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Abstract. Testing is an important tool for validation of the system de-
sign and its implementation. Model-based test generation allows to sys-
tematically ascertain whether the system meets its design requirements,
particularly the safety and correctness requirements of the system. In
this paper, we develop a framework for generating tests from hybrid sys-
tems’ models. The core idea of the framework is to develop a notion of
robust test, where one nominal test can be guaranteed to yield the same
qualitative behavior with any other test that is close to it. Our approach
offers three distinct advantages. 1) It allows for computing and formally
quantifying the robustness of some properties, 2) it establishes a method
to quantify the test coverage for every test case, and 3) the procedure
is parallelizable and therefore, very scalable. We demonstrate our frame-
work by generating tests for a navigation benchmark application.

1 Introduction

As engineering systems gain more functionality and complexity, there is a need
for sound discipline in their design, development and deployment. In particular,
ensuring the safety and correctness of these large and complex systems is be-
coming increasingly hard. In recent years, a slew of model-based design efforts
have been developed to address these problems. The promise of the model-based
design paradigm is to develop design models and subject them to analysis, sim-
ulation, and validation prior to their implementation. Performing analysis early
in the development cycle allows one to detect and fix design problems sooner
and at a lower cost. There has been a lot of work [1,2,3,4,5,6,7,8] in the hy-
brid systems community toward analysis, validation and verification of systems
developed from hybrid control models. The list [1,2,3,4,5,6,7,8] is by no means
exhaustive. However, it does capture a broad spectrum of techniques that have
been developed in the community to answer the reachability and verification
problems.

Testing has been used in practice to check the conformance of an implemen-
tation to its specification. Although testing cannot provide formal guarantees on
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correctness and reachability as it is possible with verification, disciplined use of
testing, coupled with coverage criteria can be a great aid to system verification
and validation.

Testing amounts to running or simulating the operation of the system for a
finite period of time. It is comparable to taking a snapshot of the operation of
the system. As we are interested in gaining some information about the system,
testing is done repetitively with varying testing parameters, so as to simulate
as many scenarios of operation as possible. By testing parameters, we mean
the parameters that characterize the run of a test. For example, if we have an
autonomous system whereof we can only influence the initial condition, then the
testing parameter is the initial condition. If we have more degrees of freedom in
influencing the execution of the system, for example, if we can also adjust some
parameters in the system, then these parameters can be regarded as testing
parameters as well. The ultimate goal of testing is to cover the entirety of the
set of testing parameters.

When the set of testing parameters is an infinite set, it is obvious that we
cannot exhaustively test each of the testing parameters. However, it is possible
that one testing parameter is representative of many others. A testing parameter
is said to be robust if a slight (quantifiable) perturbation of the parameter is
guaranteed to result in a test with the same qualitative properties (for example,
safety and correctness). It is obvious that robustness can lead to a significant
reduction in the set of testing parameters. In fact, ideally, we would like to be
able to reduce an infinite set of testing parameters into a finite set, and quantify
the coverage by the performed tests. In this paper, we develop a framework
where the robustness of a test can be formally quantified and computed. The
framework is then applied to test a navigation benchmark problem [9].

Prior work on generating tests from hybrid systems’ models has mainly fo-
cused on randomized testing or monitoring to check whether an implementation
conforms to its model. Esposito [10] and Branicky et. al. [11] use Rapidly ex-
ploring Random Trees (RRT) to generate test cases from hybrid systems models.
Another paper by van Osch [12] describes testing for input-output conformance
by providing inputs to the implementation and comparing its outputs to those
of its model. In [13], the author presents a case-study that identifies a mini-
mal set of test scenarios required to determine, with some confidence interval,
if the system meets the specification by casting the test generation problem as
an optimal control problem. This approach suffers from the drawback that it
is only applicable in scenarios where the optimal control problem can be solved
efficiently. Other publications in this area include [14], where the authors present
an integrated framework to test and monitor code generated from hybrid models,
and [15], where test generation from Extended Finite State Machines (EFSM)
is developed in order to test temporal logic properties.

2 Problem Formulation

In this paper, we consider a standard model of a hybrid automaton [16], H =
(X , L, E, Inv, F ), where X is the continuous state space of the system, L is the
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finite set of discrete states (locations), E is the set of transitions, Inv : L → 2X

is the invariant set of each location, and F : X × L → X is the vector field that
defines the continuous dynamics in each location.

A transition e ∈ E is a 4-tuple (l, l′, g, r), where l ∈ L is the origin of the
transition, l′ ∈ L is the target of the transition, g ⊂ ∂Inv(l) is the guard of the
transition, which is a subset of the boundary of the invariant set of location l,
and r : g → Inv(l′) is the reset map that resets the continuous state at the new
location. Here, we assume that the reset map r is continuous.

In this paper, we shall assume that the following statements hold. The state
space is R

n and the invariant sets are closed. We denote the open interior of an
invariant set as Inv(l) and we assume that the differential equation

dx

dt
= F (x(t), l),

admits a unique solution for every location l ∈ L, i.e. it satisfies the Lipschitz
conditions. The transitions are deterministic1 in the sense that the guards are
forcing and all outgoing transitions from a location have disjoint guards. Finally,
the system does not deadlock or possess Zeno behavior.

In analyzing the safety of the system, we assume that there is a subset
Unsafe ⊂ X × L unsafe states. A trajectory of the hybrid system corresponds
to an unsafe execution if it intersects with the unsafe set.

Example 1 (Navigation Benchmark [9]). As a case study in this paper, we con-
sider a slightly modified version of the navigation benchmark proposed by Fehnker
and Ivancic [9]. The benchmark studies a hybrid automaton H with 3 × 3 dis-
crete locations and 4 continuous variables x1, x2, v1, v2 that form the state vector
x = [x1 x2 v1 v2]T . We refer to the vectors [x1 x2]T and [v1 v2]T as the position
and the velocity of the system, respectively. The structure of the hybrid automa-
ton can be better visualised in Fig. 1. The invariant set of every (i, j) location is an
1 × 1 box that constraints the position of the system, while the velocity can flow
unconstrained. The guards in each location are the edges and the vertices that are
common among the neighboring locations.

Each location has affine constant dynamics with drift. In detail, in each lo-
cation (i, j) of the hybrid automaton, the system evolves under the differential
equation ẋ = Ax − Bu(i, j) where the matrices A and B are

A =
[ 0 0 1 0

0 0 0 1
0 0 −1.2 0.1
0 0 0.1 −1.2

]
and B =

[ 0 0
0 0−1.2 0.1

0.1 −1.2

]

and the input in each location is u(i, j) = [sin(πC(i, j)/4) cos(πC(i, j)/4)]T .
The array C is one of the two parameters of the hybrid automaton that the user
can control and it defines the input vector in each discrete location. Here, we
consider the following input arrays:

C1 =
[

U 2 4
4 3 4
2 2 G

]
C2 =

[
2 3 6
3 3 G
2 2 U

]
C3 =

[
U 2 4
2 2 4
1 1 G

]
1 We limit the discussion in this paper to deterministic guards. However, the frame-

work presented here is also applicable to nondeterministic guards.
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Fig. 1. A graphical representation of the benchmark hybrid automaton. The upper left
box is the invariant set for the location (1, 1). (a) The constant input vector in each
location. (b) Sample trajectories for different initial conditions.

where U denotes the unsafe set and G the goal set. The other user-input param-
eter is the set of initial conditions X0 × L0 ⊆ X × L. The requirement for H is
that all of its trajectories starting in X0 × L0 should avoid the unsafe set and
eventually reach the goal set. Sample trajectories of the system appear in 1.(b).

Example 1 describes a typical verification problem for hybrid systems. The goal
of exhaustive verification algorithms is to prove that there cannot exist a trajec-
tory that falsifies the hybrid automaton assumptions, i.e. safety and reachability.
In this paper, we try to solve a different problem in an attempt to overcome the
theoretical and practical difficulties of exhaustive verification. Here, the target
is not complete coverage of the set of initial conditions, but the computation of
a (possibly) quick estimate of which part of the initial conditions is safe and/or
unsafe for a bounded horizon using only a small number of tests. One of the most
important aspects of such a testing methodology is that it should be completely
transparent to the user with no (or very few) parameters to tune.

Problem 1 (Testing the benchmark example). Given the hybrid automaton H of
Example 1 with a set of initial conditions X0 ×L0, a bounded horizon T > 0 and
an unsafe Unsafe and/or Goal set, develop a strategy for picking test points in
order to cover the set of initial conditions.

As mentioned in the previous section, we want to cover the whole set of initial
conditions with finitely many test points. This requires the construction of robust
neighborhoods around the test points. Each such neighborhood contains a set
of points which initiate trajectories that have the same qualitative properties as
the trajectory generated by the actual test point. By qualitative properties, we
mean the sequence of locations that are visited and the safety property.

3 Robust Testing for Hybrid Systems

In this section, we discuss the computation of robust neighborhoods of initial
conditions. First, we are going to review the theory of bisimulation functions for
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dynamical systems [17]. The concept of bisimulation functions introduced in [17]
is more general than what we are going to review here since we only consider
systems without input.

Let φ : X × X → R+ be a bisimulation function between a dynamical system

Σ : dx
dt = F (x), x ∈ X (1)

and itself. Such a function φ satisfies the following requirements:

φ(x1, x2) ≥ 0, (2)
∂φ(x1,x2)

∂x1
f(x1) + ∂φ(x1,x2)

∂x2
f(x2) ≤ 0, (3)

for every x1, x2 ∈ X .
Denote the continuous flow of the dynamical system Σ as ξ : R+ × X → X ,

that is, ξ(t, x0) satisfies the differential equation

∂ξ(t,x0)
∂t = f(ξ(t, x0)), ξ(0, x0) = x0. (4)

Note that the bisimulation function is nonincreasing with respect to the flow.

Proposition 1 ([17]). For any x0
1, x

0
2 ∈ X , the bisimulation function evaluated

along the flows of the initial conditions x0
1 and x0

2 is nonincreasing, i.e. for any
t2 ≥ t1 ≥ 0 it is φ(ξ(t1, x0

1), ξ(t1, x
0
2)) ≥ φ(ξ(t2, x0

1), ξ(t2, x
0
2)).

We denote the ε-neighborhood (or ε-ball) of x ∈ X with respect to a bisimulation
function φ as Bφ(x, ε), i.e. Bφ(x, ε) = {y ∈ X | φ(x, y) ≤ ε}. The following
corollary is a direct consequence of Proposition 1.

Corollary 1. For any x, y ∈ X , if y ∈ Bφ(x, ε) for some ε > 0, then for every
t ≥ 0 it is ξ(t, y) ∈ Bφ(ξ(t, x), ε).

Thus, the ε-neighborhood defined by the bisimulation function φ is invariant
with respect to the flow of the dynamical system. If we define the (directed)
metric dφ(x(·), y(·)) between different state trajectories of the system Σ with
respect to the bisimulation function φ as

dφ(x(·), y(·)) := sup
t≥0

φ(x(t), y(t)),

then the corollary above is equivalent to dφ(ξ(·, x), ξ(·, y)) ≤ φ(x, y) for any
x, y ∈ X . Hereunder, we shall assume that bisimulation functions are symmetric,
that is, φ(x, y) = φ(y, x). A bisimulation function that is symmetric and forms
a metric on the space X is called a contraction metric. Such functions are used
in contraction analysis in relation to the stability of a system [18,19].

When the dynamics are affine,

F (x) = Ax + b for x ∈ R
n, A ∈ R

n×n, b ∈ R
n×1,

we can propose that the bisimulation function assumes the form

φ(x1, x2) = (x1 − x2)T M(x1 − x2),
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Fig. 2. An illustration for Definition 1 and Proposition 2 for j = 1. The line on the left
is the guard g2. Its part with lighter shade, gact

2 is the active part, where the vector
field points outward. The guard g1 is active everywhere, as the vector field there points
outward. The boundary of the unsafe set in this picture is active since the vector field
points into the unsafe set.

where M is a positive semidefinite matrix. Thus, the bisimulation function de-
fines a Euclidean metric in a (linearly) transformed space. It can be shown that
such a bisimulation function is essentially a Lyapunov function, and it exists if
and only if the system is stable [20].

In the following, we are going to construct robust testing neighborhoods using
the level sets of a bisimulation function. For that, we need a few definitions.

Definition 1. For any location l ∈ L we define the set of outgoing transitions
from l as Out(l) ⊆ E. For any transition e = (l, l′, g, r) ∈ Out(l), we denote by
gact the active part of the guard g, which is the part gact ⊂ g of the guard that
can be reached from inside Inv(l), i.e. we exclude from g the points where the
vector field F (·, l) points inward. Similarly, we define Unsafeact to be the portion
of the boundary of the unsafe set that is reachable from the safe portion of the
state space.

See Fig. 2 for an illustration of the definition of the active guard and of the
proposition below.

Proposition 2. Let x0 ∈ Inv(l) for some location l ∈ L, and assume that the
state trajectory ξ(t, x0) lies entirely in Inv(l)\Unsafe for t ≤ τ . Suppose that
Out(l) = {e1, e2, · · · , en} and that gi is the guard of ei, i = 1, . . . , n. Let τ be the
time when the state trajectory hits a guard gj, which is the guard of the transition
ej for some j ∈ {1, . . . , n}. Suppose that we have a bisimulation function φ for
the continuous dynamics in location l. We also assume that there is a positive
time lag ε > 0 such that ξ(τ + ε, x0) /∈ Inv(l). We define
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dout := inf
y∈gj

φ(ξ(τ + ε, x0), y),

di := inf
0≤t≤τ+ε

inf
y∈gact

i

φ(ξ(t, x0), y), i ∈ {1, . . . , n}/{j},

dunsafe := inf
0≤t≤τ+ε

inf
y∈Inv(l)∩Unsafeact

φ(ξ(t, x0), y),

dmin := min{dout, dunsafe, d1, . . . , dj−1, dj+1, . . . , dn},

ε̂ := inf {δ > 0 | Bφ(ξ(τ − δ, x0), dmin) ⊂ Inv(l)} .

The following statement holds. For any x′
0 ∈ Bφ(x0, dmin) ∩ Inv(l), the state

trajectory ξ(t, x′
0) exits Inv(l) through transition ej at time t ∈ [τ − ε̂, τ + ε] and

is safe at least until it exits location l.

Proof. See Fig. 2 for an illustration. By construction of dmin, we can infer that
for any t ∈ [0, τ + ε] and i ∈ {1, . . . , n}/{j}, Bφ(ξ(t, x0), dmin) ∩ gact

i = ∅, and
Bφ(ξ(t, x0), dmin) ∩ Unsafeact ∩ Inv(l) = ∅.

We then invoke Corollary 1 and infer that any state trajectory originat-
ing in Bφ(x0, dmin) will not be unsafe nor touch the active guards gact

i , i ∈
{1, . . . , n}/{j}, within the time interval [0, τ + ε]. We also know that the neigh-
borhood Bφ(ξ(τ + ε, x0), dmin) lies entirely outside of Inv(l), beyond gj . This
implies that any trajectory starting in Bφ(x0, dmin) ∩ Inv(l) crosses gj before
t = τ + ε. Finally, since the neighborhood Bφ(ξ(t, x0), dmin) does not touch any
active guard, for t ∈ [0, τ − ε̂), we also know that the trajectories will not touch
any active guard before time t = τ − ε̂.

Proposition 2 provides us with a way to compute a neighborhood around the
initial state x0, which consists of initial states that have the same qualitative
behavior as x0. Namely, they lead to a trajectory that exits location l by taking
the same transition and which is safe at least until it performs that transition.
In addition to that, we obtain a timing guarantee in the form of a time inter-
val where the transition is guaranteed to occur if the initial state belongs to
the computed neighborhood. The next step is to design an algorithm that uses
Proposition 2 repetitively in order to deal with trajectories that take multiple
transitions.

Given a hybrid automaton H = (X , L, E, Inv, F ). We denote the continuous
flow at every location l ∈ L as ξl(·, ·), and we assume that we have a bisimulation
function for the dynamics in location l ∈ L, which is φl(·, ·). A testing trajectory
is a sequence (xi, li, ei, τi)i=0,··· ,N such that:

– li ∈ L, xi ∈ Inv(li), ei ∈ Out(li), τi > 0, for every i ∈ {0, 1, . . . , N},
– If we define ei = (li, li+1, gi, ri), then ξli(τi, xi) ∈ gi, xi+1 = ri(ξli(τi, xi)),

ξli(t, xi) ∈ Inv(li) for all t ∈ [0, τi), for every i ∈ {0, 1, . . . , N − 1},

We define T :=
∑N−1

i=0 τi, which is the time where the trajectory enters the
final state. The length of the test is T + τN . Given a testing trajectory, the
algorithm for constructing a robust tube around a nominal trajectory is given
as follows.
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Algorithm 1. The following are the steps:

1. Define the avoided set as the union of the unsafe set and active parts of all
the outgoing guards from lN , i.e.2

DN := Unsafeact ∪g∈Out(lN ) gact. (5)

2. Compute (or obtain a lower bound on)

dN
min := inf

t≤τN

inf
y∈DN

φlN (ξlN (t, xN ), y). (6)

3. Define the allowed guard

AN−1 := r−1
N−1(rN−1(gN−1) ∩ BφlN

(xN , dN
min)). (7)

This is the set of states on the guard of the transition between lN−1 and lN
that is reset into the dN

min− neighborhood of xN (with respect to the bisimu-
lation function φlN ).

4. Define the avoided set

DN−1 := (Unsafeact ∪g∈Out(lN−1) gact)\AN−1. (8)

5. Pick a time lag εN−1 > 0 such that

ξlN−1(τN−1 + εN−1, xN−1) /∈ Inv(lN−1).

We present an algorithm for picking a good time lag later in this paper.
6. Compute (or obtain a lower bound on)

dN−1
min := min

(
inf

y∈gN−1
φlN−1(ξlN−1(τN−1 + εN−1, xN−1), y),

inf
t≤τN−1+εN−1

inf
y∈DN−1

φlN−1(ξlN−1(t, xN−1), y)
)

.

7. Define

ε̂N−1 := inf
{
δ > 0 | BφN−1(ξlN−1(τN−1 − δ, xN−1), dN−1

min ) ⊂ Inv(lN−1)
}

.

8. Repeat steps 3 - 7 to obtain Ai, Di, εi, di
min, ε̂i, i = 0, 1, . . . , N − 2.

A property of the result of this iteration is presented in the following the-
orem, whose proof can essentially be constructed by repeated application of
Proposition 2.

2 Notice that for simplicity, we abuse the notation and associate the transition with
its guard.
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Theorem 2. Given a testing trajectory of a hybrid system (xi, li, ei, τi)i=0,··· ,N ,
let d0

min, εi, ε̂i, i = 0, 1, . . . , N − 1 be obtained from the iteration in Algorithm
1. Define

ε :=
N−1∑
i=0

εi, ε̂ :=
N−1∑
i=0

ε̂i.

Any testing trajectory that starts in Bl0(x0, d
0
min) has the following properties.

(i) It follows the same sequence of locations, (li)i=0,...,N and it enters the final
location lN at t ∈ [T − ε̂, T + ε],
(ii) The trajectory is safe at least until τN time unit after it enters lN .

An essential part of Algorithm 1 is the generation of the time lags εi (see Step
5). First of all, notice that a small εi is more desirable than a larger one. This
is because εi is a measure in the slackness in the timing when the trajectories
in the tube hit the desired guard (see Theorem 2). The idea is to construct εi

as small as possible, but large enough so that by introducing this time lag, we
are sure that all the trajectories in the constructed tube hit the desired guard
within the time interval [τi, τi + εi]. In order to do this, we can replace Steps 5
and 6 in Algorithm 1 with the following steps.

Step 5’. Compute

d̂N−1
min := inf

t≤τN−1
inf

y∈DN−1
φlN−1(ξlN−1(t, xN−1), y).

Step 5”. Compute

εN−1 = min
(

inf
{

e | inf
y∈gN−1

φlN−1(ξlN−1(τN−1 + e, xN−1), y) ≥ d̂N−1
min ,

ξlN−1(τN−1 + e, xN−1) /∈ Inv(lN−1)
}

, εmax).

Step 6’. If εN−1 < εmax then dN−1
min = d̂N−1

min , otherwise

dN−1
min = sup

0≤e≤εmax

inf
y∈gN−1

φlN−1(ξlN−1(τN−1 + e, xN−1), y).

In Step 5’ we compute the largest level set that fits within the allowed set.
In Step 5”, we want to find the minimum time lag such that the computed level
set lies entirely beyond the desired guard (and hence outside of the invariant set
Inv(lN−1)). See Fig. 2 for an illustration. Because such time lag might not exist,
or is too large, we can establish a maximum allowed value for the time lag, εmax.
If such time lag is found and is smaller than εmax, then this value is used. If it
is not found, then we compute the largest level set that can be fit outside of the
invariant set. This is done in Step 6’.

4 Test Generation and Coverage Strategies

In the benchmark problem that we are working on, our goal is to cover the given
set of initial states with robust neighborhoods. In the previous section, we have
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presented an algorithm for computing the robust neighborhood around a given
initial state. What needs to be done next is to select subsequent initial states
from the given set, so as to (eventually) cover the whole set and/or to provide a
quantitative measure of coverage based on the executed tests. The strategy for
selecting the test points is called the test generation.

An important issue in test generation is the notion of coverage, which quali-
tatively characterizes the number and the type of tests generated. There are a
number of coverage criteria based on the test requirement, which can be cat-
egorized into two classes: initial state coverage and structural coverage. The
first type of coverage criteria is concerned with covering the set of initial states
and characterizing each test case that has been generated. The second class of
coverage criteria is concerned with analyzing the structural coverage of a test
trajectory, such as location coverage and transition coverage. This notion of cov-
erage can capture more aspects of the execution than just coverage of the initial
states. The main challenge here is how to generate tests so as to meet particular
coverage criteria. In this paper, we are only concerned with the coverage of the
set of initial states and leave the prospect of using our framework to analyze
structural coverage as future work.

There are a number of strategies for initial state coverage:

Randomized Strategy: The first strategy for covering the set of initial states is
to pick points randomly. Consequently, it is hardly possible to guarantee efficient
coverage. However, a randomized strategy might be an attractive option because
of its simplicity.
Greedy Strategy: Under this strategy, we first pick a point and run the testing
algorithm with it. Then, we subtract the computed robust ball around the initial
point from the set of initial states and pick the center of the maximum ball that
can be fitted into the remaining space as the next test point.
Tessellation-based Strategy: Picking points at random may not ensure uni-
form coverage. One possible strategy to ensure uniform coverage is to use tes-
sellation of the initial state space based on an appropriate metric. This strategy
does not scale well as the dimension of the state space increases.
Minimal Dispersal-based Strategy: Picking points so as to minimize the
dispersion [21] of the points in the set of initial states. This strategy involves the
generation of weighted Voronoi diagrams in the set. The goal is to pick the points
incrementally so as to maximize the radius of a non-overlapping ball that can
be inserted in the set. We use this method to analyze the benchmark problem
(see the following section).

5 Numerical Results and Discussion

In this section, we present some numerical results using our prototype MATLAB
implementation of the robust testing algorithm. The experimental results will
helps us discuss the strengths and weaknesses of our approach.

One of the advantages of using robust testing methodologies is that we can
obtain an estimate of the degree of coverage of initial conditions that we have
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Fig. 3. Result after 25 simulations for the problem instance of Example 2

achieved. Theoretically, this can be done by computing the volume of the in-
tersection of the robustness ellipsoid E with the polytope that defines the set
of initial conditions X0. Nonetheless, this is not feasible computation-wise when
the robustness ellipsoid E is not contained inside the set of initial conditions.
Therefore, we compute the maximum ellipsoid that fits inside the intersection
of E and X0. This can lead to a significant under-approximation of the actual
covered space (see Example 3).

The following testing problem provides some inside on the principles behind
our testing algorithm. The planar choice of initial conditions help us visualize
the coverage of initial conditions, since the same is not possible when testing a
4D set of initial conditions.

Example 2. The first case that we consider is testing the navigation benchmark
for the input array C1 and the set of initial conditions X0 = [1, 2] × [1, 2] ×
{−0.2} × {0} with L0 = {(2, 2)} (light gray region in Fig. 3). Here instead of
using the Minimal Dispersal-based Strategy, we create a grid of 25 points which
serve as initial conditions for each simulation. The resulting simulations appear
in Fig. 3.(a). The ellipsoids centered at the initial conditions denote the projec-
tions of the 4D ellipsoids on the position plane x1 −x2. In Fig. 3.(b), we present
the covered space of initial conditions after 25 simulations. Here, the ellipsoids
are the intersection of the corresponding 4D ellipsoids with the position plane.
The gray and black ellipsoids denote covered initial conditions whose correspond-
ing trajectories followed different discrete paths. Note that there exists a clear
partition of X0 into two subsets of initial conditions that initiate trajectories that
traverse different discrete paths. In this case, our proposed under-approximation
algorithm for coverage computed 48% of covered initial conditions.

The next example indicates that when the set of initial conditions is thin and
the system is robust with respect to the specifications (unsafe and/or goal set),
the testing problem becomes easier.

Example 3. Consider again C1, but now with the following set of initial condi-
tions X0 = [2.2, 2.8] × [1.2, 1.8] × {−0.2} × {0} with L0 = {(2, 3)}. This set of
initial conditions has been verified to be safe with respect to the unsafe set in [9].
Using the testing algorithm we can cover the set of initial conditions with only 9
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Fig. 4. Result after 9 simulations for the problem instance of Example 3
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Fig. 5. The testing framework can potentially detect the unsafety of the system with
just one test. Legend: upper left square - initial conditions, lower right square - unsafe
set, upper right square - goal set

simulations (Fig. 4.(a)). In Fig. 4.(a) the ellipsoids represent the intersection of
the corresponding 4D ellipsoids with the position plane, while in Fig. 4.(b) we
present the under-approximation of the aforementioned ellipsoids with ellipsoids
that fit inside X0. Numerically, we compute a coverage estimate of 72%.

The previous example also shows that even though by visual inspection we can
verify that we have tested all the set of initial conditions, numerically we do not
have an accurate way to confirm that. Next, we show the main strength of the
testing framework, i.e. easy detection of robustly unsafe systems.

Example 4. Consider the input array C2 with initial conditions X0 = [0, 1] ×
[2, 3] × [−1, 1] × [−1, 1] and L0 = {(1, 1)}. This was proven to be unsafe with
just 10 simulations (see Fig. 5). Notice the complicated hybrid dynamics.

Finally, we apply our framework to a more demanding example.

Example 5. Here, we use input array C3 with initial conditions X0 = [0, 1] ×
[0, 1] × [−0.1, 0.5]× [−0.05, 0.25] and L0 = {(3, 1)}. This example was proven to
be safe in [22] using the verification toolbox PHAVer [7]. Our testing algorithm
was able to cover 7% of the initial conditions after 300 simulations.
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On-going research is focused on obtaining better estimates of the covered set
of initial conditions. Finally, one of the main advantages of our robust testing
framework is that it can be effectively parallelized by simply assigning a different
test trajectory to each CPU.

6 Concluding Remarks

In this paper, we presented an algorithm for test generation for hybrid systems.
The algorithm is based on a computational method for robust testing. We im-
plemented the algorithm to verify a navigation benchmark problem [9]. One
advantage of our algorithm, compared to some other tools, is that we do not
need to tune any parameter beforehand.

As future research agenda, we identify a number of potential directions. For
example, we are going to develop a framework for robust testing of linear tem-
poral logic properties [23], and develop a probabilistic notion of robust testing
by using the idea of stochastic bisimulation function [24]. The algorithm that
we presented in this paper is also able to provide a timing guarantee for the
occurrence of the transitions. Although this feature is not exploited in the ex-
ample that we presented in this paper, it can potentially be applied in automatic
translation of hybrid automata into timed automata. Such a translation is useful
for example in verification and observer design for hybrid systems [25].
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