Abowd, G., CAMP: A Magnetic Poetry Interface for End-User

Programming of Capture Applications for the Home, Proc. Ubicomp 2004, pp. 143-160

A Bayesian Approach for Learning Document

Type Relevance

Peter C.K. Yeung, Stefan Büttcher, Charles L.A. Clarke, and Maheedhar Kolla

University of Waterloo, Waterloo ON, Canada
{p2yeung, sbuettch, claclark, mkolla}@plg.uwaterloo.ca

Abstract. Retrieval accuracy can be improved by considering which
document type should be filtered out and which should be ranked higher
in the result list. Hence, document type can be used as a key factor for
building a re-ranking retrieval model. We take a simple approach for
considering document type in the retrieval process. We adapt the BM25
scoring function to weight term frequency based on the document type
and take the Bayesian approach to estimate the appropriate weight for
each type. Experimental results show that our approach improves on
search precision by as much as 19%.

1 Introduction

Okapi BM25 [2] is a popular choice for scoring document relevance based on term
frequency, document length, and other collection statistics. Recently, Robertson
et al. [3] introduced a modified version of BM25 for incorporating weights into
different fields of a structured document. The intuition for this approach is to
consider structured documents and rank them according to the importance of
each structure. These structures include document title, author, abstract, con-
tent, etc. For our purpose, we study the importance of a particular document
structure—document type—and an approach to estimate the appropriate weight
for each document type.

In order to estimate the weight of each document type, we take the Bayesian
approach to calculate the likelihood that documents from a given type are rele-
vant. This probability can then be scaled and used as the weight for the given
type. In our experiments, we use the set of document judgments to sample and
compute all prior and posterior probabilities in the Bayes’ theorem. Results show
that our method improves search precision by as much as 19% at 5 documents.

2 Weighting Document Types

2.1 BM25 Retrieval Model

For query terms T1, T2, ..., Tn, the BM25 relevance score of a document D is

S
(D)
BM25 =

n∑
i=1

wTi ∗ (k1 + 1) ∗ fD,Ti

fD,Ti + k1 ∗ ((1 − b) + b ∗ |D|
avgdl)

(1)

G. Amati, C. Carpineto, and G. Romano (Eds.): ECIR 2007, LNCS 4425, pp. 753–756, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

754 P.C.K. Yeung et al.

where fD,Ti is the frequency of Ti in document D, |D| is the length of document
D, and avgdl is the average document length in the collection. k1 and b are free
parameters, which we set to k1 = 1.2 and b = 0.75. wTi is the inverse docu-
ment frequency weight, which is the significance of Ti in determining document
relevance.

wTi = log
(

documents
documents containing Ti

)
(2)

Robertson et al. [3] modified BM25 to consider structured documents by com-
puting a linear combination of term frequencies. For each term in a query, its
frequency in document D is treated as a combination of its unweighted frequency
fD,Ti and the corresponding weight wj .

f ′
D,Ti

=
N∑

j=1

wj ∗ fD,Ti (3)

For our purpose, document type is the only structure that needs to be weighted.
The weight for each document type depends on the relevance of its documents.
For example, if type A contains more relevant documents than type B, then its
weight is larger than type B’s. In essence, terms appearing in type A documents
are weighted heavily and cause BM25 to produce higher relevance scores for
these documents.

2.2 Estimating Weights for Document Types

Another challenge in our approach is to determine the appropriate weight for
each document type. The weight influences BM25 on scoring a document from
its corresponding type with respect to other types. Hence, weights should reflect
the relative difference in document relevance between all document types.

A trivial way to estimate the weight for a document type is by considering the
likelihood that its documents are relevant. We apply Bayes’ theorem to calculate
the probability that given a type, DT , its documents are relevant, Pr(Rel|DT).

Pr(Rel|DT) =
Pr(Rel) ∗ Pr(DT |Rel)

Pr(DT)
(4)

where Pr(DT |Rel) is the posterior probability that for a given relevant docu-
ment, it belongs to type DT . Pr(Rel) is the prior probability that a document
is relevant. Pr(DT) is the prior probability that documents from type DT is
retrieved, which is also the normalization constant.

2.3 Normalization

We use the set of document judgments to calculate the probabilities (or to train
our model). However, since the set of document judgments used in our exper-
iments is incomplete, Pr(DT) is not an appropriate normalization constant.
Therefore, we need to introduce a normalization constant, α.

wj = α ∗ Pr(Rel) ∗ Pr(DTj |Rel) (5)

A Bayesian Approach for Learning Document Type Relevance 755

Consider the situation where there is no difference between the relevance of
document types, then the weight should have no effect on the document score.
This results in reverting our method back to the unstructured case where wj = 1
for all j. Thus, α is used to scale the weight of each document type so that the
sum of all wj equals the number of document types defined, N .

N = α ∗ Pr(Rel) ∗
N∑

j=1

Pr(DTj |Rel) (6)

3 Experimental Setup and Results

3.1 The Corpus

For our experiments, we employ the W3C collection used in the TREC 2006 En-
terprise track [1]. The W3C collection contains 331,037 documents with a total
uncompressed size of 5.7 gigabytes. These documents are categorized into six
different types: mailing lists (lists), public CVS repository (dev), public pages
(www), wiki pages (esw), personal pages (people), and other pages (other).
Table 1 shows the number of documents in each type and their average doc-
ument sizes.

Table 1. W3C collection

Scope Corpus Size # Docs Avg Doc Size

www 1.043 (gigs) 45,975 23.8 (kbs)
lists 1.855 198,394 9.8
dev 2.578 62,509 43.2

people 0.003 1,016 3.6
other 0.047 3,538 14.1
esw 0.181 19,605 9.7

all 5.7 331,037 18.1

Our experiments are limited by the nature of the expert search task in the
TREC Enterprise track. The topics used by this task are limited in a way that
the set of document judgments is incomplete. The reason is that some documents
might be relevant to a topic but they do not provide the name of an expert. As
a result, although these documents contain relevant information, they are not
identified in the set of document judgments. On the other hand, any supporting
document identified for an expert can be treated as relevant to the topic.

3.2 Results

For the expert search task, there were 54 different topics relating to the W3C
collection. We separate this set of topics into training and testing sets: 50% of

756 P.C.K. Yeung et al.

the topics, along with their relevance judgments, form the training set and the
other 50% of the topics form the testing set. The training set is used to calculate
the weight for each document type while the testing set is used to evaluate the
performance of our method. Experiments were carried out with each half of the
topics taking turn being the training set and the testing set.

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0 5 10 15 20 25

P
@

K

K

BM25 baseline
Weighted Types

Fig. 1. Precisions for topics 52-78, using
topics 79-105 for training

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0 5 10 15 20 25

P
@

K

K

BM25 baseline
Weighted Types

Fig. 2. Precisions for topics 79-105, using
topics 52-78 for training

Using topics 79-105 as the training set, Figure 1 shows that P@5 improves
from 0.5615 to 0.6692 for an 19% increase over the BM25 baseline model. Using
topics 52-78 as the training set, Figure 2 shows that P@5 improves from 0.7043
to 0.7739 for a 10% increase over BM25.

4 Conclusion

In this poster, we presented a method for weighting document types and took the
Bayes approach to estimate the appropriate weight for each type. Our approach
is simple, which adapts document type in the retrieval process. Experimental
results show that our approach improves search precisions for the TREC W3C
collection.

References

1. N. Craswell, I. Soboroff, and A. de Vries. Overview of the trec-2006 enterprise track.
to be published in 2006.

2. S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at
trec-3. In Proceedings of Text REtrieval Conference, November 1994.

3. Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple bm25 extension
to multiple weighted fields. In CIKM ’04: Proceedings of the thirteenth ACM inter-
national conference on Information and knowledge management, pages 42–49, New
York, NY, USA, 2004. ACM Press.

Author Index

Akella, Ram 246
Aĺıas, Francesc 741
Alonso, Omar 674
Angheluta, Roxana 670
Ashoori, Elham 444
Aslam, Javed A. 198
Ayache, Stéphane 494
Azzopardi, Leif 271

Baillie, Mark 271
Bao, Ying 653
Barreiro, Álvaro 64, 682
Basili, Roberto 234
Betts, Tom 295
Blanco, Roi 64
Bloehdorn, Stephan 307
Boyer, Anne 343, 517
Briggs, Peter 525
Broder, Andrei 1
Brun, Armelle 517
Brunnert, Jan 674
Büttcher, Stefan 753

Cacheda, Fidel 124
Cao, Juan 728
Cao, Yunbo 629
Capdevila Dalmau, Marta 678
Carneiro, Victor 124
Casanova, José M. 682
Castagnos, Sylvain 343
Castellani, Stefania 210
Chen, Jing 113
Chernov, Sergey 686, 737
Chirita, Paul-Alexandru 686
Ciocca, Gianluigi 691
Clarke, Charles L.A. 753
Claveau, Vincent 222
Cobo, Germán 741
Cornacchia, Roberto 4
Coyle, Maurice 356
Craswell, Nick 629
Crestani, Fabio 637, 745
Crivellari, Franco 533
Croft, W. Bruce 52

Davy, Michael 695
de Melo, Gerard 541
de Rijke, Maarten 708
de Vries, Arjen P. 4
Demartini, Gianluca 686
Di Nunzio, Giorgio Maria 533
Ding, Xiaoqing 703
Dumais, Susan 16, 597

Eguchi, Koji 393

Fang, Hui 418
Ferro, Nicola 533
Fuhr, Norbert 148

Geng, Guang-Gang 699
Gensel, Jérôme 494
Giles, C. Lee 605
Gori, Marco 3
Grasso, Antonietta 210

He, Ben 468
He, Feng 703
Hechavarŕıa, Abdel 565
Hernández Palancar, José 565
Herscovici, Michael 76
Huang, Yalou 629
Huurnink, Bouke 708

Joho, Hideo 283
Jose, Joemon M. 283

Kallio, Sanna 749
Kaplan, Aaron 210
Kim, Taek-Hun 712
Klakow, Dietrich 720
Kolla, Maheedhar 753
Kong, Zhigang 716

Lalmas, Mounia 444, 456, 481, 716
Lempel, Ronny 76
Li, Hang 629, 653
Li, Jintao 728
Li, Qiu-Dan 699
Li, Zhiwei 645
Lioma, Christina 88

758 Author Index

Liu, Tie-Yan 319, 653
Losada, David E. 745
Luz, Saturnino 695

Ma, Wei-Ying 319, 645
Macdonald, Craig 431
Mamitsuka, Hiroshi 331
Manandhar, Suresh 234
Márquez Flórez, Oscar W. 678
Martinet, Jean 549
Masegosa, Andres R. 283
McDonald, Ryan 557
Medina-Pagola, José E. 565
Meek, Christopher 16
Meena, Arun 573
Melucci, Massimo 136, 581
Merkel, Andreas 720
Metzler, Donald 16
Milosavljevic, Maria 295
Moens, Marie-Francine 670
Monz, Christof 589
Moreau, Fabienne 222
Moschitti, Alessandro 234, 307

Nanopoulos, Alexandros 368
Nejdl, Wolfgang 686, 737
Neumayer, Robert 724
Nottelmann, Henrik 148

O’Neill, Jacki 210
Oakes, Michael 258
Oberlander, Jon 295
Ounis, Iadh 28, 88, 124, 431, 468, 732

Paltoglou, George 173
Pan, Xuefeng 728
Pavlu, Virgil 198
Peng, Jie 732
Pettersson, Karin 210
Plachouras, Vassilis 28, 124
Poggiani, Alberto 136
Prabhakar, T.V. 573
Presedo Quindimil, Manuel A. 682
Pretto, Luca 581

Qin, Tao 319, 653
Quarteroni, Silvia 234
Quénot, Georges 494

Rauber, Andreas 724
Riehle, Dirk 674
Robertson, Stephen 2, 40

Rodŕıguez, Ansel Y. 565
Roulland, Frédéric 210
Roux, Claude 210
Ruthven, Ian 271

Salampasis, Michail 173
Sanderson, Mark 505, 597
Satoh, Shin’ichi 549
Satratzemi, Maria 173
Schettini, Raimondo 691
Sébillot, Pascale 222
Serdyukov, Pavel 686, 737
Sevillano, Xavier 741
Shah, Chirag 393
Shi, Shuming 645
Shokouhi, Milad 160, 185
Shou, Xiao Mang 505
Siersdorfer, Stefan 541
Silvestri, Fabrizio 101
Skomorowski, Jason 405
Smyth, Barry 356, 525
Socoró, Joan Claudi 741
Sun, Yang 605
Sweeney, Simon 745
Szlávik, Zoltán 456

Tait, John 258
Takigawa, Ichigaku 331
Tang, Sheng 728
Theoharis, Yannis 613
Tombros, Anastasios 456
Tsikrika, Theodora 481
Tzitzikas, Yannis 613

van Loosbroek, Tim 621
van Zwol, Roelof 621
Vechtomova, Olga 405
Vildjiounaite, Elena 749
Vines, Phil 661

Wang, Chun-Heng 699
Wei, Xing 52
Wen, Ji-Rong 645

Xu, Jun 629
Xu, Zuobing 246

Yakıcı, Murat 637
Yamout, Fadi 258
Yang, Huai-Yuan 319

Author Index 759

Yang, Sung-Bong 712
Yeung, Peter C.K. 753
Yogev, Sivan 76
Yu, Qing 645

Zhai, ChengXiang 418
Zhang, Di 113
Zhang, Li 653
Zhang, Shuqin 331

Zhang, Yi 246

Zhang, Yongdong 728

Zhang, Yunquan 113

Zhao, Ying 381, 661

Zheng, Xin 319

Zhu, Shanfeng 331

Zhu, Yuan-Ping 699

Zobel, Justin 381

	Title page
	Preface
	Organization
	Table of Contents
	The Next Generation Web Search and the Demise of the Classic IR Model
	The Last Half-Century: A Perspective on Experimentation in Information Retrieval
	Learning in Hyperlinked Environments
	A Parameterised Search System
	Introduction
	Anatomy of a Parameterised Search System
	Approach, Contributions and Outline

	Querying Content and Structure in PF/Tijah
	Spiegle: Turning an XML Retrieval System into a PSS
	The Matrix Framework for IR: A Formalism for Search Strategies
	SRAM: An Array Data-Model Implementation
	How Spiegle Applies the Array Data-Model

	Implementation Details
	Related Work
	Conclusions and Future Work

	Similarity Measures for Short Segments of Text
	Introduction
	Related Work
	Text Representations
	Surface Representation
	Stemmed Representation
	Expanded Representation

	Similarity Measures
	Lexical
	Probabilistic
	Hybrid
	Summary of Methods Evaluated

	Experimental Evaluation
	Illustrative Examples
	Query-Query Similarity

	Conclusions and Future Work
	References

	Multinomial Randomness Models for Retrieval with Document Fields
	Introduction
	Divergence from Randomness Framework and Document Fields
	DFR Models
	DFR Models for Document Fields

	Multinomial Randomness Models
	Multinomial Distribution
	Approximation to the Multinomial Distribution

	Experimental Evaluation
	Experimental Setting
	Evaluation Results

	Discussion
	Conclusions

	On Score Distributions and Relevance
	Introduction
	Recall and Fallout
	The Convex Curve

	Score Distributions: Details and an Example
	Convexity Condition and Distributional Assumptions
	Two Exponential Distributions
	Two Normal Distributions
	Two Poisson Distributions
	Two Gamma Distributions
	Exponential Non-relevants and Normal Relevants

	Discussion
	Score Range
	Non-convexity
	Monotonic Transformations of the Score

	Conclusion

	Modeling Term Associations for Ad-Hoc Retrieval Performance Within Language Modeling Framework
	Introduction
	Related Work
	Hand-Crafted Thesauri
	Similarity Coefficient
	Co-occurrence in Windows
	Latent Mixture Models

	Modeling Term Associations by Joint Probability
	Term-Association Models
	Document Language Models with Term Associations

	Experiments and Results
	Data
	Parameters
	Experimental Results

	Conclusions and Future Work
	References

	Static Pruning of Terms in Inverted Files
	Introduction
	Static Index Pruning of Posting Entries
	Static Index Pruning of Term Posting Lists
	Stop-Words List Based on idf and ridf
	Stop-Words List Based on Salton's Term Discrimination Model

	Experiments and Results
	Experimental Setting
	Precision vs. Pruning
	Index Compression vs. Index Pruning
	Query Times vs. Pruning

	Conclusions and Future Work

	Efficient Indexing of Versioned Document Sequences
	Introduction
	Related Work
	The Inverted Index Data Structure
	Sequence Comparison

	Efficient Indexing of Aligned Sequences
	Supporting the Various Search Operators
	Implications on Alignment Optimality

	Indexing-Optimal Alignment of Multiple Sequences
	Experiments
	Implementation Issues
	Conclusions and Future Work

	Light Syntactically-Based Index Pruning for Information Retrieval
	Introduction
	Related Studies
	Syntactically-Based Index Pruning
	Evaluation
	Experimental Settings
	Results and Discussion

	Conclusion

	Sorting Out the Document Identifier Assignment Problem
	Introduction
	Related Work
	Assignment of DocIds
	Experiments
	Results

	Conclusions and Future Works

	Efficient Construction of FM-index Using Overlapping Block Processing for Large Scale Texts
	Motivation
	Background
	FM-index
	Procedure of Construction

	Block FM-index
	Basic Block FM-index
	Overlapping Block FM-index

	Experimental Results
	The Effects of Parameters
	Comparison Between Block FM-index and FM-index

	Conclusion

	Performance Comparison of Clustered and Replicated Information Retrieval Systems
	Introduction
	Simulation Model
	Experiments
	Experimental Setting
	Replicated and Clustered System Comparison
	Query Topics Change

	Discussion
	Conclusions
	References

	A Study of a Weighting Scheme for Information Retrieval in Hierarchical Peer-to-Peer Networks
	Introduction
	The Weighting Scheme
	Experiments
	Conclusions

	A Decision-Theoretic Model for Decentralised Query Routing in Hierarchical Peer-to-Peer Networks
	Introduction
	The Decision-Theoretic Framework for Resource Selection
	Resource Selection in Peer-to-Peer Networks
	Network Topologies
	Centralised and Decentralised Selection

	Cost Estimation for Hubs
	Hub Resource Descriptions
	Cost Estimation
	Considering a Larger Neighbourhood

	Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusion and Outlook

	Central-Rank-Based Collection Selection in Uncooperative Distributed Information Retrieval
	Introduction
	Collection Selection
	Central-Rank-Based Collection Selection
	Experimental Testbeds and Evaluation Metrics
	Results
	Conclusions

	Results Merging Algorithm Using Multiple Regression Models
	Introduction
	Prior Work
	Results Merging Algorithm Using Multiple Regression Models
	Maximizing Usage of Local Resources
	Lack of Relevancy Scores
	Estimating Local Relevancy Scores from Rankings
	Estimating Global Relevancy Scores

	Experiment Setup
	Results
	Number of Common Documents
	Precision

	Conclusions and Future Work
	References

	Segmentation of Search Engine Results for Effective Data-Fusion
	Introduction
	Data Fusion
	SegFuse
	Testbeds
	Experimental Results
	Analysis of Individual Experiments on TREC3 Data
	Analysis of Individual Experiments on TREC5 Data

	Conclusions

	Query Hardness Estimation Using Jensen-Shannon Divergence Among Multiple Scoring Functions
	Introduction
	Background and Related Work
	Defining Query Hardness
	Predicting Query Hardness
	Evaluating the Quality of Query Hardness Predictions

	Methodology
	From Ranked Lists to Distributions
	The Jensen-Shannon Divergence Among Distributions

	Experimental Setup and Results
	Conclusion and Future Work

	Query Reformulation and Refinement Using NLP-Based Sentence Clustering
	Introduction
	The Query Refinement Process as Seen by the User
	Implementation and Rationale
	Preprocessing
	Query-Time Processing
	The Refinement Tree

	Experimental Results
	Comparison of PE with Other Troubleshooting and Information Retrieval Tools
	Summary and Future Work

	Automatic Morphological Query Expansion Using Analogy-Based Machine Learning
	Introduction
	Background: Morphological Variation in IR
	New Automatic Acquisition of Morphological Variants Used to Extend Query in IR
	Learning by Analogy
	Use for Query Expansion

	Experimental Results
	Document Collections
	French Experiments
	English Experiments
	Impact of Query Length
	Portability
	Discussion

	Conclusion

	Advanced Structural Representations for Question Classification and Answer Re-ranking
	Introduction
	Advanced Models for Sentence Representation
	Syntactic Structures
	Semantic Structures

	Syntactic and Semantic Tree Kernels
	Syntactic Tree Kernel
	Semantic Tree Kernel

	Experiments
	Question Classification
	Answer Classification and Reranking

	Conclusion

	Incorporating Diversity and Density in Active Learning for Relevance Feedback
	Introduction
	Active Learning Algorithm
	Algorithm Intuition
	Relevance Measure
	Document Density Measure
	Diversity Measure
	Query Updating Algorithm

	Experiment Methodology and Experimental Results
	Cross Validation
	Comparison of Different Active Learning Algorithms
	Performance Sensitivity of Feedback Interpolation Parameter

	Conclusions

	Relevance Feedback Using Weight Propagation Compared with Information-Theoretic Query Expansion
	Introduction
	Relevance Feedback Techniques
	The Weight Propagation Technique
	Experimental Design
	Clustering
	Residual Collection
	Pseudo-relevance Feedback vs. Simulated-Relevance Feedback

	Results and Analysis
	Pseudo-relevance Feedback Using Rocchio and Ide Based TFIDF
	Pseudo-relevance Feedback with KL Based DFR
	Relevance Feedback Using Simulated-Relevance Feedback

	Conclusions
	References

	A Retrieval Evaluation Methodology for Incomplete Relevance Assessments
	Introduction
	Background
	Focus of This Study

	Capturing the (un)certainty of System Performance
	Measure of Assessment
	System Evaluation Decision Matrix

	Experimental Analysis
	Discussion and Conclusion

	Evaluating Query-Independent Object Features for Relevancy Prediction
	Introduction
	Methodology
	Conceptual Categories of Object Features
	Probabilistic Classification Approach
	Classifiers Used
	Feature Selection Scheme
	Classification Validation Scheme

	Experiments
	Baseline Performance
	Effect of Contextual Features
	Effect of Feature Selection
	Effect of Feature Combination
	Effect of Highly Relevant Documents

	Discussion
	Effectiveness of Query-Independent Features
	Re-examination of the Original Study

	Conclusion and Future Work

	The Utility of Information Extraction in the Classification of Books
	Introduction
	Motivation and Context
	Approaches to Book Categorisation

	Methods and Tools
	Corpora
	Models for Representing Texts
	Classifier Configurations
	Term Reduction and Feature Selection
	Evaluation

	Results
	Baseline: Bag-of-Words
	Combining Models
	Development Corpus: Discussion of Results
	Extended Corpus Evaluation

	Conclusions and Further Work

	Combined Syntactic and Semantic Kernels for Text Classification
	Introduction
	Kernel Methods and Related Work
	Semantic Similarity Kernels
	Semantic Networks and Similarity
	Semantic Similarity Kernels Based on Superconcepts

	Tree Kernels for Syntactic Structures
	Designing Semantic Syntactic Tree Kernels
	Experimental Evaluation
	Experimental Setup
	Evaluation of Superconcept Smoothing Kernels
	Evaluation of Syntactic Semantic Tree Kernels

	Conclusion

	Fast Large-Scale Spectral Clustering by Sequential Shrinkage Optimization
	Introduction
	Review of Spectral Clustering
	Mathematical Formulation of Spectral Clustering
	Existing Solvers for Spectral Clustering

	Sequential Shrinkage Optimization (SSO)
	Linear and Non-linear Conjugate Gradient (CG)
	Non-linear SSO
	Linear SSO

	Experimental Results
	Toy Problems
	Product Data Clustering

	Conclusions

	A Probabilistic Model for Clustering Text Documents with Multiple Fields
	Introduction
	FICM for Clustering Documents with Multiple Fields
	Notations
	Multivariate Bernoulli Model
	Multinomial Model
	FICM

	Experimental Results
	Evaluation Criteria
	Dataset
	Experimental Settings
	Results

	Conclusion and Future Work

	Personalized Communities in a Distributed Recommender System
	Introduction
	Related Work
	SofoS
	AURA Algorithm
	Adaptive Minimum-Correlation Threshold

	Discussion
	Conclusion

	Information Recovery and Discovery in Collaborative Web Search
	Introduction
	Collaborative Web Search
	Community-Based Promotion
	A Proxy-Based Architecture for Collaborative Web Search
	An Explanation-Oriented Interface

	Evaluation
	Setup
	Success Rates: Discovery vs Recovery Tasks
	Promotion Frequency and Clickthru Probability
	A Session-Based Analysis

	Conclusions

	Collaborative Filtering Based on Transitive Correlations Between Items
	Introduction
	Related Work
	Proposed Methodology
	Network Formation
	Computing the Accessibility
	Generating Recommendations
	Pruning Criteria

	Understanding the Characteristics of PB
	Distribution of Values in the Accessibility Matrix
	Qualitative Comparison

	Experimental Results
	Conclusions

	Entropy-Based Authorship Search in Large Document Collections
	Introduction
	Document Search
	Authorship Attribution
	Relative Entropy for Authorship Search
	Experiments
	Conclusion

	Use of Topicality and Information Measures to Improve Document Representation for Story Link Detection
	Introduction
	Background
	TDT
	SLD

	Hypotheses and Proposed Methods
	Hypothesis-1: Capturing a Term's Importance at the Document and/or Collection Level Provides a Faithful Representation
	Hypothesis-2: Capturing the Topical Nature of a Term Provides a Better Representation for TDT-Like Applications
	Hypothesis-3: Combining a Term's Importance at Collection Level and Its Topicality Provides a Better Representation Than That of Either of Them Used Separately

	Additional Experiments and Analysis
	Conclusion

	Ad Hoc Retrieval of Documents with Topical Opinion
	Introduction
	Related Work
	Methodology
	Resolving Adjective Targets in English
	Statistics on Adjective Usage
	Document Ranking
	Collocates of Query Terms as Opinion Targets

	Evaluation
	Results
	Conclusions and Future Work
	References

	Probabilistic Models for Expert Finding
	Introduction
	A Probabilistic Framework for Expert Finding
	Candidate Generation Models
	Topic Generation Models
	Estimation of Component Models

	Experiments
	Comparison of Proposed Models
	Effectiveness of Mixture Model for Candidate Mentions
	Effectiveness of Topic Expansion
	Effectiveness of Candidate Prior in Topic Generation Models
	Parameter Sensitivity
	Comparison with TREC Results

	Conclusions and Future Work

	Using Relevance Feedback in Expert Search
	Introduction
	Expert Search
	Baselines
	Query Expansion Models

	Applying QE in Expert Search Task
	Experimental Results
	Effect of Query Expansion Parameters
	Conclusions

	Using Topic Shifts for Focussed Access to XML Repositories
	Introduction
	Related Work
	Topic Shifts
	Element-Specific Smoothing Using Topic Shifts
	Methodology
	Experiments and Results
	Conclusion

	Feature- and Query-Based Table of ContentsGeneration for XML Documents
	Introduction
	Experimental Setup
	TOC Generation
	Results and Analysis
	Participation and Questionnaires
	Sliders and TOC Characteristics
	Searchers
	Collections and Topics

	Discussion and Conclusions

	Setting Per-field NormalisationHyper-parameters for the Named-Page FindingSearch Task
	Introduction
	Per-field Normalisation
	The Purpose of Per-field Normalisation
	Experimental Setting and Methodology
	The Linear Relationship Between Field Length and Normalised Term Frequency
	Method prop for Setting the Per-field Normalisation Hyper-parameter Values
	Evaluation of Method prop
	Conclusions and Future Work

	Combining Evidence for Relevance Criteria: A Framework and Experiments in Web Retrieval
	Motivation, Background, and Aim
	Dempster-Shafer Theory of Evidence
	Combining Evidence for Relevance Criteria
	The Basic Framework: Combining Evidence for Relevance
	The Extended Framework: Combining Evidence for Relevance Criteria

	Experiments
	Experiments in Aggregating Evidence for Topicality
	Experiments in Combining and Aggregating Evidence for Topicality and Homepageness

	Conclusions

	Classifier Fusion for SVM-Based Multimedia Semantic Indexing
	Introduction
	Kernel-Based Classifier
	Support Vector Machines
	Kernel Matrices

	Fusion Schemes
	Kernel Fusion
	Normalized Early Fusion
	Contextual-Late Fusion

	Experiments
	Visual and Text Features
	Comparison of Fusion Schemes

	Conclusion

	Search of Spoken Documents Retrieves Well Recognized Transcripts
	Introduction
	Past Work
	Experiments on the Extent of the Effect of WER and Rank Position
	The Experiment

	Determining the Cause of the Effect
	Experiments with Manual Calculation of WER on Top Ranked SpeechBot Snippets
	Conclusions and Future Work
	References

	Natural Language Processing for Usage Based Indexing of Web Resources
	Introduction
	Principle of Our Web Browsing Tool
	Statistical Language Models
	Overview of Statistical Language Models
	How Can Web Browsing Take Advantage of SLM?
	n-Grams Language Models
	Trigger-Based Language Models

	Towards a Community-Based SGU
	Determination of the Community of the Active User
	Computation of the Probability of a Resource

	Discussion and Perspectives

	Harnessing Trust in Social Search
	Introduction
	Social Information Access
	Social Navigation and Recommendation
	Social Search

	A Distributed Model of Collaborative Web Search
	Building a Trust-Enhanced Search Network
	Trust-Based Ranking
	Query Propagation
	Maintaining the Search Network

	Evaluation
	Setup
	The Evolution of Search Performance

	Conclusions

	How to Compare Bilingual to Monolingual Cross-Language Information Retrieval
	Introduction
	Cross-Lingual Comparison Methodology
	Statistical Analysis Methodology
	Graphical Comparison Methodology

	Experimental Setting
	Statistical Analysis Methodology
	Graphical Comparison Methodology

	Conclusions and Future Work

	Multilingual Text Classification Using Ontologies
	Introduction
	Related Work
	Background
	Ontology Region Mapping
	Ontologies and Ontology Mapping Functions
	Weight Propagation
	General Procedure

	Evaluation
	Experimental Setup and Tuning
	Results and Discussion

	Conclusions and Future Work

	Using Visual-Textual Mutual Information and Entropy for Inter-modal Document Indexing
	Introduction
	Related Work
	Visual-Textual Mutual Information
	Entropy of Feature Vectors Distribution
	Annotation Model for an Unknown Image
	Experimental Results
	Conclusion

	A Study of Global Inference Algorithms in Multi-document Summarization
	Introduction
	Global Inference
	Global Inference Algorithms
	Implementation Details

	Experiments
	Conclusions

	Document Representation Using Global Association Distance Model
	Introduction
	Related Work
	Association Graph Model
	Global Association Distance Model
	Experiments and Analysis
	Conclusion

	Sentence Level Sentiment Analysis in the Presence of Conjuncts Using Linguistic Analysis
	Introduction
	Previous Work
	Sentiment Analysis
	Sentiment Classification (Evaluation)
	Conjunction Analysis
	Conjunction Rules
	Default Polarity Calculation (DPC)
	Overall Sentiment Determination

	Experimental Results
	Conclusions and Future Work
	References

	PageRank: When Order Changes
	Introduction
	Preliminary Results
	When the Order May Change
	Global Behaviour
	Local Behaviour

	Effects of Truncation
	Experiments

	Model Tree Learning for Query TermWeighting in Question Answering
	Introduction
	Related Work
	Optimal Query Term Selection
	Computing Query Term Weights
	Representing Terms by Feature Sets
	Learning Term Weights
	Results
	Conclusions

	Examining Repetition in User Search Behavior
	Introduction
	Data Set Examined
	Initial Analysis of Query and Click Repetitions
	Change in Repetition for Varying Differences in Time
	Periodicities in Repetitions

	Further Temporal Analysis
	Normalizing the Data
	Analyzing Query Repetition

	Hourly Analysis of User Queries
	Conclusions and Future Work
	References

	Popularity Weighted Ranking for Academic Digital Libraries
	Introduction
	Weighted Ranking
	Weighted Ranking Method

	Evaluation
	Evaluation Method
	Results
	Validity of Results

	Discussion and Conclusions

	Naming Functions for the Vector Space Model
	Introduction
	The Naming Problem
	The Naming Problem for Unordered Sets
	The Naming Problem for Ordered Sets

	Naming Functions for the Vector Space Model
	Naming Functions for Unordered Sets
	Naming Functions for Ordered Sets

	Experimental Evaluation
	Concluding Remarks

	Effective Use of Semantic Structure in XML Retrieval
	Introduction
	Motivation and Hypotheses
	Hypotheses

	Named Entity Detection and Semantic Tagging of the Reuters News Collection
	The XSee XML Search Engine
	Experiment
	Setup
	Results

	Conclusions

	Searching Documents Based on Relevance and Type
	Introduction
	Related Work
	Problem Description
	Our Approach
	General Framework
	Relevance Model and Type Model
	Combining Strategy

	Experiments
	Course Page Search
	Instruction Document Search
	Domain Adaptation for Instruction Document Search

	Conclusions
	References

	Investigation of the Effectiveness of Cross-Media Indexing
	Introduction
	Indexing Model
	Evaluation
	Building of the Test Collection
	Retrieval Experiments
	Discussion
	Document Expansion from Web

	Conclusions and Future Work

	Improve Ranking by Using Image Information
	Introduction
	Our Approach
	Image Annotation and Relevance Score Computation
	Image Importance Computation
	Page’s Overall Image Score

	Experiments
	Related Work
	Conclusion
	References

	N-Step PageRank for Web Search
	Introduction
	PageRank Review
	N-Step Pagerank
	Transition Matrix $P^(n)$
	Convergence Rate

	Experimental Results
	Settings and Results
	The Influence of Loops

	Conclusions and Future Work
	References

	Authorship Attribution Via Combination of Evidence
	Introduction
	Background
	Methodology
	Voting System
	Two-Stage Model Prediction System
	Additive System

	Experiments and Results
	Conclusions

	Cross-Document Entity Tracking
	Introduction
	Corpora
	Features
	Similarity Function and Algorithm
	Evaluation and Results
	Conclusions

	Enterprise People and Skill Discovery Using Tolerant Retrieval and Visualization
	Introduction
	Tolerant Retrieval and Cluster Clouds
	Architecture and Implementation
	User Evaluation
	Future Work
	References

	Experimental Results of the Signal Processing Approach to Distributional Clustering of Terms on Reuters-21578 Collection
	Introduction
	Method
	Experimental Scenario
	Discussion of Results and Conclusions

	Overall Comparison at the Standard Levels of Recall of Multiple Retrieval Methods with the Friedman Test
	Introduction
	The Friedman Test
	The Friedman Test with the Standard Levels of Recall as the Block Variable
	Experimental Results
	Conclusions and Further Work

	Building a Desktop Search Test-Bed
	Introduction
	Dataset Design
	Relevance Assessments and Evaluation
	Proposed Tasks
	Conclusion

	Hierarchical Browsing of Video Key Frames
	Introduction
	Proposed Method
	Detection of Meaningless Key Frames
	Hierarchical Key Frames Representation
	Optimal Video Summary

	Results and Conclusions
	References

	Active Learning with History-Based Query Selection for Text Categorisation
	Introduction
	Active Learning
	History Based Query Selection
	Experimental Results
	Conclusions and Future Work

	Fighting Link Spam with a Two-Stage Ranking Strategy
	Introduction
	Two-Stage Ranking Strategy
	Experiments
	Conclusions

	Improving Naive Bayes Text Classifier Using Smoothing Methods
	Introduction
	Multinomial Naive Bayesian Model
	Smoothing Algorithms
	Experimental Results
	Conclusion and Future Works
	References

	Term Selection and Query Operations for Video Retrieval
	Introduction
	Experimental Setup
	Experiments
	Results and Analysis
	Conclusion

	An Effective Threshold-Based Neighbor Selection in Collaborative Filtering
	Introduction
	An Effective Threshold-Based Neighbor Selection
	Experimental Results
	Conclusions

	Combining Multiple Sources of Evidence in XML Multimedia Documents: An Inference Network Incorporating Element Language Models
	Introduction
	The Proposed Approach
	An Inference Network Incorporating Element Language Models
	Retrieving a Mixture of Text and Image
	Conclusions and Future Work
	References

	Language Model Based Query Classification
	Introduction
	Methods
	Language Models for Classification
	Absolute Discounting
	Dirichlet Prior
	Linear Interpolation

	Experiments
	Data
	Results

	Conclusion

	Integration of Text and Audio Features for Genre Classification in Music Information
	Introduction
	Related Work
	Experiments
	Audio Features
	Lyrics Features
	Classification Results

	Conclusions and Future Work
	References

	Retrieval Method for Video Content in Different Format Based on Spatiotemporal Features
	Introduction
	Clips Retrieval
	Experiments and Discussion
	Conclusion and Future Work

	Combination of Document Priors in Web Information Retrieval
	Introduction
	Use of Single Priors in Language Modelling
	Combination of Multiple Document Priors
	Experiments and Analysis
	Conclusion

	Enhancing Expert Search Through Query Modeling
	The Expert Finding Task
	Expert Finding as a 2-Step Process
	Step 1: Using Language Model for Expert Ranking
	Step 2: Expert Ranking Refinement Using Query Modeling

	Preliminary Results and Discussion

	A Hierarchical Consensus Architecture for Robust Document Clustering
	Introduction
	Hierarchical Consensus Clustering Architecture
	Experiments and Discussion

	Summarisation and Novelty: An Experimental Investigation
	Generating Novel Summaries
	Experimental Investigation
	Conclusions and Future Work

	A Layered Approach to Context-Dependent User Modelling
	Introduction
	Context-Dependent User Model and Context Reasoning
	Conclusions and Future Work
	References

	A Bayesian Approach for Learning Document Type Relevance
	Introduction
	Weighting Document Types
	BM25 Retrieval Model
	Estimating Weights for Document Types
	Normalization

	Experimental Setup and Results
	The Corpus
	Results

	Conclusion

	Author Index

