
Minimum Time for a Hybrid System with
Thermostatic Switchings

Fabio Bagagiolo
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Abstract. In this paper we study a minimum time problem for a hybrid
system subject to thermostatic switchings. We apply the Dynamic Pro-
gramming method and the viscosity solution theory of Hamilton-Jacobi
equations. We regard the problem as a suitable coupling of two minimum-
time/exit-time problems. Under some controllability conditions, we prove
that the minimum time function is the unique bounded below continuous
function which solves a system of two Hamilton-Jacobi equations coupled
via the boundary conditions.

1 Introduction

In this paper we study a minimum time problem for a hybrid system in IRn whose
evolution y is subject to a switching parameter which may take the values, 1 and
−1. In particular, the switching rule is subject to the evolution of an assigned
component of the state y, and it is governed by a so-called thermostatic (or
relay-type) hysteresis input-output relationship. That is, the switching between
the two values occurs when such fixed component of y reaches (or better, gets
over) some fixed thresholds, see Figure 1 for an example.

We are interested in applying the Dynamic Programming method to such
kinds of problem, and then study the corresponding Hamilton-Jacobi-Bellman
equation in the framework of the viscosity solutions theory. In this paper, un-
der some controllability hypotheses, we prove the continuity of the minimum
time function, we derive a Hamilton-Jacobi problem satisfied by the minimum
time function in the viscosity sense, and prove that the latter is indeed the
unique viscosity solutions. Such a Hamilton-Jacobi problem is given by a system
of two Hamilton-Jacobi equations coupled by some part of the boundary con-
ditions, which are also expressed in the viscosity sense. Our method consists in
interpreting the problem as a coupling of two optimal control problems which
present feature of minimum-time as well as exit-time problems.

Optimal control problems for systems with thermostatic behavior are of course
important for applications. Many mechanical, physical, economical, biological
systems have such a kind evolution (see for instance [12] for motivations from
magnetism, [15] for a biological motivation, [14] from economics). Moreover, the
thermostat is a simple example of hysteresis operator, which is also fundamental
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to construct the so-called Preisach model of hysteresis, which is one of the most
interesting and versatile analytical description of hysteresis phenomena (it is a
superposition of a continuum of thermostats).

The dynamic programming method for the optimal control of systems with
hysteresis feature is our main motivation. The present author has already stud-
ied, via dynamic programming method and viscosity solutions theory, some opti-
mal control problems with hysteresis (see [2], [3], [4], [5]) (which lead to different
Hamilton-Jacobi equations with respect to present one). Some possible direc-
tions of future investigations on the minimum time problem are: the case of a
“discrete” Preisach operator, i.e. a finite sum of thermostats, see [3] for a one-
dimensional infinite horizon problem in this framework; the case of the “true”
Preisach operator, i.e. a superposition of a continuum of thermostats, see [4] for
a one-dimensional finite horizon problem in this framework; the case of laking
controllability conditions on the switching points, which leads to discontinuous
solutions of Hamilton-Jacobi equations, see [5] for a multidimensional finite hori-
zon problem in this framework. We also recall the works of Belbas and Mayergoyz
on some applications of the Dynamic Programming method to optimal control
problems with hysteresis (see for instance [8] and [9]).

Systems with thermostatic (or relay-type) switchings are also good examples
of hybrid systems where the switchings are mandatory, when the state reaches
some particular interdict zones (which is probably one of the most difficult be-
havior to treat in the framework of Dynamic Programming method and viscosity
solutions). The application of the Dynamic Programming method to hybrid op-
timal control problems was first outlined by Branicky, Borkar, and Mitter in [11].
Bensoussan and Menaldi in [10] were the first to apply the viscosity solutions
theory to a hybrid control problem, and they proved uniqueness of the value
function as continuous viscosity solutions of the corresponding Hamilton-Jacobi
problem. However, in the study in the Hamilton-Jacobi problem, they suppose
that the system has no mandatory switchings. The present author, as already
outlined, in [3] and [5], applied the viscosity solution theory to hybrid problems
with thermostats, where the switchings are mandatory (although there are only
mandatory switchings). In particular in [5] the case where the value function is
discontinuous is addressed. Recently, other works on this subject have appeared.
Dharmatti and Ramaswamy in [13] studied a problem with continuous value
function, whereas Zhang and James in [18] studied a problem with discontinu-
ous value function.

Finally we recall that the mathematical theory of hysteresis operators may be
found in Visintin [17], and the theory of viscosity solutions for Hamilton-Jacobi-
Bellman equations in Bardi-Capuzzo Dolcetta [7].

The present paper is organized as follows. In Section 2 we describe the delayed
relay switching rule and introduce the minimum time problem; in Section 3 we
prove the continuity of the minimum time function; in section 4 we prove that
the minimum time function is the unique viscosity solution of the associated
Hamilton-Jacobi problem; in the Appendix we give some results for an optimal
control problem (without switchings) which is a combination of minimum time
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and exit-time features (which is, at least as formulation, rather new). In the
Appendix. we also give the definitions of viscosity solutions and of boundary
conditions in the viscosity sense.

2 Models and Problems

2.1 The Delayed Relay Switching Rule

For more details on the argument of this subsection see Visintin [17]. Let us fix
two thresholds ρ1, ρ2 ∈ IR with ρ1 < ρ2, and write ρ := (ρ1, ρ2). For every contin-
uous input function g : [0, +∞[→ IR, and for every initial state w0 ∈ {1, −1}, we
define the following discontinuous output function z(·) := hρ[g, w0](·) : [0, +∞[→
{1, −1} by

z(0) :=

⎧
⎨

⎩

1 if g(0) > ρ2,
−1 if g(0) < ρ1
w0 if ρ1 ≤ g(0) ≤ ρ2,

and, for t > 0, we define X(t) :=
{
τ ∈ [0, t]

∣
∣
∣g(τ) < ρ1 or g(τ) > ρ2

}
, and

⎧
⎨

⎩

z(t) = w0 if X(t) = ∅,
z(t) = 1 if X(t) �= ∅, and g(sup X(t)) ≥ ρ2,
z(t) = −1 if X(t) �= ∅, and g(sup X(t)) ≤ ρ1.

For instance, if z(t) = 1 (which of course implies that g(t) ≥ ρ1), then z will
remain constantly equal to 1 until g will possibly get over (downward) the thresh-
old ρ1, and after that time, z will be switched on −1 until g will possibly get over
(upward) the threshold ρ2. For example, if z(t) = −1 and, in the time interval
[t, t′], g strictly increases from a value g1 < ρ2 to a value g2 > ρ2, passing on
the threshold ρ2 at the time t′′, then the output is z ≡ −1 in [t, t′′], z ≡ 1 in
]t′′, t′]. If instead g, after reaching the threshold ρ2 at the time t′′, changes the
monotonicity and stays below or equal to ρ2, then z ≡ −1 in [t, t′].

2.2 The Delayed Controlled Dynamical System

Let us consider a set of constant controls A ⊂ IRm, for some m, a function

f : IRn × {−1, 1} × A → IRn,

a fixed unit vector S ∈ IRn, and ρ = (ρ1, ρ2) a couple of thresholds for a delayed
relay hρ. Let us also define the set of measurable controls

A :=
{
α : [0, +∞[→ A

∣
∣
∣α is measurable

}
.

Then, we consider the following dynamical system (the dot “·” between vectors
is the usual scalar product)

⎧
⎨

⎩

y′(t) = f(y(t), z(t), α(t)), t > 0,
z(t) = hρ[y(·) · S, w](t), t ≥ 0,
y(0) = x,

(1)
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where α ∈ A, the initial state is the couple (x, w), and it is admissible if w = 1
and x · S ≥ ρ1, or w = −1 and x · S ≤ ρ2. Hence the solution (y(·), z(·)) of (1)
(if it exists) can be view as a trajectory starting from (x, w) and evolving in the
subset of IRn × IR

H := H1 ∪ H−1,

where,
H1 :=

{
(x, 1) ∈ IRn × {1}

∣
∣
∣x · S ≥ ρ1

}
,

H−1 :=
{

(x, −1) ∈ IRn × {−1}
∣
∣
∣x · S ≤ ρ2

}
,

(2)

with a rule for switching from one connected component Hw to the other, given
by the switching rule of the delayed relay. See Figure 1. In the sequel, for any
w ∈ {−1, 1}, we will denote by Hw the set, defined as in (2), but with the strict
inequality for x ·S; in some sense it is the “interior” of Hw. Moreover, with some
abuse of notations, we will denote by ∂Hw the set, defined as in (2), but with
just the equality only for x · S; in some sense it is the “boundary” of Hw (it is
one of the two “switching boundaries”).

0P

Fig. 1. Delayed switching evolution, starting from P0

Some problems arise in defining a solution of (1): it even may not exist (see
Alt [1] and also Bagagiolo [3] for a discussion on such a problem). We give the
following definition of solution. For instance, let (x, w) be an initial state. We
denote by ỹ(·) the solution (if it exists) defined in [0, +∞[ of the system

{
ỹ′(t) = f(ỹ(t), w, α(t)) t > 0,
ỹ(0) = x.

Hence, we let the relay switch exactly when hρ[ỹ(·), w] should switch by its
switching rule. If t̃ is the switching time, we define, as solution of (1) in [0, t̃],
(y(·), z(·)) = (ỹ(·), w). For t > t̃, we consider the solution in IRn ỹ1 starting
from ỹ(t̃) with dynamics f(ỹ1, −w, α). Let t1 be the (possible) switching time
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for hρ[y1(· − t̃), −1]. Then we define, as solution of (1) in ]t̃, t̃ + t1], (y(·), z(·)) =
(y1(·), −1). We go on in this way. Since ρ1 < ρ2, then, any possible switching
time is larger than the previous one plus an independent quantity δ > 0 (recall
that f is bounded and hence the velocity of y · S is bounded). Hence, we guess
that such a construction of solution is possible for all the time, and moreover it
is a good definition. This is Proposition 1, whose proof is now easy. We suppose
that ⎧

⎨

⎩

A is compact, f is continuous and bounded
∃L > 0 s.t. |f(x1, w, a) − f(x2, w, a) ≤ L|x1 − x2|

∀x1, x2 ∈ IRn, w ∈ {−1, 1}, a ∈ A.
(3)

Proposition 1. Under the hypothesis (3), for every initial state (x, w) ∈ H,
and for every measurable control α ∈ A, there exists a unique solution (in the
sense given above) (y(·), z(·)) ∈ C0([0, +∞[; IRn) × L∞(0, +∞; IR) of the system
(1). We will denote such a solution by

(
y(x,w)(·; α), z(x,w)(·; α)

)
.

Remark 1. Note that, in general, for the solution as above, it is not true that
z(t) = hρ[y(·) · S](t) for all t ≥ 0. Indeed, a trajectory switches when, if it does
not switch, y ·S is going to cross the threshold. But it may happens that, as the
trajectory switches, the new dynamics f(·, −w, ·) is such that y ·S does not cross
the threshold. Hence, the glued trajectory has never crossed the threshold, and
so, for the true switching delayed relay rule, there should not be any switching. A
discussion more detailed on such definition of solution, is reported in Bagagiolo
[3]. Here, we only say that, if a “true solution” of (1) exists, then it must coincide
we the one above. Moreover, as will be explained in the sequel, such a definition
seems useful for transforming an hybrid optimal control problem with such a
kind of switching, in an exit-time problem from a closed set, which is, in some
sense, more stable than other exit-time problems.

2.3 The Minimum Time Problem

Let T ⊂ H be fixed. The minimum time problem is to reach the target T as
quickly as possible. Hence, for every initial state (x, w) ∈ H, and for every control
α ∈ A, we define the reaching time for the corresponding trajectory of (1)

t(x,w)(α) = inf
{
t ≥ 0

∣
∣
∣
(
y(x,w)(t; α), z(x,w)(t; α)

)
∈ T

}
,

with the convention inf ∅ = +∞. The minimum time function is then defined in
H as

T (x, w) = inf
α∈A

t(x,w)(α).

We consider the following hypotheses

T is the closure of its interior, has compact boundary ∂T
which is also a C2 manifold,

∀(x, w) ∈ ∂T , denoting by n(x, w) the outer normal to ∂T ,
inf
a∈A

f(x, w, a) · n(x, w) < 0.

(4)
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Except for the compactness of ∂T , the other regularity hypotheses on T may
be changed, for instance in order to take account of a single point. Roughly
speaking we need of the usual hypotheses of controllability on ∂T in order to
have continuity of the minimum time function.

We also suppose the following controllability properties hold on the switching
boundaries: for every (x, w) ∈ ∂Hw there exist a1, a2 ∈ A such that

f(x, w, a1) · S < −c < 0 < c < f(x, w, a2) · S, (5)

with c > 0 independent from (x, w).
Let us define the controllable set

R =
{

(x, w)
∣
∣
∣∃α ∈ A, t(x,w)(α) < +∞

}
(6)

Finally note that, both T and R, can be split in to the disjoint union of two
sets T = T1 ∪ T−1, R = R1 ∪ R−1, where, for w ∈ {1, −1}

Tw := T ∩ Hw, Rw = R ∩ Hw.

3 Continuity

Proposition 2. Let (3), (4), (5) hold. Then T is continuous in R.

We first recall the following lemma. For the proof, which is quite standard, see
for instance Soner [16] (see also Bagagiolo-Bardi [6])

Lemma 1. With the same hypotheses as in Proposition 2, let w ∈ {−1, 1} and
K ⊆ Hw compact be fixed. Let us also fix t ≥ 0. Then there exists a radius r > 0,
and a constant C > 0 (both depending on t and K) such that, whenever for some
(x, w) ∈ K and for some α ∈ A we have (here B((x, w), r) is the ball of radius
r around (x, w)),

(
y(x,w)(τ ; α), z(x,w)(τ ; α)

)
∈ Hw ∀τ ∈ [0, t],

then, for every (ξ, w) ∈ B ((x, w), r) ∩ Hw, there exists a control α such that
(
y(ξ,w)(τ ; α), z(ξ,w)(τ ; α)

)
∈ Hw, ∀τ ∈ [0, t],

and
|y(x,w)(t; α) − y(ξ,w)(t; α)| ≤ C|x − ξ|. (7)

Proof. ( Of Proposition 2.) Let us sketch the proof that T is continuous in R1
(the other case is similarly treated). First of all note that R1 may be empty,
and, in such a case there is nothing to prove. Hence, let us suppose that it is not
empty (note that, by the hypotheses made, at least one of R1 and R−1 is not
empty). Let (x, 1), (ξ, 1) be two points of R1, and, for every ε > 0, let us take a
control αε ∈ A such that

T (x, 1) ≥ t(x,1)(αε) − ε.
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Let rε be the number of switchings of the trajectory
(
y(x,1)(·; αε), z(x,1)(·; αε)

)
,

in the time interval [0, t(x,1)(αε)], and note that, by the fact that the switchings
are delayed and that f is bounded, there exists N > 0 such that

rε ≤ N, ∀ε > 0. (8)

Let U be a bounded open neighborhood of (x, 1) in H1.
Let us first suppose that rε = 0. Then the trajectory starting from (x, 1) with

control αε does not switch up to the time t(x,1)(αε). Hence, for a suitable ball
B ⊆ U around (x, 1), and a suitable constant C > 0, applying Lemma 1, for
every point (ξ, 1) ∈ B ∩ H1, we obtain a control αε such that the corresponding
trajectory starting from (ξ, 1) does not switch, and (7) holds. Hence, since

(
y(x,1)(t(x,1)(αε); αε), z(x,1)(t(x,1)(αε); αε)

)
∈ ∂T ,

by the controllability hypothesis on the boundary of the target, if |x−ξ| is small
enough, we obtain that

t(ξ,1)(αε) = t(x,1)(αε) + O(|x − ξ|). (9)

Now, let us suppose that rε = 1, and let t1 be the switching instant. Again, for
a suitable ball B1 ⊆ U around (x, 1), and for a suitable constant C1 > 0, for
every point (ξ, 1) ∈ B1 ∩ H1, we obtain a control α1

ε such that
(
y(ξ,1)(τ ; α1

ε), z(ξ,1)(τ ; α1
ε)

)
∈ H1 ∀τ ∈ [0, t1],

and (7) holds with C1 as constant. Since
(
y(x,1)(t1; αε), z(x,1)(t1; αε)

)
∈ ∂Hw,

by the controllability hypotheses (refeq:switchingcondition), if |x − ξ| is small
enough, we can use a suitable control in order to make the trajectory start-
ing from (ξ, 1) switch in a lap of time of order O(|x − ξ|). Then we have two
new starting points on H−1 which are

(
y(x,1)(t1; αε), −1

)
and, say, (ξ1, −1)

with |y(x,1)(t1; αε) − ξ1| = O(|x − ξ|). Since in the remaining time interval
[t1, t(x,1)(αε)], the trajectory starting from (x, 1) does not switch anymore, we
eventually construct a control αε for which (9) still holds, for |x − ξ| sufficiently
small.

Finally, repeating the previous steps rε times, for rε > 1, we obtain, for |x−ξ|
sufficiently small, let say less than μ > 0, the same relation as in (9). In particular
μ depends only on U and on N .

Recalling (8), we can say that, for every rε, we can use the same infinitesimal
error-function O in (9).

Hence, if (x, 1), (ξ, 1) ∈ U and |x − ξ| ≤ μ, then, supposing T (x, 1) ≤ T (ξ; 1)
we get, for the arbitrariness of ε > 0,

0 ≤ T (ξ, 1) − T (x, 1) ≤ O(|x − ξ|).

Otherwise, if T (x, 1) > T (ξ, 1), we exchange the role of x and ξ and note that
all the previous estimates remain unchanged, with the same constant and error-
functions O. In particular, the number of switchings rε cannot increase, since
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every switching requires a lap of time δ > 0, and hence from (9), we would get
an absurd. Hence we obtain

0 ≤ T (x, 1) − T (ξ, 1) ≤ O(|x − ξ|),

and we conclude. ��

Remark 2. By the proof of Proposition 2 we also get the fact that R is open in
H (for the induced topology). Indeed, if (x, w) ∈ Rw, then we have shown the
existence of a ball B around it such that B ∩ Hw ⊂ Rw.

4 DPP and HJB

In this section we want to study a Hamilton-Jacobi-Bellman (HJB) problem for
the minimum time function, which arises by applying the Dynamic Programming
Principle (DPP). Let (x, w) ∈ R \ T , and a control α ∈ A be fixed. Considering
the corresponding trajectory, we define the first exit time from Hw as

τw
x (α) := inf

{
t ≥ 0

∣
∣
∣y(x,w)(t; α) �∈ Hw

}
,

which is nothing but the first switching time (for the trajectory). If a, b ∈ [0, +∞],
then we are going to use the following convention: χ{a≤b} = 1 if a ≤ b, χ{a≤b} = 0
otherwise (similarly for χ{a<b}).

Proposition 3. For every (x, w) ∈ H, we have

T (x, w) = inf
α∈A

(
min(t(x,w)(α), τw

x (α))

+χ{t(x,w)(α)>τw
x (α)}T (y(x,w)(τw

x (α); α), −w))
)

.
(10)

Proof. It can be easily proved by using the following lemma and dynamic pro-
gramming techniques.. ��

Lemma 2. For every (x, w) ∈ ∂Hw, and for every α ∈ A such that τw
x (α) = 0,

we have
T (x, w) ≤ T (x, −w), t(x,w)(α) ≥ T (x, −w). (11)

Proof. Let us prove the first inequality in (11). By the controllability hypothesis
(5), there exists a control α ∈ A such that τw

x (α) = 0 (i.e. there is an immediate
switching). For every ε > 0, we have

T (x, w) ≤ ε + T
(
y(x,w)(ε; α), −w

)
,

and, letting ε → 0+, we conclude by the continuity of T .
To prove the second inequality, for every ε > 0, we have

t(x,w)(α) = ε + t(y(x,w)(ε;α),−w)(α(· + ε)) ≥ ε + T
(
y(x,w)(ε; α), −w

)
,

and, again, we conclude by the continuity of T . ��
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Remark 3. Note that, in (10), we can replace t(x,w)(α) with the following instant

twx (α) := inf
{

t ≥ 0
∣
∣
∣
(
y(x,w)(t; α), w

)
∈ Tw

}
.

Hence, Proposition 3 says that, for every w ∈ {1, −1} fixed, we can regard our
problem in Hw as the problem of minimizing the reaching time of Tw, subject
to stopping the process and paying the time elapsed plus an exit cost if we exit
from Hw before reaching Tw. In particular, the exit cost is given by T (·, −w),
i.e. our minimum time function evaluated on the point where we “switch down”
after exit from Hw.

In the sequel, by ∂Hw
R we will denote the boundary of R with respect to the

induced topology in Hw, and by intHw
R the interior of R, with respect to the

same topology. In particular note that such interior may intersect the boundary
∂Hw of Hw.

Using Remark 3 and Proposition 5 in the Appendix, we can say that the min-
imum function T : R → [0, +∞[ solves the following problem in the unknown u:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

for every w ∈ {−1, 1}, u is a viscosity solution of⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
a∈A

{−∇u(x, w) · f(x, w, a)} = 1 in (Rw ∩ Hw) \ Tw,

u = 0 on ∂Tw,
u(x, w) → +∞ as (x, w) → ∂Hw

Rw,

u(·, w) = u(·, −w) on
(
intHw

Rw ∩ ∂Hw

)
\ Tw.

(12)

In particular, in (12), the last boundary condition has to be understood in the
viscosity sense. Now, we prove that T is indeed the unique solution of (12).

Theorem 1. The minimum time function is the unique bounded below contin-
uous function from R to IR which solves the problem (12).

Proof. First of all, for every w ∈ {1, −1}, let us denote by (12)w the Hamilton-
Jacobi boundary problem in Hw which appear in (12). Note that, even if we have
a uniqueness result for each single problem (12)w, we cannot immediate conclude
that we have uniqueness for the problem (12), since the boundary conditions are
intrinsic to the problem: they are part of the solutions.

For every w ∈ {1, −1} we define the set

Sw :=
{

(x, w) ∈ Hw

∣
∣
∣(x, −w) ∈ ∂H−w

}
,

and note that it is exactly the set where we arrive when we exit from H−w.
Let u : R → IR be a bounded below continuous solution of (12). For every

w ∈ {1, −1} we extend (“by continuity”) u from (Sw ∩ R) \ T to Sw \ T by
setting u = +∞. From the uniqueness result Theorem 2 of the Appendix, we
know that u(·, w) is the value function of the minimum/exit time problem in
Hw, given by reaching the target Tw or exit from Hw paying the spent time
plus the cost u(·, −w). So, it possibly differs from the problem solved by the
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minimum time T on Hw, only for the exit cost. We are going to prove that, for
every w ∈ {1, −1} the two problems (12)w solved respectively by T and u have
the same exit cost, and hence the thesis will be proved.

For every δ > 0 let us define the set

R(δ) =
{
(x, w) ∈ H

∣
∣
∣T (x, w) ≤ δ

}
.

Note that, since the dynamics f is bounded, and since the switchings are delayed,
there exists δ > 0 such that for every starting point (x, −w) ∈ S−w we need a
time strictly larger than δ in order to exit from H−w, whichever is the control
we are using.

We first prove that u ≥ 0. To this end we prove that u ≥ 0 on Sw ∪ S−w,
from which the claim follows by the interpretation of u as value function. Let us
suppose that there exists (x, w) ∈ Sw such that u(x, w) < 0. This means that
there are trajectories starting from (x, w) which reach points of the boundary
(x′, w) ∈ ∂Hw where the cost is u(x′, −w) < −δ. But, the same argumentation
shows that there should exist trajectories starting from (x′, −w) which reach
points of the boundary (x′′, −w) ∈ ∂H−w where the cost is u(x′′, w) < −2δ.
Iterating such procedure, we obtain a contradiction to the fact that u is bounded
below.

For the point of the (possibly empty) set S−w ∩ R(δ) the value of u does
not depend on the exit cost, since, from those points, it is not convenient to
reach the boundary and pay the exit cost because it needs a time larger than
δ and the exit cost is nonnegative. Hence we have u = T on Sw ∩ R(δ), Now,
let us consider the point of the (possibly empty) set Sw ∩ R(2δ). For every such
a point, the value of u is equal to T if T (x) ≤ δ (since we do not switch),
otherwise it may be conditioned by the value of the exit cost u(·, −w) on the
points of ∂Hw. But for reaching such boundary points (x, w) from Sw ∩ R(2δ)
we spent a time larger than δ and hence we certainly have u(x, −w) = T (x, −w)
since (x, −w) ∈ S−w ∩ R(δ). Again, iterating such a process, we obtain that
u = T on Sw ∪ S−w, and we conclude. ��

Remark 4. Arguing as in the Remark 5, we can say that the couple (R, T ) is
the unique couple given by an open set O in H (for the induced topology) which
contains T , and by a bounded below continuous function u : O → IR which
solves the corresponding problem (12), where the set R = R1 ∪ R−1 is replaced
by O = O1 ∪ O−1.
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Appendix: On a Minimum/Exit Time Problem

For many results concerning the theory of viscosity solutions, adopted in this
section, we refer the reader to the book Bardi-Capuzzo Dolcetta [7].

Let Ω ⊂ IRn be an open set, T ⊆ Ω be a closed set satisfying (4), and
ψ : ∂Ω → [0, +∞] be a continuous function (for the usual topology on [0, +∞]).
Using the same notations as before for controls, considering a bounded contin-
uous function f : IRn × A → IRn satisfying the analogous of (3) (neglecting w),
and the analogous on ∂Ω of (5) (again neglecting w), we consider the optimal
control problem of minimizing the time spent for reaching T or the time spent
plus a cost for exit from Ω, subject to the controlled (non switching) dynamical
system {

y′(t) = f(y(t), α(t)), t > 0,
y(0) = x,

(13)

We denote by yx(·; α) the solution of (13). We define the following instants

tx(α) := inf
{
t ≥ 0

∣
∣
∣yx(t; α) ∈ T

}
, reaching time,

τx(α) := inf
{

t ≥ 0
∣
∣
∣yx(t; α) �∈ Ω

}
exit time,
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and define the value function

V (x) := inf
α∈A

(
min(tx(α), τx(α)) + χ{tx(α)>τx(α)}ψ(yx(τx(α); α))

)

Let us define the set

R :=
{
x ∈ Ω

∣
∣
∣V (x) < +∞

}
.

Proposition 4. With all the hypotheses made before, the set R is open in Ω
for the induced topology, and the value function V is continuous in R.

Proof. It is similar to that of Proposition 2. ��

For every x ∈ R, and for every α ∈ A we define

εx(α) := min(tx(α), τx(α)) = inf
{

t ≥ 0
∣
∣
∣yx(t; α) �∈ Ω \ T

}
.

We have the following Dynamic Programming Principle: for every x ∈ R and
for every t ≥ 0

V (x) = inf
a∈A

{min(t, εx(α)) + V (yx(min(t, εx(α)); α))} . (14)

Proposition 5. Let all the hypotheses of Proposition 4). Then the value func-
tion V is a viscosity solution of the following problem in the unknown u:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
a∈A

{−∇u(x) · f(x, a)} = 1, in (R ∩ Ω) \ T ,

u = 0, on ∂T ,
u(x) → +∞, as x → ∂ΩR,
u(x) = ψ(x), on (intΩR ∩ ∂Ω) \ T .

(15)

In particular, the last boundary condition of (15), has to be understood in the
viscosity sense.

A continuous function u : R → IR, satisfying the second boundary condition
(the limit one) is a viscosity solution of (15) if it is a subsolution and a super-
solution. Being a subsolution (respectively: a supersolution) means that u ≤ 0
(respectively u ≥ 0) on ∂T , and moreover for every C1 test function ϕ : Ω → IR,
and for every x ∈ R\T such that u−ϕ has a local maximum in x (respectively:
a local minimum) with respect to Ω, the following holds

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup
a∈A

{−∇ϕ(x) · f(x, a)} ≤ 1,

if either x ∈ (R ∩ Ω) \ T or x ∈ (intΩR ∩ ∂Ω) \ T and u(x) > ψ(x);[
respectively: sup

a∈A
{−∇ϕ(x) · f(x, a)} ≥ 1,

if either x ∈ (R ∩ Ω) \ T or x ∈ (intΩR ∩ ∂Ω) \ T and u(x) < ψ(x)
]
.
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Proof. The proof is almost standard, we only check the last boundary condition.
Note that, by the controllability hypothesis on ∂Ω, we may only have V ≤ ψ
on ∂ΩR ∩ ∂Ω. Let us fix x ∈ intΩR ∩ ∂Ω, we have only to analyze the case
V (x) < ψ(x). Since x ∈ R \ T , then there exists δ > 0 such that, for every t
small, there is a minimizing sequence of controls αn for (14) with εx(αn) ≥ δ.
Hence, for every test function ϕ ∈ C1(Ω) such that V − ϕ has a local minimum
in x with respect to Ω, by the usual technique we get

sup
a∈A

{−∇ϕ(x) · f(x, a)} ≥ 1. ��

We now suppose the following “internal cone condition” in Ω: there exists a
constant c > 0 and a uniformly continuous function η : Ω → IRn such that, for
every x ∈ Ω (B(x + sη(x), cs) is the ball around x + sη(x) with radius cs)

B(x + sη(x), cs) ⊆ Ω, ∀0 < s ≤ c. (16)

Theorem 2. Let the hypotheses Proposition 4 and (16) hold. Then the value
function is the unique continuous bounded below function u : R → IR which is a
viscosity solution of the problem (15).

Proof. We sketch a standard technique. We first introduce the so-called Kruzkov
transformation. Let u : R → IR be a continuous bounded below function sat-
isfying the first two boundary conditions in (15). Then, we define the bounded
continuous function ũ : Ω → IR as follows

ũ(x) :=
{

1 − e−u(x) if x ∈ R,
1 if x ∈ Ω \ R.

We also denote by ψ̃ : ∂Ω → IR the Kruzkov transform of the boundary datum ψ

ψ̃(x) :=
{

1 − e−ψ(x) if ψ(x) ∈ IR,
1 if ψ(x) = +∞.

If u is a continuous bounded below viscosity solutions of (15), then ũ : Ω → IR
is a continuous bounded viscosity solution of the problem in the unknown v

⎧
⎪⎨

⎪⎩

v + sup
a∈A

{−∇v · f(x, a)} = 1 in Ω \ T ,

v = 0 on ∂T ,

v = ψ̃ on ∂Ω \ T ,

(17)

where the last boundary condition has to be understood in the viscosity sense.
Hence, our thesis will come from a uniqueness result for problem (17). Such a

problem is a little bit different from the usual ones found in the literature, since
it is a minimum/exit time problem. In particular, the target T and the exit
boundary ∂Ω may intersect. Since, the open set on which the Hamilton-Jacobi
equation must be verified is Ω \ T , it is not in general true that a internal cone
condition, similar to (16) should hold for the closure of such a set. It depends on
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how T and ∂Ω intersect. And the internal cone condition is in general necessary
for the uniqueness result where the boundary conditions are in the viscosity
sense. However, in our case, the condition on ∂T is not in the viscosity sense,
it is just a classical boundary condition. Moreover, since ∂T is compact by
hypothesis, we can say that for every open (in Ω) neighborhood U of ∂T , a sort
of (uniformly) internal cone condition holds for the set Ω \ U , in the following
sense: there exists a constant c′ > 0 (depending on U), such that, for every
x ∈ Ω \ U , we have

B(x + sη(x), c′s) ⊆ Ω \ T ∀0 < s ≤ c′. (18)

As usual, the uniqueness is proved by a comparison result between a con-
tinuous subsolution v1 and a continuous supersolution v2 (i.e. by proving that
v1 ≤ v2 in Ω \ T ). But, on ∂T , they must satisfy v1 ≤ 0 ≤ v2, and then, for
every δ > 0 we found a neighborhood Uδ of ∂T such that v1 − v2 ≤ δ in Uδ. This
permits to use the standard double variables/penalization technique. Indeed, one
usually suppose by absurd that there exists x̃ such that v1(x̃) − v2(x̃) = δ > 0.
In our case, we certainly have x̃ ∈ Ω \ Uδ. Hence, the usual machinery, and
especially (18) may be used.

In the end, we get that there exists a unique bounded continuous viscosity
solution of (17). ��

Remark 5. Let us suppose that R′ ⊆ Ω is another open set in Ω (for the induced
topology), which contains T , and that u′ : R′ → IR is a continuous bounded
below viscosity solutions of the corresponding problem (15), where R is re-
placed by R′. Then, the Kruzkov transformation applied to u′ leads to the
same problem (17). Hence, by uniqueness, we can say that the couple (R, T )
is the unique couple given by an open set in Ω containing T , and by a bounded
below continuous function on such an open set, which solves the corresponding
problem (15).
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