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Preface

This volume contains the proceedings of the 10th International Conference on
Hybrid Systems: Computation and Control (HSCC 2007) held in Pisa, Italy,
April 3-5, 2007. The conference, tenth in a series of successful annual meetings,
was dedicated to research in embedded reactive systems involving the interplay
between symbolic/switching and continuous dynamical behaviors, and attracted
academic as well as industrial researchers to exchange information on the latest
developments of theoretical advancements and applications for the design, anal-
ysis, control, optimization, and implementation of hybrid systems. This year, the
scope was broadened to include, along with traditional HSCC topics, areas of
research where the convergence of information and control is currently hottest.
Embedded and real-time control and control of/over communication networks
are two such areas.

The previous workshops in the HSCC series were held in Berkeley, USA
(1998), Nijmegen, The Netherlands (1999), Pittsburgh, USA (2000), Rome, Italy
(2001), Palo Alto, USA (2002), Prague, Czech Republic (2003), Philadelphia,
USA (2004), Zurich, Switzerland (2005), and Santa Barbara, USA (2006). We
were honored to co-chair this prestigious event, which has marked the history of
the convergence of computation and control science and engineering; and even
more so, as this was the tenth anniversary of HSCC.

The program consisted of 3 keynote speeches, 44 regular papers, and 39 short
papers selected from 167 regular submissions. The program covered topics such
as tools for analysis and verification, control and optimization, modeling, and
engineering applications. More details about the conference, the program, and
other activities are available on the conference Web site http://hscc07.dii.unisi.it.

We would like to thank the Program Committee members and reviewers for
an excellent job of evaluating the submissions and participating in the online
Program Committee discussions. Special thanks go to Ed Brinksma (Embedded
Systems Institute, Eindhoven, The Netherlands), Shankar Sastry (University of
California, Berkeley, USA), and John A. Stankovic (University of Virginia, USA)
for their participation as keynote speakers. We are also grateful to the HSCC
Steering Committee for helpful guidance and support. We would like to express
our gratitude to HYCON and ARTIST, Networks of Excellence of the Sixth
Framework Programme of the European Commission, for sponsoring the event.

January 2007 Alberto Bemporad
Antonio Bicchi

Giorgio Buttazzo
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Networked Embedded Systems:

From Sensor Webs to Cyber-Physical Systems

Shankar Sastry

University of California at Berkeley - Berkeley, CA, USA

Abstract. There has been a great deal of excitement in recent years
concerning the evolution of sensor webs of smart dust. There has been
a very substantive active world wide in this area and in particular at
Berkeley there have now been over six generation of ”motes” for these
sensor webs, and at least three new start ups have arisen to commercialize
these developments. I will survey these developments and where they
have brought us in a very important new class of computing involving
an integration of communication and computing. I will describe how
the technology push is matched by the applications pull on numerous
different applications.

Throughout the talk, I will highlight the efforts of my group and that
of my colleagues especially Culler, Pister, Wagner and Brewer in ”closing
the loop” around these networked embedded systems. We believe that
this closing the loop brings into sharp focus the real time constraints
and issues inherent in the use of networked embedded systems. Further,
the most important new directions in sensor webs involve this new di-
rection beyond simply sensing and monitoring the physical environment
and infrastructure. In particular, I will describe the range of methods
and algorithms needed to track multiple targets in a sensor web and
to be able to pursue them. The culmination of this project was a 557
node demonstration that we conducted at the Richmond Field Station
in August 2005. Some areas of future development in sensor networks
involve the use of high bandwidth sensors (such as camera motes) and
mobile sensor webs. I will give a preview of some of the most exciting
opportunities in this regard.

Finally, with our increase dependency on computing and communica-
tion to instrument physical infrastructures, such as electric power, water,
gas, etc. we find that they are not high confidence: that is they are com-
plex systems which may not be correct by construction, or fault tolerant
and are vulnerable to information attack of networked embedded sys-
tems. Such systems are being referred to as high confidence cyber phys-
ical systems. To address this grand challenge societal problem of builing
high confidence cyber physical systems, I will give a snap shot of the
kinds of techniques with, privacy and policy work, in the area of secure
network embedded systems.
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Control Challenges in Wireless Sensor Networks

John A. Stankovic

Department of Computer Science University of Virginia, USA

Abstract. Wireless sensor networks (WSN) composed of large numbers
of small devices that self-organize are being investigated for a wide vari-
ety of applications. Applications, such as military surveillance and large
scale assisted living facilities are key examples of applications that can
benefit from WSN. Current research for WSN is widespread. However,
many of the proposed solutions are developed with simplifying assump-
tions about wireless communication and the environment, even though
the realities of wireless communication and environmental sensing are
well known. Many of the solutions are evaluated only by simulation. In
this talk I describe a fully implemented system, called VigilNet, consist-
ing of a suite of more than 30 synthesized protocols (40,000 lines of code).
The system supports a power aware surveillance, tracking and classifica-
tion application running on 203 XSM motes and evaluated in a realistic,
large-area environment. Technical details and evaluations are presented
for several of the key services. In developing such systems various types of
control challenges occur. I will also discuss a number of these challenges,
possible solutions and open challenges.
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The Challenges of Embedded Systems

Engineering

Ed Brinksma

Embedded Systems Institute, Eindhoven, The Netherlands

Abstract. Embedded system technology has become an important, if
not dominating component in the realization of all sorts of high-tech
products, machines, and infrastructures. The temptation to create sys-
tems with new, powerful, intelligent features has turned embedded soft-
ware into an essential high-tech ingredient that, exploiting the hardware
capabilities afforded by Moore’s law, is subject to exponential growth.
As has been pointed out by many authors before, the complexity of the
embedded software is not just a product of its growing size, but also
results from the required relation between the software and its physi-
cal environment, both in terms of its execution on physical platforms
and in its interaction with the system environment. This combination of
digital control and physical phenomena makes it plausible that hybrid
modelling and hybrid systems theory have a role to play in the design
of embedded systems. Last year Henzinger and Sifakis (The Embed-
ded Systems Design Challenge) suggested that we need the development
of more physically informed models of computation combining analyti-
cal and constructive elements. This would provide a more fundamental
basis for embedded systems design, as well as provide a much needed
paradigmatic change for computer science.

Being in principle sympathetic to the proposed programme from a
scientific point of view, in this talk we want to examine what are the
most pressing problems from an engineering point of view, in particular
from the overall system perspective. The software complexity of high-
tech systems is often related to the system integration, and not to the
embedded software of individual components. The interpretation of the
required integral functionality usually includes engineering disciplines
beyond those related to hardware, software, and control, with particular
methods, models, and tools. It remains to be seen whether deep (i.e.
at the semantic level) integration of relevant models and methods will
ultimately outperform more loosely coupled coalitions of specialized ap-
proaches that are closer to the cultures of the contributing disciplines.
Another practically dominant concern often is the sheer size of the collec-
tive system software. Alternative approaches to design, therefore, must
scale up and support the management of large quantities of design soft-
ware (programs, models, specifications, etc.). In our presentation we will
draw on a number of big industry-as-laboratory projects carried out by
the Embedded Systems Institute.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, p. 3, 2007.
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Computational Approaches to Reachability

Analysis of Stochastic Hybrid Systems

Alessandro Abate1, Saurabh Amin1, Maria Prandini2,
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Abstract. This work investigates some of the computational issues
involved in the solution of probabilistic reachability problems for discrete-
time, controlled stochastic hybrid systems. It is first argued that, under
rather weak continuity assumptions on the stochastic kernels that char-
acterize the dynamics of the system, the numerical solution of a dis-
cretized version of the probabilistic reachability problem is guaranteed
to converge to the optimal one, as the discretization level decreases. With
reference to a benchmark problem, it is then discussed how some of the
structural properties of the hybrid system under study can be exploited
to solve the probabilistic reachability problem more efficiently. Possible
techniques that can increase the scale-up potential of the proposed nu-
merical approximation scheme are suggested.

1 Introduction

This paper addresses the problem of determining the control policy that maxi-
mizes the probability that a stochastic system will remain within a safe set over
some look-ahead time horizon (finite-time probabilistic reachability problem).
We focus on the discrete time controlled stochastic hybrid system (DTSHS)
model introduced in [1], and consider the case when the control input to be
applied at a certain time is selected based only on the value of the state at
that same time (Markov policy). Following the approach in [1,2], the stochastic
reachability problem of interest can be formulated as a finite-horizon optimal
control problem with a multiplicative cost function to be maximized. This op-
timal control problem, in turn, can be solved by dynamic programming (DP).
This requires to introduce a cost-to-go function and to determine the value of
the control input maximizing the cost-to-go function along the reference time
horizon for all values of the state within the safe set. Since an analytic solution
to the DP equation is generally hard to find, the computational aspects of the
problem are of key importance to its actual implementation. This is the main
motivation of the present work.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 4–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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There are two approaches to the problem: the first is to resort to a numerical
approximation scheme relying on the discretization of the continuous state and
control input spaces (gridding approach). Alternatively, one can introduce a fam-
ily of finitely parameterized functions, and then look for the cost-to-go function
within that family (neuro-dynamic programming approach [9]).

Here, we study a gridding procedure for the numerical solution to the DP
equation of the stochastic reachability problem. We assess the convergence of
the numerical solution to the actual solution as the grid size goes to zero, and
derive explicit bounds on the level of approximation introduced for a given small
but nonzero grid size. The study is inspired by the reference work [3], discussing
discretization procedures for the numerical solution to DP in the additive cost
case and for stochastic –non hybrid– systems: we extend this approach to a
hybrid system setting with multiplicative cost and general disturbances. A nu-
merical approximation scheme was proposed in [6] for estimating the probability
of remaining within a safe set for a certain class of autonomous, continuous
time stochastic hybrid systems. The discretization process in that case involved
gridding the system both in time and in space. Convergence of the estimate to
the true probability as the grid size goes to zero was proven, but no bounds
were provided for assessing the quality of the estimates derived for a small but
nonzero grid size.

Furthermore, we reinterpret some ideas proposed in [4] and [5] within the
hybrid systems framework to suggest that structural properties of the problem,
such as its decentralized nature, may be exploited to obtain a more compact state
representation and efficient implementation of the computations involved in the
solution to DP. This feature may partly mitigate the curse of dimensionality
that affects DP as well as other approaches proposed in the literature to address
the reachability problem [8].

The rest of the paper is organized as follows. We first briefly recall the DTSHS
model of [1] in Section 2 and describe the DP algorithm to solve the probabilistic
reachability problem in Section 3. Section 4 proposes a numerical approximation
scheme for solving the DP algorithm. Based on some regularity assumptions on
the stochastic kernels that characterize the system dynamics, convergence of the
numerical scheme and explicit bounds assessing the quality of the approximated
solution to DP are shown in Section 5. Section 6 illustrates the convergence
properties and scaling issues of the proposed numerical approximation scheme
with reference to a multi-room heating benchmark. Possible extensions regard-
ing efficient representations and computation of solutions are finally outlined in
Section 7.

2 Stochastic Hybrid System Model

In this section we briefly recall the discrete time stochastic hybrid system
(DTSHS) model first introduced in [1].

Definition 1. A discrete time stochastic hybrid system (DTSHS) is a tuple
H = (Q, n, A, Tx, Tq, R), where
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– Q := {q1, q2, . . . , qm}, for some m ∈ N, represents the discrete state space;
– n : Q → N assigns to each discrete state value q ∈ Q the dimension of

the continuous state space R
n(q). The hybrid state space is then given by

S := ∪q∈Q{q} × R
n(q);

– A is a compact Borel space representing the control space;
– Tx : B(Rn(·))×S×A → [0, 1] is a Borel-measurable stochastic kernel on R

n(·)

given S × A, which assigns to each s = (q, x) ∈ S and a ∈ A a probability
measure on the Borel space (Rn(q), B(Rn(q))): Tx(dx|(q, x), a)

– Tq : Q × S × A → [0, 1] is a discrete stochastic kernel on Q given S × A,
which assigns to each s ∈ S and a ∈ A, a probability distribution over Q:
Tq(q|(q, x), a);

– R : B(Rn(·)) × S × A × Q → [0, 1] is a Borel-measurable stochastic kernel
on R

n(·) given S × A × Q, that assigns to each s = (q, x) ∈ S, a ∈ A,
and q′ ∈ Q, a probability measure on the Borel space (Rn(q′), B(Rn(q′))):
R(dx|(q, x), a, q′). ��

The system initialization at time k = 0 is specified through some probability
measure π : B(S) → [0, 1] on the Borel space (S, B(S)), where B(S) is the
σ-field generated by the subsets of S of the form ∪q{q} × Bq, with Bq denoting
a Borel set in R

n(q). With reference to the time horizon [0, N ], we next define
the notion of Markov policy.

Definition 2. Consider a DTSHS H = (Q, n, A, Tx, Tq, R). A Markov policy
for H is a sequence μ = (μ0, μ1, . . . , μN−1) of universally measurable maps μk :
S → A, k = 0, 1, . . . , N − 1. We denote the set of Markov policies as Mm. ��

For conciseness sake, we can introduce the Borel-measurable stochastic kernel
Ts : B(S)×S×A → [0, 1] on S given S×A, which assigns to each s = (q, x), s′ =
(q′, x′) ∈ S, a ∈ A a probability measure on the Borel space (S, B(S)) as follows:

Ts(ds′ |s, a) =

{
Tx(dx′|(q, x), a)Tq(q′|s, a), if q′ = q

R(dx′|(q, x), a, q′)Tq(q′|s, a), if q′ �= q.
(1)

Definition 3. An execution for a DTSHS H = (Q, n, A, Tx, Tq, R) associated
with a policy μ = (μ0, μ1, . . . , μN−1) ∈ Mm and an initial distribution π is a
stochastic process {s(k), k ∈ [0, N ]} with values in S whose sample paths are
obtained according to the following algorithm:
extract from S a value s0 for s(0) according to π;

for k = 0 to N − 1

set ak = μk(sk);

extract from S a value sk+1 for s(k + 1) according to Ts(· |sk, ak);

end ��
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A DTSHS H can then be described as a controlled Markov process with state
space S, control space A, and controlled transition probability function Ts :
B(S) × S × A → [0, 1] defined in (1). Thus, the execution {s(k), k ∈ [0, N ]}
associated with μ ∈ Mm and π is a time inhomogeneous stochastic process
defined on the canonical sample space Ω = SN+1, endowed with its product
topology B(Ω), with probability measure Pμ

π uniquely defined by the initial
probability measure π on (S, B(S)) and one-step transition kernels T μk

s (ds′|s) :=
Ts(ds′|s, μk(s)), k = 0, 1, . . . , N − 1. When π is concentrated at {s}, s ∈ S, that
is π(ds) = δs(ds), we shall write simply Pμ

s .

3 Probabilistic Reachability Problem

Given a stochastic hybrid system H, a Borel compact set D ∈ B(S), and a
Markov policy μ ∈ Mm, let

pμ
π(D) := Pμ

π (s(k) ∈ D for all k ∈ [0, N ])

denote the probability that the execution of H associated with policy μ and
with the initial state distribution π will stay within set D over the time horizon
[0, N ]. If π is concentrated at {s}, s ∈ S, we use the notation pμ

s (D). If set D
represents a safe set for H, by computing pμ

s (D), we shall evaluate the safety level
for system H when it starts from s ∈ D and is subject to policy μ. The objective
is to determine the Markov policy that maximizes the probability pμ

π(D).
Let 1C : S → {0, 1} denote the indicator function of a set C ⊆ S: 1C(s) = 1,

if s ∈ C, and 0, if s �∈ C. Observe that

N∏
k=0

1D(sk) =

{
1, if sk ∈ D for all k ∈ [0, N ]
0, otherwise,

where sk ∈ S, k ∈ [0, N ]. Then,

pμ
π(D) = Pμ

π

(
N∏

k=0

1D(s(k)) = 1

)
= Eμ

π

[
N∏

k=0

1D(s(k))

]
. (2)

One can then introduce functions V μ
k : S → [0, 1], k = 0, 1, . . . , N , associated

with a Markov policy μ:

V μ
k (s) := 1D(s)

∫
SN−k

N∏
l=k+1

1D(sl)
N−1∏

h=k+1

Ts(dsh+1|sh, μh(sh))Ts(dsk+1|s, μk(s)),

s ∈ S, where Ts is the controlled transition function of the embedded controlled
Markov process, and

∫
S0(. . . ) = 1. These functions are known as cost-to-go

functions because they satisfy V μ
k (s) = Eμ

π [
∏N

h=k 1D(s(h))|s(k) = s] for any
s ∈ S within the support of the distribution of s(k). Thus, V μ

k (s) returns the
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value of the probability of remaining within D over the (residual) time horizon
[k, N ] starting from s at time k, under policy μ ∈ Mm applied from π.

For any policy μ ∈ Mm, the cost-to-go functions V μ
k : S → [0, 1], k =

0, 1 . . . , N , can be computed by the backward recursion:

V μ
k (s) = 1D(s)

∫
S

V μ
k+1(sk+1)Ts(dsk+1|s, μk(s)), s ∈ S, (3)

initialized with V μ
N (s) = 1D(s), s ∈ S, [1].

From equation (2) we have that

pμ
π(D) =

∫
S

Eμ
π

[ N∏
k=0

1D(s(k))| s(0) = s
]
π(ds) =

∫
S

V μ
0 (s)π(ds). (4)

Moreover, given that μ ∈ Mm and that the execution associated with a Markov
policy is a Markov process, it is easily seen that Eμ

π [
∏N

k=0 1D(s(k))| s(0) = s] =
pμ

s (D); hence, pμ
π(D) =

∫
S Pμ

s (D)π(ds).

Definition 4. Let H = (Q, n, A, Tx, Tq, R) be a DTSHS and D ∈ B(S) a safe
set. A Markov policy μ∗ is maximally safe if pμ∗

s (D) = supμ∈Mm
pμ

s (D), ∀s ∈ D.
��

In view of (4), a maximally safe Markov policy in fact maximizes Pμ
π (D) for any

initial state distribution π. The following theorem was shown in [1]:

Theorem 1. Define functions V ∗k : S → [0, 1], k = 0, 1, . . . , N , by the following
dynamic programming algorithm:

V ∗k (s) = sup
a∈A

1D(s)
∫
S

V ∗k+1(sk+1)Ts(dsk+1|s, a), s ∈ S, (5)

initialized with V ∗N (s) = 1D(s), s ∈ S.

Then, V ∗0 (s) = supμ∈Mm
Pμ

s (D) for all s ∈ S. Moreover, if Uk(s, λ) = {a ∈
A|1D(s)

∫
S V ∗k+1(sk+1)Ts(dsk+1|s, a) ≥ λ} is compact for all s ∈ S, λ ∈ R,

k ∈ [0, N − 1], then there exists a maximally safe policy μ∗ = (μ∗0, . . . , μ
∗
N−1),

with μ∗k : S → A, k ∈ [0, N − 1], given by

μ∗k(s) = arg sup
a∈A

1D(s)
∫
S

V ∗k+1(sk+1)Ts(dsk+1|s, a), ∀s ∈ S, (6)

and V μ∗

k (s) = V ∗k (s), s ∈ S, k = 0, 1, . . . , N .

In the sequel, we consider the case when

Assumption 1. The control space A is a finite set. ��

Under this assumption, the compactness condition in Theorem 1 for the existence
of a maximally safe Markov policy is not required. The results illustrated next
can be extended to the case when A is a compact uncountable set in an Euclidean
space following a similar line of reasoning.
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4 Numerical Approximation Scheme

In this section we describe a numerical scheme for determining an approximately
maximally safe policy based on the characterization of a maximally safe policy
given in Theorem 1.

For the purpose of numerical approximation, it is important to note that
the DP algorithm (5) as well as the optimal argument in equation (6) can be
restricted to the compact set D of the state space as follows:

V ∗k (s) = max
a∈A

∫
D

V ∗k+1(sk+1)Ts(dsk+1|s, a), s ∈ D, (7)

initialized with V ∗N (s) = 1, s ∈ D, and

μ∗k(s) = arg max
a∈A

∫
D

V ∗k+1(sk+1)Ts(dsk+1|s, a), ∀s ∈ D. (8)

This is quite intuitive, since for values of the state outside D the cost-to-go
function is identically zero for any μ and the optimal policy μ∗ : S → A can be
set arbitrarily. Thus, we just have to consider the values for the state within the
compact set D. The advantage of restricting the state space to the compact set
D is that we can adopt a finite discretization in the numerical approximation
scheme for solving the dynamic programming algorithm and determining the op-
timal policy μ∗. Moreover, under suitable regularity conditions on the transition
kernels defining the DTSHS, the optimal cost-to-go functions can be shown to
be Lipschitz continuous over D in the continuous state component. This prop-
erty (valid only within D, given the discontinuity when passing from a safe state
within D to an unsafe state outside D) is used for determining bounds to the
numerical approximated solution.

4.1 Discretization Procedure

State discretization. As discussed before, we can restrict computations to the
compact safe set D. Thus we only need to discretize D. The set D ⊂ S is given
by D = ∪q∈Q{q} × Xq. The size of the continuous state space within D is
measured by λ := maxq∈Q L(Xq), where L(Xq) denotes the Lebesgue measure
of the set Xq ⊂ R

n(q). For simplicity, we assume that the compact set Xq is not
empty, for all q ∈ Q. Let us introduce a partition of cardinality mq of the set
Xq ⊂ R

n(q), q ∈ Q: Xq = ∪mq

i=1X
q
i , where Xq

i , i = 1, . . . , mq, are pairwise disjoint
Borel sets Xq

i ∈ B(Rn(q)), Xq
i ∩ Xq

j = ∅, ∀i �= j. For any q and i, pick a hybrid
state value vq

i ∈ {q} × Xq
i . The set of all discrete values for the hybrid state

is G := {vq
i , i = 1, . . . , mq, q ∈ Q}. Notice that the compactness assumption on

D ensures the finiteness of the cardinality of G. Denote with dq
i the diameter of

the set Xq
i , dq

i = sup{‖x − x′‖ : x, x′ ∈ Xq
i }. Then, Δ := maxi=1,...,mq,q∈Q dq

i

represents the grid size parameter.
Note that, differently from [3] where the system dynamics is described through

a difference nonlinear equation affected by a stochastic disturbance taking value
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in a finite set, we do not have any disturbance input appearing explicitly. The
definition of the dynamics of the system via stochastic kernels incorporates both
the disturbance effect and the deterministic contribution to the system evolution
(see the example in Section 6). As a consequence, by discretizing the state space,
we implicitly define a discretization of the disturbance space.

Dynamic Programming approximation. With reference to the finite state
grid G, we introduce a discretized version of the dynamic programming algo-
rithm (7). For k = 0, 1, . . . , N −1, compute the approximated optimal cost-to-go
functions as follows

V̂ ∗k (vq
i ) = max

a∈A

∫
D

V̂ ∗k+1(s)Ts(ds|vq
i , a), if vq

i ∈ G (9)

V̂ ∗k (s) = V̂ ∗k (vq
i ), if s ∈ {q} × Xq

i , for some i ∈ {1, . . . , mq}, q ∈ Q,

with V̂ ∗N (s) = 1, s ∈ D.
Note that due to the piecewise constant approximation of the optimal cost-

to-go function and to the definition of Ts in Eqn. (1), the integral in equation
(9) can be rewritten as

V̂ ∗k (vq
i ) = max

a∈A

{ ∑
j=1,...,mq

V̂ ∗k+1(v
q
j )Tq(q|vq

i , a)
∫

Xq
j

Tx(dx|vq
i , a)

+
∑

j = 1, . . . , mq̄,
q̄ �= q ∈ Q

V̂ ∗k+1(v
q̄
j )Tq(q̄|vq

i , a)
∫

X q̄
j

R(dx|vq
i , a, q̄)

}
,

which explicitly shows that (9) consists of a computation on the finite grid G.
Based on the approximated optimal cost-to-go V̂ ∗k , we define a Markov policy

μ̂∗ = (μ̂∗0, . . . , μ̂
∗
N−1), μ̂∗k : S → A, k ∈ [0, N − 1], as follows:

μ̂∗k(vq
i ) = arg max

a∈A

∫
D

V̂ ∗k+1(s)Ts(ds|vq
i , a), if vq

i ∈ G,

μ̂∗k(s) = μ̂∗(vq
i ), if s ∈ {q} × Xq

i , for some i ∈ {1, . . . , mq}, q ∈ Q. (10)

As for any other policy, μ̂∗ can be arbitrarily selected outside D.
The performance of such policy μ̂∗ is given by the corresponding values for the

cost-to-go functions V μ̂∗

k , k = 0, 1, . . . , N , that can be computed by the recursion
in (3). In particular, V μ̂∗

0 (s), s ∈ D, provides the value of the probability that
the system will remain within D in the time horizon [0, N ] starting from s ∈ D
under policy μ̂∗.

In the following section, we shall show that, under proper assumptions, the
performance of policy μ̂∗ tends to the one of a maximally safe policy, as the grid
size parameter Δ goes to zero.
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5 Convergence Analysis

We suppose that the stochastic kernels Tx and R on the continuous component
of the hybrid state in Definition 1 of the DTSHS admit density tx and r. We
further assume that tx and r as well as the stochastic kernel Tq satisfy the
following Lipschitz condition.

Assumption 2

1. |Tq(q̄|s, a) − Tq(q̄|s′, a)| ≤ k1‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D,
a ∈ A, and q̄ ∈ Q,

2. |tx(x̄|s, a) − tx(x̄|s′, a)| ≤ k2‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D,
a ∈ A, and (q, x̄) ∈ D,

3. |r(x̄|s, a, q̄) − r(x̄|s′, a, q̄)| ≤ k3‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D,
a ∈ A, (q̄, x̄) ∈ D, and q̄ �= q,

where k1, k2 and k3 are suitable Lipschitz constants. ��

Based on this assumption, we can prove that the optimal cost-to-go functions
satisfy some Lipschitz condition over D. This property will be fundamental in
proving the convergence result. Due to space limitations, proofs are omitted.

Theorem 2. Under Assumption 2 the optimal cost-to-go functions satisfy the
following Lipschitz condition over D:

|V ∗k (s) − V ∗k (s′)| ≤ K‖x − x′‖, ∀ s = (q, x), s′ = (q, x′) ∈ D, (11)

for any k ∈ [0, N ]. The constant K is given by K = mk1 + λ
(
k2 + (m − 1)k3

)
.

Based on Theorem 2, the following convergence result can be proven.

Theorem 3. UnderAssumption 2, there exist positive constants γk, k=0, . . . , N,
such that the solutions V̂ ∗k to the approximated dynamic programming equations
(9) and the cost-to-go functions of the corresponding Markov policy μ̂∗ defined
in (10) satisfy: ∣∣V ∗k (s) − V̂ ∗k (s)

∣∣ ≤ γkΔ, s ∈ D,∣∣V ∗k (s) − V μ̂∗

k (s)
∣∣ ≤ νkΔ, s ∈ D.

where γk = γk+1 + K, k = 1, 2 . . . , N − 1, initialized with γN = 0, νk = γk +
γk+1 + K + νk+1, k = 1, 2 . . . , N − 1, initialized with νN = 0, and K = mk1 +
λ
(
k2 + (m − 1)k3

)
.

From this theorem it follows that the quality of the approximation by the nu-
merical procedure described in equations (9) and (10) improves as the grid size
parameter Δ decreases. The rate of convergence is linear in Δ with a constant
that depends on the Lipschitz constants k1, k2, and k3 in Assumption 2 through
the K constant defined in Theorem 2. This is not surprising because we are using
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a piecewise constant approximation of the optimal cost-to-go function and we
expect that the optimal cost-to-go function is smoother as k1, k2, and k3 are
smaller. As the time horizon grows, the approximation error propagates. This is
taken into account by the constants γk and νk in Theorem 3 that grow linearly
as k decreases from N to 0, where N is the length of the time-horizon.

6 Computational Study

In this section we present the results of a computational study for a multi-room
heating benchmark inspired by [1,7]. We numerically analyze the convergence of
quantities computed by the discretization scheme proposed in Section 4.1. We
also propose possible improvements in the implementation when the underlying
structure of the DTSHS can be exploited to implement the DP algorithm in a
computationally efficient manner.

The benchmark in [7] deals with the problem of regulating temperature in a
house with n rooms via m heaters. In this report we focus on m = 1, the single
heater case. The state of the system can be described as a hybrid state with
discrete state component described by the position and status of the heater.
The continuous state component can be described by the average temperature
in each of the rooms. Let Δt be the time step and N be the total number of
time intervals. Let xi(k) denote the average temperature in room i at time k,
xa the ambient temperature and hi a boolean vector of size equal to the number
of rooms with components equal to 1 if the heater is present and in the “on”
status in the corresponding room, and 0 otherwise. The average temperature in
room i is governed by the following linear stochastic difference equation:

xi(k + 1) = xi(k) +
(
bi(xa − xi(k)) +

∑
i�=j

ai,j(xj(k) − xi(k)) + cihi

)
Δt + ni(k) (12)

where, ai,j , bi, ci are constants and {ni(k), k = 0, . . . , N} is a sequence of i.i.d
Gaussian random variables with zero mean and variance ν2. For i �= j, E[ninT

j ] =
0. The heater is controlled by a thermostat that is prone to delay and failures in
switching the heater between one room to another and between the “on” and “off”
status: the effect of these control actions on the discrete state transitions is speci-
fied by a finite-state, finite-action, controlled Markov chain which is independent
of the continuous state, that is, Tq : Q × Q × A → [0, 1]. One can easily check
that the number of possible discrete states is n + 1 and the maximum number of
available control actions is n(n + 1) + 1. We define the compact safe set to be

D = ∪q∈{1,...,(n+1)} ∪i∈{1,...,n} {q} × {i} × [xq
li, x

q
ui],

where xq
ui and xq

ui specify the lower and upper limits for the desired temperature
in room i for discrete state q. For simplicity, these are assumed to be independent
of i and q. We now describe the discretization procedure as follows: we adopt
a uniform partitioning of the set [xq

li, x
q
ui] into m disjoint intervals each of size

κ = (xq
ui −xq

li)/m. Therefore, [xq
li, x

q
ui] = [xq

li, x
q
li +κ)∪ . . .∪ [xq

li +(m−1)κ, xq
ui].

The value of the temperature in room i for the discrete state q is defined by
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eq
rii

= xq
li + (ri − 1)κ, where ri ∈ {1, . . . , m}. Define r = [r1, . . . , rn]T . We

pick vq
r = (q, [eq

r11, . . . , e
q
rnn]T ) as hybrid state value. Thus, the set of all dis-

crete values for the hybrid state is G = {vq
r , r = [r1, . . . , rn]T ; ri = 1, . . . , m; i =

1, . . . , n; q = 1, . . . , (n + 1)}. Let N (·; η, σ2) denote the probability measure over
(R, B(R)) associated with a Gaussian density function with mean η and vari-
ance σ2. Then the stochastic kernel Ts(ds′|vq

r , a) that is used in the discretized
dynamic programming equations (9) can be defined as follows:

Ts(ds′|vq
r , a) = Tx(dx′|vq

r , a)Tq(q′|q, a),

for vq
r ∈ G, a ∈ A, and s′ ∈ S. Here, Tx(·|vq

r , a) = N (·; μq
r, ν

2In), In being the
identity matrix of size n, μq

r = [μq
r1

, . . . , μq
rn

]T and μq
ri

= eq
ri

+
(
bi(xa − eq

ri
) +∑

i�=j ai,j(eq
rj

−eq
ri

)+cihi

)
Δt. It is easy to check that Tx(dx′|vq

r , a) and Tq(q′|q, a)
satisfy the Assumption 2.

6.1 Convergence Properties

We first analyze the convergence properties of the discretization scheme for the
case when n = 2 (two rooms). The number of modes is 3 and maximum number
of allowable control actions is 7, as shown in Figure 1(a). The computations are
performed for the safe set D = ∪q∈{1,2,3} ∪i∈{1,2} {q} × {i} × [17.5, 22]oC. The
size of time interval is Δt = 1/15 and the number of intervals is N = 60. The
parameters values in equation (12) are: xa = 6, b1 = b2 = 0.25, a12 = a21 =
0.33, c1 = 12, c2 = 14 and ν2 = 0.9. All the parameters should be interpreted
in appropriate units. For each control action by the thermostat that elicits a
transition between two different modes of the heater, the transition happens
with probability 0.8. The remaining 0.2 probability is divided evenly between
the “do nothing” transition that models the delay and the transition to the
third, non-recommended mode that models a faulty behavior.

Fig. 1. (a) Maximum available control actions for n = 2. (b) Maximum available
control actions for n = 3. (c) Reduced number of available control actions for n = 3.
The discrete states are assigned numbers clockwise starting from the top-left state.

The computations of the solutions V̂ ∗0 to the approximated DP equations in
(9) were performed for four discretization levels: m ∈ {9, 18, 36, 45}. Inspired
by [1], we define the approximately maximal probabilistic safe sets Ŝ∗(ε) with
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Fig. 2. Maximal probabilistic safe sets corresponding to safety levels:
0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.96 and 0.97 for the case n = 2 and initial dis-
crete state “off’. In going from left-to-right and top-to-bottom, the plots correspond
to discretization levels of 9, 18, 36 and 45 respectively.

safety level (1 − ε) as Ŝ∗(ε) = {s ∈ S : V̂ ∗0 (s) ≥ (1 − ε)}. Figure 2 shows the
approximately maximal safe sets when the initial discrete state is “off”, and
corresponding to different safety levels. As expected, the maximal safe sets get
smaller as the required safety level increases. Furthermore, as the discretization
level decreases, the maximal safe sets tend to graphically converge: this visually
confirms the numerical convergence of the proposed discretization scheme.

The optimal control actions for the case when the initial discrete state is
“off” are plotted in Figure 3 for the four discretization levels and k = 1.
The optimal actions at finer resolution were obtained from that of coarser res-
olution by nearest neighbor interpolation. It can be noticed that the regions
of optimal recommended actions become more well-formed and again visually
converge as the discretization step decreases.

6.2 Scaling to Higher Dimensions

We now present the results from the three-room, one heater benchmark case. For
this case, the number of continuous states is n = 3, the number of discrete states
is 4 and maximum number of allowable actions is 13, as shown in Figure 1(b).
The safe set is specified to be D = ∪q∈{1,2,3,4} ∪i∈{1,2,3} {q}× {i}× [17.5, 22]oC.
The size of time interval is Δt = 1/15 and the number of intervals is N = 60.
The parameters values in equation (12) are: a12 = a21 = 0.80, a13 = a31 = 0.60,
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Fig. 3. Maximally safe actions for the case n = 2, initial discrete state “off” and k = 1.
In going from left-to-right and top-to-bottom, the plots correspond to discretization
levels of 9, 18, 36 and 45 respectively. The colors black, white and grey respectively stand
for “do nothing”, “switch heater to room 1” and “switch heater to room 2” actions.

Fig. 4. Maximal probabilistic safe sets corresponding to a safety level of 0.95 for the
case when n = 3 and initial discrete state is “off’. Available control actions are shown
in Figure 1(b). In going from left to right and top to bottom, the plots correspond to
k = 60, 55, 50, 40, 20 and 1.
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Fig. 5. Maximal probabilistic safe sets corresponding to the safety level 0.95 for the
case n = 3 and initial discrete state “off’. The reduced set of available control actions
is shown in Figure 1(c). In going from left-to-right, the plots correspond to k = 55, 50
and 45. The safe set for k = 60 is same as the corresponding safe set in Figure 4.

a23 = a32 = 0.70, xa = 6, b = [0.30, 0.20, 0.30]T , c = [12.00, 14.00, 12.00]T

and ν2 = 0.33. Similar to the two-room case, the effect of control actions is
described by a controlled Markov chain. The exact details are omitted due to
space limitations. The computation of the DP algorithm was performed for the
discretization level m = 18. Figure 4 shows the maximal safe sets corresponding
to the safety level 1 − ε = 0.95, at different times. As expected, as the number
of steps-to-go increases, the size of the safe sets also decreases. It is of interest
to compare the effect of number of available control actions on the size of the
maximal safe set. In order to study this, we performed the DP computations
for the three-room, one heater example for the reduced set of actions shown
in Figure 1(c). The resulting maximal safe sets corresponding to safety level
1 − ε = 0.95 are shown in Figure 5. We observe that the maximal safe set is
becomes very small and eventually decreases to the empty set as the number of
steps-to-go increases.

We finally notice an important structural property of the benchmark, namely
the conditional independence of the continuous stochastic kernel: Tx(x̄|vq

r , a) =
Tx(x̄1|vq

r , a)× . . . ×Tx(x̄n|vq
r , a). This enables us to efficiently compute the state

transition probabilities.

7 Possible Extensions and Future Work

The above discretization schemes can be directly extended to the case of
uncountable, but compact control space (see Assumption 1) in a similar way.
We shall include the details of this in a future work.

Even in the presence of the conditional independence property of the con-
tinuous transitions kernel, increasing the problem size further will make the
computation of approximate cost-to-go value functions prohibitively expensive.
This motivates the study of more efficient approaches to solve the DP algo-
rithm in hybrid state space; the literature suggests some methods to attack this
problem. One technique exploits some decentralization in the structure of the
state-space in order to distribute the computations: the HS structure naturally
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yields itself to this distributed approach according to the topology of the under-
lying graph consisting of the modes and the edges of the HS. In [4], an approach
to asynchronously perform in parallel the computations with proven convergence
is suggested. A second more recent approach is to solve large-scale Markov Deci-
sion Processes (MDPs) by approximating the optimal value function by a linear
combination of basis functions and finding the associated optimal weights by lin-
ear programming [5]. The authors are currently investigating and experimenting
these methods that leverage on the structure of the DP to achieve computation-
ally attractive performances for the proposed schemes, to be further tested on
the benchmark [7] and compared to other approaches in the literature.
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Abstract. The aim of this paper is twofold. On one hand we present an
approach to the general problem of nonlinear control in the framework
of (differentiable) groupoids, which, in our opinion deserves further in-
vestigation. On the other hand, using recently-developed algebraic tools,
we show that for a control system whose state space is a semisimple Lie
group (like SO(3)), it is possible to reach a dense subset of the state
space using just two properly chosen discrete controls, and this property
is robust with respect to the choice of controls.

1 Introduction

Traditionally, system theory focused separately on discrete event systems or con-
trolled dynamic systems with a continuous state space. On the other hand, the
actual system configuration in many real-life applications involves a closed in-
teraction of such components. For instance a physical plant, modeled in terms
of a differential controlled system, is interfaced to the controller via encoding of
its outputs with a finite set of symbols (an alphabet) through an A/D converter.
Usually, in this framework also the control actions decided by the controller and
fed-back to the plant are symbols encoded in a (possibly) different alphabet.
More specifically, quantized control systems (QCSs) provide a unified frame-
work to deal with several real-world systems, ranging from plants where the
hardware implementations admits information transfer with a finite bandwidth
to applications implementing switching actuators.

A complete analysis of the reachable sets for linear QCSs appears for the
first time in [1] using deep results in number theory. This line of research has
been further extended to include the analysis of reachable sets and the synthesis
of steering paths (motion planning) for some classes of nonlinear systems, such
as systems which are feedback equivalent to chained form systems (see [2]),
systems that are feedback equivalent to the strictly triangular form (see [3]) and
systems consisting of a polyhedral body rolling on a planar surface (see [4]).

A somehow different perspective has been championed in [5, 6, 7] and more
recently in [8]. In these works the focus is on the purposeful introduction of con-
trol quantization in the design of control systems through the implementation
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of a Motion Description Language. In particular, in [7] through the introduc-
tion of motion primitives as equivalence classes of suitable trajectories and the
composition of compatible maneuver motion primitives and trim primitives solve
the motion planning for a small helicopter through a Maneuver Automaton.
A feature of these works is the use of group-theoretic methods, resulting in a
group-theoretic formulation of the QCSs [9]. In this paper, we present a differ-
ent theoretical framework for quite general control systems, through the use of
groupoids, which provide a wide generalization of previous set-ups. In particular
groupoids enables one to preserve information concerning the action of a group
on a set, even when the action is restricted to a non-invariant subset of the orig-
inal set, thus destroying the original action. In this contribution we will just give
a first insight on the possible use of groupoids in control theory, and we think
that further study should be reserved to this area.

Another common aspect of the aforementioned papers on QCSs is the neces-
sity of having Abelian symmetries in order to analyze the structure of reachable
sets and to plan the motion among initial and final configurations. Indeed, gen-
erally speaking, those analyses are based on a global splitting of the variables of
a control system in base variables and fiber variables, thus relying on the struc-
ture of a global fibration. In the systems analyzed so far it turns out that the
reachable sets have either the structure of a lattice or are dense in the config-
uration space, depending on the fact that some resonance conditions, involving
the control quanta, are satisfied or not. For instance, in [3] it is proved that for
driftless nonholonomic systems that are feedback equivalent to the strictly tri-
angular form a control quanta set Δ = {δ1, . . . , δN} is exhaustive in R

n (namely
the reachable set is a dense subset of the state manifold R

n) iff N ≥ n + 1,
the first n elements of Δ (up to a permutation) are linearly independent and
moreover the following condition holds:

δN · δi

‖δi‖
∈ R\Q, i = 1, . . . , n. (1)

From a practical point of view, conditions like (1) can not be exactly checked
or met in real-world applications. Moreover, the conditions expressed in (1) are
unstable with respect to arbitrarily small perturbation or disturbance. So the
structure of the reachable sets is not robust to small errors in the set Δ.

The main contribution of this paper is twofold. First of all, we sketch a frame-
work for the use of groupoids in control modeling. Secondly, we show that there
is a very special class of nonlinear driftless QCSs, possessing nonabelian sym-
metries, for which the reachable sets are dense in the state space and they are
robust with respect to uncertainties concerning control quanta. These examples
arise as control systems whose state spaces are semisimple Lie groups.

2 A Groupoid-Theoretic Point of View

The extension from groups to groupoids starts with the desire to describe re-
versible processes which may traverse a number of states. Here are two equivalent
formal definitions:
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Definition 1 (Short). A groupoid G is a small category (i.e. a category whose
class of objects is a set), where each morphism is an isomorphism.

Definition 2 (Long). A groupoid G is quintuple (G0, G1, s, t, i), where G0 is
the set of objects, G1 is the set of arrows, s : G1 → G0 is the source map (it
identifies the source of the arrow to which is applied), t : G1 → G0 is the target
map (it identifies the target of the arrow to which is applied) and i : G0 → G1
is the identity map associating to each object p the identity arrow i(p) = 1p :
p → p (this implies in particular that the source and target maps are both onto).
Moreover, a partially defined composition of arrows is enforced: namely for those
arrows x, y ∈ G1 such that t(x) = s(y), there is a composition x � y ∈ G1 (which
is simply the arrow derived by the compatible composition of x and y) such that
s(x � y) = s(x) and t(x � y) = t(y). Finally there are axioms for a left and
right identity for each arrow (if x ∈ G1, then i(s(x)) is a left identity, that is
i(s(x)) � x = x, and i(t(x)) is a right identity, that is x� i(t(x)) = x), an inverse
x−1 for each arrow x such that s(x−1) = t(x), t(x−1) = s(x), and the usual
associativity axiom for composition of compatible arrows.

We say that G1 is a groupoid over G0.

Before recasting a wide class of control systems in this framework let us give
some meaningful examples of groupoids.

Example 1. Consider an (left) action of a group G on a set X , given by Φ :
G × X → X . We can think of this action as a groupoid, as it is immediate to
see. Indeed, consider a groupoid (G0, G1) where the triples (Φ(g, x), g, x) ∈ G1
for some g ∈ G and x ∈ X , while G0 = X and the source map is given by
s : (Φ(g, x), g, x) �→ x and the target map is given by t : (Φ(g, x), g, x) �→ Φ(g, x).
What is actually remarkable about groupoids is that we can restrict the action
of G to any subset of X . Indeed, suppose that M is a subset of X which is not
invariant under the action of G. So in principle, there could be a point y1 ∈ M ,
such that Φ(g, y) /∈ M for any g ∈ G, while for another point y2 ∈ M , the set
of g ∈ G such that Φ(g, y2) ∈ M is a just a subgroup of G. In any case, we can
define a new groupoid (G0, G1)M , where (G1)M = {(Φ(g, x), g, x), x ∈ M, g ∈
G, Φ(g, x) ∈ M}, (G0)M = M and the target and source maps are the obvious
ones. So even if there is no action of G on M (or even there is no action of any
nontrivial subgroup of G on M), the groupoid (G0, G1)M takes into account the
maximal amount of symmetry still remaining in M .

Example 2. If B is any set, the Cartesian product B × B is a groupoid over B
with s((x, y)) = x, t((x, y)) = y and composition (x, y)� (y, z) = (x, z). The (left
and right) identities are (x, x) and inverses are constructed as (x, y)−1 = (y, x).
Observe that a subgroupoid of B × B, that is a set closed under product and
inversion and containing all the identity elements is just an equivalence relation
on B.

Until now we have thought of groupoids as a construction generalizing groups.
On the other hand, the previous example suggest that we can consider groupoids
as generalized equivalence relations as well. From this point of view, a groupoid
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over a set B (set of states) tells us not only which elements of B are equivalent
to one another, but it also parametrizes the different ways in which two elements
can be equivalent.

Consider now time-invariant, (possibly) non-linear control systems of the form

x+ = f(x, u), (2)

where x belongs to a state space X , x+ indicates either time derivative (in the
case of continous systems), or the evolution of x under the dynamic prescribed
by f for a certain choice of the control u. In this framework u can be either a
measurable function u : [0, T ] → U ⊂ R

m, a control law u : V ⊂ X → U ⊂ R
m

or an admissible input word formed by symbols in U (where this time U is a
finite or countable alphabet). The only requirement is that for any state x, there
exists a “control” u such that either x does not evolve or evolves according to
x+ = f(x, 0), and if there is a “control” u steering the system from configuration
x1 to configuration x2, there must exist a “control” u−1 steering the system from
configuration x2 to configuration x1. We call such systems symmetric. Moreover,
by abuse of language, we call the evolution according to x+ = f(x, 0) evolution
along relative equilibria. We have the following

Theorem 1. Any symmetric control system is a groupoid on the state space or
on the space of relative equilibria of the system.

Proof. Suppose that the symmetric control system under consideration is such
that for any state x there exists a control u under which x does not evolve (as
in the case of driftless, affine-in-control systems). Then we consider a groupoid
G, where G0 := X , and G1 is the set of admissible controls (an element of G1
is an arrow between two states of X and is obtained specifying completely the
control u and the initial state (or the final state)). The source and target maps
are well defined on G1 and also is well defined the injective map i : G0 → G1.
The axioms for a groupoid are readily checked using the assumption that the
system is symmetric (observe that we do not need the system to be controllable).
On the other hand, consider now a symmetric control system for which there
always exists a control u such that any configuration x evolve according to
a relative equilibrium. For instance, we can consider in this class non-linear,
affine-in-control systems of the form

x+ = g(x) + f(x)u, (3)

where we identify a relative equilibrium as the evolution obtained setting u = 0.
In this example the different relative equilibria correspond to the orbits induced
by the dynamic x+ = g(x) and control actions are simply viewed as arrows
connecting different orbits. Also in this case it is immediate to see that such a
symmetric control system is a groupoid on the space of relative equilibria. In
this case G0 is identified with the space of relative equilibria and G1 is the set
of arrows among relative equilibria, obtained specifying suitable control actions.
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Remark 1. Quite often, in abstract terms, control systems are introduced
using state-transition maps. A common adopted definition (especially for quan-
tized control systems) is like the following. A control system is a quintuple
(X, T , U, Ω, A), where X denotes as usual the configuration space, T is an or-
dered time set, U is a set of admissible input symbols, possibly depending on
the configuration, Ω is a set of admissible input words formed by symbols in U
and A : T × Ω × X → X is a state-transition map. Notice however that these
state-transition maps are not uniformly defined over X , in the sense that the set
Ω over which A is defined depends in general on the current state x ∈ X . With
the use of groupoids, this problem is readily solved.

Now we recast in this framework some examples, also in order to clarify the
meaning of the Theorem 1.

Example 3. Consider the following differentiable control system:

ẋ = e1 + u, (4)

where x ∈ R
2, e1 = (1, 0)T and u is a measurable function with values in R

2,
such that ‖u‖ < 1. The vector field e1 is never vanishing, so it identifies a fo-
liation (which in this case is also a fibration) on R

2, whose leaves are just the
orbits of the vector field. In this simple system we can think of these orbits
as relative equilibria, generated by the Lie group R acting by time transla-
tions. This system is not small time locally controllable, but it is symmetric,
in that using suitable control functions u, if it is possible to move from one
relative equilibrium e1 to another e2, then it is possible also to move back
from e2 to e1. Fixing a certain relative equilibrium e1 it is possible to con-
sider the set of all control functions steering the system from e1 to e1. This is
set is clearly a group and its structure strongly depends on the type of con-
trol actions we enable. As long as we consider measurable open-loop control
actions, any relative equilibrium can be reached from any other; on the other
hand, if we restrict to constant and discrete control actions, such as for instance
U = {(0, 0), (−1/2, 0), (0, −1, 2), (1/2, 0), (0, 1/2)}, then the set of relative equi-
libria reachable from a starting position is not discrete. Finally notice that U
does not be symmetric for the system to be symmetric (for instance, in this
specific example U = {(0, 0), (−1/4, 0), (0, −1, 2), (π/5, 0), (0, 1/2)} will do the
same job).

A more general example is the following:

Example 4. Consider the following differentiable control system:

ẋ = f(x) + g(x)u, (5)

where x ∈ Mn, a complete differentiable manifold, f(x) is a C∞-vector field,
g(x) is a n ×m matrix whose entries are C∞-functions and u ∈ U ⊂ R

m. Let us
recall, that a complete manifold is a manifold for which all C∞-vector fields are
complete, and a vector field is complete if all its integral curves can be infinitely
continued backward and forward.
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If f(x) is never vanishing on Mn it induces a foliation, which is not in general
a fibration (so it is not possible to identify globally on Mn base and fiber vari-
ables). It is not always possible to select non vanishing smooth vector fields on a
differentiable manifold; for instance on S

2 there is no such a field (a fact known
as the hairy ball theorem). Once again we identify relative equilibria with the
orbits of f(x). A sufficient condition for the system to be symmetric is that along
any orbit of f(x), the dimension of < g(x)u > + < f(x) >) remains constant,
where < g(x)u > is the vector subspace spanned in TxMn as u varies in U . No-
tice that also in this case this condition does not imply that the system is small
time locally controllable. Moreover, the condition can be weakened considering
a stratification of Mn dictated by g(x).

A quantized control system example is the following:

Example 5. In [2] and in [4] the authors provide a deep study of an hybrid
system consisting on a polyhedron rolling on a plane. Possible actions on this
system are restricted to be rotations about one of the edges of the face lying on
the plane, by exactly that amount that bring an adjacent face to the plane. The
state-space X is clearly given by R

2×S
1×F , where F is simply the set of faces of

the polyhedron. For any given configuration ((x, y), θ, fi), the set of admissible
control actions Ωi is the set of all sequences of adjacent faces beginning with
a face adjacent to fi. If we consider the set of all sequences of adjacent faces
beginning and ending with a face adjacent to fi, we get a subset Ωi,i of Ωi,
which is indeed a group. It is immediate to see that the set Ω of all compatible
sequences of faces (namely just sequence of adjacent faces) is a ! groupoid over X .
All the groups Ωi,i as fi varies in F are conjugate one to the other (even though
not in a canonical way, since it is necessary to select a sequence of compatible
faces to move from fi to fj). Suppose now that some edges on the polyhedron are
“fragile”, so that it is not possible to rotate the polyhedron along those edges.
As long as it is possible to move the configuration from one face fi to any other
face fj , the automorphism groups {Ωi,i}i=1,...,#(F ) are still conjugate. On the
other hand, if the fragile edges form closed loop on the polyhedron, than the
automorphism groups {Ωi,i}i=1,...,#(F ) are no more conjugate one to another.
Despite of this the set of all admissible control actions Ω is still a groupoid on
X and it grasps in an intrinsic way the overall behavior of the system.

Finally let us recast in our framework the hybrid control structure introduced
in [7]:

Example 6. The main problem faced in this paper is to develop an approach for
the efficient solution of motion planning problems for time-invariant dynamical
control systems which posses symmetries. More specifically, motion plans are
described in terms of concatenations of well-defined motion primitives (a sort
of “elementary” motions), according to some compatibility relations.Given a
time-invariant control system S, we say that the Lie group G is a symmetry
group for S if there is a (left) action of G on the state space of S, such that
it commutes with the evolution of S. (This evolution can be thought as an
action of R on the state space of S, provided the corresponding vector fields are
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complete and certain choices of input curves which may lead to finite explosion
times are avoided. However even in the worst cases, namely those involving finite
explosion times, the evolution of S can be modeled as a groupoid). A motion
primitive [π] is the class of trajectories equivalent to a trajectory π, where two
trajectories are declared equivalent if there is a time translation and an action
by an element g ∈ G, such that the two trajectories can be identified (for more
detailed see [7]). Indicating with P(S, G) the set of all motion primitives for a
time-invariant control system S, with symmetry group G, it is easy to see that on
P(S, G) there is a partially defined binary operation, given by the composition of
compatible motion primitives. More specifically, two primitives [π1] and [π2] are
compatible if there exists trajectories α1 ∈ [π1] and α2 ∈ [π2] such that the final
state of α1 coincides with the initial state of α2. Moreover, the concatenation
of compatible primitives gives rise to another motion primitive. Inside P(S, G),
two different classes of motion primitives are identified. One is called the class
of trim primitives T (S, G), which is identified with steady-state motions, also
known as relative equilibria or trim trajectories in the aeronautical community.
Trim primitives are generate by exponentiation of the elements of the Lie algebra
of G and corresponds to finite flows along left-invariant vector fields, keeping
the controls constant. The other class M(S, G) of motion primitives is called
a maneuver primitive, which is a nontrivial primitive compatible, on the right
and on the left, with trim primitives. Thus, a maneuver is nothing else than an
equivalence class of trajectories connecting two steady-state conditions.

The proposed method for motion planning is based on the choice of a finite set
of maneuvers Σ ⊂ M(S, G) and the generation of complex trajectories thorough
the concatenation of maneuvers in Σ. In [7] a Finite State Machine is used
to select all strings in Σ∗ (the free monoid generated by Σ), which are legal
sequences, namely which correspond to feasible trajectories. This Finite State
Machine (called Maneuver Automaton) can be represented as a directed graph
in which vertices represent relative equilibria (i.e. trim primitives) and edges
represent maneuvers. In general, this graph can not be considered as a groupoid,
due to the fact that it is a directed graph, so it may well happen that while
there is a way to go from steady-state [π1] to steady-state [π2], there is no way
to go back. However, in applications it is readily seen that this is not the case.
For instance, in [7] the authors provide an application of the proposed motion
planning methodology to a realistic model of a small helicopter, namely an X-
Cell.60 SE. The Maneuver Automaton discussed in the example turns out to
be a groupoid, in that for any maneuver connecting in one direction two trim
primitives, there is always a maneuver (or sequence of maneuvers) going in the
opposite direction. Moreover, there can be in principle more than one maneuver
(beside the “empty” maneuver) connecting a trim primitive with itself. This is
for instance the case of a “loop” maneuver which connects the forward level
flight with itself.

In [11] a set of maneuvers are developed to train astronauts and reduce their
adaptation time in a microgravity environment. Each maneuver produces a net
rotation around a specified axis, modifying the moment of inertia of the body
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and using internal torques produced by the muscles. Therefore each maneuver
can be represented as an element of SO(3). However, the transition from one
maneuver to another is not always obtained through a rotation, but sometimes
through a re-displacement of the elements of the body (for instance move both
arms overhead). In this problem, therefore, we are forced to interpret this control
system as a groupoid, where the group SO(3) provides the possible control ac-
tions (the arrows of the groupoid) and the state space is the space of all possible
configurations of the human body in a microgravity environment. In any given
configuration of the body, the elements of SO(3) which can be generated from
that configuration depends on the configuration itself. Thus this system can not
be represented as a principal bundle. Using group-theoretic methods in dealing
with control systems it is necessary to consider a group homomorphism from the
group of symmetries of the system under consideration to the automorphisms
(or diffeomorphisms) group of the state space. The groupoid approach bypasses
these considerations and enables to consider local group of symmetries for the
system under consideration even when there is no global group of symmetry
acting on the total state-space as in the case just described.

3 A Class of QCSs with Semisimple Symmetries

In this section we present a class of discrete nonlinear driftless control system
and we analyze the structure of the reachable sets under quantization. Such sys-
tems arise as dynamical systems on semisimple Lie groups (i.e. Lie groups whose
corresponding Lie algebras have no nonzero Abelian ideals). For example, the
special linear group SL(n) and the special orthogonal group SO(n) are semi-
simple, whereas triangular groups of matrices are not. We propose the following:

Definition 3. Given a semisimple Lie group G, a nonlinear driftless control
system described by the following equation:

x+ = u ◦ x (6)

where ◦ is the group multiplication in G, x ∈ G and u ∈ U ⊂ G is a finite set is
called a semisimple QCS.

We are interested in analyzing the structure of the reachable sets of semisim-
ple QCS. To this aim, we use the following definition from [2] and adapted to
semisimple QCSs:

Definition 4 (Approachability). Given a Riemannian metric on G, a config-
uration xf (final configuration) is approachable from a configuration x0 (initial
configuration) if for every ε > 0, there exists an element u ∈< U >, such that
d(u ◦ x0, xf ) < ε, where < U > is the group generated by the elements of U and
d is the distance associated to the chosen Riemannian metric on G. Let us call
R(x0) the the set of reachable configurations starting from x0. We say that the
system is locally approachable from x0 if the closure of the reachable set R(x0)
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contains a neighborhood of x0, it is approachable from x0 if R(x0) is dense in
G. Finally we say that the system is approachable if the closure of R(x) coincide
with G for any x ∈ G.

For semisimple QCSs we have the following

Theorem 2. For any control system described by equation (6) there exists an
open neighborhood W of the identity e in G and a closed subvariety R ⊂ W ×W ,
such that, if (g1, g2) ∈ (W ×W )\R and if the discrete control set is given by U =
{e, g1, g2, g

−1
1 , g−1

2 }, then the corresponding semisimple QCS is approachable.

Proof: Let G be a connected real semisimple Lie group. It is well known that its
real semisimple Lie algebra g is generated by 2 elements. Indeed, indicating with
< x, y > the Lie subalgebra generated by elements x and y, it turns out that
S = {(x, y) ∈ g × g : < X, Y > 	= g} is an algebraic subvariety in g × g (see for
instance [12], VIII, 3, Exercise 8). Obviously the point (0, 0) ∈ g × g does not
belong to the subvariety S. If we restrict S to a suitable product neighborhood
of (0, 0) and then take exponentiation, we end up with a so called exponential
algebraic subvariety R which is contained in W × W , where W is a suitable
identity neighborhood in G. By construction, (e, e) /∈ R. In [13] it is proved that
no matter how you choose (g1, g2) in (W × W )\R, the subgroup generated by
taking arbitrary words on (g1, g2, g

−1
1 , g−1

2 ) is dense in G. Consider the discrete
control system described by (6), and assume that the starting configuration is a
given x0 ∈ G. Using the quantized control belonging to U = {e, g1, g2, g

−1
1 , g−1

2 },
the reachable sets is just given by < g1, g2 > ◦x0, where < g1, g2 > is the
subgroup generated by g1 and g2. Since by assumption (g1, g2) ∈ (W × W )\R,
then < g1, g2 >:= H , where H is a dense subgroup of G. Therefore the reachable
set is H ◦ x0 and thus is still dense in G, which is also the state space.

Remark 2. Theorem 2 provides us with a large class of control systems which
are approachable with just five control actions (the five elements of U), indepen-
dently on the dimension of the state space (recall that the dimension of SL(n) is
n2−1, whereas the dimension of SO(n) is n(n−1)

2 ). Moreover, the approachability
result stated in the previous theorem is robust with respect to small perturba-
tions of control actions g1 and g2, since, as long as they belong to the open set
(W ×W )\R the approachability property still holds. In a sense, compared to the
result previously analyzed in the literature, a special class of systems exhibiting
nonabelian symmetries (the class presented here) may perform better as far as
robustness is concerned.

In the proof of Theorem 2 it is not necessary to specify how the open neigh-
borhood Z := (W × W )\R must be chosen. Anyway, if we want to have even
a remote possibility to apply concretely this result, we need a way to have a
further insight on how Z is constructed. We will deal with this problem in the
next section, where we will focus our attention on the case of SO(3).

Remark 3. We want to underline that in this section we just studied the reach-
ability problem for a class of QCSs with nonabelian symmetries. It is obviously
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not true that a general QCS possessing nonabelian symmetries can be reduced
to a system having a Lie group as a space state. Therefore, the case presented
here is just a very special subclass inside the class of QCSs possessing nonabelian
symmetries.

4 The Case of SO(3)

In this section, we work out in the detail the construction outlined in the pre-
vious paragraph for the special case of SO(3). First of all, we derive a concrete
expression for the algebraic subvariety S. This is the content of the following

Theorem 3. Let A1 and A2 two elements of so(3), the Lie algebra of SO(3).
Identifying so(3) with the 3-dimensional real vector space of 3 × 3 traceless an-
tisymmetric matrices, we can assume that

A1 =

⎡
⎣ 0 x1 y1

−x1 0 z1
−y1 −z1 0

⎤
⎦ A2 =

⎡
⎣ 0 x2 y2

−x2 0 z2
−y2 −z2 0

⎤
⎦ ,

where (x1, y1, z1)×(x2, y2, z2) ∈ R
3×R

3 ∼= R
6. Then A1 and A2 generate the Lie

algebra so(3) if and only if (x1, y1, z1, x2, y2, z2) /∈ S, where S is the hypersurface
of R

6 defined by the following equation:

S = {(x1, y1, z1, x2, y2, z2) ∈ R
6 : z2

1(x
2
2 + y2

2) + z2y2(x2
1 + y2

1)−

−y1y2z
2
1 − x1x2z1z2 − y2z1(x1x2 + y1y2) + (y1x2 − x1y2)2 = 0} (7)

Proof: The characterization of so(3) in terms of traceless antisymmetric matrices
is well-known and we will not deal with it. It is also clear that any two elements
A1 and A2 of so(3) can be expressed in the form given above. If A3 := [A1, A2] ∈
Span{A1, A2}, where Span{A1, A2} is the real vector space generated over A1
and A2, then A3 = λA1+μA2 for some real λ and μ.Therefore, if this is the case,
then A1 and A2 can not generate the 3-dimensional Lie algebra so(3), since,
iterating the Lie bracket (the commutator in this case), one gets: [A3, A1] =
−μA3 and [A3, A2] = λA1. On the other hand, if A3 /∈ Span{A1, A2}, then
A1, A2 and A3 generate the Lie algebra as it is readily seen. So A1 and A2 fail
to generate so(3) if and only if

[A1, A2] = λA1 + μA2. (8)

Using the coordinate form of A1 and A2 we can rewrite equation (8) as the
following set of equations:

y2z1 − y1z2 = λx1 + μx2, (9)
x1z2 − x2z1 = λy1 + μy2, (10)
x2y1 − x1y2 = λz1 + μz2. (11)
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We can interpret equations (10), (11) and (11) as defining an algebraic sub-
variety of the product R

6 × R
2 (where, (λ, μ) ∈ R

2). As such it describes an
algebraic family F of subvarieties of R

6, parametrized by R
2, The locus S of

the pairs (A1, A2) which fail to generate so(3), is simply given by the projection
of F ⊂ R

6 × R
2 to the first factor (namely R

6). Projecting F to R
6 is equiva-

lent to eliminate the variables λ and μ from equations (10), (11), and (11). A
straightforward but lengthy calculation shows that S is the hypersurface defined
the quartic homogeneous polynomial (7).

In order to be able to apply Theorem 2 in this specific case, we need to under-
stand how to construct the open neighborhood W and the subvariety R ⊂ W ×
W . As far as the subvariety R, this is immediate. Indeed, the pair (g1, g2) ∈ R,
if and only if g1 = exp(A1) and g2 = exp(A2), where (A1, A2) ∈ g. On the other
hand, characterizing the open neighborhood W is more difficult.

First of all, we are going to think to the elements of SO(3) and so(3) as
matrices; moreover we are going to use the Hilbert-Schmidt norm, instead of the
operator norm.

Definition 5. Given a n × n matrix X with entries in C, its Hilbert-Schmidt
norm is

‖X‖ =

⎛
⎝ n∑

k,l=1

|Xkl|2
⎞
⎠

1
2

Since we are working with linear operators on finite dimensional vector spaces,
the two norms induce the same topology.

Due to the fact that we want to use the Lie algebra to control the motion in the
Lie group, it is natural to ask to what extent exp : g → G is a diffeomorphism.
Generally speaking the exponential function establishes a local isomorphism from
a neighborhood U of the origin in the Lie algebra to a neighborhood V of the
identity in the Lie group. First of all, let us recall when the logarithm (i.e. the
inverse of exp) is defined.

Theorem 4. The function

log(A) :=
∞∑

m=1

(−1)m+1 (A − I)m

m

is defined and continous on the set of all n × n matrices A with ‖A − I‖ < 1,
where I is the identity matrix. Moreover, for all A with ‖A − I‖ < 1,

elog(A) = A

and for all X, with ‖X‖ < log(2), we have

‖eX − I‖ < 1 and log(eX) = X.

Proof: See [14], Theorem 2.7.
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In the light of Theorem 4, if we choose two elements A1 and A2 in so(3), such
that ‖A1‖ < log(2) and ‖A2‖ < log(2) and (A1, A2) /∈ S, then the corresponding
elements g1 = exp(A1) and g2 = exp(A2) generate a dense subgroup in SO(3).
Let us spell out these conditions with the following:

Proposition 1. Let A1 and A2 two elements of so(3), such that (A1, A2) /∈ S.
Using the representations for A1 and A2 introduced in Theorem 3, we have that
if

x2
1 + y2

1 + z2
1 < 0.045 and x2

2 + y2
2 + z2

2 < 0.045,

then the subgroup < g1, g2 > is dense in SO(3), where g1 exp(A1) and g2 =
exp(A2).

Proof: This is nothing more than a rephrasing of the conditions ‖A1‖ < log(2)
and ‖A2‖ < log(2). Observing that log(2) ≈ 0.3 and the fact that ‖A1‖ < log(2)
is equivalent to

2(x2
1 + y2

1 + z2
1) < (0.3)2.

Example 7. If we take as A1 and A2 the following matrices:

A1 =

⎡
⎣ 0 0.2 0

−0.2 0 0
0 0 0

⎤
⎦ A2 =

⎡
⎣ 0 0 0.2

0 0 0
−0.2 0 0

⎤
⎦ ,

then it is immediate to see that (A1, A2) /∈ S and moreover they satisfy the
numerical bounds of Proposition 1. Therefore, using exp(A1) and exp(A2), which
just describe “small” rotations around the x-axis and the y-axis respectively, we
can reach in principle a configuration which is arbitrarily close to a desired
configuration in SO(3).

Up to now, we have not touched the problem of planning a quantized control
path, from a starting configuration to a desired configuration. Indeed, the com-
plete solution of the synthesis problem is definitely beyond current techniques,
even in the special case of SO(3). Here we sketch one possible approach, which
turns out to have remarkable links with the “lattice” framework developed by
other authors such as [2]. In the following methodology, instead of quantizing
directly the possible displacement in the group G, we quantize inputs through
elements of the Lie algebra g. This idea is exploited in the following:

Theorem 5 (Synthesis). Let G be a connected, n-dimensional real semisim-
ple Lie group and let g be the corresponding Lie algebra. Let X1, . . . , Xn, Xn+1
be nonzero elements of g, linearly independent n by n. Identifying g with R

n,
suppose moreover that

(Xn+1)T Xi

‖Xi‖
∈ R\Q, i = 1, . . . , n. (12)

Then any final configuration g on G is approachable through

exp(Z1) ◦ exp(Z2) ◦ · · · ◦ exp(Zk), (13)

where Zi belongs to the subgroup generated by X1, . . . , Xn, Xn+1 for any i.
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Proof: Consider an arbitrary final configuration g ∈ G. Since G is connected,
there exists a (smooth) path γ : [0, 1] → G, such that γ(0) = I (the initial con-
figuration), and γ(1) = g. In general, the exponential mapping is not surjective
on G, so we can not find in general an element X ∈ g such that exp(X) = g.
On the other hand, the exponential mapping establishes a local diffeomorphism
between a neighborhood of the origin U in g and a neighborhood of the identity
V in G. Now, since [0, 1] is compact, one can choose a sufficiently fine subdivision
of the interval [0, 1], 0 = t0 < t1 < · · · < tk = 1, such that γ(ti) = gi (where gi

is a certain element of G, with gk = g and g0 = I). If the subdivision t0, . . . , tk
is sufficiently small, then Bi−1 := g−1

i−1 ◦ gi ∈ V . Moreover, it is readily seen that
g = gk = B0 ◦B1 ◦ · · ·◦Bk−1. Since each Bi ∈ V , then there exists a Yi ∈ g, such
that exp(Yi) = Bi. Due to condition (12), it is proved in [2] that the subgroup h
generated by X1, . . . , Xn+1 is dense in the group g (where the group structure
on g is the one induced by being a vector space). However this does not imply
that Yi ∈ h. In any case, h ∩ U is dense in U and therefore, exp(h ∩ U) is dense
in V . Therefore, instead of considering of considering the path γ, we consider a
perturbation of the path γ̃ : [0, 1] → G, such that γ̃(0) = I, γ̃(1) is ε-close to g
and such that γ̃(ti) = B̃i−1 ∈ exp(h ∩ U). Such a perturbation can always be
found due to the density of exp(h ∩ U) in V .

The main drawback of the previous synthesis methodology is due to the fact,
already observed at the beginning of this note, that conditions (12) are not robust
with respect to any perturbation, no matter how small it is. For instance, in the
case of SO(3) the elements of so(3) can be identified with angular velocities
with respect to given axis. The previous Theorem provides a way of reaching a
configuration in SO(3) which is arbitrarily close to any assigned configuration,
quantizing the angular velocities (and the rotation axes). If there is a resonance
among the angular velocities (that is to say (12) is false), then we lose the
approachability property of this QCS.

5 Conclusions

In this paper we have presented a methodology to deal with control systems
of general type through the use of groupoids. We have not attempted to study
directly a control system on a Lie groupoid, but in analogy with what is under
development in the field of integrable dynamical systems, it is likely that such
a generalization provides interesting applications also in the case of control sys-
tems. We believe that this line of research deserves further insight and this is one
of our aim for future investigations. Moreover, at the best of our knowledge we
presented a first analysis of a very special class of quantized non-linear control
systems having nonabelian symmetries, that is QCSs having a semi-simple Lie
group as a state space. Certainly this is just a first insight, and lots of work has
to be done in this area before a knowledge comparable to the case of systems
with abelian symmetries is available. Anyway, we have seen that the class of
semisimple QCSs presents some peculiar aspects, such as the robustness of the
approachability property with respect to perturbation of quantization and the
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small number of quantized controls needed to achieve approachability, number
which is independent on the dimension of the state space. Both these proper-
ties should be compared to the typical behavior of QCSs with abelian symme-
tries, where the approachability is typically not robust and where the number
of control quanta increases with the dimension of the state space. An interest-
ing challenge is to integrate the groupoid approach to control systems, with the
reachability analysis so far developed in those contexts where both issues are rel-
evant such as the problem of computational modeling of astronaut orientation
sketched in [11].
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Abstract. In this paper we study a minimum time problem for a hybrid
system subject to thermostatic switchings. We apply the Dynamic Pro-
gramming method and the viscosity solution theory of Hamilton-Jacobi
equations. We regard the problem as a suitable coupling of two minimum-
time/exit-time problems. Under some controllability conditions, we prove
that the minimum time function is the unique bounded below continuous
function which solves a system of two Hamilton-Jacobi equations coupled
via the boundary conditions.

1 Introduction

In this paper we study a minimum time problem for a hybrid system in IRn whose
evolution y is subject to a switching parameter which may take the values, 1 and
−1. In particular, the switching rule is subject to the evolution of an assigned
component of the state y, and it is governed by a so-called thermostatic (or
relay-type) hysteresis input-output relationship. That is, the switching between
the two values occurs when such fixed component of y reaches (or better, gets
over) some fixed thresholds, see Figure 1 for an example.

We are interested in applying the Dynamic Programming method to such
kinds of problem, and then study the corresponding Hamilton-Jacobi-Bellman
equation in the framework of the viscosity solutions theory. In this paper, un-
der some controllability hypotheses, we prove the continuity of the minimum
time function, we derive a Hamilton-Jacobi problem satisfied by the minimum
time function in the viscosity sense, and prove that the latter is indeed the
unique viscosity solutions. Such a Hamilton-Jacobi problem is given by a system
of two Hamilton-Jacobi equations coupled by some part of the boundary con-
ditions, which are also expressed in the viscosity sense. Our method consists in
interpreting the problem as a coupling of two optimal control problems which
present feature of minimum-time as well as exit-time problems.

Optimal control problems for systems with thermostatic behavior are of course
important for applications. Many mechanical, physical, economical, biological
systems have such a kind evolution (see for instance [12] for motivations from
magnetism, [15] for a biological motivation, [14] from economics). Moreover, the
thermostat is a simple example of hysteresis operator, which is also fundamental
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to construct the so-called Preisach model of hysteresis, which is one of the most
interesting and versatile analytical description of hysteresis phenomena (it is a
superposition of a continuum of thermostats).

The dynamic programming method for the optimal control of systems with
hysteresis feature is our main motivation. The present author has already stud-
ied, via dynamic programming method and viscosity solutions theory, some opti-
mal control problems with hysteresis (see [2], [3], [4], [5]) (which lead to different
Hamilton-Jacobi equations with respect to present one). Some possible direc-
tions of future investigations on the minimum time problem are: the case of a
“discrete” Preisach operator, i.e. a finite sum of thermostats, see [3] for a one-
dimensional infinite horizon problem in this framework; the case of the “true”
Preisach operator, i.e. a superposition of a continuum of thermostats, see [4] for
a one-dimensional finite horizon problem in this framework; the case of laking
controllability conditions on the switching points, which leads to discontinuous
solutions of Hamilton-Jacobi equations, see [5] for a multidimensional finite hori-
zon problem in this framework. We also recall the works of Belbas and Mayergoyz
on some applications of the Dynamic Programming method to optimal control
problems with hysteresis (see for instance [8] and [9]).

Systems with thermostatic (or relay-type) switchings are also good examples
of hybrid systems where the switchings are mandatory, when the state reaches
some particular interdict zones (which is probably one of the most difficult be-
havior to treat in the framework of Dynamic Programming method and viscosity
solutions). The application of the Dynamic Programming method to hybrid op-
timal control problems was first outlined by Branicky, Borkar, and Mitter in [11].
Bensoussan and Menaldi in [10] were the first to apply the viscosity solutions
theory to a hybrid control problem, and they proved uniqueness of the value
function as continuous viscosity solutions of the corresponding Hamilton-Jacobi
problem. However, in the study in the Hamilton-Jacobi problem, they suppose
that the system has no mandatory switchings. The present author, as already
outlined, in [3] and [5], applied the viscosity solution theory to hybrid problems
with thermostats, where the switchings are mandatory (although there are only
mandatory switchings). In particular in [5] the case where the value function is
discontinuous is addressed. Recently, other works on this subject have appeared.
Dharmatti and Ramaswamy in [13] studied a problem with continuous value
function, whereas Zhang and James in [18] studied a problem with discontinu-
ous value function.

Finally we recall that the mathematical theory of hysteresis operators may be
found in Visintin [17], and the theory of viscosity solutions for Hamilton-Jacobi-
Bellman equations in Bardi-Capuzzo Dolcetta [7].

The present paper is organized as follows. In Section 2 we describe the delayed
relay switching rule and introduce the minimum time problem; in Section 3 we
prove the continuity of the minimum time function; in section 4 we prove that
the minimum time function is the unique viscosity solution of the associated
Hamilton-Jacobi problem; in the Appendix we give some results for an optimal
control problem (without switchings) which is a combination of minimum time
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and exit-time features (which is, at least as formulation, rather new). In the
Appendix. we also give the definitions of viscosity solutions and of boundary
conditions in the viscosity sense.

2 Models and Problems

2.1 The Delayed Relay Switching Rule

For more details on the argument of this subsection see Visintin [17]. Let us fix
two thresholds ρ1, ρ2 ∈ IR with ρ1 < ρ2, and write ρ := (ρ1, ρ2). For every contin-
uous input function g : [0, +∞[→ IR, and for every initial state w0 ∈ {1, −1}, we
define the following discontinuous output function z(·) := hρ[g, w0](·) : [0, +∞[→
{1, −1} by

z(0) :=

⎧⎨
⎩

1 if g(0) > ρ2,
−1 if g(0) < ρ1
w0 if ρ1 ≤ g(0) ≤ ρ2,

and, for t > 0, we define X(t) :=
{
τ ∈ [0, t]

∣∣∣g(τ) < ρ1 or g(τ) > ρ2

}
, and⎧⎨

⎩
z(t) = w0 if X(t) = ∅,
z(t) = 1 if X(t) �= ∅, and g(sup X(t)) ≥ ρ2,
z(t) = −1 if X(t) �= ∅, and g(sup X(t)) ≤ ρ1.

For instance, if z(t) = 1 (which of course implies that g(t) ≥ ρ1), then z will
remain constantly equal to 1 until g will possibly get over (downward) the thresh-
old ρ1, and after that time, z will be switched on −1 until g will possibly get over
(upward) the threshold ρ2. For example, if z(t) = −1 and, in the time interval
[t, t′], g strictly increases from a value g1 < ρ2 to a value g2 > ρ2, passing on
the threshold ρ2 at the time t′′, then the output is z ≡ −1 in [t, t′′], z ≡ 1 in
]t′′, t′]. If instead g, after reaching the threshold ρ2 at the time t′′, changes the
monotonicity and stays below or equal to ρ2, then z ≡ −1 in [t, t′].

2.2 The Delayed Controlled Dynamical System

Let us consider a set of constant controls A ⊂ IRm, for some m, a function

f : IRn × {−1, 1} × A → IRn,

a fixed unit vector S ∈ IRn, and ρ = (ρ1, ρ2) a couple of thresholds for a delayed
relay hρ. Let us also define the set of measurable controls

A :=
{
α : [0, +∞[→ A

∣∣∣α is measurable
}

.

Then, we consider the following dynamical system (the dot “·” between vectors
is the usual scalar product)⎧⎨

⎩
y′(t) = f(y(t), z(t), α(t)), t > 0,
z(t) = hρ[y(·) · S, w](t), t ≥ 0,
y(0) = x,

(1)



Minimum Time for a Hybrid System with Thermostatic Switchings 35

where α ∈ A, the initial state is the couple (x, w), and it is admissible if w = 1
and x · S ≥ ρ1, or w = −1 and x · S ≤ ρ2. Hence the solution (y(·), z(·)) of (1)
(if it exists) can be view as a trajectory starting from (x, w) and evolving in the
subset of IRn × IR

H := H1 ∪ H−1,

where,
H1 :=

{
(x, 1) ∈ IRn × {1}

∣∣∣x · S ≥ ρ1

}
,

H−1 :=
{

(x, −1) ∈ IRn × {−1}
∣∣∣x · S ≤ ρ2

}
,

(2)

with a rule for switching from one connected component Hw to the other, given
by the switching rule of the delayed relay. See Figure 1. In the sequel, for any
w ∈ {−1, 1}, we will denote by Hw the set, defined as in (2), but with the strict
inequality for x ·S; in some sense it is the “interior” of Hw. Moreover, with some
abuse of notations, we will denote by ∂Hw the set, defined as in (2), but with
just the equality only for x · S; in some sense it is the “boundary” of Hw (it is
one of the two “switching boundaries”).

0P

Fig. 1. Delayed switching evolution, starting from P0

Some problems arise in defining a solution of (1): it even may not exist (see
Alt [1] and also Bagagiolo [3] for a discussion on such a problem). We give the
following definition of solution. For instance, let (x, w) be an initial state. We
denote by ỹ(·) the solution (if it exists) defined in [0, +∞[ of the system{

ỹ′(t) = f(ỹ(t), w, α(t)) t > 0,
ỹ(0) = x.

Hence, we let the relay switch exactly when hρ[ỹ(·), w] should switch by its
switching rule. If t̃ is the switching time, we define, as solution of (1) in [0, t̃],
(y(·), z(·)) = (ỹ(·), w). For t > t̃, we consider the solution in IRn ỹ1 starting
from ỹ(t̃) with dynamics f(ỹ1, −w, α). Let t1 be the (possible) switching time
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for hρ[y1(· − t̃), −1]. Then we define, as solution of (1) in ]t̃, t̃ + t1], (y(·), z(·)) =
(y1(·), −1). We go on in this way. Since ρ1 < ρ2, then, any possible switching
time is larger than the previous one plus an independent quantity δ > 0 (recall
that f is bounded and hence the velocity of y · S is bounded). Hence, we guess
that such a construction of solution is possible for all the time, and moreover it
is a good definition. This is Proposition 1, whose proof is now easy. We suppose
that ⎧⎨

⎩
A is compact, f is continuous and bounded
∃L > 0 s.t. |f(x1, w, a) − f(x2, w, a) ≤ L|x1 − x2|

∀x1, x2 ∈ IRn, w ∈ {−1, 1}, a ∈ A.
(3)

Proposition 1. Under the hypothesis (3), for every initial state (x, w) ∈ H,
and for every measurable control α ∈ A, there exists a unique solution (in the
sense given above) (y(·), z(·)) ∈ C0([0, +∞[; IRn) × L∞(0, +∞; IR) of the system
(1). We will denote such a solution by

(
y(x,w)(·; α), z(x,w)(·; α)

)
.

Remark 1. Note that, in general, for the solution as above, it is not true that
z(t) = hρ[y(·) · S](t) for all t ≥ 0. Indeed, a trajectory switches when, if it does
not switch, y ·S is going to cross the threshold. But it may happens that, as the
trajectory switches, the new dynamics f(·, −w, ·) is such that y ·S does not cross
the threshold. Hence, the glued trajectory has never crossed the threshold, and
so, for the true switching delayed relay rule, there should not be any switching. A
discussion more detailed on such definition of solution, is reported in Bagagiolo
[3]. Here, we only say that, if a “true solution” of (1) exists, then it must coincide
we the one above. Moreover, as will be explained in the sequel, such a definition
seems useful for transforming an hybrid optimal control problem with such a
kind of switching, in an exit-time problem from a closed set, which is, in some
sense, more stable than other exit-time problems.

2.3 The Minimum Time Problem

Let T ⊂ H be fixed. The minimum time problem is to reach the target T as
quickly as possible. Hence, for every initial state (x, w) ∈ H, and for every control
α ∈ A, we define the reaching time for the corresponding trajectory of (1)

t(x,w)(α) = inf
{
t ≥ 0

∣∣∣ (y(x,w)(t; α), z(x,w)(t; α)
)

∈ T
}

,

with the convention inf ∅ = +∞. The minimum time function is then defined in
H as

T (x, w) = inf
α∈A

t(x,w)(α).

We consider the following hypotheses

T is the closure of its interior, has compact boundary ∂T
which is also a C2 manifold,

∀(x, w) ∈ ∂T , denoting by n(x, w) the outer normal to ∂T ,
inf
a∈A

f(x, w, a) · n(x, w) < 0.

(4)
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Except for the compactness of ∂T , the other regularity hypotheses on T may
be changed, for instance in order to take account of a single point. Roughly
speaking we need of the usual hypotheses of controllability on ∂T in order to
have continuity of the minimum time function.

We also suppose the following controllability properties hold on the switching
boundaries: for every (x, w) ∈ ∂Hw there exist a1, a2 ∈ A such that

f(x, w, a1) · S < −c < 0 < c < f(x, w, a2) · S, (5)

with c > 0 independent from (x, w).
Let us define the controllable set

R =
{

(x, w)
∣∣∣∃α ∈ A, t(x,w)(α) < +∞

}
(6)

Finally note that, both T and R, can be split in to the disjoint union of two
sets T = T1 ∪ T−1, R = R1 ∪ R−1, where, for w ∈ {1, −1}

Tw := T ∩ Hw, Rw = R ∩ Hw.

3 Continuity

Proposition 2. Let (3), (4), (5) hold. Then T is continuous in R.

We first recall the following lemma. For the proof, which is quite standard, see
for instance Soner [16] (see also Bagagiolo-Bardi [6])

Lemma 1. With the same hypotheses as in Proposition 2, let w ∈ {−1, 1} and
K ⊆ Hw compact be fixed. Let us also fix t ≥ 0. Then there exists a radius r > 0,
and a constant C > 0 (both depending on t and K) such that, whenever for some
(x, w) ∈ K and for some α ∈ A we have (here B((x, w), r) is the ball of radius
r around (x, w)), (

y(x,w)(τ ; α), z(x,w)(τ ; α)
)

∈ Hw ∀τ ∈ [0, t],

then, for every (ξ, w) ∈ B ((x, w), r) ∩ Hw, there exists a control α such that(
y(ξ,w)(τ ; α), z(ξ,w)(τ ; α)

)
∈ Hw, ∀τ ∈ [0, t],

and
|y(x,w)(t; α) − y(ξ,w)(t; α)| ≤ C|x − ξ|. (7)

Proof. ( Of Proposition 2.) Let us sketch the proof that T is continuous in R1
(the other case is similarly treated). First of all note that R1 may be empty,
and, in such a case there is nothing to prove. Hence, let us suppose that it is not
empty (note that, by the hypotheses made, at least one of R1 and R−1 is not
empty). Let (x, 1), (ξ, 1) be two points of R1, and, for every ε > 0, let us take a
control αε ∈ A such that

T (x, 1) ≥ t(x,1)(αε) − ε.
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Let rε be the number of switchings of the trajectory
(
y(x,1)(·; αε), z(x,1)(·; αε)

)
,

in the time interval [0, t(x,1)(αε)], and note that, by the fact that the switchings
are delayed and that f is bounded, there exists N > 0 such that

rε ≤ N, ∀ε > 0. (8)

Let U be a bounded open neighborhood of (x, 1) in H1.
Let us first suppose that rε = 0. Then the trajectory starting from (x, 1) with

control αε does not switch up to the time t(x,1)(αε). Hence, for a suitable ball
B ⊆ U around (x, 1), and a suitable constant C > 0, applying Lemma 1, for
every point (ξ, 1) ∈ B ∩ H1, we obtain a control αε such that the corresponding
trajectory starting from (ξ, 1) does not switch, and (7) holds. Hence, since(

y(x,1)(t(x,1)(αε); αε), z(x,1)(t(x,1)(αε); αε)
)

∈ ∂T ,

by the controllability hypothesis on the boundary of the target, if |x−ξ| is small
enough, we obtain that

t(ξ,1)(αε) = t(x,1)(αε) + O(|x − ξ|). (9)

Now, let us suppose that rε = 1, and let t1 be the switching instant. Again, for
a suitable ball B1 ⊆ U around (x, 1), and for a suitable constant C1 > 0, for
every point (ξ, 1) ∈ B1 ∩ H1, we obtain a control α1

ε such that(
y(ξ,1)(τ ; α1

ε), z(ξ,1)(τ ; α1
ε)

)
∈ H1 ∀τ ∈ [0, t1],

and (7) holds with C1 as constant. Since
(
y(x,1)(t1; αε), z(x,1)(t1; αε)

)
∈ ∂Hw,

by the controllability hypotheses (refeq:switchingcondition), if |x − ξ| is small
enough, we can use a suitable control in order to make the trajectory start-
ing from (ξ, 1) switch in a lap of time of order O(|x − ξ|). Then we have two
new starting points on H−1 which are

(
y(x,1)(t1; αε), −1

)
and, say, (ξ1, −1)

with |y(x,1)(t1; αε) − ξ1| = O(|x − ξ|). Since in the remaining time interval
[t1, t(x,1)(αε)], the trajectory starting from (x, 1) does not switch anymore, we
eventually construct a control αε for which (9) still holds, for |x − ξ| sufficiently
small.

Finally, repeating the previous steps rε times, for rε > 1, we obtain, for |x−ξ|
sufficiently small, let say less than μ > 0, the same relation as in (9). In particular
μ depends only on U and on N .

Recalling (8), we can say that, for every rε, we can use the same infinitesimal
error-function O in (9).

Hence, if (x, 1), (ξ, 1) ∈ U and |x − ξ| ≤ μ, then, supposing T (x, 1) ≤ T (ξ; 1)
we get, for the arbitrariness of ε > 0,

0 ≤ T (ξ, 1) − T (x, 1) ≤ O(|x − ξ|).

Otherwise, if T (x, 1) > T (ξ, 1), we exchange the role of x and ξ and note that
all the previous estimates remain unchanged, with the same constant and error-
functions O. In particular, the number of switchings rε cannot increase, since
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every switching requires a lap of time δ > 0, and hence from (9), we would get
an absurd. Hence we obtain

0 ≤ T (x, 1) − T (ξ, 1) ≤ O(|x − ξ|),

and we conclude. ��

Remark 2. By the proof of Proposition 2 we also get the fact that R is open in
H (for the induced topology). Indeed, if (x, w) ∈ Rw, then we have shown the
existence of a ball B around it such that B ∩ Hw ⊂ Rw.

4 DPP and HJB

In this section we want to study a Hamilton-Jacobi-Bellman (HJB) problem for
the minimum time function, which arises by applying the Dynamic Programming
Principle (DPP). Let (x, w) ∈ R \ T , and a control α ∈ A be fixed. Considering
the corresponding trajectory, we define the first exit time from Hw as

τw
x (α) := inf

{
t ≥ 0

∣∣∣y(x,w)(t; α) �∈ Hw

}
,

which is nothing but the first switching time (for the trajectory). If a, b ∈ [0, +∞],
then we are going to use the following convention: χ{a≤b} = 1 if a ≤ b, χ{a≤b} = 0
otherwise (similarly for χ{a<b}).

Proposition 3. For every (x, w) ∈ H, we have

T (x, w) = inf
α∈A

(
min(t(x,w)(α), τw

x (α))

+χ{t(x,w)(α)>τw
x (α)}T (y(x,w)(τw

x (α); α), −w))
)

.
(10)

Proof. It can be easily proved by using the following lemma and dynamic pro-
gramming techniques.. ��

Lemma 2. For every (x, w) ∈ ∂Hw, and for every α ∈ A such that τw
x (α) = 0,

we have
T (x, w) ≤ T (x, −w), t(x,w)(α) ≥ T (x, −w). (11)

Proof. Let us prove the first inequality in (11). By the controllability hypothesis
(5), there exists a control α ∈ A such that τw

x (α) = 0 (i.e. there is an immediate
switching). For every ε > 0, we have

T (x, w) ≤ ε + T
(
y(x,w)(ε; α), −w

)
,

and, letting ε → 0+, we conclude by the continuity of T .
To prove the second inequality, for every ε > 0, we have

t(x,w)(α) = ε + t(y(x,w)(ε;α),−w)(α(· + ε)) ≥ ε + T
(
y(x,w)(ε; α), −w

)
,

and, again, we conclude by the continuity of T . ��
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Remark 3. Note that, in (10), we can replace t(x,w)(α) with the following instant

twx (α) := inf
{

t ≥ 0
∣∣∣ (y(x,w)(t; α), w

)
∈ Tw

}
.

Hence, Proposition 3 says that, for every w ∈ {1, −1} fixed, we can regard our
problem in Hw as the problem of minimizing the reaching time of Tw, subject
to stopping the process and paying the time elapsed plus an exit cost if we exit
from Hw before reaching Tw. In particular, the exit cost is given by T (·, −w),
i.e. our minimum time function evaluated on the point where we “switch down”
after exit from Hw.

In the sequel, by ∂Hw
R we will denote the boundary of R with respect to the

induced topology in Hw, and by intHw
R the interior of R, with respect to the

same topology. In particular note that such interior may intersect the boundary
∂Hw of Hw.

Using Remark 3 and Proposition 5 in the Appendix, we can say that the min-
imum function T : R → [0, +∞[ solves the following problem in the unknown u:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

for every w ∈ {−1, 1}, u is a viscosity solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
a∈A

{−∇u(x, w) · f(x, w, a)} = 1 in (Rw ∩ Hw) \ Tw,

u = 0 on ∂Tw,
u(x, w) → +∞ as (x, w) → ∂Hw

Rw,

u(·, w) = u(·, −w) on
(
intHw

Rw ∩ ∂Hw

)
\ Tw.

(12)

In particular, in (12), the last boundary condition has to be understood in the
viscosity sense. Now, we prove that T is indeed the unique solution of (12).

Theorem 1. The minimum time function is the unique bounded below contin-
uous function from R to IR which solves the problem (12).

Proof. First of all, for every w ∈ {1, −1}, let us denote by (12)w the Hamilton-
Jacobi boundary problem in Hw which appear in (12). Note that, even if we have
a uniqueness result for each single problem (12)w, we cannot immediate conclude
that we have uniqueness for the problem (12), since the boundary conditions are
intrinsic to the problem: they are part of the solutions.

For every w ∈ {1, −1} we define the set

Sw :=
{

(x, w) ∈ Hw

∣∣∣(x, −w) ∈ ∂H−w

}
,

and note that it is exactly the set where we arrive when we exit from H−w.
Let u : R → IR be a bounded below continuous solution of (12). For every

w ∈ {1, −1} we extend (“by continuity”) u from (Sw ∩ R) \ T to Sw \ T by
setting u = +∞. From the uniqueness result Theorem 2 of the Appendix, we
know that u(·, w) is the value function of the minimum/exit time problem in
Hw, given by reaching the target Tw or exit from Hw paying the spent time
plus the cost u(·, −w). So, it possibly differs from the problem solved by the
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minimum time T on Hw, only for the exit cost. We are going to prove that, for
every w ∈ {1, −1} the two problems (12)w solved respectively by T and u have
the same exit cost, and hence the thesis will be proved.

For every δ > 0 let us define the set

R(δ) =
{
(x, w) ∈ H

∣∣∣T (x, w) ≤ δ
}

.

Note that, since the dynamics f is bounded, and since the switchings are delayed,
there exists δ > 0 such that for every starting point (x, −w) ∈ S−w we need a
time strictly larger than δ in order to exit from H−w, whichever is the control
we are using.

We first prove that u ≥ 0. To this end we prove that u ≥ 0 on Sw ∪ S−w,
from which the claim follows by the interpretation of u as value function. Let us
suppose that there exists (x, w) ∈ Sw such that u(x, w) < 0. This means that
there are trajectories starting from (x, w) which reach points of the boundary
(x′, w) ∈ ∂Hw where the cost is u(x′, −w) < −δ. But, the same argumentation
shows that there should exist trajectories starting from (x′, −w) which reach
points of the boundary (x′′, −w) ∈ ∂H−w where the cost is u(x′′, w) < −2δ.
Iterating such procedure, we obtain a contradiction to the fact that u is bounded
below.

For the point of the (possibly empty) set S−w ∩ R(δ) the value of u does
not depend on the exit cost, since, from those points, it is not convenient to
reach the boundary and pay the exit cost because it needs a time larger than
δ and the exit cost is nonnegative. Hence we have u = T on Sw ∩ R(δ), Now,
let us consider the point of the (possibly empty) set Sw ∩ R(2δ). For every such
a point, the value of u is equal to T if T (x) ≤ δ (since we do not switch),
otherwise it may be conditioned by the value of the exit cost u(·, −w) on the
points of ∂Hw. But for reaching such boundary points (x, w) from Sw ∩ R(2δ)
we spent a time larger than δ and hence we certainly have u(x, −w) = T (x, −w)
since (x, −w) ∈ S−w ∩ R(δ). Again, iterating such a process, we obtain that
u = T on Sw ∪ S−w, and we conclude. ��

Remark 4. Arguing as in the Remark 5, we can say that the couple (R, T ) is
the unique couple given by an open set O in H (for the induced topology) which
contains T , and by a bounded below continuous function u : O → IR which
solves the corresponding problem (12), where the set R = R1 ∪ R−1 is replaced
by O = O1 ∪ O−1.
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Appendix: On a Minimum/Exit Time Problem

For many results concerning the theory of viscosity solutions, adopted in this
section, we refer the reader to the book Bardi-Capuzzo Dolcetta [7].

Let Ω ⊂ IRn be an open set, T ⊆ Ω be a closed set satisfying (4), and
ψ : ∂Ω → [0, +∞] be a continuous function (for the usual topology on [0, +∞]).
Using the same notations as before for controls, considering a bounded contin-
uous function f : IRn × A → IRn satisfying the analogous of (3) (neglecting w),
and the analogous on ∂Ω of (5) (again neglecting w), we consider the optimal
control problem of minimizing the time spent for reaching T or the time spent
plus a cost for exit from Ω, subject to the controlled (non switching) dynamical
system {

y′(t) = f(y(t), α(t)), t > 0,
y(0) = x,

(13)

We denote by yx(·; α) the solution of (13). We define the following instants

tx(α) := inf
{
t ≥ 0

∣∣∣yx(t; α) ∈ T
}

, reaching time,

τx(α) := inf
{

t ≥ 0
∣∣∣yx(t; α) �∈ Ω

}
exit time,
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and define the value function

V (x) := inf
α∈A

(
min(tx(α), τx(α)) + χ{tx(α)>τx(α)}ψ(yx(τx(α); α))

)
Let us define the set

R :=
{
x ∈ Ω

∣∣∣V (x) < +∞
}

.

Proposition 4. With all the hypotheses made before, the set R is open in Ω
for the induced topology, and the value function V is continuous in R.

Proof. It is similar to that of Proposition 2. ��

For every x ∈ R, and for every α ∈ A we define

εx(α) := min(tx(α), τx(α)) = inf
{

t ≥ 0
∣∣∣yx(t; α) �∈ Ω \ T

}
.

We have the following Dynamic Programming Principle: for every x ∈ R and
for every t ≥ 0

V (x) = inf
a∈A

{min(t, εx(α)) + V (yx(min(t, εx(α)); α))} . (14)

Proposition 5. Let all the hypotheses of Proposition 4). Then the value func-
tion V is a viscosity solution of the following problem in the unknown u:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
sup
a∈A

{−∇u(x) · f(x, a)} = 1, in (R ∩ Ω) \ T ,

u = 0, on ∂T ,
u(x) → +∞, as x → ∂ΩR,
u(x) = ψ(x), on (intΩR ∩ ∂Ω) \ T .

(15)

In particular, the last boundary condition of (15), has to be understood in the
viscosity sense.

A continuous function u : R → IR, satisfying the second boundary condition
(the limit one) is a viscosity solution of (15) if it is a subsolution and a super-
solution. Being a subsolution (respectively: a supersolution) means that u ≤ 0
(respectively u ≥ 0) on ∂T , and moreover for every C1 test function ϕ : Ω → IR,
and for every x ∈ R\T such that u−ϕ has a local maximum in x (respectively:
a local minimum) with respect to Ω, the following holds

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
a∈A

{−∇ϕ(x) · f(x, a)} ≤ 1,

if either x ∈ (R ∩ Ω) \ T or x ∈ (intΩR ∩ ∂Ω) \ T and u(x) > ψ(x);[
respectively: sup

a∈A
{−∇ϕ(x) · f(x, a)} ≥ 1,

if either x ∈ (R ∩ Ω) \ T or x ∈ (intΩR ∩ ∂Ω) \ T and u(x) < ψ(x)
]
.
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Proof. The proof is almost standard, we only check the last boundary condition.
Note that, by the controllability hypothesis on ∂Ω, we may only have V ≤ ψ
on ∂ΩR ∩ ∂Ω. Let us fix x ∈ intΩR ∩ ∂Ω, we have only to analyze the case
V (x) < ψ(x). Since x ∈ R \ T , then there exists δ > 0 such that, for every t
small, there is a minimizing sequence of controls αn for (14) with εx(αn) ≥ δ.
Hence, for every test function ϕ ∈ C1(Ω) such that V − ϕ has a local minimum
in x with respect to Ω, by the usual technique we get

sup
a∈A

{−∇ϕ(x) · f(x, a)} ≥ 1. ��

We now suppose the following “internal cone condition” in Ω: there exists a
constant c > 0 and a uniformly continuous function η : Ω → IRn such that, for
every x ∈ Ω (B(x + sη(x), cs) is the ball around x + sη(x) with radius cs)

B(x + sη(x), cs) ⊆ Ω, ∀0 < s ≤ c. (16)

Theorem 2. Let the hypotheses Proposition 4 and (16) hold. Then the value
function is the unique continuous bounded below function u : R → IR which is a
viscosity solution of the problem (15).

Proof. We sketch a standard technique. We first introduce the so-called Kruzkov
transformation. Let u : R → IR be a continuous bounded below function sat-
isfying the first two boundary conditions in (15). Then, we define the bounded
continuous function ũ : Ω → IR as follows

ũ(x) :=
{

1 − e−u(x) if x ∈ R,
1 if x ∈ Ω \ R.

We also denote by ψ̃ : ∂Ω → IR the Kruzkov transform of the boundary datum ψ

ψ̃(x) :=
{

1 − e−ψ(x) if ψ(x) ∈ IR,
1 if ψ(x) = +∞.

If u is a continuous bounded below viscosity solutions of (15), then ũ : Ω → IR
is a continuous bounded viscosity solution of the problem in the unknown v⎧⎪⎨

⎪⎩
v + sup

a∈A
{−∇v · f(x, a)} = 1 in Ω \ T ,

v = 0 on ∂T ,

v = ψ̃ on ∂Ω \ T ,

(17)

where the last boundary condition has to be understood in the viscosity sense.
Hence, our thesis will come from a uniqueness result for problem (17). Such a

problem is a little bit different from the usual ones found in the literature, since
it is a minimum/exit time problem. In particular, the target T and the exit
boundary ∂Ω may intersect. Since, the open set on which the Hamilton-Jacobi
equation must be verified is Ω \ T , it is not in general true that a internal cone
condition, similar to (16) should hold for the closure of such a set. It depends on
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how T and ∂Ω intersect. And the internal cone condition is in general necessary
for the uniqueness result where the boundary conditions are in the viscosity
sense. However, in our case, the condition on ∂T is not in the viscosity sense,
it is just a classical boundary condition. Moreover, since ∂T is compact by
hypothesis, we can say that for every open (in Ω) neighborhood U of ∂T , a sort
of (uniformly) internal cone condition holds for the set Ω \ U , in the following
sense: there exists a constant c′ > 0 (depending on U), such that, for every
x ∈ Ω \ U , we have

B(x + sη(x), c′s) ⊆ Ω \ T ∀0 < s ≤ c′. (18)

As usual, the uniqueness is proved by a comparison result between a con-
tinuous subsolution v1 and a continuous supersolution v2 (i.e. by proving that
v1 ≤ v2 in Ω \ T ). But, on ∂T , they must satisfy v1 ≤ 0 ≤ v2, and then, for
every δ > 0 we found a neighborhood Uδ of ∂T such that v1 − v2 ≤ δ in Uδ. This
permits to use the standard double variables/penalization technique. Indeed, one
usually suppose by absurd that there exists x̃ such that v1(x̃) − v2(x̃) = δ > 0.
In our case, we certainly have x̃ ∈ Ω \ Uδ. Hence, the usual machinery, and
especially (18) may be used.

In the end, we get that there exists a unique bounded continuous viscosity
solution of (17). ��

Remark 5. Let us suppose that R′ ⊆ Ω is another open set in Ω (for the induced
topology), which contains T , and that u′ : R′ → IR is a continuous bounded
below viscosity solutions of the corresponding problem (15), where R is re-
placed by R′. Then, the Kruzkov transformation applied to u′ leads to the
same problem (17). Hence, by uniqueness, we can say that the couple (R, T )
is the unique couple given by an open set in Ω containing T , and by a bounded
below continuous function on such an open set, which solves the corresponding
problem (15).
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Abstract. The complexity of embedded controllers in important industrial do-
mains such as automotive and avionics is growing constantly making error-free
system integration almost impossible. We address the complexity issues posed
by the analysis and design of interacting controllers introducing approximation
techniques that are shown to be effective on a substantial industrial test case:
the control system for common-rail fuel-injection developed by Magneti Marelli
Powertrain.

1 Introduction

This paper is motivated by the analysis of the development flow for embedded control
systems in the automotive industry reported in [1]. The design flow for ECUs adopted
by Tier–1 automotive companies such as Bosch and Magneti-Marelli is captured by
the so–called V-diagram, representing a synthesis flow and an integration and testing
flow [1,2]. The synthesis flow is articulated in the following steps: system specifica-
tion, functional deployment, control system, and HW/SW components. In functional
deployment, system specifications are mapped onto a control-system architecture: de-
sign requirements are derived for each control algorithm, sensor and actuator, so that the
system specifications are met. Next, each control algorithm is designed independently,
according to the specification defined in the previous step.

Today, functional deployment is largely guided by the experience of system engi-
neers. In fact, while there are many established techniques to carry out the design of
single control algorithms, a methodology is still lacking for the design of a control
system architecture and the management of interactions between control algorithms.
Management of control algorithm interactions is by no means trivial, due to:

– Complexity of control system architectures: Often, ECUs may have more than one
hundred I/O signals, they may execute more than four hundred control algorithms,
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with nested control loops, and may share with the other ECUs more than one hun-
dred signals.

– Synchronization issues: The control system is multi-rate, with heterogeneous time–
domains, and frequency and phase drifts between fixed sampling–time actions and
event driven actions. To make things even more complicated, proper synchroniza-
tion has to be achieved between algorithms implemented on different ECUs con-
nected by a communication network.

– Hybrid behavior: Control algorithms are often characterized by several operation
modes, encoding different regions of operation as well as different phases of the life
of the product. “Inside” each mode, the system is characterized by hybrid dynamics
where the evolution of the system occurs in discrete and continuous domains.

Given its conceptual and practical complexity, effective management of the control al-
gorithm interactions can be achieved only by formulating the design and verification
problem at a level of abstraction that is high enough to allow to analyze the properties
of interest in a quantitative way.

We present in this paper a systematic procedure to reduce the complexity of the prob-
lem by abstracting the behavior of the system while maintaining accuracy when needed
of the approximations used. We leverage model-reduction techniques as well as finite-
state machine abstractions to simplify the analysis and synthesis problem. These tech-
niques are combined in a flow that is motivated by automotive applications but could
be extended easily to other application domains. While the derivation of robust demon-
strable bounds on the approximation procedure presented here is still missing, the effec-
tiveness of the approach is demonstrated on an industrial design problem, common-rail
fuel injection, made available by Magneti Marelli Powertrain. The rest of the paper
is organized as follows. In Section 2, we briefly review fundamental results on model
reduction for continuous systems and abstractions of Finite State Machines (FSM). In
Section 3, the proposed approach is illustrated, while details and an application to a case
study in common rail control are given in Sections 4 and 5. Some concluding remarks
are given in Section 6.

2 Background

The complexity reduction approach we propose is based on results on model reduction
for continuous systems and abstractions of FSMs that we briefly review in this section.

2.1 Model Reduction for Continuous Systems

Model-reduction simplifies system analysis and controller design by reducing the di-
mensions of the state space of a continuous time system while maintaining accuracy
within a given bound. Model reduction has close connections to approximation theory
and system identification. The literature dealing with this important domain is very rich.
Numerical analysts, ODE experts, automatic control researchers and the Electronic De-
sign Automation (EDA) community have all investigated a variety of techniques.

In particular, EDA researchers developed a number of very effective numerical tech-
niques that have been implemented in industrial tools in the context of simulation of
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VLSI circuits with parasitics. Physical modeling of IC components results in high di-
mensional state models (up to ten thousands of states), for which low dimension approx-
imations have been obtained [3]. Reductions of up to three orders of magnitude were
obtained. Algorithms, such as PRIMA, PVL and Arnoldi schemes, generate guaranteed-
passive models for systems with special internal structure, using numerically stable and
efficient Krylov-subspace iterations [4].

Our approach is closer to model reduction techniques well-established in the con-
trol community (e.g., Hankel-Norm approximation [5]; Truncated Fourier and Taylor
expansion [6]). In particular, we borrow from the following two techniques:

Proper Orthogonal Decomposition (POD), also called Karhunen-Love expansion,
can be applied to both linear and nonlinear ordinary differential equations, as well as
to partial differential equations. The reduced order model is obtained by identification
using trajectory profiles given by simulations of the original model. Given a state space
model, snapshots x(ti) of state profiles over a time horizon [t0, tN ] are collected in a
matrix X . Then, a reduced sub-space where most of the snapshots x(ti) lie is determined.
If the approximation error is to be minimized in a least-square sense, then the problem
can be expressed using the Frobenius norm as in singular value decomposition [7]. After
inspection of the singular value of the matrix X , a suitable state subspace is chosen.
The reduced order model is obtained by simple truncation of “small states”, so-called
Galerkin projection. Notice that the POD method does not guarantee that the reduced
model is a close approximation of the original model. In some cases one can prove
that stability of equilibrium points is preserved between the original and the projected
model [8].

Balanced truncation was first proposed in [9]. A common physical interpretation
of balanced truncation is given in the state space: “small states” are removed by trun-
cation of the original state–space model. This interpretation has close connections to
POD, but it does not capture the connection between balanced truncation and Singu-
lar Value Decomposition (SVD) methods (see [7]). For linear time-invariant systems,
if the Lyapunov observability and controllability differential inequalities have any so-
lution, i.e., the observability and controllability Gramians are greater than 0, for all t,
then there exists a transformation matrix T (t) that obtains a balanced realization of
the system. When the system is transformed into a balanced form, the reduced model
is obtained by state truncation. Balanced truncation for nonlinear systems is discussed
in [10] and [11]. Time-varying balanced truncation based on both SVD and on input-
output data is presented in [12]. Interesting results on balanced truncation of linear
time-varying systems in both discrete–time and continuous–time are reported in [13].
Both upper and lower error bounds for the truncated models can be easily derived using
time-varying Lyapunov equations or inequalities. In [14] it is shown how to construct
truncated balanced realization-like methods that generate guaranteed passive reduced
models for state-space systems with arbitrary internal structure.

2.2 FSM Abstraction

FSM abstraction is defined on the basis of the notion of refinement (see [15] and [16]).
An FSM S1 refines an FSM S2 if: (i) inputs(S1) = inputs(S2); (ii) outputs(S1) = outputs
(S2); (iii) behaviors(S1) ⊆ behaviors(S2). A behavior of an FSM is a pair (x,y) where
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Fig. 1. Two interacting controllers connected in a cascade architecture

x is an input sequence and y is a corresponding output sequence. If S1 refines S2, then
S1 is a more detailed description (a refinement) of S2, while S2 is an abstraction of S1.
S1 and S2 are said to be equivalent if: (i) inputs(S1) = inputs(S2); (ii) outputs(S1) =
outputs(S2); (iii) behaviors(S1) = behaviors(S2). An equivalent and minimal FSM to
a given FSM can be obtained using the notion of indistinguishable states [17]. Let Ia

be a generic sequence of inputs i1, . . . , ik and let Ua,s j be the corresponding sequence
outputs u1, . . . ,uk, starting from the initial state s j. Let λ () denote the input–output
function, i.e. Ua,s j = λ (s j, Ia). States si and s j are indistinguishable, i.e. si ∼ si, if Ua,si =
λ (si, Ia) = λ (s j, Ia) = Ua,s j for all Ia. Since si ∼ si, si ∼ s j ↔ s j ∼ si and si ∼ si ∧ s j ∼
sk → si ∼ sk, then indistinguishability is an equivalence relation. States can be collected
in equivalence classes and the corresponding equivalent quotient system defines the
minimal equivalent FSM.

3 Complexity Reduction Techniques for Hybrid Control Systems

We consider control algorithms connected in a cascade structure as in Figure 1 (e.g.
a control system consisting of an outer–loop heat pump controller and an inner–loop
compressor controller). The objective is to analyze the interaction between the inner
loop controller and the outer loop controller. Analyzing the interactions using the com-
plete hybrid model of the plant, the inner controller and the outer controller is often too
complex and not even necessary. This is especially true when there are several nested
control loops. Hence, we propose an approach based on complexity reduction of the
inner–closed loop system behavior. The proposed approach can be cast in the frame-
work of approximate simulation of hybrid systems which was defined in [18]. The main
new contribution of the present work is the formulation of a procedure for complexity
reduction based on which approximated models of hybrid systems can be obtained.

The proposed complexity reduction procedure consists of three main steps that bor-
row from the literature presented in Section 2:

Step 1: Model reduction of the continuous dynamics associated to locations of the
complete hybrid system
This step is a direct application of model reduction techniques. In [19], continuous
dynamics model reduction was proposed as an approach to simplify reachability anal-
ysis. While this step is useful, it will not lead to an effective simplification of the dis-
crete behavior of the inner–loop hybrid system. To do so, we will follow two paths:
(i) transform part of the hybrid system into a purely continuous time system; (ii) find
classes of equivalence in the graph of locations by equating discrete states that have
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“similar” continuous dynamics “inside”. We can apply the first strategy, when switch-
ing between a set of locations occurs sufficiently fast so that a mean–value continuous
behavior can closely approximate the switching behavior of the hybrid system. Simple
examples of this behavior are: bang-bang and sliding mode control, cascade control
with switching in the inner loop faster than in outer loop. In all of these cases, mean–
value modeling can be applied to abstract the discrete behavior of the inner control
loop. However, this transformation is a heuristic and there is no guarantee that the
simplified inner–loop yields an overall behavior of the system that is not too distant
from the one of the complete system. Hence, we need to verify this condition before
we actually accept the simplification. This reasoning yields the following step:
Step 2: Abstraction of independent cyclic paths

2.a: Identification of fast–switching independent cyclic paths;
2.b: Mean–value modeling of the continuous behavior on cyclic paths;
2.c: Validation of the abstract model.

Once, the validation has been carried out, the resulting hybrid system can be mini-
mized using state abstraction methods:
Step 3: Equivalent minimal realization of the discrete behavior

3.a: Hybrid system discrete representation;
3.b: Reduction of the discrete representation.

Since Step 1 is a straightforward application of model reduction techniques, we will
not analyze it in further details, while we will take a closer look at Step 2 and 3 in the
following sections.

4 Abstraction of Independent Cyclic Paths

Identification of fast–switching independent cyclic paths. This step can be easily
carried out exploiting the insight of the control system designer or by inspection since
in some cases, the hybrid model is the composition of several models, one of which is
a hybrid automaton represented by only one cycle.

Mean–value modeling of the continuous behavior on cyclic paths. Once a cyclic
path is selected, a model of the mean continuous behavior of the system performing
the cycle at high frequency has to be obtained. Variable–structure control theory pro-
vides established methods to solve this problem in case the system switches across a
sliding surface. The Filippov’s continuation method [20] and the method of the equiv-
alent control [21,22] can be used for this purpose. Notice that the equivalent dynamics
depends on the sliding surface only and not the dynamics between which the system
switches. Consequently, the mean–value model of a hybrid system may depend on the
guard conditions only and not on the continuous dynamics associated to the locations.
Alternatively, the model can be obtained by identification on simulation traces of the
hybrid system.

Validation of the abstract model. Identification techniques inspired us to use a set of
metrics to evaluate the “distance” between the approximate model and the complete
one. In particular, we make use of:
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Sum of Square Error. Also called sum square of residuals, it is a measure of the total
deviation of the fit ŷi to the system response yi (best fit SSE = 0):

SSE =
n

∑
i=1

(yi − ŷi)2 , SSEweighted =
n

∑
i=1

wi(yi − ŷi)2 . (1)

R-Square. It measures how successful the fit is in explaining the variation of the data.
R2 is the square of the correlation between the response values and the predicted re-
sponse values. It is also called the square of the multiple correlation coefficient or the
coefficient of multiple determination. R2 is defined as follows:

R2 =
SSR
SST

= 1 − SSE
SST

with SSR =
n

∑
i=1

wi(ŷi − ȳ)2 , SST =
n

∑
i=1

wi(yi − ȳ)2 , (2)

where SSR is the sum of squares of the regression and SST is the total sum of squares
(also sum of squares about the mean). R2 assumes values lower than 1 (with 1 indicating
best fit). When R2 is negative, it cannot be interpreted as the square of a correlation.
Percentage relative error. It is the local relative error in percent

PREmax = 100max
i=1,n

[(
|yi − ŷi|

yi

)]
, PREmean = 100

1
n

n

∑
i=1

[(
|yi − ŷi|

yi

)]
. (3)

4.1 A Case Study: Common Rail Pressure Controllers

In this section, an application of Step 2 to the design of a controller for common rail
pressure regulation is presented. Figure 2 reports the fuel system control architecture.

Common rail model. The case study is based on a hybrid model of the common–rail
injection system marketed by Magneti Marelli Powertrain, referred to as HIMV , pro-
posed in [23]. This model describes accurately the interacting discrete and continuous
behaviors of the injection system components. The components of the model are rep-
resented in Figure 3. The rail pressure p is the controlled output. Its evolution depends
on the balance between the HP pump flow qP, the injector flow qINJ and the DRV flow
rate qDRV . The IMV and DRV duty cycles uIMV , uDRV ∈ [0,1] are the control inputs
that modulate the pump inlet flow qM and the DRV flow rate qDRV respectively. The in-
jector fuel flow qINJ is considered as a disturbance to be compensated. It depends on:
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q
DRV(t)

uDRV(t)

uIMV(t)

Fig. 3. Hybrid model HIMV of the common rail

Fig. 4. Hybrid model of the i-th ram of the HP pump

the injector opening times ET, the engine speed n, and the rail pressure p. Finally, the
evolutions of the HP pump and the injectors are synchronized by the camshaft angle φ
and crankshaft angle θ , respectively.

The HP pump. The model of the HP pump is the composition of the hybrid models
of the three identical rams that composed the pump. The hybrid model of the i-th ram is
shown in Figure 4. Its evolution is determined by the ram angle φi ∈ [0,360]o given by
φi(t) = mod 360o [φ(t)−φio], with φ1o the ram phase. The model has two macro–modes:
intake and compression. The pumping cycle starts with the intake phase, which starts at
φi = 0o and ends when φi approaches 180o. Since the three rams are mounted with a rel-
ative phase of 120o, then the intake phases of the rams partially overlap. Intake overlap-
ping results in different supplying fuel flows to the rams. The compression mode starts
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Fig. 5. Hybrid model of the injectors

at φi = 180o and ends when φi approaches 360o. It consists of two modes: C1, modeling
fuel condensation in the ram, and C2, modeling fuel delivery to the rail.

The injectors. The common rail supplies four injectors, one for each cylinder of
the engine. In multi–jet engines, each injection phase is composed by a sequence of
3 to 5 distinct injections. Having the engine four cylinders, the frequency of injection
sequences is twice the engine speed. Depending on the engine operating condition, the
engine torque controller implemented in the engine control unit defines the amount
of fuel to be injected and, consequently, the durations ET = (τPIL,τPRE ,τMAIN) and
phases (θ PIL,θ PRE ,θ MAIN) of each fuel injection.

The rail. The dynamics of the rail pressure is obtained by considering the balance
between the HP pump flow, the injector flows and the DRV actuator flow:

ṗ(t) =
KBulk(p)

Vrail

[
qP(t)− qINJ(t)− qDRV(t)

]
. (4)

Model simplification. The common rail model HIMV presented in the previous para-
graph is the composition of several hybrid models, among which the HP pump model
and the injector model, shown in Figures 4 and 5 respectively, have discrete behaviors
described by independent cyclic paths. Furthermore, in the executions of the hybrid
model HIMV , such cycles are performed at high frequency. Hence, according to Step
2.a, independent cyclic paths are identified and the corresponding simplifications of
HIMV can be investigated to verify whether they are accurate enough for controller
design. Step 2.b is performed by computing mean–value signals in time obtaining the
following two abstracted models:

– H P
CM: obtained by replacing in HCM the HP pump hybrid model in Figure 4 with:

QHP(s) = η(n, p)
1

1 + τs
QM(s) where η(·) is HP pump efficiency. (5)
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Fig. 6. Profiles of the rail pressure evolution obtained with the abstracted models H P
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– H I
CM: obtained by replacing in HCM the injector hybrid model in Figure 5 with:

Qin j = ∑
i={PIL, PRE, MAIN}

n
30

Qi
in j(p,ET ) (6)

where Qi
in j(·) is a piecewise affine function modeling injector flow rate.

In model H P
IMV the HP pump is considered as a continuous system that provides

a continuous flow rate of fuel to the rail, which corresponds to the mean–value flow
of the original hybrid HP pump model. In model H I

IMV , the discrete behavior of fuel
injections is abstracted away and injectors are modeled as continuous valves that deliver
mean–value fuel flow rates to the combustion chamber.

In the next step, Step 2.c, we verify whether the abstractions H P
IMV and H I

IMV of
HIMV are accurate enough for controller design. Due to the unstable behavior of pres-
sure dynamics, models H P

IMV and H I
IMV have to be evaluated in closed–loop. A simple

PID controller is used to stabilize the system. In Figure 6, profiles of the rail pressure
evolution obtained with abstracted models H P

IMV and H I
IMV are compared to that pro-

duced by the original hybrid model HIMV . Simulation results show that while model
H I

IMV with injector abstraction reproduces closely the evolution of the original model
HIMV , the behavior of the model H P

IMV with pump abstraction is not satisfactory. Model
H P

IMV correctly reproduces the steady–state behavior but not the transient one. In ad-
dition, model H P

IMV does not exhibit the high frequency rail pressure ripple that is
present in the original model HIMV , while the ripple is precisely reproduced by model
H P

IMV . This qualitative analysis is confirmed by the computation of metrics. Index R2

in (2) evaluates to 96,95% for H I
CM , and 69,46% for H P

CM . Since a standard figure for
good model fitting using R2 is 90%, then H I

CM is a good abstraction while H P
CM is not.

When the rail pressure is controlled using the DRV actuator, index R2 does not give
any information since it is negative. The quality of our models H I

DRV and H P
DRV are

evaluated using the relative error metrics (3) and results similar to the previous case are
obtained. For H I

DRV , we have REmax = 0.62% and REmean = 0.23%; for the H P
DRV , we
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have REmax = 14.31% and REmean = 2.03%. In conclusion, for rail pressure controller
design, the discrete behavior of the injectors can be approximated away, modeling fuel
injections as a continuous phenomenon, while the discrete behavior of the HP pump
has to be represented because it affects significantly the closed–loop behavior.

5 Equivalent Minimal Realization of the Discrete Behavior

In Step 3, an equivalent minimal realization of the discrete behavior of the hybrid sys-
tem is computed.

Hybrid system discrete representation. First, the hybrid system model is projected
to the discrete domain, by abstracting away continuous dynamics. A new FSM, referred
to as F , is defined as follows:

– states and transitions of F correspond to the hybrid system locations and transi-
tions, respectively;

– To each transition of F we associate
• an output label referring to the continuous time dynamics of the entering loca-

tion in the hybrid system;
• an input label referring to the guard condition of the corresponding transition

in the hybrid system.

Reduction of the discrete representation. In this step, a minimal equivalent re-
alization of the FSM F is computed. The well-known Paull-Unger recursive rule
(see [24,25]) states that two states si and s j are equivalent if for any input ia, the
corresponding outputs λ ( ) are equal and the next states δ ( ) are equivalent, that is:
si ∼ si ↔ ∀ia λ (si, ia) = λ (s j, ia) and δ (si, ia)∼ δ (s j, ia). Given that input and state sets
are finite, the Paull-Unger recursive rule is guaranteed to terminate. Indistinguishability
relations are computed by the Table of Implications, obtained as the Cartesian product
of the set of states by itself. Due to symmetry and reflexiveness, only the lower triangu-
lar part of the table is filled in. Each entry of the table contains either:

- the symbol �: if states are not equivalent;
- the symbol ∼: if states are equivalent;
- a pair of states whose equivalence implies the equivalence of the states correspond-

ing to the entry.
By solving the implications defined in the third type of entries, the Table of Im-

plications is refined until all entries are assigned to either � or ∼. The refined table
defines the equivalence classes and hence a minimal FSM equivalent to F . The approx-
imate simulation relation proposed in [18] imposes conditions weaker than equivalence,
namely the observations of the system and its approximation have to be close one an-
other. In our approach, equivalence is imposed since closeness of continuous behaviors
is analyzed in Step 1 and 2.

5.1 A Case Study: The Combustion Quality Controller

We present in this case study an application of Step 3 for the reduction of the model of
the common–rail system controlled by the pressure controller discussed in the previous
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Fig. 8. Rail pressure profiles simulated with the detailed hybrid model using the IMV actuator
(black line) and the DRV actuator (red-dot line), compared to the common identified continuous
model

case study. As described in Figure 2, the fuel system control architecture contains in
the outer control loop the Combustion Quality Controller (CQC), which defines the rail
pressure reference based on the engine conditions and the requested engine torque. The
model of the discrete behavior of the CQC is shown in Figure 7. Locations are related to
the different engine modes (i.e. cranking, cut-off and power-off) and different actuators
to be used for rail pressure control: either the IMV (a valve mounted on the HP pump)
or the DRV (a valve mounted on the rail). Notice that CQC is designed to work properly
in engine equipped with IMV only, DRV only, or both. In the last case, the CQC selects
on–line the type of actuator to be used to minimize fuel consumption, engine noise and



Complexity Reduction for the Design of Interacting Controllers 57

KEY_ON

OL_IMV

OL_DRV

CL_IMV

CL_DRV

KEYOFF_IMV

KEYOFF_DRV

KEYON=0

KEYON=0

DBACT=1 ∧ CUTOFF=0

DBACT=1 ∧ CUTOFF=1

DBACT=1

KEYON=1

KEYON=1

DBACT=1 ∧ CUTOFF=0

DBACT=1 ∧ CUTOFF=1

DBACT=1

p > 100

p > 100

n > 20∧
DRV=0 ∨
DBACT=1

n > 20∧
DRV=1 ∧
DBACT=0

fβ (x,u, t)

fβ (x,u, t)

fγ(x,u, t)

fγ(x,u, t)

fδ (x,u, t)

fδ (x,u, t)

fδ (x,u, t)

fδ (x,u, t)

fγ(x,u, t)

fγ(x,u, t)

fγ(x,u, t)

fγ(x,u, t)

fα(x,u, t)

fα(x,u, t)

Fig. 9. FSM extracted from the CQC hybrid model according to Step 3.a

tailpipe emissions. In each location, CQC defines the target rail pressure to be tracked.
The initial mode is KEY-ON. In this mode, parameter initialization is performed. As
soon as cranking starts, the CQC switches to the next mode, which depends on the
actuator configuration: DBACT = 1 denotes both IMV and DRV are present; DBACT =
0 denotes only one of them is present. In modes OL-IMV and OL-DRV, the rail pressure
controller acts in open–loop, until the fuel pressure overcomes 100 bar. Then, the CQC
moves to nominal operation modes, either to CL-IMV or CL-DRV depending of the
chosen actuation. During fuel cut-off, the CQC always switches to CL-DRV, if DRV
is present. For a proper power–off of the engine, the CQC switches either to mode
Keyoff-IMV or to mode Keyoff-DRV. At the next key–on the CQC switches back to
the KEY-ON mode.

In this case study we apply Step 3 of the proposed technique to obtain a simplified
version of the common rail closed–loop model.

First, according to Step 1 for each CQC location, the hybrid model of the common
rail in closed–loop with the pressure controller is reduced to a simple continuous model.
The Proper Orthogonal Decomposition method described in Section 2 is applied using
input-output data obtained by simulations on profiles extracted by ECE cycle. The re-
duced continuous systems are of the type

G(s) =
K(1 + Tzs)

(1 +(2zTw)s+ T 2
w s2)(1 + Tps)

. (7)

In Figure 8, the evolutions of the fuel injection models with DRV and IMV actuators
are compared with the identified ones. For a same location, the identified models using
the IMV actuator ( fβ 1) and the DRV actuator ( fβ 2) are quite close, meaning that the
inner pressure controller achieves good compensation of the different dynamics of the
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Table 1. Table of Implications

OL–IMV ×
OL–DRV × CL–IMV/

CL–DRV
CL–IMV × × ×
CL–DRV × × × Keyoff–IMV/

Keyoff–DRV
Keyoff–IMV × × × × ×
Keyoff–DRV × × × × × ∼

keyon OL–IMV OL–DRV CL–IMV CL–DRV Keyoff–IMV

Fig. 10. Reduced model of the injection system

actuators. By evaluating the R2 index (2), on the identified models (7), we obtain good
fitting (greater than 90%): 91,25% for IMV and 92,3% for DRV. Hence, the IMV
closed–loop dynamics fβ 1 and the DRV closed–loop dynamics fβ 2 can be replaced
by a unique reduced dynamics fβ . The same results holds for the other modes, and
dynamics fγ1, fγ2 are replaced by fγ ; while dynamics fδ1, fδ2 are replaced by fδ .

Figure 9 reports the FSM extracted from the hybrid model according to Step 3.a. The
Table of Implications of the FSM, computed according to Step 3.b, is reported in Table
1. The following equivalent classes can be defined:

OL = {OL-IMV, OL-DRV }
CL = {CL-IMV, CL-DRV }

Keyoff = {Keyoff-IMV, Keyoff-DRV } .

Therefore, the original hybrid model that includes the common rail, the pressure con-
troller and the CQC, can be reduced to the hybrid system reported in Figure 10 with the
four locations: {Keyon, OL, CL, Keyoff }.

6 Conclusion

A methodology for reducing hybrid system model complexity was presented. The pro-
posed methodology is based on three main steps: reduction of continuous dynamics
associated to locations and abstraction of independent cyclic paths, and equivalent min-
imal realization of the discrete behavior. Evaluation of abstraction quality is based on
statistic metrics defined in identification theory. The proposed methodology was illus-
trated in an interesting case study in automotive applications: the common-rail fuel-
injection system for Diesel engines developed by Magneti Marelli Powertrain. Future
work involves the generalization of the approach to other connection architecture and
the theoretical analysis of provable bounds for the proposed procedure.
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Abstract. The lack of precise numerical information for the values of
biological parameters severely limits the development and analysis of
models of genetic regulatory networks. To deal with this problem, we
propose a method for the analysis of genetic regulatory networks with pa-
rameter uncertainty. We consider models based on piecewise-multiaffine
differential equations, dynamical properties expressed in temporal logic,
and intervals for the values of uncertain parameters. The problem is then
either to guarantee that the system satisfies the expected properties for
every possible parameter value - the corresponding parameter set is then
called valid - or to find valid subsets of a given parameter set. The pro-
posed method uses discrete abstractions and model checking, and allows
for efficient search of the parameter space. This approach has been im-
plemented in a tool for robust verification of gene networks (RoVerGeNe)
and applied to the tuning of a synthetic network build in E. coli.

1 Introduction

Numerous cellular processes are controlled at the molecular level by networks of
interactions between genes, proteins and small molecules, called genetic regula-
tory networks. Understanding how the cellular behavior emerges from these net-
works of interactions is a central problem in systems and synthetic biology [1,2].
Arguably, the most widely-used modeling frameworks for the analysis of the dy-
namics of these networks are based on differential equations [3]. With few excep-
tions [4], it is generally assumed that the numerical values of state variables and
model parameters are precisely known. However, given the current limitations
of experimental measurement techniques, and the fact that parameter values
themselves vary with the ever-fluctuating extra- and intracellular environments,
the results obtained by these techniques may be of limited validity.

In this work, we present a method for the analysis of genetic regulatory
networks with parameter uncertainty. We consider gene network models based
on piecewise-multiaffine (PMA) differential equations, dynamical properties ex-
pressed in temporal logic (LTL), and intervals for the values of uncertain
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parameters. The problem is then either to guarantee that the system satisfies
the expected properties for every possible parameter value - the corresponding
parameter set is then called valid - or to find valid subsets of a given parameter
set.

In the proposed approach, we use a partition of the state space induced by the
piecewise nature of the models and specific properties of multiaffine functions [5]
to define an equivalence relation on parameters. Discrete abstractions [6] are used
to transpose the problem defined on (infinite) continuous state and parameter
spaces into a problem defined on (finite) discrete spaces. Algorithmic analysis by
model-checking [7] is then possible. Conservative approximations are used that
guarantee that the parameter sets returned by the procedure are valid. However,
not all valid parameter sets are guaranteed to be found. This approach has been
implemented in a tool for Robust Verification of Gene Networks (RoVerGeNe)
and applied to the analysis of the tuning of a synthetic gene network, build in
the bacterium E. coli. This case study demonstrate the practical applicability
and biological relevance of the proposed approach.

This paper is organized as follows. Section 2 introduces preliminary notions.
PMA models are presented in Section 3, and the proposed approach is detailed
in Section 4. The application to the tuning of a network is presented in Section 5.
The final section discusses the results in the context of related work.

2 Preliminaries

All the notions and notations presented here are described at length in [8]. We
consider Kripke structures T = (S, →, Π, |=) defined over sets of atomic propo-
sitions Π , and simply called transition systems [7]. S is a (finite or infinite) set
of states, →⊆ S × S, a total transition relation, and |=⊆ S × Π , a satisfaction
relation. An execution of T is an infinite sequence e = (s0, s1, s2, . . .) such that
for every i ≥ 0, si ∈ S and (si, si+1) ∈→. We use the syntax and the seman-
tics of Linear Temporal Logic (LTL) formulas defined over executions of Kripke
structures given in [7]. We refer to [6] for the usual notions of simulation between
transition systems and of quotient transition systems. T1 simulates T2 is denoted
T2 � T1, and we recall that simulation relations weakly preserve LTL [7].

Polytopes are bounded intersections of finitely-many open or closed halfspaces.
A polytope P is hyperrectangular if P = P1 × . . .×Pn with Pi = {xi ∈ R | x =
(x1, . . . , xn) ∈ P}, i ∈ {1, . . . , n}. The definitions of the closure, vertices, faces
and facets of a polytope are recalled in [8]. P and VP denote respectively the
closure and the set of vertices of a polytope P . A function f : R

n → R
m is

multiaffine if it is a polynomial with the property that the degree of f in any of
its variable is at most 1. Theorem 1 is proven in [5].

Theorem 1. Let f : R
n → R

m be a multiaffine function and P be a hyper-
rectangular polytope in R

n, n, m ∈ N. Then, for every x ∈ P , f(x) is a convex
combination of the values of f at the vertices of P .
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3 Uncertain PMA Models of Genetic Regulatory
Networks

3.1 PMA Systems and LTL Specifications

In this section, we present a formalism for modeling gene networks. The notations
and terminology are adapted from [9]. We consider a gene network consisting of
n genes. The state of the network is given by the vector x = (x1, . . . , xn), where
xi is the concentration of the protein encoded by gene i. The state space X
is a hyperrectangular subset of R

n: X =
∏n

i=1[0,maxxi ], where maxxi denotes
a maximal concentration of the protein encoded by gene i. Some parameters
may be uncertain: p = (p1, . . . , pm) is the vector of uncertain parameters, with
values in the parameter space P =

∏m
j=1[minpj ,max pj ], where minpj and maxpj

denote a minimal and a maximal value for pj.
The dynamics of the network is given by the differential equations

ẋi = fi(x, p) =
∑

j∈Pi

κj
i rj

i (x) −
∑

j∈Di

γj
i rj

i (x) xi, i ∈ {1, . . . , n}, (1)

where Pi and Di are sets of indices, κj
i > 0 and γj

i > 0 are (possibly uncertain)
production and degradation rate parameters, and rj

i : X → [0, 1] are continuous,
PMA functions, called regulation functions. PMA functions arise from products
of ramp functions r+ and r− (Figure 1(a)) used for representing complex gene
regulations or protein degradations (Figure 5(b) Eq. 4, and [8]). With the ad-
ditional assumption that rj

i does not depend on xi for j ∈ Di,1 it holds that
f = (f1, . . . , fn) : X × P → R

n is a (non-smooth) continuous function of x
and p, a piecewise-multiaffine function of x and an affine function of p. Note
that production and degradation rate parameters may be uncertain, but regula-
tion functions (with their threshold parameters) must be known precisely. Each
component of the vector p of uncertain parameters is either a production or a
degradation rate parameter. Finally, Equation (1) is easily extended to account
for constant inputs u by considering u as a new variable satisfying u̇ = 0.

A number of dynamical properties of gene networks can be specified in tem-
poral logic by LTL formulas over atomic propositions of type xi < λ or xi > λ,
where λ ∈ R≥0 is a constant. We denote by Π the set of all such atomic propo-
sitions. A PMA system Σ is then defined by a piecewise-multiaffine function f
defined as above and a set of atomic propositions Π : Σ = (f, Π).

Consider the cross-inhibition network represented in Figure 1(b). This system
can be represented by the PMA differential equations given in Figure 1(c). For
example, the first equation states that protein A synthesis is inhibited by protein
B (r− function) and that its degradation is not regulated. Parameter values
are given in Figure 1(d). Synthesis parameters are unknown: (κa, κb) ∈ P =
[0, 40] × [0, 20]. For illustrating our purpose, we also consider p1 ∈ P with p1 =
(36, 17). This network is known to be bistable: it has two stable equilibrium

1 This assumption requires that a protein does not regulate its own degradation. In
practice, this assumption is generally satisfied.
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r−(xi, θi, θ
′
i)r+(xi, θi, θ

′
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A B

ba
(b)

ẋa = κar−(xb, θ
1
b , θ2

b ) − γa xa

ẋb = κbr
−(xa, θ1

a, θ2
a) − γb xb

(c)

φ1 = (xa < θ1
a ∧ xb > θ2

b → G (xa < θ1
a ∧ xb > θ2

b ))
∧(xb < θ1

b ∧ xa > θ2
a → G (xb < θ1

b ∧ xa > θ2
a))

(e)

κi γi θ1
i θ2

i

xa [0, 40] 2 8 12
xb [0, 20] 1 8 12

(d)

Fig. 1. (a) Ramp functions r+ and r−. θi and θ′
i are threshold parameters. (b) Gene

network comprising two genes, a and b, coding for two repressor proteins, A and B.
Each protein represses the expression of the other gene, forming a cross-inhibition
network. (c) PMA model of the network in (b). Because of its simplicity, this model
is actually piecewise-affine. (d) Known and uncertain parameter values. (e) Bistability
property expressed in LTL.

states, corresponding to protein A and B concentrations being respectively high
and low, or low and high. This property can be expressed in LTL by the property
φ1 (Figure 1(e)). For example, the first part of the property expresses that if the
concentrations of protein A and B are respectively low (xa < θ1

a) and high (xb >
θ2

b ), then the system will always (G) remain in such a state. We refer the reader
to [10] for a discussion of the use of invariants to express stability in biology.

PMA models of gene networks were proposed in [11] (see [12] for a related,
piecewise-continuous formalism). The models considered here are also related to
the piecewise-affine (PA) models proposed in [13] (see also [9]). However, contrary
to the step functions used in PA models, ramp functions capture the graded
response of gene expression to continuous changes in effector concentrations.

3.2 Embedding Transition Systems

The specific form of the PMA functions f suggests a division of the state space
X into hyperrectangular regions (Figure 2(a) for our example). For every i ∈
{1, . . . , n}, let Λi = {λj

i}j∈{1,...,li} be the ordered set of all threshold constants in
f , and of all atomic proposition constants in Π , associated with gene i, together
with 0 and maxxi . The cardinality of Λi is li. Then, we define R as the following
set of n-dimensional hyperrectangular polytopes R ⊆ X , simply called rectangles :

R = {Rc | c = (c1, . . . , cn) and ∀i ∈ {1, . . . , n} : ci ∈ {1, . . . , li − 1}},

where
Rc = {x ∈ X | ∀i ∈ {1, . . . , n} : λci

i < xi < λci+1
i }.

c is the coordinate of the rectangle Rc. The union of all rectangles in X is denoted
by XR: XR = ∪R∈RR. Note that XR 
= X . Notably, threshold hyperplanes are
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not included in XR. Two rectangles R and R′, are said adjacent, denoted R � R′,
if they share a facet. coord : R →

∏n
i=1{1, . . . , li−1} maps every rectangle R ∈ R

to its coordinate, and rect : XR → R maps every point x in XR to the rectangle
R such that x ∈ R. For the cross-inhibition network, the set R = {R11, . . . , R33}
of all rectangles is represented in Figure 2(b). R11 and R21 are adjacent, whereas
R11 and R22 are not.

Formally, the semantics of a PMA system Σ is defined by means of an em-
bedding transition system.

Definition 1 (Embedding transition system). Let p ∈ P. The embedding
transition system associated with the PMA system Σ = (f, Π) is TX (p) =
(XR, →X ,p, Π, |=X ) defined such that:

– →X ,p⊆ XR × XR is the transition relation defined by (x, x′) ∈→X ,p iff
there exists a solution ξ of (1) and τ ∈ R>0 such that ξ(0) = x, ξ(τ) = x′,
∀t ∈ [0, τ ], ξ(t) ∈ rect(x)∪rect(x′), and either rect(x) = rect(x′) or rect(x) �
rect(x′),

– |=X⊆ XR × Π is the satisfaction relation defined by (x, π) ∈ |=X iff x =
(x1, . . . , xn) satisfies the proposition π (of type xi < λ or xi > λ) with the
usual semantics.

Remark. Not all solution trajectories of (1) are represented by executions of the
embedding. First, due to our restricted notion of adjacency (�), solution trajec-
tories of (1) that go from a rectangle to another by passing through a face of low
(< n− 1) dimension are not represented in the embedding. Second, the dynamics
of the system in X \XR (including the threshold hyperplanes) is not described by
the embedding. However, since the vector field is continuous everywhere, trajec-
tories originating in full-dimensional rectangles can not “disappear” in a facet by
sliding along the supporting hyperplane. Consequently, the embedding describes
almost all solution trajectories of (1), which is satisfying for all practical purposes.

xa

xb

xa

xb

R13

θ1
a θ2

a

θ1
b

θ2
b

R31

R32R22

R23 R33

R11 R21

R12

R23

R11

R13

R21

R33

R31

R22

R12 R32

(a) (b)

Fig. 2. (a) Continuous dynamics in the state space of the cross-inhibition network for
parameter p1 = (κa, κb) = (36, 17). (b) Discrete abstraction of the dynamics in (a).
Dots denote self transitions.

A PMA system Σ satisfies an LTL formula φ for a given parameter p ∈ P if
TX (p) |= φ, that is, if every execution of TX (p) satisfies φ. Then, valid parameter
sets are defined as follows.
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Definition 2. Let Σ be a PMA system and φ an LTL formula. A parameter set
P ⊆ P is valid for φ iff Σ satisfies φ for almost all p ∈ P .

Again, the use of almost all is motivated by the fact that this criteria is sufficient
for all practical purposes. Finally, we consider the following problems.

Problem. Let Σ be a PMA system, P an hyperrectangular parameter space, and
φ an LTL formula.
1. Robustness analysis: Check whether P is valid for φ.
2. Synthesis: Find a set P ⊆ P such that P is valid for φ.

4 Analysis of PMA Systems with Parameter Uncertainty

4.1 Discrete Abstraction

We use discrete abstractions [6] to obtain finite transition systems preserving
dynamical properties of TX (p) and amenable to algorithmic verification [7]. Let
∼R⊆ XR × XR be the (proposition-preserving) equivalence relation defined by
the surjective map rect : x ∼R x′ iff rect(x) = rect(x′). R is the set of equivalence
classes. Then, the discrete abstraction of TX (p) is the quotient of TX (p) given
the equivalence relation ∼R.

Definition 3. Let p ∈ P. The discrete abstraction of TX (p) is TR(p) = (R,
→R,p, Π, |=R), the quotient of TX (p) given the equivalence relation ∼R.

For our example network, TR(p1) is represented in Figure 2(b). By definition of
quotient transition systems, TR(p) simulates TX (p).

For every p ∈ P , TX (p) � TR(p). (2)

In words, the discrete transition system TR(p) is a conservative approximation
of the continuous dynamics of the PMA system described by TX (p). Because
simulation relations weakly preserve LTL, we have for any LTL formula φ: if
TR(p) |= φ then TX (p) |= φ. The converse does not necessarily hold.

By exploiting specific properties of multiaffine functions defined over hyper-
rectangular polytopes [5], we provide the following characterization.

Proposition 1. Let p ∈ P. TR(p) = (R, →R,p, Π, |=R), where

– →R,p⊆ R × R is such that (R, R′) ∈→R,p iff R = R′, or R � R′ and there
exists v ∈ VR ∩ VR′ such that

fi(v, p)(c′i − ci) > 0,

with c = coord(R), c′ = coord(R′) and i ∈ {1, . . . , n} such that ci 
= c′i.
– |=R⊆ R × Π is such that (R, π) ∈|=R iff for every x ∈ R, (x, π) ∈|=X .
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Proof. Let R, R′ ∈ R. By Definition 1 and 3, it is clear that if neither R = R′

nor R � R′, there can not exist a transition from R to R′. If R = R′, then
since it exists a solution of (1) that remains in R on [0, τ ] for some τ > 0, there
exists a (self) transition from R to R′ (Definition 1 and 3). The last case is when
R � R′. Then, let c = coord(R), c′ = coord(R′) and i ∈ {1, . . . , n} such that
ci 
= c′i and let F be the facet shared by R and R′. We assume without loss of
generality that c′i − ci = 1, the other case (= −1) being symmetrical.
⇒ (by contradiction): Suppose that for every v ∈ VR ∩ VR′ = VF , fi(v, p) ≤ 0.
Using Theorem 1, it holds that for every x ∈ F , fi(x, p) ≤ 0. Consequently, no
solution can enter R′ from R and (R, R′) /∈→R,p.
⇐: Assume that there exists v ∈ VF such that fi(v, p) > 0. By continuity of f ,
there exists a ball Bv,ε of center v and radius ε such that ∀x ∈ Bv,ε, fi(x, p) > 0.
In particular, there exist xf ∈ F , xf 
= v, such that fi(xf , p) > 0. Then, there
exists a solution entering R′ from R without leaving R ∪R′, and by Definition 1
and 3, (R, R′) ∈→R,p.

The characterization of |=R follows immediately from the fact that the equiv-
alence relation ∼R preserves the atomic propositions in Π . ��

Informally, Proposition 1 simply states that there is a transition between two
adjacent rectangles if and only if there exists at least one common vertex at
which the direction of the vector field (fi(v, p)) is in agreement with the relative
position of the two rectangles (c′i − ci). Similar rules have been proposed in [14].
Consider the two rectangles R11 and R21 in Figure 2(a). They share two vertices:
v1 = (θ1

a, 0) and v2 = (θ1
a, θ1

b ). From Proposition 1, there is a transition from
R11 to R21, because fa(v1, p1) > 0, and there is no transition from R21 to R11,
because neither fa(v1, p1) < 0 nor fa(v2, p1) < 0 (check with Figure 2(b)).

For known parameters, Proposition 1 provides a means to compute the re-
lation →R,p by evaluating f at all the vertices. The computation of the set of
states R and of the relation |=R are trivial. So TR(p) can be computed and one
can use model checking for testing whether TR(p) |= φ. If the abstract system
TR(p) satisfies φ, then so does the original system TX (p) (Property (2)), and p is
valid for φ. Conversely, if TR(p) does not satisfy φ, no conclusion on the validity
of p can be obtained. If some parameters are unknown, we will use Proposition 1
to define an equivalence relation on parameters.

4.2 Parameter Equivalence Classes

Consider a vertex v ∈ VR, R ∈ R. Because f is an affine function of p, fi(v, p)
is an affine expression in p: fi(v, p) = aT p + b, with a ∈ R

m and b ∈ R. Let Ψ be
the set of all such non-constant (a 
= 0) affine expressions:

Ψ = {fi(v, p) = aT
i,v p + bi,v | i ∈ {1, . . . , n}, v ∈ VR, R ∈ R and ai,v 
= 0}.

After having removed repeated elements, we denote by nΨ the cardinality of Ψ
and order the elements in Ψ : Ψ = {ψ1, . . . , ψnΨ }. For our example network, with
uncertain parameters κa and κb, out of the 32 affine expressions only 4 different
non-constant expressions exist: nΨ = 4 (Figure 3(a)).
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Ψ = {ψ1, ψ2, ψ3, ψ4}, with
ψ1(p) = κa − 24,
ψ2(p) = κb − 12,
ψ3(p) = κb − 8,
ψ4(p) = κa − 16.

(a)

0

8

12

16 24

P 1 P 2 P 3

P 4 P 5 P 6

40

20
p1

P 9

κa

κb

P 7 P 8

(b)

Fig. 3. (a) Set of affine expressions for the cross-inhibition network with unknown
parameters κa and κb. (b) Parameter space in the dimensions of κa and κb. p1 = (36, 17)
is represented. The shaded region is the set of all valid parameters for property φ1.

The affine predicates ψi(p) = 0, ψi ∈ Ψ , divide the parameter space into poly-
hedral regions (Figure 3(b))2. These regions can be represented by a Boolean
encoding. Let Bl be the set of Boolean numbers of length l: Bl = {0, 1}l. We de-
note by ε the Boolean of length 0. Then, to every Boolean b ∈ Bl, l ∈ {0, . . . , nΨ},
we associate the parameter set Pb such that Pε = P and, if b 
= ε,

Pb = {p ∈ P | ∀i ∈ {1, . . . , l} : ψi(p) <0, if bi =0, and ψi(p) >0, if bi =1}.

The sets Pb are subsets of P obtained by adding constraints of type ψi(p) < 0
or ψi(p) > 0, with ψi ∈ Ψ . If b is a prefix of b′, then Pb′ ⊆ Pb. The hierarchy
between the sets Pb induced by the set-inclusion partial-order is represented in
Figure 4 for the cross-inhibition network (see [15,16] for similar ideas in the
context of predicate abstraction).

We say that two parameters p and p′ are equivalent if their associated discrete
transition systems TR(p) and TR(p′) are isomorphic. A similar definition is used
in [17,9]. Naturally, a PMA system satisfies the same LTL properties for two
equivalent parameters.

Definition 4. Let ∼P⊆ P ×P be the equivalence relation defined by p ∼P p′ iff
TR(p) = TR(p′).

Proposition 2. Let bΨ ∈ BnΨ . For every p, p′ ∈ PbΨ , p ∼P p′.

Proof. Let bΨ ∈ BnΨ and p, p′ ∈ PbΨ . Then, ∀i ∈ {1, . . . , n}, R ∈ R and
v ∈ VR, fi(v, p)# 0 iff fi(v, p′)# 0, with # ∈ {<, >}. So, by Proposition 1,
TR(p) = TR(p′) and p ∼P p′.

The above proposition states that the set of all predicates ψi(p) = 0, ψi ∈ Ψ ,
divide the parameter space in equivalence classes. Consequently, with bΨ ∈ BnΨ ,
if for some p ∈ PbΨ , TR(p) |= φ, then using Propositions 2 and Property (2),
it holds that for all p ∈ PbΨ , TX (p) |= φ: PbΨ is a valid parameter set. Since
we can compute TR(p) for any given p (Proposition 1), solutions to Problem 1
and 2 can be obtained by testing for every equivalence class PbΨ ⊆ P whether
2 Note that, in general, the partition of the parameter space is not hyperrectangular.
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T ∀
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Fig. 4. Hierarchy between the parameter sets Pb, represented as a binary tree. Arrows
indicate set inclusion: P → P ′ means P ′ ⊆ P . Leaves (dark gray) correspond to
parameter equivalence classes. P 1, . . . , P 9 refer to regions in Figure 3. The fragment
of the tree actually computed during hierarchical parameter space exploration for the
analysis of property φ1 is emphasized. Model checking results used for backtracking
are shown at the nodes where the recursive search stops.

TR(p) |= φ for some (randomly chosen) p ∈ PbΨ . Note however that if TR(p) 
|=
φ, no conclusion can be obtained on PbΨ . On our example network, only two
equivalence classes, P1110 and P1111, both corresponding to P 9, are found to
be valid for the bistability property φ1 (Figure 4 and 3). However, this naive
approach is impractical since the number of equivalence classes (i.e. the leaves of
the tree in Figure 4) increases exponentially with the number of affine predicates,
the latter increasing exponentially with the number of variables and uncertain
parameters. A more efficient approach is proposed in the next section.

4.3 Hierarchical Parameter Space Exploration

Our goal is to describe the behavior of the network for sets of parameters P ⊆ P .
To do so, we introduce two transition systems, T ∃R(P ) and T ∀R(P ).

Definition 5. Let P ⊆ P. Then T ∃R(P ) = (R, →∃R,P , Π, |=R) and T ∀R(P ) =
(R, →∀R,P , Π, |=R), where
– (R, R′) ∈→∃R,P iff ∃p ∈ P such that (R, R′) ∈→R,p in TR(p), and
– (R, R′) ∈→∀R,P iff ∀p ∈ P, (R, R′) ∈→R,p in TR(p).

In words, T ∃R(P ) contains all the transitions present in at least one transition
system TR(p) and T ∀R(P ) contains only the transitions present in all the transi-
tion systems TR(p). For every p ∈ P , T ∃R(P ) simulates TR(p), which simulates
T ∀R(P ). This follows immediately from the definition of simulation between tran-
sition systems, using the fact that →∀R,P ⊆→R,p⊆→∃R,P . Informally, T ∃R(P ) and
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T ∀R(P ) can be respectively considered as over- and under-approximations of the
possible behaviors of TR(p), when p varies.

Proposition 3. For every p ∈ P , T ∀R(P ) � TR(p) � T ∃R(P ).

Using Proposition 3 and Property (2), it holds that for any P ∈ P , if T ∃R(P ) |= φ
then ∀p ∈ P , TX (p) |= φ: P is a valid parameter set. Alternatively, using Propo-
sition 3, it also holds that if T ∀R(P ) 
|= φ, then ∀p ∈ P , TR(p) 
|= φ: no valid
parameter can be found in P using our approach, either because P contains no
valid parameter, or because the discrete abstraction is overly conservative. Oth-
erwise (T ∃R(P ) 
|= φ and T ∀R(P ) |= φ), it is worth inspecting subsets of P , that
may contain valid parameter sets. Accordingly, we propose an algorithm that
explores P in a hierarchical manner by considering parameter sets Pb associated
with Booleans of increasing length, starting from Pε. This amounts to explore
recursively a binary tree, represented in Figure 4 for our example, and for each
node, to compute Pb, T ∃R(Pb) and T ∀R(Pb), and test whether T ∃R(Pb) |= φ and
whether T ∀R(Pb) |= φ. As explained above, the recursive search can be stopped if
either T ∃R(Pb) |= φ or T ∀R(Pb) 
|= φ. For the leaves (i.e. the equivalence classes),
T ∃R(Pb) = T ∀R(Pb) and the search necessarily terminates. A more detailed de-
scription of the algorithm can be found in [8]. Note that in general, T ∀R(P ) does
not provide information on the original system TX (p), since no relation exists
between T ∀R(P ) and TX (p). Nevertheless, it makes it possible to identify (poten-
tially large) regions of the parameter space in which no valid parameter can be
found. Consequently, it plays a key role when exploring large parameter spaces
where only small regions are valid sets. The fragment of the tree actually com-
puted for the analysis of property φ1 is represented in Figure 4. The same result
is obtained as previously (P 9 is a valid parameter set), but in much fewer tests.

We have not yet explained how T ∀R(P ) and T ∃R(P ) can be computed.

Proposition 4 (Computation of T ∃R(P ) and T ∀R(P )). Let P ⊆ P.
– (R, R′) ∈→∃R,P iff either R = R′, or R � R′ and P ∩ g(R, R′) 
= ∅,

– (R, R′) ∈→∀R,P iff either R = R′, or R � R′ and P ⊆ g(R, R′),
where g(R, R′) = {p ∈ P | ∃v ∈ VR ∩ VR′ such that fi(v, p)(c′i − ci) > 0}, with
c = coord(R), c′ = coord(R′) and i ∈ {1, . . . , n} such that ci 
= c′i.

Proof. Let P ⊆ P and R, R′ ∈ R be such that R � R′ (the other cases being
trivial). From Proposition 1, it is easy to see that g(R, R′) is the set of para-
meters p ∈ P for which there is a transition from R to R′ in TR(p). Then, the
result follows from the definition of the transition relations →∃R,P and →∀R,P

(Definition 5).

Given that fi(v, p) is an affine expression in p, the sets g(R, R′) correspond to
unions of polytopes in P . Consequently, for polyhedral sets P , the computation
of the transition systems T ∃R(P ) and T ∀R(P ) using Proposition 4 simply amounts
to compute intersections and inclusions of unions of polytopes, which are standard
polyhedral operations efficiently implemented in toolboxes. This method has been
implemented in a freely-available tool for Robust Verification of Gene Networks
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(RoVerGeNe, see http://iasi.bu.edu/∼batt/rovergene/rovergene.htm). It
is written in Matlab on top of several other tools (MPT, MatlabBGL, NuSMV).
Because the efficiency of the computations may significantly depend on the order
in which the affine predicates ψi(p) = 0, ψi ∈ Ψ , are considered during the search,
we implemented a simple heuristic that orders first the predicates splitting the
parameter space the more evenly (i.e. yielding two polytopes of similar volumes).
Additionally, RoVerGeNe supports an extension of the method presented here,
dealing with problems specifically encountered when verifying liveness properties,
and described in [8,18].

5 Tuning of a Transcriptional Cascade

The method presented in the previous section is applied to the analysis of the
steady-state input/output (I/O) behavior of a synthetic transcriptional cascade
build and analyzed in [19] (Figure 5(a)). We have developed a PMA model of
this system, represented in Figure 5(b). Parameter values were estimated based
on experimental data available in [19].

The cascade is ultrasensitive: the steady-state I/O behavior is such that the
output (EYFP) undergoes a dramatic change for a moderate change of the input
(aTc) in a transition region. The cascade is expected to present at least a 1000-
fold increase of the output value for a two-fold increase of the input value. Using
FGp (“eventually, p will be always true”) to express that property p holds at
equilibrium, the specifications in Figure 5(c) can be translated in LTL as follows.

φ2 = uaTc < 100 → FG(xeyfp > 2.5 102 ∧ xeyfp < 5 102)
∧ 100 < uaTc < 200 → FG(xeyfp > 2.5 102 ∧ xeyfp < 106)
∧ uaTc > 200 → FG(xeyfp > 5 105 ∧ xeyfp < 106).

The actual network does not meet its specifications. So, we tried to tune it
by finding valid parameter sets for property φ2 (Problem 2). Using RoVerGeNe,
we found a valid set, P1, by tuning three production rate parameters:

P1 : 1832.43 < κlacI < 3350.62, 393.46 < κcI and 6495.42 < κeyfp < 12995.42

In order to evaluate the significance of these constraints, we computed by nu-
merical simulation the steady-state I/O behavior of the system for different pa-
rameters in P1, notably using extreme values (Figure 5(c)). This clearly reveals
that relevant constraints on the parameters have been identified by our method.

With a partition of the state space having 1500 rectangles, 18 affine pred-
icates on parameters were found, defining > 200 000 equivalence classes. The
computation lasted < 2 hours (PC, 3.4GHz processor, 1Gb RAM) and only 350
different parameter sets were analyzed. This computational time can be consid-
ered as very reasonable, given the difficulty of the problem: we systematically
explore a 3-dimensional parameter space, testing a non-trivial dynamical prop-
erty for any initial condition in a 5-dimensional (1 input and 4 state variables)
state-space. As explained elsewhere [8,18], we have also been able to assess the
robustness of the network with 11 uncertain parameters.
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Fig. 5. (a) Synthetic transcriptional cascade made of four genes. tetR inhibits lacI ,
lacI inhibits cI , and cI inhibits eyfp. The input aTc relieves the inhibition of lacI by
TetR. The fluorescence of the protein EYFP is the output. (b) PMA model. Equation
(4) states that lacI is repressed when the protein TetR is present and aTc absent.
(c) I/O response of the cascade at steady state (zoomed in (d)). Measured (red dots),
predicted (red thick dashed line) and expected (region delimited by black dashed lines)
behaviors of the actual network. Predicted (magenta solid lines) behaviors for different
parameters in the set P1.

6 Discussion

We have presented a method for the analysis of genetic regulatory networks with
parameter uncertainty. Given a PMA model, a property expressed in LTL over
rectangular predicates and a polyhedral parameter set, the proposed approach
can be used to test whether the property is satisfied for every parameter in the
parameter set -the set is then called valid-, or to find valid subsets of the given
parameter set. To do so, we use a discrete abstraction TR(p) of an embedding
continuous transition system TX (p) to define an equivalence relation onbreak
parameters p, in the sense that two equivalent parameters are associated to the
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same discrete abstraction. Then we define discrete transition systems, T ∃R(P )
and T ∀R(P ), that over- and under-approximate TR(p) with parameter p in a set
P , and show how they can be used to search the parameter space efficiently. The
proposed approach is conservative: if a parameter set is found, it is guaranteed
to be valid. However, not all valid parameter sets are guaranteed to be found.
The method is implemented in a publicly-available tool called RoVerGeNe, and
its practical applicability and biological relevance is demonstrated on the tuning
of a synthetic network build in E. coli. Network tuning is a central problem in
synthetic biology, since most initial attempts at constructing gene networks do
not result in a system exhibiting the desired behavior [2].

Other approaches have been proposed for the verification of continuous or
hybrid systems with parameter uncertainties. In most approaches, unknown pa-
rameters are represented as symbolic constants, and symbolic operations are
used to manipulate sets of states and compute (approximations of) sets of pre-
decessors or successors [17,20,21,22,23]. A major limitation is that the compu-
tational techniques supporting these symbolic operations currently apply only
to systems having rather simple continuous dynamics, such as timed automa-
ton [20,21], linear hybrid automaton [22], piecewise-affine systems [17], or affine
hybrid automaton [23]. Alternatively, numerical approaches have been proposed
in which parameter uncertainties are captured by means of differential inclusions
(e.g. ẋ ∈ hull({f(x, p) | p ∈ P})) [24]. For large parameter sets, these approaches
can be very conservative. In this paper, we propose an approach which is succes-
sively symbolic (synthesis of parameter constraints) and numerical (computation
of transition systems). The results of the first step are used to refine the para-
meter set considered in the second step, in order to limit (though not eliminate)
overconservatism, while preserving efficiency.

In the field of systems biology, several approaches use formal verification to an-
alyze uncertain models, often with a focus on parameter identification. In [25,26],
solution trajectories are computed by numerical simulation for parameter values
chosen in specified intervals. Model checking is used to select trajectories satis-
fying the expected properties. This approach applies to very general classes of
models, but can not provide guaranties for dense sets of parameters. Alterna-
tively, exhaustive search or symbolic computations have been used to obtain con-
straints on parameters of discrete models having finite parameter spaces [26,27],
or of piecewise-affine models having dense parameter spaces [23]. However, these
models do not capture complex genetic regulations with graded responses, as we
do in the transcriptional cascade example.

Motivated by applications in synthetic biology, we view two directions for
further work. A first improvement would be to deal also with uncertain threshold
parameters. A second desirable extension would be to allow for the verification
of the frequently-encountered properties involving timing constraints.
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Abstract. We present a new algorithm for the reachability analysis of
multi-affine hybrid systems. In our previous work on reachability analysis
and that of our collaborators [1,2,3], we exploited the convexity of multi-
affine functions and the fact that the vector field in modes with rect-
angular invariants is uniquely determined by its values at the rectangle
vertices. In this paper, we explicitly calculate conical overapproximations
of the reachable set in the invariant of each mode. We describe our Multi-
Affine Reachability analysis using Conical Overapproximations, Marco,
and show that it yields results that are superior to those obtained by ex-
isting methods for multi-affine hybrid systems. Finally, we demonstrate
the application of Marco to the analysis of an ant house hunting model
that incorporates quorum sensing [4] and the analysis of bi-stability of
the lactose induction system regulated by glucose and lactose [5].

1 Introduction

Multi-affine equations are often used to model systems in the areas of molecu-
lar biology and population biology. Bio-molecular networks can be modeled by
multi-affine rate equations that describe chemical reactions among species [1].
In population biology, the Volterra-Lotka predator-prey equations constitute a
familiar example of a multi-affine model [6]. The spread of information or dis-
ease within a population can also be described using multi-affine equations, as
in the example of honeybee recruitment to a nest site [4]. As a result, multi-
affine models have potential applications in understanding biology, synthesizing
new biomolecular circuits, and designing bio-inspired controllers for networked
robotic systems.

We are particularly interested in multi-affine hybrid systems because of their
relevance in biology. These systems consist of discrete modes that are each char-
acterized by multi-affine continuous dynamics. While biological systems exhibit
smooth behavior on some level, it is often convenient to develop hybrid ab-
stractions to describe switches that are associated with such phenomena as gene
regulation or quorum-sensing. For example, a gene may be turned on (or off)
when a threshold concentration of regulatory biomolecular species is exceeded,
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which results in a change in the dynamics of the network [7]. Similarly, ants
emigrating from a nest in search of alternative nests change their behavior when
they detect a quorum at any of the candidate nests [4]. Thus, we have found it
useful to use hybrid system abstractions to describe biological networks [1,8].

In order to accurately approximate the global behavior of a set of hybrid
system trajectories, or to verify that they do not enter an undesirable region, it
is productive to consider reachability analysis, a well-known symbolic analysis
technique [9,10,11]. A typical reachability problem is to determine whether a
certain region of the state space can be reached by a system, starting from a
given set of initial conditions. The reachability problem is decidable when the
continuous dynamics are constant (timed and multirate automata), take values
in a constant interval (rectangular automata) [10], or fall into certain classes of
linear systems [12]. If the dynamics are not of these types, an overapproximation
of the reachable set can be computed in one of two ways. One option is to pursue
a discrete abstraction of the hybrid system via an indirect method. Alternatively,
the reach set can be directly calculated the on the state space via a direct method.

In the indirect method, one generally partitions the continuous state space
of the system into a finite number of sets and explores how states in one set
may reach states in another set. Sets are usually convex regions of the state
space; the exact representation of a set depends on a particular method. In this
paper, sets are represented by hyper-rectangles in the n-dimensional state space.
The multi-affine reachability algorithm developed in [1,2,3] is referred to here as
the Mar1 algorithm. It exploits the convexity of multi-affine functions on hyper-
rectangles in a manner similar to [13], which describes a technique for controlling
affine systems on general polytopes. Once a state is inside a hyper-rectangle, the
algorithm considers the entire hyper-rectangle to be reachable. Because of this,
the algorithm computes conservative approximations of the reach set. While this
approximation is guaranteed to include all reachable states, it can be overly
conservative and in many simple cases (for example, constant vector fields along
the diagonals of the hyper-rectangles) yield little insight into the actual behavior
of the system.

In this paper, we present a new direct reachability analysis algorithm for multi-
affine hybrid systems, Marco (Multi-Affine Reachability via Conical Overap-
proximations), which attempts to overcome some of the shortcomings of the
Mar1 algorithm. We consider the problem of computing less conservative reach-
able sets without sacrificing accuracy. As in the Mar1 method, the algorithm
performs a computationally inexpensive reachability analysis within each mode
by exploiting the convexity property of multi-affine vector fields on rectangles.
However, we determine a better conical approximation for the reachable set, thus
providing a finer level of granularity for the reachable set without incurring a
significantly higher penalty for computations. As before, a higher degree of pre-
cision for the entire reachable set can be achieved by increasing the resolution
of the rectangular partitions.

Our technique for overapproximating the reachable set within a mode is sim-
ilar in spirit to that used in HyTech [10] and PHAVer [14], which are tools for
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the verification of linear hybrid automata. This class of automata has piecewise
constant bounds on the derivatives of the continuous state variables. HyTech and
PHAVer overapproximate affine continuous dynamics by linear formulas over the
derivatives. PHAVer also has the ability to partition reachable modes recursively
along user-defined hyperplanes.

Due to the simplicity of its reachability operations, the Marco algorithm
is suitable for multi-affine hybrid systems with many modes, such as a system
that closely approximates a hybrid automaton with nonlinear dynamics. Thus,
in principle, it is more readily applicable to such systems than existing reacha-
bility algorithms that use direct techniques for nonlinear hybrid systems, such
as Matisse [15] and CheckMate [11].

2 Theory

We define a hyper-rectangular multi-affine switched system (HMS) as the seven-
tuple H = (X, X0, Ω, I, F, T, A). X ⊂ R

n is the continuous space of state
variables x, and X0 ⊂ X is a set of initial states, and Ω is a set of discrete
modes. I maps the modes to subsets of X such that when the system is at mode
ω ∈ Ω, x ∈ I(ω), the location invariant of ω. The location invariants are n-
dimensional hyper-rectangles, which are defined as follows. For each dimension
j = 1, ..., n, we specify a strictly monotonically increasing sequence of values,
{x

(j)
0 , x

(j)
1 , · · · , x

(j)
Dj

}. A mode ω is labeled by an n-dimensional coordinate vec-
tor ω = (k1, · · · , kn), where kj ∈ {1, ..., Dj}. Then I(ω) is the hyper-rectangle
[x(1)

k1−1, x
(1)
k1

]×[x(2)
k2−1, x

(2)
k2

] · · ·×[x(n)
kn−1, x

(n)
kn

]. F is a map that assigns a continuous,

autonomous vector field to each mode ω, ẋ = fω(x) ∈ R
n. fω is a multi-affine

function of x.

Definition 1 (Multi-affine function). A multi-affine function f : R
n → R

n

has the following form:

f(x) =
2n−1∑
j=0

cjx
i1(j)
1 x

i2(j)
2 ...xin(j)

n ; cj ∈ R
n, (1)

where x = (x1, ..., xn) and the concatenation i1(j)i2(j)...in(j), where {i1(j),
..., in(j)} ∈ {0, 1}n, is a binary representation of the integer j.

Henceforth, Θj will denote the concatenation i1(j)i2(j)...in(j).

Proposition 1 ([1]). Let fω : I(ω) → R
n be a multi-affine function and let

x ∈ I(ω). Then fω(x) is a convex combination of the values of fω at the 2n

vertices of I(ω).

T is a finite set of transitions between modes, each defined by a three-tuple
(ω, ω′, gω,ω′), in which ω, ω′ ∈ Ω and gω,ω′ ⊂ ∂I(ω) is a guard set. The transition
from ω to ω′ is enabled when x ∈ gω,ω′ . Each guard gω,ω′ of mode ω corresponds
to a facet that I(ω) shares with I(ω′). We denote this shared facet by H(ω, ω′).
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A is a finite set of symbols that label the transitions. We now define the trajec-
tories, footprints, and reachable sets of an HMS.

Definition 2 (Mode trajectory [16]). A trajectory (ω, τ, xω(t)) associated
with mode ω ∈ Ω consists of a nonnegative time τ and a continuous and piecewise
differentiable function xω : [0, τ ] → R

n such that xω(t) ∈ I(ω) and ẋω(t) =
fω(xω(t)) for all t ∈ (0, τ).

Definition 3 (Trajectory of an HMS [16]). A trajectory of an HMS starting
from xω0(0) ∈ X0 ⊂ I(Ω0), where Ω0 ⊂ Ω, is defined as an infinite sequence of
mode trajectories,

(ω0, τ0, xω0(t))
a0−→ (ω1, τ1, xω1(t))

a1−→ (ω2, τ2, xω2(t))
a2−→ · · · (2)

such that at the event times tωj =
∑j

i=0 τi, xωj (tωj ) ∈ H(ωj , ωj+1). Since the
HMS is defined to be a switched system, xωj (tωj ) = xωj+1(0). The jth transition
is labeled by aj ∈ A.

The ordered set of modes in equation (2) after a finite number of transitions
is represented by a filiation sequence of length d ∈ N, s = {ω0, ω1, · · · , ωd−1}.
We define a concatenation operation similar to that which is used for strings:
s ∗ {σ} = {ω0, · · · , ωd−1, σ}. In the following definitions, φs designates an HMS
trajectory whose first d modes comprise sequence s, given some xω0 ∈ X0.

Definition 4 (Footprint). A footprint of degree d and filiation sequence s,
X

(d)
s,ωd ⊂ H(ωd−1, ωd), is the set consisting of xωd−1(tωd−1) from each φs.

Definition 5 (Forward reachable set of a mode). The forward reachable
set of mode ωd from a set B, where B = X0 if d = 0 and B = X

(d)
s,ωd if d > 0, is

Xr,ωd
(B) ⊂ I(ωd). It consists of the union of states

xωd−1(tωd−1) = xωd
(0) ∪ {xωd

(t) | t ∈ (0, τd)} ∪ xωd
(tωd

) = xωd+1(0) (3)

from each φs for which ωd ∈ s.

Definition 6 (Forward reachable set of an HMS). The forward reachable
set Xr from an initial set X0 of an HMS is the set of all continuous states xω(t)
associated with each φs.

Definition 7 (Time-elapse cone). The time-elapse cone Cω for mode ω =
(k1, · · · , kn) is the cone generated by nonnegative linear combinations of the
velocity vectors at the vertices of I(ω):

Cω = {
2n−1∑
j=0

λΘj fω(x(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j)) | λΘj ≥ 0} . (4)
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Proposition 2. Let xω(t) be defined as in Definition 2. The displacement vector
Δxω(t) = xω(t) − xω(0), t ∈ [0, τ ], is contained in the convex hull of the set of
velocities at the vertices of I(ω), scaled by the elapsed time t. That is, (∃) {ΛΘj }
where ΛΘj ∈ [0, 1], j = 0, ..., 2n − 1, and

∑2n−1
j=0 ΛΘj = 1, such that:

Δxω(t) = t

2n−1∑
j=0

ΛΘj fω(x(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j)) . (5)

Proof. The solution to ẋω(t) = fω(xω(t)), t ∈ [0, τ ], is xω(t) = xω(0) +∫ t

0 fω(xω(s))ds. From Proposition 1, for s ∈ [0, τ ], (∃) {λΘj (s)} where λΘj (s) ∈
[0, 1], j = 0, ..., 2n − 1, and

∑2n−1
j=0 λΘj (s) = 1, such that:

fω(xω(s)) =
2n−1∑
j=0

λΘj (s)fω(x(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j)) (6)

The existence of {λΘj (s)} is guaranteed but it is not unique; we can choose one
set. The displacement vector Δxω(t) = xω(t) − xω(0) at t is:

Δxω(t) =
∫ t

0

2n−1∑
j=0

λΘj (s)fω(x(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j))ds

=
2n−1∑
j=0

fω(x(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j))

∫ t

0
λΘj (s)ds (7)

Define ΛΘj as the integrated quantity divided by t:

0 ≤ ΛΘj =
1
t

∫ t

0
λΘj (s)ds ≤ 1 (8)

2n−1∑
j=0

ΛΘj =
2n−1∑
j=0

1
t

∫ t

0
λΘj (s)ds =

1
t

∫ t

0

2n−1∑
j=0

λΘj (s)ds = 1 . (9)

�

Corollary 1. The set of continuous states xω(t), t ∈ [0, τ ], in a trajectory of
mode ω is a subset of xω(0) ⊕ Cω, the Minkowski sum of xω(0) and the time-
elapse cone.

The following definitions specify the core steps of the Marco reachability algo-
rithm. The proofs demonstrate that the reachable set computed by the algorithm
contains the exact reachable set Xr.

Definition 8 (Overapproximated reach set of a mode). Consider a mode
ω and a set B ⊂ I(ω). The overapproximated reach set in mode ω with initial
set B is defined as:
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Rω(B) = (B ⊕ Cω) ∩ I(ω) . (10)

Proposition 3. Xr,ω(B) ⊂ Rω(B).

Proof. From Definition 5, Xr,ω(B) is the set of all states xω(t) in the trajectory
of mode ω such that xω(0) ∈ B, which by Corollary 1 is a subset of xω(0) ⊕ Cω :

Xr,ω(B) = {xω(t) | xω(0) ∈ B, t ∈ [0, τ ]} ⊂ {xω(0) ⊕ Cω | xω(0) ∈ B}=B ⊕ Cω

Since Xr,ω(B) ⊂ I(ω) by definition, Xr,ω(B) ⊂ (B⊕Cω)∩I(ω) = Rω(B). �

Definition 9 (Overapproximated footprint). An overapproximated foot-
print of degree d and filiation sequence s, F

(d)
s,ωd ⊂ H(ωd−1, ωd) is generated

as follows.

F
(1)
{ω0},ω = (X0 ⊕ Cω0) ∩ H(ω0, ω)

F
(d+1)
s∗{ωd},ω = (F (d)

s,ωd
⊕ Cωd

) ∩ H(ωd, ω) (11)

The footprints and their corresponding overapproximated reach sets form a tree
structure, which in practical implementations is organized as a linked list. The
sequence s distinguishes among repeated passages through the same mode during
the reachability calculation.

Proposition 4 (Validity of overapproximation). The set of states xω(t)
in the first d mode trajectories of an HMS trajectory φs with xω0(0) ∈ X0 is
contained in the union of Rω0(X0) with Rωj (F

(j)
{ω0,...,ωj−1},ωj

), j = 1, ..., d − 1.

Proof. By Proposition 3, xω0(t) ∈ Rω0(X0) for xω0(0) ∈ X0, t ∈ [0, τ0]. There-
fore, by Definition 8, xω0(τ0) ∈ (X0 ⊕ Cω0) ∩ I(ω0). Also, xω0(τ0) = xω0(tω0) ∈
H(ω0, ω1) ⊂ I(ω0). Thus, by Definition 9, xω0(τ0) = xω1(0) ∈ F

(1)
{ω0},ω1

. By

Proposition 3 again, xω1(t) ∈ Rω1(F
(1)
{ω0},ω1

) for t ∈ [0, τ1]. The same set inclu-
sions may be defined for the remaining modes in s. �

There are two possible termination conditions for the algorithm.

Proposition 5 (Termination condition 1). If Rωd
(F (d)

s,ωd) is a subset of Rωd
,

the union of the reach sets previously computed for mode ωd, then all states xω(t)
in HMS trajectories with xω0(0) ∈ F

(d)
s,ωd are contained in Rωd

and all reach sets
evolving from Rωd

.

Since the reach set might grow by very small amounts for a long time, a second
heuristic condition may be applied to ensure termination within a reasonable
amount of time. Each iteration of the algorithm generates a new set of coni-
cal overapproximations and footprints; let V (Ri) be the volume of the newly
computed reach set at iteration i and V (S) be the volume of the state space.

Proposition 6 (Termination condition 2). For a small constant ζ, stop if
V (Ri) < V (Ri−1) and V (Ri) < ζ V (S).
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3 Implementation

The Marco algorithm is written in Matlab and uses the Multi-Parametric
Toolbox (MPT) for polyhedral operations. Figure 1 illustrates its steps for a
two-dimensional state space, and Figure 2 gives an outline of the algorithm.

Fig. 1. Illustration of the Marco algorithm. (a) (upper left) Initial set X0 and veloc-
ities at vertices of mode α; (b) (upper right) definition of the time-elapse cone Cα; (c)

(lower left) computation of reachable set Rα and footprints F
(1)
α,β and F

(1)
α,ε of adjacent

modes; (d) (lower right) computation of Rβ , Rδ, and Rε.

The user inputs the specifications of the hybrid system H . First, the set Ω
of reachable modes is initialized with the modes Ω0 ⊂ Ω that contain the ini-
tial set X0. These modes are identified as members of generation 0. In Figure
1a, Ω0 = α. The portion of X0 that intersects the mode invariant I(ω) for
ω ∈ Ω0 is the first incoming footprint of mode ω. For each mode in generation
0, a time-elapse cone Cω is found according to Definition 7. Figure 1a-b shows
the creation of the cone Cα from the velocities at the vertices of mode α. The
cone is scaled to extend past the mode boundaries. Cω is added to the mode
footprint via a Minkowski sum and then bounded by the facets of the mode to
produce the overapproximated mode reachable set, Rω(X0 ∩ I(ω)) (Figure 1c).
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Input: System dimension n, mode dividers, vertices of initial set I0, dynamical para-
meters
Output: R = {Rω0 , ..., RωN }, ωi ∈ Ω

Ω := {ωi | I(ωi) ∩ X0 �= ∅}
for all ωi ∈ Ω : Generation(ωi) = 0; Rωi = ∅
G = −1
do

G = G + 1
for all {ωi | Generation(ωi) = G}

Rgen
ωi

= ∅
Calculate velocities at vertices of ωi

Create time-elapse cone Cωi

Combine overlapping footprints of ωi

for all footprints F
(G)
s,ωi :

Rωi(F
(G)
s,ωi) = (F

(G)
s,ωi ⊕ Cωi) ∩ I(ωi)

for all {ωj | F
(G+1)
s∗{ωi},ωj

= (F
(G)
s,ωi ⊕ Cωi) ∩ H(ωi, ωj) �= ∅}

if ωj �∈ Ω
Ω = Ω ∗ {ωj}
Rωj = ∅

Generation(ωj) = G + 1
end
Rgen

ωi
= Rgen

ωi
∗ {Rωi(F

(G)
s,ωi)}

end
if Rgen

ωi
�⊂ Rωi

Rωi = Rωi ∗ {Rgen
ωi

}
end

until Rgen
ωi

⊂ Rωi ∀ {ωi | Generation(ωi) = G}

Fig. 2. Marco reachability algorithm

Next, each adjacent mode ω′ with a facet that has a nonempty intersection with
Rω(X0 ∩ I(ω)) is added to Ω if it is not already in the list, and the intersection
is designated as the overapproximated incoming footprint of that mode, F

(1)
{ω},ω′ .

These modes are identified as members of the next generation. In Figure 1d, the
footprints are F

(1)
α,β and F

(1)
α,ε , and modes β and ε are in generation 1.

The algorithm repeats the reach set overapproximation and footprint iden-
tification for modes in each consecutive generation. Note that a mode ω may
have multiple footprints, as does mode δ in Figure 1d. Each footprint generates
a reach set, and the concatenation of these sets is the total reach set within the
mode. The algorithm terminates according to Proposition 5, Proposition 6, or
when there are no new modes in the current generation, which occurs when the
reach set hits the boundary of the state space X , as in Figure 1d. The algorithm
returns the total reach set, stored as polyhedral subsets of mode invariants, that
is attained from X0.
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4 Examples

Our first set of examples illustrates the improvement of Marco over the method
in [1]. Figures 3 and 4 display reachable sets computed by Marco and by a
Matlab implementation of the Mar1 algorithm. The Marco reach sets are
shown in dark gray, while the Mar1 sets consist of light gray boxes in the 2D
examples and transparent boxes in the 3D and 4D examples. In each example,
both algorithms used the same state space boundaries and mode partition. All
examples were run on a standard 2 GHz. laptop.

In Figure 3a, the dynamics in each mode consist of the constant vector field
ẋ1 = 1, ẋ2 = 0.5, and the initial set is the box in the lower left corner. The
reach set computed by Marco is the exact reachable set. However, the Mar1
algorithm predicts that all modes are reached.

Figure 3b displays a vector field whose integral curves are spirals with a steady
state at the origin. The dynamics are given by

ẋ1 = −x1 + ax2 ẋ2 = −ax1 − x2 , (12)

where a = 2. The initial set is the box containing the steady state. The Marco
algorithm terminates and returns a conservative but finite reach set around the
equilibrium point; it essentially recognizes the presence of the steady state. The
Mar1 method considers the entire space to be reached, due to the velocity
components pointing out of the center mode.

Figure 3c shows the computation of the reach set for a three-dimensional
vector field with integral curves that are helical spirals. The results are similar
to those of Figure 3b.
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Fig. 3. Reachable sets for (a) 2D constant field; (b) 2D linear field; (c) 3D linear field

As another example, consider the bistable vector field,

ẋ1 = f(x2) − x1 ẋ2 = x1 − x2 , (13)

where f(x2) is a piecewise-linear approximation, P + Qx2, of a sigmoid-shaped
function. P and Q for a mode depend on the particular x1 interval that contains
the average x1 coordinate of the mode. In Figure 4a, the initial set is located at a
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Fig. 4. Reachable sets for (a) 2D affine field; (b) 4D multi-affine field

place where the vector field diverges. The Marco reach set correctly approaches
and terminates at the two steady states while avoiding the unstable steady state.
The Mar1 reach set is much more conservative.

Figure 4b illustrates a four-dimensional multi-affine system with 24 equilibria.
In particular, the equilibrium xe1 = (10.5, 7.5, 1.5, 4.5) is stable and the equilib-
rium xe2 = (10.5, 7.5, 4.5, 7.5) is unstable. The initial set for the reachability
computation is a box surrounding xe2. Figure 4b shows a projection of the reach
set onto the x2, x3, x4 dimensions. The reach set diverges at xe2: one branch
terminates at xe1, while the other runs into the state space boundary. Again, the
Mar1 reach set fails to attain the precision of the Marco set under the same
mode partition.

Table 1 compares the performance of the two algorithms in terms of the com-
putation time and volume fraction of the state space reached for each example.
Notes that although Mar1 is faster on all examples, its overly conservative pre-
dictions of the reach set cannot be refined with iterative partitioning.

Table 1. Comparison of computation times and reachable set precision

Vector field Time (sec) Reached vol./State space vol.
Marco Mar1 Marco Mar1

2D constant 4.17 0.42 0.255 1.000
2D linear 2.83 0.42 0.329 1.000
3D linear 4.78 0.78 0.078 1.000
2D affine 7.27 0.94 0.266 0.714
4D multi-affine 130.31 2.53 0.022 0.061
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5 Applications

5.1 Ant House Hunting Model

We consider a portion of the model of ant house hunting presented in [4]. This
model, constructed from experimental observations of Temnothorax albipennis
ants, predicts the behavior of a colony that is faced with a choice between two
new nest sites, labeled 1 and 2, following the destruction of its original nest, site
0. The state variables represent the number of ants in different roles: naive ants,
X ; assessors of site i, Zi; and recruiters to site i, Yi. The method of recruitment
used by Yi ants varies depending on whether they have reached a quorum T .
The model equations are as follows [4]:

Ẋ = −(μ1 + μ2)X − λ1Y1θ(X)θ(T − Y1) − λ2Y2θ(X)θ(T − Y2)
Ẏ1 = k1Z1 − ρ12Y1 Ẏ2 = k2Z2 + ρ12Y1

Ż1 = μ1X + λ1Y1θ(X)θ(T − Y1) − ρ12Z1 − k1Z1

Ż2 = μ2X + λ2Y2θ(X)θ(T − Y2) + ρ12Z1 − k2Z2

θ(X) = 1 when X > 0, 0 otherwise (14)

We performed reachability analysis to determine whether a quorum of re-
cruiters at site 1 will ever be reached for a certain value of k1, which reflects the
quality of site 1. We reduce the model to a four-dimensional affine system by
using the ant conservation constraint X + Y1 + Y2 + Z1 + Z2 = N to eliminate
X . This conservation constraint forms a boundary of the state space, along with
nonnegativity constraints and the hyperplane corresponding to the quorum. The
initial set is the four-dimensional unit cube to approximate the biologically re-
alistic situation in which all ants start as naive. We set N = 52 and T = 10,
according to the values in [4].

Figure 5a shows the new reach set volume per iteration of the algorithm as
a fraction of the total state space volume. The algorithm was set to terminate
according to Proposition 6 with ζ = 0.05.

Figure 5b shows the projection of the reach set onto the Y1, Y2 dimensions.
The curved black lines are the solutions of the continuous model starting at the
vertices of the initial set. From comparison with these solutions, the reachable set
correctly predicts that site 1 will never achieve a quorum of 10. The large reach
set projection to the right of Y1 = 4 resulted from defining some relatively large
modes and from covering footprints with bounding boxes to reduce polyhedral
complexity.

5.2 Inducibility in the lac Operon Control Network

The lac operon and its control network is an important example of bistability
in a genetic network. We apply reachability analysis to a model of this system,
due to Santillán and Mackey [5]. The system of equations is nonlinear and we
replace it with a piecewise approximation. A diagram of the model network is
given in Figure 6a. We follow closely the model by [5], referring the reader there
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Fig. 5. (a) Increase in reachable set volume at each iteration divided by state space
volume as a function of the number of iterations. (b) Projection of 4D reachable set
for k1 = 0.0025 [run time = 9251 sec].

for further details. The model variables {x1, x2, x3, x4, x5, x6}, are respectively
the concentrations of: β-galactosidase mRNA, permease mRNA, β-galactosidase,
permease, total allolactose, and total cAMP:

ẋ1 = kmx4η(x6, x5) − (μ + ξM )x1 ẋ2 = kmx4η(x6, x5) − (μ + ξM )x2

ẋ3 =
1
4
κBx1 − (μ + ξB)x3 ẋ4 = κP x2 − (μ + ξP )x4

ẋ5 =
1
2
φL1

Le

ΦL1 + Le

ΦG1

ΦG1 + Ge

x4x5

x5 + ΦL1/2
− 1

2
φL2

x3x5

x5 + ΦL2/2

ẋ6 = φC
ΦC

ΦC + Ge
− ξCω(x6) − μx6 (15)

The concentrations of external glucose Ge and lactose Le are inputs to the
system. The remaining symbols are constants taken from [5]. The system (15) is
bistable for some combinations of the external inputs; the system has two equilib-
ria, an induced state with high concentrations of β-galactosidase and high lactose
metabolism, and an uninduced state with very little enzyme. One can cause an
uninduced population to induce by exposing it temporarily to a high lactose/low
glucose environment, steering the system trajectory around the bistable region.
Thus, induction can be framed as a reachability problem: what is the region in
the Le − Ge plane where high enzyme concentration states are reachable from
an uninduced state?

In this example we use the methodology discussed in detail in [3]. Our proce-
dure involves the piecewise multi-affine approximation of the equations of mo-
tion (15), including a two variable piecewise approximation of the function η(·, ·).
These are preliminary results obtained with an implementation in gnu C, on a
linux workstation with four Pentium Xeon processors. We perform our reacha-
bility calculations using a grid of 4105728 hyper-rectangles in the model space,
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Fig. 6. (a) Diagram of the lactose-glucose network. External glucose and external lac-
tose are external inputs. (b) Bistability region in the Le −Ge plane, in the exact model
and the piecewise approximation. Superimposed are points where reachability forbids
upward switching. All units are μM.

for various values of the external inputs. In each calculation we evaluate the set
of all hyper-rectangles reachable from the mode with the lowest values of the
concentrations of all substances. Figure 6b summarizes the reachability results.
Points signify values for which induction is not possible according to reachability.
The plot also shows the boundary of the bi-stable region. The non-inducible
points are inside the bistability region, as expected intuitively.

6 Conclusion

Multi-affine hybrid systems arise naturally in biological systems. The main con-
tribution of this paper is the development of Marco, a reachability analysis
algorithm that can be used to calculate reachable sets for biological systems.
We have shown that Marco overapproximates reachable sets and yet provides
results that are quantitatively better than the Mar1 algorithm.

There are several directions for future work. First, it is necessary to use infor-
mation on the volume of the time-elapsed cones and footprints to adaptively reg-
ulate the growth of reachable sets to improve efficiency and to ensure automatic
termination of the algorithm. Second, we are working on many computational
techniques to speed up the performance of the algorithm. Finally, our ultimate
goal is to be able to use reachability analysis as a tool for bio-inspired synthesis
of controllers for collective behaviors.

Acknowledgements. We gratefully acknowledge the support of NSF grants CCR02-
05336 and IIS-0427313, and ARO Grants W911NF-05-1-0219 and W911NF-04-1-
0148.
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Abstract. We consider the problem of verifying reachability properties
of stochastic real-time systems modeled as generalized semi-Markov pro-
cesses (GSMPs). The standard simulation-based techniques for GSMPs
are not adequate for solving verification problems, and existing symbolic
techniques either require memoryless distributions for firing times, or ap-
proximate the problem using discrete time or bounded horizon. In this
paper, we present a symbolic solution for the case where firing times are
random variables over a rich class of distributions, but only one event
is allowed to retain its firing time when a discrete change occurs. The
solution allows us to compute the probability that such a GSMP satis-
fies a property of the form “can the system reach a target, while staying
within a set of safe states”. We report on illustrative examples and their
analysis using our procedure.

1 Introduction

Engineering of complex systems such as hardware devices, communication proto-
cols, multimedia systems and networks requires accurate reliability modeling and
performance evaluation at many stages of development [10,8]. For such systems,
it is often the case that the event occurrence times, which determine the evolu-
tion of a system, interactions between components and between a system and
its environment can be described by probabilistic assumptions. This observation
has led to extensive research on probabilistic model checking of probabilistic and
stochastic models. The goal of probabilistic model checking is to check algorith-
mically that a model of a system satisfies a probabilistic correctness property,
for example, “every message is delivered within 1ms with probability 0.9.”

Recently, results were obtained on model checking of discrete and continu-
ous time Markov chains (DTMCs and CTMCs), with specifications written in
temporal logics such as PCTL and CSL [5, 11]. While CTMCs can be used as
building blocks to approximate distributions with unbounded support [7], ap-
proximation of distributions whose support is bounded, for instance, uniform
or beta distributions, is problematic. It may be a serious restriction in mod-
eling of real-time systems with mutually exclusive events. To circumvent this
� This research was supported by the US National Science Foundation via grants
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restriction, non-Markovian formalisms were proposed, but they either require
that non-exponential distributions are deterministic [12], or that at any given
moment there is at most one active event with a general distribution [6].

Our goal is to develop algorithms for the probabilistic model checking problem
for systems modeled as Generalized Semi-Markov Processes (GSMPs) [9, 14, 8].
In our model of finite-state GSMPs, the system can be in one of the finitely many
states, and can have a finite number of scheduled events. When the event with the
least remaining firing time happens, the state is updated probabilistically, and
new events can be scheduled at times chosen randomly according to the specified
distributions. In [2], the authors show how to check qualitative probabilistic
properties, that is, whether a GSMP satisfies a property with probability 0 or 1,
and this analysis is based on the so-called region graph introduced for analysis
of non-probabilistic real-time systems modeled using timed automata [3]. In a
recent paper, we showed that if we are given a bound on the number of events,
then exact symbolic analysis for verifying quantitative probabilistic properties
of GSMPs is possible [1]. None of these techniques, however, suggest a general
method for symbolic analysis of GSMPs.

In this paper, we present a symbolic analysis technique for the class of GSMPs
where firing times are random variables over a rich class of distributions, but only
one event is allowed to retain its firing time when a discrete change occurs. We
call this class of processes 1GSMPs. In particular, we focus on model checking of
until properties: given a set of destination and safe locations, we wish to compute
the probability that an execution of the 1GSMP will reach a destination location
while staying within the set of safe locations.

In our solution, we first derive a system of integral equations of harmonic
functions such that each function is associated with a region of clock values in a
particular location, and gives the probability of satisfying the until property as
a function of the firing time of the stateful clock upon entry. This step can be
easily generalized to work for all GSMPs.

In [13] the integral equations of similar structure were proposed for a related
problem for semi-Markov processes. The authors cited [8], noting that solving
these equations either by using numerical methods for integral equations or by
applying Laplace transforms is not practical and works only for small models.
In this paper, we describe a novel method that directly transforms the system of
the integral equations into a system of ordinary differential equations. Each inte-
gral term in an integral equation is converted into a sum of differentials of newly
introduced unknown functions (we call such functions ‘auxiliary’) and GSMP
density functions. The original unknown functions and the auxiliary functions
are linked by differential equations. The algorithm that constructs such equa-
tions uses the characterization of the density functions as solutions of linear
homogeneous ordinary differential equations. The resulting system can then be
solved to compute the desired probability for any given initial state.

We illustrate the proposed modeling and analysis techniques using classical
examples of component failures and of a GI/G/1 queue [4].
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2 Generalized Semi-Markov Processes

Let N be the set of all natural numbers, N0 be N ∪ {0}, R be the set of reals,
and R+ be the set of all non-negative reals.

We start by reviewing some facts from the theory of differential equations and
the probability theory. The solutions to the class of differential equations that
we will describe form a class of expressions that we will use later to define a class
of density functions, which, in turn, will be used in the definition of GSMP.

2.1 Preliminaries

Linear homogeneous ordinary differential equation with constant coefficients
(LHODE) of order n is an equation of the form

an
dn

dxn
y(x) + an−1

dn−1

dxn−1 y(x) + · · · + a1
d

dx
y(x) + a0y(x) = 0,

where a0, . . . , an ∈ R.
Characteristic equation for this LHODE is anλn +an−1λ

n−1+ · · ·+a1λ+a0 =
0. This equation has exactly n (complex, possibly repeated) roots and they
determine, up to constants, all solutions of the LHODE.

Specifically, if there are λ1 = · · · = λk, k ≥ 1 real repeated roots, then
LHODE has a solution y(x) = eλ1x(c1 + · · · + ckxk−1), where c1, . . . , ck ∈ R

are arbitrary constants. If λ1 = · · · = λk are complex repeated roots equal to
α + βi, α, β ∈ R and β �= 0, then the equation should also have k repeated
conjugate roots λ̄1 = · · · = λ̄k equal to α − βi. All these 2k roots correspond to
a solution y(x) = eαx(c1 + · · · + ckxk−1) sinβx + eαx(d1 + · · · + dkxk−1) cosβx,
where c1, . . . , ck, d1, . . . , dk ∈ R are arbitrary constants. Summing solutions for
such groups of roots we obtain the general solution for the LHODE.

We say that expr (x) is a DESOL expression iff it is a sum of terms, such that
each term is either of the form cxmeμx sin(αx) or of the form cxmeμx cos(αx),
where c, μ, α ∈ R and m ∈ N0. For every DESOL expression it is possible to
construct an LHODE that has this expression as its solution. This ‘encoding’ of
the DESOL expressions with LHODEs will be used later in Section 4 to convert
a system of integral equations into a system of differential equations.

Let Expr (x) be the set of all DESOL expressions. Consider a partition Ra =
∪a

i=1{(i − 1, i]} of (0, a], which consists of a unit intervals. The constant a is the
width of Ra. Let Int(x ) be a function defined for all x ∈ (0, a], such that if x ∈ (i−
1, i], then Int(x ) = i. We say that a function f(x) is a piecewise DESOL function,
with finite support on Ra, if there exists a map Mf : {1, . . . , a} → Expr(x), such
that for all x ∈ (0, a], f(x) = Mf(Int(x))(x′), where x′ = x− Int(x)+1. Thus to
compute f(x), we determine the interval of Ra to which x belongs, find DESOL
expression for this interval and then evaluate this expression at x′. Notice, that
x′ ∈ (0, 1], so every expression is evaluated only in that interval. This leads
to simplifications in our algorithms. By f j(x), 1 ≤ j ≤ a we will denote the
expression of f(x) that corresponds to the interval (j − 1, j].
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In a GSMP the time between scheduling an event and its occurrence (or
firing time) is modeled as a positive random variable. A random variable X is
characterized by its cumulative distribution function (cdf) distr(x) = Pr(X < x),
and if distr(x) is continuous then also by a probability density function (pdf)
dens(x), defined by the equation distr(x) =

∫ x

0 dens(y) dy.
An unidimensional random variable X has a DESOL distribution of width a,

if there exists a piecewise DESOL function dens(x) ≥ 0 on Ra, such that for all
t ∈ R+, Pr(X < t) =

∫ t

0 dens(y) dy 1.

2.2 Modeling Stochastic Processes

A finite-state generalized semi-Markov process (GSMP) with the firing distribu-
tions of width a is a tuple G = (Q, Σ, E, init , distr ,next) where:

– Q is a finite set of locations;
– Σ is a finite set of events;
– E : Q → 2Σ assigns to each location q ∈ Q a set of events that are active in

q. A location q is absorbing iff E(q) = ∅;
– init : Q → [0, 1] is a probability measure on Q, which for each location q ∈ Q

gives the probability that q is the initial location of G;
– distr : Σ → (R+ → [0, 1]) assigns to each event its firing time distribution,

which is a DESOL distribution of width a. For a cdf distr(e), dense denotes
the corresponding pdf.

– next : Q×Σ → 2Σ × (Q → [0, 1]) defines transitions between locations of G.
This function takes as its arguments a source location q and an active event
e of q and returns a set of events Eq,e

reset and a probability measure P q,e
next on

Q. For each location q′, P q,e
next(q

′) gives the probability that a run of G will
move from q to q′ if e fires, and Eq,e

reset is the set of events that are reset when
the transition occurs. We require that

∑
q′∈Q P q,e

next(q
′) = 1, Eq,e

reset ⊆ E(q),
and Eq,e

reset ⊆ E(q′′), for every location q′′, such that P q,e
next(q

′′) > 0 2.

Notice that since we use random variables with density functions that do not
have mass points and are discontinuous only at a finite number of points, we
do not consider the possibility that several events would fire at the same
time.

It is convenient to think that a clock is assigned to each event e. The clock, de-
noted te, shows the time remaining until the next occurrence of e. Upon schedul-
ing/resetting of e we update its clock to a new value chosen independently at
random according to distr (e). All clocks of the current active events run down
with the same rate equal to 1.

Let us say that ν : Σ → R+ is a clock valuation (or simply valuation) if ν
maps events to the values of their clocks. If an event is not active in the current
location we assume that its value is undefined.
1 Assume that dens(y) is 0 for y ∈ (a, +∞).
2 Adding a possibility that some events can be reset in a transition from one location

to another does not make our model more powerful, but it is useful for modeling,
and we add it as a “syntactic sugar”.
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A configuration of the GSMP G is a pair (q, ν), where q ∈ Q and ν is a clock
valuation. Given a configuration s = (q, ν), let t∗(s) = min{ν(e), e ∈ E(q)}
be the time until the next transition, and e∗(s) = argmin(ν(e), e ∈ E(q)) be
the event that causes the transition. For any t ≤ t∗(s) we denote by ν − t the
valuation ν′ such that for all e ∈ E(q), ν′(e) = ν(e) − t. We say that s

t−→ s′ is a
timed transition between configurations s = (q, ν) and s′ = (q, ν′) if ν′ = ν − t. If
t∗(s) = 0, and e∗ is such that ν(e∗) = 0, then s

μ−→ s′ denotes a discrete transition
between configurations s = (q, ν) and s′ = (q′, ν′), where q′ is chosen according
to the probability measure μ = P q,e∗

next, and the valuation ν′ is constructed as
follows:

– if an event e ∈ Einherited(q, e∗, q′), where Einherited(q, e∗, q′) = E(q′)∩ [E(q)\
{e∗} \ Ereset] is the set of events that were active in q and continue to be
active in q′, excluding e∗ and excluding the events that were reset, then
ν′(e) = ν(e);

– if e ∈ Enew(q, e∗, q′), where Enew(q, e∗, q′) = E(q′) \ Einherited(q, e∗, q′), then
ν′(e) is chosen independently at random according to distr(e) (i.e. the events
in Enew(q, E∗, q′) are (re-)scheduled);

– if e ∈ Ecancelled(q, e∗, q′), where Ecancelled(q, e∗, q′) = E(q) \ E(q′) is the set
of canceled events that were active in q but no longer active in q′, then ν′(e)
is undefined.

A run σ of G is a sequence of alternating timed and discrete transitions:

σ = s0
t∗(s0)−−−−→ s′0

μ0−→ s1
t∗(s1)−−−−→ s′1

μ1−→ s2
t∗(s2)−−−−→ s′2

μ2−→ . . .

The run σ starts at the initial configuration s0 = (q0, ν0), q0 is the initial location,
which was chosen according to init , and ν0 is the initial valuation of the events
in E(q0), scheduled according to the corresponding firing time distributions. A
run can have a finite or infinite number of transitions; a run that has reached
an absorbing location will stay in that location forever.

We say that a GSMP is normalized iff (i) for every qpred, e∗ and q, such
that P

qpred,e∗

next (q) > 0, Einherited and Enew do not depend on qpred and e∗, i.e.
Einherited(qpred, e

∗, q) = Einherited(q) and Enew(qpred, e
∗, q) = Enew(q). And (ii) if

q is an initial location, i.e. init(q) > 0, then Einherited(qpred, e
∗, q) = ∅.

Condition (i) states that the partition of a location’s events into sets of inher-
ited and new events is the same for every visit to that location. Condition (ii)
requires that the set of inherited events of every initial location be empty.

We modify the definition of GSMP, and say that a normalized GSMP is a tuple
Gnorm = (Q, Σ, Einherited, Enew, init , distr ,next) to emphasize that the partition
into sets of inherited and new events is fixed for every location.

Given a GSMP G, we can determine for every location all possible event
partitions and then for every found partition, by creating a clone of that location
and connecting it to the corresponding (clones of) predecessor and successor
locations, create a normalized GSMP Gnorm.

G and Gnorm are equivalent in the sense that the answers to the questions
that we consider in this paper are the same for G and Gnorm.
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qC

E(qC) = {eu, ec}

qs

qCb
E(qCb

)
={eu,ec,er}

qf

eu eu ec

ec

er, reset(ec)

(a) GSMP G

qC

Enew(qC) = {eu, ec}

qCb

Enew(qCb
)={er,ec}

Einherited(qCb
)={eu}

qs

qf

q′
C

Enew(q′
C )={ec}

Einherited(q′
C)={eu}

eu

ec

eu

ec

er ,
reset(ec)

ec

eu

(b) GSMP G1

Fig. 1. Sample GSMP and its normalized version

A normalized GSMP is called 1GSMP if for every location q, Einherited(q)
consists of at most one event.

In 1GSMP at most one event can retain the value of its clock upon a transition.
The other active events are either reset or canceled in the transition target
location. In the sequel, we will be interested only in 1GSMPs.

For a clock of an active event, we say that it is new if it is the clock of a new
event, and we call it inherited otherwise. We know the distributions of values of
all new clocks upon reaching the current location q, but the distribution of the
inherited clock is unknown and depends on the path to q.

A history π of length n of a run σ is a sequence of locations and transitions
between them marked by the events that have fired:

q0
e∗
1−→ q1

e∗
2−→ . . .

e∗
n−→ qn.

2.3 Computing Probabilities of Until Properties

Suppose that we are given a 1GSMP G with firing time distributions of size
a. The locations of G are partitioned into three disjoint sets: Qs, Qu and Qd,
which are called the set of safe locations, the set of unsafe locations, and the
set of destination locations, respectively. We require that from every qs ∈ Qs,
a location in Qu ∪ Qd is reachable with probability one. This property can be
checked by a method presented in [2].

Let Πn
until ⊆ Π be a set of histories of length less than or equal to n, such

that only the last location of every history in Πn
until is in Qu, while the other

locations are in Qs. Let Πuntil = ∪n≥0Π
n
until.

We consider the following model-checking problem:

– What is the probability Puntil that a run σ of G has a history π ∈ Πuntil?
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In addition to solving this problem, our approach will enable us to determine the
probability of reaching an unsafe location before any of the destination
locations fromany location q, if we specify the valuation of the event inEinherited(q).

2.4 Illustrative Example

We illustrate the given definitions by an example that we will use throughout the
paper. Consider a system that crucially depends on a component C. To ensure
an uninterrupted service, the system has a back-up component Cb. While C is
active, Cb is in the standby mode, but if C fails, Cb is activated immediately.
We are interested to know the probability of the system failure.

The system can be modeled as a GSMP G depicted in Figure 1(a). Each
location is marked with its active events. Each transition is marked with the
event that causes this transition, and reset(e) indicates that e was reset.

Location qC is the initial location, and it models the configuration in which
C is operating and Cb is in the standby mode. Location qCb

represents the con-
figuration when C has failed and Cb is active. There are two absorbing locations
qs and qf , the former is the destination location, it models the successful com-
pletion of the task, the latter is the unsafe location of G, and it models the state
of the system when both components have failed.

Two events eu and ec are active in qC . The event eu, which is scheduled
only upon the initial visit to qC , models the time interval the system should
be up. Firing of this event indicates that the system has completed its task
successfully and has reached qs; eu is scheduled using a random variable whose
density function is denseu(x) = 1

1−e−1 e−x on (0, 1] and 0 otherwise3. On (0, 1]

this density function is a solution of the differential equation d
dx denseu(x) +

denseu(x) = 0. The second active event of qC is ec, it is scheduled every time a
run reaches qC , and it models a crash event of C. If it fires a run of G moves
to qCb

. The event ec is scheduled using a random variable with the beta den-
sity function densec(x) = 1

2x on (0, 1], the LHODE for densec(x) is d2

dx2 densec

(x) = 0.
Every time location qCb

is reached, two events er and ec are scheduled. The
firing time of er is determined by a random variable with the uniform density
function denser (x) = 1 on (0, 1] and 0 otherwise (its LHODE is d

dx denser (x) =
0), and firing of this event indicates that C was replaced and the run returns to
qC . But if in qCb

the event ec fires before er, it means that Cb had failed before
C was replaced, the system failed and the run moves to the location qf .

G is not a normalized GSMP — upon the first visit to qC both eu and ec are
scheduled, upon every subsequent visit ec is reset, but the clock of eu keeps its
value. The normalized GSMP G1, constructed from G, is shown in Figure 1(b).
Location qC of G was split into two locations qC and q′C , and, as in G, qC is the
only initial location of 1GSMP G1.

3 The densities in this example are chosen to make our approach clear and not to
model accurately a real system.
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3 System of Integral Equations for Harmonic Functions

To solve the model-checking problem we will use a method similar to the “first
step analysis” for the Markov chains. For every location we introduce a set of
harmonic functions. If a location q does not have an inherited clock, then its set
consists of one constant function that we denote by Hq, otherwise it consists of
a functions H1

q (t), . . . , Ha
q (t).

Each Hi
q(t) is defined on (0, 1]. The interpretation of the functions is the

following — if q is reached at the moment when the value of the inherited clock
t satisfies i − 1 < t ≤ i, then the probability to reach an unsafe location before
any of the destination locations is Hi

q(t− (i− 1)) 4. If there is no inherited clock
in q, then all clocks are rescheduled (or reset) upon reaching q and the constant
Hq is the desired probability.

Our method constructs integral equations that capture dependencies between
harmonic functions of a location and all its immediate successor locations. This is
a general method and it works not only for 1GSMPs but also for all normalized
GSMPs, however restriction to 1GSMPs allows us a transformation from the
system of constructed integral equations to a system of ordinary differential
equations.

Before describing our algorithm, we need to introduce a class of partitions of
clock valuations that we will use. The same class of partitions was used in [1]
for solving bounded model-checking problem.

3.1 Diagonal Mesh Partitions

For a set of variables t1, . . . , tn, an n-dimensional diagonal mesh partition
Ra(t1, . . . , tn) of width a ∈ N is a partition of R

n
+ into regions such that each

region is described by:

– mesh constraints: for each variable t, by a constraint of the form b−1 < t ≤ b,
where b ∈ N and 1 ≤ b ≤ a;

– diagonal constraints: for every pair of distinct variables t and t′, by an order-
ing on the fractional parts of the variables, i.e. by a constraint of the form
(t − �t�) ∼ (t′ − �t′�), where ∼∈ {<, >}, and �s� denotes the largest integer
not greater than s.

For a region r and a variable t, let Intr(t) be the function that returns the mesh
constraint constant of t in r.

Given a region r we consider a (total) region ordering ≺r of fractional parts
of t1, . . . , tn, i.e. ti ≺r tj iff (ti − �ti�) < (tj − �tj�). Thus, each region r in Ra

can be described by the order ≺r and the unit intervals of all variables.

4 The reason for all harmonic functions to be defined on the same interval (0, 1] will
become clear later when we present the algorithm that constructs integral equations.
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3.2 Algorithm

Suppose we are given a 1GSMP G = (Q, Σ, Einherited, Enew, init , distr ,next), Qd

is the set of destination locations, and Qu is the set of unsafe locations. We
assume that all locations in Qd ∪ Qu are absorbing. We describe the algorithm
in two steps. We start by discussing the main loop, and then we describe con-
struction of right-hand sides of the integral equations.

In the main loop, the algorithm goes over all locations of G. For each destina-
tion location qd it outputs equation Hqd

= 0, which states that in a destination
location, the probability to reach an unsafe location before any of destination
locations is zero. For each unsafe location qu, the algorithm outputs Hqu = 1. If
q is neither a destination nor an unsafe location, then, in case q has an inherited
event einherited

q , the algorithm constructs a equations for each of the functions
H1

q , . . . , Ha
q of the same argument teinherited

q
. In case q does not have an inherited

event, a single equation for Hq is constructed.
Algorithm 1 returns the right-hand side for the equation that defines the

harmonic function Hi
q(teinhereted

q
), where einhereted

q is the only inherited event of q

(the algorithm for Hq, such that q has only new events is similar).
Let us assume that the number of active events in q is n. For every non-

constant function Hj
p(t) let H̃j

p(t) = Hj
p(1 − t).

At line 2 we have the loop that goes through all regions in the diagonal
mesh partition Ra(te1 , . . . , ten) for which teinhereted

q
∈ (i − 1, i]. The restriction

is required because we are constructing RHS for Hi
q(teinhereted

q
), which implies

that teinhereted
q

∈ (i − 1, i]. At line 3 we determine the clock that should fire,
i.e. the clock which is minimal in respect to ≺r among all clocks that have
the minimal value returned by Intr. At line 4 we ensure that we consider ev-
ery transition that may be caused by firing of e∗r along with its probability. At
lines 8 – 10 we create a product of all new clock densities, each enters with
its own variable. At line 11 we check if the target location has an inherited
clock. If it does then at line 15 or 18 we determine to which interval this in-
herited clock belongs. This is uniquely determined by the region r. At line 22
we construct the integrand.

From line 24 to line 36 we have the loop that goes over all active event clocks
of q. For each new clock we integrate over all possible values that this clock
can have in r. The limits of integration are constructed in such a way that they
respect ≺r. For example, suppose that in the ordering te1 ≺r te2 ≺r te3 ≺r

te4 ≺r te5 ≺r te6 ≺r · · · ≺r ten , te3 is the inherited clock of q and the others
are new clocks. Then we know that te1 can have values between 0 and te2 , te2

between 0 and te3 , te4 between te3 and te5 , te5 between te3 and te6 and so on.
The last clock ten can have values between te3 and 1. This idea is captured in
the algorithm.

At line 37 we add the constructed integral to RHS , and at line 40 we output
the entire constructed expression.

Let us return to our sample GSMP G1. For qCb
, for example, the algorithm

generates the following integral equation:



Symbolic Analysis for GSMP Models with One Stateful Clock 99

Algorithm 1. Generate RHS(q, i)
1: RHS ← 0
2: for all r : (r ∈ Ra(te1 , . . . , ten), ei ∈ E(q)) ∧ Intr(teinherited

q
) = i do

3: e∗
r ← the firing clock of r

4: for all tran ∈ next(q, e∗
r) do

5: qtarget ← the target location of the transition tran
6: Prob ← the probability of the transition tran , which is P

q,e∗
r

next (qtarget)
7: DensProduct ← 1
8: for all e ∈ Enew(q) do
9: DensProduct ← DensProduct ∗ dens

Intr(te)
e (te)

10: end for
11: if Einherited(qtarget) = ∅ then
12: HarmonicFunction ← Hqtarget

13: else
14: if te∗

r
≺r teinherited

qtarget
then

15: index ← Intr(teinherited
qtarget

) − Intr(te∗
r
) + 1

16: HarmonicFunction ← H index
qtarget (teinherited

qtarget
− te∗

r
)

17: else
18: index ← Intr(teinherited

qtarget
) − Intr(te∗

r
)

19: HarmonicFunction ← H̃ index
qtarget (te∗

r
− teinherited

qtarget
)

20: end if
21: end if
22: Integrand = HarmonicFunction ∗ DensProduct
23: LowerLimit ← 0
24: for i = 1 to n do
25: ecur ← ei, where tei is the ith element in te1 ≺r te2 ≺r · · · ≺r ten

26: if ecur ∈ Einherited(q) then
27: LowerLimit ← tecur

28: else
29: if i < n then
30: UpperLimit ← tei+1 , where tei+1 is the (i + 1)th element in te1 ≺r

te2 ≺r · · · ≺r ten

31: else
32: UpperLimit ← 1
33: end if
34: Integrand =

∫ UpperLimit
LowerLimit Integrand dtecur

35: end if
36: end for
37: RHS ← RHS + Prob ∗ Integrand
38: end for
39: end for
40: return RHS
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H1
qCb

(teu) =
∫ 1

teu

∫ teu

0
densec (tec) denser (ter ) dtec dter

+
∫ teu

0

∫ ter

0
densec (tec) denser (ter ) dtec dter

+
∫ 1

teu

∫ teu

0
H1

q′
C

(
teu

− ter

)
densec (tec) denser (ter ) dter dtec

+
∫ teu

0

∫ tec

0
H1

q′
C

(
teu

− ter

)
densec (tec) denser (ter ) dter dtec

The first term is for the region r1 with the ordering tec ≺r1 teu ≺r1 ter , the second
term is for r2, tec ≺r2 ter ≺r2 teu , the third term is for r3, ter ≺r3 teu ≺r3 tec ,
and the last term is for r4, ter ≺r4 tec ≺r4 teu . The first two terms do not include
harmonic functions because Hqf

= 1. There are no terms for the orderings that
start with teu because Hqs = 0.

4 System of Differential Equations

In this section we show how to convert the system of integral equations con-
structed in the previous section into a system of differential equations such that
the solution of the former system is a solution of the latter. Compared to the ex-
isting methods (e.g. [15]), our method converts every integral term individually
and can handle equations with terms that contain multiple integrals.

Due to the lack of space, we give intuition only for the main step. The other
steps use the fact that the class of DESOL expressions is closed under addition,
multiplication, integration and differentiation [16]. The resulting system will
consist of equations obtained after converting the integral equations, equations
that define auxiliary functions and additional equations described in Section 4.1.

We show how to convert, for example, a term T =
∫ b

a H(t − t′)dens(t) dt,
where the integration limits a and b can be 0, 1 or clock variables, H(t − t′) is
a harmonic function and dens(t) is a function, which is a solution of a LHODE:

n∑
l=1

al
dldens(t)

dtl
+ a0dens(t) = 0, (1)

For H(t − t′), we introduce an auxiliary function A(t − t′). The differential
equation that links A(t − t′) to H(t − t′) is constructed from (1):

H(t − t′) =
n∑

l=1

(−1)lal
dl

A(t − t′)
dtl

+ a0A(t − t′).

Replacing H(t − t′) in T with this equation, we will obtain that

T =
n∑

l=1

(−1)l
al

∫ b

a

dl
A(t − t′)

dtl
dens(t) dt + a0

∫ b

a

A(t − t′)dens(t) dt. (2)
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Consider the summand Tn for l = n in the equation above. Let us apply the
integration by parts method to it:

Tn =(−1)nan

∫ b

a

dnA(t − t′)
dtn

dens(t) dt=(−1)n
an

∫ b

a

dens(t) d

(
dn−1A(t − t′)

dtn−1

)

= (−1)nan

⎛
⎝dens(t)

dn−1
A(t − t′)

dtn−1

∣∣∣∣∣
t=b

t=a

−
∫ b

a

dn−1
A(t − t′)

dtn−1

ddens(t)
dt

dt

⎞
⎠ .

Next we apply the integration by parts method n − 1 more times:

Tn = (−1)nan

(
dens(b)

dn−1
A(t − t′)

dtn−1

∣∣∣∣∣
t=b

− dens(a)
dn−1

A(t − t′)
dtn−1

∣∣∣∣∣
t=a

)

+ (−1)nan

n−1∑
k=2

(−1)n−k

⎛
⎝ dn−kdens(t)

dtn−k

dk−1
A(t − t′)

dtk−1

∣∣∣∣∣
t=b

t=a

⎞
⎠ (3)

− an

(
dn−1dens(t)

dtn−1

∣∣∣∣∣
t=b

A(b − t′) − dn−1dens(t)
dtn−1

∣∣∣∣∣
t=a

A(a − t′)

)

+ an

∫ b

a

A(t − t′)
dndens(t)

dtn
dt = TDn + an

∫ b

a

A(t − t′)
dndens(t)

dtn
dt,

where TDn is a sum of differentials. Now we apply the same conversion to the
remaining summands of (2). Consider the sum of all converted summands:

T =
n∑

l=1

TDl +
n∑

l=1

al

∫ b

a

A(t − t′)
dldens(t)

dtl
dt + a0

∫ b

a

A(t − t′)dens(t) dt

=
n∑

l=1

TDl +
∫ b

a

A(t − t′)

(
n∑

l=1

al
dldens(t)

dtl
+ a0dens(t)

)
dt =

n∑
l=1

TDl.

The last step follows from (1).
Let us return to our example. Consider the integral equation for q′C :

H1
q′

C
(teu) =

∫ teu

0
H1

qCb
(teu − tec) densec (tec) dtec .

Conversion gives H1
q′

C
(teu) = C1densec (teu) − C2

d
dt densec (t) + 2 A (teu) , where

C1 = d
dt A(0) and C2 = A(0) are constants that we can choose to be zero, and

H1
qCb

(t) = d2

dt2 A(t).
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qempty
q1

q′2q′3

q2

q′n

qn−1

qoverflow

elel

eaea

ea elea elea el

qinit

elea

Fig. 2. Queue

4.1 Additional Equations

Consider a product dn−kdens(t)
dtn−k

dk−1A(t−t′)
dtk−1

∣∣∣
t=b

from (3), and let us assume that
b = 1, then using the calculus chain rule:

dn−kdens(t)
dtn−k

dk−1
A(t − t′)

dtk−1

∣∣∣∣∣
t=1

= (−1)k−1 dn−kdens(t)
dtn−k

dk−1
A(t − t′)

dt′k−1

∣∣∣∣∣
t=1

= (−1)k−1Cdens
dk−1A(1 − t′)

dt′k−1 = (−1)k−1Cdens
dk−1Ã(t′)

dt′k−1 ,

where Cdens = dn−kdens(t)
dtn−k

∣∣∣
t=1

and Ã(t) = A(1 − t).

Recall that our system may also include unknowns of the form H̃(t) = H(1−t).
To ensure that the system can be solved, we should add additional equations for
H̃(t) and Ã(t). For H̃(t) we take the equation with H(t) on its left-hand side
and do a change of variable from t to t′ = 1 − t. For Ã(t), we do the same for
the equation that defines A(t). We add the equations for all such functions to
our system and then solve it.

5 Implementation

To demonstrate our tool, we consider an example motivated by research on power-
aware devices. Suppose that a device processes requests. Unprocessed requests
can be stored in a queue of a finite length n. To save power it is preferable to
accumulate in the queue as many requests as possible and then process them in
one batch until the queue is empty. We know the distribution of time intervals
between two successive requests, and the distribution of time to process a request.
These distributions are not exponential, so we are dealing with a GI/G/1 queue.

Suppose that we are given the number of requests k in the queue at the
moment when the device starts batch processing. We want to know what is the
probability that the queue overflows before it gets empty.
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The 1GSMP for our example (when k is set to 2) is shown in Figure 2. A
numeric index of a location is also the number of requests in the queue while a
run is in that location. The firings of events ea and el indicate a new request
arrival and request completion, respectively. The density for ea is tea on (0, 1]
and tea − 1 on (1, 2]. The density for el is 2/3 on (0, 1] and 1/3 on (1, 2].

Experiments were conducted on a Windows XP computer with a Pentium D
processor running at 2.80GHz with 2GB of RAM.

Parameters Results
n k Poverflow Running time

16 1 7.5401361 × 10−8 5 min. 4 sec.
16 8 0.00010769 5 min. 2 sec.
16 16 0.53083234 5 min. 9 sec.
32 1 7.4714055 × 10−16 47 min. 56 sec.
32 16 1.8367065 × 10−8 41 min. 38 sec.
32 32 0.53083236 42 min. 46 sec.
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Abstract. Hybrid discrete-continuous models, such as Jump Markov
Linear Systems, are convenient tools for representing many real-world
systems; in the case of fault detection, discrete jumps in the continuous
dynamics are used to model system failures. Stochastic uncertainty in
hybrid systems arises in both the continuous dynamics, in the form of
uncertain state estimation, disturbances or uncertain modeling, and in
the discrete dynamics, which are themselves stochastic.

In this paper we present a novel method for optimal predictive control
of Jump Markov Linear Systems that is robust to both continuous and
discrete uncertainty. The approach extends our previous ‘particle control’
approach, which approximates the predicted distribution of the system
state using a finite number of particles. Here, we present a weighted par-
ticle control approach, which uses importance weighting to ensure that
low probability events such as failures are considered. We demonstrate
the method with a car braking scenario.

1 Introduction

Hybrid discrete-continuous models,such as Jump Markov Linear Systems(JMLS),
are convenient tools for representing many real-world systems[1,2]. In the case of
fault detection and fault-tolerant control, discrete jumps in the continuous dy-
namics are used to model component failures[3]. Stochastic uncertainty in hybrid
systems arises in both the continuous dynamics, in the form of uncertain state esti-
mation, disturbances or uncertain modeling, and in the discrete dynamics, which
are themselves stochastic.

Control of stochastic systems has received a great deal of attention in recent
years, see [4] for a survey. Much work has been done in the area of feedback
control for JMLS, see [5] for a survey. By contrast, predictive optimal stochas-
tic control takes into account probabilistic uncertainty in dynamic systems and
aims to control the predicted distribution of the system state in some optimal
manner. In the case of stochastic linear dynamic systems, recent work has de-
veloped tractable algorithms for optimal, robust predictive control[6,7,8,9,10].
These methods are robust in the sense that they ensure the system state leaves
a given feasible region with probability at most δ. This chance-constrained

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 104–117, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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formulation is a powerful one, as it enables the user to specify a desired level of
conservatism, which can be traded against performance.

Chance-constrained optimal stochastic control of JMLS has a number of im-
portant applications. In the case of fault-tolerant control, we would like to be
able to control a system in an optimal manner while taking into account both
continuous disturbances and the possibility of system failures, such that task
failure is below a certain threshold. For example, in controlling an autonomous
ground vehicle we would like to ensure that, despite having brakes that may fail,
collision with obstacles or other vehicles happens with low probability. Recent
work developed a Model Predictive Control approach for JMLS which imposes
constraints on the mean and covariance of the system state[11]. These are not
the same as chance constraints even when all forms of uncertainty are Gaussian
since the state distribution in JMLS is multimodal.

In this paper we develop a tractable algorithm for chance-constrained opti-
mal predictive control of JMLS that extends our previous work on particle-based
control of continuous systems[12]. The key idea behind this approach is to ap-
proximate all probability distributions using a finite number of samples, or ‘par-
ticles’. In doing so, we approximate the stochastic predictive control problem as
a deterministic one, with the property that as the number of particles tends to
infinity, the approximation tends to the original stochastic problem. The result-
ing optimization problem can be solved efficiently using Mixed Integer Linear
Programming (MILP). The approach generalizes previous work by [17] by han-
dling stochastic uncertainty with general distributions, in both the continuous
and discrete dynamics.

In this paper we present first a straightforward extension of the particle control
method to JMLS. This extension uses particles to represent uncertainty in the dis-
crete mode sequences as well as the continuous variables. An empirical validation
with a ground vehicle braking scenario shows that the method is effective, but is
prone to neglect low-probability events such as failures. We therefore develop a
new weighted particle control approach that overcomes these difficulties by draw-
ing on the idea of importance weighting from particle filtering[13,14,15,16]. The
key idea is that by sampling mode sequences from a proposal distribution, and
representing the discrepancy between the proposal distribution and the true dis-
tribution by an analytic weight, an increase in sampling efficiency can be achieved.
The resulting optimization can be solved efficiently and to global optimality using
MILP. We demonstrate empirically that a dramatic improvement in performance
is achieved by employing the weighted particle control approach.

2 Problem Statement

In this paper we are concerned with the following stochastic control problem:

Design a finite, optimal sequence of control inputs u0:T−1, taking into
account probabilistic uncertainty, which ensures that the continuous state
trajectory xc,1:T of a JMLS leaves a defined feasible region F with prob-
ability at most δ, and satisfies constraints on the expected system state.
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We consider four sources of stochastic uncertainty; initial state uncertainty;
system model uncertainty; disturbances, modeled as stochastic processes; and
random mode transitions. These transitions can model component failures, for
example. We assume that the p.d.f.s of the uncertainty mentioned here are known
at least approximately, but we make no assumptions about the form the distri-
butions take. We assume a cost function that is piecewise linear in the control
inputs; previous work has shown that minimum control effort and minimum
time problems can be posed using such functions[18]. Finally, we assume that
the feasible region F is a polytope, and that the control inputs ut are subject to
interval constraints.

We define a Jump Markov Linear System as a system with hybrid discrete-
continuous state x = 〈xc, xd〉. The discrete state xd is a Markov chain that can
take one of M values and evolves according to:

p(xd,t+1 = j|xd,t = i) = Tij . (1)

The continuous state xc evolves according to:

xc,t+1 = A(xd,t)xc,t + B(xd,t)ut + νt. (2)

The initial hybrid discrete-continuous state is random, with a known distribution
p(xc,0, xd,0). The variable νt is a random disturbance process distributed accord-
ing to p(νt|xd,t), which we assume independent from the initial state. Modeling
errors can be modeled as an additional stochastic disturbance. For notational
simplicity we assume a single disturbance process.

The key idea behind solving this stochastic control problem is to approximate
all distributions using samples, or particles, and then solve the resulting deter-
ministic problem. In Section 3 we review some results relating to sampling from
random variables. In Section 4 we review the chance-constrained particle control
approach introduced in [12] for systems with continuous state. We then extend
this approach to JMLS in Section 5 and show that the resulting problem can
be solved using MILP. In Section 6 we introduce a novel weighted particle con-
trol method that gives a dramatic increase in performance by using a proposal
distribution to sample from discrete mode sequences. In Section 7 we provide
empirical results.

3 Sampling from Random Variables

Previous work has shown that approximating the probability distribution of a
random variable using samples drawn from that distribution, or particles, can
lead to tractable algorithms for estimation and control[19]. Here we review some
properties of samples drawn from random variables.

Suppose that we have a multivariate random variable X with p.d.f. p(x). We
draw N independent, identically distributed random samples x(1), · · · ,x(N) from
this distribution. Often, we would like to calculate an expectation involving this
random variable:
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EX [f(X)] =
∫

X

f(x)p(x)dx (3)

In many cases this integral cannot be evaluated in closed form. Instead it can
be approximated using the sample mean:

ÊX [f(X)] =
1
N

N∑
i=1

f(x(i)). (4)

From the strong law of large numbers, the sample mean converges to the true
expectation as N tends to infinity. This can be used to approximate the prob-
ability of a certain event, such as the event f(x) ∈ A. This is given exactly by:

PA =
∫

f(x)∈A

p(x)dx = EX [g(x)] where g(x) =

{
1 f(x) ∈ A

0 f(x) /∈ A.
(5)

We can therefore approximate PA as:

P̂A =
1
N

N∑
i=1

g(x(i)) where P̂A −→ PA as N −→ ∞. (6)

Note that
∑N

i=1 g(x(i)) is simply the number of particles for which f(x(i)) ∈ A.
Assuming that evaluating f(·), and checking whether a given value is in A, are
both straightforward, calculating P̂A is also; we simply need to count how many
of the propagated particles, f(x(i)) fall within A. By contrast, evaluating PA

as in (5) requires a finite integral over an arbitrary probability distribution,
where even calculating the bounds on the integral may be intractable. Hence
the particle-based approximation is extremely useful, especially given the con-
vergence property in (6). In Section 4 we use this property to approximate the
stochastic control problem defined in Section 2.

3.1 Importance Weighting

In certain situations, drawing samples from the distribution p(x) may be in-
tractable. In such cases, previous work proposed sampling from an alternative
proposal distribution and using importance sampling to correct for the discrep-
ancy between the desired distribution and the proposal distribution[19]. We re-
view relevant results here.

The proposal distribution q(x) is chosen so that sampling from q(x) is easy,
and so that p(x) > 0 implies q(x) > 0. We draw N independent, identically
distributed random samples x(1), · · · ,x(N) from q(x). To each sample we assign
an importance weight wi, where wi = p(x(i))/q(x(i)). In order to approximate
the expectation of the function f(·) we now use the weighted sample mean:

ÊX [f(X)] =
1
N

N∑
i=1

wif(x(i)). (7)
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From the strong law of large numbers, we have the convergence property as N
tends to infinity:

ÊX [f(X)] −→ EX [f(X)]. (8)

In order to approximate the probability of the event f(x) ∈ A we use the weighted
number of propagated particles that fall within A:

P̂A =
1
N

N∑
i=1

wig(x(i)), (9)

where g(·) is as defined in (5). As in (6) we have the convergence property
P̂A −→ PA as N → ∞.

4 Review of Particle Control Approach

In this section we review the chance-constrained particle control approach intro-
duced in [12] for robust control of systems with continous state.

The key observation behind the method is that, by approximating all
probabilistic distributions using particles, an intractable stochastic optimization
problem can be approximated as a tractable deterministic optimization problem.
By solving this deterministic problem we obtain an approximate solution to the
original stochastic problem, with the additional property that as the number of
particles used tends to infinity, the approximation becomes exact.

The method is outlined as follows:

1. Generate N samples from the joint distribution of initial state and distur-
bances.

2. Express the distribution of the future state trajectories approximately as a
set of N analytic particles, where each particle x(i)

1:T corresponds to the state
trajectory given a particular set of samples. Each particle depends explicitly
on the control inputs u0:T−1, which are yet to be generated.

3. Approximate the chance constraints in terms of the generated particles; the
probability of x1:T falling outside of the feasible region is approximated as
the fraction of particles x(i)

1:T that do so.
4. Approximate the cost function in terms of particles.
5. Solve the deterministic constrained optimization problem for control inputs

u0:T−1.

The method is illustrated in Fig. 1. The general particle control problem results
in a deterministic optimization problem that is intractable, except for very small
problems. However in [12] we showed that for a polytopic feasible region F ,
piecewise linear cost function h and linear system dynamics xt+1 = Axt + But,
the deterministic optimization can be solved to global optimality in an efficient
manner using MILP. This relies on the fact that each particle x(i)

1:T is a linear
function of the control input sequence u0:T−1.This is also true for time-varying
linear systems. In Section 5 we use this to extend the method to JMLS.



Robust, Optimal Predictive Control of Jump Markov Linear Systems 109

Obstacle  
Goal Region 

Particles approximating 
initial state distribution 

Particles approximating
final state distribution 

10% of particles collide 
with obstacle at time 2 

t=0 

t=1 
t=2 

t=3 

t=4

Expected 
vehicle path 

Fig. 1. Illustration of chance constrained particle control method for continuous sys-
tems. For this vehicle path planning scenario, the feasible region is defined so that the
plan is successful if the vehicle avoids the obstacles at all time steps and is in the goal
region at the final time step. The objective is to find the optimal sequence of control
inputs so that the plan is successful with probability at least 0.9. The particle control
method approximates this so that at most 10% of the particles fail.

5 Straightforward Extension of Particle Control to JMLS

For JMLS, we approximate the stochastic control problem by sampling from
discrete mode sequences as well as disturbances. Given a discrete mode sequence
and samples for all of the disturbance variables, the future system state trajec-
tory is a known deterministic function of the control inputs. Hence each particle
provides a sample of the future state trajectory corresponding to a sample of the
discrete mode sequence and disturbances.

Note that the mode sequence is independent of the control inputs and the
continuous state in JMLS, and hence:

p(xc,1:T , xd,1:T |u) = p(xc,1:T |xd,1:T ,u)p(xd,1:T ). (10)

We therefore first generate samples of the mode sequence xd,1:T , and for each
sample x

(i)
d,1:T , we generate samples of the disturbance variables. While there are

MT different mode sequences, sampling from p(xd,1:T ) is straightforward due to
the Markov property. The algorithm is described in full in Table 1. From the
results in Section 3 we have convergence of the approximated problem to the
original stochastic problem as the number of particles tends to infinity.

5.1 MILP Solution of JMLS Particle Control

We now show that the approximated problem can be solved efficiently using
MILP. For a given particle, the mode at each time step in the horizon is known, as
are the disturbances at each time step. From the definition of JMLS in Section 1
we obtain the following expression for each particle:
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Table 1. Straightforward Particle Control Approach for JMLS

1) Generate N samples of the initial discrete mode
�
x

(1)
d,0, . . . , x

(N)
d,0

�
according to

the distribution p(xd,0).

2) For each sample x
(i)
d,0, generate a sample of the initial continuous state

�
x(1)

c,0, . . . ,x
(N)
c,0

�
according to p(xc,0|x(i)

d,0).

3) For each sample x
(i)
d,0 generate a sample of the discrete mode sequence x

(i)
d,1:T

according to p(xd,1:T |xd,0).

4) For each sample x
(i)
d,0:T generate a sample of the disturbances

�
ν

(i)
0 , . . . , ν

(i)
T−1

�

from the distribution p(ν0, . . . , νT−1|x(i)
d,0:T ).

5) Express the distribution of the future state trajectories approximately as a set
of N particles, where each particle x(i)

c,1:T corresponds to the continuous state

trajectory given a particular set of samples
�
x(i)

0 , x
(i)
d,1:T , ν

(i)
0 , · · · , ν

(i)
T−1

�
. Each

particle depends explicitly on the control inputs u0, · · · ,uT−1, which are yet
to be generated.

6) Approximate the expected state constraints and chance constraints in terms
of the generated particles.

E[x(i)
1:T ] ≈ 1

N

N�

i=1

x(i)
1:T = xequality

1:T p(xc,1:T /∈ F ) ≈ 1

N

N�

i=1

g(x(i)
1:T ) ≤ δ, (11)

where g(·) is as defined in (5).
7) Approximate the cost function in terms of particles.
8) Solve deterministic constrained optimization problem for inputs u0:T−1.

x(i)
c,t =

t−1∑
j=0

(t−j−1∏
l=1

A(x(i)
d,l)

)(
B(x(i)

d,j)uj + ν
(i)
j

)
+

( t∏
l=1

A(x(i)
d,l)

)
x(i)

c,0. (12)

Note that this is a linear function of the control inputs, and that x(i)
c,0, ν

(i)
j and

x
(i)
d,l are all known values. Hence each particle x(i)

c,1:T is linear in the control inputs.
In accordance with (11), we need to constrain the number of particles that

fall outside of the feasible region. In the same manner as described in [12], we
define a set of N binary variables z1, · · · , zN , where zi ∈ {0, 1}. These binary
variables are defined so that zi = 0 implies that particle i falls inside the feasible
region. We then constrain the sum of these binary variables:

1
N

N∑
i=1

zi ≤ δ. (13)

This constraint ensures that the fraction of particles falling outside of the feasible
region is at most δ. In [12] we showed how to impose constraints such that
zi = 0 =⇒ x(i)

1:T ∈ F for convex and non-convex polygonal feasible regions. We
do not repeat this here, but we do note that the linearity of (12) and piecewise
linearity of the cost function h ensures that the encoding results in a MILP, which
can be solved efficiently to global optimality. We have therefore introduced a new
method for robust optimal control of JMLS, where the probability distributions
of uncertain variables can take an arbitrary form.
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Table 2. Weighted Particle Control Approach for JMLS

1) Generate N samples of the initial discrete mode
�
x

(1)
d,0, . . . , x

(N)
d,0

�
according to

the distribution p(xd,0).

2) For each sample x
(i)
d,0, generate a sample of the initial continuous state

�
x(1)

c,0, . . . ,x
(N)
c,0

�
according to p(xc,0|x(i)

d,0).

3) For each sample x
(i)
d,0 generate a sample of the discrete mode sequence x

(i)
d,1:T

according to the proposal distribution q(xd,1:T ).

4) For each sample x
(i)
d,0:T generate a sample of the disturbances

�
ν

(i)
0 , . . . , ν

(i)
T−1

�

from the distribution p(ν0, . . . , νT−1|x(i)
d,0:T ).

5) For each sample x
(i)
d,0:T calculate p(x

(i)
d,0:T ) and assign weight wi as in (16).

6) Express the distribution of the future state trajectories approximately as a set
of N particles, where each particle x(i)

c,1:T corresponds to the continuous state

trajectory given a particular set of samples
�
x(i)

0 , x
(i)
d,1:T , ν

(i)
0 , · · · , ν

(i)
T−1

�
.

7) Approximate the chance constraints using the weighted fraction of particles
outside of the feasible region:

p(x1:T /∈ F ) ≈ 1

N

N�

i=1

wig(x(i)
1:T ) ≤ δ. (14)

8) Approximate the expected state constraints using the weighted sample mean
approximation, for example:

E[x1:T ] = xequality
1:T becomes

1

N

N�

i=1

wix
(i)
1:T = xequality

1:T . (15)

9) Approximate the cost function in terms of weighted particles.
10) Solve the deterministic constrained optimization problem for inputs u0:T−1.

6 Weighted Particle Control for JMLS

We now extend the method described in Section 5 to deal more efficiently with
low probability mode transitions such as failures. The key idea behind the exten-
sion is to sample mode sequences from a proposal distribution designed to ensure
that low probability events such as failures are more likely to be taken into con-
sideration. Drawing on the idea of importance weighting in particle filtering[19],
the discrepancy between the actual distribution over mode sequences and the
proposal distribution is represented using an analytical weighting. In doing so,
we retain the convergence property that the approximate problem converges to
the original stochastic problem as the number of particles tends to infinity. The
algorithm is described in Table 2.

We now show how to calculate the weights wi. For the approximated problem
to converge to the original stochastic problem as the number of particles tends
to infinity, weights must be assigned according to[19]:

wi =
p(x(i)

c,1:T , x
(i)
d,1:T |u0:T−1)

q(x(i)
c,1:T , x

(i)
d,1:T |u0:T−1)

. (16)
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Since we sample the disturbances from their true distributions, the joint proposal
q(xc,1:T , xd,1:T ) canbewritten in termsof theproposal overmode sequences to give:

wi =
p(x(i)

c,1:T |x(i)
d,1:T ,u0:T−1)p(x(i)

d,1:T )

p(x(i)
c,1:T |x(i)

d,1:T ,u0:T−1)q(x
(i)
d,1:T )

=
p(x(i)

d,1:T )

q(x(i)
d,1:T )

. (17)

Since calculating both the true probability of a given mode sequence and its
probability according to the proposal distribution is straightforward, calculating
the weight to assign to a sampled mode sequence is also.

We now show that the weighted particle control problem for JMLS can be
solved using MILP. The key insight is that, since the weights do not depend on
the control inputs u0:T−1, incorporating weighted particles does not affect the
form of the optimization problem.

The weighted particle control problem can be formulated in exactly the same
manner as the unweighted approach described in Section 5, except for the ap-
proximate chance constraint and the approximate cost function. We now must
constrain the weighted fraction of particles that fall outside of the feasible re-
gion. Defining again binary variables zi such that zi = 0 =⇒ x(i)

c,1:T ∈ F , we
constrain the weighted sum of the binary variables:

1
N

N∑
i=1

wizi ≤ δ. (18)

The weights wi do not depend on the control inputs, as shown in (17). Hence
(18) is a linear constraint on the binary variables zi. The expected cost is now
approximated using the weighted sample mean as follows:

E[h] ≈ ĥ =
1
N

N∑
i=1

wih(u0, · · · ,uT−1,x
(i)
c,1:T ). (19)

As the number of particles tends to infinity, we have the convergence result
ĥ −→ E[h]. Furthermore, since the weights wi do not depend on the control
inputs, the approximate value ĥ is piecewise-linear in the control inputs assuming
a piecewise-linear cost function h. Similarly, the expected state is approximated
using the weighted sample mean. This weighted sample mean is a linear function
of the control inputs, hence expected state constraints such as (15) are linear.

In summary, therefore, the weighted particle control problem for JMLS can
be posed as a MILP. It now remains to choose a proposal distribution q(x(i)

d,1:T ).

6.1 Choosing a Proposal Distribution

The convergence of the approximate problem to the original deterministic prob-
lem applies for any choice of the proposal distribution q(xd,1:T ) subject to the
constraint that q(xd,1:T ) > 0 wherever p(xd,1:T ) > 0. However for a finite number
of particles the performance of the weighted particle control approach is affected
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greatly by the choice of q(xd,1:T ). As in particle filtering, the appropriate choice
of q(xd,1:T ) depends on the application, and a great deal of work has focussed on
developing proposal distributions for specific applications, for example [14,20].
We now introduce a proposal distribution designed to improve the performance
of the particle control approach for JMLS when dealing with low-probability
transitions such as faults.

Consider first a proposal distribution equal to the true mode sequence distri-
bution:

q(xd,1:T ) = p(xd,1:T ). (20)

In a JMLS with low-probability transitions such as faults, there is a high prob-
ability that no fault transitions will be sampled if this proposal is used.

Next consider a proposal equal to the pseudo-uniform distribution q(xd,1:T ) =
U(xd,1:T ), where U(·) assigns an equal probability to each mode sequence for
which p(xd,1:t) > 0. More precisely:

U(xd,1:T ) =

{
1/np p(xd,1:T ) > 0
0 p(xd,1:T ) = 0,

(21)

where np is the number of mode sequences for which p(xd,1:T ) > 0. Using this
proposal ensures that sequences involving faults are sampled with the same like-
lihood as the mode sequence without failures, which in reality has much higher
probability. This means that the control algorithm is more likely to take into
account the sequences involving faults in the control design. The drawback in
using this proposal is that there is a significant likelihood that the nominal mode
sequence is not sampled. If this occurs, the deterministic optimization will typi-
cally be infeasible, since achieving most control tasks requires nominal operation
of the system components with non-zero probability.

We therefore choose a proposal distribution q∗(xd,1:T ) that increases the prob-
ability of sampling failure sequences, while ensuring that the nominal mode se-
quence is sampled at least once with a probability λ:

q∗(xd,1:T ) =

{
Pnom xd,1:T = xnom

d,1:T
1−Pnom

np−1 xd,1:T 
= xnom
d,1:T

where Pnom = 1 − (1 − λ)1/N . (22)

The proposal distribution q∗(xd,1:T ) therefore ensures a minimum probability of
sampling the nominal mode sequence and shares the remaining probability space
evenly among the remaining mode sequences.1

In Section 7 we give an empirical analysis that shows that using this proposal
distribution the weighted particle control algorithm significantly outperforms
straightforward particle control for JMLS when there are low-probability tran-
sitions such as failures.

1 For simplicity of exposition, q∗(xd,1:T ) described here assumes a single nominal mode
sequence. The extension to multiple nominal mode sequences is straightforward.
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goal start

Fig. 2. Illustration of ground vehicle brake failure scenario. The expected vehicle po-
sition must arrive at the goal in the minimum possible time, while avoiding collision
with the wall.

7 Results

In order to illustrate the new particle control approach for JMLS we use a simple
ground vehicle braking example. In this example the system to be controlled is
a ground vehicle that can accelerate and brake along a one-dimensional track.
The brakes however, can be in one of two modes; mode 1 = ok and mode 2 =
faulty. In the ok mode, accelerations and decelerations can be applied to the
vehicle, however when the brakes are in the faulty mode, decelerations cannot
be applied. The continuous system state xc is comprised of the position along
the track y and the velocity ẏ. The continuous state evolves according to:

ẋc =
[
ẏ
ÿ

]
=

[
0 1
0 −bfric

] [
y
ẏ

]
+ B(xd,t)

[
upower

ubrake

]
+ νt, (23)

where the control inputs upower and ubrake are both constrained to be greater
than or equal to zero (in other words neither negative power nor negative brak-
ing can be applied). The term bfric represents a damping term due to friction.
Random disturbances νt act on the vehicle. The matrix B(xd,t) is defined as
follows:

B(xd,t) =

⎧⎨
⎩

[
1 −1

]
xd,t = ok[

1 0
]

xd,t = faulty.
(24)

The discrete state evolves according to the transition matrix:

T =
[
0.999 0.001
0.0 1.0

]
. (25)

We consider the problem where the car is initially at rest and must travel to the
goal and stop, as illustrated in Fig. 2. Task failure is defined as collision with
the wall.

Fig. 3 compares two typical solutions generated by the weighted particle con-
trol approach for a maximum probability of failure of 0.01 and 10−6 respectively.
The more conservative solution takes 9s, while the aggressive one takes only 6s.
We now demonstrate that the weighted particle control approach enables the
controller to take into account the low probability brake failures. Fig. 4 com-
pares two typical solutions generated with and without weighting respectively.
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Fig. 3. Two typical solutions with 100 particles. Left: Maximum probability of task
failure set to 0.01. The vehicle arrives at the goal within 6s, but will collide with the
wall if a brake failure occurs at or before 5s. This particular solution gives a true
probability of task failure of approximately 0.006. Right: Maximum probability of task
failure set to 10−6. The vehicle travels more slowly and arrives later than with the more
aggressive solution. In the case of brake failure, however, friction brings the vehicle to
rest before collision with the wall. This solution is therefore robust to brake failure,
giving a probability of task failure of approximately 1.0 × 10−6.
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Fig. 4. Typical solutions with and without weighting for δ = 10−6 and 100 particles.
The top row shows the particles used for planning, while the bottom row shows Monte-
Carlo simulations of the true state trajectory. Left: Without weighting, no particles
have sampled the brake failure so the controller plans aggressively. In reality, there is
a probability of approximately 0.0050 that a brake failure occurs at or before t = 5s,
causing the vehicle to collide with the wall. Right: With weighting, many particles have
sampled brake failures, hence the controller plans taking brake failures into account.
The controller is less aggressive, giving a collision probability of approximately 1.0 ×
10−6.
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Fig. 5. Left: True probability of failure against number of particles for weighted
method and unweighted method. The desired probability of failure was 10−6. The
weighted approach achieves a true probability of failure dramatically closer to the de-
sired value than the unweighted approach. With a very small particle set, the effect of
weighting is diminished since the probability of sampling the nominal sequence must
be high in order to satisfy constraints on the probability of a feasible solution. Right:
MILP solution time for weighted particle control with ground vehicle scenario using
ILOG CPLEX 9.0 on Intel Pentium 4 2.8GHz machine with 1GB RAM. The specified
maximum probability of task failure was 0.01.

In the unweighted case, the algorithm did not sample any of the failure transitions
and so has generated an inappropriately aggressive control policy that does not
take into account the possibility of brake failure. By increasing the probability of
sampling failure transitions, the weighted algorithm by contrast has taken into
account brake failure, generating an appropriately conservative plan.

Fig. 5 compares the weighted particle control approach against the unweighted
particle control approach in terms of the true probability of task failure. In
this example the desired probability of task failure was 10−6. The weighted
approach achieves a true probability of failure dramatically closer to the desired
value than the unweighted approach. Notice also that for larger particle sets the
unweighted case approaches the weighted one, except that the variance is much
greater in the unweighted case. This is because on the rare occasion that brake
failure transitions are sampled, the solution is very different from the average
case. This variance is particularly undesirable for control. Fig. 5 also shows the
solution time as a function of the number of weighted particles used.Solutions
were found in seconds even for relatively large particle sets.

8 Conclusion

In this paper we have presented a novel approach to optimal stochastic control for
Jump Markov Linear Systems that takes into account probabilistic uncertainty
due to disturbances, uncertain state estimation, modeling error and stochastic
mode transitions. The new weighted particle control method is robust in ensur-
ing that the probability of task failure is less than a defined threshold δ. By
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approximating the original stochastic problem as a deterministic one using a
number of importance-weighted particles, the approach is able to handle arbi-
trary probability distributions. Furthermore the approximation error tends to
zero as the number of particles tends to infinity. Importance weighting is used
in conjunction with sampling from a proposal distribution to make sure that the
method takes into account low probability events such as component failures.
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Abstract. This paper considers the class of hybrid linear second-order
oscillating systems, in which two parameters are free to be assigned in
a finite set of values. The control task is to decide, at any time instant,
the value of the parameters as a function of the system state vector, in
order to minimize a quadratic functional over an infinite horizon. The
problem lends itself to cope with a variety of important applications, in
diverse engineering fields. In the paper a numerical algorithm to compute
the optimal switching rule is presented. Then the algorithm is applied
to a simplified model of a vehicle suspension system with the aim of
minimizing the chassis acceleration (comfort-oriented control).

1 Introduction

Switched systems have received a great deal of attention in the last decades.
Roughly speaking, the design problem relies on the determination of a switching
rule σ(·) which selects, at each instant of time, the actual mode of the underlying
dynamical system, among M available ones. This paper considers the class of
the so-called switched linear systems. For this class the control problem has an
inherent feedback nature, as the control signal has to be determined from the
available measurements in order to improve some specified performance.

The stability analysis of continuous time switched linear systems has been
addressed by many authors, [1]- [5]. In reference [2] the interested reader can
find an thorough discussion on a collection of results on uniform stability of
switched systems. However, less attention has been devoted to the design of
stabilizing feedback control laws. The reader is referred to [6]-[9] for a rather
complete review on stability of continuous time switched linear systems, where
special attention is given to the case of switching between two linear systems.

On the other hand, the optimal control problem for switched systems has
been also investigated in the last years both from the theoretical and numerical
viewpoints. Most of the available literature studied necessary and/or sufficient
optimality conditions with the introduction of new versions of the maximum
principle, see e.g. [10], [11], [12], [13]. The problem was also investigated in

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 118–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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[14] for the case of two subsystems. In [15], the problem of optimal control of
autonomous switched systems was studied for a quadratic cost functional on
an infinite horizon and a fixed number of switches. In this setting, the optimal
control law can be computed by a discretization of the unitary semi-sphere.
In later works, the same procedure was extended to the case where an infinite
number of switches are allowed, [16], [17].

In this paper we approach the optimal control problem for 1-DOF (one degree
of freedom) oscillating systems with switching stiffness and damping parameters.
The method is based on the underlying Hamilton-Jacobi equation, [18]. The
Lyapunov function is determined by a discretization of the unit circle and a
thorough sensitivity analysis with respect to the parameter variation is worked
out. A realistic practical application of a switched linear system is included. The
problem consists in the design of a switching control strategy for semi-active
suspensions in road vehicles. This is an important problem in the automotive
field, as witnessed by numerous studies in the very recent literature, see e.g.
[19], [20]. The optimal method discussed in the present paper is applied to a
simplified model of a semiactive suspension system, obtained by assuming an
infinite tire stiffness. The results are then compared with those obtained by the
classical Sky-Hook approach introduced in [21]. The design methodology proves
its effectiveness in all realistic simulations, also for values of the stiffness of the
tire in the medium range.

The paper is organized as follows. In the next section the class of systems to
be considered is introduced and the optimal control problem is formulated. An
algorithm that provides the solution to this problem is discussed in Section 3.
In Section 4 the attention focuses on a oscillating system with a fixed stiffness
coefficient and a damping parameter assuming two different values. At the end
of the section the case of a switching stiffness parameter is also considered. In
Section 5 a simplified model of a suspension system is introduced and the optimal
switching strategy is worked out. The results are compared with those obtained
by the Sky-Hook approach and passive suspensions via extensive simulations.
Finally, Section 6 concludes the paper.

2 The Switching Oscillating System

Our analysis focuses on a second order system of the form

ÿ(t) = −αiẏ(t) − βjy(t) + w(t) (1)

where y(t) ∈ R, i ∈ Ωα = {1, 2, · · · , nα}, j ∈ Ωβ = {1, 2, · · · , nβ}, and the values
of αi and βj are known parameters. In mechanical systems αi can be interpreted
as the damping coefficient and βj as the stiffness coefficient. The input w(t) is a
scalar disturbance to be specified later.

The above model lends itself to describe a large variety of physical systems,
whose coefficients may be switched within a finite set in order to improve some
given performance. We say that the system is operating in the (i, j) mode when
the underlying parameters take the values (αi, βj). Let σ(t) ∈ Ωα ×Ωβ represent
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the switching signal. As σ(t) changes, the evolution of the system is switched
from one mode to another. Notice that the positiveness of αi and βj is a necessary
and sufficient condition for the stability of the single (i, j) mode. However, in
general, even if all modes are stable, there might exist a switching signal that
makes the resulting time-varying system unstable, [8].

Let us now introduce the performance variable (scalar or 2-dimensional vector)

z(t) = γjy(t) + δiẏ(t)

and the performance index

J =
∫ ∞

0
z(t)′z(t)dt (2)

The (vector) coefficients γj , j = 1, 2, · · · , nβ and δi, i = 1, 2, · · · , nα, may depend
on the switching signal σ(t) in order to weight differently the contribution of the
individual modes in the performance index.

Our aim is at finding a state-feedback strategy σ = u(y, ẏ) that minimizes
J when w(·) = 0 and the initial state (y(0), ẏ(0)) is given, albeit arbitrary.
Notice that this problem admits a solution whenever the switched system is
stabilizable, see [8]. This occurs for instance when a single (i, j) mode is stable.
The problem generalizes to switched system the classical linear quadratic optimal
control theory. It is interesting to stress that the solution to this problem also
provides the optimal switching strategy in the case when the initial state is zero
and w(t) is an impulsive signal. Indeed, the latter situation reduces to the former
by taking an initial state y(0) = 0 and ẏ(0) = 1. In addition the optimal strategy
minimizes the variance of z(t) when w(t) is a white noise process.

3 Computation of the Optimal Switching

The optimal control problem for the switched system can be solved by a suit-
able adaptation of the Hamilton-Jacobi equation, see e.g. [18]. To compact the
notation we are well advised to rewrite the system in state-space form

ẋ(t) = Aσ(t)x(t) +Bw(t) (3)
z(t) = Eσ(t)x(t) (4)

where

x =
[
y
ẏ

]
, Aσ =

[
0 1

−βj −αi

]
, B =

[
0
1

]
, Eσ =

[
γj δi

]
The solution to the optimal control problem exists if it is possible to compute a
continuous, piecewise differentiable and positive definite function V (y, ẏ) = V (x)
satisfying

0 = min
σ

(
∂V

∂x
Aσx+ x′E′σEσx

)
(5)



Optimal Switching of 1-DOF Oscillating Systems 121

The optimal switching rule is then given by

σ = u(y, ẏ) = u(x) = argmin
σ

(
∂V

∂x
Aσx+ x′E′σEσx

)
(6)

and V (x(0)) represents the optimal value of the performance index when x(0)
is the initial state. It is obvious that a sufficient condition for the existence of
the optimal solution is the existence of a stabilizing switching rule. For instance,
this condition is guaranteed when one of the modes is already stable or when
there exists a stable convex combination of the M = nαnβ modes, see e.g. [8].

The solution to equation (5) can be found through an iterative numerical
procedure. It is expedient to perform a change of coordinates from the phase
plane (y, ẏ) to the polar coordinates (ρ, θ). To this purpose we write

x =
[
ρcos(θ)
ρsin(θ)

]
, W (ρ, θ) = V (x),

∂V

∂x
=

[
∂W
∂ρ

∂W
∂θ

] [
cos(θ) sin(θ)

−ρ−1sin(θ) ρ−1cos(θ)

]

Notice now that the optimal switching rule is invariant with respect to a scaling
of the norm of x(0) and a change of sign. Consequently, for each real number
ε and each initial state x(0) ∈ R

2, we have V (εx(0)) = ε2V (x(0)). This reflects
in simple constraints for W (ρ, θ), namely W (ρ, θ) = ρ2W̄ (θ) and W̄ (θ − π) =
W̄ (θ). By using the polar coordinates and recalling the definitions of Aσ and
Eσ, equation (5) can be equivalently rewritten as

0 = min
σ
H(θ, σ) (7)

where

H(θ, σ) = 2sin(θ) ((1 − βj)cos(θ) − αisin(θ)) W̄ (8)

−
(
sin(θ)2 + βjcos(θ)2 + αisin(θ)cos(θ)

) dW̄
dθ

+ (γjcos(θ) + δisin(θ))′ (γjcos(θ) + δisin(θ))

As obvious, the role of ρ becomes immaterial and the only unknown is the
function W̄ (θ). This means that the switching surfaces are straight line in the
phase plane. Moreover, being H(θ + π, σ) = H(θ, σ), such surfaces turn out to
be symmetric with respect to the origin and the modes activation regions are
cones, as already known, see e.g. [16].

The problem is then to find a solution W̄ o(θ), θ ∈ [0, π), and the optimal
switching strategy σ as a function of θ, namely

σo = uo(θ) = arg min
σ
H(θ, σ) (9)

We have devised a simple discretization algorithm to work out the solution.
Precisely, consider a discretization of the upper unit semicircle θ = kΔθ, Δθ =
π
N , k = 0, 1, · · · , N − 1 and take the symmetric approximation of the derivative,
i.e.

dW̄

dθ
� W̄ (θ +Δθ) − W̄ (θ −Δθ)

2Δθ
, W̄ (−Δθ) = W̄ ((N−1)Δθ), W̄ (π) = W̄ (0)
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Now letting

s =

⎡
⎢⎢⎢⎢⎢⎣

σ(0)
σ(Δθ)
σ(2Δθ)

...
σ((N − 1)Δθ)

⎤
⎥⎥⎥⎥⎥⎦ , v =

⎡
⎢⎢⎢⎢⎢⎣

W̄ (0)
W̄ (Δθ)
W̄ (2Δθ)

...
W̄ ((N − 1)Δθ)

⎤
⎥⎥⎥⎥⎥⎦ , h(s) =

⎡
⎢⎢⎢⎢⎢⎣

H(0, σ(0))
H(Δθ, σ(Δθ))
H(2Δθ, σ(2Δθ))

...
H((N − 1)Δθ, σ(N − 1)Δθ)

⎤
⎥⎥⎥⎥⎥⎦

we can rewrite (8) as
h(s) = L(s)v +m(s) (10)

where the N2 square matrix L(s) and the vector m(s) can be easily deduced
from (8). Notice that L(s) is a tridiagonal matrix except for the first and last
rows. The algorithm starts with an initial vector v(0), for instance a vector with
identical positive entries, or the one obtained from the Lyapunov function of a
stable mode. Then, the core of the algorithm is based on equations (7), (9) and
(10). The main iteration step is to compute

s(i) =

⎡
⎢⎢⎢⎢⎢⎣

σ(i)(0)
σ(i)(Δθ)
σ(i)(2Δθ)

...
σ(i)((N − 1)Δθ)

⎤
⎥⎥⎥⎥⎥⎦

and v(i+1) in the following way

s(i) = arg min
s

(
L(s)v(i) +m(s)

)
v(i+1) = −L(s(i))−1m(s(i))η + (1 − η)v(i)

where the above minimization of the vector L(s)v(i)+m(s) is considered elemen-
twise and η ∈ (0, 1] is a parameter controlling the smoothness of the solution.
The algorithm ends when ‖v(i�+1) − v(i�)‖ is smaller than a given tolerance. The
entries of s(i�) yield the optimal control strategy in the θ grid points. Finally, the
optimal value of the performance index is Jo = ρ(0)2W̄ (θ(0)). This last value, in
the grid points, can be found by taking the appropriate entry of vector v(i�). The
convergence analysis of the algorithm as well as its computational complexity
are worth of further investigation. However, the algorithm was tested in many
examples and convergence was always observed when at least one mode was
stable.

4 A Special Case

This section is mainly devoted to discuss the special situation of equation (1)
when the stiffness parameter βj is fixed, i.e. Ωβ = {1}, β1 = β > 0, and the
damping parameter αi may switch between two values, i.e. Ωα = {1, 2}, α1 =
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αmin ≥ 0, α2 = αmax > αmin. For simplicity we set αmin = 0. We assume that
the performance index is the integral of ÿ(t)2, so that δi = αi and γj = β. In
mechanical systems this corresponds to minimizing the integral of the squared
acceleration. The case when also the parameter βj can switch is briefly discussed
at the end of the section.

The algorithm presented in the previous section has been run for different
values of β and αmax and N = 500. In all outcomes the optimal switching
surfaces have the shape drawn in Figure 1. As can be noticed, one commutation

Fig. 1. Shape of the switching surfaces

occurs when the velocity ẏ changes its sign, whereas the second commutation is
triggered by the crossing of a straight line with angle θ	(αmax, β). Therefore, the
optimal strategy suggests that a null damping coefficient is more effective when
y and ẏ have the same sign and the ratio ẏ/y is below a given threshold, namely
tan(θ	). Figure 2 shows the value (in degrees) of θ	(αmax, β) as a function of
αmax for different values of β. In order to illustrate the role of the switching rule,
in Figure 3 the phase portrait of the optimal switched system is plotted for the
particular choice αmax = 1, β = 1.

Finally, we have computed the performance index corresponding to the par-
ticular initial condition θ(0) = π/2 and ρ(0) = 1. In Figure 4 the optimal per-
formance index Jo is plotted against αmax for different values of β. The dashed
curves correspond to the L2 performance associated with the constant damping
coefficient αmax. It is apparent that the switched damping improves significantly
on the constant specially for high values of αmax.

The transient behavior of ÿ(t) is plotted in Figure 5 in the case αmax = 1.
The solid curve corresponds to the optimal switching (OS), while the dashed
curve is obtained with constant damping αmax. The advantage of commuting to
αmin = 0 at appropriate time-instants is apparent.
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Fig. 3. Phase portrait of the optimal switched system for αmax = 1 and β = 1

To enlighten the potentiality of the algorithm, we have considered the same
optimization problem by allowing, in addition, for a switching stiffness parame-
ter, namely Ωβ = {1 , 2}, β1 = βmin > 0, β2 = βmax > βmin. For the sake
of conciseness, we report the results only for the case αmax = 1, βmax = 1,
βmin = 0.5. In Figure 6 the resulting optimal switching surfaces are shown.
This more complicated switching rule obviously gives a better performance. For
instance, the performance index associated with θ(0) = π/2 and ρ(0) = 1 is
Jo = 0.664, that is lower than the corresponding points in Figure 4 (curves
β = 1 and β = 0.5).
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5 An Application

This section discusses a practical application of the optimal switching control
design presented before. Precisely, we consider the problem of comfort-oriented
control of a semi-active suspension system in road vehicles. Our aim is to compare
the achievable performance with the one provided by the classical switching rule
based on the so-called two-state Sky-Hook (SH) approach, [21]. The model is as
follows:

Mξ̈(t) = −c(t)(ξ̇(t) − ξ̇t(t)) − k(ξ(t) − ξt(t)) + kΔs −Mg
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Fig. 6. Optimal switching surfaces with both switching damping and switching stiffness

mξ̈t(t) = c(t)(ξ̇(t) − ξ̇t(t)) + k(ξ(t) − ξt(t))− kt(ξt(t) − ξr(t))− kΔs+ktΔt −mg

ċ(t) = −ηc(t) + ηcin(t)

where ξ(t), ξt(t) and ξr(t) are the vertical position of the body, the unsprung
mass and the road profile, respectively. The coefficientsM andm are the quarter-
car body mass and the unsprung mass (tire, wheel, brake, etc...), respectively.
The parameters η, k and kt are the bandwidth of the active shock absorber, the
stiffness of the suspension spring and of the tire, respectively. The coefficients
Δs and Δt are the length of the unloaded suspension spring and of the tire.
Finally, c(t) and cin(t) are the actual and requested damping coefficients of the
passive shock-absorber. In order to simplify the computations we assume that η
is large enough so that c(t) ∼ cin(t). Moreover we consider a genuine switching
strategy, so that c(t) = ci can assume only two values, namely c1 = cmin ≥ 0
and c2 = cmax > c1, to be specified later on.

The control objective consists in minimizing the chassis vertical acceleration
ξ̈(t) by a suitable choice of the control variable c(t) ∈ {cmin, cmax}. In the
classical two-state SH approach [21], the system is switched according to the
sign of ξ̇(t)(ξ̇(t) − ξ̇t(t)). In order to fit this example in the framework of the
present paper, let us take the variations δξ(t) and δξt(t) of ξ(t) and ξt(t) around
an equilibrium point associated with zero road profile, arriving to the system

Mδ̈ξ(t) = −ci(δ̇ξ(t) − δ̇ξt(t)) − k(δξ(t) − δξt(t)) (11)
mδ̈ξt(t) = ci(δ̇ξ(t) − δ̇ξt(t)) + k(δξ(t) − δξt(t)) − kt(δξt(t) − ξr(t)) (12)

Notice that this is a 2-DOF system. In order to apply the optimal switching
control design previously discussed, we make the (realistic) assumption that kt

is sufficiently high so that the displacement of the tire can be approximated by
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the road profile, i.e. δξt(t) � ξr(t). Consequently, letting y(t) = δξ(t)− ξr(t), the
approximated model can be written as

ÿ(t) = − ci
M
ẏ(t) − k

M
y(t) + ξ̈r(t)

Thus, we have recovered equation (1) with αi = ci/M , βj = β = k/M and
w(t) = ξ̈r(t). Moreover, to improve comfort, it is advisable to minimize the
integral of ÿ(t)2. The situation is exactly the one discussed in Section 4, and,
consequently, the optimal switching surfaces are those qualitatively depicted in
Figure 1. The following parameters have been selected, see [19]: M = 400kg,m =
50kg, k = 2.0 × 104N/m, kt = 2.5 × 105N/m, c1 = cmin = 3.0 × 102Ns/m and
c2 = cmax = 3.9 × 103Ns/m. The optimal switching angle has been computed
on the basis of αmax and β through the numerical algorithm of Section 3 with
N = 500 grid points. It turns out θ	 = 86.6o.

Two sets of simulations have been carried out, by applying both the Sky-Hook
(SH) and the optimal switching (OS) control laws to the 2-DOF system (11),
(12). The first set of simulations refers to the response to a unit impulse on the

Table 1. Performance of the different control strategies under an impulsive or a white
noise disturbance

OS SH PS1 PS2

� ∞
0 ÿ(t)2dt for ξ̈r = δ(t) 7.446 8.288 26.548 8.307

� 20
0 ÿ(t)2dt

� 20
0 ξ̈r(t)2dt

for ξ̈r ∼ WN 0.623 0.787 3.558 0.719
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road acceleration w(t), namely a ramp on the road profile. The first row of Table
1 reports the integral of the squared chassis acceleration obtained with different
control strategies. The notation PS1 and PS2 refers to a passive suspension with
fixed damping coefficient equal to cmin and cmax, respectively. As apparent from
Table 1, the algorithm OS outperforms all other strategies.

Figure 7 shows the integral of the square of the chassis acceleration against
time. It can be seen that OS is capable of lowering the acceleration in the tran-
sient better than SH, even if its design is based on a simplified 1-DOF model.

In the second set of simulations the road profile ξr(t) has been generated as
the double integral of a sample realization of a white noise process with power
χ2 = 0.1. The performance of the four algorithms above has been measured as
the power attenuation on the chassis acceleration, namely the ratio



Optimal Switching of 1-DOF Oscillating Systems 129

ΘT =

∫ T

0 ÿ(t)2dt∫ T

0 ξ̈r(t)2dt

This value, for T = 20 sec., is reported in the second row of Table 1. Figure 8
shows the behavior of the acceleration. The plot has been restricted to an interval
of 2 seconds, in order to better represent the effects of the commutations. The
OS strategy outperforms SH at the price of faster switching commutation and
shorter dwell intervals.

Finally the power attenuation ΘT as a function of T is plotted in Figure 9.

6 Conclusion

In this paper we have developed an optimal switching control law for 1-DOF os-
cillating systems. For such systems, two parameters can be assigned in finite sets
of values in order to minimize a quadratic cost. The special case of 2 different
values is thoroughly discussed and the practical application of comfort-oriented
control of a suspension system has been also presented. In the authors’ feeling,
the methodology developed in this work can be successfully applied to diverse
engineering problems where a quadratic objective has to be minimized. In par-
ticular further studies will be carried out for the control of suspension systems
where, in addition to the damping coefficient, also the stiffness coefficient can
assume different values depending on the measurements (reactive control).
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Abstract. The problem analysed in this paper is how to effectively share
a pool of resources amongst software applications consisting of pipelines
of communicating tasks. The goal is to guarantee that specified Quality
of Service (QoS) requirements are met. To this end, we advocate the
use of a scheduling mechanism able to reserve fraction of the different
resources to the competing tasks. Our work is focused on a feedback
controlled adaptation of these fractions based on measurements of the
QoS experienced by the application.

1 Introduction

In this paper, we consider embedded software applications consisting of multi-
ple tasks, which run on different and networked computing nodes. Significant
examples include (but are not limited to) MPEG streaming, video-surveillance
and Voice-over-IP. The particular problem we deal with is how to effectively
share resources without compromising the real-time behaviour of the applica-
tions. In fact, while resource sharing is a cost effective and flexible solution
enabled by modern operating systems and middleware infrastructures, it also
introduces non-deterministic scheduling delays affecting the Quality of Service
of the application.

In the past few years, researchers have been confronted with the problem of
constructing a real-time software infrastructure matching the temporal guaran-
tees of a dedicated solution with the efficiency of resource sharing. A large body
of results stemming from this activity has focused on predictable scheduling
mechanisms [1,2,3,4]. The idea is to reserve a certain fraction of the resources to
the competing tasks guaranteeing that this allocation will be respected in time
(within a specified granularity). In the Resource Kernels project [3], the resource
reservation approach has been successfully applied to different types of resources
(including disk and network).

More recently, this technique has been complemented with adaptive mecha-
nisms able to dynamically track the resource requirements of each task: the idea
of feedback scheduling. In this framework, the parameters of the schedulers are
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used as “actuators” to adjust the QoS measured by appropriate sensors within ac-
ceptable bounds. In particular, Stankovic et al. [5] propose a similar mechanism
using the deadline of an EDF scheduler as an actuation mechanism. In [6,7,8],
the use of a better suited scheduler enables the design of the feedback law based
on a precise dynamic model of the “plant” to be controlled, thus making for a
better founded application of control theory to this problem.

The results cited above do not offer a general solution to the problem of
QoS management, since do not support real-time applications using multiple
resources. In general, the need for different types of resources may generate
undesired effects of unexpected harshness, unless the interaction of different al-
location mechanisms is adequately accounted for. In particular, Rajikumar et al.
[9] developed a framework (called QRAM) that decides the fraction of different
resources to be allocated to the applications by solving an optimisation (NP-
hard) problem. However, the resulting allocation is static and it does not allow
the scheduler to accommodate applications with dynamically varying or scarcely
known resource requirements. What we need is an appropriate combination of
feedback control and multiple resource management.

This paper offers a first contribution in this direction. We consider applica-
tions consisting of pipelines of tasks which communicate by means of interme-
diate buffers, where tasks use resources of different type. For each resource, we
use a reservation-based scheduler [3] that allows one to reserve a specified frac-
tion (bandwidth) of the resource to each task using it. This technique allows to
define a dynamic model that describes the temporal evolution of the system. In
particular, we introduce a performance metric (called scheduling error) that is a
good indicator for both the QoS offered by the application and its efficiency in
utilising resources. These issues are discussed in Section 2. Based on this model,
we define a control strategy that dynamically changes the bandwidth of each
task. This technique is called adaptive reservations and has been proposed in
previous work for a single resource [10,6]. The central contribution of this paper
is to extend it to pipeline of tasks. To this end, we use a decentralised control al-
gorithm, in which each stage of the pipeline is associated to a local task controller
while a global supervisor enforces consistency on the total allocated bandwidth
for each resource. Each task controller is based on a combination of a predictor
and of a controller that counters the fluctuations of the resource requirements.
Contrary to previous work on the control of pipelined applications [11], we can
prove practical stability of our algorithm, based on the dynamic model of the
plant. The control design is shown in Section 3. Finally in Section 4, we show
simulations proving the effectiveness of the approach (an implementation of the
technique in the Linux kernel is under way).

2 Task Model and Scheduling

We consider a set of applications A(1), . . . , A(L) sharing a pool of resources R =
{R1, . . . , RR}. Resources can be of potentially different kind (e.g., CPU, disks,
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network links etc). An application A(i) consists of a pipeline of n(i) tasks A(i) =
(τ (i)[1], . . . , τ (i)[n(i)]), which are pairwise connected by uni-directional buffers. For
notational convenience, we will henceforth omit the (i) superscript whenever the
discussion refers to a single application. Each resource is allocated by a scheduler
that operates using scheduling parameters decided for the different tasks.

2.1 The Task Model

Consider an application A associated to a pipeline τ [1], . . . , τ [n]. Task τ [1] ac-
quires its input from a data source, which produces data blocks (tokens) at a
regular rate. Tokens are processed in sequence by each task in the pipeline and
arrive to τ [n] which sends the result to an output device (e.g. a screen if we are
dealing with a video stream). The first task in the pipeline is periodically acti-
vated at the production period T of the data source (time-triggered activation).
The remaining tasks of the pipeline are activated as soon as a new element is
pushed into the input buffer by the task in the previous stage of the pipeline
(event-triggered activation).

When task τ [j] receives the kth token, it instantiates a job J
[j]
k , which cannot

start before the termination of J
[j]
k−1 (e.g. the decoding of a frame in a MPEG

stream cannot start if the previous frame is still being decoded). The job con-
sumes one input token and produces one output token, which is placed on the
output buffer. When a job is terminated, in absence of a new token to process,
the task is blocked on a read operation. On the contrary, write operations are
assumed to be non-blocking. As discussed next, our adaptive scheduling solution
allows us to respect this semantic with a finite number of buffers. We denote by
s
[j]
k the start time of J

[j]
k and by f

[j]
k its finishing time.

As a simplifying assumption, we require that each task τ (i)[j] uses only one
resource, denoted by r(i)[j]. The resource requirement of the kth job of task
τ [j] is denoted by c

[j]
k . Since we are interested in real-time applications, job

J
(i)[j]
k is associated a deadline d

(i)[j]
k , which is a soft execution constraint, i.e.,

occasional failures are tolerated provided that the problem be kept in check.
Since the activation pattern of the pipeline is periodic, it is reasonable to consider
periodically spaced out deadlines: d

[j]
k+1 = d

[j]
k + T. Concerning the initial values

of the absolute deadlines
{

d
[j]
1

}
, we set d

[j]
1 = d

[j−1]
1 + T, resulting into d

[j]
k �

(k + j − 1)T.

Example. Figure 1 shows an example of the activation pattern of the jobs. The
bottom line reports the execution of the first task in the pipeline, whose job
activations are periodically activated. For the second task in the pipeline (top
line), the job J

[2]
k cannot start until job J

[1]
k finishes and produces the kth token.

On the contrary, J
[2]
k+1 starts right after J

[2]
k finishes because J

[1]
k+1 has already

terminated by that time and the (k + 1)th token is already available.
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Fig. 1. Example showing the activation pattern of the jobs and the notation

2.2 The Scheduler

The scheduler plays the role of a “plant” to be controlled. Therefore, we need
an algorithm exposing sensors and actuators. Moreover, a sound design for a
feedback scheduler has to be founded upon a realistic dynamic model relating
the QoS evolution to the control choices.

To attain these goals, we restricted our choice to scheduling algorithms that
closely approximate a fluid allocation of the resource (see [12]). In simple terms,
it means that each task τ (i)[j] executes as if using a dedicated resource whose
speed is a fraction (which we call bandwidth) of the actual resource r[j].

Actuators. In our framework, the bandwidth b
(i)[j]
k can be set for each job of

τ (i)[j]. Therefore, it can be used as an actuator to control the evolution of the
QoS. However, the sum of the bandwidths reserved for a resource Rr must never
exceed its total capacity Cr:

∀r ∈ R, ∀t
∑

i,j,k : r(i)[j]=r∧ s
(i)[j]
k ≤t<f

(i)[j]
k

b
(i)[j]
k ≤ Cr, (1)

Sensors. We introduce the scheduling error ε
(i)[j]
k � f

(i)[j]
k −d

(i)[j]
k as a metric to

quantify the violation of a deadline, which is measured by appropriate sensors
inside the operating system. This quantity is a good indicator for both the QoS
experienced by the task and its efficiency in utilising resources. Indeed, if task
τ (i)[i] produces an output to the end-users, a large positive scheduling error
corresponds to an increased latency for the output of the output. In a real-time
application, this degradation has to be coped with by by either dropping tokens
or increasing the size of the buffers (which is an expensive). On the other hand,
a negative value for the scheduling error is associated to an excessive allocation
of the resource, as the job would have completed on-time with a smaller resource
allocation as well. Therefore, it is required that the value of the scheduling error
be kept as near as possible to zero.

Dynamic model. The evolution of the pipeline can be described by a dis-
crete event model. Consider the kth token produced by the data source, which
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Fig. 2. The control Scheme adopted in this paper. We zoom in one task controller to
show its internal structure.

determines the subsequent activations of the kth jobs for all the tasks in the
application pipeline J

[1]
k , . . . , J

[n]
k . The state of the pipeline can be described by

a vector of state variables εk, where each component is the scheduling error ε
[i]
k

that the ith element of the pipeline experiences when it processes the token.
Due to lack of space, in this context we omit a technical discussion on the

derivation of the dynamic model (see [13] for details). For our purposes it is
sufficient to say that the evolution of ε

[i]
k is given by:

ε
[j]
k = σ

[j]
k +

c
[j]
k

b
[j]
k

− T, with σ
[j]
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
{
ε
[j−1]
k , ε

[j]
k−1

}
j ≥ 2, k ≥ 2

ε
[j−1]
k j ≥ 2, k = 1

max
{
ε
[j−1]
k , 0

}
j = 1, k ≥ 2

0 j = 1, k = 1

, (2)

where, for notational convenience, the symbol σ
[j]
k = s

[j]
k − d

[j]
k−1 has been intro-

duced to denote the start time of J
[j]
k relative to the “ideal” value d

[j]
k−1.

3 Control Design

The system described in this paper is comprised of different software applica-
tions that evolve independently and asynchronously from each other. Moreover,
referring to a single application, the different components of its state vectors are
asynchronously collected at different times (in the state vector εk, index k refers
to a token and not to a time instant). These considerations dictate a decen-
tralised control scheme, as shown in Figure 2, in which each resource controller
consists of a supervisor and of a collection of task controllers.

There is a strong separation of concerns between the task controllers and the
supervisor. Roughly speaking, the role of task controllers is to track the resource
requirements of each task to maintain or recover an equilibrium condition where
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the QoS level is regarded as acceptable. On the contrary, the role of the supervisor
is to ensure that consistency Condition (1) is never violated. To this end, the
supervisor is allowed to change the working conditions of the task controllers
(i.e. the QoS level of the task) to lower their bandwidth requests. An important
remark regarding both the task controllers and the supervisor is that, since the
entire machinery is activated at every scheduling decision, the control algorithms
are bound to take a few dozens of numeric operations.

Control decisions are taken at the start time of a new job J
[j]
k according to

the following scheme: 1) the task controller acquires information about the state
of the task (in particular σ

[j]
k and the computation time of the previous job

c
[j]
k−1); 2) it computes the new bandwidth b

[j]
k to be used for J

[j]
k and submits

the request to the supervisor; 3) the supervisor grants the request if it does not
violate Condition (1), otherwise it changes the working mode of some of the task
controllers to reduce the cumulative required bandwidth. For the sake of brevity,
in this paper we will restrict the focus only to the design of the task controllers
and discuss their properties. For what concerns the supervisor, we will simply
offer some insight into how a controlled QoS degradation (leading to diminished
bandwidth requirements) can actually be obtained. For a complete description
of the supervisor the reader is referred [13].

3.1 Task Controllers

A task controller operates on a single task τ [j] of the application A, but the co-
ordinated action of the different task controllers for A aims at attaining stability
properties for the entire application. To this regard, a perfect allocation could
be one where the each task experiences a null scheduling error and it receives, at

each step, a bandwidth equal to b
[j]
k = c

[j]
k

T . This goal is not attainable, since it
would entail predictive knowledge of c

[j]
k . A more realistic situation is one where

the task controller uses a predictor able to produce, at the beginning of each
job, a range P

[j]
k = [h[j]

k , H
[j]
k ] such that c

[j]
k ∈ P

[j]
k (see Figure 2). The design

of the predictor is largely application dependent (see [6,14]) and is out of the
scope of the present paper. Because of the resource constraints, it is important
to quantify a saturation level for the control laws, which is associated to the
maximum bandwidth reserved to the tasks.

Considering this control scheme, a natural notion of practical stability is the
following (see [15]):

Definition 1. Consider the system defined by Equation (2) and let H, G be two
sets such that H ⊆ G ⊆ R

n. Let εk � [ε[1]
k . . . ε

[n]
k ] and Pk � P

[1]
k × · · · × P

[n]
k .

The system is said (H, G)-stabilisable in M steps iff there exists a control such
that:

1. H is a Robust Controlled Invariant Set (RCIS): ∀k0 : εk0 ∈ H∧ck ∈ Pk∀k >
k0 implies εk ∈ H ∀k > k0;

2. H is robustly attractive from G in M steps: ∀k0 : εk0 ∈ G ∧ ck ∈ Pk∀k ∈
[k0, . . . k0 + M ] implies εk ∈ G ∀k ∈ [k0 + 1, . . . k0 + M ] ∧ εk0+M ∈ H.
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The first property in the definition above refers to the equilibrium condition: we
require that the state evolves in a small set countering the possible fluctuations
of c

[j]
k within P

[j]
k . As far as the geometry of the H set is concerned, we are

interested in a hypercube where the state of each task is constrained in the
interval I = [−e, E] with e, E ∈ R

+, thus H = In = I × . . . × I. E quantifies
the maximum delay a task can suffer, e quantifies the efficiency in utilising
resources. Moreover, it can be shown [13] that the number of buffer elements
required for intertask communications between two stages of the pipeline can be
bounded by

⌊
e+E

T

⌋
+1; therefore, with this number of elements, it never happens

that a task finds a full buffer in its write operation.
The second property in Definition 1 relates to the evolution of the state when it

is initially outside of In . This situation occurs as a result of a perturbation such
as a temporary system overload which prevents the task controller to use all the
bandwidth it needs. After a perturbation of the equilibrium has terminated, k0 is
the first job entering the first task of the pipeline. Generally, the scheduling errors
experienced by the task instances k0−1 on all the pipeline stages

{
J

[j]
k0−1

}
j=1,2,...

deviate from I = [−e, E] and are in the set J =[−e, L], with e, L ∈ R
+ and

L ≥ E. In this case, L quantifies the maximum delay that tasks in the pipeline
will suffer. The definition requires that we are able to reduce the state from
G = J n to H = In in at most M steps. The requirements of a fixed number of
steps (as opposed to an asymptotic definition) makes the property of practical
interest for system design.

In the sequel, we will separately look at control schemes that attain Robustly
Controlled Invariance and Robust attractivity.

Maintaining the equilibrium. The following offers necessary and sufficient
conditions for the existence of a RCIS, and describes a family of control laws
attaining it.

Theorem 1. A control law attaining robust controlled invariance of INwith
I =[−e, E] exists iff the following conditions hold

H̃ ≤ T ∧
{

e + α[1]E ≥ T
(
1 − α[1]

)
e + E ≥ T

( 1−α
α

)
,

(3)

where H̃ � maxj

{
supk{H[j]

k }
B[j]

}
, α[1] � infk

{
α

[1]
k

}
, α � minj≥2

{
infk

{
α

[j]
k

}}
,

with α
[j]
k � h

[j]
k

H
[j]
k

. Furthermore, the control laws meeting the goal requirements

have to be chosen in the range b
[j]
k ∈ [B[j]

L (σ[j]
k ), B[j]

H (σ[j]
k )], where:

B[j]
L (σ) = H

[j]
k

T+E−σ
[j]
k

, B[j]
H (σ) = min

{
h

[j]
k

T − e − σ
[j]
k

, B[j]

}
(4)

Proof. See Appendix.
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Fig. 3. (A) Family of control laws ensuring controlled invariance; (B) Family of control
laws used to restore the equilibrium

The following remarks are very useful in the design of the supervisor.

Remark 1. Condition (4) identifies a family of controllers attaining the control
goal (See Figure 3.(A)). The choice of one element of this family depends on the
different trade-offs sought in the application. For instance, the lower bound B[j]

L

is clearly the most conservative in terms of used bandwidth. On the contrary,
picking a control value closer to the upper bound B[j]

H is the most robust choice
for the QoS against possible un-modelled effects. Moreover, it is easy to show that
robust controlled invariance of I is preserved if we change the value of the band-
width during the job, as long as its value always belongs to the [B[j]

L (σ), B[j]
H (σ)]

range. Therefore, the supervisor is allowed to change the bandwidth allocated
to the task up to B[j]

L without compromising the invariance of IN .
It is possible for a task to specify different values for the upper-bound E of

the RCIS, which correspond to different QoS levels. In a normal situation, the
task aims at the maximum QoS level, but it can switch to a degraded QoS (i.e.,
a larger value of E) if an overload occurs. Indeed, by doing so, its minimum
bandwidth requirement B[j]

L (σ) decreases. This type of degradation is another
degree of freedom exposed to the supervisor to manage overload situations.

Restoring the equilibrium. A control law that attains (J n,In)−attractivity
in M steps can be built using, for each task controller j, two saturation levels
B′[j] and B[j] with B′[j] > B[j]. B′[j]is used to recover the equilibrium and B[j] to

maintain it. Let F
[j]
k be a number such that H

[j]
k

T+E−F
[j]
k

= B′[j]. A control strategy

is built as follows:

b
[j]
k = B′[j] ifσ[j]

k ≥ F
[j]
k ,

b
[j]
k ∈ [B[j]

L (σ), min B′[j], h
[j]
k

T−e−σ
[j]
k

], if E ≤ σ
[j]
k ≤ F

[j]
k ,

b
[j]
k ∈ [B[j]

L (σ[i]
k ), B[j]

H (σ[i]
k )], if − e ≤ σ

[j]
k ≤ E.

(5)

The rational is very simple. When we are far off from the target equilibrium,
we use the maximum available bandwidth B′ to quickly reduce the scheduling
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Table 1. Experimental probability for a scheduling error in the target RCIS

Predictor E[α[1]
k

] Pr{ε
[1]
k

∈ I} E[b[1]
k

]

Fix. 0.15/0.70 - 15.71% =

Fix. 0.17/0.75 - 23.41% =

MMA[3,3] 0.767 72.42% 16.9%

MMA[12,3] 0.796 86.31% 15.4%

Predictor E[α[2]
k

] Pr{ε
[2]
k

∈ I} E[b[2]
k

]

Fix. 0.15/0.70 - 25.34% =

Fix. 0.17/0.75 - 57.22% =

MMA[3,3] 0.900 89.78% 73.7%

MMA[12,3] 0.916 89.31% 73.5%

error. Then we reach a zone (σk ∈ [E, F ]) where we can reach the equilibrium
in one step. Finally, when we are inside the target we can switch to the control
laws that allow us to maintain the equilibrium (which requires a lower saturation
value). The family of control laws constructed in this way are those in the striped
area delimited by the tick lines in Figure 3.(B). The effectiveness of this control
policy is shown in the next Theorem.

Theorem 2. Under the assumption of Theorem 1, the family of control laws in
Equation (5) attains (J n, In)−attractivity (with J = [−e, L] and I = [−e, E])
in M + 1 steps for the system in Equation (2) if Ĥ ≤ T+E−L+MT

M+1 , where Ĥ =

maxj

{
supk>k0

{H[j]
k }

B′[j]

}
≤ H̃.

Proof. See Appendix.

Remark 2. As one would expect, the saturation level required for attractivity
is higher than the one required for mere controlled invariance. Indeed, the two
values coincide if M → ∞.

4 Experimental Results

We applied the control techniques shown so far to an MPEG-2 decoder, whose
behaviour has been simulated by using execution traces measured from a real
application running on Linux. The application consists of a pipeline of two tasks.
The first task loads the frames from the disk; therefore its resource requirements
are proportional to the frame size. The second task decodes the buffered frames;
the resource requirements are given, in this case, by the decoding times measured
from the real application.

We ran the simulations experiment considering different scenarios. In the first
scenario, we used a fixed bandwidth allocation, in which the bandwidth chosen
for the two stages were slightly above the mean value of the resource require-
ments. In the second scenario, we considered a fixed allocation with a greater
bandwidth value for the two stages. In the third and in the fourth scenario, we
used our control scheme with different predictors, based on multiple moving av-
erages (MMA(3,3), and MMA(12,3), meaning respectively 3 and 12 independent
averages of 3 samples). The use of these predictors is motivated by the periodic
coding scheme used for the considered MPEG2 stream [6]. The mean time re-
quired to decode the frame was μc[2] = 26.85ms. The mean time required to load
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Fig. 4. Segments of execution traces. (a) Resource requirements, (b) Evolution of the
scheduling error in the case of fixed bandwidth (0.17/0.75). (c) Evolution in case of
feedback control with MA[12,3] predictor.

a frame for the disk and its standard deviation were respectively μc[1] = 4.941ms.
For both tasks we specified a desired RCIS [−e, E] = [−16ms, 16ms]. The appli-
cation has a period of T = 40ms (corresponding to 25 frames-per-second stream).

Figure 4.(a) shows the temporal evolution of the resource requirements in the
two stages for 800 frames (as a percentage of the task period). In this segment, the
c
[2]
k value is often above the average. Moreover, c

[1]
k displays several peaks above

the average. As a result, if we look at the scheduling error for fixed bandwidth
(Figure 4.(b)), we can experience large delays on the second stage (which suffers
for both the peaks of c

[1]
k and of c

[2]
k ). The feedback scheme, although based on a

predictor that occasionally fails, is able to compensate this effect. If we want to
evaluate the system performance on the entire stream, it is useful to compute
the experimental probability of having a scheduling error inside the target RCIS.
This information is reported in Table 1, where the first column reports the mean

value of the α
[i]
k parameter (i.e. mean

h
[i]
k

H
[i]
k

) produced by the predictors for the

two stages. This is related to the quality of the prediction and to the variability
of the trace (a lower value corresponds to a higher variability). The last column
reports the average bandwidth allocated by the controllers. The improvement
achieved by using feedback control is evident. The last column of the table also
highlights that the average bandwidth allocated by the controller is very close
to the average value of the computation requirements.

5 Conclusions and Future Work

In this paper, we have shown the application of a feedback controller to the prob-
lem of dynamical allocation of resources to a time-sensitive application consisting
of a pipeline of tasks. The use of a scheduling mechanism that approximates a
fluid partitioning of the resources enables the definition of precise dynamic model
for the system, which can be used in the design of a the feedback controller pro-
viding guarantees on its closed loop performance. Most of the future work will be
concentrated in evaluating different strategies for the supervisor and on the ap-
plication of stochastic control techniques to the design of the feedback scheduler.



Feedback Scheduling for Pipelines of Tasks 141

References

1. Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S.K., Gehrke, J.E., Plaxton, C.G.:
A proportional share resource allocation algorithm for real-time, time-shared sys-
tems. In: Proceedings of the IEEE Real-Time Systems Symposium. (1996)

2. Mercer, C.W., Rajkumar, R., Tokuda, H.: Applying hard real-time technology
to multimedia systems. In: Workshop on the Role of Real-Time in Multime-
dia/Interactive Computing System. (1993)

3. Rajkumar, R., Juvva, K., Molano, A., Oikawa, S.: Resource kernels: A resource-
centric approach to real-time and multimedia systems. In: Proceedings of the
SPIE/ACM Conference on Multimedia Computing and Networking. (1998)

4. Abeni, L., Buttazzo, G.: Integrating multimedia applications in hard real-time
systems. In: Proceedings of the IEEE Real-Time Systems Symposium, Madrid,
Spain (1998)

5. C. Lu, J. Stankovic, G.T., Son, S.: Feedback control real-time scheduling: Frame-
work, modeling and algorithms. Ppecial issue of RT Systems Journal on Control-
Theoretic Approaches to Real-Time Computing 23(1/2) (2002)

6. Abeni, L., Cucinotta, T., Lipari, G., Marzario, L., Palopoli, L.: Adaptive reserva-
tions in a linux based environment. In: Proceeding of the Real-Time Application
Symposium (RTAS 04), Toronto (Canada), IEEE (2004)

7. Goel, A., Walpole, J., Shor, M.: Real-rate scheduling. In: Proc.of rtas04. (2004)
434

8. Eide, E., Stack, T., Regehr, J., Lepreau, J.: Dynamic cpu management for real-
time, middleware-based systems. In: Proc. of 10th IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada (2004)

9. Rajkumar, R., Lee, C., Lehoczky, J.P., Siewiorek, D.P.: Practical solutions for
QoS-based resource allocation. In: RTSS. (1998) 296–306

10. Palopoli, L., Cucinotta, T., Bicchi, A.: Quality of service control in soft real-
time applications. In: Proc. of the IEEE 2003 conference on decision and control
(CDC02), Maui, Hawai, USA (2003)

11. Steere, D., Shor, M.H., Goel, A., Walpole, J., P, C.: Control and modeling is-
sues in computer operating systems: Resource management for real-rate computer
applications. In: Proceedings of 39th IEEE Conference on Decision and Control
(CDC00). (2000)

12. Abeni, L., Palopoli, L., Lipari, G., Walpole, J.: Analysis of a reservation-based
feedback scheduler. In: Proc. of the Real-Time Systems Symposium, Austin, Texas
(2002)

13. Luigi Palopoli, T.C.: Feeback scheduling for pipelines of tasks. Technical report,
Uiversity of Trento (2006)

14. Calafiore, G., Camp, M.: Interval predictors for unknown dynamical systems: an
assessment of reliability. In: 41st IEEE Conference on Decision and Control (cdc02),
2002 (2002)

15. Blanchini, F.: Set invariance in control. Automatica (1999)

A Proofs of the Stability Theorems

Robust controlled invariance. In order to show Theorem 1, we need some
preliminary Lemmas.
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Lemma 1. Consider the job J
[j]
k of task τ [j] with j ≥ 2. A control law exists

guaranteeing that ε
[j]
k ∈ I, ∀σ

[j]
k ∈ I, ∀c

[j]
k ∈ [h[j]

k , H
[j]
k ] if and only if H

[j]
k

T ≤

B[j] ∧ e + E ≥ T

(
1−α

[j]
k

α
[j]
k

)
. Moreover, the bandwidth guaranteeing such property

has to be chosen in the range identified by Equation (4).

Proof. For the sake of brevity, the proof is given only for the case e + E < T .
Consider job J

[j]
k , with k ≥2, of τ [j], with j ≥ 2. Under the stated hypotheses

σ
[j]
k ∈ [−e, E], in view of Equation (2), we can have ε

[j]
k ∈ [−e, E] iff T −e−σ

[j]
k ≤

c
[j]
k

b
[j]
k

≤ T + E − σ
[j]
k . Since e + E < T, it is possible to re-write the condition as:

c
[j]
k

T+E−σ
[j]
k

≤ b
[j]
k ≤ c

[j]
k

T−e−σ
[j]
k

. As c
[j]
k is not known, and it may take any value in the

range [h[j]
k , H

[j]
k ], the only possibility for the controller not to violate last equation

is the choice of a bandwidth value belonging to the intersection of all the ranges

corresponding to any possible value of c
[j]
k , i.e. H

[j]
k

T+E−σ
[j]
k

≤ b
[j]
k ≤ h

[j]
k

T−e−σ
[j]
k

. Such

a choice exists if and only if e+α
[j]
k E ≥ (1−α

[j]
k )(T −σ

[j]
k ). The latter condition

must hold for any possible value of the start time σ
[j]
k ∈ [−e, E], leading to

e + E ≥ T

(
1−α

[j]
k

α
[j]
k

)
. Furthermore, the chosen control value must be legal, i.e.

b
[j]
k ≤ B[j]. This is possible if and only if H

[j]
k

T+E−σ
[j]
k

≤ B[j]. This must hold for

each possible value of σ
[i]
k ≤ E, which leads to the existence condition for the

controller: H
[j]
k

B[j] ≤ T.

With simular arguments, we can prove the following for the first stage.

Lemma 2. Consider job J
[1]
k of task τ

[1]
k with k ≥ 2. A control law exists guar-

anteeing that ε
[1]
k ∈ I, ∀σ

[j]
k ∈ [0, E], ∀c

[1]
k ∈ [h[1]

k , H
[1]
k ], if and only if H

[1]
k

T ≤ B[1]

and e + α
[1]
k E ≥ T

(
1 − α

[1]
k

)
.

Proof. (of Theorem 1). First we focus on sufficiency of the theorem condition,
which may be proved by proving the following statement S(k) inductively on
k > k0 :⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maxk∈]k0,k] maxj

{
H

[j]
k

B[j]

}
≤ T

e + α
[1]
k E ≥ T

(
1 − α

[1]
k

)
e + E ≥ T

(
1−αk0

αk0

)
j ≥ 2

implies

{
εk0 ∈ H
ch ∈ Ph∀h ∈]k0, k]

=⇒ εk+1 ∈ H.

Pick a value for k0 and consider the base inductive case k = k0. Assume εk0 ∈

H ∧ ck+1 ∈ Pk+1. For Lemma 2,
H

[1]
k0
T ≤ B[1] and e + α

[1]
k0

E ≥ T
(
1 − α

[1]
k0

)
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guarantees that ε
[1]
k0+1 ∈ I. Furthermore, for Lemma 1,

H
[j]
k0
T ≤ B[j] and e + E ≥

T

(
1−α

[j]
k0

α
[j]
k0

)
guarantees that ε

[j]
k0+1 ∈ [−e, E]. Therefore, εk0+1 ∈ H is derived

from the intersection of all these conditions, i.e. the left-hand side of S(k0).
For a generic k, assume S(k−1) holds, εk0 ∈ H and ch ∈ Ph∀h ∈]k0, k]. Then,

under the conditions of the left-hand side of S(k − 1), we have: εk ∈ H. For the
two cited lemmas, εk+1 ∈ H is thus derived from the intersection of the condi-

tions H
[1]
k

T ≤ B[1], e+α
[1]
k E ≥ T

(
1 − α

[1]
k

)
,

H
[j]
k

T ≤ B[j] and e+E ≥ T

(
1−α

[j]
k

α
[j]
k

)
,

plus the ones in the left-hand side of S(k − 1). These constitute exactly the left-
hand side of S(k). Therefore, S(k) is true for any k > k0. Sufficiency of the
theorem condition is obtained by observing that it is obtained as limk→+∞ S(k).

Concerning necessity of the theorem condition, we have to observe that in the
definition of RCIS (1) the stated property is required to hold for each k0. This
means that, if we consider only a single evolution step of the state vector from

k0 to k0 + 1, Lemma 2 and 1 require
H

[1]
k0
T ≤ B[1], e + α

[1]
k0

E ≥ T
(
1 − α

[1]
k0

)
,

H
[j]
k0
T ≤ B[j] and e + E ≥ T

(
1−α

[j]
k0

α
[j]
k0

)
as necessary conditions to guarantee that

εk0+1 ∈ H. Therefore, by considering any possible value for k0, we obtain that
all of these conditions (at varying k0) must hold true, leading to the theorem
proof.

(H, G) attractivity. We recall that F
[j]
k has been defined as a number such that

H
[j]
k

T+E−F
[j]
k

= B′[j]. Before showing Theorem 2, we need the following.

Lemma 3. Under the assumptions of Theorem 2, any control law chosen in the
family in Equation (5) guarantees that: 1) if σ

[j]
k ≥ −e, then ε

[j]
k ≥ −e , 2) if

σ
[j]
k ∈ [−e, E], then ε

[j]
k ∈ [−e, E], 3) if σ

[j]
k ∈ [E, F

[j]
k ], then ε

[j]
k ∈ [−e, E].

Proof. The Lemma immediately derives from the way the family of controllers
is constructed and from the evolution of the system, condensed in Equation (2).
For instance, to violate the first claim, we should choose a value for b

[1]
k ≥

h
[1]
k

T−e−σ
[j]
k

, which is never done as shown in Figure 3.B. Similar arguments can be

used for the other claims.

Proof. (of Theorem 2) Consider k0 as defined above. As a preliminary step, we
prove the following property:

∀j, ∀n ∈ [1, M + 1], −e ≤ ε
[j]
k0+n ≤ max

{
L + n(Ĥ − T ), E

}
. (6)

The proof is by induction on the stages of the pipeline. Let’s focus on the
first stage. In this case, σ

[1]
k0+n = max{0, ε

[1]
k0+n}. In view of the first property in

Lemma 3 and of the evolution of the system in Equation (2), ε
[1]
k0+n ≥ −e is easily
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verified by induction on n. As far as the upper bound below E is concerned, we
observe that, if for any k ∈ [k0, k0+n] ε

[1]
k ≤ F

[1]
k , the claim is an immediate result

of the second and third claims in Lemma 3. On the contrary, assuming that for
all k ∈ [k0, k0+n] ε

[1]
k > F

[1]
k , we use the saturation value B′[1] as a control value;

therefore we can write ε
[1]
k0+n ≤ ε

[1]
k0

+
∑ k0+n

h=k0+1 H
[1]
h

B′[1] − nT ≤ L + ĤnB′[1]

B′[1] − nT =
L + n(Ĥ − T ).

Now, let’s consider stage j of the pipeline assuming that the property holds
for stage j − 1. In this case, σ

[j]
k = max{ε

[j−1]
k , ε

[j]
k−1}.By inductive hypotheses,

ε
[j−1]
k ≥ −e, which leads to σ

[j]
k ≥ −e. Hence, in view of the first property of

Lemma 3, we have ε
[j]
k ≥ −e.

As far as the upper bound is concerned, the dynamic evolution is described
in Equation (2) and it can lead to one of the following cases:

ε
[j]
k0+n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε
[j]
k0

+
∑k0+n

h=k0+1
c
[j]
h

B′[j] − nT if ε[j]k−1 > ε
[j−1]
k ∀k ∈ [k0 + 1, , k0 + n]

ε
[j−1]
k0+1+

∑k0+n
h=k0+1

c
[j]
h

B′[j] − nT if ε[j]k−1 > ε
[j−1]
k ∀k ∈ [k0 + 2, k0 + n]∧ ε

[j−1]
k0+1 >ε

[j]
k0

. . .

ε
[j−1]
k0+n +

c
[j]
k0+n

B′[j] − T if ε[j−1]
k0+n > ε

[j]
k0+n−1

The first case is dealt with exactly as shown for the previous stage of the
pipeline and it leads to Equation (6). Consider the generic case ε

[j]
k0+n = ε

[j−1]
k0+m +∑k0+n

h=k0+m
c
[j]
h

B′[j] − (n − m + 1)T, with m ≥ 1. The application of the inductive

hypothesis ε
[j−1]
k0+m ≤ max

{
L + m(Ĥ − T ), E

}
≡ ρ(m) leads us to ε

[j]
k0+n ≤ ρ +∑k0+n

h=k0+m
c
[j]
h

B′[j] − (n − m + 1)T ≤ L + (n + 1)(Ĥ − T ) ≤ L + n(Ĥ − T ).
If ρ = L + m(Ĥ − T ), then we can write ε

[j]
k0+n ≤ L + (n + 1)(Ĥ − T ) ≤

L+n(Ĥ −T ). If ρ = E, then we can write ε
[j]
k0+n ≤ E +(n−m+1)(Ĥ −T ) ≤ E

(since Ĥ ≤ H̃ ≤ T by hypotheses). This terminates the proof of property in
Equation (6).

As a consequence of Lemma 3, the claim of the theorem is proved if: 1)
σ

[j]
k ≥ −e for k = k0 + 1, . . . , k0 + M + 1 and 2) σ

[j]
k0+M+1 ≤ F

[j]
k0+M+1. Con-

dition 1) is part of Equation (6). Because of Equation (6), we can also write
(considering the only relevant case with L + M(Ĥ − T ) > E) : σ

[j]
k0+M+1 =

max{ε
[j−1]
k0+M+1, ε

[j]
k0+M} ≤ L + M(Ĥ − T ). On the other hand, F

[j]
k = T + E −

H
[j]
k

B′[j] ≥ T +E − Ĥ, thus condition 2) is satisfied if:L+M(Ĥ −T ) ≤ T +E − Ĥ,

which can be written as Ĥ ≤ T+E−L+MT
M+1 , which completes the proof.
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Abstract. We introduce a notion of bisimulation equivalence between
general flow systems, which include discrete, continuous and hybrid sys-
tems, and compare it with similar notions in the literature. The interest
in the proposed notion is based on our main result, that the temporal
logic GFL� – an extension to general flows of the well-known computa-
tion tree logic CTL� – is semantically preserved by this equivalence.

1 Introduction

There is growing interest in the study of simulation and bisimulation relation-
ships within general classes of dynamical and control systems including hybrid
systems [1,2,3,4,5,6]. A core motivation is the potential for using these relation-
ships, whenever they preserve significant structural and behavioral properties,
as a means to reduce complexity in the analysis and design of systems.

In this paper, we define a notion of bisimulation equivalence that is sufficient
to preserve the semantics of the general flow logic GFL�, introduced in [7], and
thus to preserve all system properties expressible in that logic. GFL� extends
the discrete-time semantics of the well-known temporal logic CTL� to the class
of general flow systems [7], which offer a unified treatment of discrete-time tran-
sition systems, continuous-time differential inclusions, hybrid-time systems such
as hybrid automata and stochastic hybrid systems, as well as more complex sys-
tems requiring higher-dimensional time lines; e.g., a “meta-hybrid automaton”
as a finite state machine with a hybrid automaton at each discrete state [8].

The framework of general flow systems is given in general set-theoretic terms,
and builds on the notion of a time line as a suitably structured linear order,
and of finite paths as functions from bounded and finite-duration subsets of a
time line into some value space. A general flow system Φ over a state space X
associates with each initial state x ∈ X the set Φ(x) of all possible finite paths or
trajectories starting from x, and satisfies a generalized version of the semigroup
property or “Axiom of State” from Behavioural Systems theory [9]. The system
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class is essentially Aubin’s model of an Evolutionary System [10], generalized
from discrete or continuous time to arbitrary time lines, and “deconstructed”, so
that the basic objects are finite, bounded duration paths, rather than functions
from the whole time line. In moving to the hybrid time line, this perspective
simply fails to transfer: if we take the limit of any infinite sequence of longer and
longer finite hybrid trajectories, then we do not end up with a function defined
on the whole hybrid time line, but rather with a function whose time domain is
the union of a finite or infinite sequence of disjoint intervals, separated by infinite
gaps in the time line. Revising the treatment in [7,11], we develop a theory of
maximal extensions of finite paths by taking the limit of infinite sequences of
longer and longer finite paths, where those sequences are indexed by transfinite
ordinals, up to the ordinal length of the underlying time line (so in the case of
continuous or hybrid time, up to the ordinal of the cardinality of the continuum).
The payoff from this apparent transfinite generosity is the crucial equivalence,
expressed in Theorem 1, between the finitary system property of being deadlock-
free or non-blocking, and the infinitary property of being maximally extendible,
in the sense that every finite path of the system has a maximal extension.

The maximal extension property is essential for the semantics of the logic
GFL�, which straight-forwardly generalize the semantics of the logic CTL�

with respect to ω-length execution sequences of non-blocking transition systems
or state machines, with the singular and crucial exception of the next-time oper-
ator. To cover general time lines, we introduce a generalized next-times operator
that behaves as the discrete successor if there is one, and otherwise, in the pres-
ence of a dense sub-interval of time, has the meaning “immediately after now”.
This operator is also a key ingredient in our new notions of simulation and
bisimulation, and in our semantic preservation theorem for the logic GFL�.

The body of the paper is organized as follows. Section 2 consists of preliminary
theory of time lines and paths. Section 3 briefly reviews general flow systems
and develops the theory of maximal extensions. In Section 4, we give three,
progressively stronger, concepts of simulation and bisimulation between general
flow systems, allowing differing time lines in the systems compared for the first
two of these. The new notion we call p-simulation is strictly intermediate between
two other concepts of simulation found in the current literature [1,2,3,4,5,6],
and we illustrate the differences with some simple examples. Section 5 reviews
the syntax and semantics of Full General Flow Logic GFL� and discusses its
expressibility. The main result is in Section 6, where we establish that our notion
of p-bisimulation preserves the semantics of GFL�.

2 Preliminaries: Time Lines and Paths

We use relations/set-valued maps r : X � Y , with r(x) ⊆ Y for x ∈ X , and
let [ X � Y ] denote the set of all such maps, so [ X � Y ] = 2X×Y . A map
r : X � Y has a converse r−1 : Y � X ; domain dom(r) := {x ∈ X | r(x) �= ∅};
range ran(r) := dom(r−1) ⊆ Y ; and r is total on X if dom(r) = X . Writing
r : X → Y means r is a single-valued function total on X , with values r(x) = y,
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and [ X → Y ] is the set of all such functions. For partial functions, writing
r : X ��� Y means that on dom(r) ⊆ X , r is single-valued; we write r(x) = y
when x ∈ dom(r) with value y, and r(x) = undef when x /∈ dom(r), and
[ X ��� Y ] is the set of all such maps. So [ X → Y ] ⊆ [ X ��� Y ] ⊆ [ X � Y ].

Let (L, <, 0) be a linear order with least element 0 and no largest element.
We will call L a (future) time line if the following three conditions are satisfied:

(i) L is Dedekind-complete (sup’s and inf’s exist for non-empty bounded subsets);
(ii) there exists a linearly ordered abelian group (L, <, +, 0) such that (L, <, +, 0)
is a linearly ordered sub-semigroup of L, and L ⊆ {l ∈ L | l � 0};
(iii) L is equipped with an extended metric function dL : (L×L) → R

+∞
0 together

with a continuous order-preserving total function (a fibering map) p : L → M
into a countable linear order (M, <M ) such that,
(a) for each m ∈ M , the fibre p−1(m) ⊆ L is a metric space under dL;
(b) for all m, m′ ∈ M , a ∈ p−1(m), b ∈ p−1(m′) : dL(a, b) < ∞ iff m = m′;
(c) for all a, b, c ∈ L, a � c, dL(a, c) < ∞ : dL(a, c) = dL(a, b) + dL(b, c) iff a � b � c;
(d) for all a, b, c ∈ L, dL(b, c) = dL(a + b, a + c).

From the group L, a time line L has a family of order-isomorphisms {σ+a}a∈L

such that σ+0 = idL and for each a ∈ L, the right a-shift σ+a : L → L is given
by σ+a(l) := l+a, and with inverse σ−a := (σ+a)−1 : [a, ∞) → L the left a-shift.
A subset T ⊆ L will be called <-unbounded if for all a ∈ L, there exists t ∈ T
such that t > a, and it will be called <-bounded otherwise. For any subset T ⊆ L,
define the set’s total duration dur(T ) ∈ R

+∞
0 as follows:

dur(T ) :=
∑

m∈M

sup
{

dL(t, t′) | t ∈ T ∩ p−1(m) ∧ t′ ∈ T ∩ p−1(m)
}

where for S ⊆ R
+
0 , we take sup(S) = 0 if S = ∅. A subset T ⊆ L will be called

duration-bounded if dur(T ) < ∞, and duration-unbounded otherwise.
Basic examples are the discrete time line N, and the dense continuum time line

R
+
0 := [0, ∞), whose linearly ordered abelian groups under addition are Z and R

respectively. For L = N and L = R
+
0 , the group operation also gives a suitable

metric: take dL(a, b) := max{a − b, b − a}, and take p : L → {0} constant, so
there is only one fibre, p−1(0) = L. For these standard time lines, the metric is
finite everywhere and for all subsets T ⊆ L, we have the following equivalences:
T is <-bounded iff T is duration-bounded iff T ⊆ [0, b] for some b ∈ L.

The hybrid time set L = H := N × R
+
0 is linearly ordered lexicographically:

(i, t) <lex (j, s) iff i < j or else both i = j and t < s. The least element is
0 := (0, 0) and the ordering is Dedekind-complete. The linear order H is the non-
negative quarter of the abelian group Z×R, defined by: (i, t)+(j, s) := (i+j, t+s);
with the lexicographic ordering, Z×R is a linearly ordered abelian group. For the
extended metric on L = H, the fibering map pH : H → N is simply pH(i, t) := i
for all (i, t) ∈ H, and for each i ∈ N, the fibre under pH is p−1

H
(i) = {i} × R

+
0 .

We only assign a finite distance between time positions a = (k, r) and b = (i, t)
with discrete time coordinates k = i the same; define dH : (H × H) → R

+∞
0 such

that, for all a = (k, r) and b = (i, t) in H, dH(a, b) := dR(r, t) if k = i, and
dH(a, b) := ∞ if k �= i. Thus (H, <lex,0, +, dH, pH) is a time line. In L = H, the
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two concepts of boundedness are not equivalent: the interval T = {42} × [0, ∞)
is <-bounded but duration-unbounded, while the time domain of a Zeno infinite
hybrid trajectory is duration-bounded but <-unbounded.

For any linear order (L, <), and for any subset T ⊆ L, the T -successor partial
function succT : T ��� T is defined by:

∀a, b ∈ T, succT (a) = b ⇔ [ a < b ∧ (∀t ∈ T ) t � a ∨ b � t ] .
For example, for T = L = N, we have dom(succL) = L, which means L is
everywhere discrete, while for T = L = R

+
0 , the map succL is defined nowhere,

which means L is everywhere dense. If T ⊂ H is the domain of a hybrid trajectory,
then the partial function succT will be defined only at the switching times in T .
For the purpose of formulating a new concept of bisimulation later in the paper,
as well as for giving a semantics to a “next-times” operator in temporal logic,
we have the need for a progress operator acting on initial subsets T of time lines.

Definition 1. (Progress operator on initial subsets of time lines)
For any time line L, and any initial subset T ⊆ L with 0 ∈ T , define:

Pro(T ) := { t ∈ T | t > 0 ∧ (∀s ∈ ran(succT )) t � s }

Hence if 0 ∈ dom(succT ) then Pro(T ) = {succT (0)}; if 0 /∈ dom(succT ) but
ran(succT ) �= ∅ then Pro(T ) = (0, sT ] where sT := min(ran(succT )), while if T
is everywhere dense, so ran(succT ) = ∅, then Pro(T ) = T − {0}.

For the usual time lines L = N and L = R
+
0 , the basic form of a time domain

for a path is a closed bounded interval [0, b], which in N evaluates to {0, 1, . . . , b}.
For the hybrid time line L = H, finite hybrid trajectories are typically functions
taking values in a space X ⊆ Q × R

n, with Q a finite set, and we can represent
their time domains as disjoint unions of the form:

T =
⋃

i<N

{i} × [si, si + Δi] =
⋃

i<N

[ (i, si), (i, si+1) ] (1)

where s0 := 0 and si+1 := si + Δi and (Δ0, Δ1, . . . , ΔN−1) is a finite sequence
of interval durations Δi ∈ R

+
0 for i < N , and (s1, . . . , sN−1, sN ) is the corre-

sponding sequence of switching times. Along a hybrid trajectory, for i < N − 1,
we have succT (i, si+1) = (i + 1, si+1), but relative to the underlying ordering
H, there is a distinct gap between these two time positions, in the form of the
interval {i} × (si+1, ∞) followed by the interval {i + 1} × [0, si+1).

Definition 2. (Bounded time domains and paths)
Given a time line L, define a bounded time domain in L to be a subset T ⊂ L
such that T =

⋃
n<N [an, bn] with N ∈ N

+, a0 = 0, bN−1 = bT := max(T ),
and an � bn < an+1 � bn+1 for all n < N − 1, and d(an, bn) < ∞ for all
n < N . Let BT(L) ⊂ 2L be the set of all bounded time domains in L, and let
BI(L) := {T ∈ BT(L) | (∃b ∈ L)T = [0, b] } be the interval time domains. Over
any set X �= ∅, define:

Path(L, X) := { γ : L ��� X | dom(γ) ∈ BT(L) }
IPath(L, X) := { γ : L ��� X | dom(γ) ∈ BI(L) }
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For γ ∈ Path(L, X), define bγ := max(dom(γ)), so that γ(0) ∈ X is γ’s start-
point, and γ(bγ) ∈ X is γ’s end-point. The total duration of γ is dur(γ) :=
dur(dom(γ)) < ∞ (so dom(γ) is both duration-bounded and <-bounded). Let
ε ∈ [L ��� X ] denote the empty path; for any P ⊆ Path(L, X), let Pε := P ∪{ε}.
Given a time line L, the set BT(L) is partially ordered via the linear ordering
on L: for T, T ′ ∈ BT(L), we say T ′ is an ordered extension of T , and (re-using
notation) we write T < T ′, iff T ⊂ T ′ and t < t′ for all t ∈ T and all t′ ∈ T ′−T .
Likewise, the path set Pathε(L, X) is partially ordered: γ < γ′ iff γ ⊂ γ′ and
dom(γ) < dom(γ′), in which case we say the path γ′ is a (proper) extension
of γ. For any set of paths P ⊆ Pathε(L, X), P is <-unbounded (or extension-
unbounded) if for all γ ∈ P , there exists γ′ ∈ P such that γ < γ′.

We use the following operations; for γ, γ′ ∈ Pathε(L, X), t ∈ dom(γ), x ∈ X :

• the trivial path θx : [0, 0] → X given by θx(0) = x.
• restriction or prefix ending at t: γ|t ∈ Pathε(L, X) where (γ|t)(l) := γ(l)

for all l ∈ dom(γ|t) := [0, t] ∩ dom(γ).
• translation or suffix starting at t: t|γ ∈ Pathε(L, X) where (t|γ)(l) := γ(l + t)

for all l ∈ dom(t|γ) := σ−t([t, bγ ] ∩ dom(γ)).
• point-concatenation at x ∈ X : γ ∗x γ′ ∈ Pathε(L, X) where, for all l ∈ L:

(γ ∗x γ′)(l) :=

⎧⎨
⎩

γ(l) if l ∈ dom(γ) ∧ γ′(0) = γ(bγ) = x
γ′(l − bγ) if l ∈ σ+bγ (dom(γ′)) ∧ γ′(0) = γ(bγ) = x
undef otherwise

and dom(γ ∗x γ′) = dom(γ) ∪ σ+bγ (dom(γ′)) 1.

The path extension ordering and point-concatenation are related as follows:

γ < γ′ iff γ′ = γ ∗x γ′′ for some γ′′ ∈ Path(L, X) and x ∈ X with γ′′ �= θx (2)

3 General Flow Systems, and Their Infinitary Extensions

Introduced in [7], and further developed in [11], the class of general flow systems
generalizes to arbitrary time lines Aubin’s model of an Evolutionary System [10].

Definition 3. (General flow systems and finitary properties)
Let L be a time line, and let X �= ∅ be an arbitrary value space. A general flow
system over X with time line L is a map Φ : X � Path(L, X) satisfying, for
all x ∈ dom(Φ), for all γ ∈ Φ(x), and for all t ∈ dom(γ):

(GF0) initialization: γ(0) = x;
(GF1) time-invariance or suffix-closure: t|γ ∈ Φ(γ(t));
(GF2) point-concatenation: γ|t ∗y γ′ ∈ Φ(x) for all γ′ ∈ Φ(y) with y = γ(t).
1 For the discrete time line L = N, the interval path set IPathε(N, X) = X∗ is the set of

all finite words or sequences over X. The usual operation of word-concatenation from
automata theory equips X∗ as a total monoid with identity ε; word-concatenation
can be readily defined in terms of point-concatenation using length-2 connecting
words formed from the end-value of the first word and the start-value of the second.
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• Φ is deadlock-free if Φ(x) �= {θx}, for every x ∈ dom(Φ);
• Φ is <-unbounded if the path set Φ(x) is <-unbounded, for every x ∈ dom(Φ);
• Φ is deterministic if Φ(x) is linearly-ordered by <, for every x ∈ dom(Φ);
• Φ is point-controllable [9] if for all x′, x′′ ∈ dom(Φ), there exists γ ∈ Φ(x′)
and t ∈ dom(γ) such that γ(t) = x′′;
• Φ is path-controllable [9] if for all x, x′, x′′ ∈ dom(Φ) and for all γ′ ∈ Φ(x),
if x′ = γ′(bγ′), then for all γ′′ ∈ Φ(x′′), there exists γ ∈ Φ(x′) and t ∈ dom(γ)
such that (γ′ ∗x′ γ|t ∗x′′ γ′′) ∈ Φ(x).

The following results are readily established [7,11]: Φ is point-controllable iff Φ
is path-controllable; Φ is deadlock-free iff Φ is <-unbounded. In terms of Be-
havioural Systems theory [9], condition GF1 corresponds to the time invariance
property, while condition GF2 corresponds to the “Axiom of State” principle.

Example 1. Let L be any time line, and consider the map ΦL : L � Path(L, L)
given by ΦL(a) := {γ ∈ Path(L, L) | (∃s ∈ L) γ = (σ+a)|s }. Then ΦL is an
interval-path, deterministic and deadlock-free general flow system over L, but it
is not point-controllable (being only uni-directional since L is a semigroup).

Further examples of general flow systems include automata and state transition
systems over L = N, differential equations and inclusions over L = R

+
0 , and

hybrid automata and impulse differential inclusions over hybrid time L = H [7],
as well as stochastic hybrid and continuous time systems.

In order to directly represent hybrid trajectories, and their constituent parts,
we choose to take as our primitive objects paths of finite duration, with a start-
point and an end-point. However, we still have many reasons to “go to infinity”
by finding “maximal extensions” of finite duration paths, including formalizing
asymptotic properties of systems such as stability, as well as the eventuality and
until type properties expressible in temporal logics [7], and also comparing and
utilizing work on existing system-theoretic models, e.g. Evolutionary Systems
[10]; Behavioural Systems [9]; and various hybrid system classes [12,1,2,3,6].

A general flow Φ is deadlock-free iff it is <-unbounded, so for each x ∈ dom(Φ)
and finite path γ ∈ Φ(x), we can recursively construct an ω-length extending
sequence of paths {γn}n<ω starting from γ0 = γ with γn ∈ Φ(x) and γn <
γn+1 for all n < ω. Motivated by this fact, we view “maximal extensions” or
“completions” of paths as infinitary objects, arising as limits of infinite sequences
of finite paths. Revising earlier work in [7,11], we now work with ν-length infinite
sequences of paths {γn}n<ν , for all limit ordinals ν ≤ κ, where κ = |L|, the
cardinality of the time line L and the initial limit ordinal of that cardinality.
The crucial pay-off from this transfinite generosity is Theorem 1.

Definition 4. (κ-extension of path sets)
For a time line L, let κ = |L|, and let LO(κ) be the set of all limit ordinals ν ≤ κ
with ν �= 0. For any path set P ⊆ Pathε(L, X), define the κ-extension of P:

Ext(P) := {β ∈ [L ��� X ] | (∃ν ∈ LO(κ)) (∃ γ ∈ [ν → Path(L, X)] ) (∀n < ν)
γn := γ(n) ∧ γn ∈ P ∧ (∀n′ < ν) (n < n′ ⇒ γn < γn′)
∧ β =

⋃
m<ν γm

}
Define EPath(L, X) := Ext (Pathε(L, X) ), EIPath(L, X) := Ext ( IPathε(L, X) ).
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The κ-extension Ext(P) contains all the partial functions β : L ��� X that
can arise as the limit of a ν-length chain of paths in P , for some limit ordinal
ν ∈ LO(κ). The total duration of a limit path α ∈ EPath(L, X) is defined
dur(α) := dur(dom(α)), where dur(T ) is as defined in Section 2 for any T ⊆ L.
The path extension ordering < on bounded paths induced by the linear order on
L can also be lifted to limit paths, and if α < α′ then we must have dur(α) < ∞.

For reasoning about the asymptotic behaviour of a path set or general flow,
the Ext operation will not quite do, as the set of limit paths Ext(P) also includes
limit paths α that are too short to be of maximal extension or duration, as
witnessed by there being some actual, finite-duration path γ ∈ P that properly
extends α. For general flows Φ, we want to additionally require the limit paths
in MΦ(x) to be not only maximal w.r.t. the extension partial ordering, but also
collectively complete in their representation of Φ, in that for every finite path
γ ∈ Φ(x), there is at least one limit path α ∈ MΦ(x) properly extending γ.

Definition 5. (Maximal extension & infinitary properties of path sets)
Let L be a time line and let X �= ∅ be any value space.
For any path set P ⊆ Pathε(L, X), define the maximal extension of P to be the
limit path set M(P), with M(P) ⊆ Ext(P) ⊆ EPath(L, X) defined by:

M(P) := { α ∈ Ext(P) | (∀γ ∈ P ) α ≮ γ }
A path set P ⊆ Pathε(L, X) will be called maximally extendible if for all γ ∈ P,
there exists α ∈ M(P) such that γ < α.
Given a general flow system Φ : X � Path(L, X), define the maximal extension
of Φ to be the map MΦ : X � EPath(L, X) given by (MΦ)(x) := M(Φ(x)) for
all x ∈ dom(MΦ) := dom(Φ). A general flow system Φ will be called maximally
extendible if for all x ∈ dom(Φ), the path set Φ(x) is maximally extendible.

Theorem 1. [Assume the Axiom of Choice.] For any set P ⊆ Pathε(L, X),
P is maximally extendible iff P is <-unbounded.

Hence for any general flow system Φ : X � Path(L, X),
Φ is maximally extendible iff Φ is <-unbounded iff Φ is deadlock-free;

if Φ is deadlock-free, then: Φ is deterministic iff MΦ is a partial function.

4 Bisimulation Relations Between General Flow Systems

The most basic notion of simulation and bisimulation is reachability-preserving
but not time-preserving or path-matching. This is what is known as “time-
abstract” simulation and bisimulation for the case of transition systems (in-
cluding transition system representations of hybrid and continuous systems [1]),
which are general flow systems over time L = N.

Definition 6. Given time lines L1 and L2, possibly different, and general flows
Φ1 : X1 � Path(L1, X1), Φ2 : X2 � Path(L2, X2), a relation R : X1 � X2 is a
reachability simulation (or r-simulation) of Φ1 by Φ2 if dom(Φ1) ⊆ dom(R) and
for all x1, x

′
1 ∈ X1 and for all x2 ∈ X2 such that (x1, x2) ∈ R,

if there exists γ1 ∈ Φ1(x1) and t1 ∈ dom(γ1) such that t1 > 0 and x′1 = γ1(t1),
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then there exists x′2 ∈ X2 and γ2 ∈ Φ2(x2) and a time point t2 ∈ dom(γ2) such
that t2 > 0 and x′2 = γ2(t2) and (x′1, x

′
2) ∈ R.

A map R : X1 � X2 is a reachability bisimulation (or r-bisimulation) between
Φ1 and Φ2 if both R and R−1 are r-simulations.

For general flows Φi, i = 1, 2, let Qi : Xi � Xi be the (strict) reachability relation
of the system: for all x, x′ ∈ Xi, define (x, x′) ∈ Qi iff x′ = γ(t) for some γ ∈
Φi(x) and t ∈ dom(γ) with t > 0. So dom(Qi) ⊆ dom(Φi), and for sets A ⊆ Xi,
the Φi-reachable region from A is the ∃-post-image of relation Qi applied to A;
that is, Reachi(A) := Q∃i (A) = {x′ ∈ Xi | (∃x ∈ A) (x, x′) ∈ Qi}. This is at the
heart of any transition system representation of hybrid or continuous dynamical
systems. For any map/relation R : X1 � X2, the ∃-pre-image operator R−∃

is given by R−1(B) := {x1 ∈ X1 | (∃x2 ∈ B) (x1, x2) ∈ R} for sets B ⊆ X2.
The following results are straight-forward, and motivate our choice of name
“reachability simulation” (alternatively, “time abstract simulation”).

Proposition 1. Given time lines L1 and L2, possibly different, and general
flows Φ1 : X1 � Path(L1, X1) and Φ2 : X2 � Path(L2, X2), and a map R :
X1 � X2, suppose that dom(Φ1) ⊆ dom(R). Then the following are equivalent:
(1.) R is an r-simulation of Φ1 by Φ2;
(2.) R−1 ◦ Q1 ⊆ Q2 ◦ R−1;
(3.) Reach1(R−∃(B)) ⊆ R−∃(Reach2(B)) for all B ⊆ X2.
If R is an r-bisimulation and Q−1

i = Qi for i = 1, 2 (e.g. if both flows Φi are
point-controllable), then R∃(Reach1(A)) = Reach2(R∃(A)) for all A ⊆ X1.

Proposition 2. Given L1 and L2, and general flows Φ1 : X1 � Path(L1, X1)
and Φ2 : X2 � Path(L2, X2), suppose that R : X1 � X2 is an r-simulation of Φ1
by Φ2, and dom(Φ2) ⊆ ran(R). If Φ1 is deadlock-free, then Φ2 is deadlock-free.

Next, we introduce a slightly stronger notion of simulation and bisimulation
which requires some “matching” of time points along paths, but not an exact
matching, thus relating systems defined over different time lines.

Definition 7. Given time lines L1 and L2, possibly different, and general flows
Φ1 : X1 � Path(L1, X1), Φ2 : X2 � Path(L2, X2), a relation R : X1 � X2 is a
progress simulation (or p-simulation) of Φ1 by Φ2 if dom(Φ1) ⊆ dom(R) and for
all x1, x

′
1 ∈ X1 and for all x2 ∈ X2 such that (x1, x2) ∈ R,

if there exists γ1 ∈ Φ1(x1) and t1 ∈ Pro(dom(γ1)) such that x′1 = γ1(t1),
then there exists x′2 ∈ X2 and γ2 ∈ Φ2(x2) and t2 ∈ Pro(dom(γ2)) such that
x′2 = γ2(t2) and (x′1, x

′
2) ∈ R, and for all intermediate times s2 ∈ (0, t2] ∩

dom(γ2), there exists s1 ∈ (0, t1] ∩ dom(γ1) such that (γ1(s1), γ2(s2)) ∈ R.
Map R : X1 � X2 is a progress bisimulation (p-bisimulation) between Φ1 and
Φ2 if both R and R−1 are p-simulations.

As we show in the main result, Theorem 2 below, this notion of p-bisimulation is
strong enough to yield a semantic-presevation bisimulation theorem for the logic
GFL� of general flow systems, yet is still flexible enough to allow that the time
lines of the two general flows be different. Note that, in the case that both time
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lines are discrete, with L1 = L2 = N, and both general flows are determined
by a (one-step) transition relation on the state space, then a p-simulation is a
(standard) simulation relation in the original sense of Milner [13].

Definition 8. Given general flow systems Φ1 : X1 � Path(L, X1) and
Φ2 : X2 � Path(L, X2) over the same time line L, a relation R : X1 � X2 is a
timed simulation (t-simulation) of Φ1 by Φ2 if dom(Φ1) ⊆ dom(R), and for all
x1, x

′
1 ∈ X1, and x2 ∈ X2 such that (x1, x2) ∈ R, and for all times t > 0,

if there exists γ1 ∈ Φ1(x1) such that x′1 = γ1(t),
then there exists x′2 ∈ X2 and γ2 ∈ Φ2(x2) such that x′2 = γ2(t) and

dom(γ2) = dom(γ1) and (γ1(s), γ2(s)) ∈ R for all s ∈ dom(γ2) ∩ [0, t].
A relation R : X1 � X2 is a timed bisimulation (or t-bisimulation) between Φ1
and Φ2 if both R and R−1 are t-simulations.

It follows directly from the definitions that when L1 = L2 and R is a t-simulation,
R is also a p-simulation, and for any L1 and L2, if R is a p-simulation, then R is
an r-simulation. Other notions of simulation and bisimulation have been recently
investigated in the context of continuous [5,6] and hybrid systems [1,2]. All of
them require an exact matching between the time parameterizing trajectories
and thus are t-bisimulations between the general flow systems defined by the
corresponding continuous or hybrid systems. Notions of bisimulation not requir-
ing exact time matching were implicitly considered in [4]. Although [4] is based
on the standard Milner notion of bisimulation between transition systems, dif-
ferent embeddings of linear control systems into transition systems resulted in
different notions of bisimulation: t-bisimulation and r-bisimulation. The notions
of simulation and bisimulation developed for hybrid I/O automata in [3] come
out as intermediate between the r-simulations and p-simulations here.

We conclude this section with a brief discussion of some examples. We de-
liberately choose systems with simple deterministic dynamics so as to keep the
focus on illustrating the various simulation relationships.

Example 2. Consider a discrete-time deterministic system with general flow map
Φ1 : X1 � Path(N, X1) over state space X1 := {q1, q2, q3, q4} generated by the
transition function δ : X1 → X1 with δ(qk) := qk+1 for k = 1, 2, 3 and δ(q4) = q1.
Next, consider a continuous-time deterministic system with general flow map
Φ2 : X2 � Path(R+

0 , X2) over the state space X2 := R
2 − {(0, 0)} given by the

differential equation: ẋ1 = x2 and ẋ2 = −x1. So Φ2(x1, x2) = {γ : [0, b] → X2 |
b ≥ 0 ∧ (∀t ∈ dom(γ)) γ(t) = (x1 cos(t) + x2 sin(t), x2 cos(t) − x1 sin(t))}, and
the paths correspond to circular motion in clockwise direction, with radius of
the circle r =

√
x2

1 + x2
2. Then consider the relation R : X1 � X2 given by:

R(q1)={(x1, x2) ∈ X2 | x1 � 0 ∧ x2 > 0}, R(q2)={(x1, x2) ∈ X2 | x1 > 0 ∧ x2 � 0}
R(q3)={(x1, x2) ∈ X2 | x1 � 0 ∧ x2 < 0}, R(q4)={(x1, x2) ∈ X2 | x1 < 0 ∧ x2 � 0}

It is clear that dom(Φ1) = X1 = dom(R) and dom(Φ2) = X2 = ran(R), and it
is readily established that R is an r-simulation of the discrete system Φ1 by the
continuous system Φ2, but it is not a p-simulation. To see why p-similarity fails,
consider (q2, (1

2 , 1
2 )) ∈ R and note that, in Φ1, along the unique discrete path
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γ1 ∈ Φ1(q2) with dom(γ1) = {0, 1, 2, 3, 4}, we have q3 = γ1(1) with time t1 = 1 ∈
Pro(dom(γ1)), and this is matched in reachability terms by the unique continuous
path γ2 ∈ Φ2(1

2 , 1
2 ) with dom(γ2) = [0, 2π], at time t2 = π

2 ∈ Pro(dom(γ2))
and state (1

2 , − 1
2 ) = γ2(π

2 ), since (q3, (1
2 , − 1

2 )) ∈ R. However, if we pick the
intermediate time point s2 = π

4 ∈ (0, t2] ∩ dom(γ2) = (0, π
2 ], and the state

( 1√
2
, 0) = γ2(π

4 ), then we cannot find any matching time point s1 ∈ (0, t1] ∩
dom(γ1) = {1} such that γ1(s1) = q2 – because γ1(1) = q3, and thus we cannot
satisfy (γ1(s1), γ2(s2)) = (γ1(s1), ( 1√

2
, 0)) ∈ R.

We can, however, easily construct a variant map R̂ : X1 � X2 such that R̂ is
a p-simulation of Φ1 by Φ2. Let R̂ : X1 � X2 be given by:

R̂(q1) = {(x1, x2) ∈ X2 | x1 = 0 ∧ x2 > 0}, R̂(q2) = {(x1, x2) ∈ X2 | x1 > 0 ∧ x2 = 0}
R̂(q3) = {(x1, x2) ∈ X2 | x1 = 0 ∧ x2 < 0}, R̂(q4) = {(x1, x2) ∈ X2 | x1 < 0 ∧ x2 = 0}

While we have chosen for illustrative purposes to simulate a discrete-time sys-
tem by a continuous-time system, the process of temporal sampling and spatial
quantization would go the other way, simulating continuous by discrete.

q1 q2 q3 q4

Example 3. Consider the hybrid system defined by the timed automaton H over
state space X3 :=

⋃
k∈K{qk} × [0, (ak + 1)π

2 ] represented in the figure above,
where z is the (sole) clock variable and for k ∈ K = {1, 2, 3, 4}, ak > 0 are fixed
real constants; let Φ3 : X3 � Path(H, X3) be its general flow. Then consider the
relation S : X3 � X2 defined for all z ∈ R

+
0 by:

S(q1, z) = {(x1, x2) ∈ X2 | x1 ≤ 0 ∧ x2 > 0 ∧ z = a1
π
2 arctan(x1

x2
)}

S(q2, z) = {(x1, x2) ∈ X2 | x1 > 0 ∧ x2 ≥ 0 ∧ z = a2
π
2 arctan(−x2

x1
)}

S(q3, z) = {(x1, x2) ∈ X2 | x1 ≥ 0 ∧ x2 < 0 ∧ z = a3
π
2 arctan(−x2

x1
)}

S(q4, z) = {(x1, x2) ∈ X2 | x1 < 0 ∧ x2 ≤ 0 ∧ z = a4
π
2 arctan(x1

x2
)}

Then S is a p-bisimulation between the hybrid system Φ3 and the continuous-
time system Φ2, but it cannot be a t-bisimulation since the time-lines are differ-
ent. However, we can give a continuous-time model Φ′3 of the timed automaton
H such that, if a1 = a2 = a3 = a4 = 1, S is a t-bisimulation between Φ′3 and Φ2.

5 Full General Flow Logic GFL�

The logic Full General Flow Logic, GFL�, first introduced in [7], extends to
general flow models the semantics of Full Computation Tree Logic, CTL�, in-
troduced by Emerson and Halpern in 1983 [14,15] for formalizing reasoning
about executions of concurrent systems (hardware or software) in discrete time.
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The syntax here is a labelled variant of that of CTL�, the labelling allowing for
semantic models consisting of a family of deadlock-free general flow systems.

A signature is a pair Σ = (Sys, Prp), where Sys is a countable set of system
labels, and Prp is a countable set of atomic propositions. The temporal logic
language F(Σ) consists of the set of all formulas ϕ generated by the grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 Ua ϕ2 | Xaϕ | ∀a ϕ

for atomic propositions p ∈ Prp, and system labels a ∈ Sys. Define logical
constants true, � def= p ∨ ¬ p, for any p ∈ Prp, and false, ⊥ def= ¬�. The other
propositional (Boolean) connectives are defined in a standard way, and the path
quantifiers ∀a have classical negation duals ∃a, as follows:

ϕ1 ∧ ϕ2
def= ¬ (¬ϕ1 ∨ ¬ϕ2) ϕ1 → ϕ2

def= ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2
def= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) ∃aϕ def= ¬∀a¬ϕ

The next-times temporal operators, Xa, for a ∈ Sys, will be given their
semantics using the progress operator (Definition 1). The formula Xaϕ, read
“at next times, ϕ, along MΦa-paths”, will hold along any maximal limit path
η ∈ ran(MΦa) if for some time t ∈ Pro(dom(η)), ϕ holds at all time points
s ∈ (0, t]. This means that if 0 has a discrete sucessor within dom(η), then ϕ will
hold at that (unique) time, while if 0 does not have a discrete sucessor within
dom(η), then ϕ will hold “immediately after now”, throughout the left-open in-
terval (0, t]. With this construction, we recover the standard meaning of next
in discrete time, the same at that for CTL�, while if 0 is followed by a dense
interval within dom(η), then we gain a rather useful notion of “dense next”.

In earlier work on the logic GFL�, in [7], we worked with the strictest version
of the until operator, and used a well-known method to define a discrete “next-
time” operator as well as a separate dense “immediately after now” operator both
in terms of this strictest until. Here, we take both until and next as syntactic
and semantic primitives, as is standard in the presentation of CTL� [14,15],
but give new semantics for next to allow for denseness in the time domains of
paths. This is better for the formulation and proof of preservation of semantics
by suitable bisimulations, but still gives a logic equivalent in expressive power
to the original.

Definition 9. A general flow logic model of signature Σ = (Sys, Prp) is a struc-
ture M = (X, L, S, P), where:
• X �= ∅ is the state space, of arbitrary non-zero cardinality;
• L is a function mapping each symbol a ∈ Sys to a time line La := L(a);
• S is a function mapping each symbol a ∈ Sys to a deadlock-free general flow

system Φa := S(a) : X � Path(La, X) over the space X, with time line La;
• P : Prp � X maps each p ∈ Prp to a set P(p) ⊆ X of states.
The maximal path space of a model M is MPath(M) :=

⋃
a∈Sys ran(MΦa).

Let GF(Σ) denote the class of all general flow logic models of signature Σ, and
for the case of a single time line L, let GF(L, Σ) denote the subclass of all logic
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models M such that L(a) = L for all a ∈ Sys. For the further special case where
|Sys| = 1 and Prp is countably infinite, let TR(N) denote the subclass of all
discrete time logic models M with one general flow ΦS : X � IPath(N, X) from
a total transition relation S : X � X [14,15]).

Definition 10. For ϕ ∈ F(Σ) and maximal limit path η ∈ MPath(M), the
relation “ϕ is satisfied along path η in model M”, written M, η |= ϕ, is
defined by induction on the structure of formulas, with p ∈ Prp and a ∈ Sys:

M, η |= p iff η(0) ∈ P(p)
M, η |= ¬ϕ iff M, η � ϕ

M, η |= ϕ1 ∨ ϕ2 iff M, η |= ϕ1 or M, η |= ϕ2

M, η |= ϕ1 Ua ϕ2 iff η ∈ ran(MΦa) and ∃ t ∈ dom(η), t � 0 such that
M, t|η |= ϕ2 and ∀s ∈ [0, t) ∩ dom(η), M, s|η |= ϕ1

M, η |= Xa ϕ iff η ∈ ran(MΦa) and ∃ t ∈ Pro(dom(η)) such that
∀s ∈ (0, t] ∩ dom(η), M, s|η |= ϕ

M, η |= ∀a ϕ iff ∀η′ ∈ MΦa(η(0)), M, η′ |= ϕ

For formulas ϕ ∈ F(Σ), the maximal path denotation set �ϕ �M ⊆ MPath(M),
and the state denotation set �ϕ �M

st ⊆ X, are defined by:

�ϕ �M := { η ∈ MPath(M) | M, η |= ϕ }

�ϕ �M
st := { x ∈ X | ∃η ∈ MPath(M) : M, η |= ϕ and x = η(0) }

For a logic model M ∈ GF(Σ), state x in the state space of M, class of logic
models C ⊆ GF(Σ), and for formulas ϕ ∈ F(Σ), we say:
• ϕ is satisfied in M at state x, if x ∈ �ϕ �M

st , and satisfiable in M, if �ϕ �M
st �= ∅;

• ϕ is true in M, written M |= ϕ , if M, η |= ϕ for every η ∈ MPath(M);
• ϕ is C-valid, written |=C ϕ , if M |= ϕ for every M ∈ C.
Define Valid(C) := {ψ ∈ F(Σ) | |=C ψ } to be the set of all C-valid formulas,
and define GFL�(L, Σ) := Valid( GF(L, Σ) ), for any given time line L.

It is immediate that when restricting to discrete-time systems in TR(N), we have
Valid( TR(N) ) = CTL� [14,15]. For each system label a ∈ Sys, the one-place
operators for eventually �a and always �a are definable in the standard way
from the two-place Ua plus �, and the range of MΦa is also definable:

�a ϕ def= �Ua ϕ paths in ran(MΦa) along which ϕ is eventually true
�a ϕ def= ¬(�Ua (¬ϕ)) paths in ran(MΦa) along which ϕ is always true,

plus all the limit paths in MPath(M) − ran(MΦa)
Beha

def= Xa� set of all paths in ran(MΦa) = the behaviour of Φa

As is the case for CTL� [14], properties expressible in GFL� include safety, in-
variance, eventuality and “return infinitely often” fairness-type properties. Other
properties of interest that can be expressed include:
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• Safety with event sequence behaviour [16]: suppose the finite family of regions
{S1, . . . , Sk} forms a cover of the designated Safe portion of the state space
X , and K = {1, . . . , M} and next : K � K is a total map describing the
permitted sequence orderings of traversal through the regions. The requirement
is that every maximal Φa trajectory that enters a region Sk remains in Sk until
it enters into Sk′ − Sk for some k′ ∈ next(k). This can by expressed by:

M |= ((
∨

k∈K

Sk) ↔ Safe) ∧
∧

k∈K

∀a(Sk →
∨

k′∈next(k)

(Sk Ua(Sk′ ∧ ¬Sk)) )

• Aubin’s notion of viability with target [10,12] is a “weak until” concept which
is expressible in the logic, as is the dual notion of invariance with target. The
set of maximal Φa trajectories that are viable within state set K = �K �M

st until
capturing target C = �C �M

st can be defined in the logic as follows:

KVa C def= Beha ∧ (�aK ∨ KUa(K ∧ C) )

• Fix Σ = (Sys, Prp) with α ∈ Sys and Prp having at least two distinct symbols.
Given an interval-path deadlock-free general flow Φ, Φ is deterministic iff
M |= ∃αϕ → ∀αϕ for every formula ϕ ∈ F(Σ) and every model M = (X, L, S, P)
of signature Σ over the space X such that L(α) = L and S(α) = Φ.
• The properties of point-controllability (and hence of path-controllability) for
deadlock-free general flows are expressible in the logic by an inference rule which
is valid in every model which includes that flow.

6 Bisimulation Theorem for the Logic GFL�

In this section, we announce that the notion of p-bisimulation, intermediate be-
tween “time-abstract” reachability-preserving and exact time- andpath-matching,
is adequate for preservation of the semantics of GFL�.

Definition 11. Fix a signature Σ = (Sys, Prp), and for i = 1, 2, let Mi =
(Xi, Li, Si, Pi) be two logic models of signature Σ, and for each system label
a ∈ Sys and i = 1, 2, let Lia := Li(a) be the time line in the model Mi for the
(deadlock-free) general flow system Φia := Si(a) : Xi � Path(Lia, Xi).
A relation R : X1 � X2 is a p-simulation of model M1 by model M2 if:
(i) for each system label a ∈ Sys, relation R is a p-simulation of Φ1a by Φ2a; and
(ii) for each atomic proposition p ∈ Prp, and for all x1 ∈ X1 and x2 ∈ X2,

if x1 R x2 and x1 ∈ P1(p), then x2 ∈ P2(p).
A relation R : X1 � X2 is a p-bisimulation between model M1 and model M2
if R is a p-simulation of M1 by M2, and R−1 is a p-simulation of M2 by M1.

Recall from the definition of p-bisimulations for general flow systems that if R
is a p-bisimulation between M1 and M2, then we have dom(Φ1a) ⊆ dom(R) and
dom(Φ2a) ⊆ ran(R) for each system label a ∈ Sys.
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Theorem 2. [Semantic preservation of GFL� for p-bisimulations]
Fix a signature Σ = (Sys, Prp), and for i = 1, 2, let Mi = (Xi, Li, Si, Pi) be
two logic models of signature Σ, and suppose B : X1 � X2 is a p-bisimulation
between M1 and M2. Then for all x1 ∈ X1 and x2 ∈ X2, if x1 B x2, then for
all ϕ ∈ F(Σ),

[
x1 ∈ �ϕ �M1

st ⇔ x2 ∈ �ϕ �M2
st

]
.

Corollary 1. If B : X1 � X2 is a p-bisimulation between M1 and M2, and both
B and B−1 are total maps (on X1 and X2, respectively), then for all formulas
ϕ ∈ F(Σ), M1 |= ϕ iff M2 |= ϕ .

A journal-length paper covering this material, with detailed proofs and more
examples, is available from the authors.
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Abstract. We consider the dynamic feedback problem in a class of hybrid sys-
tems modeled as (infinite) state deterministic transition systems, in which the con-
tinuous variables are available for measurement. The contribution of the present
paper is twofold. First, a novel framework for performing dynamic feedback is
proposed which relies on partial orders on the sets of inputs and of discrete states.
Within this framework, a state estimator updates a lower and an upper bound of
the set of current states. A controller then uses such upper and lower bounds to
compute the upper and lower bounds of the set of inputs that maintain the cur-
rent state in a desired set. Second, we show that under dynamic controllability
assumptions, the conditions that allow to apply the developed algorithms can al-
ways be verified. Therefore, the partial order approach to dynamic feedback is
general. A multi-robot system is presented to show the computational advantages
in a system in which the size of the state set can be so large as to render enumer-
ation and exhaustive techniques inapplicable.

1 Introduction

Controller design problems under language specification have been extensively studied
for discrete systems in the computer science literature (see [10] for an overview). A
control perspective in the context of discrete event systems was given by [7]. The ap-
proach has been extended to specific classes of hybrid systems such as timed automata
[1] and rectangular automata [11]. These works are mainly concerned with state feed-
back. An output map is considered in the literature of viability theory for hybrid systems
(see for example [2] and [5]), in which static output feedback is usually performed. In
this paper, we consider the dynamic control problem for systems with continuous and
discrete variables in the case in which the continuous variables are measured. This sim-
plified scenario has practical interest in multi-robot systems in which the continuous
variables represent the position and the velocity of a robot, while the discrete variables
regulate the internal communication and coordination protocol. This work thus relates
also to the computer science literature addressing control under partial observation of
automata and of discrete event systems. In [7], the control problem of discrete event
systems under language specifications is considered. The proposed control algorithms
with full observation have polynomial complexity in the number of states. In the case of
partial observations, the control problem becomes NP complete at worse. In a practical
system, the number of states can be exponential in the number of constituent processes,
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and therefore these control methodologies are prohibitive. Caines and Wang [6], con-
sider the problem of steering the state of a partially observed automata to a final desired
state. A dynamic programming methodology is proposed, which leads to a complexity
of the control computation that is polynomial in the size of the state set, of the input
set, and of the output set. Modular synthesis and special structures on the process are
suggested (by [8], for example) in order to reduce computation.

In this work, we exploit a partial order structure on the set of inputs and of states
to construct a feedback system that updates the lower and upper bound of the set of
possible current system states and gives as output the lower and upper bounds of the
set of inputs that satisfy the system specifications. This can be achieved under suitable
order preserving assumptions of the system dynamics with respect to the state and to
the input. We then show that if the system is controllable by dynamic output feedback
one can always find partial orders on which the assumptions needed for the construction
of the proposed controller are verified. We finally show how these assumptions can be
relaxed. A multi-robot example is proposed, which shows how to apply the proposed
methodology in an attack-defense scenario. This paper is organized as follows. In sec-
tion 2, we introduce the system model. In section 3, we introduce the control problem
on a partial order. In section 4, we give a solution to the problem and in Section 5 we
show that the proposed construction is possible if the system is controllable. In sec-
tion 6, a relaxed version of the main theorem is proposed and a multi-robot example is
illustrated. An appendix contains notions on partial order theory and the proofs.

2 Deterministic Transition Systems

Definition 1. A deterministic transition system is a tuple Σ = (Q,I,Y, F, g) in which
Q is a set of states, Y is a set of outputs, I is a set of inputs, F : Q × I −→ Q is a
transition function, and g : Q −→ Y is an output function.

An execution of Σ is any sequence σ = {s(k)}k∈N such that s(0) ∈ Q and s(k + 1) =
F(s(k), u(k)) for u(k) ∈ I for all k ∈ N. The set of all executions of Σ is denoted
E(Σ). The output sequence g(σ) is also denoted {y(k)}k∈N with y(k) = g(s(k)). Given a
system execution σ, s(k) = σ(k)(s) denotes the value of the state at step k along such
an execution. Let S ⊆ Q be a subset of the state set. We would like to design a control
algorithm that based on the output sequence {y(k)}k∈N of Σ determines control inputs
that guarantee that σ(k)(s) ∈ S for all k. The initial set, denoted X0 ⊆ Q is the set in
which the initial condition of the system Σ is constrained to lie, that is, s(0) ∈ X0. The
next definition proposes a concept of dynamic output feedback analogous to the one
proposed by [9].

Definition 2. The system Σ is said to be controllable by dynamic output feedback
with respect to set S and initial set X0 ⊆ S if there exist a feedback system Σ f =

(P(Q),Y,P(I),H2,H1) such that for all executions σ ∈ E(Σ) with output sequence
{y(k)}k∈N if X(k + 1) = H2(X(k), y(k)), u(k) ∈ H1(X(k), y(k)), with X(0) = X0, then (i)
σ(k)(s) ∈ X(k) and (ii) X(k) ⊆ S for all k.

In this definition, X(k) is the set of all possible states compatible with the system dynam-
ics and with the output sequence, while H2 is the update function of a state estimator.
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The function H1 for all set of possible states X, determines the set of inputs that map
such a set inside S . Let y ∈ Y, we denote the set of all possible states compatible with
such an output by Oy(Σ) = {s ∈ Q | g(s) = y}. We refer to this set as an output set.

Proposition 1. Let X0 ⊆ S . System Σ is controllable by dynamic output feedback with
respect to set S and initial set X0 ⊆ S if and only if {u ∈ I | F(Oy(Σ) ∩ S , u) ⊆ S } � ∅.
The theorems that will be proven rely on the condition that a system is controllable by
dynamic output feedback with respect to a set S . This proposition allows to replace such
controllability condition by {u ∈ I | F(Oy(Σ) ∩ S , u) ⊆ S } � ∅ for all y ∈ Y. In this pa-
per, we do not focus on the problem of checking whether the condition of Proposition 1
is verified in a given system, but we focus on how to construct a dynamic feedback
controller when such a condition is verified. For completeness, a system Σ is said to be
controllable by static output feedback if for all y ∈ Y the set {u ∈ I | F(Oy(Σ), u) ⊆ S }
is not empty. A system that is controllable by dynamic output feedback is not neces-
sarily controllable by static output feedback. In fact, in the static output feedback no
memory is needed in the controller. This memory is instead used in the dynamic output
feedback case, in which a state estimator on-line restricts at each step the set of all pos-
sible current system states. We next specialize the structure of system Σ to explicitly
model the evolution of continuous and discrete variables.

3 Problem Setup

Given a deterministic transition system Σ = (Q,I,Y, F, g), we specialize it to the case
Q = A × Z, in which A is a discrete set of variables denoted α ∈ A, Z is a set of
continuous variables denoted z ∈ Z, and I is a discrete set of inputs denoted u ∈ I.
The transition function is the pair F = ( f , h), in which f : A × Z × I −→ A and
h : A × Z −→ Z. The set of outputs is defined as Y = Z × Z and the output
function is g : A × Z −→ Y. For the remainder of this paper, we denote by Σ =
(A×Z,I,Y, ( f , h), g) the system represented by the following difference equations

α(k + 1) = f (α(k), z(k), u(k)), z(k + 1) = h(α(k), z(k)) (1)

(y1(k), y2(k)) = (z(k), h(α(k), z(k))) .

Any execution of the system Σ is of the formσ = {α(k), z(k)}k∈N and the output sequence
is given by {y(k)}k∈N = {y1(k), y2(k)}k∈N. Given any execution σ of the system, we will
denote the values of z and α at step k along such an execution by σ(k)(z) and σ(k)(α),
respectively. Given the measured variables z, we consider the problem of determining
the input u such that the discrete state α is kept inside a set S ⊆ A. IfA and I are finite
and discrete, in order to compute the set of inputs that map a set X ⊆ A inside S , we
can compute f (α, z, u) for all u ∈ I and all α ∈ X and check whether it is contained in
S . Assuming the size of X and the size of S of the order of the size ofA, this requires
a number of computations of order |I||A|2. IfA is given by the product of a number of
sets (as it is in the multi-agent systems that we consider) this approach is not practical
as the number of computations is exponential in the number of agents. We thus propose
an alternative procedure, whose idea can be explained in the following simple example.
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Assume α ∈ N, X = [2, 11], S = [1, 10], u ∈ Z, and that f (α, z, u) = f (α, u) = α + u.
For computing the set of inputs in Z such that f (X, u) ⊂ S , it is enough to compute
the set of u ∈ Z such that f (2, u) ≥ 1 and the set of u ∈ Z such that f (11, u) ≤
10, and then intersect these two sets. These two sets are intervals in Z: [−1,∞) and
(−∞,−1], respectively. The intersection of these two sets gives the answer u = {−1}.
This simplification is due to the fact that the spaces A and I are equipped with an
order (total in this case), while the function f preserves such orders. This argument will
be formalized in a general framework in this paper by using partial order theory. We
next state the problem of determining a feedback system Σ f that updates the lower and
upper bounds of the set of possible current states and gives as output the lower and
upper bounds of the set of allowed inputs.

Problem 1. (Dynamic Output Feedback on a Lattice) Given system Σ = (A×Z,I,Y,
( f , h), g) with initial set X0 ⊆ S , find a deterministic transition system Σ f = (χ×χ,Y, Ĩ×
Ĩ, (H21,H22), (H11,H12)) with H21 : χ × χ × Y → χ, H22 : χ × χ × Y → χ, H11 :
χ × χ × Y → Ĩ, H12 : χ × χ × Y → Ĩ, (χ,≤) and (Ĩ,≤) lattices, with A ⊆ χ and
I ⊆ Ĩ, such that if u(k) ∈ [H11(L(k),U(k), y(k)),H12(L(k),U(k), y(k))] ∩ I, L(k + 1) =
H21(L(k),U(k), y(k)), U(k + 1) = H22(L(k),U(k), y(k)), L(0),U(0) ∈ χ, and {y(k)}k≥0 =

g(σ), we have (i) σ(k)(α) ∈ [L(k),U(k)] ∩A and (ii) [L(k),U(k)] ∩A ⊆ S .

The variables L(k) and U(k) are the lower and the upper bounds in a partial order (χ,≤)
of the set of possible current states. The functions H11 and H12 determine the lower
and upper bounds of the set of inputs that map the set [L(k),U(k)] ∩A inside S . In the
next section, we determine the form of the functions H11,H12,H21,H22 that solve this
problem.

4 Problem Solution

To solve Problem 1, we need to re-define the original system on the partial orders.

Definition 3. Consider the system Σ = (A × Z,I,Y, ( f , h), g). An extension of Σ on
partial orders (χ,≤) and (Ĩ,≤) with A ⊆ χ and I ⊆ Ĩ is given by a new system
Σ̃ = (χ × Z, Ĩ,Y, ( f̃ , h̃), g̃), in which

(i) (Ĩ,≤) =
⋃

x(Ĩ(x),≤), where for all x ∈ χ, (Ĩ(x),≤) is a sublattice of (Ĩ,≤) with
I ⊆ Ĩ(x) and with the sublattices (Ĩ(x),≤) for all x ∈ χ compatible partial orders;

(ii) f̃ |A×Z×I = f , h̃|A×Z = h, and g̃|A×Z = g.

Item (i) requires to have input set extensions allowed at different states in χ, which
all contain the inputs in I. Item (ii) requires that the extended system is equal to the
original system when restricted to the original sets A and I. In the sequel, we will
denote by Σ̃|I the system Σ̃ in which the input set is restricted to I.

Definition 4. The pair (Σ̃, (χ,≤)) is said to be output interval compatible if

(i) for all y ∈ Y, Oy(Σ̃) is an interval lattice, that is, Oy(Σ̃) = [∧Oy(Σ̃),∨Oy(Σ̃)];
(ii) f̃ : ([∧Oy(Σ̃),∨Oy(Σ̃)], z, u)→ [ f̃ (∧Oy(Σ̃), z, u), f̃ (∨Oy(Σ̃), z, u)] is an order isomor-

phism for all (z, u) ∈ Z × I.



A Partial Order Approach to Discrete Dynamic Feedback 163

If the pair (Σ̃, (χ,≤)) is output interval compatible, we can use the result of [4], in which
a state estimator on a partial order that updates a lower bound L and an upper bound U
of the set of all possible current states is given by the update laws

L(k + 1) = f̃ (L(k) �
∧

Oy(k)(Σ̃), z(k), u(k)) (2)

U(k + 1) = f̃ (U(k) �
∨

Oy(k)(Σ̃), z(k), u(k)). (3)

These update laws are such that σ(k)(α) ∈ [L(k),U(k)] ∩ A. As a consequence, the
functions H21 and H22 that solve item (i) of Problem 1 are given by equations (2) and
(3), respectively. One contribution of this work is to determine also the functions H11

and H12 of Problem 1, which determine the dynamic feedback law. In order to proceed,
we give the following definition.

Definition 5. The pair (Σ̃, (Ĩ,≤)) is input interval compatible if for all x ∈ χ and z ∈ Z

(i) f̃ : (x, z, Ĩ(x))→ [ f̃ (x, z,∧Ĩ(x)), f̃ (x, z,∨Ĩ(x))] is order preserving and onto;
(ii) f̃ : (x, z, Ĩ(x))→ [ f̃ (x, z,∧Ĩ(x)), f̃ (x, z,∨Ĩ(x)] is either�-preserving or f̃ (x, z,∨Ĩ(x))
=
∨S̃ , and it is either �-preserving or f̃ (x, z,∧Ĩ(x)) = ∧S̃ .

This definition establishes that f̃ preserves the order in the second argument. The � (�)
preserving properties guarantee that the set of inputs that is mapped to the same point
through f̃ is a lattice. The following theorem gives the expressions of the functions
H11 and H12. A pictorial interpretation of H11 and H12 is given in Figure 1. Denote
f̃ −1
x,z (w) := {u ∈ Ĩ(x) | f (x, z, u) = w}.

Theorem 1. Let system Σ = (A×Z,I,Y, ( f , h), g) be controllable by dynamic output
feedback with respect to S ⊆ A and initial set X0 ⊆ S . Let (χ,≤) and (Ĩ,≤) be such
that A ⊆ χ and I ⊆ Ĩ. Let S̃ ⊆ χ be an interval lattice such that S̃ ∩ A = S . Assume
that the extension Σ̃ = (χ ×Z, Ĩ,Y, ( f̃ , h̃), g̃) is such that

(i) Σ̃ |I is controllable by dynamic output feedback with respect to S̃ ;
(ii) the pair (Σ̃, (χ,≤)) is output interval compatible;

(iii) the pair (Σ̃, (Ĩ,≤)) is input interval compatible.

Then, a solution to Problem 1, Σ f , is given by functions H21 and H22 given by expres-
sions (2) and (3), respectively, with L(0) = ∧S̃ , U(0) = ∨S̃ , and

H11(L(k),U(k), y(k)) =
∧

f̃ −1
L′(k),z(k)

(
f̃ (L′(k), z(k),

∧Ĩ(L′(k))) �
∧

S̃
)

�
∧

f̃ −1
U′ (k),z(k)

(
f̃ (U ′(k), z(k),

∧Ĩ(U ′(k))) �
∧

S̃
)

H12(L(k),U(k), y(k)) =
∨

f̃ −1
L′(k),z(k)

(
f̃ (L′(k), z(k),

∨Ĩ(L′(k))) �
∨

S̃
)

�
∨

f̃ −1
U′ (k),z(k)

(
f̃ (U ′(k), z(k),

∨Ĩ(U ′(k))) �
∨

S̃
)
,

(4)

in which L′(k) = L(k) � ∧Oy(k)(Σ̃), U ′(k) = U(k) � ∨Oy(k)(Σ̃).
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d
∧

S̃

∨
f̃ −1
L′ (c)

∧
f̃ −1
U′ (b) ∧ Ĩ

∧
f̃ −1
L′ (d)

∨ Ĩ

b

∨
f̃ −1
U′ (a)

U ′ ∨
S̃

f̃ (U′, [
∧ Ĩ(U′),

∨ Ĩ(U′)])

L′
f̃ (L′, [

∧ Ĩ(L′),
∨ Ĩ(L′)])

c

a

Fig. 1. Abstraction of Hasse diagrams to rhombi. In the picture, a = f̃ (U′,∨Ĩ(U′)) � ∨S̃ , b =
f̃ (U′,∧Ĩ(U′)) � ∧S̃ , c = f̃ (L′,∨Ĩ(L′)) � ∨S̃ , d = f̃ (L′,∧Ĩ(L′)) � ∧S̃ , H11 =

∨f̃ −1
U′ (a), and H12 =

∧f̃ −1
L′ (d). The dependencies on z and on k have been omitted.

5 Generality of the Partial Order Approach

We next show that if the system Σ is controllable by dynamic output feedback, the
assumptions of Theorem 1 can be verified by suitable choices of (χ,≤), (Ĩ,≤), and Σ̃.

Theorem 2. If system Σ is controllable by dynamic output feedback with respect to
S ⊆ A and initial set X0 ⊆ S , then there are partial orders (χ,≤) and (Ĩ,≤), an
interval lattice S̃ ⊆ χ with S̃ ∩A = S , and an extension Σ̃, such that Σ̃ |I is controllable
by dynamic output feedback with respect to S̃ , (Σ̃, (χ,≤)) is output interval compatible,
and (Σ̃, (Ĩ,≤)) is input interval compatible.

The assumption that Σ is controllable by dynamic output feedback with respect to S is
needed to show that Σ̃|I is also controllable by dynamic output feedback with respect to
the interval lattice S̃ . Such assumption is not needed to show output and input interval
compatibility of (Σ̃, (χ,≤)) and of (Σ̃, (Ĩ,≤)), respectively. In case Σ is not controllable
by dynamic output feedback with respect to S , Σ̃|I will also not be controllable by
dynamic output feedback with respect to any interval lattice S̃ such that S̃ ∩A = S and
for any choice of partial orders. This implies that [H11,H12] ∩ I might be empty.

Example 1. The proof of Theorem 2 is constructive (see Appendix). We illustrate in
this example how to construct the extended input partial order on a finite state/finite
input system. Let A = {α1, α2, α3}, I = {u1, u2, u3}, and let the update function F be
given in the table of Figure 2. According to the proof of Theorem 2, we have (χ,≤) =
(P(A),⊆) and for all x ∈ χ, we have Ĩ(x) = P(I) ∪ Ix, in which Ix contains “silent
inputs” introduced to satisfy the onto property of item (i) of Definition 5. We start with
x = α1 � α2 � α3. By computing f̃ (x, ũ) (with f̃ (x, ũ) = f (x, ũ) where x ⊆ A and
ũ ⊆ I in the righthand side) for all ũ ∈ P(I), we note that f̃ (x, ũ) = α1 � α2 � α3 for
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ũ ∈ {u1 � u2 � u3, u1 � u2, u2, u2 � u3}, f̃ (x, ũ) = α1 � α2 for ũ ∈ {u1, u2 � u3}, f̃ (x, u3) =
α1. As a consequence, the elements in χ that are less than f̃ (x, u1 � u2 � u3) (where
u1�u2�u3 =

∨Ĩ(x)) for which there is not an input in P(I) that map x to them are given
by {α1 �α2, α2, α2 �α3, α3}. Thus, the set of silent inputs is Ix = {ε1, ε2, ε3, ε4} such that
f̃ (x, ε1) = α1 �α2, f̃ (x, ε2) = α2, f̃ (x, ε3) = α2 �α3, f̃ (x, ε4) = α3. We then establish the
order among the elements in Ix ∪P(I) by following the procedure outlined in item 3 of
the proof of Theorem 2 to guarantee the �-preserving property of item (ii) of Definition
5. Since f̃ (x, ε1)−< α1 �α2 �α3 and supũ∈P(I){ũ | f̃ (x, ũ) = α1 �α2 �α3} = u1 � u2 � u3,
we set ε1−< u1 � u2 � u3. Also, f̃ (x, ε1) >−α1 and supũ∈P(I){ũ | f̃ (x, ũ) = α1} = u3. Then,
we set ε1 >−u3. Finally, ε1 >−ε2 because f̃ (x, ε1) >− f̃ (x, ε2). Proceeding in a similar way
for all of the other silent inputs, we obtain the additional relations: ε2−< ε3, ε4−< ε3,
ε4−< u1 � u3, ε3−< u1 � u2 � u3. The resulting extended input partial order Ĩ(x) is shown
in the left plot of Figure 2. For x = α2 � α3, the resulting Ĩ(x) is shown in the right plot
of Figure 2.The reader can verify that when x = αi for some i, Ix = ∅.

u1 u2 u3

ε2ε4

⊥

ε1

Ĩ(x)
x = α1 � α3

ε3

u1 u2 u3 ε2 ε4

⊥

Ĩ(x)
x = α1 � α2 � α3

ε1 ε3

α1 α2

u1

u2

u3

α1 α3 α1

α2 α1 α3

α1 α1 α1

α3

Fig. 2. Example 1. The table represents the update function F(α, u). The pictures at the center
and at the right represent the extended input sets for x = α1 � α2 � α3 and x = α1 � α3 with the
associated partial orders, respectively. The blue elements are the silent inputs Ix.

Computational considerations. For a finite state-finite input system, the sizes of Ĩ and
of χ are related to the computational load of the proposed algorithms as these partial
order structures need to be computed and stored in memory. The size of these partial
orders does not affect computation in those systems in which the partial orders have
algebraic properties as we will see in Example 2 of the next section. The amounts of
computation c needed for computing such partial orders can be estimated to be c ≤
K
∑|A|2

i=1 |Xi||I||S |, in which Xi are the sets on which the estimator evolves, |A|2 is the
number of such sets, and K > 0. This amount of computation is comparable to the one
obtained by using enumeration and exhaustive techniques.

In this section, we have shown that the partial order approach to dynamic feedback
is general and that the worst case computation is proportional to the one of exhaustive
searches. The partial orders constructed in the proof of Theorem 2 and in Example
1 are not unique and have mainly a theoretical relevance as they are impractical for
implementation in systems with a large number of states and inputs. Thus, we propose
in the next section a relaxed version of Theorem 1.
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6 Relaxations and Application to a Multi-robot Example

Consider the case in which partial orders (χ,≤) and (Ĩ,≤) have been chosen and the
assumptions of Theorem 1 do not all hold. Some possible relaxations of the basic as-
sumptions of Theorem 1 are as follows:

(R1) the set S̃ ⊆ χ such that S̃ ∩ A = S is given by S̃ =
⋃M

i=1 S̃ i, in which S̃ i are
intervals and S̃ ∩ Oy(Σ̃) is an interval;

(R2) f̃ : χ × Z × I → χ is a piece-wise order isomorphism, that is, for all interval
[L,U] ⊆ χ, we have that there are disjoint intervals [Lj,U j] with

⋃
j[L

j,U j] = [L,U]
such that f̃ ([L j,U j], z, u) → [ f̃ (L j, z, u), f̃ (U j, z, u)] is an order isomorphism for all j
and any u ∈ I;

(R3) for all interval [L,U] ⊆ S̃ ∩ Oy(Σ̃) there are a function f̃ ′ : χ × Ĩ → χ with
f̃ ′ : (x, [∧Ĩ,∧Ĩ]) → [ f̃ ′(x,∧Ĩ), f̃ ′(x,∨Ĩ)] an order isomorphism for all x ∈ χ and an
order preserving map in the first argument, constants L∗ ≤ U∗ ∈ χ, and constants LS ≤
US ∈ χ such that {u ∈ I | f̃ ([L,U], z, u) ⊆ S̃ } ⊇ I∩{ũ ∈ Ĩ | f̃ ′([L∗,U∗], ũ) ⊆ [LS ,US ]},
with the righthand set not empty.

It is always possible to determine a set S̃ that is a union of intervals and any function
can always be broken into order isomorphisms. The expressions of the functions H12

and H11 as given in formulas (4) stay the same, but one should substitute f̃ ′ in place
of f̃ , L∗ and U∗ in place of L′ and U ′, and LS and US in place of ∧S̃ and ∨S̃ . Due to
the piecewise isomorphic nature of the function f̃ , the update laws (2-3) become: L(k +
1) = ∧L̄ j≤Ū j L̄ j, L̄ j = f̃ (L j(k), z(k), u(k)) � ∧Oy(k+1)(Σ̃) and U(k + 1) = ∨L̄ j≤Ū j Ū j, Ū j =

f̃ (U j(k), z(k), u(k)) � ∨Oy(k+1)(Σ̃), in which L j,U j establish the intervals where f̃ is an
order isomorphism in the first argument, and L(0) = ∧Oy(0)(Σ̃), U(0) = ∨Oy(0)(Σ̃).

Example 2. We consider a version of the “capture the flag” game for robots called
“RoboFlag Drill” already considered in [4], in which now the attackers can use their
estimates of the assignments of the opponents to decide the next action to take. Briefly,
some number of robots with positions (zi, 0) ∈ R2, which we refer to as blue robots,
must defend their zone {(x, y) ∈ R2 | y ≤ 0} from an equal number of incoming robots,
which we refer to as red robots. The positions of the red robots are (xi, yi) ∈ R2. The
red robots move toward the blue defensive zone. The blue robots are assigned each
to a red robot and they coordinate to intercept the red robots. In this work, we allow
the red robots to swap their horizontal location with a nearby red robot as appropriate.
Let N represent the number of robots in each team. The RoboFlag Drill system can be
specified by the rules yi(k + 1) = yi(k) − δ if yi(k) ≥ δ,

zi(k + 1) = zi(k) + δ if zi(k) < xαi(k), zi(k + 1) = zi(k) − δ if zi(k) > xαi(k) (5)

(αi(k + 1), αi+1(k + 1)) = (αi+1(k), αi(k)) if xαi(k) ≥ zi+1(k) ∧ xαi+1(k) ≤ zi+1(k) (6)

(xi(k + 1), xi+1(k + 1)) = (xi+1(k), xi(k)) if swapi,i+1(k). (7)

The variable αi is the red robot that blue robot i is required to intercept. Equation (6)
establishes that two blue robots trade their assignments only when the current assign-
ments cause them to go toward each other. Rule (7) allows two adjacent red robots
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to swap their horizontal position. If the red robots never swap horizontal position, the
assignments of the blue robot reaches an equilibrium value in which no more conflicts
among the assignments of the blue robots are present (the attackers have all been in-
tercepted). In this work, we want to solve the following problem: Given measurements
z(k) determine control inputs swapi,i+1(k) such that there are always at least two pairs
of blue robots with conflicting assignments. To formalize this problem, we translate the
rules (5-6-7) to the form Σ = (A × Z,I,Y, ( f , h), g). Thus, let {1, ...,N} be the loca-
tions at which the red robots can reside, that is, the location denotes the order along
the x direction at which the red robots are displaced. With abuse of notation, let xi de-
note the x coordinate of location i and αi the location to which blue robot i is assigned.
We assume xi ≤ zi ≤ xi+1 for all i and for all time. We set A = perm(N), Z = RN ,
I = {u ∈ {−1, 0, 1}N | ui = 1 ⇔ ui+1 = −1, uN � 1, u1 � −1} (ui = 1 iff swapi,i+1 is
true), Y = RN × RN . The functions are defined as follows: f (α, z, u) = G(F(α, z), u), in
which F(α, z) is represented by relations (6) and G(β, u) = β′, with u j = 1 ⇒ [(if βi =

j ⇒ β′i = j + 1) and (if βi = j + 1 ⇒ β′i = j)]. The function h(α, z) is represented
by relations (5). Let the entropy of the blue robots be defined by E = 1

2

∑N
i=1 |αi − i|.

In the absence of input to the system (i.e. u(k) = 0 for all k), E converges to zero.
We define the set S as S = {α | E ≥ 2}, which can be computed and is given by
S = {α | ∃ i, j, with j > i + 1 such that αi � i and α j � j}. If α ∈ S , there are at least
two pairs of blue robots with conflicting assignments.

To apply the dynamic control algorithm using the relaxations (R1-R2-R3), we need
to determine the partial orders (χ,≤) and (Ĩ,≤), the set S̃ satisfying item (R1), the ex-
tended function f̃ , and finally the function f̃ ′ with the intervals [L∗,U∗] and [LS ,US ]
as given in item (R3). Set (χ,≤) = (NN ,≤) with order established component-wise.
Given any set X ⊆ NN , we denote [X] j the projection along j of such set. Then, a
set S̃ ⊆ χ is given by S̃ =

⋃
i S̃ i, in which S̃ i for each i are intervals of four types:

(a) there are l < j such that [S i]l = [l + 1,N] and [S i] j = [ j + 1,N]; (b) there are
l < j such that [S i]l = [1, l − 1] and [S i] j = [ j + 1,N]; (c) there are l < j with
j > l + 1 such that [S i]l = [l + 1,N] and [S i] j = [1, j − 1]; (d) there are l < j
such that [S i]l = [1, l − 1] and [S i] j = [1, j − 1]. This can be checked by recall-
ing that α ∈ ⋃i S̃ i if α ∈ S̃ i for some i. Define the extension F̃ : χ × Z → χ as
F with now α ∈ NN . Clearly, F̃|A×Z = F. Also, we define h̃ : χ × Z → Z as h
with α ∈ NN , for which h̃|A×Z = h. One can check that the output set is an inter-
val and that the function F̃ is an order isomorphism on the output set. The function
G̃ : χ × I → χ is defined as G in which the first argument belongs to NN . Then
f̃ = G̃ ◦ F̃, in which one can check that f̃A×Z×I = f . We thus have defined the extended
system Σ̃ = (χ × Z,Y,I, ( f̃ , h̃), g̃). For the input set, we consider Ĩ = {−1, 0, 1}N
with order established componentwise. It is easy to show that the extended system
Σ̃|I = (χ × Z,I,Y, ( f̃ , h̃), g̃) satisfies the dynamic controllability condition with re-
spect to S̃ if N > 4. We are left to determine the function f̃ ′ with the intervals [L∗,U∗]
and [LS ,US ] as given in item (R3). For all x = (x1, ..., xN) ∈ χ and ũ = (ũ1, ..., ũN) ∈ Ĩ,
we set f̃ ′(x, ũ) = ( f̃ ′1(x1, ũ1), ..., f̃ ′N(xN , ũN)), in which f̃ ′(xi, ũi) := xi + ũi. The follow-
ing algorithm, computes the sets [L∗,U∗] and [LS ,US ] component-wise for all intervals
[L,U] ⊆ S̃ ∩ Oy(Σ̃). Let P′ = F̃([L,U], z)
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Fig. 3. Convergence plots of the estimator and of the entropy with N = 15 and α(0) =
(4, 8, 9, 2, 13, 15, 6, 5, 12, 10, 1, 14, 3, 7, 11). For the controlled system E > 2 always. From the
uncontrolled system plot, one realizes that a strategy that estimates the state first and then com-
putes the controller once the estimator has converged does not work.

Algorithm

Initialize f lagi = 0, L∗i = U∗i = i, LS
i = 1, and US

i = N for all i
For i = 1 : N

If min(P′i) = i and f lagi−1 = 0 =⇒ LS
i = 1, US

i = i − 1 and f lagi = 1
End
For i = 2 : N

If max(P′i−1) = i − 1 and f lagi−1 = 0 =⇒ LS
i−1 = i, US

i−1 = N and f lagi = 1
End
For i = 1 : N

If min(P′i) ≥ i + 1 and f lagi+1 = 0 =⇒ L∗i = U∗i = i + 1, LS
i = i + 1, US

i = N
If max(P′i) ≤ i − 1 and f lagi = 0 =⇒ L∗i = U∗i = i − 1, LS

i = 1 US
i = i − 1

End.

The idea behind this algorithm is as follows. Say that [P′]i = [i,N] and that we want to
remove i from it by swapping red robot i with red robot i−1. This can be done by asking
that i + ũi ∈ [1, i − 1], which gives ũi ≤ −1. Finally, note that the function f̃ is a com-
position of a function F̃, which is an order isomorphism, and a function G̃, which is a
piecewise order isomorphism. To see this, let ũi = −1 and P′i = [i,N] for example, then
we can re-write [i,N] = [i, i]∪ [i+ 1,N] so that G̃i : ([i, i],−1)→ [G̃i(i,−1), G̃i(i, 1)] =
[i − 1, i − 1] and G̃i : ([i + 1,N],−1)→ [G̃i(i + 1,−1), G̃i(N,−1)] = [i + 1,N] are order
isomorphisms. Figure 3 shows the behavior of the estimator error (given by W(k) =
1/N
∑N

i=1 |mi(k)|, in which mi(k) is the coordinate set [Li(k),Ui(k)] minus all the single-
tons that occur at other coordinates) and of the entropy E(k) = 1/2

∑N
i=1 |αi(k) − i|. In

this example, the computation requirement for the implementation of the dynamic con-
troller is proportional to N (number of variables to control and estimate). If we had not
used any structure, we would have had a number of computations at least of the order
of (N!)2 as the size of the output set and of the set S are both of the order of N!. Note
also that this simplification is not due to the fact that the dynamics decouples as it is
heavily coupled between the robots.

7 Conclusions

We have proposed a partial order approach to dynamic feedback for the discrete vari-
ables of a hybrid system, which relies on partial order theory to compute only suitable
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lower and upper bounds to determine the dynamic controller. We have shown that such
an approach is general as it can be applied to any system that is controllable by dynamic
output feedback. The worst case computation load of the proposed approach does not
exceed the one of exhaustive searches under partial observations. The main computa-
tional advantage is obtained when one can choose suitable partial orders in which the
computation of joins and meets is efficiently performed. A multi-robot example showed
this point. The next step is to consider the dynamic feedback problem also for the con-
tinuous variables and establish system structures that allow efficient choices of partial
orders. As we mentioned, this work was not concerned with analysis problems: these
are left to our future work, in which we would like to determine efficient computations
of escape tubes and controlled invariance kernels by the computation of suitable lower
and upper bounds, only. Finally, we plan to consider in our future work uncertainty in
the system dynamics by modeling it as nondeterminism. On the application side, we
will extend these results to the design of safety controllers under partial observation in
the context of intelligent transportation systems.
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Appendix I. Partial Order Theory

In this section, we introduce the main notation and definitions about partial orders that
will be used in this work. For a complete overview, the reader is referred to [3]. A partial
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order is a set χ with a partial order relation “≤”, and we denote it by the pair (χ,≤). for
all x,w ∈ χ, the sup{x,w} is the smallest element that is larger than both x and w. In a
similar way, the inf{x,w} is the largest element that is smaller than both x and w. We
define the join “�” and the meet “�” of two elements x and w in χ as x � w = sup{x,w}
and x�w = inf{x,w}. If S ⊆ χ, ∨S = sup S and ∧S = inf S . If x�w ∈ χ and x�w ∈ χ
for all x,w ∈ χ, then (χ,≤) is a lattice. Let (χ,≤) be a lattice and let S ⊆ χ be a non-
empty subset of χ. Then, (S ,≤) is a sublattice of χ if a, b ∈ S implies that a� b ∈ S and
a�b ∈ S . Any interval sublattice of (χ,≤) is given by [L,U] = {w ∈ χ | L ≤ w ≤ U} for
L,U ∈ χ. That is, this special sublattice can be represented by only two elements. for all
set S , we denote by P(S ) the set of all subsets of S . On P(S ), it is possible to establish
a partial order relation determined by the inclusion relation. Therefore, (P(S ),≤) with
“≤” established by the inclusion relation is a lattice. Let (χ,≤) be a partial order and let
x,w ∈ χ. We will use the notation x−< w to say that x ≤ w and there is not an element
that is larger than x and smaller than w; we will use the notation x >−w to say that x ≥ w
and there is not an element that is larger than x and smaller than w. for all w, x ∈ χ,
we denote w ‖ x if they are not related by the order relation. Let (P,≤P) and (Q,≤Q)
be two partial orders and let X = P ∩ Q. They are said to be compatible partial orders
if for all pair x1, x2 ∈ X we have that x1 ≤P x2 if and only if x1 ≤Q x2. Let (P,≤P)
and (Q,≤Q) be two compatible partial orders. Then, the union of the two partial orders,
denoted (P,≤P) ∪ (Q,≤Q) is the new partial order (R,≤), in which R = P ∪ Q and for
all x1, x2 ∈ R we have that x1 ≤ x2 if and only if x1 ≤Q x2 or x1 ≤P x2. In the sequel,
when we will have two compatible partial orders, we will omit the subscript of “≤” as
there will be no ambiguity on the partial order relation between any two elements. We
now consider maps on partial orders. Let (P,≤) and (Q,≤) be partially ordered sets. A
map f : P → Q is (i) an order preserving map if x ≤ w =⇒ f (x) ≤ f (w); (ii) an
order embedding if x ≤ w ⇐⇒ f (x) ≤ f (w); (iii) an order isomorphism if it is order
embedding and it maps P onto Q. The map f : P → Q is said to be �-preserving if for
all x,w ∈ P, we have that f (x � w) = f (x) � f (w). It is said to be �-preserving if for all
x,w ∈ P, we have that f (x�w) = f (x)� f (w). One can show that if f is order preserving,
then for all x, y ∈ P, we have that f (x) � f (w) ≤ f (x � w) and f (x) � f (w) ≥ f (x � w).

Appendix II. Proof of Theorems and Propositions

Proof. (Proof of Proposition 1) (⇐)Choose functions H1 and H2 as H2(X(k), y(k)) =
F(X(k) ∩ Oy(k)(Σ), u(k)), u(k) ∈ H1(X(k), y(k)) with H1(X(k), y(k)) = {u ∈ I | F(X(k) ∩
Oy(k)(Σ), u) ⊂ S } and X(0) = X0. We show that the set H1(X(k), y(k)) is not empty for all
k and that properties (i) and (ii) of Definition 2 are satisfied. We proceed by induction
argument on the step k. (Base case) By assumption, X(0) ⊆ S and s(0) ∈ X(0). As a
consequence, {u ∈ I | F(X(0)∩Oy(0)(Σ), u) ⊆ S } is not empty. (Induction step) Assume
X(k) ⊆ S and s(k) ∈ X(k), then H1(X(k), y(k)) = {u ∈ I | F(X(k)∩Oy(k)(Σ), u) ⊆ S } � ∅
because {u ∈ I | F(X(k) ∩ Oy(k)(Σ), u) ⊆ S } ⊇ {u ∈ I | F(S ∩ Oy(k)(Σ), u) ⊆ S } and
the latter set is nonempty by assumption. Thus, if u(k) ∈ H1(X(k), y(k)) we have by
construction that X(k+1) ⊆ S . Also, since s(k) ∈ X(k) and s(k) ∈ Oy(k)(Σ), we have that
s(k + 1) ∈ X(k + 1).
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(⇒) Assume that {u ∈ I | F(Oy(Σ) ∩ S , u) ⊆ S } = ∅ for some y. Let s(0) ∈ S
be such that y(0) = g(s(0)) and {u ∈ I | F(Oy(0)(Σ) ∩ S , u) ⊆ S } = ∅. Thus {u ∈
I | F(X0 ∩ Oy(0)(Σ), u) ⊆ S } = ∅. Assume that the system is controllable by dynamic
output feedback with respect to X0 ⊆ S . Then, there are functions H1 : P(Q) × Y −→
P(I) and H2 : P(Q) × Y × I −→ P(Q) such that X(1) = H2(X0, y(0)) ⊆ S , s(1) ∈ X(1)
and u(0) ∈ H1(X0, y(0)). For guaranteeing s(1) ∈ X(1) with s(1) = F(s(0), u(0)) and
s(0) ∈ X0 ∩ Oy(0)(Σ), we need that F(X0 ∩ Oy(0)(Σ), u(0)) ⊆ X(1). However, F(X0 ∩
Oy(0)(Σ), u(0)) � S and X(1) ⊆ S . This leads to a contradiction.

Proof. (Proof of Theorem 1) The dependencies on z are neglected. Equations (2-3)
imply that α(k) ∈ [L(k),U(k)] ∩ A. Thus, property (i) of Problem 1 is true. We next
show that
(a) {u ∈ I | f̃ ([L′(k),U ′(k)], u) ⊆ [∧S̃ ,∨S̃ ]} = I∩ [H11(L(k),U(k), y(k)),H12(L(k),U(k),

y(k))];
(b) [H11(L(k),U(k), y(k)), H12(L(k),U(k), y(k))]∩ I is not empty.

Proof of (a). Since [L′(k),U ′(k)] ⊆ Oy(k)(Σ̃), the function f̃ preserves the ordering
in the first argument. As a consequence, we have that {u ∈ I | f̃ ([L′(k),U ′(k)], u) ⊆
[∧S̃ ,∨S̃ ]} = {u ∈ I | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ } ∩ {u ∈ I | ∧S̃ ≤ f̃ (U ′(k), u) ≤ ∨S̃ }. Also, we
have that {u ∈ I | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ } = I ∩ {u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ }
and that {u ∈ I | ∧S̃ ≤ f̃ (U′(k), u) ≤ ∨S̃ } = I ∩ {u ∈ Ĩ(U ′(k)) | ∧S̃ ≤ f̃ (U ′(k), u) ≤ ∨S̃ }.
As a consequence, we have that

{u ∈ I | f̃ ([L′(k),U ′(k)], u) ⊆ [
∧

S̃ ,
∨

S̃ ]} =
I ∩ {u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ }∩
{u ∈ Ĩ(U ′(k)) | ∧S̃ ≤ f̃ (U ′(k), u) ≤ ∨S̃ }.

(8)

One can readily verify that {u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ } = f̃ −1
L′(k)(( f̃ (L′(k),

Ĩ(L′(k))) ∩ [∧S̃ ,∨S̃ ]), which derives from the definition of f̃ −1
L′(k). By the onto property

in item (i) of Definition 5, we also have that f̃ (L′(k), Ĩ(L′(k))) = [ f̃ (L′(k),∧Ĩ(L′(k))),
f̃ (L′(k),∨Ĩ(L′(k)))]. As a consequence, we obtain that {u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u)
≤ ∨S̃ } = f̃ −1

L′(k)([ f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃ , f̃ (L′(k),∨Ĩ(L′(k))) � ∨S̃ ]).We are thus left to

show that f̃ −1
L′(k)([ f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃ , f̃ (L′(k), ∨Ĩ(L′(k))) � ∨S̃ ]) = [∧f̃ −1

L′(k)( f̃ (L′(k),
∧Ĩ(L′(k))) � ∧S̃ ),∨f̃ −1

L′(k)( f̃ (L′(k),∨Ĩ(L′(k))) � ∨S̃ )]. To show this, we show that any ele-
ment of the first set belongs to the second and viceversa. Any element of the second set
is also an element of the first set due to the order preserving property of f̃ in the second
argument as established in item (i) of Definition 5. Assume now that u is in the first set,
then f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃ ≤ f̃ (L′(k), u) ≤ f̃ (L′(k),∨Ĩ(L′(k))) � ∨S̃ . We next show
that w ≤ u in which w = ∧f̃ −1

L′(k)

(
f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃

)
. If f̃ (L′(k),∧Ĩ(L′(k))) = ∧S̃ ,

we have that ∧f̃ −1
L′(k)

(
f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃

)
=
∧Ĩ(L′(k)) and therefore we have that

∧f̃ −1
L′(k)( f̃ (L′(k), ∧Ĩ(L′(k))) � ∧S̃ ) ≤ u. If instead f̃ (L′(k),∧Ĩ(L′(k))) � ∧S̃ , by item

(ii) of Definition 5, we have that f̃ is �-preserving in the second argument. Since
w ≤ f̃ (L′(k), u), it must be that either ∧f̃ −1(w) ≤ u or ∧f̃ −1(w) ‖ u by the order
preserving property of f̃ in the second argument. Let us show that ∧f̃ −1(w) ‖ u is
not possible. By the �-preserving property, we have that f̃ (∧f̃ −1

L′(k)(w) � u) = w �
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f̃ (L′(k), u). Since w ≤ f̃ (L′(k), u), we have that w � f̃ (L′(k), u) = w, which in turn
implies that f̃ (L′(k),∧f̃ −1(w) � u) = w. By the definition of ∧f̃ −1

L′(k)(w), it follows that

we must have ∧f̃ −1
L′(k)(w) ≤ u. One can proceed in a similar way to show that u ≤

∨f̃ −1
L′(k)

(
f̃ (L′(k),∨Ĩ(L′(k))) � ∨S̃

)
. As a consequence, we have concluded that

{u ∈ Ĩ(L′(k)) | ∧S̃ ≤ f̃ (L′(k), u) ≤ ∨S̃ } =
[
∧

f̃ −1
L′(k)

(
f̃ (L′(k),

∧Ĩ(L′(k))) �
∧

S̃
)
,
∨

f̃ −1
L′(k)

(
f̃ (L′(k),

∨Ĩ(L′(k))) �
∨

S̃
)
].

(9)

Similar reasonings can be used to show that equation (9) holds for U ′(k). Equations (8),
(9) and (9) with U′(k) in place of L′(k) prove (a). Given (a), to show (b) one can show
that {u ∈ I | f̃ ([L′(k),U ′(k)], u) ⊆ [∧S̃ ,∨S̃ ]} is not empty. This is true if [L′(k),U ′(k)] ⊆
Oy(Σ̃)∩S̃ as by assumption Σ̃|I is controllable by dynamic output feedback with respect
to S̃ . We can show that [L′(k),U ′(k)] ⊆ Oy(k)(Σ̃) ∩ S̃ by induction on the step k. In fact,
[L′(0),U ′(0)] ⊆ Oy(Σ̃) ∩ S̃ as L(0) = ∧S̃ and U(0) = ∨S̃ . Assume that [L′(k),U ′(k)] ⊆
Oy(k)(Σ̃) ∩ S̃ , let us show that also [L′(k + 1),U′(k + 1)] ⊆ Oy(k+1)(Σ̃) ∩ S̃ . Since
[L′(k),U ′(k)] ⊆ Oy(k)(Σ̃) ∩ S̃ , we have that I ∩ [H11(L(k),U(k), y(k)),H12(L(k),U(k),
y(k))] is not empty. We thus can take u(k) ∈ I ∩ [H11(L(k),U(k), y(k)),H12(L(k),U(k),
y(k))] and apply it to the system. By construction of H11(L(k),U(k), y(k)) and H12(L(k),
U(k), y(k)), we have that [L(k + 1),U(k + 1)] ⊆ S̃ . Thus, [L′(k + 1),U′(k + 1)] ⊆
S̃ ∩ Oy(k+1)(Σ̃). Therefore, (b) is shown.

Proof. (Proof of Theorem 2) We determine a system extension Σ̃ and we show that the
properties of Definition 5 are satisfied.

1. Define χ = P(A) and (χ,≤) = (P(A),⊆). The bottom element is ⊥χ = ∅. Let
x ∈ χ be given by x = α1 � ... � αn with αi ∈ A, for all u ∈ I we define the function
f̃ : χ×I → χ as f̃ (x, u) = f (α1, u)�...� f (αn, u) for u ∈ I. Output interval compatibility
of the pair (Σ̃, (χ,≤)) follows immediately.

2. for all x ∈ χ, the extended input set Ĩ(x) is defined as P(I)
⋃

Ix, in which the
order among the elements in P(I) is established according to inclusion relation, and
the sets Ix for all x are called the sets of silent inputs and are defined as follows. for
all ũ ∈ P(I), we have ũ = u1 � ... � up for some ui ∈ I. Then, we define f̃ (x, ũ) =
f̃ (x, u1)� ...� f̃ (x, up). Let us initialize Ix = ∅ and let I = {u1, ..., um}. for all w ∈ χ such
that w ≤ f̃ (x, u1� ...�um), if there is not a ũ ∈ P(I) such that f̃ (x, ũ) = w, define a silent
input ε such that f̃ (x, ε) = w. Thus, we add such silent input to Ix, that is, Ix = Ix ∪ ε.

3.WenextestablishtheorderamongthesilentinputsandtheinputsinP(I).forallε ∈ Ix,
let w = f̃ (x, ε). By construction, f̃ (x, ε) ≤ f̃ (x, u1 � ... � um). Let {w1, ...,wk} be the set of
elements with wi ≤ f̃ (x, u1 � ... � um) such that either wi−< f̃ (x, ε) or wi >− f̃ (x, εi). Let
ũi ∈ Ĩ(x) be such that f̃ (x, ũi) = wi. If ũi ∈ Ix then set ũi >−ε if and only if wi >− f̃ (x, εi) and
ũi−< ε if and only if wi−< f̃ (x, εi). If ũi ∈ P(I), there may be several such inputs so that
f̃ (x, ũi) = wi. Let ũi be the greatest of such inputs, that is, ũi = sup(P(I),≤){ũ | f̃ (x, ũ) = wi}.
(By the way f̃ has been defined on elements ofP(I) it follows that f̃(x, ũi) = wi.) Then, we
set ũi >−ε if and only if wi >− f̃ (x, εi) and ũi−< ε if and only if wi−< f̃ (x, εi). Let⊥I = ∧Ĩ(x)
such that every element that does not have a lower element is strictly greater than it. We
also define f̃ (x,⊥I) = ⊥χ. Note that by construction, the top element of Ĩ(x) is given by
u1 � ... � um =

∨Ĩ(x). By construction, (Ĩ(x),≤) are compatible partial orders.
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From item 2., it follows that f̃ : (x, Ĩ(x)) → [ f̃ (x,∧Ĩ(x)), f̃ (x,∨Ĩ(x))] is onto. To
show that it is also order preserving, we show that for all ũ1 ≤ ũ2 in Ĩ(x) also f̃ (x, ũ1) ≤
f̃ (x, ũ2). Let ũ1,1−< ũ1,2−< ...−< ũ1,k be the chain between ũ1,1 = ũ1 and ũ1,k = ũ2.
Consider any consecutive pair ũ1,i−< ũ1,i+1. Then if ũ1,i, ũ1,i+1 ∈ P(I), by the definition
of f̃ on elements in P(I) given in item 1., we have f̃ (x, ũ1,i) ≤ f̃ (x, ũ1,i+1). If either one
of ũ1,i, ũ1,i+1 is in Ix (that is, it is a silent input), by the definition of the order in item 3.,
we have that ũ1,i−< ũ1,i+1 if and only if f̃ (x, ũ1,i)−< f̃ (x, ũ1,i+1). Since, this holds for all
consecutive pair (ũ1,i, ũ1,i+1), we thus have that f̃ (x, ũ1) ≤ f̃ (x, ũ2).

To show property (ii) of Definition 5, note that S̃ = [⊥χ,∨S̃ ] for ∨S̃ = P(S ) ∈ χ.
As a consequence, we have that f̃ (x,∧I(x)) = ∧S . Thus, we are left to show that
for all x ∈ χ, f̃ (x, ·) is �-preserving in the second argument when the second argu-
ment is ranging in Ĩ(x). Let ũ1, ũ2 ∈ Ĩ(x), we need to show that f̃ (x, ũ1 � ũ2) =
f̃ (x, ũ1) � f̃ (x, ũ2) for all x ∈ χ. By the order preserving property of f̃ in the sec-
ond argument, we already know that f̃ (x, ũ1) � f̃ (x, ũ2) ≤ f̃ (x, ũ1 � ũ2). Let us de-
note f̃ (x, ũ1) � f̃ (x, ũ2) = a and let us in fact show that a = f̃ (x, ũ1 � ũ2). Let ũ be
such that f̃ (x, ũ) = a. If ũ ∈ P(I), then let it be the largest such ũ. Consider the
two chains w1−< w2−< ...−< wk1 and v1−< v2−< ...−< vk2 , in which w1 = f̃ (x, ũ1),
vk2 = wk1 = a, and f̃ (x, ũ2) = v1. for all two consecutive elements on such chains
wi−< wi+1, there are ũ1,i, ũ1,i+1 ∈ Ĩ(x) such that f̃ (x, ũ1,i) = wi and f̃ (x, ũ1,i+1) =
wi+1. If ũ1,i, ũ1,i+1 are both in P(I) then wi ≤ wi+1. Also, if ũ1,i ∈ P(I), we as-
sume it is the largest input such that f̃ (x, ũ1,i) = wi. If one or both of the inputs
ũ1,i, ũ1,i+1 is a silent input, by item 3., we have that ũ1,i−< ũ1,i+1. Since this is true
for all i ∈ {1, ..., k − 1}, we finally obtain that ũ1 ≤ ũ. Repeating this process for
the chain v1−< v2−< ...−< vk2 , one also obtains that ũ2 ≤ ũ. Since ũ1 and ũ2 can-
not have two different joins, it must be that either ũ ≤ ũ1 � ũ2 or ũ1 � ũ2 ≤ ũ. By
the order preserving property of f̃ , we have that ũ1 � ũ2 ≤ ũ implies f̃ (x, ũ1 � ũ2) ≤
f̃ (x, ũ) = a. But, we assumed that a < f̃ (x, ũ1 � ũ2), as a consequence it must be that
ũ ≤ ũ1 � ũ2. However, by definition ũ1 � ũ2 is the smallest element that is larger than
both ũ1 and ũ2. This in turn implies ũ = ũ1 � ũ2 and therefore a = f̃ (x, ũ1 � ũ2).
Finally, we set (Ĩ,≤) as the union of the lattices (Ĩ(x),≤) constructed above. This
union is well defined as all of the partial orders (Ĩ(x),≤) are compatible by construc-
tion. Thus, one can add a bottom and a top element for Ĩ to make (Ĩ,≤) a lattice.
To conclude the proof, we need to show that {u ∈ I | f̃ ([⊥, x], u) ⊆ [⊥,∨S̃ ]} is
not empty for [⊥, x] ⊆ S̃ ∩ Oy(Σ̃). Note that {u ∈ I | f̃ ([⊥, x], u) ⊆ [⊥,∨S̃ ]} =
{u ∈ I | f̃ (x, u) ≤ ∨S̃ }. The latter set is also equal to {u ∈ I | f (x, x) ⊆ S }.
This is not empty as x ⊆ S ∩ Oy(Σ) and Σ is controllable by dynamic output feed-
back with respect to S . Thus, Σ̃|I is controllable by dynamic output feedback with
respect to S̃ .
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Abstract. In this paper we propose a new technique for verification by
simulation of continuous and hybrid dynamical systems with uncertain
initial conditions. We provide an algorithmic methodology that can, in
most cases, verify that the system avoids a set of bad states by conducting
a finite number of simulation runs starting from a finite subset of the set
of possible initial conditions. The novelty of our approach consists in the
use of sensitivity analysis, developed and implemented in the context of
numerical integration, to efficiently characterize the coverage of sampling
trajectories.

1 Introduction

Numerical simulation is a commonly-used method for predicting or validating
the behavior of complex dynamical systems. It is often the case that due to
incomplete knowledge of the initial conditions or the presence of external dis-
turbances, the system in question may have an infinite and non-countable num-
ber of trajectories, only a finite subset of which can be covered by simulation.
Two major directions for attacking this coverage problem have been reported in
the literature. The first approach, see e.g. [ACH+95,DM98,CK98,ADG03,Gir05]
consists of an adaptation of discrete verification techniques to the continuous
context via reachability computation, namely computing by geometric means an
over-approximation of the set of states reached by all trajectories. The other com-
plementary approach attempts to find conditions under which a finite number of
well-chosen trajectories will suffice to prove correctness and cover in some sense
all the trajectories of the system [KKMS03,BF04,BCLM05,BCLM06,GP06].This
paper is concerned with the second approach.

The main contribution of the paper is an algorithm whose input consists of
an arbitrary dynamical system, an initial set X0, a set of “bad” states F , a time
interval [0, T ] and some δ > 0. The algorithm picks a point in X0 and simulates
the trajectory of the system. If a bad state occurs in the trajectory the algo-
rithm stops and declares the system “unsafe”; otherwise, a systematic refinement
operator is used to extend the sampling of the initial points from which new tra-
jectories are numerically simulated and so on. The algorithm is guaranteed to
terminate in a finite number of steps, either by finding a bad trajectory and
declaring the system unsafe, by declaring the system “safe” when the sampled
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trajectories provably cover the reachable set, or returning an “uncertain” answer
when sampled trajectories are less than δ-close to F .

The novelty of this paper w.r.t. similar works is the notion of coverage used,
which is based on the concept of an expansion function which characterizes how
neighboring trajectories are getting closer to or further from one another as time
goes by. We show that this notion can be effectively approximated1 using the
concept of sensitivity function implemented in standard numerical integrators.
The rest of the paper is organized as follows. In Section 2 we define samples, their
dispersion and expansion functions and use them to introduce an abstract algo-
rithm for safety verification. The algorithm is then concretized and implemented
using a numerical solver, a grid-based sample refinement scheme (Section 3) and
sensitivity to approximate expansion (Section 4). In Section 5 we demonstrate
the behavior of our implementation of the algorithm on a linear time-varying
system and on two nonlinear analog circuits, the tunnel diode oscillator and the
voltage controlled oscillator. The extension of sensitivity analysis to hybrid sys-
tems is the topic of Section 6, which is followed by discussions of future steps in
simulation-based verification.

2 Verification by Simulation

We consider a dynamical system of the form

ẋ = f(t,x), x(0) = x0 ∈ X0, (1)

where x is a vector in R
n, X0 is compact and f is assumed of class C1. The

problem is known to have a unique solution noted ξx0(t). We say that the system
is safe if all trajectories starting from any x0 ∈ X0 do not intersect a set F of
bad states. We consider a bounded time horizon [0, T ]. Let Reach≤t(X0) (resp.
Reach=t(X0)) be the set reachable from X0 in less than (resp. exactly) t units of
time. A usual way to prove that the system is safe is to prove emptiness of the
intersection of the reachable set Reach≤T (X0) with the set F . In this section, we
introduce the concept of expansion function which allows to characterize how a
finite set of trajectories covers the reachable set and use such a set of trajectories
trying to refute intersection with the bad set F .

2.1 Preliminaries

We use a metric d and extend it to distance from points to set using d(x, X ) =
infy∈X

(
d(x,y)

)
When used, the notation ‖ · ‖ denotes the infinity norm. It

extends to matrix with the usual definition: ‖A‖ = sup‖x‖=1 ‖Ax‖. A ball Bδ(x)
is the set of points x′ satisfying d(x,x′) ≤ δ. Given a set X , a cover for X is a
set of sets {X1, . . . Xk} such that X ⊂

⋃k
i=1 Xi. A ball cover is a cover consisting

of balls. We extend the notation Bδ to sets and trajectories as follows

1 For linear time varying systems, as we show, these two notions coincide.
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Bδ(S) =
⋃
x∈S

Bδ(x) and Bδ(ξx) =
⋃

t∈[0,T ]

Bδ(t)(ξx(t))

A sampling of X is a set S = {x1, . . . ,xk} of points in X . The intuitive notion
of the “coverage” of X by S is formalized by

Definition 1 (Dispersion). The dispersion αX (S) is the
smallest radius ε such that the union of all ε radius closed
balls with their center in S covers X .

αX (S) = min
ε>0

{ε | X ⊂ Bε(S)} (2)

ε

We now define the process of refining a sampling, which simply consists in finding
a new sampling with a strictly smaller dispersion.

Definition 2 (Refinement). Let S and S′ be samplings of X . We say that S′
refines S if and only αX (S′) < αX (S).

A refining sampling can be constructed from the set to refine (e.g. by adding
sufficiently many points) or be found independently. In both cases, we can assume
that it is obtained through a refinement operator which we define next.

Definition 3 (Refinement operators). A refinement operator ρ : 2X �→ 2X

maps a sampling S to another sampling S′ = ρX (S) such that S refines S′. A
refinement operator is complete if ∀S,

lim
k→∞

αX
(
ρ
(k)
X (S)

)
= 0

where ρ
(k)
X (S) is the result of k application of ρX to S.

In other terms, a refinement operator is complete if a sampling of X which has
been infinitely refined is dense in X . Until we define one in section 3, we assume
the existence of a complete refinement operator ρ.

2.2 Expansion Function

The intuitive idea is to draw “tubes” around trajectories so that the union
of these tubes will provide an over-approximation of the reachable set. The
expansion function then simply maps time t to the radius of the tube at t, given
an initial state x0 and an initial radius ε.

Definition 4 (Expansion function). Given x0 ∈ X0, and ε > 0, the expan-
sion function of ξx0 , denoted by Ex0,ε : R

+ �→ R
+ maps t to the smallest non-

negative number δ such that all trajectories with initial state in Bε(x0) reach a
point in Bδ(ξx0(t)) at time t:

Ex0,ε(t) = sup
d(x0,x)≤ε

d
(
ξx0(t), ξx(t)

)
(3)
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Clearly, a first property of the expansion functions is that it approaches 0 as ε
tends toward 0:

∀t > 0, lim
ε→0

Ex,ε(t) = 0 (4)

This results directly from the continuity of ξx(t) w.r.t. x.

The expansion function value Ex0,ε(t)
gives the radius of the ball which over-
approximate tightly the reachable set from
the ball Bε(x0) at time t. Obviously, if we
take several such balls so that the initial
set X0 is covered, we obtain a correspond-
ing cover of Reach=t(X0). This is stated in
the following

x0

ξx0(t)

ε

Reach=t

[
Bε(x0)

]

Ex0,ε(t)

Proposition 1. Let S = {x1, . . . ,xk}be a sampling of X0 such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0 for some {ε1, . . . , εk}. Let t > 0 and for each 1 ≤ i ≤ k, let
δi = Exi,εi(t). Then

⋃k
i=1 Bδi(ξxi(t)) is a ball cover of Reach=t(X0).

Proof. By definition, the ball cover of X0 contains X0, and each Bδi(ξxi(t))
contains Reach=t(Bεi(xi)), and the rest follows from the commutativity of the
dynamics with set union and containment. 	


In particular, if S is a sampling of X0 with dispersion ε then we are in the case
where εi = ε for all 1 < i < k and since the result is true for all t ∈ [0, T ], we
have the following

Corollary 1. Let S = {x1,x2, . . . ,xk} be a sampling of X0 with dispersion
αX0(S) = ε. Let δ > 0 be an upper bound for Exi,ε(t) for all 1 < i < k and
t ∈ [0, T ], then the following inclusions hold

Reach[0,T ](X0) ⊆
⋃
x∈S

BEx,ε(ξx) ⊆
⋃
x∈S

Bδ(ξx) ⊆ Bδ

(
Reach[0,T ](X0)

)
(5)

Proof. The first inclusion is a direct application of the proposition. The second
results from the fact that δ is an upper-bound and the third inclusion is due to
the fact that ∀(xi, t) ∈ S × [0, T ], ξxi(t) ∈ Reach[0,T ](X0). 	


In other terms, if we bloat the sampling trajectories starting from S with a radius
δ, which is an upper bound for expansion functions of these trajectories, then
we get an over-approximation of the reachable set which is between the exact
reachable set and the reachable set bloated with δ. Because of (4), it is clear
that δ, and then the over-approximation error, decreases when ε gets smaller.

The second corollary of proposition 1 underlies our verification strategy.

Corollary 2. Let S = {x1, . . . ,xk} be a sampling of X such that
⋃k

i=1 Bεi(xi)
is a ball cover of X0. For t ∈ [0, T ] and 1 ≤ i ≤ k, let δi(t) = Exi,εi(t). If for all
t ∈ [0, T ],

Bδi(t)(ξxi(t)) ∩ F = ∅,
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then for all trajectory ξx starting from x ∈ X0, the intersection of ξx and the
bad set F is empty and thus the system is safe.

2.3 A Verification Algorithm

In theory, then, from previous proposition and corollaries, a unique trajectory
could be sufficient to verify the system: take one point x0, find ε such that
X0 ⊂ Bε(x0), then check for all t ∈ [0, T ] that Bδ(t)(ξxi(t)) ∩ F = ∅, where
δ(t) = Ex0,ε(t). If this is the case, then the system is safe. Obviously, the opposite
case does not mean that the system is unsafe since Bδ(t)(ξxi(t)) is actually an
over-approximation of Reach=t(X0), rather it indicates that the distance between
the reachable set and F is less than δ(t). If this indication is not sufficient, then
more trajectories have to be simulated until a sufficiently dense sampling of X0
is found. This is what Algorithm 1 does.

Algorithm 1. Safety Verification. The algorithm takes δ > 0 as input.
1: U ← ∅, S0 ← {x0} with x0 ∈ X0, k ← 0
2: loop
3: /* For Sk, check each trajectory and compute an upper bound δk for E */
4: εk ← αX0(Sk, X0), δk ← 0
5: for all x ∈ Sk do
6: if ξx ∩ F �= ∅ then
7: return (unsafe, {x})
8: else if BEx,εk

(ξx) ∩ F �= ∅ then
9: U ← U ∪ {x}

10: end if
11: δk ← max

�
sup

t∈[0,T ]
(Ex,εk(t)) , δk

�

12: end for
13: /* Stop either if no uncertain trajectory was found (safe) or if the upper

bound is smaller than precision δ. Else refine the sampling and loop */
14: if U = ∅ then
15: return safe
16: else if δk < δ then
17: return (uncertain, U)
18: else
19: Sk+1 ← ρX0(Sk), U ← ∅, k ← k + 1 /* Refine the sample */
20: end if
21: end loop

Theorem 1. Under assumptions mentioned above, algorithm 1 terminates and
its output satisfies:

– it is safe only if the system is safe.
– it is (unsafe, {x}) only if the system is unsafe and {x} is a counter-example,

i.e.: ξx intersects F .
– it is (uncertain, U) only if all the points in U induce uncertain trajectories:

∀ x ∈ U , d(ξx, F) ≤ δ.
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Proof. For unsafe, the result is obvious from the algorithm. For safe and
uncertain, the algorithm terminates because ρ is complete, lim

k→0
εk = 0 and

lim
εk→0

δk = 0. Consequently for some k, δk < δ. Now, if U was found empty, at

or before iteration k, this means that corollary 2 applies which proves that the
system is safe, while if U is still not empty at iteration k i.eif the algorithm has
returned (unsafe, U), then U contains states x for which

d(ξx, F) ≤ sup
t∈[0,T ]

(Ex,εk
(t)) ≤ δk ≤ δ.

Note that moreover, the inclusions (5) are true for Sk. 	

The algorithm requires some δ > 0 as input to guarantee termination. In fact,
the problematic case is when the distance between the reachable set and the
bad set is exactly 0. In this case, there is no way to get an answer other than
uncertain. On the other hand, we can state the following theorem:

Theorem 2. If d
(
Reach≤T (X0), F

)
> 0, then there exist a δ > 0 for which

algorithm 1 returns safe.

Proof. This is true for any δ < d
(
Reach≤T (X0), F

)
. Indeed, since for some k,

the inclusions (5) in corollary 1 are true for Sk then

Bδ

(
Reach[0,T ](X0)

)
∪ F = ∅ ⇒ Bδ

( ⋃
x∈S

ξx

)
∪ F = ∅

so U is empty at the end of the for loop and the algorithm will return safe. 	


3 An Efficient Sampling Strategy

In this section, we focus on the sampling strategy, that is, on the sample refine-
ment operator.

3.1 Local Refinement

First, we can remark that when Algorithm 1 ends with the uncertain answer,
one choice is to try a smaller δ. In that case, it is not necessary to restart
the algorithm from scratch; the set U can be used. Indeed, it is clear that any
trajectory starting from the ball Bεk

(x), where x ∈ Sk has not been inserted into
the uncertain set U , is safe. Thus the set Bεk

(
Sk \ U

)
is safe and it is enough to

verify the set Bεk

(
U

)
. In fact, this observation is also relevant at each iteration of

the for loop inside Algorithm 1. Instead of refining globally Sk by the instruction
Sk+1 ← ρX0(Sk), Sk could be refined locally only around uncertain states. This
can be done simply by replacing X0 with Bεk

(U) and refine this new initial set.
Line 19 thus becomes:

X0 ← Bεk
(U)

Sk+1 ← ρX0(U), U ← ∅, k ← k + 1
Now we proceed to describe the particular sampling method that we use in the
implementation of the algorithm.
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3.2 Hierarchical Grid Sampling

We saw that algorithm 1 terminates as soon as δk gets sufficiently small, which
requires also the dispersion εk to be sufficiently small. Then we need that the
convergence of sequence (εk)k∈N towards 0 to be as fast as possible. This requires
that for a given number of points, our sampling strategy tries to minimize its
dispersion. In this section, we assume that with an appropriate change in vari-
ables, sampling X0 is equivalent to sampling the unit hypercube [0, 1]n. In case
we use the L∞ metrics, i.e. d(x,y) = maxi(|xi −yi|), the solution of the problem
of minimizing dispersion of N points in [0, 1]n is known (see e.g. [LaV06]): the
minimum possible dispersion is 1

2	N1/n
 and is obtained by placing the points at
the center of smaller hypercubes of size 1

	N1/n
 , partitioning the unit hypercube.

Note that there are (�N1/n�)n such hypercubes, which may
be less than N . In this case, the remaining points can placed
anywhere without affecting the dispersion. Obtained grids are
referred to as Sukharev grids. The picture on the right gives an
example of such a grid for n = 2 and N = 49.

Sukharev grids have optimal dispersion but for a fixed number of points while
in our verification algorithm, we do not know in advance how many points in the
initial set we will have to use. In fact, we need to implement the refinement op-
erator to be used throughout Algorithm 1, starting from the singleton sampling
set S0. An elegant way to do it is to superpose hierarchically Sukharev grids,
the refinement process being defined simply in a recursive fashion. Let X be a
hypercube of size 1

2l (we say that such a cube is part of the grid of resolution l)
and S be a sampling of X , then:

– if S = ∅ then ρX (S) = {x}, where x is the center of the hypercube X ;

– if S �= ∅ then ρX (S) = S ∪
2n⋃
i=1

ρXi(Si) where the sets Xi are the 2n hypercubes

of size 1
2l+1 partitioning X and the sets Si contain the points of S that are

inside Xi.

On figure 1, we show the effect of three iterations in dimension 2 and 3 along
with an example of successive local refinements. From this definition, it is clear
that the operator ρ is a refinement operator and that it is complete since we
have:

αX (ρX (S)) =
1
2
αX (S).

In [LYL04], a simple procedure is described for choosing the order in which
the partitioning cubes are processed so that the mutual distance between two
consecutive cubes is maximized. This is an interesting feature from the point of
view of fast falsification since it means that every two consecutive simulation
runs will be far from each other and that for any k ∈ N, the initial states of the
first k trajectories will constitute a good coverage of the initial set X0.
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l = 0 l = 1 l = 2

n = 2

n = 3

Resolution:

Fig. 1. Refinements for n = 2 and n = 3 dimensions for resolutions from l = 0 to l = 2.
On the right, local refinements until resolution 3.

4 Implementation Using Sensitivity Analysis

4.1 Sensitivity Analysis Theory

Recall that we consider dynamics of the general form: ẋ = f(t,x), x(0) ∈ X0.
As a function of x0, the flow ξx0 is differentiable w.r.t x0. Thus the sensitivity
to initial conditions at time t is well defined by:

sx0(t) � ∂ξx0

∂x0
(t). (6)

where sx0(t) is a square matrix of order n. To compute the sensitivity matrix,
we first apply the chain rule to get the derivative of sx0 w.r.t. time:

∂

∂t

∂ξx0

∂x0
(t) =

∂

∂x0
f
(
t, ξx0(t)

)
= Df (ξx0(t))

∂ξx0

∂x0
(t)

which gives the following sensitivity equation:

ṡx0(t) = Df,x0(t) sx0(t) (7)

where Df,x0 is the Jacobian matrix of f along trajectory ξx0 . Hence, this equation
is a linear time-varying ordinary differential equation (ODE). Note that this is a
matrix differential equation but it can be viewed as a system of n ODEs of order
n. The ijth element of sx0(t) basically represents the influence of variations in
the ith coordinate xi

0 of x0 on the jth coordinate xj(t) of ξx0(t). Then it is clear
that the initial value sx0(0) of sx0 must be the identity matrix, In. Efficient
solvers exist that implement the computation of sensitivity functions (in our
implementations, we use the tool suite described in [SH05]).

A particularly interesting case is when the dynamics is linear time-varying,
i.e. when f(t,x) = A(t) x. Indeed, in this case, we know that the Jacobian
matrix of f is just the matrix A which means that sensitivity matrix sx0(t)
share the same dynamics as the flow ξx0 . In fact, the columns of sensitivity
matrix are solutions of the system dynamics equation where initial conditions
are the canonical vectors of R

n.
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4.2 Sensitivity Functions and Expansion Functions

The following important result relates sensitivity functions to expansion func-
tions:

Theorem 3. Let x0 ∈ X0, t ∈ [0, T ] and assume that f is C2. Then there exists
a real M > 0 such that ∀ε > 0:

|Ex0,ε(t) − ‖sx0(t)‖ ε | ≤ Mε2 (8)

Proof. Since f is C2, the flow ξx0 is also C2 w.r.t. x0 ([HS74]). Let x ∈ X0.
Then the Taylor expansion of ξx0(t) around x0 shows that there exist a bounded
function ϕt such that:

ξx(t) = ξx0(t) +
∂ξx0

∂x0
(t) (x − x0) + ‖x − x0‖2 ϕt(x − x0)

⇔ ξx(t) − ξx0(t) = sx0(t) (x − x0) + ‖x − x0‖2 ϕt(x − x0) (9)

Equation (9) implies that ∀x ∈ Bε(x0),

‖ξx(t)− ξx0(t)‖ ≤ ‖sx0(t)‖‖x−x0‖+‖x−x0‖2 ‖ϕt(x−x0)‖ ≤ ‖sx0(t)‖ε+ ε2 M

which implies in turn that

Ex0,ε − ‖sx0(t)‖ε ≤ Mε2 (10)

On the other hand, 9 can be rewritten as

sx0(t) (x0 − x) = ξx(t) − ξx0(t) − ‖x − x0‖2 ϕt(x − x0)
⇒ ‖sx0(t) (x0 − x)‖ ≤ ‖ξx(t) − ξx0(t)‖ + ‖x − x0‖2 ‖ϕt(x − x0)‖

≤ Ex0,ε(t) + ε2M (11)

From the definition of matrix norm, we know that we can find a unit vector y
such that ‖sx0(t)‖ = ‖sx0(t) y‖. The inequality (11) is true for all x ∈ Bε(x0)
so in particular for x = x0 + εy in which case

‖sx0(t) (x0 − x)‖ = ‖sx0(t) (εy)‖ = ‖sx0(t)‖ε.

If we substitute in the right hand side of (11) and subtract Ex0,ε(t) , we get:

‖sx0(t)‖ε − Ex0,ε(t) ≤ Mε2 (12)

The conjunction of inequalities (10) and (12) proves the result. 	


When the dynamics of the system is affine, i.e. when f(t,x) = A(t)x + b(t),
where A(t) and b(t) are time varying matrices of appropriate dimensions, then
expansion function can be computed exactly.

Theorem 4. Let x0 ∈ X0, t ∈ [0, T ] and assume that f is affine. Then ∀ε > 0:

Ex0,ε(t) = ‖sx0(t)‖ε (13)
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Proof. This follows immediately from the fact that if f is affine, ϕt in equation
(9) is null. Indeed, following the remark at the end of the previous subsection, we
know from (7) that the lines of matrix sx0(t) are solutions of the homogeneous
system ẋ = A(t)x. Since this is a linear system, the vector sx0(t) (x − x0) is
also solution of this system. Then ξx0(t) + sx0(t) (x − x0) is solution of the full
system ẋ = A(t)x + b(t). Furthermore, as sx0(0) is the identity matrix,

ξx0(0) + sx0(0) (x − x0) = x0 + (x − x0) = x.

In other words, ξx0 + s (x − x0) and ξx are two trajectories of the system with
the same initial conditions so by uniqueness, they are equal. Then clearly,

ξx(t) − ξx0(t) = sx0(t) (x0 − x)
⇒ sup

x∈Bε(x0)
‖ξx(t) − ξx0(t)‖ = sup

x∈Bε(x0)
sx0(t) (x0 − x)

⇔ Ex0,ε(t) = ‖sx0(t)‖ε. 	

From what precedes, then, we can approximate Ex0,ε(t) with the quantity ‖sx0‖ε
and use it to implement Algorithm 1. In the case of affine systems, the imple-
mentation is exact and Theorem 1 applies to the concrete implantation. In the
general case, when f may be nonlinear, we know that the error is quadratic with
respect to ε. In order to take this error into account, we can force the algorithm
to guarantee that the initial set is sampled with a sufficiently small dispersion ε.
The new algorithm then takes an additional input parameter ε > 0, refine glob-
ally the initial sampling until the dispersion ε is reached (while checking only
for unsafe trajectories), and then continues and terminates as Algorithm 1 with
local refinements.

5 Examples

We have implemented the techniques described in the preceding sections on top
of a numerical simulation tool that supports sensitivity analysis and have applied
it to several examples.

5.1 A High Dimensional Affine Time-Varying System

We consider a system with affine dynamics of the form ẋ = A(t)x + b(t) with
A(t) = e−tM − I50 and b(t) = b0e

−t sin t where M and b0 are respectively
50 × 50 and 50 × 1 matrices with random coefficients in [0, 1]. We used a 2-
dimensional X0 = [0.5, 1.5] × [0.5, 1.5] × {1}48. The bad set F is the half plane
given by an inequality of the form x1 ≤ d. The figure below illustrates the
behavior of the verification algorithm in different scenarios (projected on the
three first coordinates). In all cases, a small number of trajectories was needed
to obtain the answer.



184 A. Donzé and O. Maler

x1x1
x1

x2x2

x2x2
x3

X0

F

d = 2.6: One trajectory
was enough to prove that
the system is safe.

d = 2.5: The system is
declared uncertain using
δ = 0.1 after 25 trajecto-
ries.

d = 2.5: The system was
found unsafe with δ =
0.01 after 63 trajectories.

5.2 Verifying the Invariant of Two Oscillator Circuits

For the following examples, our goal is to prove that a set is invariant for an
unbounded horizon. To do this, the classical idea is to show that for a certain
T > 0, the set Reach=T is contained in Reach≤t with t < T which implies that
Reach≤T is the reachable set for unbounded horizon. Our method is to use our
verification algorithm slightly modified so that every trajectory is considered as
uncertain. As previously, the algorithm stops when δk < δ. At this point, then,
we can characterize the reachable sets thanks to inclusions (5) of Corollary 1.

We applied this idea to analyze the periodic
steady state behavior of two analog oscillator
circuits. The first one is a tunnel-diode oscil-
lator (TDO) whose second-order nonlinear dy-
namics is given in Figure 2. The second circuit
is a voltage controlled oscillator (VCO) circuit,
the schema of which is given on the right. Its
dynamics is governed by a third-order nonlinear
equation. A fully-detailed model can be found
in [FKR06].

RR

CC

IDS1 IDS2

IL1 IL2

Vctrl

VDD

VD1 VD2

LL

VCO schema

What makes this problem difficult for traditional tools performing reachability
is that most often, the reachable set is computed step by step forward in time and
each step increases the error of over-approximation. This error after one period
may have become too large to prove the invariant property. This is particularly
serious for the VCO for which the limit cycle is much less contractive than for
the TDO. In [FKR06], this problem is addressed using forward-backward refine-
ment. Our method, however, does not suffer from this problem. If we neglect
the inherent error of the numerical solver used to compute the trajectories, the
quality of the over-approximation that we get with the sensitivity function does
not depend on the time we measure it. If the dynamics is neither really contrac-
tive nor diverging as for the VCO, this means that the norm of the sensitivity
function will remain near 1 and then we know from Theorem 1 and Theorem 3



Systematic Simulation Using Sensitivity Analysis 185

Fig. 2. Tunnel Diode Oscillator Circuit

Fig. 3. Verifying the invariant of two oscillator circuits

that if we sample the initial set with a precision ε then we will get an approxi-
mation of the reachable set at time T with a precision which is quadratic w.r.t.
ε. We show some results we obtained in Figure 3. In both cases, we sampled the
initial set with ε = 1 × 10−3. Since ε2 is then negligible before the size of the
reachable sets Reach=T (X0) that we obtain, we can conclude that the sets are
invariant. Since, we must note that with this method, we did not yet obtain a
formal proof of the result because of the remaining indetermination of constant
M in Theorem 3. To get this formal bound, a deeper analysis of the dynamics
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equations still needs to be done. Techniques and tools recently developed are
related to this issue (see [SB06]).

6 Extension to Hybrid Systems

Extending sensitivity analysis to the hybrid case is not straightforward and even
in the simplest case of a transition with state continuity, a discontinuity often
appears in the sensitivity function that needs to be evaluated. The most general
setting for sensitivity analysis includes hybrid systems for which dynamics in
each mode is governed by differential algebraic equations [HP00,BL02] To sim-
plify the presentation and get the intuition of what are the changes induced by
the hybridicity of the dynamics, we restrict the study to the case of a unique
transition between two modes. Let us assume that transitions are governed by
crossings of an hyper-surface G implicitly defined by a continuous function g and
that the flow is continuous. The dynamics of this system is described by:

ẋ =
{

f1(t,x) if g(x) < 0
f2(t,x) if g(x) ≥ 0 ,x(0) ∈ X0 (14)

We consider a trajectory ξx0 performing a first transition at time τ > 0, i.e.
such that g(ξx0(t)) < 0 ∀t ∈ [0, τ [ and g(ξx0(t)) = 0. We make the following
standard assumption:

Assumption 1. At the crossing point x, 〈∇xg(x), f1(τ−,x)〉 �= 0, where 〈, 〉 is
the Euclidean cross product. Moreover, there exists a neighborhood N of x0 such
that for all x ∈ N , this assumption is also true for the flow ξx.

Assumption 1 prevents the trajectory to cross the frontier tangentially and en-
sures that there exists a tube of trajectories around ξx0 which also crosses the
frontier under the same condition. In this setting, we consider the most stan-
dard behavior of a hybrid system, i.e. it follows a continuous trajectory for some
time, then switches to another continuous mode for again some time and so on.
During a continuous evolution, we know how sensitivity evolves. The remaining
question is about its continuity at transition times. We have the following

Proposition 2. Under assumptions 1, the sensitivity function at time τ satis-
fies:

s(τ+) − s(τ−) =
dτ

dx0

(
f2(τ, ξx0(τ)) − f1(τ, ξx0(τ))

)
(15)

where
dτ

dx0
=

〈∇xg(ξx0(τ)), sx0 (τ)〉
〈∇xg(ξx0(τ)), f1(τ, ξx0)〉

(16)

We omit the proof for brevity (it can be found in [HP00,BL02]). Rather, we
provide a picture in Figure 4 giving an intuition of why a a discontinuity happens.

Proposition 2 provides a constructive formula to compute the values of the
jumps. This means that sensitivity functions can be computed for hybrid
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Fig. 4. Illustration of sensitivity discontinuity. The jump condition 15 results from the
fact that between τ− and τ+ (− and + superscripts in the figure), the flows ξx0 and
ξx evolve with different dynamics f1 and f2.

trajectories and thus Algorithm 1 can be implemented. The assumption made is
reasonable in the sense that it is very likely that the set of points for which the
frontier is crossed tangentially has a zero measure. Still, current work investigates
the behavior of our algorithm around such points, along with the adaptation of
Theorem 3 and 4 to the hybrid case.

7 Conclusion

We have developed a novel and general simulation-based method for proving
safety of arbitrary continuous systems and demonstrated its effectiveness on
several non trivial examples. This method can treat arbitrary nonlinear systems
and can be particularly efficient for affine time-varying systems. As shown in
Section 6, it can, under reasonable assumptions, be extended to hybrid systems
as well. The use of the tunable tolerance parameter δ gives an elegant solution
to the eternal tension between finite algorithmic termination and the potential
infinite precision of the real numbers. In addition to its theoretical properties
and efficiency, our method is more likely to be accepted by practitioners who
already use simulation as a key validation tool.

Future work will extend the implementation to hybrid automata, look at
the problem of unbounded horizon and, most importantly, deal with non-
autonomous systems with bounded inputs. An appropriate sampling of the in-
put space combined with the use of search heuristics (branch and bound, RRT
etc.), and/or optimal control techniques should provide interesting results which
could be incorporated naturally into the design process of complex control
systems.
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Abstract. This paper presents a motion description language (MDLp)
for specifying and encoding autonomous puppetry plays in a manner that
is faithful to the way puppetry choreography is currently formulated. In
particular, MDLp is a formal language whose strings, when parsed by a
dynamical system (the puppet) produces optimized, hybrid control laws
corresponding to strings of motions, locations, and temporal durations
for each agent. The paper is concerned with the development of this lan-
guage as well as with an optimization engine for hybrid optimal control
of MDLp strings, and with the generation of motion primitives within
the “Imitate, Simplify, Exaggerate” puppetry paradigm.

1 Introduction

One of the main drivers behind the rapidly emerging abstraction-based approach
to control and software design is the ability to specify the desired system behavior
at a high-level of abstraction, without having to take the actual implementation
details into account [9,21]. In other words, the key idea is to be able to give
high-level specifications in some language such as linear temporal logic (LTL)
[17,22], Computation and Control Languages (CCL) [16], maneuver automata
[13], or Motion Description Languages (MDL) [4,10,14,20], and then be assured
that the transitions from high-level specifications to actual control signals are
achieved in a stable and correct manner.

In this paper we pursue this issue of abstraction-based control for a particular
application, namely autonomous puppetry, which apart from being a conceptual
oxymoron, presents a number of technical challenges. The ultimate objective is
to be able to input high-level descriptions of desired puppet motions, denoted
plays, and then go from such plays to actual control laws for implementing the
plays on autonomous marionette puppets, as shown in Figure 1.
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(a) (b)

Fig. 1. A Mathematica graphical representation of the mechanical system for au-
tonomous puppetry control (a), together with one of the marionettes used (b)

The control strategy that we will employ will be hybrid, for three distinct
reasons, namely:

1. Plays are naturally described as sequences of distinctive motions, which means
that the controller must switch between different modes of operation;

2. As the objective is to mimic human (or animal) behaviors, puppeteers typi-
cally work with a set of established motion primitives, such as “walk”, “run”,
“dance”, “hop” [11]; and

3. The marionette platform is in itself hybrid in that the strings (actuation
modalities) are in a number of different configurations during a play, includ-
ing “free”, “controlled”, “locked”, or “grouped” [15].

We will discuss these three hybrid aspects of the autonomous marionette project,
and the framework that we propose in this paper for formalizing high-level spec-
ifications for puppetry is based Motion Description Languages. Specifically, a
MDL is a string of pairs, each specifying what control law the system should be
executing and an interrupt condition corresponding to the termination of this
control law. The particular language that we propose is slightly more structured
than the standard MDL (or MDLe, where “e” stands for “extended”) and we
will call this language MDLp, with “p” meaning “puppetry”. In order for this
language to be successful, it is important that it is expressive enough to be able
to characterize actual puppet plays, and as such we draw inspiration from the
way such plays are staged by professional puppeteers.

As an example, consider a part of an actual play, as shown in Figure 2. The
play that this example comes from is the “Rainforest Adventures” - an original
puppet play staged at the Center for Puppetry Arts in Atlanta during 2005
[7,19]. It shows how the basic building blocks for a formal language for puppet
choreography can be derived from existing practices in puppeteering.

In fact, the standard way in which puppet plays are described is through
four parameters, namely temporal duration, agent, space, and motion (when?,
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counts

agents

location
SR = Stage Right
SL = Stage Left

movements

Original play
Center for Puppetry Arts
Atlanta, GA
By Jon Ludwig (artistic director)

Fig. 2. Rainforest Adventures: This figure is an original puppet choreography sheet
from the Center for Puppetry Arts in Atlanta [7]. It shows how the basic building
blocks for a formal language for puppet choreography can be derived from existing
practices in puppeteering.

who?, where?, and what?) [2,11]. Most plays are based on counts in that each
puppet motion is supposed to happen at a particular count. (This becomes even
more important if multiple puppets are acting simultaneously on stage or if
the play is set to music). At each specified count, a motion is initiated and/or
terminated. Following this standard practice, we, in the following sections, will
propose a formal language for describing such puppet plays, and the outline of
this paper is as follows: In Section 2, we recall the basic definitions of a Motion
Description Language and show how these definitions can be augmented to form
the MDLp, suitable for specifying puppet plays. We then, in Section 3, use the
Calculus of Variations for parsing MDLp strings in an optimal way in order
to produce effective control programs, deployable on the robot platform. The
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question of how to generate the motion primitives that constitute the building
blocks of MDLp is the focus of Section 4. In fact, professional puppeteers use an
expression, “Imitate, Simplify, Exaggerate”, to describe the basic steps in making
a puppet perform a given behavior [11]. First, imitate the behavior that one
observes, then simplify it down to its basic components, and finally exaggerate
the resulting behavior to convey the correct level of animation and emotional
content to the viewer, who is often quite distant from the stage. These three
steps have formal mathematical counterparts, which is the focus of Section 4,
followed by the conclusions, in Section 5.

2 Choreography

2.1 Motion Description Languages

As the complexity of many control systems increases, due both to the system
complexity (e.g. manufacturing systems, [6]) and the complexity of the environ-
ment in which the system is embedded (e.g. autonomous robots [1,18]), multi-
modal control has emerged as a useful design tool. The main idea is to define
different modes of operation, e.g. with respect to a particular task, operating
point, or data source. These modes are then combined according to some dis-
crete switching logic and one attempt to formalize this notion is through the
concept of a Motion Description Language (MDL) [4,10,14,20].

Each string in a MDL corresponds to a control program that can be operated
on by the control system. Slightly different versions of MDLs have been proposed,
but they all share the common feature that the individual atoms, concatenated
together to form the control program, can be characterized by control-interrupt
pairs. In other words, given a dynamical system

ẋ = f(x, u), x ∈ R
N , u ∈ U

y = h(x), y ∈ Y,

together with a control program (k1, ξ1), . . . , (kz , ξz), where ki : Y → U and
ξi : Y → {0, 1}, the system operates on this program as ẋ = f(x, k1(h(x))) until
ξ1(h(x)) = 1. At this point the next pair is read and ẋ = f(x, k2(h(x))) until
ξ2(h(x)) = 1, and so on. (Note that the interrupts can also be time-triggered,
which can be incorporated by a simple augmentation of the state space.)

A number of results have been derived for such (and similar) systems, driven
by strings of symbolic inputs. For example, in [3], the set of reachable states was
characterized, while [12] investigated optimal control aspects of such systems. In
[8,14,20], the connection between MDLs and robotics was investigated.

2.2 Puppet Dynamics

Before we can establish a suitable formalism for motion control of autonomous
marionettes, an appropriate puppet model is needed. In fact, we let the puppet
be modeled using well-known Euler-Lagrange methods for articulated mechani-
cal systems [5]. Our puppet system is similar to a closed-chain of rigid bodies,
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but differs in that one of the linkages has no mass. This implies that one cannot
apply a force to the link or use the inertia of the link. In fact, by including
the parameters that define the string link (e.g., the location of the string end-
points) in the configuration, we get a globally degenerate inertia matrix and,
correspondingly, degenerate equations of motion. Associating a mass with the
string parameters to avoid this difficulty introduces other problems in that a
small mass yields stiff differential equations for the motion while a large mass
will unrealistically affect the dynamics of the system.

The solution is to treat the string as a constraint that indirectly applies to the
system inputs. Hence, we will treat the mechanical superstructure as a kinematic
system while we treat the puppet itself as a dynamic system. Thus, we are
modeling the puppet using a mixed dynamic-kinematic model.

The validity of such a partial kinematic reduction can be verified as follows
(under the assumption that the mechanical system controlling the puppet is
fully-actuated). The mechanical system, including both the puppet and the
mechanism controlling the puppet, can be described using the constrained Euler-
Lagrange equations with q = [qD, qK , qM ], where qM describes the configuration
of the mechanism, qK describes the configuration of the strings, and qD de-
scribes the configuration of the puppet. The equations of motion can be written
as: ∇̃q̇ q̇ = uiY

i where ∇̃ is the constrained affine connection, ui are the m inputs,
and Yi are the associated input vector fields. (See [5] for a complete description
of this formalism.) In this context, a system is kinematically reducible (i.e, all
paths on the configuration manifold Q correspond to trajectories on TQ and
vice-versa) if 〈Yi, Yj〉 ∈ span{Yk | 1 ≤ k ≤ m} where 〈X, Y 〉 = ∇̃XY + ∇̃Y X .
Now, because the strings are massless, the inertia tensor is block diagonal in
[qD, qK ]. This allows us to address the constraints independently as constraints
between qD and qM so that

∇̃q̇M q̇M = uiY
i

∇̃q̇D q̇D = 0.

Because the mechanism controlling the puppet is assumed to be fully actuated,
the first equation for the mechanism dynamics trivially satisfies the condition
〈Yi, Yj〉 ∈ span{Yk | 1 ≤ k ≤ m} for kinematic reducibility. Hence, separat-
ing the kinematic reduction of the mechanism controlling the puppet from the
(not kinematically reducible) dynamics of the puppet is a mechanically valid
description of the system.

Lastly, the string constraints are actually inequality constraints. In fact, the
strings can go slack. This can be included by monitoring the Lagrange multipliers
enforcing the constraints and using projection operators to provide impulses that
release the constraint when the string goes slack and enforce them again when
the end of the string is reached.

2.3 MDLp

Now that we have a model of the puppet dynamics, we note that the general
MDL outlined in Section 2.1 does not lend itself to be directly applicable to
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the scenario described in Figure 2. In fact, what we will do in this section is
to augment the standard MDL formulation to include factors such as spatial
location. For this, assume that the play starts at time t0 and that it ends at
time tf . Moreover, let the temporal resolution (the length of each “count”) be
Δ, and assume that (tf − t0)/Δ = M . Following this, the set of all times over
which the play is specified is T = {t0, t0 + Δ, t0 + 2Δ, . . . , t0 + MΔ}.

Moreover, assume that the stage is divided into N different sections (typi-
cally this number is 6, namely LowerLeft, LowerCenter, LowerRight, MiddleLeft,
MiddleCenter, MiddleRight, UpperLeft, UpperCenter, UpperRight), whose pla-
nar center-of-gravity coordinates are given by r1, . . . , rN , with the set of regions
being given by R = {r1, . . . , rN}.

From the arguments in Section 2.2, we can assume that each puppet has a
dynamics given by

ẋi = f i(xi, ui), yi = πi(xi),

where the superscript i denotes agent i, and the output yi ∈ R
2 is given by

a projection πi from X i to the plane. Now, given that we have constructed a
number of control laws κi

j , j = 1 . . . , Ci, corresponding to different moves that
puppet i can perform, with each control law being a function of xi (state), t
(time), and αi (a parameter characterizing certain aspects of the motion such
as speed, energy, or acceleration, as is the normal interpretation of the parame-
trization of biological motor programs), we can let the set of moves that puppet
i can perform be given by Ki = {κi

1, . . . , κ
i
Ci}. In fact, we will often use the

shorthand f i
j(x

i, t, α) to denote the impact that control law κi
j has on puppet i

through f i(xi, κi
j(x

i, t, α)).
As already pointed out, each instruction in the puppet play language is a

four-tuple designating when, who, where, and what the puppets should be doing.
In other words, we let the motion alphabet associated with puppet i be given by
Li = T × T × R × Ki. Each element in Li is thus given by (T0, T1, r, κ), where
the interpretation is that the motion should take place during the time interval
T1 − T0, largely in region r, while executing the control law κ.

For the reminder of this section, we will drop the explicit dependence on i,
and assume that we are concerned with a given, individual puppet. We can then
follow the standard notation in the formal language field and let L� denote the set
of all finite-length concatenations of elements in L (including the empty string),
and let puppet plays be given by words λ ∈ L�. In particular, if we let λ =
(t0, T1, r1, κ1), (T1, T2, r2, κ2), . . . , (Tp−1, Tp, rp, κp), then the puppet operates on
this string through

ẋ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x, t, α1), t ∈ [t0, T1)
f2(x, t, α2), t ∈ [T1, T2)

...
fp(x, t, αp), t ∈ [Tp−1, Tp].

This seems fairly natural, but two essential parameters have been left out.
First, the motion parameters α1, . . . , αp have not yet been specified. Moreover,
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the desired regions r1, . . . , rp have not been utilized in any way. In order to rem-
edy this, we need to construct not just a parser for puppet plays, as given above,
but also a compiler that selects the “best” parameters (as well as durations) for
the different moves so that the play is executed as efficiently as possible.

3 A Puppet Play Compiler

Consider the following optimal control problem:

min
τ,α1,α2

J(τ, α1, α2) =
∫ tf

0
L(x, t)dt+C1(α1)+C2(α2)+D(τ)+Ψ1(x(τ))+Ψ2(x(τ)),

where

ẋ =
{

f1(x, t, α1), t ∈ [0, τ)
f2(x, t, α2), t ∈ [τ, tf ]

x(0) = x0.

This optimal control problem is the atomic problem involving how to execute
the two-instruction play (0, T, r1, κ1), (T, tf , r2, κ2) under the following interpre-
tations

D(τ) = function that penalizes deviations fromT , e.g. (τ − T )2

Ci(αi)=function that measures how much energy it takes to use parameter αi

Ψi(x(τ or T ))= function that ensures that the projection π((x(τ)) is close to
r1and similarly for π(x(T ))

L(x, t) = function that may be used to ensure that a reference trajectory is
followed.

By forming the Lagrangian

J̃ =
∫ τ

0
(L + λ1(f1 − ẋ))dt +

∫ T

τ

(L + λ2(f2 − ẋ))dt + C1 + C2 + D + Ψ1 + Ψ2

and using a standard variational argument, with τ → τ+εθ, α1 → α+εa1, α2 →
α2 + εa2, we can obtain the corresponding variation in the trajectory as x(t) →
x(t) + εη(t), with η(0) = 0.

By letting J̃ε denote the Lagrangian from the variational system, we get that

lim
ε→0

J̃ε − J̃

ε
=

∫ τ

0

((
∂L

∂x
+ λ1

∂f1

∂x
+ λ̇1

)
η + λ1

∂f1

∂α1
a1

)
dt

+
∫ T

τ

((
∂L

∂x
+ λ2

∂f2

∂x
+ λ̇2

)
η + λ2

∂f2

∂α2
a2

)
dt

+
(

−λ1(τ) + λ2(τ) +
∂Ψ1

∂x

)
η(τ) +

(
−λ2(T ) +

∂Ψ2

∂x

)
η(T )

+
(

λ1(τ)(f1(x(τ)) − f2(x(τ)) +
∂D

∂τ
+

∂Ψ1

∂x
f2(x(τ))

)
θ

+
∂C1

∂α1
a1 +

∂C2

∂α2
a2.
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This gives us the optimality conditions as

∂J

∂τ
= λ(τ−)f1(x(τ)) − λ(τ+)f2(x(τ)) +

∂D

∂τ
∂J

∂α2
= ξ(τ+)

∂J

∂α1
= ξ(0),

where the costates λ and ξ satisfy the following discontinuous (backwards) dif-
ferential equations:

λ(T ) =
∂Ψ2

∂x
(x(T ))

λ̇ = −∂L

∂x
− λ

∂f2

∂x
, t ∈ (τ, T )

λ(τ−) = λ(τ+) +
∂Ψ1

∂x
(x(τ))

λ̇ = −∂L

∂x
− λ

∂f1

∂x
, t ∈ [0, τ)

ξ(T ) =
∂C2

∂α2

ξ̇ = −λ
∂f2

∂x
, t ∈ (τ, T )

ξ(τ−) =
∂C1

∂α1

ξ̇ = λ
∂f1

∂x
, t ∈ [0, τ).

By a direct generalization to more than two modes, this construction allows
us to produce a compiler that takes plays and outputs strings of control modes
with an optimized temporal duration and mode-parametrization, as given in the
algorithm below:

Algorithm
Given (t0, T1, r1, κ1), (T1, T2, r2, κ2), . . . , (Tp−1, Tp, rp, κp)
Set τi(0) = Ti, i = 1, . . . , p − 1
Initialize αi(0), i = 1, . . . , p
Optimization (k = 0)
Repeat
Compute x(t) forwards using αi(k), τi(k)
Compute λ(t), ξ(t) backwards (including jumps)
Compute ∂J

∂τi
, ∂J

∂αi

Gradient Descent
Set τi(k + 1) = τi(k) − γ(k) ∂J

∂τi
(τi(k)), i = 1, . . . , p − 1

Set αi(k + 1) = αi(k) − �(k) ∂J
∂αi

(αi(k)), i = 1, . . . , p

Set k = k + 1
Until ‖∇J‖ ≤ δ
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An example of this proposed approach is shown in Figure 3, in which an oscil-
lator is switching between two modes - one slow (corresponding to walking) and
one fast (corresponding to running). The frequencies and dynamics associated
with the two modes are

ω1 = 5 α2
1

α2
1+10 + 5

ω1 = 10 α2
2

α2
2+10 + 10

ẋ =
[

0 −ω1,2
ω1,2 0

]
x

and the cost is

J(τ, α1, α2) =
∫ 3

0
0.1x(t)T x(t)dt + (τ − 2)2 + 0.1α2

1 + 0.2α2
2

+ (x(τ) − [−1, 0])T (x(τ) − [−1, 0]T ) + 5x(3)T x(3).

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

t

x

Optimal Transition Between Walking and Running

Walking

Running

Fig. 3. A simplified locomotion model in which walking and running are defined
through linear oscillators with different frequencies. The figure on the left depicts the
waveform of the two gaits, and the figure on the right is a snapshot of the animation
showing the result.

4 Motion and Caricature: “Imitate, Simplify,
Exaggerate”

A system with limited expressive powers, such as a marionette, needs to be
able to convey the proper emotions in such a way that a human audience un-
derstands what is being conveyed. As previously mentioned, puppeteers achieve
this through the three steps: Imitate, Simplify, and Exaggerate. We will make
these three steps formal in that human motion is being mimicked, after which
the resulting motions are projected onto the constrained space over which the
marionette operates (see Section 2.2), followed by a transformation of the re-
sulting motion in such a way that the “energy” of the original (non-projected)
motion is conserved.
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4.1 Conservation of Energy

The method we propose for achieving this is by studying the way professional
puppeteers actually control their puppets, as well as draw inspiration from
human-like motions, since if the puppet is a human marionette, we would typi-
cally like to be able to execute human-like motions. However, since marionettes
are constrained in such a way that they cannot be as expressive as human mo-
tions, we will first identify human motions (corresponding to the Imitate phase
in puppetry) project human motion down onto the space of available puppet mo-
tions (the Simplify phase) and then exaggerate these motions in order to make
them sufficiently expressive (the Exaggerate phase). Formally speaking, given a
desired trajectory z(t) ∈ Z that we would like the puppet (whose state is x(t) ∈
X, dim(X) ≤ dim(Z)) to follow, we define a projection-like mapping ρ : Z → X .
The Simplify-phase thus consists of trying to minimize expressions like

∫ T

0
L(x(t) − ρ(z(t)))dt,

subject to the puppet dynamics ẋ = f(x, u), with u being the control input, and
where T is the temporal duration of the movement.

Moreover, if TZ and TX are the tangent spaces associated with Z and X
respectively, we define the energy conservation cost through the mapping φ :
TX → TZ in the following manner

∫ T

0
E(φ(f(x(t), u(t)) − ż(t))dt,

and the combined Simplify-Exaggerate optimization problem becomes

min
u

∫ T

0
(L(x − ρ(z)) + E(φ(f(x, u)) − ż))dt.

As an example, consider the situation when the puppet dynamics is given by
the completely controllable linear control system

ẋ = Ax + Bu, x ∈ R
n

with z ∈ R
m, m ≥ n. Moreover, let the projection ρ be given by a linear

projection Pz and similarly let φ be given by a linear relation E(Ax+Bu). The
instantaneous cost thus becomes

L(x − ρ(z)) + E(φ(f(x, u)) − ż) =
1
2
(x − Pz)T Q(x − Pz)

+
1
2
(EAx + EBu − ż)T R(EAx + EBu − ż),

given positive definite weight matrices Q, R.
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Given free initial and final positions x(0) and x(T ), this is a standard LQ-
optimization problem that can be readily solved, and an example solution is
shown in Figure 4. In that example,

ż =

⎡
⎣ 0 −1 0

1 0 0
−0.1 −0.4 −1

⎤
⎦ z, z(0) =

⎡
⎣1

1
1

⎤
⎦

ẋ =
[

0 −1.1
1.1 −0.1

]
x +

[
0
1

]
u

Q = I2, R = 0.01I3

P =
[

1 0 0
0 1 0

]
, E =

⎡
⎣2/3 0

0 2/3
1/3 1/3

⎤
⎦

4.2 Conservation of “Emotive” Energy

In the previous discussion, energy was defined in terms of motion, but one can
easily picture a somewhat more esoteric yet perhaps more relevant notion of
emotive energy. In other words, the puppet is asked to capture a particular emo-
tive state through its motion. But, due to its constrained configuration space, a
direct mapping from human emotions to puppet emotions is not feasible. (Our
faces, for example, have many degrees of freedom, while the puppets’ have sig-
nificantly less.) The same approach as previously discussed would still apply, but
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Optimal Projection vs Energy Conservation

z 3
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z

Fig. 4. This figure shows a simple example in which an optimal trade-off between
tracking and energy-maintenance is achieved for linear systems. This method provides
the basic building-block for the Simplify-Exaggerate phases of the construction of basic
motion primitives.
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Fig. 5. Anger representation: The Mathematica stick-figure on the left depicts a nom-
inal allocation between body and face movements

with the difference that now emotive energy measures will have to be generated.
As a simple example, consider the stick-figure drawing in Figure 5. There the
idealized puppet is asked to express anger and by constraining either the facial
expressions or the body language, the emotive energy is maintained by either
exaggerating the body or the facial movements. In the middle figure, the stick-
figure has to work really hard to move its face, while in the right figure it has to
work hard to move its arms. Because of this, the middle figure has a more mild
facial expression but more dramatic body expression and the figure on the right
has a severe facial expression with almost no body expression. The middle and
right figures have been generated automatically (in Mathematica) from the left
figure by an optimization process similar to what was discussed in the previous
paragraphs.

5 Conclusions

In this paper we presented the motion description language MDLp, which is
a MDL that allows for slightly more structured instructions, making it useful
for specifying and encoding autonomous puppetry plays in a manner that is
faithful to standard puppetry choreography. In particular, MDLp is a formal
language whose strings, when parsed by a dynamical system, produces optimized,
hybrid control laws corresponding to strings of motions, locations, and temporal
durations for each agent. The paper is concerned with the development of this
language as well as with an optimization engine for hybrid optimal control of
MDLp strings, and with the generation of motion primitives within the “Imitate,
Simplify, Exaggerate” puppetry paradigm.
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Abstract. In this paper, the problem of synthesizing a hybrid controller
for a specification expressed as a temporal logic formula φ is considered.
We propose a hierarchical approach which consists of three steps. First,
the plant to be controlled is abstracted to a fully actuated system. Using
the notion of approximate simulation relation, we design a continuous
interface allowing the plant to track the trajectories of its abstraction
with a guaranteed precision δ. The second step, which is also the main
contribution of this paper, consists in deriving a more robust specifica-
tion φ′ from the temporal logic formula φ such that given a trajectory
satisfying φ′, any other trajectory remaining within distance δ satisfies φ.
Third, we design a hybrid controller for the abstraction such that all its
trajectories satisfy the robust specification φ′. Then, the trajectories of
the plant satisfy the original specification. An application to the control
of a second order model of a planar robot in a polygonal environment is
considered.

1 Introduction

Modern engineering challenges involve controlling complex (possibly nonlinear
and/or high order) systems to achieve complicated behaviors. An automated
approach to synthesize controllers that are correct by design is very desirable
since it can save much of the effort required for the verification of the controlled
system. For that purpose, the use of a hierarchical approach is often necessary
since trying to handle at once both the complexities of the dynamics and of
the specification might lead to intractable computations. A hierarchical control
system consists of (at least) two layers. The first layer consists of a coarse (and
simple) model of the plant. A controller is designed so that this abstraction
meets the specification of the problem. The control law is then refined to the
second layer which consists of a detailed model of the plant. Architectures of
hierarchical controllers based on the notion of simulation relations have been
proposed in [1,2]. More recently, it has been claimed that approaches based on
approximate simulation relations [3] would provide more robust control laws
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while allowing to consider simpler discrete [4] or continuous [5] abstractions for
control synthesis.

In this paper, we present such a hierarchical approach for the synthesis of
hybrid controllers for specifications expressed as formulas φ in the propositional
temporal logic over the reals which was introduced in [6]. Following [5], the sys-
tem is abstracted to a fully actuated system. An interface is designed so that the
system is able to track the trajectories of its abstraction with a given guaranteed
precision δ. The control objective φ is then modified and replaced by a more ro-
bust specification φ′. The formula φ′ is such that given a trajectory satisfying
φ′, any trajectory remaining within distance δ satisfies φ. This “robustification”
procedure is the central step of our approach and constitutes also the main con-
tribution of the paper. It then remains to design a controller for the abstraction
such that all its trajectories satisfy the robust specification φ′. This is achieved
by using one of the computational methods that have recently been developed
for the synthesis of hybrid controllers from temporal logic specifications for fully
actuated kinematic models [7] or for systems with affine dynamics with drift [8]
or for general dynamical systems [9]. Finally, lifting the control law using the hi-
erarchical control architecture, the controlled trajectories of the plant satisfy the
original specification φ. Throughout the paper, an application to the control of a
second order model of a planar robot in a polygonal environment is considered.

2 Problem Description

We consider a continuous time dynamical system

Σ :
{

ẋ(t) = f(x(t), u(t)), x(t) ∈ R
n, x(0) ∈ X0 ⊆ R

n, u(t) ∈ U ⊆ R
p

y(t) = g(x(t)), y(t) ∈ R
k (1)

where x(t) is the state of the system, u(t) is the control input and y(t) is the
observed output. The goal of this paper is to construct a hybrid controller that
generates control inputs u(t) for system Σ so that for the set of initial states X0,
the resulting output y(t) satisfies a formula-specification φ in the propositional
temporal logic over the positive real line R+ with the until connective [6]. Let
us remark that we design state feedback controllers (i.e. the controller has full
knowledge of the state x(t)). Thus, the observed output y(t) is used only to
specify the desired behavior of the plant.

For the high level planning problem, we consider the existence of a number of
regions of interest to the user. Such regions could represent set invariants or sets
that must be reached. Let Π = {π0, π1, . . . , πn} be a finite set of symbols that
label these areas. The denotation [[·]] of each symbol in Π represents a subset of
R

k, i.e. for any π ∈ Π it is [[π]] ⊆ R
k. Formally, [[·]] : Π → P(Rk), where P(Γ )

denotes the powerset of a set Γ .
In order to make apparent the use of the propositional temporal logic for the

composition of temporal specifications, we first give an informal description of
the traditional and temporal operators. In this paper, we refer to this logic as
RTL [10]. The formal syntax and semantics of RTL are presented in Section 4.
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Fig. 1. The simple environment of Example 1. The four regions of interest π1, π2, π3, π4

appear in gray while the set labeled by π0 in white.

RTL formulas are built over a set of atoms, the set Π in our case, using com-
binations of the traditional and temporal operators. Traditional logic operators
are the conjunction (∧), disjunction (∨), negation (¬). Some of the temporal
operators are eventually (�), always (�), until (U) and release (R). The Tem-
poral Logic of the Reals can describe the usual properties of interest for control
problems, i.e. reachability (�π) and safety: (�π or �¬π). Beyond the usual prop-
erties, RTL can capture sequences of events and certain infinite behaviours. For
example:

– Reachability while avoiding regions: The formula ¬(π1 ∨ π2 ∨ · · · ∨
πn)Uπn+1 expresses the property that eventually πn+1 will be true, and
until [[πn+1]] is reached, we must avoid all unsafe sets [[πi]], i = 1, . . . , n.

– Sequencing: The requirement that we must visit [[π1]], [[π2]] and [[π3]] in that
order is naturally captured by the formula �(π1 ∧ �(π2 ∧ �π3)).

– Coverage: Formula �π1∧�π2∧· · ·∧�πm reads as the system will eventually
reach [[π1]] and eventually [[π2]] and ... eventually [[πm]], requiring the system
to eventually visit all regions of interest without any particular ordering.

– Recurrence (Liveness): The formula �(�π1 ∧ �π2 ∧ · · · ∧ �πm) requires
that the trajectory does whatever the coverage does and, in addition, will
force the system to repeat the desired objective infinitely often.

More complicated specifications can be composed from the basic specifications
using the logic operators. In order to better explain the different steps in our
framework, we consider throughout this paper the following example.

Example 1 (Robot Motion Planning). A typical example of a system such as (1)
is a robot which evolves in a planar environment. The state variable x(t) models
the internal dynamics of the robot whereas only its position y(t) is observed. In
this paper, we will consider a second order model of a planar robot:

Σ :

⎧⎨
⎩

ẋ1(t) = x2(t), x1(t) ∈ R
2, x1(0) ∈ X1,0

ẋ2(t) = u(t), x2(t) ∈ R
2, x2(0) = 0, ‖u(t)‖ ≤ μ

y(t) = x1(t), y(t) ∈ R
2
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where ‖ · ‖ is the Euclidean norm. The robot is moving in a convex polygonal
environment π0 with four areas of interest denoted by π1, π2, π3, π4 (see Fig. 1).
Initially, the robot is placed somewhere in the region labeled by π1 (i.e. X1,0 =
[[π1]]) and its velocity is equal to zero. The robot must accomplish the following
task : “Stay always in π0 and visit area π2, then area π3, then area π4 and,
finally, return to and stay in region π1 while avoiding areas π2 and π3,” which
is captured by the RTL formula:

φ = �π0 ∧ �(π2 ∧ �(π3 ∧ �(π4 ∧ (¬π2 ∧ ¬π3)U�π1))).

In this paper, for such spatio-temporal specifications, we provide a computational
solution to the following problem.

Problem 1 (RTL Controller Synthesis). Given a system Σ, and an RTL formula
φ, construct a hybrid controller H for Σ such that the observed trajectories of
the closed-loop system satisfy the formula φ.

We propose a hierarchical synthesis approach which consists of three ingredients :
tracking control using approximate simulation relations [5], robust satisfaction
of RTL formulas and hybrid control for motion planning [7,9]. Firstly, Σ is
abstracted to a first order fully actuated system:

Σ′ : ż(t) = v(t), z(t) ∈ R
k, z(0) ∈ Z0 ⊆ R

k, v(t) ∈ V ⊆ R
k (2)

where Z0 = g(X0). Using the notion of approximate simulation relation, we
evaluate the precision δ with which the system Σ is able to track the trajectories
of the abstraction Σ′ and design a continuous tracking controller that we call
interface. Secondly, from the RTL formula φ and the precision δ, we derive a more
robust formula φ′ such that if a trajectory z(t) satisfies φ′, then any trajectory
y(t) remaining within distance δ from z(t) satisfies the formula φ. Thirdly, we
design a hybrid controller H ′ for the abstraction Σ′, so that the trajectories of
the closed loop system satisfy the formula φ′. Finally, by putting these three
ingredients together, as shown in Fig. 2, we design a hybrid controller H solving
Problem 1. In the following sections, we detail each step of our approach.

3 Tracking Control Using Approximate Simulation

In this section, we present a framework for tracking control with guaranteed error
bounds. It allows to design an interface between the plant Σ and its abstraction
Σ′ so that Σ is able to track the trajectories of Σ′ with a given precision. It
is based on the notion of approximate simulation relation [3]. Whereas exact
simulation relations requires the observations of two systems to be identical, ap-
proximate simulation relations allow them to be different provided their distance
remains bounded by some parameter.

Definition 1 (Simulation Relation). A relation W ⊆ R
k × R

n is an approx-
imate simulation relation of precision δ of Σ′ by Σ if for all (z0, x0) ∈ W,
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Interface: uW

x

u

v

z

Abstraction: Σ′

Plant: Σ
(y, [[·]]) |= φ

Hybrid controller: H

Hybrid motion planner: H′

(z, [[·]]δ) |= φ′

Fig. 2. Hierarchical architecture of the hybrid controller H

1. ‖z0 − g(x0)‖ ≤ δ
2. For all state trajectories z(t) of Σ′ such that z(0) = z0 there exists a state

trajectory x(t) of Σ such that x(0) = x0 and satisfying

∀t ≥ 0, (z(t), x(t)) ∈ W .

Let us remark that for δ = 0, we recover the notion of exact simulation relation as
defined in [11,12]. An interface associated to the approximate simulation relation
W allows to choose the input of Σ so that the states of Σ′ and Σ remain in W .

Definition 2 (Interface). A continuous function uW : V × W → U is an
interface associated to the approximate simulation relation W, if for all (z0, x0) ∈
W, for all trajectories z(t) of Σ′ associated to input v(t) and such that z(0) = z0,
the trajectory of Σ given by

ẋ(t) = f(x(t), uW (v(t), z(t), x(t))), x(0) = x0

satisfies for all t ≥ 0, (z(t), x(t)) ∈ W.

Thus, by interconnecting Σ and Σ′ through the interface uW as shown on Fig. 2,
Σ tracks the trajectories of the abstraction Σ′ with precision δ.

Proposition 1 (Proof in [13]). Let x0 ∈ X0, z0 = g(x0) ∈ Z0 such that
(z0, x0) ∈ W, then for all trajectories z(t) of Σ′ associated to input v(t) and
initial state z0, the observed trajectory y(t) of Σ given by{

ẋ(t) = f(x(t), uW(v(t), z(t), x(t))), x(0) = x0
y(t) = g(x(t))

satisfies for all t ≥ 0, ‖y(t) − z(t)‖ ≤ δ.
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Let us remark that the choice of the initial state z0 of the abstraction Σ′ is not
independent of the initial state x0 of the system Σ (z0 = g(x0)).

Remark 1. Usual hierarchical control approaches assume that the plant Σ is
simulated by its abstraction Σ′. In this paper, the contrary is assumed. The
abstraction Σ′ is (approximately) simulated by the plant Σ: the approximate
simulation relation is used as a tool for tracking controller design.

The construction of approximate simulation relations can be done effectively
using a simulation function [3], that is a positive function bounding the distance
between the observations and non-increasing under the parallel evolution of the
systems.

Definition 3 (Simulation Function). Let V : R
k ×R

n → R+ be a continuous
and piecewise differentiable function. Let uV : V ×R

k×R
n → R

p be a continuous
function. V is a simulation function of Σ′ by Σ, and uV is an associated interface
if for all (z, x) ∈ R

k × R
n,

V(z, x) ≥ ‖z − g(x)‖2, (3)

sup
v∈V

(
∂V(z, x)

∂z
v +

∂V(z, x)
∂x

f(x, uV(v, z, x))
)

≤ 0 (4)

Then, approximate simulation relations can be defined as level sets of the simu-
lation function.

Theorem 1 (Proof in [13]). Let the relation W ⊆ R
k × R

n be given by

W =
{
(z, x) | V(z, x) ≤ δ2} .

If for all v ∈ V , for all (z, x) ∈ W, uV(v, z, x) ∈ U , then W is an approximate
simulation relation of precision δ of Σ′ by Σ and uW : V × W → U given by
uW(v, z, x) = uV(v, z, x) is an associated interface.

Example 2. Let us go back to our example. The system Σ modelling the dynam-
ics of the robot is abstracted to a system Σ′ such as (2) where the set of inputs
is V = {v ∈ R

2| ‖v‖ ≤ ν} and the set of initial states is Z0 = X1,0. Let α > 0,
we define the following functions

V(z, x) = max
(
Q(z, x), 4ν2

)
where Q(z, x) = ‖x1 − z‖2 + α‖x1 − z + 2x2‖2,

uV(v, z, x) = v
2 + −1−α

4α (x1 − z) − x2.

First, let us remark that equation (3) clearly holds. If Q(z, x) ≤ 4ν2, then it is
clear that equation (4) holds. If Q(z, x) ≥ 4ν2, then

∂V
∂z

v +
∂V
∂x1

x2 +
∂V
∂x2

uV = 2(x1 − z) · (x2 − v)

+2α(x1 − z + 2x2) · (x2 − v + 2uV).
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After the substitution of the expression of uV and simplification, we arrive to

∂V
∂z

v +
∂V
∂x1

x2 +
∂V
∂x2

uV = −Q(z, x) − 2(x1 − z) · v ≤ −Q(z, x) + 2ν‖x1 − z‖

because ‖v‖ ≤ ν. Since ‖x1 − z‖2 ≤ Q(z, x), we have

∂V
∂z

v +
∂V
∂x1

x2 +
∂V
∂x2

uV ≤ −Q(z, x) + 2ν
√

Q(z, x) ≤
√

Q(z, x)(2ν −
√

Q(z, x)).

Since Q(z, x) ≥ 4ν2, equation (4) holds and V is a simulation function of Σ′ by
Σ, and uV is an associated interface.

Let us define W = {(z, x)| V(z, x) ≤ 4ν2}. Let v ∈ V , (z, x) ∈ W , let us
remark that

‖uV(v, z, x)‖ =
∥∥∥∥v

2
+

−1 + α

4α
(x1 − z) − 1

2
(x1 − z + 2x2)

∥∥∥∥
≤ ν

2
+

| − 1 + α|
4α

√
V(z, x) +

1
2

√
V(z, x)

α

≤ ν

2
(
1 + |1 − 1/α| + 2/

√
α
)
.

We assume that the velocity bound ν of the abstraction Σ′ has been chosen
small enough so that ν

2 (1 + |1 − 1/α| + 2/
√

α) ≤ μ. Then, Theorem 1 applies
and W is an approximate simulation relation of precision 2ν of Σ′ by Σ and an
associated interface is given by

uW(v, z, x) =
v

2
+

−1 − α

4α
(x1 − z) − x2.

Let the initial state of the abstraction Σ′ be chosen so that z(0) = x1(0), then
from Proposition 1, by interconnecting Σ′ and Σ through the interface uW , the
observed trajectories of system Σ tracks the trajectories of Σ′ with precision 2ν.

4 RTL as a Controller Specification Language

Temporal logics are useful for reasoning about the occurrence of events with
respect to some time model. In this paper, we advocate the applicability of the
propositional temporal logic over the reals (RTL) [6,10] as a natural formalism
for a controller specification language. RTL has the same temporal connectives
as the Linear Temporal Logic (LTL) [14], but now the underlying time line is
the positive real line instead of the natural numbers. In this section, after a brief
presentation of RTL, we show how we can derive from an RTL specification φ a
more robust specification φ′ such that given a trajectory satisfying φ′, any other
trajectory remaining within distance δ satisfies φ. The goal of this “robustifica-
tion” is then to design a controller for the abstraction Σ′ so that it satisfies φ′.
Then, refining this control law to Σ using the interface presented in the previous
section, we can guarantee that the plant satisfies the original specification φ.
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We first introduce the syntax of RTL formulas in Negation Normal Form
(NNF). In NNF, we push the negations inside the subformulas such that the
only allowed negation operators appear in front of atoms.

Definition 4 (RTL Syntax in NNF). For π ∈ Π, the set ΦΠ of all well
formed RTL formulas over Π in NNF is constructed using the grammar

φ ::= π | ¬π | φ ∨ φ | φ ∧ φ | φUφ | φRφ

As usual, the boolean constants � (true) and ⊥ (false) are defined as � = π∨¬π
and � = π ∧ ¬π respectively.

Formally, the semantics of RTL formulas is defined over continuous time
boolean signals. Here, we instantiate the definitions of the semantics over ab-
stractions of the output trajectories of the system Σ with respect to Π . Let
(y, [[·]]) |= φ to denote the satisfaction of the RTL formula φ over the output
trajectory y(t) starting at time t = 0 with respect to the atom mapping [[·]]. If all
the output trajectories y(t) of system Σ driven by a controller H and associated
to an initial state in X0 are such that (y, [[·]]) |= φ, then we write ([Σ, H ], [[·]]) |= φ
and we say that [Σ, H ] satisfies φ. In the following, given any function f from
R+ to some normed space A, we define f |t for t ∈ R+ to be the t time shift of
f with definition f |t(s) = f(t + s) for s ∈ R+.

Definition 5 (RTL Semantics). Let y(t) be a function from R+ to R
k and Π

be the set of atoms. For t, s ∈ R+, the semantics of any formula φ ∈ ΦΠ can be
recursively defined as

– (y, [[·]]) |= π iff y(0) ∈ [[π]].
– (y, [[·]]) |= ¬π iff y(0) �∈ [[π]].
– (y, [[·]]) |= φ1 ∨ φ2 if (y, [[·]]) |= φ1 or (y, [[·]]) |= φ2.
– (y, [[·]]) |= φ1 ∧ φ2 if (y, [[·]]) |= φ1 and (y, [[·]]) |= φ2.
– (y, [[·]]) |= φ1 Uφ2 if there exists t ≥ 0 such that (y|t, [[·]]) |= φ2 and for all s

with 0 ≤ s ≤ t we have (y|s, [[·]]) |= φ1.
– (y, [[·]]) |= φ1Rφ2 if for all t ≥ 0 it is (y|t, [[·]]) |= φ2 or there exists some s

such that 0 ≤ s ≤ t and (y|s, [[·]]) |= φ1.

Note that due to the definition of the negation operator, the duality property of
the logic holds and, thus, by using RTL in NNF we do not loose in expressive
power. The path formula φ1 Uφ2 intuitively expresses the property that over the
trajectory y(t), φ1 is true until φ2 becomes true. Note that here the semantics of
until require that φ1 holds when φ2 becomes true. Thus, this is a less expressive
version of until than the strict until [10]. Intuitively, the release operator φ1Rφ2
states that φ2 should always hold, a requirement which is released when φ1
becomes true. Furthermore, we can also derive additional temporal operators
such as eventually �φ = � Uφ and always �φ = ⊥Rφ. The formula �φ indicates
that over the trajectory y(t) the subformula φ becomes eventually true, whereas
�φ indicates that φ is always true over y(t).

Initially, an RTL formula φ is provided as a controller specification for the
concrete system Σ. Since we design hybrid control laws for the subsystem Σ′,
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we need to translate the initial RTL specification for Σ to a modified RTL
specification φ′ for Σ′. For this purpose, we introduce a new set of atoms and
a new atom’s mapping. First, similar to [15], we introduce the notion of δ-
contraction for sets in order to define our notion of robustness.

Definition 6 (Contraction, Expansion). Given a radius δ ∈ R+∪{+∞} and
a point α in a normed space A, the δ-ball centered at α is defined as Bδ(α) =
{β ∈ A | ‖α − β‖ ≤ δ}. If Γ ⊆ A, then Cδ(Γ ) = {α ∈ A | Bδ(α) ⊆ Γ} is the
δ-contraction1 and Bδ(Γ ) = {a ∈ A | Bδ(a) ∩ Γ �= ∅} is the δ-expansion.

Consider now a new set of atomic propositions ΞΠ such that ΞΠ = {ξα | α =
π or α = ¬π for π ∈ Π}. For a given δ ∈ R+, we define a new map [[·]]δ : ΞΠ →
P(Rk) based on the map [[·]] as follows:

∀ξ ∈ ΞΠ , [[ξ]]δ =:
{

Cδ([[π]]) if ξ = ξ¬π

Cδ([[π]]) if ξ = ξπ

Here, Γ denotes the complement of a set Γ . For clarity of the presentation, we
define a translation algorithm rob : ΦΠ → ΦΞΠ which takes as input an RTL
formula φ in NNF and it returns a formula rob(φ) where the occurrences of
atomic propositions of π and ¬π have been replaced by the members ξπ and ξ¬π

of ΞΠ respectively.
The following theorem is the connecting link between the specifications satis-

fied by the abstraction Σ′ and its concrete system Σ. Informally, it states that
given δ ≥ 0 if we δ-expand the sets that must be avoided and δ-contract the
sets that must be reached, then we will obtain a δ-robust specification. The
latter implies that if a trajectory satisfies the δ-robust specification, then any
other trajectory that remains δ-close to the initial one will also satisfy the same
non-robust initial specification.

Theorem 2 (Proof in [13]). Consider a formula φ ∈ ΦΠ which is built on a
set of atoms Π, a map [[·]] : Π → P(Rk), and a number δ ∈ R+, then for all
functions y(t) and z(t) from R+ to R

k such that for all t ≥ 0, ‖z(t)− y(t)‖ ≤ δ,
the following holds (z, [[·]]δ) |= rob(φ) =⇒ (y, [[·]]) |= φ.

Two remarks are in order here.

Remark 2. When (z, [[·]]δ) �|= rob(φ) we cannot conclude that (y, [[·]]) �|= φ. The
only conclusion we can make in this case is that z(t) is not a δ-robust trajectory
in the sense of [16]. Potentially, we can gain more information if we define 3-
valued semantics [17] for the satisfaction relation of (z, [[·]]δ) |= rob(φ), but for
the scope of this paper Theorem 2 is sufficient.

Remark 3. Theorem 2 does not particularly refer to the output trajectories of
systems Σ and Σ′. If we consider both functions z and y to be trajectories of
Σ′, then Theorem 2 classifies which trajectories of Σ′ are δ-robust.
1 In cases when the δ-contraction of a set must be a polyhedral set, we under-

approximate the δ-contraction by a δ-offset (see Sect. 6).



212 G.E. Fainekos, A. Girard, and G.J. Pappas

5 From RTL to Hybrid Controllers

It then remains to design a hybrid controller H ′ for the simpler system Σ′ such
that its trajectories satisfy an RTL specification φ′, i.e. ([Σ′, H ′], [[·]]δ) |= φ′. In
previous work, we have proposed two different solutions to this problem [7,9].

The first methodology [7] comprises the following steps. We first create an
observation preserving partition of the state space of the system. By observa-
tion preserving we mean that all the states that belong to a set in the partition
satisfy the same set of labels ξ ∈ ΞΠ . The sets in the partition do not have to
be convex and a particular set of labels can be mapped to more than one set in
the partition. Then, we can abstract the continuous state space to a Finite State
Machine (FSM) where each state corresponds to one set in the partition. Under
the assumption of finite variability [18], i.e. within a finite interval of time there
can exist only a finite number of changes in the atomic propositions, we can solve
the RTL planning problem using Linear Temporal Logic (LTL) planning tech-
niques [19]. The later consists of converting the LTL specification into a Büchi
automaton, taking its product with the FSM and, then, finding a path on the
product automaton that would satisfy the LTL formula [7]. The other important
ingredient of the approach is the existence of simple feedback controllers [20,21]
which are defined over polygons. These controllers satisfy the property that if
a trajectory in their domain reaches a facet of the polygon, then every other
trajectory in the domain of operation does the same. Using the discrete path
on the FSM, we can guide the composition of the local feedback controllers and
derive a hybrid automaton that generates trajectories that satisfy the initial
RTL specification by construction. Note though that in our final construction,
we have to make sure that no Zeno behavior occurs in order to satisfy the finite
variability assumption.

On the other hand, in [9], we present some preliminary results on the design
of hybrid controllers from RTL specifications by directly operating on RTL for-
mulas. The method consists of 3 main steps. First, the RTL formula is converted
to an abstract hybrid automaton where the dynamics in each discrete location
remain undefined. Then, from each discrete location we extract controller con-
straints in the form of triplets c = {Init, Inv, Goal}, where Init is a set of initial
conditions, Inv is an invariant set and Goal is a goal set. In the final step, we
design controllers that satisfy the constraints c and derive a hybrid automaton
whose trajectories satisfy the RTL specification. The main advantages of the new
approach involve the possibility of using different control design methodologies
for each discrete location of the hybrid automaton and the lack of mandatory
partitioning of the environment. Currently, the theory solves the problem for a
fragment of RTL, but we conjecture that the recent results by Maler et al. [22]
can provide the basis for a solution to the complete RTL.

Both approaches [7,9] constitute valid solutions to the controller design prob-
lem that we consider in this paper. Nonetheless in the next section, we present
some implementation results for our simple example using the framework pre-
sented in [9]. The choice of [9] over the approach in [7] was made for the follow-
ing reasons. First, because the only modification required to the computational
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framework of [9] is just an implementation of the Cδ operator. Second, because
approaches like [7,8] require the finest partition with respect to the set of atoms
ΞΠ . This implies that for each π in Π , we must create in advance two sets :
a δ-contraction Cδ([[π]]) and a 2δ-annulus Bδ([[π]]) \ Cδ([[π]]), and then, take all
the appropriate intersections with the contraction and annulus sets of the rest
of the atoms. Finally, with the methodology proposed in [9] we can potentially
design just one local feedback controller for each part of the specification. On
the contrary, the methods in [7,8] would require a larger number of controllers
even for the simple cases.

Given the hybrid controller H ′, the following theorem, which is immediate
from Proposition 1 and Theorem 2, states the main result of the paper.

Theorem 3. Let W be an approximate simulation relation of precision δ be-
tween Σ′ and Σ and uW be the associated interface. Consider a formula φ ∈ ΦΠ

and define φ′ = rob(φ). Let H ′ be a controller for Σ′ and H the associated
controller for Σ obtained by interconnection of the elements as shown on Fig. 2.
Then, ([Σ′, H ′], [[·]]δ) |= φ′ implies ([Σ, H ], [[·]]) |= φ.

6 Implementation and Simulations

In this section, we demonstrate the applicability of our framework by presenting
some numerical results. We have implemented the algorithms presented in [9] in
MATLAB using the polytope library of the Multi-Parametric Toolbox (MPT)
[23]. In the following, we just provide an informal high-level description of our
toolbox. The user inputs to the toolbox are : an RTL formula φ and the associated
map [[·]], the initial conditions x0 and the maximum acceleration μ of the system
Σ as well as the parameter α as described in Example 2 and an integration step
ds. Currently, the set valued function [[·]] is restricted to map only to convex or
concave polyhedral sets. This is not a fundamental restriction and it was made
only for simplifying the implementation of the operator Cδ.

Using the algorithms in [9], we first derive the controller specifications for
the design of a hybrid controller H ′ such that ([Σ′, H ′], [[·]]δ) |= rob(φ). Note
that the δ-contraction of a polyhedral set is not always a polyhedral set. In
order to maintain a polyhedral description for all the sets, we under-approximate
the δ-contraction by the inward δ-offset. Informally, the δ-offset of a polyhedral
set is the inward δ-displacement of its facets along the corresponding normal
directions. Since the δ-offset is an under-approximation of the δ-contraction,
Theorem 2 still holds.

For the generation of the local feedback controllers such that they satisfy
a controller specification triplet c (see Sect. 5), we use again a hierarchical ap-
proach. If the set Inv is convex, then we can use just one potential field controller
[21] that converges inside Goal. If on the other hand the set invariant Inv is not
convex, then we perform a convex decomposition on the set Inv and we apply
the path planning methodology of Conner et al. [21]. By hierarchically compos-
ing the resulting controllers, in the sense that a controller that satisfies a triplet
c can itself be a hybrid automaton, we obtain the hybrid controller H ′ for Σ′.
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Fig. 3. Simulation results for ν = 1. (a) A trajectory of the kinematic model - The light
gray polygons denote the 2-contraction of the regions while the dark gray polygons the
2-expansion. (b) The corresponding trajectory of the dynamic model.
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Fig. 4. Simulation results for ν = 2.5. (a) Kinematic model. (b) Dynamic model.

Finally, the hybrid controller H for Σ is obtained from H ′ by composing with
the interface uW (see Fig. 2).

In the following, we present some numerical results for the robot motion plan-
ning example that we consider in this paper. In all the simulations, the parameter
α is set to 100 and the initial conditions to x0 = [30 20 0 0]T . The first simu-
lation (Fig. 3) shows the resulting trajectories for Σ′ and Σ for ν = 1 (i.e. the
velocity bound for the kinematic model Σ′). It is easy to see that the resulting
trajectory of Σ (Fig. 3.b) satisfies the RTL formula φ. The total running time for
this example on a Pentium 4 at 2.4GHz with 768MB of RAM is 9 sec (including
the simulation and the plotting of the graphs in Fig. 3).

Next, in Fig. 4 we present simulation results for ν = 2.5. Note that there
barely exists a 2ν-robust trajectory for the kinematic model with respect to
the RTL specification. Nevertheless, the trajectory of the dynamic model does
satisfy the formula. Also, in Fig. 5.a you can observe that the distance be-
tween the two trajectories z(t) and y(t) is always bounded by the precision
2ν = 5 of the approximate simulation relation and that this bound is tight. Fi-
nally, when we increase ν to 3, then there does not exist a 6-robust trajectory
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Fig. 5. (a) Distance between trajectories z(t) and y(t) when ν = 2.5. (b) The modified
environment when ν = 3. Medium gray : original regions, dark gray : 6-expanded
regions, light gray : 6-contracted regions, white : 6-contracted workspace π0.

for the system Σ′ (Fig. 5.b). Notice that the modified environment is partitioned
into two disconnected components (the white workspace is separated by the dark
gray regions).

7 Conclusions

We have presented a new approach to the hybrid controller synthesis problem
from temporal logic specifications. Our proposed hierarchical framework is based
on the notion of approximate simulation relations and a new definition of robust-
ness for temporal logic formulas. The hierarchical synthesis approach comprises
three basic steps : (i) tracking control using approximate simulation relations [5],
(ii) robust satisfaction of RTL formulas and (iii) hybrid control for motion plan-
ning [7,9]. We strongly believe that a hierarchical approach can provide a viable
solution to a large class of control problems. Future work will concentrate on
developing interfaces for other types of systems (i.e. for the unicycle) and appli-
cations of the framework to control problems.
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Abstract. In this paper we show how file sharing peer to peer systems
can be modeled by hybrid systems with a continuous part corresponding
to a fluid limit of files and a discrete part corresponding to customers.
Then we show that this hybrid system is amenable to perfect simulations
(i.e. simulations providing samples of the system states which distribu-
tions have no bias from the asymptotic distribution of the system). An
experimental study is carried to show the respective influence that the
different parameters (such as time-to-live, rate of requests, connection
time) play on the behavior of large peer to peer systems, and also to
show the effectiveness of this approach for numerical solutions of sto-
chastic hybrid systems.

1 Introduction

Hybrid systems are very useful to model discrete systems with several time
and space scales. In that case, one typically uses fluid limits for the parts of
the system with fastest and largest scales. These models have been introduced
in various domains under the form of fluid queues [1], continuous Petri nets
[2], or timed automata [3]. In this paper, we will consider one such example,
namely peer to peer systems, where two types of dynamics are superimposed.
The slow dynamics concerns the customers, who join and leave the system. The
fast dynamics concerns the files and their transfers between the customers. A
natural model for file sharing peer to peer systems mixes a discrete stochastic
system to model the behavior of the customers and a deterministic differential
equation for the mean behavior of the files, seen as a fluid quantity.

The analysis of such stochastic hybrid systems is often difficult on a mathe-
matical as well as on a numerical point of view and such large hybrid systems
are often considered computationally untractable. Simulation approaches are
efficient alternatives to estimate their behavior by providing samples distrib-
uted according to their asymptotic distribution. However, simulation has several
drawbacks. First, simulations do not make any sense unless the system has er-
godicity properties, which are sometimes difficult to check. Second, even under
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the right ergodicity conditions, classical simulation techniques only provide ap-
proximations of the asymptotic behavior. The longer the simulation the more
accurate the result, but it is usually hard or impossible to be more precise than
this general statement. Recently, Propp and Wilson have used backward cou-
pling techniques ([4]) to design a simulation algorithm to get perfect samplings
(i.e. whose distributions are not approximations but the exact asymptotic dis-
tributions) of discrete time, finite Markov chains.

In this paper we show how their idea can be adapted to the infinite and
continuous case at hand, by using regeneration points. We use this property to
design a perfect simulation algorithm of our peer to peer model, by using addi-
tional monotonicity properties. Finally, we carry an experimental study of the
performances of the model based on this sampling technique. A similar approach
has been used in [5] for decoupled hybrid systems (where the discrete part does
not depend on the continuous one). In that case, the coupling of the perfect
simulation occurs in a very controlled manner because the system is uniformly
contracting. Here however, the interplay between the discrete and the continuous
parts are more intricate so that the coupling time might have a larger variance.

Actually, the goal of this paper is two-fold. First, we propose a new hybrid
model for file sharing P2P systems, combining the effects of popularity and
age decays of files on the customers behavior. Second, we show how this kind of
stochastic hybrid systems can be solved numerically by using a new and powerful
simulation method based on coupling from the past properties. In practice, this
approach has proved to be very fast and we have been able to treat very large
cases (with state spaces of size larger than 107) within one or two minutes over
a standard PC.

2 A Hybrid Model of Peer to Peer File Sharing Systems

Downloading popular multimedia content from the Internet can take a long time
due to bandwidth bottlenecks and to Web server overload. The central idea of
peer to peer (P2P) systems is to leverage the downloaders’ own (often unused)
resources to provide a globally better service. In the context of file download, the
resource is upload bandwidth and the service is a faster diffusion of popular files.
For instance, a popular file F downloaded by a user A may also be of interest to a
user B which is “closer” to A than to the origin Web server hosting file F . Then
if B downloads file F from A instead of the origin server, the benefit is threefold :
B downloads the file at a high rate on the local network; B doesn’t contact the
origin server, which reduces the load on this server and finally, bandwidth is
saved on the wide-area network since the data is transferred locally.

An important aspect of P2P systems is that clients (downloaders) are also
servers (uploaders). For this reason, these systems are said “self-scaling” since
the resources increase with the demand.

Among P2P systems, one of the most popular applications is file sharing. The
most famous systems such as KaZaA or Gnutella [6,7] belong to this category.
They can mainly be described by the copies of files that all the users make
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available for download (typically, copies of files previously downloaded). These
systems may be intricate and are extremely difficult to model in full details. Here
are the main simplifications used in this paper. First, the peers are assumed to be
statistically homogeneous and we only consider two variables, N(t), the number
of customers (or nodes) connected to the system at time t and x(t), the number
of copies of all the files which are available globally in the system. We will see
below that x(t) can also be viewed as the popularity index of the system. The
second assumption is that downloads always succeed and download times are
neglected since files can be split into fragments of “unit” size for download.

2.1 Modelling with a Hybrid System

The variable N(t) being discrete, it only changes values at discrete times. Thus
N(t) is driven by jump instants, which forms a point process T0 = 0 (time
origin), T1, . . . Tn. Let (τn)n∈N be the sequence of inter jump times: τn

def= Tn −
Tn−1. At each time Tn, each customer has the opportunity to see the global
state of the system (N(T )n), x(Tn)). Based on this information, each customer
decides either to join, or to leave or even to remain as is. Therefore, the total
number of connected customers N(Tn) is a continuous time Markov chain, which
infinitesimal generator is given in Figure 1. This infinitesimal generator describes

10 n − 1 n + 1 Nmax

(λ + νx)Nmax (λ + νx)

μ
μNmaxμ(n − 1) μ(n + 1)

n

(λ + νx)(Nmax − n + 1)
(λ + νx)(Nmax − n)

μn

Fig. 1. The infinitesimal generator for the Markov process N

the fact that each customer leaves the system with a constant rate μ. Also, each
customer joins the system with a rate proportional to the popularity of the
system (which is proportional to x), plus a “blind” rate λ, independent of x.
The behavior of N(Tn) can be written under a constructive form as

N(Tn) = ϕ(N(Tn−1), x(Tn−1), ξn, τn), (1)

where {ξn}n∈N is a random process of innovations, uniformly distributed over
[0, 1], and ϕ describes the dynamics of N at jump instants:

1. If ξ > 1−λ′ + ν′x(Tn−1)(Nmax−N(Tn−1)), then the next event is a customer
arrival: N(Tn) = N(Tn−1) + 1.

2. If ξ < μ′N(Tn−1), then the next event is a customer departure: N(Tn) =
N(Tn−1) − 1.

3. Otherwise, this is a null event, i.e. no customer arrives nor leaves and the
system is left unchanged at time Tn: N(Tn) = N(Tn−1) .
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As for the continuous part, x(t) is governed by a discrete process at jump in-
stants, Tn. Upon a customer departure, it takes away all the documents it was
responsible for. Since our model is symmetric over all customers and all files, the
number of lost documents is uniform over all customers so that it corresponds
to a proportional fraction of the total fluid. Therefore if the event at Tn is a
departure then x(Tn) = x(T−n )N(T −

n )−1
N(T −

n )
. This fraction of files lost may also be a

random variable with mean N(T −
n )−1

N(T −
n )

to account for user heterogeneity as shown
in Section 3.8. When a node joins the system, it does not bring exogenous files
with him upon its arrival. This assumption can easily be relaxed as shown in Sec-
tion 3.8. The increase of the number of files will come from the future downloads
of the newcomer: x(Tn) = x(T−n ). Upon a null event, x is also left unchanged,
x(Tn) = x(T−n ). We denote this evolution by

x(Tn) = h(N(T−n ), x(T−n ), ξn), (2)

As for the behavior of x(t) between jump times, it is given by a deterministic
differential equation, In [Tn, Tn+1),

dx

dt
= f(N(Tn), x, t) = σN(Tn)e−αx + σN(Tn)x

N(Tn)C − x(t)
N(Tn)C

− θx. (3)

Here is a brief account on the dynamics of x between jumps. The first term
σNe−αx(t) corresponds to the rate at which new files are introduced in the
system. First, σ is the rate at which each customer requests files. As for e−αx(t),
it corresponds to the probability that the requested file is not yet present in the
system (called the miss probability in the following) so that a download from
outside is needed. The form of this term has been derived experimentally as
follows.

The number of requests for each file typically follows a Zipf law with parameter
β. Therefore, the number of copies per file also follows a Zipf law, since each
request results in the creation of a new copy. In our model, we only know x,
the total number of copies while the miss probability depends on the average
number of distinct files, d(x). Actually, the miss probability is uniform over all
missing files (new files do not have any popularity yet) and is equal to 1−d(x)/C.
Computing d(x) exactly is intricate and we could not find a close-form formula
for it. However, we found empirically that d(x) is very close to C(1− exp(−αx))
as seen in Figure 2. Parameter α was found to be equal to e−β/C. Finally, we
can assume that new files are introduced in the system with rate σN(t)e−αx(t).

The second term σN(Tn)x(t)N(Tn)C−x(t)
N(Tn)C corresponds to the increase of the

number of copies linearly in the popularity (x(t)), provided that the copy is not
yet present locally (the probability of local absence being N(Tn)C−x(t)

N(Tn)C ).
The last term −θx(t) corresponds to the decrease of the number of copies due

to obsolescence (each copy is removed from the system by the system adminis-
trator at rate θ ).
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Fig. 2. Matching of the exponential with d(x) under Zipf laws for popularity, with at
most C = 100 different files and using Zipf parameters β = 0.1 and β = 1 respectively

This differential equation is Lipschitz everywhere, therefore, it admits a unique
solution, once an initial condition x0 is given, denoted F (x0, t). No closed form of
the solution is known, so that one needs to use a numerical method for integra-
tion. This equation is prone to numerical instability because the second derivative
of x(t) is large when t goes to infinity. In our programs, we have used a finely
tuned ad-hoc Runge-Kutta integrator with adaptative step sizes [8]. In any case,
the step size is always larger than ε/(T ||f ′||) where ||f ′|| = supN,x

df(N,x)
dx , for

integrating with precision ε over an interval of length T . No further details will
be given in this technical issue.

3 Coupling from the Past

Given the stochastic hybrid model for file sharing systems, we now show how to
compute its steady state behavior.

3.1 Embedded Markov Chain

In this part we only study the system at its jump instants. The behavior at
arbitrary instants can be easily derived as shown in Section 3.7.

Lemma 1. The embedded sequence at jump times , Sn
def= (N(Tn), x(Tn)) is

a homogeneous continuous time Markov chain over a continuous domain, D ⊂
N × R.

Proof (sketch). The state of the process at time Tn only depends on the state
at time Tn−1, the innovation ξn and the n-th inter-arrival of the jump process
τn = Tn − Tn−1, which value only depends on the state at time Tn−1. This
means that (N(Tn), x(Tn)) is a homogeneous Markov chain over the domain of
all reachable states, D ⊂ N × R.
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In the following we will denote this global construction of this peer to peer
Markov chain (P2P MC) as Sn = Φ(Sn−1, ξn). For simplicity, we also denote
Φ(S,ξ1, . . . , ξn) def= Φ(· · · Φ(Φ(S,ξ1), ξ2), · · · ).

The Markov chain Sn can be uniformized into a discrete time Markov chain
(useful for simulation purposes) using the constant Λ = Nmax(λ+νCNmax +μ).

Lemma 2. The chain Sn is uniformly ergodic over D: there exists a non-trivial
measure ϕ over D, some m > 1 and 0 ≤ β ≤ 1 such that ∀x ∈ D, Pm(x, ·) ≥
βϕ(·). Moreover, it has an atom in (0, 0) (i.e. (0,0) can be reached with a positive
probability, starting from any other state).

Proof. The discrete part, N(Tn) follows a birth and death process. Therefore,
P(N(Tn) = 0|N(0) = N0, x = x0) ≥ P(N(Tn) = 0|N(0) = Nmax, x0 =
CNmax) ≥ μnNmax!/Λn if n ≥ Nmax. Again, m = Nmax, ϕ = 1I(0,0) and
β = Nmax!(μ/Λ)Nmax verify the definition of uniform ergodicity. The fact that
ϕ = 1I(0,0) means that (0, 0) is an atom.

Lemma 2 implies directly that Sn admits a unique stationary distribution (us-
ing general results for continuous Markov chains, see for example, [9]). Let
Pn(s, A) denote the transition law of n steps of the chain Sn (This is the
probability P(Sn ∈ A|S0 = s) ). The stationary measure Π of S satisfies
Π(A) =

∫
D P 1(s, A)Π(ds), for all measurable set A in D.

3.2 Computing the Stationary State

If Π can be computed explicitly, there are many ways to draw samples from
it. However, in most cases, analytical or even numerical computations of Π are
impossible to obtain, either because the domain D is huge (in finite cases) or
because the structure of the transition kernel P 1(s, A) is too complex.

Without analytical or numerical knowledge of Π the most popular method
for sampling from Π is simulation. The classical Monte-Carlo simulation consists
in choosing an arbitrary initial value S0 = s0 in D and to use the constructive
equations given in Equations (1), (2),(3) to generate S1, . . . , Sn by using a ran-
dom number generator for ξ. This technique works asymptotically because the
sequence of samples converges in law, in the sup-norm, to the stationary distri-
bution: limn→∞ supA |Pn(s0, A) − Π(A)| = 0. However, for a given finite n, the
gap with the exact distribution depends on the convergence rate to the station-
ary distribution which is unknown in general. Here, we will show how to compute
a sample in finite time which distribution is exactly Π (hence the name perfect),
using a backward coupling technique. This technique was proposed for the first
time in [4] for Markov chains over finite state spaces. The main idea is to run
several simulations in parallel starting in the past from all possible initial states.
If all the trajectories coincide at time 0 (meaning that they have all coupled
at some point in the past) then the simulation stops and outputs the common
value of all the trajectories at time 0, which happens to be a perfect sample of
the chain.
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Obviously, simulating trajectories from all initial states cannot be done for
continuous state spaces. However, it was shown in [10] that backward coupling
can also be defined for continuous state Markov chains. Here, we do not need
the general theorems in [10] and we show how the backward coupling idea can
be applied for the P2P MC using directly its uniform ergodicity.

Theorem 1. The vertical backward coupling time

K
def= min{n ≥ 0 : Φ(s, ξ−n, . . . , ξ−1, ξ0) = Φ(r, ξ−n, . . . , ξ−1, ξ0), ∀r, s ∈ D},

is a well defined random variable. Furthermore, for all s ∈ D, the random
variable Φ(s, ξ−K , . . . , ξ−1, ξ0) is distributed according to measure Π (denoted
Φ(s, ξ−K , . . . , ξ−1, ξ0) ∼ Π).

Proof. Let us consider the sub-sequence Smn that makes m steps of the tran-
sition Kernel where m = Nmax. As shown in Lemma 2, with probability pc >
μNmaxNmax!/ΛNmax , then Smn = (0, 0). Therefore, K is a finite random vari-
able, by Borel-Cantelli. Now, if s∞ is any state distributed according to the
stationary measure Π , then Φ(s∞, ξ−n, . . . , ξ−1, ξ0) is also stationary for all
n > 0, by definition of Π . By choosing n = K, we get for an arbitrary state s,
Φ(s, ξ−K , . . . , ξ−1, ξ0) = Φ(s∞, ξ−K , . . . , ξ−1, ξ0) ∼ Π .

From Theorem 1, one may construct an algorithm providing a sample of the chain
which has the stationary distribution Π : simulate backward in time starting from
an arbitrary state and using steps of size m, until ξ−n < pc, where S−n+1 is set
to (0, 0). This algorithm has two major drawbacks: the kernel Pm is very difficult
to compute and the run may last for long (because pc is very small). They might
make it impossible to use in practice. One way to deal with these two problems
is to use structural properties of the P2P chain Sn, such as monotonicity.

3.3 Monotonicity Issues

The final class D admits the natural component-wise ordering: (N, x) ≤ (N ′, x′)
if N ≤ N ′ and x ≤ x′. The chain S is said to be monotone if (N, x) ≤ (N ′, x′)
implies that Φ(N, x, ξ, τ) ≤ Φ(N ′, x′, ξ, τ) for all ξ and all τ .

To test if the chain is monotone, one considers two chains S1 and S2 starting
with ordered values, N1(0) ≥ N2(0) and x1(0) ≥ x2(0).

One must first consider the evolution between jumps. It should be clear that
the differential equation (3) is monotone in N as well as in its initial condition.
Therefore, if N1(0) ≥ N2(0) and x1(0) ≥ x2(0), then for all time t ≥ 0, x1(t) ≥
x2(t).

As for the behavior of the chain at jump times, it is monotone as long as
ξ > 1 − λ′Nmax,However if ξ < 1 − λ′ + ν′x(Tn−1)Nmax, the event may either
be a departure or a null event for both chains. The following tricky situation can
occur: μ′N2(Tn−1) < ξ < μ′N1(Tn−1). This corresponds to a departure for S1
and a null event for S2. Now, if x1(T−n ) and x2(T−n ) are too close, the following
can happen: x1(Tn) = x1(T−n ) − x1(T−n )/N1(Tn−1) ≤ x2(T−n ) = x2(Tn). So that
the chain is actually not monotone under such events.
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3.4 Upper and Lower Envelopes

In order to deal with monotone systems, we introduce upper and lower envelopes
of the trajectories of the Markov chain S, S1 = (N1, x1) and S2 = (N2, x2),
respectively. The upper (resp. lower) envelope start at time t = 0 in state
(Nmax, C) (resp. (0, 0)). The upper (resp. lower) envelope evolve exactly as
the Markov chain for all events which cannot cause a swap of the ordering be-
tween the two trajectories. Whenever a potential swapping event occurs, then, let
N3 = �ξ/μ′	 be the largest value of N for which ξ is the null event. For N3+1 and
larger values of N , ξ would be a departure. We set S1(Tn) = (N1(Tn−1) − 1, x1)
and S2(Tn) = (N2(Tn−1), x2(T−n ) N3

N3+1 ) so that the order remains unchanged be-
tween S1 and S2 Such an event can be seen as a “dummy” departure for S2 and
a “dummy” arrival in S1. The construction of the envelopes (S1(Tn), S2(Tn))
given above can be written under the form of two new functions Γ1, Γ2 that
describes the Markovian evolution of both envelopes at jump times: for j = 1, 2,

Sj(Tn) = Γj

(
S1(Tn−1), S2(Tn−1), ξn, τn

)
.

Note that by construction of Γ1, Γ2, the envelopes have been built such that
S1(t) stays above S2(t) for all time t ≥ 0 as soon as S1(0) is above S2(0). So
the envelopes have a monotone behavior. Also note that by construction, for all
initial state of the initial P2P MC, S(0) = (N, x) and all time t: S1(t) ≥ S(t) ≥
S2(t).

3.5 Perfect Simulation Algorithm for Peer to Peer Systems

The following theorem is the theoretical foundation of our perfect simulation
algorithm for peer to peer systems.

Theorem 2. The Markov chain (S1(Tn), S2(Tn)) hits the diagonal (i.e. states
of the from

(
(N, x), (N, x)

)
) in finite time a.s.. The hitting time K ′′ =

min
{
n : Γ1

(
(Nmax, C), (0, 0), ξ−K , . . . , ξ0

)
= Γ2

(
(Nmax, C), (0, 0), ξ−K , . . . , ξ0

)}
is a vertical backward coupling time of the Markov chain S, so that for all initial
state s, Φ(s, ξ−K′′ , . . . , ξ−1, ξ0) ∼ Π.

Proof. The first part of the proof is similar to the proof of the uniform ergod-
icity of chain S. Indeed, if a large number of departures occur, both envelopes
will eventually reach (0, 0). Since this happens with a positive probability, the
Markov chain (S1(Tn−1), S2(Tn−1)) is uniformly ergodic and K ′′ is a finite ran-
dom variable with finite expectation.

As for the second part of the proof, it simply uses the fact that S1(t) ≥
S(t) ≥ S2(t) for all initial conditions for the chain S. Consider a stationary initial
condition S(−K ′′) ∼ Π . Then, S(0) = Φ(S(−K ′′), ξ−K′′ , . . . , ξ−1, ξ0) ∼ Π by
stationarity and S1(0) = S(0) = S2(0) by definition of K ′′.
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From Theorem 2, it is possible to derive an algorithm to compute both an upper
bound on K ′′ and a sample from Π . Here is the outline of such an algorithm.
Start at time −k (at the beginning, k = −1) and simulate in parallel the lower
and upper envelopes, starting respectively in states (0, 0) and (Nmax, C), using
the same random variables, (τ−k, ξ−k), · · · , (τ−1, ξ−1), (τ0, ξ0) for both of them.
If at time 0, both envelopes reach the same state (N0, x0), then this means (using
theorem 2) that the system has coupled, K ′′ ≤ k and (N0, x0) ∼ Π . Otherwise,
generate a new random innovation (τ−k−1, ξ−k−1), and restart at time −k − 1
with initial states (0, 0) and (Nmax, C).

A classical improvement is to double the number of steps backward at each
iteration, so that the simulation time becomes linear in the total number of steps
(κ) which is most twice the coupling time K ′′.

Another improvement is to stop when both envelopes are close enough. A
stopping test on equality is theoretically possible since both envelopes couple
in (0, 0) with positive probability, and remain exactly equal from this point
on. However, the probability that N ever reaches 0 is extremely small (less
than 10−300 in the examples of Section 4). This means that the average vertical
coupling time is huge. Testing for a small gap between both envelopes reduces the
simulation time drastically and keep guarantees on the intervals on the measures
as seen in the following. The complete algorithm is given as Algorithm 1.

Algorithm 1. Backward simulation for P2P MC
κ = 1;
repeat

κ = 2κ;
S1 := (Nmax, C) ,S2 := (0, 0) {Initialize the two envelopes at time −κ}
for i = κ downto κ/2 + 1 do

ξ[i] :=Random(Uniform over [0, 1]); τ [i] :=Random(exponential with rate Λ)
end for
for i = κ downto 1 do

S1 := Γ1(S1, S2, ξ[i], τ [i]) , S2 := Γ2(S1, S2, ξ[i], τ [i])
end for

until S1Ṅ = S2Ṅ and S1ẋ − S2ẋ ≤ ε/3
return S1

In Figure 3, we display a perfect simulation of S1, S2. Note that several dummy
events on S1, S2 are visible. They all correspond to discontinuous jumps of S2
and cusps of S1. Also note that the trajectories of x and N are a very high
positive correlation: x and N both increase and decrease at the same time. This
shows the effect of popularity: when the popularity is high, more customers
get connected and they download more files, thus increasing the popularity.
The total complexity of the program is κ(c(Γ1) + c(Γ2)) + 2p, where c(Γi) is a
constant corresponding to the time to compute Γi and p is the total number of
steps needed to integrate the differential equation over the total simulated time,
T =

∑κ
i=1 τ [i].
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Fig. 3. Coupling of the trajectories of the two envelopes S1, S2 for N (left) and x
(right) as generated by Algorithm 1

Since κ ≤ 2K ′′ and p ≤ T 2

ε supN,x
df(N,x)

dx , the complexity of the algorithm is
given on average by the following lemma.

Lemma 3. The average complexity of Algorithm 1, with precision ε is

O

(
EK ′′ +

1
ε

(
EK ′′

Λ
+

E(K ′′2)
Λ2

))
. (4)

Computing EK ′′ is a difficult is out of the scope of this paper. We carried
out several experiments to measure the number of backward steps κ ≤ 2K ′′ in
Figure 6.

3.6 Confidence Intervals

The outputs of the i-th run of the algorithm are numerical approximations of
the couples (Si

1 = (N i
1, x

i
1), S2

i = (N i
2, x

i
2)). The numerical integration of the

differential equation yields a global error ε. The integration steps h are chosen
small enough so that ε ≤ ε/3. Then, the outputs of the algorithm are such that
the exact values verify xi

1 − xi
2 ≤ ε.

Let E be an interval E = [a, b] ⊂ [0, C] for which we want to compute πx(E)
with confidence c. The central limit theorem gives the following confidence in-
terval I =

[
p̂1 − βcv

2
√

M
, p̂2 + βcv

2
√

M

]
, where βc the c-percentile for the normal law

and v =
√

πx(E)(1 − πx(E)) ≤ 1/2 and p̂1 = 1/M
∑M

i=1 1{xi
1 ∈ E ∧ xi

2 ∈ E},
p̂2 = 1/M

∑M
i=1 1{xi

1 ∈ Eε ∨ xi
2 ∈ Eε}.

3.7 Stationary State at Arbitrary Instants

Algorithm 1 provides samples of the stationary distribution at jump instants.
However, this distribution may significantly differ from the distribution of the
system at arbitrary instants. From the PASTA [11] property, this latter distrib-
ution can be sampled simply by pursuing each trajectory during a random time
independent of the system, distributed according to the jump process.
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3.8 Adding Files at Jump Times

In this section we show how the model can be modified to take into account
additional features of a P2P system. First, the fraction of files lost when a user
leaves the system need not be a constant. It can be a random fraction η of the files
present before the jump, with η following an arbitrary distribution with mean
N(T −

n )−1
N(T −

n )
. Also, some users may connect the system to inject new files in the

system. These files may be intrinsically popular. This can easily be incorporated
in the model by injecting a random number of copies δ when a node brings one
of these files: upon a join event,

x(Tn) = x(Tn) +
{

0 with probability 1 − p
δ(x(Tn), N(Tn)) with probability p

A possible model for δ is the following. Let M = C − d(x) be the total number
of missing files. When a file D is injected it is chosen according to the popularity
Zipf distribution PM (D). The number of injected copies is then a fixed number
proportional to the number of free places NC−x: δ = P (D)ω(NC−x), where 0 <
ω < 1 is a constant. This jump preserves the ordering between both trajectories
and can be incorporated in the algorithm simply by modifying function h. This
illustrates the flexibility and simplicity of the perfect simulation algorithm.

4 Numerical Experiments

The Algorithm 1 has been implemented in Java. All experiments reported here
are carried out on a 2GHz Pentium 4 with 1GB of RAM. We have chosen realistic
parameters for a rather large P2P model resembling a typical file sharing system.
Here, C = 1000, Nmax = 1000, μ = λ = 10−5 (an average customer stays
connected/disconnected for 24 hours); ν = λ/(CNmax), so that the popularity
plays the same role as the exogenous process for the connection rate of customers;
σ = 10−4 (an average customer emits a request every 3 hours); θ = 10−4, (3 hour
time-to-live for copies of files) α = e−1/C (the Zipf-like popularity distribution
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as computed by perfect simulation
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has parameter 1). The total computational time to get the asymptotic density
of copies is about 2 hours, for a total of 10000 independent runs. Note that in
Figure 4, the distributions of x and of N are centered on their average values
and have rather small variances. In the following experiments, we will report
only the average value of x or N (with confidence intervals).

Since θ is the only parameter that the system designer can control, we have
computed the average value of the number of copies when θ varies. Figure 5
shows an interesting cut-off behavior: the number of files remains more or less
constant until θ becomes very large (θ ≈ 0.1, meaning copies are removed after
10 seconds on average), where the number of copies drops to 0.
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Fig. 5. Average number of copies as a function of θ

An important criterion for applicability of perfect simulation is the simulation
time, which is random. The simulation time is directly related to the number of
backward steps κ, which is doubled at each iteration in the algorithm. In order
to evaluate experimentally how κ behaves when the state space of the system
increases, we have run several simulation using the parameters λ = μ = ν = σ =
θ = 1 and we let the state space Nmax×C grow from 0 to one million. As seen in
Figure 6, the number of iterations κ of the simulation is almost deterministic and
may only take two values as N and C grow. Also, κ is sub-linear in Nmax × C,
which is quite good for perfect simulations.

5 Asymptotic Approximations

The solution xN of the differential equation (3) admits an asymptote �N when t
goes to infinity. The asymptote is the smallest solution of fN (x) = 0. We consider
the asymptotic rate of convergence of xN to its asymptote, �N as

γN = lim
t→∞

f(xN (t)) − fN (�N )
xN (t) − �N

=
df

dx
(�N ) = −ασNe−α�N + σN − 2σ�N

C
− θ.

When the rate of convergence γN of xN (t) to its asymptotic value, is larger than
the jump rate Λ, then in most cases, x will actually be very close to �N before



Coupling from the Past in Hybrid Models for File Sharing P2P Systems 229

 10

 100

 1000

 10000

 100000

 1e+06

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06  3e+06  3.5e+06  4e+06

co
up

lin
g 

tim
e

state space size

coupling time

coupling time

Fig. 6. Number of backward steps κ (in log scale for the number of iterations) as
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the next jump occurs. Therefore, one may disregard the transient behavior of x
and let x jump directly from �N1 to �N2 whenever a jump from N1 to N2 occurs.
This actually makes the system discrete since both x and N only take discrete
values.

A visual illustration of this behavior is given in Figure 7 where two trajectories
of the variable x are given with σ = Λ and σ = 10Λ respectively. In the second
case, the rate of convergence of x to its asymptotic value is much larger than
the jump rate and the trajectory of x looks like a staircase.
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Fig. 7. Two behaviors of x with two rates of convergence

In that case, the stationary distribution Π of (N, x) can be approximated by

Π ′(N = k, x = �k) =
1
Ω

(
Nmax

k

)
1
μk

k−1∏
i=0

(λ + ν�i),

where the normalization constant Ω is such that all probabilities sum to one.
Computing �k for each k is numerically easy using a Newton method. Here,
the derivative of f at �k is large so that the computation can be done with a
large precision quite fast. Then, generating samples according to the distribution
Π ′ is rather simple and can be done using aliasing techniques [12]. We have
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compared this approximation with the exact samples (N1, x1) computed by the
simulation algorithm presented in Section 3. Numerical evidence show that when
γN > Λ/10, the approximation becomes very good and can be used instead of
our perfect sampling method. If γN < Λ/100, then the approximation is not
valid any longer.

6 Conclusion

In this paper we have presented a simulation study of a stochastic hybrid systems
providing guaranteed samples of a complex peer to peer system modeled by
hybrid equations.

Our simulations are based on backward coupling techniques that provide sta-
tistical guarantees on its samples. We believe this technique is well adapted to
stochastic hybrid systems because they enable us to manipulate continuous vari-
ables in a coherent way and because they make numerical computations of the
behavior of the system possible because the memory space required and the
coupling time are small with respect to the size of the state space.

Acknowledgement. We thank Rémi Bertin who implemented Algorithm 1 and
provided insights on monotonicity issues.
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Abstract. The use of bisimilar finite abstractions of continuous and
hybrid systems, greatly simplifies complex computational tasks such as
verification or control synthesis. Unfortunately, because of the strong
requirements of bisimulation relations, such abstractions exist only for
quite restrictive classes of systems. Recently, the notion of approximate
bisimulation relations has been introduced, allowing the definition of less
rigid relationships between systems. This relaxed notion should certainly
allow us to build approximately bisimilar finite abstractions for more
general classes of continuous and hybrid systems. In this paper, we show
that for the class of stable discrete-time linear systems with constrained
inputs, there exists an approximately bisimilar finite state system of any
desired precision. We describe an effective procedure for the construction
of this abstraction, based on compositional reasoning and samples of the
set of initial states and inputs. Finally, we briefly show how our finite
abstractions can be used for verification or control synthesis.

1 Introduction

Equivalence relationships for systems such as bisimulation relations [1,2] have
been very useful to reduce the complexity of computational tasks such as ver-
ification or control synthesis for finite state systems. Early research on hybrid
systems has focused on the characterization of continuous and hybrid dynamics
with bisimilar finite abstractions. The first positive results on timed automata [3]
were later extended to multirate hybrid automata [4] and hybrid systems with
linear dynamics with a particular eigenstructure [5] (see [6] for a survey). More
recently, the existence of bisimilar finite state systems has been shown for control-
lable discrete-time linear systems with unconstrained inputs [7]. The existence
of such abstractions provides decidability results as well as computational pro-
cedures for verification or control synthesis for these classes of continuous and
hybrid systems. Unfortunately, the class of hybrid dynamics admitting bisimilar
finite abstractions is quite restrictive since even for very simple systems (i.e.
three dimensional piecewise constant differential equations [8]), reachability ver-
ification is known to be undecidable.
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Recently, the notion of approximate bisimulation relations has been introduced
in [9], allowing the definition of less rigid relationships between systems. As
exact bisimulation relations require the observations of two systems to be (and
remain) identical, approximate bisimulation relations allow the observations to
be different provided the distance between them is (and remains) bounded by
some parameter called precision. This relaxed assumption should certainly allow
us to build approximately bisimilar finite abstractions for more general classes
of continuous and hybrid systems.

In this paper, we show that for the class of stable discrete-time linear systems
with constrained inputs, there exists an approximately bisimilar finite state sys-
tem of any desired precision. We show that the linear system can be seen as the
composition of two other linear systems, one autonomous and one with inputs
but with an initial state set to zero. For each of these systems, we define an ap-
proximately bisimilar finite abstraction using a two step procedure. Firstly, by
sampling the set of initial states or the set of inputs, we define discrete but infi-
nite abstractions of the linear systems. Secondly, we show that this infinite state
systems are approximately bisimilar to a finite state system. The composition of
these systems provides us with the finite abstraction of original linear system.
Our approach provides an effective way to compute this discrete abstraction.
Finally, we briefly show how our finite abstractions can be used for verification
or control synthesis.

Let us remark that the idea of sampling the sets of initial states and inputs to
compute discrete abstractions for verification has already been proposed [10,11],
though without further reduction to a finite state system. Contrary to these ap-
proaches, the abstractions we build are valid for an infinite time-horizon. In [12],
a similar technique is proposed to build finite abstractions for stabilizable lin-
ear systems, however only a one-sided approximation result is provided making
these abstractions suitable for control synthesis but not for verification.

2 Approximately Bisimilar Transition Systems

The notion of approximate bisimulation relation has been introduced in [9], in
the framework of transition systems.

2.1 Transition Systems

Essentially, a transition system can be seen as an automaton, possibly with an
infinite number of nodes and edges.

Definition 1. A transition system (with observations) is a tuple T = (Q, →,
Q0, Π, h) that consists of:

– a (possibly infinite) set Q of states,
– a transition relation →⊆ Q × Q,
– a (possibly infinite) set Q0 ⊆ Q of initial states,
– a (possibly infinite) set Π of observations,
– an observation map h : Q → Π.
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If the set of states has a finite number of elements, we say that the transition
system is finite. The transition (q, q′) ∈→ is denoted q → q′. A state trajectory
of T is a finite sequence of transitions, q0 → · · · → qN , where q0 ∈ Q0. Note
that a transition system is possibly non-deterministic: for a given initial state
there may be several state trajectories. An external or observed trajectory of
T is a finite sequence of observations, π0 . . . πN such that there exists a state
trajectory of T which satisfies h(qi) = πi, for all i ∈ {0, . . . , N}. The language of
T is denoted by L(T ) and consists of all external trajectories of T . The reachable
set of T is the subset of Π defined by:

Reach(T ) =
{
π ∈ Π | ∃ π0 . . . πN ∈ L(T ), i ∈ {0, . . . , N}, such that πi = π

}
.

In this paper, the transition systems we consider are observed over Π = R
p.

We define a composition operator for transition systems that will be useful in
the development of the paper.

Definition 2. Let T1 = (Q1, →1, Q
0
1, Π, h1) and T2 = (Q2, →2, Q

0
2, Π, h2) be

transition systems. The composition of T1 and T2, denoted by T1||T2, is the
transition system T = (Q, →, Q0, Π, h) defined by:

– the set of states Q = Q1 × Q2,
– the transition relation → given by,

(q1, q2) → (q′1, q
′
2) if q1 →1 q′1 and q2 →2 q′2 ,

– the set of initial states Q0 = Q0
1 × Q0

2,
– the set of observations Π = R

p,
– the observation map h(q1, q2) = h1(q1) + h2(q2).

Let us remark that the composition of two transition systems observed on R
p is

also observed on R
p. We can now introduce the notion of approximate bisimu-

lation relation for transition systems as presented in [9].

2.2 Approximate Bisimulation Relations

The notion of exact bisimulation relation allows to characterize the observa-
tional equivalence of two transition systems [1,2]. The notion of approximate
bisimulation relation is obtained from the exact one by relaxing the observa-
tional equivalence constraint. Instead of requiring that the observations of two
systems are and remain the same we require that the distance between them is
and remains bounded by some parameter called precision.

Definition 3. Let T1 = (Q1, →1, Q
0
1, Π, h1) and T2 = (Q2, →2, Q

0
2, Π, h2) be

transition systems. A relation R ⊆ Q1 × Q2 is a δ-approximate bisimulation
relation between T1 and T2, if for all (q1, q2) ∈ R:

1. ‖h1(q1) − h2(q2)‖ ≤ δ,
2. for all q1 →1 q′1, there exists q2 →2 q′2, such that (q′1, q′2) ∈ R,
3. for all q2 →2 q′2, there exists q1 →1 q′1, such that (q′1, q

′
2) ∈ R.
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Definition 4. T1 and T2 are said to be approximately bisimilar with precision
δ (denoted T1 ∼δ T2), if there exists R, a δ-approximate bisimulation relation
between T1 and T2 such that:

1. for all q1 ∈ Q0
1, there exists q2 ∈ Q0

2, such that (q1, q2) ∈ R,
2. for all q2 ∈ Q0

2, there exists q1 ∈ Q0
1, such that (q1, q2) ∈ R.

Remark 1. For δ = 0, we recover the usual notion of exact bisimulation relation
and of exactly bisimilar transition systems. Thus, T1 ∼0 T2 will be denoted
T1 ∼ T2.

The following proposition states fundamental properties of approximate bisim-
ulation relations. The proof is omitted here but can be found in [9].

Proposition 1. Let T1, T2 and T3 be transition systems, then:

1. for all δ ≥ 0, T1 ∼δ T1,
2. for all δ ≥ 0, T1 ∼δ T2 ⇐⇒ T2 ∼δ T1,
3. for all δ ≥ 0, δ′ ≥ 0, T1 ∼δ T2 and T2 ∼δ′ T3 =⇒ T1 ∼δ+δ′ T3.

Remark 2. Contrarily to the relation ∼, for δ > 0, the relation ∼δ is not an
equivalence relation on the set of transition systems. However, the relation de-
fined by T1 ≡ T2 ⇐⇒ ∃δ ≥ 0, T1 ∼δ T2 is an equivalence relation.

The following proposition shows that approximate bisimulation relations allow
compositional reasoning.

Proposition 2. Let T1, T2, S1 and S2 be transition systems, then:

T1 ∼δ1 S1 and T2 ∼δ2 S2 =⇒ T1||T2 ∼δ1+δ2 S1||S2.

Proof. Let T1 = (Q1, →1, Q
0
1, Π, h1), T2 = (Q2, →2, Q

0
2, Π, h2), S1 = (P1, �1,

P 0
1 , Π, g1) and S2 = (P2, �2, P

0
2 , Π, g2). T1 ∼δ1 S1 and T2 ∼δ2 S2, let R1 and

R2 be the associated approximate bisimulation relations. Let T1||T2 = (Q, →,
Q0, Π, h) and S1||S2 = (P, �, P 0, Π, g). Let us define the following relation
R ⊆ Q × P :

R = {(q1, q2, p1, p2) ∈ Q × P | (q1, p1) ∈ R1 and (q2, p2) ∈ R2} .

Let (q1, q2, p1, p2) ∈ R,

‖h(q1, q2) − g(p1, p2)‖ = ‖h1(q1) + h2(q2) − g1(p1) − g2(p2)‖
≤ ‖h1(q1) − g1(p1)‖ + ‖h2(q2) − g2(p2)‖ ≤ δ1 + δ2.

Let (q1, q2) → (q′1, q
′
2), then q1 →1 q′1 and q2 →2 q′2. Since (q1, p1) ∈ R1 and

(q2, p2) ∈ R2, there exist p1 �1 p′1 and p2 �2 p′2 such that (q′1, p
′
1) ∈ R1 and

(q′2, p′2) ∈ R2. Then, (p1, p2) � (p′1, p′2) and (q′1, q′2, p′1, p′2) ∈ R. Similarly, we
can show that for all (p1, p2) � (p′1, p

′
2) there exists (q1, q2) → (q′1, q

′
2) such

that (q′1, q
′
2, p
′
1, p
′
2) ∈ R. Hence, R is a δ1 + δ2-approximate bisimulation relation

between T1||T2 and S1||S2. Let (q1, q2) ∈ Q0, then q1 ∈ Q0
1 and q2 ∈ Q0

2. There
exist p1 ∈ P 0

1 and p2 ∈ P 0
2 such that (q1, p1) ∈ R1 and (q2, p2) ∈ R2. Then,

(p1, p2) ∈ P 0 and (q1, q2, p1, p2) ∈ R. Similarly, we can show that for all (p1, p2) ∈
P 0 there exists (q1, q2) ∈ Q0 such that (q1, q2, p1, p2) ∈ R. Therefore, we can
conclude that T1||T2 ∼δ1+δ2 S1||S2. �
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2.3 Approximation Results

The precision of an approximate bisimulation relations allows to quantify how
well two systems approximate each other. The following result shows that the
distance between the external trajectories of approximately bisimilar systems
(T1 ∼δ T2) is bounded by the precision δ.

Theorem 1. Let T1 and T2 be transition systems such that T1 ∼δ T2, then for
all π0

1 . . . πN
1 ∈ L(T1), there exists π0

2 . . . πN
2 ∈ L(T2), such that

for all i ∈ {0, . . . , N}, ‖πi
1 − πi

2‖ ≤ δ

and conversely.

Proof. T1 ∼δ T2, let R be the associated δ-approximate bisimulation relation
between T1 and T2. Let π0

1 . . . πN
1 ∈ L(T1), let q0

1 →1 · · · →1 qN
1 be the associated

state trajectory of T1. Since q0
1 ∈ Q0

1, there exists q0
2 ∈ Q0

2 such that (q0
1 , q

0
2) ∈ R.

Using the second property of Definition 3, we can show by induction that there
exists q0

2 →2 · · · →2 qN
2 a state trajectory of T2 such that for all i ∈ {0, . . . , N},

(qi
1, q

i
2) ∈ R. Then, for all i ∈ {0, . . . , N}, ‖πi

1 − πi
2‖ = ‖h1(qi

1) − h2(qi
2)‖ ≤ δ. �

The previous result extends naturally to reachable sets.

Corollary 1. Let T1 and T2 be transition systems such that T1 ∼δ T2, then

dH (Reach(T1), Reach(T2)) ≤ δ

where dH is the Hausdorff distance1.

Proof. Let π1 ∈ Reach(T1), there exists π0
1 . . . πN

1 ∈ L(T1) and j ∈ {0, . . . , N},
such that πj

1 = π1. From Theorem 1, there exists π0
2 . . . πN

2 ∈ L(T2) such that for
all i ∈ {0, . . . , N}, ‖πi

1 − πi
2‖ ≤ δ. Particularly, π2 = πj

2 ∈ Reach(T2) and ‖π2 −
π1‖ ≤ δ. Similarly, we can show that for all π2 ∈ Reach(T2), there exists π1 ∈
Reach(T1), such that ‖π2 −π1‖ ≤ δ. �

3 Finite Abstractions of Stable Linear Systems

Let us consider the following discrete-time linear system:{
xk+1 = Axk + Buk, x0 ∈ I, uk ∈ U
yk = Cxk

(1)

where A is a n×n matrix, B is a n×m matrix and C is a p×n matrix. The set
of initial states I is a compact subset of R

n and the set of inputs U is a compact
subset of R

m containing 0. We assume that the system is asymptotically stable
(i.e. all the eigenvalues of A are strictly inside the unit circle in the complex
plane).
1 The Hausdorff distance between two subsets A, B ⊆ R

p is defined by dH(A, B) =
max

�
supa∈A infb∈B ‖a − b‖, supb∈B infa∈A ‖a − b‖

�
.
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Proposition 3. There exists λ ∈ (0, 1) and a positive semi-definite symmetric
n × n matrix M such that the following linear matrix inequalities hold:

CT C ≤ M (2)
AT MA ≤ λ2M (3)

Proof. Let us search M under the form M = N + CT C where N is a positive
semi-definite symmetric matrix. Then, equation (3) is equivalent to

1
λ2 AT NA − N ≤ CT C − 1

λ2 AT CT CA = Q.

Q is symmetric and thus can be written as Q = Q+ − Q− where Q+ and Q−

are positive semi-definite symmetric matrices. Since all the eigenvalues of A are
strictly inside the unit circle, for λ sufficiently close to 1, all the eigenvalues of
A/λ are also strictly inside the unit circle. Then, the discrete-time Lyapunov
equation AT NA/λ2 − N = −Q− has a unique solution which is positive semi-
definite symmetric. Then, it is easy to see that M = N +CT C satisfies equation
(2) and (3). �

We denote by ‖.‖M the norm on R
n associated to M : ‖x‖M =

√
xT Mx. We

define the radii of the sets of initial states and inputs for this norm.

rI = max
x∈I

‖x‖M and rU = max
u∈U

‖Bu‖M .

The discrete-time linear system (1) can be seen as a transition system Σ =
(Rn, →, I, Rp, h) where the transition relation → is given by

x → x′ ⇐⇒ ∃u ∈ U, x′ = Ax + Bu

and the observation map by h(x) = Cx. The dynamics of system (1) can be
split into an autonomous dynamics and a controlled dynamics with the initial
state set to zero. Thus, we define the following transition systems Σ1 and Σ2.
Σ1 = (Rn, →1, I, Rp, h) where the transition relation is given by

x →1 x′ ⇐⇒ x′ = Ax.

Note that the transition system Σ1, which captures the autonomous dynamics, is
deterministic. Σ2 = (Rn, →2, {0}, Rp, h), where the transition relation →2=→,
holds for the controlled dynamics with zero initial state.

Proposition 4. Σ and Σ1||Σ2 are exactly bisimilar.

Proof. Let us denote Σ1||Σ2 = (R2n, �, I × {0}, Rp, g). We define the following
relation R ⊆ R

n × R
2n:

R =
{
(x, x1, x2) ∈ R

n × R
2n| x = x1 + x2

}
.

Let (x, x1, x2) ∈ R, then

‖h(x) − g(x1, x2)‖ = ‖h(x) − h(x1) − h(x2)‖ = ‖C(x − x1 − x2)‖ = 0.
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Let x → x′, there exists u ∈ U such that x′ = Ax+Bu. Then, we have x2 →2 x′2
where x′2 = Ax2 + Bu and x1 →1 x′1 where x′1 = Ax1. Thus, (x1, x2) � (x′1, x

′
2)

and

x′ = Ax + Bu = A(x1 + x2) + Bu = Ax1 + Ax2 + Bu = x′1 + x′2.

Then, (x′, x′1, x
′
2) ∈ R. Similarly, it is easy to see that for all (x1, x2) � (x′1, x

′
2)

there exists x → x′ such that (x′, x′1, x
′
2) ∈ R. Hence, R is an exact bisimulation

relation between Σ and Σ1||Σ2. For all x ∈ I, (x, 0) ∈ I × {0} satisfies (x, x, 0)
∈ R. Therefore, Σ ∼ Σ1||Σ2. �

Remark 3. Proposition 4 is the translation in the framework of transition sys-
tems of the fundamental superposition principle in linear systems theory.

Thus, the linear system Σ can be seen as the composition of the autonomous
dynamics Σ1 and of the controlled dynamics Σ2. In the following, we construct
a finite state system S which is approximately bisimilar to Σ. The approach
is the following. First, we construct finite state systems S1 and S2 that are
approximately bisimilar respectively to Σ1 and Σ2. Then, from Proposition 2,
we can obtain the abstraction S from the composition of S1 and S2.

3.1 Abstraction of the Autonomous Dynamics

The construction of a finite state system that is approximately bisimilar to Σ1
is processed in two steps. First, by using a sample of the set of initial states
I, we compute a system with a discrete but infinite set of states. Then, a fi-
nite abstraction is derived from this system by remarking that all its external
trajectories converge to 0.

Lemma 1. Let ε1 > 0, there exists a finite set Iσ = {x0, . . . , xJ1} ⊆ I such that

∀x ∈ I, ∃xj ∈ Iσ, ‖x − xj‖M ≤ ε1 .

Proof. Let αM be the largest eigenvalue of the matrix M , then for all (x, x′) ∈
R

n × R
n, ‖x − x′‖M ≤ αM‖x − x′‖. Now, let us assume that for all finite set of

points {x0, . . . , xr} ⊆ I, there exists x ∈ I, such that for all xj , ‖x−xj‖ ≥ ε1/αM .
Then, starting from a point x0 ∈ I, we can construct a sequence {xj}j∈N such
that for all j, j′ ∈ N, j �= j′, we have ‖xj − xj′‖ ≥ ε1/αM . Therefore, we cannot
extract a converging subsequence of {xj}j∈N and I cannot be a compact set.
Therefore, we proved by contradiction that there exists a finite set of points
Iσ = {x0, . . . , xJ1} ⊆ I such that for all x ∈ I, there exists xj ∈ Iσ satisfying the
inequality ‖x−xj‖ ≤ ε1/αM . �

Then, let us define the transition system T1 = (Q1, �1, Q
0
1, R

p, h1) where the
set of symbolic states is

Q1 =
{
qk
j | j ∈ {0, . . . , J1}, k ∈ N

}
,

the transition relation �1 is deterministic, given by qk
j �1 qk+1

j , the set of initial
states is Q0

1 =
{
q0
j | j ∈ {0, . . . , J1}

}
, and the observation map h1(qk

j ) = CAkxj .
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Lemma 2. The transition systems Σ1 and T1 are approximately bisimilar with
precision ε1.

Proof. Let us define the relation R ⊆ R
n × Q1:

R =
{
(x, qk

j )| ‖x − Akxj‖M ≤ ε1
}

.

From equation (2), for all (x, qk
j ) ∈ R,

‖h(x) − h1(qk
j )‖ = ‖C(x − Akxj)‖ ≤ ‖x − Akxj‖M ≤ ε1.

Further, from equation (3),

‖Ax − Ak+1xj‖M = ‖A(x − Akxj)‖M ≤ λ‖x − Akxj‖M ≤ ε1.

Therefore, (Ax, qk+1
j ) ∈ R. Hence, R is an ε1-approximate bisimulation relation

between Σ1 and T1. Moreover, for all x ∈ I, there exists xj ∈ Iσ ⊆ I such that
‖x−xj‖M ≤ ε1, (i.e. (x, q0

j ) ∈ R) and conversely. Thus, Σ1 ∼ε1 T1. �

Let us remark that as k goes to infinity, h1(qk
j ) converges to 0. Then, by replacing

the states for large values of k (typically for k greater than a given parameter
K1) by an invariant state associated with the observation 0, we define the finite
state transition system S1 = (P1, �1, P

0
1 , Rp, g1) where the finite set of symbolic

states is
P1 =

{
pk

j | j ∈ {0, . . . , J1}, k ∈ {0, . . . , K1}
}

∪ {p∞},

and the transition relation �1 is deterministic and given by

∀j ∈ {0, . . . , J1}, k ∈ {0, . . . , K1 − 1}, pk
j �1 pk+1

j , pK1
j �1 p∞ and p∞ �1 p∞.

The set of initial states is P 0
1 =

{
p0

j | j ∈ {0, . . . , J1}
}
, and the observation map

is given by

∀j ∈ {0, . . . , J1}, k ∈ {0, . . . , K1}, g1(pk
j ) = CAkxj and g1(p∞) = 0.

Lemma 3. The transition systems T1 and S1 are approximately bisimilar with
precision rIλ

K1+1.

Proof. We define the following relation R ⊆ Q1 × P1:

R =
{
(qk

j , pk
j )| j ∈ {0, . . . , J1}, k ∈ {0, . . . , K1}

}
∪{

(qk
j , p∞)| j ∈ {0, . . . , J1}, k > K1

}
.

Let (qk
j , pk

j ) ∈ R, for j ∈ {0, . . . , J1}, k ∈ {0, . . . , K1}, then ‖h1(qk
j ) − g1(pk

j )‖ =
0. If k < K1, then (qk+1

j , pk+1
j ) ∈ R. If k = K1, then (qK1+1

j , p∞) ∈ R. Let
(qk

j , p∞) ∈ R, for j ∈ {0, . . . , J1}, k > K1, then from equations (2) and (3)

‖h1(qk
j ) − g1(p∞)‖ = ‖CAkxj‖ ≤ ‖Akxj‖M ≤ λk‖xj‖M ≤ λK1+1rI .

Further (qk+1
j , p∞) ∈ R. Thus, R is a rIλ

K1+1-approximate bismulation relation
between T1 and S1. Moreover, for all q0

j ∈ Q0
1, there exists p0

j ∈ P 0
1 such that

(q0
j , p0

j) ∈ R, and conversely. Therefore, T1 ∼r1λK1+1 S1. �



Approximately Bisimilar Finite Abstractions of Stable Linear Systems 239

From Lemmas 2 and 3 and from Proposition 1, the following result is straight-
forward.

Theorem 2. The transition systems Σ1 and S1 are approximately bisimilar with
precision ε1 + rIλ

K1+1.

Let us remark that by choosing appropriately the parameters ε1 and K1, any
desired precision can be achieved by the finite abstraction S1. The number of
states of S1 is (J1 + 1)(K1 + 1) + 1.

3.2 Abstraction of the Controlled Dynamics

The construction of a finite abstraction that is approximately bisimilar to Σ2 is
also processed in two steps. First by using a sample of the set of inputs U , we
compute an abstraction with an infinite number of states. Then, we show that
this system is approximately bisimilar to a finite state system.

Lemma 4. Let ε2 > 0, there exists a finite list Uσ = {u0, . . . , uJ2} ⊆ U such
that u0 = 0 and

∀u ∈ U, ∃uj ∈ Uσ, ‖Bu − Buj‖M ≤ ε2 .

The proof of this result is similar to that of Lemma 1. We define the alphabet
V = {v0, . . . , vJ2}. We define the transition system T2 = (Q2, �2, Q

0
2, R

p, h2)
where the set of symbolic states is the set of infinite words on the alphabet V :

Q2 = {vj0vj1vj2 . . . | ∀k ∈ N, jk ∈ {0, . . . , J2}} .

The transition relation �2 is given by

∀vj0vj1vj2 · · · ∈ Q2, ∀vj ∈ V, vj0vj1vj2 · · · �2 vjvj0vj1vj2 . . . .

The set of initial states consists of a single infinite word Q0
2 = {v0v0v0 . . . }. The

observation map is given by

∀vj0vj1vj2 · · · ∈ Q2, h2(vj0vj1vj2 . . . ) =
k=∞∑
k=0

CAkBujk
.

Let us remark that since the linear system (1) is stable, the observation map is
well defined for any infinite word.

Lemma 5. The transition systems Σ2 and T2 are approximately bisimilar with
precision ε2/(1 − λ).

Proof. Let us define the relation R ⊆ R
n × Q2,

R =
{

(x, vj0vj1vj2 . . . )
∣∣∣ ‖x −

∑k=∞
k=0 AkBujk

‖M ≤ ε2/(1 − λ)
}

.

From equation (2), for all (x, vj0vj1vj2 . . . ) ∈ R,

‖h(x) − h2(vj0vj1vj2 . . . )‖ = ‖C(x −
∑k=∞

k=0 AkBujk
)‖

≤ ‖x −
∑k=∞

k=0 AkBujk
‖M ≤ ε2/(1 − λ).
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Let x →2 x′, then there exists u ∈ U such that x′ = Ax + Bu. There exists
uj ∈ Uσ, such that ‖Bu − Buj‖M ≤ ε2. Then, vj0vj1vj2 · · · �2 vjvj0vj1vj2 . . .
and from equation (3)

‖x′ − Buj −
�k=∞

k=0 Ak+1Bujk‖M ≤ ‖A(x −
�k=∞

k=0 AkBujk )‖M + ‖Bu − Buj‖M

≤ λ‖x −
�k=∞

k=0 AkBujk‖M + ε2 ≤ ε2/(1 − λ).

Thus, we have (x′, vjvj0vj1vj2 . . . ) ∈ R. Similarly, it is easy to show that for
all vj0vj1vj2 · · · �2 vjvj0vj1vj2 . . . , there exists x →2 x′ such that we have
(x′, vjvj0vj1vj2 . . . ) ∈ R. Thus, R is an ε2/(1 − λ)-approximate bisimulation
relation between Σ2 and T2. Moreover, it is clear that (0, v0v0v0 . . . ) ∈ R, then
Σ2 ∼ε2/(1−λ) T2. �

We now show that the system T2 is approximately bisimilar to a finite sys-
tem. Let us remark that for an infinite word vj0vj1vj2 · · · ∈ Q2, the value
of h2(vj0vj1vj2 . . . ) does not depend much on vjk

for large values of k (since
the matrices Ak converge to 0). Then, by replacing an infinite word by its
finite prefix of a given length, we can define a finite state transition system
S2 = (P2, �2, P

0
2 , Rp, g2) where the set of symbolic states is the set of words of

length K2 + 1 on the alphabet V :

P2 =
{
vi0 . . . viK2

| ∀k ∈ {0, . . . , K2}, ik ∈ {0, . . . , J2}
}

.

The transition relation �2 is given by

∀vi0 . . . viK2
∈ P2, ∀vi ∈ V, vi0 . . . viK2

�2 vivi0 . . . viK2−1 .

The set of initial states consists of a single word of length K2+1, P 0
2 = {v0 . . . v0}.

The observation map is given by

∀vi0 . . . viK2
· · · ∈ P2, g2(vi0 . . . viK2

) =
k=K2∑
k=0

CAkBuik
.

Lemma 6. The transition systems T2 and S2 are approximately bisimilar with
precision rUλK2+1/(1 − λ).

Proof. We define the relation R ⊆ Q2 × P2:

R =
{
(vj0vj1vj2 . . . , vi0 . . . viK2

)|∀k ∈ {0, . . .K2}, jk = ik
}

.

Let (vj0vj1vj2 . . . , vi0 . . . viK2
) ∈ R, from equations (2) and (3)

‖h2(vj0vj1vj2 . . . ) − g2(vi0 . . . viK2
)‖ = ‖

∑k=∞
k=K2+1 CAkBujk

‖
≤ ‖

∑k=∞
k=K2+1 AkBujk

‖M

≤ λK2+1‖
∑k=∞

k=0 AkBujk−K2−1‖M

≤ λK2+1 ∑k=∞
k=0 λkrU = rUλK2+1/(1 − λ).

For all vj0vj1vj2 · · · �2 vjvj0vj1vj2 . . . , we have vi0 . . . viK2
�2 vjvi0 . . . viK2−1

and it is easy to see that (vjvj0vj1vj2 . . . , vjvi0 . . . viK2−1) ∈ R. Similarly, for
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all vi0 . . . viK2
�2 vivi0 . . . viK2−1 , we have vj0vj1vj2 · · · �2 vivj0vj1vj2 . . . and

(vivj0vj1vj2 . . . , vivi0 . . . viK2−1) ∈ R. Hence, R is a rU λK2+1/(1−λ)-approximate
bisimulation relation between T2 and S2. Moreover, (v0v0v0 . . . , v0 . . . v0) ∈ R,
then T2 ∼rUλK2+1/(1−λ) S2. �

Intuitively, S2 can be seen as an abstraction which keeps track of the last K2 +1
values of the input of Σ2 (the larger K2 the better the precision). From Lemmas
5 and 6 and from Proposition 1, the following result is straightforward.

Theorem 3. The transition systems Σ2 and S2 are approximately bisimilar with
precision (ε2 + rUλK2+1)/(1 − λ).

Let us remark that by choosing appropriately the parameters ε2 and K2, any
desired precision can be achieved by the finite abstraction S2. The number of
states of S2 is (J2 + 1)(K2+1).

3.3 Abstraction of the Linear System

We now define the finite abstraction S of Σ by composition of S1 and S2: S =
S1||S2. Then, we can give the main result of the paper.

Theorem 4. The transition system Σ associated with the stable linear system
(1) and the finite state transition system S are approximately bisimilar with
precision (ε1 + rIλ

K1+1) + (ε2 + rU λK2+1)/(1 − λ).

Proof. From Proposition 2 and Theorems 2 and 3, Σ1||Σ2 and S1||S2 are approx-
imately bisimilar with precision (ε1 + rIλ

K1+1)+ (ε2 + rUλK2+1)/(1−λ). Then,
Theorem 4 follows from Propositions 1 and 4. �

Hence, for any stable linear systems of the form (1), there exists a finite ab-
straction that is approximately bisimilar. Moreover, by choosing appropriately
ε1, K1, ε2 and K2, any desired precision can be achieved. Let us remark that
the paper provides an effective way to compute these finite abstractions using
samples of the sets of initial states and inputs.

Example 1. We consider the linear system of the form (1) given by the matrices

A =
[

0.4 0.2−0.2 0.4
]
, B = [ 1

0 ] , C = [ 1 0
0 1 ] ,

the set of initial states I = [4, 6] × [−1, 1] and the set of inputs U = [−1, 1].
We computed finite abstractions S1 and S2 of the autonomous and controlled
dynamics. Figure 1 shows simple discrete abstractions of S1 for ε1 = 1/2 and
K1 = 2 (precision 0.85) and for ε1 = 1/5 and K1 = 3 (precision 0.44) and of S2
for ε2 = 1/3 and K2 = 1 (precision 0.97) and for ε2 = 1/5 and K2 = 2 (precision
0.52). More precise abstractions for smaller ε1 and ε2 and larger K1 and K2 can
be computed; however, the vizualisation becomes problematic.
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Fig. 1. Finite abstractions of the autonomous dynamics (top) and of the controlled
dynamics (bottom)

4 Application to Verification and Control Synthesis

In this section, we show how the finite abstraction developed in the previous
section can be used to solve verification or control synthesis problems. Let us
define δ = (ε1 + rIλ

K1+1)+ (ε2 + rUλK2+1)/(1−λ) and let F be a subset of R
p.

We define the following sets:

∀μ ≥ 0, I(F, μ) = {π ∈ F | ∀π′ ∈ R
p, ‖π − π′‖ ≤ μ =⇒ π′ ∈ F} .

∀μ ≥ 0, O(F, μ) = {π ∈ R
p| ∃π′ ∈ F such that ‖π − π′‖ ≤ μ} .

I(F, μ) denotes the set of points of F whose distance to the boundary is greater
than μ. O(F, μ) denotes the μ neighborhood of F .

4.1 Verification

We want to determine whether F is reachable by the linear system (1) (i.e.
Reach(Σ) ∩F �= ∅). The idea is to do the reachability computation on the finite
abstraction S, which is a simple task since S is finite, and then to interpret the
results for Σ using the following proposition.

Proposition 5. The following assertions hold

Reach(S) ∩ I(F, δ) �= ∅ =⇒ Reach(Σ) ∩ F �= ∅ (4)
Reach(S) ∩ O(F, δ) = ∅ =⇒ Reach(Σ) ∩ F = ∅ (5)

Reach(Σ) ∩ I(F, 2δ) �= ∅ =⇒ Reach(S) ∩ I(F, δ) �= ∅ (6)
Reach(Σ) ∩ O(F, 2δ) = ∅ =⇒ Reach(S) ∩ O(F, δ) = ∅ (7)
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The proof of this result is not stated here but is straightforward from Corollary 1.
Equations (4) and (5) allow us to determine whether Reach(Σ) intersects F . The
interpretation of equation (6) is that if Reach(Σ) sufficiently intersects F , then
the reachability analysis of the finite abstraction S will allow to conclude that
Reach(Σ)∩F �= ∅. Similarly, equation (7) tells that if Reach(Σ) is sufficiently far
from F , then the reachability analysis of S will allow to conclude that Reach(Σ)∩
F = ∅. This means that the more robust Σ is with respect to the reachability
property, the coarser the finite abstraction S we can use. Let us remark that,
contrarily to most approximate reachability techniques, the approach based on
approximately bisimilar abstractions allows to verify reachability properties on
infinite time-intervals.

4.2 Control Synthesis

Let us assume that Reach(S) ∩ I(F, δ) �= ∅, then from Proposition 5, we know
that Reach(Σ) intersects F . We now want to determine an initial state and a
sequence of inputs which drives the system Σ to an observation in F . For the
sake of simplicity, we assume that K1 = K2 = K.

There exists an element (p, w) ∈ P1 × P2 reachable by a state trajectory of
S and such that g1(p) + g2(w) ∈ I(F, δ). We can show that there are only two
possibilities:

1. (p, w) = (pk
j , vi0 . . . viK ) where for all r ∈ {k, . . . , K}, vir = v0. Then, a state

trajectory of S leading to (p, w) is

(p0
j , v0 . . . v0) � (p1

j , vik−1v0 . . . v0) � (p2
j , vik−2vik−1v0 . . . v0) � . . . (8)

· · · � (pk
j , vi0 . . . vik−1v0 . . . v0).

2. (p, w) = (p∞, vi0 . . . viK ). Then, a state trajectory of S leading to (p, w) is

(p0
j , v0 . . . v0) � (p1

j , viK v0 . . . v0) � . . . (9)

· · · � (pK
j , vi1 . . . viK v0) � (p∞, vi0vi1 . . . viK ).

Thereof, we can choose an initial state and a sequence of inputs for the system Σ
such that its associated external trajectory tracks with precision δ the external
trajectory of the discrete abstraction S associated to the state trajectory given
by equation (8) or (9).

5 Conclusion

In this paper, we showed that stable linear systems with constrained inputs
admit approximately bisimilar finite abstractions of arbitrary precision. An ef-
fective way of computing these abstractions, based on compositional reasoning
and samples of the set of initial states and inputs, is described. We showed how
these abstractions can be used to simplify some computational tasks such as
verification and control synthesis for reachability specifications.
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Future work includes further reductions of these abstractions using approx-
imation techniques for finite systems in order to obtain abstractions achieving
a desired precision with a minimal number of states. We also intend to extend
these results to continuous-time systems, as well as non-linear dynamical systems
and to use our discrete abstractions to solve verification and control synthesis
problems for more complex specifications such as those expressed in temporal
logics using model checking or supervisory control for purely discrete systems.
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Abstract. We show how to automatically learn the class of Hybrid Au-
tomata called Cycle-Linear Hybrid Automata (CLHA) in order to model
the behavior of excitable cells. Such cells, whose main purpose is to am-
plify and propagate an electrical signal known as the action potential
(AP), serve as the “biologic transistors” of living organisms. The learn-
ing algorithm we propose comprises the following three phases: (1) Geo-
metric analysis of the APs in the training set is used to identify, for
each AP, the modes and switching logic of the corresponding Linear Hy-
brid Automata. (2) For each mode, the modified Prony’s method is used
to learn the coefficients of the associated linear flows. (3) The modified
Prony’s method is used again to learn the functions that adjust, on a
per-cycle basis, the mode dynamics and switching logic of the Linear
Hybrid Automata obtained in the first two phases. Our results show
that the learned CLHA is able to successfully capture AP morphology
and other important excitable-cell properties, such as refractoriness and
restitution, up to a prescribed approximation error. Our approach is fully
implemented in MATLAB and, to the best of our knowledge, provides
the most accurate approximation model for ECs to date.

1 Introduction

Hybrid automata [2,19] are an increasingly popular modeling formalism for sys-
tems that exhibit both continuous and discrete behavior. Intuitively, Hybrid
automata (HA) are extended finite-state automata whose discrete states corre-
spond to the various modes of continuous dynamics a system may exhibit, and
whose transitions express the switching logic between these modes.

Traditionally, HA have been used to model embedded systems, including au-
tomated highway systems, air traffic management, embedded automotive con-
trollers, robotics, and real-time circuits. More recently, they have been used
to model and analyze biological systems, such as cellular cycles and immune re-
sponse [3], bio-molecular networks [1], gene-regulatory networks [7,17,23],
protein-signaling pathways[11], and metabolic processes [4]. The hybrid-system
metaphor has also been used to develop algorithms for large-scale simulation of
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biological systems [15]. Biological systems are intrinsically hybrid in nature: bio-
chemical concentrations may vary continuously, yet discrete transitions between
distinct states are also possible.

Excitable cells (ECs) are a typical example of biological systems exhibiting
hybrid behavior: transmembrane ion fluxes and voltages may vary continuously
but the transition from the resting state to the excited state is generally con-
sidered an all-or-nothing discrete response. Traditionally, however, the preferred
modeling approach for ECs uses large sets of coupled nonlinear differential equa-
tions. Although an invaluable asset for integrating genomics and proteomics data
to reveal local interactions, such models are not typically amenable to control-
theoretic techniques developed for linear systems, and render large-scale simu-
lation impractical.

In previous work [25,26] we showed that it is possible to construct a concep-
tually simpler HA model for ECs that approximates with reasonable accuracy
their electrical properties. We called these HA Cycle-Linear HA (CLHA) to
highlight their cyclic structure and the fact that, while in each cycle they ex-
hibit linear dynamics, the coefficients of the corresponding linear equations and
mode-transition guards may vary in interesting ways from cycle to cycle.

The manual construction of CLHA, however, proved to be a tedious task, and
the CLHA so derived were tied to a particular type of EC and to a particular
species. Moreover, since recent advances in measuring in vitro the electrical
activity of ECs have resulted in the availability of extensive data sets, it was
natural to turn our attention to the following question: Given a training set of
electrical measurements of an EC, is it possible to automatically learn a CLHA
that approximates the behavior of the EC up to a required error margin?

In this paper we address this question, by presenting a methodology for auto-
matically learning CLHA models for two types of ECs: the squid giant axon and
the guinea pig ventricular cell. To the best of our knowledge, these are the most
accurate approximation models (with per-AP-cycle linear dynamics), developed
for these ECs to date, both in terms of electrical-signal morphology and typical
excitable-cell characteristics such as refractoriness and restitution.

To simplify the process of obtaining training sets, we used virtual measure-
ments obtained by applying the so-called S1S2 -protocol to existing nonlinear
models of these ECs. Extending the method outlined here to in vitro data ob-
tained in the laboratory of the fourth author is a direction for future work.

The learning technique we have developed for CLHA is also of independent
interest, as we learn all aspects of excitable-cell CLHA models up to a given error
margin, including the number of modes; for each mode, the dimension of the state
space and the coefficients of its linear time-invariant dynamics; and all aspects of
the mode switching logic, including the jump conditions, thresholds and resets.
To do so, we use the modified Prony’s method to obtain an exponential fit for
the continuous per-mode linear dynamics. Moreover, in learning the CLHA, we
make no a priori assumptions about the dimension of the state space of the
nonlinear system we are targetting, nor the degree of its input and output.
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We also learn the functions that adjust a CLHA’s mode dynamics and switch-
ing logic on a per-cycle basis. This aspect of our technique is critical in the case
of excitable cells, which exhibit the following restitution property: the longer the
recovery time for an EC, the longer in duration its subsequent action potential.

Organization. The rest of the paper is organized as follows. Section 2 defines
Cycle Linear Hybrid Automata (CLHA). Section 3 describes the requisite biol-
ogy of excitable cells. Our proposed methodology for learning a CLHA from a
given training set is presented in Section 4. In this section, we also present our
results for the training/testing set generated from the highly nonlinear Luo-Rudi
dynamic model previously developed for Guinea Pig ventricular cells. Section 5
discusses related work. Section 6 contains our concluding remarks and directions
for future research.

2 Hybrid Automata

We define Cycle-Linear Hybrid Automata as a restricted class of Structured Hy-
brid Automata [20]. SHA, which are derived from Timed Input/Output Au-
tomata [16], can model a general class of hybrid systems for which the in-
put/output distinction intrinsic to the IOA methodology is ignored. We use a
variable structure to specify states of an automaton. Let X be a set of variables.
A valuation x for X is a function that associates with each x ∈ X a value in its
type. The set of all valuations of X is denoted by val(X). For x ∈ val(X), let x.x
denote the value of the variable x within the state x. A trajectory τ : J → val(X)
specifies the values of all variables in X over a real time interval J . The limit
time of a trajectory τ , written as τ.ltime, is the supremum of the domain of τ .
A state model for X is a collection F of differential and algebraic equations
involving the continuous variables in X such that for every x ∈ val(X), there
exists solution trajectory τ of F that starts from x.

Definition 1. A Structured Hybrid Automaton (SHA) with mode set M is a
tuple A = (X, Q, Θ, A, D, P ), where X is a set of variables, including a special
discrete variable called mode of type M; Q ⊆ val(X) is the set of states; Θ ⊆ Q
is a nonempty set of start states; A is a set of actions, D ⊆ Q × A × Q is a set
of discrete transitions; and P is an indexed family Fi, i ∈ M, of state models.

As usual, we will specify the set of transitions in D corresponding to an action
a ∈ A by a guard predicate Ea and a reset map Ra : X → X . A transition
(x, a,x′) ∈ D is called a mode switch if x.mode �= x′.mode. The set TA of
trajectories of an SHA A is defined as follows: a trajectory τ for X is in TA
if the restriction of τ to the set of continuous variables in X satisfies the state
model Fτ(0).mode, and the restriction of τ to the discrete variables in X remain
constant over the domain of τ . An execution fragment captures a particular
run of A; it is defined as an alternating sequence of actions and trajectories
α = τ0a1τ1a2 . . ., where each τi ∈ T , and if τi is not the last trajectory then
(τi(ltime), ai+1, τi+1(0)) ∈ D.
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The SHA model represents one end of the spectrum of hybrid-system models
where one can specify systems with very general dynamics, and discrete me-
chanics. Linear and rectangular hybrid automata [2], at the other end of the
spectrum, enable powerful analysis techniques by restricting the state models
to linear differential equations. The Cycle-Linear Hybrid Automaton (CLHA)
model was proposed in [26] for describing and analyzing highly nonlinear but
periodic systems, and provides the mathematical basis for the remainder of this
paper. Definition 2 gives a precise semantic definition of this model as restricted
SHA. Informally, a CLHA captures a class of hybrid system where the state
models, reset maps, and guards are all linear but with coefficients that are func-
tions of a discrete state variable called epoch. The epoch variable is reset only
when a particular mode is entered.

Definition 2. A Cycle-Linear Hybrid Automaton (CLHA) with state space Q ⊆
val(X), mode set E × P, and snapshot map S : Q → E, is an SHA with mode
set M satisfying:

1. Variable mode has type M = E × P, and its first component is a discrete
variable of type E referred to as epoch. There is a unique ζ ∈ P that is
visited infinitely many times in any execution with an infinite number of
mode switches.

2. For each (ε, p) ∈ M, Fε,p is a linear state model. For each action a ∈ A,
the guard Ea (reset map Ra) can be expressed as a linear predicate (resp.
function) on X, with coefficients that are functions of epoch.

3. Suppose (x, a,x′) is a mode switch with x.mode = (ε1, p1) and x′.mode =
(ε2, p2), for some ε1, ε2 ∈ E, p1, p2 ∈ P. If p2 = ζ then ε2 = S(x); otherwise,
ε2 = ε1. A mode switch of the first type is called is called an epoch transition.

3 Excitable Cells (ECs)

Action potentials. Excitable cells (ECs) can be viewed as active electrical cir-
cuits with nonlinear behavior, capable of amplifying and propagating electrical
signals. ECs include neurons, cardiac cells, skeletal and smooth muscle cells. In
cardiac cells for example, on each heart beat, an electrical control signal is gener-
ated by the sinoatrial node, the heart’s internal pacemaking region. This signal
is amplified and propagated as an electrical wave along a prescribed path, excit-
ing cells in the main chambers of the heart (atria and ventricles) and assuring
synchronous contractions. At the cellular level, the electrical signal is a change
in the potential across the cell membrane caused by different ion currents flow-
ing through the cell membrane. This electrical signal for each excitation event
is known as an action potential (AP). A typical AP for Guinea-Pig ventricular
cells is shown in Figure 1(a). Its morphology is usually defined as a sequence
of six phases: stimulated (S), upstroke (U), early repolarization (E), plateau (P),
final repolarization (F), and resting (R).

For non-pacemaking ECs, APs are externally triggered events: a cell fires
an AP as an all-or-nothing response to a supra-threshold stimulus, and each
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Fig. 1. (a) AP and its phases. (b) Restitution curve. (c) APD, DI and S1S2 protocol.

AP follows the same sequence of phases and maintains approximately the same
magnitude regardless of the applied stimulus. After an initial step-like increase
in the membrane potential, an AP lasts for a couple milliseconds to hundreds
milliseconds in most mammals. During phases U, E, P and the first part of F,
generally no re-excitation can occur. This portion of an AP is therefore known
as the absolute refractory period (ARP). Starting with the second part of phase
F, an altered secondary excitation event is possible if the stimulation strength
or duration is raised. This portion of the AP is therefore known as the relative
refractory period (RRP).

Restitution function. When an EC is subjected to repeated stimuli, two
important time intervals can be identified: the action potential duration (APD),
the period when the AP is above some prescribed percentage (e.g. 10%) of its
maximum height, and the diastolic interval (DI), the period from the end of the
APD to the end of the cycle, i.e. the end of phase R. Figure 1(c) illustrates the
two intervals.

The function relating APD to DI as the cell is subjected to different stimula-
tion frequencies is called the APD restitution function. As shown in Figure 1(b),
the function is nonlinear and captures the phenomenon that a longer recovery
time is followed by a longer APD. A physiological explanation of a cell’s restitu-
tion is rooted in the ion-channel kinetics as a limiting factor in the cell’s response
to multiple stimuli over time. The sum of the APD and DI is called the Basic
Cycle Length (BCL).

The S1S2 protocol is often used to determine the restitution function of an
excitable cell. In this protocol, a cell is driven into a stable mode, in which a
stable APD may be observed, by first subjecting it to a train of so-called S1
stimuli at a fixed BCL. Immediately thereafter, a single S2 stimulus, having a
different (i.e. shorter) BCL is delivered. As such, one can associate a DI-APD pair
with each running of the protocol, viz. the DI preceding the S2-induced APD. By
repeating this procedure and varying the DIs before S2, one gradually constructs
the graph of the restitution curve. Figure 1(c) illustrates the placement of the
last S1 stimulus followed by the S2 stimulus.

Mathematical models of excitation. Modeling of the ionic processes that
underlie cell excitation dates back to 1952, when Hodgkin and Huxley formu-
lated their model of the squid giant axon [13]. Intuitively, the HH model is that
of a nonlinear resistor-capacitor (RC) circuit with current sources, defining AP
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in terms of a stimulation current and three ionic currents: (fast) inward sodium,
(slow) outward potassium, and a time-independent linear (leak) current. The
ionic currents depend themselves on the AP via a gating mechanism (a time-
varying conductance). The corresponding nonlinear system of equations is given
below, where: V , m, n and h are continuous state variables; V is the AP, m, n
and h are the ion-channel gates; gNa,gK,gL are the constants which represent the
maximum channel conductances for the sodium, potassium and leakage chan-
nel, respectively; ENa,EK,EL are the constants for reversal potentials for these
channels; m∞, h∞ and n∞ are the ion-channel gates’ steady-state values, and
τm, τh and τn are their time-constant values; C is the constant cell capacitance
and Ist is the stimulation current.

CV̇ = −gNam
3h(V − ENa) − gKn4(V − EK) − gL(V − EL) + Ist

τm ṁ = m − m∞ τm = 1/(αm + βm) m∞ = αm/(αm + βm)
τh ḣ = h − h∞ τh = 1/(αh + βh) h∞ = αh/(αh + βh)
τn ṅ = n − n∞ τn = 1/(αn + βn) n∞ = αn/(αn + βn)

αm(V ) = 2.5−0.1V
e2.5−0.1V −1 αh(V ) = 0.07e−

V
20 αn(V ) = 0.1−0.01V

e1−0.1V −1

βm(V ) = 4e−
V
18 βh(V ) = 1

e3−0.1V +1 βn(V ) = 0.125e−
V
80

The HH model with its 3 membrane currents, 4 state variables, and 12 fitted
parameters laid the foundation for subsequent models of excitable cells of in-
creasing complexity. All of these models use multiple continuous state variables
(voltage, ion-channel gates, ion concentrations) to describe action potential in
different cell types. One of the most popular cardiac-cell models is the dynamic
Luo-Rudy model [18]. The LRd model uses 11 different membrane currents, more
than 20 state variables and over 150 fitted parameters to describe the AP. Due
to space constraints, the full structure of the LRd model is not listed here.

4 Learning the CLHA of an Excitable Cell

Given a training set of APs generated by applying the S1S2-protocol to an
excitable cell of a particular species, our methodology for learning the CLHA
that approximates the cell’s behavior up to a given error margin consists of
two phases. In the first phase, we obtain for each AP a linear Hybrid automaton
(LHA) whose output is within the specified error bound. This involves identifying
the segments of the APs that correspond to the modes of the LHA, deriving the
flows for each mode, and the guards and reset maps for each transition. In each
mode, we use the modified Prony’s method (MPM) [21] to approximate the AP
with a (normalized) linear dynamics, i.e., with a sum of exponentials.

In the second phase, we derive a CLHA that combines the behavior of all the
LHAs and therefore captures all the APs in the training set. We exploit the fact
that the coefficients defining the flows, guards, and reset maps of the CLHA are
functions of the epoch variable which is updated during an epoch transition. We
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Fig. 2. Null/inflection points in the LRd APs

choose the variable to be a voltage-valued variable called v0 and epoch transitions
to be those that are brought about by the occurrence of a stimulus. In finding
the snapshot map which sets the value of the epoch variable in the post-state of
epoch transitions, we once again use MPM. Specifically, we estimate the voltage-
dependent coefficients of the CLHA as an exponential regression of the constant
coefficients in the LHAs obtained in the first phase.

Assumptions. Our goal is to derive a CLHA, the output of which is within
±2 mv of the output of the Luo-Rudy model, under the following class of stimuli:
each stimulation is a step of amplitude −80 μA/cm2, duration 0.6 msecs, and
BCL between 160 and 400 msecs. The set of 25 APs sampled every 0.2 msecs,
corresponding to BCL 160 to 400 msecs, in 10 msecs intervals, serves as the
training set for deriving the CLHA. The performance of the learned CLHA is
evaluated on the test set consisting of APs with BCL from 165 to 405 msecs, in
10 msecs intervals, sampled at the same frequency.

Identifying Modes. To discover the points in the APs that correspond to
mode transitions in the target LHAs, we computed the null points (zeros of
the first-order derivative) and the inflection points (zeros of the second-order
derivatives) of the APs. This approach worked very well for the HH model, and
the sections of APs between successive null or inflection points were identified
as the modes of the LHAs.

When directly applied to the LRd model, this approach yielded far too many
modes. In particular, there exist trains of inflection points in the P and R phases
of the APs (see Figure 2). This was somewhat surprising because the AP of these
phases appears as rather smooth line segments corresponding to “stretched”
inflection points. The higher-order nonlinearity of the LRd model seems to have
dealt with such segments by generating trains of points whose tangent (first-
order derivative) difference was smaller (in absolute value) than 10−5. Based
on this observation, we designed our own parameterized filter to eliminate such
long sequences of closely-spaced inflexion points. The filter parameter enable us
to increase or decrease the number of segments and thereby achieve the desired
accuracy of the CLHA.
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Fig. 3. (a) Inflection points after filtering. (b) Hybrid-automaton output.

Using the MPM described below, we were able to approximate each segment
with two exponentials and the entire AP to within the desired accuracy. Since,
however, this approach seemed to split each of the E and F phases in two, we
decided to eliminate one inflection point in each. In doing so, we were not able
to maintain the desired accuracy, unless we moved down the end-point of phase
P and up the starting-point of phase R. The correctness of both transformations
was confirmed by analyzing higher-resolution APs, where these points were in-
deed very close to their inferred position. The final seven points chosen are shown
in Figure 3(a).

Using Modified Prony’s Method to Obtain LHA. The null/inflection
points partition the AP into sections defining six modes of the LHA: S, U, E, P,
F and R. We denote the set of modes by P . Since these modes are always visited
in order, the voltages of the six inflection points define the guards (thresholds)
for the corresponding transition edges. We denote the transition voltages by Vp,
where p ∈ P , is the mode in the post-state of the transition. For example, in
the AP of Figure 3(a), the transition from U to E occurs at VE = 45.32 mv. To
completely define the LHA, it remains to define the flows and the reset maps;
for this we use the modified Prony’s method [21].

The modified Prony’s method is a technique for fitting exponential or sinu-
soidal functions to time-series data. For fixed n, MPM minimizes the L2 distance
between time-series data and any function y that solves a differential equation
with constant coefficients:

n+1∑
i=1

ci
di−1y

dti
= 0. (1)

Depending on the coefficients ci, the function estimating the solution of Equa-
tion 1 may be a complex or a real exponential, damped or undamped sinusoids.
Furthermore, the input to the algorithm can be noisy periodic samples from
the actual solution. Because of these attractive features, MPM has found many
practical applications.
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Suppose the voltage in mode p ∈ P of the AP can be approximated as a sum
of exponential functions:

v(t) =
n∑

i=1

aipe
bipt (2)

Then, we can specify the flows in each mode as :

∀ i ∈ {1, . . . , n}, ẋi = bipxi and xi(0) = aip (3)

v =
n∑

i=1

xi,

where the xi’s are the state variables. The initial condition on the state variables
is set by the reset map of the transition from the previous mode. The accuracy of
the above approximation is a function of n, that is, the number of state variables
used. Using the MPM with n = 2, we obtained, approximations that were within
the acceptable error bounds for all modes. The output of the resulting LHA, the
original AP, and the error between the two, are plotted in Figure 3(b). We apply
this procedure to obtain an LHA for each AP in the training set. The output of
these automata, superimposed on the original APs, are shown in Figure 4(a).

Linear to Cycle-Linear HA. From the first phase, we obtain for each AP in
the training set and for each mode p ∈ P , the transition voltage Vp for the guards,
and the coefficients b1p, b2p, and a1p, a2p corresponding to the the differential
equations and initial values for the state variables x1 and x2. In other words,
we obtain one linear hybrid automaton approximating each of the APs in the
training set.

In the second phase, we combine these LHAs into a single CLHA by using
the transition to mode S (stimulus arrival) as the epoch transition, setting the
value of the epoch variable v0. We call the value of v0 the epoch voltage. For each
mode, we find a function mapping v0 of each LHA to transition voltages and
coefficients; this function implicitly defines the snapshot map. We once again
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Fig. 5. Structure of the CLHA

use sums of two exponentials for these functions and obtain their coefficients by
applying MPM. These functions are defined below, where p ∈ P and i ∈ [1..2]:

Vp(v0) = ϑp eθpv0 + ϑ′p eθ′
pv0

aip(v0) = αip eλipv0 + α′ip eλ′
ipv0

bip(v0) = βip eγipv0 + β′ip eγ′
ipv0

Thus, aip, bip and Vp in the CLHA depend on the AP value stored in variable v0
on the epoch transition between modes R and S. The way MPM approximates
a1U , a2U , b1U and b2U with sums of two or three exponentials is shown in Fig-
ure 4(b). The structure of the CLHA thus obtained is given in Figure 5. For
simplicity, the figure does not show the actions on the transitions and the flows
within the modes.

While the above equations give the general pattern for the transition voltages
and coefficients, a few observations are in place. First, by construction, VF and
VR are constant in all LHAs and therefore no exponential fitting is necessary for
the CLHA. Secondly, the ai and bi coefficients of modes F and R are up to a very
small variation the same in all LHAs. Although we expressed them as functions
in the CLHA, we are confident that using constants instead would have still
satisfied the required accuracy. Thirdly, for the rest of the modes, the ai and bi

obtained for the LHAs are complex values. We therefore separately fitted their
real and imaginary parts. The constant coefficients ϑp, ϑ′p, θp, θ′p, αip, α′ip, λip,
λ′ip, βip, β′ip, γip and γ′ip are complex too. Finally, due to space restrictions, we
defer including a table with all voltage and coefficient values to the full version
of the paper. We are happy, however, to provide them upon request.

Simulation results. We have implemented the above-described learning tech-
nique in MATLAB, and applied it to both the HH and LRd models. The accuracy
of the resulting CLHA was analyzed on both the training and test sets. Due to
space constraints, the results on the simpler HH model are omitted.
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Fig. 6. (a) Comparison of AP. (b) Comparison of restitution curve.

The output of the CLHA on the LRd test set is shown superposed on the orig-
inal APs in Figure 6(a). As can be observed, the morphology of the output, as
well as the required accuracy, is maintained on this set. In Figure 6(b), the resti-
tution curve obtained from the CLHA by running it on the v0’s specified in the
test set is compared to the restitution curve obtained from the APs in the test
set. Although not perfect, the results are very satisfactory. To our knowledge,
these are the best results among the LRd-approximation models proposed so far.

5 Related Work

We have developed a learning/identification technique for cycle-linear hybrid
automata (CLHA), and applied it to a classical, highly nonlinear model of ven-
tricular cardiac myocytes. The technique of hybrid-automaton identification has
been previously used in a number of communication and control applications, in-
cluding interplanetary life-support systems [12], dynamic power management [8],
autonomous systems and intelligent robots [14,10], and figure tracking [22]. To
the best of our knowledge, our application of this technique in the area of systems
biology, in general, and excitable cells, in particular, is the first of its kind.

Our approach to hybrid-automaton identification is further distinguished from
prior work in the area by the novelty of the identification technique itself. Specific
contributions in this regard include the following: (1) Our approach is applicable
to continuous-time nonlinear systems that exhibit some level of periodicity and
adaptation. Given such a system, the CLHA we learn are also continuous-time,
specifically, linear time-invariant (LTI). In contrast, the techniques of [24,5] tar-
get discrete-time PWARX (piecewise-affine auto-regressive exogenous) models.
Furthermore, in contrast to these approaches, when learning the CLHA for a
system S, we make no a priori assumptions about the dimension of S’s state
space nor the degree of its input and output.

(2) Our technique learns all aspects of a hybrid automaton, including the
number of modes; for each mode, the dimension of the state space and the
coefficients of its LTI dynamics; and all aspects of the mode switching logic,
including the jump conditions, thresholds and resets. To do so, we use a modified
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Prony method to obtain an exponential fit for the continuous per-mode linear
dynamics. Cf. [24], where polynomial fitting is used for the case of discrete-time
PWARX systems.

(3) We also learn the functions that adjust a CLHA’s mode dynamics and
switching logic on a per-cycle basis. This aspect of our technique is critical in
the case of excitable cells because of their restitutional nature (see Section 3). In
this case, the coefficients of the mode dynamics and the voltage thresholds are
functions of V0, the cell’s initial transmembrane voltage for the current cycle.

Other approximate models for cardiac-tissue excitability have been proposed
in the literature, including the piecewise-linear model of Biktashev [6] and the
nonlinear model of Fenton and Karma [9]. The CLHA models of excitable cells
learned by our technique retain the simplicity of Biktashev’s model without
sacrificing the expressiveness of Fenton-Karma.

6 Conclusions

We have presented a method for automatically learning CLHA that approximate,
up to a prescribed error margin, the complex, nonlinear processes of amplifica-
tion and propagation of electrical signals (APs) in excitable cells. Our method,
implemented in MATLAB, combines geometric analysis with exponential re-
gression (using the modified Prony’s method) to derive a CLHA that covers in
a cycle-linear manner the input/output behavior of the original nonlinear sys-
tem. Moreover, it provides, to the best of our knowledge, the most accurate
approximation of extant nonlinear excitable-cell models, such as HH and LRd.

A source of complexity in the HH and LRd models is the coupling between
state variables, which seemingly occurs continuously throughout an AP cycle. In
contrast, the coupling between state variables in the CLHA model is markedly
reduced: (i) the membrane voltage v0 at the time a stimulus arrives determines
the coefficients of the flows of the “gated voltages” x1 and x2 for a complete
cycle; (ii) x1 and x2’s flows determine the membrane voltage within a mode;
and (iii) the transition voltages Vp, p ∈ P , determine the mode-switching logic
within a cycle. This decoupling of state variable within the CLHA model may
provide additional insight into essential properties of ECs, such as refractoriness
and restitution. The derivatives of x1 and x2 approximate in each mode of the
CLHA the inward and the outward currents, respectively.

It was therefore no surprise that the AP phases that were most difficult to
linearly approximate were upstroke (U) and early repolarization (E): it is in
these phases when disparate time constants coexist. For smaller error margins,
we will most likely require three exponentials in the MPM approximation of
these phases, and therefore three state variables in the corresponding modes.
The third variable presumably will distinguish between the K and Ca currents
contributing to repolarization.

As future work, we plan to more carefully consider APs at higher stimula-
tion frequencies, i.e. in the 130 to 160 msecs range; accurately capturing their
behavior also seems to require a third state variable. We also plan to develop ad-
ditional training sets based on protocols incorporating stimuli of varying shapes
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and intensity. Furthermore, we intend to study AP propagation within an array
of CLHA. Our preliminary data [25], showed that a 400-x-400 cell array was
able to produce spirals (arrhythmia-related phenomena). We expect that the
increased accuracy of the learned CLHA will better match observed behavior.

Finally, we would like to better understand the class of nonlinear systems
whose behavior CLHA can successfully approximate. Intuitively, they exhibit
periodic, but nonetheless adaptive, behavior with respect to the input stim-
uli. For narrow ranges of the epoch voltage v0, CLHA naturally provide a linear
approximation, and well-established techniques for reachability, stability, observ-
ability and controllability analysis can be readily applied. It would be interesting,
however, to investigate whether the additional structure provided by CLHA (its
parametrization on v0) can be exploited to extend the reach of such techniques.
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Abstract. In this paper we will extend the input-to-state stability (ISS)
framework to continuous-time discontinuous dynamical systems adopting
Filippov’s solution concept and using non-smooth ISS Lyapunov func-
tions. The main motivation for adopting non-smooth ISS Lyapunov func-
tions is that “multiple Lyapunov functions” are commonly used in the
stability theory for hybrid systems. We will show that the existence of a
non-smooth (but Lipschitz continuous) ISS Lyapunov function for a dis-
continuous system implies ISS. Next, we will prove an ISS interconnec-
tion theorem for two discontinuous dynamical systems that both admit
an ISS Lyapunov function. The interconnection will be shown to be glob-
ally asymptotically stable under a small gain condition. The developed
ISS theory will be applied to observer-based controller design for a class
of piecewise linear systems using an observer structure proposed by the
authors. The LMI-based design of the state feedback and the observer
can be performed separately.

1 Introduction

For plants in which the state variable is not available for feedback, one often
resorts to an observer-based controller. Typically, such a controller consists of
an observer that generates on the basis of inputs and outputs of the plant an
estimate of the state variable. This estimate is substituted in a state feedback
controller to generate the inputs to the plant (see Figure 1). The certainty equiva-
lence principle is a rigorous justification for such a substitution. If the plant is lin-
ear (and detectable and stabilizable) one can separately design an observer with
asymptotically stable estimation error dynamics and a state feedback controller
that stabilizes the plant. The interconnection of the observer-based controller
and the plant can be proven to be globally asymptotically stable (GAS). The
linear case has been extended into the non-linear smooth direction by considering
the concept of input-to-state stability (ISS), see e.g. [1,2,3,4,5]. The approach of
designing the observer and the controller separately (as in the linear case), and
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Fig. 1. Structure of an observer-based feedback controller

applying the ISS-interconnection approach to prove the stability of the closed
loop system was used for Lipschitz continuous nonlinear systems in e.g. [6,7].
These results apply to continuous systems, and the designed observers result
in GAS estimation error dynamics. However, there exist situations in which it
is not possible to obtain GAS observers. One such situation of our interest are
piecewise affine (PWA) systems, as we will see below. In that case one might
still be able to design an observer that yields an estimation error dynamics that
is ISS from state variable to estimation error. In case the plant-state feedback
combination is ISS from estimation error to state variable, the closed-loop sys-
tem can still be GAS, if a suitable small gain condition is satisfied. The (small
gain) conditions for the stability of general interconnected Lipschitz continuous
systems were presented in [3,5].

For continuous-time systems that are in general discontinuous, like PWA sys-
tems, the theory of [3,5] does not apply. The first reason that hampers the use of
the results in [3,5] is that the system does not have a Lipschitz continuous vector
field. The second reason is that the (ISS) Lyapunov functions for hybrid systems
are generally non-smooth, while [1,2,3,4,5] require smooth Lyapunov functions.
Indeed, for hybrid systems one typically uses multiple Lyapunov functions (see
e.g. [8,9]). In particular for piecewise affine systems, piecewise quadratic Lya-
punov functions (see e.g. [10,11]) are popular as they can be constructed from
linear matrix inequalities (LMIs), which has clear computational advantages.
This motivates the development of ISS theory for continuous-time discontinuous
systems by using non-smooth Lyapunov functions.

Stability theory for continuous-time hybrid systems using non-smooth Lya-
punov functions is well developed (see e.g. [8,9,10,11] and the references therein).
Typically, the solution trajectories are considered in the traditional sense instead
of a generalized sense like Filippov’s definition [12]. An exception is formed by
the work [13] in which stability theory is developed for discontinuous dynamical
systems adopting non-smooth Lipschitz continuous Lyapunov functions. We will
extend this work towards ISS and ISS interconnection theorems for Filippov’s
solution concept (including sliding modes). Recently, ISS of continuous-time hy-
brid systems is being researched [14,15,16]. However, the emphasis in [14,15,16] is
on smooth Lyapunov functions, which might not have the computational advan-
tages that non-smooth Lyapunov functions have. As such, the work in this paper
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extends [13] towards ISS and ISS interconnection theory, and extends the line of
research in [14,15,16] towards using non-smooth ISS Lyapunov functions.

The developed general ISS theory is used to design an observer-based feedback
controller for a class of piecewise linear (PWL) systems in which the currently
active mode of the system is not known. The proposed output-feedback controller
consists of a static state feedback and a switching state observer as proposed by
the authors in [17]. Both the synthesis of the observer and state feedback will
be based on LMIs. The interconnection of these ISS subsystems forms a typical
situation that requires interconnection theory using non-smooth ISS Lyapunov
functions as developed in this paper.

Notation. R+ denotes all nonnegative real numbers. For a set Ω ⊆ R
n, intΩ

denotes its interior and coΩ its convex hull. A set Ω ⊆ R
n is called a polyhedron,

if it is the intersection of a finite number of open or closed half spaces. For a
real-valued, differentiable function V , ∇V denotes its gradient. For a positive
semi-definite matrix A ∈ R

n, λmin(A) and λmax(A) will denote its minimal
and maximal eigenvalue. In matrices we denote by (∗) at block position (i, j)

the transposed matrix block at position (j, i), e.g.
[
A B
(∗) C

]
means

[
A B
B� C

]
,

where B� denotes the transposed matrix of B. The operator col(·, ·) stacks
its arguments into a column vector, e.g. for a ∈ R

n and b ∈ R
m col(a, b) =

(a�, b�)� ∈ R
n+m. A function u : R+ �→ R

n is piecewise continuous, if on every
bounded interval the function has only a finite number of points at which it is
discontinuous. Without loss of generality we will assume that every piecewise
continuous function u is right continuous, i.e. limt↓τ u(t) = u(τ) for all τ ∈ R+.
With | · | we will denote the usual Euclidean norm for vectors in R

n, and ‖ · ‖
denotes the L∞ norm for time functions, i.e. ‖u‖ = supt∈R+

|u(t)| for a time
function u : R+ �→ R

n. For two functions f and g we denote by f ◦ g their
composition, i.e. (f ◦ g)(x) = f(g(x)). A function γ : R+ → R+ is of class K if it
is continuous, strictly increasing and γ(0) = 0. It is of class K∞ if, in addition,
it is unbounded, i.e. γ(s) → ∞ as s → ∞. A function β : R+ × R+ → R+ is of
class KL if, for each fixed t ∈ R+, the function β(·, t) is of class K , and for each
fixed s ∈ R+, the function β(s, ·) is decreasing and tends to zero at infinity. A
function γ : R+ → R+ is called positive definite, if γ(s) > 0, when s > 0.

2 ISS for Discontinuous Dynamical Systems Using
Non-smooth Lyapunov Functions

Consider the differential equation with discontinuous right-hand side of the form

ẋ(t) = f(x(t), u(t)) (1)

with x(t) ∈ R
n and u(t) ∈ R

m, the state and control input at time t ∈ R+,
respectively. The vector field f is assumed to be a piecewise continuous function
from R

n × R
m to R

n in the sense that

f(x, u) = fi(x, u) when col(x, u) ∈ Ωi, i = 1, 2, . . . , N. (2)
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Here, Ω1, . . . , ΩN are closed subsets of R
n × R

m that form a partitioning of the
space R

n×R
m in the sense that intΩi∩intΩj = ∅, when i = j and

⋃N
i=1Ωi = R

n×
R

m. Moreover, we assume that Ωj ⊆ cl(intΩj) for all j = 1, . . . , N implying that
Ωj is a not a subset of a lower dimensional manifold. The functions fi : Ωi �→ R

n

are locally Lipschitz continuous on their domains Ωi (this means including the
boundary). The class of piecewise affine systems forms a particular instance of
piecewise continuous systems.

Since the system (1) has a discontinuous right-hand side, one has to use a
generalized solution concept. The most commonly used solution concept in this
context, is Filippov’s convex definition [12, p. 50]. This replaces the differential
equation (1) by a differential inclusion1 of the form

ẋ(t) ∈ F (x(t), u(t)) (3)

with

F (x, u)=co{fi(x, u) | i ∈ I(x, u)} and I(x, u) :={i ∈ {1, . . . , N}|col(x, u)∈Ωi}.
(4)

I(x, u) is an index set indicating the regions Ωi to which the state-input vector
col(x, u) belongs.

Definition 1. A function x : [a, b] �→ R
n is a Filippov solution to (1) for the

piecewise continuous input function u : [a, b] �→ R
n, if it is a solution to (3) for

the input u, i.e. x is absolutely continuous2 and satisfies ẋ(t) ∈ F (x(t), u(t)) for
almost all t ∈ [a, b].

Under the conditions given here, it can be shown by using § 2.6 (page 69) in [12]
that the mapping (t, x) �→ F (x, u(t)) defined as in (4) for any bounded piecewise
continuous function u is upper semicontinuous in (t, x) on I ×R

n, where I indi-
cates any interval where u is continuous. As F (x, u) as in (4) is bounded, convex
and closed for any col(x, u) ∈ R

n+m, local existence of solutions to (1) given an
initial condition x(t0) = x0 and a piecewise continuous input function is guar-
anteed from Theorem 1, page 77 in [12]. To obtain also uniqueness, additional
conditions have to be imposed on (1), see e.g. § 10 in [12].

2.1 ISS for Discontinuous Dynamical Systems

Given the possible non-uniqueness of Filippov solution trajectories, we define
the concept of input-to-state stability (ISS) for (1) [1,3,5] as follows.
1 Strictly speaking, we embedded the space of Filippov solutions in the solution space

of the differential inclusion (3), which might be larger. Under conditions on the
regions Ωi and the input function u, the Filippov solution space and the solution
space to (3) coincide, cf. § 2.6 in [12]. As the Filippov solution space is always
included in the solution space of (3), properties of solutions to (3) hold for Filippov
solutions as well.

2 A function x : [a, b] �→ R
n is called absolutely continuous, if x is continuous and

there exists a function ẋ in L1[a, b], the set of integrable functions, such that x(t) =
x(a)+

� t

a
ẋ(τ )dτ for all t ∈ [a, b]. The function ẋ is called the derivative of x on [a, b].

This implies that x is almost everywhere differentiable.
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Definition 2. The system (1) is said to be input-to-state stable (ISS) if there
exists a function β of class KL and a function γ of class K such that for each
initial condition x(0) = x0 and each piecewise continuous bounded input function
u defined on [0,∞),

– all corresponding Filippov solutions x of the system (1) exist on [0,∞) and,
– all corresponding Filippov solutions satisfy

|x(t)| ≤ β(|x0|, t) + γ(‖u‖), ∀t ≥ 0. (5)

In the study of hybrid systems often non-smooth or multiple Lyapunov functions
are employed, see for instance [8,9,10,11]. As such, we will consider continuous
Lyapunov functions that are composed of “multiple” Lyapunov functions Vj as

V (x) = Vj(x) when x ∈ Γj , j = 1, . . . ,M, (6)

where Γ1, . . . , ΓM are closed subsets of R
n that form a partitioning of the space

R
n, i.e. intΓi∩intΓj = ∅, when i = j and

⋃N
i=1 Γi = R

n. As before, we also assume
Γj ⊆ cl(int(Γj)) for j = 1, . . . ,M . For each j we assume that Vj is a continuously
differentiable function on some open domain containing Γj . Continuity of V
implies that Vi(x) = Vj(x) when x ∈ Γi ∩ Γj . The continuity of the Lyapunov
function is a typical condition used in the study of stability for piecewise affine
systems in continuous-time, see e.g. [10]. Similarly, as in (4), we define the index
set J(x) as

J(x) := {j ∈ {1, . . . ,M} | x ∈ Γj}. (7)

Definition 3. A function V of the form (6) is said to be an ISS-Lyapunov
function for the system (1) if:

– V is Lipschitz continuous,
– there exist functions ψ1, ψ2 of class K∞ such that:

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ R
n, (8)

– there exist functions χ of class K and α positive definite and continuous such
that for all x ∈ R

n and u ∈ R
m the implication

{|x| ≥ χ(|u|)} ⇒ {∇Vj(x)fi(x, u) ≤ −α(V (x)), for all i ∈ I(x, u), j ∈ J(x)}
(9)

holds, or stated differently, for all x ∈ R
n and u ∈ R

m

{|x| ≥ χ(|u|), col(x, u) ∈ Ωi and x ∈ Γj} ⇒ {∇Vj(x)fi(x, u) ≤ −α(V (x))}.
(10)

Definition 3 is similar to the one proposed in [1,3,5], the only difference being
that here we use non-smooth Lyapunov functions and that it is used for systems
(1) in which the vector field might be discontinuous.

We first derive conditions on the time derivative of an ISS Lyapunov V along
Filippov solutions x of system (1) provided dV

dt (x(t)) and ẋ(t) exist at time t.
The complications are that a solution trajectory might go along a surface on
which ∇V does not exist and that solutions are of Filippov type.
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Theorem 1. If there exists an ISS Lyapunov function V of the form (6) for
system (1) in the sense of Definition 3, then

d

dt
V (x(t)) ≤ −α(V (x(t)) (11)

at times t, where both dV
dt (x(t)) and ẋ(t) exist and |x(t)| ≥ χ(|u(t)|).

Proof. In [12, § 15] it is shown that if at time t both ẋ(t) and dV (x(t))
dt exist, then

d

dt
V (x(t)) =

d

dh
V (x(t) + hy) |h=0= lim

h→0

V (x(t) + hy) − V (x(t))
h

, (12)

where ẋ(t) = y ∈ F (x(t), u(t)). Hence, due to (4) y can be written as

y =
∑

i∈I(x(t),u(t))

αifi(x(t), u(t)) (13)

with αi ≥ 0, i ∈ I(x(t), u(t)) and
∑

i∈I(x(t),u(t)) αi = 1. As x(t) ∈ Γj iff j ∈
J(x(t)) and V is continuous we have that V (x(t)) = Vj(x(t)) for all j ∈ J(x(t)).
To evaluate the right-hand side of (12), we have to realize that V (x(t) + hy) =
Vj(x(t) + hy) for all j ∈ J(x(t) + hy) in which the set J(x(t) + hy) depends on
h. Since dV

dt (x(t)) exists, this means that

d

dt
V (x(t)) = lim

h↓0
Vj(x(t) + hy) − Vj(x(t))

h
,

for all j ∈ J̄(x(t), y)) :=
⋂

h0>0
⋃

0<h<h0
J(x(t) + hy). Due to closedness of Γj ,

it holds that d(x(t)), Γj) := infz∈Γj |z − x(t)| > 0, when j ∈ J(x(t)). Hence, for
sufficiently small h, we have that x(t)+hy ∈ ⋃

j∈J(x(t)) Γj and thus J(x(t)+hy) ⊆
J(x(t)) for sufficiently small h and thus J̄(x(t), y)) ⊆ J(x(t)). Hence, we can
conclude that for x(t) = 0 with |x(t)| ≥ χ(|u(t)|) that

d

dt
V (x(t)) ≤ max

j∈J(x(t))
lim
h→0

Vj(x(t) + hy) − Vj(x(t))
h

= max
j∈J(x(t))

∇Vj(x(t))y
(13)
=

(13)
= max

j∈J(x(t))

∑
i∈I(x(t),u(t))

αi∇Vj(x(t))fi(x(t), u(t)) ≤

≤ max
i∈I(x(t),u(t)),j∈J(x(t))

∇Vj(x(t))fi(x(t), u(t)) ≤ −α(V (x(t))). (14)

Using the above theorem we can now prove that the existence of an ISS
Lyapunov function implies ISS of the system.

Theorem 2. If there exists an ISS Lyapunov function V of the form (6) for
system (1) in the sense of Definition 3, then system (1) is ISS.

Proof. Consider initial condition x(0) = x0 and let u be a piecewise continuous
bounded input function. Let x denote a corresponding Filippov solution (might
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be non-unique) to (1). Define the set S := {x | V (x) ≤ c} with c := ψ2(χ(‖u‖)).
Note that when x(t) ∈ S, then ψ2(|x(t)|) ≥ V (x(t)) > ψ2(χ(‖u‖)), which implies
|x(t)| ≥ χ(|u(t)|) and thus ∇Vj(x(t))fi(x(t), u(t)) ≤ −α(V (x(t))) for all i ∈
I(x(t), u(t)) and all j ∈ J(x(t)). According to Theorem 1, inequality (11) holds
for x(t) ∈ S (provided ẋ(t) and d

dtV (x(t)) exist). We prove the following claim.
Claim: S is positively invariant, i.e. if there exists a t0 such that x(t0) ∈ S,

then x(t) ∈ S for all t ≥ t0.
Indeed, suppose this statement is not true. Due to closedness of S (continuity

of V ) there is an ε > 0 and time t̃ > t0 with V (x(t̃)) ≥ c+ε. Let t∗ := inf{t ≥ t0 |
V (x(t)) ≥ c+ε} and t∗ := sup{t0 ≤ t ≤ t∗ | V (x(t)) ≤ c}. Note that t0 ≤ t∗ < t∗

and V (x(t∗)) = c by continuity of V and x. Since x(t) ∈ S for t ∈ (t∗, t∗) (11)
holds if both ẋ(t) and dV (x(t))

dt exist. Since V is locally Lipschitz continuous and
any solution to (3) is absolutely continuous, the composite function t �→ V (x(t))
is absolutely continuous and consequently, t �→ V (x(t)) is differentiable almost
everywhere (a.e.) with respect to time t, and ẋ(t) exists also a.e. Therefore,

V (x(t∗)) − V (x(t∗)) =
∫ t∗

t∗

dV (x(τ))
dt

dτ ≤
∫ t∗

t∗

−α(V (x(τ)))dτ ≤ 0.

Hence, V (x(t∗)) ≤ V (x(t∗)) = c, thereby contradicting that V (x(t∗)) ≥ c + ε.
This proves the claim.

Now let t1 = inf{t ≥ 0 | x(t) ∈ S} ≤ ∞ (note that t1 might be infinity). Then
it follows from the above reasoning and (8) that ψ1(|x(t)|) ≤ V (x(t)) ≤ c :=
ψ2(χ(‖u‖)) for all t ≥ t1. Hence,

|x(t)| ≤ γ(‖u‖) for all t ≥ t1 (15)

with γ := ψ−1
1 ◦ψ2 ◦χ a K-function. For t < t1, x(t) ∈ S and consequently, (11)

holds almost everywhere in [0, t1). This yields d
dtV (x(t)) ≤ −α(V (x)) a.e. in

[0, t1). Lemma 4.4. in [4] now gives that there exists a KL function β̃ (only
depending on α) such that V (x(t)) ≤ β̃(V (x0), t)) for t ≤ t1. Hence,

|x(t)| ≤ β(x0, t) for all t ≤ t1, (16)

where β(r, t) := ψ−1
1 (β̃(ψ2(r), t)) is a KL function as well. Combining (15) and

(16) yields (5) for this particular trajectory. Global existence of any trajectory
can also be proven via Theorem 2 page 78 [12] by using the bound (5) (that
shows that there cannot be “finite escape times.”) As β and γ do not rely on
the particular initial state nor on the input u, this proves ISS of the system. ��
Remark 1. The proof follows similar lines as the proof of [2, Lemma 2.14] with
the necessary adaptations for the non-smoothness of V and the discontinuity of
the dynamics using Theorem 1.

2.2 Stability of Discontinuous Dynamical Systems

Consider the autonomous variant of the discontinuous system (1) given by

ẋ(t) = f(x(t)) = fi(x(t)) when x(t) ∈ Ωi ⊆ R
n (17)
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with a similar generalization in terms of a differential inclusion

ẋ(t) ∈ F (x(t)). (18)

We assume that 0 is an equilibrium of (17) (or equivalently (18)), which means
that fi(0) = 0 for all i ∈ I(0) and thus F (0) = {0}.
Definition 4. The system (17) is said to be globally asymptotically stable(GAS),
if there exists a function β of class KL such that for each x0 ∈ R

n, all Filippov
solutions x of the system (1) with initial condition x(0) = x0 exist on [0,∞) and
satisfy:

|x(t)| ≤ β(|x(0)|, t), ∀t ≥ 0. (19)

As a corollary of Theorem 2 we obtain the following result.

Theorem 3. Consider the discontinuous dynamical system (17) and a Lipschitz
continuous function V of the form (6). Assume that

– there exist functions ψ1, ψ2 of class K∞ such that:

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ R
n

– there exists a continuous positive definite function α such that

∇Vj(x)fi(x) ≤ −α(V (x)) when x ∈ Ωi ∩ Γj . (20)

Then the discontinuous dynamical system (17) is globally asymptotically stable.

The above theorem is closely related to one of the main results (Theorem 3.1 to
be precise) in [13]. In case of the particular form of V and f , the results coincide.
Hence, in the particular context considered here one of the main result of [13] is
recovered as a special case of our ISS result (Theorem 2).

2.3 An Interconnection Result

Consider the interconnected system (we dropped time t for shortness)

ẋa = fa(xa, xb) = fa
ia

(xa, xb) if col(xa, xb) ∈ Ωa
ia

for ia = 1, . . . , Na (21a)

ẋb = f b(xa, xb) = f b
ib

(xa, xb) if col(xa, xb) ∈ Ωb
ib

for ib = 1, . . . , N b (21b)

with partitionings {Ωa
1 , . . . , Ω

a
Na} and {Ωb

1, . . . , Ω
b
Nb}, respectively, of R

na+nb

as in (1), where xa ∈ R
na and xb ∈ R

nb . Ia(xa, xb) and Ib(xa, xb) are defined
similarly as in (4). The interconnected system in the combined state variable
x = col(xa, xb) is given by

ẋ = f(x) = f(ia,ib)(x) = col(fa
ia

(xa, xb), f b
ib

(xa, xb)) when x ∈ Ωa
ia
∩Ωb

ib
(22)

for each pair (ia, ib) ∈ {1, . . . , Na} × {1, . . . , N b}. Hence, we have (at most)
N := NaNb regions for the interconnected system. We take I(x) as given in (4)
for the interconnected system in the form I(x) = {(ia, ib) | ia ∈ Ia(xa, xb), ib ∈
Ib(xa, xb)}.
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Theorem 4. Suppose that there exist ISS Lyapunov functions V a and V b of the
form (6) for the systems (21a) and (21b), respectively. Let (ψa

1 , ψ
a
2 , χ

a, αa) and
(ψb

1, ψ
b
2, χ

b, αb) denote the bounding functions corresponding to V a and V b in the
sense of Definition 3 with χa and χb K∞-functions. Define

χ̃a := ψa
2 ◦ χa ◦ [ψb

1]
−1, χ̃b := ψb

2 ◦ χb ◦ [ψa
1 ]−1

and assume that the coupling condition

χ̃a ◦ χ̃b(r) < r

holds for all r > 0. Then the interconnected system (21) is GAS.

Proof. The differential inclusion that replaces (21), when Filippov solutions are
used, is given by ẋ ∈ F (x) with F (x) = F a(xa, xb) × F b(xa, xb) and F a(xa, xb)
the set (4) for (21a) and F b(xa, xb) the set (4) for (21b). Due to the coupling
condition it holds that χ̃b(r) < [χ̃a]−1(r) for r > 0. According to Lemma A.1 in
[3] there exists a K∞-function σ, which is continuously differentiable and satisfies
χ̃b(r) < σ(r) < [χ̃a]−1(r) for all r > 0 and σ′(r) > 0 for all r > 0 (thus the
derivative σ′ is positive definite and continuous).

Define the Lipschitz continuous function V similar as in [3] with x=col(xa, xb)

V (x) = max{σ(V a(xa)), V b(xb)}. (23)

This function will be proven to be a Lyapunov function for (21). The function V
is in the form (6) with a partitioning induced by the partitioning {Γ a

1 , . . . , Γ
a
Ma}

of V a, the partitioning {Γ b
1 , . . . , Γ

b
Mb} of V b and the additional split up given

by σ(V a(xa)) ≥ V b(xb) or σ(V a(xa)) ≤ V b(xb). Hence, V (x) = V(ja,jb,0)(x) :=
σ(V a

ja
(xa)), when σ(V a(xa)) ≥ V b(xb), xa ∈ Γ a

ja
, xb ∈ Γ b

jb
and V (x)=V(ja,jb,1)(x)

:= V b
jb

(xb), when σ(V a(xa)) ≤ V b(xb), xa ∈ Γ a
ja

, xb ∈ Γ b
jb

. Note that there is
a slight abuse of notation as we characterize (7) using “indices” consisting of
triples (ja, jb, p) with p = 1 related to σ(V a(xa)) ≤ V b(xb) and p = 0 related to
σ(V a(xa)) ≥ V b(xb).

Note that

max(σ(ψa
1 (|xa|)), ψb

1(|xb|))≤V (x)≤max(σ(ψa
2 (|x|)), ψb

2(|x|)).
As either |x|2 = |xa|2 + |xb|2 ≤ 2|xa|2 or |x|2 ≤ 2|xb|2, we obtain that

max(σ(ψa
1 (|xa|)), ψb

1(|xb|)) ≥ 1
2
[σ(ψa

1 (|xa|)) + ψb
1(|xb|)] ≥

≥ 1
2

min[σ(ψa
1 (

1
2

√
2|x|)), ψb

1(
1
2

√
2|x|)].

Since the minimum and maximum of two K∞-functions are also K∞-functions,
we obtain that V is lower and uppper bounded by K∞-functions. This proves
that the first hypothesis of Theorem 3 is satisfied.

To check the second hypothesis of Theorem 3 let x = col(xa, xb) ∈ Ωa
ia
∩ Ωb

ib

and x ∈ [Γ a
ja

× Γ a
jb

].
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Case 1: If V b(xb) ≤ σ(V a(xa)), then V (x) = σ(V a(xa)) = σ(V a
ja

(xa)) and we
have to verify (20) for “index” (ja, jb, 0). The properties of σ and the definition
of χ̃a yield

ψb
1(|xb|) ≤ V b(xb) ≤ σ(V a(xa)) < [χ̃a]−1(V a(xa)) ≤ ψb

1 ◦ [χa]−1(|xa|).
This implies that |xa| > χa(|xb|) . Using (10) for subsystem (21a) gives

∇V(ja,jb,0)(xa, xb)f(ia,ib)(x) = σ′(V a
ja

(xa))∇V a
ja

(xa)fa
ia

(xa, xb) ≤
≤ −σ′(V a

ja
(xa))αa(V a

ja
(xa)) = −α̃a(V (x)), (24)

if we set α̃a(r) := σ′(σ−1(r))αa(σ−1(r)), which is a positive definite and contin-
uous function.

Case 2: If V b(xb) ≥ σ(V a(xa)), then V (x) = V b(xb) = V b
jb

(xb). Then using the
properties of σ we obtain

ψb
2 ◦ χb(|xa|) ≤ χ̃b(V a(xa)) < σ(V a(xa)) ≤ V b(xb) ≤ ψb

2(|xb|),
which implies that |xb| > χb(|xa|). Applying (10) for subsystem (21b) gives

∇V(ja,jb,1)(xa, xb)f(ia,ib)(x)=∇V b
jb

(xb)f b
ib

(xa, xb) ≤ −αb(V b
jb

(xb))=−αb(V (x))).
(25)

Hence, V is a Lyapunov function for system (21) with α(s) = min[α̃a(s), αb(s)]
which is a positive definite and continuous function. Hence, GAS follows from
Theorem 3.

3 Observer-Based Controllers for a Class of Pwl Systems

As an illustration of the above results, consider the bimodal PWL system

ẋ(t) =

{
A1x(t) +Bu(t), if H�x(t) ≤ 0
A2x(t) +Bu(t), if H�x(t) ≥ 0

(26a)

y(t) = Cx(t), (26b)

where x(t) ∈ R
n, y(t) ∈ R

p and u(t) ∈ R
m are the state, output and the input,

respectively at time t ∈ R
+ and Ai ∈ R

n×n, i = 1, 2, B ∈ R
n×m, C ∈ R

p×n

and H ∈ R
n. The input u : R

+ → R
m is assumed to be a piecewise continuous

function and solutions are considered in the Filippov sense.
We will design a stabilizing output-based controller for (26) consisting of an

observer and a state feedback using the estimated state (cf. Figure 1).

3.1 Observer Design

As an observer for the system (26), we take a continuous-time bimodal system
with a structure as proposed in [17]:

˙̂x =

{
A1x̂+Bu+ L1(y − ŷ), if H�x̂+M�(y − ŷ) ≤ 0
A2x̂+Bu+ L2(y − ŷ), if H�x̂+M�(y − ŷ) ≥ 0

(27a)

ŷ = Cx̂, (27b)
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where x̂(t) ∈ R
n is the estimated state at time t and L1, L2 ∈ R

n×p and M ∈ R
p.

The dynamics of the state estimation error e := x− x̂ is then described by

ė = ferr(e, x) :=

⎧⎪⎪⎨
⎪⎪⎩

(A1 − L1C)e, H�x ≤ 0, H�x+ (M�C −H�)e ≤ 0
(A2 − L2C)e+ΔAx, H�x ≤ 0, H�x+ (M�C −H�)e ≥ 0
(A1 − L1C)e−ΔAx, H�x ≥ 0, H�x+ (M�C −H�)e ≤ 0
(A2 − L2C)e, H�x ≥ 0, H�x+ (M�C −H�)e ≥ 0,

(28)
where x satisfies (26a) and ΔA := A1 − A2. The error dynamics in the first
and the fourth mode of (28) is described by an n-dimensional autonomous state
equation, while in the two other modes the “external input signal” x is present
in the right-hand side. The presence of x makes it generally not possible to
obtain GAS error dynamics, although in some particular cases it can be the case
(cf. [17]). However, ISS is still obtainable under a suitable condition.

Theorem 5. The observer (27) yields estimation error dynamics (28) that is
ISS with respect to the system state x as an external input, if there exist constants
λ ≥ 0, εe ≥ 0 and μe > 0 and a matrix Pe = P�e > 0 such that the following
matrix inequalities are satisfied:

�
�����

(Ai − LiC)�Pe

+Pe(Ai − LiC) + (μe + 1)I
(∗)

(−1)iΔA�Pe+
λ
2 H(H� − M�C)

−λHH� − εeI

�
�����

< 0, i = 1, 2 (29)

Furthermore, Ve(e) = e�Pee is an ISS-Lyapunov function for the error dy-
namics (28) and Definition 3 is satisfied for ψ1(|e|) = λmin(Pe)|e|2, ψ2(|e|) =
λmax(Pe)|e|2, χ(|x|) =

√
εe|x|, and α(Ve(e)) = μe

λmax(Pe)Ve(e).

Proof. Due to page limitations we will only sketch the proof here. For the
quadratic Lyapunov function Ve(e) = e�Pee, the conditions (10) can be refor-
mulated in the matrix inequalities above by using the constraints |e|2 ≥ εe|x|2
(i.e. |e| ≥ χ(|x|)) and the regional information in (28) via S-procedure relax-
ations. See [17] for more details.

Remark 2. The matrix inequalities in (29) are linear in {Pe, L
�
1 Pe, L

�
2 Pe, λM, λ,

μe, εe}, and thus can be efficiently solved.

3.2 Controller Design

As a controller for the system (26) we propose the following controller:

u = Kx̂, where K� ∈ R
n. (30)

By using x̂ = x− e the system dynamics with the controller (30) becomes

ẋ = fsfc(x, e) =

{
(A1 +BK)x−BKe, H�x ≤ 0
(A2 +BK)x−BKe, H�x ≥ 0.

(31)
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Theorem 6. The closed-loop system (31) is ISS with respect to the estimation
error e as an external input, if there exist positive constants εx, μx > 0 and a
matrix Px = P�x > 0 such that

�
�

(Ai + BK)�Px+
Px(Ai + BK) + (μx + 1)Px

−PxBK

(∗) −εxPx

�
� < 0, i = 1, 2 (32)

Furthermore, the function Vx(x) = x�Pxx is an ISS-Lyapunov function for the
system dynamics (31) and Definition 3 is satisfied for ψ1(|x|) = λmin(Px)|x|2,
ψ2(|x|) = λmax(Px)|x|2, χ(|e|) =

√
εx

λmax(Px)
λmin(Px) |e|, and αx(Vx(x)) = μxVx(x).

Proof. Similar as proof of Theorem 5.

Remark 3. The matrix inequalities (32) are bilinear in the variables. However,

by pre- and post-multiplying the whole matrix inequality by
(
P−1

x 0
0 P−1

x

)
, one

obtains �
�

P −1
x A�

i + P −1
x K�B�+

AiP
−1
x + BK�P −1

x + (μx + 1)P −1
x

−BKP −1
x

(∗) −εxP −1
x

�
� < 0 (33)

for i = 1, 2. Inequalities (33) are still bilinear in the variables. However, by fixing
the values of εx and μx, the inequalities are linear in {P−1

x , P−1
x K�}.

3.3 Interconnection

Theorems 5 and 6 give the means to design the observer gains L1, L2,M and the
feedback gain K, so that the system and the observer separately have quadratic
ISS-Lyapunov functions. Of course, one could also have used a relaxation by
adopting piecewise quadratic ISS Lyapunov functions as in [10] based upon the
general theory of Theorem 2. However, the current choice of quadratic and thus
smooth Lyapunov functions illustrates nicely that even in this case the Lya-
punov function of the interconnection is still non-smooth (see (23) in the proof
of Theorem 4). Together with the fact that we have discontinuous dynamics, the
“smooth ISS theory” [1,2,3,4,5] does not apply directly and we have to resort to
the developed theory in this paper. As a direct application of Theorem 4 we ob-
tain the following sufficient conditions for GAS of the interconnection (28)-(31).

Theorem 7. Consider the system (26), the observer (27) and the controller
(30). Suppose that the observer is designed according to Theorem 5 and the state
feedback according to Theorem 6. Then the closed-loop system is globally asymp-
totically stable if the following condition is satisfied:

λmax(Pe)
λmin(Pe)

λmax(Px)
λmin(Px)

εeεx < 1 (34)
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4 Conclusions

The contribution of this paper is twofold. Firstly, we presented an ISS framework
for differential equations with discontinuous right-hand sides using non-smooth
(ISS) Lyapunov functions. Secondly, we applied this framework in the design of
an observer-based controller for a class of piecewise linear systems.

The ISS framework introduced by Sontag was extended to continuous-time
discontinuous dynamical systems and non-smooth ISS Lyapunov functions. The
main motivation for the use of non-smooth ISS Lyapunov function was the use
of “multiple Lyapunov functions” as is common in the stability theory for hybrid
systems. We showed that the existence of a non-smooth (but Lipschitz contin-
uous) ISS Lyapunov function for a discontinuous dynamical system adopting
Filippov’s solution concept implies ISS. As a special case, this provided also
a stability result for discontinuous dynamical systems using non-smooth Lya-
punov functions. Finally, we proved that the interconnection of two discontinu-
ous dynamical systems, which both admit an ISS Lyapunov function, is globally
asymptotically stable under a small gain condition.

The developed ISS theory was exploited for the output-based feedback con-
troller design for a class of PWL systems. Via LMIs the design of the state
feedback and the observer could be performed separately. A small gain condi-
tion had to be checked to verify the stability of the overall closed-loop system.

Several future research issues remain. Besides extending the ISS framework for
discontinuous systems, also generalizations are possible for the observer-based
controller design. We presented the case of a common quadratic ISS Lyapunov
function for both the state feedback and the observer design. This result can
be generalized to piecewise quadratic (ISS) Lyapunov functions to obtain re-
laxed conditions. However, it is of interest to investigate further extensions to
include observers with state resets [18]. Also robustness of the observer-based
controller design with respect to disturbances such as measurement noise and
model mismatch will be investigated in future work.
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Abstract. This paper adapts the Gibbs sampling method to the prob-
lem of hybrid system identification. We define a Generalized Linear Hid-
denl Markov Model (GLHMM) that combines switching dynamics from
Hidden Markov Models, with a Generalized Linear Model (GLM) to
govern the continuous dynamics. This class of models, which includes
conventional ARX models as a special case, is particularly well suited to
this identification approach. Our use of GLMs is also driven by potential
applications of this approach to the field of neural prosthetics, where
neural Poisson-GLMs can model neural firing behavior. The paper gives
a concrete algorithm for identification, and an example motivated by
neuroprosthetic considerations.

1 Introduction

This paper develops a Gibbs Sampling based approach for the identification of
a class of hybrid systems which we term Generalized Linear Hidden Markov
Models (GLHMMs). This hybrid system model is based on probabilistic Markov
switching, and continuous dynamics that are described by Generalized Linear
Models (GLMs). GLMs can be viewed as a nonlinear extension to the Piece Wise
Affine (PWA) systems often considered in hybrid system identification [1,2,3,4,5],
and include these previously studied PWA systems as a special case.

The motivation for modeling dynamics via GLMs is application driven. Cor-
tical neuroprotheses are being developed to restore motor function and provide
communication channels for patients with spinal cord injuries and motor disor-
ders, as well as patients with locked-in syndrome [6]. Prior work [7,8] has shown
that for the purposes of supervisory control of a neural prosthetic, the evolution
of the higher level planning signals found in the partial reach region (PRR) of
the posterior parietal cortex can be approximately modeled as a finite state ma-
chine [8], with changes in neural activity corresponding to changes in a small set
of discrete cognitive or behavioral states. In current laboratory settings where
neural prosthetic activity is carried out, these discrete states can be inferred
from experimental cues. However as neural prostheses are now transitioning to
clinical devices, methods to simultaneously classify the discrete cognitive and
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behavioral state of the brain in real time, as well as to identify representa-
tive neural dynamics, are needed. GLHMMs can model the dynamics of neural
processes (which are based on point process models of neural behavior [9]), and
our proposed identification method can potentially construct the needed mod-
els of cognitive switching behavior from recorded neural data sets. GLHMMs
can also potentially model a wider class nonlinear physical systems and systems
whose uncertainty properties are not well captured by Gaussian models.

This paper proposes a general Gibbs sampling approach to hybrid system
identification. Several Maximum Likelihood (ML) algorithms for hybrid sys-
tem identification already exist. Expectation maximization has been used in
vision[10] and in speech recognition [11] to identify state space representations of
PWA systems. Clustering approaches [5] have been developed for Piece-Wise Au-
toregressive Exogenous systems (PWARX). Gibbs sampling is a flexible method
that has a number of potential advantages as compared to previously proposed
methods. Unlike ML methods, Gibbs sampling utilizes prior information, and
allows for models to be created based on the maximum a posteri (MAP) esti-
mates, which is shown to be important in neural applications. Previous Bayesian
methods incorporating prior information have been considered [3]. However, by
allowing for asymptotically exact sampling of complex probability density func-
tions, the Gibbs-based approach overcomes the approximations used in [3]. Given
a sufficiently long sampling sequence, Gibbs sampling methods can also gener-
ally avoid getting stuck in local minima. Based on the discussion in Section 3.1,
it is likely that Gibbs sampling based identification can be extended to other
hybrid system models beside the one considered here.

2 Generalized Linear Hidden Markov Models

GLHMMs are based on two existing frameworks, Hidden Markov Models
(HMMs), and Generalized Linear Models (GLMs). In this class of hybrid sys-
tems, HMMs model the switching between discrete system modes, while GLMs
define the discrete time dynamics of the continuous state evolution. GLMs can
be viewed as an nonlinear extension to AutoRegressive eXogenous (ARX) [12]
systems frequently used in system identification. We are practically motivated
to use GLMs because of the applications described in Sec. 5. To establish the
definition and notation of GLHMMs, we first review standard concepts from
HMMs and GLMs.

2.1 Hidden Markov Models

A Hidden Markov Model (HMM) is formed around a set of N unobservable dis-
crete states, S = {S1, S2, . . . , SN}, whose evolution is governed by a first order
Markov process. Let discrete instants of time be indexed by {t1,t2,. . ., tk, . . .
, tT }. At each tk, let mk denote the mode index, i.e., at tk the system is in
state Smk

. There is an associated parameterized probability distribution which
generates the observed system output at time tk: yk ∼ p (yk|θmk

), parameterized
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by θmk
∈ IRP . The probability of switching between modes of the system is

governed by a first order Markov chain with transition matrix A = [ai,j ]:

P (mk = i| mk−1, . . . , m1) = P (mk = i| mk−1) = amk−1,i . (1)

Given an observed HMM output sequence, Y = [y1, . . . , yT ], estimation of the
parameters Θ = [θ1, . . . , θN ] and the transition matrix A can be carried out using
several methods, including the well known Baum-Welch method [13]. Because we
mix HMMs with GLMs, we will pursue a second identification approach based
on Gibbs sampling [14].

2.2 Generalized Linear Models

Generalized Linear Models (GLMs) [15], are an extension of linear regression
that allows modeling of situations where observations of the system state are not
normally distributed. In GLMs, a linear predictor is used to predict a function
of the mean of the outcome (observed) variable, μ ∈ R:

g(μ) = η = βT x , (2)

where g(·) is an smooth invertible link function, x ∈ R
m is a regressor vector

of observed values or known inputs, and β ∈ R
m is a vector of parameters.

The observed output of a GLM, y = {y1, y2, . . .}, is distributed according to a
distribution f(μ) whose mean μ is described by the inverse of the link function:

y ∼ f(μ), where μ = g−1(βT x) . (3)

2.3 Generalized Linear Hidden Markov Models

With this background in mind, a SISO1 Generalized Linear Hidden Markov
Model (GLHMM) is defined as follows.

Definition 1. A GLHMM is a system G = {S, A, μ, U , Y, Σ}, where2

1. S = {S1, . . . , SN} is the set of N discrete states, or modes of G. The mode
of the system a time tk is denoted by mk.

2. The evolution of the discrete states S is governed by a first order Markov
process parameterized by a transition probability matrix A, as defined in (1),

3. The variable μ ∈ IR is a continuous state variable, and μk is the continous
state at time tk,

4. uk ∈ U is a control input at tk. For this paper, we assume uk ∈ IR,
1 The GLHMM definition can be extended to a MISO system by increasing the size of

the regressor, and to a MIMO system by creating separate models for each output.
2 One can also define an initial distribution on the continuous states, π(μ0), and

an initial discrete distribution on the discrete states or modes, Π(m0). However,
because this paper focuses on model identification, and not estimation, these initial
conditions are not essential to our definition.
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5. yk ∈ Y is the system output at tk. Depending on Σ, Y = IR, IR+, IN.
6. Σ is a discrete time dynamical system taking the form of a GLM, defined as

follows. A regressor vector xk of previous inputs and outputs is defined as:

xk =
[
1, yk−1, . . . , yk−ny , uk−1, . . . , uk−nu

]T
. (4)

The continuous state μk of the GLM is a nonlinear function of the regressor
xk and the discrete state mk,

μk = g−1 (h(xk)) . (5)

The function h(·) is a switching function which relates the continuous dy-
namics to each discrete mode,

h(xk) =

⎧⎪⎨
⎪⎩

θT
1 xk if mk = 1
...

θT
Nxk if mk = N

. (6)

The parameters θi ∈ R
m, i = 1, . . . , N are associated with each discrete

mode, and govern the dynamics within a mode. The output of the system,
yk, is distributed according to the distribution f(·),

yk ∼ f(μk). (7)

The distribution, f(·), and the link function, g(·), are smooth and are often
constrained to be pairs of compatible functions, as described in Sec. 2.4. For
convenience the following notation is adopted:

Θ = [θ1, . . . , θN ] , M = [m1, . . . , mT ], Y = [y1, . . . , yT ] , X = [x1, . . . , xT ] . (8)

2.4 Relation of GLHMMs to Prior Work

HMMs are chosen as a switching criterion for this class of hybrid systems be-
cause they provide flexibility in the identification process. Several identification
algorithms have been designed for Piece Wise ARX (PWARX) hybrid systems
[1]. In PWARX systems, the guards consists of hyperplanes in the regressor
space; the system changes its discrete state when a guard is crossed. However,
most identification algorithms do not account for the guards explicitly in the
identification process [1]. Instead, an initial process jointly identifies the para-
meter Θ and classifies the regressor xk, and then a second process identifies the
guards based on the classification of the regressors xk. The advantage of this
approach is that it allows powerful existing algorithms to form the guard es-
timates. Our HMM switching model does not currently allow for the addition
of complicated Guards into the identification process. However, when data has
been collected sequentially in time, it is more likely that sequential data points
belong to the same mode. A Markov transition rule can be used to represent this
correlation. After initial identification using our method, guard functions can be
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estimated in a second processing step, as is conventionally done. Recent work in
nonstationary HMMs provide an extension where the probability of switching
between modes is a function of the duration in the current mode [16]. This exten-
sion can be readily implemented in the current algorithm, and therefore provide
a means of identifying timed automata.

GLMs are often identified via maximum likelihood methods [17]. To usefully
identify GLMs using Gibbs sampling, it must be shown that the density function
p(θ|x, y) is of a convenient form (e.g., log-concave). In practice, the distribution
f(μ) is often constrained to the exponential family of distributions, with an as-
sociated compatible link function g(μ), as shown in Table 1. These compatible
functional forms have been proven to yield log-concave likelihoods [18], which
have efficient simulation techniques appropriate for Gibbs sampling. Gilks [19]
describes an adaptive rejection sampling technique bounding a log-concave den-
sity function with upper and lower hulls, allowing single samples to be drawn
from the distribution with only a few function evaluations.

Table 1. Log-Concave Likelihood Forms of g() and f()

f(μ) g(μ)

Normal identity operator
Gamma g(μ) = log μ, or g(μ) = μγ , (−1 ≤ γ < 0)
Poisson g(μ) = log μ or g(μ) = μγ , (−1 ≤ γ < 0)
Binomial g(μ) = logit(μ) or g(μ) = Φ−1(μ), or g(μ) = log (−log(1 − μ))

In this paper, the utility of the Normal and Poisson distributions are demon-
strated. A normally distributed f() with identity link g(μ) = μ is equivalent to
the standard regressor: yk = θT xk + ε, with ε ∈ N

(
0, σ2

)
. If the regressor

xk ∈ X is defined as (4) then the GLM is equivalent to an ARX system.
A Poisson-GLM with log-link function g(μ) = log(μ) models counting pro-

cesses, which are relevant for applications in neuroscience (see Section 5). Here
y ∼ f(μ), where μ = e(θT x). A Poisson distribution is defined as f(μ) = e−μμy

y! .

3 Identification of GLHMMs Using Gibbs Sampling

Markov Chain Monte Carlo (MCMC) sampling methods generate samples from
a desired probability density function (see [20] for a review). In particular, we
consider Gibbs sampling, a type of MCMC. The main advantage of this approach
is the capacity to work with high dimensional and complex systems.

3.1 Gibbs Sampling for Hybrid System Identification

Gibbs sampling is a MCMC method for sampling from a potentially complicated
joint pdf, p (φ1, ..., φn), where φ1, . . . , φn are system states or parameters. Gibbs
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sampling can be usefully applied when the joint pdf p (φ1, ..., φn), has associated
conditional pdfs,

p (φ1| φ2, ..., φn) , . . . , p (φi| φ1, ..., φi−1, φi+1, ..., φn) , . . . , p (φn| φ1, ..., φn−1) ,
(9)

that can be efficiently sampled from. A single step in the Gibbs sampling cycle
requires one sample to be drawn sequentially from each of the conditional pdfs,
using the most recent sampled value in subsequent conditional arguments. At the
end of each step, a new sample φ̂ =

[
φ̂1, . . . , φ̂n

]
has been drawn. As the Gibbs

sampler iterates through many steps, the samples {Φ} tend asymptotically to
the joint distribution [20]. In theory this property implies that the maximum
of p (φ1, ..., φn) can always be found using Gibbs sampling, as opposed to EM
methods where only a local maximum is guaranteed. In practice there are only a
finite number of samples drawn, and multiple runs of Gibbs sampling are usually
conducted to detect convergence.

Hybrid system identification is complex because it involves simultaneous pa-
rameter identification as well as classification. Gibbs samplers provide a unique
form that can be exploited for this problem, as hybrid system identification can
be viewed as equivalent to maximizing the joint posterior pdf,

p (Θ, M | Observed Data) , (10)

where Θ represents the unknown system parameters, and M represents a vector
which classifies all data points into their generative modes. In practice (10) is
impossible to solve analytically. Gibbs Sampling allows (10) to be separated into
the component parts of identification p (Θ| M, Observed Data) and classification
p (M | Θ, Observed Data).

3.2 Gibbs Sampling for GLHMMs

Gibbs sampling draws samples from the joint distribution, P (Θ, A, M | X, Y ).
Algorithm 1 (described below) sequentially samples from the conditional re-
gressor parameter density p (Θ| M, A, Y, X), the conditional Markov transition
parameter density p (A| Θ, M, Y, X), and the conditional discrete state density
p (M | Θ, A, Y, X).

After algorithm 1 is described below, assumptions underlying the construction
of the algorithm are given in Sec. 3.3, while practical implementation issues are
presented in Sec. 3.4.

Algorithm 1 (Gibbs Sampling for GLHMM). Draw zmax number of sam-
ples from the joint distribution P (Θ, A, M | X, Y ) of a GLHMM given the data
set X = {xk} , xk ∈ IRn, Y = {yk}, k = 1, . . . , T , the number of discrete states
N : S = {S1, . . . , SN}, the distribution f(·) and link function g(·).

1. Define parameterized conjugate prior distributions for Θ, and A, using prior
information to select parameters:
(a) set p (θi(j)) as normal distributions for i = 1, . . . , N and j = 1, . . . , n.
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(b) each row of A =
[
a(i,j)

]
is assumed to be independent and the prior for

A is defined as a set of Dirichlet distributions D(·):

p
(
a(i,1:N)

)
= D

(
αi

1, . . . , αi
N

)
, (11)

where αi
j are the parameters of the prior Dirichlet pdf (see [14]).

2. Initialize parameter samples: Â(0),M̂ (0),Θ̂(0). These initial samples can either
be drawn from the priors or be set to an arbitrary initial guess.

3. set z = 1
4. Sample from p (M | Θ, A, Y, X), the conditional discrete mode density. The

discrete modes are sampled from sequentially:

(a) set m̂
(z)
1 = 1

(b) for k = 2 : T − 1, draw a sample m̂
(z)
k from the discrete distribution:

m̂
(z)
k ∼ P (mk|yk, Θ, mk−1, mk+1) (12)

=
a�

m̂
(z)
k−1,mk

�f (yk|θmk
, xk) a�

mk,m̂
(z−1)
k+1

�
∑s

j=1 a�
m̂

(z)
k−1,j

�f (yk|θj , xk) a�
j,m̂

(z−1)
k+1

� . (13)

end
(c) draw sample m̂

(z)
T from the discrete distribution:

m̂
(z)
k ∼ P (mT |yT , Θ, mT−1) (14)

=
a�

m̂
(z+1)
T −1 ,mT

�f (yT |θmT , xT )∑s
j=1 a�

m̂
(z)
T −1,j

�f (yT |θj , xT )
. (15)

5. Sample from p (A| Θ, M, Y, X). Each row of A is sampled independently:
for i = 1 : N

â
(k)
(i,1:N) ∼ p (ai,1:N |M) =

D
(

αi
1 +

T∑
k=2

δ�
m̂

(z)
k−1=i

�δ�
m̂

(z)
k =1

�, . . . , αi
N +

T∑
k=2

δ�
m̂

(z)
k−1=i

�δ�
m̂

(z)
k =N

�
)

(16)
end

6. Sample from p (Θ| M, A, Y, X):
(a) assign data into discrete modes using M̂ (k)

for i = 1, . . . , N

X i =
{

xk : m̂
(z)
k = i, k = 1, . . . , T

}
(17)

Yi =
{

yk : m̂
(z)
k = i, k = 1, . . . , T

}
(18)

end
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(b) Conditioning on the sets X i,Yi, the distributions for the regressor para-
meters θi in each mode are sampled independently.
for i = 1, . . . , N

θ̂
(k)
i ∼ p

(
θi| Yi, X i

)
(19)

∝ P
(
Yi, X i| θi

)
p (θi) . (20)

end
The regressor parameter density (19) is log concave and is sampled using
adaptive rejection sampling [19].

7. set z=z + 1, if z > zmax stop, else goto step 4.

Recall that a(i, j) are the elements of the Markov transition matrix A. The
conditional distribution f(yk|θmk

, xk) refers to the distribution f(μk) where μk =
θT

mk
xk from (7), and δ is a delta function.

3.3 Derivation of Algorithm 1: Gibbs Sampling for GLHMMs

Sampling from the conditional discrete mode density p (M | Θ, A, Y, X) and
Markov transition density p (A| Θ, M, Y, X), in algorithm steps 4 and 5, follows
directly from work on Gibbs sampling in HMMs [14].

The regressor parameter distribution p (Θ| M, A, Y, X) in step 6 is indepen-
dent of the parameter A, when the modes mk of the data xk, yk are known:

p (Θ| M, A, Y, X) = p (Θ| M, Y, X) . (21)

This reduction is based on the assumption that if the discrete variables mk

of a hybrid system are known exactly, then the only information pertaining to
parameters θi, is the data generated by the mode Si, defined by the sets X i and
Yi, as in (17), and prior information about the parameter. This assumption also
implies that the parameters of each mode are independent given the discrete
modes mk:

p (Θ| M, Y, X) =
N∏

i=1

p
(
θi| Yi, X i

)
. (22)

Hence drawing samples from each p
(
θi| Yi, X i

)
, i = 1, . . . , N is the same

as drawing samples from p (Θ| M, A, Y, X). Log concavity of the distributions
p

(
θi| Yi, X i

)
, i = 1, . . . , N is shown in [18], for distributions f(·) and link func-

tions g(·) shown in Table 1.

3.4 Practical Issues Associated with Algorithm 1

Sampling from discrete density functions: The densities (12) and (14) are
discrete, have support in S = {S1, . . . , SN}, and can be formulated as the vector:

Pmk
= [P (mk = 1|yk, Θ, mk−1, mk+1) , . . . , P (mk = N |yk, Θ, mk−1, mk+1)] ,

(23)
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where
∑

Pmk
= 1. Drawing a sample from (12) and (14) is accomplished by

generating a random number from a uniform distribution on [0, 1], and then
choosing mk = i, where i is the first element of the cumulative sum of Pmk

that
is greater than or equal to the random number.
Non-Markov switching behavior: If the modes at sequential time points
k,k + 1 are considered independent, then Markov behavior of the discrete state
is no longer appropriate and (12)–(14) reduces to:

P (mk|yk, Θ) =
f (yk|θmk

)∑s
j=1 f (yk|θj)

. (24)

Degenerate mode vector assignments: A known problem with Gibbs sam-
pling is that during some sampling sequences there may be no data (xk, yk)
attributed to a specific mode Si ⇒ X i, Yi = ∅. Using proper priors mitigates
this problem as the posteriors (22) are the same as the priors p (θi).
Recovering parameter estimates: Gibbs sampling exhibits a burn-in period
where initial samples are not distributed as the joint distribution. These samples
are removed [20], and parameter estimates are formulated using the remaining
samples. Common estimates are the expectation E [p(φ)], which is the average
1
Z

∑Z
z=1 φ̂(z), of the remaining samples φ̂(z) z = 1, . . . , Z, and the mode of the

samples, which approximates the Maximum A Posteri (MAP) estimate.

4 PWARX Identification

To demonstrate the flexibility of the GLHMM identification framework, a PWA
systems is identified. To allow comparison of Gibbs sampling to existing methods
of hybrid system identification, the intersecting hyperplanes PWARX system
from the comparison paper on hybrid system identification [1] is considered:

The PWARX system is defined as yk = h(xk) + ek, where h is:

h(xk) =

⎧⎪⎨
⎪⎩

[
xk 1

] [
0.5 0.5

]T if xk ∈ [−2.5, 0]

[
xk 1

] [
−1 2

]T if xk ∈ (0, 2.5]
. (25)

Data is generated by drawing the regressor from a uniform distribution xk ∼
U [−2.5, 2.5], for k = 1, . . . , 100. The noise, ek, is gaussian with variance σ2.

Algorithm 1 was used as following: Gaussian priors on all regressor parame-
ters p(θi) = N (0, 103) were used. As there is no Markov switching behavior,
the algorithm was modified by using (24) instead of (12)–(14). The regressor
parameter pdfs (19) were explicitly derived using Bayes theorem:

p
(
θi| X i, Yi

)
= N (E(θi), Σi) where

Σi = σ2(X i T X i + α2I)−1 and E(θi) = (X i T X i + α2I)−1X iT Yi . (26)

An example of the first 1500 samples drawn by the Gibbs sampler is shown in
Fig. 1. The last 500 samples are used to estimate parameters, shown in Fig. 2.
Linear programming was used to infer the position of the hyperplane guard.
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Following a procedure3 in [1], the effectiveness of the Gibbs sampling proce-
dure is tested by running the algorithm on (25) with a range of noise intensities
σ2. It was found that Gibbs sampling was able to identify parameters to a level of
precision between the algebraic approach [4] and the clustering-based procedure
[5], when the regressor length and number of modes N was known exactly. This
assumes that the burn in period is correctly identified in our Gibbs sampling
procedure. Detecting the burn in period is explained in [20].
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5 Poisson GLM

Neurophysiological Background. Cortical neuroprostheses are being devel-
oped to restore motor function in individuals with high level spinal cord in-
juries or severe motor disorders (e.g. Lou Gehrig’s disease). Neuroprostheses
work by recording the spiking activity of multiple neurons in cortex, and decod-
ing movement intent or movement plans from the neural activity to generate
control signals that can be used to drive devices such as prosthetic arms or
computer interfaces [6,7,8]. Future clinical neural prostheses will require a su-
pervisory decoder whose job is to classify, in real time, the current cognitive or
behavioral state of the brain. For example, the supervisory decoder must deter-
mine: (1) if the patient equipped with the neural prosthetic is awake; (2) if the
patient wants to use the prosthetic; (3) if the brain is currently in the planning
state; (4) if the patient actually wants to execute a planned movement; (5) if
the patient wants to scrub or change the plan while it is being executed, etc.
These different brain states and their associated neural dynamics can potentially
be modeled as a hybrid system. Based on the current discrete state estimate,
different algorithms for decoding movement plans or different neuroprosthetic
system responses can be executed. For example, Shenoy et. al. [8] proposed that

3 The metric E[Δθ] from the comparison paper [1] is used.
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PRR neural activity could be classified into three discrete states; a baseline state,
a plan state and a reach state. They used neural recordings to develop a crude
model and estimator in an ad-hoc fashion. For neural prosthetics to be used in
real patients, systematic methods are needed to design the supervisory decoders
based on hybrid system identification and estimation theory.

Neural activity is recorded using implanted electrodes which measure the ex-
tracellular components of action potentials, or spikes, from one or more neurons
in the proximity of the each electrode. The continuous electrode waveforms are
digitized and then spikes are detected in the considerably noisy signal. Using
temporal alignment of the detected waveforms, principle component analysis,
and clustering methods, the individual action potentials are then attributed to
specific neurons. It is widely believed that only the arrival time of spike, and
not its specific waveform shape, carries information. Thus, the end result of the
initial electrode signal processing steps is a vector of spike arrival time points for
each neuron. These vectors can contain considerable noise due to background
electrical noise and misclassification. The arrival times are conventionally dis-
cretized into sufficiently small time bins (typically 1 msec) so that only one spike
at most is assigned to each bin. Based on this conventional processing model,
the dynamic firing behavior of neurons can be modeled using Poisson-GLMs [9].

5.1 Single Neuron Recording, a Simulated Example

A model of the recorded spiking activity from a single neuron present in a higher
brain cortex is created. This neuron’s spiking activity is dependent on the un-
observable discrete state of the surrounding cortex. For this simple example, the
cortex has two discrete states; S1, an ‘attention’ state (i.e., the patient wants
to actively use the neural prosthetic) and S2, a ‘baseline’ state (i.e., sleep or
disinterest in using the neural prosthetic). The transition of this cortical region
between the ‘attention’ and ‘baseline’ states is assumed to follow Markov tran-
sition probabilities, and is illustrated in Fig 3. The simulations presented below
directly simulate the number of spikes in sequential 0.01s time bins, and will
simulate a 10s duration.

GLHMM Single Neuron Recording Model. The discrete modes are mod-
eled by setting m1 = 1 and evolving the discrete state mk, k = 1, . . . , 1000, using
Markov transitions with parameters A:

P (mk+1 = j|mk = i) = aij , where [aij ] = A =
[
0.9 0.1
0.1 0.9

]
. (27)

BaselineAttention

SS 21

Fig. 3. Finite state machine representation of simulated neuron behavior
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The neurons spiking activity in each mode is modeled with Poisson-GLMs. The
firing rate, λk, in each mode Si, is determined by two components: θi(1), the
nominal firing rate of the mode, and θi(2), representing a change in rate depend-
ing on the spiking history. θi(2) can model refractory periods, a dwell period in
spiking activity that is experienced immediately after spike firing.

λk =
{

e(θ1(1)+θ1(2)yk−1) if mk = 1
e(θ2(1)+θ2(2)yk−1) if mk = 2

. (28)

The following regressor parameters are used:

θ1 =
[

−1
−10

]
, θ2 =

[
−2
0

]
. (29)

The parameters (29), correspond to a nominal firing rate of 36.78 Hz in the
‘attention’ state, and a nominal rate of 13.53 Hz in the ‘baseline’ state.

The number of spikes in the current time bin are generated from a Poisson
distribution with rate λk:

yk ∼ Poisson (λk) . (30)

An output sequence yk, k = 1, . . . , 1000 was generated from the single neuron
model by using Poisson and discrete random number generators in Matlab. An
example output sequence is plotted in Fig. 4. The associative generative modes
mk are also displayed. There were a total of 211 spike events over the simulated
10 second duration.

Algorithm 1 was run for 5000 iterations, the last 3000 of which were used for
statistical analysis of parameters. Regressor parameter priors are set to dispersed
normal distributions: θi,j = N

(
0, 102

)
for i ∈ 1, 2, j ∈ 1, 2. Dirichlet priors

are used for each row of A:
[
a11 a12

]
∼ D

([
α1 α2

])
,

[
a21 a22

]
∼ D

([
α2 α1

])
.

Several different informative parameterizations were chosen that incorporate the
assumption that sequential modes values mk, mk+1 are more likely to belong to
the same mode Si: [

α1 α2
]

=
[
90 10

]
,
[
80 20

]
,
[
70 30

]
. (31)
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Fig. 4. Simulated output from single neuron model. The observed spiking activity
is depicted in the top graph. The corresponding hidden discrete modes mk, either
‘attention’, (black), or ‘baseline’, (white), are plotted directly below.



A Stochastic Framework for Hybrid System Identification 285

Table 2. Model parameter estimates. Expected value (E[·]) and the maximum a posteri
(MAP) estimates are used, compared with actual parameter values (Model).

Parameter Model MAP E[·]

A

�
0.9 0.1
0.1 0.9

� �
0.8980 0.1020
0.1017 0.8983

� �
0.8979 0.1021
0.0963 0.9037

�

θ1, θ2

�
−1
−10

�
,

�
−2
0

� �
−0.9643
−2.7040

�
,

�
−2.0130
0.2014

� �
−1.0031
−25.0071

�
,

�
−2.1075
−0.0218

�

−1.5 −1 −0.5
0

50

100

150

200

θ
1
(1)

p[
θ 1(1

)]

−3 −2.5 −2 −1.5
0

50

100

150

θ
2
(1)

p[
θ 2(1

)]

−100 −80 −60 −40 −20 0
0

50

100

150

200

θ
1
(2)

p[
θ 1(2

)]
 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

50

100

150

200

θ
2
(2)

p[
θ 2(2

)]

PDF
PDF Mean
Actual Value

Fig. 5. Regressor parameter posterior densities and mean estimates

The solution was invariant when using different informative priors (31), and the
key parameter estimates matched the model values (see Table 2).

Note the wide discrepancy between the MAP and Expectation estimates for
the refractory parameter θ1(2). The advantage of Gibbs sampling is that the pos-
terior parameter densities can be analyzed, by generating a histogram of the sam-
ples, Fig. 5. The support of the posterior density for θ1(2) is large, indicating that
the parameter is largely unidentifiable from the generated data set. This prob-
lem arises because the refractery physics of spike firing dictate that no sequential
outputs yk and yk+1 in S2 both contain spikes. Hence the only information that
can be deduced by the algorithm from the data is the that refractory parameter
θ1(2) lowers the firing rate after a spike event has just occurred. The posterior
densities thus allow the user to realize when a parameter is unidentifiable.

6 Conclusions

This paper demonstrated that Gibbs sampling can be an effective and flexible
computational tool for hybrid system identification. The Generalized Linear Hid-
den Markov Models defined in this paper enable the creation of hybrid models
representing neural activity in higher cortexes of the brain associated with arm
reaching, as well as conventional PWARX systems. Their nonlinearities may also
make them suitable models for many other physical hybrid systems.
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Abstract. This paper introduces iterative relaxation abstraction (IRA),
a new method for reachability analysis of LHA that aims to improve
scalability by combining the capabilities of current tools for analysis of
low-dimensional LHA with the power of linear programming (LP) for
large numbers of constraints and variables. IRA is inspired by the success
of counterexample guided abstraction refinement (CEGAR) techniques
in verification of discrete systems. On each iteration, a low-dimensional
LHA called a relaxation abstraction is constructed using a subset of the
continuous variables from the original LHA. Hybrid system reachabil-
ity analysis then generates a regular language called the discrete path
abstraction containing all possible counterexamples (paths to the bad
locations) in the relaxation abstraction. If the discrete path abstraction
is non-empty, a particular counterexample is selected and LP infeasibil-
ity analysis determines if the counterexample is spurious using the con-
straints along the path from the original high-dimensional LHA. If the
counterexample is spurious, LP techniques identify an irreducible infeasi-
ble subset (IIS) of constraints from which the set of continuous variables
is selected for the the construction of the next relaxation abstraction.
IRA stops if the discrete path abstraction is empty or a legitimate coun-
terexample is found. The effectiveness of the approach is illustrated with
an example.

1 Introduction

Hybrid automata are a well studied formalism for representing and analyzing hy-
brid systems, that is, dynamic systems with both discrete and continuous state
variables [1]. LHA are an important subclass of hybrid automata that can be
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analyzed algorithmically and can asymptotically approximate hybrid automata
with nonlinear continuous dynamics [2]. Tools for reachability analysis of LHA
typically compute the sets of reachable states using polyhedra [3], but the sizes
of the polyhedral representations can be exponential in the number of contin-
uous variables of the LHA. Therefore, procedures for analysis of linear hybrid
automata (LHA) do not scale well with the number of continuous state variables
in the model. Although there has been considerable progress in the development
of tools and algorithms for analyzing LHA [4,5], there is still a great need to
develop new techniques that can handle high-dimensional LHA.

The approach to LHA reachability analysis proposed in this paper is inspired
by the success of the counterexample guided abstraction refinement (CEGAR)
technique for hardware and software verification [6,7,8]. In the CEGAR ap-
proach, in each iteration an abstraction of the original model (the concrete
system) is constructed using only some of the state variables. The model with
the smaller state space is then analyzed by a traditional model checking [9] algo-
rithm. If this reduced model satisfies the given property, then the original system
also satisfies the property and the algorithm terminates. Otherwise, the CEGAR
loop picks a counterexample reported by the model checking algorithm, which
determines a path in the location graph of the LHA. A decision procedure is then
applied to the constraints along this path in the concrete system to determine
if the counterexample is valid (the constraints can be satisfied by some run of
the LHA) or spurious (the constraints cannot be satisfied) in the concrete sys-
tem. The constraints used to check the feasibility of the counterexample involve
all variables in the concrete system. If the constraints can be satisfied, the path
corresponds to a true counterexample and the algorithm terminates. If the coun-
terexample is spurious, a subset of variables is selected such that the constraints
along the counterexample path are still infeasible by asking the decision proce-
dure for an unsatisfiable core [10] or by using heuristics [11]. These variables are
added to the set of variables used thus far and a new abstraction is constructed.
On each iteration, the abstractions are therefore more refined and exclude any
previously discovered spurious counterexamples.

The power of the above approach derives from its construction of abstrac-
tions with a small number variables for which model checking is feasible, while
leveraging the power of decision procedures to deal with constraints involving
many variables to test the feasibility of counterexamples in the original high-
dimensional system. For LHA, we propose a similar approach in which full
reachability analysis is performed on abstractions that have a small number of
continuous variables. Linear programming (LP) is then applied as the decision
procedure to check the validity of counterexamples using all of the variables in
the original LHA. LP methods also find the variables to be used for constructing
further abstractions. Linear programming for testing the feasibility of a path of
a LHA was proposed in [12].

The following steps comprise this approach, which we call iterative relaxation
abstraction (IRA). On each iteration, a low-dimensional LHA called a relaxation
abstraction is first obtained by using a subset of the continuous variables from
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the original LHA. Hybrid system reachability analysis then generates a regular
language called the discrete path abstraction containing all possible counterex-
amples (paths to the bad locations) in the relaxation abstraction. If the discrete
path abstraction is non-empty, a particular counterexample is selected and lin-
ear programming (LP) determines if the counterexample is spurious using the
constraints along the path from the original high-dimensional LHA. If the coun-
terexample is spurious, infeasibility analysis of linear programs is applied to find
an irreducible infeasible subset (IIS) of constraints [13] for the infeasible linear
program corresponding to the spurious counterexample. The variables in the
IIS are then used to construct the next relaxation abstraction. IRA stops if the
discrete path abstraction is empty or a legitimate counterexample is found.

In the CEGAR loop for the analysis of discrete systems, the variables ob-
tained from a spurious counterexample on each iteration are added to the set
of variables used in previous iterations to construct a new abstraction. Such an
approach would be counterproductive for LHA, however, as LHA reachability
analysis does not scale well with increasing numbers of continuous variables. To
avoid growth in the number of variables in the relaxation abstractions, only the
variables in the current IIS are used on each iteration to construct the next re-
laxation abstraction, rather than adding these variables to the set of previously
used variables. This assures that the number of variables in the LHA to which
reachabililty analysis is performed is as small as possible. Counterexamples from
previous iterations are excluded at each stage by intersecting the discrete path
abstraction generated by the hybrid system analysis with the discrete path ab-
stractions from previous iterations before checking for new counterexamples.

The paper is organized as follows. The next section introduces definitions and
notation used throughout the paper. Section 3 defines the relaxation abstraction
for LHA and a method for determining if a counterexample from a relaxation
abstraction is also a counterexample for the original LHA. Section 4 presents
the IRA procedure and Section 5 illustrates its application to a simple exam-
ple. The performance of IRA is compared to the performance of PHAVer, a
recently-developed LHA reachability analysis tool [5]. Section 6 summarizes the
contributions of this paper and identifies directions for future work.

2 Preliminaries

2.1 Linear Constraints

We wish to apply a given set of constraints to different sets of variables. There-
fore, we define a linear constraint of order m as a triple l = (c, ∼, b) where
c = [c1, . . . , cm] ∈ R

m, ∼∈ {=, ≥, ≤}, and b ∈ R. Lm denotes the set of all linear
constraints of order m. Given an ordered set of m variables X = {X1, . . . , Xm}
each ranging over the reals, lX defines a (closed) linear constraint over X given
by the expression lX :

∑m
i=1 ciXi ∼ b. For a given x = [x1, . . . , xm] ∈ R

m,
lX(x) denotes the value of the expression lX (true or false) for the valuation
X1 = x1, X2 = x2, . . . , Xm = xm. Thus, lX defines a predicate corresponding to
a closed half-space in R

m.
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For P ∈ FIN(Lm), where FIN(A) denotes the set of finite subsets of a set
A, PX �

∧
l∈P lX , that is, PX is the predicate over R

m defined by conjunction
of the predicates determined by the linear constraints in P . The predicate PX

corresponds to a closed polyhedron in R
m defined by the intersection of the

closed half-spaces determined by the linear constraints in P . We denote this
polyhedron by �P � and write P ⇒ P ′ to indicate that �P � ⊆ �P ′�.

Given a set of linear constraints P ⊂ Lm, the support of P, is defined as

support(P ) = {i ∈ {1, . . . , m}| ∃ l = (c, ∼, b) ∈ P 	 ci 
= 0}.

Given a second set of linear constraints P ′ ⊂ Lm, and a subset of indices I ⊂
{1, . . . , m}, P ′ is said to be a relaxation of P over I, denoted P ′ �I P if: (i)
P ⇒ P ′; and (ii) support(P ′) ⊆ I.

Example 1. If P ={([1 0 0], ≥, 0), ([0 1 0], ≥, 3), ([1 0 3], ≥, 8)}, P ′={([1 0 0],≥,
0), ([0 1 0], ≥, 3)}, and P ′′ = {([1 0 0], ≥, −1)}, then P ′′ �{1} P ′ �{1,2} P .

Relaxations of sets of linear constraints can be produced in many ways. For
example, for an ordered set of m variables X , if XI denotes the variables from
X corresponding to the indices in a set I ∈ {1, . . . , m}, applying the Fourier-
Motzkin procedure [14] for existential quantifier elimination of the variables in
X − XI from PX produces the projection of PX onto XI . This corresponds to
the tightest relaxation of P over I, which we denote by projI(P ). By “tightest”
we mean that if P ′ is any relaxation of P over I, then P ′ �I projI(P ). A
much looser relaxation of P is generated by simply eliminating the constraints
involving variables not in XI . We call this method of relaxation localization
because of its similarity to the localization abstraction proposed by Kurshan for
discrete systems [6]. Localization of the constraints in P to the variables with
indices in I is given by

locI(P ) = {l ∈ P |support(l) ⊆ I}.

A set of linear constraints P ⊂ Lm is said to be satisfiable if there exists a
valuation x ∈ R

m for a set X of m real-valued variables such that PX(x) is true.
We write SAT(P ) to indicate a set of linear constraints is satisfiable. If P is not
satisfiable (in which case we write UNSAT(P )), we are interested in finding a
minimal subset of constraints in P that is not satisfiable. This is known as an
irreducible infeasible subset (IIS) of P , which is a subset P ′ ⊆ P such that (i)
UNSAT(P ′) and (ii) for any l ∈ P ′, SAT(P ′ − {l}) [13]. Although the problem
of finding a minimal IIS (an IIS with the least number of constraints) is NP
hard [15], several LP packages include functions implementing efficient heuris-
tic procedures to compute IISs that are often minimal (e.g., MINOS (IIS)[16],
CPLEX [17], IBM OSL [18], LINDO [19]).

2.2 Linear Hybrid Automata

Following [20], we define a linear hybrid automaton (LHA) [20] as a tuple H =
(G, n, ι, φ, γ, ρ), where
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– G = (Q, q0, Qbad, Σ, E) is the (labeled) location graph of H , where
• Q is a finite set of locations;
• q0 ∈ Q is the initial location;
• Qbad ⊂ Q is the set of bad locations (the locations that should not be

reachable);
• Σ is a finite set of labels ;
• E ⊆ (Q − Qbad) × Σ × Q is finite set of (labeled) transitions, where no

two outgoing transitions from a given location have the same label;
– n is the number of continuous state variables,
– ι : Q −→ FIN(Ln) identifies the invariant for each location.
– φ : Q −→ FIN(Ln) identifies the flow constraints for each location.
– γ : E −→ FIN(Ln) identifies the guard for each transition.
– ρ : E −→ FIN(L2n) identifies the jump relation for each transition.

Example 2. Figure 1 shows an LHA with continuous state variables X ={x1, x2},
discrete states Q = {q0, q1, q2, q3, q4}, discrete state transition labels {a, b, c, d},
initial location q0 (the unlabeled rectangle) with an invariant defining a unique
initial continuous state x(0) = {.5, 0}, and Qbad = {q4}.

A run for t ≥ 0 for an LHA H is a (possibly infinite) sequence of the form

q0, x
0, σ0, q1, x

1, σ1, q2, x
2, . . . ,

where for all k = 0, 1, . . .

– xk : [tks , tkf ] → Rn denotes the continuous evolution of the continuous state
variables for tks ≤ t ≤ tkf , where 0 = t0s ≤ t0f = t1s ≤ t1f = t2s · · · ;

– xk(t) ∈ �ι(qk)� (location invariants), where tks ≤ t ≤ tkf ;
– ẋk ∈ �φ(qk)� (flow constraints), where tks ≤ t ≤ tkf ;

Fig. 1. An example LHA
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– (qk, σ(k+1), qk+1) ∈ E (transitions);
– xk(tkf ) ∈ �γ((qk, σ(k+1), qk+1))� (guards);
– (xk(tkf ), xk(tk+1

s )) ∈ �ρ((qk, σk, qk+1))� (jump relation).

Projecting a run onto the transitions (i.e., eliminating the continuous state vari-
able evolution) leads to a sequence of the form π = q0, σ1, q1, σ2, q2, . . . , which
corresponds to a path in the location graph. Projecting a path onto the tran-
sition labels gives a sequence of labels, ω = σ1, σ2, . . . . Since the labels on the
outgoing transitions from each location are distinct, the sequence ω corresponds
to a unique path (π) in the location graph. A sequence of transition labels is said
to be feasible if the path to which it corresponds could be generated by a run of
the LHA; otherwise, the sequence is said to be infeasible. A path that leads to a
state in Qbad is called a counterexample.

We let LCE(H) denote the set of all feasible sequences of transition labels
generated by runs that lead to states in Qbad. The definition of the transitions
in the location graph precludes transitions from any state in Qbad, therefore
the sequences in LCE(H) are all finite, that is, LCE(H) ⊆ Σ∗. LCE(H) is not
necessarily a regular language, however.

3 Relaxation Abstractions and Counterexample Analysis

In this section we first introduce a new class of abstractions for LHA based on
relaxations of the linear constraint sets defining the invariants, flow constraints,
guards, and jump relation for a given LHA. We then present a method using
linear programming (LP) analysis for determining whether a counterexample for
a relaxation abstraction is spurious for the original LHA.

Given an LHA H = (G, n, ι, φ, γ, ρ) and an index set I ⊂ {1, . . . , n} with
|I| = n′ < n, a linear hybrid automaton H ′ = (G′, n′, ι′, φ′, γ′, ρ′) is said to be a
relaxation of H over I, denoted H ′ �I H , if

– G′ = G = (Q, q0, Qbad, Σ, E);
– for each q ∈ Q:

• ι′(v) �I ι(v) (invariants);
• φ′(e) �I φ(e) (flows);

– for each e ∈ E:
• γ′(e) �I γ(e) (guards);
• ρ′(e) �I ρ(e) (jump relations).

Example 3. Figure 2 shows a relaxed linear hybrid automaton derived from the
LHA in Figure 1 over the index set I = 1. This relaxation is obtained by applying
localization over I to each of the constraints in the original LHA.

Since the constraints defining a relaxation abstraction H ′ are constraints of the
relation defining the original LHA H , it follows that any run for H is also a run
for H ′. Similarly, LCE(H ′) ⊇ LCE(H).
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Fig. 2. A relaxation abstraction for the LHA in Fig. 1

Given an LHA H and an index set I, let H ′ be a relaxation of H over I. Given
a counterexample for H ′, ce = σ1σ2 . . . σK ∈ LCE(H ′), there is a unique corre-
sponding path in the location graph G of H of the form πce = q0σ1q1σ2 . . . σKqK ,
where qK ∈ Qbad. To determine if there is a run for H corresponding to ce, we
consider whether or not the constraints along this state-transition sequence are
feasible as follows.

Given a feasible path π = q0σ1q1σ2 . . . σKqK , we introduce the following
variables:

– X0
s , corresponding to the initial continuous state in q0;

– X1
s , . . . , XK

s , corresponding to the values of the continuous states when the
transitions occur into locations q1, . . . , qK , respectively;

– X0
f , . . . , XK−1

f , corresponding to the values of the continuous states when
the transitions occur out of locations q0, . . . , qK−1, respectively;

– Δ0, Δ1, . . . , ΔK−1, corresponding to the amount of time the run spends in
q0, . . . , qK−1, respectively.

We let Vπ denote the set of variables defined above for a path π. From the
constraints in H we construct the following constraints over the variables in Vπ

that must be satisfied by a valid run for H . We denote this collection of linear
constraints by C(H, π) or Cπ depending on the context:

– ι(q0)X0
s

: the initial continuous states must be in the invariant of q0;
– for k = 1, . . . , K, the kth transition in the path is ek = (qk−1, σk, qk) and for

each transition:

• ι(qk−1)Xk−1
f

: the continuous state before the transition must satisfy the
invariant of qk−1;
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• ι(qk)Xk
s

: the continuous state after the transition must satisfy the in-
variant of qk; 1

• γ(ek)Xk−1
f

: the continuous state before the transition must satisfy the
guard of ek;

• ρ(ek)Xk−1
f ,Xk

s
: the continuous states before and after the transition must

satisfy the jump relation for ek;
– for k = 0, . . . , (K − 1) :

• φ̂(qk)(Xk
f ,Xk

s ,Δk), where φ̂(qk) is the set of linear constraints of the form

l̂ = ([c, −c, −b], ∼, 0), each corresponding to a constraint l = (c, ∼, b) ∈
φ(qk).

The final constraint, which represents the flow constraint in each location,
follows from the following derivation: for each l = (c, ∼, b) ∈ φ(qk), cẋ ∼ b for all
ts ≤ t ≤ tf ; this implies c(x(tf ) − x(ts)) =

∫ tf

ts
cx(τ)dτ ∼ b(tf − ts); therefore,

cx(tf ) − cx(ts) − bΔ ∼ 0, where Δ = tf − ts, which is the constraint l̂.
As demonstrated in [12], a path is feasible if and only if the above linear

constraints are feasible.

4 Iterative Relaxation Abstraction

We now present the IRA procedure to CEGAR-based reachability analysis of
LHA. The following paragraphs describe the IRA steps shown in Fig. 3.

Step 1. Construct a relaxation abstraction over index set Ii of the LHA H ,
Hi �Ii H . Any relaxation method can be applied to the linear constraints in H .

Step 2. Compute the next discrete path abstraction Ai+1
CE (a regular language

containing LCE(H)) as the intersection of the previous discrete path abstraction
with L̂CE(Hi) , a regular language containing LCE(Hi), and (Σ∗−cei) to assure
the previous counterexample is removed from the next discrete path abstraction.

Step 3. Choose a counterexample cei+1 from Ai+1
CE , or set cei+1 == null if Ai+1

CE

is empty. This operation is performed by Select CE(Ai+1
CE ).

Step 4. cei+1 == null indicates that no bad states are reachable in the original
linear hybrid automaton H since Ai+1

CE contains LCE(H).

Step 5. Construct C = C(H, cei+1), the set of linear constraints along the path
in the location graph of H determined by cei+1.

Step 6. Apply LP to determine the feasibility of the constraints C. We know
that SAT(C) if and only if cei+1 is a valid counterexample in H [12].

1 It is sufficient to check that the invariant holds at the beginning and end of the con-
tinuous state trajectory in each location because the invariants and flow constraints
are convex [20].



Reachability for LHA Using Iterative Relaxation Abstraction 295

  

YES

1

2

3

4

8

7

YES

6

5

NO

NO

Is cei+1 == null ?

i := 0

cei+1 := Select CE(Ai+1
CE )

Ai+1
CE := Ai

CE∩ L̂CE{Hi} ∩ (Σ∗ − cei)

A0
CE := Σ∗

I0 := null set, ce0 = empty srting

Ii+1 := SV support ( S )

S := Small IIS (C)

Bad state is reachable.

Report Counterexample cei+1

Is C feasible ?

Bad states NOT reachable

C := C(H, cei+1)

i := i + 1 Hi �Ii
H

Fig. 3. The IRA procedure: Iterative relaxation abstraction reachability analysis for
LHA
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Step 7. If UNSAT(C), apply LP infeasibility analysis to find a minimal IIS for
the constraints in C. (Heuristic procedures will actually find an IIS that may
not be minimal.)

Step 8. Find the set of state variable indices corresponding to the variables
with indices in support(C). This is the operation represented by the function
SV support(C).

Correctness of the IRA procedure (in the sense that if it terminates, it is cor-
rect) is guaranteed since the LHA Hi and languages Ai are overapproximations
of H and LCE(H), respectively. Although termination cannot be guaranteed
(because L̂CE (Hi) maybe an overapproximation of LCE(Hi)), the sequence of
discrete path abstractions generated on by the iterations is monotonically de-
creasing in size and any counterexample that has been analyzed is eliminated in
future iterations.

5 Implementation and Example

The IRA has been implemented using PHAVer [5] for LHA reachability analysis
and the CPLEX [17] library for LP analysis. PHAVer builds overapproximate
discrete abstractions of the linear hybrid automata represented by finite au-
tomata. The discrete abstractions in the IRA tool are stored and manipulated
using the AT&T FSM library [21]. The IRA tool provides users the ability to
write their own relaxation functions. We experimented with two versions of IRA,

Fig. 4. A automated highway with 4 vehicles
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Table 1. Comparison of analysis of Linear Hybrid Automata using PHAVer, IRA-Loc
(localization relaxation) and IRA-FM (Fourier-Motzkin procedure)

Time Taken in Seconds Memory Used in KBs

No
of
cars

PHAVer IRA-Loc IRA-FM PHAVer IRA-Loc IRA-FM

6 0.26 1.34 61.05 5596 18344 452408

8 0.96 5.11 170.11 7532 20128 1000436

10 8.21 17.76 402.15 13904 22652 1876256

12 147.11 50.04 933.47 32800 26132 3155384

14 7007.51 123.73 1521.95 103408 30712 4194028

15 70090.06 181.74 2503.59 198520 33896 4193620

16 – 267.46 3519.51 – 36828 4194024

17 – 339.08 4741.75 – 40316 4194140

18 – 493.34 6384.94 – 44368 4194280

19 – 652.51 8485.49 – 49272 4194296

referred to as IRA-Localization and IRA-FM. IRA-Loc is the implementation
that uses localization as the technique for building the relaxation. IRA-FM is
another implementation which uses the Fourier Motzkin procedure for imple-
menting quantifier elimination to build the relaxation.

As an example, we consider the model of a central arbiter for a automated
highway and analyze the arbiter for safety properties, particularly for the speci-
fication that no two vehicles on the automated highway collide with each other.
The electronic arbiter enforces speed limits on vehicles on the automated high-
way to achieve this purpose. The arbiter provides allowed ranges of velocities for
each vehicle [a, b]. When two vehicles come within a distance α of each other,
we call this a “possible” collision event. The arbiter asks the approaching car
to slow down by reducing the upper bound to [a, c′] and asks the leading car to
speed up by increasing the lower bound to [c, b]; it also requires that all other
cars not involved in the possible collision slow down to a constant “recovery-
mode” velocity β for cars behind the critical region and β′ for cars in front of
the critical region. When the distance between the two vehicles involved in the
possible collision exceeds α, the arbiter model goes back to the dynamics of the
cruise mode. The linear hybrid automata representing the case of four cars is
shown in Fig. 4. The example is easily parameterized by varying the number of
cars on the highway.

We ran this example on an AMD Opteron four-processor x86 64 Linux ma-
chine running Fedora Core 5. The comparative results are shown in Table 1. In
each case with n cars, both IRA versions verify in n-1 iterations that the bad
states are not reachable. Consequently, the tighter Fourier Motzkin relaxation
offer no advantage for this example. We expect, however, that tighter relaxations
will be necessary to verify properties of more complex systems. Further empirical
studies are currently being pursued. The plot of the log of the time taken vs. the
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Fig. 5. Results: IRA-Loc vs. PHAVer

dimension of the LHA in Fig. 5 shows that PHAVer outperforms IRA-Loc for
small dimensional systems. This happens as IRA-Loc spends time “reasoning”
about the structure of the LHA and the possibility of reducing its dimension.
For larger dimensions, IRA-Loc outperforms PHAVer significantly in both time
and memory.

6 Discussion

IRA combines reachability analysis for low-dimensional LHA with the power of
LP analysis for large numbers of variables. As proposed in [12], linear program-
ming is used as an efficient counterexample validation algorithm. This idea of
using linear programming as a counterexample validation is also used in [22].
As linear programming is in P [23], it is an efficient counterexample validation
procedure for high dimensional LHA. Also, if a counterexample is found and
validated, the reachability procedure can terminate immediately.

The IRA procedure uses linear constraint relaxation as a technique for gen-
erating abstractions of LHA. In contrast to previously proposed CEGAR tech-
niques for hybrid system analysis in which abstractions are refined by splitting
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locations ([24],[25]), the relaxation abstraction retains the location graph as the
original LHA.

We are working on extending the results in this paper to nonlinear hybrid
automata. We are also currently evaluating the effectiveness of this procedure
on a number of other benchmark problems.
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Abstract. The standard approach in feedback control systems is to
sample and control periodically. For some applications, such as networked
control systems or severely energy-constrained systems, it could be ad-
vantageous to instead use event-based control schemes. Aperiodic control
(that is, event-based control with no specified minimum inter-event time)
of first-order stochastic systems has been investigated in previous work.
In any real implementation, however, it is necessary to have a well-defined
minimum inter-event time. In this paper, we explore two such sporadic
control schemes for first-order linear stochastic systems and compare the
achievable performance to both periodic and aperiodic control. The re-
sults indicate that sporadic control can give better performance than
periodic control in terms of reduced process state variance and control
action frequency.

1 Introduction

Digital feedback controllers are most often implemented using periodic sam-
pling, computation, and actuation. This approach enables the control designer
to utilize standard sampled-data system theory or to discretize a continuous-time
controller assuming a fixed sampling rate and constant hold intervals [1].

For some applications, however, event-based control schemes may have an
advantage over periodic schemes. In networked control applications [2], it could
make sense to only transmit information when something significant has occurred
in the system, in order to save bandwidth. In embedded applications [2], it
may be essential to minimize the number of control actions in order to save
energy. Also, in the application of inventory control it seems rational to replenish
stock only when it is low rather than on a periodic basis, if there is a fixed
transportation cost.

Event-based control as a technology is of course not new. It has been used
for a long time in such diverse areas as engine control [3], robot path planning
[4], and control of industrial processes [5]. Mostly, however, it has been applied
in an ad-hoc way. This can be attributed to the lack of a comprehensive theory,
which in turn can be explained by the mathematical difficulties involved.

From a control-theoretic point of view, event-based feedback control systems
can be viewed as hybrid systems. In this paper, we consider first-order linear

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 301–314, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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stochastic systems, where an exogenous random disturbance (modelled as white
noise) causes the process state to drift. The control law generates discrete events
when the state crosses certain boundaries. Hence, our system falls into the cat-
egory of stochastic hybrid systems as defined in [6].

Event-based control of first-order linear stochastic systems was previously
studied in [7,8]. It was shown that, compared to periodic control, the output
variance could be significantly reduced assuming the same mean time between
events. The control was realized by applying an impulse action whenever the
magnitude of the system state exceeded a certain threshold.

From a real-time systems point of view, however, tasks triggered by asyn-
chronously generated events cannot be guaranteed service unless there is a well-
defined minimum inter-arrival time. For the controller presented in [7,8] there
was no such minimum inter-arrival time. In accordance with real-time systems
terminology [9], we will refer to such a control policy as an aperiodic event-based
control policy.

In this paper, we will explore the class of sporadic event-based controllers for
first-order linear stochastic systems. Assuming a minimum inter-arrival time T
between events, such a controller can be guaranteed not to consume more than a
certain network bandwidth or CPU utilization. Two controllers within this class
will be studied. For the first controller, it is assumed that the process state is
measured continuously and that a control action can be taken at any point in
time, but not more often than every T seconds. The second controller assumes
that the process state is measured every T seconds and that the controller can
then decide whether to apply a new control action or not.

The rest of this paper is organized as follows. The system and the control
performance measure are presented in Section 2. Then, the two types of sporadic
control are analyzed in Section 3. In Section 4, sporadic control is compared to
periodic and aperiodic control. Finally, the conclusions are given in Section 5.

2 Problem Formulation

Consider the first-order system described by the linear stochastic differential
equation

dx = axdt + udt + σdw (1)

where x is the state, u the control signal, w is a Wiener process with E(dw) = 0,
E(dw2) = dt, a is the pole of the system, and σ is the intensity of the process
noise. The control signal u is zero except at events, when it is allowed to be a
Dirac pulse of any magnitude. For simplicity we will often say that controllers
generate events when they issue control actions.

The performance of the system is measured by a cost function with two terms.
The state cost represents the stationary process variance and is given by

Jx = lim
t→∞

∫ t

0 x2ds
t
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The control cost represents the average number of events per time unit and
is given by

Ju = lim
t→∞

Nu(0, t)
t

where Nu(0, t) is the number of control actions in the interval (0, t). The total
cost to be minimized is given by

J = Jx + ρJu (2)

where ρ ≥ 0 is a scalar representing the relative cost of control actions.
To reduce the number of free parameters we use coordinate scaling of x and t

to fix two parameters (σ = T = 1) before performing the analysis. The original
variables can then be retrieved from inverse scaling.

Let the transformed variables be described by

dt = Tdτ, dw =
√

Tdv , x = σ
√

Tx′

choosing dv so that E(dw2) = E(Tdv2) = Tdτ = dt . The dynamics become

dx′ =
1

σ
√

T

(
axTdτ + uTdτ + σ

√
Tdv

)

= aTx′dτ +

√
T

σ
udτ + dv

= a′x′dτ + u′dτ + dv

where a′ = aT is the relevant measure of process speed. The original costs are
retrieved as

Jx = σ2TJ ′x, Ju = T−1J ′u,

with ρ′ = 1
σ2T 2 ρ being the proper weighting after transformation.

3 Sporadic Control

3.1 General Observations

For the problem described above, we note that there are two properties that
define a sporadic controller. Namely, under what conditions it generates events,
and the magnitude of the control signal in the occurence of an event. It is easy to
see that any sporadic controller that is optimal in the sense of the cost function
given above must satisfy the following:

– At any event, u is chosen to bring x to the origin.
– When an event is permitted, the decision of whether to generate an event or

not is a function of |x|.
– If the decision function is such that an event should be generated when x = r,

there should also be an event whenever |x| ≥ r.
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Fig. 1. A simulation example of sporadic control with continuous-time measurements,
a = 0 and r = 1.1. When the state crosses the threshold |x| = r and the controller is in
the active mode, the state is reset. When the state passes the threshold at t ≈ 1.9 the
controller is in the inactive mode and has to wait until t ≈ 2.3 before it can generate
an event.

Thus, the only parameter left to specify the optimal controller is the threshold
r, such that an event is triggered whenever |x| ≥ r, if permitted. The threshold
should be chosen to minimize J .

In the following subsections, we investigate two types of control schemes with
different restrictions on when events are permitted. We refer to them as sporadic
control with continuous- and discrete-time measurements, respectively.

3.2 Sporadic Control with Continuous-Time Measurements

It is assumed that the process state is measured continuously and that events
may be generated at any time, with the restriction of a minimum inter-event
time T . We say that the controller is in the inactive state when the time elapsed
since the last event is less than T and in the active state otherwise. Thus, the
optimal controller generates a new event at any point in time t when it is in the
active state and |x| ≥ r. A simulation example can be seen in Fig. 1.

To find the optimal threshold r, the closed-loop cost will be characterized as
a function of r. Introduce the storage function V (x) such that

E
(
x2dt + dV (x)

)
= Jdt (3)

when the controller is in the active state and that

E

(∫ t0+T

t0

x2dt + V
(
x(t0 + T )

)
− V

(
x−(t0)

))
+ρ = JT (4)

when there is an event at time t0, and x−(t0) is the state just prior to the event.
The storage function can be seen as the state dependent part of the expected
remaining cost. The function V (x) will be an even function of x because of
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symmetry. Since only differences in V (x) are of interest, we can arbitrarily let
V (0) = 0.

We will derive an expression for J from the two last equations. Beginning
from (3) and applying (1) (assuming σ = 1), it follows that

Jdt = x2dt + V ′(x) E(dx ) +
1
2
V ′′(x) E(dx 2)

= x2dt + axV ′(x)dt +
1
2
V ′′(x)dt

so that
1
2
V ′′(x) + axV ′(x) + x2 − J = 0.

To solve the above equation we note that the solution of

1
2
f ′′(x) + axf ′(x) = κ(x)

with f(0) = f ′(0) = 0 is given by

f(x) = 2
∫ x

0
e−ay2

∫ y

0
eaz2

κ(z)dzdy . (5)

In order for us to later solve for J , the storage function is written as

V (x) = JVJ (x) − Vc(x),

where VJ is found by inserting κ(x) = 1 in (5) and Vc by inserting κ(x) = x2.
This expression is valid for |x| ≤ r, beyond which V (x) will be constant at V (r).

To use (4) the following partial results are needed. The expected state cost
during one period of inactive state is

JT T = E

(∫ t0+T

t0

x2dt
∣∣∣ x(t0) = 0, u(t) = 0

)

=

{
e2aT−2aT−1

4a2 a �= 0
T 2

2 a = 0

(6)

After one period of inactive state x has a Gaussian distribution with zero mean
and variance

VT = E
(
x(t0 + T )2

∣∣x(t0) = 0, u(t) = 0
)

=

{
e2aT−1

2a a �= 0
T a = 0

(7)

Now let ϕ(x) be the Gaussian probability density with zero mean and variance
VT . Then using the fact that

∫
ϕ(x)dx = 1 we can write (4) as

JT = JT T −
∫

ϕ(x)
(
V (r) − V (x)

)
dx︸ ︷︷ ︸

ΔV =JΔVJ−ΔVc

+ρ, (8)



306 E. Johannesson, T. Henningsson, and A. Cervin

or splitting the integral into the part proportional to J and the constant part as

J (T + ΔVJ ) = JT T + ΔVc + ρ.

Now we can solve for J as

J =
JT T + ΔVc + ρ

T + ΔVJ
=

JT T + ΔVc

T + ΔVJ
+ ρ

1
T + ΔVJ

= Jx + ρJu.

The optimal controller can be found by minimizing J as a function of r.
The given expressions involve integrals that are not straightforward to treat

analytically. For the calculations presented here, all functions of x were approx-
imated by piecewise polynomials on an interval of the real axis starting at zero.
The terms and factors were constructed by spline interpolation with explicit
endpoint derivatives, with knots spaced with constant x increment for low x
and constant x2 increment for high x to account for the growth of e±ax2

. All
operations—addition, subtraction, multiplication and integration—could then
be done with no further approximation, yielding J(r) as a piecewise rational
function. The costs can be seen as a function of r in Fig. 2, and the optimal
threshold as a function of ρ in Fig. 3.

The probability density f(x) of the state in the active mode can be obtained
from the diffusion equation

1
2
f ′′(x) − axf ′(x) − af(x) + ϕ(x)/T̄ = 0,

where T̄ is the mean time between events and f(x) is normalized so that
∫

f(x)dx
is the probability that the controller is in the active state.

The solution is

1
2
f(x) =

1
T̄

eax2
∫ x

−r

e−ay2
∫ 0

y

ϕ(z)dzdy .

3.3 Sporadic Control with Discrete-Time Measurements

We now assume that the process state is measured periodically with sample
interval T and that an event may be generated at each sampling instant kT , for
integer k. Thus, the optimal controller generates an event at time kT if |x| ≥ r.

Sampling (1) with period T gives the state update equation

x(kT + T ) = eaT x(kT ) + w(k)

where {w(k)}∞k=1 is a sequence of independent Gaussian distributed random
variables with E(w(k)) = 0 and E(w(k)2) = VT , as given by (7).

Assuming stationarity, the sampled equivalent of the state cost is

Jx =
1
T

∫ T

0
Ex2(t) dt =

Q1 Ex2(kT )
T

+ JT
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Fig. 2. Cost functions for sporadic control with continous-time measurements. Left:
State cost Jx as a function of threshold r. Note the initial decrease of Jx as r increases.
Right: Control cost Ju as a function of threshold r. Both functions are plotted for
systems with a = −0.5, a = 0 and a = 0.5 respectively.
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Fig. 3. Optimal threshold r as a function of relative cost of control actions ρ, with
continous measurements, for systems with a = −0.5, a = 0 and a = 0.5 respectively

where JT is given by (6), and

Q1 =

{
e2aT−1

2a a �= 0
T a = 0

The control cost Ju is the probability of an event at each sample instant,

Ju =
E[Nu(0, T )]

T
=

Prob(x(kT ) ≥ r)
T

Accordingly, the only things needed to calculate the loss function are the state
variance and the probability of an event—both at time kT .
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Fig. 4. A simulation example of sporadic control with discrete-time measurements,
a = 0 and r = 4. The state is reset if it has passed the threshold, that is, if |x| ≥ r at a
sampling instant. However it is never zero in the following sample due to the influence
of noise. Note that the trajectory is interpolated between samples.

Since the controller brings x to zero whenever there is an event, the discrete-
time closed-loop update equation becomes

x(kT + T ) =

{
eaT x(kT ) + w(k) x(kT ) < r

w(k) x(kT ) ≥ r
(9)

A simulation example can be seen in Fig. 4. Note that no event is generated
if the state passes the threshold but returns before it is sampled.

The update equation (9) gives rise to a probability distribution of the state,
which in turn determines the state variance as well as the event probability.
Obviously there is a non-trivial dependence on the threshold parameter r.

Let f(x, kT ) denote the probability density function of the state at time kT ,
prior to a possible event. Then f(x, kT + T ) can be expressed as a mixture of
two distributions, corresponding to the two separate cases of whether an event
was generated at time kT or not:

f(x, kT + T ) =

Prob(|x(kT )| < r)
[
SaT

(
f

(
x

∣∣ |x| < r, kT
))

∗ ϕ (x)
]

+ Prob(|x(kT )| ≥ r) · ϕ(x)

(10)

Here, ϕ(x) is the Gaussian density function with zero mean and variance VT ,
and S is a scaling operator defined as

SaT (g(x, t)) def=
1

eaT
g

( x

eaT
, t

)
(11)

Also, f
(
x

∣∣ |x| < r, t
)

is the conditional probability density function of x(t)
given that |x(t)| < r. Since

f
(
x

∣∣ |x| < r, t
)

=
f r(x, t)

Prob(|x(t)| < r)
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Fig. 5. Cost functions for sporadic control with discrete-time measurements. Left:
State cost Jx as a function of threshold r. Right: Control cost Ju as a function of
threshold r. Both functions are plotted for systems with a = −0.5, a = 0 and a = 0.5
respectively.
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Fig. 6. Optimal threshold r as a function of relative cost of control actions ρ, with
discrete measurements, for systems with a = −0.5, a = 0 and a = 0.5 respectively

where f r(x, t) is the truncation

f r(x, t) =

{
f(x, t) |x| < r

0 otherwise

we can now express (10) as

f(x, kT + T ) = Sah (f r(x, kT )) ∗ ϕ(x) +
(

1 −
∫ r

−r

f(x, kT ) dx

)
· ϕ(x) (12)

Unfortunately the update equation (12) for the state distribution is very
complicated and an analytical solution seems out of reach. However, an ap-
proximate solution can be found numerically if the distributions are discretized.
One method is to start with a point distribution and iterate according to (12)
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until convergence. A better way is to recognize that the system (9) is a Markov
process. If the state space is discretized it is a Markov chain, for which it is
easy to find the stationary distribution. This distribution may then be used to
approximate the solution to (12). The costs are easily calculated from the corre-
sponding distributions and can be seen in Fig. 5 as a function of r. The optimal
threshold as a function of ρ is plotted in Fig. 6.

4 Comparison of Control Schemes

4.1 Periodic and Aperiodic Control

Recall that an aperiodic controller sets the process state x to zero whenever
|x| ≥ r using an impulse control action. We assume that periodic control is also
implemented with impulse control action, such that x is periodically set to zero
regardless of the measured value. The periodic sampling interval is restricted to
be no shorter than for the sporadic schemes.

For the periodic controller, the cost functions are simply

Jx = JT =

{
e2aT−2aT−1

4a2T a �= 0
T
2 a = 0

Ju = T−1

(13)

For the aperiodic controller, the cost functions can be found by letting T → 0
in (8), yielding

J =
Vc

VJ
+ ρ

1
VJ

= Jx + ρJu.

Optimal sampling intervals and thresholds are easily determined from these
expressions.

4.2 Preliminaries

For the sporadic controllers, minimization of the loss function J for a given ρ
implicitly determines an optimal threshold r. This in turn maps to an optimal
average event frequency Ju. The same is true for aperiodic control. In peri-
odic control, however, there is no threshold. Instead ρ determines the optimal
sampling interval. Hence, it is possible to parameterize controllers from all four
classes by average event frequency rather than threshold.

The four controllers are differentiated by the restrictions on when they can
generate a control event. We should expect that a scheme that has fewer re-
strictions will be harder to implement but perform better according to the cost
function J . The controllers can be ranked as follows, from less to more restrictive:

1. Aperiodic controller. Can generate an event at any time.
2. Sporadic controller with continous measurements.
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3. Sporadic controller with discrete time measurements and periodic controller.
A periodic controller can never emulate a sporadic one, and the sporadic one
can not emulate the periodic unless it has an integer multiple of the periodic
frequency. As long as the sporadic controller gets better with decreasing T ,
it will be better than the periodic one, however.

The question becomes, when does the investment in implementing a less re-
stricted controller pay off?

In the limit when JuT → 0 and control is executed at a rate far below the
maximum, the sporadic controllers should approach the aperiodic one since the
inter-event time constraint is no longer in effect. When ρ → 0, the sporadic
control with discrete time measurements will approach periodic control since
the sample rate is the only constraint.

Note that for asymptotically stable processes, that is, a < 0, Jx is bounded
by the variance achieved without controller. It follows that also J is bounded.
As the relative cost of control actions ρ increases, all controllers will generate
events less often, so that Ju → 0, and ultimately Jx will approach a maximum.
The limit can be calculated from (13), where Jx → −1/2a as T → ∞.

4.3 Comparison

The trade-off between state variance and average event frequency is made explicit
in Fig. 7, where Jx and Ju are plotted against each other. The plots verify
the ranking of the controllers. It is also seen that the sporadic controller with
discrete time measurements always outperforms the periodic one, which is not
so surprising since it has considerably more freedom.

An important insight given by Fig. 7 is what we consider the main advantage
with event-based control: less events are needed to achieve the same state cost.
Using a periodic controller, the variance increases quite rapidly when sampling
less often. However, with sporadic control the average control action frequency
can be decreased a lot more without the same variance increase. For example,
when a = 0.5 the average number of control actions per time unit may be
decreased by about 40 % with only a slight increase in variance, if using sporadic
control with discrete-time measurements.

A surprising result is that for sporadic control with continuous-time mea-
surements, the state variance can be made somewhat smaller by decreasing the
average control frequency. This can also be seen in the left plot of Fig. 2, where
Jx attains a minimum value for r > 0. Unlike the other controllers, it is thus
not optimal to control as often as possible even if there is no control cost. The
explanation is that when the controller issues an event, it is put in the inac-
tive state and becomes unable to handle large state errors that may arise in the
meantime. The optimal threshold is therefore such that the reduced variance due
to the state being reset is balanced against the risk of large state errors arising
while the controller is in the inactive mode. This phenomenon does not occur for
sporadic controllers with discrete-time measurements since the ability of those
controllers to generate events is independent of past actions.
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Fig. 7. Trade-off between process state variance Jx and average event frequency Ju for
the four classes of controllers. Top left: a = −0.5. Top right: a = 0. Bottom: a = 0.5.
Note the different vertical scales.

The minimum achievable costs are plotted in Fig. 8 as a function of ρ. The
curves are nondecreasing and concave since starting from any point on the curve
and fixing Jx and Ju ≥ 0, the cost for any ρ is upper bounded by J = Jx + ρJu.
When a < 0, the cost is upper bounded by 1

−2a .
It is clear from the plots that the performance of the controllers agree with

the ranking in Section 4.2. Note that the performance of sporadic control with
continuous measurements is close to that of aperiodic control, except for small
values of ρ. Except for the asymptotically stable process, the performance gap
between the sporadic controllers appears to approach a constant value, making
the relative difference small for large ρ.

When ρ is small, sporadic control with discrete-time measurements becomes
periodic control. However, sporadic control with continuous-time measurements
delivers a better result, since it can decrease Jx by choosing Ju < T . It is seen
for the aperiodic controller that J → 0 when ρ → 0. However, this is of limited
interest since the average event frequency approaches infinity.
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Fig. 8. Minimum achievable cost J as a function of ρ for the four classes of controllers.
Top left: a = −0.5. Top right: a = 0. Bottom: a = 0.5. Note the different vertical scales.

5 Conclusions

In some applications there is a cost related to the execution of a control sig-
nal, regardless of the magnitude of that signal. If that cost is included in the
performance objective of the controller, it will be meaningful to reduce the fre-
quency of control actions. This may be accomplished with a periodic controller
by increasing the sampling interval. However, the penalty in terms of increased
process state variance is significant. Trying to make it better by not acting on
small state errors naturally leads to the notion of event-based control.

In this paper, we show that sporadic control can provide a better trade-off
and overall control performance, under the assumption of a fixed cost of control
actions. It is noted that the average frequency of control events can be reduced
with only a small increase in variance. Moreover, we show that sporadic con-
trol with continuous-time measurements can actually reduce both the average
frequency of control events as well as the variance of the state.

Obviously, to implement sporadic control in situations where periodic control
is used today would require certain changes. While sporadic control with discrete-
time measurements would probably only require algorithmic changes, sporadic
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control with continuous-time measurements also requires some mechanism that
can measure instantaneously if the threshold is passed. We doubt that the small
relative difference is worth the extra effort.

Sporadic control has one additional parameter compared to periodic control,
the threshold. This parameter should probably scale with the size of process
disturbances. A mismatch in threshold will make the controller behave more like
a periodic one if it is too small, and more like an aperiodic one if it is too large.
In the second case we have to be aware that the threshold will work as a tolerable
magnitude of error, and convergence may not proceed below the threshold.

Before sporadic control can be put to general use there has to be a further
development of theory. The main problem that needs to be solved is how to
design sporadic controllers for systems of higher order. How should the threshold
be parameterized? Here, related work on optimal quantization [10] could possibly
provide some ideas. How should the control signal be chosen if it is not possible to
immediately set the state to zero? Controlling with Dirac impulses is unrealistic
in most cases—it is merely used here to give a fair comparison between different
control schemes. Further, if also measurements are non-periodic, how can output
feedback then be applied?
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Abstract. This article presents a novel control scheme for achieving op-
timal power balancing and congestion control in electrical energy trans-
mission networks via nodal prices. We develop an explicit controller that
guarantees economically optimal steady-state operation while respecting
all line flow constraints in steady-state. Due to these constraints, the
resulting optimal control law has a piecewise affine structure. To opti-
mize the dynamic response of the system and to satisfy line overload
constraints during the transient period, the explicit optimal controller is
complemented with a hybrid MPC controller. An example illustrates the
effectiveness of the proposed hybrid control scheme.

1 Introduction

During the past decade there has been a tremendous amount of research de-
voted to a market-oriented approach for the electrical power system sector [1].
Electrical power systems have some unique properties, which make this a chal-
lenging task. For example, electrical energy cannot be efficiently stored in large
amounts, which implies that production has to meet rapidly changing demands
in real-time, making electricity a commodity with fast changing production costs.
Furthermore, unlike other transportation systems, which assume a free choice
among alternative paths between source and destination, the flow of power in
electrical energy transmission networks is governed by physical laws and, for
some fixed pattern of power injections, it can be influenced only to a certain
degree. Therefore, physical and security limits on the maximal power flow in
the lines of electrical energy transmission networks represent crucial system con-
straints, which cannot be neglected [2]. Due to the fast changing variable produc-
tion costs, there is a general tendency in power markets towards increasing the
speed with which the market price is updated. The usage of price as a real-time
feedback signal for power balance control has been investigated in [3], however,
with no line congestion limits considered. Analysis of real-time market dynamics
was performed in [4], where the effects of congestion have been modeled by a
static equality constraint representing the power flow in a congested line. A de-
tailed overview of problems and current schemes for price-based control of power
systems is presented in [2] and the references therein. The common characteristic
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of virtually all existing approaches is that the congestion management problem
is treated in a static manner, while for real-time control of power flow in the
lines the automatic generation control (AGC) scheme [5] is utilized.

One of the main contributions of this paper is the development of an explicit,
price-based, dynamic controller for real-time optimal power balancing and con-
gestion management. The proposed explicit controller guarantees that, following
any admissible change in the load, the power system will settle in the corre-
sponding economically optimal steady-state point with all line flow constraints
satisfied. Due to the inequality constraints representing the line flow limits, the
optimal controller has a piecewise affine structure. Although steady-state opti-
mal, the explicit controller does not guarantee that during the transients follow-
ing load changes some of the power lines will not become overloaded to such
an extent that it will threaten the safety of the system’s operation. To solve
this issue, we complement the explicit optimal controller with a hybrid model
predictive controller (MPC), i.e. a MPC controller that uses a piecewise affine
model for predictions. The MPC control action amends the explicit optimal con-
trol law so that constraints are met during the transients following load changes,
and it converges to zero in steady-state. As a result, the response of the system
is optimized and the constraints are satisfied in the transient period as well,
while the advantageous steady-state properties of the explicit optimal controller
are preserved. Consequently, the proposed hybrid control strategy achieves both
optimal congestion management (in a dynamic manner) and price-based AGC.

The results of this paper add the optimal power flow problem with conges-
tion constraints to a list of previously considered problems in electrical energy
transmission systems, where the benefits of utilizing hybrid control schemes were
already illustrated. The interested reader is referred to [6], [7], where hybrid MPC
was utilized for efficient emergency voltage control, and to [8], where hybrid MPC
was used for optimal control of co-generation power plants. Recently, in [9], hy-
brid MPC was employed for solving the problem of multi-period investments for
maintenance and upgrade of electrical energy distribution networks.

1.1 Nomenclature

The field of real numbers is denoted by R, while R
m×n denotes m by n matrices

with elements in R. For a matrix A ∈ R
m×n, [A]ij denotes the element in the i-th

row and j-th column of A. For a vector x ∈ R
n, [x]i denotes the i-th element of x.

kerA and imA denote the kernel and the image space of A, respectively. We use
In and 1n to denote an identity matrix of dimension n × n and a column vector
with n elements all being equal to 1, respectively. The operator col(·, . . . , ·) stacks
its operands into a column vector, and diag(·, . . . , ·) denotes a square matrix
with its operands on the main diagonal and zeros elsewhere. All inequalities are
interpreted elementwise. We will use graph-theoretic terminology to represent
power networks. With a slight abuse of notation we will often use the same
symbol to denote a signal, i.e. a function of time, as well as possible values that
the signal may take at any time instant.
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2 Steady-State Optimal Controller Design

Consider a connected undirected graph G = (V, E, A) as an abstraction of an
electrical power network. V = {v1, . . . , vn} is the set of nodes, E ⊆ V × V is
the set of undirected edges, and A is a weighted adjacency matrix. Undirected
edges are denoted as eij = (vi, vj), and the adjacency matrix A ∈ R

n×n satisfies
[A]ij �= 0 ⇔ eij ∈ E and [A]ij = 0 ⇔ eij �∈ E. No self-connecting edges are
allowed, i.e. eii �∈ E. We associate the edges with the power lines of the electrical
network and, for convenience, we set the weights in the adjacency matrix as
follows: [A]ij = − 1

zij
= −bij, where zij is the inductive reactance of a line, i.e.

the imaginary part of the line impedance, and bij is the line susceptance, see [2]
for details. Note that the matrix A has zeros on its main diagonal and A = A�.
The set of neighbors of a node vi is defined as Ni � {vj ∈ V | (vi, vj) ∈ E}.
Often we will use the index i to refer the node vi. Define I(Ni) as the set of
indices corresponding to the neighbors of node i, i.e. I(Ni) � {j | vj ∈ Ni}. We
associate the nodes with the buses in the electrical energy transmission network.

2.1 Steady-State Optimal Control Problem

To define the steady-state optimization problem, with each node vi we associate
a singlet p̂i and a quadruplet (pi, pi

, pi, Ji) , where pi, pi
, pi, p̂i ∈ R, p

i
< pi and

Ji : R → R is a strictly convex, continuously differentiable function. The values
pi and p̂i denote the reference values for node power injections into the network.
Positive values correspond to a flow of power into the network (production),
while negative values denote power extracted from the network (consumption).
Both pi and p̂i can take positive as well as negative values, and the only difference
is that, in contrast to p̂i, the value pi has an associated objective function Ji and
a constraint p

i
≤ pi ≤ pi. In the case of a positive pi, the function Ji represents

the variable costs of production, while for negative values of pi, it denotes the
negated benefit function of a consumer. We will refer to pi as the power from
a price-elastic producer/consumer (or simply, power from a price-elastic unit),
and to p̂i as the power from a price-inelastic producer/consumer (price-inelastic
unit).

We use a “dc power flow” model [2] to determine the power flows in the
network for given values of node power injections. This model is often used and,
under certain reasonable assumptions, it is proven to be a relatively accurate
approximation of a complex “ac power flow” model. In particular, convexity
of the dc power flow model is a crucial property that we will exploit. With δi

denoting a voltage phase angle at the node vi, the power flow in a line eij ∈ E is
given by pij = bij(δi−δj) = −pji. If pij > 0, power in the line eij flows from node
vi to node vj . The power balance in a node yields pi + p̂i =

∑
j∈I(Ni) pij . With

the abbreviations p = col(p1, . . . , pn), p̂ = col(p̂1, . . . , p̂n), δ = col(δ1, . . . , δn) the
overall network balance condition is p+ p̂ = Bδ, where the matrix B is given by
B = A − diag(A1n). We define the optimal power flow problem as follows.
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Problem 1. Optimal Power Flow (OPF) problem.
For any constant value of p̂,

min
p,δ

J(p) � min
p,δ

n∑
i=1

Ji(pi) (1a)

subject to
p − Bδ + p̂ = 0, (1b)
p ≤ p ≤ p, (1c)

bij(δi − δj) ≤ pij , ∀(i, j ∈ I(Ni)), (1d)

where p = col(p
1
, . . . , p

n
), p = col(p1, . . . , pn), and pij = pji is the maximal

allowed power flow in the line eij . �

We will refer to a vector p that solves the OPF problem as a vector of optimal
power injections. For an appropriately defined matrix L and a suitably defined
vector of power line limits pL, the set of constraints in (1d) can be written in a
more compact form as follows:

Lδ ≤ pL. (2)

In a liberalized, market-oriented power system, different units are owned by
separate parties and each of them acts autonomously to maximize its own benefit.
In other words, when a price-elastic unit at node i receives the current price
for electrical power, i.e. λi, it adjusts its production level pi to be equal to
p̃i, where p̃i = argminpi

{
Ji(pi) − λipi subject to p

i
≤ pi ≤ pi

}
. Since Ji is a

strictly convex, continuously differentiable function, this relation defines a unique
mapping from λi to p̃i for any λi ∈ R. For convenience, we denote this mapping
with Υi : λi → pi, i.e.

p̃i = Υi(λi) � arg min
pi∈[p

i
, pi]

Ji(pi) − λipi, (3)

and define Υ (λ) � col(Υ1(λ1), . . . , Υn(λn)). The operational goal in a liberalized
power system is to determine the nodal price λi for each node i in the network, in
such a way that the total benefit of the system is maximized, while all constraints
are fulfilled. Formally, we define the optimal nodal price problem as follows.

Problem 2. Optimal Nodal Prices (ONP) problem.
For any constant value of p̂,

min
λ,δ

n∑
i=1

Ji(Υi(λi)) subject to Υ (λ) − Bδ + p̂ = 0, Lδ ≤ pL, (4)

where λ = col(λ1, . . . , λn) is a vector of nodal prices. �

We will refer to a vector λ that solves the ONP problem with the term vector of
optimal nodal prices. The OPF and ONP problems are related through Lagrange



Price-Based Optimal Control of Power Flow 319

duality, as it will be shown later in this section. The ONP problem is employed
next to define the optimal steady-state control problem.

Consider a power network where each price-elastic unit is a dynamical system,
and assign to each such unit an appropriate model Gi of its dynamics. We assume
for simplicity that each model Gi is an LTI system with respect to the input
pi = Υi(λi), which is specified by its state-space realization, i.e.

Gi :

{
ẋi = Aixi + Bipi = Aixi + BiΥi(λi)
pA

i = Cixi

, ∀i, (5)

where the power reference signal pi is the input, and the actual node power
injection pA

i is the output. We denote the actual power injection of a price-
inelastic unit with p̂A

i . Note that (1b) is always fulfilled when p and p̂ are replaced
with pA = col(pA

1 , . . . , pA
n ) and p̂A = col(p̂A

1 , . . . , p̂A
n ), since in that case (1b)

represents the conservation law, i.e. pA − Bδ + p̂A = 0. Achieving balance in
reference values (1b), i.e. balance of the desired production and consumption,
is a control problem. The production/consumption of price-inelastic units is an
exogenous signal to the system and p̂A = p̂, which yields:

pA − Bδ + p̂ = 0. (6)

The desired production/consumption of price-elastic units is a function of current
nodal prices. Therefore, nodal prices can be effectively used as a feedback signal
for power balance control. Each system Gi receives a price signal and, based on
its benefit maximization objective (3), it maps the signal into a reference pi. We
will assume this mapping to be instantaneous, although the model can easily be
extended with dynamics, time delays, threshold based rules, etc. The complete
dynamical model of the power system is described with the set of differential
algebraic equations (5)-(6). For a detailed presentation of power system modeling
for real-time power balance control problems we refer to [5], Chapter 11, or [10],
Chapter 12.

Note that the mapping Υi : λi → pi is linear only if Ji is a quadratic function
and p

i
= −∞, pi = ∞. In practice, however, it will always be a nonlinear

mapping and therefore, the model (5)-(6) with the nodal prices λi as inputs, is
nonlinear. Since for any strictly convex and continuously differentiable Ji the
mapping Υi : λi → pi can be arbitrarily well approximated with a continuous
piecewise affine mapping, one can always obtain a piecewise affine model that
approximates (5) arbitrarily well. We will assume for the remainder of the article
that each Υi is a piecewise affine function and thus, the overall system model (5)-
(6) is piecewise affine with respect to λi as inputs.

To control the system, a measure of imbalance in (1b) has to be available.
The network frequency serves that purpose. The system is in balance, in the
sense of equality (1b), if the frequency is equal to its reference value, e.g. 50Hz
in Europe. A change in any reference for power value causes the frequency to
change. In steady-state, the frequency is equal for all nodes in the network and,
if it is above its reference value, the total production in a network exceeds the
total consumption. Finally, we are able to define the control problem.
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Problem 3. Optimal steady-state control problem.
Design a feedback controller that has the network frequency and the line power
flows as input, and the nodal prices as output (see Figure 1), such that the
following objective is met: for any constant value of p̂ such that the ONP problem
is feasible, the state of the closed-loop system converges to a steady-state where
the nodal prices are the optimal nodal prices as defined in Problem 2. �

2.2 Explicit Dynamic Optimal Controller

In this subsection we employ the relation between the solutions of the OPF and
the ONP problems to obtain a solution to Problem 3. We start by presenting
the following basic result from power system economics.

Proposition 1. The optimal dual variable (Lagrange multiplier) associated with
the power balance constraint (1b) in the Lagrange dual problem of OPF, is the
vector of optimal nodal prices for the corresponding ONP problem.

Proof. Consider some constant value p̂ such that the OPF and ONP problems are
feasible. The OPF problem is a convex problem which satisfies Slater’s constraint
qualification. This implies that strong duality holds and that first-order Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions for opti-
mality. For the OPF problem, the Lagrangian is given by L(p, δ, ν+, ν−, λ, μ) =
J(p) − λ�(p − Bδ + p̂) + (ν−)�(p − p) + (ν+)�(p − p) + μ�(Lδ − pL) and the
KKT conditions are given by:

p − Bδ + p̂ = 0, (7a)

p − p ≤ 0, ν+ ≥ 0, (ν+)�(p − p) = 0, (7b)

− p + p ≤ 0, ν− ≥ 0, (ν−)�(−p + p) = 0, (7c)

Lδ − pL ≤ 0, μ ≥ 0, μ�(Lδ − pL) = 0, (7d)

∇pJ(p) − λ + ν+ − ν− = 0, (7e)

Bλ + L�μ = 0, (7f)

where λ, ν+, ν− and μ are (vector) Lagrange multipliers. The multiplier λ is
associated with the equality constraint (7a) and is therefore not sign restricted.
At the optimum, the value of the objective function and the vector of optimal
power injections in the OPF problem are equal to the value of the objective
function and the vector of power injections in the ONP problem, i.e. p = Υ (λ).
Assume that the optimal Lagrange multiplier λ from the OPF dual problem is
taken to be the vector of nodal prices. In this case the conditions (7b),(7c) and
(7e) correspond to the KKT conditions for the constrained minimization problem
in (3) for all price-elastic units in the network. Therefore, for this particular λ,
the vector of power injections p = Υ (λ) in the ONP problem corresponds to
the vector of optimal power injections in the OPF problem, which concludes the
proof. �
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Remark 1. B is a singular matrix with rank deficiency one and with the kernel
space spanned by the vector 1n. Physically, this reflects the fact that only the
relative voltage phase angles determine the power flow. Note also that 1n /∈ im B,
since B = B� implies 1�n B = 0, i.e. 1n is orthogonal to each column of B.
Finally, analyzing the structure of L (see (1d) and (2)) one can easily observe
that 1�n L� = 0 and therefore, 1n /∈ im L�. These properties of B and L will be
used later in this section to prove Proposition 2.

Consider the OPF problem solution for some constant value p̂ such that the
problem is feasible. We denote the minimizers of OPF with p̃, δ̃, and with λ̃
the value of the corresponding Lagrange multiplier. Strict convexity of each Ji

implies that at the optimum p̃ is unique. On the other hand, due to singularity of
B, if δ̃ is a minimizer so is δ̃+1nc where c ∈ R is an arbitrary constant. However,
note that for all minimizers the set of active constraints is uniquely determined.
Furthermore, we denote with μ̆ and μ̃ the Lagrange multipliers corresponding
to inactive and active line power flow constraints, respectively. Analogously, we
define ν̆+, ν̃+ and ν̆−, ν̃−. For inactive constraints col(μ̆, ν̆+, ν̆−) = 0. The
equality (7f) yields Bλ̃ = −L�μ̃. This condition implies that λ̃ ∈ kerB if no
lines are congested. This further implies λ̃ = 1nλ�, λ� ∈ R, i.e. at the optimum,
there is one price in the network for all nodes. In case at least one line in the
system is congested, it follows that the optimal nodal prices will in general be
different for each node in the system.

Next, we present the explicit dynamic controller that solves Problem 3. We
define fi = δ̇i

2π as the network frequency [Hz] at node i, the abbreviation f �
col(f1, . . . , fn), and we use fref (fref ∈ R) to denote the frequency reference value,
e.g. fref = 50Hz. Let Kλ, Kf and Kp be diagonal matrices with positive elements
on the diagonal, such that Kf = αKλ, α ∈ R, α > 0, and let Γ denote a diagonal
matrix of the same size as Kp. Consider the following explicit piecewise affine
dynamic controller:(

ẋλ

ẋμ

)
=

(
−KλB −KλL�

0 0

) (
xλ

xμ

)
+

(
−Kf 0

0 Γ

) (
Δf
ΔpL

)
, (8a)

λ =
(
In 0

) (
xλ

xμ

)
, (8b)⎧⎪⎨

⎪⎩
[Γ ]ii = [Kp]ii if [xμ]i ≥ 0 & [ΔpL]i ≥ 0
[Γ ]ii = [Kp]ii if [xμ]i > 0 & [ΔpL]i < 0
[Γ ]ii = 0 if [xμ]i = 0 & [ΔpL]i < 0,

(8c)

xμ(0) ≥ 0, (8d)

where xλ and xμ denote the controller states and the matrices Kλ, Kf and Kp

represent the controller gains. In (8), the inputs ΔpL = Lδ − pL and Δf = f −
1nfref denote the line power overflow and the frequency deviation, respectively,
while the output λ denotes the vector of nodal prices. Note that, due to the
initialization constraint (8d), it holds that xμ(t) ≥ 0 for all t ≥ 0.

Assumption 1 The closed-loop system resulting from the interconnection of
the explicit dynamic controller (8) with the overall network model given by the
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differential algebraic equations (5)-(6) is globally asymptotically stable for any
constant value of p̂ (i.e. with respect to the corresponding steady-state) such
that the ONP problem is feasible. �

Proposition 2. Suppose that Assumption 1 holds. Then the explicit dynamic
controller (8) solves the optimal steady-state control problem, as defined in Prob-
lem 3.

Proof. To prove Proposition 2, it suffices to show that in steady-state, the vector
of nodal prices λ in (8) coincides with the Lagrange multiplier λ in (7), and
therefore, by Proposition 1, is a vector of optimal nodal prices. In steady-state,
the frequency is equal for all nodes, i.e. Δf = 1nΔf�, Δf� ∈ R. Since in the
power system dynamics (5)-(6) there is no direct feedthrough from the input λ to
the outputs Δf and ΔpL, in steady-state the following conditions are satisfied:
(i) for μ := xμ and from (8a) and (8b) it follows that Bλ + L�μ + 1nαΔf� = 0,
which, together with 1n /∈ im

(
B L�

)
(see Remark 1), implies that Δf� = 0

and Bλ+L�μ = 0, i.e. that the power balance constraint (7a) and the optimality
condition (7f) are satisfied; (ii) from (8a) and (8c) it follows that (7d) is satisfied
for μ := xμ; (iii) (7b), (7c), (7e) are satisfied since they correspond to the KKT
conditions for the optimization problem in (3), which concludes the proof. �

Remark 2. The property 1n /∈ im
(
B L�

)
, which ensures zero frequency devi-

ation in steady-state (Δf� = 0), is not robust with respect to possible errors in
the controller implementation, i.e. to perturbations of matrices B and L in (8a).
To overcome this drawback and to robustly ensure Δf� = 0 in steady-state, the
controller (8) can easily be modified to explicitly include integral action on the
network frequency deviation. This modification is presented in Appendix A.

Remark 3. Due to the steady-state related complementarity conditions in (7d),
there does not exist an LTI controller that solves Problem 3 and a hybrid con-
troller, such as the piecewise affine controller (8), is a necessity. For fixed values
of the gain matrices Kλ, Kf and Kp in (8), one can a posteriori check asymptotic
stability of the resulting closed-loop system by searching for quadratic Lyapunov
functions, and therefore, validate Assumption 1.

3 Hybrid MPC Control Scheme

Following a large disturbance acting on the system, for example, a relatively
large, sudden change in p̂, it is desirable that the closed-loop system response
is such that the power lines overload ΔpL and the frequency deviations Δf are
limited during the transient period, i.e.

ΔpL ≤ Δpmax
L , −Δfmax ≤ Δf ≤ Δfmax, (9)

at all times, where Δpmax
L > 0, Δfmax > 0 are some predefined values. Since

the lines can be overloaded only for a short period of time, satisfying the limit
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Fig. 1. Hybrid control scheme

constraints imposed on ΔpL and Δf , as well as fast convergence to the new
steady-state, are crucial.

To guarantee the fulfillment of the constraints (9) during the transient period,
following a change in p̂, we design a hybrid MPC algorithm whose purpose
is to complement the output λEX of the explicit optimal controller (8) such
that inequalities (9) are satisfied at all times. The hybrid control scheme is
depicted in Figure 1. Let G denote the continuous-time model of the overall
network (5)-(6) in closed-loop with the explicit dynamic controller (8), as shown
in Figure 1. To define the MPC algorithm, we first consider the following discrete-
time approximation of G in closed-loop with the MPC controller:

GD :

{
xk+1 = Ajxk + Bjλ

MPC
k + aj(p̂k)

yk = Cjxk = col(ΔpLk, Δfk, −Δfk)
if Hjxk ≤ hj , k ≥ 0, (10)

where Aj , Bj , aj(p̂k), Cj , Hj , hj are matrices and vectors of appropriate dimen-
sions for all j ∈ S = {1, . . . , s}, with S a finite set of indices. The state vector x
incorporates now both the states of the model describing the transmission net-
work and the states of the explicit controller. As G is a piecewise affine system,
an equivalent discrete-time piecewise affine counterpart cannot be obtained in
general. However, one can obtain a discrete-time piecewise affine approximation
of G by discretizing each continuous-time affine sub-system of G and taking
into account physical insights when deriving the switching hyperplanes of the
discrete-time model, see, for example, [6], [7].

The outputs of system (10) are given by ΔpLk - the power flow deviation in
the lines of the transmission network and Δfk - the frequency deviation in the
nodes of the transmission network (−Δfk is considered an output just to easily
specify the constraints (9) in the MPC algorithm).

The MPC control action λMPC
k acts additively on the output of the explicit

controller (8) present in the discrete-time dynamics GD such that the constraints
(9) are fulfilled at all times k ≥ 0. In steady-state, λMPC

k converges to zero so
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that the network is controlled only by the output of the explicit controller, which
then guarantees optimality and constraint satisfaction.

Problem 4. MPC optimization problem. Let N ≥ 1 be given and let xk =:
x0|k denote the measured state at time k ≥ 0. Let ck := (c0|k, . . . , cN |k) denote a
sequence of optimization variables and let Ψ be a positive definite and symmetric
matrix. Minimize the cost:

J(ck) �
N−1∑
i=0

c�i|kΨci|k, (11)

subject to the constraints{
xi+1|k = Ajxi|k + Bjci|k + aj(p̂i|k)
yi|k = Cjxi|k = col(Δpi|k, Δfi|k, −Δfi|k)

if Hjxi|k ≤ hj , ∀i = 0, . . . , N,

yN+1|k = CjxN+1|k = col(ΔpN+1|k, ΔfN+1|k, −ΔfN+1|k) if HjxN+1|k ≤ hj ,
(12a)

yi|k ≤ col(ΔpL
max, Δfmax, Δfmax), ∀i = 1, . . . , N + 1, (12b)

cN |k = 0. (12c)

�

Let c∗k := (c∗0|k, . . . , c∗N−1|k, 0) denote an optimal sequence of variables obtained
by solving Problem 4. Then, the MPC control law is defined as follows:

λMPC
k := c∗0|k; k ≥ 0. (13)

The value of p̂k, which is employed in (12a), can be estimated from the measured
values of the system state. With the current estimated value p̂k available, to
obtain the future outputs in (12a), we assume p̂i|k = p̂k for all i = 0, . . . , N .

Assumption 2 For any constant value of p̂k, the prediction horizon N is long
enough such that the predicted state xN |k lies in a subset of the state-space that
is invariant for the closed-loop system (10) with λMPC

k = 0 for all k ≥ 0, and
where the constraints (12b) are satisfied. Furthermore, the global optimum is
attained in Problem 4 for any xk and all k ≥ 0. �

Proposition 3. (i) Suppose that Assumption 2 holds. If Problem 4 is feasible
at time k ≥ 0 for the measured state xk = x0|k, then Problem 4 remains feasible
at time k + 1 for state xk+1 = Ajxk + Bjλ

MPC
k + aj(p̂k) if Hjxk ≤ hj.

(ii) Suppose that Assumption 1 holds for GD with λMPC
k = 0 for all k ≥ 0 and

for any constant value of p̂k such that the ONP problem is feasible. Furthermore,
suppose that Assumption 2 holds. Then the discrete-time closed-loop system (10)
with the input λMPC

k defined as in (13) is asymptotically stable for any constant
value of p̂k such that the ONP problem is feasible.

Fulfilment of the first part of Assumption 2 can be a priori guaranteed by adding
a terminal1 equality or inequality constraint to Problem 4, see, for example, [11].
1 By this we mean a constraint on the predicted state xN|k.
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4 Illustrative Example

The proposed hybrid control scheme was implemented for a three nodes triangu-
lar network with a synchronous generator at each node. Each generator is mod-
eled by a third order model, which is standardly used in AGC studies [5], [10].
The generator model is taken from [10], pp. 543-545. We have used the follow-
ing parameter values: τg ∈ {0.2, 0.25, 0.2}, τT ∈ {0.5, 0.45, 0.5}, H ∈ {5, 5, 5},
D ∈ {0.7, 0.7, 0.8}, R ∈ { 1

22 , 1
24 , 1

20}, where the first element in each set denotes
the parameter value for a generator at the first node, etc., and the symbols are the
ones from [10]. We use quadratic functions to represent the variable production
costs Ji, with quadratic terms {1.2, 1.24, 1.4} and linear terms {35.9, 36.1, 36}, re-
spectively. For simplicity, no saturation limits were considered for the generators,
i.e. p

i
= −∞, pi = ∞, ∀i. Furthermore, we use the following reactance values for

each line: z12 = 0.1, z13 = 0.09, z23 = 0.13. Appropriate, although not optimal,
values for the gains of the explicit controller were chosen as Kλ = diag(2, 2, 2),
Kf = diag(7, 7, 7). For the line connecting nodes 1 and 2, the steady-state power
flow limit was set equal to 1.2, i.e. p12 = 1.2, and the maximal allowed violation
of this constraint in a transient period was set to 0.1, i.e. the corresponding ele-
ment in Δpmax

L from (9) is Δpmax
L12

= 0.1. For simplicity, no line flow limits were
considered in the remaining lines, and the explicit controller is implemented to
act only on Δp12 with gain Kp = 2. No frequency deviation constraints were
imposed during transients.

The resulting closed-loop system G is a continuous-time piecewise affine model
with 15 states and 3 affine sub-systems. The (robust) asymptotic stability of
G for any values of p̂ in the interval indicated below was established via a
quadratic Lyapunov function, which validates Assumption 1. We obtained a
discrete-time model GD by discretizing each affine sub-system of G with a sam-
pling period of 0.1s and keeping the same switching hyperplanes as the ones of
the continuous-time model. The simulations showed that GD is a good (i.e.
for control purposes) approximation. The asymptotic stability test was suc-
cessfully carried out for the discrete-time model GD with λMPC

k = 0 for all
k ≥ 0 as well, which validates Assumption 1 for GD. For the MPC controller,
the following tuning parameters were used: N = 12, Ψ = diag(0.1, 0.1, 0.1).
For simplicity, we have used the following estimate for the value of aj(p̂k):
aj(p̂k) = aj(p̂k−1) = xk − (Ajxk−1 + Bjλ

MPC
k−1 ) if Hjxk−1 ≤ hj. A price-inelastic

load was connected to each node. In the simulations, in nodes 1 and 3, the corre-
sponding loads were set equal to constant values: p̂1(t) = 0, p̂3(t) = 2. The load
at node 2 was taken to be a time varying signal given by p̂2(t) = 3 for t < 5s and
p̂2(t) = 4 for t ≥ 5s. The system’s response to the change in the load is pre-
sented in Figures 2 - 5. At time instant t = 0 the system is in a steady-state. In
Figure 2, solid lines represent simulated trajectories of power flow in line e12. One
trajectory (labeled “Explicit”) corresponds to the system in closed-loop with the
the explicit optimal controller alone, while the other trajectory (labeled “Explicit
+ MPC”) corresponds to the MPC closed-loop system described in Figure 1. In
Figure 2, dashed lines represent the steady-state line flow limit p12 = 1.2 and
the transient line flow limit p12 + Δpmax

L12
= 1.3, respectively. Figure 3 presents
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Fig. 2. Line power flow p12. Dashed lines represent power flow restriction: 1.2 in steady-
state; 1.3 in transient.

0 5 10 15 20 25

36.4

36.6

36.8

37

37.2

37.4

37.6

time [s]

λ λ
1
 

λ
3
 

λ
2
 

λ
1
=λ

2
=λ

3
 

Fig. 3. Nodal prices λ as sum of λEX and λMPC. Dashed lines represent steady-state
optimal nodal prices.

the values of the nodal prices λ as a function of time (solid lines). These trajec-
tories correspond to the summation of the outputs from the explicit controller
and the MPC controller. In the same figure, dashed lines represent the off-line
calculated values for the steady-state optimal nodal prices, which depend on the
value of p̂2(t). The MPC control actions are presented in Figure 4, and the sim-
ulated trajectories of the node frequency deviations are presented in Figure 5.
Note that, before the change in the load p̂2, the line is not congested and all
nodal prices are equal for the steady-state optimal operating point. After the
step increase in the load, in the optimal steady-state operating point the line is
congested and, as a consequence, the optimal nodal prices have different values.
The simulation results clearly illustrate the efficiency of the proposed hybrid
control scheme for both steady-state and transient behavior of the closed-loop
system.
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Fig. 4. The MPC control actions
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5 Conclusion

This paper presented a novel hybrid control scheme for achieving optimal power
balancing and congestion control in electrical energy transmission networks. We
developed an explicit dynamic controller that guarantees economically optimal
steady-state operation while respecting all line flow constraints in steady-state.
Due to these constraints, the resulting optimal control law has a piecewise affine
structure. To improve the response of the system and to effectively and efficiently
handle constraints during the transient period, the explicit optimal controller
was complemented with a hybrid MPC controller. An example illustrated the
proposed hybrid control scheme.

A scalable approach for stability analysis and distributed implementation of
the proposed hybrid control scheme will be considered in future work.
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A Appendix

This appendix concerns Remark 2 in Section 2. The controller modification in-
cludes replacing (8a) and (8b) with (14a) and (14b), respectively, where:⎛

⎝ ẋλ0

ẋΔλ

ẋμ

⎞
⎠ =

⎛
⎝0 0 0

0 −KΔBΔ −KΔL�Δ
0 0 0

⎞
⎠

⎛
⎝xλ0

xΔλ

xμ

⎞
⎠ +

⎛
⎝−kf1�n 0

0 0
0 Γ

⎞
⎠ (

Δf
ΔpL

)
, (14a)

λ =
((

1
1n−1

) (
0

In−1

) (
0
0

))
col(xλ0 , xΔλ, xμ). (14b)

The diagonal and positive definite matrix KΔ (KΔ ∈ R
(n−1)×(n−1)) and the

positive scalar kf represent controller gains. BΔ is a submatrix of B obtained by
removing the first column and the first row of B, and LΔ is a submatrix of L,
obtained by removing the first column of L. The dynamics of the scalar valued
controller state xλ0 acts as an integral control action on frequency deviations
Δf , while the dynamics of the controller state xΔλ acts as an integral control
action on violations of the optimality condition (7f).
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Abstract. Testing is an important tool for validation of the system de-
sign and its implementation. Model-based test generation allows to sys-
tematically ascertain whether the system meets its design requirements,
particularly the safety and correctness requirements of the system. In
this paper, we develop a framework for generating tests from hybrid sys-
tems’ models. The core idea of the framework is to develop a notion of
robust test, where one nominal test can be guaranteed to yield the same
qualitative behavior with any other test that is close to it. Our approach
offers three distinct advantages. 1) It allows for computing and formally
quantifying the robustness of some properties, 2) it establishes a method
to quantify the test coverage for every test case, and 3) the procedure
is parallelizable and therefore, very scalable. We demonstrate our frame-
work by generating tests for a navigation benchmark application.

1 Introduction

As engineering systems gain more functionality and complexity, there is a need
for sound discipline in their design, development and deployment. In particular,
ensuring the safety and correctness of these large and complex systems is be-
coming increasingly hard. In recent years, a slew of model-based design efforts
have been developed to address these problems. The promise of the model-based
design paradigm is to develop design models and subject them to analysis, sim-
ulation, and validation prior to their implementation. Performing analysis early
in the development cycle allows one to detect and fix design problems sooner
and at a lower cost. There has been a lot of work [1,2,3,4,5,6,7,8] in the hy-
brid systems community toward analysis, validation and verification of systems
developed from hybrid control models. The list [1,2,3,4,5,6,7,8] is by no means
exhaustive. However, it does capture a broad spectrum of techniques that have
been developed in the community to answer the reachability and verification
problems.

Testing has been used in practice to check the conformance of an implemen-
tation to its specification. Although testing cannot provide formal guarantees on
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correctness and reachability as it is possible with verification, disciplined use of
testing, coupled with coverage criteria can be a great aid to system verification
and validation.

Testing amounts to running or simulating the operation of the system for a
finite period of time. It is comparable to taking a snapshot of the operation of
the system. As we are interested in gaining some information about the system,
testing is done repetitively with varying testing parameters, so as to simulate
as many scenarios of operation as possible. By testing parameters, we mean
the parameters that characterize the run of a test. For example, if we have an
autonomous system whereof we can only influence the initial condition, then the
testing parameter is the initial condition. If we have more degrees of freedom in
influencing the execution of the system, for example, if we can also adjust some
parameters in the system, then these parameters can be regarded as testing
parameters as well. The ultimate goal of testing is to cover the entirety of the
set of testing parameters.

When the set of testing parameters is an infinite set, it is obvious that we
cannot exhaustively test each of the testing parameters. However, it is possible
that one testing parameter is representative of many others. A testing parameter
is said to be robust if a slight (quantifiable) perturbation of the parameter is
guaranteed to result in a test with the same qualitative properties (for example,
safety and correctness). It is obvious that robustness can lead to a significant
reduction in the set of testing parameters. In fact, ideally, we would like to be
able to reduce an infinite set of testing parameters into a finite set, and quantify
the coverage by the performed tests. In this paper, we develop a framework
where the robustness of a test can be formally quantified and computed. The
framework is then applied to test a navigation benchmark problem [9].

Prior work on generating tests from hybrid systems’ models has mainly fo-
cused on randomized testing or monitoring to check whether an implementation
conforms to its model. Esposito [10] and Branicky et. al. [11] use Rapidly ex-
ploring Random Trees (RRT) to generate test cases from hybrid systems models.
Another paper by van Osch [12] describes testing for input-output conformance
by providing inputs to the implementation and comparing its outputs to those
of its model. In [13], the author presents a case-study that identifies a mini-
mal set of test scenarios required to determine, with some confidence interval,
if the system meets the specification by casting the test generation problem as
an optimal control problem. This approach suffers from the drawback that it
is only applicable in scenarios where the optimal control problem can be solved
efficiently. Other publications in this area include [14], where the authors present
an integrated framework to test and monitor code generated from hybrid models,
and [15], where test generation from Extended Finite State Machines (EFSM)
is developed in order to test temporal logic properties.

2 Problem Formulation

In this paper, we consider a standard model of a hybrid automaton [16], H =
(X , L, E, Inv, F ), where X is the continuous state space of the system, L is the
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finite set of discrete states (locations), E is the set of transitions, Inv : L → 2X

is the invariant set of each location, and F : X × L → X is the vector field that
defines the continuous dynamics in each location.

A transition e ∈ E is a 4-tuple (l, l′, g, r), where l ∈ L is the origin of the
transition, l′ ∈ L is the target of the transition, g ⊂ ∂Inv(l) is the guard of the
transition, which is a subset of the boundary of the invariant set of location l,
and r : g → Inv(l′) is the reset map that resets the continuous state at the new
location. Here, we assume that the reset map r is continuous.

In this paper, we shall assume that the following statements hold. The state
space is R

n and the invariant sets are closed. We denote the open interior of an
invariant set as Inv(l) and we assume that the differential equation

dx

dt
= F (x(t), l),

admits a unique solution for every location l ∈ L, i.e. it satisfies the Lipschitz
conditions. The transitions are deterministic1 in the sense that the guards are
forcing and all outgoing transitions from a location have disjoint guards. Finally,
the system does not deadlock or possess Zeno behavior.

In analyzing the safety of the system, we assume that there is a subset
Unsafe ⊂ X × L unsafe states. A trajectory of the hybrid system corresponds
to an unsafe execution if it intersects with the unsafe set.

Example 1 (Navigation Benchmark [9]). As a case study in this paper, we con-
sider a slightly modified version of the navigation benchmark proposed by Fehnker
and Ivancic [9]. The benchmark studies a hybrid automaton H with 3 × 3 dis-
crete locations and 4 continuous variables x1, x2, v1, v2 that form the state vector
x = [x1 x2 v1 v2]T . We refer to the vectors [x1 x2]T and [v1 v2]T as the position
and the velocity of the system, respectively. The structure of the hybrid automa-
ton can be better visualised in Fig. 1. The invariant set of every (i, j) location is an
1 × 1 box that constraints the position of the system, while the velocity can flow
unconstrained. The guards in each location are the edges and the vertices that are
common among the neighboring locations.

Each location has affine constant dynamics with drift. In detail, in each lo-
cation (i, j) of the hybrid automaton, the system evolves under the differential
equation ẋ = Ax − Bu(i, j) where the matrices A and B are

A =
[ 0 0 1 0

0 0 0 1
0 0 −1.2 0.1
0 0 0.1 −1.2

]
and B =

[ 0 0
0 0−1.2 0.1

0.1 −1.2

]

and the input in each location is u(i, j) = [sin(πC(i, j)/4) cos(πC(i, j)/4)]T .
The array C is one of the two parameters of the hybrid automaton that the user
can control and it defines the input vector in each discrete location. Here, we
consider the following input arrays:

C1 =
[

U 2 4
4 3 4
2 2 G

]
C2 =

[
2 3 6
3 3 G
2 2 U

]
C3 =

[
U 2 4
2 2 4
1 1 G

]
1 We limit the discussion in this paper to deterministic guards. However, the frame-

work presented here is also applicable to nondeterministic guards.
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Fig. 1. A graphical representation of the benchmark hybrid automaton. The upper left
box is the invariant set for the location (1, 1). (a) The constant input vector in each
location. (b) Sample trajectories for different initial conditions.

where U denotes the unsafe set and G the goal set. The other user-input param-
eter is the set of initial conditions X0 × L0 ⊆ X × L. The requirement for H is
that all of its trajectories starting in X0 × L0 should avoid the unsafe set and
eventually reach the goal set. Sample trajectories of the system appear in 1.(b).

Example 1 describes a typical verification problem for hybrid systems. The goal
of exhaustive verification algorithms is to prove that there cannot exist a trajec-
tory that falsifies the hybrid automaton assumptions, i.e. safety and reachability.
In this paper, we try to solve a different problem in an attempt to overcome the
theoretical and practical difficulties of exhaustive verification. Here, the target
is not complete coverage of the set of initial conditions, but the computation of
a (possibly) quick estimate of which part of the initial conditions is safe and/or
unsafe for a bounded horizon using only a small number of tests. One of the most
important aspects of such a testing methodology is that it should be completely
transparent to the user with no (or very few) parameters to tune.

Problem 1 (Testing the benchmark example). Given the hybrid automaton H of
Example 1 with a set of initial conditions X0 ×L0, a bounded horizon T > 0 and
an unsafe Unsafe and/or Goal set, develop a strategy for picking test points in
order to cover the set of initial conditions.

As mentioned in the previous section, we want to cover the whole set of initial
conditions with finitely many test points. This requires the construction of robust
neighborhoods around the test points. Each such neighborhood contains a set
of points which initiate trajectories that have the same qualitative properties as
the trajectory generated by the actual test point. By qualitative properties, we
mean the sequence of locations that are visited and the safety property.

3 Robust Testing for Hybrid Systems

In this section, we discuss the computation of robust neighborhoods of initial
conditions. First, we are going to review the theory of bisimulation functions for
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dynamical systems [17]. The concept of bisimulation functions introduced in [17]
is more general than what we are going to review here since we only consider
systems without input.

Let φ : X × X → R+ be a bisimulation function between a dynamical system

Σ : dx
dt = F (x), x ∈ X (1)

and itself. Such a function φ satisfies the following requirements:

φ(x1, x2) ≥ 0, (2)
∂φ(x1,x2)

∂x1
f(x1) + ∂φ(x1,x2)

∂x2
f(x2) ≤ 0, (3)

for every x1, x2 ∈ X .
Denote the continuous flow of the dynamical system Σ as ξ : R+ × X → X ,

that is, ξ(t, x0) satisfies the differential equation

∂ξ(t,x0)
∂t = f(ξ(t, x0)), ξ(0, x0) = x0. (4)

Note that the bisimulation function is nonincreasing with respect to the flow.

Proposition 1 ([17]). For any x0
1, x

0
2 ∈ X , the bisimulation function evaluated

along the flows of the initial conditions x0
1 and x0

2 is nonincreasing, i.e. for any
t2 ≥ t1 ≥ 0 it is φ(ξ(t1, x0

1), ξ(t1, x
0
2)) ≥ φ(ξ(t2, x0

1), ξ(t2, x
0
2)).

We denote the ε-neighborhood (or ε-ball) of x ∈ X with respect to a bisimulation
function φ as Bφ(x, ε), i.e. Bφ(x, ε) = {y ∈ X | φ(x, y) ≤ ε}. The following
corollary is a direct consequence of Proposition 1.

Corollary 1. For any x, y ∈ X , if y ∈ Bφ(x, ε) for some ε > 0, then for every
t ≥ 0 it is ξ(t, y) ∈ Bφ(ξ(t, x), ε).

Thus, the ε-neighborhood defined by the bisimulation function φ is invariant
with respect to the flow of the dynamical system. If we define the (directed)
metric dφ(x(·), y(·)) between different state trajectories of the system Σ with
respect to the bisimulation function φ as

dφ(x(·), y(·)) := sup
t≥0

φ(x(t), y(t)),

then the corollary above is equivalent to dφ(ξ(·, x), ξ(·, y)) ≤ φ(x, y) for any
x, y ∈ X . Hereunder, we shall assume that bisimulation functions are symmetric,
that is, φ(x, y) = φ(y, x). A bisimulation function that is symmetric and forms
a metric on the space X is called a contraction metric. Such functions are used
in contraction analysis in relation to the stability of a system [18,19].

When the dynamics are affine,

F (x) = Ax + b for x ∈ R
n, A ∈ R

n×n, b ∈ R
n×1,

we can propose that the bisimulation function assumes the form

φ(x1, x2) = (x1 − x2)T M(x1 − x2),
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Fig. 2. An illustration for Definition 1 and Proposition 2 for j = 1. The line on the left
is the guard g2. Its part with lighter shade, gact

2 is the active part, where the vector
field points outward. The guard g1 is active everywhere, as the vector field there points
outward. The boundary of the unsafe set in this picture is active since the vector field
points into the unsafe set.

where M is a positive semidefinite matrix. Thus, the bisimulation function de-
fines a Euclidean metric in a (linearly) transformed space. It can be shown that
such a bisimulation function is essentially a Lyapunov function, and it exists if
and only if the system is stable [20].

In the following, we are going to construct robust testing neighborhoods using
the level sets of a bisimulation function. For that, we need a few definitions.

Definition 1. For any location l ∈ L we define the set of outgoing transitions
from l as Out(l) ⊆ E. For any transition e = (l, l′, g, r) ∈ Out(l), we denote by
gact the active part of the guard g, which is the part gact ⊂ g of the guard that
can be reached from inside Inv(l), i.e. we exclude from g the points where the
vector field F (·, l) points inward. Similarly, we define Unsafeact to be the portion
of the boundary of the unsafe set that is reachable from the safe portion of the
state space.

See Fig. 2 for an illustration of the definition of the active guard and of the
proposition below.

Proposition 2. Let x0 ∈ Inv(l) for some location l ∈ L, and assume that the
state trajectory ξ(t, x0) lies entirely in Inv(l)\Unsafe for t ≤ τ . Suppose that
Out(l) = {e1, e2, · · · , en} and that gi is the guard of ei, i = 1, . . . , n. Let τ be the
time when the state trajectory hits a guard gj, which is the guard of the transition
ej for some j ∈ {1, . . . , n}. Suppose that we have a bisimulation function φ for
the continuous dynamics in location l. We also assume that there is a positive
time lag ε > 0 such that ξ(τ + ε, x0) /∈ Inv(l). We define
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dout := inf
y∈gj

φ(ξ(τ + ε, x0), y),

di := inf
0≤t≤τ+ε

inf
y∈gact

i

φ(ξ(t, x0), y), i ∈ {1, . . . , n}/{j},

dunsafe := inf
0≤t≤τ+ε

inf
y∈Inv(l)∩Unsafeact

φ(ξ(t, x0), y),

dmin := min{dout, dunsafe, d1, . . . , dj−1, dj+1, . . . , dn},

ε̂ := inf {δ > 0 | Bφ(ξ(τ − δ, x0), dmin) ⊂ Inv(l)} .

The following statement holds. For any x′0 ∈ Bφ(x0, dmin) ∩ Inv(l), the state
trajectory ξ(t, x′0) exits Inv(l) through transition ej at time t ∈ [τ − ε̂, τ + ε] and
is safe at least until it exits location l.

Proof. See Fig. 2 for an illustration. By construction of dmin, we can infer that
for any t ∈ [0, τ + ε] and i ∈ {1, . . . , n}/{j}, Bφ(ξ(t, x0), dmin) ∩ gact

i = ∅, and
Bφ(ξ(t, x0), dmin) ∩ Unsafeact ∩ Inv(l) = ∅.

We then invoke Corollary 1 and infer that any state trajectory originat-
ing in Bφ(x0, dmin) will not be unsafe nor touch the active guards gact

i , i ∈
{1, . . . , n}/{j}, within the time interval [0, τ + ε]. We also know that the neigh-
borhood Bφ(ξ(τ + ε, x0), dmin) lies entirely outside of Inv(l), beyond gj . This
implies that any trajectory starting in Bφ(x0, dmin) ∩ Inv(l) crosses gj before
t = τ + ε. Finally, since the neighborhood Bφ(ξ(t, x0), dmin) does not touch any
active guard, for t ∈ [0, τ − ε̂), we also know that the trajectories will not touch
any active guard before time t = τ − ε̂.

Proposition 2 provides us with a way to compute a neighborhood around the
initial state x0, which consists of initial states that have the same qualitative
behavior as x0. Namely, they lead to a trajectory that exits location l by taking
the same transition and which is safe at least until it performs that transition.
In addition to that, we obtain a timing guarantee in the form of a time inter-
val where the transition is guaranteed to occur if the initial state belongs to
the computed neighborhood. The next step is to design an algorithm that uses
Proposition 2 repetitively in order to deal with trajectories that take multiple
transitions.

Given a hybrid automaton H = (X , L, E, Inv, F ). We denote the continuous
flow at every location l ∈ L as ξl(·, ·), and we assume that we have a bisimulation
function for the dynamics in location l ∈ L, which is φl(·, ·). A testing trajectory
is a sequence (xi, li, ei, τi)i=0,··· ,N such that:

– li ∈ L, xi ∈ Inv(li), ei ∈ Out(li), τi > 0, for every i ∈ {0, 1, . . . , N},
– If we define ei = (li, li+1, gi, ri), then ξli(τi, xi) ∈ gi, xi+1 = ri(ξli(τi, xi)),

ξli(t, xi) ∈ Inv(li) for all t ∈ [0, τi), for every i ∈ {0, 1, . . . , N − 1},

We define T :=
∑N−1

i=0 τi, which is the time where the trajectory enters the
final state. The length of the test is T + τN . Given a testing trajectory, the
algorithm for constructing a robust tube around a nominal trajectory is given
as follows.
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Algorithm 1. The following are the steps:

1. Define the avoided set as the union of the unsafe set and active parts of all
the outgoing guards from lN , i.e.2

DN := Unsafeact ∪g∈Out(lN ) gact. (5)

2. Compute (or obtain a lower bound on)

dN
min := inf

t≤τN

inf
y∈DN

φlN (ξlN (t, xN ), y). (6)

3. Define the allowed guard

AN−1 := r−1
N−1(rN−1(gN−1) ∩ BφlN

(xN , dN
min)). (7)

This is the set of states on the guard of the transition between lN−1 and lN
that is reset into the dN

min− neighborhood of xN (with respect to the bisimu-
lation function φlN ).

4. Define the avoided set

DN−1 := (Unsafeact ∪g∈Out(lN−1) gact)\AN−1. (8)

5. Pick a time lag εN−1 > 0 such that

ξlN−1(τN−1 + εN−1, xN−1) /∈ Inv(lN−1).

We present an algorithm for picking a good time lag later in this paper.
6. Compute (or obtain a lower bound on)

dN−1
min := min

(
inf

y∈gN−1
φlN−1(ξlN−1(τN−1 + εN−1, xN−1), y),

inf
t≤τN−1+εN−1

inf
y∈DN−1

φlN−1(ξlN−1(t, xN−1), y)
)

.

7. Define

ε̂N−1 := inf
{
δ > 0 | BφN−1(ξlN−1(τN−1 − δ, xN−1), dN−1

min ) ⊂ Inv(lN−1)
}

.

8. Repeat steps 3 - 7 to obtain Ai, Di, εi, di
min, ε̂i, i = 0, 1, . . . , N − 2.

A property of the result of this iteration is presented in the following the-
orem, whose proof can essentially be constructed by repeated application of
Proposition 2.

2 Notice that for simplicity, we abuse the notation and associate the transition with
its guard.
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Theorem 2. Given a testing trajectory of a hybrid system (xi, li, ei, τi)i=0,··· ,N ,
let d0

min, εi, ε̂i, i = 0, 1, . . . , N − 1 be obtained from the iteration in Algorithm
1. Define

ε :=
N−1∑
i=0

εi, ε̂ :=
N−1∑
i=0

ε̂i.

Any testing trajectory that starts in Bl0(x0, d
0
min) has the following properties.

(i) It follows the same sequence of locations, (li)i=0,...,N and it enters the final
location lN at t ∈ [T − ε̂, T + ε],
(ii) The trajectory is safe at least until τN time unit after it enters lN .

An essential part of Algorithm 1 is the generation of the time lags εi (see Step
5). First of all, notice that a small εi is more desirable than a larger one. This
is because εi is a measure in the slackness in the timing when the trajectories
in the tube hit the desired guard (see Theorem 2). The idea is to construct εi

as small as possible, but large enough so that by introducing this time lag, we
are sure that all the trajectories in the constructed tube hit the desired guard
within the time interval [τi, τi + εi]. In order to do this, we can replace Steps 5
and 6 in Algorithm 1 with the following steps.

Step 5’. Compute

d̂N−1
min := inf

t≤τN−1
inf

y∈DN−1
φlN−1(ξlN−1(t, xN−1), y).

Step 5”. Compute

εN−1 = min
(

inf
{

e | inf
y∈gN−1

φlN−1(ξlN−1(τN−1 + e, xN−1), y) ≥ d̂N−1
min ,

ξlN−1(τN−1 + e, xN−1) /∈ Inv(lN−1)
}

, εmax).

Step 6’. If εN−1 < εmax then dN−1
min = d̂N−1

min , otherwise

dN−1
min = sup

0≤e≤εmax

inf
y∈gN−1

φlN−1(ξlN−1(τN−1 + e, xN−1), y).

In Step 5’ we compute the largest level set that fits within the allowed set.
In Step 5”, we want to find the minimum time lag such that the computed level
set lies entirely beyond the desired guard (and hence outside of the invariant set
Inv(lN−1)). See Fig. 2 for an illustration. Because such time lag might not exist,
or is too large, we can establish a maximum allowed value for the time lag, εmax.
If such time lag is found and is smaller than εmax, then this value is used. If it
is not found, then we compute the largest level set that can be fit outside of the
invariant set. This is done in Step 6’.

4 Test Generation and Coverage Strategies

In the benchmark problem that we are working on, our goal is to cover the given
set of initial states with robust neighborhoods. In the previous section, we have
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presented an algorithm for computing the robust neighborhood around a given
initial state. What needs to be done next is to select subsequent initial states
from the given set, so as to (eventually) cover the whole set and/or to provide a
quantitative measure of coverage based on the executed tests. The strategy for
selecting the test points is called the test generation.

An important issue in test generation is the notion of coverage, which quali-
tatively characterizes the number and the type of tests generated. There are a
number of coverage criteria based on the test requirement, which can be cat-
egorized into two classes: initial state coverage and structural coverage. The
first type of coverage criteria is concerned with covering the set of initial states
and characterizing each test case that has been generated. The second class of
coverage criteria is concerned with analyzing the structural coverage of a test
trajectory, such as location coverage and transition coverage. This notion of cov-
erage can capture more aspects of the execution than just coverage of the initial
states. The main challenge here is how to generate tests so as to meet particular
coverage criteria. In this paper, we are only concerned with the coverage of the
set of initial states and leave the prospect of using our framework to analyze
structural coverage as future work.

There are a number of strategies for initial state coverage:

Randomized Strategy: The first strategy for covering the set of initial states is
to pick points randomly. Consequently, it is hardly possible to guarantee efficient
coverage. However, a randomized strategy might be an attractive option because
of its simplicity.
Greedy Strategy: Under this strategy, we first pick a point and run the testing
algorithm with it. Then, we subtract the computed robust ball around the initial
point from the set of initial states and pick the center of the maximum ball that
can be fitted into the remaining space as the next test point.
Tessellation-based Strategy: Picking points at random may not ensure uni-
form coverage. One possible strategy to ensure uniform coverage is to use tes-
sellation of the initial state space based on an appropriate metric. This strategy
does not scale well as the dimension of the state space increases.
Minimal Dispersal-based Strategy: Picking points so as to minimize the
dispersion [21] of the points in the set of initial states. This strategy involves the
generation of weighted Voronoi diagrams in the set. The goal is to pick the points
incrementally so as to maximize the radius of a non-overlapping ball that can
be inserted in the set. We use this method to analyze the benchmark problem
(see the following section).

5 Numerical Results and Discussion

In this section, we present some numerical results using our prototype MATLAB
implementation of the robust testing algorithm. The experimental results will
helps us discuss the strengths and weaknesses of our approach.

One of the advantages of using robust testing methodologies is that we can
obtain an estimate of the degree of coverage of initial conditions that we have
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Fig. 3. Result after 25 simulations for the problem instance of Example 2

achieved. Theoretically, this can be done by computing the volume of the in-
tersection of the robustness ellipsoid E with the polytope that defines the set
of initial conditions X0. Nonetheless, this is not feasible computation-wise when
the robustness ellipsoid E is not contained inside the set of initial conditions.
Therefore, we compute the maximum ellipsoid that fits inside the intersection
of E and X0. This can lead to a significant under-approximation of the actual
covered space (see Example 3).

The following testing problem provides some inside on the principles behind
our testing algorithm. The planar choice of initial conditions help us visualize
the coverage of initial conditions, since the same is not possible when testing a
4D set of initial conditions.

Example 2. The first case that we consider is testing the navigation benchmark
for the input array C1 and the set of initial conditions X0 = [1, 2] × [1, 2] ×
{−0.2} × {0} with L0 = {(2, 2)} (light gray region in Fig. 3). Here instead of
using the Minimal Dispersal-based Strategy, we create a grid of 25 points which
serve as initial conditions for each simulation. The resulting simulations appear
in Fig. 3.(a). The ellipsoids centered at the initial conditions denote the projec-
tions of the 4D ellipsoids on the position plane x1 −x2. In Fig. 3.(b), we present
the covered space of initial conditions after 25 simulations. Here, the ellipsoids
are the intersection of the corresponding 4D ellipsoids with the position plane.
The gray and black ellipsoids denote covered initial conditions whose correspond-
ing trajectories followed different discrete paths. Note that there exists a clear
partition of X0 into two subsets of initial conditions that initiate trajectories that
traverse different discrete paths. In this case, our proposed under-approximation
algorithm for coverage computed 48% of covered initial conditions.

The next example indicates that when the set of initial conditions is thin and
the system is robust with respect to the specifications (unsafe and/or goal set),
the testing problem becomes easier.

Example 3. Consider again C1, but now with the following set of initial condi-
tions X0 = [2.2, 2.8] × [1.2, 1.8] × {−0.2} × {0} with L0 = {(2, 3)}. This set of
initial conditions has been verified to be safe with respect to the unsafe set in [9].
Using the testing algorithm we can cover the set of initial conditions with only 9
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Fig. 4. Result after 9 simulations for the problem instance of Example 3
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Fig. 5. The testing framework can potentially detect the unsafety of the system with
just one test. Legend: upper left square - initial conditions, lower right square - unsafe
set, upper right square - goal set

simulations (Fig. 4.(a)). In Fig. 4.(a) the ellipsoids represent the intersection of
the corresponding 4D ellipsoids with the position plane, while in Fig. 4.(b) we
present the under-approximation of the aforementioned ellipsoids with ellipsoids
that fit inside X0. Numerically, we compute a coverage estimate of 72%.

The previous example also shows that even though by visual inspection we can
verify that we have tested all the set of initial conditions, numerically we do not
have an accurate way to confirm that. Next, we show the main strength of the
testing framework, i.e. easy detection of robustly unsafe systems.

Example 4. Consider the input array C2 with initial conditions X0 = [0, 1] ×
[2, 3] × [−1, 1] × [−1, 1] and L0 = {(1, 1)}. This was proven to be unsafe with
just 10 simulations (see Fig. 5). Notice the complicated hybrid dynamics.

Finally, we apply our framework to a more demanding example.

Example 5. Here, we use input array C3 with initial conditions X0 = [0, 1] ×
[0, 1] × [−0.1, 0.5]× [−0.05, 0.25] and L0 = {(3, 1)}. This example was proven to
be safe in [22] using the verification toolbox PHAVer [7]. Our testing algorithm
was able to cover 7% of the initial conditions after 300 simulations.
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On-going research is focused on obtaining better estimates of the covered set
of initial conditions. Finally, one of the main advantages of our robust testing
framework is that it can be effectively parallelized by simply assigning a different
test trajectory to each CPU.

6 Concluding Remarks

In this paper, we presented an algorithm for test generation for hybrid systems.
The algorithm is based on a computational method for robust testing. We im-
plemented the algorithm to verify a navigation benchmark problem [9]. One
advantage of our algorithm, compared to some other tools, is that we do not
need to tune any parameter beforehand.

As future research agenda, we identify a number of potential directions. For
example, we are going to develop a framework for robust testing of linear tem-
poral logic properties [23], and develop a probabilistic notion of robust testing
by using the idea of stochastic bisimulation function [24]. The algorithm that
we presented in this paper is also able to provide a timing guarantee for the
occurrence of the transitions. Although this feature is not exploited in the ex-
ample that we presented in this paper, it can potentially be applied in automatic
translation of hybrid automata into timed automata. Such a translation is useful
for example in verification and observer design for hybrid systems [25].
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Abstract. This paper discusses a new approach to representing a finite
automaton as a combination of a linear state equation with a smaller
set of free binary variables (i.e., input variables) and binary inequalities,
in order to reduce the computational time for solving the model pre-
dictive control problem of a class of hybrid systems. In particular, this
paper is devoted to proving that a system representation derived by our
proposed method is minimal in the sense that the number of its binary
input variables is minimal among system models over all linear equiva-
lence transformations that preserve the binary property of free (input)
variables.

1 Introduction

As is well known, the optimal/model predictive (MPC) control problem of hybrid
systems is in general reduced to a mixed integer quadratic programming (MIQP)
problem. However, the MIQP problem has crucial weakness for real-time control;
i.e., the computational amount exponentially grows with the number of binary
variables. So it will be desirable that hybrid systems are represented in terms of
a smaller set of binary variables to reduce the number of binary variables in the
MIQP problem. In particular, it is very important to discuss how to express the
discrete dynamics such as finite automata in a concise way.

To our knowledge, however, few results from the above points of view have
been obtained in the previous literatures. Indeed the binary-inequalities based
representation is well known as a method for expressing finite automata [2,11],
but it will not be desirable for the branch and bound method, which is one of the
standard methods for solving the MIQP problem, because the relaxed problem in
question does not effectively work for the binary inequalities expressing a finite
automaton within the framework of the MPC problem (see [4] for more details).

The authors thus have proposed in [5] a new method of representing a finite
automaton as a linear state equation with a relatively small number of free bi-
nary variables (called here binary input variables) and binary inequalities, based
on the implicit system representation [1,8], to produce an MIQP problem with
a smaller number of binary variables. It has also been shown that our method is
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very effective, by numerical examples of the finite-time optimal control problem
of switched systems [5] and piecewise affine systems including discrete transi-
tion constraints specified by finite automata [6]. Furthermore, in [7], we have
discussed the minimality of system representation in the sense that the number
of the binary input variables of our model [5] is smallest over the binary field
GF (2) [9]. More rigorously, it has been proven there that, for a finite automaton
expressed by a linear implicit system model on GF (2), a linear state equation
on the real number field R derived via our method has the smallest number
of binary input variables among the system models obtained under all linear
equivalence transformations on GF (2).

However, it is natural to discuss the minimality of system representation un-
der all linear equivalence transformations on R, because the linear system model
used when reducing the control problem to the MIQP problem has to be given
on R. One of the main difficulties in such discussion on R is that the coordi-
nates transformation on R does not in general preserve the binary property in
the original model. Thus at the first step, we have considered in [7] only the
coordinate transformations on GF (2), which preserve the binary property. It
is also remarked that the relation between the operations on GF (2) and R is
nonlinear. So the linear equivalence transformations on GF (2) do not in general
imply those on R; that is, the minimality on GF (2) is not equivalent to that
on R.

This paper continues upon a series of our research [5,6,7], and proves that,
for a finite automaton expressed by a linear implicit system model on R, a
system representation on R derived via the proposed method, which is a more
sophisticated version of our previous method [5,7], has the smallest number
of binary input variables among the system models over all linear equivalence
transformations on R that preserve the binary property of free variables.

First, the modeling method in [5] is roughly explained. Next, after the concept
of a “minimal representation” used in this paper is defined, the problem of
finding a minimal representation of a finite automaton is formulated. Third, a
characterization of the linear equivalence transformations on R to be studied
here are given, while mathematical properties of the system model derived via
our modeling method are derived. These results are crucial keys for proving the
minimality on R. Based on these several results, the proof on the minimality is
finally completed.

Notation: Let {0, 1}m×n express the set of m × n matrices, which consists of
elements 0 and 1, and also let {−1, 0, 1}m×n express the set of m × n matrices,
which consists of elements −1, 0 and 1. Let In, 0m×n and en express the n × n
identity matrix, the m × n zero matrix and the n × 1 vector whose elements
are all one, respectively. For a finite set of vectors made by the product of a
matrix T ∈ Rm×n and a vector in the finite set {0, 1}n, we use the notation
T {0, 1}n := { Ta | a ∈ {0, 1}n }. For simplicity of notation, we sometimes use the
symbol 0 instead of 0m×n, and the symbol I instead of In.
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2 Optimal Control of Hybrid Systems

2.1 MLD Model Based Approach

In the optimal/model predictive control problem of hybrid systems, one of the
powerful methods is an approach based on the mixed logical dynamical (MLD)
model [2] given by

x(k + 1) = Ax(k) + Bv(k) (1)
Cx(k) + Dv(k) ≤ H (2)

where x(k) ∈ Rnc ×{0, 1}nd is the state, v(k) is given by v(k) = [ uT (k) zT (k)
δT (k) ]T , u(k) ∈ Rm1c × {0, 1}m1d is the control input, and z(k) ∈ Rm2 ,
δ(k) ∈ {0, 1}m3 are auxiliary continuous and binary variables. For this model,
the following finite-time optimal/model predictive control problem is considered.

Problem 1. Suppose that the initial state x(0) = x0 is given. Then for the system
of (1), (2), find v∗(k), k = 0, 1, · · · , N − 1, minimizing the cost function

J =
N−1∑
i=0

{
xT (i)Qx(i) + vT (i)Rv(i)

}
+ xT (N)Qfx(N)

where Q ≥ 0, R > 0, and Qf ≥ 0.

As is well-known, Problem 1 is reduced to the MIQP problem:

min
v̄∈V

v̄T M1v̄ + v̄T (M2x0 + M3)

subject to L1v̄ ≤ L2x0 + L3

where the input set V is a set of ((Rm1c × {0, 1}m1d) × Rm2 × {0, 1}m3)N and
v̄ := [ vT (0) vT (1) · · · vT (N − 1) ]T . Then we can see that (m1d + m3)N
corresponds to the number of the binary variables in the MIQP problem. Thus
we will discuss here how the number m1d (or m3) can be decreased when a finite
automaton is expressed as an MLD model in some way. It is also stressed that
the number of the binary variables in the MIQP problem does not depend on
the dimension of the binary state variables, nd.

2.2 Proposed Method and Conventional Method

Before describing the minimality problem of system models of representing an
finite automaton, let us explain “what is our approach” in a simple way, which
has been basically proposed in [5]. So consider an example of a finite automaton
in Fig. 1, where each number in the node of Fig. 1 denotes the mode (the discrete
state) of the system.

Our approach based on the implicit system representation is as follows (see
[5] for the details). In our approach, a binary variable is assigned to the arc
(directed edge), not to the node. So a binary variable δij is assigned to the arc
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Fig. 1. Example of finite automaton

from node i to node j, by which we thus can express the input-output relation
at each node. For example, the input-output relation at node 1 is expressed by
the equation

δ14(k + 1) + δ11(k + 1) = δ11(k) + δ71(k).

By expressing a similar relation for every node, the automaton in Fig. 1 is ex-
pressed as the following discrete-time implicit system with an equality constraint

Eξ(k + 1) = Fξ(k), eT
10 ξ(0) = 1 (3)

where ξ = [ δ11 δ14 δ25 δ27 δ33 δ36 δ42 δ53 δ62 δ71 ]T ,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we can show that by a certain linear transformation of coordinates
ξ(k) = V

[
xT

d (k) uT
d (k)

]T for V ∈ R10×10, the implicit system (3) can be
expressed by the following state equation:{

xd(k + 1) = Adxd(k) + Bdud(k),

07×1 ≤ xd(k) ≤ e7, eT
7 xd(0) = 1

(4)

where ud(k) ∈ {0, 1}3, xd(k) ∈ R7 (in fact, xd(k) ∈ {0, 1}7 is guaranteed thanks
to the inequalities and the initial condition in (4), and ud(k) ∈ {0, 1}3). The
derivation procedure from the implicit system (3) to the state equation (4) will be
explained in Section 4.2. The point of our approach is that, based on the property
that ξ(k+1) is not uniquely determined by (3) and the value of ξ(k), i.e., that the
automaton in Fig. 1 is nondeterministic, the free variable ud(k) corresponding
to the input variable and the state variables xd(k) uniquely determined by the
state equation are derived from ξ(k) of the implicit system. This model provides
nd = 7, m1d = 3, m3 = 0 for binary variables in the MLD model (1), (2).

On the other hand, the model via the standard method [2,11] is given as
follows. Suppose that a binary variable δi is assigned to node i (mode i), and
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that δi(k) = 1 and δj(k) = 0 for all j �= i hold when the mode at time k is i, which
implies that the equality constraint

∑7
i=1 δi(k) = 1. Note here that the relation

between δij and a pair (δi, δj) is given by [δij(k) = 1] ↔ [δi(k−1) = 1]∧ [δj(k) =
1], i.e., δij(k) = δi(k−1)δj(k). Then, based on the equivalence relations between
propositional logic and linear-type inequalities, the automaton in Fig. 1 can be
expressed by the following binary linear-type inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1(k) − δ1(k + 1) − δ4(k + 1) ≤ 0,
δ2(k) − δ5(k + 1) − δ7(k + 1) ≤ 0,
δ3(k) − δ3(k + 1) − δ6(k + 1) ≤ 0,
δ4(k) − δ2(k + 1) ≤ 0,
δ5(k) − δ3(k + 1) ≤ 0,
δ6(k) − δ2(k + 1) ≤ 0,
δ7(k) − δ1(k + 1) ≤ 0,∑7

i=1 δi(k) ≤ 1,
∑7

i=1 δi(k) ≥ 1.

(5)

So letting the state equation δi(k+1) = ui(k) for a new binary variable ui(k), we
can express the binary linear-type inequalities in (5) as the form of (2). Note also
that δi(k + 1) = ui(k) is embedded in (1). Then the number of binary variables
in the MLD model is given by nd = m1d = 7.

In this case, we see that the number of binary variables (m1d + m3)N in the
MIQP problem produced by our model is smaller than that of the standard
method. In [5], we have also shown by numerical examples that the computa-
tional time in our method is dramatically reduced compared with that in the
standard method. One of the open, important questions at the next step is “for
an implicit system expressing a finite automaton, does our modeling method
provide a system model that has the smallest number of binary input variables
among system models under all equivalence transformations on R?”. It will not
so easy to find an answer to this question. So we will address here “for what
class of transformations on R our model has the smallest number of binary input
variables?”.

3 Definition of Minimal Representation

In this section, the problem of finding a minimal representation for an implicit
system expressing a given finite automaton is formulated.

Consider the following linear implicit system expressing a finite automaton:

ΣI :

{
Eξ(k + 1) = Fξ(k),

ξ(k) ∈ {0, 1}n, ξ(0) = ξ0 ∈ Ξ0
(6)

where E, F ∈ Rm×n and Ξ0 ⊆ {0, 1}n. Furthermore, the following assumptions
are made for this system:

Assumption A1. rank (F − zE) = m, ∀z ∈ C, where C denotes the complex
number field.
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Assumption A2. The system ΣI of (6) has no noncausal behavior.

Assumption A1 implies that there exist no redundant equations in (6), in other
words, (6) has m independent equations. For example, if (6) has two same equa-
tions ξ1(k + 1) + ξ2(k + 1) = ξ1(k) + ξ2(k), then these are dependent (see [1,8]).
The noncausal behavior in assumption A2 corresponds to the impulsive behavior
in continuous-time systems.

In this paper, we consider a finite automaton that satisfies M ≤ L, where M
and L denote the number of the nodes and that of the arcs, respectively. We
often denote such an automaton by an automaton (M ≤ L). Such an automaton
can be expressed as the above implicit system. In fact, this is proven as follows.

Lemma 1. For every finite automaton (M ≤ L), there exists an implicit system
model of the form (6) satisfying assumptions A1 and A2.

Proof (sketch of proof). This is proven by construction. Suppose that a finite
automaton is given. Then let Ia = {i1, i2, · · · , iL} denote the set of combi-
nations of (i, j) for which the arc from node i to node j exists, and assign a
binary variable δil

∈ {0, 1}, l = 1, 2, · · · , L to each arc. Then by expressing
the relation between inputs and outputs at every node, we obtain the following
implicit system with:{

Eξ(k + 1) = Fξ(k), ξ(k) ∈ {0, 1}L,

ξ(0) = ξ0 ∈ Ξ0 :=
{

η ∈ {0, 1}L | eT
Lη = 1

} (7)

where ξ(k) := [ δi1(k) δi2(k) · · · δiL(k) ]T ∈ {0, 1}L and E, F ∈ {0, 1}M×L.
Furthermore, let E(l) ∈ {0, 1}1×L, l = 1, 2, · · · , M , denote each row vector of
E, and let F (l) ∈ {0, 1}1×L, l = 1, 2, · · · , M , denote each row vector of F .
Then the following condition holds:

M∑
i=1

E(i) = eT
L,

M∑
i=1

F (i) = eT
L. (8)

From (8), eT
Lξ(k) = 1 holds under the initial condition ξ(0) = ξ0 ∈ Ξ0. So the

implicit system (7) expresses mode (node) transition constraints of a given finite
automaton.

Finally, it will be proven that the implicit system (7) satisfies assumptions A1
and A2. since ξ(k+1) depends on only ξ(k) and is independent of ξ(k̄), k̄ > k+1,
the implicit system (7) satisfies assumption A2. On the other hand, from (8),
we can show that each row of the system of (7) is independent. Therefore, since
M ≤ L holds, the implicit system (7) satisfies assumption A1. This completes
the proof. 
�

Thus, for the implicit system (6) expressing a given automaton, this paper will
consider transforming it into the following type of system, which can be consid-
ered as a part of the MLD model (1), (2):
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Σtarget :

⎧⎪⎨
⎪⎩

x(k + 1) = Ax(k) + Bu(k), Cx(k) + Du(k) ≤ E,

x(k) ∈ Rp, u(k) ∈ {0, 1}r,

x(0) = x0 ∈ X0, u(0) = u0 ∈ U0

(9)

where x(k) is the state, X0 is an initial-state set, u(k) is a free binary variable,
called “input variable” hereafter, and U0 is an initial-input set.

Let us define the class of the above transformations. So consider the following
class of linear transformations for the implicit system (6).

Definition 1. For nonsingular matrices U and V , the implicit system

Σ̄I :

{
Ēξ̄(k + 1) = F̄ ξ̄(k),

ξ̄(k) ∈ V −1{0, 1}n, ξ̄(0) = ξ̄0 ∈ V −1Ξ0
(10)

where Ē := UEV , F̄ := UFV , ξ̄(k) := V −1ξ(k) is said to be equivalent to
the system ΣI of (6), and the transformation of (6) into an equivalent implicit
system (10) is called a (U, V )-equivalence transformation.

It is remarked that (6) and (10) are in one-to-one correspondence under the
(U, V )-equivalence transformation, since U and V are nonsingular.

Among all (U, V )-equivalence transformations, some class of them may trans-
form the implicit system ΣI into a combination of a linear state equation and
an additional algebraic equation. The set of all such (U, V ) ∈ Rm×m × Rn×n

is denoted by T , and the (U, V )-equivalence transformation for (U, V ) ∈ T is
simply called the T -equivalence transformation.

Then the following result is straightforwardly obtained from the result in [10].

Lemma 2. Suppose that an implicit system ΣI of (6) satisfying assumptions
A1 and A2 is given. Then there exist nonsingular matrices U and V such that
the following relation holds:

UEV =
[

I
0︸︷︷︸
λ

0
0︸︷︷︸

m−λ

0
0︸︷︷︸
α

0
0︸︷︷︸
β

]
} λ
} m − λ ,

UFV =
[

A
C︸︷︷︸
λ

B0
I︸︷︷︸

m−λ

B
0︸︷︷︸
α

0
0︸︷︷︸
β

]
} λ
} m − λ .

where λ := rankE, α := rankB, and β := n − m − rankB. Furthermore, by
denoting [

xT (k) wT (k) uT (k) uT
e (k)

]T
:= V −1ξ(k)

i.e., x := Txξ, w := Twξ, u := Tuξ, ue := Tueξ and
[

T T
x T T

w T T
u T T

ue

]T :=
V −1. the implicit system (6) can be expressed as

Σw :

⎧⎪⎨
⎪⎩

x(k + 1) = Ax(k) + B0w(k) + Bu(k), Cx(k) + w(k) = 0,

x(k) ∈ Tx{0, 1}n, w(k) ∈ Tw{0, 1}n, u(k) ∈ Tu{0, 1}n,

x(0) = x0 ∈ TxΞ0, w(0) = w0 ∈ TwΞ0, u(0) = u0 ∈ TuΞ0

(11)

where A, B0, B, C are some matrices.
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The proof will be omitted due to the limited space. From Lemma 2, we see
that there exists a T -equivalence transformation for every ΣI of (6) satisfying
assumptions A1 and A2. It is also remarked that by the T -equivalence transfor-
mation, the vector ξ of the implicit system ΣI is decomposed into the state x(k),
the dependant variable w(k), the independent variable u(k), and the redundant
variable ue(k).

Since we are interested in the number of the independent binary variables in
this paper, we will further restrict the class of the T -equivalence transformations
as follows. If a T -equivalence transformation transforms the system ΣI of (6) into
the system Σw of (11) with u(k) ∈ {0, 1}α, u(0) = u0 ∈ {0, 1}α, then it is called
here the TB-equivalence transformation, and let ΣB denote the TB-equivalence
transformed system. Note that the binary property for the free (input) variable
u is preserved in this system.

Furthermore, we will consider to rewrite x(k) ∈ Tx{0, 1}n, w(k) ∈ Tw{0, 1}n

into some inequality conditions, to transform ΣB finally into Σtarget. In this case,
note that, under such a transformation, the number of the binary free variables
is greater than or equal to α in ΣB.

Then the minimal representation of a finite automaton is defined as follows.

Definition 2. Suppose that an implicit system ΣI of (6) satisfying assumptions
A1 and A2, which expresses a finite automata (M ≤ L), is given. Then if among
all TB-transformations of ΣI , the system Σtarget generated throughout ΣB has
the binary input vector u(k) with minimal dimension, it is called a minimal
representation of ΣI , denoted by Σmin

target. In addition, the corresponding minimal
dimension of the input vector u(k) is denoted by α∗.

It is remarked that the concept of the above minimal representation is different
from that of the standard minimal realization of linear state equations at the
point that the minimality of the dimension of the input variable is considered.

Finally, the problem to be addressed in the next sections is given as follows.

Problem 2. Suppose that an implicit system ΣI of (6) satisfying assumptions
A1 and A2, which expresses a finite automata (M ≤ L), is given. Then find a
minimal representation Σmin

target of ΣI .

4 Derivation of Minimal Representation

The story of solving Problem 2 is as follows. First, a characterization of T -
equivalence transformations is given. Next, a procedure for deriving a system
model Σtarget expressing a finite automaton is proposed, and several properties
on its system model are proven. Finally, based on the above results, it is proven
that the system model Σtarget derived by the proposed procedure is a minimal
representation of ΣI .

4.1 Characterization of T -Equivalence Transformation

In this subsection, we characterize a class of T -equivalence transformations pre-
serving the matrix form in (11).
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Lemma 3. Suppose that matrices A0 ∈ Rn1×n1 , B0 ∈ Rn1×m1 , B ∈ Rn1×m2

and C ∈ Rn2×n1 is given. Then for nonsingular matrices U ∈ Rn×n, V ∈
Rm×m, where n = n1 + n2, m = n1 + m1 + m2, there exists matrices Ā0, B̄0, B̄
and C̄ such that

U

[
I 0 0
0 0 0

]
V =

[
I 0 0
0 0 0

]
, U

[
A0 B0 B
C I 0

]
V =

[
Ā0 B̄0 B̄
C̄ I 0

]
(12)

hold if and only if V11 = U−1
11 , V22 = U−1

22 , U21 = 0, V12 = 0, V13 = 0, V23 = 0
hold, and V33 is a nonsingular matrix, where

U =
[

U11
U21︸︷︷︸
n1

U12
U22︸︷︷︸
n2

]
} n1
} n2 ,

V =

⎡
⎣ V11

V21
V31︸︷︷︸
n1

V12
V22
V32︸︷︷︸
m1

V13
V23
V33︸︷︷︸
m2

⎤
⎦} n1
} m1
} m2 .

(13)

Furthermore, coefficient matrices of (12) are given by Ā0 = ΘU−1
11 + (U11B0 +

U12)V21 + U11BV31, B̄0 = ΘU−1
22 + U11BV32, B̄ = U11BV33, C̄0 = U22(C0U

−1
11 +

V21), ā1 = U11a1 + U12a2 and ā2 = U22a2, where Θ = U11A0 + U12C0.

Proof. By substituting (13) into (12) and then comparing both hand sides, the
proof is completed. 
�

Lemma 3 gives a characterization of every T -equivalence transformation that
preserves (12). From the conditions that B̄ = U11BV33 and that U11 and V33 are
nonsingular, we have rankB = rankB̄. So we can conclude that the dimension of
independent (input) vector u is invariant for all TB-equivalence transformations.
We thus have α∗ = rankB. In the next subsection, hence, we will give one of
TB-equivalence transformations in an explicit way.

4.2 Derivation Procedure of Minimal Representation

This subsection proposes a procedure for deriving a minimal representation
Σmin

target of ΣI . The procedure is a more sophisticated version of our approach
[5,7], which includes new lemmas.

Procedure for deriving a Σtarget
Step 1: For a given finite automaton (M ≤ L), let Ia = {i1, i2, · · · , iL}
denote the set of combinations of (i, j) such that the arc from node i to node j
exists, and assign a binary variable δik

to the arc ik. Furthermore, set ξ(k) :=
[ δi1(k) δi2(k) · · · δiL(k) ]T ∈ {0, 1}L. Then the input-output relation of δik

(k)
on each node gives the implicit system of{

Eξ(k + 1) = Fξ(k), ξ(k) ∈ {0, 1}L,

ξ(0) = ξ0 ∈ Ξ0 :=
{

η ∈ {0, 1}L | eT
Lη = 1

} (14)

where E, F ∈ {0, 1}M×L.
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Step 2: Derive a permutation matrix P satisfying EP = [ IM Ẽ ], where
Ẽ ∈ {0, 1}M×(L−M) is some matrix. Then by using Û = IM+1 and

V̂ = P

[
IM −Ẽ

0(L−M)×M IL−M

]
, (15)

we obtain ÛEV̂ = [ IM 0M×(L−M) ] and ÛF V̂ = [ Â B̂ ] (This follows from
the property of

∑M
j=1 E(j) = eT

L, where E(j) denotes the j-th row of E). Thus
letting [ xT (k) ûT (k) ]T := V̂ −1ξ(k), V̂ −1 := [ T̂ T

x T̂ T
u ]T , the state equation is

obtained as⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) = Âx(k) + B̂û(k), x(k) ∈ T̂x{0, 1}L, û(k) ∈ T̂u{0, 1}L,

x(0) = x0 ∈ X0 :=
{

ζ ∈ T̂x{0, 1}M | eT
Mζ = 1

}
,

û(0) = û0 ∈ T̂u{0, 1}L.

(16)

Note here that in the proposed procedure, an initial-input set does not depend
on Ξ0 (see Lemma 5).
Step 3: Reduce the matrix B̂ to

B̂ = SB

[
Iα̂ 0
0 0

]
TB (17)

where α̂ := rankB̂, and SB, TB are nonsingular matrices. Furthermore, by defin-
ing [

ũT (k) ũT
e (k)

]
:=
[

T T
B1 T T

B2
]T

û(k),
[

T T
B1 T T

B2
]T

:= TB

where ũ(k) ∈ {−1, 0, +1}α̂, ũe(k) ∈ {−1, 0, +1}β̂, β̂ := L − M − m̂ (see Lemma
6), and using B = SB [ Iα̂ 0 ]T , we obtain from (16)

⎧⎪⎨
⎪⎩

x(k + 1) = Âx(k) + Bũ(k),

x(k) ∈ T̂x{0, 1}L, ũ(k) ∈ TB1T̂u{0, 1}L,

x(0) = x0 ∈ T̂xΞ0, ũ(0) = ũ0 ∈ TB1T̂u{0, 1}L.

(18)

Step 4: If input variables ũ(k) are three-valued variables, which consist of
elements −1, 0 and +1, then transform ũ(k) into binary variables by using
the relation between state/input variables and ξ as follows. First, let ũ(s)(k),
s = 1, 2, · · · , α̂ denote each element of ũ. Then ũ(s)(k) is expressed as

ũ(s)(k) =
∑
i∈I

δi(k) −
∑
j∈J

δj(k) ∈ {−1, 0, +1} (19)

where I, J ∈ Ia and I
⋂

J = ∅. Next, elements x(p)(k), p = 1, 2, · · · , M ,
of the state variable x are expressed as x(p)(k) =

∑
l∈Lp

δl(k), where Lp is the
index set of nodes that have an arc from the node p (see the proof of Lemma 7).
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Applying x(p)(k) =
∑

l∈Lp
δl(k) to

∑
j∈J δj(k), we obtain

ũ(k)(k) =
∑
i∈I

δi(k) −

⎛
⎝∑

q∈Q
x(q)(k) −

∑
r∈R

δr(k)

⎞
⎠

= −
∑
q∈Q

x(q)(k) +

(∑
i∈I

δi(k) +
∑
r∈R

δr(k)

)
(20)

where Q is an appropriate integer set, R ⊆ Ia, and u(s)(k) :=
∑

i∈I δi(k) +∑
r∈R δr(k) of (20) are binary variables. By executing the above operation for

s = 1, 2, · · · , m̂, we obtain

ũ(k) = Âux(k) + u(k) (21)

where u(k) ∈ {0, 1}α̂, and Âu is some matrix (see Lemma 7).
Step 5: In (18), replace x(k) ∈ T̂x{0, 1}L by x(k) ∈ {0, 1}M (see Lemma 4),
x(k) ∈ {0, 1}M by x(k) ∈ RM and 0M×1 ≤ x(k) ≤ eM (see Lemma 8). Then
from Step 4 we obtain⎧⎪⎨

⎪⎩
x(k + 1) = Ax(k) + Bu(k), 0M×1 ≤ x(k) ≤ eM ,

x(k) ∈ RM , u(k) ∈ {0, 1}α̂,

x(0) = x0 ∈ X0, u(0) = u0 ∈ {0, 1}α̂

(22)

where A := Â + BÂu.
Note here that the computation cost of the proposed procedure is very small,

since there does not exist iteration in all steps of the proposed procedure.
Next, several facts that are given in the procedures will be proven.
First, it is proven that a linear state equation obtained in Step 2 has binary

state and input variables.

Lemma 4. Consider a linear state equation (18) obtained in Step 2. Then the
state variable x(k) and the input variable û(k) are binary variables.

Proof. From (15) in Step 2, the following relation holds:

V̂ −1ξ(k) =
[

IM Ẽ
0(L−M)×M IL−M

]
P−1ξ(k)

=
[

E[
0(L−M)×M IL−M

]
P−1

]
ξ(k) =

[
x(k)
û(k)

]
.

The input variable û(k) is the binary variable, because P−1 is also the permu-
tation matrix. Furthermore, from E ∈ {0, 1}M×L and eT

Lξ(k) = 1 (see the proof
of Lemma 1), the state variable x(k) = Eξ(k) is a binary variable. 
�

Next, it is shown that in Step 2 an initial-input set does not depend on Ξ0.
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Lemma 5. V̂ −1Ξ0 transformed from Ξ0 is equivalent to a combination of X0
of (16) and û(0) = û0 ∈ T̂u{0, 1}L.

Proof. Noting here that eT
LV̂ = [ eT

M 01×(L−M) ] holds, the following relation
holds:

V̂ −1Ξ0 =
{

V̂ −1η ∈ V̂ −1{0, 1}L | eT
LV̂ V̂ −1η = 1

}
=
{

[ ζT ûT
0 ]T ∈ V̂ −1{0, 1}L | eT

Mζ = 1
}

.

Therefore, by using V̂ of (15), the equality constraint eT
Lη = 1 is transformed

into the initial-state constraint eT
Mζ = 1, which does not depend on û0. 
�

Furthermore, it is shown that TBû(k) in Step 3 is the three-valued variable.

Lemma 6. TBû(k) (= [ ũ(k)T ũe(k)T ]T ) in Step 3 is the three-valued variable,
which consists of elements −1, 0 and +1.

Proof. Consider the matrix pencil −F + zE. From Step 1, in the case of z = 1,
the matrix −F + E is an incidence matrix. So in the case of z = 1, the
matrix pencil [ zI − Â − B̂ ] obtained via the transformation of Step 2,
is also the incidence matrix of some directed graph, which one-to-one corre-
sponds to a given finite automaton, because x(k) and û(k) are binary vari-
ables. Then the matrix −B̂ does not depend on z ∈ C, and has the struc-
ture of an incidence matrix, i.e., elements B̂(i,j), j = 1, 2, · · · , L − M of
each column of B̂ ∈ {−1, 0, +1}M×(L−M) are B̂(Îj ,j) = −1, B̂(Ĵj ,j) = 1 and
B̂(i,j) = 0, i �= Îj , Ĵj , where Îj , Ĵj are some nonnegative integers. From
the structure of B̂, (17) can be derived by using the addition and the sub-
traction of column vectors or row vector, and appropriate permutation. Here
SB ∈ {−1, 0, +1}M×M , TB ∈ {−1, 0, +1}(L−M)×(L−M) hold. Finally, noting that
eT

L−M û(k) ≤ 1 holds from eT
Lξ(k) = 1 and û(k) = [ 0 I ]P−1ξ(k) ∈ {0, 1}L−M ,

we obtain TBû(k) ∈ {−1, 0, +1}L−M. 
�
The following proves that ũ(k) ∈ {−1, 0, +1}m̂ can be transformed into the
binary variable.

Lemma 7. Using some transformation of coordinate, ũ(k) ∈ {−1, 0, +1}m̂ can
be expressed as (21).

Proof. From Lemma 6, ũ(s)(k) is expressed as (19). Using x(k) = Eξ(k), we
obtain x(p)(k) =

∑
l∈Lp

δl(k). Applying x(p)(k) =
∑

l∈Lp
δl(k) to

∑
j∈J δj(k),

we obtain (20). Using I ∩ J = φ and the structure of B̂, we can show that
u(s)(k) :=

∑
i∈I δi(k) +

∑
r∈R δr(k) of (20) are binary variables. By executing

the above operation for s = 1, 2, · · · , m̂, we obtain (21). 
�
Step 5 is proven as follows. First, by Step 4 and Lemma 4, (18) can be rewritten
as ⎧⎪⎨

⎪⎩
x(k + 1) = Ax(k) + Bu(k),

x(k) ∈ {0, 1}M , u(k) ∈ {0, 1}α̂,

x(0) = x0 ∈ X0, u(0) = u0 ∈ {0, 1}α̂.

(23)
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Next, it is proven that x(k) ∈ {0, 1}M can be replaced by x(k) ∈ RM , 0M×1 ≤
x(k) ≤ eM , and x(0) = x0 ∈ X0, using following lemma.

Lemma 8. Suppose that αi, i = 1, 2, · · · , d, are intergers. Then the following
statements are equivalent:

(i) δ0 =
d∑

i=1

αiδi, δi ∈ {0, 1}, i ∈ {0, 1, · · · , d},

(ii) δ0 =
d∑

i=1

αiδi, δi ∈ {0, 1}, i ∈ {1, 2, · · · , d}, 0 ≤ δ0 ≤ 1.

Proof. Noting that each δi is the binary variable, δ0 ∈ {0, 1} follows from the
inequality constraint 0 ≤ δγ ≤ 1. 
�

In Step 5, δ0 corresponds to each element of x(k + 1), and δi corresponds to
each element of x(k), u(k). Therefore, by applying Lemma 8 to each row of the
state equation in (23), we conclude that, under u(k) ∈ {0, 1}α̂, x(k) ∈ {0, 1}M is
equivalent to x(k) ∈ RM , 0M×1 ≤ x(k) ≤ eM , and x(0) = x0 ∈ X0. From these
results, (22) holds.

Finally, we arrive at the following main theorem.

Theorem 1. Suppose that an implicit system ΣI of (6) satisfying assumptions
A1 and A2, which expresses a finite automaton (M ≤ L), is given. Then a
system model (22) derived by the proposed procedure is a minimal representation
of ΣI , i.e., Σmin

target.

Proof. By Lemma 3, we only have to prove that Step 2 ∼ Step 4 of the proposed
procedure corresponds to a TB-equivalence transformation. The transformation
in Step 2 is the T -equivalence transformation using Û = IM and V̂ of (15). The
transformation in Step 3 is the T -equivalence transformation from (16) to the
state equation

x(k + 1) = Âx(k) +
[

B 0M×β̂

] [ ũ(k)
ũe(k)

]
(24)

which includes the redundant variable ũe(k), by using

U3 := IM , V3 :=
[

IM 0
0 T−1

B

]
.

The transformation of (21) in Step 4 is the T -equivalence transformation for
(24), by using

U4 := IM , V4 :=

⎡
⎣ IM 0 0

Âu Iα̂ 0
0 0 W

⎤
⎦

where W ∈ Rβ̂×β̂ is some nonsingular matrix. Furthermore, since u(k) is the
binary variables, it is also the TB-equivalence transformation. So the whole
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transformation in Step 2 ∼ Step 4 of the proposed procedure corresponds to
a TB-equivalence transformation, and we obtain ΣB. Therefore, Step 5 produces
Σtarget, whose dimension of the binary input vector is the same as that of ΣB.
This implies that it is Σmin

target. 
�

5 Conclusions

This paper has proven that for a finite automaton expressed by an implicit
system model, our method gives a minimal representation in the sense that it
has the smallest number of binary input variables over all linear equivalence
transformations on R that preserve the input binary property. What we would
like to stress in this paper is that the obtained result provides a systematic
modeling method of finite automata for control of hybrid/discrete systems, which
can guarantee the minimum number of the binary variables representing finite
automata in the above sense. As far as we know, no such results have been
obtained so far. Also, note that the obtained minimal representation may be
also useful for automata theory. However, there are many open problems in
this line. In this paper, we restrict the class of transformations. So one of the
significant future topics is to find a modeling method for realizing the minimality
of the binary variables in a more rigorous way.
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Abstract. Currently systems, which are desired to control, are becom-
ing more and more complex and classical control theory objectives, such
as stability or sensitivity, are often not sufficient to cover the control
objectives of the systems.

In this paper it is shown how the dynamics of a pulsed welding process
can be reformulated into a timed automaton hybrid setting and subse-
quently properties such as reachability and deadlock absence is verified
by the simulation and verification tool UPPAAL.

1 Introduction

The lack of analytical methods for design of hybrid control systems can often
result in excessive testing and validation, which is time consuming and even
then might not guarantee that the system will meet the control objectives under
all operating conditions. To overcome the design and implementation problems
which may result from the deficient use of an analytical approach, a notation of
hybrid automaton has been introduced in [1].

Most algorithmic verification and synthesis tools for hybrid systems today are
limited to systems exhibiting simple continuous dynamics, such as piecewise-
affine hybrid systems[2,3] or timed automata[4,5,6]. One of the main objective
in [7] was to enlarge this class of systems to all linear controllable systems, which
is continued in this paper by showing how this theory apply in practice to the
Gas Metal Arc Welding (GMAW) process. By restricting the observations for
the system to a finite set of partitions, enables a bisimulation of the system to
be modeled using simple timed automata.

With a bisimilar model of the system built with the use of timed automata,
it is possible to use a verification tools such as UPPAAL to simulate and verify
different system properties. Especially questions such as reachability, liveliness
and possibilities of deadlocks are new questions, which are of great interest to the
designer of the supervisory system and which previously needed to be guessed
by simulations or ad-hoc methods.

1.1 Gas Metal Arc Welding

In the GMAW process the electrode is consumable and is fed continuously at
a certain rate by the pistol to the welding pool. The weld is protected from

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 357–370, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the surrounding air by a gas which is also fed by the pistol. Normally argon or
argon/CO2 is used as shielding gas. The current between the workpiece (cathode)
and the welding pistol (anode) causes an arc and an electromagnetic field. The
strong current makes the electrode melt and drop into the welding pool.

The GMAW process can be divided into three modes; short arc mode, spray
mode and a mixed mode of the two, of which only the spray mode will be
considered in this paper. In spray mode the electrode should never touch the
workpiece in order to obtain the best weld quality.

The melting process can be described by two contributions, anode heating
and ohmic heating. When the current rises, the temperature of the arc rises and
the tip of the electrode is heated. The energy from the arc, which contributes
to melting the electrode, is known as anode heating. The second contribution to
the melting process is the ohmic heating, which is the heat energy resulting from
the ohmic resistance in the electrode. The high current also creates a higher
electromagnetic field which contributes, together with the gravitational force, to
detachment of the drop.

While the tip is melting, a liquid drop of metal is formed. This drop is detached
from the tip of the electrode when the surface tension on the drop, is too small
to resist the gravitational- and the electromagnetic forces. Also the aerodynamic
drag force from the shielding gas, contributes to the detachment of the drop.
After detachment, a small liquid drop is left at the tip of the electrode and the
process repeats.

A submode of the spray mode is the pulsed GMAW method, which is similar
to spray mode, but in addition to the steady current between the cathode and
the anode, current pulses causes the drop to detach in intervals. The advantage of
using pulsed GMAW is a lower heat development in the weld pool. Furthermore
the current pulses makes it possible to control the drop detachment [8].

1.2 Weld Quality Criteria

As described in the introduction, one of the objectives of this paper is to inte-
grate a control structure for the GMAW process into a hybrid framework. The
nature of the GMAW process makes classic control theory specifications, such as
stability, inadequate. Instead control objectives focusing on obtaining the best
weld quality is desirable. The quality of a weld depends on several factors, which
will be discussed in the following.

Basically a high-quality weld is characterized by a good penetration, which is
essential for a strong weld, as it allows a larger area of the workpiece edges to
join.

A good penetration is a necessary, but not a sufficient, condition for a good
weld. If the work piece becomes too hot and cools down too quickly, the material
can loose some of its characterizing properties, e.g. heat-treated metals or metal
alloys, such as stainless steel, can loose its characterizing properties. [9, ch. 5]
The facts described in the latter are related to the weld pool and are the mini-
mum criteria, which must be fulfilled to obtain a high-quality weld and is defined
as direct weld quality influencing factors. More indirectly an additional number
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of factors influences the quality of a weld. The following quality influencing fac-
tors will be referred to as indirect quality influencing factors. Specific for pulsed
GMAW welding, the quality of the weld is influenced by the control of the drop
detachment, meaning that the current pulses should ideally detach one drop per
pulse to obtain the best weld possible. It is also desirable to obtain a uniform
drop size, in order to achieve a homogeneous weld. An additional control objec-
tive is to keep a short arc length, since it is easier for the operator to work with.
Moreover the energy input into the workpiece should be minimized.

The indirect quality influencing factors are related to the control of the elec-
trode and the arc.

1.3 Delimitation of Control Tasks

As described in the latter the control can be separated into control of the weld
pool, and control of the arc and electrode. As it is only hand held welding which
will be the focus on this paper, the weld pool control is handled by the operator.
Figure 1 describes the control structure [8]. The outer control loop is handled by
the operator and the inner loop is handled by the welding machine. The rest of

Outer Control 
(Weld pool) 

Operator

Inner Control 
(Electrode and 

Arc)

GMAW 
process

Outer control settings Inner control settings

Fig. 1. Control structure for the GMAW process

this paper will concentrate on controlling the indirect quality influencing factors
in the inner loop.

2 System Dynamics

The pulsed GMAW process is governed by the pulsing current, which is seen in
figure 2(a). In order to control the pulsing, the base period, which is the time
interval in which the electrode is melted, is variable, thus it becomes possible
to control the amount of melt detached in each pulse. If the arc length between
the work piece and the electrode becomes too big or too small, as shown in
figure 2(b), then it is likewise possible to adjust the arc length, i.e. if the arc has
become too small then by decreasing the base period, thus increasing the amount
of electrode consumed the arc length will become longer. This is however done
on the cost of a smaller drop size and is only possible within a small distance,
the main part is still controlled manually.
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I

time

Full period

Base period Pulse period

Base period is variable

Pulse period is fixed

0t 1t 2t

(a) Pulse by pulse method.

{ar al l−

{ar al l−arl

( )a

( )b

( )c

Arc

Electrode

(b) Arc length control scenarios.

Fig. 2. Left figure: The pulse by pulse method - the base current is fixed but the base
period is variable. Right figure: The different arc length control scenarios - (a) the arc
is too long (b) the arc is too short (c) the arc has the desired length lar.

The pulse condition can then be described as; a pulse should occur if the arc
length is below the reference and the drop size is above minimum or if the arc
length is longer than the reference and the drop size is bigger than the maximum,
which can be written as:

Pulse if:
(la < lar ∧ xmb ≥ xmb min)

∨
(la > lar ∧ xmb ≥ xmb max) (1)

Where la is the arc length, lar is the arc length reference and xmb is the current
drop size with the indices min and max providing the bound on the desired
drop size. The values of the bound can be regarded as weighting parameters for
the controller design.

The weld process controller can thus be depicted as in figure 3, where an
additional mode; Short Circuit Handling, is shown, which will not be discussed
further in this paper. In the following the overall control strategy and dynamics
of the underlying process will be presented. The model used in this paper, is
derived in [8].

Drop Dynamics. The drop dynamics, i.e. the drop growth, can be expressed
as the length of melted electrode, which is a function of the welding current and
the electrode length:

xm =

t1∫
t0

vm(I, ls)dt (2)

where vm is the velocity of melted electrode given by

vm = k1I + k2I
2ls (3)

where ls = 0.0115, k1 = 3.6733 · 10−4 and k2 = 6.6463 · 10−4 for the considered
GMAW welding application.



Hybrid Control and Verification of a Pulsed Welding Process 361

Arc Length
Control

Metal 
Transfer 
Control

Current 
Control

GMAW 
Process

rI tU

wI al

arl

Supervisor

Short circuit 
handling

Fig. 3. Supervisory system for the GMAW process

Arc Length Dynamics. The governing equation for the arc length dynamics
can be seen in (4).

l̇a = k1I + k2I
2 · (lc − la) − ve (4)

where k1 and k2 are constants, lc is the length from the contact tip to the
workpiece, la is the length of the arc (ls = lc − la) and ve is the velocity of the
electrode.

Equation (5) shows the current dynamics.

İ = − 1
τi

I +
1
τi

Ir (5)

where τi = 66.7μs is a constant that characterizes the dynamics. I is the welding
current and Ir is the current reference.

3 Hybrid System Modeling

The GMAW system, as described in the previous two sections, can be formulated
as the following hybrid automaton using a commonly used formalism for hybrid
systems, as presented in [1,10], with the dynamics in each state as described in
the previous section. All transitions have a label, which is used for synchroniza-
tion and a reset map, which in the “Drop detachment” case is the amount of
melted wire which is set to xm := 0, and in the “Pulse” and “Pulse done” case
it is the current, which is set to the pulse and base current respectively.

As previously mentioned, the goal of this paper is to reformulate the hybrid
system into a network of timed automata in order to expand the possibilities
of verifying the system properties using an automated verification tool, such
as UPPAAL[11]. This is essentially done because even though the system is
exhibiting a nice and stable performance in each state, then it is possible by
the right combination of switching to render the system unstable, of which a
classical example can be seen in [12].
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mx  :=0
Drop detachment pulse

mx  :=0

Drop detachment pulse

shortPulse
pulseI:=I

mx  :=0
Drop detachment base

pulseI:=Ibase
I:=I

base
I:=I

Ignition Pulse done

PulsePulse done

Arc LengthShort Circuit Metal Transfer

Fig. 4. Hybrid automaton for the controlled GMAW process, divided into the three
control modes: Arc length, Metal transfer and Short circuit

3.1 Shift Register Form

In order to rewrite the dynamics of the system into shift register form, it is first
put on Brunovsky normal form[7], for which a controllable linearized form of the
system is needed.

To linearize equation (4) it is first rewritten into an operating point, [Ī, l̄a],
and deviations from this, [Î(t), l̂a(t)], where the cubed current term is split into
a varying part and an operating mode part given by Iop:

l̇a = k1

(
Ī + Î (t)

)
+ k2

(
Iop ·

(
Ī + Î (t)

)
·
(
lc −

(
l̄a + l̂a (t)

)))
(6)

The linearization is done around the point where ve is equal to vm thus ve can be
omitted from this equation. After multiplying (6) out and neglecting the product
of time varying terms, an expression of the constant terms can be found as

k1Ī + k2 ·
(
Iop ·

(
Ī ·

(
lc − l̄a

)))
(7)

which, subtracted from (6), gives

l̇a = Î (t) ·
(
k1 + k2IopĪ ·

(
lc − l̄a

))
− l̂a (t)

(
k2IopĪ

)
(8)

The linearized system can now be written in state space form as

[
l̇a

İ

]
=

[
−k2IopĪ k1 + k2IopĪ(lc − la)

0 − 1
τi

] [
la

I

]
+

⎡
⎣ 0

1
τi

⎤
⎦u (9)

Although there are several operating points for the system only a single point
will be used throughout this paper. This is done in order to simplify the presen-
tation and is sufficient to prove the concept of the method.

The operating point used for the system is: Iop = Ī = 175A, lc = 15mm, l̄a =
3.5mm, which inserted into (9) and discretized using ZOH and a time step of
0.1s gives (10). [

l̇a

İ

]
=

[
0.1306 0.0020

0 0

] [
la

I

]
+

[
9.5612
1.000

]
u (10)
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The controllability matrix for this system has full rank, which shows that the
system is controllable, thus the condition for getting the system into Brunovsky
normal form is satisfied.

Following the method described in [13] the system is transformed into the
normal form shown in (11) through the state transformation, x = Tz:

z(t + 1) = T−1ATz(t) + T−1Bu(t) ⇔
z(t + 1) = Azz(t) + Bzuz(t) (11)

where

Az =
[

0 1
α1 α2

]
=

[
0 1
0 0.3659

]
, Bz =

[
0
1

]
, T =

[
0.392 0.143
−2.73 0.001

]

The final step for getting the system into shift register form is to get the bottom
row of the Az matrix to be zeros, which is done through the following feedback
transformation

uz = u + α1z1 + α2z2 =
[
F
1

]T
⎡
⎣ z1

z2
u

⎤
⎦ (12)

which gives the final system on shift register form as

z(t + 1) = Ãzz(t) + B̃zuz(t) (13)

where

Ãz =
[

0 1
0 0

]
, B̃z =

[
0
1

]
, uz =

[
F
1

]T [
z
u

]
, F =

[
0

0.366

]T

, T =
[

0.392 0.143
−2.73 0

]

The principle of the above computations is shown in figure 5.

3.2 State Space Partitioning

A discrete state space Z
2 of R

2 is now introduced, as described in [7], in order to
form the space in which the shift-register form system operates. The 3 domains in
which the system operates is, with reference to figure 4, the Arc Length Control
(q1), the Metal Transfer Control (q2) and the Short Circuit Control (q3).

• Domains

Dom(q1) = {(la, I) ∈ R
2| 0 ≤ la ≤ 0.01 ∧ 40 ≤ I ≤ 60}

Dom(q2) = {(la, I) ∈ R
2| 0 ≤ la ≤ 0.01 ∧ 290 ≤ I ≤ 310}

Dom(q3) = {(la, I) ∈ R
2| 0 ≤ la ≤ 0.01 ∧ 290 ≤ I ≤ 310}

where la [m] and I [A]. The values are specified from the normal operation of a
GMAW welding machine.
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F

System
(shift register)

+
Tzuu z x

Fig. 5. Block diagram of the shift register transformation

These domains are then transformed into shift register form by [z1 z2]
T =

T [la I]T which gives the new domains

Dom(q1) = {(z1, z2) ∈ R
2| 0 ≤ z1 ≤ 8596 ∧ 0 ≤ z2 ≤ 0.0643}

Dom(q2) = {(z1, z2) ∈ R
2| 4.18 · 104 ≤ z1 ≤ 4.44 · 104 ∧ 0.307 ≤ z2 ≤ 0.328}

Dom(q3) = {(z1, z2) ∈ R
2| 4.18 · 104 ≤ z1 ≤ 4.44 · 104 ∧ 0.307 ≤ z2 ≤ 0.328}

The relation between the new domain space and the original one can be seen from
figure 6, where the two regions of interests are marked, one being to the left in
I ∈ [40 − 60], which is the base period, and the region to the right, I ∈ [290 −
310], being the pulse period. As it is seen from the figure then the domains of
interest are no longer square. This deficiency is however remedied by relaxing the
arc length constraint, which again makes the spaces of interest squares.

As described in [7] the partitioning needs to be equidistant, which would seem
rather cumbersome for these domains due to the large ratio between z1 and z2,
thus a scaling transformation is introduced, Si, which transform each domains

1z

2z

: 40 60I −

400 AI =

0 AI =

0 m

0.005 m

0.01 m

a

a

a

l

l

l

=
=
=

: 290 310I −

44.4 10⋅

0.328

Fig. 6. Plot of state transformation: [la I ]T �→ z
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into a sufficiently equiproportional domain. In this case it is only desirable to
divide the spaces into a 3 by 3 grid to prove the concept, thus a transformation
that scales the 3 domains into squares are used. Following this the drop forming
dynamics is modelled as a 5 state timed automaton as shown in figure 7. The
shifting time between the drop sizes dependents only on the current. Estimated
shifting values for different current intervals are shown in table 1. The drop
formation always starts in state 1 and will propagate through the states over
time. State 3 is the reference state, i.e. the state in which it is desirable to do a
drop detachment.

1 2 53
ref

4

Reference drop size

2partIx time≥
2partIx time≥

2partIx time≥
2partIx time≥

1partIx time≥
1partIx time≥

1partIx time≥
1partIx time≥

3partIx time≥
3partIx time≥

3partIx time≥
3partIx time≥

1I part==

2I part==

3I part==

1I part== 1I part== 1I part==

2I part== 2I part== 2I part==

3I part== 3I part== 3I part==

Fig. 7. The drop dynamics timed automaton. The automaton structure for the drop
dynamics is the same in each domain q1 and q2.

Table 1. Estimated time between drop size partitions in dom(q1) to the left and
dom(q2) and dom(q3) to the right

Current Current Time Between Current Time Between
Partition Interval [A] Partitions [s] Interval [A] Partitions [s]

1 40.0 - 46.6 9.9 10−3 290 - 296.6 3.9 10−4

2 46.6 - 53.3 8.0 10−3 296.6 - 303.3 3.7 10−4

3 53.3 - 60.0 6.6 10−3 303.3 - 310 3.5 10−4

3.3 Control System Imposed on Z
2

In section 3.2 a new state space Z
2 was introduced. Utilizing that the system

is in shift register form, insures a well defined controlled dynamics between
the partition blocks. This means that under appropriate inputs the blocks will
move into other partitions of equal division. To insure such appropriate inputs,
a control law is needed.

The control law is constructed as described in [7] by starting with (11) and
realizing that from a given position (z1, z2)=(p, q) the reachable set in one step
is (z1, z2)=(q, r), where r ∈ Z is dependent on the input, thus it can be seen
that the control law only has to ensure that z2 will be within a control section
of height δ, which is ensured by the control law:

uz(k) = z2(k) + δy(k) , y ∈ Z (14)
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which inserted into (11) results in the following system:

z1(k + 1) = z2(k)
z2(k + 1) = z2(k) + δy(k) (15)

which is not on shift register form any longer. This is however easily remedied
by introducing the control law:

ε(k) = z2(k) + δy(k) (16)

Which results in the system given by[
zε1(k + 1)
zε2(k + 1)

]
=

[
0 1
0 0

]
z(k) +

[
0
1

]
ε(k) (17)

4 Example of Implementation in UPPAAL

UPPAAL is a validation- and verification tool[11,14]. The tool consists of two
main parts: A graphical user interface and a model checker engine. The idea
in this paper is to model a system using timed automata, simulate it and then
verify the system properties on it.

A system consists of a network of automata which are running in parallel. It
is possible to step through the system, in order to check if the system behaves as
intended and the system can be checked by the verifier to verify that it satisfies
certain temporal specifications, such as if a certain state is reachable or if there
is any deadlocks in the system. More generally speaking, the verifier can check
all possible dynamical behaviors of a system[14].

4.1 The Controlled GMAW Process in UPPAAL

An overview of the implemented system is shown in figure 8, where the supervisor
automaton controls the underlying automata, the drop dynamics automata and
the GMAW dynamics automata. The supervisor decides by its two transitions
which control mode the GMAW process should be in by a parallel composition
with a shared label space in the sense of Milner[15], which is illustrated in figure 8.
As pointed out in the previous section then the GMAW dynamics is only parti-
tioned into 9 parts. This leads to a timed automaton for the arc length dynamics
as shown in the middle of figure 8 with some of the possible transitions displayed.
The automaton consists of 9 states, where each state represents a partition of the
state space. The transitions between the states are decided by the shift register
form, which is derived in the previous section.

In order to include disturbances into the model a disturbance automaton is
included as shown in figure 9(a). It is designed to give a disturbance in the arc
length in the base period. If the disturbance automation enables a disturbance
(increase/decrease the arc length), it will affect the GMAW dynamics automaton
as shown in figure 9(b).
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1 2 53
ref

4

GMAW Dynamics GMAW Dynamics

Supervisor

Metal transfer 
control mode
(pulse period)

Arc length 
control mode
(base period)

 Drop Dynamics Drop Dynamics

1 2 3
ref

4

Pulse!

Pulse done!

Pulse?

Pulse done?

Fig. 8. The figure illustrates that it is possible to be in two different control modes; arc
length control mode and metal transfer control mode. The supervisor controls which
of the two modes to be in. In each control mode the processes are running in parallel.

4.2 Model Checking

It is possible in UPPAAL to use the model checker to get answers on specific
questions, e.g. to check if there are deadlocks in the system. The deadlock check
can be seen as a basic check of the systems behavior. By checking reachability and
liveness properties the performance of a supervisor or controller can be analyzed.
In UPPAAL the query language used is a simplified version of Computation Tree
Logic (CTL)[16].

In the following specific questions regarding the GMAW process will be dis-
cussed.

Do deadlocks exists in the system?
Query:
A[] not deadlock
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increase arc length!

decrease arc length!

(a) Disturbance automaton

1z

2z

decrease arc length?

Increase arc length?

(b) Effect of a disturbance

Fig. 9. (a) The disturbance automaton. (b) The two thick arrows shows the effect of
a disturbance from the disturbance automaton to the GMAW dynamics.

Numerous factors can result in a deadlock in the system; A supervisor design
flaw, faulty implementation etc.
Answer:
The property is satisfied.

Do the supervisor continuously cycle between the base period and
the pulse period?
Query:
Supervisor.Arc_length --> Supervisor.Metal_transfer

Supervisor.Metal_transfer --> Supervisor.Arc_length

To guarantee the basic operation of the supervisor, a continuously cycle
between the base period and the pulse period should take place. The first
expression checks if the path between the states Supervisor.Arc length and
Supervisor.Metal transfer will eventually be taken. The second expression
checks if the path back from the state Supervisor.Metal transfer to the state
Supervisor.Arc length will eventually be taken.
Answer:
The question is satisfied

Is the duration of the pulse period as specified?
Query:
A[] Supervisor.Metal_transfer imply x<=600

The duration in the pulse period is set to 600 clock cycles. This question
checks if it is possible for the supervisor to jump from metal transfer control
to arc length control before the specified time.
Answer:
The question is satisfied

The first question checks if there is some states from which the system cannot
switch away from, which it is found that there are not. Secondly the liveliness of
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the supervisor is tested. This test can be seen as a check of the supervisor shown
in figure 3. It is further interesting to verify if the system is staying too long in
the different states, which is tested in the third query, where the time spend in
the metal transfer state is tested. Similarly to the third query it could be tested
if the supervisor is switching too fast between the different states, which will
reveal if there is a possibility for Zeno behavior in the system.

5 Discussion

The objective of this paper was to show that it is possible to apply the theories
developed in [7] to a given process, in this case the Pulsed GMAW process.

As seen from section 3 it is possible to formulate the GMAW welding process
as a network of timed automata, which can be directly implemented in the
simulation and verification tool, UPPAAL, thus giving the possibility of posing
such questions as; is state A always reachable from state B or is it possible to
end up in a deadlock - Questions, which is impossible to answer with classical
control theory.
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Abstract. A self-triggered control task is one in which the task deter-
mines its next release time. It has been conjectured that self-triggering
can relax the requirements on a real-time scheduler while maintaining
application (i.e. control system) performance. This paper presents pre-
liminary results supporting that conjecture for a self-triggered real-time
system implementing full-information H∞ controllers. Release times are
selected to enforce upper bounds on the induced L2 gain of a linear feed-
back control system. These release times are treated as requests by the
system scheduler, which then assigns actual release times using But-
tazzo’s elastic scheduling algorithm. Preliminary experimental results
from a Matlab stateflow simulink model demonstrated a remarkable ro-
bustness to scheduling delays induced by real-time schedulers. These
results show that self-triggered controllers are indeed able to maintain
acceptable levels of application performance during prolonged periods of
processor overloading.

1 Introduction

Computer controlled systems are often implemented using periodic real-time
tasks. This approach can lead to significant over-provisioning of the real-time
system since task periods are determined by the worst case time interval assur-
ing closed loop system stability. In recent years, a number of researchers have
proposed aperiodic task models in which tasks are either event-triggered [1] or
self-triggered [2] controllers. Event-triggered control systems are systems whose
control tasks are triggered by some asynchronous “event” within the control
loop. These events are usually generated when an error signal crosses a speci-
fied threshold. The notion of event-triggered feedback [1] has appeared under a
variety of names, such as interrupt-based feedback [3], Lebesgue sampling [4],
asynchronous sampling [5], or state-triggered feedback [6].
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Except for relay or pulse-width modulated feedback, event-triggered feedback
can be impractical since it requires integrating an analog event detector into the
physical plant. A more pragmatic approach for implementing aperiodic feedback
is found in the self-triggered task model of Velasco et al. [2]. In self-triggered
systems, the control task determines its next release time based on samples of the
state gathered at the current release time. Self-triggered task models, therefore,
can be implemented in existing computer controlled system without the need for
any special analog event-detectors.

This paper presents experimental results examining the performance of a
self-triggered control system. Our system’s control tasks select sampling peri-
ods in a way that guarantees the closed-loop system’s induced L2 gain satisfies
a specified bound. We then consider a real-time system that schedules mul-
tiple self-triggered control tasks using traditional earliest-deadline-first (EDF)
scheduling and Buttazzo’s elastic scheduling algorithm [7]. Our implementa-
tion of Buttazzo’s scheduler relies on a utilization constraint similar to that
originally suggested by Chantem et al. [8]. Preliminary simulation results for a
Simulink/Stateflow model of a real-time system controlling three inverted pen-
dulums showed that the control system’s performance under self-triggering was
remarkably insensitive to the type of scheduler used by the real-time system.
While preliminary, these results strongly suggest that self-triggering can pro-
vide a valuable way of ensuring control system performance in cases where the
scheduler is unable to provide hard real-time guarantees on job completion.

2 Prior Work on Sample Period Selection

This section briefly reviews some of the prior work on sample period selection.
Sample period selection for aperiodic real-time systems requires a detailed analy-
sis of the system’s intersample behavior. This usually involves studying a can-
didate Lyapunov function as was done in Zheng et al. [9] for a class of nonlin-
ear sampled-data systems. Nesic et al. [10] used input-to-state stability (ISS)
techniques to bound the intersample behavior of nonlinear systems [10]. This
approach was used by Tabuada et al. [6] to estimate sampling periods for a class
of nonlinear event-triggered control systems.

All of the aforecited works selected sampling periods to preserve some measure
of the control system’s stability, whether this is asymptotic stability or input-to-
state stability. Applications, however, also need to ensure some minimum level
of control system performance. Early work concerning the co-design of control
systems and real-time systems viewed this as a schedulability problem in which
sampling periods were selected to solve the following optimization problem,

minimize: Penalty on Control Performance
with respect to: Sampling Periods
subject to: closed loop stability

task set schedulability

(1)

Early statements of this problem may be found in Seto et al. [11] with more
recent studies in [12] and [13]. The penalty function used in the above problem
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is often a performance index for an infinite-horizon optimal control. The problem
we face here, however, is that such performance indices [5] are rarely monotone
functions of the sampling period. So it can be very difficult to identify “optimal”
sampling periods for the above problem.

This paper uses Lyapunov techniques to select sampling periods that bound
the intersample behavior of the system. This is similar to the approaches in [10],
[9], and [6]. But rather than simply assuring closed loop stability, we select sam-
pling periods to adjust the induced L2 gain of the system. This approach allows
us to make the system responsive to variations in the intensity of the input dis-
turbances driving the system. In the presence of high-intensity disturbances, for
example, the system can reduce its gain to keep its output signal below some
specified threshold. In the presence of low-intensity disturbances, it can then
relax that gain and still ensure that the output remains below the same spec-
ified threshold. The variations in disturbance intensity are therefore mirrored
in variations of the system gain which in turn result in large variations in the
sampling period. This means that during periods of low disturbance intensity,
the average sampling period can be much longer than during periods of high
disturbance intensity. The bounds on intersample behavior ensuring a specified
L2 gain are discussed in section 4. Because our controllers enforce a specified in-
duced L2 gain, we confine our attention to linear full-information H∞ controllers
for which we can generate tight bounds on the system’s intersample behavior.

3 System Model

The real-time system considered in this paper consists of N dynamical systems
(called plants) that are controlled by N tasks running on a single processor.
Each task samples (S) the system state, computes a state feedback control,
and outputs that control to the plant through a zero-order hold (H). The state
xi : � → �n, of the ith plant satisfies the initial value problem,

ẋi(t) = Aixi(t) + B1iui(t) + B2iwi(t) (2)
xi(0) = xi0

for t ≥ 0 and i ∈ N = {1, . . . , N}. The function wi : � → �n is an uncon-
trolled and bounded disturbance. The function ui : � → �m is the control input
generated by the ith real-time control task. Ai, B1i, and B2i are appropriately
dimensioned matrices.

The ith plant’s control, ui, is generated by task i ∈ N . Task i is associated
with a sequence of release times, {ri[j]}∞j=1. The time ri[j] ∈ � is that time
when the jth job of task i is available for execution. The task set is said to be
synchronous if ri[0] is the same for all i ∈ N . The period for the jth job of
task i is denoted as

Ti[j] = ri[j + 1] − ri[j] (3)

If Ti[j] is constant for all j = 1, . . . , ∞, then the task is said to be periodic. A
task that is not periodic is said to be sporadic.
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The task set is associated with a scheduling function, σ : � → N . This
function takes the value σ(t) = i ∈ N at time t when task i is executing at
that time. The finishing time for job j of task i is denoted as fi[j] ∈ � and is
formally defined as

fi[j] = max
{

t ∈ � :
i = σ(t+), i �= σ(t−)
ri[j] ≤ t ≤ ri[j + 1]

}
(4)

where σ(t+) = limτ↑t σ(τ) and σ(t−) = limτ↓t σ(τ) are the left and right hand
limits of σ at t, respectively.

The ith task’s worst-case execution time (WCET) is denoted as Ci ∈ �.
The task’s relative deadline is denoted as Di ∈ �. A task set is said to be
schedulable if there exist sequences of release times {ri[j]}∞j=1 and a scheduling
function σ such that

Di ≥ fi[j] − ri[j] ≥ Ci (5)

for all i ∈ N and j = 1, . . . , ∞.
The ith task computes the control ui for the ith plant. This control is assumed

to be a state feedback control law of the form

ui(t) = −kT x(ri[j]) (6)

for t ∈ [fi[j], fi[j + 1]) where j = 1, . . . , ∞. Note that the control output is
constant between finishing times and the value of that constant is determined
by the system state at the job’s release time, ri[j].

4 Sample Period Selection for Induced L2 Gain

This section states the paper’s main result concerning sample period selection
enforcing a specified bound on the closed-loop system’s induced L2 gain. We
confine our attention to the behavior of a single plant between consecutive release
times. We therefore drop the task index, i, without a loss of generality.

We assume, for the purpose of analytic simplicity, that the control ui(t) satis-
fies equation 6 for all t between consecutive release times rather than consecutive
finishing times. This simplification is done for analytical convenience at the ex-
pense of some loss in generality.

The following theorem provides conditions which guarantee that the induced
L2 gain from the plant’s disturbance w to its state be less than a specified
positive number, γ.

Theorem 1. Let G denote the sampled-data control system given by equations 2
and 6. Assume the control gain is kT = −BT

1 P where P is a positive symmetric
matrix that satisfies the algebraic Riccati equation,

0 = AT P + PA + I − P

(
B1B

T
1 − 1

γ2 B2B
T
2

)
P (7)

for some γ > 0.
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Let xr denote the system’s state at release time r[j]. If the system state x(t)
satisfies

[
x(t)
xr

]T [
−I + PB1B

T
1 P −PB1B

T
1 P

−PB1B
T
1 P 0

] [
x(t)
xr

]
≤ −‖x(t)‖2 (8)

for all t ∈ [r[j], r[j + 1]) and j = 1, . . . , ∞, then the induced L2 gain of G is less
than γ.

Proof. The directional derivative of V = xT Px is

V̇ =
∂V

∂x

(
Ax − B1B

T
1 Pxr + B2w

)
Using the standard completing the square argument and the Riccati equation 7,
we rewrite the above equation as

V̇ = xT Xx − 1
γ2 xT PB2B

T
2 Px + 2wT BT

2 Px

= xT Xx −
∥∥∥∥γw − 1

γ
BT

2 Px

∥∥∥∥
2

+ γ2‖w‖2

≤ xT Xx + γ2‖w‖2

where

X =
[
−I + PB1B

T
1 P −PB1B

T
1 P

−PB1B
T
1 P 0

]
, x =

[
x
xr

]
(9)

Note that if

xT Xx ≤ −‖x‖2

then the above inequalities imply that

V̇ (x) ≤ −‖x‖2 + γ2‖w‖2

which is sufficient to ensure that the induced L2 gain of G is less than γ ♦

Remark: The matrix X in equation 9 can be viewed as a collection of rank-
one perturbations of the block diagonal matrix diag(−I, 0). We can use this
observation to show that xT Xx ≤ λ1(kT (x(t) − xr))2 where λ1 is the largest
eigenvalue of X . So if we can ensure that λ1(kT (x(t) − xr))2 < ‖x(t)‖2, then
we can again guarantee that the conditions in theorem 1 are satisfied. This is a
more conservative condition than the one in theorem 1 and it is similar to the
switching condition used in [6]. Therefore by using an analysis similar to that
in [6] we can show that the “sampling period” is bounded below by a positive
constant. In general, however, this lower bound can be an extremely conservative
estimate of the sampling period.
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After the task’s release, we’re interested in approximating the interval over which
we can guarantee the condition in theorem 1. This time interval can be taken
as an estimate of the task’s next release time, T r, which we treat as the task
period. A reasonable approximation for this period is obtained by integrating
the differential equation

ẋ(t) = Ax − B1B
T
1 Pxr (10)

x(r) = xr

Let eAt be the transition matrix for A, so we can easily see that

x(t) =
[
eAt

(
I +

∫ t

0
e−AsBT

1 ds

)]
xr = Φ(t)xr (11)

Because A and B1 are known, we can evaluate the matrix function Φ(t).

5 Schedulability with Deadlines Less Than Periods

The preceding section suggests that if our task retriggers itself so equation 8 is
always satisfied, then our sampled-data system can guarantee the system’s closed
loop gain is less than γ. This may only happen, however, if the released tasks
can meet their real-time deadlines. Earliest deadline first (EDF) schedulers are
frequently used in periodically triggered real-time control systems. In the self-
triggered system, however, release times will vary depending upon the system’s
current state. As a result we need to consider a scheduler that can adjust its
task periods while assuring EDF schedulability and the “minimum” task period
required by the application.

The elastic task model of Buttazzo et al., [7], is a popular method of adjust-
ing task periods. The elastic task model uses a mechanical analogy to develop
an algorithm for adjusting task periods. This analogy views tasks as being inter-
connected by “springs”. The length of the spring represents the task’s utilization
and the spring constant represents that task’s resistance to changing its utiliza-
tion. Buttazzo’s elastic task model was extended by Caccamo et al. [14] to handle
uncertainties in computation time. A later paper [15] showed how to modify But-
tazzo’s algorithm to handle additional resource constraints. Hu et al [16] showed
that Buttazzo’s elastic scheduling algorithm can be viewed as minimizing a task
set’s summed squared utilization subject to the Liu-Layland EDF schedulability
condition [17].

In our system, task deadlines will always be significantly less than task periods.
This is needed to ensure a short time delay between the state sampling and the
release of the control signal. Such task sets are schedulable under EDF if and
only if

N∑
i=1

(⌊
L − Di

Ti

⌋
+ 1

)
Ci ≤ L (12)
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for all L ∈ D where

D =
{

di,k :
di,k = kTi + Di

i ∈ N , k ≥ 0

}

This condition is proven by Baruah et al. [18] using a processor demand analysis.
Processor demand analysis requires that the total processor demand of all

released tasks in an interval is less than or equal to the total processing power
available in that interval. For task sets in which the deadline is less than the
period, the ith task’s processor demand over time interval [0, L] is

Ci(0, L) =
(⌊

L − Di

Ti

⌋
+ 1

)
Ci.

The condition in equation 12 is simply the sum of all demands, Ci(0, L), over i
which must be checked for all possible future releases of the tasks.

In our application, release times are recomputed each time the task is called
and so the task set is really not periodic. As a result we only need to check
equation 12 over a subset of D; namely those times that are less than or equal
to the next release time. This idea was used in Chantem et al. [8] to propose a
heuristic generalization of Buttazzo’s elastic scheduling algorithm. The following
theorem introduces a schedulability condition similar to that used in [8] which
can be directly used with Buttazzo’s algorithm.

Theorem 2. Consider a task set in which all tasks are released at time 0. As-
sume that the task set is sorted in order of non-decreasing relative deadlines
(Di ≤ Di+1) and let {T j}N

j=1 be a set of bounds on the task period that are
generated recursively from

⌊
D2 − D1

T 1

⌋
=

⌊
D2

C1
−

2∑
i=1

Ci

C1

⌋
(13)

⌊
Dj+1 − Dj

T j

⌋
=

⌊
Dj+1

Cj
−

j+1∑
i=1

Ci

Cj
−

j−1∑
i=1

⌊
Dj+1 − Di

T i

⌋
Ci

Cj

⌋
(14)

for j = 1, . . . , N .
Let i∗ = argmini{Di + Ti} then the task set will miss no deadlines over the

interval from [0, Di∗ + Ti∗ ] if Tj ≥ T j for all j = 1, . . . , N and

N∑
i=1

Ui ≤ 1 − 1
T i∗

N∑
i=1

Ci (15)

Proof. To prove this theorem we need to demonstrate that the processor demand
satisfies

N∑
i=1

(⌊
L − Di

Ti

⌋
+ 1

)
Ci ≤ L
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over intervals

L ∈ {D1, · · · , DN , min
i

{Ti + Di}}

Essentially this means that the processor demand is satisfied between the con-
secutive release times.

When L = Di, the processor demand can be written as a triangular system
of algebraic equations

0 ≤ D1 − C1 (16)⌊
D2 − D1

T1

⌋
C1 ≤ D2 −

2∑
i=1

Ci (17)

⌊
D3 − D1

T1

⌋
C1 +

⌊
D3 − D2

T2

⌋
C2 ≤ D3 −

3∑
i=1

Ci (18)

· · · ≤ · · · (19)

in which the jth term has the form,

j−1∑
i=1

⌊
Dj − Di

Ti

⌋
Ci ≤ Dj −

j∑
i=1

Ci

This is a triangular system of equations that we can solve recursively for T i. In
particular the second equation (eqn. 17) yields equation 13. Applying this in a
recursive manner yields equation 14. So if these equations are satisified then we
can guarantee the processor demand is sufficient for time intervals equal to the
task deadlines.

Now consider L = Tj + Dj for any arbitrary j and assume that Ti ≥ T i for
all i. Then clearly,

Dj ≥
N∑

i=1

(⌊
Dj − Di

Ti

⌋
+ 1

)
Ci

≥
N∑

i=1

(⌊
Tj + Dj − Di

Ti

⌋
−

⌊
Tj

Ti

⌋
− 1 + 1

)
Ci

where we used the fact that �x + y� ≤ �x� + �y� + 1. We can now rearrange our
last inequality to obtain

Dj +
N∑

i=1

Ci +
N∑

i=1

⌊
Tj

Ti

⌋
Ci ≥

N∑
i=1

(⌊
Tj + Dj − Di

Ti

⌋
+ 1

)
Ci

The lefthand side of the above inequality can be bounded as

Dj +
N∑

i=1

Ci +
N∑

i=1

⌊
Tj

Ti

⌋
Ci ≤ Dj +

N∑
i=1

Ci + Tj

N∑
i=1

Ci

Ti
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By the assumption in equation 15 we can see that

Dj +
N∑

i=1

Ci +
N∑

i=1

⌊
Tj

Ti

⌋
Ci ≤ Dj +

N∑
i=1

Ci −
N∑

i=1

Ci + Tj = Dj + Tj

So if the above condition holds we can ensure that
N∑

i=1

(⌊
Tj + Dj − Di

Ti

⌋
+ 1

)
Ci ≤ Dj + Tj

which is the inequality required to ensure that the processor demand is satisfied
prior to the given release time. We choose j = i∗ to complete the proof. ♦

6 Self-triggered Real-Time H∞ Controllers

This section discusses how theorems 1 and 2 are used to elastically schedule
self-triggered control tasks. Upon release, the ith task numerically integrates
equation 10 forward to determine T r

i . T r
i serves as the task’s desired next release

time. The scheduler handles T r
i as a request for the specified task period. If the

scheduler simply grants the task’s requested period, we say it is a rigid task
scheduler. If the scheduler adjusts the requested period as is done in Buttazzo’s
algorithm, then we say the task scheduler is elastic.

Let U r
i = Ci/T r

i denote the utilization requested by the ith task. For the
simulations in section 7, our elastic task scheduler assigns task utilization, Ui =
Ci/Ti, in a manner that solves the following optimization problem.

minimize:
∑N

i=1(Ui − U r
i )2

subject to: U i ≤ Ui ≤ min(U r
i , Ci/T i)∑N

i=1 Ui ≤ 1 − U

(20)

where U i is the minimum individual task utilization for closed loop stability, T i

is the minimum task period required in theorem 2, U r
i = Ci/T r

i is the task’s
requested utilization and

U =
1

min{T i}

N∑
i=1

Ci

is the upper bound on the total utilization given in equation 15 of theorem 2.
This optimization problem seeks to minimize the squared difference between a
task’s desired utilization, U r

i , and its actual utilization, Ui. The allocation is done
subject to constraints in theorem 2. These constraints require that the allocated
utilizations assure closed loop stability while remaining schedulable under EDF.

It is important to note that the optimization problem in equation 20 is pre-
cisely the problem considered in Hu et al. [16] and Chantem et al. [8]. In those
papers it was shown that Buttazzo’s elastic scheduling algorithm [15] actually
assigns task periods in a way that always satisfies the optimization problem in
equation 20. So in our proposed self-triggered system, we can simply use But-
tazzo’s algorithm directly to allocate task utilization.
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7 Simulation Results

This section presents preliminary simulation results for the real-time control of
three identical inverted pendulums that are controlled by three control tasks
running on the same processor. The controllers are full-information H∞ con-
trollers. The plants are all identical and the linearized state equation for the ith
plant is

ẋi(t) =

⎡
⎢⎢⎣

0 1 0 0
0 0 −(mg/M) 0
0 0 0 1
0 0 g/� 0

⎤
⎥⎥⎦xi(t) +

⎡
⎢⎢⎣

0
1/M

0
−1/M�

⎤
⎥⎥⎦ui(t) +

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦wi(t)

where M is the cart mass, m is the mass of the pendulum bob, � is the length
of the pendulum and g is gravitational accleration. The initial state is zero.
For these simulations we let M = 10, � = 3, and g = 10. The system state
x =

[
y ẏ θ θ̇

]
where y is the cart’s position and θ is the pendulum bob’s angle

with respect to the vertical.
The external disturbance, wi, is time-varying and takes the form,

wi(t) = ν(t) + WRect(t − τi)

where ν is band-limited white noise with a noise power of 100 and sampling
period of .001 sec. Rect(t−τi) is a unit rectangle function of duration 0.25 seconds
starting at time τi. W represents the strength of the rectangular disturbance. In
these simulations, all three plants are hit with the same rectangular disturbance
at the same time (τi = 2) and the disturbance level, W , was set to 1000.

In these simulations we required the state magnitude to lie below a specified
level, M . In other words, we require ‖xi(t)‖2 ≤ M for some specified M ∈ �.
Immediately after the rectangular pulse, the system state changes and we assume
that the next released task can measure this change. Once the sampled system
state exceeds M , the task reduces its gain to γ = 100 to more aggressively reject
the rectangular pulse. M was set to 5 for these simulations. Once the system
state is sufficiently small, the gain is reset to a large value (γ = 500) consistent
with a less aggressive disturbance rejection objective. By adjusting the gain in
this manner we kept the system output relatively small without having to use
the more aggressive gain throughout the entire system’s history.

We simulated the real-time system using a Matlab stateflow/simulink model.
The model was built to accurately capture task timing that might be seen in
actual real-time systems. The real-time computer was modeled as a stateflow
chart that consisted of the parallel composition of three control tasks, six in-
terrupt handlers, and two processes for the scheduler. The control tasks sample
the plant state upon their release, compute the requested next release time T r.
Upon finishing their execution, these tasks output the control signal. This sim-
ulation, therefore, forces the control, ui(t), to be constant between consecutive
finishing times rather than consecutive release times as assumed in theorem 1.
The scheduler was implemented as two processes. One process assigned priorities
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to the released control tasks and the other process used the requested sampling
period to compute the actual release times.

We simulated three different cases. The first “baseline” case simulated the re-
sponse of a single inverted pendulum by an “idealized” real-time system in which
scheduler performance was not an issue. The second case simulated the response
of a self-triggered real-time system under “rigid” and “elastic” scheduling. The
third case simulated the response of the periodically-triggered real-time system
under two different task periods. These three cases are discussed below.

Baseline Case: The baseline case simulated the response of a single inverted
pendulum in which the control, ui(t), was constant between consecutive release
times. Tasks were periodically released every 0.25 seconds. The controller’s state
feedback gain was chosen to ensure the closed loop system’s H∞ gain was less than
100. This case is therefore an “idealized” real-time system in which missed dead-
lines and processor contention are abstracted away. The lefthand side of figure 1
shows the time histories for the four system states: cart position, cart velocity,
pendulum bob angle and angular velocity. This plot serves as a baseline against
which the other cases will be compared. The plot shows that when the rectangular
disturbances hits the system, the cart moves quickly to ensure the pendulum bob
angle, θ, remains small. This corrective action results in a large displacement, x,
of the cart that takes about 10 seconds to return to the home position.
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Fig. 1. Transient Response of Baseline System

Self-Triggered Case: The self-triggered case consisted of two simulations. One
simulation used rigidly scheduled and the other used elastically scheduled task
sets. The system clock ran at 0.001 seconds. All control tasks had identical
computation times, Ci = 50 clock ticks, and deadlines, Di = 100 clock ticks.
Task periods were selected based on the results in theorem 1. In general, this
resulted in a probabilistic distribution of task periods that were dependent on
the system state at the release time. For a system gain γ = 100 and 500 the
requested period averaged 200 and 500 clock ticks, respectively. In the “rigidly”
self-triggered system, these requested task periods were granted by the scheduler.
The “elastically” self-triggered system had the requested task periods adjusted
by the Buttazzo algorithm using the schedulability condition of theorem 2.
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Fig. 2. State histories for rigidly (left) and elastically (right) self-triggered controllers

The state histories for the rigid and elastic self-triggered systems are shown
in figure 2. The lefthand graphs are state histories for the three plants in the
rigidly self-triggered system and the righthand graphs are for the elastically self-
triggered system. What is perhaps most interesting here is that all systems have
the same transient behavior regardless of whether task periods were assigned in
an elastic or rigid manner. Comparing the state trajectories in figure 2 against
the baseline trajectories in figure 1, we see little difference; thereby suggesting
that the self-triggered system was maintaining the baseline transient behavior
regardless of which scheduling scheme was used.

Periodically-Triggered Case: As a point of comparison we simulated a pe-
riodically triggered system. The task computation times and deadlines were 50
and 100 respectively for all tasks with a clock tick of 0.001 seconds. For one
set of simulations, we set the task period to 250. The state trajectories for the
three plants are shown in the lefthand plots of figure 3. A task period of 250 was
the average task period for the rigidly scheduled self-triggered simulations. The
lefthand plots in figure 3 are therefore comparable to the “rigidly scheduled”
simulations in figure 2. In the other set of simulations, we set the task period to
500. This simulation’s state histories are shown in the righthand plots of figure 3.
A task period of 500 was the average task period for the “elastically scheduled”
self-triggered simulations. The righthand plots are therefore comparable to the
“elastically scheduled” simulations in figure 2. These simulations show that at
the shorter task period (lefthand side of figure 3), the systems appears to have a
transient response similar to that for the baseline system. At the longer task pe-
riod (righthand side of figure 3), some of the plants become extremely oscillatory
with one of the systems actually becoming unstable.

8 Final Remarks

In comparing the simulation results between the baseline, periodically triggered,
and self-triggered systems it should be apparent that the self-triggered system
was able to maintain an acceptable level of transient performance regardless of
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Fig. 3. State trajectories for periodically triggered system. (Left) Task period = 250,
(Right) Task period = 500.

whether a rigid or elastic scheduler was used. This was somewhat surprising at
first glance. But in hindsight it was conjectured that this might be due to the
inherent feedback nature of self-triggering. In selecting the next release based on
the current state, a self-triggered system is using state feedback to adjust task
periods in a way that assures overall system “performance”.

The feedback nature of this interaction suggests that the performance of self-
triggered systems should be very robust to processor overloads and late (delayed)
jobs. Our simulations showed that the rigidly scheduled system was overloaded
whereas the elastically scheduled system was not overloaded. Inspite of the fact
that the rigidly scheduled system was overloaded, figure 2 clearly shows that the
transient response is very similar to the baseline response. The task periods in
the elastically scheduled self-triggered system were long enough to destabilize
the periodically triggered system (figure 3). The results in figure 2 clearly show
that even with this longer task period, the self-triggered system was able to
preserve control performance. In other words, self-triggered systems appear to
maintain acceptable levels of application performance in the face of significant
processor overloading.

This paper’s results therefore demonstrate that self-triggering can maintain
acceptable levels of system performance regardless of whether or not we schedule
in an elastic manner. In particular, these results seem to suggest a practical
way for relaxing the need for “hard” real-time support in computer controlled
systems. These results, however, are only preliminary and future work will need
to more rigorously verify them.
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Abstract. We consider systems modeled by a differential inclusion sub-
ject to impulsive, set valued state resets. We study existence of solutions
for this class of systems and derive conditions for a set of states to be
viable. From the point of view of hybrid systems, of central interest is the
fact that the class of systems and the solution concept considered allow
any finite number of left and right accumulation points of the impulse
times; in other words, very complex Zeno type behaviors. The results are
demonstrated on simple examples that exhibit such behaviors.

1 Introduction

In this paper we consider a class of systems that comprise continuous dynamics,
modeled by a differential inclusion

ẋ ∈ F (x)

and impulses that cause discrete jumps in the state. The magnitude of the jumps
depends on the magnitude of the impulse as well as the value of the state be-
fore the jump. More specifically, the effect of an impulse of magnitude α is a
jump whose magnitude takes values in a set αS(x, α), or, in hybrid systems
terminology, a set valued state reset of the form

x �−→ x + αS(x, α).

Systems of this type can be viewed as controlled systems, where the inputs
can intervene in the continuous evolution (think of the differential inclusion
as F (x) = {f(x, u) | u ∈ U(x)}) or by “hitting” the system with impulses.
For related problems in game theory (in the presence of two antagonistic input
signals) see [1].

This class of systems is related to the so-called measure driven differential
inclusions studied in [2,3]. These are systems of the form

dx ∈ F (x)dt + G(x)μ(dt)
� Corresponding author.
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where μ is a non-negative, Borel measure and G(·) and F (·) are suitable set
valued maps. [2,3] provide an interpretation for this type of systems, leading to
the notion of the so-called robust solutions. Roughly speaking, the idea is to
generate an ordinary differential inclusion from the measure driven differential
inclusion, by appropriately “stretching out” impulsive points of μ. The solutions
of the resulting differential inclusion then correspond exactly to the robust solu-
tions of the original measure driven differential inclusion (which thereby inherit
desirable properties such as compactness of the trajectory set). Based on these
results, [4,5] formulate optimal control problems for this class of systems. The
main difference in this paper is that we take a hybrid approach and abstract the
measure driven part of the differential inclusion G(x)μ(dt) by a discrete transi-
tion map. This simplifies the study of the existence results and allows us to treat
the impulsive measure itself as a control signal (to study, for example, questions
of viability).

From the point of view of hybrid systems, an interesting property of the
class of systems considered here is that they place very few restrictions on the
timing of the impulses that cause the discrete transitions. The solutions of the
system can be defined, even if the set of impulse times contains left and right
accumulation points, as long as the total number of impulses is countable and the
number of accumulation points and total impulsive measure in the time interval
of interest are finite. In other words, the class of systems considered here allow
one to capture a very rich set of Zeno type behaviors.

The Zeno phenomenon has been studied extensively in the hybrid systems
literature for a number of years. Many results on stability and optimal control
of hybrid system indeed rely on an underlying assumption that the solutions
of the system are Zeno free, even though it is known that it is impossible to
check this assumption in general [6]. Most of the hybrid system solution con-
cepts [7,8,9,10,11,12] allow one to define solutions that contain at most one
point to which the discrete transition times converge from the left; in most cases
the solution can be defined up to (and not including) this point [8,9,12], even
though some authors are able to exploit special structure in the dynamics (e.g.
linear complementarity) to define solutions beyond this point [7,10,11]. For more
general classes of systems, a number of approaches have been proposed to aug-
ment the original model and extend solutions beyond the Zeno point. One such
approach uses relaxation and averaging techniques [13] while another exploits
physical intuition wherever this is possible (e.g. in mechanical systems) to extend
the solutions [14,15].

Types of behavior related to the Zeno phenomenon have also been considered
in the literature of discontinuous ordinary differential equations (ODE) [16].
Discontinuous differential equations can be viewed as switched systems whose
state trajectory is continuous, and follows a differential equation that switches
depending on the current state. Classical relaxed solution concepts for dis-
continuous ODE can deal with situations where the switch times accumulate
from the left or from the right, exploiting the continuity of the solutions. How-
ever, most cases where this type of behavior is considered in the literature are
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provided as a warning of things (e.g. loss of uniqueness) that can go wrong in
this case. [17] provides an overview of different solution concepts found in the
hybrid systems and discontinuous ODE literature and compares (among other
things) their treatment of the Zeno phenomenon.

The remainder of the paper is organized in five sections. Section 2 provides the
formal definitions of the class of systems considered and their solutions, as well as
a brief comparison with more familiar classes of systems found in the literature.
Section 3 establishes conditions for the existence of solutions. Section 4 presents
a simple example of a system that can be studied using the tools developed
in this paper. The solutions of the example system are discontinuous and their
transition times contain a left and right accumulation point, putting the system
beyond the reach of most (if not all) of the hybrid system solution concepts
known in the literature. Section 5 presents an initial treatment of reachability
problems for this class of systems. Concluding remarks and possible extensions
are given in Section 6.

2 Measure Driven Impulse Differential Inclusions

The dynamics we consider are defined using two set valued maps, F (·) : R
d →

2R
d

and S(·, ·) : R
d × [0, 1] → 2R

d

. We consider also a scalar valued measure μ(·)
on the Borel subsets of [0, ∞) and assume that μ({t}) ∈ [0, 1] for all t ≥ 01. To
ensure that the impulsive system is well posed and solutions exist one needs to
impose a number of assumptions on F , S and μ.

Assumption 1. F , S and μ satisfy the following conditions:

1. F is Lipschitz and has convex, compact values.
2. S has compact values and is bounded, specifically for all (x, α) ∈ R

d × [0, 1],
S(x, α) ⊆ B(0, M). As usual, B(x, r) denotes the closed ball in R

d with
radius r ≥ 0 centered at the point x ∈ R

d.
3. The set valued map S(·, α) : R

d → 2R
d

is Lipschitz, uniformly in α ∈ [0, 1].
4. There exists a countable index set I, a set of times {ti}i∈I with ti ≥ 0 and

a set of numbers {αi}i∈I with αi ∈ [0, 1] such that

μ(t) =
∑
i∈I

αiδti(t),

where δti(·) denotes the standard Dirac measure centered at ti.
5. There exists a T > 0 such that μ([0, T )) < ∞.

Most of the conditions imposed by Assumption 1 are relatively standard, typi-
cally imposed in the literature to ensure the existence of solutions to differential
inclusions and/or impulsive systems. The conditions on the measure μ deserve

1 For simplicity, the interval [0, 1] is used throughout as a bound on μ. The argument
holds, however, for μ taking values in any compact interval of R+.
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closer scrutiny. Assumption 1.4 requires that μ consists of a train of pulses, pos-
sibly infinite. Part 1.5 requires that the total measure on any compact set up
to some time T is finite. Note, however, that the measure of the set [0, ∞) may
still be infinite. For example, a train of pulses with magnitude 1, one for each
integer is acceptable as the measure μ. Moreover, the set {ti | i ∈ I} may also
contain left and right accumulation points. In the hybrid systems terminology,
the class of systems considered here allow multiple Zeno points, where discrete
transitions accumulate from the left and/or from the right. Note that for the
time being we have not specified how the impulse times ti and magnitudes αi

are to be determined. In general we view these as control actions that can be
used (together with the selection of a solution of ẋ ∈ F (x)) to steer the system.

Definition 1 (Solution of impulsive system). Consider an initial time t0 ≥
0, a horizon T > t0, and an initial condition x0 ∈ R

d. We will say that a
function x(·) : [t0, T ) → R

d is a solution to the impulsive system (F, S, μ) over
the interval [t0, T ) with initial condition x0 if and only if x(t0) = x0 and there
exist a Lebesgue integrable function Φ1(·) : [t0, T ) → R

d and a μ(·) integrable
function Φ2(·) : [t0, T ) → R

d such that for all t ∈ [t0, T ),

x(t) = x0 +
∫ t

t0

Φ1(s)ds +
∫ t

t0

Φ2(s)μ(ds), and

1. Φ1(s) ∈ F (x(s)) for Lebesgue-almost all s ∈ [t0, T ).
2. Φ2(s) ∈ S(x(s−), μ({s})) for μ-almost all s ∈ [t0, T ).

If the measure μ is not fixed, we will say that x(·) : [t0, T ) → R
d is a solution

to (F, S) if there exists a measure μ such that x(·) is a solution to (F, S, μ).
Without loss of generality we will take t0 = 0 from now on.

Sufficient conditions for the existence of solutions will be presented in Sec-
tion 3. For the remainder of this section we highlight relations of the class of
impulsive systems defined above with other classes considered in the literature,
ignoring for the most part technical issues, such as assumptions on the model
components.

It is easy to see that if we set S(x, α) = {0} for all (x, α) ∈ R
d × [0, 1] the

impulsive system considered above reduces to the standard differential inclusion

ẋ ∈ F (x)

on R
d and the definition of the solution to the standard definition of solution for

differential inclusions. Likewise, if we set F (x) = {0} and let μ(·) be a regularly
spaced sequence of pulses

μ(t) =
∞∑

i=1

αiδi(t),

then the system reduces to a standard difference inclusion

x(k + 1) ∈ R(x(k)) = {x(k) + αS(x(k), α) | α ∈ [0, 1]}.
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If we assume that S is single valued and that any compact subset of [0, ∞)
contains only finitely many ti, then the definition of solution given above reduces
to the more familiar definition for impulsive systems,

x(t) = x0 +
∫ t

t0

Φ(s)ds +
∑

i∈I(t)

αiS(x(t−i ), αi),

where I(t) = {i ∈ I | ti ≤ t}.
Finally, [2,3] consider systems of the form

dx(t) = F (x(t))dt + G(x(t))μ(dt), (1)

where F (·) and G(·) are set valued maps and μ a non-negative, scalar valued
Borel measure on [0, ∞). Systems of the type (1) are clearly more general than
the impulsive systems considered here, since the measure μ is not restricted to
be discrete (i.e. satisfy Assumption 1.4). In the special case where it is, however,
systems of the type (1) can be reduced to our framework. To see this, let

AG(x, α) = {y(α) | y(0) = x and y(·) solves ẏ ∈ G(y)} ⊆ R
d.

denote the attainable set at time α of the differential inclusion ẏ ∈ G(y) starting
at y(0) = x. If we define

S(x, α) =
{

G(x) α = 0
1
α (AG(x, α) − x) α > 0,

it is easy to see that the robust solutions of (1) are equivalent to the solutions
of the impulsive system (F, S) defined as above. Therefore, for the special case
of discrete measures, the class of systems considered here appears to subsume
systems of the type (1) (modulo technical assumptions).

3 Existence of Solutions

Theorem 1 (Existence). Under Assumption 1 for any x0 ∈ R
d there exists a

solution x(·) of (F, S, μ) over the interval [0, T ) starting at x0.

Theorem 1 shows that under Assumptions 1 solutions in the sense of Definition 1
can be defined, at least locally, up to time T . A simple extension (Corollary 1
below) can then be used to establish additional conditions needed to ensure
global existence of solutions. The argument used to prove Theorem 1 is somewhat
involved notationally. To help the reader follow it we will first introduce a simple
example, that will be used throughout the proof to illustrate the various steps.
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Fig. 1. The measure μ used in the example, and the approximating solution for n = 3
and γ = 1√

2

Example: Consider an impulsive system with d = 1 (i.e. x ∈ R), F (x) = {0}
(i.e. ẋ = 0) and S(x, α) = α for all x ∈ R and α ∈ [0, 1]. Consider also a
measure μ with

I = {1, 2, 3, . . .}, T = 1, ti =
1
2i

, and αi = γi,

for some γ ∈ (0, 1). Figure 1 illustrates the measure μ for the case γ = 0.5.
Note that the times of the Dirac pulses converge to zero from the right.
This type of behavior is already outside the scope of most traditional hybrid
solution concepts. For simplicity, we assume that the initial state is x0 = 0.

Proof of Theorem 1: Let I(t) = {i ∈ I | ti ≤ t}. If I(T ) is finite the system
reduces to a usual impulsive system and the proof is standard. If I(T ) is infinite
then assume, without loss of generality, that I = N. Fix n ∈ N and consider
the first n elements, t1, t2, . . . , tn of {ti | i ∈ I(T )}. Rearrange these into an
increasing sequence

τn
1 ≤ τn

2 ≤ . . . ≤ τn
n (2)

and add (if necessary) a first element τn
0 = 0 and a last element τn

n+1 = T ;
for simplicity we will assume that 0 	∈ {ti | i ∈ I(T )}, so both additions are
necessary.

In our case, t1 = 1
2 , t2 = 1

4 , . . . , tn = 1
2n and τn

0 = 0, τn
1 = 1

2n , . . . ,
τn
n = 1

2 , τn
n+1 = 1.

Define an approximating trajectory xn(·) over [0, T ) starting at x0 by the
algorithm of Table 1. The algorithm constructs a function xn(t) for t ∈ [0, T ) as
well as a sequence of vectors {ζn

i }n
i=1 in R

d used to determine the destinations
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Table 1. Algorithm for the generation of approximating trajectories

initialization:
i = 0, xn(τn

0 ) = x0

while i ≤ n
For t ∈ [τn

i , τn
i+1) set xn(t) equal to a solution of ẋ ∈ F (x)

starting at xn(τn
i )

if i < n
Select ζn

i+1 ∈ S(xn((τn
i+1)

−), μ({τn
i+1}))

Set xn(τn
i+1) = xn((τn

i+1)
−) + μ({τn

i+1})ζn
i+1

i = i + 1
end if

end while

of the discrete transitions. Let Φn
1 (·) : [0, T ) → R

d denote the function that for
t ∈ [0, t) satisfies

xn(t) = x0 +
∫ t

0
Φn

1 (s)ds +
∑

{i≤n | τn
i ≤t}

μ(τn
i )ζn

i (3)

Roughly speaking, the function Φn
1 (·) is constructed by concatenating the deriv-

atives of the solutions to ẋ ∈ F (x) generated by the algorithm. Notice that, by
Assumption 1.1, Φn

1 (·) is bounded in L1
(
[0, T ]

)
. If we define ξn

i = ζn
j for the j

for which τn
i = tni (in other words, undo the reordering of (2)) equation (3) can

equivalently be written as

xn(t) = x0 +
∫ t

0
Φn

1 (s)ds +
∑

{i≤n | i∈I(t)}
μ(ti)ξn

i . (4)

In our case, at the first iteration of the while loop the algorithms solves
ẋ = 0 over the interval [0, 1

2n ) starting at xn(0) = 0. Therefore, xn(t) = 0
for t ∈ [0, 1

2n ). The algorithm then selects

ζn
1 ∈ S(xn((τn

1 )−), μ({τn
1 })) = S(0, μ{ 1

2n
}) = γn

and sets xn( 1
2n ) = 0 + μ{ 1

2n }ζn
1 = γ2n. The while loop is then repeated,

ẋ = 0 is solved over the interval [ 1
2n , 1

2n−1 ) starting at xn( 1
2n ) = γ2n, etc. At

the final interval,

xn(t) =
n∑

i=1

γ2i, for t ∈ [
1
2
, 1).

The trajectory constructed in this way, for n = 3 and γ = 1√
2

is shown in
Figure 1. Clearly Φn

1 (t) = 0 for all t ∈ [0, 1), ζn
i = γn+1−i and ξn

i = γi.

Let now n go to infinity. Thanks to Assumption 1.1 the sequence Φn
1 is

bounded in both L1
(
[0, T ]

)
and L∞

(
[0, T ]

)
. Consequently, one can extract a
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subsequence which converges in the weak topology of L1
(
[0, T ]

)
to some Φ1 ∈

L1
(
[0, T ]

)
.

Φn
1 (·) −→ Φ1(·) ∈ L1([0, T ]

)
(5)

(For the sake of simplicity we denote the subsequence in the same way as the
sequence.) Moreover, since by Assumption 1.2 S(x, α) is bounded, by the Cantor
diagonal process, we can find a subsequence of {ξn

i }n
i=1 (denoted the same way

for simplicity) whose elements converge for all i ∈ I(T ). In other words, for all
i ∈ I(T ) there exist ξi such that

lim
n→∞ ξn

i = ξi. (6)

Moreover, it can be shown that as n → ∞∑
{i≤n | i∈I(t)}

μ(ti)ξn
i −→

∑
i∈I(t)

μ(ti)ξi (7)

uniformly in t ∈ [0, T ).
Equations (5), (6) and (7) show that xn(·) converges in L∞([0, T )) (up to a

subsequence) to

x(t) = x0 +
∫ t

0
Φ1(s)ds +

∑
i∈I(t)

μ(ti)ξi. (8)

We show that this x(t) is a solution of (F, S, μ) over the interval [0, T ) starting
at x0. Let

Φ2(s) =
∑

i∈I(T )

1{ti}(s)ξi

(where, as usual, 1{ti}(s) denotes the indicator function of the set {ti}). We will
show that x(·), Φ1(·) and Φ2(·) satisfy the conditions of Definition 1.

Clearly Φ1(·) and Φ2(·) satisfy the desired integrability properties. Fix s ∈
[0, T ). Note that μ([0, T ) \ {ti | i ∈ I(T )}) = 0. Therefore, unless s ∈ {ti | i ∈
I(T )}, condition 2 of Definition 1 is automatically satisfied. If s = ti for some
i ∈ I(T ), note that for all t ∈ [0, T )

x(t−) = x0 +
∫ t

0
Φ1(s)ds +

∑
{i∈I(t) | ti<t}

μ(ti)ξi. (9)

and therefore, by (4), limn→∞ xn(t−i ) = x(t−i ). We know that

ξn
i ∈ S(xn(t−i ), μ({ti}))

and that μ(ti)ξn
i → μ(ti)ξi. Therefore, because S(x, α) is Lipschitz in x uniformly

in α (Assumption 1.2), ξi ∈ S(x(t−i ), μ({ti})) (Assumption 1.3). Hence

Φ2(ti) = ξi ∈ S(x(t−i ), μ({ti})) (10)

as required by Definition 1.
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Fig. 2. Approximating solution for the example, with n = 3 and γ = 1√
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Finally, we know that Φn
1 (s) ∈ F (xn(s)) almost everywhere in [0, T ). Since

xn(·) converges to x(·) in L∞([0, T )) and because F is Lipschitz (Assump-
tion 1.3), by the Mazur Theorem (cf. Theorem 2.2.4, p.67 of [18]) we obtain
that

Φ1(s) ∈ F (x(s)) (11)

for almost all s ∈ [0, T ). Equations (10) and (11) show that x(·) is indeed a
solution of the impulsive system, over the interval [0, T ) starting at x0.

Figure 2 shows the limit trajectory x(t) of equation (8) for the example
considered here. This trajectory is a solution to (F, S, μ) over the interval
[0, 1) starting at x(0) = 0.

Under some additional assumptions, the above construction can be extended
(using a standard argument involving Zorn’s Lemma) to establish the existence
of solutions over the infinite interval [0, ∞). For the sake of completeness, we
state this observation as a corollary.

Corollary 1. If, in addition to Assumption 1, F has linear growth and for all
T > 0, μ([0, T ]) < ∞, then for every x0 ∈ R

d there exists a solution x(·) of the
impulsive system (F, S, μ) starting at x0 and defined over the interval [0, ∞).

4 Example: Ball and Paddle

To demonstrate the type of complex Zeno phenomena that the class of systems
considered here can encompass, we introduce one more simple example. It in-
volves someone trying to keep a table tennis ball in the air by hitting it with the
paddle. Our player is arbitrarily fast and elects to do this with a Zeno strategy
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Fig. 3. Impulses and state trajectory for the ping-pong ball example

that consists of hitting the ball lighter and lighter until it comes to rest on the
paddle and then starting it up again.

The continuous dynamics of the ball are determined by the standard equations
of motion. If we let x1 denote the height of the ball and x2 its vertical velocity
and normalize the mass and gravitational acceleration, we can simply write

F (x) =
[

x2
−1

]
.

The impulse magnitude, α, determines how much energy the player gives to the
ball when he/she hits it with paddle. For the reset map we set

S(x, α) =
[

0
α

]
.

In other words, an impulse of magnitude α resets the state (x1, x2) to (x1, x2 +
α2).

For simplicity we assume that the ball starts at x = (0, 1/2) and that the
player hits it whenever it gets back to x1 = 0. We consider the interval of time
[0, 4] (the process can then be repeated) and assume that the impulses are placed
symmetrically around t = 2 converging to it from the left and from the right,

i = 0, 1, 2, . . . , with t2i = 2 − 1
2i

and t2i+1 = 2 +
1
2i

.

It is easy to see that at t0 = 1 (the first impulse time) the state of the ball is
(0, −1/2). Hitting the ball with an impulse of magnitude α0 =

√
3/2 at this time
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implies that the ball will leave the paddle flying upwards at a speed 1/4, half
that with which it hit it coming down. The process is then repeated: at time
t2 = 1.5 the ball will come back to (0, −1/4), we can then hit it with an impulse
α2 =

√
3/2/2, it will leave the paddle flying at speed 1/8, etc. After the ball

comes to rest at time t = 2, the process is reversed: the impulses get bigger and
bigger until at time t = 3 the ball regains all its energy reaching state (0, 1/2).
In summary, the magnitudes of the impulses used are

i = 0, 1, 2, . . . , with α2i = α2i+1 =
1
2

√
3
2i

.

Figure 3 shows the impulse times and the solution generated in this way.

5 Viability

We now turn our attention to viability, in other words the question of whether
solutions to the impulsive system that stay in a given set exist. For the class of
systems considered here, one can envision two “controls” that can be used to
keep the solution in the set: The direction in the differential inclusion followed
by the continuous solution and the discrete intervention via the measure μ. To
make this notion more precise, we first give a local definition.

Definition 2 (Viable set). A set K ⊆ R
d is called viable under the system

(F, S) if for all x0 ∈ K there exists a positive time T > 0, a measure μ satisfying
Assumptions 1.4 and 1.5, and a solution x(·) of (F, S, μ) starting at x0 and
defined over [0, T ) such that x(t) ∈ K for all t ∈ [0, T ).

We will say that K is globally viable if we can take T = ∞ in the above definition
(cf. Corollary 1 above).

Assumption 2. For all x ∈ R
d the following conditions hold:

1. For all 0 < α < β < 1 with (β − α)S(x + αS(x, α), β − α) ⊆ βS(x, β).
2. There exists αx ∈ (0, 1] such that for all α ∈ [0, αx), S(x, α) = {0}. We

define αx = inf{α | S(x, [0, α]) 	= {0}}.
3. With αx defined as above, the map R(x) = {x + αS(x, α) | α ≥ αx} is upper

semi-continuous with closed values.

Part 1 of the assumption implies that, in terms of reachability, there is nothing
to be gained by taking many small jumps instead of one big one. Part 2 dictates
that there is a minimum amount of “effort”, αx, needed to take a jump from
state x. Finally, note that the last part of the assumption is satisfied in particular
if S(·, ·) is continuous (both upper- and lower-semicontinuous).

For a closed subset, K ⊆ R
d, and a point x ∈ K, we use TK(x) to denote the

contingent cone to K at x, i.e. the set of v ∈ R
d such that there exists a sequence

of real numbers hn > 0 converging to 0 and a sequence of vn ∈ R
d converging

to v satisfying
∀ n ≥ 0, x + hnvn ∈ K.
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Theorem 2 (Viability). Consider a system (F, S) satisfying Assumptions 1
and 2. A closed set K ⊆ R

d is viable under (F, S) if and only if for all x ∈
K \ R−1(K), F (x) ∩ TK(x) 	= 0.

Proof: Necessity: Assume that K is viable. For x0 ∈ K consider μ(t) =∑
i∈I δti(t), T > 0 and a solution x(·) of (F, S, μ) over [0, T ) starting at x0

such that x(t) ∈ K for all t ∈ [0, T ). If x0 ∈ K \ R−1(K), then there exists
η > 0 such that B(x0, η) ∩ R−1(K) = ∅ (note that R−1(K) is closed, since R
is upper semi-continuous and K is closed). Since x(t) ∈ K for all t ∈ [0, T ) and
R(x(t)) ∩ K = ∅ if x(t) 	∈ R−1(K), there exists ε < T such that x(·) solves
ẋ ∈ F (x) over t ∈ [0, ε). By Assumption 1.1 and the definition of TK(x0), we
have (cf. Proposition 3.4.1, p. 93 of [18])

lim sup
t→0+

x(t) − x0

t
∈ F (x0) ∩ TK(x0).

Hence F (x0) ∩ TK(x0) 	= ∅.

Sufficiency: Assume that for all x ∈ K \ R−1(K), F (x) ∩ TK(x) 	= ∅. For
x ∈ K ∩ R−1(K), let

βx = sup{α > αx | K − x

α
∩ S(x, α)}.

Fix x0 ∈ K. We will construct a solution of the system that stays in K. We
distinguish two cases.
Case 1: x0 ∈ R−1(K) ∩ K. Note that since, by definition, βx0 > αx0 , then

(x0 + βx0S(x0, βx0)) ∩ K 	= ∅.

Let t0 = 0 and select μ({t0}) = βx0 and

Φ2(t0) ∈ K − x0

βx0

∩ S(x0, βx0).

Note that the trajectory defined in this way starts with a discrete jump from x0
to x0 + Φ2(t0)βx0 ∈ K. Moreover, by Assumption 2.1 and the definition of βx,

x0 + βx0S(x0, βx0) ∩ K ∩ R−1(K) = ∅.

Therefore, after this initial jump we end up in Case 2, which we will treat now.

Case 2: x0 	∈ K \ R−1(K). Then by the viability with target theorem of [19]
(see also the non-Lipschitz extension of [8]) there exists a solution of ẋ ∈ F (x)
starting at x(0) ∈ x0 that either stays in K for ever, or stays in K until it reaches
R−1(K). In the former case the proof is complete. In the latter, we have defined
a solution x(·) of ẋ ∈ F (x) (and hence of (F, S)) starting at x0 over the interval
[0, θR−1(K)(x(·))) with

θR−1(K)(x(·)) = inf{t ≥ 0 | x(t) ∈ R−1(K)}.
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The process can then be iterated, leading to a (finite or infinite) sequence of
impulses βx̂iδti(t) (defined by case 1 above) and a sequence of solutions of ẋi(t) ∈
F (xi(t)) (defined by case 2 above) such that for i > 0, ti = ti−1 + θR−1(K)(xi(·))
and x̂i = xi(θR−1(K)(xi(·))). By construction the solution is viable in K and
defined over the interval

[
0,

∑
i θR−1(K)(xi(·))

)
.

The result can be extended to global viability by introducing assumptions to
ensure that the system is non-Zeno (e.g. compactness of R(K) and R−1(K)).

6 Concluding Remarks

A class of hybrid systems comprising differential inclusions driven by impulsive
measures was introduced and basic properties (such as conditions for existence of
solutions) were studied. An interesting feature of this class of systems is that one
can define solutions even in the presence of very complex Zeno type behavior.

A number of extensions of the results discussed here are currently being pur-
sued. An immediate improvement is the derivation of more powerful viability
conditions. For example, the viability conditions given above implicitly require
solutions to be non-Zeno to ensure global viability. One would like to relax these
conditions and establish viability (perhaps with a bound on the impulsive mea-
sure used) in the presence of Zeno phenomena. An interesting related question is
whether systems exist that are viable with Zeno type impulsive controls, but not
viable if Zeno controls are disallowed. Very interesting (but also very challeng-
ing technically) is the extension of the results to more general, non-impulsive
measures μ. In this case one could conceivably also capture behaviors such as
the ball coming to rest on the paddle (in the example of Section 4) which is
impossible to do if we restrict our attention to impulsive measures.

Acknowledgment. The work was supported by the European Commission un-
der the project HYGEIA, FP6-NEST-4995, and the Network of Excellence HY-
CON, FP6-IST-511368. The authors would like to thank K. Koutroumpas for
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2. Dal Maso, G., Rampazzo, F.: On systems of ordinary differential equations with
measures as controls. Differential and Integral Equations 4 (1991) 739–765

3. Silva, G., Vinter, R.: Measure driven differential inclusions. Journal of Mathemat-
ical Analysis and Applications 202 (1996) 727–746

4. Mota, M., Rampazzo, F.: Dynamic programming for nonlinear systems driven by
ordinary and impulsive controls. SIAM Journal on Control and Optimization 34(1)
(1996) 199–225



398 J. Lygeros, M. Quincampoix, and T. Rzezuchowski

5. Silva, G., Vinter, R.: Necessary conditions for optimal impulsive control problems.
SIAM Journal on Control and Optimization 35(6) (1997) 1829–1846

6. Miller, J.: Decidability and complexity results for timed automata and semi-linear
hybrid automata. In Lynch, N., Krogh, B.H., eds.: Hybrid Systems: Computation
and Control. Number 1790 in LNCS. Springer-Verlag, Berlin (2000) 296–309

7. Imura, J., van der Schaft, A.J.: Characterization of well-posedness of piecewise
linear systems. IEEE Transactions on Automatic Control 45(9) (2000) 1600–1619

8. Aubin, J.P., Lygeros, J., Quincampoix, M., Sastry, S., Seube, N.: Impulse differ-
ential inclusions: A viability approach to hybrid systems. IEEE Transactions on
Automatic Control 47(1) (2002) 2–20
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Via Salaria 113, 00198 Roma, Italy

Tel.: +39 06 4991 8361; Fax: +39 06 8541 842
{mari,tronci}@di.uniroma1.it

Abstract. Many hybrid systems can be conveniently modeled as Piece-
wise Affine Discrete Time Hybrid Systems PA-DTHS. As well known
Bounded Model Checking (BMC) for such systems comes down to solve
a Mixed Integer Linear Programming (MILP) feasibility problem.

We present a SAT based BMC algorithm for automatic verification of
PA-DTHSs. Using Counterexample Guided Abstraction Refinement (CE-
GAR) our algorithm gradually transforms a PA-DTHS verification prob-
lem into larger and larger SAT problems.

Our experimental results show that our approach can handle PA-
DTHSs that are more then 50 times larger than those that can be handled
using a MILP solver.

1 Introduction

Automatic analysis of Hybrid Systems poses formidable challenges both from a
modeling as well as from a verification point of view. In fact the simultaneous
presence of continuous and discrete variables may soon lead to state explosion,
thus preventing completion of the verification process.

Many verification tools (model checkers) are available for automatic verifica-
tion of hybrid systems. Here are a few examples. Linear Hybrid Systems (LHS)
can be verified using HyTech [18,2,1]. If we restrict ourselves to LHSs in which all
continuous variables have time derivative equal to 1 (clocks) then the UPPAAL
[20,29] model checker can be used.

If we use a discrete model for time then we have Discrete Time Hybrid Sys-
tems (DTHSs). Many systems can be modeled or approximated using DTHSs.
A model checker for (possibly nonlinear) DTHS is CMurphi [25,13,7].

Tools originally designed for hardware verification have also been used for
hybrid systems verification. For example, in [28] SMV [23,26] has been used for
verification of chemical processing systems.

By restricting our attention to linear DTHS we can design more efficient veri-
fication algorithms. Piecewise Affine Discrete Time Hybrid Systems (PA-DTHS)
are an important subclass of DTHS. PA-DTHSs are DTHS whose behaviour can
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be defined using linear constraints involving real as well as discrete variables.
An important subclass of PA-DTHSs are Discrete Hybrid Automata (DHA).

For DHA quite efficient Mixed Integer Linear Programming (MILP) based ver-
ification algorithms have been designed [4] and implemented within the symbolic
DHA model checker HYSDEL [27,19].

SAT based Bounded Model Checking (BMC) [5,14] has turned out to be quite
effective on hardware (e.g. see [21,31]), as well as on software systems (e.g. see
[10,9]). Thus trying to use BMC in a DTHS setting is a quite natural step. For
HYSDEL DHA this has been studied in [15].

Another interesting class of PA-DTHS is the one that can be handled by
MathSAT [3,22]. SAT based Counterexample Guided Abstraction Refinement
(CEGAR) [11] has also turned out to be a quite effective enhancement to BMC.
This is the case for hardware verification (e.g. see [21]) as well as for software
verification (e.g. see [17]). Our main contributions can be summarized as follows.

In Section 3 we define a quite large class of Piecewise Affine DTHS. Our
class of DTHSs strictly contains those that can be handled by, e.g., UPPAAL,
HYSDEL or MathSAT (Section 4).

In Section 5 we show how the BMC problem for a DTHS H in our class can be
cast as an MILP feasibility problem PH. Of course, following [4], we could solve
such MILP problem using a solver (e.g. GLPK [16], or CPLEX [12]). However
for feasibility problems having many discrete variables (our target here) MILP
solvers tend to be rather inefficient. For this reason our approach will be that of
transforming our BMC problem for DTHSs into a SAT problem.

In Section 6 we give a sound and complete (up to ε) algorithm to transform
our MILP problem PH into a Boolean Linear Programming (BLP) problem F ε

H.
Our ε approximation of PH only discretizes the continuous variables of PH.
Effectiveness of our transformation rests on the fact that we do not discretize
the real coefficients of the constraints in PH. Instead, for each contraint we
generate a compact CNF (conjunctive normal form) representation of the set of
assignments that falsify it.

In Section 7 we show how our BLP problem F ε
H can be effectively transformed

into an equivalent SAT problem Bε
H.

In Section 8, building on the transformation defined in Sections 7, we present
a CEGAR based algorithm to solve our BLP problem F ε

H using a SAT solver.
This yields a SAT based CEGAR BMC algorithm for our class of DTHSs. To
the best of our knowledge for the class of systems we consider here no CEGAR
BMC algorithms have been proposed in the literature. For example, our class of
systems cannot be handled by the BMC algorithm proposed in [15].

In Section 9 we present experimental results showing effectiveness of the pro-
posed approach. Given a DTHS H in our class we have essentially two ways of
carrying out BMC: use an MILP solver to check feasibility of PH or use our SAT
based CEGAR approach. We present experimental results showing that using
our SAT based CEGAR approach we can handle systems that are more than 50
times larger than those that can handled by an MILP solver.
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2 Background

Notation 1. Let X = [x1, . . . xn], Y = [y1, . . . yn], be finite sequences (lists) of
variables. By abuse of language we may regard sequences as set and we use ∪
to denote list concatenation. We denote with f(X := Y ) the expression f([xi :=
yi|i = 1 . . . n]), that is the simultaneous substitution of the variables in X with
those in Y . Moreover if X is clear form the context we just write f(Y ) for
f(X := Y ).

Let x ∈ X , we denote with Dx the domain of x, that is the set on which
x ranges. A valuation (over a list of variables X) is a function that maps each
variable x ∈ X to a value in Dx. That is, a valuation is a point in ×x∈XDx.

A linear expression over a list of variables X is a linear combination of variables in
X with real coefficients. A constraint (over a list of variables X) is an expression
of the form α ≤ b where: α is a linear expression and b is a real constant. A
convex predicate (over a list of variables X) is a finite conjunction of constraints.
A predicate is defined as follows. A convex predicate is a predicate. If A and
B are predicates then (A ∧ B) is a predicate and (A ∨ B) is a predicate. As a
syntactic sugar, if y is a discrete variable we will write y < b for y ≤ b − 1, y > b
for y ≥ b + 1, y �= b for ((y ≤ b − 1) ∧ (y ≥ b + 1)).

Classically a Mixed Integer Linear Programming (MILP) problem [8] is a linear
optimization problem. However, in our context, we are only interested in finding
feasible solutions. For this reason our definition of MILP does not include an
objective function to be minimized.

Definition 1. Let M(X) be a convex predicate. The Mixed Integer Linear Pro-
gramming (MILP) problem for M(X) consists in finding a valuation V s.t.: 1.
M(V ) holds 2. for all x ∈ X, V (x) ∈ Dx. In other words we are looking for a
satisfying assignment for the variables of M . An Integer [Boolean] Linear Pro-
gramming (ILP [BLP]) problem is an MILP problem with only integer [boolean]
variables.

Usually an MILP problem P is represented as a list of constraints. That is P =
{
∑n

j=1 aijxj ≤ bj | i = 1, . . .m and for j = 1, . . . n, xj ∈ Dxj }. Using standard
MILP techniques (e.g. [8]) it is possible to prove the following propositions.

Proposition 1. Given a predicate P (X) there exist a list Q of boolean variables
and a convex predicate L(Q, X) s.t. ∀X [P (X) iff ∃QL(Q, X)].

Proposition 2. Given an MILP problem P there exists an MILP problem
Align(P ) s.t. 1. P is feasible iff Align(P ) is feasible; 2. All variables in Align(P )
are nonnegative.

Proposition 3. Given an ILP problem P there exists a BLP problem Q s.t. 1.
P is feasible iff Q is feasible; 2. All variables in Q are boolean.

It can be easily shown [8] that, in general, MILP feasibility is an NP-complete
problem. However there are quite effective solvers (e.g. CPLEX [12], GLPK [16])
that can handle non trivial MILP optimization problems.
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Remark 1. Note however that MILP solvers are designed to solve optimization
problems rather than feasibility problems. In particular the branch-and-bound
heuristics typically implemented in MILP solvers are not effective on feasibility
problems since there is no objective function for computing the bound in the
branch-and-bound process.

For the above reason, state-of-the-art commercial MILP solvers like CPLEX
perform as poorly as state-of-the-art open source MILP solvers like GLPK on
MILP feasibility problems with many discrete variables (our case here). In fact,
feasibility problems do not have an objective function and thus CPLEX sophis-
ticated heuristics tend to be quite ineffective.

3 Piecewise Affine Discrete Time Hybrid Systems

In this section we introduce a class of Piecewise Affine Discrete Time Hybrid
Systems (DTHSs for short).

Many classes of piecewise affine hybrid systems have been studied in the lit-
erature, e.g. [2,20]. The same holds true for piecewise affine discrete time hybrid
systems, e.g. [4,27,15,3]. The class of systems we are considering is essentially
the one used in [30].

Definition 2. A Discrete Time Hybrid System (DTHS for short) is a 6-tuple
H = (Q, X, Init, Inv, r, R) where:

– Q = [q1, . . . qk] is a finite sequence of discrete variables. Each variable q ∈ Q
ranges on a finite subset [lq, uq] of the integers Z. Thus Dq = [lq, uq].

– X = [x1, . . .xn] is a finite sequence of real-valued variables. Each variable
x ∈ X ranges on a bounded interval [lx, ux] of the reals R. Thus Dx = [lx, ux].
Of course Q and X are disjoint lists.

– Init(Q, X) is a predicate over Q ∪ X.
– Inv(Q, X) is a predicate over Q ∪ X.
– r(Q, X, X ′) is a predicate over Q ∪ X ∪ X ′, where X ′ = [x′1, . . .x′n].
– R(Q, X, Q′, X ′) is a predicate over Q∪X ∪Q′ ∪X ′, where Q′ = [q′1, . . . q′k].

As usual primed variables denote “next state” values. Usually, when modeling a
DTHS, R is used to define reset transitions, that is R(q, x, q′, x′) implies q �= q′.
This is also our modeling style. However, from a formal point of view, Definition 2
only requires that R defines next state values for discrete states.

The list of state variables S for the DTHS H = (Q, X , Init, Inv, r, R) is S =
Q ∪ X . A state for H is a valuation s = (q, x) of S, where q is a valuation of Q
and x is a valuation of X .

A run for the DTHS H is a sequence (q(0), x(0)), (q(1), x(1)), . . . of
states of H such that the following conditions are satisfied: 1. Init(q(0), x(0))
∧ Inv(q(0), x(0)); 2. For all k ≥ 0, (R(q(k), x(k), q(k + 1), x(k + 1)) ∨
(r(q(k), x(k), x(k + 1)) ∧ q(k + 1) = q(k))) ∧ Inv(q(k + 1), x(k + 1)).

If π = (q(0), x(0)), (q(1), x(1)), . . . is a run of H we denote with π(k) the k-th
element of π. That is π(k) = (q(k), x(k)).
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A state (q, x) of H = (Q, X , Init, Inv, r, R) is k-reachable if there exists a
run π of H and there exists a t ≤ k s.t. π(t) = (q, x).

In this paper we focus on bounded model checking of safety properties. That
is, our goal is to check that for system H no error state is k-reachable. To this
end we need to define the set of error states. This can be easily done using a
predicate. The above considerations lead to the following definition.

Definition 3. Let H = (Q, X, Init, Inv, r, R) be a DHTS, E(Q, X) be a
predicate over (Q ∪ X) and k be a natural number. We say that the triple (H,
E, k) is safe (or that H is k-safe w.r.t. E) iff there is no run π of H for which
there exists a t ≤ k s.t. π(t) = (q, x) and E(q, x) holds (i.e. E(q, x) = 1). In
other words, no k-reachable state of H satisfies E.

4 An Example of DTHS

We give an example of DTHS that will be useful to clarify the class of systems
we are targeting. Consider a system consisting of k water pumps and n > k
tanks. Pump i (i = 1, . . . k) has (discrete) position pi ∈ {1, . . . n}, where pi = j
means that pump i is above tank j. Each pump moves forward (wi = 1) and
backward (wi = 0) between positions 1 and n. Pump i starts from position i.
Each pump must stay in a position for at least α time units and must leave the
position after at most β ≥ α time units.

To compute the amount of water in a tank it is useful to introduce a boolean
variable zi,j s.t. zi,j = 1 iff water tank i is getting water from pump j, that is
zi,j = 1 iff pj = i. This can be defined with the predicate Zi,j = (zi,j = 0∨pj = i)
∧ (zi,j = 1 ∨ pj �= i).

Each tank may get water from any of the pumps. Water flows out from tank
i from a sink that can be open (ui = 1) or closed (ui = 0). The dynamics
of the water level xi of tank i satisfies the following constraint: Pi = (x′i ≤
xi − γui +

∑k
j=1 ηzi,j) ∧ (x′i ≥ xi − μui +

∑k
j=1 θzi,j), where: γ, μ model,

respectively, min and max flow of water out of tank i and η, θ model, respectively,
max and min flow of water out of pump j.

Water demand is modeled as follows. A tank sink can stay open for at most
ζ time units and can stay closed for at most ξ time units. Moreover, the number
of open sinks is at most Λ ≤ n and at least Γ ≤ Λ ≤ n. That is,

∑n
i=1 ui ≥ Γ

and
∑n

i=1 ui ≤ Λ. From the above description we can define a DTHS H.
We expect that each tank i, has enough water (xi ≥ m), but not too much

(xi ≤ M). Thus the predicate E representing our error condition can be defined
as follows:

∨n
i=1((xi < m) ∨ (xi > M)).

Given an horizon k, our goal is to check that the triple (H, E, k) is safe.

Remark 2. Our class of DTHSs cannot be handled using the UPPAAL model
checker, since we are not restricted to clock variables (e.g. see [20]). For example,
tank water levels (xi) cannot be modeled as UPPAAL clocks.

Remark 3. Our class of DTHS cannot be handled with HYSDEL since in our
invariant we may have constraints consisting of discrete state variables. Such
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constraints are not handled by DHA (e.g. see [15]). For example our invariant
constraints

∑n
i=1 ui ≥ Γ ,

∑n
i=1 ui ≤ Λ cannot be handled using HYSDEL.

Moreover we can handle nondeterminism in the discrete time dynamics which
cannot be modeled with the DHA in [15].

Remark 4. Our class of DTHS cannot be handled using the MathSAT tool since
we have constraints involving continuous as well as discrete variables, whereas
MathSAT only handles constraints built out of one type of variables, i.e. only
continuous variables or only discrete variables (e.g. see [6]). For example xi’s
constraints in x′i ≤ xi − γui +

∑k
j=1 ηzi,j , x′i ≥ xi − μui +

∑k
j=1 θzi,j cannot

be modeled using MathSat since they involve continuous (xi) as well as discrete
(zi,j) variables.

5 BMC of DTHS as a MILP Problem

The BMC problem for DTHSs can be cast as an MILP problem. For DHA this
has been shown in [4]. Along the same line we can show that the same holds for
DTHS.

Theorem 1. Let H = (Q, X, Init, Inv, r, R) be a DTHS, E(Q, X) be an error
condition for H and k be a natural number. Then there exists a convex predicate
M(Y, Q0, X0, . . . Qk, Xk) s.t.

– All variables in Y are booleans;
– (H, E, k) is safe iff the MILP problem M(Y, Q0, X0, . . .Qk, Xk) does not

have a solution
– Let y, (q(0), x(0)), . . . (q(k), x(k)) be a solution to the MILP problem

M(Y, Q0, X0, . . . Qk, Xk). Then φ = (q(0), x(0)), . . . (q(k), x(k)) is a path in
H containing an error state. That is, there is a t ≤ k s.t. E(q(t), x(t)).

6 From MILP to BLP

A BMC problem for DTHSs can be transformed into an MILP problem (Theorem
1). In order to transform a BMC problem for DTHSs into a SAT problem,
here we show how an MILP problem can be transformed into a Boolean Linear
Programming (BLP) problem. We do this in three steps. First we transform
our MILP problem P into a problem P1 in which all variables are nonnegative
(Proposition 2). Second, given ε > 0, we transform problem P1 into an Integer
Linear Programming (ILP) problem P ε

2 (Proposition 4). Finally, we transform
P ε

2 into a BLP problem F ε (Proposition 3).
Approximating continuous variables with discrete ones generates discretiza-

tion errors. To account for such errors we relax P constraints. Let P be an
MILP problem and ε > 0. We define the ε-relaxation Pε of P which is obtained
by replacing the rhs b of each constraint in P with (b + ε). Thus ε defines the
relaxation we are willing to accept on P constraints.
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The size of a linear constraint is the number of variables occurring in it.
The size of an MILP problem P (|P |) is the sum of the sizes of its constraints.
Because of lack of space we omit the proof of the following proposition.

Proposition 4. Given ε > 0 and an MILP problem P in which all variables
are nonnegative there exists a linear time (in |P |) algorithm Qε s.t. 1. Qε(P ) is
an ILP problem. 2. If P is feasible then Qε(P ) is feasible. 3. If Qε(P ) is feasible
then Pε is feasible.

Assembling the transformations in Propositions 2, 4, 3 we can constructively
prove the following theorem.

Theorem 2. Let P be an MILP problem and let ε > 0. Then there exists a linear
time (in |P |) algorithm Lε s.t. 1. Lε(P ) is a BLP problem. 2. (Soundness) If P
is feasible then Lε(P ) is feasible. 3. (Completeness) If Lε(P ) is feasible then Pε

is feasible. 4. If Lε(P ) is feasible [infeasible] then ∀ε′ ≥ ε [∀0 ≤ ε′ ≤ ε] Lε′(P ) is
feasible [infeasible].

Theorem 2 says that by using Lε(P ) instead of P we never have false negatives.
That is we never declare safe an unsafe system. Moreover we never have false
positives using Lε(P ) instead of Pε. On the other hand, Lε(P ) may be feasible
and P may be infeasible. That is we may declare unsafe a safe system. Note
however that, as usual, by making ε small enough we can make the difference
between P and Pε arbitrarily small, at the price of making |Lε(P )| grow. Infact,
it can be shown that the number of boolean variables of Lε(P ) coming from the
discretization of continuous variables is proportional to log2(ε−1).

Theorem 3, which proof we omit because of lack of space, guarantees that we
never run into an infinite sequence of false positives. That is by taking smaller
and smaller values for ε eventually we have that Lε(P ) is infeasible (and so is P
by Theorem 2) or that Lε(P ) is feasible and so is P .

Theorem 3. If P is infeasible then there exists ε > 0 s.t. Lε(P ) is infeasible.

7 From BLP to SAT

Using Theorems 1 and 2, given a tolerance ε we can transform a BMC problem
for DTHS H into a BLP problem M . In this Section we show how M can be
transformed into a SAT problem.

Of course we may get a similar result by discretizing the real-valued coefficients
in the linear inequalities in M , implementing floating point arithmetic and then
translating the all problem into SAT. This is the approach followed, e.g., in the
CBMC model checker [9]. However, if we follow such an approach even small
systems will result in huge Conjunctive Normal Forms (CNFs), e.g. see the
CBMC manual in [9]. Hence here we follow a different approach.

We represent a constraint P in M with its non-satisfying assignments. This
yields an often compact CNF representation for P . The details follow.

Let P =
∑n

i=n aixi ≤ b be a constraint in M . We are looking for a CNF
F s.t. F (X) = 1 iff P (X) = 1. Let V be the set of assignments that make P
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1 int blp2sat (a, b) {m1 = 0; m2 = 0;
2 k = index of first undefined value in x;
3 if (k > n)
4 {if (

�n
i=1 a[i]x[i] > b) {F = (F ∧ clause(x)); return 1; }

5 else return 0;}
6 if (min(a, x) > b) {F = (F ∧ clause(x)); return 1;}
7 if (a[k] > 0) {x[k] = 1} else {x[k] = 0;}
8 m1 = blp2sat (a, b);
9 if (m1 > 0) { x[k] = 1 - x[k]; m2 = blp2sat (a, b); }

10 return (m1 + m2); }

Fig. 1. Sketch of algorithm BLP2SAT

false. That is, V = {x | P (x) = 0}. The characteristic function for V is: χV =∨
(v1,...vn)∈V

∧n
i=1 xvi

i , where xvi

i is (xi = vi). Thus x1
i = xi, x0

i = x̄i.
Let F (X) = ¬χV (X). Then P (X) = 1 iff F (X) = 1. In fact P (X) = 1 iff

χV (X) = 0 iff ¬χV (X) = 1. Now F (X) = ¬χV (X) = ∧(v1,...vn)∈V ∨n
i=1 xv̄i

i . Thus
F (X) is a CNF s.t. F (X) = 1 iff P (X) = 1.

Using the above procedure for all constraints in M we can build a CNF formula
W s.t. M(X) = 1 iff W (X) = 1.

Example 1. As an example, let X = [x1, x2, x3] and P (X) = 3x1+2x2+4x3 ≤ 5.
Then V = {(0, 1, 1), (1, 0, 1), (1, 1, 1)}. Thus F (X) = (x1∨x̄2∨x̄3) ∧ (x̄1∨x2∨x̄3)
∧ (x̄1 ∨ x̄2 ∨ x̄3).

Note that we do not need to discretize the real valued coefficients in the linear
inequalities of M . However, to make the above approach interesting we need to
generate F in a time efficient way and in such a way that F is not too large.

Our idea to produce a small CNF F in a fast way is the following. Let P =∑n
i=n aixi ≤ b. Let y = (y1, . . . yn) be an assignment s.t. P (y) = 0. If ai > 0

and yi = 0 then also for z = (y1, . . . yi−1, 1, yi+1, yn) we have P (z) = 0. Let
F be the CNF representing P . Then F = . . . ∧ (xy1

1 ∨ . . . ∨ x0
i ∨ . . . xyn

n ) ∧
(xy1

1 ∨ . . . ∨ x1
i ∨ . . . xyn

n ) ∧ . . . = . . .∧ (xy1
1 ∨ . . . ∨ x

yi−1
i−1 ∨ x

yi+1
i+1 ∨ . . . xyn

n ).
That is, the value of yi matters only if it is 1. Analogously, if ai < 0 the value

of yi matters only if it is 0.
More formally, we say that variable yi is relevant in P for the assignment y

iff (ai > 0 ∧ yi = 1) ∨ (ai < 0 ∧ yi = 0). We denote with Γ (P, y) the list of
variables relevant in P for assignment y.

With the above considerations we can write the CNF for a constraint P as
follows: F (X) =

∧
v:P (v)=0

∨
x∈Γ (P,v) xv(x).

Example 2. A CNF for P as in Example 1 is: F = (x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄3).

The above considerations suggest that, if our goal is to find a non-satisfying
assignment, then we should first try setting to 1 the variables with large positive
coefficients and to 0 the variables with large (in modulo) negative coefficients.

To generate F in a fast way, as a first step we reorder variables x1, . . . xn so
that xi precedes xj in the ordering iff one of the following conditions hold: 1.



CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems 407

ai < 0 and aj < 0 and ai < aj ; 2. ai > 0 and aj > 0 and ai > aj ; 3. ai < 0 and
aj > 0.

Let v be a partial assignment for X . That is ∀x ∈ X v ∈ {0, 1, ⊥}. Function
clause(v) returns the clause

∨
x:v(x)∈{0,1} x

v(x).
Putting all the above considerations together leads to the search-and-prune

algorithm sketched in the algorithm blp2sat() in Figure 1. As we shall see, our
experimental results show that the search-and-prune heuristic used in function
blp2sat() often allows us to quickly generate compact CNF representations for
a linear inequality

∑n
i=1 aixi ≤ b.

In the following we describe the algorithm blp2sat() in Figure 1. First of all,
blp2sat() assumes that variables have already been ordered as explained above.
Let P =

∑n
i=n aixi ≤ b our constraint. Function blp2sat() has two arguments:

the array a s.t. a[i] = ai and the rhs of P , b. The global variable x in blp2sat()
stores the partial assignments found during the computation.

Line 2 of blp2sat() in Figure 1 computes in variable k the index of the
first undefined assignment. If (line 3) this index is greater than n (number of
variables in P ) then all variables have been assigned a value and we go to line
4. Since all variables are defined we can evaluate the lhs

∑n
i=1 a[i]x[i] of P . If∑n

i=1 a[i]x[i] > b (line 4) then constraint P is not satisfied and x contains a
non-satisfying assignment for P . In such a case we add to F the clause clause(x)
(line 4) and return 1, since we added one clause to F . If

∑n
i=1 a[i]x[i] ≤ b then

x is a satisfying assignment for P and thus we generate no clause and return 0
(line 5).

If k ≤ n then x[k] has not been assigned a value. Line 6 checks if there is
hope to complete x to a satisfying assignment. If this is not the case then we
add clause(x) to F (line 6) and return 1. If x may be completed to a satisfying
assignment we go to line 7 and choose the value of x[k] so as to make the lhs of
P as large as possible in an attempt to find a non-satisfying assignment. After
that in line 8 we recursively call blp2sat() and get in m1 the number of clauses
produced by the setting for x[k] chosen in line 7.

If the choice of x[k] in line 7 has not produced non-satisfying assignments
(m1 = 0) then, a fortiori, also the other possible assignment in line 7 for x[k]
will not produce any non-satisfying assignment. In other words, if m1 > 0 we
consider the assignment (1 - x[k]), line 9, else we do not need to. Finally, line 10,
we return the total number of non-satisfying assignments produced. Note how
the test in line 7 allows us to prune the search tree for non-satisfying assignments.

8 Solving an MILP Problem with a SAT Based CEGAR

Rather than transforming an MILP problem into a SAT problem in one big
step we can use a Counterexample Guided Abstraction Refinement (CEGAR)
approach to gradually transform an MILP problem into a SAT problem.

First of all, given a linear constraint P , we can modify blp2sat() in Figure 1
so that each time it is called it generates at most MaxClause new clauses for the
linear constraint P . The idea is that we can often prove correctness (UNSAT) or
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find an error (SAT) without generating all clauses for each constraint. This can be
done by storing the state σ of the computation of blp2sat(). State σ summarizes
all the information we need to save to safely stop and, above all, resume, the com-
putation of blp2sat(). Initially the state is empty (meaning blp2sat() is at its
start point). We call cegar-blp2sat() the version of blp2sat() thus modified.

In the following we describe the algorithm cegar milp2sat() that gradu-
ally transforms an MILP problem into a SAT problem using a CEGAR based
approach. A sketch of cegar milp2sat() is in Figure 2.

First, for each constraint (A[i], b[i]) (that is
∑n

j=1 A[i]jxj ≤ b[i]) we denote with
σi the state of the computation of blp2sat(A[i], b[i]). Initially σi is empty for i =
1, . . . n. In the following lines refer to function cegar milp2sat() in Figure 2.

The argument of cegar milp2sat() is an MILP problem P , i.e. the pair
(A, b).

Line 2 replaces P with Align(P ) (see Proposition 2). Line 3, given the tolerance
ε and using Proposition 4, computes the number of bits needed for x in order to
achieve tolerance ε. Line 4 replaces in the MILP problem all continuous variables
with discrete ones (Proposition 4). Line 5 transforms all discrete variables into
boolean ones (Proposition 3). Line 6 initializes the state of the computation (i.e.
clause generation) for each constraint.

Line 7, for each constraint i initializes the history γ[i] of i. The history of con-
straint i records when i turned out to be false under a candidate solution ρ. More
specifically. Assume we are at iteration t of the while loop starting at line 9. The
history γ[i] is a bitvector of size m that has a 1 in position γ[i][j] iff at iteration
(t − (j − m + 1)) constraint i was false under assignment ρ. Thus to update γ[i]
we simply shift it of 1 bit to the right and set γ[i][m − 1] to 1 if the constraint is
not satisfied by ρ, to 0 else. In our implementation we have set m = 8.

Line 8 initializes to 1 (empty set) the generated CNF F . Line 9 begins the
main loop of cegar milp2sat(). Line 10 begins the CEGAR for loop. Lines 10-
12 generate an approximation of our MILP problem. Namely, for each constraint
i, in line 11 we order constraint variables as described in Section 7 and in line
12 we generate at most MaxClause clauses for constraint i with lhs coefficients
A[i] and rhs coefficient b[i] (function cegar blp2sat()). Line 13 calls the SAT
solver on CNF F . We use ZChaff [24,32] here as a SAT solver. The result may
be UNSAT or SAT with an assignment ρ.

If we get UNSAT we are done since the original problem is then also UNSAT
(line 14). However if we get SAT (line 15) the assignment ρ may not be a sat-
isfying assignment for MILP (A, b) since we only generated at most MaxClause
clauses for each constraint. In this case we go to line 16.

In lines 17-21, for each constraint i we update its history γ[i]. This is done
by shifting γ[i] one bit to the right and by writing a 0 (1) in the MSB (Most
Significant Bit) of γ[i] if ρ does (does not) satisfy constraint i.

If at the end of the loop in lines 17-21 no constraint has been found to be
false then ρ is a real counterexample and we return SAT (line 22).

Lines 23-25 of cegar milp2sat() for each constraint i compute in wi the
number of clauses to be generated by cegar blp2sat(A[i], b[i]). This number
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1 void cegar_milp2sat(A, b) {
2 Align variables to Zero;
3 Compute number of bits for continuous variables;
4 Discretize Continuous variables;
5 Transform discrete variables into boolean variables;
6 Initialize computation state of cegar_blp2sat();
7 Initialize history γ to all 0s;
8 F = 1;
9 while (1) {

10 foreach i {
11 Order variables accordingly to coefficients;
12 F = F ∧ cegar_blp2sat(A[i], b[i]); }
13 sol = call_SAT_solver(F);
14 if (sol == UNSAT) {return (UNSAT);}
15 else {ρ = decode_SAT_assignment();}
16 oksat = 1;
17 for each constraint i {
18 shift γ[i] 1 bit to the right;
19 if (ρ does not satisfy constraint i)
20 {oksat = 0; γ[i][m− 1] = 1;}
21 else {γ[i][m− 1] = 0;} }
22 if (oksat == 1) { return (SAT);}
23 for each constraint i {
24 compute clauses to be generated wi using γ[i];
25 cegar_blp2sat(A[i], b[i]); }

26 let ρ′ be the assignment containing only the decision variables
in ρ;

27 add to F the clause ¬ρ. }}

Fig. 2. Sketch of algorithm cegar milp2sat()

Γ = 1 Λ = 1 γ = 1 μ = 2 θ = 1 η = 2 α = 2 β = 4 ζ = 3 ξ = 2 m = 6 M = 24

Fig. 3. Parameters for the water-tanks system in Section 4

is 0 if the constraint was true under the last found assignment ρ. Otherwise
it is greater than 0 and depends on the history of constraint i. Intuitively, the
more often and the more recently constraint i has turned out to be false, the
larger the values of wi. In any case wi ≤ MaxClause. After computing wi we call
cegar blp2sat(A[i], b[i]).

In line 26, from the SAT solver data structures we compute the decision
variables of ρ. Let ρ′ be the assignment containing only the decision variables in
ρ. In line 27 we add to F the clause ¬ρ′.

Eventually we get UNSAT or a real (not spurious) satisfying assignment.

9 Experimental Results

To assess effectiveness of our approach we have implemented the proposed algo-
rithms and compared their performance w.r.t. MILP based BMC verification.

Let (H, E, k) be a BMC problem. By using Theorem 1 we can transform
such BMC problem into an MILP problem P . We then have two choices: use an
MILP solver to check feasibility of P or use our SAT-CEGAR approach (Section
8) to check feasibility of P . In this section we compare these two approaches.



410 F. Mari and E. Tronci

GLPK SAT SAT-CEGAR

k h Output
Time
(secs) Output

Time
(secs) CL

Mem
(MB) Output

Time
(secs) CL

Mem
(MB)

1 7 SAT 88.09 SAT 3.12 334279 30.59 SAT 4.63 330318 30.56
2 4 SAT 4.95 SAT 5.66 600433 60.64 SAT 6.28 482930 47.74
3 4 UNSAT 7256.42 UNSAT 13.63 1.55e+06 123.96 UNSAT 3.09 370931 30.937
3 23 OOT UNSAT 1902.32 8.93e+06 837.253 UNSAT 21.43 2.13e+06 240.83
3 98 OOT OOM UNSAT 153.35 9.08e+06 839.641
4 9 OOT UNSAT 125.28 8.53e+06 833.473 UNSAT 9.79 1.1e+06 120.756
4 71 OOT OOM UNSAT 144.17 8.65e+06 836.938
5 3 OOT UNSAT 62.44 6.75e+06 627.688 UNSAT 4.07 473834 47.8307
5 54 OOT OOM UNSAT 139.58 8.52e+06 836.518
6 1 OOT UNSAT 46.99 5.21e+06 487.896 UNSAT 171.903 3.87e+06 381.539
6 48 OOT OOM UNSAT 157.57 8.2e+06 643.253

Fig. 4. Experimental results for the system in Section 4 with parameters in Figure 3

As a SAT solver we use ZChaff [24,32] a well know open source SAT solver. As
an MILP solver for comparison we use GLPK [16]. In view of Remark 1 using
GLPK rather than CPLEX [12] for our feasibility problems does not change
meaningfully the results.

We use the example in Section 4 to assess effectiveness of our approach. This
is a parametric example with most of the features that make life hard for reach-
ability analysis.

Let k be the number of pumps. The number of tanks n is set to 2k and the
system parameters are those in Figure 3.

Figure 4 shows our results when using GLPK, SAT without CEGAR (i.e.
with MaxClause set to ∞) and our SAT-CEGAR (Section 8) with MaxClause
set to 100. We set ε = 0.1, that is we accept a relaxation of 0.1 on P constraints
(Theorem 2). Note that (Theorem 2) if we get UNSAT then the original problem
is UNSAT and for each 0 ≤ ε′ ≤ ε we would get the same result (UNSAT).

The meaning of the columns in Figure 4 is the following.
Column k gives the number of pumps. The number of tanks is then n = 2k.

Column h gives the BMC horizon. Column Output gives the outcome of the
verification process. Namely, SAT if an error has been found within horizon h,
UNSAT else. Column Time gives the CPU time in seconds. We have set a time
limit of 180 minutes (10800 seconds) for the verification process. If a process
does not complete by such time limit we report Out Of Time (OOT) in column
Time. Column Mem gives the RAM used by the process. We report OOM if a
process runs out of memory (1GB of RAM in our case). Column CL gives the
number of clauses generated.

In our experiments we used a Mac Mini (CPU PowerPC G4 1.5 GHz; L2
Cache 512 KB; RAM 1GB).

For each k in Figure 4 we show the first horizon h to which we find an error
or the last horizon that we were able to handle before going out of time or out of
RAM. From Figure 4 we can clearly see how SAT behaves better than an MILP
solver (GLPK) and how our SAT-CEGAR approach behaves better than SAT.

Figure 6 gives some detail about the SAT-CEGAR computation time (y axes)
as a function of the horizon (x axes) with k = 3 pumps. We see that for SAT-
CEGAR computation times are almost a linear function of the horizon.

Figure 5 gives some information about the MILP problem generated from our
BMC problems.
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MILP Problem

k h Rows Real
Vars

Non-
Bool
Int
Vars

Bool
Vars

Non-
zeros

1 7 965 40 8 219 1826
2 4 1413 50 10 406 2764
3 4 2751 75 15 927 5550
3 98 64979 1485 297 21795 133014
3 99 65641 1500 300 22017 134370
4 71 82087 1440 288 30732 172856
4 72 83241 1460 292 31164 175288
5 54 100759 1375 275 40585 217330
5 55 102621 1400 280 41335 221350
6 48 136309 1470 294 57714 299844
6 49 139143 1500 300 58914 306084

Fig. 5. MILP problems generated for the
water-tanks system in Section 4 with pa-
rameters as in Figure 3

Fig. 6. SAT-CEGAR. Times for k = 3
and n = 6

Summing up, our experimental results show that our SAT-CEGAR approach
can solve problems that are about 50 times larger than those that can be handled
with an MILP solver. Namely, from Figure 4 we see that SAT-CEGAR can solve
problems with k = 6 and h = 48 (i.e. 136309 linear constraints from Figure 5)
whereas GLPK stops at k = 3, h = 4 (i.e. 2751 linear constraints from Figure 5).

10 Conclusions

We have presented a SAT based BMC algorithm for automatic verification of
DTHSs. Using Counterexample Guided Abstraction Refinement (CEGAR) our
algorithms gradually transforms a DTHS verification problem into larger and
larger SAT problems.

Our experimental results show that our approach can handle DTHSs that are
more then 50 times larger than those that can be handled using an MILP solver.

Acknowledgements. We are very grateful to HSCC’07 referees for their helpful
comments on the submitted version of this paper.
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Abstract. We show how Embedded Graph Grammars (EGGs) are used
to specify local interaction rules between mobile robots in a natural man-
ner. This formalism allows us to treat local network topologies, geometric
transition conditions, and individual robot dynamics and control modes
in a unified framework. An example EGG is demonstrated that achieves
sensor coverage in a provably stable and correct manner. The algorithm
results in a global network with a lattice-like triangulation.

1 Introduction

The overarching scientific question facing the area of networked robot systems
is how global behaviors arise from local rules in a well-defined and predictable
manner. In a dynamic task, as agents move in and out of each others sensory
or communication ranges, the network changes, resulting in inherently hybrid
dynamics. Hybrid dynamics also result from the fact that individual agents can
assume different roles depending on local network adjacency or on the geomet-
rical characteristics of the local environment. Networked robot systems require
methods that control both the network dynamics and the individual robot be-
haviors. This suggests a handful of potential formalisms [1,2]. Unfortunately,
the available languages are not appealing for networked systems because the
local network topology associated with each robot is not cleanly represented.
Hybrid automata [3,4], while certainly expressive enough, are cumbersome in
this setting. They additionally suffer from the state explosion problem since a
distinct state typically has to be enumerated for every possible combination of
role assignments and network topologies.

Thus, we take as our starting point graph grammars which provide a compact
representation of subgraph transitions arising from local interactions. Although
graph grammars have been successfully used to control robot systems [5], they
best describe changing networks, not, for example, low-level robot motion. To
address this, we augment the notion of a graph grammar, introducing the Em-
bedded Graph Grammar(EGG) model and associated analysis methods.

To demonstrate and challenge the approach, we extend the geometric prob-
lem of coverage (see also [6]) to include specifications on network topology.
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Fig. 1. Simulated formation of a δ-triangulation using an embedded graph grammar

In particular, we suppose that three communicating robots forming an equi-
lateral triangle of side-length δ cover the convex hull of their locations. The
goal (described more formally in Section 3) is to produce a triangulation of an
entire region in which any three nearby robots form a δ-triangle and there are
no holes in the resulting mesh (see Figure 1). Similar lattice-like geometries are
generated by virtual potential leaders in [7] where the system shares a global
coordinate system. What is novel here is (1) the EGG formalism that encodes
the system dynamics, local network topology, guard conditions for switching
between control modes, and inter-robot communication rules in a unified man-
ner; (2) the lack of a common global reference frame among the robots; and (3)
the superposition and successful coordination of several complementary control
objectives.

2 Embedded Graph Grammar Definitions

2.1 Graphs and Other Notation

If Σ is a set of labels, a labeled graph is the quadruple (V, E, l, e) where V is a set
of vertices, E is a set of edges, l is a vertex labeling function that maps vertices
into Σ, and e is an edge labeling function that maps edges into Σ. We denote by
G the space of labeled graphs. Sometimes the label set Σ is a cartesian product
of atomic label spaces we refer to as fields. For example the system introduced
in this paper has a node label space where the fields are named (mode, dist).
We use dot notation to indicate the values of label fields for specific robots. For
instance i.dist = 10 indicates that robot i has the value 10 in its dist field.

If S is a set of vertices, G[S] denotes the subgraph of G induced by S. We
denote by VG and EG the edges of a graph G and when there is no danger of
confusion we write V to indicate the vertex set of the system under consideration.
If i and j are vertices in a graph, we denote their graph distance by d(i, j).

If f is a function defined on a domain A, we denote the restriction of the
function to B ⊂ A by f|B . A function f is well-defined with respect to an
equivalence relation ∼ if x ∼ y implies f(x) = f(y).
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2.2 Embedded Graphs

Consider a system of N communicating robots with identical state space X .

Definition 1. An embedded graph γ is a pair γ = (G, x) where G is a labeled
graph and x : V → X is a realization function. The space of all embedded graphs
is denoted by Γ .

A vertex i ∈ V indicates the index of the ith robot. The presence of an edge
ij ∈ E corresponds to a physical and/or maintained communication link between
robots i and j. The vertex label indicates the operational mode of robot i and
(along with the edge label e(ij)) keeps track of local information. The function
x assigns to each robot a continuous state or realization in its state space X .

We write Gγ , xγ , Vγ , and Eγ to denote the labeled graph, continuous state,
vertices, and edges associated with an embedded graph γ. If S ⊆ Vγ , then the
the embedded graph induced by S, γ[S], is given by the pair (G[S], x|S ). We
define the distance between two embedded graphs, γ and ρ, by

d(γ, ρ) �
{

∞ if Gγ �= Gρ

||xγ − xρ|| otherwise.

The distance between an embedded graph γ and a set of embedded graphs T is
denoted by d(γ, T ) = minρ∈T d(γ, ρ).

2.3 Embedded Graph Transition Systems

A trajectory of an embedded graph transition system describes how the network
topology and continuous states of a group of robots changes over time.

Definition 2. An embedded graph transition relation is a relation A ⊆ Γ × Γ
such that (γ1, γ2) ∈ A implies xγ1 = xγ2 .

Definition 3. An embedded graph transition system is a triple (γ0, A, u) where
γ0 is an initial embedded graph and u : V ×Γ → TX is the vector field describing
the continuous flow.

Definition 4. A trajectory is a map σ : R
≥0 → Γ such that there exists a

sequence τ0, τ1, τ2, ... where

1. xσ(t) is continuous.
2. τk ≤ τk+1 and if the sequence has any finite length N , τN �∞.
3. For all t, t′ ∈ [τk, τk+1), Gσ(t) = Gσ(t′).
4. τi �= ∞ and i > 0 if and only if there exists a transition((G, x∗), (H, x∗)) ∈ A

such that (G, x∗) = limt→τi σ(t) and σ(τi) = (H, x∗).
5. For all i ∈ V and t ∈ [τi, τi + 1), d

dtxσ(t)(i) = u(i, σ(t)).

We denote the set of nondeterministic trajectories of a system by T (γ0, A, u).
Clearly an embedded graph transition system is a globally defined non-
deterministic hybrid automata where the discrete states are labeled graphs.
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2.4 Locality and Embedded Graph Grammars

Our interest is in modeling and implementing embedded graph transition systems
in a local and distributed fashion. In other work [8,9], we model notions of “local”
that include geometric restrictions on sensing and communications. In this paper
we focus exclusively on the notion of local graph neighborhoods and we develop
a model where:

1. Graph matching involves only a small subset of vertices.
2. The flow and transition relations use discrete information from the graph

neighborhood.
3. The flow and transition relation are permutation-invariant.

We refer to the neighborhood of i ∈ Vγ as the friends of i and denote this set
by F (i). In keeping with existing graph literature, we write F [i] to mean F (i)∪ i
and denote the closed out-neighborhood by F+[i].

Definition 5. Consider the pairs (A, γ) and (B, ρ) where γ and ρ are embedded
graphs, A ⊂ Vγ , and B ⊂ Vρ. (A, γ) ∼ (B, ρ) if there exists a bijective map ν
between Vγ and Vρ such that

1. For all i ∈ A, ν(i) ∈ B,
2. For all k ∈ Vγ , xγ(k) = xρ(ν(k)), and
3. For all i ∈ A, ν is a label preserving isomorphism between Gγ [F [i]] and

Gρ[F [ν(i)])].

If (A, γ) ∼ (B, ρ) we say γ from the point of view of A is equivalent to ρ from
the point of view of B .

Definition 6. A control law u : V × Γ → TX is locally implementable if u is
well defined with respect to the point of view equivalence relation ∼.

This definition captures the requirement that robots use discrete information
from their local graph neighborhood in a permutation invariant manner. Robots
form new links and update their labels on a local scale by using guarded rules.

Definition 7. A guard g is a function g : P(V )×Γ → {true, false}. A guard is
locally checkable if it is well-defined with respect to the point of view equivalence
relation on sets, ∼.

Definition 8. A guarded rule (or just rule), r = (g, L, R), is a pair of labeled
graphs over some small vertex set VL = VR and a locally checkable guard g.

Figure 4 shows an example of a guarded rule. Each breakout box contains a
dummy variable on the left used to identify specific vertices in a rule. The right
hand side of the box contains the labeling of that vertex. When the topology
and labeling of a small group of robots matches that of the left hand graph of
the rule and the robots are in a “safe” configuration (as defined by the guard),
then they can update their state to match the right hand graph in the rule.
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More formally suppose γ represents a possible state of a system and h is a
label preserving subgraph isomorphism from VL into Gγ such that g(h(VL), γ)
is true. We call h a witness and the pair (r, h) an action. A rule r is applicable
if a witness h can be found. The application of an action (r, h) on an embedded
graph γ = (G, x) produces a new embedded graph γ′ = ((V, E′, l′, e′), x) defined
by

E′ = (E − {h(i)h(j)|ij ∈ EL}) ∪ {h(i)h(j) | ij ∈ ER}

l′(i) =
{

l(i) if i �∈ h(VL)
lR ◦ h−1(i) otherwise. e′(ij) =

{
e(ij) if i /∈ h(VL) or j /∈ h(VL)
eR ◦ h−1(i)h−1(j) otherwise.

That is, we replace h(L) (which is a copy of L) with h(R) in the graph Gγ . We
write γ

r,h−−→ γ′ to denote that we obtain G′γ′ from Gγ by applying action (r, h).

Definition 9. An embedded graph transition ((G, x), (H, x)) is consistent with
a rule r if there exists a witness h such that (r, h) is applicable to (G, x) and
G

r,h−−→ H. We denote by A(r) the set of transitions consistent with rule r. If Φ
is a set of rules, A(Φ) = ∪r∈ΦA(r).

Definition 10. An embedded graph grammar system (EGG) is a triple (γ0, Φ, u)
where γ0 is an embedded graph representing the initial state, Φ is a set of rules, and
u is a locally implementable controller.

Proposition 1. The set of trajectories of a local embedded graph grammar,
T (γ0, Φ, u) are equivalent to the trajectories of an embedded graph transition
system under the transition relation consistent with Φ, A(Φ), and the vector
field described by the locally implementable controller u, i.e.

T (γ0, Φ, u) = T (γ0, A(Φ), u).

Figure 2 shows an embedded graph grammar trajectory. Note that discrete tran-
sitions involve small sets of vertices and that concurrent application of rules is
possible.

3 Coverage Via δ-Triangulation

3.1 Preliminaries

By a triangle, we mean any subgraph composed of three fully connected vertices
(say i, j, k). A δ-triangle is a triangle where ||xi −xj || = ||xj −xk|| = ||xi −xk|| =
δ. We say that a region of the plane A ⊂ R

2 is covered if A lies within the convex
hull of the positions of three robots in a δ-triangle.

A graph G is planar if there exists an embedding x : V → R
2 such that when

the edges are drawn as straight lines in the plane, no edges intersect except at
vertices. An embedded graph γ = (G, x) is a plane graph when G is planar via
the realization function x. The regions of a plane graph bounded by the edges
are called faces and every finite planar graph has exactly one unbounded face
called the outer face.
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Fig. 2. A Sample Trajectory. (a) Initial state all free robots, f , are running the Gabriel
graph pre-sorting controllers (indicated by dashed edges). (b) Hexagonal seed forma-
tion. (c) After the hexagonal seed is formed by R2, the robot in bold labeled f is
trapped inside the hexagon. (d) To correct this “error”, rule R6 changes the robot to
repulse mode, r. (e)-(f) Utilizing the repulsing controller, the robot in bold moves
away from the center. Also Rules R5 and R6 of the crystal growth process are applied.
(g) By repeatedly applying the error correction rules, the robot in bold works its way
out of the crystal where it can be absorbed as the final element in the structure.

Definition 11. An plane graph γ is a near-triangulation if the outer face is a
cycle and all inner faces are triangles.

Definition 12. A near-triangulation γ is a δ-triangulation if every inner face
corresponds to a δ-triangle. We say a δ-triangulation γ is maximal if for every
graph H created by adding an edge to Gγ , there does not exist a realization x
such that (H, x) is a δ-triangulation.

We denote by T the set of all δ-triangulations and by Tmax the set of all maximal
δ-triangulations.

3.2 General Algorithm

Consider N robots moving in the plane without a common reference frame and
obeying integrator dynamics given by ẋi = u. Suppose Γ0 is the class of initial
embedded graphs where: (1) Eγ0 = ∅, (2) there is a unique vertex 0 labeled
l(0).mode = master and (3) all other vertices are labeled by l(i).mode = free.
Task. Design an embedded graph grammar, (γ0, Φ, u) such that for all trajectories
σ ∈ T (γ0, Φ, u)

lim
t→∞σ(t) ∈ Tmax.
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Our method of constructing δ-triangulations is similar to that of growing “crys-
tals” where placing a “seed crystal” in a “solution” causes the solution to repli-
cate the seed and crystalize. We often view EGGs as collections of small behaviors
interacting locally, a fact highlighted by our δ-triangulation grammar, Φ, which
describes the four concurrent processes shown in Figure 2:

1. Pre-sorting–The robots not involved in the other three processes try (without
communication) to organize into a mesh that is close to a δ-triangulation.

2. Hexagon Formation–The master chooses six robots and creates a hexago-
nal “seed” formation, labeling all edges on the boundary by ij.boundary =
outer.

3. Crystal Growth–The δ-triangulation or “crystal” is grown by waiting until
robots in a boundary edge are near settling, then a robot on the exterior of
the crystal “attaches” to these robots to form a new triangle or two robots
already in the crystal add an edge to enclose a δ-triangle.

4. Error Correction–Occasionally robots executing the pre-sorting algorithm
become trapped in the interior of the crystal structure. The error correction
controller routes these robots to the exterior using local label information.

Table 1. Control Law u for the δ-triangulation solution grammar. Robots execute the
control law corresponding to their label.

Purpose Label Control

Pre-Sort f -
�

ij∈Gabriel(i) ∇xiUij

Hexagon m 0
Formation 0 -

�
ij∈F+(i) ∇xiUij

1 − 5 - ∇xi(||xi − P (i)||)2
Crystal Growth s -

�
ij∈F+(i)∩Con(i) ∇xiUij

Error Correction r - ∇xi(||xi − p(i)||)2

Suppose ΦHEX is the grammar for hexagon formation (Figure 3), ΦCG is the
grammar for crystal growth (Figure 4),ΦEC is the grammar for error correction
(Figure 6), and the solution grammar is Φ = ΦHEX ∪ΦCG ∪ΦEC . The following
notation is useful in describing the solution system (γ0, Φ, u). Fix a trajectory σ
and define γ(t) = γσ(t), x(t) = xγ(t), G(t) = Gγ(t). By r(t) and h(t) we denote the
rule and witness applied at time t. The grammar Φ uses two vertex label fields,
mode and dist(the graph distance from the master) and two edge label fields,
boundary and control. The mode labels are: master,0, 1,..., 5, slave, repulse,
and free. Figures refer to mode labels by their first letter.

The function Con(V ) takes any set of vertices V and returns another set of
vertices V ′ where V ′ is the set of vertices reachable from V via paths where
every edge is labeled as a control edge. The crystal function C(t) is defined as
the restriction of the embedded graph γ(t) to the set of vertices labeled slave
or master and defines the growing crystalline structure. We define the interior
function I(t) as the closed union of the faces in the crystal C(t). We denote by
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g2:
For u ∈ {j, k, ...n}, | ||xu − xv|| − δ| < ε and gset(i)where gset(A) is
defined as: For every u ∈ A, and every v ∈ F+(u), | ||xu − xv|| − δ| < ε.

⇀

⇀

Fig. 3. Rule set ΦHEX for hexagonal seed formation. Rule R1 establishes the topology
used to move the robots into a hexagonal configuration. Once the robots are in the
attracting region, rule R2 switches to the desired topology and control modes.

d(i, ljk) the distance of xi from the line ljk through xj and xk. If ljk defines a
half plane in R

2, we denote by Hi
l (j, k) the region of state space where i lies in

the half plane opposite l.

3.3 Pre-sorting Using Gabriel Graphs

We use a geometric switching algorithm by Schucker, Murphey and Bennet [10]
to produce near δ-triangulations. The algorithm uses the edges of the Gabriel
graph as a switching criterion and does not require explicit communication.

Definition 13. Given a realization x, we denote the Gabriel graph of x by
Gabriel(x), where ij ∈ EGabriel(x) if and only if for all k �= i or j,

||xi − xj ||2 < ||xi − xk||2 + ||xj − xk||2.

For an edge ij we define an edge based potential Uij = (||xi−xj ||−δ)2. As seen in
Table 1, free robots follow the negative gradient of Uij for Gabriel graph edges
ij, trying to make the distance between those robots δ. The first few panels of
Figure 2 show the Gabriel graph controller pre-sorting the robots.

3.4 Hexagon Formation

By a hexagonal seed graph, we mean any embedded graph μ where Gμ = W7 is
a wheel graph and xμ is a hexagonal configuration with edge lengths of δ (i.e.
μ ∈ Tmax). Forming the hexagonal seed is challenging because the robots lack of
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3 ± ε and ∠jlk > ∠ilk > 0.

g5 : gsettled(L) and | ||xi − xj || − δ| < ε.

⇀

⇀

⇀

Fig. 4. Rule set ΦCG for Crystal Growth. Rules R3 and R4 add robots to the crystal.
Rule R5 encloses δ-triangulations.

a common coordinate system. When rule R1 is applied, the robot corresponding
to vertex i in Figure 3 changes to i.mode = 0. The master robot corresponds to
vertex o. The controller ẋi = ∇iUio limits the motion of i to a linear manifold
defined by the configuration of i and o when the rule is applied. Since the vector
voi is constant, the other robots (labeled by mode ∈ {1, 2, ...5}) form edges to
robots 0 and i and use voi as the basis of a shared local coordinate system. Then
each vertex v constructs a sink point P (v) defined by their mode labels where

P (v) = xo + δ(cos(
π

3
v.mode), sin(

π

3
v.mode))T .

Using the simple potential controllers shown in Table 1, the robots converge
towards the hexagonal configuration defined by P . Once the robots’ geome-
try is close enough to hexagonal, the robots apply rule R2 to switch to the
δ-triangulation topology. Proposition 2 states a hexagonal seed is always formed
and is proven (along with other supporting propositions) in Section 4.2. Fig-
ure 2(a)-(c)shows hexagon formation in a partial trajectory.

Proposition 2. For any ε, if γ(t0) = γ0, then there exists t2 > t0 and a δ-
triangulation μ ∈ T where Gμ = W7 such that for all t ≥ t2, d(C(t)[Vμ], μ) < ε.

3.5 Crystal Growth

Consider any crystal C(t) and an edge labeled jk.boundary = outer (we call
these edges “boundary” edges). The controllers grow the crystal by attaching a
“free” robot from the exterior (say i) to j and k and updating the boundary
labeling. The rules in Figure 4 address two different geometries. In rule R3,
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R5R5

R4R4

R3R3

s1

s1
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s1

s1

s1

s1

s1

s1

s1

s1

s1

fM

fM m0m0

s2

s2s2 s2

s2

s2s2

s2s2 s2

s2
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s3s3s3s3
s3

s2

Fig. 5. Applications of Crystal Growth Rules. The gray areas indicate the regions in
which the guards g3 and g4 are true. R3 and R4 add vertices to the crystal. R5 closes
a δ-triangulation. Note that after the application of the rules, the new labeling of the
outer boundary remains consistent with the geometry.

if j.dist = k.dist, then i forms edges with j and k , marking the new edges
outer and labeling i.dist = j.dist + 1 and i.mode = slave. If applied in g3,
the controller for the slave label shown in Table 1 moves i to a point where
||xi − xj || = ||xi − xk|| = δ corresponding to a δ-triangulation. Figure 5 shows
the guards of R3 and the other crystal growth rules and their applications. The
unidirectional information flow from the hexagonal seed outward guarantees that
the crystal does not deform when a new robot is added.

Rule R4 is applied at the corners of the hexagon where there are two boundary
edges jl and kl with j.dist = k.dist = l.dist + 1. When ∠jlk ≈ 2π

3 , R4 adds i
between j and k and updates the distance by i.dist = j.dist.

Proposition 3. For all ν > ε and for ρ ∈ T , if d(C(t1), ρ) = ν, then there
exists t2 > t1 such that either r(t2) ∈ {R3, R4} or d(C(t2), ρ) = ε.

Finally, if there are two robots, j and k where j.dist = k.dist, jl and kl ∈ E and
∠jlk ≈ π

3 , then the grammar encloses a triangle by adding an edge jk via rule
R5. This guarantees that the resulting δ-triangulation is maximal. The edge is
labeled e(jk) = (outer, comm), indicating it is not used as a control input.

Proposition 4. If d(C(t1), ρ) < ε, then there exists t2 > t1 such that either

i. r(t2) = R3 or r(t2) = R4 or
ii. There exists η ∈ Tmax such that (1) d(C(t2), η) < ε and (2) if i.mode = free

and xi /∈ I(t), R3 or R4 are applicable to i.

3.6 Error Correction

Rules R6-R9 (Figure 6) and the controller (Table 1) associated with the label
repulse remove robots trapped in the crystal structure. Suppose three robots
{j, k, l} define a face f1 and a robot i (with i.mode = free) lies in the closure
of f1. Then applying rule R6 changes i.mode to repulse. The repulsing robot
calculates a sink point p(i) such that when l.dist = k.dist < j.dist then p(i) =
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Fig. 6. Error Correction rules, ΦEC . Rule R6 initiates the error correction process, R7

and R8 move vertices towards the outside of the crystal and R9 terminates the error
correction process when the robot is sufficiently far from the crystal.

2δ(xj − 1
2 (xk +xl))/(||xj − 1

2 (xk + xl)||) and when j.dist < k.dist = j.dist, then
p(i) = 2δ(1

2 (xk +xl)−xj)(||xj − 1
2 (xk + xl)||). The repulsing robot then moves

to p via the simple potential controller defined in Table 1. If xi is near p and p is
inside another face farther away from the center, either rule R7 or R8 are applied
to continue moving away from the master. Or if p /∈ I(t), rule R9 returns robot
i to free mode. Applications of these rules can be seen in Figure 2(c)-(f).

Proposition 5. For any ρ ∈ T , if i ∈ I(t1) and d(C(t1), ρ) < ε, then there
exists t2 > t1 such that i /∈ I(t) or r(t2) = R3 or r(t3) = R4.

Corollary 1. There exists ε such that if d(C(t1), ρ) < ε and R9 is applicable,
then there exists t2 ≥ t1 such that r(t2) ∈ {R3, R4}.

3.7 Process Interaction

Theorem 1. For all M ∈ {6, 7, ..., |V | − 1}, if |C(t1)| = M , then there exists
t2 ≥ t1 such that r(t2) ∈ {R3, R4} and |C(t+2 )| = M + 1.
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Proof. Assume to the contrary that |C(t1)| = M < V but neither rule R3 nor
R4 are applied at any time t′ ≥ t1. Since at time t1, there is some ρ ∈ T such
that d(C(t1), ρ) < ∞, then by Proposition 3 if R3 or R4 are not applied the
system will flow to a state where d(C(t1), ρ) < ε. By Proposition 4, we know
that if i /∈ I(t) then eventually R3 or R4 are applicable. Thus eventually it must
be the case that i ∈ I(t). However, by proposition 5 and Corollary 1, i ∈ I(t)
leads to R3 or R4 being applied. Thus it must be the case one is applied and for
some i, i.mode changes to slave, therefore |C(t+2 )| = M + 1. ��

Proposition 6. For all t1 < t2, |C(t1)| ≤ |C(t2)|.

Proof. No rule in Φ changes the vertex labels master or slave. ��

Theorem 2. For all trajectories, γ(t0) = γ0 implies there exists a time t such
that for all t′ ≥ t, |C(t′)| = |V |.

Proof. Proposition 2 implies eventually |C| = 6. Theorem 2 follows by induction
on Propositions 1 and 6 and the finiteness of the initial graph.

Theorem 3. For all trajectories γ(t) ∈ T (γ0, Φ, u),

lim
t→∞ γ(t) ∈ Tmax.

Proof. By Theorem 2 and Proposition 4 we have that eventually Gγ(t) = Gρ for
some ρ ∈ Tmax. By Proposition 3 we know the positions converge.

The embedded graph grammar system (γ0, Φ, u) was simulated for a variety of
initial conditions with graph sizes ranging from 12 to 100. All simulations re-
sulted in δ-triangulations. Figure 1 shows snapshots from one such simulation.
Although the error correction rules are central to the proofs above, in simula-
tion error correction rules are rarely applied. Note that the final shape is non-
deterministic and highly dependent on the initial conditions. Nonetheless, once
an initial δ-triangulation is established, simple rules can be constructed to form
almost any global shape from local control.

4 Proof of Supporting Propositions

4.1 Auxiliary Properties

Lemma 1. Let A ⊂ V be any set such that Con(A) = A, then the equilibrium
and dynamics of A are independent of V − A.

Proposition 7. If γ(t0) = γ0, then there exists a time t2 such that r(t2) = R2.

Proof. r(τ1) = R1 since only R1 is applicable to Gγ0 . Im(h1) is the set of vertices
to which R1 is applied. R2 is the only rule applicable to vertices in h1. Since
Lemma 1 holds for Im(h1) we construct a Lyapunov function for x|Im(h1)

by

V (t) =
∑

i∈Im(h1)−{0,j}
||xi − P (i)||2 + (||xj − x0|| − δ)2
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If we treat x0 as a constant, then V ≥ 0, V̇ = −∇V T ∇V ≤ 0. Furthermore, if
V̇ = 0, ||xi − Pi|| < ε, so we can satisfy the guard g2. ��

Proposition 8. Suppose C(t−k ) = B, r(tk) = R3, and C(t+k ) = D. If for some
ε, d(B, T ) < ε, then limt→∞C(t)[VD ] ∈ T

Proof. Suppose robot i is added to C(t−k ) by forming control edges ij and ik
to robots j and k to form D. Since for any u, v the rules never allow an edge
uv where u.dist < v.dist, Lemma 1 holds and we may consider the dynamics of
C(t)[VD] without reference to the vertices in V −VD. We choose ε in gsettled small
enough so that if for R3, gsettled(L) is satisfied for j and k, their motion relative
to the coordinate frames of the robots to which they have directed control edges
is zero. Since every time a robot is added to the structure, gsettled(L) must be
satisfied, by induction we may treat xj and xk as constants.

Let V = (||xi−xj ||−δ)2+(||xi−xk||−δ)2. V̇ = ∇V T dx
dt = −∇xiV

T ∇xiV ≤ 0.
V is a Lyapunov function with stable fixed points where x∗i satisfies ||x∗i −xj ||−
δ = ||x∗i − xk|| − δ = 0. We must show that the region of attraction of one of
these fixed points is the open half plane defined by line ljk containing x∗i .

We have that ẋi ∝ (||vij || − δ)v̂ij + (||vik|| − δ)v̂ik) = αv̂ij + βv̂ik. We show
that there is no path from xi /∈ ljk to xi ∈ ljk. Suppose we pick xi near ljk such
that ||vij || < ||vik|| and β > α > 0. Then ∠v̂ij < ∠ẋi < ∠v̂ik. This remains true
(near ljk) until ||vij || = δ. Now α ≤ 0and ∠v̂ik ≤ ∠ẋi < π +∠v̂ik. This suggests
if the trajectory intersects ljk it must do so between xj and xk. However, in this
region, α < 0 and β < 0 which means there is a component of ẋi away from the
line ljk. Thus there is no path leading from xi /∈ ljk to xi ∈ ljk.

Proposition 9. Suppose C(t−k ) = B, r(tk) = R4, and C(t+k ) = D. If for some
ε, d(B, T ) < ε, then limt→∞C(t)[VD ] ∈ T . (See proof above).

4.2 Supporting Proposition Proofs

Proof of Proposition 2. By Proposition 7, rule R2 is executed. We propose the
Lyapunov function V =

∑
i∈Im(h2)

∑
j∈F+(i) 1/2Uij. V̇ =∇Vxẋ = −∇V T

x ∇Vx ≤
0. In addition to fixed points corresponding to δ-triangulations, the slave con-
trollers operating under the topology created by R2 have local minima at some
positions where xi = xj . However, by choosing ε in g2 small enough (18ε2 < δ2),
then for all V in the guard region, V ≤ 18ε2 < δ2 where δ2 is the con-
tribution to the Lyapunov function for a single edge where xi = xj . Thus
limt→∞ γ[Im(h2)](t) ∈ T. ��
Proof of Proposition 3. By propositions 8 and 9 and the fact that edges added
by R5 are not used by the controllers, every vertex that is not settled has its
own decreasing Lyapunov function parameterized by the edge lengths. ��

Proof of Proposition 4. Since Proposition 3 holds and since a small neighbor-
hood near ρ ∈ T satisfies guard g5, every application of R5 must be applied.
Furthermore, since the intersection of the half-planes and cones defined by the
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boundary edges is a superset of the exterior of the crystal, it must be the case
that xi /∈ I(t) implying rule R3 or R4 are applicable. ��
Proof of Proposition 5. When d(C(t), ρ) < ε for very small ε, it is clear that either
(1) p(i) lies in a face where the sum of the distances is greater or (2) p(i) /∈ I(t).
In case (1), as xi → p(i) either R7 or R8 becomes applicable. Since the graph is
finite, by induction on rules R7 and R8 eventually p(i) /∈ I(t) (i.e case (2)). By
the convergence property of the controllers, eventually xi /∈ I(t). ��
Proof of Corollary 1. If d(C(t), ρ) < ε and if δ + ε �

√
3/2δ − ε, there are no

Gabriel graph edges between i and vertices on the interior of the crystal. This
implies that if i executes R9 and is labeled free, while ||xi−xj || < δ for j ∈ C(t),
the motion is away from the crystal. Thus i remains in g3 or g4. ��

5 Conclusions and Future Work

Embedded graph grammars are a unique combination of concurrency and hybrid
systems in which we can model networked robotic systems. Our solution to the
δ-triangulation coverage problem is meant to demonstrate how embedded graph
grammars can be used to specify and reason about the correctness of complex,
multi-mode coordination problems. We note that issues such as robustness or
performance under sensing and communication limitations can be addressed by
constructing more complicated grammars. However, these questions lie outside
the scope of this paper.

We believe that as systems incorporate more complex combinations of reactive
tasks, the need for the unified modeling of communication protocols and the
ensuing hybrid dynamics becomes pronounced. Unfortunately, proving that such
systems are correct is unwieldy as the proofs in this paper suggest. We plan
to explore real time temporal logics, compositional methods, and automated
verification techniques, thereby completing the formalism introduced here.
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Abstract. Using only the existence and uniqueness of trajectories for a
generic dynamic system with inputs, we define and examine eight types
of forward and backward reachability constructs. If the input is treated
in a worst-case fashion, any forward or backward reach set or tube can
be used for safety analysis, but if the input is treated in a best-case fash-
ion only the backward reach tube always provides the correct results.
Fortunately, forward and backward algorithms can be exchanged if well-
posed reverse time trajectories can be defined. Unfortunately, backward
reachability constructs are more likely to suffer from numerical stabil-
ity issues, especially in systems with significant contraction—the very
systems where forward simulation and reachability are most effective.

1 Introduction

Except for the simplest of examples, analytic verification of safety properties for
continuous and hybrid systems is rarely possible. With the goal of broadening
the applicability and automating the process, numerical methods for verifying or
validating such properties have been the subject of much study. The approxima-
tion of reachable sets is one major category of such numerical methods. There are
two fundamental types of reachability: forward and backward. Many algorithms
have been proposed to compute one of these reachable sets (see Section 3), and
some type of equivalence is often informally mentioned when a problem state-
ment requires computation of the other set. The contribution of this paper is a
detailed examination of the distinctions between these two sets. We make rather
strong assumptions about the existence and uniqueness of trajectories, so it is
the negative conclusions that hold the most significance.

Section 2 informally discusses the relationship between reachability and safety
and defines some of the terminology, while Section 3 covers previous work. The
body of the paper beings in Section 4 by examining the question of when various
forms of forward and/or backward reachability can be used to prove system
safety: in some cases any form will do, but in some cases only one type of
backward reachability gives the correct result. Section 5 then demonstrates that
the formulation of the reachability problem and the algorithm used to solve
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it need not work in the same temporal direction, since forward and backward
algorithms can be interchanged for systems which are reversible.

Unfortunately, these algorithms find only approximations. In Section 6, tra-
jectory sensitivity analysis [1] is extended to examine the way in which numerical
error may grow as these algorithms are run. Even though the backward reach-
ability formulation may be applicable to more problems, we conclude that it is
also more likely to experience numerical stability problems, regardless of whether
it is implemented by a forward or backward algorithm.

2 Reachability and Safety Analysis

Safety analysis of a given system seeks to discover whether the system—or more
accurately, the mathematical model representing the system—can enter a speci-
fied set of unsafe states. Since many systems operate correctly only when started
correctly, a set of initial states is also often specified. Mathematically, we will
specify a safety analysis problem by a tuple S = (H, I, T ) where H is a system
model, I is the initial set, and T is the unsafe set or target.

We define the concepts more formally in Section 4, but informally reachabil-
ity analysis seeks to determine whether trajectories of H can reach T from I.
There are two types of analysis. Forward reachability starts with states in I and
follows trajectories forward in time. If any of these trajectories intersect with T
the system is unsafe. Backward reachability starts with states in T and follows
trajectories backwards in time. If any of these backwards trajectories intersects
I the system is unsafe.

Under these definitions it sounds like reachability can be determined by sim-
ulating individual trajectories of H, and simulation is in fact the typical method
by which safety is disproved. Proof of safety, however, requires a guarantee that
all possible trajectories have been investigated; a challenging task in continuous
and hybrid systems where the number of states is infinite. Consequently, the
term reachability algorithm is usually reserved for techniques that determine the
set of states traversed by all trajectories emanating from a given set.

While the terms are not used consistently in the literature, we will in this paper
distinguish two different objects that a reachability algorithm might generate:
the reach set is the set of states occupied by trajectories at exactly some specified
time, and the reach tube is the set of states traversed by those same trajectories
over all times prior to and including the specified time. Thus, the reach tube
always contains the reach set. Forward and backward versions of both reach sets
and tubes can be specified.

While we examine their properties and appropriateness in terms of the fully
specified safety analysis problem S, forward and backward reachable sets and
tubes may be more or less appropriate for other tasks; for example, backward
reach tubes for finding the set of states which achieves a target set despite the
unknown but bounded disturbance of exogenous inputs, or forward reach sets
for demonstrating system liveness.
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3 Related Work

There are two main classes of direct reachability algorithms, those that work
directly with continuous representations. Lagrangian approaches represent the
set or tube with information that moves with the flow of the underlying dy-
namics, and are typically described in terms of forward reachability. A few are
designed for systems without inputs [2], many permit inputs which expand the
size of the reach set [3,4,5,6] and some permit inputs which shrink the reach
set [7]. The theory is often based on linear continuous dynamics, although most
schemes have demonstrated computational extensions to handle the nonlinear
case. These schemes have also shown the best scalability; for example, results
for systems with hundreds of dimensions have been reported in [6,2].

Eulerian approaches work with a discretization that is not moving with the
dynamics (although it may be refined during computation), and are typically
described in terms of backward reachability [8,9,10]. All schemes can support
systems with inputs which expand the size of the reachable set, and most handle
those that shrink it as well. The theory works directly with nonlinear systems,
although scalability much beyond four dimensions has not been demonstrated.

The results in Section 6 are derived by a sensitivity analysis of trajectories.
Lagrangian reachability algorithms that depend on numerical integration of these
(or related) trajectories are clearly affected by such sensitivity. Despite the fact
that they do not directly integrate the dynamics, Eulerian schemes will also be
subject to similar numerical stability problems since the approximations that
they use are based on the evolution of the underlying system.

In addition to the classes of direct algorithms, there are at least two other
classes of indirect algorithms related to reachability for continuous and/or hy-
brid systems. Discretization of the state space and dynamics can yield a system
on which discrete reachability algorithms can be run; for example [11,12]. Al-
ternatively, automated Lyapunov type methods can be used to prove invariance
properties, such as [13,14]. How the sensitivity results might apply to these al-
gorithms has not yet been investigated.

The conclusions of Sections 4 and 5 apply to discrete systems as well; in
fact, forward and backward reachability have been combined to verify some
discrete systems (see [15] and the citations within). However, the nature of the
approximation errors (if any) in discrete algorithms is different enough that
Section 6 may not apply.

4 Comparing Forward and Backward Reachability

In this section we compare properties of forward and backward reachability for
a very generically defined dynamic system H. Trajectories of H will be denoted
by

ξH(s; z, t, u(·)) : T → Z,

where T = [−T , +T ] ⊂ R is the time interval over which the trajectory exists.
We employ the semicolon to distinguish between the argument s of ξH and the
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trajectory parameters: initial state z ∈ Z, initial time t ∈ T and input signal
u(·) ∈ U. For systems lacking an input signal, we omit it and denote trajectories
as ξH(s; z, t).

Existence and uniqueness of trajectories ξH for various types of dynamic sys-
tems is a challenging subject by itself; for example, see [16,17] and the citations
within. To maintain the focus of this paper, we make the following rather ideal-
ized assumption.

Assumption 1. For given initial state z, time t, and input signal u(·) drawn
from an appropriate class, there exists a unique trajectory ξH(s; z, t, u(·)) for
s ∈ T.

By making this strong but generic assumption, many of the results in the next
two sections will apply to a broad group of dynamic systems, although we focus
on continuous and hybrid systems. It is the negative conclusions that we draw
that have the most relevance to future research—if a technique or formulation
fails under such a strong but generic assumption, there is little point in pursuing
its concrete implementation.

In continuous systems, the dynamics are given by an ordinary differential
equation (ODE) of the form ż(t) = f(z(t), u(t)), where the state z is continuous.
Typically Z ⊆ R

d, although some state variables may use other domains; for
example, angles are often drawn from the periodic set [0, 2π[. If f : Z×U → TZ

is uniformly continuous, bounded and Lipschitz continuous in z for fixed u, then
Assumption 1 is satisfied [18] for fixed u(·) ∈ U, where

U � {φ : T → U | φ(·) is measurable} (1)

and U ⊂ R
du is convex and compact. Consequently, we can specify a continuous

system as a tuple HC = (Z, f, U).
The generalization to hybrid systems involves a form of hybrid automaton

(HA) adapted from [10]: we simplify to a single input, but that input may affect
the guards and domains. The state of a hybrid system is z = (q, x) ∈ Q×X = Z,
where q is the discrete state and x is the continuous state. The full HA is given
by the tuple HH = (Q, X, f, D, G, r, U), where

Q discrete states;
X continuous states;
f : Q × X × UC → TX continuous dynamics (vector field);
D : Q × UD → P (X) domain of continuous evolution;
G : Q × Q × UD → P (X) guard conditions for discrete evolution;
r : Q × Q × X × U → X reset function;
U = (UC , UD) continuous and discrete input sets;

(2)

where P (X) is the power set (set of all subsets) of X. As in [10], we assume that
the discrete inputs are constant during continuous evolution. We will call the
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boundaries of the domains and guards the switching surfaces. Formal mathe-
matical conditions under which Assumption 1 holds are available for some sub-
classes of this hybrid automata [16,17]. At a minimum, Assumption 1 will require
that HH be non-Zeno and non-blocking, and that f statisfies conditions to ensure
existence of the continuous components of the trajectories.

The proofs for many of the propositions in this section were omitted due to
space limitations, but can be found in [19].

4.1 Maximal Reachability

When performing safety analysis with forward reachability, the single input’s
authority is used to make the reach set and tube as large as possible. We will
use the subscript “1+” to denote a single input used to maximize the size of the
reachable set and tube and call these constructs maximal.

F1+(H, S, t) � {ẑ ∈ Z | ∃u(·) ∈ U, ∃z ∈ S, ξH(t; z, 0, u(·)) = ẑ}, (3)

F1+(H, S, [0, t]) � {ẑ ∈ Z | ∃u(·) ∈ U, ∃z ∈ S, ∃s ∈ [0, t], ξH(s; z, 0, u(·)) = ẑ}.
(4)

In the corresponding backward reachability problems, the input is used to drive
as many states as possible towards the target set. The result is that the size of
the reachable set and tube are again maximized.

B1+(H, S, t) � {z ∈ Z | ∃u(·) ∈ U, ∃ẑ ∈ S, ξH(0; z, −t, u(·)) = ẑ}, (5)

B1+(H, S, [0, t]) � {z ∈ Z | ∃u(·) ∈ U, ∃ẑ ∈ S, ∃s ∈ [0, t], ξH(0; z, −s, u(·)) = ẑ}.
(6)

The relationships between these four sets is easy to establish and should not be
surprising.

Proposition 1

F1+(H, S, [0, t]) =
⋃

t̂∈[0,t]

F1+(H, S, t̂) B1+(H, S, [0, t]) =
⋃

t̂∈[0,t]

B1+(H, S, t̂)

Reachability for zero input systems is a special case of maximal reachability; for
example, the forward reach set is given by

F0(H, S, t) � {ẑ ∈ Z | ∃z ∈ S, ξH(t; z, 0) = ẑ}.

4.2 Minimal Reachability

Instead of the sets defined above, we can choose to seek only those states that
trajectories are forced to reach no matter what input is chosen. Consequently,
the reachable sets and tubes are as small as possible, we use the “1−” notation,
and call these constructs minimal.
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F1−(H, S, t) � {ẑ ∈ Z | ∀u(·) ∈ U, ∃z ∈ S, ξH(t; z, 0, u(·)) = ẑ}, (7)

F1−(H, S, [0, t]) � {ẑ ∈ Z | ∀u(·) ∈ U, ∃z ∈ S, ∃s ∈ [0, t], ξH(s; z, 0, u(·)) = ẑ},
(8)

B1−(H, S, t) � {z ∈ Z | ∀u(·) ∈ U, ∃ẑ ∈ S, ξH(0; z, −t, u(·)) = ẑ}, (9)

B1−(H, S, [0, t]) � {z ∈ Z | ∀u(·) ∈ U, ∃ẑ ∈ S, ∃s ∈ [0, t], ξH(0; z, −s, u(·)) = ẑ}.
(10)

Unfortunately, the properties that hold in the purely existential maximal case
above no longer apply.

Proposition 2⋃
t̂∈[0,t]

F1−(H, S, t̂) ⊆ F1−(H, S, [0, t])
⋃

t̂∈[0,t]

B1−(H, S, t̂) ⊆ B1−(H, S, [0, t])

The problem arises because the choice of t in the reach set definitions is
fixed before any other variable is quantified, while the choice of s ∈ [0, t] in the
reach tube definition occurs after all other variables are quantified. For maximal
reachability all the quantifiers are existential, so their ordering does not matter.
However, once the input’s quantifier is changed to be universal, the order in
which the trajectory’s time interval is chosen matters a great deal.

We close by mentioning that systems with competing inputs (such as control
and disturbance) are subject to the same negative results as the minimal reach-
ability constructs (such as Propositions 2, 4 and 5); for more details see [19].

4.3 Application to Safety Analysis

Having defined the maximal and minimal forward and backward reach sets and
tubes, we examine which can be used to solve the safety problem S = (H, I, T )
under various assumptions about the input’s behaviour. Throughout this section
we assume that H satisfies Assumption 1.

Proposition 3. The following properties are equivalent.

1. H is safe over horizon t ≤ T for all possible inputs u(·) ∈ U.
2. F1+(H, I, s) ∩ T = ∅ for all s ∈ [0, t].
3. F1+(H, I, [0, t]) ∩ T = ∅.
4. B1+(H, T, s) ∩ I = ∅ for all s ∈ [0, t].
5. B1+(H, T, [0, t]) ∩ I = ∅.

Based on this proposition, we can use any of the reach sets or tubes to demon-
strate the safety of systems despite the actions of bounded exogenous inputs,
or of systems without any inputs. The situation is not quite so favourable for
proving the existence of an input which guarantees safety.

Proposition 4. Given horizon t ≤ T , there exists an input u(·) ∈ U (which may
depend on initial state) that keeps H safe if and only if B1−(H, T, [0, t]) ∩ I = ∅.
Such an input may exist only if B1−(H, T, s) ∩ I = ∅ for all s ≤ t, but the
converse is not necessarily true.
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Proof. We first prove the claims for the reach tube. Let S = B1−(H, T, [0, t])∩I.
H safe =⇒ (S = ∅): Assume z ∈ S but that H is safe for input u(·) ∈ U

and derive a contradiction. By (10), there exists ẑ ∈ T and s ∈ [0, t] such that
ξH(0; z, −s, u(·)) = ẑ. But then this trajectory reaches from I to T under input
u(·), which is a contradiction that H is safe for input u(·)

H safe ⇐= (S = ∅): Assume that S = ∅. Then for all z ∈ I, z is in the
complement of B1−(H, T, [0, t]). Negating (10), there exists u(·) ∈ U such that
for all ẑ ∈ T and s ∈ [0, t], ξH(0; z, −s, u(·)) = ẑ; in other words, for any initial
state in I, there is an input which gives rise to a trajectory which does not reach
T during the interval [0, t]. Hence, there is an input u(·) which makes H is safe
during this interval.

The “only if” claim for the reach set is a simple outcome of combining Propo-
sition 2 and the proof for =⇒ above. The converse is not necessarily true because
for the reach set the input is chosen after the time t, and for larger t the input
may drive trajectories right through the unsafe set T and out the other side [9].
An example can be found in [19]. ��
Based on this proposition, we can use the minimal backwards reach tube to
prove the existence of a safe input for any state in the initial set. Unfortunately,
the same cannot be said of the minimal forward reachability constructs.

Proposition 5. The forward minimal reach set and tube provide no information
about whether there exists an input u(·) ∈ U that makes H safe.

Proof. Consider first the forward reach tube. Let S = F1−(H, I, [0, t]) ∩ T . We
show that any combination of S empty or nonempty with H safe or unsafe is
possible. The two easy cases are the ones that should hold. For S = ∅ and H
unsafe, take I ∩ T = ∅. For S = ∅ and H safe, take T = ∅.

Now consider S = ∅. Then for all ẑ ∈ T , ẑ is in the complement of F1−
(H, I, [0, t]). Negating (8), there exists u(·) ∈ U such that for all z ∈ I and
s ∈ [0, t], ξH(s; z, 0, u(·)) = ẑ; in other words, for any unsafe state ẑ in T , there
is an input such that no trajectory emanating from the initial set I arrives at ẑ
during the interval [0, t]—so far, so good. Unfortunately, this proof only applies
once ẑ ∈ T is selected; there is nothing in this proof to stop the chosen input
from driving all those trajectories into some other part of T , thus rendering the
system unsafe.

Finally, consider ẑ ∈ S. By (8), for all u(·) ∈ U there exists z ∈ I and
s ∈ [0, t] such that ξH(s; z, 0, u(·)) = ẑ; in other words, for all inputs there exists
a trajectory starting from somewhere in I that will arrive at ẑ at or before time
t. However, this is not the safety question that we sought to answer. For all these
z ∈ I, there may still exist some other û(·) ∈ U that ensures ξH(s; z, 0, û(·)) /∈ T
for all s ∈ [0, t], and hence that H is safe.

The forward reach set can fail for safety verification in either of the ways that
the forward reach tube or the backward reach set fails. ��
The essential problem with minimal forward reachability is that the state lying
in the initial set is chosen after the input while the state lying in the target set
is chosen before, rather than the other way around.
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Fig. 1. Fixed points of the forward minimal reach tubes. The two cases on the left are
actually safe, while the case on the right is unsafe. The forward reach tube demonstrates
that it is inappropriate for existential safety verification in the two cases on the right.
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Fig. 2. Fixed points of the backward minimal reach tubes. Safety is correctly deter-
mined for the two cases on the left, and a lack of safety for the case on the right.

4.4 Examples of Forward and Backward Reachability for Safety

In this section we examine the various reachability constructs in terms of the
purely continuous system H2 for x ∈ R

2.

ẋ =
[
+1
u

]
, where |u| ≤ 1. (11)

The motion of H2 is easy to visualize: translation to the right at unit speed, and
the choice of input determines vertical motion at unit speed.

Examples demonstrating Proposition 3 and the reach set components of Propo-
sitions 4 and 5 can be found in [19]. For the reach tube components of these latter
two propositions, we choose two initial and two target sets.

I3 = [0, +2] × [−2, +2] T3 = [+5, +7] × [−2, +2]
I4 = [0, +2] × [−4, +4] T4 = [+5, +7] × [−4, +4]

These initial and target sets are horizontally aligned, so for any initial state with
x2 ≥ 0, choose u(t) = +1 and for any initial state with x2 ≤ 0, choose u(t) = −1.
With these input signals it is easy to see that either initial set with T3 is safe,
while either initial set with T4 is unsafe.
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Figures 1 and 2 show the two minimal reach tubes for three of the combina-
tions of initial and target sets (the unsafe case I4 and T4 is not shown but is an
easy extrapolation from those given). Both tubes reach a fixed point at t = 2
(for I3 or T3) or t = 4 (for I4 or T4), and it is that fixed point which is shown.
The failure of the forward reach tube to correctly distinguish safe and unsafe
situations can be seen in the two right subplots of Figure 1.

5 Exchanging Forward and Backward Reachability

Despite the negative conclusions regarding the minimal forward reach tube
F1−(H, S, [0, t]), algorithms for its computation may still be useful if they can be
used to compute backward reach tubes. In order to establish the situations under
which forward and backward reachability may be interchanged, we must be able
to reverse the direction of time in our dynamic system. Under Assumption 1,
the following assumption will be relatively easily satisfied.

Assumption 2. For a given dynamic system H, there exists a backward dy-
namic system

←−
H such that for all t, s ∈ T

ξH(s; z, t, u(·)) = ẑ ⇐⇒ ξ←−
H

(s; ẑ, t, u(·)) = z.

Furthermore, ξ←−
H

satisfies the conditions of Assumption 1.

For the continuous HC, ξ←−HC
satisfies the ODE

ż(t) =
←−
f (z(t), u(t)) � −f(z(t), u(t)) (12)

and
←−
HC = (Z, −f, U). If f satisfies the sufficient conditions mentioned above for

ξHC to satisfy Assumption 1, then so will ξ←−HC
.

The case for the HA HH is considerably more complex. In addition to the
reversed continuous evolutions satisfying (12), there must exist reversed versions←−
G and ←−r of the guards and reset which satisfy

x ∈ G(q, q̂, uD) ⇐⇒ x̂ ∈ ←−
G(q̂, q, uD),

r(q, q̂, x, u) = x̂ ⇐⇒ ←−r (q̂, q, x̂, u) = x.
(13)

With these definitions,
←−
HH = (Q, X, −f, D,

←−
G, ←−r , U). Conditions under which

ξ←−HH
would satisfy Assumption 1 are even more challenging to come by, although

there has been some work [20]. However, if we can find a well posed
←−
H , then the

temporal direction of our favourite reachability algorithm is irrelevant.

Proposition 6. If H satisfies the conditions of Assumptions 1 and 2, then

F1+(H, S, [0, t]) = B1+(
←−
H , S, [0, t]) F1+(H, S, t) = B1+(

←−
H , S, t)

F1−(H, S, [0, t]) = B1−(
←−
H , S, [0, t]) F1−(H, S, t) = B1−(

←−
H , S, t)
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Proof. We prove the claim for the minimal reach tubes; the proofs for the re-
maining claims are similar. Assume ẑ ∈ F1−(H, S, [0, t]). By (7), for all u(·) ∈ U

there exists z ∈ S and s ∈ [0, t] such that ξH(t, z, 0, u(·)) = ẑ. Under Assump-
tion 2, ξ←−H (t; ẑ, 0, u(·)) = z. Because

←−
H is time independent, we can shift the time

variable to get ξ←−H (0; ẑ, −t, u(·)) = z, which by (9) implies z ∈ B1−(
←−
H , S, [0, t]).

The proof in the converse direction is similar. ��

6 Reachable Set Sensitivity

Section 4.3 demonstrated that the backward reach tube is the most generally
applicable of the reachability operators to verification tasks. However, reach sets
and tubes can rarely be determined analytically, so they must be approximated
numerically. In this section we examine equations for the sensitivity of trajec-
tories with respect to initial conditions. From these equations we can draw the
conclusion that for some types of systems accurate numerical approximation of
backwards reachability may not be possible.

The sensitivity analysis techniques used in this section force us to abandon
the very general dynamic system definition used in the previous sections. Fur-
thermore, we will assume that the number of states in discrete systems or the
discrete component of hybrid systems is small enough that the discrete compo-
nent of the reachable sets or tubes can be represented exactly. Therefore, we
will focus our attention on continuous systems and the continuous component
of hybrid systems. Since the former are a subset of the latter, we perform the
analysis for hybrid systems and except where noted assume that H = HH and
that Assumptions 1 and 2 hold.

For the purposes of this analysis the domains D and guards G are specified
by implicit surface functions

D(q, uD) = {x ∈ X | ψD(q, x, uD) ≤ 0}
G(q, q̂, uD) = {x ∈ X | ψG(q, q̂, x, uD) ≤ 0}

for all q, q̂ ∈ Q and uD ∈ UD. The switching surfaces are then given by the
zero level sets of these functions, and the normals of those switching surfaces
by the local gradients. In order to study perturbations, we make the following
assumption about the components of the hybrid system; the assumption also
ensures that the switching surfaces and their normals are well defined.

Assumption 3. The vector field f , reset r and implicit surface functions of the
domains ψD and guards ψG are differentiable with respect to their continuous
parameter x when all other parameters are held fixed.

Sensitivity equations for a class of hybrid systems called differential-algebraic-
discrete were derived in [1]. Here we adapt these results to HA of the form (2)
by ignoring sensitivity with respect to parameter or discrete state, removing the
algebraic component and adding a continuous reset. Details are omitted because
the derivation follows directly from [1]. Sensitivity with respect to (constant)
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problem parameters can be derived in a similar manner. We do not consider
sensitivity with respect to the input, and hence assume throughout that u(·) ∈ U

is fixed.
For convenience, define the matrices

F(q, x, u) � ∂f(q, x, u)
∂x

R(q, q̂, x, u) � ∂r(q, q̂, x, u)
∂x

6.1 Trajectory Sensitivity Analysis

In this section we examine the effects on a trajectory’s position due to small
perturbations of the continuous portion of its initial state.

ξH(t; z0 + δx, 0, u(·)) = ξH(t; z0, 0, u(·)) + ΞH(t; ξH(·))δx + O(δx2), (14)

where the initial state is z0 = (q0, x0), the perturbation is purely continuous
z0 + δx = (q0, x0 + δx), ξH(·) = ξH(·; z0, 0, u(·)), and the sensitivity matrix is
defined as

ΞH(t; ξH(·)) � ∂ξH(t; z0, 0, u(·))
∂x0

.

The continuous evolution of the HA is governed by an ODE, and sensitivity
analysis of ODEs is well established; for example, see [21, section 4.6 and ex-
ercise 6.4]. Using what is essentially a Taylor series expansion, it can be shown
that the sensitivity matrix solves the ODE

d
dtΞH(t) = F(q, x, u)ΞH(t), (15)

where z = (q, x) = ξH(t; z0, 0, u(·)) and u = u(t). The initial condition for (15)
is ΞH(0) = I, where I is the identity matrix of appropriate size.

To treat the discrete jumps that occur in hybrid systems, let t− and t+ in-
dicate values just before and just after the instantaneous jump respectively,
z− = (q−, x−) = ξH(t−; z0, 0, u(·)) be the state just before the jump, and q+ be
the discrete state just after the jump (so x− ∈ G(q−, q+, u)). For jumps that
occur on switching surfaces the difference in post-jump state for two neighbor-
ing trajectories depends both on the reset and the difference in time when the
jump is enabled (for guard switching surfaces) or forced (for domain switching
surfaces). Let t(z0) be the time of the jump as a function of initial state and τ
be its sensitivity. Then

τ =
∂t(z0)
∂z0

= − ∇ψ(x−)T ΞH(t−)
∇ψ(x−)T f(q−, x−, u)

(16)

where ψ(x−) is ψD(q−, x−, uD) for domain switching surfaces and ψG(q−, q+,
x−, uD) for guard switching surfaces. This equation is only valid if the vector
field satisfies a transversality condition such that ∇ψ(x−)T f(q−, x−, u) = 0 [1].
During this period, one trajectory is subject to the old vector field and one to
the new vector field, so

ΞH(t+) = R(q−, q+, x−, u)
(
ΞH(t−) + f(q−, x−, u)τ

)
− f(q+, x+, u)τ, (17)
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where x+ = r(q−, q+, x−, u) and τ is given in (16). Away from switching surfaces
trajectories in a neighborhood can all jump at the same time, so τ = 0.

6.2 Implications for Approximating Reach Sets and Tubes

Given a nominal system trajectory ξH, the sensitivity evolution equations (15)
and (17) can be solved as if they were a dynamic system to provide quantitative
estimates of the form (14) for the effects of small perturbations on the initial
conditions. Here, though, we will use them to ascertain conditions under which
we cannot expect accurate results from approximate reachability algorithms.
Most such algorithms use floating point instead of exact arithmetic, and hence
make small errors throughout computation. Taking δx as a small numerical error
incurred, for example, by a single floating point operation at time t and state z,
algebraic manipulation of (14) arrives at a bound for the error at another time
s (ignoring the O(δx2) terms)

‖ξH(s; z + δx, t, u(·)) − ξH(s; z, t, u(·))‖ ≤ ‖ΞH(s; ξH(·))‖‖δx‖. (18)

This trajectory-based sensitivity analysis is relevant to direct reachability
algorithms because they either track trajectories explicitly (for Lagrangian ap-
proaches) or implicitly (for Eulerian); consequently, errors in locating a trajec-
tory translate directly into errors in the approximation of the boundary of the
reachable set or tube. It should be noted that Assumption 3 and the vector
field transversality condition ensure that the two trajectories in (18) follow the
same sequence of discrete states, so we need only consider the difference in their
continuous states.

The multiplicative factor ‖ΞH(s; ξH(·))‖ in (18) depends on the trajectory
ξH(·), but there are three ways in which it might grow large.

Real[λ(F)] � 0 continuous evolution, (19)
|λ(R)| � 1 discrete jumps, (20)

∇ψT f− ≈ 0 grazing contact with switching surface, (21)

where λ(A) are the eigenvalues of matrix A and f−(x) = f(q−, x, u). Because F,
R, ψ and f depend on state (and potentially input), checking these conditions
explicitly will usually be impractical. However, systems satisfying any of the
conditions (19)–(21) are inherently unpredictable; consequently, deterministic
models of the form studied here are rarely constructed for such systems. With
the notable exception of chaotic systems, conditions (19)–(21) are unlikely to
occur in practice when computing forward reachability.

Unfortunately, the same cannot be said of backward reachability. It may be
defined in terms of the forward dynamics, but computational approximations
will begin with the target set and work backwards along trajectories of the time
reversed system. Therefore, let us consider the form of conditions (19)–(21) for
←−
H in terms of the elements of a given H. From (12),

←−
f = −f =⇒ ←−

F = −F =⇒ λ(
←−
F ) = −λ(F).
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From (13), r(q, q̂, ←−r (q̂, q, x, u), u) = x. Taking the derivative with respect to x

R
←−
R = I =⇒ ←−

R = R−1 =⇒ λ(
←−
R) = λ(R)−1.

The equivalent of (21) is a little more difficult to deduce, but as explained in [20]
the concern is that the flow field after a forward time jump (before the reverse
time jump) is nearly parallel to the switching surface which triggered the jump.
To summarize, we restate conditions (19)–(21) for

←−
H in terms of the parameters

of H

Real[λ(F)] � 0 backward continuous evolution, (22)
|λ(R)| � 1 backward discrete jumps, (23)

∇ψT f+ ≈ 0 backward grazing contact with switching surface, (24)

where f+(x) = f(q+, r(q−, q+, x, u), u) includes the action of the reset. As
demonstrated in the next section, these conditions can easily occur for systems
whose forward simulations are very well behaved. From these conditions, we draw
the following conclusion about the challenges of using numerically approximated
backwards reachability.

Remark 1. Systems which display large amounts of contraction in forward time
(ie nearby trajectories get closer together) in either their continuous evolution (of
the form (22)) or discrete evolution (of the form (23)) are likely to be numerically
ill-conditioned for backwards reachability. Poorly conditioned switching events
(of the form (24)) are also more likely to be overlooked when working backward,
because the relevant switching surfaces and vector fields are in different discrete
modes.

As a final comment, we note that this ill-conditioning of backwards reachability
depends on the set being sought, and not the manner in which it is calculated.
Consequently there are unlikely to be issues of ill-conditioning when using a
backward algorithm and Proposition 6 to compute a forward reach set—this
process involves reversing the dynamics twice and ends up back with forward
dynamics. On the other hand, using a forward algorithm and Proposition 6 to
determine the backward reach tube may run into ill-conditioning because the
dynamics are reversed before the algorithm is applied.

6.3 Continuous System Sensitivity Example

To illustrate how sensitivity of the continuous evolution can be a major issue in
computing reachability for real systems, we examine the toggle circuit [22] whose
schematic and typical trace are shown in Figure 3. The model H3 is based on a
simple, short channel transistor model with velocity saturation [23, pp. 62–63].
All capacitances are to ground and are of fixed value, and interconnect capac-
itance is ignored. To emulate the effect of connecting toggle elements together,
the output node z is given an additional capacitative load equivalent to that seen
by input φ.
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Fig. 3. Left: Yuan’s and Svensson’s toggle circuit [22]. The numbers next to the tran-
sistors are the relative sizing used in the simulations. Right: Simulation of the toggle
model H3 for a typical input signal φ.
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Fig. 4. Upper and lower bounds on the real components of the eigenvalues of the
Jacobian F of the dynamics of H3 during the simulation in Figure 3

The circuit is correctly operating if the period of the output z is twice the
period of the input signal φ. Forward reachability has been used to demonstrate
that under suitable constraints on the input, the output has twice the period of
the input and satisfies the same constraints as the input; consequently, a chain
of toggle circuits can be used to form a counter [24].

Unfortunately, a similarly successful analysis using backward reachability
would be unlikely to succeed. Figure 4 shows the maximum and minimum real
components of the eigenvalues of the Jacobian F of the dynamics for H3 over the
course of the simulation in Figure 3. Even after scaling by 10−8 to account for the
very short time intervals typical of VLSI circuits, the minimum real component
of the eigenvalues of F is −(103) or less, which indicates a highly contractive
dynamic system. Such systems are great for forward reachability calculations,
since overapproximation errors will be rapidly contracted to the point of being
negligible. But from (22) we see that backward reachability calculations are un-
likely to maintain any accuracy for circuits of this type, since they face expansion
factors of the same magnitude. In this case, error in backward reachability could
grow by a factor of e1000 or more on time intervals as short as those in Figure 3.
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An example demonstrating sensitivity of the forms (23) and (24), and its effect
on reachability calculations can be found in [19].

7 Conclusions and Future Research

Using a very general definition of dynamic system, we demonstrated that back-
ward reach tubes are the most broadly applicable formulation of reachability
for demonstrating system safety; that forward and backward algorithms can be
interchanged if well-posed backward trajectories can be defined; and that the
backward reachability formulation is more likely to suffer from numerical sta-
bility problems, particularly for systems displaying significant contraction. We
intend to continue studying the sensitivity of reachability algorithms to problem
parameters such as inputs, initial and target sets.

Acknowledgments. The author would like to thank Professor Mark Green-
street, Chao Yan and Suwen Yang for the model, code and help with the toggle
example.
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Abstract. We provide an asymptotically tight, computationally effi-
cient approximation of the joint spectral radius of a set of matrices using
sum of squares (SOS) programming. The approach is based on a search
for a SOS polynomial that proves simultaneous contractibility of a finite
set of matrices. We provide a bound on the quality of the approximation
that unifies several earlier results and is independent of the number of
matrices. Additionally, we present a comparison between our approxima-
tion scheme and a recent technique due to Blondel and Nesterov, based
on lifting of matrices. Theoretical results and numerical investigations
show that our approach yields tighter approximations.

1 Introduction

Stability of discrete linear inclusions has been a topic of major research over
the past two decades. Such systems can be represented as a switched linear sys-
tem of the form x(k + 1) = Aσ(k)x(k), where σ is a mapping from the integers
to a given set of indices. The above model has been studied extensively across
multiple disciplines, ranging from control theory, theory of non-negative ma-
trices and Markov chains, wavelets, dynamical systems, etc. The fundamental
question of interest is to determine whether x(k) converges to a limit, or equiv-
alently, whether the infinite matrix products chosen from the set of matrices
converge [1,2,3]. The research on convergence of infinite products of matrices
spans across four decades. A majority of results in this area has been provided
in the special case of non-negative and/or stochastic matrices. A non-exhaustive
list of related research providing several necessary and sufficient conditions for
convergence of infinite products includes [4,3,5]. Despite the wealth of research in
this area, finding algorithms that can determine the convergence remains elusive.
Much of the difficulty of this problem stems from the hardness in computation or
efficient approximation of the joint spectral radius of a finite set of matrices [6].
This is defined as

ρ(A1, . . . , Am) := lim sup
k→+∞

max
σ∈{1,...,m}k

||Aσk
· · · Aσ2Aσ1 ||1/k, (1)
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and represents the maximum growth (or decay) rate that can be obtained by
taking arbitrary products of the matrices Ai, and its value is independent of
the norm chosen. Daubechies and Lagarias [3] conjectured that the joint spec-
tral radius is equal to a related quantity, the generalized spectral radius, which is
defined in a similar way except for the fact that the norm of the product is re-
placed by the spectral radius. Later Berger and Wang [1] proved this conjecture
to be true for finite set of matrices. It is well known that computing ρ is hard
from a computational viewpoint, and even approximating it is difficult [7,8,9].
For rational matrices, the joint spectral radius is not a semialgebraic function of
the data, thus ruling out a very large class of methods for its exact computation.
When the matrices are non-negative and stochastic, the problem is decidable but
PSPACE complete [10], a complexity class widely believed to be worse than NP.

It turns out that a necessary and sufficient condition for stability of a linear dif-
ference inclusion is for the corresponding matrices to have a subunit join spectral
radius [4], i.e., ρ(A1, . . . , Am) < 1. This, however, is a condition that is impossible
to verify in general. A subunit joint spectral radius is on the other hand equiv-
alent to existence of a common norm with respect of which all matrices in the
set are contractive [11,12,13]. Unfortunately, the proof of this result is not con-
structive, as knowledge of the joint spectral radius is needed to construct such an
extremal norm [13]. In fact a similar result, due to Dayawansa and Martin [14],
holds for nonlinear systems that undergo switching. A common approach in try-
ing to approximate the joint spectral radius or to prove that it is indeed subunit,
has been to try to prove simultaneous contractibility (i.e., existence of a com-
mon norm with respect to which matrices are contractive), by searching for a
common ellipsoidal norm, or equivalently, searching for a common quadratic Lya-
punov function. The benefit of this approach is due to the fact that the search for
a common ellipsoidal norm can be posed as a semidefinite program and solved
efficiently using interior point techniques. However, it is not too difficult to gen-
erate examples where the discrete inclusion is absolutely asymptotically stable,
i.e. asymptotically stable for all switching sequences, but a common quadratic
Lyapunov function, (or equivalently a common ellipsoidal norm) does not exist.

Ando and Shih describe in [15] a constructive procedure for generating a set of m
matrices forwhich the joint spectral radius is 1√

m
, but no quadratic Lyapunov func-

tion exists. They prove that the interval [0, 1√
m

) is effectively the “optimal” range
for the joint spectral radius necessary to guarantee simultaneous contractibility
under an ellipsoidal norm for a finite collection of m matrices. The range is de-
noted as optimal since it is the largest subset of [0, 1) for which if the joint spectral
radius is in this subset the collection of matrices is simultaneously contractible.
Furthermore, they show that the optimal joint spectral radius range for a bounded
set of n×n matrices is the interval [0, 1√

n
). The proof of this fact is based on John’s

ellipsoid theorem [15]. Roughly speaking, John’s ellipsoid theorem implies that ev-
ery convex body in the n dimensional Euclidean space that is symmetric around
the origin can be approximated by an ellipsoid (from the inside and outside) up
to a factor of 1√

n
. A major consequence of this result is that finding a common

Lyapunov function becomes increasingly hard as the dimension goes up.
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Recently, Blondel, Nesterov and Theys [16] showed a similar result (also based
on John’s ellipsoid theorem), that the best ellipsoidal norm approximation of the
joint spectral radius provides a lower bound and an upper bound on the actual
value. Given a set of matrices M with joint spectral radius ρ, and best ellipsoidal
norm approximation ρ̂, it is shown there that

1√
m

ρ̂(M) ≤ ρ(M) ≤ ρ̂(M) (2)

Furthermore, in [17], Blondel and Nesterov proposed a scheme to approximate
the joint spectral radius, by “lifting” the matrices using Kronecker products to
provide better approximations. A common feature of these approaches is the
appearance of convexity-based methods to provide certificates of the desired
system properties.

In this paper, we develop a sum of squares (SOS) based scheme for the approx-
imation of the joint spectral radius, and prove several results on the resulting
quality of approximation. For this, we use two different techniques, one inspired
by recent results of Barvinok [18] on approximation of norms by polynomials,
and the other one based on a convergent iteration similar to that used for Lya-
punov inequalities. Our results provide a simple and unified derivation of most
of the available bounds, including some new ones. As a consequence, we can use
SOS polynomials to approximate the extremal norm that is equal to the joint
spectral radius. We also show that this approximation is always tighter than the
one provided by Blondel and Nesterov.

A description of the paper follows. In Section 2 we present a class of bounds
on the joint spectral radius based on simultaneous contractivity with respect to
a norm, followed by a sum of squares-based relaxation, and the corresponding
suboptimality properties. In Section 3 we present some background material in
multilinear algebra, necessary for our developments, and a derivation of a bound
of the quality of the SOS relaxation. An alternative development is presented
in Section 4, where a different bound on the performance of the SOS relaxation
is given in terms of a very natural Lyapunov iteration, similar to the classical
case. In Section 5 we make a comparison with earlier techniques and analyze a
numerical example. Finally, in Section 6 we present our conclusions.

2 SOS Norms

A natural way of bounding the joint spectral radius is to find a common norm
under for which we can guarantee certain contractiveness properties for all the
matrices. In this section, we first revisit this characterization, and introduce our
method of using SOS relaxations to approximate this common norm.

2.1 Norms and the Joint Spectral Radius

As we mentioned, there exists an intimate relationship between the spectral
radius and the existence of a vector norm under which all the matrices are si-
multaneously contractive. This is summarized in the following theorem, a special
case of Proposition 1 in [6] by Rota and Strang.
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Theorem 1 ([6]). Consider a finite set of matrices A = {A1, . . . , Am}. For
any ε > 0, there exists a norm ‖ · ‖ in R

n (denoted as JSR norm hereafter) such
that

||Aix|| ≤ (ρ(A) + ε)||x||, ∀x ∈ R
n, i = 1, . . . , m.

The theorem appears in this form, for instance, in Proposition 4 of [16]. The
main idea in our approach is to replace the JSR norm that approximates the joint
spectral radius with a homogeneous SOS polynomial p(x) of degree 2d. As we will
see in the next sections, we can produce arbitrarily tight SOS approximations,
while still being able to prove a bound on the resulting estimate.

2.2 Joint Spectral Radius and Polynomials

As the results presented above indicate, the joint spectral radius can be charac-
terized by finding a common norm under which all the maps are simultaneously
contractive. As opposed to the unit ball of a norm, the level sets of a homogeneous
polynomial are not necessarily convex (see for instance Figure 1). Nevertheless,
as the following theorem suggests, we can still obtain upper bounds on the joint
spectral radius by replacing norms with homogeneous polynomials.

Theorem 2. Let p(x) be a strictly positive homogeneous polynomial of degree
2d that satisfies

p(Aix) ≤ γ2d p(x), ∀x ∈ R
n i = 1, . . . , m.

Then, ρ(A1, . . . , Am) ≤ γ.

Proof. If p(x) is strictly positive, then by compactness of the unit ball in R
n and

continuity of p(x), there exist constants 0 < α ≤ β, such that

α ||x||2d ≤ p(x) ≤ β ||x||2d ∀x ∈ R
n.

Then,

||Aσk
. . . Aσ1 || ≤ max

x

||Aσk
. . . Aσ1x||
||x||

≤
(

β

α

) 1
2d

max
x

p(Aσk
. . . Aσ1x)

1
2d

p(x)
1
2d

≤
(

β

α

) 1
2d

γk.

From the definition of the joint spectral radius in equation (1), by taking kth
roots and the limit k → ∞ we immediately have the upper bound ρ(A1, . . . , Am)
≤ γ.

2.3 Sums of Squares Programming

The condition in Theorem 2 involves positive polynomials, which are computa-
tionally hard to characterize. A useful scheme, introduced in [19,20] and rela-
tively well-known by now, relaxes the nonnegativity constraints to a much more
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tractable sum of squares condition, where p(x) is required to have a decompo-
sition as p(x) =

∑
i pi(x)2. The SOS condition can be equivalently expressed in

terms of a semidefinite programming constraint, hence its tractability. In what
follows, we briefly describe the basic SOS construction.

Consider a given multivariate polynomial for which we want to decide whether
a sum of squares decomposition exists. This question is equivalent to a semidef-
inite programming (SDP) problem, because of the following result:

Theorem 3. A homogeneous multivariate polynomial p(x) of degree 2d is a sum
of squares if and only if

p(x) = (x[d])T Qx[d], (3)

where x[d] is a vector whose entries are (possibly scaled) monomials of degree d
in the xi variables, and Q is a symmetric positive semidefinite matrix.

Since in general the entries of x[d] are not algebraically independent, the matrix
Q in the representation (3) is not unique. In fact, there is an affine subspace
of matrices Q that satisfy the equality, as can be easily seen by expanding the
right-hand side and equating term by term. To obtain an SOS representation,
we need to find a positive semidefinite matrix in this affine subspace. Therefore,
the problem of checking if a polynomial can be decomposed as a sum of squares
is equivalent to verifying whether a certain affine matrix subspace intersects the
cone of positive definite matrices, and hence an SDP feasibility problem.

Example 1. Consider the quartic homogeneous polynomial in two variables de-
scribed below, and define the vector of monomials as [x2, y2, xy]T .

p(x, y) = 2x4 + 2x3y − x2y2 + 5y4

=

⎡
⎣ x2

y2

xy

⎤
⎦

T ⎡
⎣ q11 q12 q13

q12 q22 q23
q13 q23 q33

⎤
⎦

⎡
⎣ x2

y2

xy

⎤
⎦

= q11x
4 + q22y

4 + (q33 + 2q12)x2y2 + 2q13x
3y + 2q23xy3

For the left- and right-hand sides to be identical, the following linear equations
should hold:

q11 = 2, q22 = 5, q33 + 2q12 = −1, 2q13 = 2, 2q23 = 0. (4)

A positive semidefinite Q that satisfies the linear equalities can then be found
using SDP. A particular solution is given by:

Q =

⎡
⎣ 2 −3 1

−3 5 0
1 0 5

⎤
⎦ = LT L, L =

1√
2

[
2 −3 1
0 1 3

]
,

and therefore we have the sum of squares decomposition:

p(x, y) =
1
2
(2x2 − 3y2 + xy)2 +

1
2
(y2 + 3xy)2. �
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2.4 Norms and SOS Polynomials

The procedure described in the previous subsection can be easily modified to
the case where the polynomial p(x) is not fixed, but instead we search for an
SOS polynomial in a given affine family (for instance, all polynomials of a given
degree).

This line of thought immediately suggests the following SOS relaxation of the
conditions in Theorem 2:

ρSOS,2d := inf
p(x)∈R2d[x],γ

γ s.t.
{

p(x) is SOS
γ2dp(x) − p(Aix) is SOS (5)

where R2d[x] is the set of homogeneous polynomials of degree 2d.
For any fixed γ, the constraints in this problem are all of SOS type, and thus

equivalent to semidefinite programming. Therefore, the computation of ρSOS,2d

is a quasiconvex problem, and can be easily solved with a standard SDP solver
via bisection methods. By Theorem 2, the solution of this relaxation gives the
bound

ρ(A1, . . . , Am) ≤ ρSOS,2d, (6)

where 2d is the degree of the approximating polynomial.

2.5 Quality of Approximation

What can be said about the quality of the bounds produced by the SOS relax-
ation? We present next some results to answer this question; a more complete
characterization is developed in Section 3.1. A very helpful result in this di-
rection is the following theorem of Barvinok, that quantifies how tightly SOS
polynomials can approximate norms:

Theorem 4 ([18], p. 221). Let || · || be a norm in R
n. For any integer d ≥ 1

there exists a homogeneous polynomial p(x) in n variables of degree 2d such that

1. The polynomial p(x) is a sum of squares.
2. For all x ∈ R

n,
p(x)

1
2d ≤ ||x|| ≤ k(n, d) p(x)

1
2d ,

where k(n, d) :=
(
n+d−1

d

) 1
2d .

For fixed state dimension n, by increasing the degree d of the approximating
polynomials, the factor in the upper bound can be made arbitrarily close to one.
In fact, for large d, we have the approximation

k(n, d) ≈ 1 +
n − 1

2
log d

d
.

With these preliminaries, we can now present the main result of this paper
that proves a bound on the quality of SOS approximations to the joint spectral
radius:
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To apply these results to our problem, consider the following. If ρ(A1, . . . , Am)
< γ, by Theorem 1 (and sharper results in [11,12,13]) there exists a norm ‖ · ‖
such that

||Aix|| ≤ γ||x||, ∀x ∈ R
n, i = 1, . . . , m.

By Theorem 4, we can therefore approximate this norm with a homogeneous
SOS polynomial p(x) of degree 2d that will then satisfy

p(Aix)
1
2d ≤ ||Aix|| ≤ γ||x|| ≤ γ k(n, d) p(x)

1
2d ,

and thus we know that there exists a feasible solution of{
p(x) is SOS

α2dp(x) − p(Aix) ≥ 0 i = 1, . . . , m,

for α = k(n, d)ρ(A1, . . . , Am).
Despite these appealing results, notice that in general we cannot directly

conclude from this that the proposed SOS relaxation will always obtain a solution
that is within k(n, d)−1 from the true spectral radius. The reason is that even
though we can prove the existence of a p(x) that is SOS and for which α2dp(x)−
p(Aix) are nonnegative for all i, it is unclear whether the last m expressions
are actually SOS. We will show later in the paper that this is indeed the case.
Before doing this, we concentrate first on two important cases of interest, where
the approach described guarantees a good quality of approximation.

Planar systems. The first case corresponds to two-dimensional (planar) sys-
tems, i.e., when n = 2. In this case, it always holds that nonnegative homoge-
neous bivariate polynomials are SOS (e.g., [21]). Thus, we have the following
result:

Theorem 5. Let {A1, . . . , Am} ⊂ R
2×2. Then, the SOS relaxation (5) always

produces a solution satisfying:
1
2ρSOS,2d ≤ (d + 1)−

1
2d ρSOS,2d ≤ ρ(A1, . . . , Am) ≤ ρSOS,2d.

This result is independent of the number m of matrices.

Quadratic Lyapunov functions. For the quadratic case (i.e., 2d = 2), it is
also true that nonnegative quadratic forms are sums of squares. Since(

n + d − 1
d

) 1
2d

=
(

n

1

) 1
2

=
√

n,

the inequality
1√
n

ρSOS,2 ≤ ρ(A1, . . . , Am) ≤ ρSOS,2 (7)

follows. This bound exactly coincides with the results of Ando and Shih [15] or
Blondel, Nesterov and Theys [17]. This is perhaps not surprising, since in this
case both Ando and Shih’s proof [15] and Barvinok’s theorem rely on the use of
John’s ellipsoid to approximate the same underlying convex set.
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Fig. 1. Level sets of the quartic homogeneous polynomial V (x1, x2). These define a
Lyapunov function, under which both A1 and A2 are (1 + ε)-contractive. The value of
ε is here equal to 0.01.

Level sets and convexity. Unlike the norms that appear in Theorem 1, an
appealing feature of the SOS-based method is that we are not constrained to
use polynomials with convex level sets. This enables in some cases much bet-
ter bounds than what is promised by the theorems above, as illustrated in the
following example.

Example 2. This is based on a construction by Ando and Shih [15]. Consider
the problem of proving a bound on the joint spectral radius of the following
matrices:

A1 =
[
1 0
1 0

]
, A2 =

[
0 1
0 −1

]
.

For these matrices, it can be easily shown that ρ(A1, A2) = 1. Using a common
quadratic Lyapunov function (i.e., the case d = 2), the upper bound on the joint
spectral radius is equal to

√
2. However, even a simple quartic SOS Lyapunov

function is enough to prove an upper bound of 1 + ε for every ε > 0, since the
SOS polynomial

V (x) = (x2
1 − x2

2)
2 + ε(x2

1 + x2
2)

2

satisfies

(1 + ε)V (x) − V (A1x) = (x2
2 − x2

1 + ε(x2
1 + x2

2))
2

(1 + ε)V (x) − V (A2x) = (x2
1 − x2

2 + ε(x2
1 + x2

2))
2.

The corresponding level sets of V (x) are plotted in Figure 1, and are clearly
non-convex.
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3 Symmetric Algebra and Induced Matrices

In the upcoming sections, we present some further bounds on the quality of the
SOS relaxation (5), either by a more refined analysis of the SOS polynomials
in Barvinok’s theorem or by explicitly producing an SOS Lyapunov function of
guaranteed suboptimality properties. These constructions are quite natural, and
parallel some lifting ideas as well as the classical iteration used in the solution
of discrete-time Lyapunov inequalities.

Before proceeding further, we need to briefly revisit first some classical notions
from multilinear algebra, namely the symmetric algebra of a vector space.

Consider a vector x ∈ R
n, and an integer d ≥ 1. We define its d-lift x[d]

as a vector in R
N , where N :=

(
n+d−1

d

)
, with components {

√(
d
α

)
xα}α, where

α = (α1, . . . , αn), |α| :=
∑

i αi = d, and
(

d
α

)
denotes the multinomial coefficient(

d
α1,α2,...,αn

)
= d!

α1!α2!...αn! . In other words, the components of the lifted vector
are the monomials of degree d, scaled by the square root of the corresponding
multinomial coefficients.

Example 3. Let n = 2, and x = [u, v]T . Then, we have

[
u
v

][1]

=
[

u
v

]
,

[
u
v

][2]

=

⎡
⎣ u2

√
2uv
v2

⎤
⎦ ,

[
u
v

][3]

=

⎡
⎢⎢⎣

u3
√

3u2v√
3uv2

v3

⎤
⎥⎥⎦ .

The main motivation for this specific scaling of the components, is to ensure that
the lifting preserves (some of) the norm properties. In particular, if || · || denotes
the standard Euclidean norm, it can be easily verified that ||x[d]|| = ||x||d. Thus,
the lifting operation provides a norm-preserving (up to power) embedding of R

n

into R
N (in the projective case, this is the so-called Veronese embedding).

This concept can be directly extended from vectors to linear transformations.
Consider a linear map in R

n, and the associated n × n matrix A. Then, the
lifting described above naturally induces an associated map in R

N , that makes
the corresponding diagram commute. The matrix representing this linear trans-
formation is the d-th induced matrix of A, denoted by A[d], which is the unique
N × N matrix that satisfies

A[d]x[d] = (Ax)[d]

In systems and control, these classical constructions of multilinear algebra have
been used under different names in several works, among them [22,23] and (im-
plicitly) [17]. Although not mentioned in the Control literature, there exists a
simple explicit formula for the entries of these induced matrices; see [24,25]. The
d-th induced matrix A[d] has dimensions N × N . Its entries are given by

A
[d]
αβ =

√
α!β!
d!

perAα̃β̃ , (8)
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where the indices α, β are multisets of {1, . . . , n} of cardinality d, and per indi-
cates the permanent1 of a square matrix. It can be shown that these operations
define an algebra homomorphism, i.e., one that respects the structure of matrix
multiplication. In particular, for any matrices A, B of compatible dimensions,
the following identities hold:

(AB)[d] = A[d]B[d], (A−1)[d] = (A[d])−1.

Furthermore, there is a simple and appealing relationship between the eigenval-
ues of A[d] and those of A. Concretely, if λ1, . . . , λn are the eigenvalues of A, then
the eigenvalues of A[d] are given by

∏
j∈S λj where S ⊆ {1, . . . , n}, |S| = d; there

are exactly
(
n+d−1

d

)
such multisets. A similar relationship holds for the corre-

sponding eigenvectors. Essentially, as explained below in more detail, the induced
matrices are the symmetry-reduced version of the d-fold Kronecker product.

As mentioned, the symmetric algebra and associated induced matrices are
classical objects of multilinear algebra. Induced matrices, as defined above, as
well as the more usual compound matrices, correspond to two specific isotypic
components of the decomposition of the d-fold tensor product under the action
of the symmetric group Sd (i.e., the symmetric and skew-symmetric algebras).
Compound matrices are associated with the alternating character (hence their
relationship with determinants), while induced matrices correspond instead to
the trivial character, thus the connection with permanents. Similar constructions
can be given for any other character of the symmetric group, by replacing the
permanent in (8) with the suitable immanants; see [24] for additional details.

3.1 Bounds on the Quality of ρSOS,2d

In this section we directly prove a bound on the approximation properties of the
SOS approximation. As we will see, the techniques based on the lifting described
will exactly yield the factor k(n, d)−1 suggested by the application of Barvinok’s
theorem.

We first prove a preliminary result of the behavior of the joint spectral radius
under lifting. The scaling properties described in the previous section can be
applied to obtain the following:

Lemma 1. Given matrices {A1, . . . , Am} ⊂ R
n×n and an integer d ≥ 1, the

following identity holds:

ρ(A[d]
1 , . . . , A[d]

m ) = ρ(A1, . . . , Am)d.

The proof follows directly from the definition (1) and the two properties (AB)[d]

= A[d]B[d], ||x[d]|| = ||x||d, and it is thus omitted.
Combining all these inequalities, we obtain the main result of this paper:

1 The permanent of a matrix A ∈ R
n×n is defined as per(A) :=

∑
σ∈Πn

∏n
i=1 ai,σ(i),

where Πn is the set of all permutations in n elements.
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Theorem 6. The SOS relaxation (5) satisfies:

(
n+d−1

d

)− 1
2d ρSOS,2d ≤ ρ(A1, . . . , Am) ≤ ρSOS,2d. (9)

Proof. From Lemma 1 and inequality (7), we have:

(
n+d−1

d

)− 1
2 ρSOS,2(A

[d]
1 , . . . , A[d]

m ) ≤ ρ(A1, . . . , Am)d ≤ ρSOS,2(A
[d]
1 , . . . , A[d]

m ).

Combining this with the inequality (proven later in Theorem 9),

ρSOS,2d(A1, . . . , Am)d ≤ ρSOS,2(A
[d]
1 , . . . , A[d]

m ),

the result follows.

4 Sum of Squares Lyapunov Iteration

We describe next an alternative approach to obtain bounds on the quality of
the SOS approximation. As opposed to the results in the previous section, the
bounds now explicitly depend on the number of matrices, but will usually be
better in the case of small m.

Consider the iteration defined by

V0(x) = 0, Vk+1(x) = Q(x) +
1
β

m∑
i=1

Vk(Aix), (10)

where Q(x) is a fixed n-variate homogeneous polynomial of degree 2d and β > 0.
The iteration defines an affine map in the space of homogeneous polynomials of
degree 2d. As usual, the iteration will converge under certain assumptions on
the spectral radius of this linear operator.

Theorem 7. The iteration defined in (10) converges for arbitrary Q(x) if ρ(A[2d]
1

+ · · · + A
[2d]
m ) < β.

Proof. Since the vector space of homogenous polynomials R2d[x1, . . . , xn] is iso-
morphic to the space of linear functionals on (Rn)[2d], we can write Vk(x) =
〈vk, x[2d]〉, where vk ∈ R

(n+2d−1
2d ) is the vector of (scaled) coefficients of Vk(x).

Then, the iteration (10) can be simply expressed as:

vk+1 = q +
1
β

m∑
i=1

A
[2d]
i vk,

and it is well known that an affine iteration converges if the spectral radius of
the linear term is less than one.

Theorem 8. The following inequality holds:

ρSOS,2d ≤ ρ(A[2d]
1 + · · · + A[2d]

m )
1
2d .
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Proof. Choose a Q(x) that is SOS, e.g., Q(x) := (
∑n

i=1 x2
i )

d, and let β =
ρ(A[2d]

1 + · · · + A
[2d]
m ) + ε. The iteration (10) guarantees that Vk+1 is SOS if Vk

is. By induction, all the iterates Vk are SOS. By the choice of β and Theorem 7,
the Vk converge to some homogeneous polynomial V∞(x). By the closedness of
the cone of SOS polynomials, the limit V∞ is also SOS. Furthermore, we have

βV∞(x) − V∞(Aix) = βQ(x) +
∑
j �=i

V∞(Ajx)

and therefore the expression on the right-hand side is SOS. This implies that
p(x) := V∞(x) is a feasible solution of the SOS relaxation (5). Taking ε → 0, the
result follows.

Corollary 1. For the SOS relaxation in (5), we always have

1
2d
√

m
ρSOS,2d ≤ ρ(A1, . . . , Am) ≤ ρSOS,2d.

Proof. This follows directly from Theorem 8 and the inequalities (5.1) and (5.2)
in [17].

The iteration (10) is the natural generalization of the Lyapunov recursion for
the single matrix case, and of the construction by Ando and Shih in [15] for
the quadratic case. Notice also that this corresponds exactly to the condition
introduced in [17]. As a consequence, the SOS-based approach will always pro-
duce an upper bound at least as good as the one given by the Blondel-Nesterov
procedure.

5 Comparison with Earlier Techniques

In this section we compare the ρSOS,2d approach with some earlier bounds from
the literature. We show that our bound is never weaker than those obtained by
all the other procedures.

5.1 The Blondel-Nesterov Technique

In [17], Blondel and Nesterov develop a method based on the calculation of
the spectral radius of “lifted” matrices. They in fact present two different lifting
procedures (the “Kronecker” and “semidefinite” lifting), and in Section 5 of their
paper, they describe a family of bounds obtained by arbitrary combinations of
these two liftings.

In contrast, the procedure presented in our paper relies on a single canon-
ically defined lifting, that always dominates the Blondel-Nesterov contruction.
Furthermore, it can be shown that our construction exactly corresponds to a
fully symmetry-reduced version of their procedure, thus yielding the same (or
better) bounds, but at a much smaller computational cost since the correspond-
ing matrices are exponentially smaller.
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5.2 Common Quadratic Lyapunov Functions

This method corresponds to finding a common quadratic Lyapunov function,
either directly for the matrices Ai, or for the lifted matrices A

[d]
i . Specifically, let

ρCQLF,2d := inf{γ | γ2dP − (A[d]
i )T PA

[d]
i � 0, P � 0}

This is essentially equivalent to what is discussed in Corollary 3 of [17], except
that the matrices involved in our approach are exponentially smaller (of size(
n+d−1

d

)
rather than nd), as all the symmetries have been taken out2. Notice

also that, as a consequence of their definitions, we have

ρCQLF,2d(A1, . . . , Am)d = ρSOS,2(A
[d]
1 , . . . , A[d]

m ).

We can then collect most of these results in a single theorem:

Theorem 9. The following inequalities between all the bounds hold:

ρ(A1, . . . , Am) ≤ ρSOS,2d ≤ ρCQLF,2d ≤ ρ

(
m∑

i=1

A
[2d]
i

) 1
2d

.

Proof. The left-most inequality is (6). The right-most inequality follows from
a similar (but stronger) argument to the one given in Theorem 8 above, since
the spectral radius condition ρ(A[2d]

1 + · · · + A
[2d]
m ) < β actually implies the

convergence of the matrix iteration in SN given by

Pk+1 = Q +
1
β

m∑
i=1

(A[d]
i )T PkA

[d]
i , P0 = I.

For the middle inequality, let p(x) := (x[d])T Px[d]. Since P � 0, it follows that
p(x) is SOS. From γ2dP − (A[d]

i )T PA
[d]
i � 0, left- and right-multiplying by x[d],

we have that γ2dp(x) − p(Aix) is also SOS, and thus p(x) is a feasible solution
of (5), from where the result directly follows.

Remark 1. We always have ρSOS,2 = ρCQLF,2, since both correspond to the case
of a common quadratic Lyapunov function for the matrices Ai.

5.3 Example

We present next a numerical example that compares the described techniques.
In particular, we show that the bounds in Theorem 9 can all be strict.

2 There seems to be a typo in equation (7.4) of [17], as all the terms Ak
i should likely

read A⊗k
i .
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Table 1. Comparison of the different approximations for Example 4

d 1 2 3

dim A
[d]
i 4 10 20

dim A
[2d]
i 10 35 84

ρSOS,2d 9.761 8.92 -
ρCQLF,2d 9.761 9.02 -

ρ(
∑

i A
[2d]
i )

1
2d 12.519 9.887 9.3133

Example 4. Consider the three 4 × 4 matrices

A1 =

⎡
⎢⎢⎣

0 1 7 4
1 6 −2 −3

−1 −1 −2 −6
3 0 9 1

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

−3 3 0 −2
−2 1 4 9

4 −3 1 1
1 −5 −1 −2

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

1 4 5 10
0 5 1 −4
0 −1 4 6

−1 5 0 1

⎤
⎥⎥⎦ .

The value of the different approximations are presented in Table 1. A lower
bound is ρ(A1A3)

1
2 ≈ 8.9149, which is extremely close (and perhaps exactly

equal) to the upper bound ρSOS,4.

6 Conclusions

We provided an asymptotically tight, computationally efficient scheme for ap-
proximation of the joint spectral radius of a set of matrices using sum of squares
programming. Utilizing the classical result of Rota and Strang on approximation
of the joint spectral radius with a norm in conjunction with Barvinok’s [18] result
on approximation of any norm with a sum of squares polynomial, we provided
an asymptotically tight estimate for the joint spectral radius which is indepen-
dent of the number of matrices. Furthermore, we constructed an iterative scheme
based on the generalization of a Lyapunov iteration which provides a bound on
the joint spectral radius dependent on the number of matrices. Our results can
be alternatively interpreted in a simpler way as providing a trajectory-preserving
lifting to a polynomially-sized higher dimensional space, and proving contrac-
tiveness with respect to an ellipsoidal norm in that space. The results generalize
earlier work of Ando and Shih [15], Blondel, Nesterov and Theys [16], and the
lifting procedure of Blondel and Nesterov [17]. The good performance of our
procedure was also verified using numerical examples.

References

1. Berger, M., Wang, Y.: Bounded semigroups of matrices. Linear Algebra and
Applications 166 (1992) 21–27

2. Daubechies, I., Lagarias, J.C.: Sets of matrices all infinite products of which con-
verge. Linear Algebra and Applications 161 (1992) 227–263



458 P.A. Parrilo and A. Jadbabaie

3. Daubechies, I., Lagarias, J.C.: Corrigendum/addendum to “Sets of matrices all
infinite products of which converge”. Linear Algebra and Applications 327 (2001)
69–83

4. Shih, M., Wu, J., Pang, C.T.: Asymptotic stability and generalized Gelfand spectral
radius formula. Linear Algebra and Applications 251 (1997) 61–70

5. Leizarowitz, A.: On infinite products of stochastic matrices. Linear Algebra and
Applications 168 (1992) 189–219

6. Rota, G.C., Strang, W.G.: A note on the joint spectral radius. Indag. Math. 22
(1960) 379–381

7. Blondel, V.D., Tsitsiklis, J.N.: A survey of computational complexity results in
systems and control. Automatica 36 (2000) 1249–1274

8. Blondel, V.D., Tsitsiklis, J.N.: The boundedness of all products of a pair of matrices
is undecidable. Systems and Control Letters 41 (2000) 135–140

9. Tsitsiklis, J.N., Blondel, V.: The Lyapunov exponent and joint spectral radius of
pairs of matrices are hard- when not impossible- to compute and to approximate.
Mathematics of Control, Signals, and Systems 10 (1997) 31–40

10. Hernek, D.: Random walks on colored graphs: Analysis and applications. PhD
thesis, EECS Department, University of California at Berkeley (1995)

11. Barabanov, N.E.: Lyapunov indicators of discrete linear inclusions, parts I, II, and
III. Translation from Avtomat. e. Telemekh. 2, 3 and 5 (1988) 40–46, 24–29,
17–44

12. Kozyakin, V.A.: Algebraic unsolvability of problem of absolute stability of desyn-
chronized systems. Automation and Remote Control 51 (1990) 754–759

13. Wirth, F.: Joint spectral radius and extremal norms. Linear Algebra and Appli-
cations 251 (2002) 61–70

14. Dayawansa, W.P., Martin, C.F.: A converse Lyapunov theorem for a class of dy-
namical systems that undergo switching. IEEE Transactions on Automatic Control
44 (1999) 751–760

15. Ando, T., Shih, M.H.: Simultaneous contractibility. SIAM Journal on Matrix
Analysis and Applications 19 (1998) 487–498

16. Blondel, V.D., Nesterov, Y., Theys, J.: On the accuracy of the ellipsoidal norm
approximation of the joint spectral radius. Linear Algebra and Applications 394
(2005) 91–107

17. Blondel, V.D., Nesterov, Y.: Computationally efficient approximations of the joint
spectral radius. SIAM J. Matrix Anal. Appl. 27(1) (2005) 256–272

18. Barvinok, A.: A course in convexity. American Mathematical Society (2002)
19. Parrilo, P.A.: Structured semidefinite programs and semialge-

braic geometry methods in robustness and optimization. PhD
thesis, California Institute of Technology (2000) Available at
http://resolver.caltech.edu/CaltechETD:etd-05062004-055516.

20. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Math. Prog. 96(2, Ser. B) (2003) 293–320

21. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Contemporary
Mathematics. Volume 253. American Mathematical Society (2000) 251–272

22. Brockett, R.: Lie algebras and Lie groups in control theory. In Mayne, D., Brockett,
R., eds.: Geometric Methods in Systems Theory. D. Reidel Pub. Co. (1974) 17–56

23. Zelentsovsky, A.L.: Nonquadratic Lyapunov functions for robust stability analysis
of linear uncertain systems. IEEE Trans. Automat. Control 39(1) (1994) 135–138

24. Marcus, M.: Finite dimensional multilinear algebra. M. Dekker, New York (1973)
25. Marcus, M., Minc, H.: A survey of matrix theory and matrix inequalities. Dover

Publications Inc., New York (1992) Reprint of the 1969 edition.



Metrics and Topology for Nonlinear and Hybrid Systems
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Abstract. This paper presents an approach to defining distances between non-
linear and hybrid dynamical systems based on formal power series theory. The
main idea is that the input-output behavior of a wide range of dynamical systems
can be encoded by rational formal power series. Hence, a natural distance be-
tween dynamical systems is the distance between the formal power series encod-
ing their input-output behavior. The paper proposes several computable distances
for rational formal power series and discusses the application of such distances to
various classes of nonlinear and hybrid systems. In particular, the paper presents
a detailed discussion of distances for stochastic jump-linear systems.

1 Introduction

In this paper, we present several possible definitions of a computable distance for ra-
tional formal power series and their representations. The main motivation for studying
distances between rational formal power series is that the input-output behavior of var-
ious classes of dynamical systems can be encoded by rational formal power series. For
example, linear and bilinear systems, switched linear and bilinear systems, finite state
hidden Markov models, and linear and bilinear hybrid systems [1,2,3,4,5]. Therefore,
one can define a distance between two dynamical systems as the distance between the
formal power series that encode the input-output behavior of the systems. By construc-
tion, the proposed distances will be invariant under any transformation that preserves
the input-output behavior of the systems. In addition, restricting attention to rational
formal power series will enable us to compute the distances by using the rational rep-
resentations of the formal power series. In general, such rational representations can
easily be computed from the dynamical system. Another advantage of the proposed ap-
proach is that it connects well with identification and realization theory, because several
identification methods are based on realization theory and hence on finding an appro-
priate rational representation of a family of formal power series.

Endowing the space of dynamical systems with a topology and a metric not only
is an interesting theoretical exercise, but also has several interesting applications. A
classical application is in system identification, more precisely, in finding a continuous
parameterization and suitable canonical forms of dynamical systems [6,7,8,9]. Another
important application comes from the field of computer vision, where one is interested
in automatically recognizing different types of motions in a video sequence. That is,
given a sequence of images depicting moving objects and people at different time in-
stances, we would like to determine automatically the object class, the person identify,
and the type of motion we see in the video sequence. For instance, we would like to

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 459–472, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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determine whether the video sequence depicts a running person or a galloping deer.
One of the traditional mathematical tools for recognition and classification is machine
learning. However, many of the classical machine learning techniques require a metric
on the observation space. Since our observations are video sequences depicting mul-
tiple motions, it is rather natural to model such videos as the output of one or more
dynamical systems, where each dynamical system describes a particular motion. Our
observations are then outputs of dynamical systems, or, after an identification proce-
dure, dynamical systems themselves. Therefore, in order to apply machine learning
algorithms for recognizing motions in video sequences, one needs to define a suitable
metric and topology on the space of dynamical systems. The study of topological and
metric properties of dynamical systems from this point of view is a relatively recent
development, see [10,11,12,13].

The outline of the paper is as follows. Section 2 presents the background material on
the theory of rational formal power series. Section 3 presents the definition of several
possible distances for rational formal power series and their rational representations.
Section 4 discusses the relationship between formal power series and various classes of
dynamical systems. In particular, it presents a detailed description of this relationship
as well as a distance for stochastic jump-linear systems. Section 5 discusses the rela-
tionship between the results of the current paper and earlier results in the literature, as
well as issues concerning the practical computability of the defined distances.

2 Rational Power Series

This section presents several results on formal power series that will be used throughout
the rest of the paper. The material in Subsections 2.1 and 2.2 can be found in [1]. The
results in Subsection 2.3 are, to the best of our knowledge, new. For more details on the
classical theory of rational formal power series, the reader is referred to [14,3,15].

2.1 Definition and Basic Theory

Let X be a finite set. We will refer to X as the alphabet. The elements of X will be
called letters, and every finite sequence of letters will be called a word or string over X .
Denote by X∗ the set of all finite words from elements in X . An element w ∈ X∗ of
length |w| = k ≥ 0 is a finite sequence w = w1w2 · · ·wk with w1, . . . , wk ∈ X . The
empty word is denoted by ε and its length is zero, i.e. |ε| = 0. The concatenation of two
words v = v1 · · · vk and w = w1 · · · wm ∈ X∗ is the word vw = v1 · · · vkw1 · · · wm.

For any two sets J and A, an indexed subset of A with the index set J is simply a
map Z : J → A, denoted by Z = {aj ∈ A | j ∈ J}, where aj = Z(j) for all j ∈ J .
Notice that we do not require the elements aj to be all different.

A formal power series S with coefficients in R
p is a map S : X∗ → R

p. We will call
the values S(w) ∈ R

p, w ∈ X∗, the coefficients of S. We denote by R
p � X∗ � the

set of all formal power series with coefficients in R
p. Consider the indexed set of formal

power series Ψ = {Sj ∈ R
p � X∗ �| j ∈ J} with an arbitrary (not necessarily finite)

index set J . We will call such an indexed set of formal power series a family of formal
power series. A family of formal power series Ψ is called rational if there exists an
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integer n ∈ N, a matrix C ∈ R
p×n, a collection of matrices Aσ ∈ R

n×n where σ ∈ X
runs through all elements of X , and an indexed set B = {Bj ∈ R

n | j ∈ J} of vectors
in R

n, such that for each index j ∈ J and for all sequences σ1, . . . , σk ∈ X , k ≥ 0,

Sj(σ1σ2 · · ·σk) = CAσk
Aσk−1 · · · Aσ1Bj . (1)

The 4-tuple R = (Rn, {Aσ}σ∈X , B, C) is called a representation of Ψ , and the number
n = dimR is called the dimension of the representation R. If S ∈ R

p � X∗ � is a
single power series, then S will be called rational if the singleton set {S} is rational, and
by a representation of S we will mean a representation of {S}. A representation Rmin

of Ψ is called minimal if all representations R of Ψ satisfy dimRmin ≤ dimR. Two
representations of Ψ , R = (Rn, {Aσ}σ∈X , B, C) and R̃ = (Rn, {Ãσ}σ∈X , B̃, C̃), are
called isomorphic, if there exists a nonsingular matrix T ∈ R

n×n such that T Ãσ =
AσT for all σ ∈ X , T B̃j = Bj for all j ∈ J , and C̃ = CT .

Let R = (Rn, {Aσ}σ∈X , B, C) be a representation of Ψ . In the sequel, we will use
the following short-hand notation Aw

.= Awk
Awk−1· · · Aw1 for w = w1 · · · wk ∈ X∗.

Aε will be identified with the identity map. The representation R is called observable
if OR = {0} and reachable if dim R = dimWR, where WR and OR are the following
subspaces of R

n

WR = Span{AwBj | w ∈ X∗, |w| ≤ n − 1, j ∈ J} and OR =
⋂

w∈X∗,|w|≤n−1

kerCAw. (2)

Observability and reachability of representations can be checked numerically. One can
formulate an algorithm for transforming any representation to a minimal representation
of the same family of formal power series (see [1] and the references therein for details).

Let Ψ = {Sj ∈ R
p � X∗ �| j ∈ J} be a family of formal power series, and

define the Hankel-matrix HΨ of Ψ as the matrix HΨ ∈ R
(X∗×I)×(X∗×J), where I =

{1, 2, . . . , p} and (HΨ )(u,i)(v,j) = (Sj(vu))i. That is, the rows of HΨ are indexed
by pairs (u, i) where u is a word over X and i is and integer in the range 1, . . . , p.
The columns of HΨ are indexed by pairs (v, j) where v is a word over X and j is an
element of the index set J . The element of HΨ whose row index is (u, i) and whose
column index is (v, j) is simply the ith row of the vector Sj(vu) ∈ R

p. The following
result on realization of formal power series can be found in [3,15,1].

Theorem 1 (Realization of formal power series). Let Ψ = {Sj ∈ R
p � X∗ �| j ∈

J} be a set of formal power series indexed by J . Then the following holds.

(i) Ψ is rational ⇐⇒ rank HΨ < +∞.
(ii) R is a minimal representation of Ψ ⇐⇒ R is reachable and observable ⇐⇒

dimR = rank HΨ .
(iii) All minimal representations of Ψ are isomorphic.
(iv) If the rank of the Hankel matrix HΨ is finite, i.e. n = rank HΨ < +∞, then one

can construct a representation R = (Rn, {Aσ}σ∈X , B, C) of Ψ using the columns
of HΨ ( see [1] for details).
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2.2 Realization Algorithm

In this subsection, we present an algorithm for computing a minimal representation of a
family of formal power series Ψ from finite data, more precisely, from a finite left-upper
block of the infinite Hankel matrix HΨ . The theorem guaranteeing the correctness of
the algorithm, Theorem 2, will also enable us to define a distance between families of
rational formal power series.

Let Ψ = {Sj ∈ R
p � X∗ �| j ∈ J} be a family of formal power series indexed

by a finite set J . Let HΨ,N,M ∈ R
IM×JN be a finite upper-left block of the infinite

Hankel matrix HΨ obtained by taking all columns of HΨ indexed by words over X of
length at most N , and all the rows of HΨ indexed by words of length at most M . More
specifically, HΨ,N,M ∈ R

IM×JN is the matrix whose rows are indexed by elements of
the set IM = {(u, i) | u ∈ X∗, |u| ≤ M, i = 1, . . . , p}, whose columns are indexed
by elements of the set JN = {(v, j) | j ∈ J, v ∈ X∗, |v| ≤ N}, and whose entries are
defined by (HΨ,N,M)(u,i),(v,j) = (Sj(vu))i.

The following algorithm computes a representation of Ψ from HΨ,N+1,N .

Algorithm 1. [16] (Rr, {Aσ}σ∈X , B, C) = ComputeRepresentation(HΨ,N+1,N )

1: Let r = rank HΨ,N,N and choose j1, . . . , jr ∈ J , i1, . . . , ir ∈ {1, . . . , p},
v1, . . . , vr, u1, . . . , ur ∈ X∗ such that for all l = 1, . . . , r, |vl| ≤ N and |ul| ≤ N ,
and the minor T = ((Sjk (vkul))il))l,k=1,...,r ∈ R

r×r of HΨ,N,N is of rank r.
2: For each symbol σ ∈ X let Aσ ∈ R

r×r be such that

AσT = Zσ where Zσ = ((Sjk (vkσul))il)l,k=1,...,r.

Let B = {Bj | j ∈ J}, where for each index j ∈ J , the vector Bj ∈ R
r is given by

Bj = T −1((Sj(u1)i1), (Sj(u2))i2 , . . . (Sj(ur))ir )T .

Let C ∈ R
p×r be given by C =

�
C1 · · · Cr

�
, where Cl = Sjl (vl), for l = 1, . . . , r.

Theorem 2 ([1,3,16]). If rank HΨ,N,N = rank HΨ , then the representation R̃N of
Ψ returned by ComputeRepresentation is minimal. Furthermore, if rank HΨ ≤ N ,
or, equivalently, there exists a representation R of Ψ , such that dimR ≤ N , then
rank HΨ = rank HΨ,N,N , hence R̃N is a minimal representation of Ψ .

From a computational point of view, algorithm ComputeRepresentation may not be the
best way to compute a representation of Ψ . However, we have chosen to present it,
because it makes theoretical reasoning easier. The algorithm is essentially a reformu-
lation of the construction presented in [16]. An alternative algorithm, which uses the
factorization of the finite Hankel-matrix HΨ,N,N+1 can be found in [1].

2.3 A Notion of Stability for Formal Power Series

Since our ultimate goal is to compare formal power series, we might want to restrict
our attention to formal power series that are stable in some sense. In this subsection,
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we consider the notion of square summability for formal power series, and translate the
requirement of square summability into algebraic properties of their representations.

Consider a formal power series S ∈ R
p � X∗ �, and denote by ||·||2 the Euclidean

norm in R
p. Consider the following sequence,

Ln =
n∑

k=0

∑
σ1∈X

· · ·
∑

σk∈X

||S(σ1σ2 · · · σk)||22. (3)

The series S will be called square summable, if the limit limn→+∞ Ln exists and is
finite. We will call the family Ψ = {Sj ∈ R

p � X∗ �| j ∈ J} square summable, if
for each j ∈ J , the formal power series Sj is square summable.

We now characterize square summability of a family of formal power series in terms
of the stability of its representation. Let R = (Rn, {Aσ}σ∈X , B, C) be an arbitrary
representation of Ψ = {Sj ∈ R

p � X∗ �| j ∈ J}. Assume that X = {σ1, . . . , σd},
where d is the number of elements of X , and consider the matrix

ÃR =

⎡
⎢⎢⎢⎣
Aσ1 ⊗ Aσ1 Aσ2 ⊗ Aσ2 · · · Aσd

⊗ Aσd

Aσ1 ⊗ Aσ1 Aσ2 ⊗ Aσ2 · · · Aσd
⊗ Aσd

...
...

...
...

Aσ1 ⊗ Aσ1 Aσ2 ⊗ Aσ2 · · · Aσd
⊗ Aσd

⎤
⎥⎥⎥⎦ ∈ R

n2d×n2d, (4)

where ⊗ denotes the Kronecker product. We will call R stable, if the matrix ÃR is sta-
ble, i.e. if all its eigenvalues λ lie inside the unit disk (|λ| < 1). We have the following.

Theorem 3. A rational family of formal power series is square summable if and only if
all minimal representations are stable.

Notice the analogy with the case of linear systems, where the minimal realization of a
stable transfer matrix is also stable.

3 Distances for Rational Power Series

The goal of this section is to present a notion of distance for families of rational formal
power series, or equivalently, a distance between their minimal representations. The
choice of a distance is by no means unique, in fact, we will suggest several different
distances. The common feature of all these distances is that they all can be computed
either from a minimal representation of the family, or from a big enough but finite set
of values of the formal power series constituting the families.

Through the section, we will fix the space of coefficients R
p and the alphabet X .

Also, we will fix a finite index set J and consider the space of all rational families of
formal power series indexed by J , i.e. PJ = {Ψ = {Sj ∈ R

p � X∗ �| j ∈ J} |
Ψ is rational }. Define the subset PJ,N = {Ψ ∈ PJ | rank HΨ ≤ N} of all rational
families of formal power series whose Hankel-matrix is of rank at most N . Then it is
easy to see that PJ,N ⊆ PJ,K for all N ≤ K , and PJ =

⋃+∞
N=0 PJ,N .
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3.1 Distances Based on Truncation

We will first consider distances based on truncation, that is distances that compare fi-
nitely many values of formal power series.

Fix a natural number N , and denote by m = card(J) the cardinality of J . Since J is
finite, without loss of generality, we can assume that J = {1, . . . , m}. Assume that the
alphabet X is of the form X = {z1, . . . , zd} where d is the number of elements of X .
For each N ≥ 1, let FN,J : R

mpN × R
mpN → R be a distance on R

mpN and denote
by F = {FN,J | N ∈ N} the family of distances.

We now define a pseudo-metric on PJ using the family of distances F . The main idea
is the following. If S ∈ R

p � X∗ � is a formal power series, then it can be viewed
as a map S : X∗ → R

p on words over X . There are M(N) =
∑2N+1

j=0 dj words of
length at most 2N + 1 over the alphabet X , if X has d elements. Hence, we can view
the restriction of the map S to the set of all words of length at most 2N + 1 as a vector
in R

M(N)p. We can then define the distance dF,N,J(Ψ1, Ψ2) between two families of
formal power series indexed by J , Ψ1 and Ψ2, as the distance FM(N),J (φ1, φ2) between
the vectors φ1 and φ2 in R

mpM(N) representing the restriction of the elements of Ψ1
and Ψ2, respectively, to the set of words of length at most 2N + 1. More formally,

1. Define an enumeration of all the words over the alphabet X as the bijective map
ψ : X∗ → N defined as follows. For the empty word ε, let ψ(ε) = 0 and for each
letter zi, i = 1, . . . , d, let ψ(zi) = i. Then, for each word of the form w = vzj ,
j = 1, . . . , d, v ∈ X∗ define ψ(w) recursively as ψ(w) = d · ψ(v) + j.

2. Denote by X≤2N+1 = {w ∈ X∗ | |w| ≤ 2N + 1} the set of all words on X of
length at most 2N + 1. Notice that the restriction of ψ to the set X≤2N+1 yields a
bijective map with the range [0, M(N) − 1].

3. For each S ∈ R
p � X∗ � define πN (S) as the vector (ZT

0 , ZT
1 , . . . , ZT

M(N)−1)
T

in R
pM(N), where Zi = S(ψ−1(i)) ∈ R

p. Since the integer i goes through all the
values [0, M(N) − 1], ψ−1(i) goes through all possible words of length at most
2N + 1. Hence πN (S) is just the vector of all values S(w) where |w| ≤ 2N + 1.

4. For each rational family of formal power series Ψ = {Sj ∈ R
p � X∗ �| j ∈ J}

define the vector πJ,N (Ψ) = (πN (S1)T , . . . , πN (Sm)T )T ∈ R
mpM(N) . That is,

πJ,N (Ψ) is obtained by stacking up the vectors πN (S1), . . . , πN (Sm) representing
the values of S1, . . . , Sm on words of length at most 2N + 1.

5. For each Ψ1, Ψ2 ∈ PJ , define the functions dF,N,J : PJ × PJ → R by

dF,N,J(Ψ1, Ψ2) = FM(N),J (πJ,N (Ψ1), πJ,N (Ψ2)) (5)

We then have the following result.

Lemma 1 (Properties of dF,N,J). dF,N,J is a pseudo-distance in PJ . That is, for each
Ψ1, Ψ2, Ψ3 ∈ PJ

dF,N,J(Ψ1, Ψ2) = dF,N,J(Ψ2, Ψ1) ≥ 0,

dF,N,J(Ψ1, Ψ2) ≤ dF,N,J(Ψ1, Ψ3) + dF,N,J(Ψ2, Ψ3) and

Ψ1 = Ψ2 =⇒ dF,N,J(Ψ1, Ψ2) = 0.

(6)
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The following theorem formulates an important property of dF,N,J and it relies on the
partial realization result of Theorem 2.

Theorem 4 (Distance for Rational Formal Power Series). The restriction of dF,N,J

to PN,J is a distance. That is, in addition to the properties listed in Lemma 1, the
following holds.

∀ Ψ1, Ψ2 ∈ PN,J : Ψ1 = Ψ2 ⇐⇒ dF,N,J(Ψ1, Ψ2) = 0 (7)

Proof. If Ψ1 and Ψ2 belong to PN,J , then by Theorem 2 rank HΨi,N,N = rank HΨi

holds for i = 1, 2. It is easy to see that dF,N,J(Ψ1, Ψ2) = 0 if and only if πN,J(Ψ1) =
πN,J(Ψ2), i.e. the values of the elements of Ψ1 and Ψ2 coincide for all the words of
length at most 2N+1. Hence, HΨ1,N+1,N = HΨ2,N+1,N . Therefore, by Theorem 2, the
representation R̃N produced by Algorithm 1 with the input HΨ1,N+1,N is a minimal
representation of both Ψ1 and Ψ2, which implies that Ψ1 = Ψ2.

3.2 The Hilbert Space of Square Summable Families of Formal Power Series

In what follows we will define a scalar product on the space of square summable rational
families of formal power series. With this scalar product the space of square summable
rational families becomes a Hilbert space, and the corresponding distance will take all
values of the formal power series into account.

Consider the set Ps,J = {Ψ ∈ PJ | Ψ is square summable } of square summable
rational families of formal power series. Assume that J is finite. It is clear that Ps,J

is a vector space, if we define addition and multiplication by a scalar as follows. Let
Ψ1 = {Sj ∈ R

p � X∗ �| j ∈ J} and Ψ2 = {Tj ∈ R
p � X∗ �| j ∈ J} be two

square summable rational families of formal power series. Then for each α, β ∈ R, let
αΨ1 + βΨ2 = {αTj + βSj ∈ R

p � X∗ �| j ∈ J}, where αSj + βTj is just the
usual point-wise linear combination on formal power series ([14]), i.e. for all w ∈ X∗,
(αSj + βTj)(w) = αSj(w) + βTj(w). Now, for Ψ1 and Ψ2 defined as before, define
the bilinear map < ·, · >J : Ps,J × Ps,J → R as

< Ψ1, Ψ2 >J
.=< ·, · >J (Ψ1, Ψ2) =

∑
j∈J

∑
w∈X∗

Sj(w)T Tj(w) (8)

Since J is finite and Sj , Tj are both square summable, the infinite sum in (8) is well
defined and finite. The following lemma characterizes some properties of < ·, · >J .

Lemma 2. The map < ·, · >J is a scalar product and the space Ps,J with the scalar
product < ·, · >J is a Hilbert space.

As a consequence, we can view Ps,J as a normed space with the norm ||.||J induced by
< ·, · >J , i.e.

||Ψ ||J .=
√∑

j∈J

∑
w∈X∗

||Sj(w)||22 =
√

< Ψ, Ψ >J . (9)

The following theorem gives a formula for computing < Ψ1, Ψ2 >J for all Ψ1, Ψ2 ∈
Ps,J , provided that the representations of Ψ1 and Ψ2 are available.
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Theorem 5. For i = 1, 2, assume that Ri = (Rni , {Ai,σ}σ∈X , Ci, Bi) is a stable
representation of Ψi ∈ Ps,J and that Bi = {Bi,j ∈ R

ni | j ∈ J}. Then there exists a
unique solution P ∈ R

n1×n2 to the Sylvester equation

P =
∑
σ∈X

AT
1,σPA2,σ + CT

1 C2 (10)

and the scalar product < Ψ1, Ψ2 >J can be written explicitly

< Ψ1, Ψ2 >J=
∑
j∈J

BT
1,jPB2,j. (11)

Notice from Theorem 3 that if R1 and R2 are minimal representations of Ψ1 and Ψ2 in
Ps,J , respectively, then the condition of Theorem 5 holds. Hence we can use any min-
imal representation to compute < Ψ1, Ψ2 >J . From this we may compute the distance
between Ψ1 and Ψ2 as ||Ψ1 − Ψ2||2J =< Ψ1, Ψ1 >J −2 < Ψ1, Ψ2 >J + < Ψ2, Ψ2 >J .

4 Rational Power Series and Input-Output Behavior of Dynamical
Systems

The main motivation for introducing the framework of rational formal power series
is that it provides a common algebraic framework for realization theory and system
identification of a wide-variety of input/output systems. The classes of systems whose
behaviors can be described in terms of rational formal power series include linear sys-
tems [17,9], bilinear systems, [15,3,2,18], multidimensional systems [4], finite state
hidden Markov models [5], continuous-time linear and bilinear switched systems [1]
and continuous-time linear and bilinear hybrid systems [1].

Hence, if we pick two dynamical systems Σ1 and Σ2 from any of the classes men-
tioned above we can compare them as follows. We can construct the families of formal
power series Ψ1 and Ψ2 corresponding to the input-output behaviors of Σ1 and Σ2,
respectively. Then, we can compare Ψ1 and Ψ2 using one of the distances defined in
Section 3. Note that the choice of the families Ψi, i = 1, 2 is unique if Σi belongs to
one of the classes of systems described in the previous paragraph. Alternatively, we can
construct the rational representations RΣ1 and RΣ2 of the families Ψ1 and Ψ2 respec-
tively. In general, the representations RΣ1 and RΣ2 can be easily computed from the
parameters of Σ1 and Σ2. Then, we can use RΣ1 and RΣ2 to compute the distance
between Ψ1 and Ψ2. This approach is particularly appealing if Ψ1 and Ψ2 are square
summable and one wants to use the norm (9). Notice, that even if Ψ1 and Ψ2 are square
summable, RΣ1 or RΣ2 might fail to be stable. In this case we have to minimize RΣ1

and RΣ2 first, and use the resulting stable minimal representations (see Theorem 3 and
Theorem 5) for computing the distance. Algorithms for minimizing representations can
be found in [1]. Notice also that, in general, there need not be any connection between
square summability of Ψi, i = 1, 2 and stability of the dynamical systems Σi, i = 1, 2.

In what follows, we will demonstrate the use of rational formal power series for
stochastic discrete-time jump-linear systems. This class of hybrid systems has a wide
variety of applications including computer vision. To the best of our knowledge, the
relationship between stochastic jump-linear systems and formal power series presented
here is new, though there are some similarities between our approach and that in [18].
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4.1 Stochastic Jump-Linear Systems

The terminology and notation used in this section is based on the conventions adopted in
literature, see [19,9]. A stochastic jump-linear systems [19] is a discrete-time stochastic
system described by the equations

Σ :

{
x(k + 1) = Aθ(k)x(k) + Bθ(k)v(k)

y(k) = Cθ(k)x(k) and o(k) = λ(θ(k))
. (12)

Here, x, θ, y, o and v are stochastic processes of the following form. The process x is
called the continuous state process and takes values in the continuous-state space R

n.
The process θ is called the discrete state process and takes values in the set of discrete
states Q = {1, 2, . . . , d}. The process y is the continuous output process and takes
values in the set of continuous outputs R

p. The process o is the discrete output process
and takes values in the set of discrete outputs O = {1, 2, . . . , l}. Finally, the process v
is the continuous noise and takes values in R

m. The matrices Aq , Bq , Cq , q ∈ Q, are of
the form Aq ∈ R

n×n, Bq ∈ R
n×m, and Cq ∈ R

p×n. The map λ : Q → O is called the
readout map and it assigns a discrete output to each discrete state. We will assume that
E[v(k)v(l)] = δk,lI and E[v(k)] = 0, for all k, l ∈ N, that is v is a zero mean process
and v(k), k ∈ N are uncorrelated. Furthermore, we will assume that for each k, l ∈ N,
x(0),v(k), θ(l) are mutually independent random variables. We will also assume that
the state-transition of the Markov process θ is governed by the transition probabilities
pq1,q2 , q1, q2 ∈ Q, where pq1,q2 is the probability that θ changes its value from q2 to q1,
i.e. pq1,q2 = Prob(θk+1 = q1 | θk = q2). In addition, we will assume that the initial
probability distribution of θ is given by the vector π = (π1, . . . , πd)T ∈ R

d, where
πq = Prob(θ(0) = q) denotes the probability that the process θ is in state q at time 0.
The evolution of system (12) is as follows. At each time instant k, the continuous state
x and the continuous output y change according to the discrete-time stochastic linear
system (Aθ(k), Bθ(k), Cθ(k)). The discrete state process θ, together with the discrete
output process o, form a finite state hidden Markov model [5].

In the next subsection, we study the concept of realization for stochastic jump-linear
systems. To that end, we will assume that the stochastic processes x and y are wide-
sense stationary and zero mean, which is guaranteed under the following assumptions.

Assumption 1. The Markov process θ is stationary and ergodic, hence for all q ∈ Q,∑
s∈Q pq,sπs = πq .

Assumption 2. There exists n × n matrices Pq , q ∈ Q, such that for each q ∈ Q

Pq =
∑
s∈Q

pq,sAsPsA
T
s + BsB

T
s pq,sπs, (13)

E[x(0)] = 0, and E[x(0)x(0)T χ(θ(0) = q)] = Pq , where χ denotes the indicator
function, i.e. χ(A) = 1 if the event A is true, and χ(A) = 0 otherwise.

These assumptions are not particularly strong. For instance, under suitable con-
ditions [19], there is a unique collection of positive semi-definite matrices Pq such that
(13) holds.
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4.2 Realization of Stochastic Jump-Linear Systems

Recall the notion of weak realization for linear stochastic systems [9]. In this subsection,
we will formulate a similar concept for stochastic jump-linear systems.

Consider a stationary process õ taking values in the finite output space O, and a
wide-sense stationary, zero-mean stochastic process ỹ taking values in the continuous
output space R

p. Let O+ be the set of all nonempty words in O, i.e. O+ = O∗\{ε}. For
all o0, o1, . . . , ok ∈ O, k ≥ 0, define the maps P

�o : O+ → R and C
�o,�y : O+ → R

p×p

P
�o(o0o1 · · · ok) = Prob(õ(i) = oi, i = 0, . . . , k)

C
�o,�y(o0o1 · · · ok) = E[ỹ(k)ỹ(0)T χ(õ(i) = oi, i = 0, . . . , k)].

(14)

Notice that the map P
�o gives the probability distribution of the stochastic process õ,

while the map C
�o,�y gives the covariance of ỹ(k) and ỹ(0), provided that the proces õ

takes values o0, . . . , ok in the first k+1 time instances. That is, C
�o,�y collects information

on the second-order moments of ỹ.1

Consider now a jump-linear system Σ of the form (12) and recall the definition of
the processes y and o. If Assumption 1 and Assumption 2 hold, then y is wide-sense
stationary and zero-mean and o is stationary. Hence, Co,y and Po are well-defined. In
fact, they depend only on the matrices Aq, Bq, Cq , q ∈ Q, the discrete state-transition
probabilities pq1,q2 , q1, q2 ∈ Q, the probability distribution of the initial discrete-state
π, and the readout map λ. To emphasize that Co,y and Po depend only on the parameters
of Σ, we will denote Co,y by CΣ and Po by PΣ . These maps are important, because they
contain information about the probability distribution of the output processes generated
by Σ. In fact, the following is true.

Proposition 1. If x(0) and v are Gaussian, Q = O, and λ = id, i.e. the discrete state
is fully observed, then the map CΣ uniquely determines the distribution of y.

The assumption that Q = O is critical here. Intuitively, the more information about
the discrete state is preserved by the discrete output, i.e. the closer o is to θ, the better
estimate of the probability distribution of y is provided by CΣ .

With the notation above, we are now ready to define a notion of weak realization for
stochastic jump-linear systems. Let ỹ be a wide-sense stationary, zero mean R

p-valued
process, and let õ be a stationary O-valued process. A stochastic-jump linear system Σ
is said to be a weak stochastic realization of (ỹ, õ), if P

�o = PΣ and C
�o,�y = CΣ .

Clearly, the fact that Σ is a weak-realization of the processes (ỹ, õ) imposes some
constraints on the probability distribution of the processes õ and ỹ. We will now show
that (ỹ, õ) has a weak realization by a stochastic jump-linear system, only if certain
families of formal power series are rational. We will construct two families of formal
power series Ψ

�o,�y and S
�o based on the maps C

�o,�y and P
�o, respectively, as follows.

Let X = O = {1, 2, . . . , l} and J
�o,�y = {1, . . . , p}×O be, respectively, the alphabet

and the index set over which the formal power series will be defined. For each integer
i = 1, . . . , p, letter o ∈ O, and word w ∈ O∗, let C

�o,�y,(i,o)(w) ∈ R
lp be the ith column

of the matrix [
CT
�o,�y(ow1), CT

�o,�y(ow2), · · · , CT
�o,�y(owl)

]T ∈ R
lp×p. (15)

1 Notice the similarity between C
�o,�y and the generalized covariances in [18].
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We define the family of formal power series Ψ
�o,�y associated with C

�o,�y as

Ψ
�o,�y = {C

�o,�y,(i,o) ∈ R
pl � O∗ �| (i, o) ∈ J

�o,�y} (16)

The construction of S
�o is much simpler. We can simply identify the map P

�o with a
formal power series S

�o ∈ R � O∗ � by defining S
�o(ε) = 1 for the empty word and

S
�o(w) = P

�o(w) for all w ∈ O+. By abuse of notation we will denote S
�o simply by

P
�o. We will call (Ψ

�o,�y, P
�o) the pair of formal power series associated with (ỹ, õ).

The next step is to define a pair of representations (RΣ,C , RΣ,D) associated with a
jump-linear system Σ of the form (12).

We define the representation RΣ,C as follows. For each o ∈ O and q, q1, q2 ∈ Q,
let Co

q = Cqχ(λ(q) = o) ∈ R
p×n, Ao

q1,q2
= pq1,q2χ(λ(q2) = o)Aq2 ∈ R

n×n, and
Bo

q = Pq(Co
q )T ∈ R

n×p, where Pq ∈ R
n×n is the matrix defined in (13). Using this

notation, define the matrices Ão ∈ R
nd×nd, C̃ ∈ R

lp×nd and B̃o ∈ R
nd×p, o ∈ O, as

Ão =

⎡
⎢⎢⎢⎣

Ao
1,1 Ao

1,2 · · · Ao
1,d

Ao
2,1 Ao

2,2 · · · Ao
2,d

...
...

...
...

Ao
d,1 Ao

d,2 · · · Ao
d,d

⎤
⎥⎥⎥⎦ , C̃ =

⎡
⎢⎢⎢⎣
C1

1 C1
2 · · · C1

d

C2
1 C2

2 · · · C2
d

...
...

...
...

Cl
1 Cl

2 · · · Cl
d

⎤
⎥⎥⎥⎦ , and B̃o =

⎡
⎢⎢⎢⎣

Bo
1

Bo
2

...
Bo

d

⎤
⎥⎥⎥⎦ .

Then, for each o ∈ O, and i = 1, . . . , p let B̃(i,o) ∈ R
nd be the ith column of B̃o and

define the set B̃ = {B̃(i,o) ∈ R
nd | (i, o) ∈ Jo,y} indexed by Jo,y = {1, . . . , p} × O.

We define the representation RΣ,C as

RΣ,C = (Rnd, {Ão}o∈O, B̃, C̃). (17)

As per the representation RΣ,D, we define it as

RΣ,D = (Rd, {Mo}o∈O, {π}, e), (18)

where e = (1, 1, . . . , 1) ∈ R
1×d, and for each o ∈ O and q1, q2 ∈ Q, the (q1, q2) entry

of the matrix Mo ∈ R
d×d is defined from the transition probabilities of the process θ

as pq1,q2χ(λ(q2) = o). Notice the similarity between the definition of RΣ,D and the
definition of a quasi-realization for the finite state hidden Markov model formed by
(θ,o) given in [5].

We these definitions, we have the following result.

Theorem 6 (Weak Realization). A jump-linear system Σ of the form (12) is a weak
realization of (ỹ, õ) if and only if RΣ,C is a representation of Ψ

�o,�y and RΣ,D is a
representation of P

�o. Hence, (ỹ, õ) admits a weak stochastic realization by a stochastic
jump-linear system, only if Ψ

�o,�y is a rational family of formal power series and P
�o is a

rational formal power series.

An important implication of the theorem above is the following. If we know that the
processes (ỹ, õ) admit a weak stochastic realization by a stochastic jump-linear sys-
tem, then we can find representations of Ψ

�o,�y and P
�o from finite data. More precisely,

if rank HΨ
�o,�y ≤ N and rank HP

�o ≤ N , then from C
�o,�y(o0 · · · ok), P

�o(o0 · · · ok)
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k ≤ 2N + 1, o0, . . . , ok ∈ O, we can construct the Hankel matrices HΨ
�o,�y,N+1,N

and HP
�o,N+1,N and compute a representation R

�o,�y of Ψ
�o,�y and R

�o of P
�o respectively.

Note that if we know that (ỹ, õ) has a weak stochastic realization by a jump-linear
system Σ with a continuous state-space of dimension n and a discrete state-space of
cardinality d, then we can take N ≥ nd > 0. Finally, recall that the problem of esti-
mating C

�o,�y(o0 · · · ok) and P
�o(o0 · · · ok) is a classical statistical problem. In particular,

if ỹ and õ are ergodic, then these quantities can easily be estimated from a long enough
sequence of measurements.

4.3 Distances Between Stochastic Jump-Linear Systems

Imagine we would like to compare the probability distributions of the output processes
(õ1, ỹ1), and (õ2, ỹ2) of two stochastic jump-linear systems Σ1 and Σ2, respectively.
We can do that by using one of the distances defined in Section 3 to compare their as-
sociated pairs of families of formal power series: Ψ

�o1,�y1 with Ψ
�o2,�y2 and P

�o1 with P
�o2 .

When Σ1 and Σ2 are known, we can construct the representations RΣi,C and RΣi,D,
i = 1, 2. Then, we can use RΣi,C , i = 1, 2 to compute the distance between Ψ

�o1,�y1 and
Ψ
�o2,�y2 . Likewise, we can use RΣi,D, i = 1, 2 to compute the distance between P

�o1 and
P
�o2 . The advantage of using distances on formal power series is even more apparent if

Σ1 and Σ2 are unknown, because the identification of stochastic jump-linear systems is
poorly developed.2 Instead, one could use the estimates of finitely many values of C

�oi,�yi

and P
�oi

, i = 1, 2 to compute the minimal representations RC,i of Ψ
�oi,�yi

, i = 1, 2 and
RD,i of P

�oi
, i = 1, 2, and use the computed representations to compare the behavior

of the two systems. The procedure for computing such representations from their Han-
kel matrices is known [1,15,16] and it is likely to be computationally less costly than
identifying the original jump-linear systems.

5 Discussion and Conclusion

In this paper several definitions of distances for rational formal power series and ratio-
nal representations were presented. It was argued that the results can be used to define
metrics and topology on the space of a wide variety of dynamical systems. The key
argument is that for many classes of dynamical systems there is a correspondence be-
tween the input-output behaviors of the systems and rational formal power series. In
particular, this is the case for a number of hybrid systems and some nonlinear systems.

To the best of our knowledge, the problem of distances between hybrid systems had
not been addressed so far. In the case of nonlinear systems, there are some results on the
topological and geometric structure of the space of bilinear systems, see for example
[16], where the algebraic variety structure of that space was described. In contrast, there
is a fair amount of literature on distances between linear systems and on the topological
and geometric structure of the space of linear systems. Note the relationship between
input-output maps and output processes of linear systems and families of formal power
series over the one letter alphabet X = {z}. Because of this correspondence, any dis-
tance on rational families of formal power series will give us a distance between linear

2 Even in the linear case, the full identification procedure for linear stochastic systems is com-
putationally costly.
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systems. Spaces of equivalence classes of minimal linear systems were already studied
before, for both the stochastic and deterministic settings. In fact, it was shown in [7]
that, for each N , the set of all equivalence classes Mm,p

N of minimal linear systems of
dimension N with m inputs and p outputs forms both an analytic manifold and an alge-
braic variety and admits a natural topology. Here two minimal linear systems belong to
the same equivalence class if they are algebraically similar. Denote by Mm,p,a

N the set
of equivalence classes of stable minimal linear systems. Then it was shown in [8,6] that
Mm,p,a

N and Mm,p
N are diffeomorphic as analytic manifolds and the topology of Mm,p,a

N

as an analytic manifold can be obtained by the metric induced by the H2 norm. It is easy
to see that the distance induced by the H2 norm is a particular case of the distance in-
duced by the norm (9), if we identify equivalence classes of minimal linear systems
with equivalence classes of minimal rational representations (two minimal representa-
tions are equivalent, if they are isomorphic). More recent papers on distances between
stochastic linear systems can be found in [20,21,12]. In particular, [12] introduces the
trace distance between linear systems and gives a formula to compute it. Surprisingly,
the distance induced by the norm (9) is closely related to the trace distance.

In practical situations, the families of formal power series are likely to encode the
external behaviors of some dynamical systems. In such cases, the available information
is either a rational representation of each family of formal power series, or a finite
collection of values of the formal power series.

If we are given a rational representation RΨ of each family Ψ , then any of the dis-
tances described in Section 3 can easily be computed. Notice that if Ψ is square sum-
mable, then we can minimize RΨ and the obtained minimal representation of Rm,Ψ

will be stable, due to Theorem 3. Hence, using Theorem 5 we can compute the distance
induced by < ·, · >J by solving the corresponding Sylvester equation from Theorem
5. Hence, except for the computational complexity, there are few restrictions on using
any of the distances. Therefore, one may choose different distances depending on the
particular application and the computational costs. Note that the issue of computational
complexity is still open for the distances we presented. However, the computational cost
of computing distances of type dF,N,J between formal power series is exponential in
N , if the underlying alphabet X has more than one element.

If only the finite collection of values is available then the task of choosing the right
distance is more complex. Assume that we know the values of the elements of the fam-
ilies for all words of length at most N . Then there are two cases to be considered. If
N ≥ 2M + 1 and M = rank HΨ for all families Ψ involved, then we may apply
the algorithm described in Theorem 2 to compute a minimal representation RΨ of Ψ .
If Ψ is a square summable family, then the resulting representation RΨ is stable. Even
in this ideal case when N is big enough several issues require attention. First of all,
computing RΨ might be computationally expensive. If we want to compute one of the
distances dF,M,J , M ≤ N , then we might do better by using the data directly, rather
than computing the representations first and then computing the distance from the rep-
resentations. However, computing the representations RΨ might be a good idea if we
want to use the distances induced by the norm (9). Moreover, if the data are noisy, we
do not know whether our algorithm will still produce a stable representation, which is
a prerequisite for the existence of the solution of the Sylvester equation. If we cannot
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ensure that N is big enough, then the algorithm from Theorem 2 might fail to produce
a representation of Ψ .
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Abstract. In this paper, we analyze limits of approximation techniques
for (non-linear) continuous image computation in model checking hy-
brid systems. In particular, we show that even a single step of continu-
ous image computation is not semidecidable numerically even for a very
restricted class of functions. Moreover, we show that symbolic insight
about derivative bounds provides sufficient additional information for
approximation refinement model checking. Finally, we prove that purely
numerical algorithms can perform continuous image computation with
arbitrarily high probability. Using these results, we analyze the prereq-
uisites for a safe operation of the roundabout maneuver in air traffic
collision avoidance.
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1 Introduction

The fundamental operation in model checking [1] is image computation, i.e., de-
termining the set of states reachable from some (initial) set of states by following
all transitions of the system. Verifying safety amounts to checking whether a bad
state can be reached by repeating image computation from the initial states until
convergence or a bound is reached. Today, the primary challenge for verification
of industrial hybrid systems is to improve (a) scalability by building model check-
ers that are able to deal with higher-dimensional continuous state-spaces, and
(b) modeling capabilities by providing verification techniques for systems having
richer continuous dynamics. In this paper, we focus on (b) using approximation
techniques and delineate the borderline of decidability of the image computation
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problem for hybrid systems model checking. In particular, we show that even a
single step of continuous image computation is not semidecidable.

In this paper we analyze techniques for approximating image computation for
hybrid systems having non-linear continuous flows. First-order real arithmetic
is among the most expressive theories for continuous values that is known to be
decidable [2]. It is used successfully in hybrid system verification [3, 4, 5, 6]. We
thus investigate approximations of system flows using real arithmetic, including
polynomial and spline approximations. For verification, we argue that uniform
approximations, i.e., approximations with a uniform global error bound, are cru-
cial, since verification is about making sure that the system is well-behaved even
in worst-case scenarios. For this, we analyze the conditions required to guaran-
tee that uniform approximations of flows can be constructed computationally. In
addition, we study approximation-based model checking for hybrid systems with
flows that are given implicitly as numerical solutions of differential equations.

Throughout the paper, we observe that numerical algorithms need additional
knowledge about the system behavior to be successful in model checking. We
show a strong undecidability result about the purely numerical treatment of
even the basic operation of image computation in hybrid systems to support
this observation.

The distinguishing feature of numerical algorithms in this context is that
they compute their output with specific real values or rational approximations
like 1.421. In contrast, symbolic algorithms are capable of computing with sym-
bolic terms like x2 +2xy that involve variable symbols to obtain results that are
valid for all instantiations of x and y with real values. However, all terms that
occur during the symbolic computation need to have a common representation
that is effective. Further, numerical computations are generally more scalable to
higher dimensions. See [7] for details on machine models for numerical compu-
tations; see [8] for symbolic computation and symbolic representations.

Model checking depends on image computation of sets of states. As they op-
erate on concrete values, numerical algorithms can only compute images at a
finite number of individual points in bounded time. Thus, the primary challenge
in using numerical methods for verification is caused by the need for such a fi-
nite mesh of points on which solutions are computed numerically. This imposes
two primary causes for errors: (a) there is only limited knowledge about the
behavior in between the finite mesh, and (b) the numerical computations them-
selves introduce errors. For proper verification, these errors have to be controlled
computationally to make sure the system is safe under all circumstances.

While the certainty required for verification is impossible to obtain by numer-
ical means alone, we additionally show that numerical methods can provide a
stochastic understanding of system safety. The probability of a wrong verification
result can be made arbitrarily small under fairly mild assumptions.

We use our techniques to obtain results about roundabout maneuvers for colli-
sion avoidance in air traffic management (ATM) [9,10]. We show that a classical
collision avoidance maneuver is unsafe for more realistic model assumptions. To
overcome this limitation, we propose a modified roundabout maneuver that uses
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adaptive flight paths following a tangential geometric construction. Since the
image computation techniques presented in this paper are suitable for automa-
tion, they have impact on improving verification tools like HyTech [11], Check-
Mate [12], or PHAVer [13] to cover more complicated dynamics. Supporting
more general dynamics is important for verifying hybrid systems, for instance,
in ATM [9,10, 14] and for systems biology [6].

Structure of this Paper. After giving the basics of model checking in Sect. 2, we
present the roundabout maneuver in Sect. 3. In Sect. 4, we present the framework
for approximation refinement model checking. We analyze flow approximation
techniques in Sect. 5. In addition, we cover flows that are specified implicitly as
solutions of differential equations in Sect. 6. Experimental results of our prelim-
inary model checker for roundabout maneuvers are presented in Sect. 7. Related
work is discussed in Sect. 8.

2 Preliminaries

For model checking to be effective, both representing sets of states and computing
images of sets of states under transitions have to be computable. Hybrid systems
have two kinds of transitions: discrete jumps in the state space caused by mode
switches, and continuous evolution along flows within a mode; see [6, 11].

Definition 1 (Hybrid Automata). A hybrid automaton A consists of

– a continuous state space Rn;
– a directed graph with vertices Q (as modes) and edges E (control switches);
– flows ϕv, where ϕv(t; x) ∈ Rn is the state reached after staying in mode v

for time t ≥ 0 when continuous evolution starts in state x ∈ Rn;
– invariant conditions invv ⊆ Rn for v ∈ Q;
– jump relations jumpe ⊆ Rn × Rn for edges e ∈ E;

where jumpe and invv are definable in first-order real arithmetic [2]. Typically,
the jump relation jumpe contains transition guards and variable resets as in [6].

To simplify the formal machinery, we define the semantics of hybrid automata in
terms of image computation (see, e.g. [6,15,11] for details on the relationship to
trace semantics). Numerical algorithms typically work within a compact domain.
For simplicity, we assume that all flows share the same domain of relevance D ⊆
R × Rn, which comprises all relevant states and observation times. In (1) of
Fig. 1, the post-image for automaton A is defined in terms of its discrete and
continuous transitions: PostA(Y ) is the set of states reachable from Y ⊆ Q×Rn

in one step. The post-image under the continuous flow ϕv restricted to D is
defined in (2). For discrete jumps along edge e ∈ E from v ∈ Q to w ∈ Q,
the post-image is defined in (3). Reachability in an arbitrary number of steps
is defined by the least fixpoint equation (4). The pre-image PreA(Y ) is defined
accordingly. Model checking reachability of bad states B ⊆ Q × Rn from the
initial set of states I ⊆ Q×Rn amounts to checking emptiness of Post∗A(I) ∩ B.
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PostA(Y ) :=
�

v∈Q

Postϕv |D (Y ) ∪
�

e∈E

Postjumpe
(Y ) (1)

Postϕv |D (Y ) := {(v, ϕv(t; x)) ∈ Q × Rn : (v, x) ∈ Y, (t, x) ∈ D for some t ≥ 0

and ϕv(t′; x) ∈ invv for all 0 ≤ t′ ≤ t} (2)

Postjumpe
(Y ) := {(w, y) ∈ Q × Rn : (x, y) ∈ jumpe for some (v, x) ∈ Y

and y ∈ invw where e = (v, w)} (3)

Post∗A(Y ) := μZ.(Y ∪ Z ∪ PostA(Z)) (4)

Fig. 1. Image computation semantics of hybrid automata

3 Air Traffic Management

Tomlin et al. [9] presented conflict resolution protocols for air traffic manage-
ment, which direct two airplanes flying too close to each other to perform collision
avoidance maneuvers. Assuming, for simplicity, aircraft remain at the same alti-
tude, a configuration can be described in the special Euclidean group of R2 [9]
and relative coordinates can be used to reduce the state-space dimension. The
relative position of aircraft 2 with aircraft 1 at the origin is represented by its
(planar) position x, y and orientation φ; see Fig. 2a. With linear velocities vi and
angular velocities ωi (in radians per time unit) of the respective aircraft i, the
in-flight dynamics in relative coordinates are as follows (see [9] for details):

ẋ = − v1 + v2 cosφ + ω1y ẏ =v2 sin φ − ω1x φ̇ =ω2 − ω1 . (5)

A configuration is unsafe if there is another aircraft within a 5mi-radius protected
zone, i.e., x2 + y2 < 52.

Straight line protocols [9, 10] for collision avoidance are unrealistic. Between
straight lines, they assume instant turns, which are impossible in mid-flight. As
a more realistic model, we investigate roundabout maneuvers [9], which also
contain proper flight curves with ωi �= 0, see Fig. 2b. The roundabout maneuver
refines several instant turns to realistic curves with more complicated dynamics.
For this refinement, we show that the standard maneuvers are unsafe.

Fig. 2c contains the hybrid automaton for roundabout collision avoidance,
which generalizes the protocols in [9, 10, 14]. This protocol initiates evasive ac-
tions when the distance drops to α. The clock c determines when it is safe to
turn back into the original direction after a half turn of duration π

ω . For a concise
presentation, (5)[ωi := s] is an abbreviation for the dynamics of equation (5),
with ω1 and ω2 replaced by s. Further, rot[θ1, θ2] denotes the action of the first
aircraft turning by θ1 and the second by θ2, simultaneously. Typically, the θi are
chosen as fixed values like θ = π/2 [14]. We use [−r, r]2 × [0, 2π] with r = α + 8
as the relevant domain for states (x, y, φ) and choose observation times in [0, 400].
By continuity, other safety-relevant trajectories trespass a point in D.
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x

y
Φ

protected
zone

v1
Ω1

(a) Configuration. (b) Maneuver.

Cruise
(5)[ωi := 0]
x2 + y2 ≥ α2

LCircle
(5)[ωi :=ω]
ċ = 1

x2 + y2 ≤ α2 ∧ y ≥ 0

rot[-θ, -θ]
c := 0

c ≥ π
ω

rot[-θ, -θ]

RCircle
(5)[ωi := −ω]
ċ = 1

x2 + y2 ≤ α2 ∧ y < 0

rot[θ, θ]
c := 0

c ≥ π
ω

rot[θ, θ]

(c) Roundabout maneuver automaton.

Fig. 2. Roundabout collision avoidance maneuver

4 Approximation in Hybrid Systems Model Checking

In this section, we provide the theoretical foundations for flow approximation in
model checking hybrid systems and outline the approximation refinement model
checking algorithm. Model checking depends on image computation of sets of
states, which is particularly crucial for infinite-state systems. Yet, computing
the image of a set under complicated flows is not possible in general. Hence, our
guiding principle is to first approximate complicated dynamics using simpler
flows (Sect. 4.2) and then compute images of sets under simple flows (Sect. 4.3).

4.1 Approximation Refinement Model Checking

For approximate set operations, we define the distance between sets X ⊆ Rn

and Y ⊆ Rn as d(X, Y ) := infx∈X,y∈Y ‖x − y‖, and d(x, Y ) := d({x}, Y ) for
a point x ∈ Rn. Further, for an ε > 0, let Uε(Y ) := {x ∈ Rn : d(x, Y ) < ε} be
the ε-neighborhood of Y ⊆ Rn. For convenience, we define U0(Y ) := Y . Finally,
let S[x, y] ⊆ Rn be the line segment connecting x ∈ Rn and y ∈ Rn.

Image computation for discrete transitions is as usual in model checking [1].
Hence, we focus on a treatment of continuous evolutions that combines well with
techniques for handling discrete image computation. Since the mode does not
change during a continuous flow, we drop modes from Postϕ|D (Y ).

We handle complicated dynamics by approximating flows and we conserva-
tively over-approximate the resulting images. For an approximation of error ≤ε,
safety proofs require that all states reachable in this approximation have a dis-
tance >ε to B. This is captured formally in the following decision problem.

Problem 1 (Approximate reachability in image computation). Given an arbitrar-
ily effective function ϕ ∈ Ck(D ⊆ Rn,Rm), i.e., for rational input x, the
value ϕ(x) can be computed up to arbitrary precision, and given effective rep-
resentations of B ⊆ Rm and of a compact closure D of an open set, decide the
following problem with tolerance ε ≥ 0: “Uε(Postϕ|D (Y )) ∩ B = ∅ ?”

Exact image computation is retained with ε = 0. Extensions to Post∗A(Y ) are
defined inductively using approximate flow images Uε(Postϕ|D(Y )) in Fig. 1.

Safety of an approximation with tolerance ε implies safety of the actual sys-
tem by monotonicity of image computation. If the over-approximation is unsafe,
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choose i n i t i a l δ > 0
whi le t rue do

Ã := approx (δ ,A ) ; ε := e r ro rbound (Ã)
r e a ch ab l e := check (Uε(Post∗

Ã
(I)) ∩ B �= ∅)

i f not r e a ch ab l e then
re tu rn ’A i s s a f e ’

e l s e i f ε 	 1
r e tu rn ’A i s un sa f e with f r a g i l i t y ε ’

e l s e δ := δ/2

Fig. 3. Approximation Refinement Model Checking (AMC)

however, counterexamples can be spurious. This happens if the approximation
is too coarse because the current guaranteed error bound, ε, is still too large and
permits behavior that is impossible in reality. Hence, refining the approximation
tolerance is necessary [16] until the system is (a) proven safe after closer analysis,
or (b) the system is considered fragile [3,14] because it is unsafe for a sufficiently
small value of ε (below the stability advised by general engineering principles).
An approximation refinement algorithm (AMC) exploiting those circumstances
for Problem 1 is depicted in Fig. 3. It is parametric in a procedure approx for
approximating the flows of the hybrid automaton A with a means to determine a
uniform error bound. Techniques for this will be examined in Sect. 5–6 using the
theory in Sect. 4.2. AMC further depends on the ability to check reachability by
image computation in the approximation Ã, which we investigate in Sect. 4.3.

In order to support approximations with posterior error bound reporting,
our algorithm distinguishes the refinement tolerance δ from the resulting error
bound ε. The required assumption to ensure convergence is that ε decreases
with δ and converges to zero when δ does. Modes can be split into modes that
apply for different subregions by partitioning D (using the techniques in [13])
to keep refinements of δ local to smaller parts of the state space. As a further
improvement, it is simple to extend AMC to stop if a counterexample has been
found that reaches a bad state with a distance >ε to good states (beyond the ap-
proximation error). In that case, the concrete system is unsafe without fragility.

4.2 Image Approximation

As a theoretical framework for flow approximations in approx to solve Problem 1
with AMC, we present the following result. It shows that continuous flows sup-
port uniform approximation of images with polynomials on compact domains.

Proposition 1 (Weierstraßian flows). Let ϕ ∈ C(D,Rn) on a compact clo-
sure D ⊂ R×Rn of an open set. Then, ∀ε > 0 ∃p ∈ R[t, x1, . . . , xn]n ∀Y ⊆ Rn

Postϕ|D(Y ) ⊆ Uε(Postp|D(Y )) (6)

Preϕ|D(Y ) ⊆ Prep|D (Uε(Y )) . (7)
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Proof. For any ε > 0, let p be a vector of polynomials approximating ϕ on D
with uniform error <ε according to the generalized Weierstraß theorem [17].
Equation (6) is a consequence of the following representation (case (7) is similar):

Uε(Postp|D (Y )) = {z ∈ Rn : ∃x ∈ Y ∃t (t, x) ∈ D , ‖z − p(t, x)‖ < ε} .

Let z ∈ Postϕ|D(Y ), i.e., let (t, x) ∈ D, x ∈ Y with z = ϕ(t; x). The Weierstraß
theorem implies z ∈ Uε(Postp|D (Y )), as ‖z − p(t, x)‖ = ‖ϕ(t; x) − p(t, x)‖ < ε.

This result shows that image computation can be split into approx, i.e., finding
a uniform approximation p of ϕ that satisfies (7), and check, i.e., computing the
right-hand side of (7). Further, it proves the existence of an approximation p.

4.3 Polynomial Image Computation and Beyond

In this section, we present classes of flows that support exact image computation
of sets of states for the procedure check. These are adequate choices for functions
with which approx can approximate more complicated dynamics. Beyond poly-
nomial flows, we generalize exact image computation to piecewise polynomials
and rational functions—in particular to multivariate rational splines.

Proposition 2 (Decidability of polynomial image computation). Given
definable Y and D, the right-hand sides of (6) and (7) in Proposition 1 are
definable in first-order real arithmetic, hence decidable by Tarski’s theorem [2].

Proof. Let FD and FY define D and Y , respectively. Then, z ∈ Uε(Postp|D (Y )) is
definable by: ∃x∃t (FY (x) ∧ FD(t, x) ∧ ‖z − p(t, x)‖ < ε). As the square function
increases strictly monotonically on [0, ∞) and ε ≥ 0, the Euclidean norm can in
turn be defined by: ‖z‖ < ε ≡

∑n
i=1 z2

i < ε2. With this, we can implement check.

Proposition 3. Piecewise polynomials are definable in first-order arithmetic.

Proof. Let s : D → R be a function consisting of polynomial pieces Pi : Di → R
for disjoint domains Di with D = D1 ∪ · · · ∪ Dn that are definable in first-order
real arithmetic. Then, the following equivalence defines the piecewise function s:

s(x) = t ≡
n∨

i=1

(x ∈ Di ∧ pi(x) = t) .

The image computation corresponding to (6) follows from the decomposition

Posts|D (Y ) =
n⋃

i=1

Postpi|Di
(Y ) and Uε(X ∪ Y ) = Uε(X) ∪ Uε(Y ) . (8)

Due to their piecewise definitions, splines provide a better approximation with
lower degree than polynomials do. Hence, we propose to use splines for image
computation, and solve a multitude of simpler polynomial problems as opposed
to using a single high-degree polynomial problem. For this, splines in (8) split
into a disjoint set of polynomial reachability problems of lower degree. For a
result on uniform approximation with multivariate splines, we refer to [18, 19].
Even rational approximations can be used, but AMC does not yet apply them:
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Proposition 4. Tarski’s theorem [2] can be extended from semialgebraic sets
formed with polynomials over real-closed fields to rational functions.

Proof. In first-order formulas of real arithmetic with rational expressions, the
following equivalences reduce rational (in-)equalities to polynomial formulas:

p(x)/q(x) = 0 ≡ p(x) = 0 ∧ q(x) �= 0
p(x)/q(x) > 0 ≡ (p(x) > 0 ∧ q(x) > 0) ∨ (p(x) < 0 ∧ q(x) < 0) .

By using the fact that the field of fractions of Q[X1, . . . , Xn] is a field, all atomic
formulas can be reduced to one of the above forms.

5 Flow Approximation

In this section, we analyze which flows can be approximated effectively. In addi-
tion to giving an approximation result for bounded flows, we identify the limits
of numerical methods for approximating hybrid systems with the certainty that
is needed for verification. Further, we show that numerical methods can give suf-
ficient justification of verification in stochastic terms up to arbitrary probability.
Throughout the section we assume ϕ is a flow of a mode of a hybrid system.

Using the results presented so far, we can reduce Problem 1 to the following
problem for approx, for which Proposition 1 guarantees the existence of solutions.

Problem 2 (Uniform approximation). Given an arbitrarily effective continuous
function ϕ ∈ C(D,Rn) on a compact closure D ⊂ R × Rn of an open set, with
an effective representation of D, find an approximation of ϕ with multivariate
splines of uniform error <ε.

5.1 Bounded Flow Approximation

In order to turn the theoretical existence result of Proposition 1 into an algorithm
approx that solves Problem 2, we need an effective form of Weierstraß approxi-
mation. The following result shows that solutions of Problem 2 can be computed
effectively when derivatives ϕ̇ are continuous and have a known bound.

Proposition 5 (Effective Weierstraß approximation). If ϕ ∈ C1(D,Rn)
and b := maxx∈D ‖ϕ̇(x)‖ are given, then Problem 2 is computable.

Proof. Using component-wise approximation and norm properties, we can as-
sume the range of ϕ is in R1 rather than Rn . Let ε > 0, x ∈ D. Further, we can
assume D is connected (otherwise the problem can be treated separately on each
connected component). By premise, ϕ is arbitrarily effective, i.e., for each δc > 0
there is an effective function fδc such that for all y ∈ D: ‖ϕ(y) − fδc(y)‖ < δc.
Let xi be a point on a δg-grid with distance ‖x−xi‖ < δg. We assume that xi ∈ D
and D is convex on the grid cell around xi. Due to convexity, the mean-value
theorem applies and yields a ξ ∈ S[x, xi] such that

‖ϕ(x) − ϕ(xi)‖ = ‖ϕ̇(ξ)(x − xi)‖ = ‖ϕ̇(ξ)‖ · ‖(x − xi)‖ < bδg .
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As ϕ is arbitrarily effective at the grid point xi, this inequality implies

‖ϕ(x) − fδc(xi)‖ ≤‖ϕ(x) − ϕ(xi)‖ + ‖ϕ(xi) − fδc(xi)‖ < bδg + δc .

Thus, ϕ can be approximated by step functions up to precision bδg + δc, which
can be chosen <ε. Such step functions are defined as fδc(xi) on the ±δg/2 hyper-
cube around xi (or sufficiently close rational approximations thereof). As step
functions are piecewise polynomials there is no need to prove that step functions
can be approximated by polynomials (cf. Proposition 3).

5.2 Continuous Image Computation

In this section, we demonstrate a fundamental limitation of numerical approaches
to verification of hybrid systems. Despite the fact that Proposition 1 guarantees
the existence of a uniform polynomial approximation, effectively constructing
such an approximation using numerical computations is impossible without ad-
ditional symbolic techniques. More generally, we show that even a single step of
continuous image computation is not semidecidable using numerical evaluations.

As they require concrete values, numerical algorithms can only evaluate the
input function ϕ at individual points but do not have access to its symbolic
representation. Even evaluating derivatives of ϕ at points is not sufficient to
obtain decidability:

Proposition 6 (Undecidability of image computation). Problem 1 is not
semidecidable using numerical evaluation of derivatives ϕ(j)(x) for j ≥ 0 at
individual points, even for arbitrarily large tolerable errors ε > 0 and arbitrary
high degrees of derivatives. This remains true even for smooth functions where
all derivatives are effectively known, and when functions are restricted to one-
dimensional (effective) smooth polynomial functions with rational coefficients.

Proof. In Problem 1, choose n = m = 1, D = [0, 1], B = [ε, ∞) for the tolerable
error ε > 0. Assume there is an algorithm A, which solves Problem 1 for this
case. Choose a function ϕ with ϕ(D)∩B = ∅, say ϕ = 0. Running A with input ϕ
yields correct output “=∅”, since ϕ(x) = 0 < ε. Tracing the run identifies the set
of all points xi at which A evaluates at least one of the ϕ(j). Although the set of
all xi is unbounded, it is finite after termination, since A can only make a finite
number of computation steps in a bounded interval of time. After termination,
the maximum j where a ϕ(j)(xi) has been evaluated by A is finite as well.

x1 x2 x3

B

�

g

Fig. 4. Indistinguishable

Now let 0 < δ < mini�=j ‖xi − xj‖, and assume x2 is
not the right-most point, hence x2+δ ∈ D (otherwise
reorder). However, by Hermite interpolation, there
is an (effective) polynomial function g ∈ Ck(D,R)
with g(j)(xi) = ϕ(j)(xi) = 0 and g(x2 + δ) = 2ε > ε
but g(D)∩B �= ∅. Since ϕ and g are indistinguishable
by the ϕ(j)(xi) that A asked about ϕ, the hypothet-
ical algorithm A would yield the same output for ϕ
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and g, one of which is wrong. Fig. 4 depicts this situation with a more gen-
eral choice of ϕ and B that gives better graphics. Moreover, Turing machines
choose xi ∈ Q, from which g ∈ Q[X ] can be concluded.

The proof principles of Proposition 6 are highly general and apply for all
machine models that only allow a finite number of evaluations of input func-
tion ϕ (and derivatives) at individual points in bounded time. This includes the
generalization of “numerical” Turing machines for real values by Blum et al. [7].

As a simple corollary, the same undecidability results apply for Problem 2
using the reduction in Sect. 4. In particular, this shows that the mere presence
of a bound is not sufficient if the bound b is not known for Problem 2.

5.3 Probabilistic Model Checking

While Proposition 6 shows that image computation is not semidecidable even
in quite robust scenarios with large tolerable errors, increasing the number of
points xi where ϕ (or its derivatives) are evaluated increases the constraints
on the counterexample g, hence—intuitively speaking—increases the likelihood
of the reachability problem being answered correctly (when assuming a non-
degenerate probability distribution P ). If arbitrarily large derivatives are un-
likely by system design, model checking algorithms based on purely numerical
information can provide stochastic certainty of verification. In that case, the fol-
lowing result shows that such algorithms can perform image computation with
arbitrarily high probability by evaluating ϕ on a sufficiently dense grid.

Proposition 7 (Stochastic model checking). If P (‖ϕ̇‖∞ > b) → 0 when the
bound b → ∞, and if D is an open set, then any evaluation of ϕ on a finite set of
points G ⊆ D obtains sufficient information to decide Problem 1 correctly with
probability p → 1 as ‖d(·, G)‖∞ → 0.1

Proof. Let (ϕ, D, B) be a problem instance with tolerance ε > 0. Let G ⊆ D
be the set of points where ϕ is evaluated and ν := ‖d(·, G)‖∞. If ϕ(xi) ∈ Uε(B)
for some xi ∈ G, the output “ �=∅” is correct with tolerance ε. Otherwise, we
show that the probability of the output “=∅” being wrong converges to zero
for ν → 0. Suppose there is an x ∈ D with ϕ(x) ∈ B. Let xi ∈ G have smallest
distance to x. Then we can assume S[x, xi] ⊆ D (otherwise use a ν > 0 such
that Uν(x) ⊆ D, which exists since D is open). Thus, by mean-value theorem,
there is a ξ ∈ S[x, xi] such that

ε ≤ ‖ϕ(x) − ϕ(xi)‖ = ‖ϕ̇(ξ)(x − xi)‖ = ‖ϕ̇(ξ)‖ · ‖x − xi‖ . (9)

The first inequality holds since ϕ(x) ∈ B but ϕ(xi) �∈ Uε(B). Yet, ν ≥ ‖x − xi‖.
Thus, dividing (9) by ν > 0 leads to ε

ν ≤ ‖ϕ̇(ξ)‖ ≤ ‖ϕ̇‖∞. But this becomes
arbitrarily improbable when refining ν, because P (‖ϕ̇‖∞ ≥ ε

ν ) → 0 for ν → 0 by
premise, as ε is a constant independent of ν and ε

ν → ∞ as ν → 0.

1 This result also applies for a compact D by working (separately) on a finite open
subcover. ‖d(·, G)‖∞ = maxx∈D d(x, G) corresponds to the “density” of G in D.



The Image Computation Problem in Hybrid Systems Model Checking 483

6 Differential Flow Approximation

In this section, we investigate how the results of the previous sections can be
extended when the flow ϕ of a mode in a hybrid system is not given to the
model checker, but implicitly generated as a numerical solution of a differential
equation. For verification, we have to control several sources of errors: (a) initial
conditions between the points of the numerical mesh can lead to different be-
havior of the solutions, (b) observation times t off the mesh lead to interpolation
errors, and (c) numerical computations introduce errors. Proposition 6 shows
that we have to assume additional knowledge, e.g., a Lipschitz-constant. Note
that the undecidability proof of Proposition 6 shows that it is not sufficient to
assume Lipschitz-continuity without knowledge of the actual Lipschitz-constant.

Proposition 8. Let f ∈ C([a, b] × Rn,Rn)be �-Lipschitz-continuous in x, i.e.,
‖f(t, x1) − f(t, x2)‖ ≤ �‖x1 − x2‖ for all t, x1, x2. Then there is a computable
set of points sufficient for solving Problem 1 numerically, where ϕ is a solution
of the differential equation ẋ(t) = f(t, x).

Proof. Let ε > 0. For t, x0 let t2, x2 be the closest points on a mesh. Then the
solution flow ϕ(t; x0) after time t, with initial value ϕ(t0; x0) = x0, is arbitrarily
close to the mesh values ϕ(t2; x2), which can be approximated numerically:

‖ϕ(t; x0) − ϕ(t2; x2)‖ ≤ ‖ϕ(t; x0) − ϕ(t; x2)‖ + ‖ϕ(t; x2) − ϕ(t2; x2)‖
≤ e�|t−t0|‖x0 − x2‖ + ‖ϕ̇(ξ; x2)‖ · |t − t2|
= e�|t−t0|‖x0 − x2‖ + ‖f(ξ, ϕ(ξ; x2))‖ · |t − t2| (10)

by a consequence of Picard-Lindelöf [20, theorem 7.1.4] and mean-value theorem
with a ξ between t and t2. Further, (10) can be bounded by any ε

2 > 0 by
refining the mesh such that ‖x0 − x2‖ and |t − t2| are sufficiently small, since
the remaining factors are bounded on a compact domain in bounded time and f
is Lipschitz-continuous. Moreover, by [20, theorem 7.2.2.3] there are “Lipschitz-
continuous one-step methods of order p” (see [20]) that approximate the mesh
quantity ϕ(t2; x2) with a global discretization error that is bounded by ε

2 when
refining the mesh. The rate of convergence can be computed from the Lipschitz-
constants and p (see [20] for details). Hence, the overall error is bounded by ε.

The most crucial influence on the error bound analysis comes from the exponen-
tial term in the proof of Proposition 8. Yet, this bound is tight in general: ẋ = �x
is �-Lipschitz-continuous with unique global solution ϕ(t; x0) = x0e

�t for t0 = 0,
hence ϕ(t; x0) − ϕ(t; x2) = e�t(x0 − x2).

7 Experimental Results

Using the results presented in this paper, we have implemented a preliminary
approximation refinement model checker for a class of hybrid systems. For a rea-
sonable range of parameter choices (in particular for α, ω, θ), it always produces



484 A. Platzer and E.M. Clarke

(a) Relative CEX. (b) Absolute CEX.

0

p

m

0

p

m

(c) Tangential ATM.

Fig. 5. Counterexample flight and adaptive tangential construction

a counterexample to the safety property in Sect. 3 (with distances of ≈0.0016mi,
the first after 3 mesh refinements). Fig. 5a contains a counterexample flight in
relative coordinates with aircraft 1 fixed at the origin, 5b in absolute coordinates.
This counterexample shows that the verification results in [14,10] for roundabout
maneuvers starting from orthogonal flight paths do not extend to non-orthogonal
initial flight paths. To maintain safe operation for general free flight, we propose
the following modified roundabout maneuver with adaptive tangential rotation.

Instead of choosing a fixed rotation angle θ as in Sect. 3, we choose rotation
angles θi for the individual aircraft depending on the current relative position p =
(x, y). Let m be the center of any circle of radius α through the plane positions 0
and p (cf. construction in Fig. 5c). Those (gray) circles correspond to worst-case
evasive flight curves at maximum angular speed ω = v/α. Actual evasive actions
use smaller ω (dark curves). Let γ1 and γ2 be the angles of the plane positions 0
and p, respectively, to m according to the following equation system:

α2 =‖m − 0‖2 α2 =‖m − p‖2 γ1 =∠(m − 0) γ2 =∠(m − p) . (11)

We define the angle ∠(u) as the argument of the complex number u1 + u2ı. Then,
we choose rotation angles (θ1, θ2) as (γ1 − π/2, γ2 − π/2) or (γ1 + π/2, γ2 + π/2)
with all solutions of (11) for γj. This rotates the aircraft tangentially to the gray
circles such that the aircraft follow the dark curves in circle mode. Among the
resulting choices for θj , we choose minimal turning angles. Thus, the primary
change for the automaton in Fig. 2c is a position-dependent rotation rot[θ1, θ2]
due to our construction (which happens before the check on y ≥ 0).

8 Related Work

Several approaches [3,4,5,6] emphasize the importance of quantifier elimination
in first-order real arithmetic for hybrid system verification. Our results thus use
first-order real arithmetic for approximating more general dynamics.

Piazza et al. [6] propose Taylor series approximation of known flows. For
applications in systems biology, they do not handle approximation errors.

Lanotte and Tini [15] propose a syntactic Taylor approximation of hybrid
automata with known flows, modified by the maximum error. They use a com-
plicated computation of error bounds from given Lipschitz-constants. Taylor
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approximations, though, have a non-uniform and more complicated error distri-
bution, which makes them less useful for verification.

Tomlin et al. [9] derive results for the straight line ATM scenario using
Hamilton-Jacobi-Isaacs partial differential equations. Our techniques avoid com-
plicated PDEs and are thus more suitable for automatic model checking.

Massink and Francesco [10] investigate ATM using purely discrete linearized
or untimed models. They primarily focus on the straight line protocol but also
use coarse over-relaxations to investigate the roundabout maneuver. Massink
and Francesco do not investigate the resulting error bounds.

Damm et al. [14] investigate model checking of LTL properties for discrete
time robust hybrid systems using interval-constraint solving. They emphasize
the importance of robustness in safety-critical control applications and show
safety only for a discrete roundabout maneuver with orthogonal trajectories.

Asarin et al. [21] approximate non-linear differential equations by piecewise
linear differential equations using interpolation. We propose non-linear polyno-
mial and spline approximations of flows and investigate hybrid dynamics.

9 Conclusions and Future Work

We analyzed the image computation problem in hybrid systems model checking
with a focus on approximation techniques for continuous dynamics. We pre-
sented a model checking algorithm that successively refines flow approxima-
tions. It approximates complicated dynamics using simpler flows (approx), and
then computes images of sets of states under simple flows (check) taking into
account error bounds. Flow approximations are refined when counterexamples
are spurious.

Uniform polynomial approximations always exist for continuous functions on
compact domains. Despite that, we have shown that the image computation
problem for continuous flows is not semidecidable with numerical evaluations
even for very restricted dynamics. With a priori knowledge about the system
behavior, uniform approximation is effective. We have illustrated that such ad-
ditional knowledge can either be obtained from information on bounds of flows or
differential equations, or from stochastic information about likely system behav-
ior. Definitely, numerical computations are invaluable for verification speed-up.
Yet, for the mathematical rigor and certainty that is required in verification,
they always have to be accompanied by symbolic analysis.

Additionally, we gave results for the roundabout maneuver in air traffic man-
agement using our preliminary model checker implementation. For free flight,
we show that a classical maneuver is unsafe and propose a solution.

Future work includes improvements of our model checker. For the round-
about maneuver, we want to analyze situations arising from discrepancies in
relative position recording of the aircraft, and extend our collision avoidance pro-
tocol to full curve dynamics using compositional verification. Finally, we want
to investigate the impact of rational spline approximations for hybrid system
verification.
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Abstract. A new algorithm for hybrid state estimation, the K-Limited
Mode-Change (KLMC) algorithm, is presented. Given noisy measure-
ments, this algorithm estimates the continuous and discrete state histo-
ries for a class of hybrid systems that exhibit limited mode changes over
time. The KLMC algorithm is compared to an existing hybrid state esti-
mator, the Interacting Multiple Model (IMM), using a newly developed
performance metric based on the concept of probability of error. Monte
Carlo methods are used to obtain numerical estimates of the perfor-
mance metric for simple hybrid system models. Simulation results show
that KLMC outperforms IMM in terms of the estimate-error metric but
requires larger storage and computational resource consumption.

Keywords: hybrid systems, hybrid state estimation, Monte Carlo.

1 Introduction

Stochastic hybrid system models consist of discrete modes, each with continuous
states governed by a set of continuous dynamics. Various fields, including target
tracking, fault detection, and systems biology, involve systems characterized by
a set of modes that partition the continuous behavior of the system. Although
continuous models for each discrete mode are often well known, discrete mode
evolution is often dependent on the particular instance of the system. For ex-
ample, for commercial aircraft tracking, continuous dynamics for flight modes,
such as straight-and-level flight or constant-yaw-rate turns, are known to rela-
tively high accuracy [1,2]. However, without a flight plan and real-time air traffic
control updates, it is difficult to determine the flight mode of an aircraft [3].

Indeed, estimation and control of hybrid trajectories is highly dependent on
accurate tracking of the discrete mode over time. Unfortunately, for a model
with N modes and T time steps, there are NT possible discrete trajectories,
each with a different continuous state model. A variety of techniques have been
developed to combat the intractability of exact modeling of discrete trajecto-
ries. The Interacting Multiple Model (IMM) [4,5,6], combined with the ideas of
Identity-Mass-Flow [7] and Joint Probability Data Association [8,9], aggregates
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all discrete trajectories that pass through a given discrete mode as mass pro-
portional to the likelihood of being in that mode. Continuous state estimation
is then carried out using a bank of estimators, one for each discrete mode. This
approach reduces the number of discrete trajectories to N . Other approaches,
based on Multiple Hypothesis Testing [10] or extensions of IMM [11], maintain
a set of trajectories that are aggregated or pruned according to Bayesian tech-
niques. Previous work has also explored the comparison of different estimators
to understand the effectiveness of any particular methodology [12,13].

An overview of the vast number of stochastic hybrid models is found in [14].
In this paper, a subset of these systems which exhibit limited mode changes
over time is considered; this restriction allows for the possibility of tracking all
possible discrete trajectories without pruning or aggregation. The K-Limited
Mode-Change (KLMC) algorithm is a hybrid state estimator for such systems,
tracking only those discrete trajectories possible for a system with K mode
changes over a given time horizon. For each discrete trajectory, the continuous
state evolution model is known and an estimator such as a Kalman filter is
used to estimate the continuous state and a likelihood of this estimate, given
a noisy measurement. These likelihoods are then used to weight the likelihood
of the discrete trajectories. The process is repeated at each time step, building
an estimate of the most likely hybrid trajectory. Though KLMC requires more
data storage and longer run-times than IMM, the number of trajectories stored
is polynomial of order K in the number of discrete modes. The upshot is that
computing resources required by KLMC are feasible. In this paper, a metric
based on the concept of probability of error is developed to quantify the relative
performance of the two algorithms. Monte Carlo simulation is used to show the
superior performance of the KLMC algorithm in several scenarios.

The paper is organized as follows. In the next section, hybrid systems and the
problem of hybrid state estimation are introduced, and the KLMC algorithm is
presented. Section 3 discusses a metric to measure the performance of a hybrid
state estimation algorithm, as well as analytic results for simple systems. In
Section 4, realistic scenarios from air traffic and other systems are simulated
to show that the new algorithm outperforms existing algorithms such as IMM.
Finally, conclusions and future work directions are presented in Section 5.

2 K-Limited Mode-Change (KLMC) Algorithm

In this section, hybrid system models and the problem of hybrid state estimation
are first introduced. Next, an outline of the K-Limited Mode-Change algorithm is
given, with a proof that the algorithm requires only polynomial storage. Finally,
an example of a simple hybrid system is used to show the efficacy of the algorithm
in capturing all possible behaviors of a system.

2.1 Hybrid System Description

Hybrid systems consist of a set of discrete states, such that for each discrete
state, there exists a model description for the evolution of a set of continuous
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states. We restrict our analysis to systems with a finite set of N discrete states,
denoted xd. Without loss of generality, xd ∈ {0, 1, ..., N − 1}. Also, models are
restricted to discrete-time systems. Similar definitions and arguments can be
presented for continuous-time systems but are not covered in this paper. Finite-
state, discrete-time hybrid systems are defined more formally as follows.

Definition 1. Finite-state Discrete-time Hybrid System (FDHS). Consider a
discrete-time system consisting of both discrete xd(k) and continuous states
xc(k), where the time-variable k ∈ Z+. There are assumed to be a finite set
of N possible discrete states, or modes; that is, xd(k) ∈ {0, 1, ..., N − 1}, for all
times k. The continuous state is assumed to be finite-dimensional (xc(k) ∈ R

n

for n finite). Continuous state evolution is dependent on the discrete state of the
system; that is, there are N distinct continuous models that correspond to the N
discrete modes. Fj is the continuous model corresponding to mode j, and there-
fore, xc(k + 1) = Fj(xc(k)) for xd(k) = j. The discrete state evolves according
to a stochastic transition matrix H(k), where H(k)ij represents the probability
that xd(k + 1) = i given that xd(k) = j.

The history of states is referred to as the trajectory of the system. That is, the
discrete trajectory to time κ is denoted Xd(κ) = (xd(0), xd(1), ..., xd(κ)). Sim-
ilarly, the continuous trajectory is Xc(κ) = (xc(0), xc(1), ..., xc(κ)). The hybrid
trajectory is denoted X(κ) = (Xd(κ); Xc(κ)). Note that the models Fj may be
stochastic or deterministic, linear or nonlinear, and include fixed or unknown pa-
rameters, but it is assumed that the structures of the models are known a priori.
Inputs to the system can also be captured in the Fj models. For example, the
Fj can be linear systems with additive inputs and Gaussian noise. Also, though
not explicitly represented, the transition matrix H can depend on parameters
other than time, including the continuous or discrete state. The hybrid system
is useful in modeling a variety of scientific and natural phenomena, as described
in Section 1. The estimation problem for these systems is known as hybrid state
estimation and is introduced in the next subsection.

2.2 Hybrid State Estimation

The estimation problem is key to many applications. For hybrid system models,
the estimation problem is twofold: estimation of the discrete mode as well as of
the continuous states of the system [15,16,17,18]. The hybrid state estimation
problem, in discrete-time, consists of an FDHS and observations of this system.
The term measurement is used synonymously with observation.

Definition 2. Observations of an FDHS. Given an FDHS, an observation is
defined as a (possibly noisy) measurement of the continuous state. That is,
the observation of the system at time k, z(k), is a function of the continuous
state, z(k) = C(xc(k)). A set of observations to time κ is denoted Z(κ) =
(z(0), z(1), ..., z(κ)).

For any observation of an FDHS, the discrete state is not measured in any
direct sense. However, the discrete mode has an effect on the continuous state
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and therefore on the observation. The hybrid state estimation problem is one
of estimating the hybrid trajectory of an FDHS, X(κ), given the observation
history Z(κ). Variations include scenarios in which some observations may be
missing or in which predictions are to be made for times greater than κ.

The estimated hybrid trajectory is denoted X̂(κ); for any quantity q, the
corresponding estimated quantity is q̂. Also, when a specific time horizon is not
relevant, it is dropped from the notation: Xd and X refer to the discrete and
hybrid trajectory for an unspecified time horizon. The quality of this estimated
hybrid trajectory will be discussed further in Section 3.

2.3 Hybrid Systems with Limited Mode Changes

A common restriction of the discrete state of a hybrid system is that mode
changes are limited in frequency. Hybrid state estimation analysis often depends
on the idea of a dwell time τ , which represents the minimum time the system
must spend in a given mode before switching to another mode. This quantity
is useful in representing events that take a minimum required time, such as an
aircraft turn. Thus, it is reasonable to expect that for a limited time horizon,
the discrete modes are unlikely to change a large number of times. For a variety
of applications, including air traffic target tracking, discrete mode changes are
limited to a handful over the course of hundreds of observations [19]. For example,
regression models used for estimating arrival time split the continuous estimation
problem into discrete segments corresponding to mode changes [20,21]. Thus, we
focus our attention on a class of hybrid systems in which mode changes occur
infrequently, and thus discrete trajectories can be maintained exactly. Formally,
the restricted systems exhibit K or fewer mode changes over a time horizon of
T time steps, where K is small (K << T ).

2.4 K-Limited Mode-Change (KLMC) Hybrid State Estimation
Algorithm

The K-Limited Mode-Change (KLMC) algorithm is a new approach to the hy-
brid state estimation problem posed for systems with limited mode changes. At
each time step, the algorithm generates a hybrid trajectory estimate based on
the conditions from the previous time step and the measurement available. Con-
sider the process at time κ. Available to the estimator are m possible discrete
trajectories denoted X i

d(κ − 1), i ∈ {1, 2, ..., m} and a quantity μ(k − 1) such
that μi(k − 1) = P (X i

d is true). For each of these discrete trajectories there is
an estimated continuous state trajectory X i

c(κ − 1). Note that at time 1, the
inputs to the algorithm are just the initial conditions of the system. For each i,
the algorithm first determines all discrete states xi,j

d (κ) that are possible given
discrete trajectory X i

d(κ−1), based on the transition matrix H . Without loss of
generality, assume there are n possible xi,j

d (κ). These correspond to n discrete
trajectories up to time κ: X i,j

d (κ) = (X i
d(κ − 1), xi,j

d (κ)), j ∈ {1, ..., n}. For each
of these n trajectories, a continuous state estimator is used to estimate xi,j

c (κ)
given xi

c(κ − 1) and z(κ). This estimator must also provide an estimate of its
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relative accuracy, such as a covariance matrix or a likelihood function Li,j(k).
This likelihood function is then used to weight the relative probability of all mn
possible discrete trajectories up to time κ: μi,j(k) = cLi,j(k)Hi,j(k)μi(k − 1),
where c is a normalization constant. Trajectories that have probability below
a preset tolerance ε (e.g. ε = 10−6) are discarded. The result is a set of hy-
brid trajectories up to time κ, X i(κ), with associated probabilities of likelihood,
μ(k), and are the input to the estimator at the next time step. The hybrid state
at time κ of the hybrid trajectory with highest likelihood is the output of the
algorithm at time κ: x̂κ = xi∗

(κ) such that μi∗(κ) > μi(κ), i �= i∗.

Proof of Polynomial Storage and Computation Requirements. The
KLMC algorithm has to maintain a large set of possible discrete trajectories
and associated continuous state trajectories. For constant time horizon T , the
space required for any single discrete trajectory is constant, because at most T
integers are required to store the discrete trajectory and nT real numbers for the
continuous trajectory (since xc(k) ∈ R

n). Run-time is also directly proportional
to the number of possible discrete trajectories, because each trajectory must be
updated at each time step.

Claim. The growth of possible discrete trajectories for a hybrid system with N
discrete states and limited to a fixed number of mode changes K is polynomial
in N .

To prove this claim, we count the number of possible discrete trajectories that
have exactly j transitions, for j ∈ {0, 1, ..., K}. For j = 0, there are obviously N
possible trajectories in which the discrete mode is one of the N possible discrete
states during the entire time period. For j = 1, the problem is equivalent to
asking what the initial mode is (N possibilities), what the final mode is (N − 1
possibilities), and where the mode change occurs (T −1 possibilities), for a total
of (N2 − N)(T − 1) possible discrete trajectories. For general j, the problem is
that of choosing (1) the initial mode of the hybrid system, (2) the next j modes
that the system exhibits, and (3) the locations of the j mode changes. (1) has
N possible choices, (2) has (N − 1)j choices, and (3) has

(
T
j

)
choices. Thus, the

number of possible discrete trajectories with exactly j mode changes is

N(N − 1)jT !
j!(T − j)!

, (1)

which is O(N j+1). The number with at most K mode changes is then

K∑
j=0

N(N − 1)jT !
j!(T − j)!

, (2)

which is
∑K

j=0 O(N j+1). This is simply O(NK+1), which proves the claim.
It is noted that systems with minimum dwell times have far fewer possible

mode changes, and therefore far fewer discrete trajectories are obtained. Also,
the KLMC algorithm ignores trajectories with probability less than a preset
tolerance, which greatly reduces the storage requirements. However, in all cases,
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more discrete trajectories have to be maintained than for other hybrid state
estimators such as the Interacting Multiple Model (IMM). This implies longer
run times as well, since more trajectories have to be updated at each time step.
However, simulation results in Section 4 show that both algorithms can be used in
a real-time setting (in terms of run-time and computing requirements); because
KLMC outperforms IMM, it is more effective than IMM in certain conditions.

2.5 Stochastic Hybrid Linear System Example

A common instance of an FDHS is a Discrete-Time Stochastic Hybrid Linear
System (DTSHLS) defined as follows [19].

Definition 3 (Discrete-time Stochastic Hybrid Linear System
DTSHLS). Consider N linear systems with discrete-time, continuous-state dy-
namics:

xc(k + 1) = Ajxc(k) + Bjwj(k)
zj(k) = Cjxc(k) + Djvj(k), (3)

j ∈ {0, ..., N − 1}, where xc ∈ R
n and z ∈ R

p are the continuous state and
output, respectively. For mode j, the terms wj ∈ R

m and vj ∈ R
r are the uncor-

related, white Gaussian process noise and measurement noise with zero means
and covariances Qj and Rj, respectively. In each mode, evolution of the state and
observation of the state are defined by system matrices Aj ∈ R

n×n, Bj ∈ R
n×m,

Cj ∈ R
p×n, and Dj ∈ R

p×r respectively. The discrete mode of the hybrid system,
denoted xd(k), xd(k) ∈ {0, ..., N − 1}, determines which linear system model is
used to update the state and output at time k. Evolution of the discrete state is
described by the mode transition matrix, denoted H. Entries Hij represent the
probability that the system will transition from mode j to i.

For stochastic linear systems and measurements with Gaussian noise, Kalman
filters are optimal for minimum mean square error [4,22]. Given a linear system
model and a continuous state trajectory to time κ − 1 and a noisy measurement
at time κ, a Kalman filter can be used to optimally estimate the continuous state
at time κ. The Kalman filter also provides a likelihood L(κ) of the estimate, used
to weight the probability of possible discrete trajectories. Thus, for a DTSHLS,
for discrete mode j, the associated continuous model Fj has an appropriate
estimator for generating state and likelihood estimates, as required by KLMC.

Consider a numerical example for a stochastic hybrid system with two modes
(0 and 1), and continuous states that are scalars. The mode transition matrix is
H = [.9 .1; .1 .9], with the additional stipulation that each mode has a minimum
dwell time of 10 time units, which is equivalent to forcing H = [1 0; 0 1] during
the minimum dwell time. For a time horizon of 50, this implies at most 5 mode
changes. In mode i, the system model Fi at time k is

xc(k + 1) = Aixc(k) + w(k)
z(k) = xc(k) + v(k), (4)

where A0 = −1, A1 = 1, and w(k) and v(k) are zero-mean, unit-variance Gaus-
sians.
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Fig. 1. Continuous state trajectory for simulated hybrid system with two discrete
modes: xc(k + 1) = xc(k) and xc(k + 1) = −xc(k)

For initial conditions xd(0) = 1 and xc(0) = 10, simulations are used to
generate several possible hybrid trajectories. The continuous state trajectory for
one simulation is plotted in Figure 1. Visually, the discrete state can be seen
easily: when the continuous state alternates between positive and negative, the
system is in mode 0 (xc(k+1) = −xc(k)+w(k)), and when the continuous state is
only affected by additive noise, the system is in mode 1 (xc(k+1) = xc(k)+w(k)).
Mode changes occur at times 5, 28, and 40.

The KLMC algorithm is used to determine hybrid state estimates using only
noisy measurements of the continuous trajectory. In Figure 2(a), the actual,
measured, and estimated continuous trajectory are shown, while Figure 2(b) dis-
plays the actual and estimated discrete trajectory. While the estimated discrete
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Fig. 2. Results from application of KLMC algorithm to trajectory from Figure 1. In
(a), actual (solid line), measured (dashed line), and estimated (dotted line) continuous
state trajectories are shown. Because the actual and estimated trajectories are almost
identical, they are indistinguishable on the plots. In (b), actual and estimated discrete
trajectories are shown (trajectories are coincident).
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trajectory is exactly the same as the actual, there are necessarily errors in the
continuous estimates (due to measurement noise). Such an estimate may be use-
ful if discrete mode estimation is the essential problem, while in other situations
it may be more important to estimate continuous states even if discrete mode
estimation is inaccurate. These ideas are explored further in the next section.

3 Performance Metric for Estimate-Error

In this section, the hybrid state estimate quality is explored further and a quan-
titative metric is presented. For linear systems, the covariance of the continuous
state estimation, or simply the error bar, is often used to compare different es-
timators. The concept of probability of error is used extensively in fields such as
communications to describe the efficacy of various information coding schemes.
In this section, this concept is adapted to a metric for hybrid state estimators.
A numerical scheme for comparing estimators is presented.

3.1 Probability of Error

Probability of error is defined for a decision-making process under a set of sys-
tem conditions [23]. In communications, for example, a quantity of interest may
be the probability of an error if a bit is sent using a specific coding scheme
and power level. A related quantity is the probability of error given a sto-
chastic description of the transmitted information. As an example, consider the
scheme shown in Figure 3, where a 0 corresponds to -1V and a 1 corresponds
to +1V, and the received signal has additive white Gaussian noise with vari-
ance σ2. The estimator chooses 0 when the received voltage is negative and 1
when positive. In terms of the quantities defined above, the probability of er-
ror given a 0 is sent is the probability of receiving a positive voltage when 0 is
sent, which is 1

2erfc( 1
σ
√

2
), where erfc is the complementary error function de-

fined as erfc(x) = 2√
π

∫∞
x

exp −t2dt. The associated probability of error for the
scheme as a whole is Pe = P (0 sent) ∗ P (positive received|0 sent) + P (1 sent) ∗
P (negative received|1 sent). If 0 is sent with probability α, then this reduces
to α

2 erfc( 1
σ
√

2
) + 1−α

2 erfc( 1
σ
√

2
), or 1

2erfc( 1
σ
√

2
). For any transmission that satis-

fies this stochastic description of the channel noise and the data, this quantity
describes the probability of making an error for a random bit.

Fig. 3. Transmission scheme with encoder, additive white Gaussian noise channel, and
decoder
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An associated quantity is the expected cost of an error. While probability
of error is the expectation of making an error, expected cost of an error is the
expectation of making an error weighted by the cost of this error. For the above
example, consider a scenario where estimating 1 when 0 is sent costs e0 units,
but estimating 0 when 1 is sent costs e1 units. Then, the expected cost of error
is e0α+e1(1−α)

2 erfc( 1
σ
√

2
).

In relation to hybrid systems, these concepts are applied to the discrete mode
estimation part of hybrid state estimation. That is, the probability of error at
time k is the probability that the wrong discrete mode is chosen (x̂d(k) �= xd(k)).
More specifically, there is a probability of estimating x̂d(k) = j when the actual
mode is xd(k) = i. It is assumed there is an associated cost function C such that
C(i, j) represents the cost of estimating mode j when the actual mode is i. Then
the expected cost of an error in discrete mode estimation at a given time is∑

i,j

C(i, j) ∗ P (x̂d(k) = j|xd(k) = i)P (xd(k) = i), (5)

where it is assumed that the actual discrete mode probability P (xd(k)) is a
known parameter of the system. Thus, there is a quantity to describe the cost
of incorrectly estimating the discrete mode for a given description of the hybrid
system. Combining this quantity with the cost of error in the continuous estimate
gives an error metric, which is introduced in the next subsection.

3.2 Development of Performance Metric

A method for assigning cost of discrete mode errors is given above. Continuous
state error can be quantified according to traditional residual norms. For a given
scenario and measurements, the error of the hybrid estimate is then defined as

Γ (Xd, Xc, Z) =
T∑

i=0

λiC(xd(i), x̂d(i)) + α

T∑
i=0

νi‖xc(i) − x̂c(i)‖2, (6)

where C(m, n) denotes the cost of error associated with estimating mode n when
the real mode is m, and λi, νi, and α are weights that depend on the quantity
of interest. For example, if only the estimate at time κ is of interest, λi = νi = 0
for i �= κ. If the estimation problem is concerned more with the discrete mode
(e.g. - fault tolerance), α is small, while if the estimation problem is concerned
with the continuous state estimates (e.g. - target tracking), α is large. For many
systems, both discrete mode transitions and the continuous state are relevant to
the problem and an intermediate α is chosen.

The estimate error function Γ (Xd, Xc, Z) is a function of the specific discrete
trajectory, continuous trajectory, and measurements, respectively. The larger
goal of this metric is to quantify the expected error of a hybrid estimate for a set
of scenarios rather than a specific instance of the problem. First, consider the
expected estimate error for all possible measurements Z for a given hybrid trajec-
tory (Xd, Xc). The set of possible measurements is assumed to have probability
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distribution function f(Z|Xd, Xc) as described by the observation functions Cj .
Then the expected error estimate is denoted Γ (Xd, Xc) and is defined as

Γ (Xd, Xc) =
∫

f(Z|Xd, Xc)Γ (Xd, Xc, Z)dZ. (7)

The quantity in (7) represents the expected estimated error for a given tra-
jectory. By integrating over all possible hybrid trajectories, one can obtain the
overall expected estimated error for a hybrid state estimator for a given hybrid
system:

Γ =
∫

f(Xd, Xc)Γ (Xd, Xc)dXddXc. (8)

Note that Γ without arguments is the expectation of Γ (Xd, Xc, Z) over the
three arguments. Analytic results for the evaluation of Γ are limited due to the
integration involved. In the next subsection, a numerical approach to evaluating
Γ is proposed, and results of simulation are presented in Section 4.

3.3 Numerical Methods for Comparing Estimators

While Γ (Xd, Xc, Z) can be determined for a specific instance of a hybrid system,
it is difficult to determine the expected error metric Γ for more general scenarios.
The problem can be posed as a multidimensional integration problem, but is
usually not solvable analytically. Rather, numerical methods such as Monte Carlo
simulation can be used as an approximation. By calculating Γ (Xd, Xc, Z) for
specific instances drawn from the full set of instances according to the stochastic
description of Xd, Xc, and Z, one can generate an estimate of Γ . This numerical
estimate of the error metric by Monte Carlo methods can be made arbitrarily
accurate by taking a large enough sampling.

4 Comparison of IMM and KLMC Using Monte Carlo
Simulation

In this section, two hybrid state estimators, the KLMC algorithm and the IMM
algorithm, are compared by the metric developed in Section 3 and by comput-
ing resources used. Performance is estimated via Monte Carlo simulation; 1000
simulations are run for each parameter set. For each run, various random quan-
tities are sampled: the initial distribution of the hybrid state, the discrete state
trajectory using the transition matrix H , and the additive measurement noise.
Two scenarios are presented in this section: a simple system with two modes and
scalar continuous state, and a more realistic target tracking problem.

4.1 Simple Hybrid System Example

Consider the hybrid system from Section 2. The two modes are stochastic linear
systems as expressed in (4), with A0 = −1, A1 = 1, and w(k) and v(k) zero-
mean, unit-variance Gaussians. For this system, the metric weights, α, λi, and
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μi, i ∈ {0, 1, ..., T}, are set to unity and the error cost matrix (C) is zero on
the diagonal and unity for all other entries. The time horizon T is 50, and the
minimum dwell time τ for both modes is 10. Two parameter sets are considered.
In the first set, the initial discrete mode has uniform distribution and the initial
continuous state is 10. In the second set, the only change is that the initial
continuous state is 0.1.
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Fig. 4. Sample measurement trajectories for stochastic hybrid linear system with two
modes and initial state: (a) (xd(0), xc(0)) = (1, 10) and (b) (xd(0), xc(0)) = (1, 0.1)

Table 1. Table summarizing performance of and computing resources used by hybrid
state estimators KLMC and IMM for the scenario illustrated in Fig. 4(a)

Algorithm KLMC IMM
Average Performance Γ 32.1 33.0

Average Run-Time/Time Step (ms) 97.4 24.1

Average Maximum Storage (kB) 409.8 20.9

For the first parameter set, one set of measurements is shown in Figure 4(a).
These are obtained from the continuous state trajectory with noise added. Be-
cause the initial continuous state is large compared to the noise, it is easier to
distinguish modes. Table 1 shows the performance of the IMM and KLMC algo-
rithms, averaged over 1000 runs. The two algorithms perform almost identically,
though the KLMC algorithm is slightly better. The table also shows the aver-
age run-time and average maximum number of discrete trajectories of the two
algorithms. IMM outperforms KLMC, because it stores far fewer trajectories.

In Figure 4(b), measurements for a sample trajectory are shown for the second
parameter set. Because the noise is relatively large compared to the continuous
state, modes are hard to distinguish. Results for this parameter set are shown in
Table 2. IMM continues to outperform KLMC in run-time and storage require-
ments, but KLMC is now better according to the estimate-error metric. This
result is because KLMC maintains all possible discrete trajectories for a system
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Table 2. Table summarizing performance of and computing resources used by hybrid
state estimators KLMC and IMM for the scenario illustrated in Fig. 4(b)

Algorithm KLMC IMM
Average Performance Γ 36.1 41.9

Average Run-Time/Time Step (ms) 115.7 26.3

Average Maximum Storage (kB) 490.4 21.1

with limited mode changes, while IMM maintains only the total probability of
either mode at any given time. The overall performance of both algorithms is
significantly decreased from the first parameter set, showing that this estimation
problem is more difficult for both estimators.

Table 3. Table summarizing performance of and computing resources used by hybrid
state estimators KLMC and IMM for aircraft target-tracking scenario

Algorithm KLMC IMM
Average Performance Γ 51.3 63.2

Average Run-Time/Time Step (ms) 280.4 53.1

Average Maximum Storage (kB) 2143 120.2

4.2 Target Tracking Example

The second example is taken from an air traffic application: the tracking of an
aircraft as it alternates between straight flight at constant velocity and turning
at a constant yaw rate of 3 degrees per second. Both modes involve six contin-
uous state variables (position, velocity, and acceleration in each of the x- and
y-directions), and measurements are taken of the position and velocity compo-
nents of the continuous state. For further details on the hybrid system model,
see [24]. The initial discrete mode is 0 (straight flight) with probability 0.5. Also,
the minimum dwell time for straight flight mode is 20 time units, but only 10
time units for turns (turns take less time to complete in general than straight
segments). Again, 1000 runs are completed for both estimators to obtain numer-
ical estimates of their estimation performance and use of computing resources.
The results are compiled in Table 3. It is noted that the KLMC algorithm does
significantly better than the IMM algorithm in estimate performance, but at a
significant cost in run-time and storage. This performance gain corresponds to
an average decrease in RMS position error on the order of 1m or velocity error
of several m/s. Also, both run-time and storage are at levels that are sufficient
for real-time use with a tracking system running at 1 Hz on a standard desktop
computer, for example. Thus, it can be argued that the KLMC outperforms the
IMM algorithm without overburdening the computing resources available for the
problem. Testing on more complicated systems and scenarios remains necessary
to adequately compare the two algorithms.
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5 Conclusions and Future Work

In this paper, the K-Limited Mode-Change Algorithm, a hybrid state estimator
for systems with limited mode changes, is introduced. The algorithm maintains
a set of possible discrete trajectories that is polynomially bounded with order K.
A metric based on probability of error is developed for hybrid state estimators.
It is used to show that KLMC outperforms other existing algorithms such as
IMM for two case study problems, especially in more difficult scenarios. This
performance gain requires longer run-times and storage space, but not more
than available on a standard desktop.

Future work directions are twofold: developing estimators for specific prob-
lems and improving the analysis of the hybrid state estimation metric. Critical
issues include the appropriate handling of stochastic constraints and systems
with unknown parameters. The ability to manage more complex hybrid mod-
els (e.g. nonlinear hybrid systems) is also needed. The refinement of the metric
requires further analysis for systems with complicated noise characteristics. Sub-
classes of hybrid systems that have exploitable structure must be explored to
generate more analytic results.
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Abstract. In this paper, a cooperative metaheuristic based on ant
colony optimization and genetic algorithm is developed for constrained
predictive control of power systems. The classical Unit Commitment so-
lution is an open loop control for power systems which cannot be applied
to real system, since it is affected by important uncertainties, a typical
source being the consumer load. Predictive control offers an efficient way
to use optimization results in a closed loop framework, implying the on-
line solution of successive constrained mixed optimization problems. The
algorithm proposed here is able to explicitly deal with constraints, and
to quickly find high quality suboptimal solutions for computationally
involving predictive control schemes. Simulation results show the effi-
ciency of the developed method, even for Unit Commitment problems
with underestimated consumer demand.

1 Introduction

The control of hybrid systems necessitates pertinent answers to several chal-
lenging problems, like the switching between different operating regimes, the
interaction of continuous-time and discrete event subsystems and the overall
satisfaction of operational constraints [1]. An inherent question is whether the
classical automatic control methods (for example frequency domain shaping or
optimal control) can be adapted in a systematic manner to the design of control
laws for hybrid systems. It turns out that the answer is generally negative (due
to the structural disparity) with a notable exception, that of predictive control
law [2]. Indeed this technique, which is based on finite time optimal control
problems over a receding horizon, has the important advantage of being a time-
domain design procedure and thus being effective in the hybrid systems frame-
work, too.

Optimizing the evolution of the hybrid system over a receding horizon gener-
ally leads to mixed integer quadratic/linear programs (MIQP/MILP) which are
computationally involving (NP-complete problems) due to the presence of logi-
cal optimisation arguments. The exact solvers have a worst case combinatorial
complexity as it is the case for example with the classical branch and bound
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routines, even if they are tailored to the problem specificity [3]. The real-time
implementation constraints might force the optimization routines to act on a rel-
ative short time interval and to offer at least a feasible suboptimal solution. This
can be obtained in a slightly different manner by renouncing to the exhaustive
search and the use of evolutionary methods.

Figure 1 presents a classification for the MPC implementations. In a first
stage, a cautious control design would pass by the tuning of the prediction hori-
zon such that the attainability demands to be met and the optimization problem
to be simplified. However, the real-time implementation would be resumed by a
MIQP/MILP or MINP if nonlinearities are considered.

Fig. 1. A classification of predictive control possible implementations
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The same figure presents a demarcation between the implementations based
on on-line optimisation and those where an explicit analytical dependence of the
optimum on the current state is available [4]. In the second case, there is no need
for on-line optimisation, the computational load being reduced to the evaluation
of the analytical function which gives the exact solution. Unfortunately explicit
solution can be practically constructed only for control problems with few states
and small prediction horizon due to the curse of dimensionality.

Returning to the classification, on the on-line implementation part a separa-
tion can be made between the exact methods and the routines which allow from
the design stage a certain degree of suboptimality as it is the case for example
with genetic algorithms [5] or the Lagrangian relaxation where the quality of the
solution is improved, but it can not go beyond the duality gap.

In the present paper the attention will be given to cooperative metaheuristics
based on ant colony optimization and genetic algorithm situated on the class of
suboptimal methods. From the standpoint of computational complexity, finding
out if an MIQP model has a feasible solution is essentially as hard as actually
finding the optimum. Branch and Bound procedures, for example, have to explore
the entire search tree to prove this. The developed algorithm proves to have
the ability of proposing (high quality) feasible solutions due to the contraints
handling mechanism.

For the sake of illustration, a popular problem in power systems will be used,
the Unit Commitment. Indeed, power systems can be casted in the class of
hybrid systems since they have to be controlled both by integer variables (on/off
variables) and real variables (produced powers when switched on). Benefiting
from this practical aspects, the details of the algorithm will be described in a
practical manner.

The paper is organized as follows. The predictive control of power systems is
presented in section 2. This control law is based on a scheduling algorithm. This
scheduling algorithm has to be highly tractable even for such large scale mixed in-
teger optimization problems. Furthermore it has to take into account all technical
constraints of the system. That is why a cooperative stochastic method using ant
colony optimization and genetic algorithm has been developed and is depicted in
section 3. Numerical results are given in section 4, showing the efficiency of the
proposed control method even in the case of underestimated consumer demand.
Finally, conclusions and forthcoming works are drawn in section 5.

2 Predictive Control of Power Systems

2.1 Open Loop Control and Unit Commitment

Unit Commitment is a classical large scale mixed integer problem in power sys-
tems, which aims to compute the optimal scheduling of several production units
while satisfying consumer demand and technical constraints:

min
{uk

n,Qk
n}

m+N−1∑
n=m

(
K∑

k=1

(
ck
prod(Q

k
n, uk

n) + ck
on/off(uk

n, uk
n−1)

))
. (1)
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N is the length of time horizon, K the number of production unit, uk
n (resp.

Qk
n) the on/off status (resp. produced power) of production unit k during time

interval n. Production costs and start up and shut down costs are defined by:{
ck
prod(Q

k
n, uk

n) = αk
1Qk

n + αk
0uk

n

ck
on/off(uk

n, uk
n−1) = ck

onuk
n(1 − uk

n−1) + ck
offuk

n−1(1 − uk
n) . (2)

Integer variables are on/off status of production units, and real variables are
produced powers. The usual restriction comes from:

– capacity constraints

Qk
minu

k
n ≤ Qk

n ≤ Qk
maxu

k
n, ∀n ∈ {m, . . . , m + N − 1} , ∀k ∈ {1, . . . , K} , (3)

– consumer demand satisfaction

K∑
k=1

Qk
n ≥ Q̂dem

n , ∀n ∈ {m, . . . , m + N − 1} , (4)

– time up and time down constraints⎧⎨
⎩

(
uk

n−1 = 0, uk
n = 1

)
⇒

(
uk

n+1 = 1, uk
n+2 = 1, · · · , uk

n+T k
up−1 = 1

)
(
uk

n−1 = 1, uk
n = 0

)
⇒

(
uk

n+1 = 0, uk
n+2 = 0, · · · , uk

n+T k
down−1 = 0

) , (5)

– ramp constraints∣∣Qk
n − Qk

n−1

∣∣ ≤ ΔQk, ∀n ∈ {m, . . . , m + N − 1} , ∀k ∈ {1, . . . , K} . (6)

Discrete dynamics on the system are expressed through logical equations (5) and
continuous dynamics are stated as power increment limitations (6).

2.2 Closed Loop Control

For optimisation, consumer demand is supposed to be perfectly known over the
whole time horizon: the computation of the optimal scheduling is a reference
trajectory for integer and real control inputs. However, prediction errors of the
consumer load may lead to a deficient behavior. Thus, a closed loop control is
required: the problem refers to the control of a hybrid system. A convenient way
to extend optimisation results in a closed loop framework is the receding horizon.
The closed loop structure is presented in figure 2.

The idea is to compute the optimal scheduling on time interval [m, m+N −1],
considering predicted consumer load Q̂dem

n . The first values of integer scheduling
are applied to the system. Simultaneously, real variables are slightly updated so
as to fulfill, if possible, the real demand at time m, Qdem

m . Production unit local
regulations are assumed to be perfect: if production unit k has produced Qk

m−1
during time interval m − 1, it can produce, if still switched on, whatever power
in the range [max(Qk

m−1 − ΔQk, Qk
min), min(Qk

m−1 + ΔQk, Qk
max] during time

interval m. The scheduling algorithm will now be detailed.
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Fig. 2. Closed loop control synopsis

3 Optimization Procedure

3.1 Optimization Methods Analysis and Proposition of a Well
Suited Algorithm

Numerous methods have been applied to solve Unit Commitment and related
problems such as facility location. They are listed for instance in [6] and are here
briefly depicted. Exact solution methods (exhaustive enumeration, Branch and
Bound [7], dynamic programming [8]) have been tested. These methods suffer
from combinatorial complexity: an efficient approximated method is requested.
Deterministic approximated methods can be used (priority lists in [9]). But, due
to numerous constraints, they are often strongly suboptimal. Constraints are
explicitly considered using Lagrangian relaxation [10]. Coupling constraints are
relaxed, and the problem is divided into several optimisation problems (one per
production unit). However, no guarantee can be given on the actual optimality.
Further, an iterative procedure has to be performed: solution of the optimisa-
tion problems and updating of Lagrange multipliers. The update can be made
with genetic algorithms [11] or subgradient methods [12]. For large scale cases,
metaheuristics are interesting methods: simulated annealing in [13], tabu search
in [14] and genetic algorithms in [15]. No guarantee can be given on the actual
optimality of the solution, but an often suitable solution with low computation
times can be found. One of the problems of these methods is the handling of
constraints. The algorithm ”moves” randomly in the search space, and so, there is
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no guarantee that the final solution is in the feasible set. This is particularly the
case for Unit Commitment, as the feasible set is much smaller than the search
space.

Considering these arguments, ant colony appears to be an efficient way to
solve this kind of problems, as it is able to find near optimal solutions with an
explicit handling of all constraints. Indeed, ant colony is a constructive stochastic
algorithm and solutions are explicitly built as feasible ones (see section 3.2). From
this initial population of ”medium quality solutions” quickly computed by ant
colony, a feasibility criterion is defined (see section 3.4). Genetic algorithm is then
used to intensively explore the search space (see section 3.5), with an implicit
management of problem constraints. Indeed, due to a positive feedback in the ant
colony algorithm formulation, it may converge to a local minimum. An intensive
exploration of the search space is thus required to circumvent this issue, and
genetic algorithm, which is an efficient stochastic algorithm for unconstrained
problems is used. Note that the algorithm supposes that real variables are quickly
computed: the developed cooperative algorithm is also hybridized with an exact
solution algorithm for real variables (see section 3.3). Finally, this method allows
simultaneously using the interesting properties of ant colony (explicitly handling
of constraints) and of genetic algorithm (deep exploration of the search space,
and so high quality of the solution). The general synopsis of the method is
depicted on figure 3.

Fig. 3. Cooperative algorithm synopsis

3.2 Ant Colony Optimization

Real world ants. Ant colony optimization was firstly introduced by Marco
Dorigo [16] and [17]. It is based on the way ants are looking for food.

Suppose (see figure 4a), that ants have managed to find food. Each particu-
lar ant does not know where to go. It only chooses its path depending on the
pheromone trail which has been laid on the ground by previous ants. If the path
of pheromone is broken because of an obstacle, see figure 4b, first ants randomly
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Fig. 4. Ants looking for food

choose their path. But, the ants which have chosen the shortest path will arrive
first: the trail of pheromone in the shortest path is increasing faster than in the
longest path. The positive feedback structure makes all ants finally choose the
shortest path at the end of the experience (see figure 4c).

Ant colony optimization for the Unit Commitment problem. The Unit
Commitment problem can be formulated as a graph exploration problem as
shown in figure 5, as in previous work [18].

Fig. 5. Graph structure for Unit Commitment

The nodes of the graph represent all the possible states of production system,
for all time intervals: (u1

n, . . . , uK
n ). The aim is to go from one of the possible

states at time m, to one of the possible states at time m+N −1, while satisfying
all the constraints and minimizing global costs defined in equation (1). For each
edge (u1

n, . . . , uK
n ) → (u1

n+1, . . . , u
K
n+1) of the graph, start-up and shut-down

costs are added. Production costs are also associated to nodes.
During iteration t of the algorithm, F ants walk on this graph. If an ant f

has reached state i = (u1
n, . . . , uK

n ), the probability that it chooses the next state
j = (u1

n+1, . . . , u
K
n+1) is defined by the probabilistic law:
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p
(f)
i (j) =

ηα
ijτij(t)β∑

m∈Jf (i)
ηα

imτim(t)β
. (7)

– τij(t) is the pheromone trail on edge i=(u1
n, . . . , uK

n ) → j = (u1
n+1, . . . , u

K
n+1)

during iteration t. Its value depends on the results of previous ants.
– ηij is the attractiveness. It refers to the ” local choice ”. When next node has

to be chosen, the best local candidate is the node for which the gap between
the maximum produced power and the predicted demand is the smallest. It
is not sure that this is the best ”global” choice, as the security margin is
quite low. For more details, see previous work [18].

– α and β are weighting factors.
– Jf (i) is the feasible set. This feasible set contains a priori all 2K states. But,

those states which do not satisfy time up and time down constraints, and
those states which do not satisfy consumers’ demands, are to be removed.
Note that, even if produced powers are not known yet, it is possible to check
the possibility of consumer’s demand satisfaction with the equation:

K∑
k=1

((
Qk

min(1 − uk
n)+(

min(Qk
max, Q

k
n + ΔQk)

)
uk

n

)
uk

n+1

)
≥ Q̂dem

n+1. (8)

Jf (i) sets are recursively constructed for each ant, and lead to the guarantee of
the feasibility of solutions. After the ant has completed its path, it is possible to
evaluate the solution by solving the real optimisation problem defined in equation
(1), with fixed binary variables. Due to the positive feedback of the algorithm
the past mistakes have to be forgotten to avoid premature convergence. This is
done by the pheromone evaporation. The pheromone trail is updated:

τij(t + 1) = (1 − ρ)τij(t) + Δτij(t) (9)

ρ is the evaporation coefficient. This coefficient is viewed as an analogy with
natural evaporation. Δτij is the updating coefficient, depending on the results
of ants in iteration t. An elitism algorithm is used: only the best ant is allowed
to lay some pheromone on each edge it has used. The ant evaluation supposes
the computation of real variables, which will now be depicted.

3.3 Computation of Real Variables

Binary variables are computed by ant colony. For each feasible sequence uk
n the

corresponding real variables Qk
n are computed as the solution of:

arg min
{Qk

n}
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n

)
+ ck

on/off

(
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n}

(
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n=m

K∑
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(
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n
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= arg min
{Qk

n}

(
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K∑
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αk
1Qk

nuk
n + αk

0uk
n

)
= arg min

{Qk
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(
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K∑
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αk
1Qk

nuk
n

)
(10)
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As there are no temporally coupling constraints anymore (they have been guar-
anteed by the constructive ant colony algorithm), the problem can be divided
into N successive optimisation problems:

min
{Qk

n,k=1,...,K}

(
K∑

k=1
αk

1Qk
nuk

n

)

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K∑
k=1

Qk
n ≥ Q̂dem

n

Qk
minu

k
n ≤ Qk

n ≤
(

Qk
min(1 − uk

n−1)+(
min(Qk

max, Q
k
n−1 + ΔQk)

)
uk

n−1

)
︸ ︷︷ ︸

=Qk
max(n)

uk
n

(11)

Without loss of generality, consider that α1
1 ≤ α2

1 ≤ . . . ≤ αK
1 . Then, the

optimal solution of problem (10) is to produce as much as possible with low-
cost units, while satisfying capacity constraints. Then, the following recursive
algorithm is performed:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(
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(12)

3.4 Feasibility Criterion

To compute a feasibility criterion one has just to know a feasible solution. If the
cost of this feasible known solution is cf , the feasibility criterion can be:

min�
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n, Qk
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⎠ (13)

where one can distinguish:

– ε is a small positive real,
– h

({
uk

n, Qk
n

})
is a penalty function for non feasible solutions

{
uk

n, Qk
n

}
,

– B
({

uk
n, Qk

n

})
is a boolean function with value 1 for non feasible solutions

and 0 for feasible ones.
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With this criterion, all infeasible solutions will have a higher cost than the cost
of the feasible known solution. For feasible solutions, the penalty is null, and the
initial cost function is just considered. Finally, any unconstrained optimisation
algorithm can be used to solve the problem, the constraints being implicitly
taken into account. In this study, the known feasible solution is the best solution
found by ant colony optimization.

3.5 Knowledge Based Genetic Algorithm

Classical genetic algorithm. A knowledge based genetic algorithm, similar
to the one developed in current work [19] is used. The general flow chart of a
genetic algorithm is called up in figure 6.

Fig. 6. Flow chart of a genetic algorithm

The main idea is to make a population of potential solutions evolves to create
new solutions by using stochastic (or ”genetic”) operators. In this cooperative
method, the initial population is made of all feasible solutions computed by ant
colony optimization. Classical operators are crossing-over operator and mutation
operator (see figure 7). For the crossing over operation, two potential solutions
are randomly chosen in the population. They randomly merge their variables
(or ”genes”) to create two new solutions. The mutation operation is the random
selection of a potential solution and of one of its genes. This gene is changed to
another. The aim of this operator is to keep the population genetic diversity.

The selection operator is an operator which aims to choose a new popula-
tion from parents and children. This operation is made using the roulette wheel
selection. After having computed the fitness value of each individual in the pop-
ulation, the probability of selection is proportional to the quality of individuals.
Knowledge based operator. Classical genetic operators may not be well
suited to Unit Commitment problem. Consider for instance the situation of fig-
ure 8. Because of time down and time up constraints, a random mutation will
very often lead to an infeasible solution. Switching times are particular points of
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Fig. 7. Classical crossing-over (a) and mutation (b) operators

Fig. 8. Selective mutation operator

the solution where a mutation has a higher probability to create a new feasible
solution. Thus, a selective mutation operator has been designed. Switching times
are detected, and mutations are allowed only for these genes. No guarantee on
the feasibility is achieved, but the ”probability of feasibility” is higher.

4 Simulation Results

4.1 Real Time Updating of Produced Powers

As already explained, the ”optimal” scheduling of the power system is computed
from predicted values Q̂dem

n on time interval [m, m + N − 1]. The first values
of integer scheduling uk

m are applied to the system. Real variables are updated
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Table 1. Characteristics of the benchmark example

Unit Qmin Qmax ΔQ α0 α1 con coff Tdown Tup

(MW) (MW) (MW) (AC) (AC/MWh) (AC) (AC) (h) (h)

1 10 40 10 25 2.6 10 2 2 4
2 10 40 10 25 7.9 10 2 2 4
3 10 40 10 25 13.1 10 2 3 4
4 10 40 10 25 18.3 10 2 3 4

Fig. 9. Simulation results

at time m, when real value Qdem
m is known, using the equation (12) considering

Qdem
m instead of Q̂dem

n . These values are given to the scheduling procedure at
time m+1, for instance for the satisfaction of ramp constraints.

4.2 Case Study

To test the algorithm, a ”four unit” academic case is considered. The charac-
teristics of this case are given in table 1. A worst case is considered: consumer
load is always underestimated. The prediction error is a random value in the
range [−5%, 0%]. The time horizon is N = 24 hours. Consumer load has a daily
oscillation. Thus, the dynamic of the system is about 24 hours and the time
horizon has to be greater: a high value has to be given to N . The simulation is
performed on a 4 day total horizon. Results, obtained with Matlab 6.5 on a PIV
2GHz, are given on figure 9.

Results show that the production is very close to the real demand, except
for some peaks which have been underestimated. The optimization of the 96
binary variable problem is performed in just 25 seconds with the developed ant
colony/genetic algorithm method. Due to the computation of successive econom-
ical near optimal solutions and real time slight updates, global costs are very
close to global optimal costs. More precisely, a comparison has been performed
with classical MILP solver, with a ”Branch and Bound” method. It shows that
the developed metaheuristic optimisation algorithm can compute a sub-optimal
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solution with a mean slight increase of 0.4% compared with the optimal solution.
Furthermore, the MILP solver is very sensitive to the problem characteristics
such as start up and shut down costs, leading to varying computation times
going from 10 seconds to 10 hours. Finally, the algorithm has been tested for
10-unit case, leading to satisfying results with 10 minute computation times, and
for which MILP solver is untractable.

5 Conclusions and Perspectives

In this paper a control structure has been defined for power systems. A meta-
heuristic algorithm, based on ant colony and genetic algorithm, is used to per-
form the solution of Unit Commitment. As this kind of algorithm is highly
tractable and explicitly manage all the constraints of the problem, it can be
used to extend the optimization results in a closed loop real time framework.

This study is an experimentation of the use of stochastic algorithms for pre-
dictive control of hybrid systems. Of course, the main drawback of the proposed
method is that no guarantee can be given on the actual optimality of solutions.
Further, the problem of stability of the closed loop predictive control structure
is a very tough task. However, the use of ant colony for the constrained predic-
tive control of hybrid systems is promising. The proposed algorithm is tractable
even for large scale systems and could be applied to various kinds of systems
such as non linear or non analytical systems. Further, numerous constraints can
be explicitly taken into account as the proposed method is based on a construc-
tive algorithm. Finally, it allows the use of large receding horizons. Forthcoming
works deal with the use of such algorithms in a more general framework for
control of generic non linear constrained hybrid systems.
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Abstract. Discretely controlled continuous systems (DCCS) represent
an important class of hybrid systems, in which a continuous process is
regulated by a discrete controller. The paper considers the problem of
stabilizing the periodic operation of such systems under event-driven
switching. The key idea presented is to adjust switching surface parame-
ters on-line to the current behavior of the continuous system. To this end,
only measurements at switching instants are necessary. The presented
approach extends the well-known OGY-method for controlling unstable
periodic orbits in smooth chaotic systems to this class of hybrid systems.

1 Introduction

Discretely controlled continuous systems (DCCS) are composed of a continu-
ous plant being arranged in a feedback loop with a discrete-event controller
(Fig. 1(a)). The control task is to appropriately switch the mode of operation
of the continuous process to meet objectives, which are specified in terms of the
continuous variables at stationary operation. Internally, the controller consists
of a switching logic and an event generator (Fig. 1(b)). The described system
structure is found in various application domains, such as process engineering,
manufacturing systems and power electronics. An important feature of DCCS is
that no common equilibrium exists, which is shared by all the continuous mode
dynamics. Moreover the system’s function requires a perpetual switching among
the modes of operation. Thus even for simple continuous mode dynamics, the
resulting stationary behavior of the overall system is complex, namely either
periodic or chaotic. In many applications a stable periodic stationary behavior
is preferred.

The occurrence and the stability of periodic behavior of DCCS has been tho-
roughly investigated as for instance in [1,2] and many others. This paper however
concerns the problem of designing a controller that locally stabilizes a given limit
cycle of the closed-loop system. The focus is put onto the design of the event
generator for a given switching logic. The novel idea presented is to introduce
a switching surface controller (SSC), which adapts the location of the switch-
ing surfaces in the state space in response to the behavior of the continuous
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clk(t)

q(t) e(t)

controller x(t)

g(q(k),e(k+1))D
q(k+1)

switching logic
EG

(b)

Fig. 1. Structure of a DCCS: (a) control loop, (b) discrete controller

system. The adjustments are computed and executed on-line. To this end, only
measurements at the switching instants are necessary.

The approach adopts and extends methods from literature on controlling
chaos in smooth chaotic systems like [3] to DCCS. Its central aspect concerns the
analytic derivation of a suitable model of the closed-loop dynamics of a DCCS,
which explicitly describes the influence of variations in the switching surfaces
parameters on the system’s behavior (Sect. 3.3). Based on this description, the
original problem can be cast into a simple periodic control problem (Sect. 3.4).
The performance of this method is demonstrated experimentally (Sect. 4).

Literature. Over the past decades a large effort has been spent on deriving
state-feedback switching laws for many classes of hybrid systems. For the sta-
bilization of common equilibria of switched linear systems, methods relying on
the computation of common or piecewise Lyapunov functions have been elabo-
rated [4]. They result in a conic state space partition, with the cones’ borders
constituting fixed switching surfaces. [5] presents a strategy for the practical sta-
bilization of DCCS in an ε-environment around a reference. There, the motion
of the continuous state inside this environment is arbitrary. Recently, optimal
control was applied by [6] for determining switching surface parameters off-line,
which minimize a suitable performance criterion for one particular initial state.
An extension concerning the adjustment of switching times in the case of exe-
cutions starting in different initial conditions, with potential for on-line imple-
mentation, was outlined in [7]. In contrast to the above, the stabilization of a
particular periodic behavior of a DCCS considered here, has not attracted much
attention yet and remains an open problem.

On the other hand, stabilizing unstable periodic orbits of smooth chaotic
systems has been a hot topic over the past two decades. Many different solu-
tions to this problem have been proposed as summarized in [8]. The first and
most prominent solution is the OGY-method [3]. It relies on the knowledge of
a controlled Poincaré map P x, in which the system parameters p appear as
explicit arguments. Deriving a linear approximation of P x around the fix-point
x̄� = P x(x̄�, p0), where x̄� represents an unstable limit cycle for nominal pa-
rameter values p0, the initial problem can be cast into a classical linear time-
invariant control problem. Several improvements and extensions of the original
method have been developed [9,10], which mainly differ in the applied control
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laws, the number of samplings per period (multi-step methods) and the exten-
sion of the region around x̄�, in which the control signal is issued. Successful
experimental application underline the feasibility of the approach.

For the design of a DCCS presented in this paper, the parameters of the
switching surfaces represent a natural choice of externally accessible parameters
as a means to delay switching to the successor mode or to execute it earlier. This
influence can be employed for attaining stability and improving the convergence
rate towards a limit cycle.

2 Models for Discretely Controlled Continuous Systems

2.1 Hybrid Model

A suitable hybrid model explicitly reflecting the components of a DCCS shown
in Fig. 1 was presented in [11]. This model can be considered as a differential
automaton [1] with an explicit realization of the discrete-event dynamics. The
governing equation of the continuous plant is

ẋ (t) = f (x (t) , d (t) , q (t)) , x(0) = x0, (1)

where x ∈ IRn, d ∈ IRnd denote the measurable continuous state and the distur-
bance input, respectively. q(t) ∈ Q denotes the mode of operation of the overall
system, where Q is a finite set. It provides the sole controllable input to the plant.
For each mode q, the function f defines a Lipschitz-continuous n-dimensional
vector field ensuring uniqueness of solutions to (1) between consecutive switch-
ing instants.

As depicted in Fig. 1(b), the controller can be separated into two components:
an event generator (EG) and a switching logic. For event-driven switching con-
sidered in the sequel, the event generator is described by a set of event functions

Φ : IRn × Q × E → IR

Φ(x, q, e) =

⎧⎪⎨
⎪⎩

Φe1 (x, q), if e = e1
...

ΦeE (x, q), if e = eE ,

(2)

with the set of possible events E . These functions implicitly define switching
surfaces

S (q, e) = {x : Φ(x, q, e) = 0} (3)

in IRn. The event generator outputs two signals: a trigger signal

clk (t) =
(

0 , if |Φ(x (t) , q (t) , e)| > 0, ∀e ∈ E
1 , if ∃e ∈ E s.t. Φ(x (t) , q (t) , e) = 0,

(4)

which is fed to a positive edge triggered memory, and an event signal

e (t) = arg min
e∈E

|Φ(x (t) , q (t) , e)| . (5)
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At the switching time

t̄(k+1) = min
t∈IR

t |clk (t) = 1 ∧ t > t̄(k) , (6)

the memory block (D) transfers the successor mode

q̄(k+1) = q
(
t̄(k+1)+)

= g(q(t̄(k+1)) , e(t̄(k+1)))
= g(q̄(k) , ē(k+1)) , q̄ (0) = q0, (7)

which is determined by the deterministic transition function g of the switching
logic, to its output. Here t̄(k)+ denotes the limit from above. It is assumed,
that ē(k+1) is unique for all pairs (x, q), which can be ensured by establishing
a priority order among the elements of E . In the following, signal values at
switching instants are defined as

x̄(k) = x(t̄(k)) , q̄(k) = q
(
t̄(k)+

)
, ē(k) = e(t̄(k)) = e

(
t̄(k)−)

and are indicated by a bar and a discrete counter k. The distance of two conse-
cutive switching times

τ̄(k) = t̄(k+1) − t̄(k) > 0

is called the activation duration of mode q̄(k) and τ denotes the elapsed time
since the last switching. The execution of a DCCS is defined by the triplet

χ
(
xh

0 , t0
)

= (x (t) , q (t) , T ) , xh
0 =

(
x0 q0

)T

with x (t) denoting the piecewise smooth continuous state trajectory, q (t) deno-
ting the piecewise constant, left-continuous discrete state trajectory and
T = (([ t0, t̄(0) ] , ( t̄(0), t̄(1) ] , ...) being the infinitely long sequence of activa-
tion intervals. Furthermore the continuous evolution of the system during the
activation of the particular mode q is denoted by x(τ, x0, q).

2.2 Sampled Data Modeling of DCCS

If no disturbances occur, sampling the trajectories at switching instants

χ̄
(
xh

0 , t0
)

=
((

x̄(0) q̄(0) τ̄(0)
)T,

(
x̄(1) q̄(1) τ̄(1)

)T, ...
)

(8)

provides sufficient information to uniquely reconstruct the continuous behavior
by means of (1). The sequence (8) is called the sampled execution and the vector
(x̄(k) , q̄(k) , τ̄ (k))T is the k-th hybrid switch point. To model this deterministic
discrete-event evolution of a DCCS, the embedded map is defined:

Definition 1. The embedded map of a DCCS is a function

H : IRn × Q × IR → IRn × Q × IR(
x̄(k+1) q̄(k+1) τ̄ (k+1)

)T = H(x̄(k) , q̄(k) , τ̄ (k)), (9)

which determines the (k+1)-st hybrid switch point from the k-th one.
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Unfortunately, an analytic expression for H can rarely be stated. However it can
always be computed numerically for any DCCS. For notational convenience the
map (9) can be decomposed into three parts, one for each hybrid switch point
component:

H = (Hx Hq Hτ )T.

3 Stabilization of Limit Cycles by Feedback Control

3.1 Control Objective of DCCS

A typical objective of DCCS is to stabilize a given limit cycle, which in analogy
to [1,12] is defined as follows:

Definition 2. An execution χ
(
xh

0 , t̄(0)
)

of a DCCS with xh
0 =

(
x̄(0) q̄(0)

)
T is

called periodic of order p, if it repeats itself after every p-th switching, i.e.

q̄(k+lp) = q̄(k) , k, l∈IN ,

x(τ, x̄(k+lp) , q̄(k+lp)) = x(τ, x̄(k) , q̄(k)) , ∀τ ∈(0, τ̄ (k) ] , k, l∈IN

with x̄(k), q̄(k) and τ̄(k) obtained from the corresponding sampled execution (8).

Definition 3. An isolated periodic execution χ
(
xh

0 , t̄(0)
)

of order p is is called
a limit cycle of order p. Its limit set

LLC = {(x, q) | ∃k ∈ {0, ..., p−1} , ∃τ ∈ (0, τ̄(k) ] s.t.
q̄(k) = q∈QLC ∧ x = x(τ, x̄(k) , q̄(k))} (10)

corresponds to the closed hybrid orbit traced out by χ
(
xh

0 , t̄(0)
)

over one switch-
ing cycle QLC = (q̄(0), q̄(1), ..., q̄(p−1)). QLC ⊆ Q is the set of modes activated
during QLC.

With a suitable mode definition, all elements of QLC are unique. Therefore de-
note q̄(k+lp) = q̄�

k, ē(k+lp) = ē�
k, k, l ∈ IN and refer to the associated switch

points and activation durations of mode q̄�
k as x̄(k+lp) = x̄�(q̄�

k) and τ̄ (k+lp) =
τ̄�(q̄�

k). A sample limit cycle (thick dashed grey line) of order four is shown in
Figure 2. It intersects the switching surfaces (dashed, black lines) in four switch
points x̄�(q̄�

k) , k = 0, ..., 3 (black diamonds). It is well known that local stability
of a limit cycle can be determined from its characteristic multipliers

mi = λi

(
dH(p)

x

dx (x̄�(q̄�
k) , q̄�

k, τ̄�(q̄�
k))

)
, i = 1, ..., n, (11)

which coincide with the eigenvalues λi of the Jacobian of the p-th iterate H
(p)
x of

(9) (return map) around its fix-point
(
x̄�(q̄�

k) q̄�
k τ̄�(q̄�

k)
)
T [12]. These multipliers

characterize the dynamics of local deviations over one period. If |mi < 1| holds
for all multipliers, all trajectories starting in a local environment U of the limit
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Fig. 2. Limit cycle executed by a DCCS

cycle converge to it asymptotically. Small |mi| imply a fast convergence and a
large stability degree. Moreover they ensure robustness against bifurcations.

The situation investigated in this paper concerns the local stabilization of a
limit cycle. Hence, it is feasible to assume that all executions starting in U gene-
rate the same cyclic mode sequence QLC. For the design task to be solved here,
this assumption allows to reduce the event function (2) to only those switching
conditions, which trigger one of the transitions q̄�

k → q̄�
k+1.

Problem 1. Consider a limit cycle LLC, a DCCS with x ∈ IRn, Q = QLC and
predetermined dynamics (1), (7). Design the event generator, such that the sta-
bility degree Δλ = 1 − max |λi| of the limit cycle is maximized.

For DCCS with x∈IR2, where the dimensions of the switching surfaces and the
continuous trajectory are equal, it is easy to determine event functions, which
provide a solution to this problem. As illustrated in Fig. 2 by the sample trajec-
tory starting in x̄ (0) (solid line), single-step convergence to LLC at the transition
q̄�
0 → q̄�

1 could be enforced, if the next switching was executed on the limit cycle
at x̄(1). Obviously, single-step convergence is ensured for all executions start-
ing in U , if each switching surfaces S

(
q̄�
k, ē�

k+1

)
is identical to the orbit section

of LLC traced out during the activation of the successor mode q̄�
k+1. Concern-

ing the controller implementation, this knowledge is of no direct use, because
firstly, analytic expression for Φ(x, q, e) generally does not exist and secondly, an
equivalent result for DCCS with x∈IRn is not available. Consequently an event
generator is sought, which locally reconstructs the optimal switching surfaces
on-line. Such a method is described in the following.

3.2 Outline of Solution

The main idea is to parameterize the switching surfaces S
(
q̄�
k, ē�

k+1

)
and to adapt

them dynamically. Let S
(
q̄�
k, ē�

k+1

)
be switching hyperplanes, i.e. (2) becomes

Φ
(
x, q̄�

k, ē�
k+1

)
= cT

(
q̄�
k, ē�

k+1
)

x − d
(
q̄�
k, ē�

k+1
)
. (12)

In these event functions cT
(
q̄�
k, ē�

k+1

)
denotes the plane’s normal and d

(
q̄�
k, ē�

k+1

)
its distances to the origin.
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Fig. 3. Influence of the adjustment of a switching plane on subsequent switch points

First design step: Initialize the parameters of (12) with nominal values
cT
0
(
q̄�
k, ē�

k+1

)
, d0

(
q̄�
k, ē�

k+1

)
, such that for all q̄�

k ∈QLC

Φ(x(τ, x̄�(q̄�
k) , q̄�

k) , q̄�
k, ē�

k) > 0, ∀τ ∈ ( 0, τ̄�(q̄�
k) ] , (13)

Φ
(
x̄�

(
q̄�
k+1

)
, q̄�

k, ē�
k+1

)
= 0, (14)

cT
0
(
q̄�
k, ē�

k+1
)

f
(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
> 0 (transversal intersection) (15)

hold. As a further requirement for the choice of nominal parameters, x̄�
(
q̄�
k+1

)
must vary continuously under small perturbations of cT

0
(
q̄�
k, ē�

k+1

)
, d0

(
q̄�
k, ē�

k+1

)
.

With these nominal switching planes, LLC need not be locally stable. However
it can be stabilized by perturbing the planes’ positions (parameters) appropri-
ately, which is illustrated in Fig. 3 for x̄∈IR2.

As depicted, the deviation δx̄(k) = x̄(k) − x̄�(q̄�
k) of the current execution

(solid line, grey diamonds) from the limit cycle (grey dashed line, black dia-
monds) can be eliminated after two switchings, if S

(
q̄�
k, ē�

k+1

)
is adjusted, such

that its first intersection with the execution coincides with the intersection of
the execution with the limit cycle. Without this adjustment, the deviation will
increase over the next two switchings, instead. For x ∈ IRn, n > 2, eliminating
δx̄(k) will generally require the adaptation of more than one switching plane,
but is often possible over a full switching cycle.

Second design step: Determine a switching surface controller, which exe-
cutes the described cyclic action, namely

1. At t̄(k), determine the deviation δx̄(k) in the departure plane S
(
q̄�
k−1, ē

�
k

)
2. Compute the adjustments δc̄T(k) , δd̄(k) of the arrival plane S

(
q̄�
k, ē�

k+1

)
3. Actuate S

(
q̄�
k, ē�

k+1

)
by adjusting the corresponding parameters of (12)

4. After the occurrence of two more switchings, repeat the procedure,

such that small deviations δx̄(k) decrease over one switching cycle. As will be
shown, this two-step design procedure of the event generator solves the posed
problem. In the next section, a model is derived, which describes the influence
of δc̄T(k) , δd̄(k) onto x̄(k+2). This model provides the basis for the systematic
design of the switching surfaces controller. As for each q̄�

k the next event ē�
k+1
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is unique, in the following nominal parameters cT
0
(
q̄�
k, ē�

k+1

)
and d0

(
q̄�
k, ē�

k+1

)
will

be referred to as cT
0 (q̄�

k) and d0(q̄�
k).

3.3 Analytical Expressions of the Linearized Controlled Embedded
Map

The design of the switching surface controller requires an analytical expression
of the consecutively applied controlled embedded map

x̄(k+2) = H(2)
x

(
x̄(k) , q̄(k) , τ̄(k) , cT(q̄(k)) , d(q̄(k))

)
, (16)

which, compared to (9), explicitly depends on the switching condition parame-
ters. As will be shown, it is possible to derive its linear approximation for each
q̄�
k ∈ QLC around x̄�(q̄�

k)

δx̄(k+2) =
dH(2)

x

dx

(
x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k) , cT
0 (q̄�

k) , d0(q̄�
k)

)
δx̄(k)

+
dH(2)

x

dc

(
x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k) , cT
0 (q̄�

k) , d0(q̄�
k)

)
δc̄(k)

+
dH(2)

x

dd

(
x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k) , cT
0 (q̄�

k) , d0(q̄�
k)

)
δd̄(k)

= Ad(q̄�
k) δx̄(k) + (bd,1(q̄�

k) bd,2(q̄�
k))︸ ︷︷ ︸

Bd(q̄�
k)

(
δc̄T(k) δd̄(k)

)T︸ ︷︷ ︸
u(k)

. (17)

The matrices Ad(q̄�
k) and Bd(q̄�

k) are abbreviations of the Jacobians appearing
in the first lines. As one possible parameterization of the parameters in (12) take

cT
(
q̄�
k, ē�

k+1, δc
T)

= cT
0 (q̄�

k) + δcT (18)

d
(
q̄�
k, ē�

k+1, δc
T, δd

)
= d0(q̄�

k) +
(
cT
0 (q̄�

k) + δcT
)
c0(q̄�

k) δd + δcT xRP(q̄�
k) ,(19)

with xRP(q̄�
k) denoting a suitable point of rotation of the switching plane

S
(
q̄�
k, ē�

k+1

)
(see Fig. 3). From the application of the chain rule, all total deriva-

tives of (16) appearing in (17) can be expressed by a product of partial deriva-
tives. To obtain these, consider the dependencies

x̄(k+1) = x (τ̄(k) , x̄(k) , q̄(k)) , τ̄(k) = τ (x̄(k) , q̄(k))

and additional fundamental relations, which are presented next. The sensitivity
of a trajectory for a fixed mode q with respect to its initial conditions is described
by the solution to the variational equation

d
dτ

(
∂x(τ, x0, q)

∂x0

)
=

∂f

∂x
(x(τ, x0, q) , q)

∂x(τ, x0, q)
∂x0

,
∂x(0, x0, q)

∂x0
= I (20)

dx(τ, x0, q)
dτ

= f(x(τ, x0, q) , q) , x(0, x0, q) = x0. (21)
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With (20)–(21), a switch point’s sensitivity with respect to its predecessor is

∂x̄(k+1)
∂x̄(k)

=
∂x(τ̄ (k) , x̄(k) , q̄(k))

∂x̄(k)
. (22)

Furthermore the derivative of the switch point with respect to the activation
duration is

∂x̄(k+1)
∂τ̄(k)

= f(x̄(k+1) , q̄(k)) (23)

The dependence of the activation duration on small perturbations in the depar-
ture switch point can be obtained by differentiating (12) with respect to x under
consideration of (18)–(19) and by subsequently reorganizing the expression [12]:

dτ̄ (k)
dx̄(k)

= −
cT
0 (q̄(k)) ∂x̄(k+1)

∂x̄(k)

cT
0 (q̄(k)) f(x̄(k+1) , q̄(k))

. (24)

In the same way, the derivatives of the activation duration with respect to varia-
tions δcT, δd of a switching surface parameterized by (18)–(19) can be obtained:

dτ̄ (k)
dc

= − x̄(k+1)T − xRP(q̄(k))T

cT
0 (q̄(k)) f(x̄(k+1) , q̄(k))

(25)

dτ̄ (k)
dd

=
cT
0 (q̄(k)) c0(q̄(k)) δd

cT
0 (q̄(k)) f (x̄(k+1) , q̄(k))

. (26)

With these fundamental relations the total derivatives appearing in (17) can be
pieced together, as stated in the following theorem.

Theorem 1. A linear approximation of the consecutively applied controlled em-
bedded map (16) can be computed for any DCCS with linear event functions. The
expressions of the total derivatives in (17) follow from (22)–(26) and yield

Ad(q̄�
k) =

dH(2)
x

dx

(
x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k) , cT
0 (q̄�

k) , d0(q̄�
k)

)
=(

∂x̄�
(
q̄�
k+2

)
∂x̄�

(
q̄�
k+1

) +
∂x̄�

(
q̄�
k+2

)
∂τ̄�

(
q̄�
k+1

) dτ̄�
(
q̄�
k+1

)
dx̄�

(
q̄�
k+1

)
)(

∂x̄�
(
q̄�
k+1

)
∂x̄�(q̄�

k)
+

∂x̄�
(
q̄�
k+1

)
∂τ̄�(q̄�

k)
dτ̄�(q̄�

k)
dx̄�(q̄�

k)

)
(27)

bd,1(q̄�
k) =

dH(2)
x

dc

(
x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k) , cT
0 (q̄�

k) , d0(q̄�
k)

)
=(

∂x̄�
(
q̄�
k+2

)
∂x̄�

(
q̄�
k+1

) +
∂x̄�

(
q̄�
k+2

)
∂τ̄�

(
q̄�
k+1

) dτ̄�
(
q̄�
k+1

)
dx̄�

(
q̄�
k+1

)
)(

∂x̄�
(
q̄�
k+1

)
∂τ̄�(q̄�

k)
dτ̄�(q̄�

k)
dc

)
(28)

bd,2(q̄�
k) =

dH(2)
x

dd

(
x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k) , cT
0 (q̄�

k) , d0(q̄�
k)

)
=(

∂x̄�
(
q̄�
k+2

)
∂x̄�

(
q̄�
k+1

) +
∂x̄�

(
q̄�
k+2

)
∂τ̄�

(
q̄�
k+1

) dτ̄�
(
q̄�
k+1

)
dx̄�

(
q̄�
k+1

)
)(

∂x̄�
(
q̄�
k+1

)
∂τ̄�(q̄�

k)
dτ̄�(q̄�

k)
dd

)
. (29)



524 A. Schild and J. Lunze

The proof follows directly from the rules of differentiation. Except for the matrix
(22), all expressions are in analytic form.

3.4 Switching Surface Controller Design

To describe the dynamics of the deviation δx̄(k) in one particular switching plane
S

(
q̄�
p−1, ē�

p

)
, linear approximations (17) of several controlled embedded maps

must be concatenated. This concatenation results in a discrete-time periodic
linear system with a period of (p(1+p mod2)/2):

δx̄(2k+2) = Ad(q̄�
2k) δx̄(2k) + Bd(q̄�

2k) u(2k) , δx̄(0) = δx̄0 and (30)
Ad(q̄�

k) = Ad(q̄�
k+p), Bd(q̄�

k) = Bd(q̄�
k+p), cT

(
q̄�
p−1, ē

�
p

)
δx̄(0) = 0. (31)

From (11) and (17), it follows, that the eigenvalues λ̃i (ΨAd) of the monodromy
matrix of this periodic system (30)–(31)

ΨAd = Ad

(
q̄�
(p(1+p mod2)−2)

)
Ad

(
q̄�
(p(1+p mod2)−4)

)
· · · Ad(q̄�

0) (32)

and the characteristic multipliers of the limit cycle are identical, if p is even. If p
is odd, then λ̃i = m2

i holds. A similar relation can be shown for the characteristic
multipliers and the eigenvalues of the closed-loop dynamics of (30)–(31) under

ū(2k) = −
(
KT

δc(q̄(2k)) KT
δd(q̄(2k))

)T︸ ︷︷ ︸
K(q̄(2k))

(x̄(2k) − x̄�(q̄(2k)))︸ ︷︷ ︸
δx̄(2k)

. (33)

By considering the controlled event functions

Φ
(
x, q̄(k) , ē(k+1) , δc̄T(k) , δd̄(k)

)
=

cT
(
q̄(k) , ē(k+1) , δc̄T(k)

)
x − d

(
q̄(k) , ē(k+1) , δc̄T(k) , δd̄(k)

)
, with (34)

δc̄T(k) =
{

δx̄T(k) KT
δc(q̄(k))

0 , δd̄(k) =
{

KT
δd(q̄(k)) δx̄(k) , k=0, 2, ..

0, k=1, 3, ..
(35)

parameterized by (18)–(19) and the control action of the SSC as described in
Sect. 3.2, the following can be shown:

Lemma 1. A limit cycle of a DCCS with controlled switching planes defined
by event functions (34), (35), which are actuated at every second switching,
possesses characteristic multipliers mi, which are identical to the eigenvalues
λ̃i

(
Ψ (Ad−Bd K)

)
of the monodromy matrix of the closed-loop periodic system

(30), (31), (33), if p is even. Otherwise λ̃i = m2
i holds.

Therefore, designing a stabilizing event generator, which solves the postulated
Problem 1, boils down to solving a dead-beat control problem of the periodic
linear system (30)–(31), for which a well developed theory exists.

Theorem 2. A switching surface controller, which locally stabilizes the limit
cycle LLC and maximizes the stability degree Δλ, exists, if a periodic deadbeat-
control law of the form (33) can be designed for the equivalent periodic linear
system (30)–(31), which places the eigenvalues of Ψ (Ad−Bd K) at zero.
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Proof. If a deadbeat controller K(q̄(k)) for the periodic system exists, Lemma 1
implies that Δλ is maximal. Since the deviation δx̄(k) disappears for t → ∞,
the control action becomes zero, leaving the nominal switching surfaces in effect.
Thus condition (14) ensures that the stationary execution intersects the nominal
switching planes exactly in the switch points x̄�(q̄�

k) of the limit cycle LLC, which
guarantees that the limit cycle is actually executed. 	


If the periodic system is completely reachable or stabilizable with all uncon-
trollable eigenvalues at zero, the control law (33) can be determined according
to different approaches as presented in [13,14]. Depending on the order p and
the mode dynamics, this controller is generally not unique. As (17) is a first
order approximation of (16), the periodic gains should be chosen balanced and
as small as possible to avoid large control actions. In the case of x ∈ IR2 and
f

(
x̄�

(
q̄�
k+1

)
, q̄�

k+1

)
�= f

(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
for all q̄�

k ∈QLC, the feedback gains

K(q̄�
k) = B+

d (q̄�
k) Ad(q̄�

k) (36)

can be determined independently for each q̄�
k. Here B+

d denotes the pseudo-
inverse. With these SSC gains, single-step convergence towards LLC is achieved.

The extension of the discrete controller (Fig. 1(b)) by the switching surface
controller is shown in Fig. 4. The function of the block LLC is to output the
switch point x̄�(q̄(k)) of the limit cycle corresponding to the currently activated
mode. The currently measured deviation from this desired orbit is amplified by
the gain K(q̄(k)) and issued from the memory block to the event generator every
other switching. At all other switchings the parameters are left unchanged, which
is achieved by the two-port switch and the source block.

4 Experimental Validation

The presented approach for stabilizing limit cycles was applied to the discretely
controlled 2-Tank system, depicted in Figure 5(a). Like the one considered in [2],
it consists of two coupled tanks with a controllable number of inlets and outlets.

Tank 1 is fed by a pump, whose output can be switched among two set-points
by a binary control signal u1. Complementarily, Tank 2 possesses two sinks: a
permanent outflow and a supplementary outflow, which is opened or closed by

clk(t)

q(t) e(t)

controller

+

-
c(k),
d(k)

x(t)

switching surface controller

 g(q(k),e(k+1))D q(k+1)

x*(q)switching logic K(q(k)) x(t)
EG

D
0

x(t)

Fig. 4. Extended controller of DCCS
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Tank 1 Tank 2

(a) (b)

Fig. 5. Discretely controlled 2-Tank: (a) System setup, (b) Switching logic

an electromagnetic valve. The valve is actuated by the binary signal u2. Because
u1, u2 can be set independently, the DCCS possesses four operation modes:

q ↔ (u1, u2) : 1 ↔ (0, 0), 2 ↔ (1, 0), 3 ↔ (0, 1), 4 ↔ (1, 1) .

The implemented switching logic is depicted in Fig. 5(b) Furthermore, the no-
minal switching planes are defined by the event functions

Φ
((

h1 h2
)
T, q, e

)
=

⎧⎪⎪⎨
⎪⎪⎩

h1 − h1,min, if q = 1, e = 1; q = 3, e = 2
−h2 + h2,max, if q = 1, e = 2; q = 2, e = 1
−h1 + h1,max, if q = 2, e = 2; q = 4, e = 1
h2 − h2,min, if q = 3, e = 1; q = 4, e = 2

. (37)

These switching planes stabilize a desired stationary periodic behavior for
nominal system parameters. In Fig. 5(b) the transitions executed during the
stationary switching sequence QLC are highlighted by thick arrows. The dynam-
ics in the vicinity of the chosen operating point are accurately described by four
affine mode dynamics δḣ = Aq δh + bq, q = 1, ..., 4 with

A1 = A2 =
(

−0.0206 0
0.0206 −0.0148

)
,A3 = A4 =

(
−0.0206 0
0.0206 −0.0258

)
,

b1 =
(
−0.0026 0.0015

)T , b2 =
(
−0.0017 0.0015

)T,

b3 =
(
−0.0026 0.0014

)T , b4 =
(
−0.0017 0.0014

)T.

Experimental data revealed that the flow constants of the interconnection and
the outflow pipe vary considerably. Although small in amplitude, these varia-
tions destabilize the limit cycle, if the event generator is implemented without
the proposed switching surfaces controller. According to Sect. 3.1 the switching
planes, which trigger the transitions of the limit cycle (e=1 in (37)), are ”con-
trolled” in an experiment, whereas all others (e=2 in (37)) are left unchanged
at nominal position. Deriving the four linearized embedded maps from (17) with
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(a) (b)

Fig. 6. Experimental data obtained from the 2-Tank: (a) Phase plot of simulated and
measured executions, (b) Shape of a ”controlled” switching surface

xRP(q̄�
k) = x̄�(q̄�

k) and subsequently designing the SSC according to (36), the
following switching surfaces controller gains are obtained:

K(1) =

⎛
⎝ 0 0

0 0
0.7031 1.0820

⎞
⎠ , K(2) =

⎛
⎝ 0 0

0 0
0.1190 −0.3656

⎞
⎠ ,

K(3) =

⎛
⎝ 0 0

0 0
−0.0599 0.3113

⎞
⎠ , K(4) =

⎛
⎝ 0 0

0 0
−0.8011 0.6270

⎞
⎠ .

Figure 6(a) depicts a measured (grey solid line) and a simulated execution
(black solid line) starting in the same initial state (circle). The dashed black
paraxial lines represent the nominal switching surfaces and the grey diamonds
correspond to the switch points x̄(k) of the simulated trajectory. The limit cycle
to be stabilized is indicated by the bold grey dashed line, which forms a closed
parallelogram-like curve. Its switch points are highlighted by black diamonds.

At the beginning of the depicted execution, the switching surfaces controller
is deactivated. As shown, both the simulated and the measured continuous state
evolve far away from the desired motion and convergence towards LLC is slow.
Right after the activation of the SSC (white diamond), the simulated execution
is redirected onto the limit cycle at the next mode transition. For all subsequent
switchings, the control action vanishes, such that the switching planes take on
their nominal position. As shown, the measured trajectory is also directed onto
the limit cycle at the subsequent switching by the SSC. However, as a con-
sequence of model uncertainties, neglected nonlinearities and disturbances, the
measured trajectory constantly deviates from LLC again. This is compensated by
the SSC at every second switching and hence periodic operation is maintained.
The same cannot be achieved, if the planes are fixed at their nominal position.
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An analysis of the shape of the controlled switching planes reveals that this
SSC succeeds in the local reconstruction of the optimal surfaces (Fig. 6(b)).

5 Conclusion

The paper presented an approach for locally stabilizing limit cycles in discretely
controlled continuous systems by adapting switching surface parameters on-line.
Given predetermined nominal switching hyperplanes, it was shown how to ob-
tain a linear approximation of the controlled embedded map. This approxima-
tion yields time-invariant, discrete-time linear models describing the effect of
variations in a switching hyperplane’s location on the switch point two switch-
ings ahead. By concatenating these models over a complete switching cycle, a
discrete-time linear periodic system was obtained. With this, the design of a
switching surface controller was reformulated as a deadbeat control problem of
a periodic linear system and solved according to classical control theory. The ap-
plication of the method to a switched 2-Tank system demonstrated an excellent
performance even under considerable parameter uncertainties and disturbances.
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Abstract. In this paper we revisit the construction of quantized models
of control systems. Based on an approximate notion of simulation rela-
tion and under a stabilizability assumption we show how we can force
a lattice structure on the reachable space of a quantized control system
for any finite input quantization. When we are only interested in a com-
pact subset of the state space, as is the case in concrete applications,
our results immediately provide a finite model for the quantized control
system.

Finite abstractions of continuous and hybrid systems are one of the most fre-
quently used techniques to reduce the verification of these systems to the veri-
fication of finite-state systems. Recently, finite abstractions have also been used
for the synthesis of correct-by-design embedded control software. This is accom-
plished by reformulating the synthesis of control software as the construction
of a supervisory controller acting on the discrete abstraction. This finite-state
controller is then refined to an hybrid system model of the control software en-
forcing the specification. The key enabling step in the whole synthesis process is
the construction of the finite abstraction which is also the central theme of this
paper.

The existing techniques for the construction of finite abstractions can be di-
vided in two different (and dual) approaches: quotients and sub-systems. Tech-
niques based on quotients construct a finite partition of the state space by identi-
fying points having similar reachability properties. Examples include finite mod-
els for linear control systems in discrete-time [Tab07, TP06] and multi-affine
control systems in continuous-time [KB06]. Finite abstractions based on sub-
systems are obtained by restricting the behaviors described by a control system
to a subset having desirable properties. This restriction is achieved in the setting
of quantized control systems [BMP02, BMP06] by selecting a subset of all the
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trajectories. For certain classes of control systems, such as drift-free systems in
chained form, the reachable space of the quantized system admits the structure
of a lattice which can be rendered as fine as desired by properly choosing the
control quanta. This structure can then be exploited to obtain efficient motion
planning algorithms for these systems [PLPB02].

The work described in this paper is a contribution to the construction of fi-
nite abstractions based on the sub-system approach. By resorting to a notion
of approximate simulation relation inspired by the work of Girard and Pap-
pas [GP05b] we show how to impose a lattice structure on the reachable set
of a quantized control system provided that: the resulting model is related to
the original (unquantized) control system not by a simulation relation but by
an approximate simulation relation; a certain stabilizability assumption holds.
Moreover, this lattice structure is independent of the chosen input quantization
which makes our results useful even if the quantized control system admits a lat-
tice structure on the reachable set for some but not for all input quantizations.
We also briefly discuss how this abstraction can be computed by resorting to
numerical methods. As mentioned before, these finite abstractions are an essen-
tial ingredient for the correct-by-design synthesis of embedded control software.
For reasons of space we cannot, in this paper, give details on the whole synthesis
process and refer the interested reader to [Tab06] where he can also find several
examples.

1 Definitions, Control Systems and Stability Notions

1.1 Definitions

The following definitions and notations will be used throughout the paper. Given
a map f : A → B we denote by Γ (f) the graph of f , that is, the set Γ (f) ={
(a, b) ∈ A × B | b = f(a)

}
. If A is a subset of B we denote by ıA : A ↪→ B or

simply by ı the natural inclusion map taking any a ∈ A to ı(a) = a ∈ B. The
identity map on a set A is denoted by 1A. For x ∈ R

n we denote by xi the ith
element of the vector x. Let now A ⊆ R

n and μ ∈ R. We will use the notation
[A]μ to denote the subset of A defined by all the vectors whose elements are
integer multiples of μ or equivalently [A]μ =

{
a ∈ A | ai = kiμ for some ki ∈

Z and i = 1, . . . , n
}
. The set [A]μ is thus a subset of the lattice [Rn]μ. When

x ∈ R
n, �x� will denote the smallest integer n ∈ N such that x ≤ n. We will say

that a ∈ R integrally divides b ∈ R when b/a ∈ Z. The standard Euclidean norm
of x ∈ R

n is denoted by ‖x‖ while ‖x‖S denotes the usual point to set distance
defined by:

‖x‖S = inf
s∈S

‖x − s‖

We can thus recover ‖x‖ as ‖x‖{0}. The closed ball centered at x ∈ R with radius
ε is denoted by Bε(x) or equivalently:

Bε(x) =
{
y ∈ R

n | ‖x − y‖ ≤ ε
}
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A continuous function γ : R
+
0 → R

+
0 , is said to belong to class K∞ if it is

strictly increasing, γ(0) = 0 and γ(r) → ∞ as r → ∞. A continuous function
β : R

+
0 × R

+
0 → R

+
0 is said to belong to class KL if, for each fixed s, the map

β(r, s) belongs to class K∞ with respect to r and, for each fixed r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → ∞.

We now review some formal language concepts. Given a set S we denote by S∗

the set of all finite strings obtained by concatenating elements in S. An element
s of S∗ is therefore given by s = s1s2 . . . sn with si ∈ S for i = 1, . . . , n. Given
a string s belonging to S∗ we denote by s(i) the ith element of s. The length
of a string s ∈ S∗ is denoted by |s| and a subset of S∗ is called a language. Given
a map f : A → B we shall use the same letter to denote the extension of f to
f : A∗ → B∗ defined by:

f
(
s(1)s(2) . . . s(n)

)
= f

(
s(1)

)
f
(
s(2)

)
. . . f

(
s(n)

)
1.2 Control Systems

One the main objects of study in this paper are control systems defined as
follows:

Definition 1. A control system is a quadruple Σ = (Rn, U ⊂ R
m, U , f) where:

– U is a compact subset of R
m containing the origin;

– U is a subset of the set of all measurable functions from intervals of the form
]a, b[⊆ R to U with a < 0 and b > 0;

– f : R
n × U → R

n is a continuous map satisfying the following Lipschitz
assumption: for every compact set K ⊂ R

n, there exists a constant L > 0
such that ‖f(x, u) − f(y, u)‖ ≤ L‖x − y‖ for all x, y ∈ K and all u ∈ U .

An absolutely continuous curve x :]a, b[→ R
n is said to be a trajectory of Σ if

there exists u ∈ U satisfying:

ẋ(t) = f(x(t),u(t)) (1)

for almost all t ∈]a, b[. Control system Σ is said to be forward complete if every
trajectory is defined on an interval of the form ]a, ∞[.

Although we have defined trajectories over open domains, we shall refer to tra-
jectories x : [0, τ ] → R

n defined on closed domains [0, τ ], τ ∈ R
+ with the un-

derstanding of the existence of a trajectory x′ :]a, b[→ R
n such that x = x′|[0,τ ].

We will also write x(τ, x,u) to denote the point reached at time τ under the
input u from initial condition x. This point is uniquely determined since the
assumptions on f ensure existence and uniqueness of trajectories. For certain
results we will need to assume that Σ is control affine meaning that f(x, u) can
be written as:

f(x, u) = f0(x) +
m∑

i=1

fi(x)ui

where the fi satisfy the same regularity conditions as f and (u1, . . . , um) ∈ U .
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1.3 Stability Notions

The results presented in this paper will assume certain stabilizability assump-
tions that we now recall. We will say that a set S ⊆ R

n is invariant under a
control system Σ if for any trajectory x of Σ, x(0) ∈ S implies x(t) ∈ S for all
0 ≤ t < b. We will also need to refer to the diagonal set on R

2n, denoted by Δ,
and defined by Δ =

{
(x, y) ∈ R

n × R
n | x = y

}
.

Definition 2. A control system Σ = (Rn, U ⊂ R
m, U , f) is uniformly globally

asymptotically stable with respect to a closed invariant set S if it is forward
complete and there exists a class KL function β such that the following estimate
holds for all x ∈ R

n, u ∈ U and t ≥ 0:

‖x(t, x,u)‖S ≤ β(‖x‖S , t) (2)

Definition 3 (Stabilizability Assumption). A control system Σ = (Rn, U ⊂
R

m, U , f) is said to satisfy the Stabilizability Assumption (SA) if there exists a
function k : R

n × R
n × U → U satisfying:

1. k is continuously differentiable on R
2n\Δ;

2. k(y, x, u) = u for (x, y) ∈ Δ,

and rendering control system (Rn × R
n, U ⊂ R

m, U , f ×k f) with f ×k f defined
by:

(f ×k f)((x, y), u) =
(
f(x, u), f(y, k(y, x, u))

)
(3)

uniformly globally asymptotically stable with respect to Δ, that is, enforcing the
following estimate for all x, y ∈ R

n, u ∈ U and t ≥ 0:

‖x(t, x,u) − y(t, y, k(y,x,u))‖ ≤ β(‖x − y‖, t) (4)

The possible lack of regularity of k on Δ does not pose a problem with respect to
existence and uniqueness of trajectories. On the open set R

2n\Δ existence and
uniqueness of trajectories is guaranteed by the regularity assumptions on k and
f . On the set Δ, the requirement k(y, x, u) = u ensures that Δ is an invariant
set since f ×k f degenerates into (f(x, u), f(x, u)) which guarantees existence
and uniqueness of trajectories.

A control system satisfying the SA is able to track its own trajectories since
for any trajectory x defined by an input curve u, the feedback controller k will
guarantee that the trajectory y starting at any initial condition and defined by
the input curve k(y,x,u) will asymptotically converge to x.

A sufficient condition for the stabilizability assumption introduced in Def-
inition 3 can be obtained through the concept of control Lyapunov function.
Following the ideas initially presented in [Art83] and later extended by many
authors, the existence of a control Lyapunov function allows one to recover the
controller k. To simplify the presentation let us consider new coordinates given
by:

z = x − y w = x + y (5)
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Proposition 1. Let Σ = (Rn × R
n, U ⊂ R

m, U , f) be a control affine system
with U =

{
u ∈ R

m | u2
1 + u2

2 + . . . + u2
m ≤ 1

}
and assume the existence of a

continuously differentiable function V : R
n × R

n → R
+
0 and class K∞ functions

α, α, α for which the following inequalities hold:

1. ∀z, w ∈ R
n α(‖z‖) ≤ V (z, w) ≤ α(‖z‖);

2. ∀z ∈ R ∀u ∈ U ∃v ∈ U ∀w ∈ R
n ∂V

∂z f((z, w), u)+ ∂V
∂w f((z, w), v) ≤−α(‖z‖).

Then, control system Σ satisfies the SA.

Proof. The result follows, for example, from the formulas given in [LS95]. In
this reference only asymptotic stability towards a compact closed set is con-
sidered. However, condition (2) guarantees that the resulting controller is a
function of z and u alone thus guaranteeing global uniform asymptotic sta-
bility. This is not the case when instead of (2) we use the usual condition
infv∈V

∂V
∂z f((z, w), u) + ∂V

∂w f((z, w), v) ≤ −α(‖z‖) which corresponds to (note
the change in the quantification order):

∀z ∈ R ∀w ∈ R
n ∀u ∈ U ∃v ∈ U

∂V

∂z
f((z, w), u)+

∂V

∂w
f((z, w), v) ≤ −α(‖z‖)

The previous result provides a more efficient way to determine if the SA is
satisfied by searching for a single scalar function V instead of having to search
for a controller k.

2 Approximate Simulations

In this section we introduce the notion of approximate simulation upon which all
the results in this paper rely. Approximate simulations relate transition systems
that will be used in this paper as abstract models for control systems.

Definition 4. A transition system T is a quintuple (Q, L, � , O, H) con-
sisting of:

– A set of states Q;
– A set of labels L;
– A transition relation � ⊆ Q × L × Q;
– An output set O;
– An output function H : Q → O.

A metric transition system is a transition system (Q, L, � , O, H) in which
the output set O is equipped with a metric d : O × O → R

+
0 .

We will follow standard practice and denote an element (p, l, q) ∈ � by
p

l� q. We will also use the notation p
l� q when l = l1l2 . . . ln ∈ L∗ is a

string of elements in L. In this case p
l� q denotes the existence of a sequence

of transitions p
l1� p1

l2� p2
l3� . . .

ln� q. We shall say that a transition
system T is finite when Q is finite. Transition systems capture dynamics through
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the transition relation. For any states p, q ∈ Q, p
l� q simply means that it is

possible to evolve or jump from state p to state q under the action labeled by l.
Note that we cannot model � as a function since, in general, there may be
several states q1, q2 ∈ Q such that p

l� q1 and p
l� q2.

We will use transition systems as an abstract representation of control sys-
tems. There are several different ways in which we can transform control systems
into transition systems. We now describe one of these which has the property of
capturing all the information contained in a control system Σ:

Definition 5. Let Σ = (Rn, U, U , f) be a control system. The transition system
T (Σ) = (Q, L, � , O, H) associated with Σ is defined by:

– Q = R
n;

– E = U ;
– p

u� q if there exists a trajectory x : [0, τ ] → R
n of Σ satisfying x(τ, p,u) =

q for some τ ∈ R
+;

– O = R
n;

– H = 1Rn .

Note that T (Σ) is a metric transition system when we regard O = R
n as being

equipped with the metric d(p, q) = ‖p − q‖.

Definition 6. A run of a transition system T = (Q, L, � , O, H) is a string
r ∈ Q∗ for which there exists l ∈ L∗ satisfying r(i)

l(i)� r(i + 1) for i =
1, . . . , |r| − 1. A string s ∈ O∗ is said to be an output run of T if there exists a
run r of T such that H(r) = s. The language of T , denoted by L(T ), is the set
of all output runs of T .

Simulation and bisimulation relations are standard mechanisms to relate the
properties of transition systems [CGP99]. Intuitively, a simulation relation from
a transition system T1 to a transition system T2 is a relation between the cor-
responding state sets explaining how a run r of T1 can be transformed into a
run s of T2. While typical simulation relations require that runs r and s are
observationally indistinguishable, that is, H1(r) = H2(s), we shall relax this by
requiring H1(r) to simply be close to H2(s) where closeness is measured with
respect to the metric on the output set:

Definition 7. Let T1 = (Q1, L1, 1
� , O, H1) and T2 = (Q2, L2, 2

� , O, H2)

be metric transition systems with the same output space and let ε, δ ∈ R
+. A

relation R ⊆ Q1 ×Q2 is said to be a (ε, δ)-approximate simulation relation from
T1 to T2 if:

1. (q1, q2) ∈ R implies d(H(q1), H(q2)) ≤ ε;
2. d(H(q1), H(q2)) ≤ δ implies (q1, q2) ∈ R;
3. (q1, q2) ∈ R and q1

l1

1
� q′1 imply the existence of q2 ∈ Q2 such that

q2
l2

2
� q′2 with (q′1, q

′
2) ∈ R.
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A different notion of approximate simulation appeared1 in the work of Girard
and Pappas [GP05a] where it was termed δ-approximate simulation relation.
Such a notion is essentially the same as a (ε, δ)-approximate simulation relation
except for requirement (2) which is not present in [GP05a]. The need for this
requirement and for two parameters, namely ε and δ, will become apparent in
Section 3 where we provide a characterization in terms of the stabilizability
concepts reviewed in Section 1.

While the existence of a simulation relation between two transition systems
implies language containment, the existence of an approximate simulation only
implies a weaker version of this containment:

Proposition 2. If there exists a (ε, δ)-approximate simulation relation from T1
to T2 satisfying R(Q1) = Q2, then L(T1) ⊆ Bε

(
L(T2)

)
where Bε

(
L(T2)

)
denotes

the language:{
s ∈ O∗ | d(s(i), r(i)) ≤ ε for some r ∈ L(T2) with |s| = |r| and i = 1, . . . , |s|

}
Proof. For any s ∈ L(T1) there exist strings r ∈ Q∗ and l ∈ L∗ such that:

r(1)
l(1)� r(2)

l(2)� . . .
l(|s|−1)� r(|s|)

and H(r) = s. Let now q2 ∈ Q2 satisfy (r(1), q2) ∈ R and note that q2 exists
since R(Q1) = Q2. By the definition of approximate simulation relation we have
u(1) = q2

m(1)� u(2) for some m(1) ∈ L2 and (r(2), u(2)) ∈ R. Invoking (1) in the
definition of approximate simulation we conclude that d(r(2), u(2)) ≤ ε. Extend-
ing this argument by induction on the length of s we conclude the existence of
u ∈ Q∗2, m ∈ L∗2 with |u| = |r|, (r(i), u(i)) ∈ R and thus d(H(r(i)), H(u(i))) ≤ ε
for i = 1, . . . , |s| or H(r) ∈ Bε(L(T2)). ��

The notion of sub-transition system formalizes the idea of constructing a new
transition system by isolating certain states and certain transitions of an existing
transition system:

Definition 8. Transition system T1 = (Q1, L1, 1
� , O, H1) is said to be a

sub-transition system of T2 = (Q2, L2, 2
� , O, H2) if Q1 ⊆ Q2, H1 = H2|Q1 ,

and the graph Γ (ı) of the natural inclusion ı : Q1 ↪→ Q2 is a relation satisfying
requirement (3) in Definition 7.

In the remaining paper we will work with sub-transition systems of T (Σ) ob-
tained by selecting those transitions from T (Σ) describing trajectories of dura-
tion τ for some chosen τ ∈ R

+. This can be seen as a time discretization or
sampling process.

Definition 9. Let Σ be a control system and T (Σ) its associated transition
system. For any τ ∈ R

+, the sub-transition system Tτ (Σ) = (Q, L, � , O, H)
of T (Σ) is defined by:
1 The authors of [GP05b] only discuss approximate bisimulations but one can easily

derive the corresponding notion of approximate simulation.
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1. Q = R
n;

2. L =
{
u ∈ U | the domain of u is [0, τ ]

}
;

3. p
u� q if there exists a trajectory x of Σ satisfying x(τ, p,u) = q;

4. O = R
n;

5. H = 1Rn .

3 Existence of Approximate Simulations

The adequacy of the notion of approximate simulation relation introduced in the
previous section will be justified in this paper with two arguments: its character-
ization in terms of known stabilizability concepts and its essential role in the ex-
istence and computation of finite abstractions. In this section we provide the first
argument by relating existence of approximate simulation relations with the SA:

Theorem 1. Let Σ be a control system satisfying the SA. Then, for any ε ∈ R
+

there exists a δ ∈ R
+ such that for all τ ∈ R

+ there exists a (ε, δ)-approximate
simulation relation from Tτ (Σ) to T (Σ).

The proof of this result can be found in [Tab06] where a converse result is also
presented under an assumption weaker than the SA. In concrete applications we
shall not work with Tτ (Σ) but with a finite sub-transition system of Tτ (Σ). In this
case we can still guarantee existence of a (ε, δ)-approximate simulation relation:

Corollary 1. Let Σ be a control system satisfying the SA and consider a finite
sub-transition system T = (Q, L, � , O, H) of Tτ (Σ). Then, there exists a
contractible compact set S ⊂ R

n containing Q and a (ε, δ)-approximate simula-
tion relation R from T to Tτ (Σ) satisfying R(Q) = S.

Existence of approximate simulations from arbitrary sub-transition systems of
Tτ (Σ) to Tτ (Σ) is thus guaranteed by the SA which, according to Proposition 1,
can be checked by resorting to a control Lyapunov function. The correct-by-
design methodology that is being introduced in this paper thus leverages on
the extensive work that has been done by the control community on stability,
stabilization and its Lyapunov characterizations.

4 Computation of Finite Sub-transition Systems

We consider the computation of finite sub-transition systems in the framework
of quantized control systems [BMP02, PLPB02, BMP06] where one restricts at-
tention to a denumerable subset of U whose elements are termed control quanta.
In this paper, control quanta are defined by constant input curves assuming
values in a finite set U ⊂ U . Although this restriction on the class of input
curves may appear to be quite drastic, there are several reasons to consider
it. In many man-made systems, input signals are physically implemented as
piece-wise constant signals. Our assumptions are then in consonance with real
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physical constraints. Moreover, input quantization can be seen as a very power-
ful complexity reduction mechanism simplifying several control synthesis prob-
lems [BMP02, PLPB02, BMP06].

From Corollary 1 we know that under the SA we can construct a (ε, δ)-
approximate simulation relation from any finite sub-transition system T of Tτ (Σ)
to Tτ (Σ). The question we address in this section is:

How do we compute such finite sub-transition systems?
We assume that parameters τ and ε, describing the desired sampling time and

state accuracy, respectively, are given along with a finite set U ⊂ U of inputs and
compact subset S ⊂ R

n of the state space. The finite set U describes the input
quantization while the set S represents the working region that is of interest and
which will be compact (at least bounded) in concrete applications. The naive
approach to obtain a sub-transition system based on the given data would be
to construct the transition relation by rounds. The first round would compute
all the transitions p

u� q with u ∈ U, p ∈ [S]η, (where η ∈ R
+ is chosen so

that any x ∈ S belongs to Bε(p′) for some p′ ∈ [S]η) and for which there exists a
trajectory x : [0, τ ] → R

n of Σ satisfying x(τ, p, u) = q. The second round would
repeat the same construction, enlarging the transition relation with transitions
starting at the states q obtained in the first round. The sub-transition system
T could then be seen as the limit of this process. One immediate difficulty with
this naive approach is to determine at which round to terminate the construction
of T since this process is not guaranteed to terminate. But there are also other
difficulties that we now illustrate with the following linear control system:[

ẋ1
ẋ2

]
=

[
0 1

−1 2

] [
x1
x2

]
+

[
0
u

]
(6)

with states (x1, x2) ∈ [−5, 5] × [−5, 5] = S and input u ∈ {−1, 0, 1} = U. The
outcome of the naive approach to the construction of a finite sub-transition
system of T0.5(Σ) is displayed in Figure 1.

The first observation is that terminating the process after some predetermined
number n of rounds may lead to a sub-transition system that is only guaranteed
to be nonblocking during the first n steps. Since many control tasks require the
system to run for an arbitrarily long sequence of steps this is a serious drawback
of the naive approach. Moreover, the states of the constructed sub-transition
system are not evenly distributed across the state space thus implying that we
have a better description of the dynamics in some areas than in others. These
difficulties can be avoided when a (ε, δ)-approximate sub-transition system can
be found:

Definition 10. Let Σ be a control system and let τ, ε ∈ R
+ and a finite U ⊂ U

be given. A transition system T is said to be a (ε, δ)-approximate sub-transition
system if:

1. there exists a (ε, δ)-approximate simulation relation from T to Tτ (Σ);
2. Q ⊆ [Rn]χ for some χ ∈ R

+;
3. for every p ∈ Q and l ∈ U there exists a q ∈ Q such that p

l� q in T .
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Fig. 1. Finite sub-transition system of the linear system (6) obtained through the naive
method. States are represented by red dots while black dots represent states for which
there exists a self transition. Transitions are represented by blue arrows. From left to
right we have the result of the first, third, fifth and tenth simulation rounds.

Transition system T is equipped with a (ε, δ)-approximate simulation relation
to Tτ (Σ) and solves the difficulties illustrated by the previous example by guar-
anteeing that its state set is a subset of a lattice. When working on a compact
subset of the state space, usually the case in most applications, T is in fact finite
and the construction of T is guaranteed to terminate. Furthermore, T is nontriv-
ial in the sense that for every state p of T all the transitions labeled by inputs
in U are captured in T and lead to states of T . Note that when one restricts
attention to a compact subset S of the state space, some states may fail to have
transitions defined for every element of U. However, this is the case only when
these transitions would lead to states outside S. Existence of (ε, δ)-approximate
sub-transition systems is guaranteed by the SA:

Theorem 2. For any control system Σ satisfying the SA, for any ε ∈ R
+, for

any finite U ⊂ U and for any τ ∈ R
+ such that β(ε, τ) < ε there exists a (ε, δ)-

approximate sub-transition system T of Tτ (Σ). Furthermore, χ can be chosen to
be any positive real number integrally dividing 2ε/

√
n and satisfying:

0 < χ ≤ 2√
n

(
ε − β(ε, τ)

)
, (7)

and the (ε, δ)-approximate simulation relation R from T to Tτ (Σ) satisfies R(Q)
= R

n where Q is the state set of T .

Note that the condition β(ε, τ) < ε can always be satisfied by choosing a suffi-
ciently large τ since β is a decreasing function of τ .

Proof. We start by constructing T . Let ξ = 2ε/
√

n, assume that χ integrally
divides ξ and that it satisfies inequality (7). Let now F : R

n → 2[Rn]χ be the
function defined by q ∈ F (p) if p ∈ Bε−β(ε,τ)(q). The set Q of states of T is the
smallest set satisfying:

1. [Rn]ξ ⊆ Q;
2. p ∈ Q, u ∈ U and q ∈ F

(
x(τ, p,u)

)
for some trajectory x : [0, τ ] → R

n of Σ
with u(t) = u for 0 ≤ t ≤ τ imply q ∈ Q.
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The transition relation is defined by p
u� q if p, q ∈ Q, u ∈ U and there exists a

trajectory x : [0, τ ] → R
n of Σ satisfying q ∈ F

(
x(τ, p,u)

)
with u(t) = u for 0 ≤

t ≤ τ . Transition system T is thus defined by T = (Q, U, � , Rn, ı : Q ↪→ R
n).

The approximate simulation relation is given by (q, x) ∈ R iff ‖q − x‖ ≤ ε. Note
that requirements (1) and (2) in Definition 7 are satisfied by construction if we
take δ = ε. By noting that any point x ∈ R

n belongs to Bε(q) for some q ∈ [Rn]ξ
we conclude that R(Q) = R

n. We now show that R also satisfies requirement (3)
in Definition 7. Let (p, y) ∈ R and assume that p

u� q with u(t) = u ∈ U
for 0 ≤ t ≤ τ . This implies the existence of a trajectory x of Σ satisfying
q ∈ F

(
x(τ, p,u)

)
or equivalently ‖q − x(τ, p,u)‖ ≤ ε − β(ε, τ). Since (p, y) ∈ R

implies ‖p − y‖ ≤ ε we have, by the SA, ‖x(τ, p,u) − y(τ, y, k(y,x,u))‖ ≤
β(‖p − y‖, τ) = β(ε, τ). It then follows:

‖q − y(τ, y, k(y,x,u))‖ ≤ ‖q − x(τ, p,u) + x(τ, p,u) − y(τ, y, k(y,x,u))‖
≤ ‖q − x(τ, p,u)‖ + ‖x(τ, p,u) − y(τ, y, k(y,x,u))‖
≤ ε − β(ε, τ) + β(ε, τ) = ε

thus showing y
k(y,x,u)� y(τ, y, k(y,x,u)) in Tτ (Σ) with (q,y(τ, y, k(y,x,u))) ∈

R which concludes the proof. ��
The proof of Theorem 2 is constructive since it defines how to construct the (ε, δ)-
approximate sub-transition system T and the (ε, δ)-approximate simulation re-
lation. Intuitively, the construction of T proceeds as follows. We use [Rn] 2ε√

n
as

the initial state set Q of T . This state set has the property that for every x ∈ R
n

there exists a q ∈ Q such that x ∈ Bε(q). Starting from this initial state set we
construct all the transitions q

u� p with q ∈ Q and u ∈ U . However, instead
of declaring q

u� p to be a transition in T we declare that all the transitions
q

u� p′, with p′ ∈ [Rn]χ and p ∈ B
χ

√
n
2

(p′), are transitions of T . It thus follows
by construction that Q ⊂ [Rn]χ since χ integrally divides χ. Moreover, when
working on a compact subset S of R

n, there are only finitely many points of the
lattice [Rn]χ which are contained in S and this guarantees termination of the
construction of T in a finite number of steps. Note also that the resulting transi-
tion system T is nondeterministic since for every p there exist, in general, several
p′ satisfying the conditions p′ ∈ [Rn]χ and p ∈ B

χ
√

n
2

(p′). We thus see that the
construction of T consists in approximating p by several points p′ ∈ [Rn]χ. This
is only possible since we only ask for the existence of a (ε, δ)-approximate simu-
lation relation from T to Tτ (Σ) and since we can use the feedback controller k
to correct for the introduced errors when replacing p with p′. It can also be seen
from the construction of T that if S is of the form S = [−s/2, s/2]n for some
s ∈ R then T will have at most �s/χ�n states and �s/χ�n|U| transitions. This
exponential dependence on n is unavoidable if we want to keep the resolution ε
constant when n increases. We shall further comment on this fact in Section 5.
The (ε, δ)-approximate simulation relation R from T to Tτ (Σ) is simply given
by (q, x) ∈ R if ‖q − x‖ ≤ ε for any state q ∈ Q of T and x ∈ R

n of Tτ (Σ). Note
that in this case we have δ = ε.
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We now return to the linear example to illustrate Theorem 2. One possible
stabilizing controller for (6) is given by u = Kx = −80x1 − 20x2 which places
the eigenvalues of the closed loop system at −9 and −9, respectively (the open
loop eigenvalues are 1 and 1). Since the dynamics of x − y is given by:

ẋ − ẏ = Ax − Ay + Bu − Bv = A(x − y) + B(u − v)

we see that the controller v = u − K(x − y) can be used to enforce the SA. In
order to obtain a (ε, δ)-approximate sub-transition system for ε = 1 we solve for
the flow of the closed loop system and obtain ‖x(0.5) − y(0.5)‖ ≤ 0.46 for all
initial conditions satisfying ‖x − y‖ ≤ 1. Using 0.46 as our estimate for β(1, 0.5)
we pick χ = 2√

2
0.5. The resulting (ε, δ)-approximate sub-transition system is

displayed in Figure 2. It has 439 states while the naive approach produced a
transition system with 4437 states after ten rounds.
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Fig. 2. (ε, δ)-approximate sub-transition system associated with the linear system (6)
for ε = 1 and χ = 0.5(2/

√
2). From left to right we have: the (ε, δ)-approximate

sub-transition system; the states of the sub-transition system belonging to [S]1 2√
2

rep-

resented in blue and enclosed in a circle of radius 1 while the remaining states are
represented in red; all the states of the sub-transition system, enclosed in a circle of

radius 0.5 = χ
√

2
2 ; all the states of the sub-transition system. The sates belonging to

[S]χ which are not displayed are states whose transitions lead to points outside S and
which have no incoming transitions.

5 Discussion

1. Instead of working with the Euclidean norm we could have constructed T
and defined the (ε, δ)-simulation relation by directly using the level sets of
the Lyapunov function whose existence is implied by the SA. Since given
an equation of the form V̇ ≤ −α(V ) we can always transform V into an-
other Lyapunov function U satisfying U̇ ≤ −U , we can sidestep the need
to estimate β. However, working directly with level sets of U increases the
complexity of the computations since U is a general nonlinear function.

2. The global nature of the SA upon which Theorem 2 relies was assumed
for simplicity of presentation and can be relaxed. Since we have a (ε, δ)-
approximate simulation relation from T to Tτ (Σ), states x ∈ R

n of T (Σ)
related to states q ∈ Q of T will necessarily satisfy ‖q −x‖ ≤ ε. We can thus
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relax the SA by requiring that it holds only for initial conditions (x, y) ∈
R

n × R
n satisfying ‖x − y‖ ≤ ε.

3. The SA was defined in terms of the existence of a single controller k. In many
situations, however, we have not only one but several controllers {ki}i∈I , each
designed to track a familly of trajectories. It is clear that the conclusions of
Theorem 2 still hold in this case provided that we use for β a KL function
satisfying βi(r, s) ≤ β(r, s) for all i ∈ I and where βi is the KL function
associated with controller ki.

4. Although for linear systems we can explicitly compute the flow for each of
the inputs in U the same is no longer true in the nonlinear case. We are thus
forced to resort to numerical simulation methods in order to construct T .
Theorem 2 is still of value in this case since given a bound η > 0 on the
simulation error, that is, ‖x(τ) − x̃(τ)‖ ≤ η where x̃ is the simulated value,
the conclusions of Theorem 2 still hold provided that we choose τ such that
β(ε, τ) < ε + η. Note that such τ always exists since β(r, s) is a decreasing
function of s. In this case, χ can be any positive real number integrally
dividing 2ε/

√
n and satisfying:

0 < χ ≤ 2√
n

(
ε + η − β(ε, τ)

)
5. The proposed methodology enforces a constant accuracy ε on the state set of

a (ε, δ)-approximate sub-transition system T by guaranteeing that it is a sub-
set of a lattice [Rn]χ. Although this guarantees a spatially uniform descrip-
tion of the dynamics of Σ, it also forces the size of T to grow exponentially
with n. Since the specification may not require a spatially uniform resolu-
tion, we can instead construct specification dependent multi-resolution finite
abstractions. This kind of finite abstractions is currently being investigated
by the author as a lower complexity alternative to the (ε, δ)-approximate
sub-transition systems introduced in this paper.
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Abstract. This paper presents a systematic, semi-automated, construc-
tive procedure for designing switching controllers to stabilize pairs of un-
stable, homogeneous second order systems based on binary sensor mea-
surements. The plant is first approximated by a finite state machine, and
a bound on the quality of approximation is established. A control law
is then designed to robustly stabilize the nominal finite state machine
model in the presence of admissible approximation uncertainty. The re-
sulting controller thus consists of a finite state machine observer and
a corresponding full state feedback switching control law. The design
procedure is demonstrated on a simple benchmark example.

1 Introduction

Switched systems are a special class of hybrid systems consisting of a family of
plants and a switching law among them. Switched control systems arise in many
engineering applications [1,2,3]. In particular, the problem of finding a stabilizing
switching law for a family of unstable linear systems has received much attention
in the past decade [4,5,6,7,8]. An overview of recent results in this area can be
found in [9]. Typically, the controllers implementing the switching strategy are
either assumed to have full access to the state or to have access to a sensor output
that is a linear function of the state. However, there may be a practical need to
base the design and implementation of the switching controller on coarse, discrete
sensing. In particular, coarse sensors are increasingly common in autonomous
vehicles and sensor networks, in order to keep operating cost, weight, and power
consumption low. The problem of stabilizing a family of unstable systems where
only very coarse sensing is available has not been as extensively studied to date.
Problems involving pairs of second order LTI systems were considered in [10]
and [11], where it was shown that stabilization based on coarse sensing is in fact
possible. In this paper, a new constructive approach for designing finite state
machine switching controllers for pairs of homogeneous, discrete-time second
order systems is presented. Binary, but noiseless, sensor information is assumed
to be available at each time step.
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y(t) ∈ {−1, 1}u(t) ∈ {0, 1}

P

v(t) ∈ R

K

Fig. 1. Closed Loop System

The paper is organized as follows: A formal statement of the control design
problem and an overview of the controller design procedure are presented in Sec-
tion 2. The algorithms for constructing a finite state machine approximation of
the plant, and for computing an a-posteriori bound on the resulting approxima-
tion error are presented in Section 3. Design of the robust stabilizing switching
law, and the structure of the resulting switching controller, are described in Sec-
tion 4. An illustrative example is presented in Section 5. The paper concludes in
Section 6 where recommendations for future work are given.

2 Problem Statement and Design Procedure

Consider a discrete-time plant P described by:

x(t + 1) = fu(t)(x(t)) (1)

y(t) = sgn
(
Cx(t)

)
(2)

v(t) = log
(‖x(t + 1)‖2

‖x(t)‖2

)
(3)

where the time index t ∈ Z+ (the set of non-negative integers), ‖ ·‖2 denotes the
Euclidean norm, state x(t) ∈ R2, control input u(t) ∈ U = {0, 1}, performance
output v(t) ∈ R and sensor output y(t) ∈ Y = {−1, 1}. f0,1 : R2 → R2 and
C ∈ R1×2 are given, with the following conditions assumed to hold for all u ∈ U :

1. Function fu is continuous and homogeneous with degree 1. 1

2. Function ‖fu(x)‖2
‖x‖2 is bounded above.

The objective is to design a controller K ⊂ YZ+ × UZ+ such that the closed
loop system (P, K) with output v (Figure 1) satisfies the following performance
objective for some R > 0:

sup
T≥0

T∑
t=0

(v(t) + R) < ∞ (4)

1 That is, fu(cx) = cfu(x) for all c ∈ R, x ∈ R2.
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u(t) ∈ U

w(t) ∈ W

v̂(t) ∈ V

≈P

Δ

ỹ(t) ∈ Y
M

u(t) ∈ U
v(t) ∈ R

y(t) ∈ Y

u(t) ∈ U

Fig. 2. Plant P and its finite state machine approximation M

Satisfaction of this objective guarantees that the state of the closed loop system
exponentially converges to the origin, on average, at a rate not less than R.

The procedure for designing a stabilizing controller is iterative: First, P is
approximated by the feedback interconnection of a finite state machine M and a
system Δ representing the approximation error (Figure 2). Next, a gain bound
is established for the error system Δ. Finally, an attempt is made to synthesize
a full state feedback switching law for the nominal finite state model M , that is
robust to the approximation error. If synthesis is successful, the resulting con-
troller is guaranteed to stabilize the system at a rate of exponential convergence
not less than R. Otherwise, a better approximation (meaning a finite state ma-
chine with a larger number of states) is constructed and the above process is
repeated.

3 A Finite State Machine Approximation of the Plant

3.1 Finite State Machine Models and Notions of Approximation

A deterministic finite state machine (DFM) is understood to mean a discrete-
time system with a finite number of states, and with finite input and output
alphabets (i.e. the inputs and outputs take their values in finite sets). Given a
plant P with binary control input u, binary sensor output y, and bounded real
performance output v. Consider system M with the internal structure shown in
Figure 3, where M̂ is some deterministic finite state machine. The disturbance
input to M , w, is assumed to take binary values in the set W = {0, 1}. Block
“φ” is a memoryless map defined by φ(ŷ) = ŷ if w = 0 and φ(ŷ) = −ŷ if w = 1.
System M is thus also a finite state machine. Consider also the corresponding
system Δ shown in Figure 4. Block “β” is a memoryless map defined by β(y, ŷ) =
0 if y = ŷ and β(y, ŷ) = 1 otherwise. Note that Δ is not a finite state machine
in general since P is not one.

Consider the feedback interconnection, as in Figure 2, of M and Δ with these
particular structures, and suppose that the two copies of M̂ are identically ini-
tialized2. It can be seen by direct inspection that for arbitrary initial conditions

2 A fair assumption since we have full access to M̂ .
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v̂

ỹŷ

M

M̂u

w

φ

Fig. 3. Structure of M , the finite state machine approximation of P

of P and for any input u ∈ UZ+ , the corresponding outputs y ∈ YZ+ of P and
ỹ ∈ YZ+ of the interconnection (M, Δ) are identical for any choice of M̂ . Now
suppose that we can construct a deterministic finite state machine M̂ such that,
for any input u ∈ UZ+ and any initial condition of P , we have:

1. Outputs v̂ ∈ VZ+ of (M, Δ) and v ∈ RZ+ of P satisfy:

v̂(t) ≥ v(t), for all t ∈ Z+ (5)

2. Every input/output pair (u,w) ∈ UZ+ × WZ+ of Δ satisfies:

inf
T≥0

T∑
t=0

γρ(u(t)) − μ(w(t)) > −∞ (6)

for some positive scalar γ, some function ρ : U → [1, 2], and function μ :
W → R defined by μ(w) = w.

The resulting machine M is then said to be a finite state machine approximation
of P , and the resulting system Δ is said to be the approximation error.

Remark 1. Traditional model order reduction deals with stable systems: a lower
order model is considered a good approximation of the original system if the
outputs of the two systems are close when driven side by side by the same input.
The internal structure proposed here for Δ, where the output of the plant P
is fed back to M̂ (essentially an observer setup), is needed because the original
system is not stable (i.e. remembers its initial condition forever). Two copies
of P initialized differently and driven side by side may end up with different
outputs at every step. Thus, there is a need to explicitly ’estimate’ the initial
condition of P , otherwise there is no hope for satisfying gain condition (6) for
any choice of M̂ .

Remark 2. If ρ(0) = ρ(1) = 1, the smallest value of γ for which (6) holds (the
’gain’ of Δ) represents the fraction of time that the outputs of P and M̂ are
mismatched in the worst-case scenario. A smaller value of γ is hence desirable
and indicative of a better approximation. Allowing a choice of ρ(1) > 1 serves
to penalize the corresponding control input.
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v

y

v̂

M̂ ŷ

P

Δ

β
u w

Fig. 4. The error system Δ of M and P

Remark 3. The smaller the gap between v and v̂ in (5), the better the approxi-
mation and the less conservative the resulting design procedure.

In the following sections a systematic procedure for constructing finite state
machine M̂ , and an algorithm for computing an a-posteriori upper bound on
the gain of the resulting error system Δ, are proposed.

3.2 Construction of the Nominal Model

While there are several potential approaches for constructing a nominal model
of plant P (see [12] for an overview), the approach presented here takes into
account the dynamical properties specific to homogeneous systems, evident after
a coordinate transformation. The dynamics of system P described in (1), (2) and
(3) in a polar coordinate system are given by:

r(t + 1) = r(t)‖fu(t)
(
β(θ(t))

)
‖2

θ(t + 1) = tan−1
(f2,u(t)

(
β(θ(t))

)
f1,u(t)

(
β(θ(t))

))
(7)

y(t) = sgn
(
Cβ(θ(t))

)
(8)

v(t) = log
(
‖fu(t)

(
β(θ(t))

)
‖2

)
(9)

where

β(θ) =
[

cos(θ)
sin(θ)

]
, fu =

[
f1,u

f2,u

]

Thus, the evolution of the angular coordinate and both outputs of system P are
independent of the radial coordinate. The state of P relevant to the stabilization
problem at hand effectively evolves on a compact set, the unit circle. M̂ is
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constructed by quantizing3 the unit circle and defining the states of M̂ to be the
quantization intervals and unions of adjacent quantization intervals4.

Consider a partition of the unit circle consisting of intervals I0, . . . , In−1 de-
fined by Ii = [αi, αi+1) for some even integer n (a design parameter) and some
sequence of angles, α0 < . . . < αn, satisfying:

α0 = tan−1
(

− c1

c2

)
αn/2 = α0 + π αn = α0 + 2π

Construct a set S of intervals as follows:

S =
n−1⋃
k=0

( n−1⋃
i=0

{I<i>n ∪ . . . ∪ I<i+k>n}
)

where < a >n denotes ’a modulo n’. Note that S can be partitioned into:

S1 =
{
I ∈ S|Cβ(α) ≤ 0, ∀α ∈ I

}
S2 =

{
I ∈ S|Cβ(α) ≥ 0, ∀α ∈ I

}
S3 =

{
I ∈ S|∃α1, α2 ∈ I, Cβ(α1) < 0, Cβ(α2) > 0

}
The set Q of states of M̂ is then Q .= {q|Iq ∈ S}, with Qi denoting the subset

of Q corresponding to intervals in Si. The dynamics of M̂ are described by:

q(t + 1) = f(q(t), u(t), ỹ(t))
ŷ(t) = g(q(t)) (10)
v̂(t) = h(q(t), u(t))

with state transition function f : Q×U×Y → Q and output functions g : Q → Y
and h : Q × U → V defined by:

f(q, u, ỹ) .=

⎧⎨
⎩

δ(q, u) if q ∈ Q1 ∪ Q2
δ(P1(q), u) if q ∈ Q3, ỹ = −1
δ(P2(q), u) if q ∈ Q3, ỹ = 1

g(q) .=
{

−1 if q ∈ Q1 or q ∈ Q3, |IP1(q)| ≥ |IP2(q)|
1 if q ∈ Q2 or q ∈ Q3, |IP1(q)| < |IP2(q)|

h(q, u) .= sup
θ∈Iq

log
(
fu

(
β(θ(t))

))

where function φ : (Q1 ∪ Q2) × U → Q is defined by:

δ(q, u) = arg min
q∈Aq

u

|Iq|

with |Iq| denoting the length of interval Iq = [aq, bq), that is |Iq| .= |bq −aq|, and
with set Aq

u defined as:

Aq
u =

{
q ∈ Q|Iq ⊃ [tan−1

(f2,u

(
β(aq)

)
f1,u

(
β(aq)

))
, tan−1

(f2,u

(
β(bq)

)
f1,u

(
β(bq)

) )
}

3 The quantization need not be uniform in general.
4 Continuity of fu rules out non-adjacent quantization intervals as potential states.
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and where P1 : Q3 → Q1 and P2 : Q3 → Q2 are defined by Pi(q) = qi, where
(q1, q2) are the unique pair of elements in Q1 × Q2 with the property that Iq =
Iq1 ∪ Iq2 . In particular, let qo denote the state corresponding to Iqo = [α0, αn).

Proposition 1. Consider a plant P and let M̂ be the corresponding finite state
machine defined by (10) for some choice of parameter n. If q(0) = qo, then for
any input u and initial condition of P , the outputs v̂ of (M, Δ) and v of P
satisfy (5).

Proof. Let θ(t) and q(t) be the states of P and M̂ , respectively, at time t. It
follows from the construction of M̂ that:

1. θ(t) ∈ Iq(t) ⇒ θ(t + 1) ∈ Iq(t+1)
2. θ(t) ∈ Iq(t) ⇒ v̂(t) ≥ v(t)

When q(0) = qo, θ(0) ∈ Iqo . Hence, the statement follows by induction on t. ��
Remark 4. The size of the finite state approximation grows polynomially with
the number of quantization intervals, with the total number of states N of M̂
satisfying: n + 1 ≤ N ≤ n(n − 1) + 1.

3.3 Description of the Approximation Error

The next step is to compute an upper bound for the gain of the corresponding
error system Δ, as in (6), for a choice of ρ specific to the problem at hand.

Proposition 2. If there exists a function V : Q → R and a γ > 0 such that:

V (f(q, u, y)) − V (q) ≤ γρ(u) − d(q) (11)

holds for all q ∈ Q, u ∈ U and y ∈ Y, where d : Q → {0, 1} defined by:

d(q) =
{

0 for q ∈ Q1 ∪ Q2
1 for q ∈ Q3

then the error system Δ satisfies (6).

Proof. By summing up (11) along any state trajectory of M̂ from t = 0 to t = T ,
we get:

T∑
t=0

γρ(u(t)) − d(q(t)) ≥ V (q(T )) − V (q(0)) ≥ min
q1,q2

V (q1) − V (q2)

Hence, we have:

inf
T≥0

T∑
t=0

γρ(u(t)) − d(q(t)) ≥ min
q1,q2

V (q1) − V (q2) > −∞

It follows from Proposition 1 that when M̂ is initialized to q(0) = qo, we have
θ(t) ∈ Iq(t) for all t, where θ and q are the states of P and M̂ respectively. Thus,
when q(t) ∈ Q1 ∪ Q2, y(t) = ŷ(t) and w(t) = 0, whereas when q(t) ∈ Q3, w(t) ∈
{0, 1}. Hence by definition, μ(w(t)) = w(t) ≤ d(q(t)), for all t. Consequently, all
feasible input/output signal pairs of Δ satisfy (6). ��
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Δ

u q

w u
v̂

ϕ

M

Fig. 5. Robust control setup

An upper bound for the gain of Δ can thus be computed by simply solving a
linear program in which we minimize γ such that (11) holds for all q ∈ Q, u ∈ U
and y ∈ Y. If N = card(Q), the linear program has N + 1 decision variables
(γ, V (q0),..., V (qN )) and 4N inequality constraints. An alternative algorithm,
which grows as O(N2), can be found in [13].

The relevance of Proposition 2 is that it allows us to compute an upper bound
for the gain of complex system Δ by looking at the much simpler system M̂ .
However, the computed gain bound is conservative for two reasons: first, we
are assuming that an an error occurs at every opportunity, and second, we are
assuming that any pair (u,y) ∈ UZ+ × YZ+ is a valid input for M̂ , which is not
the case since y is an output of P corresponding to u.

4 Controller Design

4.1 Design of a Robust Switching Law

The problem considered in this section is that of designing a switching law ϕ :
Q → U such that the closed loop system consisting of the interconnection (M, Δ)
in feedback with ϕ (Figure 5) satisfies the following performance objective:

sup
T≥0

T∑
t=0

v̂(t) + R < ∞ (12)

for some R > 0 for all admissible uncertainty (i.e. for all systems Δ satisfying
(6)). The largest value of R for which (12) holds is then the guaranteed rate of
exponential convergence; the actual rate of convergence is generally better.

The switching law ϕ will be designed based on the nominal model M using
a small gain argument. Consider the feedback interconnection of two systems



Finite State Controllers for Stabilizing Switched Systems 551

u

v̂

Δ

Sr

w

Fig. 6. Setup for the small gain theorem

S and Δ as in Figure 6. The following ’Small Gain’ Theorem, presented here
without proof, is adapted from Theorem 1 in [13]. It characterizes the ’stability’
of an interconnection of two ’stable’ systems.

Theorem 1. (A ’Small Gain’ Theorem) Suppose that S satisfies:

inf
T≥0

T∑
t=0

ρS(r(t), w(t)) − μS(v̂(t), u(t)) > −∞ (13)

for some ρS : R × W → R and μS : V × U → R, and that Δ satisfies:

inf
T≥0

T∑
t=0

ρΔ(u(t)) − μΔ(w(t)) > −∞ (14)

for some ρΔ : U → R and μΔ : W → R, where R, V, W and U are finite sets.
Then, the interconnected system (S, Δ) with input r and output v̂ satisfies:

inf
T≥0

T∑
t=0

ρ(r(t)) − μ(v̂(t)) > −∞ (15)

for ρ : R → R and μ : V → R defined by:

ρ(r) .= max
w∈W

{ρS(r, w) − μΔ(w)} μ(v̂) .= min
u∈U

{μS(v̂, u) − ρΔ(u)}

Corollary 1. The interconnected system satisfies (15) for ρ : R → R and μ :
V → R defined by:

ρ(r) .= max
w∈W

{ρS(r, w) − τdμΔ(w)} μ(v) .= min
u∈U

{μS(v̂, u) − τdρΔ(u)}

for any strictly positive scalar parameter τd.

The auxiliary performance objective in (12) can thus be achieved by designing a
switching law ϕ : Q → U for which there exists a τd > 0 such that the feedback
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interconnection S = (M, ϕ), with input5 w and outputs v̂ and u, satisfies (13)
with:

ρS(r, w) .= R + τdμ(w) μS(v̂, u) .= v̂ + τdγρ(u) (16)

for some R > 0, for ρ and μ defined as in (6), and for the corresponding upper
bound γ on the gain of Δ computed based on Proposition 2.

The design of the full state feedback switching law can be carried out using
standard Dynamic Programming techniques [14]. Value Iteration (described in
statement (c) of Theorem 2) is used to solve a Bellman inequality (18) for the
cost-to-go function J ; the desired switching law is then simply the optimizing
argument. The following Theorem states this rigorously; a proof can be found
in [12].

Theorem 2. Consider a deterministic finite state machine M with state set Q
and inputs u and w in U and W respectively, and defined by state transition
equation:

q(t + 1) = f(q(t), u(t), w(t))

Let σ : Q×U ×W → R be a given map. The following statements are equivalent:

(a) There exists a ϕ : Q → U such that the closed loop system (M, ϕ) satisfies:

inf
T≥0

T∑
t=0

σ(q(t), u(t), w(t)) > −∞ (17)

(b) There exists a function J : Q → R such that for any q ∈ Q, the following
inequality holds:

J(q) ≥ min
u∈U

max
w∈W

{−σ(q, u, w) + J(f(q, u, w))} (18)

(c) The sequence of functions Jk : Q → R, k ∈ Z+, defined recursively by:

J0 = 0
Jk+1 = max{0, T (Jk)} (19)

where T : RQ → RQ is defined by:

T (J(q)) .= min
u∈U

max
w∈W

{−σ(q, u, w) + J(f(q, u, w))} (20)

converges.

For the particular control problem of interest, the per-stage cost function σ
depends on two parameters, R and the scale τd. In reality, the goal is to maximize
R > 0 for which there exists a J : Q → R and a τd > 0 such that (18) holds.
However, it is not possible to directly compute the optimal value R∗. Instead, a
search is carried out resulting in a suboptimal value of R: first, the range of values
of τd for which ’stability’ with R = 0 is possible is computed. Then, different
values of τd are sampled in this range, and the largest value of R is computed for
each sampled value τd, with the largest of those being a suboptimal guaranteed
rate of convergence.
5 Alphabet set R can be thought of as a singleton here.



Finite State Controllers for Stabilizing Switched Systems 553

q
ϕ

y
u

M

K

Fig. 7. The finite state stabilizing controller K

4.2 The Stabilizing Controller K

The final step is to ensure that the actual closed loop system satisfies the desired
performance objective, described in (4), for the suboptimal rate R computed.
By construction, the condition in equation (5) holds whenever the same input u
drives the plant P and the interconnection (M, Δ). Thus, to ensure that (4) holds
whenever (12) holds, it is sufficient to ensure that the controller K connected in
feedback with plant P is identical to the subsystem with input y and output u
in the interconnection (M, Δ, ϕ). The structure of the resulting controller K is
shown in Figure 7. Controller K thus consists of a finite state machine observer
for the plant and a corresponding full state feedback control law.

5 Illustrative Example

Consider a harmonic oscillator described by:

ẋ1 = x2

ẋ2 = kx1

The corresponding equations in polar coordinates are: ṙ = (1 + k)r sin(θ) cos(θ)
and θ̇ = (1 + k) cos2(θ) − 1. For k = −1, ṙ = 0 and the state trajectories are
concentric circles centered at the origin. For any k �= −1, ṙ < 0 in exactly
two orthants. Thus, when the switching controller has full access to the state
and when switching can occur at any time, it is always possible to stabilize the
analog system by appropriately switching between gains −1 and k, for any choice
of k ∈ R\{−1}. Now suppose that the only sensor information available for use
is the sign of the position measurement (Figure 8). The stabilization problem
becomes more difficult because of the non-trivial state estimation problem that
arises due to binary sensing. The approach described in this paper will be used
to design a stabilizing controller.

The sampled system is described by:

x(t + 1) = AT (u(t))x(t)
y(t) = sgn(x1(t)) (21)

v(t) = log
(‖x(t + 1)‖2

‖x(t)‖2

)
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AT (0) and AT (1) ∈ R2×2 are of the form AT (u) = eA(u)T where:

A(u) =
[
0 1
k(u) 0

]

with k(0) = −1, k(1) = k for some given value k in R\{−1}. The sampling
rate T is assumed to be a design parameter in this case. Satisfaction of the
performance objective in (4) guarantees that the state of the actual (continuous-
time) closed loop system exponentially converges to the origin, on average, at
a rate not less than R/(T + 1). The particular structure of the problem can be
used to counteract the conservatism introduced in the computation of an upper
bound for the gain of Δ. Note that for k = −1, the state transition equation (7)
reduces to θ(t + 1) = θ(t) − T . The unit circle is thus uniformly quantized into
n quantization intervals, and the sampling rate is matched to the quantization
rate; that is, T = 2π

n .
For instance, suppose that the system can switch between gains k(0) = −1

(passive control) and gain k(1) = −3 (aggressive control), and where ρ(0) = 1,
ρ(1) = 2. The smallest value of design parameter n for which we can guaran-
tee convergence in this case is n = 10. The properties of the design procedure
for several choices of n are shown in Table 1. n is the number of quantization

Table 1. Data for the example

n T γ R R/(T + 1) p Plot color

10 0.6283 0.5 0.016 0.0098 13 Green
12 0.5236 0.4286 0.024 0.0158 16 Red
18 0.3491 0.4545 0.0275 0.0204 24 Blue
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Fig. 9. Implementation of the DFM Controller in the Illustrative Example

intervals, T is the corresponding sampling time, R is the guaranteed rate of ex-
ponential convergence of the sampled system, R/(T + 1) is the corresponding
guaranteed rate for the analog system, and p is the number of iterations needed
for convergence of the Value Iteration Algorithm. Simulated implementations of
the resulting controllers are shown in Figure 9.

6 Conclusions and Future Works

A new constructive approach for designing switching controllers to stabilize a
pair of homogeneous second order systems, based only on binary sensing, was
presented. The approach is inspired from classical robust control: the hybrid
plant is approximated by a model from the class of finite state machines mod-
els, and an upper bound on the gain of the approximation error is established.
A controller is then synthesized based on the nominal model such as to allow
us to guarantee closed loop stability of the original system using a small gain
argument.

While this approach can be generalized in principle to higher order systems
(for the purpose of stabilization, homogeneous systems of order n + 1 effectively
evolve on the n-sphere with unity radius), impractically large finite state machine
models may be required (the number of states grows exponentially with the order
of the original system). Future work will focus on addressing scalability issues,
as well as developing approaches for computing tighter bounds on Δ leading to
less conservative design. Another direction of future work will be quantifying the
robustness of the controllers designed using this approach to sensor noise.
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Abstract. In this paper, we propose a new approach for formal verifi-
cation of hybrid systems. To do so, we present a new refinement proof
technique, a weak refinement using step invariants. As a case study of
the approach, we conduct formal verification of the safety properties of
NASA’s Small Aircraft Transportation System (SATS) landing protocol.
A new model is presented using the timed I/O automata (TIOA) frame-
work [1], and key safety properties are verified. Using the new refinement
technique presented in the paper, we first carry over the safety verifica-
tion results from the previous discrete model studied in [2] to the new
model. We also present properties specific to the new model, such as
lower bounds on the spacing of aircraft in specific areas of the airspace.

1 Introduction

Hybrid systems are complex. In order to obtain a manageable mathematical
model of a real hybrid system, a certain level of abstraction needs to be taken.
A high-level abstraction of a system gives us a discrete state-transition model,
where timing-dependent and continuous behavior of a real system are abstractly
represented as discrete transitions. This high-level abstraction is particularly
useful for a system that has algorithmically complex behavior. For instance,
in [3], the initial start-up algorithm for the Time-Triggered Architecture [4] is
formally verified using such a high-level abstraction. An important question here
is whether the properties proved for the discrete abstraction hold for a real
system, or for a refined, more realistic model.

In this paper, we propose a new approach to formally verify a given hybrid
system. Basic concept of this approach is to use two levels of abstraction to
verify a given hybrid system. The low-level continuous model includes descrip-
tions of timing-dependent and continuous behavior, whereas in the high-level
discrete model, timing-dependent and continuous behavior are abstracted away.
Verification for these two models is done in the following steps.

1. First, the formal verification of the discrete model is conducted. This can be
done either by the invariant-proof technique, or a model-checking.

2. Next, to carry over verification results from the discrete model to the contin-
uous model, we prove a refinement from the continuous model to the discrete
model.
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3. Finally, by using invariants carried over from the discrete model, we prove
safety properties in the continuous model. Some of these properties immedi-
ately follow from the invariants carried over. On the other hand, some other
properties can be expressed only in the continuous model, since they involve
time-dependent or continuous behavior.

We technically contribute to the second step in the above stated approach.
We often need some invariants of both the discrete model and the continuous
model to prove a refinement. To make use of the invariants of the discrete model
to larger extent than the existing techniques, we introduce a new refinement
technique, called a weak refinement using step invariants. This technique differs
from the existing techniques in that, by using this, we can use invariants of the
discrete model in order to prove invariants of the continuous model needed for
a refinement proof. Since we can assert the fact that invariants of the discrete
model also hold for the continuous model only after proving a refinement be-
tween them, using the existing techniques causes a circular reasoning. Our new
technique, a weak refinement using step invariants, resolves this problem.

As a case study of an application of the newly presented approach and refine-
ment technique, we conduct a safety verification of the aircraft landing protocol
that is part of NASA’s Small Aircraft Transportation System (SATS) concept of
operation [5]. Some formal verification studies for this protocol have been con-
ducted so far. In [6], Dowek, Muñoz, and Carreño presented a state-transition
model of the protocol. This model was a discrete model in that the airspace
of airport is divided into several logical zones, and movements of aircraft are
represented as discrete transitions Using this discrete model, safety verification
of the model was done in [6], using a model-checking. The safety properties
the authors model-checked were key upper bounds on the number of aircraft
in the specific divided zones. In [7], Muñoz and Dowek extended their previ-
ous work [6] by presenting a hybrid model of the protocol, in which aircraft
in a specific portion of the airspace of the airport exhibit continuous behav-
ior, but movements of aircraft in the remaining portion are still discretized.
Using this model, in [7], the authors verified key spacing properties of aircraft
in the continuous portion of the hybrid model, using symbolic model-checking
technique. We previously presented in [2] invariant-proof-style verification of the
discrete model presented in [6]. In doing so, we first re-constructed the discrete
model of [6] using an untimed I/O automata (IOA) framework, and verified key
safety properties model-checked in [6] by using the invariant-proof technique. The
proof for this case study has been mechanically checked using the PVS theorem
prover [8].

In this paper, we present a new model of the protocol, ContSATS, which
represents the continuous model in our new approach for this case study. This
model more realistically reflects the dynamics of aircraft movement in a real sys-
tem than the previous models presented in [6] and [7]. In contrast to the previous
models, our new model captures continuous movements of aircraft in the entire
airspace of the airport. The model is constructed using the timed I/O automata
(TIOA) framework [1]. This framework and the hybrid I/O automata (HIOA)
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framework [9]1 have been used successfully to model several hybrid systems, such
as a helicopter controller [10], the Traffic Alert and Collision Avoidance System
[11] and a Lego car [12]. We first carry over the result from the discrete model
to ContSATS by proving a refinement, and then prove key spacing properties
of aircraft in ContSATS, which can be expressed by ContSATS, but not by
the discrete model.

This paper is organized as follows: In Section 2, we briefly explain the TIOA
framework, and introduce a new refinement technique. In Section 3, we quickly
review the discrete model of [6], and present key invariants of the model proved
in [2]. In Section 4, we introduce the new model ContSATS. Section 5 is devoted
to proving a refinement from ContSATS to the discrete model. In Section 6,
we present lower bounds on the spacing of aircraft in ContSATS. These are ob-
tained by using the results carried over from the discrete model by a refinement.
Finally, in Section 7, we summarize the results, and discuss some future work.

2 Timed I/O Automata Framework

In this section, we explain some basics of the timed I/O automata (TIOA) frame-
work [1]. In Section 2.2, we introduce a new refinement technique, a weak re-
finement using step invariants. We also present a theorem that states that this
refinement from automaton A to B implies that invariants of B also hold in A
in some specific sense.

2.1 Timed I/O Automata

A timed I/O automaton (TIOA) is a state transition machine with an extension
of continuous behavior. Every discrete transition is defined in a precondition-
effect style, and continuous behavior is defined using trajectories. A trajectory
is a partial function from a time to the current values of the state components
of the automaton. The domain of a trajectory must be some interval in the
time domain, and the size of the domain represents the duration that elapses
by that trajectory. A trajectory can be a point trajectory, whose domain is a
point [t, t], for some time t. The trajectories of an automata are specified by
the evolve and the stop when statement in the trajectory definition. In the
evolve statement, we state the rate of the value change of a real-time variable x
by differential equations or inequalities in terms of d(x), the first derivative of x.
Informally, the stop when statement specifies the time when we want the model
to perform some discrete transition. An execution fragment of an automata is
a (possibly infinite) alternating sequence of trajectories and discrete transitions
τ0a1τ1a2τ2... that satisfies the following three conditions: 1). Each trajectory
satisfies the constraints defined by the evolve and the stop when statements;
1 The latest version of the TIOA framework presented in [1] is the restricted version

of the HIOA framework in that external analog variables cannot be used for TIOA.
Since we do not have any analog variables in automata for our case study, the two
frameworks are intrinsically same in this study.
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2). ai+1 is enabled in τi.lstate (the last state of trajectory τi); 3). ai+1 represents
the transition from τi.lstate to τi+1.fstate (the first state of trajectory τi+1). We
call an execution fragment an execution if it starts with one of the designated
start states. We say that state s is a reachable state if there is an execution α
such that α.lstate = s. Informally, the trace of an execution is the externally
visible part of the execution. More formally, it is the alternating sequence of the
duration that elapses by the trajectory and the external transitions, such that
each duration matches up the duration of the corresponding trajectory in the
execution, and all internal transitions are hidden.

Let A be a TIOA. QA denotes the set of the states of A. ΘA denotes the set
of the start states of A. reachable(A) denotes the set of the reachable states of
A. tracesA denotes the set of the the traces of A. An invariant of automaton A
is a predicate over QA that is satisfied for any s ∈ reachable(A). A step of A
starting with state s is an execution fragment of A starting with s that consists
of either one discrete transition surrounded by two point trajectories, or one
closed trajectory with no discrete transition.

2.2 Weak Refinement Using Step Invariants

A refinement is a proof technique that has been used to show trace inclusion
between two automata A and B (tracesA ⊆ tracesB). Informally, the above
stated trace inclusion tells us that the external behavior of A does not go beyond
what we expect from B. In some cases, we want to use invariants of automata
in a proof of a refinement. A weak refinement2 has been used for such cases.
These refinement techniques, and simulation relations (more general version of
refinements) are well studies in the computer science community, and several
kinds of such simulation techniques for TIOA are summarized in [13].

In some cases (as we will see in Section 5), we actually need invariants of B
in order to prove some invariants of A needed in the proof of a refinement from
A to B. Since we can assert the fact that invariants of B also hold for A only
after proving a refinement from A to B, we end up with circular reasoning if we
use an existing refinement technique. This is why we need our new technique, a
weak refinement using step invariants. Informally, our solution to this problem
is to prove only the inductive case of the invariant proof for such invariants
of A, assuming some additional conditions. In the following, we present a new
definition of invariants that captures the above informal discussion.

Definition 1. Let A be a TIOA. Let P1 and P2 be predicates over QA. We say
that P1 is a step invariant of A using P2, or simply a step invariant using P2
when A is obvious from the context, if, for any reachable state s of A and any
step α of A starting with s, the following condition holds.

P1(α.fstate) ∧ P2(α.fstate) ⇒ P1(α.lstate)

2 This usage of the term “weak” here comes from [13]. We use this term since we
have more assumptions (namely, invariants of automata) in some conditions of the
definition of this refinement, than an ordinary refinement.
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That is, to show that P1 is a step invariant using P2, we prove only the step
condition of the invariant proof for P1, assuming the additional condition P2.
The following lemma easily follows from the definition of a step invariant.

Lemma 2. P1∧P2∧ ...∧Pn is a step invariant for automaton A using condition
Q if P1 is a step invariant of A using Q, and Pi, 2 ≤ i ≤ n, is a step invariant
of A using Q ∧ P1 ∧ ... ∧ Pi−1.

Now we define the new refinement. The main difference from the definition of
an ordinary weak refinement3 is that we assume an additional predicate P ∗ over
QA in the step condition (Conditions 2) of the refinement. This P ∗ must be a
step invariant using λs.PB(r(s))4, where PB is an invariant of B. This captures
the above informal discussion: since we need invariant PB of B in order to prove
that P ∗ is an invariant of A, we just require P ∗ to be a step invariant using
λs.PB(r(s)), invariant PB “adapted” to A using mapping r.

Definition 3. Let A and B be TIOA. Let PA be an invariant of A, and PB be
an invariant of B. Let r be a partial function from QA to QB. Let P ∗ be a step
invariant of A using λs.PB(r(s)).

We say that r is a weak refinement using PA, PB, and P ∗ if it satisfies the
following two conditions for all states xA and xB of A and B, respectively.

1. If xA ∈ ΘA then xA ∈ dom(r), r(xA) ∈ ΘB, and P ∗(xA) hold.
2. If α is a step of A, and α.fstate ∈ dom(r), and

PA(α.fstate) ∧ PB(r(α.fstate)) ∧ P ∗(α.fstate)
holds, then α.lstate ∈ dom(r) and B has a closed execution fragment β with
β.fstate = r(α.fstate), trace(β) = trace(α), and β.lstate = r(α.lstate).

We can prove the following soundness theorem for this new refinement technique.
A proof appears in the full version of this paper [14].

Theorem 4. Let A and B be TIOA and r be a weak refinement from A to B,
using PA, PB, and P ∗. Then tracesA ⊆ tracesB .

The existence of a refinement from A to B actually implies more than just trace
inclusion. Due to space limitation, we cannot present general theorems about
this close correspondence (they appear in [14]). Here we present one theorem
regarding invariants of automata.

Theorem 5. Let A and B be TIOA. Let r be a refinement, a weak refinement,
or a weak refinement using step invariants, from A to B. Let PB be an invariant
of B. Then, the predicate λs.PB(r(s)) is an invariant of A.
3 Due to space limitation, we cannot give the definition of an ordinary refinement or

that of a weak refinement in this paper. The definition appears in the full version of
this paper [14].

4 λs.PB(r(s)) is the function that, given s1 ∈ QA, returns PB(r(s1)).
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Theorem 5 is used in Section 5 to carry over the invariants of the discrete model
that have been proved in [2] to our new continuous model presented in Section 4.

Related works: The new refinement introduced in this section has a flavor
of assume-guarantee reasoning, which has also been applied to hybrid systems
[15,16]. Assume-guarantee reasoning is used for compositional verification of a
system. When we verify a composed system S1||S2, instead of verifying S1 and
S2 separately, we sometimes want to assume some properties of the system to
be composed with. For example, to prove that S1 works correctly, we may have
to assume that S2 “well behaves” in some particular sense. Assume-guarantee
techniques allows us to have deduction rules that if S1 is correct assuming S2 well
behaves and S2 is correct assuming S1 well behaves, then, the composed final
system S1||S2 is correct. In contrast to the existing assume-guarantee techniques,
with our new technique, we can assume that the high-level abstraction behaves
correctly in order to prove that the low-level abstraction has invariants needed
to prove the refinement. To our best knowledge, we have not seen any other
technique that uses assume-guarantee reasoning in the above sense.

3 Discrete Model

A discrete state-transition model of the SATS landing protocol is presented in
[6]. In this model, the airspace of the airport is discretized, and every movement
of the aircraft is represented as a transition of the model. In [2], we reconstructed
the model using the I/O automata framework. Due to space limitation, we cannot
present a formal description of the discrete model. However, we present a formal
description of our new model in Section 4, and also discuss differences between
the discrete model and the new model in the same section.

Aircraft: An aircraft is defined as a tuple that has two attributes: the mahf
assignment, mahf, which will be explained shortly, of type Side (an enumeration
of left and right); and a unique ID, id.

Logical zones: In the discrete model, the airspace of the airport is logically
divided into 13 zones (see Fig. 1). Each zone is modeled as a first-in first-out
queue of aircraft. A movement of aircraft is represented by moving an aircraft
from the head of one queue to the end of another queue. We refer to the T-shaped
area consists of base(right), base(left), intermediate, and final as the approach area.
This area is where aircraft perform the final approach to the ground.

Landing sequence: When an aircraft enters the system, the system assigns its
leader aircraft, or the aircraft it has to follow. This leader relation is used in the
protocol as a guard that delays the aircraft’s final approach initiation for safe
landings: an aircraft cannot enter the approach area until its leader has done so.
In our discrete model, we encode this notion of the leader aircraft as an explicit
queue of aircraft, called the landing sequence. When an aircraft enters the logical
zones, it is also added to the end of the landing sequence, and is removed when
it finishes landing. We define the leader of aircraft a as the aircraft just in front
of a in the landing sequence.
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Fig. 1. 13 logical zones in
the discrete model
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Paths of aircraft: Here we present a high level picture of aircraft movements
in the logical zones. All movements are represented by transitions, which are
described in the precondition-effect style. A transition moves one aircraft from
one zone to another in a way that it satisfies the rules specified in the protocol.
The paths of aircraft are depicted in Fig. 2. An aircraft may miss the approach
to the ground at the final zone. In such a case, it goes back to a holding fix
(either holding3 or holding2), and makes the next try to land. An aircraft needs
to determine the side of the holding fixes to which it goes in case it misses
the approach. For this purpose, the assignment of the side, called the missed
approach holding fix (mahf) is given to an aircraft when it enters the system.
These paths of missed aircraft are depicted in Fig. 3.

Properties: In [6], some interesting properties of the discrete model that express
safe separation of aircraft are presented and are exhaustively checked using an
exhaustive exploration technique. In [2], using the invariant-proof technique,
we proved key safety properties presented in [6]. Here we review some of the
properties proved in [2]. The following condition Φ is defined as the conjunction
of the listed seven conditions. An auxiliary predicate on approach qn(σ) checks
if there is some aircraft assigned σ as its mahf in the approach area. In the rest
of the paper, we refer to the first condition of Φ by Φ.1, the second condition by
Φ.2, and so on. In Section 5.1, we present auxiliary invariants of the new model
that is needed to prove a refinement as a step invariant using this Φ. It is worth
to note here that, Conditions 3, 4, and 5 cannot be derived from the main safety
properties taken from [6], but are derived from auxiliary lemmas to prove the
main properties. Since we need these three conditions in Φ to prove a refinement
in Section 5.2, this indicates that, by proving these auxiliary invariants, the
assertional-style techniques give us more insight to how the system works, than
an exhaustive exploration.

Condition Φ

1. ∀σ : side, length(holding3(σ)) ≤ 1 ∧ length(holding2(σ)) ≤ 1
2. ∀σ : side, ¬empty qn(lez(σ)) ⇒

empty qn(holding2(σ)) ∧ empty qn(holding3(σ)) ∧ empty qn(maz(σ))
3. first(final) = first(landing seq)
4. ∀σ : side, (on approach qn(σ) ∧ ¬empty qn(maz(σ))) ⇒ empty qn(holding3(σ))
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5. ∀σ : side, on approach qn(σ) ⇒ length(holding2(σ)) + length(holding3(σ)) ≤ 1
6. ∀σ : side, length(maz(σ)) ≥ 2 ⇒ empty qn(holding2(σ)) ∧ empty qn(holding3(σ))
7. ∀σ : side, ¬empty qn(maz(σ))) ⇒ length(holding2(σ)) + length(holding3(σ)) ≤ 1

4 Our New Continuous Model

In this section, we present our new continuous model, ContSATS, which more
realistically reflects the dynamics of the aircraft movement in a real system than
the discrete model or the hybrid model presented in [7]. In the hybrid model of [7],
the movement of the aircraft in the approach area and the missed approach zones
is modeled as continuous behavior. These areas are modeled as abstract lines5

representing paths of aircraft on which aircraft continuously move according to
their velocity vectors. Now a discrete transition for aircraft in the approach area
and the maz zones is performed when an aircraft reaches the intersection points
of the lines, in order to reassign the line on which that aircraft move.

To describe continuous dynamics of aircraft in the entire airspace of the air-
port, we use the same strategy as used for the hybrid model of [7]: in ContSATS,
we model the paths of aircraft predetermined by the protocol as a collection
of lines, with aircraft moving on them according to their velocity. (see Fig. 4,
and compare it with Fig. 2 and 3). In the new model, analogous to the hybrid
model of [7], we use transitions to re-assign the line on which aircraft move.
The pre-determined paths in ContSATS include holding points (holding3hold
and holding2hold in Fig. 4), where aircraft hover until the condition for the next
procedure (transition) is satisfied.

holding3hold(left)

holding2hold(left)

These two end points coincide.
We did not depict them in the same
picture to avoid a complication.

The missed paths for the right
side is analogously defined

base(right)lez(right)

maz(left)

holding3ma(left)

holding2ma(left)
holding3dec(left)

( )

intermediate

final

Fig. 4. Our new continuous model: ContSATS

4.1 Formal Specification for ContSATS

In this subsection, we present formal code for ContSATS, written in the TIOA
specification language [17]. We explain auxiliary constants and functions first.

The line on which a specific aircraft currently moves is specified by a new
attribute of aircraft, line. We use the prefix “LINE ” for the line names; for
example, the final zone as a line is represented as LINE final. The position of
5 These lines forms “trajectories” of aircraft flying on the pre-determined paths. How-

ever, we avoid using the term “trajectories”, and instead use “lines”, since the term
is also used in the TIOA framework and thus two usages may confuse the reader.
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a specific aircraft in the line is specified by another new attribute of aircraft,
pos. Using both the line value and pos value of a particular, we can uniquely
determine on which line, and at what position in that line that aircraft is now.

Another new attribute of aircraft is t, which is used to express a time bound for
some specific transitions to be performed. When one of the designated transitions
becomes enabled, the aircraft a corresponding to that transition (the aircraft that
will move by the transition) has its t value set to the current value of now. By the
stop when clause in the trajectory definition, ContSATS is guaranteed to fire
the transition corresponding to aircraft a either before or at the time the value of
now−a.t reaches the pre-determined time bound for that transition. T3, T2, and
TTax represents the time bounds for StartDescending, VerticalApproachInitiation,
and Taxiing, respectively. We use function T that maps the name of a zone to
the above specified time bounds for aircraft in that zone. We set t of aircraft
outside of the holding zones or of the runway to −1, indicating that a timer is
not set for those aircraft.

For simplicity, we assume that the lines are exactly symmetric on the right
and left sides of the airport. L3dec, L3ma, LB, LI, LF, and LM respectively represents
the lengths of holding3dec, holding3ma, base, intermediate, final, and maz. We use
the function L to represent the length of the line for a given line. We denote by
LT the length aircraft fly in the entire approach area, that is, LB + LI + LF. We
use the function D to represent the distance a specific aircraft has flown in the
approach area, and then in the missed approach zone; for example, if aircraft a is
in final, D(a) = LB+LI+a.pos, and if a is in maz(σ), D(a) = LB+LI++LF+a.pos.
If an aircraft is not in the approach area nor in the missed approach zones, the
D function returns 0.

The velocity of the aircraft is bounded by some constants. This constraint is
specified in the evolve statement in the trajectory definition.

We present formal code for ContSATS in the following. Due to space limita-
tion, we only show the definitions of three transitions (VerticalApproachInitiation,
MissedApproach, and LowestAvailableAltitude), and the trajectory definition. The
full specification appears in [14]. The above three transitions are chosen because
of the following three reasons. 1: VerticalApproachInitiation is one of the most
interesting transitions, which represents an initiation of the aircraft’s final ap-
proach to the ground. The precondition of the transition represents the guard so
that an aircraft cannot initiate its approach until its leader has done so and the
separation between the aircraft and its leader becomes at least S0. 2: MissedAp-
proach is also an interesting transition, which represents missed approaches of
aircraft. As we can see from the precondition, this transition is preformed nonde-
terministically whenever an aircraft reaches the end point of the final line (a.pos
= LF). 3: In addition to the extra structure needed to represent the continu-
ous behavior (such as now, pos, or the trajectory definition), we also modified
three transitions inherited from the discrete model, in order to more faithfully
represent a real system (how we modified them is explained in [14]). These are
LowestAvailableAltitude, Landing, and HoldingPatternDescend. Due to this mod-
ification, we need some nontrivial auxiliary invariants of ContSATS to prove
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a refinement from ContSATS to the discrete model. As we will see in Section
5.1, these invariants are proved as step invariants using Φ (Corollary 7). In this
paper, we focus on LowestAvailableAltitude among the three transitions.

We use three effects set pos, set line, and set t to re-assign the pos, line, and t
attributes of aircraft, respectively. The code of the automaton imports a vocabu-
lary, ContSatsVocab, where auxiliary functions used in ContSATS are defined.
We do not have a space to explain all these functions (it appears in [14]), but
will explain those we need for the lemma statement and the proof. leader(a, land-
ing seq) represents the leader of aircraft a in the landing sequence. The predicate
on approach qn(a) where a is an aircraft checks if a is in the approach area. The
predicate on approach qn(σ) where σ is a side checks if there is some aircraft
assigned to σ as its mahf in the approach area. The predicate on zone qn(z, a)
checks if aircraft a is in zone z.
——————————————————————————————————
automaton ContSATS

imports ContSatsVocab

%% All original discrete transitions are considered as the output transitions.
%% We added four new internal transitions, as well as the trajectory definition.
signature
output

VerticalEntry(ac:Aircraft, id:ID, side:Side), LateralEntry(ac:Aircraft, id:ID, side:Side),
HoldingPatternDescend(ac:Aircraft,side:Side), VerticalApproachInitiation(ac:Aircraft,side:Side),
LateralApproachInitiation(ac:Aircraft,side:Side), Merging(ac:Aircraft,side:Side),
Exit(ac:Aircraft), FinalSegment(ac:Aircraft), Landing(ac:Aircraft), Taxiing(ac:Aircraft),
MissedApproach(ac:Aircraft), LowestAvailableAltitude(ac:Aircraft,side:Side),

internal
StartHolding2(ac:Aircraft,side:Side), StartHolding3(ac:Aircraft,side:Side),
StartDescending(ac:Aircraft,side:Side), SetTime

states
zones : zone map, % mapping from a zone name to a zone
nextmahf : Side, % Next missed approach holding fix
landing seq : Zone % landing sequence is defined as a queue
now : AugumentedReal % the time elapsed from the initial state
initially

zones = initialZones ∧ nextmahf = right ∧ landing seq = empty ∧ now = 0

%% Definitions of auxiliary functions are not shown in this code due to space limitation.

transitions
output VerticalEntry(a, id, side)

output LateralEntry(a, id, side)

internal StartDescending(a, side)

output HoldingPatternDescend(a, side)

output VerticalApproachInitiation(a, side)
pre ¬(empty qn(holding2(side))) ∧

a = first(holding2(side)) ∧
length(base(opposite(side))) ≤ 1 ∧
(first in seq qn(a) ∨

(on approach qn(leader(a,landing seq)) ∧
D(leader(a,landing seq)) ≥ S0))

eff set line(a, AC base(side)); set pos(a, 0);
set t(a, -1);
zones := move(holding2(side),base(side),zones)

output LateralApproachInitiation(a, side)

internal SetTime

output Merging(a, side)

output Exit(a)

output FinalSegment(a)

output Landing(a)

output Taxiing(a)

output MissedApproach(a)
pre ¬(empty qn(final)) ∧ ¬(empty qn(landing seq))
∧ a = first(final) ∧ a.pos = LF

eff set line(a, AC maz(a.mahf)); set pos(a, 0)
zones:= assign(zones, final, rest(final));
zones:= assign(zones, maz(a.mahf),

add(maz(a.mahf),reassign(a)));
landing seq := add(rest(landing seq),reassign(a));
nextmahf := opposite(reassign(a).mahf);
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output LowestAvailableAltitude(a, side)
pre ¬(empty qn(maz(side))) ∧

a = first(maz(side)) ∧ a.pos = LM;
eff IF empty qn(holding3(side)) ∧

empty qn(holding2(side))
THEN set line(a, AC holding2ma(side));

set pos(a,0);
zones := move(maz(side),holding2(side),zones);

ELSE set line(a, AC holding3ma(side));
set pos(a,0)

zones := move(maz(side),holding3(side),zones);
FI

internal StartHolding3(a, side)

internal StartHolding2(a, side)

trajectories
stop when

(∃ a:Aircraft,
(∃ z:Zone, on zone qn(z, a)) ∧
a.pos ≥ L(a.line))

∨ (∃ a:Aircraft,
(∃ z:Zone, on zone qn(z, a)) ∧
a.t 	= −1 ∧ now − a.t ≥ T(a.line))

∨ (∃ a:Aircraft,
(∃ z:Zone, on zone qn(z, a)) ∧
((a.line = holding2L ∨ a.line = holding2R)∧

a.t = −1 ∧ ¬first in seq qn(a) ∧
on approach qn(leader(a,landing seq)) ∧
D(leader(a,landing seq)) = S0))

evolve
d(now) = 1
∀ a: Aircraft
IF (a.line=holding3decL ∨ a.line=holding3decR)
THEN (Vd min ≤ d(a.pos) ≤ Vd max)
ELSE (Vmin ≤ d(a.pos) ≤ Vmax) FI

——————————————————————————————————

In order to obtain a refinement, we have to assume the following condition:
(L3ma

Vmin
+ T3 + L3dec

Vd min
)Vmax < LT + LM. This is used in the refinement proof in the

case of the LowestAvailableAltitude transition.

5 Carrying over the Results from the Discrete Model
Using a Refinement

In [2], we formally verified the safe separation of aircraft in the discrete model,
by proving bounds on the number of aircraft in the logical zones. If we can carry
over these results to ContSATS, the properties carried over tell us important
spacing properties in ContSATS. For example, from the property that there
is at most one aircraft in one holding3(σ), we can guarantee that two aircraft
would never get close in the holding3 line in ContSATS. On the other hand,
we cannot guarantee spacing properties of two aircraft on two adjacent lines
from the properties of the discrete model. Some of these properties are actually
proved as auxiliary lemmas for the refinement. We also examine several spacing
properties in Section 6.

To make the discrete model (an ordinary IOA) comparable to ContSATS (a
TIOA), we first construct ExtSATS, a natural extension of the discrete model
to a TIOA. This extension can be done in the following generic way: Given an
ordinary IOA A, we construct A′ that is an timed extension (TIOA version)
of A. First, in A′, we add a new now state component to A which evolves at
rate 1 (d(now) = 1). There is no stop when statement for A′, and all discrete
transitions are exactly the same as before the extension. From this straightfor-
ward extension, it is easy to see that all invariants of A are also invariants of A′.
From Theorem 5, if we prove a refinement from ContSATS to ExtSATS, any
invariant of ExtSATS is guaranteed to be an invariant of ContSATS.
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One straightforward refinement mapping to consider (and actually the one
we use for the refinement proof) is the following mapping r from a state of
ContSATS to a state of ExtSATS: for all s ∈ QContSATS, r(s) = t such that
zones equal(s.zones, t.zones) ∧ s.nextmahf = t.nextmahf ∧
queue equal(s.landing seq, t.landing seq) ∧ t.now = s.now,

where zones equal and queue equal represent the equalities for two zone maps
and two aircraft queues, respectively, defined by ignoring the new attributes
of aircraft in ContSATS, such as pos (formal definitions appear in [14]). This
mapping r maps a state of ContSATS to a state of ExtSATS so that every
component of the state of ContSATS matches the corresponding component of
the state of ExtSATS. Note that such a state r(s) in ExtSATS is uniquely
determined for every state s of ContSATS, since the above conditions specify
all components of ExtSATS.

It turns out that we have to use a weak refinement using step invariants
introduced in Section 2.2 for this mapping r. This is because in order to prove
some invariants of ContSATS needed to prove a refinement, we actually need
some invariants of ExtSATS that have been verified.

5.1 Auxiliary Invariants

In this subsection, we present the auxiliary invariants needed for the refinement
proof. Due to space limitation, we cannot present a proof for these auxiliary
invariants (it appears in [14]). We use Condition Φ defined in Section 3 as a
state proposition of ContSATS.

Lemma 6. Consider the following conditions A1, A2, B, C1, and C2.
(A1) : ∀a, b : Aircraft, ∀σ : side, on approach qn(a)∧

a.mahf = σ ∧ on zone qn(holding3(σ), b) ⇒ (1) ∧ (2) ∧ (3)

(1) b.line = LINE holding3ma(σ) ⇒ D(a) ≤ b.pos
Vmin

· Vmax.
(2) b.line = LINE holding3hold(σ) ⇒ D(a) ≤ ( L3ma

Vmin
+ (now − b.t)) · Vmax.

(3) b.line = LINE holding3dec(σ) ⇒ D(a) ≤ ( L3ma
Vmin

+ T3 + b.pos
Vd min

) · Vmax.

(A2) : ∀a, b : Aircraft, ∀σ : side, on zone qn(maz(σ), a)∧
on zone qn(holding3(σ), b) ⇒ (1) ∧ (2) ∧ (3)

(1) b.line = LINE holding3ma(σ) ⇒ D(a) ≤ b.pos
Vmin

· Vmax.
(2) b.line = LINE holding3hold(σ) ⇒ D(a) ≤ ( L3ma

Vmin
+ (now − b.t)) · Vmax.

(3) b.line = LINE holding3dec(σ) ⇒ D(a) ≤ ( L3ma
Vmin

+ T3 + b.pos
Vd min

) · Vmax.

(B) : ∀a : Aircraft, ∀σ : side,

(on zone qn(holding3(σ)) ∧ a.line = LINE holding3dec(σ)) ⇒ empty qn(holding2(σ)).

(C1) : ∀a : Aircraft, (on approach qn(a) ∧ ¬first in seq qn(a)) ⇒
D(leader(a, landing seq)) − D(a) ≥ S0 − D(leader(a,landing seq))−S0

Vmin
(Vmax − Vmin).

(C2) : ∀a, b : Aircraft, (on zone qn(runway, a) ∧ on approach qn(b)) ⇒
now − a.t ≥ D(b)−(LT−ST)

Vmax
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The following conditions hold:

1. A1, B, and C1 are step invariants using Φ.
2. A2 is a step invariant using Φ and A1.
3. C2 is a step invariant using Φ and C1.

From Lemmas 2 and 6, we have the following corollary.

Corollary 7. The conjunction A1 ∧A2 ∧B ∧C1 ∧C2 forms a step invariant of
ContSATS using Φ.

Conditions A2, B, and C2 are used in the refinement proof (Theorem 8) for
transitions LowestAvailableAltitude, HoldingPatternDescend, and Taxiing, respec-
tively. Recall that these three transitions are modified from those in the original
discrete model, so that ContSATS more realistically models a real system. This
is why we need these nontrivial conditions A2, B, and C2 in the refinement
proof, in order to show that the modified transitions of ContSATS matches
with the original transitions of the discrete model. In the proof sketch of Theo-
rem 8, we demonstrate how A2 is used in the case of LowestAvailableAltitude in
the refinement proof.

5.2 Refinement Proof

Now we prove a refinement from ContSATS to ExtSATS. We use the mapping
r defined in the beginning of Section 5. We use InvCont, some auxiliary invariants
of ContSATS proved in [14], and InvExt, invariants of the discrete model (and
thus of ExtSATS) proved in [2]. We use A1∧A2∧B∧C1∧C2 as a step invariant
using InvExt (since InvExt implies Φ).

Theorem 8. The function r is a weak refinement from ContSATS to ExtSATS
using InvCont, InvExt, and A1 ∧A2 ∧B ∧ C1 ∧C2.

Proof sketch: Condition 1 is easy to prove.
Condition 2: Suppose α is a step of A. We refer to α.fstate as s and α.lstate as s′

in the following. It is easy to see that s′ ∈ dom(r) since r is a total function. We
also assume invariants of ContSATS, Conditions Φ, and A1 ∧A2 ∧B ∧C1 ∧C2
hold in s. We demonstrate how a proof goes for Condition 2 by proving the case
of the LowestAvailableAltitude(σ) transition. We use Condition A2 for this case.

Suppose α consists of one LowestAvailableAltitude(σ) transition. From the pre-
condition of the transition, there is at least one aircraft in maz(σ) in s, and thus
also in r(s). It follows that LowestAvailableAltitude(σ) is enabled in r(s), and
thus an execution fragment β of ExtSATS starting with r(s) that consists of
one LowestAvailableAltitude(σ) is a valid execution fragment of ExtSATS. It is
easy to see trace(α) = trace(β). Now we prove β.lstate = r(s′). If holding3(σ)
is empty in s, LowestAvailableAltitude(σ) actually has the exact same effects
in ContSATS and ExtSATS (see [14]). Hence it is sufficient to prove that
holding3(σ) is empty in s. From the precondition, there is an aircraft a such that
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a.pos = LM, and a.line = LINE maz(σ). From Condition A2 and an invariant of
ContSATS: ∀b : Aircraft, b.pos ≤ L(b.line) (this can be easily proved by induc-
tion), if holding3(σ) is not empty, then a.x = LM ≤ (L3ma

Vmin
+T3 + L3dec

Vd min
)Vmax −LT.

This contradicts the assumption that (L3ma
Vmin

+ T3 + L3dec
Vd min

)Vmax < LT + LM. �
From Theorems 8 and 5, we have the following corollary.

Corollary 9. Let P be an invariant of ExtSATS. Then λs.P (r(s)) is an in-
variant of ContSATS.

6 Spacing Properties of Aircraft in ContSATS

In the previous section, by using a refinement technique, we proved as Corollary
9 that all invariants of the discrete model of SATS that have been proved in [2]
are also invariants of ContSATS. For example, from Φ.1 (the number of aircraft
in each vertical fix is at most one), we can guarantee two aircraft would never
get close in holding2 and holding3 zones in ContSATS. This kind of spacing
properties of ContSATS are derivable from the invariants of the discrete model,
and they express the safe separation of aircraft in one specific zone (represented
by a line in ContSATS). However, one might be interested in the safe separation
of aircraft in two consecutive zones. In this section, we conclude the analysis
of safe separation properties for ContSATS in this paper, by presenting such
spacing properties for all pairs of consecutive zones in ContSATS. The spacing
between two aircraft is defined as the distance of the two aircraft with respect
to the pre-determined paths of ContSATS.

holding3dec(right)

base(right)lez(right)

holding3ma(left)

holding2ma(left)

maz(left)

S(H3,B)

S(L,B) ST

S(T,M)

SM

S(M,H3)

S(M,H2)

’

holding2hold(right)
S(H3,B) L3dec − L3dec

Vmaz
(Vmax − Vmin)

S(L,B) Ll − Ll
Vmaz

(Vmax − Vmin)

ST S0 − LT−S0
Vmin

(Vmax − Vmin)

S(T,M) S0 − LT
Vmax

(Vmax − Vmin)

S′
M 2S0 − (LT + LM − S0)Δ

S(M,H2) (1 + Vmin
Vmax

)S0 − Vmax−Vmin
Vmax

(LT + LM)

S(M,H3) LM + LT − L3maΔ.

Fig. 5. Lower bounds on the spacing of aircraft in two consecutive zones in ContSATS

An overview of the spacing properties of aircraft in two consecutive zones
that we have proved in [14] is depicted in Figure 5. Each bi-directional arrow in
the picture represents a lower bound on the spacing of aircraft. We have proved
these properties by induction over the length of the execution of ContSATS. To
do so, we used invariants carried over from the discrete model to ContSATS,
by Corollary 9. Among these spacing properties, ST and S′M are the ones model-
checked in [7] (we actually obtained a better bound for S′M than [7], using some
reasonable assumption stated in [14]).
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7 Conclusion

In this paper, we presented a new approach to verify a given hybrid system.
For the new approach, we introduced a new refinement proof technique, a weak
refinement using step invariants. To demonstrate how the approach can be used,
we conduct formal verification of NASA’s SATS aircraft landing protocol. We
believe that this approach is highly applicable to other hybrid systems as well.
Proving the soundness of the abstraction used in [3] for a start-up algorithm of
TTA by this approach appears one possible interesting future work.

Acknowledgment. we thank anonymous reviewers for their fruitful comments
on an earlier version of this paper.
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7. Muñoz, C., Dowek, G.: Hybrid verification of an air traffic operational concept.
In: Proceedings of IEEE ISoLA Workshop on Leveraging Applications of Formal
Methods, Verification, and Validation, Columbia, Maryland (2005)

8. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification sys-
tem. In Kapur, D., ed.: 11th International Conference on Automated Deduction
(CADE). Volume 607 of Lecture Notes in Computer Science., Saratoga, NY (1992)
748 – 752

9. Lynch, N., Segala, R., Vaandraager, F.: Hybrid I/O automata. Information and
Computation 185(1) (2003) 105–157

10. Mitra, S., Wang, Y., Lynch, N., Feron, E.: Safety verification of model helicopter
controller using hybrid Input/Output automata. In: HSCC’03, Hybrid System:
Computation and Control, Prague, the Czech Republic (2003)



572 S. Umeno and N. Lynch

11. Livadas, C., Lygeros, J., Lynch, N.A.: High-Level Modeling and Analysis of the
Traffic Alert and Collision Avoidance System (TCAS). Proceedings of the IEEE,
Special Issue on Hybrid Systems: Theory & Applications 88(7) (2000) 926–948

12. Fehnker, A., Zhang, M., Vaandrager, F.: Modeling and verifying a lego car using
hybrid I/O automata. In: Third International Conference on Quality Software
(QSIC 2003), Dallas, Texas, USA, IEEE Computer Society Press (2003)

13. Lynch, N., Vaandrager, F.: Forward and backward simulations – part II: Timing-
based systems. Information and Computation 128(1) (1996) 1 – 25

14. Umeno, S.: Proving safety properties of an aircraft landing protocol using timed
and untimed I/O automata: a case study. Master’s thesis, Massachusetts Institute
of Technology, Cambridge, MA (2006)

15. Henzinger, T.A., Minea, M., Prabhu, V.: Assume-guarantee reasoning for hierar-
chical hybrid systems. In: Proc. of HSCC’01, Hybrid Systems: Computation and
Control. Volume 2034 of Lecture Notes in Computer Science. (2001) 275 – 290

16. Frehse, G., Han, Z., Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: CDC 2004: IEEE
Conference on Decision and Control. (2004)

17. Garland, S.: TIOA User Guide and Reference Manual. (2005)



Rate Admission Control for

Hard Real-Time Task Scheduling

Vladimiro Vacca, Francesco Vasca, and Luigi Iannelli

Department of Engineering, University of Sannio,
Piazza Roma 21, 82100 Benevento, Italy

vasca@unisannio.it
http://www.grace.ing.unisannio.it

Abstract. Hard real-time scheduling problem of periodic tasks in the
presence of aperiodic tasks occurrence is analyzed. A hybrid model of the
tasks and of the Earliest Deadline First scheduling policy is proposed
and its translation into a Mixed Logical Dynamic model is presented.
The model is used to design an optimal admission controller that selects
the best feasible period for the periodic tasks based on the prediction of
the processor utilization.

1 Introduction

In many real-time applications, such as in space avionics [1], periodic activi-
ties represent the major computational demand in the system. Periodic tasks
typically arise from sensory data acquisition, low level servoing, control loops,
action planning, and system monitoring. Such activities need to be cyclically ex-
ecuted at specific rates, which can be derived from the application requirements.
When an application consists of several concurrent periodic tasks with individual
timing constraints, the real-time operating system has to guarantee that each
periodic instance is regularly activated at its proper rate and is completed within
its deadline [2]. Such constraints can be hard (as in most control systems) or soft
(as in multimedia systems). In hard real-time systems the scheduling problem is
eventually complicated by the occurrence of external events, related for instance
to emergency or fault operating conditions that imply the activation of aperiodic
tasks.

Classical real-time scheduling algorithms are usually based on a priori knowl-
edge of resource requirements, precedence constraints, resource contention, and
future arrival times [3]. When the new task activations are not known a pri-
ori, a dynamic scheduling technique should be adopted. Earliest Deadline First
(EDF) is an efficient dynamic scheduling algorithm in resource sufficient envi-
ronments [4], however its performance degrades rapidly in overload situations.
The Spring scheduling algorithm [5] can dynamically guarantee incoming tasks
via on-line admission control and planning and thus it is applicable in resource
insufficient environments. Roughly speaking the main idea consists of selecting
the period of the task to be admitted into the scheduler queue so that schedula-
bility and some desired performance (i.e. Quality of Service, QoS) are achieved.
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In the presence of resource insufficient environment or unpredictable events, the
admission control can be much improved by using a feedback of the actual state
of the scheduler queue and processor [6]-[8]. Dynamic feedback with an elastic
scheduling model and period adjustment algorithms have been proposed for soft
real-time application with flexible workload such as multimedia systems [9]-[11].
In multimedia applications, when a reservation-based CPU scheduling policy is
used, the issue of dynamically adjusting the bandwidth for a set of periodic tasks
has been also solved by proposing a QoS control strategy [12]-[13]. A feedback
scheduler for digital control systems has been presented in [14]. In [15] another
feedback scheduling scheme based on predictive control has been presented in
order to dynamically adjust the reserved processor time for each task, and thus
to optimize the performance. In [16] a feedback-based admission controller was
designed to maintain desired utilization of an Apache Web server. A feedback
control real-time scheduling framework was proposed in [17] to provide perfor-
mance guarantees for real-time systems with unknown task execution times.

In this paper we investigate the hard real-time periodic tasks scheduling sce-
nario in the presence of aperiodic tasks. An interesting approach that uses timed
automata for modeling and simulation analysis of dynamic task scheduling prob-
lem is proposed in [18]-[19]. Here we deal with the problem by using a different
modeling framework: a hybrid model of the scheduling process represented into
a Mixed Logical Dynamic (MLD) form is proposed. Moreover, by assuming an
EDF scheduling policy, an admission controller, based on the feedback of the
CPU queue state and on the prediction of the processor utilization, selects the
“best” periods of the tasks to be admitted into the CPU queue. The controller
selects the shortest tasks periods (associated to the highest QoSs) so that schedu-
lability is ensured also in the presence of the aperiodic task. The optimal ad-
mission controller is designed by using mixed integer linear programming based
on the MLD model. The performance of the proposed solution are evaluated
through simulations based on a realistic C-written scheduling code.

2 Hybrid Model for Task Scheduling

At each time unit (or step) k the scheduler has to dispatch a single task execution
time unit to the processor by considering a task sorting policy (scheduling policy)
into the ready task queue and the periodic activations of the tasks (see Fig. 1).

Let us consider a set of periodic tasks τi, i ∈ I ≡ {1, ..., N}. Without loss of
generality, for the sake of simplicity in the sequel we assume zero initial phase
and relative deadline equal to the task period. Thus each ith task is identifiable
by the triple of Worst Case Execution Time (WCET) Ci, task period Ti and
absolute deadline di. Since Ci and (for the moment) Ti are fixed task parameters
in a general periodic task scheduler, the task scheduling modeling can be only
focused on the task absolute deadline di, which also plays an important role in
the EDF preemption. The task absolute deadline updating can be modeled as
follows:

di(k + 1) =
{

di(k) if xc(k) + 1 < di(k)
di(k) + Ti if xc(k) + 1 = di(k) (1)
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Fig. 1. Rate admission control scheme with EDF scheduler. Note that tasks preemption
is also allowed.

with di(0) = Ti and where xc(k) is a discrete time counter variable defined as

xc(k + 1) = xc(k) + 1 (2)

with xc(0) = 0. By indicating with S(k) the task dispatched at time instant k,
i.e. S(k) = i means that a unit of the ith task is in execution between k and
k + 1, the EDF scheduling function can be described as follows:

S(k) = arg min
i∈Γ (k)

{di(k)} (3)

where Γ (k) is the subset of tasks included in the ready task queue at time step k.
Thus (1)–(3) can represent an hybrid model of EDF task scheduler. In order to
estimate the processor utilization it is necessary to define a more detailed task
model, which is able to dynamically describe also the variable task execution
time and the deadline keeping of each task instance. For such purpose the task
execution time Ei(k) is introduced, which depicts the time units of the task
already executed. The corresponding dynamics are modeled as

Ei(k + 1) =
{

Ei(k) if S(k) �= i
Ei(k) + 1 if S(k) = i

(4)

with Ei(0) = 0. A reset condition for the execution time when a time instant
multiple of the task period has been reached must be used. Therefore (4) can be
replaced by

Ei(k + 1) =

⎧⎪⎪⎨
⎪⎪⎩

Ei(k) if S(k) �= i, k �= nTi

Ei(k) + 1 if S(k) = i, k �= nTi

0 if S(k) �= i, k = nTi

1 if S(k) = i, k = nTi

(5)

where n = 0, 1, 2, . . . , and we assumed that a task can be dispatched at the same
time instant in which it has been released by the admission controller. Note that
the deadline keeping condition can be expressed as Ei(nTi) = Ci.
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The task execution time variable allows to model more precisely the EDF
scheduler. Indeed, in our framework the scheduling is based on a ready-task-
queue in which a task dispatched could enter again into the queue because of a
preemption policy, until it is fully executed. In order to model the queue state
during EDF scheduling policy it is necessary to introduce two more variables:
a binary variable INQi(k) for checking the full execution of the ith task and
its consequent exit from queue, and an integer variable DINQi(k) which masks
with a large integer, say M � max

i∈I
di(k), the deadline of a task fully executed

and not already rescheduled until the next release time. We consider DINQi(k)
as a virtual task deadline defined in order to model the EDF preemption by not
excluding the tasks out of the task ready queue at time instant k. The variables
INQi(k) and DINQi(k) can be modeled as follows:

INQi(k) =
{

0 if Ei(k) = Ci

1 if Ei(k) < Ci
(6)

DINQi(k) =
{

di(k) if INQi(k) = 1
M if INQi(k) = 0.

(7)

Since the EDF policy is based on dispatching the task with minimum absolute
deadline and we consider all tasks (i.e. i ∈ I including also the tasks which are
out of the task ready queue), the scheduling function (3) can be replaced by

S(k) = arg min
i∈I

{DINQi(k)}. (8)

Typical aperiodic tasks in real-time control systems are linked to fault condi-
tions or they are reaction tasks to unpredictable events. These tasks, which will
be indicated with the īth index, can be characterized by a known WCET Cī and
by a very short deadline for a fast reactivity to the faults in order to carry out
some recovery operations. Since the aperiodic task must be executed without
preemption, its task execution updating can be modeled as

Eī(k + 1) =
{

0 if S(k) �= ī
Eī(k) + 1 if S(k) = ī .

(9)

In this scenario we can associate to the occurring of a fault or an unpredictable
event a binary variable δī(k) which is 1 for one step when a fault or an event
happens. By considering this binary variable, the inclusion of the aperiodic task
into the ready queue can be modeled as follows:

INQī(k) =
{

0 if (δī(k) = 0) ∧ (Eī(k) = Cī)
1 if (δī(k) = 1) ∨ (0 < Eī(k) < Cī)

(10)

DINQī(k) =
{

0 if INQī(k) = 1
M if INQī(k) = 0 (11)

such that when a fault happens the aperiodic task is included into the ready
queue and immediately it is dispatched because of its zero virtual deadline.
Thus (1)-(2) together with (5)-(9) represent the scheduling model of a mixed
task set.
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3 Mixed Logical Dynamical Task Scheduling Model

In order to design a control strategy for the tasks periods selection it is useful
to transform the previous scheduling model into a MLD form [20]-[21].

3.1 Task MLD Model

The hybrid dynamics represented by (1) are ruled by the quantity xc(k) + 1 −
di(k). We can define a binary variable δd3i(k) ∈ {0, 1} such that

[δd3i(k) = 1] ⇔ [xc(k) + 1 − di(k) = 0]. (12)

By using the condition xc(k) + 1 ≤ di(k), which is valid ∀k and ∀i, we can
rewrite (1) as

di(k + 1) = di(k) + δd3i(k)Ti. (13)

Since the MLD framework deals with linear inequalities, we have to repre-
sent (12) as a set of inequalities. The first step is to rewrite the equivalence (12)
by introducing two further binary variables δd1i(k) ∈ {0, 1} and δd2i(k) ∈ {0, 1}
as

[δd1i(k) = 1] ⇔ [xc(k) + 1 − di(k) ≤ 0] (14)

[δd2i(k) = 1] ⇔ [xc(k) + 1 − di(k) ≥ 0] (15)

such that δd3i(k) = δd1i(k)∧δd2i(k). The previous logical condition can be trans-
formed by considering the equivalence

[δd3i(k) = δd1i(k) ∧ δd2i(k)] ⇔

⎧⎨
⎩

−δd1i(k) + δd3i(k) ≤ 0
−δd2i(k) + δd3i(k) ≤ 0
δd1i(k) + δd2i(k) − δd3i(k) ≤ 1

(16)

that is trivial to prove. In order to obtain a set of inequalities which replace (14)-
(15), we use the BigM approach and transformations shown in [20]. Indeed the
right hand side of (14) can be expressed as a set of inequalities by considering
the following equivalence [22]

[xc(k) + 1 − di(k) ≤ 0] ⇔
{

xc(k) + 1 − di(k) ≤ Mdi(1 − δd1i(k))
xc(k) + 1 − di(k) ≥ ε + (mdi − ε)δd1i(k) (17)

where mdi(Mdi) is an under(over)-estimate of the minimum (maximum) of
xc(k) + 1 − di(k) and ε is a small positive scalar. Moreover it is simple to prove
also the following equivalence:

[xc(k) + 1 − di(k) ≥ 0] ⇔
{

xc(k) + 1 − di(k) ≥ −Mdi(1 − δd2i(k))
xc(k) + 1 − di(k) ≤ −ε + (−mdi + ε)δd2i(k) (18)

Thus, the absolute deadline evolution of each periodic task can be represented in
the form (13) subject to the linear inequality constraints reported in (16), (17)
and (18).
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In order to represent the task execution time evolution (4) in MLD form,
we use the same approach presented for the conversion of (1). By introducing
the binary variables δS1i(k), δS2i(k), δS3i(k), the updating logic of (4) can be
represented by the condition

[δS3i(k) = 1] ⇔ [S(k) − i = 0]. (19)

The model (4) can now be rewritten in the following MLD form:

Ei(k + 1) = Ei(k) + δS3i(k) (20)

subject to linear inequality constraints similar to (16)-(18) with δS playing the
role of δd and S(k)−i replacing xc(k)+1−di(k). For the reset condition reported
in (5) one can substitute (20) with

Ei(k + 1) = Ei(k) + δS3i(k) − δd3i(k) · Ei(k). (21)

In order to recast (21) in a mixed integer linear programming problem, we in-
troduce a new auxiliary integer variable ZEi(k) = δd3i(k) · Ei(k) by considering
the linear constraints

ZEi(k) ≤ MEiδd3i(k)
ZEi(k) ≥ mEiδd3i(k)
ZEi(k) ≤ Ei(k) − mEi(1 − δd3i(k))
ZEi(k) ≥ Ei(k) − MEi(1 − δd3i(k)).

(22)

Thus we can express (5) in MLD form as follows:

Ei(k + 1) = Ei(k) + δS3i(k) − ZEi(k) (23)

subject to the linear inequality constraints on δSi(k), ZEi(k) and S(k) − i.
It is interesting to note that the variable ZEi(k) can be also used to model,

i.e. to impose, the condition that deadlines must not be violated. Indeed one can
write

ZEi(k) = δd3i(k) · (Ci − δS3i(k)) (24)

which means that if next step is a deadline for the ith task, i. e. δd3i(k) = 1,
then it must be Ei(k) = Ci − 1 if S(k) = i or Ei(k) = Ci if S(k) �= i. The
condition (24) can be simply rewritten in MLD form.

Then, the MLD periodic task model can be expressed by using the dynamic
equations (13) and (23) with linear inequality constraints. In [22] are reported
the details showing that by using a similar procedure also the aperiodic task
model can be reformulated in the MLD formalism. In order to complete the
model we now need to transform in MLD form the scheduling function (8) that
determines the task to be executed.

3.2 Scheduler MLD Model

The scheduler model can be obtained by considering the variables INQi(k),
DINQi(k) and S(k). The static model (6) is ruled by the relation between the
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values of Ei(k) and Ci, to which we can associate a binary variable δE3i(k) ∈
{0, 1} such that

[δE3i(k) = 1] ⇔ [Ei(k) < Ci] (25)

Then, we can rewrite (6) as

INQi(k) = δE3i(k). (26)

Since by definition Ei(k) is never greater than Ci, the equivalence (25) can be
rewritten as

[δE3i(k) = 1] ⇔ [Ei(k) �= Ci] (27)

In order to replace (27) by a set of inequalities we can introduce two new binary
variables δE1i(k) and δE2i(k) such that

[δE1i(k) = 1] ⇔ [Ei(k) − Ci ≤ 0] (28)

[δE2i(k) = 1] ⇔ [Ei(k) − Ci ≥ 0] (29)

and we define the following relation:

δE3i(k) = δE1i(k) ∧ δE2i(k) = 1 − (δE1i(k) ∧ δE2i(k)) (30)

Relations (28) and (29) can be replaced by a set of inequalities with the BigM
approach. Thus, the model (6) can be rewritten in the MLD form (26) subject
to the following linear constraints:

−δE1i(k) − δE3i(k) ≤ −1
−δE2i(k) − δE3i(k) ≤ −1
δE1i(k) + δE2i(k) + δE3i(k) ≤ 2

(31)

and other constraints similar to (17)-(18) after replacing xc(k) + 1 − di(k) by
Ei(k) − Ci and δd by δE .

We now show how it is possible to write in the MLD form the static model (7)
representing the deadlines into the queue. By defining an integer auxiliary vari-
able Zdi(k) = INQi(k) · di(k) in order to avoid a product between the binary
variable INQi(k) and the integer variable di(k), the model (7) can be repre-
sented in the following MLD form:

DINQi(k) = Zdi(k) + M(1 − INQi(k)) (32)

subject to a suitable set of linear constraints on Zdi(k).
Equation (8) can be now transformed into a set of inequalities in order to

complete the MLD scheduler model. We tackle this problem by splitting it
into two subproblems: the min modeling and the arg modeling. The first sub-
problem can be solved by considering the equivalence between the classes of
hybrid dynamical systems [23]. Using Proposition 6 in [23] the min function
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Zdmin(k) = min
i∈I

{DINQi(k)} can be expressed in the following Extended Linear

Complementary (ELC) form:{
DINQi(k) − Zdmin(k) ≥ 0, ∀i∏
i∈I

(DINQi(k) − Zdmin(k)) = 0 (33)

where the last equality is called ELC condition. Thus, for Proposition 8 in [23] if
an upper bound MDQi exists for each component DINQi(k)−Zdmin(k) we can
replace the ELC complementary condition by the following set of inequalities:{

DINQi(k) − Zdmin(k) ≤ MDQiδLDi(k)∑
i∈I

δLDi(k) ≤ N − 1 (34)

where N is the cardinality of I and δLDi(k) are N binary variables. Therefore
we can express the initial min problem in the following MLD form:⎧⎪⎨

⎪⎩
DINQi(k) − Zdmin(k) ≥ 0
DINQi(k) − Zdmin(k) ≤ MDQiδLDi(k)∑
i∈I

δLDi(k) = N − 1.
(35)

Note that in (35) the last relation is now fixed to be an equality so that only one
among the possible multiple solutions of the problem, corresponding to different
tasks with the same deadline, is selected.

The second subproblem relative to the arg function can be represented as

S(k) =
∑
i∈I

i · (1 − δLDi(k)). (36)

Equation (36) subject to (35) is a MLD representation of the scheduler (3).
Assume that at a certain time unit the queue is empty, all tasks have been

executed and all tasks deadlines are later than next time step. Under such situ-
ation DINQi(k) = M ∀i ∈ I, but no one of the tasks should be selected by (8).
To solve this problem we introduce the “idle task”, identified by i = 0, which
is characterized by the only variable DINQ0(k) = M − 1 ∀k, so that we can
extend (35)-(36) also to the idle task letting i ∈ I + {0}.

3.3 State-Space Model and Constraints

We are now able to show that all MLD models formulated above can be rep-
resented in a state space form together with linear inequality constraints. In
fact, (2), (13), (23) and (9) can be rewritten as

x(k + 1) = A x(k) + Bδ(k) + CZ(k) + bx (37)

where x(k) is the state vector whose components are the time variable xc(k), the
deadline di(k) and execution time Ei(k) for all periodic tasks and the execution
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times Eī(k) for the aperiodic tasks; δ(k) is the vector of all binary variables
defined above; Z(k) the vector of the integer variables and A, B, C and bx are
suitable matrices. Moreover it is simple to show that all inequality constraints
can be written in the compact form

Gx(k) + Hδ(k) + KZ(k) + bc ≥ 0 (38)

where G, H , K and bc are suitbale matrices.

4 Rate Control

In this section we use the MLD model to design a rate admission controller based
on the prediction of the processor utilization. Given a set of N periodic tasks,
the processor utilization factor U is defined by

U =
∑
i∈I

Ci

Ti
, (39)

where Ci/Ti is the fraction of the processor time spent in executing the ith

task (called also task density). The processor utilization provides a measure of
the computational load on the CPU due to the periodic tasks set. The CPU
utilization can be increased by increasing tasks’ computation or by decreasing
their periods. In what follows we assume that for each task, Ci is fixed and Ti

can be chosen within a set Ti1, Ti2, . . . , TiL. The easiest scheduling is achieved
by choosing the largest periods however in that case a lower number of instances
of the task will be processed in a given time interval (the utilization is small and
the QoS is low). In such sense we can associate to each task different QoS levels
proportional to the inverse of the periods. Since the task period is not fixed a
priori, the utilization factor should be redefined as

U =
1
TS

CTS =
1
TS

∑
i∈I

CiN
Ts

i (40)

where CTs is the total computation load associated to the task set I and NTS

i

is the number of activations of ith task in TS time units. If the task period is
fixed, then NTS

i = TS/Ti and (40) becomes equal to (39).

4.1 Static Optimization Problem

Let us consider a set I of only periodic tasks and the goal of achieving a desired
processor utilization reference U ref . Since we assume that each task has a fixed
WCET Ci, a possible QoS selection coincides with a task invocation period selec-
tion, similarly to what is done for the elastic task algorithm [10]. By considering
the possible selection among L invocation periods Tij , j ∈ J = {1, . . . , L} for
each ith task and by assuming that TS is multiple of any task period, we can
rewrite (40) as follows:

U =
1
TS

∑
i∈I

CiTS(
∑
j∈J

δuij

1
Tij

) =
∑
i∈I

Ci(
∑
j∈J

δuij

1
Tij

) (41)
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where δuij is a binary variable associated for each ith task to the jth possible
selectable invocation period Tij subject to the following constraint:

∑
j∈J

δuij = 1 (42)

such that a unique selection is guaranteed. Hence, in order to achieve a processor
utilization U ref we can select the invocation period of the task set I by solving
the following static optimization problem (Mixed Integer Linear Programming
problem):

min
δu

(U ref − U(δu)) (43)

subject to the constraint (42) and to the classical EDF schedulability constraint

U(δu) ≤ 1. (44)

The optimization problem (43)-(44) can be also used in order to select the
task invocation periods for a time varying processor utilization reference by
splitting the problem in several static optimization problems similar to (43)-
(44). However, in this case one must neglect the eventually non empty state of
the queue.

4.2 MLD Model for Dynamic Optimization

In the previous optimization problem we have assumed an empty queue and the
presence of only periodic tasks. In this case the problem is static and, because
of the schedulability condition (44), the dynamic model (37)-(38) is not needed.
The tasks periods can be fixed once forever and do not need to be changed during
time. However, if during TS time units there is an arrival of an aperiodic task
into the queue of the scheduler with a known WCET and a deadline “as soon
as possible”, condition (44) does not ensure schedulability. The motivation for
that can be argued by considering that the definition (39) of the utilization is
based on a density concept which is not consistent with the strict and absolute
processing time requested by the aperiodic task. To solve this problem we can try
to adapt the period of the not yet activated instances of the periodic tasks so that
schedulability and some desired performance are achieved. To this aim we need to
reformulate the utilization definition. Since the scheduler queue can be assumed
to be non empty, together with the aperiodic task we need to consider also the
WCETs of the already admitted instances of the periodic tasks. Therefore the
prediction of the utilization over TS time units can be written as (see Fig. 2)

U(δu(k), x(k)) =
1

TS

∑
i∈I

Ci(
∑
j∈J

δuij (k)
ΔTS

i (k)
Tij

)

+
1
TS

∑
i∈I

(CiNi(k) − Ei(k)) +
1
TS

CTS
ap (k), (45)
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where ΔTS

i = TS − k̄i is the fraction of TS still to be allocated, k̄i is the sum of
the periods of the already activated instances, Ni is the number of instances of
the ith task into the queue at k (fixed by the activation patterns of the tasks)
and CTS

ap is the WCET associated to the aperiodic task.
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Fig. 2. Time allocation corresponding to the proposed rate admission control in the
presence of a non empty task ready queue

Before formulating the optimization problem we represent the period selection
in MLD form. In particular, we can define the period selection as follows:

Pi(k) =
∑
j∈J

δuij (k)Tij (46)

together with the constraints∑
j∈J

δuij (k) ≤ 1,
∑
j∈J

δuij (k) ≥ 1 (47)

where the new integer variable Pi(k) represents the time-variant invocation pe-
riod associated to one selectable period (in such particular case also QoS level)
at k time instant for each ith task. The introduction of Pi(k) requires some mod-
ifications in (13) in order to avoid the product term δd3i(k) · Pi(k) [22]. Thus,
we can formulate the optimization problem for the rate admission control of
periodic and aperiodic tasks as follows:

min
δu

TS∑
k=1

(U ref − U(δu(k), x(k))) (48)

subject to (37)-(38). Then at each step k the optimization problem is solved
and for each task the best period that also ensures schedulability is selected
and virtually assigned to that task for the entire “free” time interval ΔTS

i . The
admission controller decides the number of instances of the tasks to be admitted
into the CPU queue that determines Ni(k + 1) and ΔTS

i (k + 1). Moreover, if
xc(k) + 1 − di(k) = 0 then Ni(k + 1) must be also decremented by one. At step
k + 1 the updated optimization problem (48) is solved, and so on. For each task
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the proposed controller considers the processor queue and operates only on the
instances still to be activated. In fact the period(s) of the task instances already
admitted into the queue are not modified and are taken into account in the
second term of (45).

Different optimization problems, i.e. cost functions, could be formulated. For
instance, one can define the cost function by incorporating application perfor-
mance measures so that the admission is regulated, e. g. by means of Ni(k),
according to the application dynamics. Another alternative could be to weight
properly some of the tasks parameters in the cost function so that resource
allocation management is taken into account [24].

5 Simulation Results

The proposed rate admission control strategy has been tested by simulating the
kernel of a real-time operating system based on the EDF scheduling policy. A
detailed simulation study is out the scope of this paper and for that goal one can
refer to dedicated tools already available from the literature [19]. Here the EDF
kernel simulator has been developed in the Simulink environment. In particular,
the task ready queue managing has been implemented by exploiting the typical
algorithms of the linked-list class and the corresponding C++ code has been
run in Simulink through a S-function block. This real-time kernel simulator
periodically receives the tasks as arrays in which are indicated all task features
such as the triple Ci, Ti, di.

For comparative purposes also the more classical feedback real-time scheduling
strategy reported in [17] has been implemented. Let us consider three periodic
tasks with C1 = 1, T1 ∈ {20, 15, 10}, C2 = 2, T2 ∈ {25, 21, 8}, C3 = 3, T3 ∈
{23, 20, 10}, and an aperiodic task with Cap = 2 which is admitted suddenly into
ready task queue at k = 130, 180 and 210. Our objective is to control a step
change of the utilization processor (from 58% to 40% at k = 100). By considering
the dispatching of the tasks it simple to verify that when the aperiodic task is
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Fig. 3. Average utilization over TS: reference (dashed line), classical control strategy
(dash-dotted line), proposed QoS control (solid line)
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admitted the proposed controller ensures the deadlines keeping, which is not the
case for the other controller. In Fig. 3 is reported the average time relative to
TS spent by the CPU in executing the tasks. The numerical test shows that the
proposed control strategy provides good regulation to the desired utilization.

6 Conclusions

A mixed logical dynamical model of hard real-time periodic tasks EDF schedul-
ing in the presence of aperiodic tasks has been proposed. The model is used to
predict the processor utilization and to design an optimal period selection for
the tasks to be admitted into the CPU queue. If the aperiodic tasks must be
executed in specific time slots, the condition on the utilization to be less than
one is not enough to ensure schedulability and the optimization problem must be
constrained by the proposed dynamic model. The rate admission control guaran-
tees schedulability and good performance so as shown by simulating the kernel
of a real-time operating system. Future analysis will deal with the estimation
of the minimum prediction time TS that ensures schedulability. On the other
hand one should say that, since avoiding deadline violation can be explicitly
included into the model as a constraint, one could make the estimation of the
minimum TS looking at the lowest TS that includes the aperiodic task and that
ensures the optimization problem to be feasible. Future work will also deal with
implementation issues of the proposed technique, in particular as regards the
computational load, and with the use of other cost functions.
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Abstract. A compositional interchange format for hybrid systems is
defined in terms of an interchange automaton, allowing arbitrary dif-
ferential algebraic equations, including fully implicit or switched DAEs,
discrete, continuous and algebraic variables, that can be internal or ex-
ternal, urgency conditions, and operators for parallel composition, action
hiding, variable hiding and urgent actions. Its compositional semantics
is formally defined in terms of a hybrid transition system. This allows
development of transformations to and from other formalisms that can
be proven to preserve essential properties, and it allows a clear sepa-
ration between the mathematical meaning of a model and implemen-
tation aspects such as algorithms used for solving differential algebraic
equations.

1 Introduction

Our intention is to establish inter-operability of a wide range of tools by means
of model transformations to and from a compositional interchange format that
is defined in terms of an interchange automaton. The domain of the interchange
automaton format consists of languages and tools from computer science and
from dynamics and control for modeling, simulation, analysis, controller synthe-
sis, and verification in the area of hybrid and timed systems. The purpose of an
interchange format is to avoid the implementation of many bi-lateral translators
between specific formalisms. Instead, the translation from a formalism A to a
formalism B is divided in two steps: first, the model in formalism A is translated
into a representation (model) in the interchange automaton format, then, this
representation is translated into a model in formalism B [1].

Our main requirements for the interchange format are summarized below. A
more detailed discussion of these requirements follows in Sections 2 and 3.

1. It should have a formal and compositional semantics, based on (hybrid)
transition systems, and allow property preserving model transformations.
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2. Its concepts should be based on mathematics, and independent of imple-
mentation aspects such as equation sorting, and numerical equation solving
algorithms.

3. It should support arbitrary differential algebraic equations (DAEs), including
fully implicit equations, higher index systems, algebraic loops, steady state
initialization, switched systems such as piecewise affine systems, and DAEs
with discontinuous right hand sides.

4. It should support a wide range of concepts originating from hybrid automata,
including different kinds of urgency, such as ‘urgency predicates’, ‘deadline
predicates’, ‘triggering guard semantics’, and ‘urgent actions’.

5. It should support parallel composition with synchronization by means of
shared variables and shared actions.

6. It should support hierarchy and modularity to allow the definition of parallel
modules and modules that can contain other modules (hierarchy), and to
allow the definition of variables and actions as being local to a module, or
shared between modules.

Other work on interchange formats for hybrid systems has been carried out
in different projects: in the MoBIES project, the Hybrid System Interchange
Format (HSIF) [2] is defined; in [3] an ‘abstract semantics’ of an interchange
format based on the Metropolis meta model is defined (this work is a continuation
of the COLUMBUS project [4]); and in the HYCON NoE [5], an interchange
format for switched linear systems [6] in the form of piecewise affine systems
(PWAs) is defined.

In HSIF, a network of hybrid automata is used for model representation. The
network behaves as a parallel composition of its automata, without hierarchy or
modules. Variables can be shared or local, and the communication mechanism
is based on broadcasting of boolean ‘signals’, where signals are partitioned in
input and output signals. Each signal is required to be either a global input to
the network or to be modified by exactly one automaton. The semantics is de-
fined only for ‘acyclic dependency graphs’ with respect to the use of signals. The
time dependent behavior is specified by means of ordinary differential equations
(ODEs), together with algebraic relations of the form x = f(x1, . . . , xn), and
invariants. The equation ẋ = 0 is assumed for each shared variable. Circular
dependencies of the algebraic equations, i.e. algebraic loops, are not allowed,
and urgency predicates or urgent actions are not available [2]. The interchange
automaton format defined in this article aims to be more general than HSIF, and
does not incorporate tool limitations, such as restrictions on circular dependen-
cies, or restrictions on shared variables or algebraic loops, in its compositional
formal semantics.

The ‘abstract semantics’ presented in [3], takes implementation considera-
tions into account, such as equation sorting, iterations that may be required
for state-event detection, and iterations for reaching a fixed-point in case of al-
gebraic loops. The semantics is defined in terms of functions and algorithms
such as init, markchange, and solve. This is different from the compositional for-
mal semantics as defined in Section 5, which aims at defining the mathematical
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meaning of interchange automata, independently of implementation aspects such
as equation sorting or state-event detection. For example, the semantics defines
the mathematical meaning of a switched system of equations, such as a PWA sys-
tem, but an implementation may choose to implement such switching behavior
with or without state-event detection.

A transformation from the PWA-based interchange format [6] to the inter-
change automaton format will be developed. Based on this transformation, sev-
eral tools, based on among others PWA, HYSDEL, MLD (see [7] for an overview
relating these languages) can then be connected to the interchange automaton
format.

The remainder of this article is organized as follows: Section 2 discusses the
importance of a compositional formal semantics, Section 3 discusses the concepts
present in the interchange automaton format, Sections 4 and 5 define the syn-
tax and semantics of interchange automata, respectively, and Section 6 presents
concluding remarks.

2 Importance of a Compositional Formal Semantics

To use the interchange automaton format for verification purposes, translations
from models to the interchange format, and vice versa, should preserve essential
properties. I.e., verification results obtained for a derived model should also be
valid for the original model specified in another language.

The different languages may have different features and semantics, complicat-
ing translations between them. To keep the translations between the interchange
automaton format and the other languages manageable, in terms of complexity,
it is important that transformations between parts of specifications within the
interchange format itself can be defined. To allow such transformations, it is es-
sential that the semantics of the interchange automaton format is compositional.
I.e., that the notion of equivalence is a congruence for all operators of the in-
terchange automaton format, see [8]. Parts of a model can then be replaced by
equivalent parts without changing the meaning of the model.

Consider, for instance, a transformation of a model in a simulation language,
such as Modelica [9] or EcosimPro [10], to a verification tool, such as PHAVer
[17] or HyTech [16]. The simulation languages use a triggering guard semantics
(see Section 3.4), whereas the verification tools use invariants to force switching
to a different location. Defining direct translations from the simulation languages
to the verification tools and reasoning about the correctness of the translations
would be difficult, since the simulation languages do not have a formal semantics
and the urgent guards in two languages would need to be transformed into
invariants in combination with non-urgent guards in two other languages. By
using the compositional interchange format as an intermediate, the complicated
direct translations can be replaced by more straightforward translations from the
simulation languages to the interchange format, using urgent guards, and from
the interchange format to the verification tools, using invariants; in combination
with a transformation in the interchange format from urgent guards to invariants.
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3 Concepts in the Interchange Automaton Format

3.1 Differential Algebraic Equations

Modeling of physical systems, such as mechanical or chemical systems frequently
leads to DAEs. Algebraic constraints can also be the result of stateless compo-
nents such as proportional controllers. DAEs can be modeled and simulated
using languages such as Modelica and EcosimPro. DAEs can be specified in
the invariants of an interchange automaton, since such invariants are predicates
over all variables, including the dotted variables. Flow clauses are supported
for reasons of compatibility with existing hybrid automata. The reason for not
enforcing a separation between invariants (over non-dotted variables) and flow
clauses (over dotted variables), as in existing hybrid automata, is that such a
separation is absent in the mathematical theory of dynamical systems, includ-
ing control theory. In many cases, fully implicit DAEs, such as f(ẋ,x,y, t) = 0,
cannot even be rewritten to a form where the algebraic constraints and the dif-
ferential constraints are separated, such as the semi-explicit form ẋ = g(x,y, t),
h(x,y, t) = 0, where x and y are the continuous and algebraic variables, re-
spectively. The generalized invariant allows us to consider the four expressions
x = 1 ∧ x = 2, ẋ = 1 ∧ ẋ = 2, ẋ = y ∧ ẋ = 2y ∧ y = 1 and ‘false’ to be equivalent
(bisimilar): no behavior is possible.

The initialization clause of the interchange automaton is also defined as a
predicate over all variables, including the dotted variables. This allows more
general initializations than usually allowed in hybrid automata. In particular,
steady state initialization, as available in Modelica and EcosimPro, is supported.
E.g. by defining ẋ = 0 as initialization predicate for a location with invariant
f(ẋ,x,y, t) = 0, the initial state is defined as the ‘steady state’, that is the
solution of the set of DAEs such that all derivatives are zero: f(0,x,y, t) = 0.

3.2 Discrete, Continuous and Algebraic Variables

The interchange automaton defines three classes of variables: the discrete and
continuous variables, and in addition the algebraic variables. The differences are
as follows: Continuous variables are the only variables for which dotted variables
(derivatives) can be used in models. The values of discrete variables remain
constant when model time progresses, the values of continuous variables may
change according to a continuous function of time when model time progresses,
and the values of algebraic variables may change according to a discontinuous
function of time. Finally, there is a difference between the different classes of
variables with respect to how the resulting values of the variables in a transition
relate to the starting values of the variables in the next transition. The resulting
value of a discrete or continuous variable in a transition always equals its starting
value in the next transition. For algebraic variables there is no such relation,
because algebraic variables are not part of the state.

The state of an interchange automaton consists of, among others, the inter-
change automaton itself, and a valuation of the discrete and continuous variables
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(see Section 5 for a more precise definition of the state). The values of the dotted
variables and the algebraic variables are not contained in the state. The reason
for this is that the state of an interchange automaton represents all informa-
tion needed to determine future behavior, i.e., the state of a system makes the
system’s history irrelevant. The dotted and algebraic variables are not needed
in the state, because their values are determined completely by the interchange
automaton: in particular by the initial conditions, the flow conditions, the in-
variants and the jump predicates as defined in Section 4.

In most languages that allow (implicit) DAEs, such as Modelica [9], Ecosim-
Pro [10], and Simulink [11], the distinction between continuous and algebraic
variables is implicitly made by considering all continuous variables that do not
occur differentiated as algebraic.

3.3 Automata Related Concepts

Many different hybrid automaton definitions exist. Some definitions require so-
lutions for the continuous variables to be differentiable functions, e.g. in [12,13].
Other definitions allow the more general case of piecewise differentiable or piece-
wise continuous functions, e.g. in [14]. Such restrictions can be realized in the
interchange automaton format by means of the parameters F and G as defined
in Section 5. In [15], for each variable a ‘dynamic type’ can be defined. However,
since we did not find such expressivity in tools, the interchange automaton for-
mat allows the definition of the dynamic type for the algebraic and continuous
variable classes, not for each individual variable.

With respect to the meaning of jump predicates, that define the behavior of
the variables in action transitions, differences also occur: in [12] the variables can
in principle perform arbitrary jumps unless restricted by the jump predicate, in
[16], variables in principle remain unchanged unless changes are enforced by the
jump predicate by means of primed variables. The first behavior is obtained
by an interchange automaton that defines the set of jumping variables W (see
Sections 4 and 5.1) at each edge to be equal to the set of all variables. The
second kind of behavior is obtained by defining the set W as the union of all
primed variables of the jump predicate. The specification of a set of jumping vari-
ables and a jump predicate for each edge of an interchange automaton is based
on [13].

The interchange automaton format is expressive enough to deal with veri-
fication tools such as PHAVer [17] and HyTech [16]. The behavior of the
algebraic variables from the interchange automaton is related to the external
variables from the semantical hybrid I/O automaton defined in [15]. In this I/O
automaton, the external variables are also not part of the state, and they can
have a dynamic type that allows discontinuous trajectories. The state is defined
by the values of the internal variables, and discrete transitions (action transi-
tions) are defined only on internal variables. The interchange automaton format
can express this as a special case, since the different classes of variables, action
transitions, and hiding/abstraction are orthogonal concepts in the interchange
automaton format.
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The basic elements of hierarchy and modularity that are supported by the
interchange format are parallel composition, and hiding of variables and actions.
Interchange automata can be grouped by means of parallel composition, and
variables and/or actions that are meant to be local to that group can be hidden
from the environment of the group. The concrete interchange format, that will be
developed, will define modularity in terms of the basis elements of the abstract
format.

3.4 Urgency

The concept of urgency allows the passing of time up to a certain point. There
are essentially two different kinds of urgency:

1. Urgency that is defined for an atomic automaton by means of one or more
predicates. Such predicates can be associated to a location, or to outgoing
edges of the location.

2. Urgency that is defined as an operation on a composition of one or more
automata. Such an operation defines a set of actions as urgent for the com-
position. The operation allows the passing of time up to the point when one
or more of the urgent actions can be executed.

The first kind of urgency is defined in many different forms. The tcp (time
can progress) predicate [18], is a predicate over the variables of the automaton
and time. The predicate is associated to a location. It allows passing of time in a
location for as long as the predicate is true. Related to the tcp predicate is the
stopping condition [19], which is a predicate on the variables of the automaton,
also associated to a location, and which allows passing of time in a location for
as long as the stopping condition is false, or in other words, until the time-point
when the stopping condition is true. Deadline predicates [20] and urgency predi-
cates [19] are associated to the edges of an automaton. Deadline predicates allow
passing of time in a location until the time-point that one or more deadline pred-
icates of the outgoing edges of the location become true. Whenever a deadline
predicate of an edge becomes true, the guard associated to that edge must also
be true: the deadline predicate must imply the guard. Urgency predicates are
similar to deadline predicates; the only difference is that they do not have the
restriction that the urgency predicate should imply the guard. Urgency predi-
cates allow passing of time in a location until the point of time that for one or
more of the outgoing edges, the guard and the urgency predicate are both true.

Restricting a tcp predicate as a predicate over the variables of an automaton
makes it equal to the negation of a stopping condition. Deadline predicates and
urgency predicates are less expressive. They can both be expressed in terms of
stopping conditions, see [19], or as tcp predicates. E.g. the stopping condition
of a location corresponds to the disjunction of all deadline predicates of the
outgoing edges of the location. Note that a flow condition which is false in
a hybrid automaton is equivalent to a stopping condition that is true, or a
tcp predicate that is false. The interchange automaton format adopts stopping
conditions, which we refer to as urgency conditions.
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In simulation languages, such as Modelica, EcosimPro, and HyVisual, usually
a triggering or urgent guard semantics is used, meaning that the passing of time
in a location is allowed until the time-point that any of the guards of the outgoing
edges becomes true. This is equivalent to a stopping condition associated to the
location that is the disjunction of the guards of all outgoing edges.

The second kind of urgency, as for example defined in [21] and [22], is often
available with restrictions only. E.g. in HyTech, edges can be defined as urgent.
The composition of urgent actions is required to be well-formed: ‘whenever two
components synchronize on a label, if one transition is urgent then the other must
either be urgent, or have a jump condition expressible as a guarded command
with its guard being either the predicate true or the predicate false’ [16]. A
second restriction is that ‘if there exists an urgent transition from a location v
to a location v′, then for all valuations satisfying the invariant of v, an urgent
transition to v′ should exist’.

The interchange automaton format defines the second kind of urgency by
means of the urgent action operator. Note that defining this kind of urgency by
means of labeling certain edges or actions as urgent may lead to bisimulation
not being a congruence for parallel composition, as described in [23]. Another
example is the ASAP flag that can be attached to an edge in HyTech. In
such cases, replacing a part of a specification by another part with the same
behavior may lead to different behavior of the complete system. Straightforward
translations of such languages to and from the interchange format is in principle
possible if each action (or edge with a certain action) is either always urgent
or never urgent in a model. If the same action (or edge with a certain action)
occurs both as urgent and not urgent, it may be necessary to eliminate parallel
composition, as for example described in [8], before translation to the interchange
format is possible.

4 Syntax of Interchange Automata

Notation 1. The following notations are defined:

– A set X of variables and a set of action labels L, which does not include the
predefined non-synchronizing action τ , are assumed. The set Lτ denotes the
set L ∪ {τ}.

– For a set of variables S ⊆ X , Ṡ = {ẋ | x ∈ S} denotes the set of dotted
variables.

– For a set of variables S ⊆ X , Pred(S) denotes the set of all predicates over
variables from S.

– f : A �→ B and g : A → B define a partial function f and a total function
g, both with domain A and range B.

Definition 1 (Atomic Interchange Automaton). An atomic interchange
automaton is a tuple (X, Xi, dtype, V, v0, init, flow, inv, urgent, L, E) where

– X ⊆ X is a finite set of variables, Xi ⊆ X is the set of internal variables,
and Xe = X \ Xi is the set of external variables.
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– dtype : X → {disc, cont, alg} is a function that associates to each variable a
dynamic type: discrete, continuous or algebraic. The sets Xdisc, Xcont, Xalg
are defined as Xt = {x ∈ X | dtype(x) = t} for t ∈ {disc, cont, alg}, and
Xstate = Xdisc ∪ Xcont is the set of state variables.

– V is a finite non-empty set of vertices, called locations, and v0 ∈ V is the
initial location.

– init ∈ Pred(X̃) is the initial condition. For Y ⊆ X, Ỹ = Y ∪ {ẏ | y ∈
Y ∩ Xcont} is the extension of Y with the dotted versions of the continuous
variables in Y .

– flow, inv, urgent : V → Pred(X̃), are functions that each associate to each
location v ∈ V a predicate describing the flow condition, the invariant, and
the urgency condition, respectively.

– L ⊆ L is a finite set of action labels.
– E = V × Pred(X̃) × (L ∪ {τ}) × (P(X̃) × Pred(X̃ ∪ X̃−)) × V is a finite

set of edges, such that for each element (v, g, �, (W, r), v′) ∈ E, v and v′ are
the source and target locations, respectively, g is the guard, � is the action
label, W ⊆ X̃ is a set of jumping variables (the value of which may change
as a result of an action transition), and r is the jump predicate, also called
reset map. For any Y ⊆ X̃, Y − = {y− | y ∈ Y } denotes the set of minus
superscripted variables that represent the values of variables before an action
transition.

Note that the dynamic type of a variable gives information about its time de-
pendent behavior. E.g. the value of a discrete variable remains constant when
time passes, whereas the value of a continuous variable changes as a continuous
function of time. The static type, such as real, integer or boolean, mainly gives
information about the domain in which the variable takes values.

The interchange automaton format consists of automata, and operators for
parallel composition, for hiding of action labels and variables, and for the defi-
nition of urgent actions. The automata and operators can be freely combined:

Definition 2 (Interchange automaton). The set of interchange automata A
is defined by the following grammar for the interchange automata α ∈ A:

α ::= αatom atomic interchange automaton
| α ‖ α parallel composition
| hideact(Lh, α) action hiding operator
| hidevar(Xh, α, σh) variable hiding operator
| urgent(Lu, α) urgent action operator,

where

– αatom denotes an arbitrary atomic interchange automaton;
– Lh ⊆ L denotes a set of actions to hide;
– Xh ⊆ X denotes a set of variables to hide and σh : Xh �→ Λ denotes a

(partial) valuation for the hidden state variables of interchange automaton
α;

– Lu ⊆ L denotes a set of urgent actions.
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In the next sections, two auxiliary functions on interchange automata are used.
These are defined below. The functions vare,st and act extract the sets of external
state variables and external (non-hidden) action labels1, respectively, from an
interchange automaton:

Definition 3. For αa = (X, Xi, dtype, V, v, init, flow, inv, urgent, L, E), and α,
α1, α2 ∈ A we define the functions vare,st : A → P(X ) and act : A → P(L) as
follows:

vare,st(αa) = Xstate ∩ Xe
vare,st(α1 ‖ α2) = vare,st(α1) ∪ vare,st(α2)
vare,st(hideact(Lh, α)) = vare,st(α)
vare,st(hidevar(Xh, α, σh)) = vare,st(α) \ Xh
vare,st(urgent(Lu, α)) = vare,st(α)

act(αa) = L
act(α1 ‖ α2) = act(α1) ∪ act(α2)
act(hideact(Lh, α)) = act(α) \ Lh
act(hidevar(Xh, α, σh)) = act(α)
act(urgent(Lu, α)) = act(α)

5 Semantics of Interchange Automata

The formal semantics associates to each interchange automaton an action tran-
sition relation, a time transition relation, and a consistency predicate on states.
A different way of looking at such a semantics is as a labeled transition system
with two types of transitions and a predicate. The states S of the labeled tran-
sition system associated to an interchange automaton consist of an interchange
automaton, a valuation of the external state variables of that automaton, and
a set of jumping external state variables: i.e., S = A × Val × P(X ), where
Val = X ∪ Ẋ �→ Λ is the set of all partial mappings from X ∪ Ẋ to the set of
values Λ. The set of jumping variables J is defined by other automata executing
in the environment of (in parallel to) automaton α. The valuation σ of a state
of a transition system defines values for precisely the externally visible state
variables, i.e., dom(σ) = vare,st(α) for all (α, σ, J) ∈ S.

The intuition of an action transition (α, σ, J)
ξ,�,W,ξ′

−−−−−→ (α′, σ′, J) is that the
state (α, σ, J) executes a discrete action (with action label) � with visible valu-
ations ξ, ξ′, before and after execution of the action, respectively, and thereby
transforms into the state (α′, σ′, J), where σ′ denotes the accompanying valu-
ation of the automaton α′, after the discrete action � is executed. The set W
represents the external state variables that are allowed to change (jump) in this
action transition. They need to be visible for synchronization in a parallel com-
position of interchange automata.

The intuition of a time transition (α, σ, J)
t,ρ�→ (α′, σ′, J) is thatmodel time passes

for t time units, and the valuation at each time-point s ∈ [0, t] is given by ρ(s) for
the externally visible variables. At the end-point t, the resulting state is (α′, σ′, J).

The intuition of the consistency predicate (α, σ, J)
ξ
� is that the interchange

automaton α is consistent with extended valuation ξ, which means that the
invariants of all active locations of α are satisfied in ξ.
1 This does not mean that these actions are actually used. It is allowed to specify the

set of actions much broader than the actions that appear on transitions.
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Notation 2. In this section, some notations and operators are used. These are
defined as follows:

– � is the restriction operator on functions. If f is a function, and S is a
set, f � S denotes the restriction of f to S, that is, the function g with
dom(g) = dom(f) ∩ S, such that g(c) = f(c) for each c ∈ dom(g).

– ↓ is the projection operator on functions, which is used here on trajectories.
For ρ : T �→ (Y → Λ), S ⊆ Y and x ∈ Y , ρ ↓ S denotes the function
ρ′ : T �→ (S → Λ) such that ρ′(t) = ρ(t) � S for each t ∈ T ; and ρ ↓ x
denotes the function f : T �→ Λ such that f(t) = ρ(t)(x) for each t ∈ dom(ρ).

– For atomic interchange automaton αatom given by (X, Xi, dtype, V , v,
init, flow, inv, urgent, L, E), αatom[v′, init′/v, init] denotes the atomic in-
terchange automaton obtained from atomic interchange automaton αatom by
replacing v by v′ and init by init′, and αatom[v′/v] = αatom[v′, init/v, init].

5.1 Semantics of Atomic Interchange Automata

Definition 4 (Action transitions). Consider an atomic interchange automa-
ton α = (X, Xi, dtype, V, v, init, flow, inv, urgent, L, E). The action transition
relation −→ ⊆ S × (Val ×Lτ ×P(X )×Val)×S is for (α, σ, J), (α′, σ′, J) ∈ S,

ξe, ξ
′
e ∈ Val, � ∈ Lτ , and We ⊆ X , defined as follows: (α, σ, J)

ξe,�,We,ξ
′
e−−−−−−→

(α′, σ′, J), if and only if there exist an edge (v, g, �, (W, r), v′) ∈ E and ξ, ξ′ ∈ Val
with dom(ξ) = dom(ξ′) = X̃ such that

– ξ � X̃e = ξe and ξ′ � X̃e = ξ′e;
– ξe � Xstate = σ and ξ′e � Xstate = σ′;
– ξ |= init and ξ |= g;
– ξ |= inv(v) and ξ′ |= inv(v′);
– ξ′ ∪ ξ− |= r;
– ξ � Xnonjmp = ξ′ � Xnonjmp, where Xnonjmp = Xstate \ (W ∪ (J ∩ Xe));
– We = W ∩ Xstate ∩ Xe;

– α′ = α[v′, init′/v, init], init′ =

( ∧
x∈Xstate∩Xi

x = cx

)
, and cx ∈ Λ is given by

cx = ξ′(x).

Here, val |= pred , where val is a valuation and pred a predicate, means that
pred is satisfied when all variables occurring in it are substituted by their values
as defined in val . Minus superscripted variables, such as x−, occurring in r
are evaluated in ξ−, which is defined as dom(ξ−) = {x− | x ∈ dom(ξ)}, and
ξ−(x−) = ξ(x). The ‘non-jumping’ variables in the set Xnonjmp = Xstate \ (W ∪
(J ∩ Xe)) are the variables the values of which are not allowed to change in an
action transition. These variables are the discrete and continuous variables apart
from two sets of variables: the variables from set W and the externally visible
variables from set J (J ∩ Xe). The jumping variables in set J are the result
of changes in external variables of synchronizing automata, as defined in the
semantics of parallel composition in [8]. The updated initial condition init′ acts
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as a local valuation which ensures that for each local state variable x, its starting
value for the next transition equals its resulting value (here: ξ′(x), in Definition 5:
ρ(t)(x)) for the current transition. Note that we do not combine the valuation of
the internal variables with the valuation of the external variables in σ. Having
the valuations of the local variables in σ would lead to restrictions on the parallel
composition of two automata, namely that the sets of internal variables of two
automata in a parallel composition would need to be disjoint. Otherwise, local
variables with the same names in parallel automata would become shared. See
for example [15], where the local variables and local actions of automata in a
parallel composition are required to be disjoint.

Definition 5 (Time transitions). Consider an atomic interchange automaton
α = (X, Xi, dtype, V , v, init, flow, inv, urgent, L, E). The time transition
relation �−→ ⊆ S × (T × (T �→ Val))×S is for (α, σ, J), (α′, σ′, J) ∈ S, t ∈ T ,
and ρe : [0, t] → Val, defined as follows: (α, σ, J)

t,ρe�→ (α′, σ′, J), if and only if
there exists a ρ : [0, t] → Val with dom(ρ(s)) = X̃ for all s ∈ [0, t] such that

– ρ ↓ X̃e = ρe;
– ρe(0) � Xstate = σ and ρe(t) � Xstate = σ′;
– ρ(0) |= init;
– ρ ↓ x is a constant function for all x ∈ Xdisc;
– (ρ ↓ x) ∈ F for all x ∈ Xalg;
– ρ ↓ ẋ is an integrable function in the Lebesgue sense for all x ∈ Xcont;
– ρ(s) |= flow(v) and ρ(s) |= inv(v) for all s ∈ [0, t];

– (ρ ↓ x)(s) = (ρ ↓ x)(0) +
s∫
0
(ρ ↓ ẋ)(s′)ds′ for all x ∈ Xcont and s ∈ [0, t];

– (ρ ↓ x, ρ ↓ ẋ) ∈ G for all x ∈ Xcont;
– ρ(s) |= ¬urgent(v) for all s ∈ {0} ∪ [0, t);

– α′ = α[init′/init], init′ =

( ∧
x∈Xstate∩Xi

x = cx

)
, and cx ∈ Λ is given by

cx = ρ(t)(x).

Item (ρ ↓ x) ∈ F for all x ∈ Xalg, requires the trajectories of the algebraic
variables to be functions of type F . This set of functions is a global parameter
of the solution concept of an interchange automaton specification.

The relation between the trajectory of a continuous variable x and the tra-
jectory of its ‘derivative’ ẋ is given by the Caratheodory solution concept [24]:
(ρ ↓ x)(s) = (ρ ↓ x)(0)+

∫ s

0 (ρ ↓ ẋ)(s′)ds′. This integral relation can hold only for
those continuous variables for which ρ ↓ x is an absolutely continuous function,
but it does allow a non-smooth trajectory for a continuous variable in the case
that the trajectory of its ‘derivative’ ρ ↓ ẋ is non-smooth or even discontinuous,
as in, for example, in the solution of the invariant ẏ = step(t−1) ∧ ṫ = 1, where
t and y are continuous variable with initial value of 0, and step(x) equals 0 for
x ≤ 0 and 1 for x > 0.
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In hybrid automata, the solution concept usually defines the function ρ ↓ ẋ
to be the derivative function of ρ ↓ x for continuous variables x ∈ Xcont. This
can be realized for the interchange automaton format semantics by restricting
the set G, which is used in the requirement (ρ ↓ x, ρ ↓ ẋ) ∈ G for all x ∈ Xcont,
as G = {(f, f ′) | f is differentiable, and f ′ is the derivative function of f}. In
this way, the semantics of the interchange automaton format corresponds to the
usual semantics of hybrid automata.

Definition 6 (Consistency predicates). Consider an atomic interchange au-
tomaton α = (X, Xi, dtype, V, v, init, flow, inv, urgent, L, E). The consistency
predicate � ⊆ S × Val is for (α, σ, J) ∈ S and ξe ∈ Val, defined as follows:

(α, σ, J)
ξe
�, if and only if there exists a valuation ξ ∈ Val with dom(ξ) = X̃

such that ξ � X̃e = ξe, ξe � Xstate = σ, ξ |= init, and ξ |= inv(v).

5.2 Semantics of the Operators

The informal semantics of the operators is defined below. The formal semantics
of the operators is defined in a structured operational semantics in [8].

Parallel composition. The most common operator for composing hybrid au-
tomata is parallel composition. There are no compatibility requirements for the
parallel composition of interchange automata: any pair of interchange automata
can be composed by the parallel composition operator. The parallel composition
operator synchronizes on all external actions that the arguments share and al-
lows interleaving of any other actions (under the condition that they maintain
the consistency of the other automaton). Time transitions must be synchronized,
and consistency is established only if both automata agree on it. The external
state variables that are shared by the argument automata need to have the same
values (all the time).

Hiding. The action hiding operator applied to an automaton, hideact(Lh, α),
hides (abstracts from) the actions from set Lh by replacing them by the internal
action τ . This only affects the action behavior of α; its delay behavior and
consistency remain unchanged.

The variable hiding operator applied to an automaton, hidevar(Xh, α, σh),
hides the variables from set Xh by removing information about them from the
action and time transitions of α. The values of the hidden state variables are
stored in valuation σh.

Urgent action operator. The urgent action operator applied to an automaton,
urgent(Lu, α), gives actions from the set Lu priority over time passing. The action
behavior and consistency of α are not affected by the urgent action operator.
Time transitions are allowed only if at the current state, and at each intermediate
state while delaying, no actions from set Lu are possible.
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6 Concluding Remarks

The proposed interchange automaton format integrates formalisms rooted in
computer science with those rooted in dynamics and control. It is indeed com-
positional, since bisimilarity is proved to be a congruence for all operators of
the interchange format in [8]. Future work entails, among others, adding the
notion of input/output variables and input/output actions, adding channels as
communication mechanism between interchange automata in a parallel compo-
sition, adding additional operators, such as sequential composition, and possibly
extending the interchange format with stochastic model primitives. The devel-
opment of translations and simulator implementations will be done by different
partners in Work Package 3 of the HYCON NoE [5]. The translations that are
to be developed should also specify incompatibilities, if present, or subsets for
which property preserving translations are possible.

The atomic interchange automata as introduced syntactically in Definition 1
and for which the semantics has been introduced in Section 5 are very expres-
sive. For any application of an action or variable hiding operator on an atomic
interchange automaton, it is possible to obtain an equivalent atomic interchange
automaton. Also, the parallel composition of any two atomic interchange au-
tomata for which the shared variables have compatible types can be replaced
by an equivalent atomic interchange automaton. The only operator that can-
not be eliminated in all relevant cases is the urgent action operator. Further
substantiation of these claims and ideas can be found in [8].
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Abstract. We propose the use of formal languages of infinite words over
the alphabet of task identifiers as an interface between control designs
and software implementations. We argue that this approach is more flex-
ible than the classical real-time scheduling framework based on periodic
tasks, and allows composition of interfaces by language-theoretic opera-
tions. We show that finite automata over infinite words offer analyzable
representation and can capture many interesting interface specifications
such as exponential stability of switched linear systems.

1 Introduction

Modern software engineering heavily relies on clearly specified interfaces for sepa-
ration of concerns among designers implementing components and programmers
using those components. The interface of a component describes the function-
ality and constraints on the correct usage in a succinct manner. For example,
the interface of a Java class describes all the methods it supports, along with
the types of input and output parameters for each method, and client code is
written based on this interface without much understanding of the implementa-
tion of these methods. The need for interfaces is evident for assembling complex
systems from components, but more so in control applications where the com-
ponents are designed by control engineers using mathematical modeling tools
and invoked by software executing on digital computers. The notion of an inter-
face for a control component must incorporate some information about timing,
and standard programming languages do not provide a way of capturing such
resource requirements (cf. [1, 2]).

In current practice, typically the real-time aspect of the interface of a con-
trol component is captured by a period, sometimes along with a deadline, which
specifies the frequency at which the component must execute. The control en-
gineer makes sure that the control objectives will be met as long as the com-
ponent is executed consistent with its period. The software (for example, the
real-time operating system) performs a worst-case execution time analysis on all
the components, followed by schedulability analysis to check whether all the tim-
ing requirements can be met (cf. [3,4]). Using period as an interface specification
of a control component is simple and intuitive, but has some key deficiencies.
First, a specification such as “execute the component every 5ms” does not say

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 601–613, 2007.
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whether the scheduler should or should not execute it more frequently if enough
computing resources are available. Second, such specifications do not compose
in the sense that a system composed of two control components cannot be speci-
fied by a single period. These deficiencies create problems for integrating control
components, and this has led researchers to explore many variations of the basic
real-time scheduling framework [4, 3, 5].

In this paper, we propose to use formal languages as interfaces for control
components. Our approach can be best explained using an example. Consider
a control component with two tasks 1 and 2. Assuming that there is a single
processor that is allocated in discrete slots of some fixed duration, a schedule
with respect to this component can be described by an infinite word over the
alphabet {0, 1, 2}, where 0,1,2, respectively, denote that the processor executes
neither, first, second task of this component. The control engineer can express
the interface of the component as an ω-language (see [6] for an introduction to
theory of languages of infinite words) that contains all acceptable schedules. The
software must ensure, then, that the runtime allocation is in this language. The
main benefit of this approach is composability: conjoining specifications of two
components corresponds to a simple language-theoretic operation on interfaces
(for instance, renaming of alphabet symbols and intersection). Schedulability
analysis corresponds to checking the emptiness of the language of acceptable
schedules. Another benefit of this approach is predictability. A mathematical
formulation of sets of schedules allows for an analysis of the type used for static
(fixed) schedules. This may allow dynamic scheduling for safety critical control
systems [7].

More specifically, we focus on discrete-time switched linear systems, and ex-
plore the use of finite Büchi automata as interfaces. Using automata as specifi-
cations fits nicely with current trends in type systems and static analysis tools.
While control engineers may be less familiar with automata, we show that a
variety of scheduling constraints can be expressed as automata. A sample speci-
fication expressible by finite automata is the language of all schedules such that
any subsequence of length � is contracting at least by ε, where � and ε are pa-
rameters. Periodic schedules can be expressed using automata, and can also be
composed (for example, the set of all schedules such that 1 appears at least once
every five slots and 2 appears at least once every 6 slots). The properties studied
in this paper are, so called, safety properties. Safety properties are properties of
systems such that every violation of a property occurs after a finite execution.
Such properties can be used for online detection of violation of constraints.

While automata-based specifications are flexible, composable, and analyzable,
they can express only regular languages. We show, for example, that set of all
schedules that ensure stability is not regular. This fact does not necessarily means
that regular languages are not suitable for the purpose of specifying scheduling
constraints for control tasks. For example, the set of schedules that ensures sta-
bility is not regular because the definition of stability allows unlimited excursion
from the control objective. This, of course, is not desirable in practical appli-
cations. We show that some common stronger stability requirements, such as
periodic and exponential stability, are regular.
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Related Work

The use of automata as formal specification is common. Frameworks such as I/O
automata [8] and interface automata [9] are focussed on capturing functionality
and interaction of individual components, while timed automata have been used
for schedulability analysis [10]. As far as we know, the idea of using formal
languages and Büchi automata as an interface to capture the set of acceptable
schedules over the alphbet of task identifiers, does not appear in the literature.

There are many approaches to scheduling safety-critical control systems [7,
11, 12, 13]. Most dynamic scheduling approaches are based on priority; that is,
a task is dynamically chosen according to a priority order. In this case, the
analysis of the effect of scheduling on control performance becomes difficult and
inaccurate. The other popular approach is static scheduling - tasks are executed
in a predetermined order. Static schedules can be analyzed to verify the effect of
scheduling on control performance but they restrict the scheduling of sporadic
tasks to fixed slots [14]. The approach presented in this paper is a way in the
middle: it allows to model a set of schedules for which the effect of scheduling is
verified.

Our work also relates to the research on stability of switched systems [15,16,17,
18]. Most of the stability results for switched systems are about stability under all
switching signals. This point of view regards switching as an uncontrolled signal.
We, instead, identify those switchings that render the system stable. This point
of view is appropriate for scheduling, where we have some control over switching
but need the smallest set of constraints.

The only attempt, we know of, to use automata to describe stability related
criteria for switched systems is given in [19]. For polyhedral norms, it is shown
that if a switched system satisfies ‖Ai‖ ≤ 1 for all i ∈ I then the set {σ ∈ I∗ :
‖Aσ‖ < 1} is regular. It is also shown that the language {σ ∈ I∗ : ‖Aσ‖ < ε}
may not be context free for ε < 1.

2 Problem Formulation and Main Results

A discrete-time switched linear system is modeled by a finite set of real n × n
matrices Σ = {Ai}i∈I , |I| < ∞. Infinite words are used to describe schedules.
Given a schedule σ ∈ Iω and an initial state x0 ∈ R

n, the dynamics of the system
is given by

xk+1 = Aσk
xk. (1)

One interpretation of this model is as an abstraction of control mode schedul-
ing. In this interpretation, one assumes that the choice of a control mode induces
a linear transformation over the state variables. A schedule induces a sequence
of transformations that gives rise to the dynamics formulated in equation (1).
Given a finite word σ = σ1 · · ·σl, we will use Aσ = Aσl

· · · Aσ1 to denote the
transformation induced by the finite schedule σ.

In the following propositions we identify some types of constraints that are
expressible by Büchi automata. A Büchi automaton is a tuple A = (Q, I, δ, q0, F ),
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where Q is a finite set of states with q0 ∈ Q an initial state, I is an alphabet,
δ : Q × I → 2Q is a transition function and F ⊆ Q is a set of accepting states.
A run of the automaton A on an infinite word σ ∈ Iω is an infinite sequence
q0, q1, . . . of states such that qk+1 ∈ δ(qk, σk) for every k ∈ N. The run q0, q1, . . .
is accepting if qk ∈ F for infinitely many k’s. An infinite word σ ∈ Iω is accepted
by A if there exists an accepting run for σ. The automaton is called deterministic
if |δ(q, i)| = 1 for all q ∈ Q and i ∈ I. Deterministic automata give a unique run
for every input word. In the setting of this paper, the alphabet is the set of task
identifiers.

A safety automaton is such that there is no transition from a non-accepting
state to an accepting state. Such automata specify safety properties, namely,
those properties where a violation of the property can be detected after only a
finite execution of the system.

Liveness properties, on the other hand, are conditions that will eventually
hold. A typical example of a liveness property is: “task x is executed infinitely
often”. One may use such a requirement, for schedulability analysis, in early
design phases when an explicit bound is not provided. Other examples of liveness
properties involve interaction with the environment. Since this paper is focused
on scheduling, we restricted attention to automata whose alphabet is the set of
task identifier. To allow finer specifications, one may add symbols that model
observations. Then, a specification such as: “if an event is detected infinitely
often, eventually some process is invoked” may be useful.

In diagrams representing Büchi automata, we adopt the following graphical
convention: if a symbol does not decorate any transition going out of a state
then an implicit transition to a non accepting sink (a state with self loop for all
the symbols) is assumed for this symbol.

The next two propositions show that many natural requirements that appear
in control applications can be expressed using safety automata.

Proposition 1. Given a switched system, the following languages can be recog-
nized by a deterministic safety Büchi automaton:

1. Exponential stability: for 0 < ε < 1 and l ∈ N; the language of all schedules
such that any interval of length l is contracting by at least ε

ExpStab(l, ε) = {σ ∈ Iω : ‖Aσk+l
· · · Aσk+1‖ < ε for every k ∈ N}.

2. Directional growth: for c ∈ R
n, δ > 1 and l ∈ N; the language of all schedules

such that the projection on c grows exponentially fast,

DirG(c, δ, l) =
{σ ∈ Iω : |〈c, Aσk+l

· · · Aσk+1x〉| > δ|〈c, x〉| for every k ∈ N and x ∈ R
n}.

3. Cost function: for positive definite matrices Q1, . . . , Qm, horizon h ∈ R and
maximal cost J ∈ R;

Cost(Q1, . . . , Qm, h, J) =

{σ ∈ Iω :
k0+h∑
k=k0

m∑
i=1

xT
k Qixk < J for every k0 ∈ N and xk0 ∈ R

n}.
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The above languages are examples of control performance type of constraints.
These constraints refer to the model of the system. In the next proposition, we
give some languages that represent constraints that are not directly related to
the model of the plant as a switched system. These languages represent exter-
nal considerations such as sensor or actuator usage constraints. They can also
represent scheduling constraints that come from the implementation (e.g. if the
implementation can only handle periodic schedules).

Proposition 2. The following languages can be recognized by a deterministic
safety Büchi automaton:

1. Minimal separation: for i, j ∈ I and mi,j ∈ N; the language of all schedules
that separate the schedule of mode i from mode j by at least mi,j slots,

MinSep(i, j, mi,j) = {σ ∈ Iω : σk = i =⇒ j /∈ {σk+1, . . . , σk+mi,j }}.

2. Maximal separation: for i, j ∈ I and Mi,j ∈ N; the language of all schedules
that separate the schedule of mode i from mode j by at most Mi,j slots,

MaxSep(i, j, Mi,j) = {σ ∈ Iω : σk = i =⇒ j ∈ {σk+1, . . . , σk+Mi,j }}.

3. Periodic execution: for i ∈ I and Pi ∈ N; the language of all schedules that
execute mode i every Pi slots,

Per(i, Pi) =
{σ ∈ Iω : σk = i =⇒ σk+Pi = i and σk+j �= i for all j = 1, . . . , Pi − 1}.

4. Dependency: for a relation R ⊂ I × I; the language of all schedules such that
mode i executes after mode j only if (i, j) ∈ R,

Dep(R) = {σ ∈ Iω : (σk, σk+1) ∈ R for every k ∈ N}.

5. Sequential execution: for an ordered tuple (i1, . . . , il) ⊆ I l; the language of
all schedules such that modes i1, . . . , il are executed periodically in a sequence
(other modes may get in between),

Seq(i1, . . . , il) = {σ ∈ Iω : π(σ, {i1, . . . , il}) is a prefix of (i1 · · · il)ω}.

where π(σ, S) denotes the projection of the word σ over the set S, i.e., the
word obtained by deleting from σ all the letters not in S.

6. Cyclic schedules: for P ∈ N; the set of cyclic schedules with cycle length C

Cyc(C) = {σ ∈ Iω : σk+C = σk for all k ∈ N}

Since the set of languages expressible by deterministic safety Büchi automata
is closed under finite intersections and unions, disjunctions and conjunctions
of the above constraints are also expressible. For example, we can express that
modes i and j should interlace every 10 execution slots by the formula Per(i, 20)∩
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Per(j, 20) ∩ MinSep(i, j, 10)∩ MaxSep(i, j, 10). Of course, finite automata can
model many other languages. The above list is only a collection of examples,
put together in order to convince the reader that many typical specifications are
expressible using automata.

The above propositions, together with the succeeding example, show that
control engineers do not have to construct automata manually. We envision a
tool that accepts specifications in a language tailored to allow easy scheduling
specifications for control systems. The tool may take specifications of the form
exhibited in the proposition, allowing to combine them using logical operators.
The output of this tool can be a finite automaton representing all acceptable
schedules for the system.

From the software engineering perspective, a representation of scheduling con-
straints by finite automata lets a scheduling mechanism use all the flexibility al-
lowed by the control system. This gives the flexibility of dynamic scheduling with
the predictability of static scheduling. Assume, for example, that we want to con-
trol several systems by the same computer. Each system poses some scheduling
constraints. If these constraints are expressed by automata, the intersection can
be easily computed. If the intersection is not empty, the system is schedulable. In
this setting, each subsystem has a distinct matrix A0 that models the behavior
of the system when the processor is assigned to control another subsystem. In
other settings, it can be that controlling one system has an affect on the other
systems. Such dependencies can be easily incorporated into the automata com-
position algorithm using an adequate renaming of the alphabet. This approach
also allows to schedule non-control tasks more efficiently. The automaton that
represents the intersection can also be used as an admission control mechanism
(if we want to allow online registration of new subsystems).

For completeness, we exhibit some limitations of using automata to express
scheduling constraints for control systems. In the following proposition, we iden-
tify a type of constraint not expressible using automata. A language of finite
words is called regular if it can be accepted by a finite automaton.

Proposition 3. For a switched system, if there exits i ∈ I such that Ai is not
stable (one of its eigenvalues is not in the complex unit disc) then the language

L = {σ ∈ I∗ : ‖Aσ‖ < 1}

is either empty or not regular.

This result implies that we cannot model the set of all finite schedules, σ ∈ I∗,
such that ‖Aσx‖ < ‖x‖ for every x ∈ R

n. This language corresponds to the set
of periodic schedules for which every period is contracting.

Intuitively, the reason this language is not regular is because a contracting
word may begin with an arbitrarily long expanding prefix. The only way to
check that an expansion is compensated is to count arbitrarily high (a formal
proof is given in Section 5 below). We argue that the key property that makes this
language irregular, also makes it inadequate for scheduling specifications of con-
trol modes. Requiring that the transformation be contracting does look natural
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at the first glance, since it means that perturbations are steered to equilibrium.
However, allowing an arbitrarily long expansion is not usually acceptable be-
cause it means that perturbations may explode before they are cleared. To fix
this problem we offer constraints of the type given in Proposition 1, where an
explicit bound on the maximal length of an excursion is given. Such requirements
capture practical control constraints and are describable by finite automata.

3 Compositional Schedulability Analysis

Consider a control system composed of l subsystems of dimensions n1, . . . , nl

(the state space of the ith subsystem is R
ni , i = 1, . . . , l, and the state space of

the whole system is R
n = R

n1 ×· · ·×R
nl). Assume that the system is controlled

by a single computer and that the control engineer designed m control tasks.
In each computation slot, the states of the subsystems are transformed, de-

pending on the task scheduled for execution in this slot. Assuming that the
transformations are linear and time invariant, we can model this dependency by
a map

A : {1, ..., m} → R
n1×n1 × · · · × R

nl×nl

that takes a task identifier to a list of matrices. The ith matrix in A(j) models
the transformation of the state of the ith subsystem when task j is scheduled
for execution.

Given a requirements specification for each subsystem, based on the propo-
sitions in Section 2, we can compute a Büchi automaton for every subsystem.
This automaton specifies the sequences of task executions that will not violate
the specification of the subsystem.

Since there are efficient algorithms to find an automaton recognizing the in-
tersection of the languages recognized by a finite set of automata, there is an
efficient way to get the set of schedules that keep all subsystems within their
requirements. An empty intersection means that the system is not schedulable.
A nonempty intersection can be used for dynamic or static scheduling mecha-
nisms, or serve for further schedulability analysis (by intersecting it with another
automaton).

When a new subsystem is added, we do not need to repeat all the computa-
tion. Once the automaton specifying the requirements for the new subsystem is
computed, it can be intersected with the product of the other subsystems.

Assume that we want to add a control task m + 1 such that the ith matrix in
the list A(m + 1) is the same as the ith matrix in A(j) for some j ∈ {1, . . . , m}.
This happens when the effect of task m + 1 on the ith subsystem is the same as
the effect of the task j on that subsystem. In that case, the automaton for the
requirements of the ith subsystem can be adjusted incrementally by adding an
m + 1 transition whenever a j transition exists.

One practical example, is when each task is designed to regulate a specific
subsystem. In this case, each subsystem is assigned with a list of matrices. The
list Li = (A0, . . . , Ami) describes the possible transformations of the state of the
ith system. The first element in this list, A0, models the response of the system
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when the controller attends another subsystem. Then, task identifiers are pairs
(i, j) and the global map is

A(i, j) = (L1(0), . . . , Li(j), . . . , Ll(0)).

Namely, when the jth transformation of the ith subsystem is scheduled for execu-
tion, all other subsystems are transformed according to the first entry in their list.
In this case, schedulability analysis is completely compositional: when a new sub-
system is defined, schedulability analysis reduces to computing the product of the
automaton for the new subsystem with the automaton for the rest of the system (in
both automata, the missing alphabet symbols are identified with the zero symbol).

4 Examples

Consider the system Σ = {A1, A2} where A1 =
(

2 − 7
4

2 −2

)
and A2 =

(1
4

7
4

1
4 − 1

4

)
.

Both A1 and A2 are stable (their eigenvalues lie in the unit ball of the complex
plain), but their product is not stable. In particular, the schedule σ = 1212 . . .

steers the initial state
(
1, 1

)T arbitrarily far from the origin and so does the

schedule σ = 2121 . . . to the vector
(
1, 0

)T .
Figure 1 depicts an automaton that models the set of schedules that satisfy

ExpStab(4, 1) = {σ ∈ {1, 2}ω : ‖Aσk+4 · · · Aσk+1‖ < 1 for every k ∈ N}. This
automaton was constructed by first computing the set

{1112, 1121, 1211, 1212, 1222, 2111, 2121, 2122, 2212, 2221}

of the words of length four that are not contracting. Then, an automaton that
rejects any infinite word that contains one of these four letter words as a sub-
word was derived.

Assume that, in addition to the above constraint, we are not allowed to apply
the first mode consecutively more than two times. Such a constraint may arise
when A1 models the use of some sensor or actuator that needs a time to re-calibrate
after two consecutive operations. This is captured by the language MaxCon(1, 2)
whose automaton is given in Figure 2. The language that captures both constraints
together is ExpStab(4, 1)∩ MaxCon(1, 2) whose automaton is given in Figure 3.

5 Proofs

In this section we give the proofs of the propositions brought in Section 2. The
proofs are constructive. In particular the proofs of Proposition 1 and Proposition 2
suggest algorithms to compute the automata representations. The constructions
provided in the proofs will not always give the smallest possible automata. For
practical use, an automata minimization algorithm may be needed (cf. [20]).

Since this paper is intended for both control theoretic and computer science
audience, we include some details that may seem trivial to some readers.
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Fig. 1. A deterministic Büchi automaton for ExpStab(4, 1)

1 1

2
2

2

Fig. 2. A deterministic Büchi automaton for MaxCon(1, 2)

12

12 1 2

21

1 2

2

2

1

Fig. 3. A deterministic Büchi automaton for ExpStab(4, 1) ∩ MaxCon(1, 2)
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Proof (of Proposition 1)
The language ExpStab(l, ε) is the language of all infinite words that avoid any
word σ ∈ I l such that ‖Aσ‖ ≥ ε. For each such word we can construct the au-
tomaton that describes the language of infinite words that avoid it as a sub-word
(see Figure 4 for an example), and then take the intersection. Note that there
are only finite number of such words. Similarly, the language DirG(c, δ, l) is the
language of of all words such |〈c, Aσx〉| > δ|〈c, x〉| for every subword σ of length
l and any x ∈ R

n. For each σ ∈ I l, we can compute Bσ := minx∈Rn
|〈c,Aσx〉|
|〈c,x〉| .

Then, DirG(c, δ, l) is the language of infinite words in which none of the words
{σ ∈ I l : Bσ < δ} appear as a subword. Again,there is only a finite num-
ber of such words. For the language Cost(Q1, . . . , Qm, h, J), consider the set
S = {σ ∈ I l : maxx∈Rn

∑l
i=1

∑m
j=1(Aσi · · ·Aσ1x)T Qj(Aσi · · ·Aσ1x) ≥ J}. The

language Cost(Q1, . . . , Qm, h, J) is the set of all infinite words that do not con-
tain any of the words in S as a subword. ��

Proof (of Proposition 2)
Figure 5 depicts an automaton that accepts MinSep(i, j, mi,j). The automaton
counts the letters different from j after each occurrence of i and moves to a
non-accepting state when a j is too close to an i. Since we do not need to count
more than mi,j , the automaton is finite. The automaton for MaxSep(i, j, Mi,j) is
similar. We need to carry the same counting but accept only words for which the
counter does not exceed the limit. See Figure 6 for an automaton that accepts
Per(i, 3). Generalization to arbitrary period is straightforward. Figure 7 depicts
an automaton that accepts only words in which only mode j is allowed to follow
mode i. If we are given a relation, R, as a set of ordered pairs, we can construct an
automaton as in Figure 7 for each pair and take the union of the languages. See
Figure 8 for an automaton that accepts the language Seq(1, 2, 3). This example
can be easily extended to longer sequences and other indices. For the language
Cyc(C), consider the automaton depicted in Figure 9. Let L(i, m, C) be the
language of all infinite words such that, starting with the mth letter, Cth letter is
again i. This language can be accepted by an automaton similar to the one given
in Figure 9 (possibly with different initial and cycle counts). Then, the language
Cyc(C) is given as the union of L(i, m, C) over all i ∈ I and m = 1, . . . , C. ��

Proof (of Proposition 3)
Assume towards contradiction that the language is regular but not empty. By
the pumping lemma, there is p > 0 such that for every w ∈ L there are words
x, y, z ∈ I∗ such that w = xyz, |xy| ≤ p, |y| > 0 and xykz ∈ L for every k ≥ 0.
Since L is not empty there is a word u ∈ L. In particular Au is contracting. There
must be an m ∈ N such that ‖Am

u Ap
i ‖ < 1 because ‖Am

u Ap
i ‖ ≤ ‖Au‖m‖Ai‖p

which is smaller than one for every m larger than log‖Au‖(‖Ai‖−p). Consider
the word w = ipum. This word is in L because ‖Am

u Ap
i ‖ < 1. By the pumping

lemma, the words ilum must also belong to L for every l ∈ N. But this leads
to a contradiction because we allow arbitrarily large expansion before a fixed
contraction which will eventually give an expanding product. ��
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1 2 1 2

2,3 1

3

2,3 1
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2

Fig. 4. A deterministic Büchi automaton that accepts all infinite words that avoid the
subword 12123

I \ {i}

i

i

I \ {i, j}

i

i

j

mi,j times

I \ {i, j}

Fig. 5. A deterministic Büchi automaton that accepts MinSep(i, j, mi,j)

I \ {i}

i I \ {i} I \ {i}

i

Fig. 6. A deterministic Büchi automaton that accepts Per(i, 3)

I \ {i}
i

j

Fig. 7. A deterministic Büchi automaton that accepts Dep({(i, j)})
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I \ {1, 2, 3}

1 2

I \ {1, 2, 3} I \ {1, 2, 3}

3

Fig. 8. A deterministic Büchi automaton that accepts Seq(1, 2, 3)

I I II I i

i

Fig. 9. A deterministic Büchi automaton that accepts words with i as the third letter
and then every fourth letters
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Modeling and Optimal Control of Hybrid

Rigidbody Mechanical Systems
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Abstract. A measure differential inclusion (MDI) based modeling ap-
proach for rigidbody mechanical systems will be introduced, that can
exhibit autonomous or controlled mode transitions, accompanied by dis-
continuities on velocity and acceleration level. The hybrid optimal con-
trol necessitates the consideration of an uncommon concept of control,
namely, controls of unbounded, impulsive and set-valued type. Examples
to manipulators and wheeled robots are presented.

Keywords: Impulsive Optimal Control, Impactive Systems, non-smooth
analysis, hybrid, mechanical systems.

1 Introduction

A measure differential inclusion (MDI) based modeling approach for rigidbody
mechanical systems will be introduced, that can exhibit autonomous or con-
trolled mode transitions, accompanied by discontinuities on velocity and acceler-
ation level. The introduced framework will have the ability to model and control
hybrid mechanical systems with discontinuous transitions among different sys-
tem modes. Modeling of rigidbody Lagrangian systems as Linear Complementar-
ity Problem (LCP) will be presented, and the associated optimal control problem
of hybrid Lagrangian systems will be stated. In recent years, several works have
been presented in order to establish the relations between complementarity dy-
namical systems and hybrid systems. There are general results in literature that
investigate the relation between different representations of dynamical systems
and hybrid systems such as [8], [13]. The properties of the optimal control prob-
lem derive from the underlying modeling approach. Optimal Control of hybrid
systems is addressed in several publications such as [4], [5], [23] and [25] on
various field of applications, in which the modeling is based on approaches to
the ones similar as in [3], [6]. The treatment of discontinuous transitions and
the combinatorial nature of mode sequencing are partially treated in these pub-
lications about optimal control, due to the modeling approach chosen. In this
work, the MDI modeling of mechanical hybrid systems will be proposed and the
suitability from the viewpoints above presented. There are some works devoted
to the complementarity modeling and optimal control of mechanical systems as
given in references [26], [27], [28], [29]. The main issue in the optimal control
of hybrid mechanical systems has been the blending of impact mechanics with
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impulsive optimal control. Indeed, the optimal control of such systems entails
unavoidably impulsive control. References [18] and [2] consider impulsive sys-
tems and impulsive differential inclusions from the viewpoint of hybrid systems.
There has been much interest in the research of modeling discontinuities and
nonlinearities in multibody systems for which a compact overview is provided
in [7]. The discontinuities arising from impacts and stick-slip transitions are pri-
marily contact phenomena, which concurre temporally and spatially. The spatial
concurrence of discontinuity is due to the fact that discontinuities on velocity
level (e.g. collisions) can occur along with discontinuities on acceleration level
(e.g.stick-slip transitions). Temporal concurrence is caused by collision, shock
and impact phenomena occuring at multiple locations of the system at the same
time as well as stick-slip transitions. Recent research showed that such rigid-
body systems can best be described by variational inequalities which lead to
nonlinear and linear complementarity type of systems to be solved in order to
obtain the accelerations/velocities and forces. In the modeling considered in this
work, impulsive forces can arise autonomously, due to effects such as collisions
or controlled/nonautonomously, due to actions such as blocking some DOF. The
hybrid optimal control requires the consideration of an uncommon concept of
control, namely, controls of unbounded, impulsive and set-valued type. The ex-
istence of force and impulsive/discrete type of controls will through the solution
of the complementarity problem take influence on the course of system trajec-
tories. The presence of impulsive forces require to solve impact equations and
constitutive laws that relate post- and pre-impact velocities of the system. The
topic of impacts with and without friction is investigated in references [15], [16].

2 The Measure Differential Inclusion Representation of
Hybrid Mechanical Systems

One of the cornerstones of non-smooth modeling of mechanical systems has been
the introduction of the MDI concept that considers the equations of motion
subject to variational inequalities as a balance of measures. The concept of MDI
and its applications to mechanics stems from J. J. Moreau, and related works of
him are given in [20], [21]. The application of the measure-differential inclusion
approach to rigid-body mechanics can be overviewed in [14].

Let q, q̇, q̈ represent the position, velocity and acceleration in the generalized
coordinates of a scleronomic rigid body mechanical system with n degrees of
freedom (DOF), respectively. The equations of motion (EOM) are obtained by
using the well-known Lagrange II formalism for the smooth dynamics :

d

dt

(
∂T

∂q̇

)
−

(
∂T

∂q

)
+

(
∂V

∂q

)
− f = 0 . (1)

Here T denotes the total kinetic, and V the total potential energy of the system.
The unilateral forces, which are non-potential in the classical sense, are incor-
porated by the appropriate generalized force directions in the generalized force
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vector f . The controls will also be introduced into the equations of motion by
means of the structure of f .

The tangential and normal local kinematics need to be defined in order to
relate the contact distance to the set-valued force element. For the detection
of the closing of a contact let the vector gu(q) entail the normal contact dis-
tances between the rigid bodies in the system which are always non-negative.
The normal and tangential contact velocities γu and γs are defined as:

γu = WT
u q̇, γs = WT

s q̇, (2)

respectively, and γu is obtained as the total time derivative of gu(q). The normal
and tangential contact accelerations are given by the following equations:

γ̇u = WT
u q̈ + ωu, γ̇s = WT

s q̈ + ωs . (3)

Here Wu(q) and Ws(q) represent the generalized force directions of normal and
tangential contact forces. In order to formulate the contact situations properly
following index sets will be defined:

IG = {1, 2, ..nG}, IS = {i ∈ IG| gui = 0}, IN = {i ∈ IS| γui
= 0} . (4)

IG denotes the set of all contacts that can occur on position level of the non-
smooth mechanical system. IS denotes the set of all contacts that are closed
on position level. IN denotes the set of all contacts such that normal contact
velocity and normal contact distance equal to zero. Further, the definition of
following index sets are necessary:

Cui = {λui | λui ≥ 0, ∀ i ∈ IG}, Csi = {λsi | |λsi | ≤ μi λui , ∀ i ∈ IS}, (5)

where the vectors λs, λu are the tangential and the normal contact forces, re-
spectively and μi denotes the friction coefficient at contact i. The differential
inclusion of a general non-autonomous mechanical system Sa subject to spatial
Coulomb friction and unilateral contact forces in the absence of impacts can
then be stated as:

Mu̇ − h − Wsλs − Wuλu − B τ = 0, (6)
γ̇ui ∈ −NCui

(λui), ∀ i ∈ IN, γ̇si
∈ −NCsi

(λsi), ∀ i ∈ IN .

M(q) is the symmetric positive-definite (PD) mass matrix and h(q, u) repre-
sents the vector with gyroscopic and coriolis accelerations along with smooth
potential forces such as gravity. B(q) entails columnwise the generalized force
directions of controls. The vector τ ∈ IRd denotes the vector of controls. The
normal cone to a set C at the point x ∈ C is given by NC(x) in the sense of
convex analysis [24]. The normal cone representation in contact mechanics and
friction problems are first treated in [21] and [1], respectively. In order to treat
impacts in this framework constitutive laws will have to be introduced. In [17]
a representation of Moreau’s impact law in local contact coordinates has been
derived, showing that:

0 ≤ Λi ⊥ (γ+
i + εi γ−i ) ≥ 0, ∀ i ∈ IS . (7)
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Here εi denotes the restitution coefficient. These concepts can be extended to
the tangential and normal impact by introducing following variables ξsi and ξui ,
which vectorially are given by the following expressions if the Newton-like impact
law is used:

ξs = γ+
s + εsγ

−
s , ξu = γ+

u + εu γ−u . (8)

The diagonal matrices εs and εu have as entries the tangential and normal resti-
tution coefficients. The dynamics of a mechanical System Sv can be formulated
on the measure-differential level:

M du − h dt − WsdΛs − WudΛu − B dΓ = 0, (9)
ξui ∈ −NCui

(dΛui), ∀ i ∈ IS, ξsi
∈ −NCsi

(dΛsi), ∀ i ∈ IS .

Here dΛs and dΛu are the differential measures of the tangential and normal
contact forces, respectively. The vector dΓ denotes the differential measure of
controls, which is unbounded, and can therefore induce impulsions. The differ-
ential measure of the generalized velocity is given by du.

2.1 The Linear Complementarity (LCP) Representation of MDI

If the normal cones in the force laws are finitely generated, then the determina-
tion of accelerations and forces can be represented in a linear complementarity
form. This is the case, when the line of action of the friction forces are known,
which is not the case for spatial friction. In the sequel between two types of fric-
tional contacts is distinguished, because of their differing roles in the LCP. The
set INA denotes the set of contacts at which the normal force, that induces the
friction force is known a priori, whereas INC denote the set of contacts, where
the value of the normal contact force depends on the friction force value at a
given moment. The definition of following index sets are made:

Cui = {λui | λui ≥ 0, ∀ i ∈ IG}, (10)
Csi = {λsci | |λsci | ≤ μi λui , ∀ i ∈ INC ⊂ IN}, (11)
Cai = {λsai

| |λsai
| ≤ aui , ∀ i ∈ INA ⊂ IN}, (12)

such that INA
⋂

INC = ∅, INA
⋃

INC = IN , N(INA) = w, N(INC) = v,
N(IN) = m and N(IS) = k. Here, the vectors λsa and λsc, denote tangential
contact forces of Tresca-type and Coulomb-type, respectively. The entity aui de-
notes the apriori known sliding contact force at contact i. Further, for both type
frictional contacts between sticking and sliding contacts will be distinguished,
which gives rise to the definition of new index sets such that INA = HINA

⋃
GINA

and INC = HINC
⋃

GINC are valid. The number of elements of these sets are
related to each other by

N(INA) = w = N(HINA) + N(GINA) = p + s, (13)

N(INC) = v = N(HINC) + N(GINC) = r + t . (14)
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Here subscript H refers to sticking and G refers to sliding. Based on this classifi-
cation, the vector γs is decomposed as γs =

[
γsa γsc

]T and the related relative
contact accelerations are given by:

γ̇sa = WT
saq̈ + ωsa, γ̇sc = WT

scq̈ + ωsc . (15)

The force λsc can be decomposed into sliding contact forces Gλsc and sticking
contact forces Hλsc at a given instant uniquely. The tangential contact forces and
relative tangential contact velocities of contacts with Tresca-type friction can be
decomposed analogously. The differential inclusion of a general non-autonomous
mechanical system Sa subject to planar friction (known line of action) and uni-
lateral contact forces is stated as:

Mu̇ − h̄ − HWsc Hλsc − HWsa Hλsa − Wuλu − B τ = 0, (16)
λui ∈ −Upr(γ̇ui), ∀ i ∈ IN,

λscj ∈ −μj λuj Sgn
(
γ̇scj

)
, ∀ j ∈ HINC,

λsak
∈ −auk

Sgn (γ̇sak
) , ∀ k ∈ HINA .

Defining h̄ = h+GWsc Gλsc+GWsa Gλsa, enables the incorporation of all sliding
contact forces in the vector h̄. In the sequel for ease of notation the entities
HWsc ∈ IRn×r, Hλsc ∈ IRr, HWsa ∈ IRn×p, Hλsa ∈ IRp will be represented by
Wsc, λsc, Wsa, λsa, respectively. Here, the matrix Wu has dimensions n × m.
In the sequel, the linear complementarity problem will be constructed. The set-
valued signum type friction force characteristics can be decomposed into two
unilateral force laws by introducing new variables as depicted in Fig. (1) and
given below:

γ̇sc = γ̇rc − γ̇lc, λlc = μ λu − λsc, λrc = μ λu + λsc, (17)
γ̇sa = γ̇ra − γ̇la, λla = a − λsa, λra = a + λsa, (18)

along with following nonnegativity and complementarity conditions:

γ̇u ≥ 0, γ̇rc ≥ 0, γ̇lc ≥ 0, γ̇ra ≥ 0, γ̇la ≥ 0, (19)
λu ≥ 0, λrc ≥ 0, λlc ≥ 0, λra ≥ 0, λla ≥ 0, (20)
γ̇uλu = 0, γ̇rcλrc = 0, γ̇ lcλlc = 0, γ̇raλra = 0, γ̇laλla = 0 . (21)

Here μ ∈ IRr×r is a diagonal matrix with friction coefficients. The vector a ∈ IRp

denotes the normal force vector for frictional contacts of Tresca-type. Further
λrc, λlc ∈ IRr; λra, λla ∈ IRp; γrc, γ lc ∈ IRr and γra, γla ∈ IRp and are related
entities to sticking contacts. The generalized accelerations of the system Sa are
given by:

u̇ = M−1 (
h̄(q,u) + Wsc(q)λsc + Wsa(q)λsa + Wu(q)λu + B(q) τ

)
. (22)

Insertion of (22) in the expressions for relative contact accelerations given in
equations (3) and (15) reveals following set of equations:

γ̇u = WT
u M−1 (

h̄ + Wscλsc + Wsaλsa + Wuλu + B τ
)

+ ωu, (23)
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γ̇sc = WT
sc M−1 (

h̄ + Wscλsc + Wsaλsa + Wuλu + B τ
)

+ ωsc, (24)

γ̇sa = WT
sa M−1 (

h̄ + Wscλsc + Wsaλsa + Wuλu + B τ
)

+ ωsa, (25)

which can be arranged in the form of a linear complementarity problem [10],
[22]:

y = Ax + b, y 	 0, x 	 0, xy = 0 . (26)

Where the complementarity vectors x and y are identified as:

x =
[
λu λrc λra γ̇ lc γ̇ la

]T
, y =

[
γ̇u γ̇rc γ̇ra λlc λla

]T
, (27)

respectively. The matrix A∈ IR(m+2p+2r)×(m+2p+2r) and vector b ∈ IR(m+2p+2r)

are given by:

A =

⎡
⎢⎢⎢⎢⎣

WT
u M−1(Wu − Wscμ) WT

u M−1Wsc WT
u M−1Wsa 0m×r 0m×p

WT
scM

−1(Wu − Wscμ) WT
scM

−1Wsc WT
scM

−1Wsa Ir×r 0r×p
WT

saM
−1(Wu − Wscμ) WT

saM
−1Wsc WT

saM
−1Wsa 0p×r Ip×p

2μ −Ir×r 0r×p 0r×r 0r×p
0p×m 0p×r −Ip×p 0p×r 0p×p

⎤
⎥⎥⎥⎥⎦ ,(28)

b =
[
WT

u fq̈ + ωu WT
sc fq̈ + ωsc WT

sa fq̈ + ωsa 0r×1 2a
]T

, (29)

where fq̈ is given by fq̈ = M−1(h̄+B τ ) and I is an identity matrix of appropriate
size. Making use of the formulation given in (7), these concepts can be extended

Fig. 1. Decomposition of the set-valued Sgn relation into two Unilateral Primitives

to the tangential and normal impact by introducing following variables ξsci
, ξsai

and ξui , which vectorially are given by the following expressions if the Newton-
like impact law is used:

ξsa = γ+
sa, ξsc = γ+

sc + εscγ
−
sc, ξu = γ+

u + εu γ−u . (30)

The matrices εu and εsc are diagonal matrices with normal and tangential resti-
tution coefficients, respectively. The tangential impact in contacts with Coulomb
type friction is induced by the dependence on the normal impactive force at the
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relevant contact. The dynamics of a mechanical System Sv can be formulated
on the measure-differential level:

M du − h dt − WsadΛsa − WscdΛsc − WudΛu − B dΓ = 0, (31)
dΛui ∈ −Upr(ξui), ∀ i ∈ IS,

dΛsai
∈ −dAi Sgn(ξsai

), ∀ i ∈ ISA,

dΛsci ∈ −μi dΛui Sgn(ξsci), ∀ i ∈ ISC .

such that ISA
⋂

ISC = ∅, ISA
⋃

ISC = IS and N(ISA) = l, N(ISC) = z. As
a consequence of the changing force laws in (31), the dimensionality of ma-
trices also change. In equation (31) , the matrix Wsa ∈ IRn×l is given by
Wsa = col{HWsa}

⋃
col{GWsa}, col{·} denotes the column set of the ma-

trix in argument. Analogously, the matrix Wsc ∈ IRn×z is given by Wsc =
col{HWsc}

⋃
col{GWsc}. A linear complementarity problem on the measure-

differential level can be formulated in the form of (26). The set-valued signum
relations in the MDI representation (31) will again be decomposed in analogy
to Fig. (1). After introduction of slack variables, the complementarity vectors
x ∈ IRk+2l+2z and y ∈ IRk+2l+2z are identified as:

x =
[
dΛu dΛrc dΛra ξlc ξla

]T
, y =

[
ξu ξrc ξra dΛlc dΛla

]T
, (32)

respectively. The vector b ∈ IRk+2l+2z of the linear complementarity problem is
given by:

b =

⎡
⎢⎢⎢⎢⎣

(I + εu)WT
u u− + WT

u M−1(h dt + B dΓ )
(I + εsc)WT

sc u− + WT
sc M−1(h dt + B dΓ )

WT
sa u− + WT

sa M−1(h dt + B dΓ )
0z×1
2dA

⎤
⎥⎥⎥⎥⎦ . (33)

The matrix A remains the same in the structure as in (28) but the dimensionality
of the associated elements vary since the contact force laws are modified as in
equation (31). As illustrated, for contacts which are closed in normal direction,
the MDI representation removes the distinction between sliding and sticking,
and considers all contacts closed on position level, which reduce the burden of
management of index sets.

2.2 Statement of the Hybrid Optimal Control Problem

The non-smooth optimal control problem subject to a mechanical dynamical
system described as a measure-differential inclusion can be stated as follows:

min J (τ , dΓ , tf) = Φ(q(tf ),u+(tf), tf) +
∫ tf

t0

g(u+, q, τ ) dt, (34)

du = f(u+, q, τ , t) dt + pΛ(q, t) dΛ + pΓ (q, t) dΓ ,

(dΛ, dΓ ) ∈ Υ( dΛ, dΓ , q, u+),
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Π(u+, q, τ ) ≤ 0,

Ψ(q(t0), u−(t0), q(tf), u+(tf)) = 0,

t0 fixed, tf free, t ∈ [t0, tf ],

with absolutely continuous positions q ∈ IRn, right continuous bounded varia-
tion (RCBV) generalized velocities u ∈ IRn , control variables τ ∈ IRm, unilat-
eral force differential measures dΛ ∈ IRp, impulsive and set-valued control differ-
ential measures dΓ ∈ IRr. Further, the Lebesgue measurable system dynamics
is given by f : IRn× IRn× IRm× IR → IRn. The set-valued variational constraints
on the measure variables Υ : IRp × IRr × IRn × IRn → IRk, influence matrix of
contact force differential measures pΛ ∈ IRn×p, influence matrix of control differ-
ential measures pΓ ∈ IRn×r, state and control constraints Π : IRn× IRn× IRm →
IRl and boundary constraints Ψ : IRn × IRn × IRn × IRn → IRq are incorporated
in the optimal control problem. The end state cost Φ : IRn × IRn × IR → IR,
integrand of the cost functional g : IRn × IRn × IRm → IR constitute the goal
function to be minimized.

3 Examples

3.1 Example: Two-DOF Underactuated Planar Manipulator with
Impactively Blockable DOF

Fig. 2. The 2-DOF planar manipulator with 1 blockable DOF

The first application will deal with underactuated manipulators with blockable
degrees of freedom (DOF). The example mechanical system can be seen in Fig.
(2) and is treated in detail in [28]. The robot has two rotational degrees of
freedom denoted by α and β. The DOF α is controlled continuously in a single
valued manner, whereas DOF β can be blocked meaning that any given position
the relative angular velocity β̇ − α̇ can be reduced to zero immediately. In the
presented maneuver in Fig. (3), it is supposed to start at α0 = 0 rad and β0 =
0 rad from standstill, and to reach the final position αf = π rad and βf = π rad,
time-optimally. The DOF β is blocked at times t1 = 0 s, t3 = 1.07 s, t5 = 2.39 s
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Fig. 3. The generalized and relative velocities, generalized positions of the optimal
maneuver

Fig. 4. The differential measures of the controls
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and is released at times t2 = 0.41 s, t4 = 1.84 s, whereas the total maneuver takes
4.53 s. When the link is blocked, the whole system possesses one mechanical
DOF, whereas when released it has two DOF. The transitions at times t3, t5
are impactive as can be seen in Fig. (3). The control history has a time-optimal
bang-bang character as can be seen in Fig. (4). The blocking control is set-valued
because its value is within a set in a phase of blocking, unbounded; because it has
to bring the link immediately to zero relative velocity and therefore impulsive
as can be seen in Fig. (4).

3.2 Example: Three-Wheeled Differential Drive Robot

Fig. 5. Contact forces and motor mo-
ments on the simplified model

Fig. 6. The generalized coordinates of
the wheeled robot

The second application will be about a three-wheeled robot with stick-slip tran-
sitions at the wheel contacts. The differential-drive robot is a three-wheeled
actuated robot of which the rear wheels are actuated and controlled separately
contrary to the front wheel which is neither actuated nor steered. The prop-
erties of the optimal control of this nonholonomically constrained system are
studied in detail in [27] and [29]. A rigid-body mechanical model is used, in
which the friction between wheels and ground is modeled as isotropic spatial
Coulomb friction. The non-steered unactuated front wheel is replaced by a stick
as a simplification, removing two degrees of freedom (DOF) to be modeled. The
rotational inertia of the total actuation consisting of the components of motor
rotors and transmissions are added to the rotational inertias of the wheels. Un-
der the given assumptions there are five mechanical DOF necessary in order to
model the mechanical system depicted in Figs. (5) and (6). The following set of
generalized coordinates and velocities are used to describe the system:

qT =
[
x, y, φ, ψL, ψR

]
, q̇T =

[
ẋ, ẏ, φ̇, ψ̇L, ψ̇R

]
. (35)

These are the planar translational coordinates of center of mass (CM) of the
chassis x and y as well as the planar orientation of the chassis φ, the angular
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Table 1. Relation of different modes to the contact state and relative contact velocities

Modes KγRx KγRy KγLx KγLy

5-DOF mode �= 0 �= 0 �= 0 �= 0

3R-DOF mode = 0 �= 0 = 0 = 0

3L-DOF mode = 0 = 0 = 0 �= 0

2-DOF mode = 0 = 0 = 0 = 0
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Fig. 7. Maneuver A: Number of DOF
during the maneuver
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Fig. 8. Maneuver B: Number of DOF
during the maneuver

positions ψR and ψL of the wheels with respect to the chassis frame. There are
two coordinate systems, namely, the inertial coordinate system (subscript I), a
body attached coordinate system for chassis (subscript K). The K-system of
the chassis has its origin in the CM SK. When the axial slip constraints and
rolling constraints are fulfilled, the non-actuated mechanical system possesses
two DOF. If both wheels slide it is a mechanical system with five DOF. In the
three-DOF mode one wheel contact sticks and the other wheel slides, meaning
that the axial slip constraints are fulfilled but one wheel does not fulfill the rolling
condition. If the actuated mechanical system is considered then one observes that
the system is fully actuated when it moves in the two-DOF mode. In the other
modes it is an underactuated system with less actuators than mechanical degrees
of freedom. The transitions among all four operating modes are possible. The
modes are classified according to relative contact velocities at the wheel contacts
as represented in the chassis fixed frame in table 1. In Fig. (9) the contact
velocities and forces for maneuver A are shown. In maneuver A the task is to
reach the following end-point control-effort optimally. The sum of squares of the
actuating torques is being minimised. The desired end state to be reached is(

xf , yf , φf , ψLf , ψRf
)

=
(
2, 5, −π

2 , free, free
)

. (36)

The robot accomplishes this task in 4.05 seconds. In Maneuver B the robot
is supposed to reach the same final end-state time-optimally. Maneuver B is
characterized by a high dynamical activity in the orientation of the chassis.
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Fig. 9. Maneuver A: Contact forces and contact relative velocities

The robot accomplishes this task in 4.03 seconds. These maneuvers are depicted
in Figs. (7) and (8).

4 Discussion and Conclusion

The necessity to represent multibody systems as MDI’s emanates from several
facts. The optimal control of hybrid rigidbody mechanical systems benefits from
several aspects of the MDI approach, which are summarized below:

a. The index sets that are used to take account of the behaviour of contacts
on different levels such as position, velocity and acceleration for stick-slip
transitions etc. is not managable for large systems with many contacts. The
index-set reduction can be seen in going from the acceleration level repre-
sentation in (6) to the measure-differential MDI representation in (9).

b. The impacts, that may occur with or without collisions e.g. Painleve Paradox,
velocity jumps due to C0 constraints are a strong incentive to describe the
mechanical systems as MDI.

c. Systems which are zeno (e.g jumping ball on the ground) are problematic for
event-driven schemes whereas MDI approach can handle them properly and
realistically.

d. The hybrid optimal control requires the consideration of an uncommon con-
cept of control, namely, controls of unbounded, impulsive and set-valued type
for non-autonomous impulsive transitions, such as sudden blocking of DOF,
which can in a natural way be added to the MDI structure.
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e. As a novel property, the location and time of phase transitions where the
system changes DOF is not prespecified but is determined as an outcome of
the optimization. Though the underlying system might undergo structure-
variant phase changes such as impactive phase transitions a mixed integer
approach is not necessary.

f. Numerical methods can be deviced that calculate the costate dynamics which
itself is described as a MDI. The costate dynamics in the sense of optimal
control is discontinuous and nonsmooth as well, as presented in [28] in the
sense of optimal control.
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Abstract. This short paper qualitatively introduces the definition of
the concepts of Deadlock and Livelock for a general class of Hybrid Con-
trol Systems (HCS). Such a characterization hinges on three important
aspects: firstly, the concept of composition of HCS; secondly, the general
concept of specifications and their composition for HCS; finally, the dy-
namical structure and behaviors of HCS. The first aspect is introduced in
a novel manner, including ideas from the literature of discrete transition
systems and accounting for concepts such as that of dynamical feedback
interconnection. The second point includes general properties that are of
interest from a systems and control theory perspective. The third part
categorizes the diverse and possibly pathological behaviors that are dis-
tinctive of HCS. A first look at the problem of Deadlock and Livelock
Verification concludes the manuscript.

1 Introduction

The concept of deadlock and its close relative, that of livelock, have been widely
investigated in the literature of various branches of computer science. Deadlock,
in particular, has often been regarded as a pathology and associated with the
deficiency of a liveness specification, that of forward progress [6]. Much inter-
esting work has been focused on verifying the presence of deadlock situations in
algorithms or programs, or on ensuring its absence upon their composition [3][4].

Hybrid Systems are rather general mathematical models that connect between
discrete, logical, synchronous systems and continuous, real-time, asynchronous
ones [2]. It has often been observed that they present behaviors or are endowed
with properties that are “at the limit” between classical transition systems and
dynamical models [2].

Motivated by a number of case studies, this work aims at “exporting” the no-
tions of deadlock and livelock to the Hybrid Control Systems (HCS) case. More
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precisely, the objective has been that of first introducing a mathematically rigor-
ous definition of the phenomena and providing a clear characterization of them.
We stress that the introduced concepts naturally tailor back to the corresponding
ones in the literature of, respectively, discrete and continuous systems.

2 Deterministic Hybrid Control Systems

The model for HCS is a melange between the classic hybrid automaton [2] and
the HIOA [4]. In particular, it adheres to a denotational definition at the in-
ternal, state-space level, while it is inspired by an operational characterization
at the external, input/output level. More precisely, an HCS is characterized by
a finite collection of modes, each of which is associated with a domain and a
control-dependent vector field. The set of transition relations is composed of a
collection of edges (ordered pairs of modes), guards (subsets of the domains, pos-
sibly control-dependent), and deterministic reset functions. The control space,
which contains real time-dependent control functions, is assumed to be bounded.
Finally, the HCS is endowed with an observation space: the output functions will
be obtained from the hybrid executions via a static output map. The set of ini-
tial conditions is a subset of the hybrid state space. To introduce the concept
of executions of the HCS, it is first necessary to define the hybrid time set, a
rather classical notion in the literature, as an ordered sequence of time intervals
that represent the “dwelling times” of the continuous evolution within a mode.
The hybrid execution is a hybrid trajectory (a pair of discrete and continuous
evolutions of the flow) which is defined on the hybrid time set and abides by
the flowing and switching within a HCS and is thus characteristic of its internal
structure. It is possible to raise some rather general assumptions to enforce the
determinism of the model.

The output of the hybrid system is, for each execution, a function from the
hybrid time set to the output space. Since our purpose is to set up a notion of
input-output interconnection, in the spirit of [4], we suppose that the intercon-
nectible output of hybrid systems considered is instead a set of physical signals,
function of the real time, obtained by a simple operation on the output of the
HCS. This assumption is motivated by the need to give an asynchronous notion
of interconnection.

3 Hybrid Systems Composition

Abstractly, the concept of systems composition may be introduced in many ways,
depending on the characteristics and properties of the systems that are consid-
ered, the structure of the operation, and the particular properties that we may
want to check for. In this work we consider an operation that may be inter-
preted as a form of parallel composition. Unlike previous work though, which
simply performed parallel compositions as crude variables “sharing”, inspired
here by a more control theoretical perspective we allow the connections between
inputs and outputs of the systems to depend on general functions endowed with



630 A. Abate et al.

some properties. Doing so, we naturally introduce an output feedback framework.
Notice that the introduction of a model structure with internal and external com-
ponents, similar to that in [4], allows to conceive the system at the level of its
hidden/internal variables (the hybrid state space with its vector fields and tran-
sition relations) as a black box and only focus on the external components when
performing the interconnection.

Proper “compatibility” conditions on two general HCS need to be raised be-
fore composing them. The actual HCS, result of the composition, is defined as
follows: the “internal” structure of the composed system is basically the cartesian
product of the two original hybrid automata. Two interconnecting static maps
turn a transformation of the original output space of one of the two systems
into part of the original input space of the other system, and vice versa. The
new output space is simply the cartesian product of the original two, while the
input space of the composition is, intuitively, the set of “unused inputs” of the
composition. In the extreme case, the composition may be purely dynamical.

Asynchronism is preserved in the composition. The semantics of the com-
posed model allow to not care about the presence of “cyclic constraints”. The
composition does not exclude the presence of pathological events (Zeno or block-
ing, for instance), which arises at an internal level. A rather slack condition on
the continuity of the interconnecting maps allows to preserve determinism in
the composition. Furthermore, the commutativity and associativity properties
hold.

4 Composing Hybrid Systems Specifications

In this section we consider rather general specifications defined on hybrid trajec-
tories in the observation space. They may be defined, for instance, via temporal
logic formulae for real-time systems. Furthermore, we shall also introduce an
explicit dependence on the control signals: this would allow to express spec-
ifications that are general enough to cover the most important problems in
control theory. Instances of such specifications are that of reachability, invari-
ance, viability, attractivity. Safety, liveness and forward progress can be reinter-
preted through the above properties, as well as verification and control synthesis
tasks.

We look for the set of trajectories, that is the behaviors, that verify a particular
specification. Because of the deterministic hypothesis for the model, it is possible
to associate this set of trajectories to a certain collection of initial conditions.

Given two HCS, two corresponding specifications and a composition proce-
dure, the composed specification is defined as the conjunction of the two original
specifications, modulo proper variables substitutions according to the intercon-
nection maps associated with the composition procedure.

Consider the cartesian product of the sets of initial conditions of the sin-
gle systems associated with trajectories that verify the corresponding property.
Within this set, it is particularly interesting to look at the set of initial condi-
tions in the composed system, that originates trajectories that do not verify the
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composed specification. These initial conditions are associated to “pathological”
executions. It is indeed among the trajectories in this set that we shall categorize
those associated with deadlock and livelock.

5 Definition of Deadlock and Livelock for Hybrid Control
Systems

From a dynamical standpoint, the concepts of deadlock and livelock are in-
trinsically related to the idea of a trajectory being “constrained” or “stalled”
somewhere in the state space. This locking condition is then further specified
with regards to the presence or absence of indefinite motion within the region.

The fundamental concepts of this paper are then qualitatively introduced as
follows. The “pathological” trajectories singled out above can be of two kinds:
those that end up in a hybrid invariant set, and those that do not. The executions
that do enter in an invariant set are either deadlock or livelock : the first are
characterized by the absence of motion in finite time (“stalling” situations). The
second are instead characterized by endless motion, either in their continuous
or discrete component.

Notice that the definition above hinges on a purely dynamical level. This
represents the last point, after that of composition and that of specification,
which is regarded as necessary to introduce the notions of deadlock and livelock
in the framework of HCS. Special instances of the above behaviors that are
“notorious” for HCS are, in the case of deadlock situations, blocking conditions,
stable equilibria in finite time, chattering and genuine Zeno. For the case of
livelock, examples are represented by stable equilibria in infinite time and limit
cycles.

6 Conclusions and Future Work

This extended abstract only qualitatively introduces the concept of deadlock and
livelock for HCS. A number of fundamental details have been skipped for the
sake of space. Also, interesting interpretations of the above concepts in a number
of application instances have not been reported in this work. An extended and
detailed manuscript can be found in the form of a technical report [1].

From the above discussions, it comes at no surprise that the next obliga-
tory step after the definition and characterization of the notion of deadlock and
livelock for HCS is that of looking at ways to detect it. Deadlock and Livelock
prevention and resolution are other topics that do not find space in the present
paper. The authors are also working on other extensions of the presented re-
sults. The concept of composition is prone to be generalized, and the issue of
“deep composition”, i.e. of a composition procedure preserving certain properties
through its structure, clearly connects with the above ideas when the absence of
deadlock or livelock is the specification to be exported.



632 A. Abate et al.

References

1. Alessandro Abate, Alessandro D’Innocenzo, Giordano Pola, Maria Domenica
Di Benedetto, Shankar Sastry : The Concept of Deadlock and Live-
lock in Hybrid Control Systems. Technical Report, UCB/EECS-2006-181,
http://www.eecs.berkeley.edu/Pubs, Dec 2006.

2. John Lygeros, Karl Henrik Johansson, Slobodan N. Simic, Jun Zhang, Shankar Sas-
try : Dynamical Properties of Hybrid Automata. IEEE Transactions on Automatic
Control, vol. 48, no. 1, Jan 2003.

3. Rajeev Alur, Thomas Henzinger: Modularity for Timed and Hybrid Systems. Pro-
ceedings of the 8th International Conference on Concurrency Theory (CONCUR
97), LNCS 1243, pp. 74-88, 1997.

4. Nancy Lynch, Roberto Segala, Frits Vaandrager: Hybrid I/O Automata. Information
and Computation, 185(1):105-157, 2003.

5. Martin Abadi, Leslie Lamport: Composing Specifications. REX Workshop on Step-
wise Refinement of Distributed Systems, Mook, NL, May 1989.

6. Bowen Alpern and Fred Schneider: Defining Liveness. Information Processing
Letters, vol. 21, pp. 181-185, 1985.



Reachability Algorithm for Biological

Piecewise-Affine Hybrid Systems

Anil Aswani and Claire Tomlin

University of California at Berkeley
Dept. of Electrical Engineering and Computer Sciences

{aaswani,tomlin}@eecs.berkeley.edu

Abstract. We consider a class of qualitative biological models which
describe species (e.g. protein) interactions in terms of promotion or in-
hibition, from which a piecewise-affine (PWA) hybrid system model can
be generated. These models have a special structure under which neg-
ative feedback is a necessary condition for the presence of limit cycles,
centers, and foci. We describe modifications to reachability algorithms
to take advantage of this special structure, and we give conditions on
the qualitative model for termination of the algorithm. An example of
applying the algorithm to a simple biological system is given.

1 Trajectory Cycles

Consider a general hybrid system H described by [1], such that the union of the
invariants is positively invariant. Suppose there exists a non-blocking execution
(τ, q[·], x(·)) of the hybrid system. If there exists a discrete state s ∈ Q such that
q[i] = s for infinitely many i, then the execution is called a trajectory cycle; note
that this encompasses Zeno behavior. Trajectory cycles are important because
of the following lemma:

Lemma 1. If a PWA system has no trajectory cycles, then every trajectory in
the system converges to an equilibrium point that lies inside an invariant.

This tell us that trajectory cycles are a necessary condition for the presence of
limit cycles, centers, and foci. The absence of trajectory cycles rules out any
complicated behaviors from occurring.

2 Promotion-Inhibition Networks

A promotion-inhibition network is a collection N = (S, R, T ) where S is a set
of nodes, R is a set of directed edges, and T : R → {+, −} designates a label
for each edge. It is a directed graph with two types of edges: promotion (labeled
+) and inhibition (labeled −). Such networks are a common qualitative model
for biological systems, with nodes used to mark biological species and directed
edges to indicate qualitative relationships between species quantities.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 633–636, 2007.
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Table 1. PWA Model of Subsystem of Segment Polarity Network

q Aq bq Σq q Aq bq Σq

1

⎛
⎝ -10 0 0

0 -0.1 0
0 0 -2

⎞
⎠

⎛
⎝ 0

0
0

⎞
⎠ 0.0 < x1 < 0.5

0.0 < x2 < 0.5
0.0 < x3 < 0.5

5

⎛
⎝ -10 0 0

0 -0.1 0
0 0 -2

⎞
⎠

⎛
⎝ 0

0.1
2

⎞
⎠ 0.5 < x1 < 1.0

0.5 < x2 < 1.0
0.0 < x3 < 0.5

2

⎛
⎝ -10 0 0

0 -0.1 0
0 0 -2

⎞
⎠

⎛
⎝ 0

0.1
0

⎞
⎠ 0.5 < x1 < 1.0

0.0 < x2 < 0.5
0.0 < x3 < 0.5

6

⎛
⎝ -10 0 0

0 -0.1 0
0 0 -2

⎞
⎠

⎛
⎝ 0

0.1
0

⎞
⎠ 0.5 < x1 < 1.0

0.0 < x2 < 0.5
0.5 < x3 < 1.0

3

⎛
⎝ -10 0 0

0 -0.1 0
0 0 -2

⎞
⎠

⎛
⎝ 0

0
2

⎞
⎠ 0.0 < x1 < 0.5

0.5 < x2 < 1.0
0.0 < x3 < 0.5

7

⎛
⎝ -10 0 0

0 -0.1 0
0 0 -2

⎞
⎠

⎛
⎝ 0

0.1
2

⎞
⎠ 0.0 < x1 < 0.5

0.5 < x2 < 1.0
0.5 < x3 < 1.0

4

⎛
⎝ -10 0 0

0 -0.1 0
0 0 -2

⎞
⎠

⎛
⎝ 0

0.1
0

⎞
⎠ 0.0 < x1 < 0.5

0.0 < x2 < 0.5
0.5 < x3 < 1.0

8

⎛
⎝ -10 0 0

0 -0.1 0
0 0 -2

⎞
⎠

⎛
⎝ 0

0.1
2

⎞
⎠ 0.5 < x1 < 1.0

0.5 < x2 < 1.0
0.5 < x3 < 1.0

A promotion-inhibition network N can be turned into a dynamical model by
generating a PWA hybrid system H that maintains the qualitative relationships;
see, for example, [2,3,4]. A subsystem in a biological model from [5] is shown in
Fig. 1, and the generated PWA system is shown in Table 1, where Σq denotes
an invariant and the accompanying vector field is ẋ = Aqx + bq.

++

+

Fig. 1. Subsystem of Segment Polarity Network

These generated PWA models display rich behavior, including limit cycles
and foci. It is difficult to intuit the global behavior of the system based on the
promotion-inhibition interactions alone. However, an interesting result can be
shown relating the local properties of promotion-inhibition to the global prop-
erties of the system trajectories:

Theorem 1. If for each edge ei ∈ E of N that connects nodes in a cycle we
have T (ei) = +, then the continuous states in H are not involved in a trajectory
cycle.

The biological interpretation of this if the species are connected such that there
is no negative feedback, that is no cycles with edges of type −, then all trajec-
tories converge to a node equilibrium point. Furthermore, negative feedback is
a necessary condition for the presence of limit cycles, centers, and foci.

3 Reachability Algorithm

Our reachability algorithm is essentially the bisimulation algorithm originally
described by [6] and implemented using different approximation schemes by
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[4,7,8,9]. For biological systems, reach sets can be used to determine system be-
havior by telling us which parameter instantiations lead to which steady states.
Our approximation method for computing backwards reach sets is better suited
than [4,7,8,9] for this purpose.

3.1 Backwards Reach Set Calculation

Our distinguishing approach is that: (1) we store the guards and reach sets as
exact, symbolic, parameterized equations and (2) make approximations on the
ranges of the parameterized variables. This approximation is better suited for
biological systems because it allows the algorithm to compute reach sets that are
within some tolerance of the actual reach sets, which gives a clearer description
of system behavior than possible with over- or under-approximations.

Suppose that we have a guard that has been parameterized by (n − 1)-
variables: y(u) for u ∈ R. We populate the guard with sample points, and
for each sample point we determine: (1) when the backwards trajectory starting
from this point hits a boundary of the invariant and (2) which boundary it hits.
This can be performed by doing computations of the form:

t∗(y(u)) = max
i

{
1
λi

ln

(
θi + bi

λi

yi(u) + bi

λi

)}
(1)

where θi is a boundary of the invariant. This approach differs from previous
algorithms which use numerical integration to do the backwards trajectory cal-
culations [7,8,9].

A portion of the guard will lie on the boundary of an invariant. The equation
of this guard on a particular boundary is given by:

zj(u) =
(

yj(u) +
bj

λj

) (
θ + bi

λi

yi(u) + bi

λi

)λj/λi

− bj

λj
. (2)

The range of the parameterization u is given by those sample points that were
determined to hit this particular boundary.

3.2 Algorithm Termination

Our version of the reachability algorithm can be proven to terminate under cer-
tain conditions on the system structure or behavior. The abbreviated conditions
are:

Theorem 2. If a PWA system has no trajectory cycles, then our reachability
algorithm will terminate.

Corollary 1. If for each edge ei ∈ E of N that connects nodes in a cycle we
have T (ei) = +, then our reachability algorithm will terminate.
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0
0.5

1 0
0.5

1
0

0.5

1

[iWG][CID]
[S
LP

]

Fig. 2. Reach Set for Subsystem of Segment Polarity Network

3.3 Example: Subsystem of Segment Polarity Network (cont.)

Applying the full reachability algorithm to the system in Fig. 1 and Table 1
results in the output shown in Fig. 2. Other algorithms use numerical integration
to calculate the reach set; we use the analytical solution. Thus, we get a more
accurate approximation of the reach set.

The shaded area converges to the equilibrium point ([CID], [iWG], [SLP]) =
(0, 0, 0) and the unshaded area converges to the equilibrium point (0, 1, 1). These
reach sets emphasize the bistability of the system, which is caused by the positive
feedback that maintains these two equilibrium points.
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Abstract. In this paper we study a class of Mayer-type hybrid optimal
control problems. Using Lagrange techniques, we formulate a version of
the Hybrid Maximum Principle for optimal control problems governed
by hybrid systems with autonomous location transitions in the presence
of additional target constraints.

1 Introduction and Problem Formulation

Over the last few years hybrid optimal control theory has been formalized as a
natural generalization of classical optimal control theory. For hybrid optimal con-
trol problems, the main tool towards the construction of optimal control signals
and optimal trajectories is the Hybrid Maximum Principle, which generalizes
the classical Pontryagin Maximum Principle (see, e.g., [4]). Several variants of
the Hybrid Maximum Principle were developed in [6,7,9,10,3,8]. It is well-known
that the standard proof of the Pontryagin Maximum Principle is based on the
technique of “needle variations“ [4]. In this paper we derive necessary optimality
conditions for a class of hybrid optimal control problems without recourse to the
technique of needle variations. Instead, we apply a Lagrange based approach.
This approach allows us to obtain necessary conditions for a weak minimum as
opposed to the standard Maximum Principle which gives necessary conditions
for a strong minimum.

In this paper, we consider a hybrid control system H with autonomous location
transitions (see, e.g.,[8]). Its state at time t ∈ [0, tf ] is the pair (q, x(t)), where
q ∈ Q, x(t) ∈ R

n, and Q is a finite set of locations. While in location q, the
temporal evolution of x is determined by ẋ = fq(x, u), where the functions fq are
assumed to be continuously differentiable and bounded, the admissible control
sets Uq are compact and convex, and

Uq := {u(·) ∈ L
m
∞(0, tf) : u(t) ∈ Uq, a.e. on[0, tf ]}

represent the sets of admissible control signals. Switchings between locations are
determined by smooth functions mq : R

n → R, q ∈ Q with nonzero gradients
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such that the hypersurfaces (”switching sets”) Mq := {x ∈ R
n : mq(x) = 0}

are pairwise disjoint and divide R
n into open sets.

Let us now introduce the following concept (see [9,3]).

Definition 1. A hybrid trajectory of H is a triple X = (x, {qi}, τ), where
x(·) : [0, tf ] → R

n, {qi}i=1,...,r is a finite sequence of locations and τ is the
corresponding sequence of switching times 0 = t0 < · · · < ti < · · · < tr = tf such
that for each i = 0, . . . , r there exists ui(·) ∈ Ui such that:

– x(0) = x0 /∈
⋃

q∈QMq and xi(·) = x(·)|(ti−1,ti) is an absolutely continuous
function in (ti−1, ti) continuously prolongable to [ti−1, ti], i = 1, . . . , r;

– ẋi(t) = fqi(xi(t), ui(t)) for almost all t ∈ [ti−1, ti], i = 1, . . . , r;
– the switching condition (xi(ti), xi+1(ti)) ∈ Mqi holds for each i = 1, . . . , r−1.

Note that the evolution equation for the continuous trajectory x(·) of a given H
can be represented as follows

ẋ(t) =
r∑

i=1

β(ti−1,ti](t)fqi(x(t), u(t)), a.e. on [0, tf ], i = 1, . . . , r, (1)

where β(ti−1,ti](·) is a characteristic function of the interval (ti−1, ti]. Under the
above assumptions for the family of vector fields {fq(x, u)}q∈Q, the right-hand
side of equation (1) satisfies the Caratheodory conditions (see e.g., [4]). Next
we consider x(·) as an element of the Sobolev space x(·) ∈ W

n
1,∞([0, tf ]), which

contains all absolutely continuous functions with essentially bounded derivatives.
Let φ : R

n → R and g : R
n → R be continuously differentiable functions. We

consider an additional target manifold given by the equation g(x) = 0 and
introduce the notation Mqr (x) := {x ∈ R

n : mr(x) = 0}, where mr(x) = g(x).
Given a hybrid system H we formulate the following Mayer-type hybrid optimal
control problem (HOCP):

minimize φ(x(tf ))
over all trajectories X of H such that g(x(tf )) = 0.

(2)

2 A Variant of the Hybrid Maximum Principle

We will study necessary optimality conditions for (2) with the help of the general
Lagrange multiplier rule for optimization problems in Banach spaces [4,5]:

Theorem 1. Let Y and Z be real Banach spaces, ψ : Y → R be a cost functional
and h : Y → Z be a mapping. Let F be a convex subset of Y with a nonempty
interior and y0 be a solution of the following optimization problem

minimize ψ(y)
subject to h(y) = 0Z , y ∈ F ,

(3)

where 0Z is the zero element of Z. Assume that ψ and h are Fréchet differentiable
in a neighborhood of y0, the derivative h′(·) is continuous at the point y0 and
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the image set h′(y0)(Y ) is closed. Then there are a real number μ ≥ 0 and
a continuous linear functional � ∈ Z∗ (the topological dual space to Z) with
(μ, �) �= (0,0Z∗) such that

L′y(y0, μ, �)(y − y0) =
(
μψ′(y0) + � ◦ h′(y0)

)
(y − y0) ≥ 0 ∀y ∈ F , (4)

where L(y, μ, �) := μψ(y) + � ◦ h(y) is the Lagrange function for (3) and ◦ is
referred to as the duality pairing [5], which maps a pair from Z

∗ × Z to R.

Note that in the case of a regular problem (3) one can put μ = 1.
We now introduce the mapping

P (v(·), ξ(·)) :=

⎛
⎝ ξ(·) − x0 −

·∫
0

r∑
i=1

β(ti−1,ti](t)fqi(ξ(t), v(t))dt[
mqi(ξ(ti))

]
i=1,...,r

⎞
⎠ .

where (v(·), ξ(·)) ∈ L
m
∞([0, tf ]) × W

n
1,∞([0, tf ]). The first element of P is an op-

erator of differential equation (1) in integral form whereas the second one deter-
mines switching times ti from a sequence τ according to the following switching
rule: ti = inf{t | mqi(x(t)) = 0}, where i = 1, ..., r − 1. The operator equation
P (v(·), ξ(·)) = 0 determines the evolution of the hybrid control system H as
a function of control v ∈ U . Note that the mapping P is specified in the same
manner as the mapping h from Theorem 1. Here Y := L

m
∞([0, tf ])×W

n
1,∞([0, tf ])

and Z := W
n
1,∞([0, tf ]) × R

r. We now rewrite the HOCP (2) in the form (3) as

minimize J(u(·), x(·)) = φ(x(tf ))
subject to P (u(·), x(·)) = 0W

n
1,∞([0,tf ])×Rr , (u(·), x(·)) ∈ F .

(5)

where F := {(v(·), ξ(·)) ∈ L
m
∞([0, tf ])×W

n
1,∞([0, tf ]) : vi(t) ∈ Uqi , i = 1, . . . , r},

and vi(·) is a restriction of the function v(·) on the time interval [ti−1, ti]. Note
that F is a convex set. A solution of (5) is denoted by (x0(·), u0(·)). For (5) we
introduce the Lagrange function

L((u(·), x(·)), μ, l) := μJ(u(·), x(·)) + (�, a) ◦ P (u(·), x(·)),

where μ ∈ R≥0, a ∈ R
r and the continuous linear functional � belongs to the

(topological) dual space of W
n
1,∞([0, tf ]). We now are in the position to state our

main result.

Theorem 2. Let functions φ, fq, mq, g be continuously differentiable and
the optimization problem (5) be regular. Then there exist a function p(·) from
W

n
1,∞([0, tf ]) and a vector a ∈ R

r such that

ṗi(t) = −∂Hqi(x0
i (t), u

0
i (t), p(t))

∂x
a. e. on (t0i−1, t

0
i ), i = 1, ..., r,

pr(tf ) = −
(

ar
∂g(x0(tf ))

∂x
+

∂φ(x0(tf ))
∂x

)
,

pi(t0i ) = pi+1(t0i ) +
(

ai,
∂mqi(x0(t0i ))

∂x

)
, i = 1, ..., r − 1,

(6)
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where p(t) =
∑r

i=1 β0
(t0i−1,t0i ](t)pi(t). Moreover, for every admissible control u(·)

the following inequalities are satisfied(
∂Hqi(x0(t), u0(t), p(t))

∂u
, (u(t) − u0(t))

)
≤ 0 a. e. on [t0i−1, t

0
i ], (7)

where i = 1, ..., r and Hqi(x, u, p) := (p, fqi(x, u)) is a ”partial” Hamiltonian for
the location qi ∈ Q and (·, ·) denotes the corresponding scalar product.

3 Discussion

In this contribution we have proposed a version of the Hybrid Maximum Princi-
ple based on the Lagrange multiplier rule. This implies that the necessary opti-
mality conditions for a weak minimum are obtained. However, in many practical
optimal control problems weak minima coinside with strong minima. Note that
the suggested proof-technique can also be applied to hybrid systems with state
jumps and to some classes of hybrid systems with controlled location transitions.

The Hamilton minimization conditions from Theorem 2 are presented in the
form of variational inequalities. This form is closely related to the Weierstraß
conditions for a strong minimum (see, e.g.,[4]) and to the gradient-based compu-
tational approach studied in [1]. Finally note that condition (7) make it possible
to take into consideration some effective methods for numerical treatment of
variational inequalities.
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Abstract. Given a switched multi–inventory system we wish to find the
optimal schedule of the resets to maintain the system in a safe operating
interval, while minimizing a function related to the cost of the resets. We
discuss a family of instances that can be solved in polynomial time by lin-
ear programming. We do this by introducing a set-covering formulation
with a totally unimodular constraint matrix.

1 Problem Description

Consider the family of continuous time linear multi–inventory system

ẋ(t) = Biuc(t) − d(t), i ∈ {1,2} (1)

where x(t) ∈ IRn is a vector whose components are the buffer levels, uc(t) ∈ IRm

is the controlled flow vector, Bi ∈ Q
n×m is the controlled process matrix and

d(t) ∈ IRn is the unknown demand. To model backlog x(t) may be less than
zero. Controls and demands are bounded within polytopes, i.e.,

uc(t) ∈ Uc = {u ∈ R
m : u− ≤ u ≤ u+}

d(t) ∈ D = {d ∈ R
n : d− ≤ d ≤ d+},

where u−c , u+
c , d−, and d+ are assigned vectors. We also assume that matrix Bi

is a “fat matrix” and has full row rank. A point of interest is the existence of
feedback stabilizing strategy [1], that is, strategies able to drive the state within
a neighborhood of xref of radius ε in finite time. Henceforth assume xref = 0.

Theorem 1. ([1]) For the generic system ẋ(t) = Biuc(t) − d(t) there exists a
feedback stabilizing strategy if and only if

D ⊆ int{BiU}. (2)

Assume that only B2 satisfies the above condition, namely, D ⊆ int{B2U} and
D �⊆ int{B1U}. Henceforth we refer to systems B1 and B2 as the unstable and
stable mode respectively.
� This work was supported by PRIN “Analysis, optimization, and coordination of

logistic and production systems”.
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After introducing the stable and unstable modes, the switched system is al-
ternatively in one of the two modes as described by the following dynamics

ẋ = α1(B1uc(t) − d(t)) + α2(B2uc(t) − d(t))
α1 + α2 = 1, binary. (3)

Transitions from the unstable mode B1 to the stable mode B2 are controlled
by a continuous time reset signal r(t) ∈ {0, 1} and occur anytime the reset
signal is set to one (the value α1[1 − r(t)] is equal to zero). Once in B2 the
system remains in this mode for the time necessary to drive the state x to zero
(until α2x is equal to zero) before switching back to B1. To model transitions
we can use the following discontinuity function

g(α, r, x) = α1[1 − r(t)] + α2x, (4)

and say that transitions occur at the earliest time τ at which g(α, r, x) becomes
zero.

Given an n-tuple of times t̄1, . . . , t̄N at which resets may occur, the problem
of interest consists in finding the optimal schedule of the resets to maintain the
system in a safe operating region, while minimizing a function related to the
cost of the resets. The decision variables are thus binary (whether to reset the
state at a given time instant or not). In formulas,

min
r∈{0,1}N

cT r (5)

s.t. dynamics (3)-(4),
‖x(t)‖ ≤ γ (6)

where r = [r(t̄1), . . . , r(t̄N )]T are the resets, c = [c(1), . . . , c(N)]T the costs of
resets. Our aim is to show that the above problem leads to tractable solutions,
though, in general, hybrid optimal control problems are difficult to solve [3].

2 Set-Covering Reformulation

A general recipe is to take the continuous-time hybrid optimal control problem
(5)-(6), discretize it, and reformulate it thus to apply discrete optimization tech-
niques [2]. Given an n-tuple of times t̄1, . . . , t̄N at which resets may occur, let
k = 1, 2, . . . discrete sample times such that

t(k) = t̄k + Tr(t̄k),

the latter meaning that the kth sample is at time t(k) where t(k) coincides with
t̄k if r(t̄k) = 0 (no reset at t̄k), or with t̄k + T if r(t̄k) = 1 (reset at t̄k).

Let us introduce a discrete time reset u(k) related to the continuous time reset
as follows

u(k) = r(t̄k).
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Assume no switches between t(k) and t(k+1), let Bα(t(k)) be the active mode
and define the disturbance

w(k, uc, d) =
∫ t(k+1)

t(k)
(Bα(t(k))uc(t) − d(t))dt. (7)

If we sample state dynamics (3)-(4) and constraints (6) at discrete times
k = 1, 2, . . ., problem (5)-(6) becomes

min
u∈{0,1}N

cT u, (8)

s.t. x(k + 1) = x(k) + w(k, ., .) − x(k)u(k), u(0) = 1, (9)
‖x(k)‖ ≤ γ ∀k = 1, . . . , N + 1, (10)

where u = [u(1), . . . , u(N)]T are the vector of resets. Note that violation of
constraints (6) for t �= t(k) may not be an issue when sample intervals are small.
The constraint u(0) = 1 means that the initial state x(0) is reset to zero.

Now, we show that (8)-(10), can be reformulated as a set-covering problem
with a totally unimodular constraint matrix. Let U , be the set of feasible discrete
controls. To transcribe U in the space of controls, we must rewrite constraints
on the state (10) in terms of controls u(1), . . . , u(N). To do this, we need to
introduce the cover inequalities. A cover is any subset C = {k̄, k̄+1, . . . , k̃−1, k̃}
of consecutive time instants such that minuc∈Uc maxd∈D ‖

∑k̃
k=k̄ w(k, uc, d)‖ > γ

and minuc∈Uc maxd∈D ‖
∑k̃−1

k=k̄ w(k, uc, d)‖ ≤ γ. A cover defines the minimal time
interval within which, for a solution to be feasible under the worst demand, we
must reset at least one time.

Lemma 1. (Cover Inequality) For any cover C = {k̄, k̄ + 1, . . . , k̃ − 1, k̃}, the
constraint

k̃∑
k=k̄+1

u(k) ≥ 1 (11)

is a valid inequality for the feasible solution set U .

Proof. For a given time k̃ < N +1, let k̂ < k̃ the time of last reset. Proving (11)
corresponds to proving that k̂ ≥ k̄ + 1. Assume, by contradiction, that it holds
k̂ < k̄+1. Then, dynamics between k̂ and k̃ yields ‖x(k̃+1)‖ = ‖

∑k̃
k=k̂ w(k)‖ ≥

‖
∑k̃

k=k̄ w(k)‖ > γ, where the latter inequality derives from the very definition
of cover. 	


Given the above lemma, for each time k, we can find, if exists, the associated
cover, and transcribe the set of feasible controls U by replacing constraints on
the state (10) with the corresponding inequalities (11). For sake of simplicity
we can assume γ ≥ maxk ‖w(k)‖ in order to disregard special covers that are
singletone C = {k̃}. Such covers would make the problem always unfeasible.
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We are now ready to introduce the set-covering reformulation.

min
u∈{0,1}N

cT u (12)

s.t.
∑k̃

k̄+1 u(k) ≥ 1, for all covers C = {k̄, . . . , k̃}. (13)

We can rewrite the above valid inequalities (11) by using a matrix A ∈
{0, 1}m×N , with only entries 0 and 1, one row for each cover inequality (as-
sume the cover inequalities are m), one column for each time k. Such a matrix
is an interval matrix, i.e., it has 0-1 entries and each row is of the form

(0, . . . , 0 1, . . . . . . . . . , 1︸ ︷︷ ︸ 0, . . . , 0).

consecutive 1’s

It is well known from the literature that each interval matrix is totally uni-
modular (the determinant of any square sub-matrix is equal to −1, 0 or 1).
This means that the polyhedron obtained from U by replacing the integrity con-
straints u(k) ∈ {0, 1} with the linear constraint 0 ≤ u(k) ≤ 1 is an integral
polyhedron. As a consequence we have the following result.

Theorem 2. Solving the set-covering reformulation (12)-(13) is equivalent to
solving the linear programming problem

min
u

cT u (14)

s.t. Au ≥ 1 (15)
0 ≤ u ≤ 1. (16)

Proof. Since constraints (15)-(16) define an integral polyhedron, then the linear
programming problem (14)-(16) has as optimal solution an integer solution. 	

From the above theorem we can conclude that solving the linear program (14)-
(16) corresponds to solving problem (5)-(6).
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Abstract. This article proposes a new capture basin algorithm for com-
puting the numerical solution of a class of Hamilton-Jacobi-Bellman
(HJB) partial differential equations (PDEs) [3], based on a Lax-Hopf
formula [2]. The capture basin algorithm is derived and implemented
to perform numerical computations. Its performance is measured with
highway data obtained for interstate I80 in California.

Assumptions. We posit the following assumptions

1. A concave function ψ : X �→ R on [0, ω], which vanishes at 0 and ω, equal
to ψ′(0)v for v ≤ 0 and ψ′(ω)(ω − v) for v ≥ ω.

2. A bounded continuous function v : R+ �→ Dom(ψ),
3. An upper semicontinuous initial datum N0 : X �→ R+. We set N0(0, x) :=

N0(x) and N0(t, x) := −∞ if t > 0.
4. A Lipschitz function b : R+ × X �→ R ∪ {−∞} setting the upper constraint.

We set ∀ x ∈ ∂K, ∀ t ≥ 0, γ(t, ξ) := 0 and ∀ x > ξ, γ(t, x) = −∞. This is
required to satisfy consistency assumptions⎧⎨

⎩
(i) ∀ t ≥ 0, ∀ x ∈ K, max (N0(t, x), γ(t, x)) ≤ b(t, x)

(ii) ∀x ∈ K, N0(x) ≤ inf
s≥0

(
x − ξ

s

∫ s

0
v(τ)dτ

)
(1)

When the function v(·) ≡ v is constant, condition (1)(ii) boil down to

∀ x ≥ ξ, N0(x) ≤ v(x − ξ)

Problem statement. Under the above mentioned assumptions, that are as-
sumed all along this paper, we shall solve the existence of a solution to the
non-homogenous HJB PDE:
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∀ t > 0, x ∈ Int(K),
∂N(t, x)

∂t
+ ψ

(
∂N(t, x)

∂x

)
= ψ(v(t)) (2)

satisfying the initial and Dirichlet conditions{
(i) ∀ x ∈ K, N(0, x) = N0(x) (initial condition)
(ii) ∀ t ≥ 0, N(t, ξ) = 0 (Dirichlet boundary condition) (3)

and the user defined viability constraints.
∀ t ≥ 0, x ∈ K, N(t, x) ≤ b(t, x) (upper inequality constraint) (4)

Flux functions. The assumption that the flux function ψ is concave and upper
semicontinuous plays a crucial role for defining the viability hyposolution. In-
deed, since ψ is concave, the function ϕ(p) := −ψ(p) is convex and its Fenchel
transform is defined by:

ϕ∗(u) := sup
p∈Dom(ϕ)

[p · u − ϕ(p)] = sup
p∈Dom(ψ)

[p · u + ψ(p)] (5)

Recall that the fundamental theorem of convex analysis states that ϕ = ϕ∗∗ if
and only if ϕ is convex, lower semicontinuous, and non trivial (i.e. Dom(ϕ) :=
{p | ϕ(p) < +∞} �= ∅). Therefore we can recover the function ψ from ϕ∗ by

ψ(p) := inf
u∈Dom(ϕ∗)

[ϕ∗(u) − p · u] (6)

Proposition 1. Let us consider a concave flux function ψ0 defined on a neigh-
borhood of the interval [0, ω] and satisfying ψ0(0) = ψ0(ω) = 0. We assume
for simplicity that ψ is differentiable at 0 and ω, and we set ν� = ψ′(0) ≥ 0 and
ν� = −ψ′(ω) ≥ 0 We associate with it the continuous concave function ψ:

ψ(p) =

⎧⎨
⎩

ν�p if p ≤ 0
ψ0(p) if p ∈ [0, ω]
ν�(ω − p) if p ≥ ω

Then the Fenchel transform ϕ∗ is bounded above, and its domain Dom(ϕ∗) =
[−ν�, +ν�] is bounded:

ϕ∗(u) =
{

ϕ∗0(u) if u ∈ [−ν�, +ν�]
+∞ if u /∈ [−ν�, +ν�]

Viability hyposolution of the HJB equation [1]. We define a target C := Hyp(c)
as the subset of triples (T, x, y) ⊂ R+ × X × R such that y ≤ c(T, x) (which is
the hypograph of the function c), where the function c(t, x) is defined (here) by:

c(t, x) :=

⎧⎨
⎩

−∞ if t > 0 and x > ξ
N0(x) if t = 0 and x ≥ ξ
0 if t ≥ 0 and x = ξ
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Fig. 1. Left: Flow-time curves. The (actual) measured inflow on the boundary x = ξ
is represented by the dashed curve. The continuous curve shows the simulated inflow
through boundary x = ξ, taking into account the highway capacity. The number of
corresponding (remaining) vehicles stored at the x = ξ boundary is shown on the dash
dotted curve. Right: Comparison between experimental values and simulated values
for the cumulated vehicle number N(t, ξ + L) between ξ and L.

The environment K := Hyp(b) is the subset of triples (T, x, y) ⊂ R+ × X × R

such that y ≤ b(T, x), which is a user-defined function (this is the hypograph of
the function b). We define the auxiliary control system :⎧⎨

⎩
τ ′(t) = −1
x′(t) = u(t) where u(t) ∈ [−ν�, +ν�]
y′(t) = ϕ∗(u(t)) − ψ(v(τ(t)))

(7)

where ϕ∗ is the Fenchel conjugate function of ψ, as defined previously. To
be rigorous, we have to mention once and for all that the controls u(·) are
measurable integrable functions with values in Dom(ϕ∗), and thus, ranging
L1(0, ∞; Dom(ϕ∗)), and that the above system of differential equations is valid
for almost all t ≥ 0.

Definition 1. The Viability Hyposolution. The capture basin Capt(7)(K, C)
of a target C viable in the environment K under control system (7) is the subset
of initial states (t, x, y) such that there exists a measurable control u(·) such that
the associated solution

s �→
(

t − s, x +
∫ s

0
u(τ)dτ, y +

∫ s

0
(ϕ∗(u(τ)) − ψ(v(t − τ)))dτ

)

to system (7) is viable in K = Hyp(b) until it reaches the target C = Hyp(c).
The viability hyposolution N is defined by

N(t, x) := sup
(t,x,y)∈Capt

(7)
(K,C)

y (8)

Theorem 1. Non-homogenous Dirichlet/Initialvalue Problem with in-
equality contraints. The viability hyposolution N defined by (8) is the largest
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upper semicontinuous solution to Hamilton-Jacobi equation (2) satisfying initial
and Dirichlet conditions (3) and inequality constraints (4). If the functions ψ, ϕ∗

and v are furthermore Lipschitz, then the viability hyposolution N is its unique
upper semicontinuous solution in both the contingent Frankowska sense and in
the Barron-Jensen/Frankowska sense.

Other numerical illustrations of the article [2], such as a sup-morphism prop-
erty, have been carried out using the viability algorithm. The results can be
compared with explicit analytical solutions obtained from Lax-Hopf formulas
extended to the case of boundary-value problems. The viability kernel algo-
rithm [4] is adapted to the case in which the target C and the environment
K are hypographs, which allows us to take some specificities of the problem
into account. An example of a solution computed with the algorithm is pro-
vided in Figure 2. In this Figure, one can see two computations: one of an
unconstrained solution (thick line), and one of a constrained solution (thin
lines). A cap of b(t, x) = 40 is imposed on the constrained solution, as can
be seen in this Figure. From Figure 2, one can observe that the solution with
constraints is not the supremum of the solution without constraints and the
function b.

We use the same experimental set up as

Fig. 2. Plots of N(t, x) versus t and
x. The unconstrained solution is rep-
resented by a thick line. The thin line
represents the constrained solution of
the same system (we set b(t, x) = 40
in this example). Result obtained us-
ing a Greenshields [2] flux function.

in earlier work [5] to assess the performance
of the algorithm with highway traffic data:
we use three loop detectors in interstate I80
at Emeryville. When the measured inflow
(upstream) exceeds the modeled highway
capacity (because of noise in the measure-
ments or model inaccuracy), we “store” the
corresponding vehicles at x = ξ until they
can be released into the highway. The re-
sulting curves are shown in Figure 1 (left):
the cutoff happens at ψ(v(t)) = δ above
which the vehicles have to be stored until
the highway capacity allows them to en-
ter at x = ξ. In this Figure, all numbers
of vehicles are per lane. The correspond-
ing number of “stored” vehicles is shown
in the same subfigure, and the correspond-
ing N(t, ξ+L) curves are shown in the right

subfigures, where L represents the length of the corresponding highway stretch.
The evolution N(t, ξ+L) thus represents the evolution of the cumulated number
of vehicles between ξ and ξ + L as a function of time. Both simulated and mea-
sured curves are represented on this plot and show remarkable agreement. The
differences between simulation and theory are mainly linked with uncertainties
on the numerical values of the parameters of the model.
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Abstract. This paper discusses the design of optimal feedback control
laws for hybrid systems with autonomous (continuous) modes. The solu-
tion of similar problems, when the dynamic modes are non linear, is, in
general, dependent on the initial conditions. The same problem affects
the ”open loop” control based on the definition of the optimal switching
times. In this work an algorithm is proposed, allowing to build switching
surfaces which are optimal for any possible initial condition. It is based
on the sensitivity analysis of the optimal switching times with respect to
the initial conditions and on the identification of the set of initial condi-
tions maximizing the information relevant to the design of the surface.

1 Introduction

Consider a switched system with autonomous continuous dynamics,

ẋ(t) = fq(t)(x(t)), (1)

q+(t) = s(x(t), q(t)). (2)

where (1) describes the continuous dynamics of the state variable x ∈ X ⊆ R
n

and (2) describes the discrete event dynamics of the system. Since the continuous
modes are autonomous, the evolution of the system is determined by the active
modes, according to (2). When the function s does not depend by the (continu-
ous) state variable x, the switching instants are determined as exogenous inputs,
and the system is controlled in open loop (timing control); when s is dependent
only on the state variables, the switching law is given in a feedback form, and it
may be defined by switching surfaces in the state space.

To formulate the problem we are interested in, consider a simple execution of
(1,2), starting at x(t0) = x0 with mode 1, switching (exogenously) to mode 2
at time t1, and terminating either at a fixed final time t2 or in correspondence
of a terminal manifold, e.g., defined by a function g2(x), so that t2 satisfies
g2(x(t2)) = 0. Denote such two sets of executions by χt and χg, respectively,
and let the evolution under mode i be expressed by x(t) = ϕi(t, s, x(s)).

When an optimal control problem for this system is formulated, according to
a cost function J =

∫ t2
t0

L(x(t))dt, for some continuously differentiable function
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L, then, if t1 = t∗1, a (locally) optimal switching time, the following condition is
satisfied, see e.g. [1]:

c(t∗1) := pT (t∗1)[f1(x(t∗1)) − f2(x(t∗1))] = 0 (3)

where p is the costate (adjoint) variable.
In this work a feedback solution to this problem is pursued through the deter-

mination of an (optimal) switching surface. Computational methods exist and
are based on the optimization of parametrized switching surfaces [2]; however,
the optimal parameter values depend on the particular trajectory chosen to run
an optimization program, and thus, on the initial conditions. Ref. [3] addressed a
timing optimization problem, and discovered the special structure of the solution
for linear quadratic problems by identifying homogeneous regions in the state
space which dictate the optimal switches, thus providing a feedback solution to
a problem which is formulated in terms of an open loop strategy.

Here we explicitly investigate the relation existing between optimal switching
times and initial conditions, studying how the condition of optimality (3) that
switching times must satisfy, vary in dependence of the initial conditions. By this
analysis, a procedure which builds the switching surface which is the optimal one
for any initial condition, denoted G∗, can be set up once the optimal switching
instant for one single execution is known.

2 Optimal Switching Times v/s Initial Conditions

It is well known that, under mild assumptions, executions of switched systems
are continuous w.r.t. the initial conditions [4]. It is reasonable to expect that
also the dependence of t∗1 on x0 is continuous a.e. in the state space. In this
hypothesis, the function t∗1(x0), limited to that set of x0’s in which t∗1 is smooth,
may be characterized by deriving (3) w.r.t. x0 and setting this derivative to
zero1. In fact, if starting from x̃0 = x0 + δx0, it results t̃∗1 = t∗1 + δt∗1; then, by
continuity, 0 = c(t̃∗1) = c(t∗1)+ dc

dx0
δx0 +o(δx0). Hence, setting dc

dx0
= 0, to satisfy

optimality condition for t̃∗1, allows to compute dt∗1/dx0.
The derivation of such formula, carried out in [7], for both types of executions

χt and χs, relies on various results of sensitivity analysis for switched systems,
given, among others, in [5,6]. The present case, however, deals with an optimal
control problem, and hence needed further derivations relative also to costate
variables, which evolve ”backward” in time.

Now, the idea is to ”build up” G∗ by finding a set of optimal switching states,
and to determine such states by the variations of the optimal switching times
when initial conditions different than a nominal one, for which t∗1 is known, are
considered. These variations can be computed, approximated to the first order,
using dt∗1/dx0.

1 For this to be valid, also c must be continuuous in t1, as c depends on x0 via t∗
1. The

RHS of (3) is the sensitivity of a cost function w.r.t. a switching time. As such, c is
intrinsically continuous in t∗

1.
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Prior to set up this program, the conditions under which optimal switching
times yield ”well defined” optimal switching states are given.

Theorem 1. Consider a nominal and a perturbed execution of the set χg, x(·)
and y(·), respectively, the first starting at x0 and the latter starting from a point
y0 such that it exists a duration δt0 : y0 = ϕ1(t0 + δt0, t0, x0) (if δt0 > 0, y0 lies
on the nominal trajectory, and vice versa). Then, for all δt0 < t∗1 − t0

t∗1(y0) = t∗1(x0) − δt0 (4)

This theorem, proved in [7], states that for the two evolutions described the op-
timal switching state is the same. In the same situation, but for evolutions of the
type χt, the optimal switching state may vary because the perturbed trajectory,
switching at t∗1 − δt0, reaches the point x(t2) (of the nominal trajectory) at time
instant t2 − δt0, thence ”visits” additional states from t2 − δt0 to t2 (in other
words y(·)(t2−δt0,t2] is a set of states not visited by x(·)). Such remnants of the
perturbed trajectory add further costs, so that two different trajectories, even if
the starting point of one of them lies in the trajectory of the other, cannot be
properly compared, in terms of optimal switching states.

Remark 1. This may be verified also through the formula dt∗1/dx0 which in this
situation yields a first order approximation of the kind δt∗1 = − b

b+aδt0, for suit-
able terms a and b. As the condition (4) is equivalent to δt∗1 = −δt0, the addi-
tional term a prevents this to hold. It is possible to verify [7], however, that for
a case similar to those considered in [3], where the the final dynamic mode is
linear, stable and the terminal time tends to infinity, the term a is vanishing.

In force of Theorem 1 and Remark 1, the objective to characterize optimal
switching surfaces independent of the initial conditions should be pursued con-
sidering evolutions ending at terminal manifolds or those evolutions of the family
χt with the restrictions of Remark 1, since in such cases variations in the switch-
ing times define soundly optimal switching states as well (for ease of reference,
these evolutions will be said to belong to the family χss).

3 Drawing the Optimal Switching Surface

Summarizing the developments up to this point, condition (3) characterizes an
optimal switching time in relation to some actual evolution of the system, which
depends (only) on the initial condition, being the system autonomous. A switch-
ing state is optimal when c(t1, x(t1)) = 0; accordingly, the optimal switching
states are parametrized by the variable t∗1 as x∗1 = ϕ(t∗1, x0) (here t0 is not con-
sidered in ϕ). Notice that the choice of x0 does not affect the optimality of x1 for
those executions x(·) ∈ χss. In this case, G∗ can be drawn by finding the locus
of those t1-parametrized states satisfying (3), a task that can be accomplished,
thanks to the sensitivity analysis carried out previously, as follows.
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As a starting point, assume that for some initial condition x0 the optimal
switching time t∗1 is known (this may be even found by brute force). Choose a
variated initial condition x̃0 = x0 + δx0 and compute δt1 by a linear approxima-
tion using dt∗1/dx0, for this evolution. The approximation to the optimal switch-
ing state for the evolution starting in x̃0 is x̂1 = ϕ(t̂1, x̃0), with t̂1 = t∗1 + δt1.
To maximize the relevance of the switching state thus found, the variated initial
condition should be chosen orthogonal, w.r.t. to x0, to the flow f1(x0). This
choice is justified by Theorem 1, since the component of the variation δx0 on x0
which is tangent to the flow f1(x0) yields no difference on the optimal switching
state, hence giving no relevant information to the construction of G∗.
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(a) True optimal switching surface, dash-dotted; the designed one,
bold.
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(b) Close up to the two switching surfaces.

Fig. 1. Executions of the system and the optimal switching surface

To set an iterative procedure, now assign x0 := x̃0 and t∗1 := t̂1. The collection
of the approximated optimal switching states (possibly interpolated) computed
by the above procedure yield the designed switching surface.

The main drawback of this scheme is that as the algorithm proceeds, the sen-
sitivity dt∗1/dx0 is no longer computed with reference to a true optimal switching
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state (as it happens for the first step, only) but to an approximated one. For
this reason, the surface drawn in this way is likely to ”drift away” from the
true one. Also, assuming that the true surface is piecewise smooth, then near a
critical point of it (i.e., a discontinuity in the derivative of the functional descrip-
tion of the surface) a switching state found by the above described first order
approximation, may lie quite far from the true surface.

It is possible to overcome this problem by checking, for every approximated
switching state x̂1, the corresponding value of c (in Eq. 3), which is of no rele-
vant computational cost, as the evaluation of this condition is a by-product of
the computation of dt∗1/dx0. This allows to pick, instead of t∗1 + δt1, a better,
”corrected”, value for t̂1, hence ”correcting” also x̂1. One way to do this is, for
example, to pick two sample switching times s1 and s2, both very close to the
first choice t∗1 + δt1, and to compute, by linear extrapolation, t̂1 according to the
found values of c(s1) and c(s2) (thus assuming that c(s, x(s)) is linear in s close
to a point where c is zero).

A numerical implementation of this algorithm was carried out for a system
with fi(x) = Aix, where A1 = [−1 1; −2 −1] and A2 = [−1 2; −1 −1], considering
J =

∫ t2
0 ‖x(t)‖2dt and ”very large” t2 (thus, for an evolution of the type described

in Remark 1). For the nominal x0 = [.3; .15] and the corresponding evolution
x(·) = ϕ(·, x0) the optimal switching time is t∗1 = .279. The procedure was run
for other initial conditions, which form a transversal surface, showed in figure
1(a), to the flow of f1, starting from the first x0. The switching surface found
through the procedure described matches quite well the true one (for the case
considered the optimal switching surfaces are known to be homogeneous, see
[3]), as appears in figure 1.

4 Conclusion

This paper presents a method to determine optimal switching surfaces for hybrid
systems with autonomous modes. The idea is to characterize the variations in
the optimal switching times corresponding to variations in the initial conditions
of the evolution of the system, and to apply this formula for transverse shifts in
the initial conditions. An algorithm based on this concept was set up and showed
good results.

The results given are relative to a simple evolution with only one switch, a
setting which was useful to develop, and illustrate, the main concept. Future work
will be devoted to extend the results to more general event driven dynamics.
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Abstract. In this paper we present a dynamic programming formula-
tion of a hybrid optimal control problem for bimodal systems with re-
gional dynamics. In particular, based on optimality-zone computations,
a framework is presented in which the resulting hybrid Bellman equation
guides the design of optimal control programs with, at most, N discrete
transitions.

1 Introduction

Optimal control of hybrid systems is certainly not a new topic. For example,
the hybrid maximum principle has been well-studied [3,6], and the community
now has a clear grasp of what constitutes necessary optimality conditions for
very general classes of hybrid systems. Moreover, a number of results of a more
computational flavor have complemented the work on the maximum principle,
in which specialized classes of systems are considered. (See for example [1,4,7].)

The contribution in this paper fits squarely in between the hybrid maximum
principle work and the more computationally flavored work, in that we produce
a Bellman equation for hybrid systems, along the lines of [2,5], that can be easily
solved once a so-called optimality zone computation has been performed to seed
the computation.

2 The Bimodal Hybrid System

2.1 Geometric Framework

Given two open, connected, and simply connected regions D1, D2 such that
D1 ∩D2 = ∅, forming a partition of the compact state space X in the sense that
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X = (D1 ∪ ∂D1) ∪ (D2 ∪ ∂D2), where the boundaries ∂D1, ∂D2 are assumed to
be finite unions of closed, smooth codimension one submanifolds of X .

The vector fields fi(x, u), i = 1, 2 associated with each region are further
assumed to satisfy a transversality condition in the sense that for i = 1, 2, (i)
the vector field fi(x, u) is non-tangential to the boundary ∂Di at any point in
the relative interior of each component of Di; (ii) at points x on ∂Di at which
smooth components intersect, the vector field fi(x, u) is non-tangential to each
of the tangent spaces of the intersecting components, for all control values.

2.2 Specifications of Executions

The controlled continuous dynamics of the bimodal hybrid system in any of the
two regions, on any bounded time interval, are given by:

ẋ(t) =
{

f1(x(t), u(t)), x(t) ∈ D1
f2(x(t), u(t)), x(t) ∈ D2,

x(0) ∈ D1 ∪ D2,

where fi is continuously differentiable in x (for all u) on the closure of Di, i = 1, 2
(and hence uniformly continuous and uniformly Lipschitz in x on the closure of
Di) for each i. The solutions are interpreted in the Caratheodory sense, and the
initial condition x(0) of an admissible execution satisfies x(0) ∈ D1 ∪ D2.

3 Optimal Control Formulation

3.1 The Hybrid Bellman Equation

Given an initial condition x(0) ∈ Di, the control input u ∈ U gives rise to a tra-
jectory xu passing through a sequence of N regions (regions 1 and 2 repeatedly).
We let i(xu) denote this index, i.e. i(xu) = N . Corresponding to this index there
is an ordered set of half open intervals {[tik

, tik+1); 0 ≤ k ≤ N − 1}, such that
xu(t) ∈ Di for t ∈ [tik

, tik+1).
The hybrid optimization problem addressed in this paper is the following:

PN : inf
u∈U

∫ T

0
�(x(t), u(t))dt

subject to the constraints that ẋ = fi(x, u) (when x ∈ Di), x(0) = x0, x(T ) =
xT , and |i(xu)| ≤ N, for a given upper limit on the total number of switches
N ≤ ∞.

Given x1, x2 ∈ Di we let ci(x1, x2, Δ) denote the infimum of the costs asso-
ciated with driving the system from x1 to x2 during a time horizon Δ without
leaving Di (except possibly at time 0 or Δ). Our ambition is to produce a hy-
brid Bellman equation describing the cost-to-go dynamics, and for this we define
V M

i (x1, τ) as the cost of going from x1 to xT in time τ , using exactly M switches,
starting with mode i. In other words, by defining the complementary indicator
ic as ic = 2 if i = 1 and ic = 1 if i = 2, we get

V M
i (x1, τ) = inf

t∈[0,τ ],x2∈∂D
{
ci(x1, x2, t) + V M−1

ic (x2, τ − t)
}

.
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This relation holds as long as M ≥ 1. If M = 0 then we get the following direct
simplification

V 0
i (x1, τ) = ci(x1, xT , τ).

It should be noted already at this point that V M (x1, τ) = ∞ for all τ if M is
even and x1 and xT belong to different regions, or if M is odd and they belong
to the same region.

Since we do not want to insist on an a priori given number of intersections of
the switching surface ∂D, we need to relate V N to the original problem. If we let
x0 ∈ Di then the optimal cost associated with the original problem WN

i (x0, T )
is given by

WN
i (x0, T ) = min

0≤k≤N
V k

i (x0, T ).

3.2 Optimality Zones

The Bellman equation from the previous section immediately allows an inter-
pretation in terms of optimality zones [3]. In fact, it can be noted that except
for the initial and final pieces of the trajectory, from x0 to the first intersection
of the switching surface and from the last intersection to xT , the trajectory is
simply given by a concatenation of trajectories from points on the switching
surface. This observation leads to a computational framework in which a large
computational burden is needed initially when preparing the so-called optimality
zones, but once that price is paid, fast solutions are possible.

4 Examples

We first consider an example in which a planar system x ∈ R
2 is driven be-

tween the boundary points x(0) = (−1, 0)T , x(T ) = (1, 0)T , under the system
dynamics

ẋ =

⎧⎪⎪⎨
⎪⎪⎩

(
−0.3 0.05
−0.5 0

)
x +

(
0.1
1

)
u,

(
1 1

)
x < 0(

0.8 1
−3 −5

)
x +

(
−0.3

3

)
u,

(
1 1

)
x > 0.

Moreover, the final time is T = 1, with the maximum number of intersection
being given by N = 20.

The numerical solution is obtained by discretizing the area over which the
optimality zone is computed, and we let the space-time domain be discretized
into 50 temporal steps (over (0, T )) and 40 spatial steps (over each dimension of
the state space.) The particular cost function under consideration is the control
energy of the control signal (in the L2-sense), and the resulting optimal solution
is given in Figure 1a. In this case, the optimal solution was obtained when only
one crossing of the switching surface took place, with the corresponding optimal
cost being W 20

1 (x0, 1) = V 1
1 (x0, 1) ≈ 22.91.
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Fig. 1. One switch is optimal (a). Three switches are optimal (b).

In order to highlight the fact that multiple switches may be to prefer, we now
consider another linear situation in which

ẋ =

⎧⎪⎪⎨
⎪⎪⎩

(
ε11 ω1
−ω1 ε12

)
x +

(
0
1

)
u,

(
1 1

)
x < 0(

ε21 ω2
−ω2 ε22

)
x +

(
0
1

)
u,

(
1 1

)
x > 0.

In fact, by making εij small, we have a (slightly disturbed) oscillation in the
system and if we let ω1 = π/4, ω2 = π/2, T = π/2ω1+π/2ω2+3π/2ω1+π/4ω2 =
9.5, we get that, using the initial and final conditions x0 = (−1/2, 0)T , xT =
(1/

√
8, 1/

√
8)T , a zero control effort would result in a three-switch situation if

ε = 0. Using exactly the same numerical parameters and costs as in the previous
example, with small but non-zero εij , we still get that the three switch-situation
is optimal, as seen in Figure 1b, with W 20

1 (x0, 9.5) = V 3
1 (x0, 9.5) ≈ 0.014 <

V 1
1 (x0, 9.5) ≈ 0.043.
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Abstract. This work aims at presenting a new framework for detection
of connection faults in networks of hybrid systems. The considered faults
are losses of connections which are represented through automata. The
hybrid systems which are the nodes of the network are modelled using
a qualitative representation through stochastic automata. A distributed
fault detection policy for the considered faults is proposed.

1 Networks of Hybrid Systems

Networks of hybrid systems are composed of hybrid systems cooperating through
a network. The systems in the network can be components of the same hy-
brid system, but can also be complete hybrid systems communicating through
the channels of the network. The subsystems composing the network are called
nodes. In this work the hybrid systems composing the network are connected
point-to-point (see fig. 1(a)), meaning also that each system is directly connected
with all the others. The choice of this configuration is motivated by its usefulness
for fault detection and reconfiguration. In fact if a connection is lost it will be
possible to reach a node following a path which is different from the direct one.
Another more general reason for this choice is that it is the more widely used
configuration for large scale systems, while using, e.g., a broadcast model will
increase the transmission time with the scale of the network (see [1] for details).
Suppose, then, that the nodes communicate using a protocol similar to the so
called start-stop. In this protocol the channel can transmit one message at a time
in both directions, but not at the same time. The policy of the protocol is the
following:

1. the sender sends a request to send (req) signal to the receiver;
2. the receiver sends a receive ready (rr) signal to the sender;
3. the sender transmits the message;
4. the receiver sends an acknowledgement (ack) signal to say it has received

the message correctly;
5. the sender sends a clear to send (cs) signal to say it has finished transmitting

messages;
6. both sender and receiver disconnect.
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Fig. 1. Hybrid Systems Network (HSN)

For the sake of simplicity in the following it will be considered that the systems
always send only one message at a time. It is also necessary to establish an
address for each node. Assume the use of local addresses: the nodes can be
numbered 1 to n and in our representation we can think they are contained
in some signals (ad) the sender node uses to activate the right channel. An
automaton representing a connection is reported in fig. 1(b) where it is shown
when the connection is considered busy or idle. The connection is normally in
state Idle (I). The sender specifies the address of the receiver in the signal ad
which is related and recognized by the link connecting the correct nodes. Then
the connection moves to state Ready (R). When the req signal is sent by the
sender, the connection moves to state Busy (B). With the rr and ack signals
the connection remains in B. When the signal cs occurs the connection moves
back to I.

A modelling framework which is of particular interest for fault detection is
based on the Artificial Intelligence theory of Qualitative Reasoning. Qualitative
models are abstractions of the system’s behavior, they represent qualitative re-
lations among physical systems. Building qualitative models does not require a
mathematical knowledge of the systems and their behavior. This kind of mod-
elling is frequently used for fault diagnosis, when we can be aware of the effects
of the faults but not of their quantitative description. Then, in this work, the
nodes of the network are modelled using the qualitative approach presented in
[2], based on the quantisation of hybrid systems. A quantised system is a sys-
tem in which all the continuous dynamics are converted into discrete dynamics.
This means that in a quantised system only symbolic input/output informa-
tion is available. Its behavior is then qualitative and non-deterministic, i.e. it
is impossible to predict the qualitative output sequence of the quantised sys-
tem unambiguously for given qualitative initial state and input. In any case it
is always possible to know with which probability a qualitative output value
[y(k)] occurs (here [y(k)] is the quantised output, and k is the time instant).
Using the theory of stochastic automata (see [3]), it is possible to represent
the quantised system with a stochastic automaton S(Nx, Nu, Ny, L, P (z(0))),
where Nx, Nu, Ny are the sets of states, inputs and outputs of the system respec-
tively, L is the behavioural relation and P (z(0)) is the probability distribution
of the initial state z(0) of the automaton. The behavioural relation is defined
as L(z′, w|z, v) = P ([x(1)] = z′, [y(0)] = w|[x(0)] = z, [u(0)] = v), where the
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notation [·] refers to quantised signals, z′ is the new (meaning next at time 1)
state of the automaton, w is the actual output, z the actual state and v the ac-
tual input. So the behavioural relation express the probability of the next state
to be z′ and the actual output to be w if the actual state is z and the actual
input is v. In [4] the stochastic automata networks are introduced by extending
the concept of stochastic automata with the definition of exogenous signals such
as inputs, outputs and faults. In [5] a way to cast distributed quantised systems
into stochastic automata networks is presented. The above presented modelling
framework is adapted to the kind of systems we want to study. Each node is
represented by a quantised system, modelled by a stochastic automaton. The
connections are represented by systems themselves, as shown in fig. 1(b). Con-
nections and nodes exchange data using their input/output signals which are
supposed to be known. The signals of the protocol are divided into inputs and
outputs as follows:

Sender
{

req, cs, ad ∈ Ny

rr, ack ∈ Nu
; Receiver

{
req, cs, ad ∈ Nu

rr, ack ∈ Ny
.

2 Faults Modelling and Fault Detection Issues

There are many different kinds of faults that can occur in a system: sensor,
actuator, communication faults. The effects of these kinds of faults show up in
different parts of the system. Sensor faults change the output dynamics, while
the actuator faults change the state dynamics. In this work a special attention
to communication faults is given. They affect the communication channel. De-
pending on the severity of the fault the channel can be unreliable or completely
lost. Unreliable channels are usually handled by the protocol policy, i.e. if some
messages are lost or some bits are changed, the protocol usually is robust enough
to recall the message or to recover the wrong transmission. The above specified
communication policy is weak in this sense, but some extensions exist such as
the so called go back to n protocol (see [1]). In this protocol the sender has
buffers of the sent and received messages because the receiver sends an acknowl-
edgement signal each time it receives a message; if a message is lost the buffers
allow to compare the sent and the received messages and go back to the (nth)
message lost. Then more severe faults such as the complete loss of a channel are
interesting, because they cannot be managed by a robust protocol. The model
of the connection with this fault is represented in fig. 2. Here the fault is called
f and after its occurrence the connection moves to the faulty state F . The fault
obviously depends on the transmission signals. In fact when one of these signals
is expected but not received, a fault has possibly occurred. Note that faults on
the nodes are not considered at this level, but a signal missing can also be due to
a node internal fault, which should be distinguished from the connection fault.
Note also that from the connection point of view it is not possible to relate the
fault to one of the signal missing, because the connection is not aware of the
nodes communication policy, while the protocol is managed by the nodes them-
selves. The connection faults for the presented systems can be detected using a
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Fig. 2. Automaton of a connection with the faulty state

decentralized policy. This allows the fault detection and isolation (FDI) unit not
to check all the connections and the nodes even for big complex systems. This
can be realised giving a state estimator to each node and a fault detection unit
to each pair of nodes. The state estimator aims at giving an estimate of the state
of the system to avoid mistaking internal node faults for connection faults, while
the fault detection unit supervises the pair of nodes that communicate to detect
if a fault on the channel occurs. Practically the estimator checks if the state of
the node is the nominal one or one of the possible faulty ones. If the estimators
of both communicating nodes claim that they are in the nominal state but the
fault detection unit claims that some transmission signal (related to the fault
f) is missing, then the fault detection unit can establish that a fault on the
connection has occurred.

3 Conclusions

In this work a framework for detection of connections breakdowns in networks
of hybrid systems has been presented. With the use of qualitative modelling
and estimation techniques presented in literature it is possible to achieve fault
detection in a distributed way, by supervision of pairs of communicating nodes
of the network. This method is applicable to large scale systems, where a plant
has to communicate data to a remote station and when many connections are
present because it is impossible to schedule a polling for all of them.
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Abstract. This paper describes a sufficient condition, based on a new
definition of Lyapunov function for switched systems, for the existence of
a time-varying switching control scheme which globally asymptotically
stabilizes the zero equilibrium of a class of non-holonomic systems.

We present the new concept of switching-based Lyapunov function (SBLF) which
can be used to analize the stabilizability of the equilibrium of non-holonomic sys-
tems (NHS’s). Without providing a general overview on hybrid systems (HS’s),
for which we refer the reader to the extensive literature (see, for instance, [1,2,3]),
we focus on autonomous switched systems (SS’s); in particular, we consider a
generic control system ẋ(t) = f [x(t),w(t)] to which a switched feedback is ap-
plied, each control law of which, wk, depends on the state (i.e. wk =wk(x)) in
such a way that the resulting closed loop system is an autonomous SS. Now,
several theoretical tools are already available for the analysis of the stability
of the equilibrium of HS’s, of which SS’s are a sub-class, such as the concepts
of common or multiple Lyapunov functions. The new approach that we follow
herein is based on the consideration that the main idea behind Lyapunov’s re-
sults is that a function V of the state x can be used to characterized the stability
of an equilibrium of the system, provided that V is non-negative for all x and
non-increasing over time. Analogously, the concept that we want to formalize
is the following: for a dynamical system whose equilibrium state is x = 0, it is
possible to design a switching control scheme based on the value of a positive def-
inite function V (x) in such a way that V [x(t)] is non-increasing over time for
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the switched system. To this aim, not only the first-order time-derivative will be
considered but also the time-derivatives of higher order. To see how this concept
can lead to a stability theorem, we start with the following definitions.

Definition 1. Consider an autonomous SS characterized by a continuous state
x ∈ R

n and by a discrete state q ∈ Q = {1, . . . , N}:⎧⎨
⎩

ẋ(t) = f̃qk
[x(t)] ,

τk+1 = τk + στ [qk,x(τk)] ,
qk+1 = σq[qk,x(τk+1)] ,

(1)

where f̃qk
: R

n → R
n is associated to qk, f̃qk

∈ {f̃1, f̃2, . . . , f̃N} and f̃q(0) = 0, for
all q ∈ Q. Moreover, in (1), the functions στ : Q×R

n → R
+ and σq : Q×R

n →
Q are the updating rules of τ and q, respectively, and x(τk) denotes the value
of the continuous state at the beginning of the time-interval [τk, τk+1). A smooth
function V : R

n → R is a switching-based (SB) Lyapunov function for system
(1) if V (0)=0, V is radially unbounded and positive definite and for each pair
of time-instants t1 ∈ R

+ and t2 ∈ R
+, with t2 � t1, V [x(t2)] � V [x(t1)].

Note that the function may assume a constant value for a whole interval [τk, τk+1]
and may be not differentiable w.r.t. time in some switching time-instants.

Definition 2. The equilibrium in x = 0 of the continuous dynamics of the HS
(1) is SB stable if system (1) admits a SBLF.

The notions of SBLF is useful to state the following results (for the proof see [4]).

Theorem 1. Consider a system Σ : ẋ(t)= f [x(t),w(t)] with f(0,0)=0. If there
exist a set Q∗ ⊂ N, whose cardinality is N , two functions σ∗τ : Q∗ × R

n → R
+

and σ∗q : Q∗× R
n → Q∗ and a set of N control laws w∗1 [x(t)], . . . ,w∗N [x(t)] such

that setting f̃qk
[x(t)] = f{x(t),w∗qk

[x(t)]}, the equilibrium of the HS⎧⎨
⎩

ẋ(t) = f̃qk
[x(t)] ,

τk+1 = τk + σ∗τ [qk,x(τk)] ,
qk+1 = σ∗q [qk,x(τk+1)] ,

is SB stable, then, if w is selected according to a proper switching strategy, the
equilibrium in x=0 is locally stable in the sense of Lyapunov. �
Theorem 2. Suppose that, in addition to the hypotheses of Theorem 1, V is
such that for all m∈Z

+ there exists Lm such that
∣∣∣dmV [x(t)]

dtm

∣∣∣ < Lm for all t>0.

Moreover, suppose that1 there exists Tm > 0 such that σ∗τ [qk,x(τk)]>Tm for all
k∈Z

+ and that it is possible to associate to Q∗ a set of N continuous negative
semidefinite functions from R

n to R, η1, . . . , ηN , such that for all x �= 0 there
exists q ∈ Q∗ such that ηq(x) < 0. Suppose also that Q∗ can be partitioned into
M (disjoint) subsets, Q∗1, Q∗2, . . ., Q∗M , such that, defining, for i = 1, . . . , M ,

Xi �{x∈R
n such that x �=0 and ηq(x)=0 , ∀ q∈Q∗i } ,

1 Note that this requirement implies the absence of Zeno behaviour and chattering,
conditions that a switched system should fulfill in practice.
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and, for a given set X ⊂ R
n, Q∗X � {q ∈ Q∗ such that ηq(x) = 0 , ∀ x ∈ X}, the

following three conditions hold2.

(C1) For all x(τk)∈R
n and for all m∈Q∗1 we have lim

t→τ+
k

[
V̇ (t)

∣∣∣
q=m

]
=ηm[x(τk)].

(C2) For all j = 2, . . . , M , for all x(τk)∈
⋂j−1

i=1 Xi and for all m∈Q∗j we have3

limt→τ+
k

[
djV (t)

dtj

∣∣∣
q=m

]
=ηm[x(τk)].

(C3) σ∗q is such that for all X⊂R
n\{0} eiher4 limk→∞ [minx̄∈X ‖x(τk)−x̄‖] �=0

or for all k̄ there exists k>k̄ such that qk /∈Q∗X.
Then the zero-state equilibrium is globally asymptotically stable. �

The control system Σ appearing in the statements of the theorems above is very
general. Nevertheless, we have developed the theory of SB stability motivated
by the problem of the stability of the equilibrium of NHS’s. These are systems
of great interest as they model a number of mechanical systems such as multi-
fingered robot hands and wheeled mobile robots (see, among several references,
[5] and [6]). For these systems, the controllability problems have been widely
investigated (see, e.g., [7] and the references cited therein) while the stability
problem is still a challenging issue since they are not asymptotically stabilizable
by means of smooth control laws (see [8] and the cited reference), motivating the
use either of time-varying or of discontinuous feedback control laws. Dedicated
solutions for particular NHS’s can be found in the literature (see, for instance,
[9,10,11]); a general treatment of the problem has also been addressed, mainly
to NHS’s in “chained” (or “power”) form (see, for instance, [12,13]). The class of
systems considered herein is even more general than the class of chained systems
and is defined as follows. For a generic p ∈ N, consider the system constituted
by two linear equations (level L0) together with, for each m = 1, . . . , p, a basis
of the subspace of m-dimensional non-integrable forms (level Lm)

L0 L1 · · · Lp
ẋ=u , ẏ=v ż1 =xv żp =

(
xp−1, xp−2y, . . . , xyp−2, yp−1

)�
xv

(2)

where u and v are the input variables. The above equations describe a class of
systems, as p varies, each of which has dimension equal to n = 2 +

∑p
i=1 i =

p(p+1)
2 + 2. Note that the set of the two equations of level L0 together with the

first equation of each level is equivalent to a NHS in power form.
We conclude the paper claiming that the equilibrium in x = 0 of the above

class can be rendered globally asymptotically stable by properly designing the
2 For a generic function F [s(t)] we denote by F (t)|q=i the value of F [s(t)] when s(t)

varies according to the dynamics associated to the discrete state q = i.
3 Condition (C2) expresses the fact that when, for a particular vale of q, the trajectory

approaches a state in which the first j − 1 time-derivatives of V vanish there is at
least another value of q for which the j-th derivative is strictly negative.

4 The meaning of condition (C3) is to introduce a constraint that the switching strat-
egy must fulfill to guarantee that the feedback scheme does not get stuck in a discrete
state q̄ while the trajectory x(t) tends to a state x̄ �= 0 such that ηq̄(x̄) = 0.
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switching control scheme [14]. Two earlier works [15,16] take into account the
first two instances of the above class and show that one of the main advantages
of the proposed method is that the control laws may be selected in different
ways, in particular accomodating saturations. Unfortunately, the application of
the method to real systems may yield a highly oscillatory behaviour [16] what
will be the motivation for further research.
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Abstract. This paper addresses questions regarding the decidability of
hybrid automata that may be constructed hierarchically and in a mod-
ular way, as is the case in many exemplar systems, be it natural or
engineered. Since an important step in such constructions is a product
operation, which constructs a new product hybrid automaton by com-
bining two simpler component hybrid automata, an essential property
that would be desired is that the reachability property of the product
hybrid automaton be decidable, provided that the component hybrid
automata belong to a suitably restricted family of automata. Somewhat
surprisingly, the product operation does not assure a closure of decid-
ability for the reachability problem. Nonetheless, this paper establishes
the decidability of the reachability condition over automata which are
obtained by composing two semi-algebraic o-minimal systems. The class
of semi-algebraic o-minimal automata is not even closed under composi-
tion, i.e., the product of two automata of this class is not necessarily a
semi-algebraic o-minimal automaton. However, we can prove our decid-
ability result combining the decidability of both semi-algebraic formulæ
over the reals and linear Diophantine equations. All the proofs of the
results presented in this paper can be found in [1].

1 Semi-algebraic O-Minimal Automata and Composition

Hybrid automata are systems in which discrete and continuous evolutions are
mixed. In particular, their discrete nature is usually modeled through labeled
directed graphs (called graphs in the rest of this paper), i.e., directed graphs
with labels on the edges. On this kind of graphs we define: a path ph as sequence
of edges; a cycle as a path in which the first and the last edges coincide; a simple
cycle as a cycle without other repetitions.

A hybrid automaton H = (Z, Z ′, V, E, Inv , F , Act , Res) of dimension k
consists of the following components:

� This work is developed within HYCON, contract number FP6-IST-511368 and sup-
ported by the projects PRIN 2005 2005015491 and BIOCHECK. B.M. is supported
by funding from two NSF ITR grants and one NSF EMT grant.
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1. Z = 〈Z1, . . ., Zk〉 and Z ′ = 〈Z ′1, . . ., Z ′k〉 are two vectors of reals variables;
2. 〈V, E〉 is a labeled directed graph; the vertices, V, are called locations ;
3. Each vertex v ∈ V is labeled by the formulæ Inv(v)[Z] and Dyn(v)[Z, Z ′, T ]

def= Z ′ = fv(Z, T ), where fv is the solution of the continuous vector field F ;
4. Each edge e ∈ E is labeled by the two formulæ Act(e)[Z] and Res(e)[Z, Z ′].

A state q of H is a pair 〈v, r〉, where v ∈ V is a location and r = 〈r1, . . . , rk〉 ∈
R

k is an assignment of values for the variables of Z. A state 〈v, r〉 is said to
be admissible if Inv(v)[r] is true. The semantics of hybrid automata is given in
terms of continuous t−→C and discrete e−→D transitions over asmissible states in
the standard way [1]. We use the notation q → q′ to denote that either q

t−→C q′ or
q

e−→D q′. A trace tr = q0, q1, . . . , qnis a sequence of admissible states connected
through transitions. The automaton H reaches a point s ∈ R

k (in time t) from
a point r ∈ R

k if there exists a trace tr = q0, . . . , qn of H such that q0 = 〈v, r〉
and qn = 〈u, s〉, for some v, u ∈ V (and t is the sum of the continuous transitions
elapsed times). Given a trace tr of H we can identify at least one path of 〈V, E〉
underlying tr. We call such paths corresponding paths of tr.

A well-known class of hybrid automata is the class of o-minimal hybrid au-
tomata [2], defined by using formulæ taken over an ambient o-minimal theory [3]
and by imposing the constraints of constant resets at discrete transitions. In the
case of o-minimal automata defined by a decidable theory, reachability can be de-
cided through bisimulation [2]. A theory which is both o-minimal and decidable
is the first-order theory of (R, 0, 1, +, ∗, <) [4], also known as the theory of semi-
algebraic sets. In this paper we focus on semi-algebraic o-minimal hybrid au-
tomata, i.e., o-minimal hybrid automata built over the theory of (R, 0, 1, +, ∗, <).

Let H1 = (Z1, Z1′, V1, E1, Inv1, F1, Act1, Res1) and H2 = (Z2, Z2′, V2, E2,
Inv2, F2, Act2, Res2) be hybrid automata over distinct variables and let ε be a
label not occurring in E1 ∪ E2. The product (see, e.g., [5,6]) of H1 and H2 is the
hybrid automaton H1 ⊗ H2 = (Z, Z ′, V, E, Inv , F , Act , Res), where:

1. Z (Z ′) is the concatenation of Z1 and Z2 (Z1′ and Z2′, respectively);
2. V = V1×V2 and E = Ex ∪E1∪E2, where: Ex = {ee1,e2 |e1 ∈ E1 and e2 ∈ E2},

E1 = {ee,v | eE1 and v ∈ V2}, and E2 = {ev,e | v ∈ V1 and e ∈ E2}.
3. Inv(〈v1, v2〉)[Z] def= Inv(v1)[Z1] ∧ Inv(v2)[Z2];
4. Dyn(〈v1, v2〉)[Z, Z ′, T ] def= Dyn(v1)[Z1, Z1′, T ] ∧ Dyn(v2)[Z2, Z2′, T ];

5. Act(ea,b)[Z] def=

⎧⎨
⎩

Act(a)[Z1] ∧ Act(b)[Z2] if ea,b ∈ Ex

Act(a)[Z1] if ea,b ∈ E1

Act(b)[Z2] if ea,b ∈ E2

6. Res(ea,b)[Z, Z ′] def=

⎧⎨
⎩

Res(a)[Z1] ∧ Res(b)[Z2] if ea,b ∈ Ex

Res(a)[Z1] ∧ Z2′ = Z2 if ea,b ∈ E1

Z1′ = Z1 ∧ Res(b)[Z2] if ea,b ∈ E2

We study the reachability problem over H1 ⊗H2, where H1 and H2 are semi-
algebraic o-minimal hybrid automata, considering sets of points of the form
I = I1×I2 and F = F1×F2. As noticed in [6] the decidability of reachability is not
always preserved under product operations, i.e., it is possible that reachability
is decidable over two classes of automata, but not over the product class.
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2 Our Results

A common approach in deciding reachability of hybrid automata is that of dis-
cretizing the automata using equivalence relations (see, e.g., [2]). A powerfull
equivalence reduction preserving reachability is time-abstract simulation. Let H
and H be two automata, a relation R between H and H states is a time-abstract
simulation if and only if, for each pair of states q and q̃ of H and for each state q′

of H , if (q, q′) ∈ R then: for each edge e of H such that q
e−→D q̃ in H there exist

an edge e′ and a state q̃′ such that Label (e) = Label (e′), q′ e′
−→D q̃′ in H , and

(q̃, q̃′) ∈ R; if q →C q̃ in H , then there exists a state q̃′ such that q′ →C q̃′ in H
and (q̃, q̃′) ∈ R. We cannot use time-abstract simulation to decide reachability.

Theorem 1. There exist products of two semi-algebraic o-minimal automata,
which possess an infinite simulation quotient.

In order to study the reachability problem over the product of two semi-algebraic
o-minimal automata we exploit a characterization of the reachability problem
over hybrid automata based on first-order formulæ over the reals (see [1]): there
exists a formula Reach(H)(ph)[Z, Z ′, T ] such that r ∈ R

k reaches s ∈ R
k in

time t through a trace tr having ph as a corresponding path if and only if
Reach(H)(ph)[r, s, t] holds. We can also characterize through a first-order for-
mula the set of time instants T ime(ph) in which a path ph can be covered starting
and ending with discrete transitions. This means that T ime(ph) is a finite union
of intervals and points. Moreover, we exploit the existence of a canonical path
decomposition: given a semi-algebraic o-minimal automaton, from any path we
can extract both an acyclic part and a set of simple cycles. In this case we say
that the set of simple cycles is augmentable to the acyclic part. The global time
necessary to cover the path is then equal to the sum of the time necessary to
cover the acyclic part plus multiples of the times we can spend over the simple
cycles. What is important is that in the case of o-minimal automata the time
we can spend over a cycle does not depend on the starting and ending points.

Theorem 2. Let H1 and H2 be o-minimal automata of dimensions k1 and k2,
respectively, and I1, F1 ⊆ R

k1 and I2, F2 ⊆ R
k2 be characterized by the first-order

formulæ I1[Z1], F1[Z1], I2[Z2], and F2[Z2]. The automaton H1 ⊗ H2 reaches
F1 ×F2 from I1 × I2 if and only if there exist two acyclic paths ph1 and ph2 and
two sets of paths PH1 = {ph1

1, . . . , ph1
n1

} and PH2 = {ph2
1, . . . , ph2

n2
} augmentable

to ph1 and ph2, respectively, such that for each h ∈ {1, 2} it holds that there exists
th satisfying ∃Zh, Zh′(Reach(Hh)(phh)[Zh, Zh′, T ] ∧ Ih[Zh] ∧ Fh[Zh′]) and for
each phh

i there are two finite non empty sets {t0(i,h), . . . , t
m(i,h)

(i,h) } ⊆ T ime(phh
i )

and {k0
(i,h), . . . , k

m(i,h)

(i,h) } ⊆ N>0 such that

n1∑
i=1

m(i,1)∑
j=0

kj
(i,1) ∗ tj(i,1) + t1 =

n2∑
i=1

m(i,2)∑
j=0

kj
(i,2) ∗ tj(i,2) + t2

We say that H1 ⊗ H2 reaches F1 × F2 from I1 × I2 through ph1, PH1, ph2, PH2
if the hypothesis of Theorem 2 are satisfied. Given a set PH of paths we say
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that PH is time-empty if either PH = ∅ or for each ph ∈ PH it holds that
T ime(ph) = {0}.

We prove the decidability of H1 ⊗ H2 reaches F1 × F2 from I1 × I2 through
ph1, PH1, ph2, PH2 by the following case analysis: (0) both PH1 and PH2 are
time-empty; (1) only PH1 or PH2 is not time-empty and there exists a simple
cycle phh

i such that T ime(phh
i ) contains an interval; (2) both PH1 and PH2 are

not time-empty and there exists a simple cycle phh
i such that T ime(phh

i ) contains
an interval; (3) either PH1 or PH2 is not time-empty and for each simple cycle
phh

i the set T ime(phh
i ) consists of a finite number of points. In case (0) the

decidability follows from Tarski’s result [4]. In case (1) we map our problem into
that of deciding a first-order formula with a bounded integer parameter, since, if
T ime(ph1

1), with ph1
1 ∈ PH1, contains an interval (ta, tb) and PH2 is time-empty,

then either ta = 0 or ta > 0. In the former case H1 can spend any wanted time
t by cycling on ph1

1. In the latter, the number of cycles elapsing a time t ∈ R is
upper bounded. In case (2) the decidability is a consequence of the density of
the time interval. In particular, if there exist two simple cycles ph1 ∈ PH1 and
ph2 ∈ PH2 such that T ime(ph1) contains an interval (ta, tb) and t2 ∈ T ime(ph2),
with t2 > 0, then there exist a number n1 of iterations over ph1 and a number
n2 of iterations over ph2 such that H1 and H2 can elapse the same amount of
time over ph1 and ph2, respectively. Case (3) requires the use of algorithms to
solve membership problems over algebraic fields [7] and algorithms for solving
systems of Diophantine equations.

Since graphs have a finite number of acyclic paths and simple cycles, it holds:

Corollary 1. Let H1 and H2 be semi-algebraic o-minimal automata of dimen-
sions k1 and k2, respectively. Let I1, F1 ⊆ R

k1 and I2, F2 ⊆ R
k2 be characterized

by first-order semi-algebraic formulæ. Verifying that H1 ⊗ H2 reaches F1 × F2
from I1 × I2 is decidable.
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Abstract. We consider an automation problem in air-traffic manage-
ment, in which small speed variations, unnoticed by the air-traffic con-
trollers emulate a “lucky traffic”. We formulate this control problem as a
hybrid dynamical game in which the control has to minimize a cost rep-
resenting the risk perceived by air-traffic controllers against uncertainty
on the aircraft dynamics. We prove that this game can be solved using
a reachability computation for an auxiliary hybrid system.

1 The Subliminal Control Problem

It has been shown [1,2] that in enroute airspace, small adjustments of speeds ex-
ecuted early enough can prevent a large percentage of conflicts between aircraft.
In subliminal control, speed resets are small enough not to raise the air-traffic
controller (ATCo)’s awareness. He/she is then delivered a lucky traffic and can
handle more aircraft. We illustrate our approach for the computation of sublim-
inal control on a simple example.

Let us consider two aircraft A1 and A2 cruising at level flight on straight
trajectories. We denote by x1 and x2 their positions with respect to the crossing
point of the paths. ATCo do not have a precise knowledge of the speeds, so we
can assume that they estimate future positions using a 2D-model

(SATCo)

{
x′1(t) ∈ (1 + [−α, α]) V̂1

x′2(t) ∈ (1 + [−α, α]) V̂2
(1)

with V̂1, V̂2 estimated ground speeds and α the uncertainty margin.
The automated system is provided with data-links with both aircraft. It re-

ceives a measurement of positions and speeds and can send speed adjustment
orders. Since the aircraft are cruising, we can use the model

x′1(t) ∈ V1(t) + w1(t), w1(t) ∈ W
V ′1(t) = 0
x′2(t) ∈ V2(t) + w2(t), w2(t) ∈ W
V ′2(t) = 0

� Research supported by the European Commission under project ERASMUS, FP6-
TREN-518276.
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c© Springer-Verlag Berlin Heidelberg 2007



A Hybrid Model for Subliminal Air Traffic Control 673

��

��

��

��

dmin

O(0, 0)V1

V2

t g
o

x1

x2  

 

−500 −400 −300 −200 −100 0 100

−400

−350

−300

−250

−200

−150

−100

−50

0

50

0

1

2

Fig. 1. Example. left: Conflict geometry. right: Evaluation of the risk perceived by
ATCo.

where W ⊂ R represents the residual uncertainty. We assume that V1 and V2
can be instantaneously reset under the following constraints:

– for all t, Vi(t) ∈ (1 + [−α, α]) V̂i, so that the control is subliminal;
– on any time interval [t, t+Tpil), there can be only one speed reset per aircraft;
– a speed reset norm has to belong to [δV , p], where δV is the minimal speed

variation that can be implemented by the flight management system, and p
is the maximal admissible speed variation from the airliners point of view.

We introduce a cost function VATCo : R
2 −→ [0, +∞) which describes the risk

perceived by ATCo in the following sense: for aircraft at positions (x1, x2), the
higher the perceived risk of collision in the next future, the higher VATCo(x1, x2).
Then the control objective is to minimize VATCo(x1(t), x2(t)) against all possible
perturbations. The computation of VATCo is ongoing work which is out of the
scope of this paper. We provide an example of such a function in Fig. 1-(right)
for straight crossing.

2 Game Formulation of the Subliminal Control Problem

We use a receding horizon approach, with control horizon denoted by Tsub. The
determination of optimal control for the next step is made upon arrival of mea-
surement which resets uncertainty on positions to 0. We describe below the
optimization procedure for time interval [t0, t0 + Tsub].

For aircraft Ai, i = 1, 2, let us introduce variables ξi, and yi such that
xi = ξi + yi, with ξ′i = Vi. Then for initial position xi(0) with yi(0) = 0, yi(t)
represent the contribution of uncertainty to the position xi(t). We also introduce
an auxiliary variable τi to keep track of time since the last command was issued
to aircraft i in the following way: we set τ ′i = −1, and it is reset to Tpil at each
speed reset. Then the next speed reset can be sent only when τi(t) ≤ 0.

If we set z = (ξ1, V1, τ1, ξ2, V2, τ2) and H : z → {(V1, 0, −1, V2, 0, −1)}, the dy-
namics of z is described by an impulse differential inclusion (see for instance [3]):
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between speed reset orders, z′ ∈ H(z), and resets are allowed only if τ1 ≤ 0
and/or τ2 ≤ 0. We denote by Q the set valued map describing the possible re-
sets, and by SH,Q(z0) the set of possible trajectories such that z(0) = z0. We
define the cost functional

J(t, y(·), z(·)) =
{

+∞ if ∃τ ≤ (TSub − t), such that z(t) /∈ Kz,
supτ≤(Tsub−t) VATCo(ξ1(τ) + y1(τ), ξ2(τ) + y2(τ)) otherwise,

with Kz = R × (V̂1 + [−α, +α]V̂1 − W ) × R × R × (V̂2 + [−α, +α]V̂2 − W ) × R.
The control has to minimize this cost against the worst possible y(·).

We consider the following game setting: At initial condition (y0, z0) the dis-
turbance chooses a trajectory y(·) ∈ SG(y0), and the control has to determine
a trajectory z(·) ∈ SH,Q(z0) without a priori knowledge of y(·). We denote by
B(y0, z0) the set of admissible control strategies (see [3]).

Proposition 1. The optimal reset strategy can be written in feedback form.
Specifically, there exists a closed set Ψ ⊂ R

+ ×R
2 ×Kz and a map π : Ψ −→ Kz

such that a reset order must be sent when (t, y(t), z(t)) enters Ψ ; the value of the
reset is given by π(t, y(t), z(t)).

Indeed, we can define the value function

V (t0, y0, z0) = inf
B∈B(y0,z0)

sup
y(·)∈SG(y0)

J(t0, y(·), B(y(·))).

A dynamic programming approach provides the optimal strategy as a feedback.

Theorem 1. The epigraph of V , (Epi(V ) := {(a, b) : V (a) ≤ b}) is the victory
domain of the control in an auxiliary game in which the disturbance plays with
the trajectories of differential inclusion (θ′, y′) ∈ {1}×G(y) and the control plays
with the impulse differential inclusion{

z′ ∈ H(z)
η′ = 0 and

{
z+ ∈ Q(z)
η+ = η−

We set ṼATCo((y1, y2), (ξ1, V1, τ1, ξ2, V2, τ2)) = VATCo(ξ1+y1, ξ2+y2). The objec-
tive of the control is to keep the state in K = [0, Tsub]×(R2×Kz×R)∩Epi(ṼATCo)
until it can drive it to C = {Tsub} × Epi(ṼATCo) whatever the uncertainty.

The computation of V can be derived from this definition or from geometrical
conditions of the victory domain of the control [3]. The formalism is simpler
than in [4] since control and disturbance play with separated dynamics.

3 Implementation of Subliminal Control

Let us denote by {tj}j∈N a sequence of measurement time. According to our
model, the speeds V1 and V2 are known precisely and are constant except when
a reset order is sent, and the uncertainty on positions is reset to 0 whenever
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a new measurement occurs. Therefore, ξi(t+j ) = xi(t+j ) and yi(t+j ) = 0. Hence,
the value of yi(t−j ) = 0 can be deduced from the measurement. Since τ1 and τ2
are internal variables of the controller, they are known precisely. Therefore, at
time tj , the controller knows the state (y(t−j ), z(t−j )). This leads to the following
control procedure:

Algorithm 1
j =0 and θ(t0) = 0
while TRUE

Instantiate SATCo and Ssub and compute the optimal strategy (Ψ, π)
while model Ssub is valid do

Measure (x1(tj), x2(tj)) and deduce yi(tj) and ξi(tj)
if (θ(tj), z(tj), y(tj)) ∈ Ψ ,

send speed reset order π(θ(tj), z(tj), y(tj))
set V +

1 = V1(t
+
j ), V +

2 = V2(t
+
j )

end if
Set θ+ = 0, ξ+

1 = x1(tj), ξ+
2 = x2(tj) and y+

1 = y+
2 = 0

j = j+1
end while

end while

We have illustrated our approach on a very simple traffic situation. If more
than two aircraft are involved, the computation of the optimal control strategy
has to be performed by the central subliminal control unit for all aircraft simul-
taneously. Moreover, in order to model accurately aircraft dynamics and to take
into account the flight plans, a hybrid model such as the one in [5] may be used.
Our formalism can cope with this as long as uncertainty is additive. However,
the dimension of the state space will then increase drastically. Therefore, the
development of algorithmic solutions to reduce the computation load is crucial
for the application of our approach.
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1 Introduction

Since Pappas et all. transferred the notion of bisimulation from computer science
to control theory, it has attracted quite some attention in the hybrid systems
community[1]. Notably, bisimulation relations are used to reduce the complexity
of dynamic systems, while preserving reachability notions [1]. In [2], we argued
that bisimulation needs to be strengthened with continuity conditions, in order
to preserve other control science notions as well. This idea was independently
explored in [3,4,5] where modal and temporal logics are extended with topolog-
ical operators, to be able to reason about robustness of a control strategy for
embedded systems.

0 1

⊥

total bi-lower semi-continuous

bi-upper semi-continuous total bicontinuous

Fig. 1. Bisimilar systems ⊥, 1 (stable) and 0 (unstable)

In this short paper, we explore the concept of stability for regions or sets of
states [6], and show that bicontinuous bisimulation preserves this notion to some
extent. Using Fig. 1 above, we also show that weaker notions of continuity do
not suffice, and as a rather unexpected side result it turns out that stability is
not expressible as a formula in the logic of [4].

2 Mathematical Preliminaries

Our formalism of preference for describing system behavior is using two mech-
anisms: a transition relation [7] describing how a system may evolve from one
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state to another, and a topology [8] describing how states are positioned with
respect to one another.

Definition 1 (Topological transition system). A topological transition sys-
tem is a tuple 〈X, A, →, T 〉 where X is a set of states, A is a set of actions,
→⊆ X × A × X is a transition relation, and T ⊆ 2X is a topology1 on X.

Analysis of a system may be done by comparing it to a simpler system. Without
loss off generality, we may assume that both systems are part of a common
topological transition system, each represented within the transition relation.
Comparison of systems then becomes comparison of state transitions.

Traditionally, transition relations are compared using so-called simulation re-
lations [7], while topologies are compared by continuous relations [9] or continu-
ous functions [8]. Topological transition systems are compared by combinations
of those. We use R−1 to denote the inverse relation {(y, x) � (x, y) ∈ R}, Rl(S)
to denote the lower (or existential) image {y ∈ X | ∃xRy x ∈ S} and Ru(S)
to denote the upper (or universal) image {y ∈ X | ∀xRy x ∈ S}. Furthermore,
R−l(S) = (R−1)l(S) and R−u(S) = (R−1)u(S).

Definition 2 (Simulation Relation). A relation R ⊆ X × X is a simulation
relation iff for all x, y ∈ X we find that xRy and x

a→ x′ implies there exists
y′ ∈ X such that y

a→ y′ and x′Ry′. If R and R−1 are simulations, then R is
called a bisimulation.

Definition 3 (Continuous Relation). A relation R ⊆ X × X is lower semi-
continuous iff U ∈ T implies R−l(U) ∈ T , i.e. every open set has an open
(lower) inverse to which it is related. It is upper semi-continuous iff U ∈ T
implies R−u(U) ∈ T , i.e. every open set has an open (upper) inverse outside
which it is not related. Finally, R is continuous iff we have both, and if R and
R−1 are (upper/lower semi-)continuous, then R is called bi-(upper/lower semi-
)continuous.

Definition 4 (Functionality). A relation R ⊆ X × X is functional iff for
each x, y, z ∈ X we have that xRy and xRz implies y = z. If both R and R−1

are functional, then R is a bifunctional relation (i.e. a partial bijection).

Assuming functionality, the notions of upper and lower semi-continuity coincide
to the familiar notion of a continuous function.

3 Stability

Stability is a fundamental notion from control science, stating that small devia-
tions in an initial set of states will not trigger large variations in behavior. The
formal definition of stability [6] requires a way to reason about the consecutive
transitions in a topological transition system, a reachability relation.
1 A topology on X is a set of (open) subsets, closed under finite intersection and

arbitrary union, and including both X and ∅.
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Definition 5 (Reachability relation). Given a transition relation →⊆ X ×
A × X, a reachability relation �⊆ X × X is the smallest relation such that for
all x, y, z ∈ X and a ∈ A: x

a→ y implies x � y, and x � y and y � z implies
x � z.

Definition 6 (Stable set). A closed set S ⊆ X of states is stable if for every
open set U ∈ T with S ⊆ U , there exists an open set V ∈ T such that S ⊆ V
and �l (V ) ⊆ U .

According to [6], stability is preserved under so-called conjugacies, i.e. under
bicontinuous bifunctional bisimulations.

Theorem 1. Let 〈X, A, →, T 〉 be a topological transition system, and let R ⊆
X × X be a bicontinuous bifunctional bisimulation. Then, a closed set S ⊆ X is
stable if and only if its lower image Rl(S) is closed and stable.

In [2] we have proven that these conditions can be relaxed as follows.

Theorem 2. Let 〈X, A, →, T 〉 be a topological transition system, and let R ⊆
X × X be a relation such that R is upper semi-continuous, R−1 is lower semi-
continuous and R−1 is a simulation. Then, if a closed set S ⊆ X is stable, its
lower image Rl(S) is also closed and stable.

Corollary 1. Let 〈X, A, →, T 〉 be a topological transition system, and let R ⊆
X × X be a relation such that R is a bicontinuous bisimulation. Furthermore,
let S ⊆ X be a closed set such that R−l(Rl(S)) = S, then this set is stable if
and only if its lower image Rl(S) is closed and stable.

In order to show that none of the conditions in the corollary is redundant, we
now give a number of counterexamples (see figure 1). Consider a topological
transition system with X = [0, 1] ∪ {⊥}, A = {√}, and T the union of the
Euclidean topology on [0, 1] and the singleton topology on {⊥}. This means U
is open in T iff U is open in [0, 1] or else U = U ′∪{⊥} where U ′ is open in [0, 1].

The transition relation → is defined by x
√
→

√
x, for all x ∈ [0, 1] and ⊥

√
→ ⊥.

Clearly, the set {0} is not stable in this system, while the sets {1} and {⊥} are
stable. Now, observe the following:

– Rbi = X × {⊥} (dotted in Fig. 1), is a bicontinuous bisimulation, mapping
{0} to {⊥}, but Rbi

−l(Rbi
l({0})) = Rbi

−l({⊥}) = X �= {0}.
– Rusc = {(0, ⊥)} (dashed in Fig. 1), is a bi-upper, but not bi-lower, semi-

continuous bisimulation, mapping {0} to {⊥}, with R−l
usc(Rl

usc({0})) = {0}.
– Rlsc = (J × J) ∪ {(0, 1), (1, 0), (⊥, ⊥)} with J the open interval (0, 1) (solid

in Fig. 1), is a bi-lower, but not bi-upper, semi-continuous bisimulation,
mapping {0} to {1}, with R−l

lsc(Rl
lsc({0})) = {0}, and R and R−1 both

total.

4 Discussion

We have proven that bicontinuous bisimulation is sufficient to preserve stability
of a set, under the condition that the set itself is preserved by the bisimulation
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relation. Also, we have shown that none of the upper- and lower- semicontinuity
conditions can be dropped without compromising stability in some way. Finally,
by our construction of the bi-total bi-lower semi-continuous bisimulation Rlsc
that violates stability, we have indirectly also proven that stability cannot be
expressed as a formula in the logic of [4], since the truth of formulas in this logic
is preserved under bi-total bi-lower semi-continuous bisimulation relations.

This last observation justifies further research from a control/hybrid systems
point of view, focusing on the limits of expressibility within topological modal
and temporal logics. A possible remedy might be to introduce operators with the
power to express compactness of a set, for example a kind of compact closure.
Indeed, using similar counter examples, we can prove that the basic topological
notion of compactness is not preserved by total lower semi-continuity either, and
can therefore not be expressed as a formula in the logic of [4]. It remains to be
seen, however, whether such a closure operator can be found.

Acknowledgements. Many thanks to Jen Davoren, for putting me on the trail of
this counterexample, and for straightening out several misconceptions. Impor-
tantly, in our email correspondence she noted that although concepts such as
dynamic stability and compactness may not be expressible by single formulas in
the relatively simple logic of [4], there may be further means to express them
using formula schemes. Each of the semi-continuity properties of relations are
expressible in this way, for example.
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1 Introduction

Modern engineering systems consist of a large number of interacting compo-
nents with nonlinear, hybrid behaviors. Building accurate and computationally
efficient simulation models for these systems is a challenging task. Researchers
have adopted component- [1] and actor-oriented [2] frameworks for modeling
large hybrid systems. Mathematical models specify individual component be-
haviors and formal models of computation define component interactions in
these frameworks, and they provide the basis for developing efficient schemes
for simulating the hybrid system behavior.

In our work, we adopt the Hybrid Bond Graph (HBG) paradigm [3], an exten-
sion of the Bond Graph (BG) modeling language [4], for component-based mod-
eling of embedded systems. HBGs are a domain-independent topological model-
ing language that capture interactions among the physical and logical processes
that constitute a system. The parametric component-based modeling of hybrid
systems and the inherent topological structure offer significant advantages for
analyzing system behavior and model-based fault diagnosis [5].

In this paper, we address the challenge of translating HBG models to computa-
tionally efficient simulation models exploiting causal information that is derived
from the topological structure. Mode changes in HBG models, represented as
discrete switching events, cause dynamic changes in the topological structure,
and, therefore, the computational model during execution. We develop efficient
simulation algorithms by converting the HBG models to reconfigurable block
diagram structures, using the Hybrid Sequential Causal Assignment Procedure
to dynamically update the causal information. We demonstrate the technique
by deriving the block diagram model of an electrical power system, and running
simulation experiments in Matlab R© Simulink R© [7].

2 Translating Hybrid Bond Graphs to Block Diagrams

BGs are domain-independent, topological, lumped-parameter models that cap-
ture the energy exchange mechanisms in physical processes [4]. The nodes of a
bond graph model energy storage, dissipation, transformation, and input-output
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elements. Connections in the system are idealized, and modeled by two additional
nodes: 0- (or parallel) and 1- (or series) junctions. The connecting edges, called
bonds, define energy pathways between elements. Parameters of nonlinear BG
elements are defined by algebraic modulating functions, whose parameters are
system variables and external input signals [8]. HBGs introduce discrete config-
uration changes in continuous BG models by allowing junctions to be turned on
and off [3]. A two state (on and off ) finite state machine implements the junction
control specification with the transition guards expressed as boolean functions
of system variables and inputs. When a controlled junction is on, it behaves like
a conventional junction. When off, all bonds incident on the junction are deac-
tivated. The system mode at any time is determined by composing states of the
individual switched junctions. Details of the language are presented in [3].

There are two primary challenges in deriving simulation models from HBGs.
First is to avoid pre-enumeration of model configurations. A HBG model with m
components, each with ni switching junctions, defines 2

�m
i=1 ni different system

modes (or model configurations), where i = 1, 2, . . .m. When large, it is infeasible
to pre-enumerate all the model configurations. Therefore, model reconfiguration
at mode changes must be executed at run-time. Second is to avoid algebraic
loops. Component-based modeling of hybrid systems produces an underlying
mathematical model, which is a set of differential-algebraic equations (DAEs)
that may include algebraic loops. Generating fixed-point solutions for DAEs with
algebraic loops becomes computationally expensive when the fixed-point method
has to iterate to converge to a solution.

Causality Assignment. The Sequential Causal Assignment Procedure (SCAP)
[4] applied to well-formed BG models assigns causal directions to all bonds in the
model. Causality defines the input-output relations between the associated effort
and flow variables. This provides the basis for a graphical block diagram (BD)
representation, which captures the complete computational model of the system
(This is equivalent to the DAE model of the system). The causally derived BD
model will also have the minimum number of algebraic loops [4].

Given causal assignments, there is a one-to-one mapping from the BG to the
BD model. For HBGs, however, the causal assignments may change when junc-
tions switch state. To avoid the costly pre-enumeration of system modes, we
implement an efficient BD reconfiguration scheme that recomputes the causal
assignments incrementally, starting from the junctions that switch state, and
propagating causal assignment changes till a new consistent assignment is de-
rived. Corresponding changes are made only to those blocks that have changes
in the causal assignments of their incident bonds.

The Hybrid Sequential Causal Assignment Procedure (Hybrid SCAP) performs
the causality assignment dynamically when mode changes occur in the system.
We assume that the states of all junctions are available before Hybrid SCAP
is applied. The algorithm starts with a queue of switched junctions. It picks
one junction off the queue, makes all the forced causal assignments, and propa-
gates effects of these assignments, making all the consequent forced changes till
none remain. Junctions with incomplete causal assignments to their bonds are
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added to a second queue. When the first queue is empty, the algorithm picks
elements off the second queue, makes a valid causal assignment to an unforced
element, and propagates its effects to make any forced changes that result from
the chosen assignment. This process continues until all bonds have been assigned
causality. The propagation is local, so only a subset of the bonds change causal
assignments. Details of the algorithm can be found in [6].

Implementation. In Matlab Simulink implementations, we have explored two
approaches. Implicit switching uses conditional statements to model the variable
input-output relations for block elements whose incident bond(s) can change
causality. The switching of the data flow between blocks is, therefore, implicit
in the model. The models generated are compact because mode descriptions are
expressed concisely as code. However, this approach results in more algebraic
loops in the Simulink model, because the input-output directional structure gets
buried in the code. During simulation, Simulink invokes fixed point solvers, and
the computational overhead affects the simulation efficiency.

Explicit switching uses switching elements to enumerate the data flow paths
and the corresponding computational structure for each configuration. At run
time, the appropriate switches are triggered to produce the changed block dia-
gram structure. The models created by this approach have many more atomic
blocks than the implicit models because multiple BD expansions are enumerated
for each element. Since the data flow paths are made explicit for each configura-
tion, no additional algebraic loops are created, however, the switching elements
incur overhead associated with zero-crossing detection.

3 Case Study: Electrical Power System

We applied our modeling and simulation framework to the Advanced Diagnostics
and Prognostics Testbed (ADAPT) system deployed at NASA Ames. The system
consists of power generation (solar panel and battery chargers), power storage
(three sets of lead-acid batteries), and power distribution (a number of DC to AC
converters and AC and DC loads) subsystems. Relays are used to configure the
system in different modes of operation, e.g., charge and/or discharge modes of the
batteries, as well as different power supply and load configurations. Because of
the large number of possible configurations involving different components, it is
infeasible to pre-enumerate all possible modes of operation. We have developed
HBG models for all of the components in the ADAPT testbed and used our
approach to simulate the system in different configurations [6].

We present the simulation results for a battery supplying power to two DC
loads in parallel, with relays that enable the loads to be switched on and off (see
Fig. 1). The Simulink model was run for 7, 000 seconds of simulation time with
the battery discharging through different load configurations. For this experi-
ment, the explicit switching implementation executed about 20% faster than the
implicit switching implementation. This difference in the simulation efficiency
was consistent with other configurations of the system. In future work, we will
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Fig. 1. Example model and simulation results

formalize the computational modeling framework, and further study the compu-
tational efficiency for different systems.
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Abstract. We define a notion of diagnosability for hybrid automata,
which generalizes the notion of observability. We propose a procedure
to check diagnosability on a given hybrid automaton, and show that the
complexity of the verification problem is in PTIME. We apply our proce-
dure to an electromagnetic valve system for camless engines. This paper,
because of space limitations, only summarizes the obtained results. An
extended and detailed manuscript can be found in the form of a technical
report on line [1].

1 Introduction

Diagnosability corresponds to failure detection in finite time. Given a plant, a
system is diagnosable if it is possible to detect, within a finite time bound and
only using the observable outputs of the plant, if a fault has occurred. We say
that a system has a fault if its trajectory crosses a given faulty subset of the
internal state space. Diagnosability generalizes the concept of observability [2].

Diagnosability has many applications in several fields, e.g. the detection of an
error in an Air Traffic Management procedure [3,4], of a failure in an automo-
tive system [5], in a component of an industrial plant, or in a communication
system [6]. Given a plant and a set of faulty states, an important problem of-
ten addressed in the literature is to verify automatically whether the system is
diagnosable. For the class of discrete event systems (DESs), the diagnosability
verification problem has been treated in several papers [7,8,9,10,11]. The time
complexity was collocated in PTIME. Since the concept of time is not present in
DESs, the diagnosability definition given in [11] is associated to a finite number
of steps, rather than to a time bound: namely, a plant is diagnosable if it is
possible to detect a failure after a finite number of transitions since the fault
has occurred. For the class of timed automata, a definition of δ-diagnosability
has been proposed in [12]: a plant is δ-diagnosable if it is possible to detect a
failure after a time delay bounded by δ ∈ N since the fault has occurred. The
diagnosability verification problem for timed automata was demonstrated to be
� This work was partially supported by European Commission under Project IST NoE

HyCON contract n. 511368 and the National Science Foundation ITR 0121431.
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in PSPACE. Diagnosability of hybrid systems was considered in [5], where a
notion of diagnosability is proposed for input-output automata, diagnosability
conditions are stated, but no complexity analysis is performed. In [13], a hybrid
diagnosis problem was formulated, and qualitative techniques for diagnosis of
continuous systems was proposed. The computational analysis of diagnosability
for hybrid systems is an interesting and challenging issue and, to the best of our
knowledge, only few results are available in the literature. This is the main topic
of this paper.

2 Diagnosability Definition and Verification

The two main contributions are the following. First, we propose a procedure
to verify diagnosability of a hybrid automaton. We use here the same hybrid
automata model as in [2], where the continuous state evolves following deter-
ministic autonomous dynamics, and the discrete state evolution depends only
on the continuous state according to guards, possibly with non deterministic
transitions. The observable output is given by the discrete output (possibly un-
observable) of the system, that is associated to each edge. We assume that the
system is non-blocking, while it might be Zeno. The non-determinism of our
model is due to the non-singleton set of initial states, to a possible intersection
of two or more guards that simultaneously enable more than one discrete tran-
sition, to the “enabling nature” of the guards, that introduces non-determinism
in the time instant of a discrete transition, and to the reset map.

Then, we propose a definition of δ-diagnosability where δ ∈ R
+, and a failure

is modeled as a faulty set, that is a subset of the discrete state space. Our δ-
diagnosability definition implies that it is always possible to detect by the output
string, and after a delay upper bounded by δ, that the associated execution has
visited the faulty set. This is equivalent to say that, for any output string of
the system, it is always possible to determine whether the associated execution
is δ̄-faulty with δ̄ ≥ δ or not. We also prove that δ-diagnosability generalizes
observability as defined in [2].

Since hybrid models are complex, we address the diagnosability verification
problem by constructing a conservative abstraction and studying diagnosability
on this abstraction. We consider here the procedure proposed in [2], that trans-
lates a hybrid automaton in a durational graph (DG), a special case of timed
automaton, and we prove that this procedure preserves diagnosability. DGs are
similar to the durational transition graphs defined in [14]: their expressive power
is set between DES (where diagnosability verification is in PTIME) and timed
automata (where diagnosability verification is in PSPACE). Our second contri-
bution is to prove that the complexity of the diagnosability verification problem
for DGs is in PTIME.

3 Electromagnetic Valve System for Camless Engines

Camless electromagnetic valves are devices recently considered to decouple the
camshaft and the valve lift dynamics, namely to command the opening and
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closing phases of the intake and exhaust valves. The main advantage that these
devices should bring is the possibility of obtaining the optimal engine efficiency
in every operating condition. One of the main open problems is the control of
the impact velocities between the valve and the constraints (typically the valve
seat), which should be sufficiently low in order to eliminate acoustic noises and
avoid damages of the mechanical components. The problem is complicated by
the short time (typically 3 × 10−5 s) available at high engine speed to make
a transition between the two valve’s terminal positions, and the constraint in
terms of actuator cost and space limitations. These last aspects imply that one
typical request is the absence of the valve position sensor.

Fig. 1. Scheme of an Electromagnetic Valve System

Referring to [15,16] and references therein for details, we consider here a sim-
plified model of the electromagnetic valve, represented in Figure 1. We define
a faulty set of “defective” parameters of the system’s dynamics, meaning that
they correspond to a unsatisfactory behavior of the system: e.g. the anchor could
hit an electromagnet with a velocity higher then a critical value, and this could
damage the mechanical system. We assume that the system parameters might
change abruptly to a faulty value, and we model it as an unobservable transi-
tion to a discrete state associated with “faulty dynamics”. Then, we apply our
abstraction procedure and verify diagnosability of the system.

4 Conclusions

We proposed a novel verification procedure for checking diagnosability on a
given hybrid automaton whose output is a timed string on a finite alphabet, and
analyzed the computational complexity of the verification problem. Theoretical
results were applied to a case study in automotive.
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Abstract. The use of hybrid dynamical systems to model gene regula-
tion is impelled by the switch-like behaviour of the latter. Piecewise affine
differential equations is one of the most extensively studied among such
kind of models. We propose an extension of this class, introducing some
input variables. A special focus is given to degradation and production
rates being affine functions of the inputs. Some generic control problems
are proposed, formulated in terms of an underlying discrete structure.
Piecewise constant feedback laws that solve these problems are character-
ized in terms of affine inequalities. These general feedback laws are then
applied to a well-known two dimensional example: the toggle switch. It is
shown how to control this system toward various behaviours, especially
bistability and bisimilarity with a discrete quotient.

1 Introduction

This work deals with control theoretic aspect of a class of piecewise-affine dif-
ferential equations, introduced in the 1970’s [5] to model gene networks, and
since widely studied, both theoretically [5], and to model concrete biological
systems [2,9]. Furthermore, recent advances have shown that gene networks may
be synthesized in labs [4,8]. This fact strongly motivates the elaboration of a con-
trol theory for such systems [6,8]. This work is an attempt in this direction: input
variables are added to the original models to represent some physico-chemical
influence on production and degradation rates. Among concrete realizations, one
may use specific inhibitors or activators, introduced in a chosen quantity. Other
techniques, such as directed mutagenesis, the use of interfering RNA [7], would
also fit within the present framework. Mathematically, similar approaches have
been proposed for multiaffine dynamical systems on rectangles [1], which would
apply here, but these more general techniques are much less efficient than the
specific methods introduced here. More details and references can be found in [3].

2 Piecewise Affine Models

The general form of models considered here is:
dx

dt
= κ(x, u) − Γ (x, u)x. (1)

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 688–692, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Piecewise Constant Feedback Control 689

The state vector x represents (mRNA or protein) concentrations: xi is the ex-
pression level of the ith gene among n. Then, u ∈ U ⊂ R

p
+ is an input variable,

meaning that additional biochemical species can be introduced in the system, or
that some physical parameter (e.g. light intensity or temperature) is modified.
In any case, input variables are bounded: U =

∏p
j=1[0, Uj ].

κ(x, u) ∈ R
n
+ is a production term, and Γ (x, u) a diagonal matrix, with pos-

itive diagonal entries γi representing degradation rates. For a fixed u, both are
piecewise constant functions of x with a rectangular underlying partition, due
to the switch-like nature of gene regulation.

Succinctly, the continuous dynamics is as follows: in any rectangle D in phase
space, all trajectories are explicitly known, and tend toward a so-called focal
point φ(D, u). If φ(D, u) ∈ D, one has a stable steady state and the system stays
in D forever. Otherwise, the system leaves D in finite time, reaching another rec-
tangular region. Repeating this provides well defined trajectories. This naturally
leads to a discrete quotient of the dynamics, often called state transition graph,
denoted TG(u): rectangular regions are the states of this discrete system, and its
transitions are defined as those pairs (D, D′) such that at least one continuous
trajectory crosses D and D′ successively.

3 Control Problems

We focus on piecewise constant feedback control laws: u = u(x), and the restric-
tion u|D is constant for each D. This relies on the assumption that threshold
crossings, or switchings, can be detected accurately. Then, typical control prob-
lems are as below, where V denotes the set of vertices of TG, i.e. of rectangular
regions in state space:
Global Control Problem: Let TG♥ be a transition graph. Find a feedback
law u : V → U such that TG(u) = TG♥.
Locally, at a region D, solving this problem is tantamount to finding an input
u(D) such that φ(D, u(D)) ∈ D′, where D′ is easily deduced from the arrows in
TG(u) having D as initial vertex. Since the vector u(D) can be chosen arbitrarily
in U, this yields a controllable focal set, which is the whole set in which focal
points can be chosen: φ(D, U). A transition (D, D′) is then said controllable if
φ(D, U) ∩ D′ �= ∅. This non-emptiness condition is equivalent to a system of
affine inequalities, in the case when production and degradation terms are affine
functions of u: Γ (D, u) = diag

(
Γ (D)u + γ0(D)

)
, and κ(D, u) = κ(D)u+κ0(D),

where κ(D) ∈ R
n×p, κ0(D) ∈ R

n×1
+ , Γ (D) ∈ R

n×p and γ0(D) ∈ R
n×1
+ .

A general form of local problem is then:

∃u ∈ U, ∀i ∈ {1 · · ·n}, θ−i <φi(D, u)<θ+
i (P )

and its solution is known. Denoting T± = diag(θ±1 · · · θ±n ) ∈ R
n×n, one gets

Proposition 1. An input u solves problem (P ) if and only if it satisfies:{(
κ(D) − T−Γ (D)

)
u > T− γ0(D) − κ0(D)(

κ(D) − T +Γ (D)
)
u < T + γ0(D) − κ0(D)

(�)
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Two particularly interesting forms of transitions are depicted in figure 1: if all
transitions in TG(u) are of one of these two forms, this graph yields a determin-
istic transition system, in which every path represents a continuous trajectory
of the original system.

a) b)

φ(u)

φ(U)φ(U)

φ(u)

Fig. 1. Among all points in the focal set φ(U), one has to chose a particular u. Case
a) is to make a region invariant, while in b), one has to find an input u such that φ(u)
is situated ’behind’ a single facet of the box under consideration.

4 The Toggle Switch Example

One considers two genes inhibiting each other, often called toggle switch, and
notably used as a building block of larger biological circuits [4,6,8]. Its biological
function is that of a switch between two steady states, each being a long-term
response to some transient induction. Here we suppose that the autonomous
system is not bistable, and that a scalar input can affect the decay rates:

1
−
2

−

⎧⎪⎨
⎪⎩

dx1

dt
= κ1

1s
−(x2, θ

1
2) + κ0

1 − (γ1
1u + γ0

1)x1

dx2

dt
= κ1

2s
−(x1, θ

1
1) + κ0

2 − (γ1
2u + γ0

2)x2

, (2)

where s−(x, θ) is the decreasing Heaviside (or step) function.
Solving a system of the form (�) at each of the 4 rectangular regions in this

system, yields all the possible graphs TG(u). Below are those obtained for a
particular set of parameters, see [3] for details. The disposition of vertices reflects
the geometry of state space, and � represent regions containing a steady state.

a) � �

� �

b) � �

� �

c) � �

� �

d) � �

� �

e) � �

� �

f) � �

� �

g) � �

� �

h) � �

� �

i) � �

� �

j) � �

� �

k) � �

� �

l) � �

� �

One can see that the upper-left vertex is always fixed, whatever the input value.
The lower-right vertex, on the other hand, may be fixed or not. a) is the au-
tonomous case. It appears that bi-stability may be ensured for transition graphs:
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d), f), j) and l). Another objective may be to require that the graph be deter-
ministic, with transitions as in figure 1 only. Here, this may be achieved by inputs
associated to the graphs g) and j). The first presents a single global equilibrium,
while j) is bistable.

5 Conclusion

Among modern advances in cell biology, synthetic biology is one of the most
striking and promising topic, which might involve control theoretic problems
in the years to come. For gene regulatory networks modeled by piecewise affine
differential equations, we have characterized the piecewise constant feedback laws
that solve some qualitative control problems. An important follow-up of this work
would be the analysis of more global control problems. In particular, instead of
an explicit transition graph, one may aim at satisfying a formal property, like
bi-stability or bisimilarity as exemplified in section 4. Systematizing this with
the aid of tools from model checking might lead to efficient algorithms. Also,
the input u may model uncertainties of the system. In particular, a property
that holds for all u (or whose negation is not controllable) could be called robust
with respect to uncertainties, like for example the existence of at least one steady
state in section 4.
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Abstract. In this paper, we study a hybrid automaton model of the lac
operon regulating lactose metabolism in E. Coli. We identify two station-
ary conditions for the system corresponding to lactose metabolism being
induced/uninduced, and characterize the extra-cellular concentrations of
glucose and lactose that are compatible with them. We also investigate
conditions for switching between the two identified stationary conditions.

1 Modeling Gene Regulatory Networks

Gene regulatory networks (GRNs) are a subject of great interest in biology.
They involve the interaction of genes, RNA, proteins, and other chemicals in the
cell through gene transcription (genes→ RNA, inhibited/enhanced by proteins),
protein synthesis (RNA→ proteins), and catalytic reactions. Understanding the
mechanisms responsible of the process gene → protein is fundamental. This
unidirectional process represents the central dogma of molecular biology, [1],
and it is the core of all phenomena occurring in living organisms since proteins
are involved in almost all biological activities, structural and enzymatic.

Modeling and analysis methods provided by systems theory can help im-
proving the level of understanding of biological phenomena, [2]. In particular,
hybrid systems are becoming the reference modeling formalism for GRNs (see,
e.g., [3,4,5]): activation and inhibition of gene activity is intrinsically an on/off
mechanism, and the dynamics governing proteins concentration are described
by ordinary differential equations (ODEs), while the activation and the deac-
tivation of these dynamics are triggered by discrete switches encoding protein
concentration reaching some threshold. In this work, we study a hybrid system
model for the lac operon regulatory network in the E. Coli bacterium.

The lac operon regulatory network: The lac operon is a group of nucleotides
in the genome required for the transport/metabolism of the lactose l. It is ex-
pressed if l is present in the cell and glucose g is missing. It is affected by the
extra-cellular concentrations of lactose and glucose, lext and gext. The lac operon
encodes two enzymes: β-galactosidase and lactose permease, w and y. The main
function of w is to enhance the conversion of l into g, while that of y is to pump
lext into the cell through the membrane. If the operon transcription is active,
the RNA z responsible of the synthesis of y and w is produced. An inhibitor h
of the operon transcription is present in the cell.
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Fig. 1. Directed graph model of the lac operon

In the graph model of Figure 1, we describe the two main mechanisms involved
in the lac operon regulatory network: induction and catabolite repression. Induc-
tion occurs when l is present and consists in the inhibition of the action of h by
y and l (positive feedback). Catabolite repression depends on g. If g is missing
the transcription of the operon is stimulated, thus enhancing the conversion of l
into g (negative feedback). Other mechanisms are neglected here.

We now present a piecewise affine model of the lac operon regulatory network
inspired by [6] and by Griffith’s model in [7]. The state variables w, y, z, l, and
g are affected by inputs lext and gext, and evolve according to:

ẇ = αz − ν2 w (1a)
ẏ = βz − ν3 y (1b)
ż = γRNA(g, l) − ν1z (1c)

l̇ = γcat(lext, y) − γcat(l, w) (1d)
ġ = γcat(l, w) + δ gext − δ g (1e)

where

γRNA(g, l) =

���
��

ε l < θRNA
l

ε + γ l > θRNA
l g > θRNA

g

ε + Kγ l > θRNA
l g < θRNA

g

γcat(lext, y) =

���
��

v1 lext < θcat
lext

v1 + k1 y lext > θcat
lext

y < ysat

v1 + k1 ysat lext > θcat
lext

y > ysat

γcat(l, w) =

���
��

v2 l < θcat
l

v2 + k2 w l > θcat
l w < wsat

v2 + k2 wsat l > θcat
l w > wsat

with all the constants involved positive. The dynamics of w and y are char-
acterized by formation and degradation linear terms, thus resulting in the
linear ODEs (1a) and (1b). Two catalytic reactions take place in the network:
l + w → g + w and lext + y → l + y. The rate of these reactions can be expressed
by the Hill formula, [7], which is sigmoidal as a function of the substrate concen-
tration (l and lext, respectively) and can be approximated with a step function,
thus originating the piecewise affine terms γcat(l, w) and γcat(lext, y) in (1d) and
(1e). As for the activation/inhibition of gene expression, modeling with piece-
wise constant functions is quite common. Term γRNA(g, l) in (1c) represents the
operon transcription leading to the RNA synthesis. The rate of transport of gext
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inside of the cell is constant, according to [6]. Furthermore, both g and z are
affected by a degradation rate proportional to their concentration.

The open hybrid automaton model, [8], of the lac operon with (continuous)
state x := [w y z l g]′ and input u := [lext gext]′ is given by H = {Q, X, U, f, Inv,
R} where X = R

5
+ is the continuous state space and U = R2

+ is the input space.
Based on (1), we can distinguish 21 disjoint open regions with different affine
dynamics for x. As shown in Figure 2, these regions can be identified through
their projections onto the (y, lext)-space and the (l, g, w)-space. We can then
define the discrete state space Q as Q = {(i, j) : i = 1, 2, 3, j = 1, . . . , 7}, where i
(j) denotes the projection onto the (y, lext)-space (the (l, g, w)-space). For each
q ∈ Q, the set {(x, u) : (q, x, u) ∈ Inv} of (x, u) values for which continuous
evolution is allowed is the region in the X × U space used to define q, whereas
the affine vector field f(q, ·, ·) : X × U → X governing the dynamics of x within
q can be derived from (1). The reset relation R : Q × X × U → 2Q×X is defined
so that transitions are allowed only between discrete states corresponding to
adjacent invariant sets, and the continuous state is maintained constant.
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Fig. 2. Projections of the invariant sets onto the (y, lext)-space and (l, g,w)-space

2 Analysis of the lac Operon Hybrid Automaton

In this section we illustrate some results on the analysis of the introduced lac
operon hybrid automaton. Due to space limitations, details are omitted. The in-
terested reader is referred to [9]. The analysis is based on decoupling the (w, y, z)
component of the continuous state x from (l, g) by treating γRNA(g, l) as an ex-
ogenous input to subsystem (1a)–(1c). We can associate to the three different
values taken by γRNA(g, l) a minimum value (wm, ym, zm), an intermediate value
(wi, yi, zi), and a maximum value (wM , yM , zM ) for (w, y, z).

Assumption 1. The parameters in (1) satisfy: 1. yM < ysat and wM < wsat;
2. v2 + k2wM > v1 + k1yM ; 3. yi < ŷ where ŷ := (v2 − v1)/k1; 4. θRNA

l < θcat
l .

Condition 1 can be justified based on Griffith’s model, 2 means that the effect
of reaction l → g dominates over the transport lext → l, thus avoiding that l
exceeds the θcat

l threshold and grows unbounded. In condition 3, ŷ is a threshold
value for y: if y is smaller than ŷ, then l̇ < 0 in equation (1d), irrespectively of
the other quantities involved. Here, we require ŷ to be sufficiently high.
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For a constant input u = [lext gext]′, we can identify qualitatively different
stationary behaviors for x, corresponding to the metabolism being active/induced
(xa) and not-active/uninduced (xna): xa = [wM yM zM θcat

l gext +(v2+k2wM )/
δ]′ and xna = [wm ym zm 0 gext + v2/δ]′. In xna, l = 0 and the concentrations
of enzymes and RNA correspond to the basal level ε of gene expression.

We can show that the active stationary condition xa is compatible with lext >
θcat

lext
and gext < θRNA

g − 1
δ (v2 + k2wM ). If lext < θcat

lext
or gext > θRNA

g − v2
δ , then

the system ends up in the not-active xna state. Interestingly enough, the system
cannot move from this state because the not-active condition is compatible with
all input values. This means that if the cell ends up in the not-active state,
it cannot be driven back to the active state, irrespectively of the values taken
by the extra-cellular concentrations of lactose and glucose. The not-active state
is then a sort of “shut-down” condition for the metabolism. This reveals the
limitations of the proposed model.

Consider now the case when the system is in the stationary active state xa,
and, at some instant, say t = 0, the external supply of lactose lext drops under
threshold: lext < θcat

lext
. Then, if lext keeps under threshold, x will tend to xna,

to remain there indefinitely. A question then naturally arises: how long can the
system “survive”, not reaching the shut-down xna condition, when the lactose
supply is missing? In [9], we determine analytically a time tre such that if at
time t < tre extra-cellular lactose is supplied, the system will move towards
the activation condition, and a “breakpoint” time instant tin > tre such that if
extra-cellular lactose is supplied only at t > tin, the system will move towards
the inactivation stationary condition. Figure 3 shows a simulation obtained when
the condition lext > θcat

lext
is restored at t < tre. The projections of the continuous

state trajectory onto the (l, g, w)-space and (lext, y)-space are plotted.
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Fig. 3. System trajectory when t < tre
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1 Introduction

Many situation in various application domains can be formalized as switched
buffer networks, that is, networks of containers in which quantities of some sub-
stances are stored and transported at various rates to other buffers. A mode
of such a system is defined by the channels that are active at a given time,
which determine the rates of change in the quantities of the substances in all the
buffers. Switching occurs while opening or closing channels, starting or stopping
a reaction, thus causing the system to move from one mode to another. Hybrid
automata provide a natural modeling formalism for such systems, a model on
which one can verify properties (lack of overflow or deadlock, arrival of products
to certain buffers at pre-specified times and quantities) and even automatically
synthesize switching controllers that achieve such goals in an efficient manner.
Such verification and synthesis techniques can complement traditional analytic
techniques that are harder to apply as the switching aspects become more dom-
inant. Looking from the other side of the spectrum, reachability-based methods
can be seen adding more rigor and coverage to simulation-based methodologies.

As a first step toward a computer-aided methodology for designing such sys-
tems, we present a simple class of such networks, motivated by chemical en-
gineering applications. For this class of networks we define an automatic and
compositional translation into “linear” hybrid automata (LHA), that is, au-
tomata where in each mode the derivatives of all continuous state variable are
constant or bounded by some linear relation over constants. Once a translation
is established, we use the tool PHAVer for verifying the correct functioning of
the system [1].

The idea of modeling switched buffer systems using hybrid automata is quite
natural and has been explored, to a certain extent, in the early days of hybrid
systems research, see, for example, [2] or [3] or modeling approaches based on
continuous Petri Nets [4]. Dynamic properties, such as stability, of switched buffer
networks has been the object of study of many papers, e.g., [5,6], but as in other
domains, methods based on hybrid automata are not restricted to the steady-
state behavior of the network but can handle also transients. The contribution
of our approach is in the combination of a general rigorous translation combined
with the availability of a powerful tool like PHAVer that can handle automata
derived from nontrivial networks and find subtle bugs in their controllers.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 698–701, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Switched Buffer Networks

In this paper we focus on a simple class of networks where substances are only
transported between buffers without being subject to “reactions” that change
their type. Most of the modeling problems and solutions are demonstrated al-
ready by this type of networks and their generalization is a topic of ongoing
work. Let I

+ be the set of positive closed intervals over R.

Definition 1 (Switched Buffer Network). A switched buffer network B =
(S, C, σ, γ) consists of:

– A set of buffers S = {s1, . . . , sn},
– a set of channels C ⊆ S × S,
– a storage capacity over S given by a function σ : S → R+, stating an upper

bound on the quantity of material at each buffer, and
– a channel capacity over C given by a function γ : C → I

+, determining the
rates at which material can be transported through an active channel.

The interval γ(c) = [γ(c), γ(c)] reflects outside influences (disturbances) on the
flow rate in an active channel. The decisions whether to open or close channels
are taken by a controller that observes the state of the system. In this paper we
restrict ourselves to memoryless controllers, that is, controllers that do not have
a state of their own and can be expressed as a function of the form u : P ×X → P
meaning that when the network is in state (p, x), it will switch immediately to
(p′, x) = (u(p, x), x). Note that this restriction is just for notational convenience
and our framework can accomodate for any controller specified as a LHA.

The continuous state x evolves in a discrete state p according to a derivative ẋ
that depends on the active channels. Due to the nondeterminism in the channel
capacities, this derivative is only known up to an interval. However, we wish to
impose conservation of material, that is, the material leaving a buffer via some
channel must appear in the exact same quantity in the target buffer of the chan-
nel. So while the change is only known up to some bounds, there must be a pair-
wise match across channels that we describe with a function v : C → R

+ called
throughput and satisfying v(s, s′) ∈ γ(s, s′) if p(s, s′) = 1 and v(s, s′) = 0 other-
wise. The inflow and outflow of a buffer s are defined as vin(s) =

∑
s′ v(s′, s) and

vout(s) =
∑

s′ v(s, s′). The derivative of each buffer is ẋ(s) = vin(s) − vout(s).
Note that due to the nondeterministic choice of throughput this is a differential
inclusion.

When a buffer becomes empty in a discrete global state in which one or
more of its outgoing channels is active, we need to fix the throughput of this
channel. The case when a buffer becomes full when it has an active incoming
channel is symmetric. When a buffer s is empty we relax the lower bounds on
the throughput of its outgoing channels, allowing them to be as low as zero.
The system can stay for a non-zero duration at a state where x(s) = 0 only
if vin(s) = vout(s), otherwise it moves immediately to a state where x(s) > 0.
Likewise, when a buffer is full we relax the lower bounds on the rates of incoming
channels.



700 G. Frehse and O. Maler

Table 1. PHAVer performance∗

Instance Time [s] Mem. [MB] Deptha Checksb Reached Loc. Poly.

BP8.1 120 267 173 279 130 279
BP8.2 139 267 173 422 131 450
BP8.3c 845 622 302 2669 143 2737
BP8.4c 1243 622 1071 4727 147 4772
∗ on Xeon 3.2GHz, 4GB RAM, Linux;
a lower bound on depth in breadth-first search;
b nr. of applied post-operators;
c computation stopped when violation of safety detected.

3 Multi-product Batch Plant

We demonstrate the approach by modeling and analyzing the multi-product
batch plant from [7]. The plant has three levels: On the top level, three buffer
tanks B11 to B13 contain the raw materials yellow, red and white. On the second
level, there are three reactors R21 to R23 that can be filled from B11, B12, B13.
Mixing Yellow and White in a reactor results in the product Blue, while Red
and White become Green. From the reactors, the product is drained into either
of two buffer tanks B31 and B32 on the third level, from which it is extracted
by the consumer. We verify for a given strategy that it never results in overflow
and that B31,B32 are never empty, i.e., the consumer demand is always met.

The plant is modeled as a switched buffer network with 8 buffers and 20 chan-
nels. We transform it into a product of hybrid automata, with one automaton for
each buffer and each channel. Changes between stationary behavior, saturation,
and starvation are modeled by transitions between locations, in each of which
the corresponding constraints on the throughputs are imposed. The controller
commands are modeled with transitions with ASAP semantics. At a first glance,
the class of hybrid automata that we use seems richer than LHA, because the
derivative of x(s) is a function of the throughput variables of the forms v(s, s′)
and v(s′, s) but since these variables have no “state” of their own, they can be
projected away and the obtained automaton is a LHA with 266 locations and
823 transitions.

We verify a control strategy that uses R21 solely to produce Blue, and R22
to produce Green, while R23 is alternatingly used to produce either one, see
Table 1. In case BP8.1, the consumer drains at a fixed rate of 1 batch/30s from
B31 and B32. The throughputs of all channels are deterministic. Figure 1(a)
shows a plot of the levels of B31 and B32 over time. B32 drops considerably
below B31 because of an asymmetry in the strategy, but the specification holds.
In case BP8.2, B11–B13 initially contain anywhere between zero and one, B31
and B32 between 5 and 6 batches. In case BP8.3, there is a single initial state,
as in BP8.1, but the consumer demand varies by ±1s/batch. PHAVer aborts the
computation as soon as it detects the violation. The set of error traces found
is shown in Fig. 1(c). Case BP8.4 is similar to BP8.3, but with the consumer
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Fig. 1. Levels of product buffers B31 and B32 [ml] over time [s]

drawing only 1 batch/100s, i.e., much below production capacity. Nonetheless,
the strategy fails, and the error traces found are shown.
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Abstract. This paper addresses the problem of estimating human body
dynamics from 3-D visual data. That is, our goal is to estimate the state
of the system, joint angle trajectories and velocities, and the control
required to produce the observed motion from indirect noisy measure-
ments of the joint angles. For a two-link chain in the human body, we
show how two independent spherical pendulums can be composed to
create a behaviorally equivalent double spherical pendulum. Therefore,
the estimation problem can be solved in parallel for the low-dimensional
spherical pendulum systems and the composition result can be used to
arrive at estimates for the higher dimensional double spherical pendulum
system. We demonstrate our methods on motion capture data of human
arm motion.

1 Introduction and Related Work

The analysis of human motion is motivated by applications such as classification
of motion, analysis of motion in activities such as sports and dance, anima-
tion and biologically inspired robotic design. Our goal is to extract, from noisy
visual observations, a physically meaningful mid-level representation of motion—
namely, the joint angle trajectories, angular velocities and joint torques for an
assumed nonlinear model. Higher level descriptions, such as motion categories,
can be constructed over this representation by using discrete state variables
to represent the specific categories. A similar approach was taken in [1] and [2],
where switching linear dynamical systems were used for action recognition. Since
nonlinear state estimations methods usually scale poorly as the state dimension
increases, we propose a more scalable approach to solving the estimation prob-
lem. Our approach is based on composing estimates for a set of low dimension
systems to create a behaviorally equivalent higher dimension system of interest.
The paper is organized as follows: Sec. 2 presents our approach and in Sec. 3 we
present our results on human arm motion.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 702–705, 2007.
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Fig. 1. Equivalent models for the human arm

2 Composition-Based Estimation

The human body can be modeled as a set of rigid links connected by joints. The
motion of any open chain of links in the human body is described by a set of
nonlinear differential equations [3] of the form

M(r, λ)︸ ︷︷ ︸
mass matrix

r̈ + C(r, ṙ, λ)︸ ︷︷ ︸
coriolis matrix

ṙ + N(r, λ)︸ ︷︷ ︸
gravity

= τ (t)︸︷︷︸
torques

, (1)

where r(t) is the vector of joint angles and λ denotes the model parameters.
We assume that entire mass of a limb is concentrated at its center of mass and
model any open chain of links as a series of connected spherical pendulums. The
model parameters are designed using anthorpometric data available in [4]. Given
observations of the form y(t) = r(t) + η(t), where the statistics of the additive
noise η(t) are known, the goal is to estimate the joint angle trajectories r(t),
angular velocities ṙ(t) and the required torques τ (t).

Different dynamical models could produce a given set of joint angle tracjec-
tories r(t). These dynamical models are equivalent with respect to the obser-
vations. We refer to the joint angle trajectories as the behavior of the system
and use the notation B(Ψ | λ, τ ) � r to denote that the behavior of the sys-
tem Ψ = (M, C, N) (see (1)), with parameters λ and torques τ (t) is r(t). For
instance, consider the joint angle trajectories of a two-link chain such as the
human arm—this data could be produced by two independent spherical pendu-
lums actuated by appropriate torques or, equivalently, by an actuated double
spherical pendulum.

We now present our composition result for the 2-link case.

Theorem 1. Let Ψs1 and Ψs2 denote two spherical pendulum models and let Ψd
denote a double spherical pendulum model. Then

B(Ψd| λd, τd ) � rd =
[
rs1
rs2

]
�

[
B(Ψs1| λs1, τ s1 )
B(Ψs2| λs2, τ s2 )

]
(2)
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Table 1. The matrices M12, C12 and C21, with μ = m2l2L, sφ = sin(φ1 − φ2), cθ1 =
cos θ1, et cetera

C12 = μ

�
��

( cθ2 sθ1 − cφ cθ1 sθ2)θ̇2 sφ cθ1 cθ2 θ̇2 − cφ cθ1 sθ2 φ̇2

+ sφ cθ1 cθ2 φ̇2

sφ sθ1 sθ2 θ̇2 + cφ cθ2 sθ1 φ̇2 cφ cθ2 sθ1 θ̇2 + μ sφ sθ1 sθ2 φ̇2

�
��

C21 = μ

�
��

( cθ1 sθ2 − cφ cθ2 sθ1)θ̇1 − sφ cθ1 cθ2 θ̇1 − cφ cθ2 sθ1 φ̇1

− sφ cθ1 cθ2 φ̇1

− sφ sθ1 sθ2 θ̇1 + cφ cθ1 sθ2 φ̇1 cφ cθ1 sθ2 θ̇1 − sφ sθ1 sθ2 φ̇1

�
��

M12 = μ

�
cφ cθ1 cθ2 + sθ1 sθ2 sφ cθ1 sθ2

− sφ cθ2 sθ1 cφ sθ2 sθ1

�

for λd, λs1 and λs2 satisfying:

λd = (m1, l1, L, m2, l2),
λs1 =

(
(m1l1+m2L)2

m1l21+m2L2 ,
m1l21+m2L2

m1l1+m2L

)
, λs2 = (m2, l2) ,

(3)

and for τd, τ s1 and τ s2 satisfying:

τd =
[

τ s1 + M12(rs1, rs2) r̈s2 + C12(rs1, rs2, ṙs2) ṙs2
τ s2 + MT

12(rs1, rs2) r̈s1 + C21(rs2, rs1, ṙs1) ṙs1

]
, (4)

with M12, C12 and C21 as given in Table 1.

As a result of this theorem, spherical pendulum models with parameters λs1
and λs2 can be used to obtain estimates of upper and lower angle trajectories,
velocities and the torques τ s1(t) and τ s2(t), respectively. The composition rela-
tion (4) can then be used to arrive at an estimate of the torques τ d(t) required
for an equivalent double spherical pendulum model. The estimation of the inde-
pendent spherical pendulum models is done using an auxiliary particle filter [5].
The control utilized in the particle filter is designed to mimic a controller that
feedback-linearizes and uses Linear-Quadratic optimal control [6] to track the ob-
servations. This structure also provides us with angular acceleration estimates
which are used in the composition.

3 Results

We tested our approach on motion capture data from the Carnegie Mellon mo-
tion capture database. The motion capture data consisted of human arm motion
sampled at 120 Hz. The joint angles extracted from the motion capture data
were used as the ground truth reference. Gaussian noise was added to the data
to simulate noisy observations. The standard deviation of the observation noise
was fixed at 0.2σ, where σ is the standard deviation of the reference. An auxil-
iary particle filter with 1000 particles was used for the estimation. The results
for one action are presented in Figs. 2-4.



Composition of Dynamical Systems 705

0 0.5 1 1.5
−1

0

1

2

3

4

N
m

τθ
1

0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

N
m

τφ
1

opt
inv
est

0 0.5 1 1.5

0.4

0.6

0.8

1

1.2

1.4

N
m

seconds

τθ
2

0 0.5 1 1.5
−0.2

0

0.2

N
m

seconds

τφ
2
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inv -torques obtained by differentiating clean reference and plugging into equations of
motion.
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Abstract. In this paper we show that the one-dimensional Piecewise
Affine Maps (PAMs) are equivalent to planar Pseudo-Billiard Systems
(PBSs) or so called “strange billiards”. The reachability problem for
PAMs is still open, however the more general model of rational one-
dimensional maps is shown to be universal with undecidable reachability
problem.

1 Introduction

In the present work we investigate a class of hybrid systems defined by one-
dimensional piecewise maps. We mainly interested in a class of one-dimensional
piecewise-affine maps (PAMS) for which reachability problem is still open. It
was recently shown that PAM is equivalent to hierarchical piecewise constant
derivatives system (HPCD)[1]. In this paper we show that PAM is equivalent to
planar pseudo-billiard system (PBS). PBS is also referred as “strange billiards”
model that is a well known object in bifurcation and chaos theory [3]. HPCD
is a hybrid automaton where each state is defined by planar piecewise constant
derivatives system (PCD). In contrast to HPCD, the model of PBS can also be
seen as two dimensional linear hybrid automaton but with only one state. In
the second part of this paper we are exploring the complexity of more general
class of one-dimensional maps that includes a class of affine maps. We show
that the one-dimensional piecewise rational map (PRM) is universal model of
computation with undecidable reachability problem. Moreover it is possible to
show that there is a particular map, that corresponds to the universal Minsky
machine, for which the reachability problem is undecidable.

2 Equivalence Between PBS and PAM

The pseudo billiard model is already appeared in a different context and became
an abstract framework for several practical problems. By the pseudo billiard
we understand a number of segments with assigned to them vector fields. The
computation in this system can be described by the dynamics of the particle,
which initially moves with the constant velocity (in a particular direction) inside
a given region (not necessarily a polyhedron) and changes it instantaneously at

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 706–709, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Computation in One-Dimensional Piecewise Maps 707

the moment of a collision with the boundary to the velocity defined by a given
vector field (not necessarily a constant one) on the boundary. We start with a
more general definition for PBS’s, where we have no constraints on distributing
the segments around the space. In this case, a particle can touch the segments
by both faces, and therefore it may cross them by the action of their projection
vectors.

Definition 1. A Pseudo Billiard System (PBS) is a pair (A, V), where A is a
set of pairwise disjoint segments in R2 (closed, open or semi-open), and V =
{vA}A∈A is a set of vectors in R2 (vA is called the projection vector of A).

The dynamic of a particle in PBS can be defined as follows. Let a particle P
that is represented by a vector x and is located on a segment A ∈ A, i.e. x ∈ A.
The transition function that move P from x to a position x′ can be defined as
follows: x′ = x+λvA, where x ∈ A and λ = min{δ > 0 : x+ δvA ∈

⋃
A′∈AA′}.

In this case we say that x′ is (directly) reachable from x and we denote it as
x ⇒ x′. Since we have a set of pairwise disjoint segments it is clear that for any
x there is a unique x′ if x ⇒ x′ and x �= x′. We also assume that minimum in λ
always exists (particles do not go to infinity).

Definition 2. A PBS is reflecting, if for every A ∈ A, two sets of points Pre(A)
and Post(A) are in the same half-plane determined by A, where Pre(A) is a set
of points from which points on A are directly reachable and Post(A) is a set of
points which are directly reachable from points on A.

Definition 3. We say that f : R → R is piecewise affine map (PAM) if there
exists a partition of dom(f) in a finite number of pairwise disjoint intervals of
R (we allow the intervals to be closed, open or semi-open intervals), I, and for
every I ∈ I, there exists aI , bI ∈ R such that: ∀x ∈ I, f(x) = aIx + bI.

In this section we will study the equivalence between the models introduced
above. We will say that two models are equivalent if for every system of one
type there exists a system of another type that simulates it and vice versa.
In particular, the equivalence of one-dimensional PAM, planar PBS and planar
reflective PBS can be shown by several geometric constructions. Moreover us-
ing the result that model of hierarchical piecewise constant derivative systems
(HPCDs) [1] is equivalent to one-dimensional PAMs we can state that planar
PBS is equivalent to two-dimensional HPCDs. Hence the complexity that can
be obtained with any of them is the same.

Theorem 1. For every PBS, {A, V}, there exists a PAM that simulates it and
the number of intervals in the PAM is bounded1 by |A|(|A| + 2).

In the proof of Theorem 1 for every segment of the PBS, we construct all possible
projections on the other segments that in their turn are bounded in size by |A|+2.

1 In case of reflecting PBSs, the bound can be reduced to |A| + 2.
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Theorem 2. Let f be a PAM with N affine functions. Let R be the number of
affine maps, fi, with ai < 0. Then, there is a reflecting PBS simulating f using,
at most, 2N + R reflecting segments.

Proof. Let f : I → I be a PAM expressed in such a way that I =
⋃n

i=1 Ii is union
of pairwise disjoint intervals, and for every i, f|Ii

= fi, where fi(x) = aix + bi is
an affine function.

The first step of the proof consists in assigning to every interval of the PAM
a segment in R2 where we simulate the dynamic of the system. Since fi : Ii → I
is affine, and Ii is an interval, fi(Ii) must be an interval too. Hence, the image of
every interval of our partition must be inside an union of intervals of our partition
that constitutes a larger interval. To make more direct the proof, we will maintain
the continuity among intervals of f by considering for every interval, Ii ⊆ R, of
f , the segment Ai = Ii × {0} ⊆ R2.

Now, we will simulate the dynamic of each affine map separately. Because
the segments Ai are in the same line, we can’t go directly from one to another
by using projections, therefore we will make use of auxiliary reflection segments
to produce the same result as f produces. Depending on the coefficients of the
affine map, there are three different cases:

Case 1: ai > 0. In case 1 there is no flip from Ai to fi(Ai), so we will need
only one reflecting auxiliary segment to simulate the application of f , Bi.
Case 2: ai < 0. In case 2 there is a flip from Ai to fi(Ai), so we will need
two reflecting auxiliary segments, Bi and B′i, to simulate the function f.
Case 3: ai = 0. In case 3 f(Ai) is a point, and we will make use of only one
reflecting auxiliary segment, Bi, to project to this point.

We can construct simultaneously all these segments with projection vectors
on R2 without disturbing one to each other, obtaining a reflecting PBS for a
complete construction for PAM. It is easy to see from the above construction
that the resulting PBS simulates the given PAM. From above construction, we
can obtain an upper bound to the number of segments we need in a reflecting
PBS to simulate a PAM. The presented method of construction is not efficient in
general, but it works for any possible PAM. In a number of PAM’s, it is possible
to reduce the number of elements of the PBS simulating the PAM.

3 Unpredictability in Rational Piecewise Maps

Now we consider the more general class of rational functions. We define it over Q
to show that even in this case the predictability of its behaviour is an undecidable
problem.

Definition 4. A Piecewise Rational Map (PRM) is a function that is defined on
a finite sequence of disjoint intervals I− = (−∞, r−], I+ = [l+, +∞), Ii = [li, ri]
with r−, l+, li,ri ∈ Q, i = 1..k and uses rational functions 2 for different parts of
its domain I = {I1 ∪ . . . ∪ Ik}.
2 f(x) = P (x)/Q(x) is a rational function, where P and Q are polynomials in x as

indeterminate, and Q is not the zero polynomial.
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Let A be a 2-counter machine with a set of states S = {1, 2, . . . , n}. The con-
figuration of A is a triple [k, l, s] where k and l are values of two counters and
s is a current state of A. Let us define the mapping φ : N × N × N → Q that
is an isomorphism between a configuration [k, l, s] of A and a rational number
s + 1

2k+13l+1 that is shifted to the interval (0,1):

φ([k, l, s]) → 1
10H

(s +
1

2k+13l+1 ), H = 
lg(|S|)�.

Instead of classical Minsky machine with two counters c,d from now on we will
consider the equivalent model of one counter machine where the counter holds
an integer whose prime factorization is 2c · 3d. Increment (decrement) of the
counters c and d can be done by multiplication (division) by 2 and 3 and zero
testing corresponds to testing of divisibility by 2 and 3.

Let A be in a configuration [k, l, s] that is mapped to x by φ. We can multi-
ply/divide a virtual counter by 2 or/and 3 using the following expression

(10Hx − s)2a3b + s

10H
,

where a,b are integers. For example, to check the emptiness of the first counter
we need to add an integer 2k3l+1 using the expression 1

2(10Hx−s) + x. Then we
can easily check whether a virtual counter is divisible by 2 iteratively applying
x − 2 until the point x in the interval [3, +∞). Finally a point x should reach
either the interval [2, 3], which corresponds to k �= 0, or the interval [1, 2], which
corresponds to k = 0.

In a similar way we can check divisibility by 3 from a state s using negative
numbers. If x ∈ [ s

10H , s+1
10H ] we apply −( 1

3(10Hx−s) + x) and then x + 3 for any
point in the interval (−∞, −4]. After that the number x should appear in the
interval [−4, −3], which corresponds to l �= 0 or in the interval [−3, −1], which
corresponds to l = 0.

Theorem 3. One-dimensional piecewise rational map with a finite number of
intervals is the universal model of computation.

Thus, the problem whether a point x ∈ Q can be mapped to y ∈ Q in a one-
dimensional piecewise rational map is undecidable. In contrast to the work [2]
we have shown that the more natural extension of affine functions in dimension
one is universal. As a next step it would be reasonable to raise a question about
the complexity of piecewise linear rational maps.
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Abstract. We review state-space control models in order to identify
timing properties that can favour flexible scheduling of real-time con-
trol tasks. First, from the state-space model of a linear time-invariant
discrete-time control system with time delay, we derive a new model
that involves computing the control signal with a predicted state vector
at the actuation instant. Second, by allowing irregular sampling instants,
we show that the new model only forces a single synchronization point
(actuation instant) while having a feasible implementation. This augurs
better schedulability for a set of real-time control tasks, and can provide
robustness against scheduling induced jitters.

1 Introduction

The state space model for a linear time-invariant discrete-time control system
with time delay [1] implies a synchronous timing at the sampling and actuation
instants that can be perfectly met by a single periodic real-time control task.
Assuming that sampling and actuation occurs at the beginning and at the end
of each task execution [2], the timing of the control task execution corresponds
to the timing of the model if task period and deadline are set equal to the
sampling period and time delay of the model. However, in a multitasking real-
time control system, the tight specification of these timing constraints for control
tasks impairs schedulability in the general case [3].

Relaxing this specification by setting the deadline greater than the time delay
introduces jitters in control tasks executions that violate the synchronous tim-
ing of the model, causing control performance degradation [2]. To maintain syn-
chronism, abstract computational models that force two synchronization points
(sampling and actuation) for each control task have been developed ([4] or [5]).

Such computational models introduce three main drawbacks. First, they im-
pose an artificially longer time delay in the closed loop system. Second, they
constrain system schedulability by requiring two synchronization points. Third,
if state feedback control is used, they involve computing the control signal con-
sidering a state vector that becomes outdated at the actuation instant.

The contribution of this paper is to derive a novel state-space model for real-
time control tasks aimed at solving the above identified deficiencies. First, we
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derive a new model, prediction-based model, that involves computing the con-
trol signal using the updated (predicted) state vector at the actuation instant,
eliminating the possibly unknown and varying time delay between sampling and
actuation. Second, by allowing in the new model irregular sampling instants, we
show that the new model only forces a single synchronization point (actuation
instant) while having a feasible implementation. This offers flexibility for real-
time control tasks scheduling, which can improve schedulability and can provide
robustness against jitters.

2 Standard Model

Consider the state space model of a linear time-invariant continuous-time system
with time delay τ

dx(t)
dt = Ax(t) + Bu(t − τ)
y(t) = Cx(t).

(1)

where x(t) is the plant state, u(t) and y(t) are the input and output of the plant,
and A ∈ R

n×n, B ∈ R
n×m and C ∈ R

p×n are the system, input and output
matrices respectively. The time delay can model an input/output latency that
appears due to the computation of the control algorithm or due to the insertion
of a network within a control loop. For periodic sampling, with sampling period
h, where τ ≤ h, we obtain the standard discrete time model

xk+1 = Φ(h)xk + Φ(h − τ)Γ (τ)uk−1 + Γ (h − τ)uk

yk = Cxk,
(2)

where matrices Φ(t), Γ (t) are obtained using the following

Φ(t) = eAt, Γ (t) =
∫ t

0 eAsBds. (3)

Note that eq. (2) slightly differs from conventional notation. The purpose of the
new notation is to explicitly indicate dependencies on h and τ . An state space
model of the system (2) is given by[

xk+1
zk+1

]
=

[
Φ(h) Phi(h − τ)Γ (τ)

0 0

] [
xk

zk

]
+

[
Γ (h − τ)

I

]
uk (4)

where zk ∈ R
m×1 are the values that represent the past control signals. For

closed loop operation, the control signal will be

uk =
[
L1 L2

] [
xk

zk

]
= L1xk + L2zk with L1 ∈ R

1×n, L2 ∈ R
1×m. (5)

Remark 1. The closed loop model given by (4) and (5) is based on two syn-
chronization points, the sampling and actuation instants. At time tk the kth

sample1 (xk) is taken, and at time tk+τ the kth control signal (uk) is sent out.
The sampling period h is defined from tk to tk+1, and the time delay τ from tk
to tk+τ .
1 Sample is used to refer to the full state vector, regardless of whether it has been

sampled or observed.
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Remark 2. The closed loop model given by (4) and (5) involves computing the
control signal to be sent out at time tk+τ using a sample taken at tk, τ time
units before.

Remark 3. The closed loop model given by (4) and (5) holds the control signal
uk from tk+τ to tk+1+τ .

3 Prediction-Based Model

A more consistent model could involve computing the control signal with the
updated state vector at the actuation instant tk+τ . Instead of (5), we will have

uk = Lxk+τ . (6)

Remark 4. With (6), the sampling period h is the time elapsed from tk+τ to
tk+1+τ . Moreover, no delay is present. An uk still is held from tk+τ to tk+1+τ .
Recall remarks 1, 2 and 3.

The new closed loop dynamics can be modeled by (6) and

xt+τ+1 = Φ(h)xk+τ + Γ (h)uk. (7)

Remark 5. Although uk in (6) uses xk+τ , the sample is still taken at time tk.

According to remark 5, xk+τ has to be predicted from xk, that is

xk+τ = Φ(τ)xk + Γ (τ)uk−1. (8)

Proposition 1. All closed loop dynamics given by (6), (7) and (8) can be ob-
tained by (4) and (5).

Proof. Let L be the state feedback gain of (6). Substituting (8) into (6) we have

uk = LΦ(τ)xk + LΓ (τ)uk−1. (9)

By comparing (9) to (5), we obtain that the state feedback gain of (5) is L1 =
LΦ(τ) and L2 = LΓ (τ) (when zk ∈ R

1×1). ��

Proposition 2. Not all closed loop dynamics given by (4) and (5) can be ob-
tained by (6), (7) and (8).

Proof. If L1 = LΦ(τ) and L2 = LΓ (τ), by simple algebraic manipulations we
obtain that L2 = L1Φ

−1(τ)Γ (τ). This is the family of controllers of model (4)
and (5) that can be obtained by model (6), (7) and (8). ��

Proposition 3. All closed loop dynamics given by (4) and (5) can be obtained
by (6), (7) and (8) if m = n.

Proof. By adding L1 = LΦ(τ) and L2 = LΓ (τ), and isolating L we obtain
L = (L1 + L2)(Φ(τ) + Γ (τ))−1. This is only feasible if m = n. ��
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Remark 6. By proposition (1) and (2) we deduce that the model given by (4)
and (5) is more general than the specified by (6), (7) and (8).

Remark 7. The closed loop system given by (6) and (7) is based on one synchro-
nization point, tk+τ , that is, on the actuation instant.

Taking advantage of remark 7, we can relax the constraint imposed by remark
5. That is, the sample may be taken at times different than tk.

Proposition 4. For irregular sampling with tk ∈ (tk−(h+τ) tk+τ ), model (4)
and (5) can not be applied while model (6), (7) and (8) still holds.

Proof. In terms of two consecutive irregular sampling instants, tk and tk+1, eq.
(5) is given by

uk =
[
L1(hk) L2(hk)

] [
xk

zk

]
(10)

where hk = tk+1 − tk. Since at the actutaion instant (tk+τ ), the next sampling
instant (tk+1) is not known, the feedback gain can not be correctly computed.
However, in (6) L depends on h, which is constant since it goes from actuation
to actuation instant (recall remark 4). The irregular sample only influences eq.
(8), where τ = tk+τ − tk. Since tk can be known at the actutaion instant (tk+τ ),
the new model accepts irregular sampling. ��

4 Discussion and Conclusions

The discrete-time closed loop model given by (6), (7) and (8), a) eliminates the
input/output delay, b) is based on a single synchronization point, c) uses an
updated (predicted) state at the actuation instants, and more important, d) can
absorb irregular sampling. From the real-time perspective, accepting irregular
sampling has two main benefits. It can eliminate the degradation introduced by
jitters, and it can improve schedulability (since task releases can be performed
earlier). Future work will focus on a) analysing the impact of the new model
on the schedulability of a set of real-time control tasks, and b) evaluating in a
multitasking real-time control system the control performance achieved by a set
of tasks implementing control laws based on the new model with respect to the
standard one or to those using existing abstract computational models.
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1 Introduction

The problem of inversion and flat output characterization for switched linear
discrete-time systems is tackled through a unified framework. For this class of
hybrid systems, we first derive algebraic conditions to conclude on invertibility,
which extends the previous results of Sain and Massey [1] dealing with linear
time-invariant systems. Then, the structure of the switched inverse system is
provided. Finally, based on the connection with the inversion problem and the
related notion of inverse dynamics, we derive conditions which enable to check
whether a given output is flat. Due to space limitation, the proofs are not pro-
vided but can be found in [2].

Notation : For any integer l, 1l refers to the l−dimensional identity matrix and
Ol×l′ stands for the l × l′ zero matrix. If irrelevant, the dimension of the zero
matrix will be omitted and we shall merely write O. For a matrix X , X† stands
for the Moore-Penrose generalized inverse of X .

2 Problem Statement and Definitions

We examine switching linear discrete-time systems of the form{
xk+1 = Aσ(k)xk + Bσ(k)uk

yk = Cσ(k)xk + Dσ(k)uk
(1)

where xk ∈ R
n, uk ∈ R

m and yk ∈ R
p are the states, the inputs and the

measurements, respectively. All the matrices, namely A ∈ R
n×n, B ∈ R

n×m, C ∈
R

p×n and D ∈ R
p×m belong to the respective finite sets (Aj)1≤j≤J , (Bj)1≤j≤J ,

(Cj)1≤j≤J and (Dj)1≤j≤J . The index j corresponds to the mode of the system
at a given time k and results from a switching function σ : k ∈ N �→ j = σ(k) ∈
{1, . . . , J}. The function σ ∈ Σ, where Σ is the set of all possible switching
rules, orchestrates the switches which are triggered by exogenous events. No
restriction on the time separation between switches (“dwell time”) is imposed.
For any time-dependent matrix Xσ(k), X

σ(k1)
σ(k0) stands for

X
σ(k1)
σ(k0) = Xσ(k1)Xσ(k1−1) . . . Xσ(k0) if k1 ≥ k0

= 1n if k1 < k0
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Let U be the space of input sequences over [0, ∞) and Y the corresponding
output space. For each initial state x0 ∈ R

n, when the system (1) is driven
by the input sequence {u}T

0 = {u0, . . . , uT } ⊂ U , for a given mode sequence
{σ}T

0 = {σ(0), . . . , σ(T )} with σ ∈ Σ, {x(x0, σ, u)}T
0 refers to the solution of (1)

in the interval of time [0, T ] and {y(x0, σ, u)}T
0 ⊂ Y refers to the corresponding

output in the same interval of time [0, T ].

Definition 1. The system (1) is invertible for a given switching rule σ ∈ Σ,
if there exists a positive integer r < ∞ such that, for two any input sequences
{u}r

0, {u′}r
0 ⊂ U , the following implication applies:

{y(x0, σ, u)}r
0 = {y(x0, σ, u′)}r

0 ⇒ u0 = u′0 ∀x0 (2)

The integer r will be called the inherent delay of (1).

Definition 2. The system (1) is invertible if it is invertible for all σ ∈ Σ

By invertibility, we thereby mean here the ability to infer the input u0 from a
finite number r of measurements yi (i = 0, . . . , r), the state vector x0 and the
mode sequence {σ}r

0 both associated to {y(x0, σ, u)}r
0 and {y(x0, σ, u′)}r

0 being
identical.

Remark: In the foregoing, the initial condition is considered at the special dis-
crete time k = 0. However, we could take any discrete time k and then refer to
the interval of time [k, k + r] instead of [0, r].

We are concerned with three closely related issues:

i) determining algebraic conditions, in terms of the state matrices description,
under which the system (1) is invertible (invertibility)

ii) looking for a second system, which, when cascaded with the system (1) and
so driven by its outputs, produces the same input under an identical initial
condition and an identical mode sequence (inversion)

iii) providing some algebraic conditions, in terms of the state matrices descrip-
tion, to check whether a given output of (1) is flat (flatness)

We introduce the following matrices and vectors : M0
σ(k) = Dσ(k), M

i(>0)
σ(k) =

�
��������

Dσ(k) 0p×m . . . . . . . . .
Cσ(k+1)Bσ(k) Dσ(k+1) 0p×m . . . . . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

Cσ(k+i)A
σ(k+i−1)
σ(k+1) Bσ(k) Cσ(k+i)A

σ(k+i−1)
σ(k+2) Bσ(k+1) . . . Cσ(k+i)Bσ(k+i−1) Dσ(k+i)

�
��������

Oi
σ(k) =

�
�����

Cσ(k)

Cσ(k+1)Aσ(k)
...

Cσ(k+i)A
σ(k+i−1)
σ(k)

�
�����

, yi

k
=

�
����

yk

yk+1

...
yk+i

�
���� , Īm = (1m 0m×(m·r))
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3 Main Results

3.1 Invertibility

Theorem 1. The following statements are equivalent.

i) The system (1) is invertible
ii) There exists a finite integer r such that the equation

Qr
σ(k)M

r
σ(k) = Īm (3)

has a solution in Qr
σ(k) for all σ ∈ Σ

iii) There exists a finite integer r such that for all σ ∈ Σ

rank

(
M r

σ(k)
Īm

)
− rank M r

σ(k) = 0 (4)

As a matter of fact, Īm can be replaced by any matrix of the form (F 0m×(m·r))
where F is any rank m square matrix of size m. An explicit solution Qr

σ(k) of
(3) is:

Qr
σ(k) = ĪmM r†

σ(k) (5)

3.2 Inversion

Definition 3. A system is a r-delayed inverse for (1) if, under an identical
initial condition x0 and an identical switching rule σ, when driven by yr

k
, its

output fulfills ûk+r = uk for all k ≥ 0

Theorem 2. Assume that (1) is invertible with inherent delay r. The system{
x̂k+r+1 = P r

σ(k)x̂k+r + Bσ(k)Q
r
σ(k)y

r
k

ûk+r = −Qr
σ(k)Or

σ(k)x̂k+r + Qr
σ(k)y

r
k

(6)

with
P r

σ(k) = Aσ(k) − Bσ(k)Q
r
σ(k)Or

σ(k) (7)

is a r-delayed inverse system for (1).

Actually, the system (6) enables to retrieve not only the input uk but the state
xk of (1) as well. Thus, when x0 is unknown, it can act as an unknown input
observer by incorporating an extra gain.

3.3 Flatness

Let us recall that flatness was introduced by Fliess and al. [3] in 1995.

Definition 4. A system with input uk and state xk, assumed to be square (m =
p), is said to be flat if there exists a set of independent variables yk, referred to
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as flat outputs, such that all system variables can be expressed as a function of
the flat outputs and a finite number of its backward and/or forward iterates. In
particular, there exist two functions F and G, Z-valued integers kF , k′F , kG and
k′G such that {

xk = F(yk+kF , . . . , yk+k′
F
)

uk = G(yk+kG , . . . , yk+k′
G
) (8)

Theorem 3. A componentwise independent output yk of the system (1) assumed
to be square (m = p), invertible for a given switching rule σ ∈ Σ and with
inherent delay r, is a flat output if there exists a positive integer K < ∞ such
that the following equality applies for all k ≥ 0

P
σ(k+K−1)
σ(k) = 0 (9)
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Abstract. We describe the main features of the Probabilistic Timed I/O
Automata (PTIOA)—a framework for modeling and analyzing discretely
communicating probabilistic hybrid systems. A PTIOA can choose the
post-state of a discrete transition either nondeterministically or accord-
ing to (possibly continuous) probability distributions. The framework
supports modeling of large systems as compositions of concurrently ex-
ecuting PTIOAs, which interact through shared transition labels. We
develop a trace-based semantics for PTIOAs and show that PTIOAs are
compositional with respect a new notion of external behavior.

1 Introduction

Probabilistic automata with continuous state spaces provide a framework for
studying computing systems that interact with unpredictable environments. In
distributed systems, nondeterminism enables us to describe arbitrary interleav-
ing of concurrently executing processes. For modeling and analyzing systems
which have traits of both hybrid and distributed systems, such as sensor net-
works and mobile-robotic systems, we need frameworks that support continuous
dynamics, probabilistic transitions, and nondeterminism. There are continuous
state automaton frameworks which eschew internal nondeterminism in favor
of fully probabilistic evolution such as [1,5,12], and those that support both
nondeterministic and probabilistic transitions but restrict the state spaces and
the probability distributions to be discrete [6,4,2,7]. In this note we describe
the main features of the Probabilistic Timed Input/Output Automaton (PTIOA)
framework (full version available as [10]) which generalizes both the Timed I/O
Automaton [9] and the Probabilistic I/O Automaton [2] frameworks, and pro-
vides a basis for describing concurrent, continuous state-space systems, with
both probabilistic and nondeterministic transitions.

Definition 1. A PTIOA is a 6-tuple A = ((X, FX), x̄, A, R, D, T ) where: (1)
(X, FX) is a measurable space called the state space. (2) x̄ ∈ X is the start
state. (3) A is a countable set of actions, partitioned into internal H, input I
and output O actions. L = O∪H is the set of local actions and E = O∪I is the
set of external actions. A is said to be closed if I = ∅. (4) R is an equivalence
� Supported by the MURI project:DARPA/AFOSR MURI F49620-02-1-0325 grant.
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relation on L; the equivalence classes of R are called tasks. A task T is called
an output task if T ⊆ O. (5) D ⊆ X × A × P(X, FX) is the set of probabilistic
transitions. If (x, a, μ) is an element of D, we write x

a→ μ and action a is said to
be enabled at x. (6) T is a set of deterministic trajectories for X. In addition,
a PTIOA satisfies the following axioms:

M0 For all B ⊆ A, set of states in which at least one action from B is enabled
is measurable. For measurable sets R ⊆ R≥0 and Y ⊆ X , the set of states
from which some r ∈ R amount of time can elapse and a state y ∈ Y is
reached (according to some trajectory in T ), is measurable.

D0 Input actions are enabled in all states.
D1 For any state x at most one of the following may exist: (1) a local action

enabled at x (2) a non-point trajectory starting from x.
D2 For any state x, if there are actions a, b in the same task T and x

a→ μ1 and
x

b→ μ2 then a = b and μ1 = μ2.
D3 An execution of finite duration has at most finite number of internal actions.

The M0 axiom ensures measurability of reasonable sets of executions. D0 is
a non-blocking axiom standard in I/O automata literature. Axiom D1 allows
resolution of nondeterminism in a structured manner; this axiom will be removed
in Section 4. D1 prevents an action to remain enabled while time elapses. If time
can elapse from x, then the state evolves according to the longest trajectory
starting from x. If local actions are enabled at x then time cannot elapse and A
nondeterministically chooses one action a from the set of enabled actions. This
nondeterministic choice is resolved by a task scheduler (defined below). If a task
T is specified then D2 implies that at x there can be at most one enabled action
in T , and at most one probabilistic transition corresponding to that action.

2 Distributions over Executions and Traces

An execution fragment of an PTIOA A is a sequence α = τ0a1τ1a2 . . ., where
each τi ∈ T , ai ∈ A and ai is enabled at the last state of τi−1. An execution
fragment α is an execution of A if the first trajectory starts from x̄. The trace of
an execution α represents its externally visible part, namely the external actions
and time passage. It is obtained by removing internal actions, concatenating
consecutive trajectories, and replacing all the trajectories with their lengths. We
denote the set of executions, and the set of traces of A by ExecsA and TracesA.

In order to construct a probability measure over ExecsA we have to first define
a σ-algebra over ExecsA. Adapting a construction given in [3], we proceed as
follows: A base is a finite sequence Λ = X0R0X1A1R1 . . . XmAmRmXm+1, where
for every i ∈ {0, . . . , m+1}, Xi ∈ FX , Ri is a measurable set in R≥0 and for every
i ∈ {1, . . . , m}, Ai ⊆ A. The basic set CΛ corresponding to this base Λ is the
set of all executions which have a prefix that matches the pattern of actions and
trajectories in Λ. We show that collection C of all basic sets of A generates a σ-
algebra over ExecsA, which we denote by FExecsA . We define the measurable space
of executions of A to be (ExecsA, FExecsA). In a similar manner, we construct a
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measurable space (TracesA, FTracesA) of traces of A from trace bases , which are
defined to be finite alternating sequences of the measurable sets in R≥0 and
subsets of E.

We combine A with a task scheduler for resolving nondeterministic choice
over enabled actions, which is is simply a finite or infinite sequence ρ = T1T2 . . .
of tasks in R. A task scheduler [2] chooses the next action deterministically
and independently of the information produced during an execution. In [10] we
inductively define a function apply such that given any task schedule ρ for A,
apply(δx̄, ρ) gives a probability measure over (ExecsA, FExecsA) by “applying” ρ
to A, one task at a time. This probability distribution over executions is called
a probabilistic execution of A.

For any probabilistic execution μ of a PTIOA we would like to have a sin-
gle corresponding measure on TracesA. This requires trace : (ExecsA, FExecsA) →
(TracesA, FTracesA) to be a measurable function. A difficulty in proving this arises
because the trace function concatenates trajectories that are separated by in-
ternal actions. Consider, for example, a simple trace base [0, r]{a}, where r is a
positive real and a is an external action. Then, E = trace−1(C[0,r]{a}) is the set
of all finite executions of the form τ1h1τ2h2 . . . hn−1τna, such that all the hi’s are
internal actions and

∑n
i=1 τi.ltime ≤ r. For trace to be a measurable function

E expressible as a countable union of basic sets. We prove the measurability of
trace in [10] making use of several PTIOA properties including the D3 axiom.
With this result, we are able to prove a key theorem which asserts that each
task schedule for a PTIOA A gives rise to a single distribution over the traces
of A. For each task schedule the corresponding distribution over traces is called
a trace distribution and the set of all possible trace distributions of A is denoted
by tdists(A).

3 Composition and External Behavior

The composition operation allows a PTIOA representing a complex system to
be constructed by composing PTIOAs representing smaller subsystems. In [10]
we state the conditions under which two PTIOAs A1 and A2 can be composed,
we define the parallel composition operator, and we prove a theorem asserting
that a composition A1||A2 is a valid PTIOA.

An environment for PTIOA A is a PTIOA E such that A and E can be com-
posed and their composition A||E is closed. The external behavior of a PTIOA
A, written as extbehA, is defined as a function that maps each environment
E for A to the set tdists(A||E). Two PTIOAs A1 and A2 are comparable if
E1 = E2. If A1 and A2 are comparable then A1 is said to implement A2,
written as A1 ≤ A2 if, for every environment PTIOA E for both A1 and A2,
extbehA1(E) ⊆ extbehA2(E). Viewing external behavior as a mapping from en-
vironments as opposed to a set of trace distributions is natural in many applica-
tions, including analysis of security protocols [2], and indeed, it lets us circum-
vent some of the difficulties that underlie compositionality in the probabilistic
setting.



Trace-Based Semantics for Probabilistic Timed I/O Automata 721

Theorem 1. Suppose A1 and A2 are comparable PTIOAs and A1 ≤ A2. If
PTIOA B can be composed with both A1 and A2 then A1||B ≤ A2||B.

4 Generalized PTIOAs

In this section, we relax the deterministic assumptions (axiom D1) on PTIOAs.
A Generalized PTIOA is a tuple A = ((X, FX), x̄, A, R, D, T ) as in Definition 1,
but A does not necessarily satisfy D1 and T is not necessarily deterministic.
Thus, from a given state x ∈ X of a generalized PTIOA A there may be non-
deterministic choice of actions and also choice of distinct trajectories. A local
scheduler for generalized PTIOA A, is a PTIOA S = ((X, FX), x̄, A, R, D′, T ′)
that is identical to A except that D′ ⊆ D and T ′ ⊆ T . A local scheduler S
satisfies D1 and has deterministic trajectories.

A probabilistic-system is a pair M = (A, S), where A is a generalized PTIOA
and S is a set of local schedulers for A. An environment for M is any PTIOA
E such that A||E is closed. A probabilistic execution for M is defined to be any
probabilistic execution of S, for any S ∈ S. The notion of trace distribution
carries over naturally to generalized PTIOAs. For probabilistic system M =
(A, S), we define the external behavior of M to be the total function extbehM
that maps each environment PTIOA E for M to the set ∪S′∈Stdists(S′||E). Thus
for each environment, we consider the set of trace distributions that arise from
the choices of the local scheduler of M and the task scheduler ρ. This leads to
a notion of implementation of probabilistic systems, similar to that of PTIOAs.
Let M1 = (A1, S1) and M2 = (A2, S2) be probabilistic systems such that A1
and A2 are comparable generalized PTIOAs. Then, M1 implements M2 if for
every environment E of M1 and M2, extbehM1(E) ⊆ extbehM2(E). Theorem 2
gives a sufficient condition for implementation of probabilistic systems:

Theorem 2. If M1 = (A1, S1), M2 = (A2, S2) are comparable and there ex-
ists f : S1 → S2, such that for all S1 ∈ S1, S1 implements f(S1), then M1
implements M2.

In the future we would like to extend PTIOAs to support shared variables and
develop a suite of analysis techniques for proving probabilistic safety, stability
and approximate implementation relations [11].

We thank Sanjoy Mitter for many valuable comments on this work.
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1 Introduction

Recently, several properties in networked sensing and distributed systems have
been modeled by various researchers [1,2,3,5,7,9,11,12] using topological spaces
and their topological invariants. The unifying theme in these approaches has
been that the local properties of a network, as dictated by local interactions
among agents, can be captured by certain topological spaces. These spaces are
mostly combinatorial in nature and are a generalization of the more familiar
graphical models. Moreover, the global properties of the network characteris-
tics correspond to certain topological invariants of these spaces such as genus,
homology, homotopy, and the existence of simplicial maps. Examples of such
modeling attempts include coverage problems for sensor networks [1,2,3,7]; con-
sensus & concurrency modeling in asynchronous distributed systems [9]; and
routing in networks without geographical information [5]. One notable charac-
teristic of these studies has been that the topological abstractions preserve many
global geometrical properties of the network while abstracting away the redun-
dant geometrical details at small scales. This promises great simplification of
algorithms as well as hardware, which is an important requirement for realizing
large-scale robust networks.

To elaborate further on this point, consider a network of nodes in a plane, each
capable of performing a sensing task within a radially symmetric neighborhood.
Then, one can study the problem of blanket coverage, i.e. whether the union of
the coverage discs about the nodes cover a certain area of interest? This problem
has been studied recently using computational homology methods [1,2,3,7]. The
homological methods permit the study of this problem for sensors which are
remarkably minimal, having no means of measuring distance, orientation, or
location in their environment.

In this paper, we report our study on dynamic coverage in sensor networks
using homological methods by focussing on the mobility of the nodes and the
effect of changes in the topology of the underlying network. More precisely, we
want to determine if it is possible to provide sweep coverage for a given planar
domain. By sweep coverage we mean that every point in the environment is re-
quired to be covered infinitely often (possibly with some frequency), so that no
point is left undetected for long. Thus by deploying a combination of static and
mobile sensors, one can produce exploratory patrol-like behavior. This problem
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is also related to pursuit-evasion problems and to exploration problems in an
unknown environment. This problem is well studied and many researchers have
proposed different solutions [6]. The aim of our work is not to provide another
solution but to provide an online robust verification method for any given so-
lution, in order to provide safeguards against node failure and uncertainties in
modeling. As explained later, this verification can be implemented with minimal
complexity on a large network of homogeneous mobile agents.

2 Homology and Higher Order Laplacians

The above mentioned criteria for studying coverage are based on the concepts
of simplicial complexes and their homology groups [8]. The simplicial complexes
arising in sensor networks are derived from or related to the unit-disk connec-
tivity graphs in networks. In addition to the vertices and edges in graphs, they
are made up of higher dimensional objects such as ‘triangles’ and ‘tetrahedrons’
that capture tertiary, quaternary or even higher-order relations between basic
entities. These objects are collectively known as simplices. The homology groups
of a simplicial complex X , denoted by Hk(X) for k ≥ 0, are used to distinguish
one simplicial complex from one another by identifying the number of ‘holes’ of
various dimension, contained in them. Each non-trivial member of the homology
group in a certain dimension helps identify a corresponding hole in that dimen-
sion. Crudely speaking, the dimension of H0(X) is the number of connected
components of X . The dimension of H1(X) is the number of non-contractible
cycles in X , where each cycle encircles a ‘puncture’ in space. H2(X) identifies
the number of 3-dimensional voids in a space and so on. In sensor networks, the
members of the homology groups of certain simplicial complexes help identify
coverage losses or network communication holes [1,2,3,7].

Recent advances in computational algebraic topology has enabled the suc-
cessful verification of these topological results in simulation. However, the algo-
rithms available are not meant for a distributed implementation. Therefore, in
order to properly utilize these tools for networked sensing and control, one needs
a new approach towards computing topological invariants that is well suited for
implementation on real networked systems, with manageable complexity and
scalability. In [11,12], the first steps towards this goal have been taken.

The central objects of this approach are the so-called higher order Laplacian
operators on simplicial complexes. It has been shown in [11] that the spectral
decomposition of the higher order Laplacian operators is a way to compute ho-
mology groups. To understand this operator, we recall that the homology groups
are defined as a quotient space Hk(X) = ker∂k/im ∂k+1, where ∂k are the so
called boundary operators, that linearly map simplices of a particular dimension
to simplices at one dimension less. As an example, the familiar incidence matrix
in graph theory is the boundary operator ∂1, mapping edges to vertices. The
higher order combinatorial Laplacian Lk is an operator (matrix) between sim-
plices of the same dimension, and is given by Lk := ∂k+1∂

T
k+1 + ∂T

k ∂k. Observe
that since there are no simplices below dimension zero, ∂0 = 0 and the zeroth
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order Laplacian is the familiar graph Laplacian L0 = ∂1∂
T
1 . The key obser-

vation [4] is that kerLk
∼= Hk(X). Again, the readers familiar with algebraic

graph theory can verify that the dimension of kerL0 is the number of connected
components of X , which was earlier identified with H0(X).

The flow of these Laplacians, roughly described by ∂ω/∂t = −Lkω, has been
used in [11] to detect the absence or presence of network holes. In light of the
above discussion and the fact that Lk is positive definite, it is easy to see that
ω(t) → 0 if and only if Hk(X) ∼= kerLk = {0}, i.e. no holes in dimension k. In
order to distinguish between multiple holes, the flow alone does not help unless
there is direct method of doing a decentralized spectral decomposition. Such an
algorithm has been studied in another related work by the authors [12].

3 Mobility, Switching Topologies and Dynamic Coverage

Let us now consider the case when the nodes are mobile, giving rise to a switch-
ing connectivity graph structure, which induces a switching structure for the
simplicial complexes as well. Thus we can study a switched k-Laplacian flow,
described by

∂ω(t)
∂t

= −Lσ
kω(t),

where σ indexes the appropriate simplicial complex whenever there is a change
of topology via a switching signal. If we are ensured that each simplicial complex
encountered during the evolution is hole-free (zero homology), then the switched
linear system shows asymptotic stability. However, one can show that the system
exhibits asymptotic stability under an even weaker condition, whereby the simpli-
cial complexes encountered in bounded, non-overlapping time intervals are jointly
hole-free. To understand this condition, let the simplicial complexes encountered
in one such interval be X1, X2, . . . , Xm. Then, they are said to be jointly hole-
free in dimension k, if Hk(∪m

i=1X
i) ∼= {0}. The proof of this result closely follows

the presentation in [10], the details of which have been given in [13].
The consequences of this result for sweep coverage are now easy to explain.

The property of being jointly hole-free guarantees that in contiguous bounded
time-intervals, the union of the simplicial complexes has zero homology. If the
simplicial complexes model coverage properties, where coverage gaps are mod-
eled by holes, then this condition guarantees that the entire region is covered
in a bounded time interval. Moreover, the existence of an infinite sequence of
contiguous intervals guarantees that each point of the region is visited infinitely
often, thus verifying sweep coverage by the mobile network.

We should mention that two issues have not been fully explained in this
paper, and we refer the interested reader to a more detailed version of this work
[13]. One is that to infer coverage gaps from simplicial complexes, some extra
structure is needed. Either, the hole exhibits a certain robustness with respect
to the connectivity radius of the underlying graph [2,3], or some knowledge
about the nodes monitoring the boundary has to be assumed [1]. Secondly, we
have presented our results without incorporating the effects of coverage losses
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at the boundaries. To fix this, one needs to compute homology groups for the
complexes relative to the boundaries nodes. For these reasons, we only have a
verification algorithm i.e. coverage can be maintained even when the joint-hole
free condition is violated. Still, the verification is computationally inexpensive
and can be implemented in a decentralized manner. The reason for this is that the
k-Laplacians are essentially local averaging or mixing operations, and therefore
work in the spirit of gossip algorithms [12].

The switched linear systems studied above are a natural generalization of
the work on distributed consensus algorithms [10], based on the standard graph
Laplacian from algebraic graph theory. The idea of joint connectedness of a set
of graphs has been generalized to the idea of when a collection of simplicial
complexes are jointly hole-free. Thus, this theme of research allows us to view
algebraic graph theory as a special case of the spectral theory of simplicial com-
plexes, which in turn has proven useful in the context of networked sensing and
control.
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Abstract. Nonlinearities and the lack of accurate quantitative infor-
mation considerably hamper modeling and system analysis of biochemi-
cal networks. Here we propose a procedure for qualitative mathematical
analysis of piecewise-affine (PWA) approximations of these networks.
First the biochemical model size was reduced with quasi-steady state
approaches by taking a priori information into account. Second, a con-
version of a nonlinear model into a PWA approximation and subsequent
qualitative analysis of this model was performed. This resulted in differ-
ent sets of transition graphs that depend on the parameter values, which
enables reduction of the parameter search space.

1 Introduction

Understanding biological processes is essential and a challenging task in which
computer modeling and analysis have become indispensable, but simulation and
analysis are seriously hampered by a lack of accurate experimental data and
the complexity of the mathematical models. Certain biochemical networks show
switch-like behavior. For instance, genetic regulatory networks can be described
as a collection of discrete switches that react on continuous fluctuations in pro-
tein concentration. An obvious choice would be to model these networks with
a framework that can handle both discrete and continuous components, i.e. the
hybrid approach. This hybrid systems paradigm is therefore appropriate and
has been applied to various biological systems with distinct switches, e.g. [1,2,3].
However, the field of biology is much larger, covering other nonlinear biochemical
networks that contain non-switch-like components, e.g. [4]. In this short paper,
we use hybrid systems to analyze a more general class of nonlinear biochemical
networks.

2 Systematic Approach for Biological System Analysis

We will present a methodology that consists of four consecutive steps: 1) model
reduction by quasi-steady state approximation, 2) conversion of the nonlinear
model into a hybrid system, in a piecewise-affine (PWA) form, 3) determina-
tion of the symbolic equilibrium points and transitions, and 4) transition graph
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construction. The procedure will be illustrated with a biologically relevant bio-
chemical network, the Transforming Growth Factor-β1 (TGF-β1) pathway. We
remark explicitly that this method is not limited to this example, but is appli-
cable to other biochemical networks with nonlinear terms as well.

2.1 Step I: Model Reduction

A nonlinear mathematical model can be formulated by means of standard ki-
netic modeling in biochemistry. Typical biological models are composed of many
nonlinear differential equations. The analysis procedure presented here is not
automated yet; for manual analysis, a reduced model is required. A suitable
model reduction method is the quasi-steady-state approximation, which leads to
a more condensed set of state equations by means of timescale separation. The
original model of the example consists of a seventh order ODE and is reduced
to a second order set:

ẋ4 = k4
1 − x4

Km2

(
1 + x7

KI

)
+ 1 − x4

− k6x4,

ẋ7 = k8
xr

4

Kr
m3

+ xr
4

− k9x7,

(1)

with k4, Km2, KI, k6, k8, Km3, r and k9: eight parameters (positive values); x4
and x7: two states (not negative).

2.2 Step II: PWA Approximation of the Nonlinear Model

Subsequently, the nonlinear terms in Eq. (1) are approximated by PWA functions
by applying the rules in [5], which have been extended to deal with multivariable
functions. In Eq. (1), the PWA approximation results in a hybrid system f of
maximally four regular modes (q1, . . . , q4) containing two states x = [x4; x7]T :

f =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[−k6x4 + β(1 − x7); −k9x7]T if x4 − αx7 < 1 − α ∧ x4 < Km3,

[−k6x4 + β
α (1 − x4); −k9x7]T if x4 − αx7 > 1 − α ∧ x4 < Km3,

[−k6x4 + β(1 − x7); γ − k9x7]T if x4 − αx7 < 1 − α ∧ x4 > Km3,

[−k6x4 + β
α (1 − x4); γ − k9x7]T if x4 − αx7 > 1 − α ∧ x4 > Km3,

(2)

with α, β, and γ: parameters required for the PWA approximation, which could
be linked to the parameters in the nonlinear model with Eq. (1).

2.3 Step III: Equilibrium Points

Analysis of system dynamics requires knowledge about the equilibrium points in
the system. The equilibrium points have to satisfy the invariants and biochemical
constraints, e.g. all concentrations are larger than zero. Symbolic expressions of
the equilibrium points in each mode (q1, ..., q4) are derived with ẋ = 0. For
the example, all equilibrium points and their associated existence conditions are
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listed in Table 1. The equilibrium points are mutually exclusive, which implies
that no multiple equilibrium points can occur. Furthermore, a common Lyapunov
function can be found for all modes, which guarantees that the complete system
is globally uniformly asymptotically stable (GUAS), regardless of the parameter
values. Note that switching modes are also present in this model, but omitting
these modes will not influence the conclusions of the analysis.

Table 1. Equilibrium points and corresponding existence conditions

Equilibrium point Existence condition

q1 :
(

β
k6

, 0
)

0 < β
k6

< min (1 − α, Km3)

q2 :
(

β
αk6+β

, 0
)

1 − α < β
k6

< Km3

q3 :
(

β(k9−γ)
k6k9

, γ
k9

)
Km3

k9
k9−γ

< β
k6

< k9
k9−γ

− α

q4 :
(

β
αk6+β

, γ
k9

)
max

(
Km3

k9
k9−γ

, k9
k9−γ

− α
)

< β
k6

< 1

2.4 Step IV: Transition Graph Construction

Mode transitions occur if the inner product of the model equations f and the
normal n of the guard condition, i.e. the inequality in Eq. (2), is larger than zero
[5]:

fT · n > 0. (3)

Eq. (3) is applied for all transitions on the guard conditions, for each equilibrium
point. Since the equilibria are bounded by existence conditions (Table 1) and
transitions have to comply with Eq. (3), a transition has to satisfy specific in-
equalities of parameter values in order to be feasible. For the example it has been
shown that multiple transition graphs can exist. With experimental information
from the literature, one can exclude specific system behavior and, consequently,
impose additional constraints on the parameter values. However, due to limita-
tions in space, the plots of these transition graphs and corresponding restrictions
on the parameter values have been omitted.

3 Discussion and Conclusion

The qualitative analysis method described above has been tailored for processes
that are typically observed in biochemical networks, e.g. Michaelis-Menten and
Hill kinetics, but can be applied to other research fields outside biology as well.
A model of a biochemical network was used to illustrate our method. Since the
approach was partially based on model reduction, a relatively small model was
constructed as a result, which simplifies qualitative analysis [5,6]. Such small
models can of course be analyzed with standard phase plane techniques, but
larger biochemical networks are currently under study. Automation of our qual-
itative hybrid approach with quantifier elimination [7] will be done in the near
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future, enabling the analysis of larger systems. Comparison of the transition
graphs of the example with preliminary experimental data shows qualitative
similarities: the system converges to a single, stable steady-state and contains
neither a limit cycle nor exhibits multistability, exactly according to the model
predictions. The next step is to link the parameters of the PWA model to their
nonlinear counterparts. The hybrid analysis procedure could fulfill an important
role in obtaining an initial estimate for nonlinear parameter estimation [8] and
support the parameter estimator to select a more appropriate solution that sat-
isfies both the limited amount of measurement data and the a priori qualitative
information.
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Abstract. The paper presents a simulation-based method for the vali-
dation of continuous and hybrid systems, which is built upon the RRT
algorithm (Rapidly-exploring Random Trees). We propose a coverage
measure, defined as the star discrepancy of the explored points, and use
it to guide the simulation towards the behaviors of interest.

1 Introduction

Recent results in formal verification of hybrid systems have been successfully
applied to various interesting case studies. Nevertheless, its applicability is still
limited to systems of small size. Simulation is another validation approach, which
can be used for much larger systems and is a standard tool in industry, although
simulation can only reveal an error but does not permit proving the correct-
ness of the system. Therefore, a question of great interest is to bridge the gap
between these two approaches by developing a light-weight method that can
guarantee some level of confidence in the results. The goal of this paper is to
develop a validation method for continuous and hybrid systems by combining
numerical simulation with a guided search method. For simplicity, we only focus
on continuous systems, but the approach we propose can be extended to hybrid
systems. We consider a continuous system defined by the differential equation
ẋ(t) = f(x(t), u(t)) where x ∈ X (X is the state space), and u denotes the input.
Due to the infiniteness of the input space and of the state space, it is important
to choose the inputs that lead to the scenarios that are interesting with respect
to the property to check. The essential ideas of our approach can be summarized
as follows. First, it is based on the RRT (Rapidly-exploring Random Tree) algo-
rithm, a probabilistic motion planning technique. Second, we introduce a simula-
tion coverage measure, defined as the star discrepancy of the visited points, and
use it to guide the simulation process. In the rest of the paper, we first present
our simulation coverage measure and then describe gRRT, a guided variant of
RRT. We finally show some experimental results. Before continuing, we briefly
summarize the RRT algorithm.

In path and motion planning, Rapidly-exploring Random Trees (RRTs) are
used to find feasible robot trajectories in an environment with obstacles (see [6]
for a survey). The reachable ponts are stored in a tree, the root of which cor-
responds to an initial condition x(0). In each iteration, a goal point xgoal in X
is sampled. Expanding the tree towards xgoal is done by determining an initial
point xinit for the current integration step and then finding the input to take
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the system from xinit as closest to xgoal as possible. In the ‘classic’ versions of
RRT, the sampling distribution of xgoal is uniform over X and xinit is a nearest
neighbor of xgoal (in some distance). Our goal is to build on top of the RRT
algorithm a guiding tool, which biases the exploration in order to achieve a good
coverage of the system’s behaviors that we want to check.

2 Coverage Measure

Simulation coverage is a way to relate the number of simulations to carry out with
the fraction of the system’s behaviors effectively explored. The classic coverage
notions mainly used in software testing, e.g. statement and path coverage are
not appropriate for the trajectories of continuous and hybrid systems defined by
differential equations. In this work, we are interested in point coverage and focus
on a measure that describes how ‘well’ the points represent the reachable set
of the system. This measure is defined using the notion of star discrepancy in
statistics (see for example [5]). The state space X could be assumed to be a box
B = [l1, L1] × . . . × [ln, Ln]. Given a set P of k points in B, the star discrepancy
of P w.r.t. B is defined as: D∗(P, B) = supJ∈ΓD(P, J) where Γ is the set of
all subboxes J =

∏n
i=1[li, βi] with βi ∈ [li, Li]. The local discrepancy D(P, J) is

defined as: D(P, J) = |A(P,J)
k − λ(J)

λ(B) | where A(P, J) is the number of points of
P that are inside J , and λ(J) is the volume of J . Note that 0 < D∗(P, B) ≤ 1.
Intuitively, the star discrepancy is a measure for the irregularity of a set of points.
A large value D∗(P, B) means that P are not much equidistributed over B.

Simulation Coverage and Estimation. Let P be the set of all points explored
by a simulation, and the simulation coverage is defined as Cov(P ) = 1−D∗(P, B).
The computation of the star discrepancy is not easy; in this work, we do not try to
compute the star discrepancy but estimate a lower and upper bound, exploiting
the results in [7] that we now briefly present. A box partition of B is a set of
boxes Π = {b1, . . . , bm} such that ∪m

i=1b
i = B and the interiors of the boxes do

not intersect. Given b = [α1, β2] × . . . × [αn, βn] ∈ Π , we define b+ = [l1, β1] ×
. . .× [ln, βn] and b− = [l1, α1]× . . .× [ln, αn]. For any finite box partition Π of B,
the star discrepancy satisfies C(P, Π) ≤ D∗(P, B) ≤ B(P, Π) where the upper

bound is: B(P, Π) = max
b∈Π

max{A(P, b+)
k

− λ(b−)
λ(B)

,
λ(b+)
λ(B)

− A(P, b−)
k

}, and the

lower bound is: C(P, Π) = max
b∈Π

max{|A(P, b−)
k

− λ(b−)
λ(B)

|, |A(P, b+)
k

− λ(b+)
λ(B)

|}.

3 The gRRT Algorithm

Discrepancy Guided Sampling. In the gRRT algorithm, the goal point sam-
pling distribution is biased in order to improve the coverage in each iteration.
Let Π be a finite box partition of B that is used to estimate the star discrepancy.
The goal point sampling consists of two steps: first sample a box b in Π and
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then uniformly sample a point in b. The box sampling distribution is defined as
follows. Intuitively, we favor the selection of a box such that adding a new point
p in this box results in a smaller star discrepancy of the new point set P ∪ {p}.
The strategy is thus to reduce both the lower and upper bounds. Due to space
limitation, we present only the strategy to reduce the lower bound (see [1] for
more details). Let P̃ be a set of k points in B such that for any box b ∈ Π ,
we have λ(b)

λ(B) = A(P̃ ,b)
k , where A(P̃ , b) is the number of points inside b ∩ P̃ . We

denote ΔA(b) = A(P, b) − A(P̃ , b) and c(b) = max{|ΔA(b+)|, |ΔA(b−)|}. Thus,
the lower bound is C(P, Π) = 1

k maxb∈Π{c(b)}. Note that in comparison with
P̃ , the negative (respectively positive) sign of ΔA(b) indicates that in this box
there is a lack (respectively an excess) of points; its absolute value indicates how
significant the lack (or the excess) is. We observe that adding a point in b reduces
|ΔA(b+)| if ΔA(b+) < 0, and increases |ΔA(b+)| otherwise. However, doing so
does not affect ΔA(b−) (see the definition of b− and b+). Thus, for each box
b ∈ Π we define a potential function: ξ(b) = 1−ΔA(b+)/k

1−ΔA(b−)/k , and its intepretation
is as follows. If ΔA(b+) is negative and its absolute value is large, the ‘lack’
of points in b+ is significant, and ξ(b) is large, meaning that the selection of
b is favored. If ΔA(b−) is negative and its absolute value is large, then ξ(b) is
small, because it is preferable not to select b in order to increase the chance of
adding new points in b−. The box sampling distribution can then be defined by
combining the potential functions for the lower and upper bounds [1].

Implementation and Experimental Results. To store the explored points,
we use a data structure similar to a k-d tree, which allows to efficiently perform
the required operations (such as, adding a new point, updating the dicrepancy
estimation, computing nearest neighbors). Indeed, for complexity reasons, in
the gRRT, we only compute approximate nearest neighbors and we can prove
that this approximation preserves the probabilistic completeness of the RRT
algorithm (see [1]). The results reported here were obtained by running our
prototype implementation of gRRT on a 1.4 GHz Pentium III. For illustration
purposes, we first show the results on a simple nonlinear model of competing
species: ẋ = 2x(1 − x/2) − xy + u1, ẏ = 3y(1 − y/3) − 2xy + u2. We let their
dynamics be slightly perturbed by an input u. Figure 1 shows the simulation re-
sults after 50000 iterations, using the basic RRT (left) and the gRRT algorithm
(right). The run times of the RRT and gRTT algorithms are respectively 1.2
minutes and 50 seconds. From Figure 1 we can see that the coverage of gRRT is
better, which can be explained as follows. Due to the uniform sampling of goal
points, the RRT exploration is biased by the Voronoi diagram of the explored
points, that is, if the volume of the Voronoi cell of a point is large, it has a high
probability of being selected to be the initial point. When the actual reachable
set is a small fraction of the state space, the uniform sampling leads to a strong
bias in selecting points on the boundary of the tree. In addition, for scalabil-
ity evaluation, we tested gRRT on a set of randomly generated linear systems
ẋ = Ax+u in various dimensions up to 100 (but we did not exploit the dynamics
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Fig. 1. Simulation results for the competing species model

linearity). The run times after 50000 iterations are: dimension n = 5, time 1 mn;
n = 10, time 3.5mn; n = 20, time 7.3mn; n = 50, time 24mn, n = 100, time
71mn.

4 Conclusion

The RRT algorithm has been used to solve a variety of reachability-related prob-
lems (see for example [2,3,4]). Another coverage measure (using dispersion) was
proposed in [3]. While in our work, the coverage measure is used to guide the
simulation, in [3] it is used as a termination criterion. Our idea of guiding via
sampling has some similarity with the sampling domain control in [8]. The main
difference, which is also the novelty in our guiding method, is that we use the
information about the current coverage to improve it.

To conclude, the main contribution of our paper is a way to guide the simu-
lation by a coverage measure. The experimental results show the scalability of
gRRT to high dimensional systems and an improvement in simulation coverage
quality. A direction for future research is to extend the approach to hybrid sys-
tems. Convergence rate of the gRRT algorithm and trace coverage measures are
also interesting theoretical problems.
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Eva M. Navarro-López1,� and Domingo Cortés2

1 ETS de Ing. Industriales, Univ. de Castilla-La Mancha
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Abstract. Classical linear and nonlinear control techniques applied to
piecewise-smooth (PWS) systems can be ineffective if an additional bi-
furcation analysis is not made. Due to the presence of discontinuities,
PWS systems present a wide variety of standard and non-standard bi-
furcations. Safe ranges of system and controller parameters can be es-
tablished lest these bifurcations appear. This is studied by means of a
simplified torsional model of an oilwell drillstring of three degrees of free-
dom (DOF). A PID-type controller is applied. The bifurcation analysis of
the open-loop and the closed-loop systems is used to choose the controller
parameters for which non-desired bit sticking situations are avoided. The
control goal of driving the rotary velocities to a constant positive value
is achieved despite the existence of a sliding motion.

Keywords: Discontinuous systems, sliding motions, bifurcation analy-
sis, oilwell drillstrings, dry friction, stick-slip oscillations.

1 Introduction

Hybrid systems are dynamical systems consisting of continuous-time and discr-
ete-event dynamics. They are characterized by discontinuous changes in system
properties. PWS systems are an interesting subclass of hybrid systems. An ex-
ample of PWS system is the model of a conventional vertical oilwell drillstring.

Oilwell drillstrings are systems exhibiting a wide variety of complex phenom-
ena and non-desired oscillations. Stick-slip friction-induced oscillations and the
permanent stuck-bit situation are particulary harmful [1]. Several approaches
have appeared in order to model and control drillstring stick-slip oscillations.
Most of them use lumped-parameter models of one DOF and two DOF (see
[2] and references therein). In addition, in most of these works, no bifurcation
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analysis of system and controller parameters is made, and the influence of the
weight on the bit (WOB) (a key drilling parameter) is not analysed.

Recently in [2], an analysis of bifurcations and transitions between several bit
dynamics is reported for an n-DOF drillstring. Changes in drillstring dynamics
are studied through variations in three parameters: 1) the WOB, 2) the rotary
speed at the top-rotary system, 3) the torque given by the surface motor.

This paper follows [2] and sums up new results. On the one hand, the bit
sticking problems are related to the existence of a sliding motion when the bit
velocity is zero. On the other hand, the presence of multiple Hopf bifurcations in
the vicinity of the standard equilibrium point when velocities are greater than
zero is studied. A PID-type control which overcomes the existing sliding motion
and drives the rotary velocities to a desired value is proposed. Controller para-
meters are chosen lest non-desired system transitions appear. These non-desired
situations are permanent stuck bit, bit stick-slip oscillations and other periodic
motions. A lumped-parameter torsional PWS model with three DOF includ-
ing the bit-rock interaction is considered. This model is more general than the
torsional lumped-parameter models of one and two DOF previously proposed.

2 A Torsional Discontinuous Model of the Drillstring

Three main parts of a conventional vertical oilwell drillstring are considered: 1)
the rotating mechanism in the surface (inertia Jr), 2) the set of drill pipes which
form a long pipeline (inertia Jp), 3) the bottom-hole assembly (BHA), which
consists of the drill collars, the stabilizers, a heavy-weight drill pipe and the bit
(inertia Jb). Hereinafter, the BHA will be also referred to as bit. A simplified
torsional model is proposed in which the inertias are connected to each other by
linear springs with torsional stiffness (kt, ktb) and torsional damping (ct, ctb).

The following system state vector is defined:

x = (ϕ̇r, ϕr − ϕp, ϕ̇p, ϕp − ϕb, ϕ̇b)T = (x1, x2, x3, x4, x5)T, (1)

with ϕi, ϕ̇i (i ∈ {r, p, b}) the angular displacements and angular velocities of
drillstring elements, respectively. At the top-drive system, a viscous damping
torque is considered (Tar = crx1). Tm = u is the torque coming from the electrical
motor at the surface, with u the control input. Tb(x5) = Tab(x5)+Tfb(x5) is the
torque on the bit with Tab = cbx5 approximating the influence of the mud drilling
on the bit behaviour. Tfb(x5) is the friction modelling the bit-rock contact, and

Tfb(x5) = WobRb

[
μcb + (μsb − μcb) exp−

γb
vf
|x5|

]
sgn(x5), (2)

with Wob > 0 the WOB, Rb > 0 the bit radius; μsb , μcb ∈ (0, 1) the static and
Coulomb friction coefficients associated with Jb, 0 < γb < 1 and vf > 0. Finally,
the drillstring behaviour is described by the following equations:

ẋ1 =
1
Jr

[−(ct + cr)x1 − ktx2 + ctx3 + u] , ẋ2 = x1 − x3,
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ẋ3 =
1
Jp

[ctx1 + ktx2 − (ct + ctb)x3 − ktb x4 + ctb x5] , ẋ4 = x3 − x5, (3)

ẋ5 =
1
Jb

[ctb x3 + ktb x4 − (ctb + cb)x5 − Tfb(x5)] ,

or in a compact form: ẋ(t) = Ax(t) + Bu + Tf(x(t)), where A, B are constant
matrices depending on system parameters and Tf is the torque on the bit.

3 Transitions and Bifurcations in the Open-Loop System

Two key dynamical characteristics of system (3) determine its behaviour: 1)
the existence of a sliding regime which implies the existence of a sliding surface
locally attractive; 2) the existence of a unique standard equilibrium point when
velocities are greater than zero, which is locally asymptotically stable depending
on the values of Wob, the torque u and the rotary velocity at the equilibrium.

The existence of a sliding motion (see [3]) in system (3) is directly related to
different bit sticking phenomena, mainly, stick-slip motion and the permanent
stuck-bit situation. System (3) is a PWS system of the form,

ẋ =

{
f+(x, Wob, u) = Ax + Bu + Tf(x)|Tfb=T+

fb
if x5 > 0,

f−(x, Wob, u) = Ax + Bu + Tf(x)|Tfb=T −
fb

if x5 < 0,
(4)

where T +
fb and T−fb are Tfb(x5) for x5 > 0 and x5 < 0, respectively. Let Σ :=

{x ∈ IR5 : x5 = 0} be the switching manifold, Σ̃ ⊂ Σ the sliding region with
Σ̃ = {x ∈ Σ : |ktb x4 + ctb x3| < WobRbμsb} and x̃ the quasiequilibrium point
existing on Σ, which can be shown to be asymptotically stable. If x5 > 0 then the
system is described by ẋ = f+(x, Wob, u) and has a unique standard equilibrium
point x such that f+(x, Wob, u) = 0, which is the solution of the set of equations:

x1 = x3 = x5 > 0, u − (cr + cb)x5 − T +
fb (x5) = 0, x2 =

h(x5, u)
kt

, x4 =
h(x5, u)

ktb
,

with h(x5, u) =
[
crT

+
fb (x5) + cbu

]
/(cr + cb) and u > WobRbμsb > 0.

Three main kinds of bit dynamical behaviours can be identified: 1) stick-slip
at x5, that is, the trajectory enters and leaves repeatedly the sliding mode;
2) permanent stuck bit, i.e., x(t) ∈ Σ̃, ∀t; 3) the trajectory converges to the
standard equilibrium x. The bit moves with a constant positive velocity (the
third situation) when x̃ is far away enough from the boundaries of Σ̃, which is
accomplished when u is greater enough than WobRbμsb .

The local stability of x must be also assured. Periodic orbits around it due to
the presence of Hopf bifurcations (HB) can be avoided. Ranges of the WOB and
velocities at equilibrium for which a HB may appear can be identified, they inter-
sect the values for which stick-slip oscillations are present. The stability region
of x corresponds to low Wob and high enough values of the rotary velocities.
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4 Linear Control to Eliminate Non-desired Transitions

The control goal is to eliminate bit sticking problems and establish a stable
standard equilibrium point in which the angular velocities are all equal to a
desired positive velocity. This is accomplished by means of the following control:

u = K1 x6 + K2(Ω − x1) + K3(x1 − x5) + u∗, (5)

with x6 =
∫ t

0 [Ω − x1(τ)] dτ , ẋ6 = Ω − x1, Ω > 0 the desired rotary velocity,
Ki positive constants and u∗ = WobRbμsb > 0 the minimum value of u for the
system trajectory to cross the boundary of Σ̃. This value of u∗ prevents the bit
from sticking when control (5) is initially switched on. The closed-loop system
has a unique standard equilibrium point xc with the form,

xc,1 = xc,3 =xc,5 = Ω, xc,2 =
h(Ω)
kt

, xc,4 =
h(Ω)
ktb

, xc,6 =
1

K1
[crΩ + h(Ω) − u∗] ,

where h(Ω) =
[
cbΩ + T +

fb (Ω)
]
. The dynamical changes introduced by control (5)

in the open-loop system (3) are mainly: 1) the standard equilibrium point has the
angular velocities equal to Ω; 2) the sliding motion is maintained, however, there
is no quasiequilibrium point on the switching manifold, and the permanent stuck-
bit situtation is eliminated; 3) periodic orbits (including stick-slip oscillations)
may still arise in the system.

Stick-slip oscillations appear in the closed-loop system due to the existence of a
sliding region Σ̃ locally attractive and a standard equilibrium which can become
unstable or whose domain of attraction can be reduced due to the variation of the
controller parameters, Ω and Wob. The analysis of the zero crossings of the real
parts of the pairs of the complex eigenvalues of the Jacobian at xc of the closed-
loop system (referred to as ZC) is a good approach for studying the changing
stability properties of xc. The ZC points might imply a Hopf bifurcation and be
the origin of periodic orbits. The extension of the parameters region where no
ZC point is present, is indicative of the domain of attraction of xc. When the
domain of attraction of xc increases, stick-slip motion may disappear.

Extensive simulations of the closed-loop system lead to establish safe ranges
of controller parameters Ki in order to avoid bit sticking problems and the un-
stability of the equilibrium xc. The main conclusion is that for typical operation
values of Ω (between 10 and 14 rad/s), stick-slip oscillations disappear in the
closed-loop system and trajectories converge to xc with low enough values of
K3 (K3 <= Ka

3 ) despite variations in Wob. For K3 > Ka
3 , stick-slip oscillations

will disappear if K2 > K3 and K2 − K3 is high enough. In this case, the higher
K2 is, the bigger the (Ω, Wob)-region without ZC points is. K1 does not imply
significant changes in the curves (Ω, Wob) corresponding to ZC points which
delimit safe parameters regions. The value of K1 influences the transient system
response: the higher K1 is, the higher the overshooting in the velocities is.

Other non-standard bifurcations typical in PWS systems with sliding motion
should be studied. The analysis shown could be successfully applied to other dis-
continuous mechanical systems exhibiting stick-slip oscillations and dry friction.
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1 Introduction

One of the most desired properties of a closed-loop control system is stability,
as a stable loop is inherently resistant to outside disturbances. Of particular in-
terest is the notion of asymptotic stability. An asymptotically stable system will
always converge towards an equilibrium state, once the disturbances have ceased.
For hybrid systems, however, there is no known method for proving asymptotic
stability directly from the system model. Instead, a promising approach is the
use of Lyapunov functions, which can be utilized to show stability indirectly. A
Lyapunov function is a formalization of an abstract “energy function” of the sys-
tem. If the “energy” of the system monotonically decreases over time, converging
towards zero in the designated equilibrium state, then a system is asymptotically
stable. The existence of such a Lyapunov function proves asymptotic stability,
but finding such a function for a hybrid system is not a simple task.

For piecewise affine systems, methods for synthesizing piecewise quadratic
Lyapunov functions in the continuous time domain have been proposed in [1]
and [2] and methods for the discrete time domain in [3]. With these methods,
it is possible to provide Lyapunov functions semi-automatically. Each of these
methods requires a partitioning of the state space into regions, each region being
the domain of one quadratic “component” of the piecewise quadratic Lyapunov
function. With a given partitioning and knowledge of the possible transitions
between these regions, the problem can then be reduced to a linear matrix in-
equality (LMI) problem [4]. This LMI problem can be solved automatically,
leading to a piecewise quadratic Lyapunov function for the system.

However, the success of the method heavily depends on 1) the choice of par-
titioning and 2) a full understanding of the possible transitions between these
regions. Unfortunately, up to now, these two steps have required a thorough
understanding of the synthesis methods and could therefore not easily be solved
without expert knowledge on the matter.

Our goal is to alleviate this problem by providing full automation of Lyapunov
function synthesis for piecewise affine hybrid systems. This includes providing

� This work was partly supported by the German Research Foundation (DFG) as
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A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 741–745, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



742 J. Oehlerking, H. Burchardt, and O. Theel

fully automatable techniques for both 1) the choice of partitioning and 2) the
transition computation. The result is a framework for proving stability fully
automatically for piecewise affine hybrid systems.

2 Piecewise Quadratic Stability of Hybrid Systems

We consider piecewise affine hybrid systems with affine switch sets between the
discrete modes of the system. They can be defined as follows:

Definition 1 (Piecewise Affine System). A piecewise affine system is a hy-
brid system given by dynamics ẋ = Am(x) + bm for each discrete mode m ∈ M,
with Am being a n × n-matrix of reals and bm being a vector of reals. The tran-
sitions between the modes are governed by a set of affine switch planes S. Each
si ∈ S is given by an affine equation of the form cT

i x + di = 0, ci ∈ R
n, di ∈ R.

The source and target modes for each switch plane are given by two mappings
source : S → M and target : S → M. A switch plane si is active for a point
in time t if cT

i x(t) + di = 0 and source(si) = m(t). Whenever this happens, a
switch to the mode given by target(si) takes place. Should several switch planes
be active at the same time, then one switch plane is non-deterministically cho-
sen. Furthermore, infinitely many switchings in finite time are excluded. Several
consecutive switches at the same point in time are permissible, as long as the
previous condition is not violated.

To show asymptotic stability, LMIs [4] can be employed to find piecewise
quadratic (PWQ) Lyapunov functions [1,2]. However, they need a partitioning
of the hybrid state space into regions, such that the resulting PWQ Lyapunov
function will be continuous within each region. The authors of [1,2] assumed that
this partitioning is given as an input. Furthermore, the more flexible approach
in [2] requires that the possible transitions of trajectories between regions are
known. Under these conditions, it is possible to compute PWQ Lyapunov func-
tions that prove asymptotic stability. In the context of an automatic tool, both
of these issues need to be dealt with in a fully automated fashion.

3 Automated Search for Piecewise Quadratic Lyapunov
Functions

Identifying a Suitable Partitioning. To obtain a PWQ Lyapunov function,
a suitable partitioning of the state space needs to be identified, such that the
associated LMI problem given in [2] has a solution. We partition the state space
separately for each discrete mode – therefore, different modes can have different
partitionings of the continuous state space. The partitioning for each mode is
given by a set of hyperplanes that “cut up” the state space.

The search for such a partitioning can be done in an iterative manner: start
with a simple partitioning and then refine it by splitting up regions in an ap-
propriate way. As the initial partitioning, we use the partitioning given by the
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switch planes for each mode. We then try to solve the LMI problem given in [2].
If we are successful then the system is asymptotically stable. If we are not, then
a refined partitioning might prove stability. To refine the partitioning, we use a
two-step-approach.

First, we identify the region that is the “worst offender” with respect to the
non-solvability of the LMI problem. This is done by converting the non-solvable
original LMI problem into a solvable problem with the help of slack variables.
One slack variable γi ≥ 0 is inserted per region in such a way that the LMI
problem is solvable and that ∀i : γi = 0 would result in the solvability of the
original LMI problem. For example, consider a block of the LMI problem of
the form AT

mPi + PiAm + Q ≤ 0. Here Pi is the quadratic form describing the
Lyapunov function in region i, and Am is the vector field of the associated mode.
This equation is changed to AT

mPi +PiAm +Q−γiI ≤ 0, where I is the identity
matrix and γi ≥ 0. This is done for all regions simultaneously. If one solves this
augmented LMI problem, minimizing the slack variables, one obtains a “best
non-solution” of the original LMI problem, with respect to the metric given by
the slack variables. The region with the highest corresponding value γi is then
considered the “worst offender.”

Second, this “worst offender” region is split in two. This is done by adding
another hyperplane to the partitioning, such that the region is cut into two new
regions of similar size. To achieve this, we take the average of two of the region’s
bounding hyperplanes, such that one angle of the polytopic regions is cut exactly
in half. This yields a refined partitioning with increased chance of the existence
of a PWQ Lyapunov function.

Then, after computing the transition relation as outlined in the next para-
graph, we try to solve the original LMI problem for the refined partitioning, and,
if necessary, repeat the entire procedure until a solution is found. If a “worst
offender” region is bounded by more than two hyperplanes, several refined par-
titionings are possible, resulting in a tree of partitionings. This tree is traversed
breadth-first, so precedence is given to partitionings that are made up of less
regions.

Computing the region transition relation. The approach from [2] requires
that the PWQ Lyapunov function does not increase when a transition from
one region into another occurs. Therefore, knowledge on possible transitions
between regions is desirable to reduce conservativeness. As a partitioning is given
through hyperplanes in the continuous state space, the regions are all convex
polytopes. An adequate transition relation can then be computed with the help
of linear programming, by examining the vector field on the boundary between
two regions. This has also been fully automated.

Example. In the following, an example system illustrating the functionality of
the automatic partitioning procedure is presented. The system has two modes,
namely m1 and m2, where m1 is stable and m2 is unstable. As there is an unstable
mode, it is not possible to verify stability of the system without partitioning the
state space.
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The dynamics of the example system is given by ẋ1 = −x1 + x2,
ẋ2 = −5x1 − x2 (mode m1) and ẋ1 = 0.5x1 + 5x2, ẋ2 = −x1 + 0.5x2 (mode
m2). The system has two switch planes s1 and s2 represented by the equations
x1 = x2 and x1 = −x2, respectively. The two mappings source and target are
defined as source(s1) = target(s2) = m1 and source(s2) = target(s1) = m2.

The verification procedure proceeds as follows: In a first step, the state space
is partitioned by means of the two hyperplanes representing the switch plane s1
and s2. As with this partitioning stability cannot be shown the state space is
further partitioned. When terminating, there is a total of 16 regions – six regions
for mode m1 and ten regions for mode m2. With the resulting partitioning, it
can be verified that the system is globally asymptotically stable. Figure 1 shows
the partitioning hyperplanes per step as the state space partitioning evolves: a
dotted line denotes a hyperplane partitioning the state space for mode m1, a
dashed line a hyperplane that partitions the state space for mode m2, and a
solid line denotes a hyperplane partitioning it for both modes.

(2) (3) (4) (5)(1)

Fig. 1. Partitioning Steps

4 Conclusion and Future Work

We have described a procedure to fully automate the computation of PWQ
Lyapunov functions for piecewise affine systems. Drawing from existing linear
matrix inequality approaches, we gave algorithms for all additional steps needed
for full automation. These algorithms include 1) the choice of a partitioning,
which is implemented as an iterative algorithm that successively refines the initial
partitioning by splitting, and 2) the computation of the region transition relation
which is handled with the help of linear programming.

The algorithms have been implemented as a software tool which uses CSDP
[5] and GLPK [6] to solve LMI problems and linear programs, respectively. It is
planned to further refine the splitting procedure.
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Abstract. We propose a first-order dynamic logic for reasoning about
hybrid systems. As a uniform model for discrete and continuous evolu-
tions in hybrid systems, we introduce hybrid programs with differential
actions. Our logic can be used to specify and verify correctness state-
ments about hybrid programs, which are suitable for symbolic processing
by calculus rules. Using first-order variables, our logic supports systems
with symbolic parameters. With dynamic modalities, it is prepared to
handle multiple system components.
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1 Introduction

A key idea for scalable verification of hybrid systems [1] is to decompose [2]
reasoning into: (a) a closer investigation of the actual complex dynamics of
a single system component; and (b) an integration of local correctness results
into global system verification. Furthermore, both (a) and (b) need to handle
parameters, which naturally arise from the degrees of freedom of how a single
component can be instantiated in a system environment.

As first-order logic has widely proven its flexible power in handling symbolic
parameters with logical variables, we extend it for reasoning about hybrid sys-
tems. Moreover, in order to be able to relate statements about a component and
statements about its environment for compositional reasoning (b), we propose a
dynamic logic in which such relations are naturally expressible [3]. Since hybrid
systems are subject to continuous evolution along differential equations and dis-
crete state change, we propose a first-order dynamic logic, dL, that provides both
as fundamental system behaviour. Further, dL can even be used for parameter
extraction, i.e., automatic derivation of constraints for safety parameters.

Related work primarily uses propositional modal logic [4]. Unlike our first-
order dynamic logic, propositional modal logic is restricted to handling abstract
actions and does not support reasoning about concrete behaviour of hybrid sys-
tems like, for instance, continuous evolution along a differential equation z̈ = a.
� This research was supported by a fellowship of the German Academic Exchange
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2 Differential Logic of Hybrid Programs

Dynamic Logic with Hybrid Programs. Dynamic logics (DL) [5] combine
descriptions of system behaviour and correctness statements about the system
state within a single specification language. By permitting arbitrary system op-
erations α as actions of a labelled multi-modal logic, DL provides formulas of
the form [α]φ and 〈α〉φ. The formula [α]φ expresses that all (terminating) runs
of system α lead to states in which condition φ holds, whereas 〈α〉φ expresses
that there is at least one (terminating) run of α after which φ holds.

In this paper, we propose to extend DL to use hybrid systems for α. In par-
ticular, we propose a logic dL that extends discrete DL [5] by differential actions
such that α can display continuous evolution. Due to the symbolic nature of
logic, it is beneficial to use simple system actions of an isolated effect in α. As a
model for hybrid systems, we introduce hybrid programs, which are much more
amenable to step-wise symbolic processing by calculus rules than graph struc-
tures of automata. Since hybrid automata [1] can be embedded, there is no loss
of expressivity. Our differential logic dL is a first-order dynamic logic with three
basic characteristics to meet the requirements of hybrid systems:

Discrete jumps. Projections in state space are represented as instantaneous as-
signments of values to state variables. With this, mode switches like mode := 4
or signal := 1 can be expressed with discrete jumps, as well as resets z := 0 or
discrete adjustments of control variables like z := z − 2.

Continuous evolution. Continuous variation in system dynamics is represented
with differential equations as evolution constraints. For example, the evolution
of a system with constant braking can be expressed with a differential action for
the differential equation z̈ = −5 with second time-derivative z̈ of z.

Regular combinations. Discrete and continuous evolutions can be combined to
form hybrid programs using regular expression operators (∪, ∗, ;) as structured
behaviour of hybrid systems. For example, mode := 4 ∪ z̈ = −5 describes a train
controller that can choose by a nondeterministic choice (∪) to either switch its
state to an alert mode (4) or initiate braking along the differential equation
z̈ = −5. In conjunction with other regular combinations, control constraints can
be expressed using conditions like z ≥ 9? as guards for the system state.

Transition Semantics. There is a variety of slightly different semantics of
hybrid system models. Since the interplay of discrete change with continuous
evolution raises peculiar subtleties, we carefully motivate the advantages of our
choice of semantics for dL and hybrid programs. Consider the possible hybrid
evolution with one system variable x over time t in Fig. 1. The semantics has
to restrict the behaviour of the hybrid system during the continuous evolution
phase, e.g., on the interval [1, 2] to respect the differential equation ẋ = f(x).
Yet, the discrete jump at time 2 will necessarily lead to a discontinuity in the
overall system trajectory.
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Fig. 1. Discontinuous hybrid trajectory

A global system trajectory func-
tion g (where g(t) records the value
of x at time t) can only assume a single
value at time 2, say the value g(2) =
0.6. Hence, the continuous evolution—
as visible in g—will only be continu-
ous on the open interval (1, 2). Still,
the evolution along ẋ = f(x) has to
be constrained at time 2 to possess a
left -continuous continuation towards a
projected value of 1, although this value will never be assumed by g. This com-
plicates the well-posed definition of semantics on the basis of an overall system
trajectory. Note that leaving out this condition of left-continuity would lead to a
total transition relation with all states being reachable, which, of course, would
not reflect the proper system behaviour.

In contrast to this, the dL semantics inflates points in time with instantaneous
discrete progression by associating an individual trajectory for each continuous
evolution or instant jump phase, e.g. the phases [0, 1], {1}, [1, 2], {2}, [2, 4]. Hence,
the trajectories remain continuous within each differential evolution phase and
discontinuities are isolated purely in discrete jump transitions. Thereby, the dL
semantics directly traces the succession of values assumed during the hybrid evo-
lution, even if they belong to states which occur without model time passing in
between. In addition to the fact that those so-called super-dense time effects nat-
urally occur at mode switches between differential evolutions, they are necessary
for joint mode switches of several system variables at once, like in x := 3; y := 5.
We argue that the resulting dL semantics is much simpler to define than for
approaches with a global overall system trajectory as, for example, in [2].

3 Parametric Verification of Train Control Systems

Symbolic parameters occurring in system dynamics raise a couple of challenges.
Firstly, even very simple parametric flows and guards are non-linear : With pa-
rameter p, the flow constraint 2x + py ≤ 5 is an algebraic inequality but not
linear. Thus, our logic needs to handle dynamics in full real arithmetic. Secondly,
parameters often arise from system decomposition, e.g. in [2]. For this, safety
statements about a parametric component typically have to take its interaction
with the environment into account. In particular, local correctness statements
need to reflect this interaction to obtain global correctness for every possible
instantiation. Thus, the verification logic needs to support this interactive char-
acter with rely-guarantee reasoning; see, e.g. [2].

We argue that logic is the right level for handling the symbolic nature of
parameters. All the more, the ability of dynamic logic to relate statements about
multiple components is extremely valuable for compositional reasoning [3].

In the European Train Control System (ETCS) [6], the movement of trains
is controlled by decentralised Radio Block Centres (RBC), which grant or deny
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movement authorities (MA) to trains by wireless communication. In case of an
emergency, trains always have to stop within the MA issued by the RBC. In
ETCS, the actual acceleration and braking behaviour is determined by the train
and subject to MA limits, weather conditions, slope of track etc. For simplicity,
assume that—depending on those conditions—the train motion control deter-
mines a safety envelope s around the train, within which it considers driving
safe. When an MA has been granted up to the track position m and the train is
currently located at position z then dL can analyse, for example, the following
safety statement about the (simplified) acceleration system:

ψ → [
(
(m − z < s?; a := −b) ∪ (m − z ≥ 2s?; a := 0.1)

)
; z̈ = a] z < m . (1)

∪

m−z<s?

m−z≥2s?

a := -b

a :=
0.1

z̈ = a

Fig. 2. Acceleration transitions

It expresses that, under a condition ψ about
parameters, trains always remain within
their MA m. Further, it specifies that the
train decelerates using engine brakes of
force b if the safety envelope is under-
run (m − z < s). It slowly accelerates if
there is sufficient distance (m− z ≥ 2s). To
give a more concise program, we have omit-
ted the case where the train keeps its current speed if there is no need to brake
nor sufficient distance (i.e., s ≤ m − z < 2s). The resulting transition structure
for the hybrid program in (1) is depicted in Fig. 2. Formula (1) can be analysed
successfully by our calculus for verifying dL formulas, which is similar to the one
in [3]. With such an analysis, parameter constraints on the free variables of (1)
can be discovered.

The behaviour of the program in (1) can be analysed in dL, which is a first-
order dynamic logic. In contrast, the hybrid program in (1) would collapse to
a mere abstract shape ((α1; α2) ∪ (α3; α4)); α5 in propositional modal logics [4].
There, the truth of (1), which depends on the actual effects of the αi, cannot be
analysed, since the state changes induced by the abstract actions αi are unknown
in propositional programs. For this reason, dL is devised as a first-order logic.
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Abstract. Region stability allows one to formalize hybrid systems whose tra-
jectories may oscillate (within a given allowance) even after having ‘stabilized’.
Unfortunately, until today no proof rule (giving necessary and sufficient condi-
tions for the purpose of verifying region stability) has been available. This paper
fills the gap. Our (sound and complete) proof rule connects region stability with
the finiteness of specific state sequences and thus with the emerging set of verifi-
cation methods for program termination.

1 Introduction

We investigate the correctness of hybrid systems whose trajectories all eventually end
up in a given region even though they may continue to oscillate (within the allowance
prescribed by the region). A simple example is a heating control system, where the
region is set by a thermostat. Given the premise (established in [17]) that region stability
is a useful class of correctness properties for such hybrid systems, we need a proof
rule, i.e. a set of conditions for the purpose of verification (conditions that together are
necessary and sufficient for region stability).

Proof rules for many well-known notions of stability are based on Lyapunov func-
tions [1,2,11,19]. These proof rules seem not applicable to region stability since they
entail a form of convergence which is not present in region stability.

A major obstacle in the design of a necessary and sufficient set of conditions for re-
gion stability is given by an artefact of region stability. Namely, a trajectory stabilizing
in the region may leave the region arbitrarily often and arbitrarily long before it eventu-
ally stabilizes, i.e. before it comes to a point when it lies in the region and from when on
it never leaves the region again. The amount of time before stabilization, though finite
in each trajectory, can in general not be bounded. The contribution of this paper is to
overcome this obstacle.

The idea behind our result is based on two observations: there are exactly three basic
situations that may be repeated finitely often in correct trajectories before stabilization,
and it is possible to treat the three basic situations in a modular way. As a result, we can
formulate three specific conditions and show that together they are necessary and suffi-
cient for region stability. Each of the three conditions states the finiteness of sequences
of states (each state being of one specific kind of snapshot of a trajectory of the hybrid
system).

� This work was partly supported by the German Research Council (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.
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2 Preliminary Definitions

We follow the terminology and notation of [17]. The definitions of hybrid systems,
states and trajectories can be found there.

Definition 1 (Region stability). We call a hybrid system stable with respect to a region
ϕ if for every trajectory τ there exists a point of time t0 such that from then on, the
trajectory is always in the region ϕ.

∀τ ∃t0 ∀t ≥ t0 : τ(t) ∈ ϕ

Definition 2 (Sequence of snapshots). Given a hybrid system A and a region ϕ a se-
quence of snapshots is a sequence of states such that (i) all states of the sequence lie
on the same trajectory τ of A, (ii) all states are not in the region ϕ and (iii) all pairs of
consecutive states have a minimum time distance δ, where δ is an arbitrary but fixed
constant greater than 0.

3 Sufficient and Necessary Conditions

We will motivate informally the conditions for stability of hybrid system wrt. interval
regions, i.e. regions ϕ that are given by

ϕ ≡ x ∈ [xmin,xmax] .

If we consider monotone trajectories of a stable system we see that they can never leave
the region ϕ ≡ x ∈ [xmin,xmax] again after they have reached it once. (Otherwise the
trajectory could never return to the region again.) Or the other way round: if a monotone
trajectory τ does not stabilize wrt. ϕ then (1) it either never reaches the region or (2)
reaches the region but leaves it again for good.

In both cases exists an infinite computation of the system (starting either from the
beginning, i.e. at τ(0), or from the time point t0 when the trajectory has just left ϕ, i.e.
at τ(t0)) such that all states of the computation are not in the region ϕ.
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Fig. 1. Sample trajectory of a hybrid system that is stable wrt. the grey interval region ϕ ≡ x ∈
[−0.15,0.5]. All monotone parts of the trajectory that lie outside ϕ are finite and the sequence of
extremal-points is finite outside ϕ.

For general (non-monotone) trajectories we observe that they consist of (finitely
or infinitely many) monotone parts. A trajectory can change its direction (i.e. its



752 A. Podelski and S. Wagner

monotonicity behavior) either during a discrete jump or during continuous flows in one
location. We call the states that occur just after a jump entry-points; states where the
trajectory changes its x-direction during a continuous flow are called extremal-points
wrt. x. If for a trajectory τ only finitely many extremal- or entry-points (i.e. states that
split the trajectory into monotone parts) lie outside the region ϕ and if additionally all
monotone parts of τ are finite outside ϕ then the trajectory τ must inevitably end up in
the region ϕ.

Altogether we can reduce stability wrt. an interval region ϕ to the existence of infinite
state sequences outside ϕ that (i) either lie on monotone parts of a trajectory τ, or (ii) are
sequences of entry-points on τ, or (iii) are sequences of extremal-points on τ. To check
whether or not such infinite computations exist we consider sequences of snapshots of
the hybrid system.

Condition 1: There is no infinite sequence of snapshots such that
(i) no entry-point lies between two states of the sequence
(ii) no extremal-point lies between two states of the sequence.

Condition 2: There is no infinite sequence of snapshots such that
all states of the sequence are entry-points.

Condition 3: There is no infinite sequence of snapshots such that
all states of the sequence are extremal-points wrt. x.

Theorem 1. Condition 1, Condition 2 and Condition 3 together are sufficient and nec-
essary for region stability of a hybrid system A wrt. an interval region ϕ. �

We can extend our previous result to n-dimensional region, i.e. to regions ϕ that can be
expressed as cartesian products of intervals.

ϕ ≡ (x1, . . . ,xn) ∈ [xmin
1 ,xmax

1 ]× . . .× [xmin
n ,xmax

n ] ,

We call such regions box regions.

Corollary 1. A hybrid system A is stable wrt. an n-dimensional box region ϕ if and
only if A is stable wrt. each interval region ϕi. �

4 Conclusion

Region stability is a useful concept for the formal investigation of correctness properties
of hybrid systems with certain characteristics. We have given a sound and complete
proof rule, i.e. a set of conditions for the purpose of verification (conditions that together
are necessary and sufficient for region stability). Before, no such proof rule has been
available.
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Our result is the first of two steps towards a set of verification methods for region
stability. The first step has been to connect the verification of region stability with termi-
nation, a classical topic in program verification. The connection is achieved by our proof
rule which uses the finiteness of certain sequences of states. (Such sequence are gener-
ated by a relation over states, the finiteness of all sequences means the well-foundedness
of the relation, or the termination of the program whose state transitions are defined by
the relation.) The second step consists of applying and extending the results of the re-
search on program termination. Program termination is presently a very active research
area in both theory and application. [3,7,5,4,9,14,15,16,8,18]

We believe that our work may trigger follow-up work in two directions, correspond-
ing to two groups of researchers. The first group consists of experts in control theory
who investigate a specific notion of stability, and who may carry over our techniques
to their setting. The second group consists of experts in program verification who may
develop specialized methods for the three termination conditions in our proof rule. The
development of such methods and tools and their experimental evaluation for region
stability is a research topic on its own.
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Abstract. This paper considers piecewise affine models of genetic regu-
latory networks and focuses on the problem of detecting switches among
different modes of operation in gene expression data. This task consti-
tutes the first step of a procedure for the complete identification of the
network. We propose two methods and illustrate the application to the
reconstruction of switching times in data produced by a piecewise affine
model of the network regulating the carbon starvation response in Es-
cherichia coli.

1 Introduction

The reconstruction of biochemical networks from experimental data is nowadays
recognized as one of the most important goals of systems biology. Research
in this field has been promoted by the availability of experimental techniques
for measuring the concentration of various molecules regulating the functioning
of cells. As far as Genetic Regulatory Networks (GRN) are concerned, several
measurements techniques have been developed for sampling gene expression,
ranging from DNA microarrays [1] to RT-PCR and gene reporter systems [2].

We consider the problem of identifying the dynamics of GRNs using gene
expression data collected with a sampling time that is sufficiently short with
respect to the time constants of the network. Moreover, we restrict our attention
to PieceWise Affine (PWA) models of GRNs [3,4] since they are attractive un-
der many respects. First, they preserve the essential nonlinear character of the
underlying biological process. Second, they usually involve a reduced number of
parameters with respect to general nonlinear models of GRNs, a feature that is
appealing from the identification viewpoint. Third, powerful techniques exist for
analysis and qualitative simulation of PWA models of GRNs [4].

Recently, many different algorithms have been proposed for the identification
of PWA input-output models [5], and in principle they could be used for the
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data-based reconstruction of GRNs. However, PWA systems describing GRNs
possess a specific structure that must be preserved in order to guarantee the
biological interpretability of the identified model and all existing identification
methods have a limited capability of incorporating such constraints.

The data-based reconstruction of GRNs can be conceptually split in the fol-
lowing tasks:

1. detection of the switches in single time series of gene expression data;
2. attribution of the data to distinct modes of operation of the whole GRN

(classification problem);
3. reconstruction of thresholds on concentration variables characterizing the un-

derlying PWA model (see [4] for details) and of all combinations of thresholds
consistent with the data;

4. estimation of the kinetic parameters in each mode of operation for all models
generated in point 3.

In this paper we focus on the first task in the whole identification procedure: the
detection of switches in data generated by PWA input-output models of GRNs.
In particular, our aim is to find switches between different modes of operation
without assuming any knowledge of the model parameters. Ad hoc methods for
task 2 are currently under study, while task 3 can be performed, under suitable
assumptions, using the multicut algorithm proposed in [6]. Finally, task 4 can
be easily carried out relying on the data classification produced in task 2.

2 Switch Detection in Genetic Regulatory Networks

In the sequel we consider the problem of detecting switches in the profile of a
single molecule concentration.

Consider a network involving the interaction of n genes, each coding for a
molecule (e.g. a protein), and denote with x = [x1, . . . , xn]′ the vector of molecule
concentrations. Due to the PWA structure of the overall model, a molecule con-
centration xi can evolve according to different modes of operation, each one
characterized by an affine dynamics. Considering noisy measurements yi of xi,
collected with a uniform sampling time, we introduce the PWA Output Error
(PWA-OE) model{

xi(k + 1) = κj
i − γj

i xi(k)
yi(k) = xi(k) + ni(k)

, if x(k) ∈ M j
i , (1)

where ni(k) ∼ WGN(0, σ2
n). Therefore the j-th mode of operation is defined by

the pair
(
κj

i , γ
j
i

)
of positive rate parameters and the so-called molecule domain

M j
i . Molecule domains are unions of hyperrectangular regions in the state space

of the overall network [7].
The first method to detect switches in a molecule concentration dynamics is

based on the following switching index :

o(k) =
yi(k + 1) − yi(k)
yi(k) − yi(k − 1)

. (2)
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The index o(k) enjoys the following property: in the noiseless case (i.e. yi(k) =
xi(k)) when yi(k−1), yi(k) and yi(k+1) belong to the j-th mode, o(k) takes the
constant value −γj

i . The occurrence of a switch is therefore emphasized by time
instants where o(k) is not constant. A statistical analysis and suitable generaliza-
tions of o(k) considering consecutive data on a time window of arbitrary length
can be found in [7]. In particular, closed form expression of the (1 − α)-level
confidence sets for o(k) has been derived.

The algorithm based on o(k) aims at aggregating data belonging to the same
mode of operation. Given a set of consecutive data already aggregated, they
are characterized by a switching index value and the associated confidence set
IM . Then a switching index involving the next measurement is considered, and
its confidence set Ia is computed. As a decision rule, a switch is detected if
IM ∩ Ia = ∅.

A different approach is to base the aggregation of data on the estimation of
the concentration dynamics within a molecule domain. In particular, the output
error model (1) is estimated over the already aggregated data, and an hypothesis
test is performed to assess if the next data point belongs to the same mode of
operation. Under the null hypothesis H0 that yi(k̄ + 1) is generated according
to the model estimated over data up to yi(k̄), the confidence set Ia for the
measurement at k̄ +1 is computed. Then the aggregation of the next data point
is performed if yi(k̄ + 1) ∈ Ia, detecting a switch otherwise.

The algorithms based on the above-mentioned switch detection techniques are
described in [7]. In particular, they turn out to be complementary in the following
sense: on the one hand, the method based on switching indexes outperforms the
method based on nonlinear estimation for low noise levels, on the other hand, the
strategy based on nonlinear estimation is the most accurate for high noise levels.
These properties have been observed in [7] on the basis of extensive simulations.

3 Switch Detection in a PWA Model of the Carbon
Starvation Response of E. coli

In this section, we present the application of switch detection algorithms to data
generated by the GRN regulating carbon starvation response in E. coli. For this
study we considered the simplified GRN used by Drulhe et al. in [6].

The network involves interactions between genes crp, fis, gyrAB and their
products (proteins CRP, Fis, GyrAB), regulating the synthesis of stable RNAs.
In response to a carbon starvation signal, the regulatory mechanisms inhibit the
synthesis of stable RNAs and then E. coli cells abandon their exponentially-
growth state to enter a more resistent non-growth state called stationary phase.

Data in Fig. 1 represent the reentry into exponential phase following a car-
bon upshift and have been generated by a PWA-OE model where the chosen
noise level and sampling time are comparable with the ones found in real exper-
iments with gene reporter systems. In Fig. 1 the real switching times and those
reconstructed by applying the switching detection technique based on nonlinear
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Fig. 1. Switch detection results on simulated data of the GRN regulating carbon starva-
tion response in E. coli. Variables yCRP, yFis, yGyrAB, and yrrn denote the concentration
measurements of proteins CRP, Fis, GyrAB, and stable RNAs. Vertical lines denote
detected switches, while crosses correspond to real switching times.

estimation are also shown. One can observe that all switches have been identified
with a satisfactory precision except for the concentration of protein Fis where a
spurious switch appears.
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1 Introduction

Modeling and analysis of biochemical systems are important tasks because they
can unlock insights into the complicated dynamics of systems which are difficult
or expensive to test experimentally. A variety of techniques have been used to
model biochemical systems, but the effectiveness of the analysis techniques is
often limited by tradeoffs imposed by the modeling paradigms. Stochastic differ-
ential equations have been used to model biochemical reactions [5,2]; however,
analysis of these models has mainly been limited to simulation. Hybrid sys-
tems have also been used to model biochemical systems [4]; however, verification
methods based on deterministic hybrid systems fail to capture the probabilistic
nature of some biochemical processes and therefore may not be able to correctly
analyze certain systems. Stochastic Hybrid Systems (SHS) have been used to
capture the stochastic nature of biochemical systems but have previously only
been used for simulations [10] or analysis of systems with simplified continuous
dynamics [6].

In this paper we model Sugar Cataract Development (SCD) as a SHS, and
we present a probabilistic verification method for computing the probability of
sugar cataract formation for different chemical concentrations. An accumulation
of sorbitol in the eye is theorized to be the main factor in the SCD process. Un-
derstanding the exact conditions that lead to the development of sugar cataracts
will help scientists better predict and prevent the condition [2]. The chemical
reactions and kinetic constants for the system have been previously studied [8].

The stochastic dynamics for biochemical processes can be accurately mod-
eled by the chemical master equation which, however, is impossible to solve for
most practical systems [5]. The Stochastic Simulation Algorithm (SSA) is equiv-
alent to solving the master equation based on a discrete model by simulating
one reaction at a time, but if the number of molecules of any of the reactants
is large, the SSA is not efficient [10]. For verification, it is computationally in-
tractable to enumerate all possible states of the model employed by the SSA.
Our approach suggests starting with the continuous stochastic dynamics and
generating discrete approximations with coarser (and variable) resolution unlike
the fixed, overly-fine resolution of the SSA. The discrete approximations can
then be used for verification of reachability properties [7].
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The proposed verification method employs dynamic programming based on
a discretization of the state space and suffers from the curse of dimensionality.
To verify the SCD process, we have developed a parallel dynamic programming
implementation of the verification algorithm that can handle large systems. Al-
though scalability is a limiting factor, this work demonstrates that the technique
is feasible for realistic biochemical systems.

2 Modeling SCD Using SHS

A sugar cataract is a type of cataract which distorts the light passing through
the lens of an eye by attracting water to the lens when an excess of sorbitol
is present. The reactions involved in SCD are given in Table 1. The chemical
species and concentration ranges for the SCD process are described in Table 2.
The ranges are bounded and are estimated using realistic concentration values
derived from experimental data and Michaelis-Menten constants (Km) defined
as the rate of the reaction at half-maximal velocity [8].

Table 1. SCD reactions and kinetic constants

Reaction Kinetic constant Rate

E + NADH → E − NADH k1 = 6.2 Fast
E − NADH → E + NADH k2 = 33 Fast

E − NADH + F → E − NAD+ + S k3 = 0.0022 Fast
E − NAD+ + S → E − NADH + F k4 = 0.0079 Fast

E − NAD+ → E + NAD+ k5 = 227 Fast
E + NAD+ → E − NAD+ k6 = .61 Fast

E → Z k7 = 0.0019 Slow

Following [10] we classify the reaction rates as either fast or slow. The slow
reaction firing is described by a probabilistic rate function [10]. The dynamics
of the fast reactions are described by the equation

dxi =
Mfast∑
j=1

vjiaj(x(t))dt +
Mfast∑
j=1

vji

√
aj(x(t))dWj , i = 1, ..., 7 (1)

where xi is the concentration of the ith chemical species, Mfast as the number
of fast reactions, aj as the reaction propensity of the jth reaction, and W as an
Mfast-dimensional Wiener process. The stoichiometric matrix v is a (Mfast X
N) matrix which holds values representing the concentration of chemical species
lost or gained in each reaction.

To capture the discrete dynamics due to the slow chemical reaction, it is
sufficient to consider a hybrid system with one discrete state and with a self-
transition representing an occurrence of the slow reaction. As time progresses, the
state xi, i = 1, ..., 7 evolves according to (1). When the discrete transition occurs,
the concentration of E (x5) jumps instantaneously according to the assignment
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Table 2. Chemical species properties for the SCD model

Reactant Var. [Min, Max] (μM) Resolution (μM)

NADH x1 [0.0005, 10.0005] 1.0
E − NADH x2 [0.0005, 10.0005] 1.0

NAD+ x3 [0.0009, 10.0009] 1.0
E − NAD+ x4 [0.0009, 10.0009] 1.0

sorbitol dehydrogenase (E) x5 [0.0002, 1.0002] 0.1
fructose (F) x6 [0.2, 500.2] 20
sorbitol (S) x7 [0.2, 500.2] 20

Inactive form of E (Z) - [0.000002, 0.200002 -

x5 := x5 − d where d is a constant representing the Molar volume which the
discrete transition consumes.

Biologists have determined that a ratio of sorbitol to fructose that is greater
than one is correlated to the beginning stages of sugar cataract formation [2].
Therefore, we define the set of safe states as the set of all concentrations that
satisfy x7 − x6 < 1, and we can then perform safety analysis on the system to
determine the probability that a patient will develop a sugar cataract from any
starting state.

3 Probabilistic Verification of SCD

In this section, we analyze the safety probability for the SCD model using the
technique presented in [7]. The resolution parameters for the SCD system result
in a discrete Markov Chain (MC) with approximately 800 million states. Storing
the values at each state alone requires several gigabytes of memory, so we de-
veloped a parallel value iteration implementation to improve the performance of
the algorithm. Assuming that the value at each state is updated periodically, the
value iteration algorithm is guaranteed to converge in a parallel implementation
[3]. The MC has a regular structure which improves the efficiency of the value it-
eration algorithm and allows us to implement a fairly straitforward partitioning
technique for parallel implementation [9].

To visualize our results we plot projections of the data which show the safety
probability for fixed values of the first five variables and the entire range for
sorbitol and fructose. Figure 1 shows a projection of the value function along the
safety boundary where x1 = 1.0, x2 = 1.0, x3 = 1.0, x4 = 1.0, x5 = 0.1. This data
could possibly be used to help better predict sugar cataracts by demonstrating
where the safest and most unsafe concentrations exist. It could also give guidance
for choosing the most effective of economical treatment to avoid the cataract
development.

The SCD experiment took approximately 10 hours using 32 processors of the
ACCRE computing cluster [1]. Currently, the bottlenecks of this approach are
memory size and speed.
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Fig. 1. Projection of the value function
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Abstract. The majority of research in control engineering considers pe-
riodic or time-triggered control systems with equidistant sample inter-
vals. However, practical cases abound in which it is of interest to consider
event-driven control systems, where the sampling is event-triggered. Al-
though there are various benefits of using event-driven control like re-
ducing resource usage (e.g. processor and communication load), their
application in practice is hampered by the lack of a system theory for
event-driven control systems. In this paper we present two types of event-
driven controllers and show their potential via industrially relevant case
studies and indicate initial theoretical results.

1 Introduction

The majority of research in digital control theory and engineering considers
periodic or time-driven control systems in which continuous-time signals are
represented by their sampled values at a fixed sample frequency. This leads to
equidistant sampling intervals for which the analysis and synthesis problems can
be coped with by the vast literature on sampled-data systems.

In most applications, these digital control algorithms are implemented in a
real-time embedded software environment. As a consequence of the time-driven
nature of controllers, control engineers pose strong, non-negotiable requirements
on the real-time implementations of their algorithms as the required control per-
formance can only be guaranteed in this manner. In the end, this leads to non-
optimal solutions if the design problem is considered from a multi-disciplinary
system perspective. As an example, time-driven controllers perform control cal-
culations all the time at a fixed high rate, so also when nothing significant has
happened in the process. This is clearly an unnecessary waste of resources like
processor usage and communication bus load. As a consequence, a time-driven
controller might not be optimal, when considered in a broader sense.

To reduce the severe real-time constraints imposed by the control engineer
and the accompanying disadvantages, this paper proposes to drop the strict

� This work has been carried out as part of the Boderc project under the responsibility
of the Embedded Systems Institute. This project is partially supported by the Dutch
Ministry of Economic Affairs under the Senter TS program. This research was spon-
sored by the European 6th Framework Network of Excellence HYCON (contract
number FP6-IST-511368).
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requirement of equidistant sampling. The claim is that this enables better multi-
disciplinary trade-off making to achieve a better overall system performance.
This type of feedback controllers are called event-driven controllers as it is an
event (e.g. the arrival of a new measurement), rather than the elapse of time,
that triggers the controller to perform an update. As event-driven control loops
typically deal with discrete events with strong interaction with the continuous-
time dynamics of the plant, they can be considered as a specific class of hybrid
systems.

In literature, only few examples of event-driven control have been presented
and hardly any theory on control performance analysis can be found. Two good
overviews can be found in [1] and [2]. To stimulate research in this direction,
we consider in this paper two types of event-driven controllers and show their
potential via case studies and indicate initial ideas for analyzing the resulting
loops. Further details and related research can be found in [3].

2 Event-Driven Control for Reducing Resource Usage

We consider the system described by

ẋ(t) = Acx(t) +Bcu(t) + Ecw(t) (1a)
u(t) = Fx(τk), for t ∈ [τk, τk+1) (1b)

where x(t) ∈ R
n is the state, u(t) ∈ R

m the control input and w(t) the unknown
disturbance, respectively, at time t ∈ R+. As a controller a discrete-time state-
feedback controller with gain F ∈ R

m×n is considered, i.e. uk = Fxk, where
xk = x(τk), uk = u(τk) using the zero-order hold u(t) = uk for all t ∈ [τk, τk+1).

The control update times τk are in conventional time-driven control related
through τk+1 = τk + Ts, where Ts is a fixed sample time, meaning that the
control value is updated every Ts time units. To reduce the number of control
calculations, we propose not to update the control value if the state x(τk) is
contained in a set B around the origin. The control update times are now

τk+1 = inf{jTs > τk | j ∈ N, x(jTs) �∈ B}. (2)

The control objective is a “practical stabilization problem” in the sense of
controlling the state towards a region Ω close to the origin and keeping it there,
as asymptotic stability cannot be obtained because the plant is operated in
open-loop inside the set B.

The performance of this novel control strategy is addressed in terms of ultimate
boundedness and guaranteed speed of convergence. Depending on the particular
event-triggering mechanism used for the control updates, properties like ultimate
boundedness for the perturbed event-driven linear system can be derived either
from a perturbed discrete-time linear system or from a perturbed discrete-time
piecewise linear (PWL) system. Since results for ultimate boundedness are known
for discrete-time linear systems and piecewise linear systems, these results can be
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carried over to event-driven controlled systems. In this way we can tune the pa-
rameters of the controller to obtain satisfactory control performance on one hand
and low processor/communication load on the other. An initial experimental case
study in paper flow control in a printer investigates the achievable reduction in
the processor load by the particular type of event-driven controllers proposed here
[3, Ch. 6]. In the typical case study, the processor load can be reduced with 50%
without sacrificing the control performance significantly.

3 Sensor-Based Event-Driven Control

A second line of event-driven control is sensor-based control, which is related to
the situation in which the measurement method is intrinsically event-based in
nature. Examples are e.g. internal combustion engines that are sampled against
engine speed; level sensors for measuring the height of a fluid in a tank; and
transportation systems where the longitudinal position of a vehicle is only known
when certain markers are passed. We will introduce sensor-based event-driven
control via a typical and industrially relevant example of motor control, although
the lines of reasoning in this section are more general.

In the case study, we use an (extremely) low resolution encoder to measure
the angular position of a motor. The event-driven controller is designed such
that actuation is performed at the detection of an encoder pulse. In this way,
the controller can use the exact position measurement, and is not affected by
the quantization errors of the encoder. Moreover, the controller can respond fast
to measurement data. When the motor is not running at constant velocity, the
updates are not equidistant in time. It is therefore not possible to use classical
design methods which assume that updates are equally spaced in time. We can
however apply variations on classical design methods if we define our models
of the plant and the controller in the (angular) position domain instead of the
time domain. This idea is based on the observation that the encoder pulses
arrive equally spaced in the position domain. It is shown that, by applying
this event-driven controller, we not only decrease the encoder resolution - and
therefore the system cost price - but also the average processor load, compared
to the originally applied controller in industry. This was accomplished without
degrading the control performance. In the typical example of a motor controller
applied to transport images through a printer we could accurately control the
motor by means of an encoder with a resolution of only 1 pulse per revolution,
with the controller running at an average sample frequency of 62 Hz. Compared
with the originally applied controller, running at a constant sample frequency of
250 Hz in combination with an encoder resolution of 12 pulses per revolution,
the processor load was reduced by a factor 5.

4 Conclusions

Although in many practical control problems it is natural and logical to use event-
driven controllers, their application is scarce in both industry and academia.
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A major reason why time-driven control still dominates is the absence of a sys-
tem theory for event-driven control loops. To stimulate research in this direction,
this paper presented two types of event-driven controllers with a clear industrial
relevance. Given the potential benefits of such controllers as shown in the case
studies, we believe it is worthwhile to invest research effort in this line of work
and to develop a mature theory for event-driven control systems.
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Abstract. We propose a hybrid estimation algorithm based on Bayesian
inference approach for stochastic piecewise linear systems. We derive the
discrete state (or mode) transition probabilities based on a system of
inequalities that describe the probabilistic state space partition of the
system. Simulation results are presented to demonstrate the performance
of the algorithm.

1 Problem Formulation

We consider a stochastic piecewise linear system described by

q(k + 1) = j if Lijx(k) − θij ≥ 0 (1)
x(k + 1) = Aix(k) + Biu(k) + wi(k) (2)

z(k) = Cix(k) + vi(k) (3)

where q(k) ∈ {1, 2, . . . , r}, x(k) ∈ R
n, u(k) ∈ R

p and z(k) ∈ R
s are the dis-

crete state, the (discrete-time) continuous state, the input and the measurement
respectively; Ai, Bi and Ci are system matrices corresponding to the discrete
state q(k) = i; wi(k) and vi(k) are uncorrelated zero-mean Gaussian noise; Lij

are m × n constant matrices and θij are m-dimensional random vectors which
represent uncertainties in the state space partitions. The vector θij is assumed
to have a multivariate Gaussian probability density function (pdf), with mean
μθij

and covariance Σθij , denoted as

p[θij ] = Nm(θij ; μθij
, Σθij ) (4)

Let the sequence Zk = [z(1), z(2), . . . , z(k)] denotes the set of measure-
ments up to time k. Using the Bayesian approach, we consider the problem
of updating the pdfs p[q(k + 1)|Zk+1] and p[x(k + 1)|Zk+1] at time k + 1
using p[q(k)|Zk], p[x(k)|Zk], and the new measurement z(k + 1). Note that
p[x(k)|Zk] =

∑r
i=1 p[x(k)|q(k) = i, Zk]p[q(k) = i|Zk].

2 Algorithms

The algorithm consists of a bank of r mode-matched Kalman filters. At time k,
we have, from each Kalman filter i, a posterior continuous state pdf
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p
[
x(k) = x|q(k) = i, Zk

]
= Nn

(
x; x̂i(k|k), P i(k|k)

)
(5)

where x̂i(k|k) and P i(k|k) are the posterior mean and covariance respectively;
and the discrete state pdf αi(k|k) := p[q(k)|Zk]. We then update the pdfs
p

[
x(k + 1)|q(k + 1) = j, Zk+1

]
and αj(k + 1|k + 1), for j = 1, . . . , r, as follows.

1. Compute mode transition probability: From (1), the mode transition
probability is given by

γij(k) := p[q(k + 1) = j|q(k) = i, Zk] = p
[
Lijx(k) − θij ≥ 0

∣∣q(k) = i, Zk
]

=
∫

Rn

p
[
θij ≤ Lijx

∣∣x(k) = x, q(k) = i, Zk
]
p[x(k) = x

∣∣q(k) = i, Zk]dx

Definition 1. Let y = [y1 y2 . . . ym]T ∼ Nm(y;0, Σ). Let α =
[α1 α2 . . . αm]T ∈ R

m. We define an m-dimensional Normal cumulative
density function as

Φm(α; Σ) := p[y ≤ α] =
∫ αm

−∞

∫ αm−1

−∞
. . .

∫ α1

−∞
Nm(y;0, Σ)dy1dy2 . . . dym

Using (4), (5) and Definition 1, it can be shown that 1

γij(k) =
∫

Rn

Φm(Lijx − μθij
; Σθij )Nn

(
x; x̂i(k|k), P i(k|k)

)
dx

= Φm(Lijx̂i(k|k) − μθij
; Σθij + LijP i(k|k)LT

ij)
(6)

Numerical algorithms for computing the function Φm(·), some with compu-
tational complexity that increases linearly with m, can be found in [1,2]

2. Filtering: Each Kalman filter j computes its own posteriors x̂j(k +1|k+1)
and P j(k + 1|k + 1) using the initial conditions, x̂j0 and P j0, given by [3]

x̂j0 =
r∑

i=1

x̂i(k|k)ᾱji(k + 1)

P j0 =
r∑

i=1

{P i(k|k) + [x̂i(k|k) − x̂j0][x̂i(k|k) − x̂j0]T }ᾱji(k + 1)

where ᾱji(k + 1) := p[q(k) = i|q(k + 1) = j, Zk] = 1
cj

γij(k + 1)αi(k|k) and
cj is a normalizing constant.

1 The proof, which is omitted due to space constraints, can be provided via correspon-
dence with the authors.
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3. Mode probability update: The posterior mode probability is given by

αj(k + 1|k + 1) =
1
β

Λj(k + 1)αj(k + 1|k)

αj(k + 1|k) := p[q(k + 1) = j|Zk] =
r∑

i=1

γij(k + 1)αi(k|k)

Λj(k + 1) = Np(rj(k + 1); 0, Sj(k + 1))

where β is a normalizing constant, rj(k + 1) = z(k + 1) − Cjx̂j(k + 1|k) is
the residual of Kalman filter j, and Sj(k + 1) is its covariance.

3 Example

We consider the following dynamical system which models a rocket propulsion
system shown in Fig. 1. Let x = [y ẏ Pt]T , where y is the lateral displacement
and Pt is the pressure in the pneumatic tank. The system is described by

x(k + 1) = Aix(k) + Biu(k) + wi(k)
z(k) = Cix(k) + vi(k)

A1 =

⎡
⎣1 Ts 0

0 1 0
0 0 1

⎤
⎦ A2 =

⎡
⎣1 Ts 0.005T 2

s

0 1 0.01Ts

0 0 0.98

⎤
⎦ A3 =

⎡
⎣1 Ts 0.01T 2

s

0 1 0.02Ts

0 0 0.95

⎤
⎦

B1 = B2 = B3 =
[
0 0 Ts

]T
C1 = C2 = C3 =

[
1 0 0
0 0 1

]
Ts = 0.2 sec

E[wi(k)wT
i (k)] =

⎡
⎣(3T 2

s

2 )2 0 0
0 (3Ts)2 0
0 0 (10Ts)2

⎤
⎦ E[vi(k)vT

i (k)] =
[
202 0
0 202

]

Combustion
Tank

Regulator

to nozzle

Ur

Y

X
y

Pneumatic
Tank

valve A valve B

Fig. 1. Schematic of a rocket propulsion system

The discrete state q(k) = 1, 2 or 3 corresponds to (i) valves A and B closed, (ii)
valve A opened and valve B closed, and (iii) valves A and B opened, respectively.
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Fig. 2. Discrete state estimation and mode probabilities of a typical simulation run

Table 1. Root-mean-square errors of continuous state (for 50 simulation runs)

Proposed algorithm IMM algorithm % Difference

y 6.9 9.2 25%

ẏ 3.3 5.4 39%

Pt 6.8 10.1 33%

The valves A and B will be opened when the pressure Pt exceeds PA and PB

respectively, where PA and PB have uncertainties which are represented as

PA ∼ N1(PA; 300, 25) PB ∼ N1(PB ; 600, 25)

The discrete state transitions can then be modeled using (1) and (4) with, for
example, L12 = [0 0 1], θ12 = PA, μθ12

= 300, Σθ12 = 25.
We compare our results with that of the Interacting Multiple Model (IMM)

algorithm [4] which models the mode transition probabilities as constants. Here,
we use [γij ]i,j=1,2,3 =

[
0.8 0.15 0.05
0.05 0.8 0.15
0.05 0.05 0.9

]
for IMM. Figure 2 shows the discrete state

(or mode) estimates and the posterior mode probabilities. In most of the time,
the proposed algorithm gives the correct discrete state estimates with probability
close to one. Table 1 compares the errors in the continuous state estimation for
50 Monte Carlo runs. The errors of the proposed algorithm are significantly
smaller than those of the IMM algorithm. The total computational times of the
50 runs for the proposed algorithm and the IMM algorithm are 3.61 sec and 3.36
sec respectively.
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4 Conclusions

A hybrid estimation algorithm for stochastic piecewise linear system is proposed.
In the algorithm, the probability of a discrete state transition is derived based
on the probabilistic state space partitions of the system. Performance of the
proposed algorithm has been illustrated in simulations.
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Abstract. This paper concerns the optimal mode-switching problem in
hybrid dynamical systems, where it is desired to compute the switching
times between the modes in order to minimize a given cost functional
defined on the state trajectory of the system. The state variable cannot be
directly observed, and it has to be estimated by an observer. The paper
proposes an on-line algorithm and presents bounds on its convergence
rate.

1 Introduction

This paper concerns switched-mode hybrid dynamical systems having the follow-
ing form. Given a time horizon [0, T ], N+1 differentiable functions fi : Rn → Rn,
i = 1, . . . , N + 1, and a finite sequence of time points τi, i = 1, . . . , N satisfy-
ing the inequalities 0 ≤ τ1 ≤, . . . , ≤ τN ≤ T , consider the following differential
equation

ẋ =

⎧⎨
⎩

f1(x), for all t ∈ [0, τ1),
fi(x), for all t ∈ [τi−1, τi), i = 2, . . . , N,
fN+1(x), for all t ∈ [τN , T ),

(1)

with a given initial condition x0 := x(0) ∈ Rn. The variable x(t) ∈ Rn is the
state of the system, the functions fi, i = 1, . . . , N + 1, are called the modal
functions, and the times τi, i = 1, . . . , N , are called the switching times. To
simplify the notation in (1) we define τ0 := 0 and τN+1 := T , and we further
define

F (x, t) := fi(x) for all t ∈ [τi−1, τi), for every i = 1, . . . , N + 1, (2)

so that Eq (1) has the following form,

ẋ = F (x, t). (3)

Let L : Rn → R be a continuously-differentiable function, and consider the cost
functional J , defined by

J :=
∫ T

0
L(x)dt. (4)
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Defining the vector of switching times by τ̄ := (τ1, . . . , τN )T ∈ RN , we observe
that the cost functional J can be viewed as a function of τ̄ via Eq. (1), and hence
it is denoted by J := J(τ̄ ). The timing optimization problem is the problem of
minimizing J(τ̄ ) subject to the constraints

0 = τ0 ≤ τ1 ≤ . . . , ≤ τN ≤ τN+1 = T. (5)

This problem arises in a number of applications, including situations where a
control module has to switch its attention among a number of subsystems [9,12],
or collect data sequentially from a number of sensory sources [2,5]. It has been
addressed by several authors, and a number of gradient-descent algorithms have
been developed for its solution [4,13,14,10,11,3]. Solutions to nonlinear optimal
control problems generally depend explicitly on the initial state except under
special circumstances. In practice, however, the state variable may not be mea-
surable and it has to be estimated by a suitable observer. For this situation,
Reference [1] has developed an on-line algorithm that tracks the optimal cost-
to-go along the trajectory of the state observer. That algorithm has one major
drawback: it must stay on the trajectory of the optimal cost-to-go at all times.
This has motivated the development of the algorithm described in this paper,
which does not have the above restriction.

2 On-Line Algorithm

Suppose that the system has a state observer, like a Luenberger observer if the
system is linear, or and a Moraal-Grizzle observer if the system is nonlinear [6].
Let us denote by x̂(t) ∈ Rn the state estimator at time t ∈ [0, T ] as computed by
the observer. The cost-to-go at time t is defined as follows. Given a switching-
time vector τ̄ , define x(ξ), ξ ∈ [t, T ], as the solution of the equation

ẋ(ξ) = F (x, ξ), (6)

with the boundary condition x(t) = x̂(t). The cost-to-go is defined by

J(t, x̂(t), τ̄ ) :=
∫ T

t

L(x(ξ))dξ, (7)

where we note its explicit dependence on t and x̂(t). The problem of computing
the switching-time vector that minimizes the cost-to-go will be denoted by πx̂(t),t.

Suppose for a moment that the switching-times vector τ̄ is computed for every
time t by a suitable algorithm, and hence we denote it by τ̄(t) :(τ1(t), . . . , τN (t))T .
Obviously, if τi(t) < t for some i ∈ {1, . . . , N} then τi(t) cannot be changed at
time t and it must retain its constant value. Therefore, only the future switching
times can be modified by an on-line algorithm at time t. To simplify the expo-
sition, we assume throughout this paper that τ1 > t so that all of the switching
times can be modified on line, whereas a treatment of the general case can be
found in [15].
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Now suppose that the functions fi are three-times continuously differentiable,
and hence (see, e.g., the appendix of [7]) the function J(t, x̂(t), τ̄ ) is twice contin-
uously differentiable in τ̄ . Furthermore, we assume henceforth that the Hessian
∂2J
∂τ2 (t, x̂(t), τ̄ (t)) is positive definite. Consequently, the following process {τ̄ (t)}
is well defined:

τ̄ (t + dt) = τ̄ (t) = −
(

∂2J

∂τ2 (t, x̂(t), τ̄ (t)
)−1

∂J

∂τ
(t + dt, x̂(t + dt), τ̄ (t)). (8)

We implicitly assume throughout that the switching-time vector defined by (8)
lies in the interior of the constraint set defined by (5). We point out that Refer-
ence [15] has proved that (8) preserves stationarity in the sense that, if τ̄(t) is a
stationary point for πx̂(t),t then τ̄ (t + dt) is a stationary point for πx̂(t=dt),t+dt.

In order to turn Eq. (8) into an algorithm we have to replace the infinitesimal
time-step dt by a finite-length time-step Δt > 0, which results in the following
equation.

τ̄ (t + Δt) = τ̄ (t) −
(

∂2J

∂τ2 (t, x̂(t), τ̄ (t)
)−1

∂J

∂τ
(t + Δt, x̂(t + Δt), τ̄ (t)). (9)

Now the algorithm consists of repeated computation of Eq. (9) with a given con-
stant Δt > 0. To address its convergence properties it makes no sense to mention
asymptotic convergence because the algorithm computes a finite number of iter-
ations during the time-interval 0, T ]. Instead, we characterize convergence by its
approach-rate to a stationary point. To clarify this issue, consider the Newton-
Raphson algorithm for minimizing a function f : Rn → R, and suppose that
it computes a sequence of iteration points, {xk}∞k=1 convergent to a stationary
point x∗, where df

dt2 (x∗) is positive definite. Then (see [7]) there exist δ > 0 and
K > 0 such that, if ||xk − x∗|| < δ, then ||xk+1 − x∗|| ≤ K||xk − x∗||2. Our
algorithm has a similar property in the following sense.

Let τ̄ be a stationary point for the problem πt,x(t), and suppose that it lies
in the interior of the constraint set, and the Hessian ∂2J

∂τ2 (t, x(t), τ̄ ) is positive
definite. Define the error e(t) by e(t) := x̂(t) − x(t).

Proposition 1. There exist constants δ > 0 and K > 0 such that, if ||τ̄ (t) −
τ̄ || < δ, Δt < δ, and ||e(t)|| < δ and ||e(t + Δt)|| < δ, then

||τ̄ (t + Δt) − τ̄ || ≤ K
(
||τ̄(t) − τ̄ ||2 + Δt||τ̄ (t) − τ̄ || + ||e(t + Δt)||

)
. (10)

Proof. Please see [15].

The above equation is noteworthy in that it tells us something about convergence
rates and explicitly incorporates terms stemming from the numerical accuracy,
the rate at which the state estimate is converging, and the quadratic convergence
rate of Newton’s method.
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Abstract. We study the possibility to steer the state of a single-input
single-output linear switched system to the origin in finite time by output
feedback with finite memory. We show that if the system is in a controller
canonical form, a causal state nullifying controller exists. We also show
that, generically, only acausal feedback can achieve state nullification.

1 Introduction

We analyze the possibility to synthesize an output feedback controller that steers
the state of a linear switched system to the origin in finite time. This control
objective is called state nullification. We provide theoretical results and offer an
algorithm for constructing a controller that nullifies a given system.

As time-invariant systems and time-varying systems are special cases of
switched systems (can be viewed as switched systems with a single switching
signal), the presented work generalizes some of the results presented in [1] and
[2] where nullification of time-invariant and time-varying control systems is ana-
lyzed, respectively. In particular, the algorithm presented here has the algorithms
displayed in [1] and [2] as special cases.

It turns out that considering a set of switching signals introduces new obstacles
and challenges. We show how to overcome some of the obstacles and identify a
class of switched systems that are nullifiable. We also show that unlike the case
with a single switching signal, where nullification is generically possible, it is
generically not possible to achieve nullification when all switching are allowed.
Due to space limitations, proofs and examples are moved to the appendix. Formal
proofs and examples can be found in the online version.

2 Theoretical Results

An n-dimensional single-input single-output switched system is described by a
parametrized set of triplets {(As, bs, cs) : s ∈ Σ} where, for every s ∈ Σ, the
matrix As is n × n-dimensional, bs is n-dimensional column vector and cs is
n-dimensional row vector and Σ is a finite set.

Given a switching signal σ :N → Σ, the dynamics of the switched system are
defined by

x(t + 1) = Aσ(t)x(t) + bσ(t)u(t)
y(t) = cσ(t)x(t)

(1)
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where x : N → R
n represents the state evolution, u : N → R is a scalar input

signal and y : N → R is a scalar output signal.
An output feedback controller is a map of the output signal and the switching

signal to an input signal. We will study the possibility to design simple output
feedback controllers to achieve state nullification, defined as follows.

Definition 1. We say that a controller achieves state nullification for the sys-
tem (1) if there exists N ∈ N, called nullification time, such that for every
x(0) ∈ R

n and any switching signal σ : N → Σ, the N th state is the null vector
(x(N) = 0).

Note that we do not assume control over the switching signal. The controller
needs to steer the state of the system to the origin, using the input signal, under
all switching signals.

For the formulation of the first result we need to define the controller canonical
form and n-step observability as follows. A triplet (A, b, c) ∈ R

n×n×R
n×1×R

1×n

is in a controller canonical form if b equals (0, . . . , 0, 1)T and A is in a companion
form. The system (1) is called n-step observable if for all switching and control
signals, the mapping of the initial state x(0) to the sequence y(0), . . . , y(n − 1)
of observations is one-to-one.

The first main result is formulated as follows.

Theorem 1. If the system (1) is n-step observable and, for every s ∈ Σ, the
triplet (As, bs, cs) is in a controller canonical form and the first coordinate of cs

is not zero; then there exists a feedback of the form

u(t) = K
(
σ(0), . . . , σ(t)

)
y(t) (2)

that achieves state nullification.

Note that a feedback of the form (2) is causal, i.e., the output u(t) at time
t ∈ N does not depend on the future. Note also that an efficient implementation
of the controller requires only finite memory, since we only have to store the
history of the switching signal, drawn from a finite set Σ, over a finite time (the
nullification time).

Associate a system (A, b, c) ∈ R
n×n ×R

n×1 ×R
1×n with the vector in R

n2+2n

obtained by flattening the matrix and the vectors to a single vector. With this
association, the topology of R

n2+2n induces a topology over linear systems. One
can similarly define a topology over switched systems. We call a set of systems
generic, if it is open and dense in that topology. A property is called generic if
it is valid for a generic set of systems.

Note that the property that all the triplets are in a controller canonical form
is not generic. This is consistent with the fact that nullification by causal output
feedback is generically impossible, as stated in the following theorem.

Theorem 2. There is a generic set of systems such that, for every system in
the set, there exists no output feedback of the form (2) that achieves nullification.
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However, if we allow acausality (preview) it is generically possible to achieve
nullification. This is consequence of a result reported in [2], as follows. If we
allow an acausal controller of the form u(t) = K(σ(0), . . . , σ(t + N))y(t) where
N is the nullification time, then there is no difference between time-varying
systems and switched systems (because, for all we care, the switching signal
is given in advance). In particular, since nullification is generically possible for
time varying systems [3], it is also generically possible by an acasual feedback for
switched systems. Note that there is a gap between the impossibility result that
involves a feedback of the form (2) and this positive result, namely, we do not
know if a feedback of the form u(t) = K(σ(0), . . . , σ(t + L))y(t) for 0 < L < N
can achieve nullification.

3 Algorithm

The algorithm for the computation of a feedback mapping that achieves state nul-
lification is composed of two subroutines labeled Algorithm 1 and Algorithm 2
below.

Algorithm 1. Synthesizes a feedback that steers a given initial state to the origin.
Require: a switched system, a state x ∈ R

n and a partial assignment to variables K(σ), σ ∈ ∪t∈NΣt.
Ensure: the coefficients K(σ), σ ∈ ∪t+1

i=1Σ
i, when substituted in (2), assure x(0) = x =⇒ x(t + 1) = 0.

1: t ← 0
2: inequalities ← ∅
3: equalities ← {x = 0}
4: while there is no solution to equalities ∪ inequalities do
5: equalities ← ∅
6: for all σ ∈ Σt+1 do
7: x− ← x(σ(0), . . . , σ(t − 1))
8: if K(σ(0), . . . , σ(t)) has a value K then
9: x+ ← (Aσ(t) + Kbσ(t)cσ(t))x

−

10: else if cσ(t)x
− = 0 then

11: x+ ← Aσ(t)x
−

12: K(σ(0), . . . , σ(t)) ← 0
13: else
14: x+ ← Aσ(t)x

− + bσ(t)δσ

15: inequalities ← inequalities ∪ {cσ(t)x
− �= 0}

16: K(σ(0), . . . , σ(t)) ← δσ

cσ(t)x−

17: end if
18: equalities ← equalities ∪ {x+ = 0}
19: x(σ(0), . . . , σ(t)) ← x+

20: end for
21: t ← t + 1
22: end while
23: Choose a solution for equalities ∪ inequalities .
24: Use this solution to compute K(σ) for all σ ∈ Σi+1, i ∈ {0, ..., t}.

Algorithm 1 computes a feedback that steers a single state to the origin. More
specifically, given a switched system (As, bs, cs)s∈Σ and an initial state x ∈ R

n;
the coefficients {K(σ) : σ ∈ Σi+1, i = 0, . . . , t} are computed such that, when
these parameters are plugged in equation (2) and the resulting control law is
plugged in (1), the initial state x(0) = x implies x(t + 1) = 0.
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Algorithm 2 is the main entry point for the synthesis algorithm. It invokes
Algorithm 1 iteratively to compute coefficients that steer any initial state to the
origin. More precisely, every iteration ends with a higher value of t and fixes the
coefficients K(σ), σ ∈ ∪t+1

i=1Σ
i. When Algorithm 2 halts, the coefficients are set

such that x(t + 1) = 0 independent of the switching signal and the initial state.

Algorithm 2. Synthesizes a feedback of the form (2) that steers any initial state to
the origin, under all switching signals.
Require: a system of the form (1) that satisfies the conditions of Theorem 1.
Ensure: the feedback (2) steers any initial state to the origin in t steps, under any switching signal.
1: Choose a linear basis B that spans R

n.
2: for all x ∈ B do
3: Run Algorithm 1 with x as an initial state.
4: end for

Remark 1. The above algorithm can easily be adjusted to handle situations
where not all switching signals are admissible. This is done by replacing line
#1 of Algorithm 1. More specifically, σ should go over all admissible switching
signals of length t + 1. In particular, when the system is time-varying, we can
think of it as a switched system with a single admissible signal. In that case,
the resulting algorithm is similar to that proposed in [2]. We can also think of
a time invariant system as a switched system with a single subsystem. In the
case of time invariant systems, the above algorithm is similar to the algorithm
proposed in [1]. The set of switching signals can be given in any form that allows
the enumeration of all admissible signals of length t + 1 (e.g. automata).

Remark 2. The proposed description of the algorithm does not depend on a
representation of the system in a canonical form. The procedure applies to sys-
tems that are equivalent to a system in a controller canonical form, without
the need to carry the actual transformation. In [1] and [2] it is shown that the
pre-conditions of the algorithm can be checked without computing the canonical
form representation.
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Abstract. Fault accommodation (FA) problem is discussed for a class
of hybrid systems with both continuous and discrete faults, and without
full state measurements. The proposed observer-based FA strategy can
maintain the stability of hybrid systems in spite of these two faults.

1 Preliminaries

Two kinds of faults may corrupt the behavior of a switched system [1]: Contin-
uous faults that affect each continuous system mode. Discrete faults that affect
the switching sequence. In this note, a FA framework is proposed for a class of
switched nonlinear systems (SNS) with above two faults, and without full state
measurements.

The contributions are in 3 aspects : 1) For the continuous faults in each
mode, an adaptive observer technique is proposed to provide the rapid fault
estimation, based on which the fault tolerant control law is designed. 2) For
the discrete faults, a model-free sliding mode observer is developed to estimate
the states at each switching instant, which together with a series of observers
according to system modes, can identify the current mode quickly. 3) The above
two strategies are combined with the average dwell time scheme, which can
guarantee the input-to-state practical stability of overall SNS.

Consider a class of switched nonlinear systems:

ẋ(t) = Aσx(t) + gσ(t, x(t)) + Bσuσ(t) + Eσf c
σ(t) (1)

y(t) = Cx(t) (2)

where x(t) ∈ �n is the non measured state, y(t) ∈ �r is the output, uσ(t) ∈
�m is the control. (Aσ , Bσ) is controllable. gσ(x(t), t) is a continuous Lipschitz
� This work is partially supported by NSF of China (60574083) and Key Laboratory

of Process Industry Automation, State Education Ministry of China.
�� Corresponding author.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 779–782, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



780 H. Yang, B. Jiang, and V. Cocquempot

function, i.e., |gσ(x1, t) − gσ(x2, t)| ≤ Lσ|x1 − x2| for Lσ > 0, where | · | is the
Euclidean norm. Moreover, gσ(0, t) = 0.

The continuous actuator fault is modelled by a “fault pattern” [2], which
consists of the distribution matrix Eσ, and a “fault signal” f c

σ(t) ∈ �q. Assume
that there exists two constants f0

σ and f1
σ such that |f c

σ| ≤ f0
σ, |ḟ c

σ| ≤ f1
σ .

Define M = {1, 2, . . . , N}, where N is the number of modes. σ(t) : [t0, ∞) →
M denotes the switching function, which is assumed to be a piecewise constant
function continuous from the right.

Denote tj as the jth switching instant of the system (1)(2). At tj , the system
switches to mode k, where k ∈ M, j = 1, 2, ....

The switching property is considered as in [3]: a) the switching sequence is
fixed. b) there is a series of prescribed dwell periods between each switching. We
also assume that the states do not jump at the switching instants.

The discrete fault is represented by the faulty switching function σf (t), that
forces the system to switch to a mode which is not the prescribed successor at
the switching instant. Similarly, σH(t) denotes the healthy switching function.
If σ(t) = σH(t), then there is no discrete fault in the current mode.

2 FA for Continuous Faults

Consider mode k of the system (1)(2) starting from t = tj

Assumption 1.There exists a matrix Kk such that Gk(s) = C[sI − (Ak −
KkC)]−1Ek, is strictly positive real (SPR) :

∀ω > 0 : Re(Gk(jω)) > 0 (3)

Moreover
min

ω∈R+
σmin(Ak − KkC − jωI) > Lk (4)

where σmin (M) is the smallest singular value of M .
The continuous fault diagnostic scheme for mode k is designed as

˙̂x(t) = Akx̂(t) + gk(t, x̂(t)) + Bkuk(t) + Ekf̂ c
k(t) + Kk(y(t) − ŷ(t)) (5)

˙̂
f c

k(t) = ΓkRT
k (y(t) − ŷ(t)) − ϑkΓkf̂ c

k(t) (6)
ŷ(t) = Cx̂(t) (7)

where x̂ (t) , f̂ c
k (t) , ŷ (t) are the estimates of x (t) , f c

k(t), y (t). The weighting
matrix Γk = Γ T

k > 0, and the constant ϑk > 0 are chosen such that ϑk −
λmax(Γ−1

k ) > 0. Denote ex(t) = x(t) − x̂(t), ef (t) = f c
k(t) − f̂ c

k(t).
Recall that (Ak, Bk) is controllable. Let Wk = WT

k > 0 be associated with a
given symmetric positive definite matrix Hk by the Ricatti equation

AT
k Hk + HkAk − 2HkBkBT

k Hk + Wk = 0 (8)
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Assumption 2. There exists a symmetric positive definite matrix Hk and a
bounded function ηk(x, t) > 0 such that

|Hkgk(x, t)| ≤ ηk(x, t)|xT HkBk| (9)

Assumption 3. rank(Bk, Ek) = rank(Bk).
The fault-tolerant controller is constructed as uk(x̂) = uk1(x̂) + uk2(x̂) with

uk1(x̂) � −BT
k Hx̂ − B∗kEkf̂ c

k , (10)

uk2(x̂) � − ηk(x̂, t)|x̂|
|φk(x̂)| + ε/2

φk(x̂), φk(x̂) � ηk(x̂, t)BT
k Hkx̂ (11)

where ε is a small positive scalar. B∗k is such that (I − BkB∗k)Ek = 0.
We can prove that, under assumptions 1-3, the fault diagnostic scheme (5)-(7)

and the feedback control (10)-(11) guarantee

– (ex, ef) of mode k converges to a closed set which can be made arbitrarily
small.

– ex is input-to-state stable over [tj , t) w.r.t. ef .
– mode k is input-to-state practically stable (ISpS) over [tj , t) w.r.t. ex, ef and

a constant ςk > 0.

Now consider the stability of overall SNS with each mode satisfying assump-
tions 1-3. At each switching instant, the fault diagnostic scheme (5)-(7) is
switched according to the current mode. x̂ of the current observer are chosen as
the final states of the previous observer, and f̂ c

k is set to zero.
Let the switching function σ has an average dwell time τa. We can prove that,

if τa is large enough, then under the fault diagnostic scheme and the feedback
control, the switched system is ISpS for [0, T ) w.r.t. ex, ef and a constant ς̄ > 0,
where T > 0 is an arbitrary time.

3 FA for Discrete Faults

The main idea is to first identify the current mode at the beginning of each time
interval [tj , tj+1) using a short time period Δtj � tj+1 − tj , and then control
the identified mode in the rest of the time interval.

In each identifying period, the control signal is set to zero, which implies that
there are no controller and continuous actuator fault present in each Δtj .

The observer-based identifier consists of three parts:

1) A model free sliding observer.

˙̄x(t) = Āx̄(t) + S(ēx(t), ρj) + L(y(t) − ȳ(t)), ȳ(t) = Cx̄(t) (12)

where Ā, L̄ are chosen such that (Ā, C) is observable and Ā − L̄C is stable.
ēx � x − x̄, S(ēx, ρj) � P̄ −1CT Cēx

|Cēx| ρj with P̄ a symmetric positive definite
matrix. It can be proved that there exists a ρj > 0 such that the observer
(12) converges to the system without input, if x in Δtj is bounded.
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2) A bank of observers

Observer k : ˙̂xk(t) = Akx̂k(t) + gk(t, x̂k(t)) + Kk(y(t) − ŷk(t))
ŷk(t) = Cx̂k(t), k ∈ M (13)

which are the same as (5)-(7) without uk and f̂ c
k.

3) The identifier algorithm summarizing as: The current mode is mode j, j ∈
M, if |x̄ − x̂j | is minimal at time instants tj + Δtj, where Δtj can be made
arbitrarily small.

To avoid that the system states escape before a proper controller is invoked
into action, Δtj is chosen in the following set

ΩΔtj � {Δtj |Δtj < tj+1 − tj and |x̄(tj + Δtj)| ≤ ξ|x̄(tj)|} (14)

where ξ > 1. The selection of ξ depends on system dynamics. Δtj is chosen such
that the current mode can be detected in this period. The bound of x in Δtj
can be measured by x̄.

4 FA Framework

Based on sections 2 and 3, the FA framework is proposed as follows:

1) At switching instant tj , stop the fault diagnostic scheme, and set control signals
and fault estimates to zero, invoke the identifier to identify the current mode.

2) At time instants tj + Δtj , stop the identifier and switch the fault diagnostic
scheme and controller (10)-(11) into the system according to the current mode.

3) At switching instant tj+1, go to 1).

The main result is described as: If τa is large enough, then under assumptions
1-3, the proposed FA framework guarantees that the switched system is ISpS
for [0, T ) w.r.t. ex(t), ef (t), ēx(tj) and a constant ς̄2 > 0, where T > 0 is an
arbitrary time and j = 1, 2....
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Abstract. This paper shows the development of a heuristic predictive
logic controller (HPLoC) applied to a solar air conditioning plant. The
plant uses two energy sources, solar and gas, in order to warm up the
water. The hot water feeds a single-effect absorption chiller. A hybrid
controller using Model based Predictive Control (MPC) and heuristic
logic conditions have been implemented in the real plant, the controller
allows configuring the plant with the minimizing of the gas consumption.

1 Introduction

An evident use of the solar energy like a source of renewable energy is its applica-
tion to air conditioning systems. A solar air conditioning plant is located at the
University of Seville. The different operating modes of the process are defined
by the components that provide thermal energy to the absorption machine. This
process has to be modelled as a hybrid system, a more complete description of
the plant and the model can be seen in [1]. Several control strategies have been
tested on different solar power plants (see, for instance, [2,3,4]), but none of
them take the hybrid nature of the process into account. A hybrid controller is
needed in order to configure the plant according to the requirement of the control
objectives. The configuration decisions depend of the environmental conditions.

2 Plant Description and Control Objectives

The main components of the plant are the following: the solar system, it is com-
posed of a set of flat solar collectors; the accumulation system, it is composed
of two tanks storing hot water; and the cooling machine. There also exist an
auxiliary gas-fired heater that can supply energy in those situations where so-
lar radiation is not enough, and a load simulator (a heat pump) that allows
performing tests for different profiles of load. The hybrid nature of the plant
comes from the use of two different energy sources (solar and gas), which can be
combined or used independently. The plant can be re-configured on-line manip-
ulating open/close valves and on/off pumps allowing to select the components
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c© Springer-Verlag Berlin Heidelberg 2007
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for energy supply. The plant evolves among several operating modes during its
daily operation. The operating modes are selected using the discrete manipu-
lated variables and are the following: 1〉 Recirculation of water through the solar
collectors, 2〉 Loading the tanks with hot water from solar collectors, 3〉 Using
the water from solar collectors for feed the absorption machine, 4〉 Using the
water from the solar collectors and gas heater for feed the absorption machine
generator, 5〉 Using the gas heater for feed the absorption machine generator,
6〉 Using the tanks and gas heater for feed the absorption machine generator,
7〉 Using tanks for feed the absorption machine generator, 8〉 Loading the tanks
with water from solar collectors and using the gas heater for feed the absorption
machine generator, 9〉 Recirculation in solar system and using the gas heater for
feed the absorption machine generator, 10〉 Using the solar collectors for feed the
absorption machine and loading tank, and, 11〉 Using the solar collectors and gas
heater to feed the absorption machine and loading the tanks.

The main control objective is to supply chilled water to the air distribution
system according to the demanded temperature. The absorption machine must
be fed with hot water between 75 ◦C and 100 ◦C for cold production. Consump-
tion of the auxiliary energy must be minimized to diminish the environmental
impact and save money.

3 Heuristic Predictive Logic Controller

An HPLoC has been designed based in the basic formulation of MPC and the
operation knowledge. The controller is divided in two levels, the operating mode
of the solar plant is obtained using an HPLoC, and the temperatures are con-
trolled using a MPC for each operating mode. The HPLoC algorithm realizes
the prediction of the solar collectors output temperature during a horizon Np,
Eq. (1), the input of the model is the collectors flow (u), and, the disturbances
are the solar radiation (d1) and the inlet temperature (d2). A, B, Bd1 and Bd2
are polynomials in the back shift operator z−1.

A(z−1)ŷ(t) = B(z−1)u(t − 1) + Bd1(z−1)d1(t − 1) + Bd2(z−1)d2(t − 1) (1)

The HPLoC algorithm is based in the minimization of a weighed function subject
to constraints, Eq. (2), where x is a vector of the logic variables associated to
the operating modes, and AC and bC matrix avoid that the operating modes are
overlapping, and also it guarantee that the F vector is greater than the unit.

The F vector, Eq. (3), is defined for each operating mode in function of the
factors associated to each equipment (kj , j = 1, . . . , 3) and of operating factors
of the plant (klm, m = 1, . . . , 5). F is the availability status of the operating
modes according to the environmental conditions and output temperatures.

min
xε{0,1}

(F · ωi)T x (2)

s.t. ACx ≤ bC

F = [f1(kl5) f2(kl5) f3(k1) f4(k1, k3) f5(k3) f6(k3, k2, kl1) . . . (3)
f7(k2) f8(k3) f9(k3) f10(k1) f11(k1, k3)]
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A factor is associated to each equipment that can provide hot water to the
absorption machine. The factor of the solar collectors k1 is expressed in function
of the prediction output temperature, Eq. (1), and the solar radiation. The
factor of the accumulators k2 is defined in function of its output temperature.
The factor of the gas heater k3 is assumed constant because it is available in
any time. Others logic conditions kli associated to the operating of the solar
plant are defined: kl1 is true if the absorption machine is turn off, kl2 is true
if the solar collectors output temperature is inside of the working range of the
absorption machine, kl3 is true if the accumulators output temperature is inside
of the working range of the absorption machine, kl4 is true if the solar radiation
is enough, and, kl5 is true if exist demand of cold.

The weight vector ωi is calculated using the Analytic Hierarchy Process (AHP)
[5]. This technique allows the development of weights for the criteria using pair
wise comparisons, the pair wise comparison method for decision-maker is asked
to give the relative importance to the criteria by comparing them two by two,
in this case, they are established according to the control objectives. The expert
criteria are given by the first row of the Saaty’s matrix, (see Eq. 4).

The expert criteria ai, Eq. (5), have been defined weighting the logic condi-
tions, it is defined by each operating mode, the weighting gi is according to the
important of the operating modes.

A(1, 1, . . . , 11) = [a1,1 a1,2 a1,3 . . . a1,9 a1,10 a1,11] (4)
a1,i = gimli + hi(∼ mli) for i = 1, . . . , 11; hi � gi (5)

A mli logic condition has been defined for each operating mode in function of
the kli, these conditions indicate when an operating mode can be used according
to the actual conditions of the plant. Then mli take a binary value, as the a1,1
element must be equal to 1, then an hi value is added for when the logic condition
mli is zero. When mli is zero, the expert criteria takes a value less than when
it is true, therefore hi coefficient must be greater than gi. Finally, xi solution
determines the operating mode and the configuration of the discrete manipulated
variables.

4 Results and Conclusions

The heuristic predictive logic controller has been implemented on the solar air
conditioning plant. Figure 1 shows the operating mode of the plant. The cold
demand begins at 11 hour, the operating mode is 9, and then the generator input
temperature is warmed by the gas heater. While the solar radiation is low, the
configurations switch between modes 6 and 9. At 12:30 hour approximately, the
sky is without clouds and the configuration is switch to the mode 4 that uses
the solar energy combines with the auxiliary energy. After 15 hours the day is
cleared, and then the absorption machine is fed by the flow from solar collectors
only. The generator and evaporator temperature of the absorption machine are
shown. Can be observed that the absorption machine is working right, the water
is chilled and the demand of cold is satisfied.
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Fig. 1. Operating mode, solar radiation and other temperatures of the solar plant

Finally, the hybrid solar cooling plant requires efficient algorithms that allow
optimizing the use of the energy, and other important characteristic, as the
disturbance rejection and economic objectives. The hybrid controller include an
MPC for the continuous variables, and, an integer optimization algorithm for the
solar plant configuration, it has been design using the prediction concepts and
logic expert criteria. The results shown as the demand of cold and the minimum
gas consumption have been satisfied.
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Abstract. Multiple-pursuer multiple-evader games raise fundamental
and novel problems in control theory and robotics. In this paper, we pro-
pose a distributed solution to this problem that simultaneously addresses
the discrete assignment of pursuers to evaders as well as the continuous
control strategies for capturing individual evaders. The resulting hybrid
control framework guarantees the mutual exclusion property of the fi-
nal assignment for all initial conditions as well as capturing all evaders
after exploring at most a polynomial number of assignments, dramat-
ically reducing the combinatorial nature of purely discrete assignment
problems.

1 Background and Problem Definition

Consider n identical pursuers in a p-dimensional space R
p and assume kinematic

models for the pursuers with, in general, unbounded velocities. Consider, further,
m ≥ n evaders with velocities that can be time varying but are assumed to be
bounded for all time. We then say that pursuer i can capture evader k if there
exists a finite time instant T > 0 such that pursuer i is in a sufficiently small
neighborhood of evader k, for all time t > T . The time instant that every pursuer
has captured a distinct evader corresponds to the termination of the game and
the notion of capturing the evaders becomes equivalent to that of assigning
evaders to pursuers.

Pursuit-evasion games can be classified in continuous and purely discrete
games. Continuous games explicitly model the physical motion and constraints
of the players [1], [2], [3] and often assume worst case motion for the evaders [1],
[2]. Studying optimality of such strategies involves numerically solving the com-
putationally challenging Hamilton-Jacobi-Isaacs partial differential equations.
On the other hand, discrete games are either played in purely discrete environ-
ments such as graphs [4], [5], or in continuous environments disregarding though
any physical dynamics of the players [6], [7]. Such models may result in discrete
strategies which are dynamically infeasible. Recently, however, hybrid control
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Fig. 1. Simulation for n = 7 pursuers and m = 7 evaders

has been used to bridge the gap between the discrete and continuous games and
model, more realistic, pursuers with limited sensing and communication capa-
bilities. Approaches involve visibility-based [8] and probabilistic [9], [10] games.
Closely related to the topics discussed in this paper is also multiple-target track-
ing by sensor networks [11], [12] which, however, focuses more on the sensing
and estimation problem of tracking rather than the actuation and control.

In this paper, we propose a novel distributed approach to the multiple-pursuer
multiple-evader game, which is inspired by our previous work on dynamic assign-
ment for stationary targets [13], [14]. Unlike centralized or off-line approaches
[15], [16], [17], that decouple the assignment and navigation problems and focus
on designing control laws for every pursuer to capture a preassigned evader, we si-
multaneously address the discrete assignment of pursuers to evaders as well as the
continuous control strategies for tracking and capturing the individual evaders.
The resulting hybrid controller for every pursuer consists of both local coordi-
nation protocols [14], [18] guaranteeing that distinct evaders are captured by
distinct pursuers, and single-pursuer single-evader time-varying potential fields
ensuring convergence of the tracking error to any neighborhood of zero. Compo-
sition of the hybrid controllers for all pursuers results in a highly efficient overall
system that is illustrated in nontrivial multiple-pursuer multiple-evader games
(Figure 1).

The main contribution of our approach is in the distributed coordination pro-
tocols that enable nontrivial multiple-pursuer multiple-evader behavior based
on already available results for single-pursuer single-evader games. In particular,
under the assumption that the pursuers have knowledge of the evaders’ locations,
the proposed nearest neighbor coordination scheme leads to a dynamically deter-
mined final assignment [14] which is shown to have the desired mutual exclusion
property for all initial conditions. Furthermore, the overall coordination system
is shown to have at most polynomial complexity, i.e., at most a polynomial num-
ber of transitions, despite the exponential growth of the number of assignments
with respect to the number of pursuers.
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Abstract. We use discrete quadratic Lyapunov functions to design con-
trollers for a class of systems where time intervals between state mea-
surements are longer than time intervals between control actions and
different components of the state vector are not measured at the same
time. The discrete Lyapunov function is a discretization of a continuous
Lyapunov function assumed to be known for the idealized system. With
this framework, we determine the maximum time interval between mea-
surements of each state variable to guarantee the non-increasing property
for the discrete Lyapunov function.

1 Introduction

We propose a controller design method for systems where the time interval
between state measurements is longer than the time interval between control
actions. Furthermore, we consider asynchronous sensing which arises naturally
from using multiple sensors with different clocks and time scales. We investigate
systems where each component in the state vector is updated based on an in-
dependent clock, i.e. different state variables are measured at different times. In
[11] and [2], asynchronous distributive algorithms and asynchronous multi-agent
systems are discussed with a similar definition of asynchronicity. Aysnchronicity
is also investigated in [1] and its references. There, however, the asynchronicity
relates to non-uniform intervals at which the system is discretized, and state
variables are all updated at the same time.

By introducing a formulation of asynchronicity in measurements of different
components of the state vector, we establish a procedure that allows us to incor-
porate sensing asynchronicity in the discrete control Lyapunov function (DCLF)
based controller design method. We suppose that for the idealized continuous
system when both the control and sensing intervals are infinitely small, a (con-
tinuous) controller based on a quadratic control Lyapunov function (CLF) can
be found. For the asynchronous system, we use the same CLF as a candidate
for the DCLF and show how to change the continuous control law into a dis-
crete law. From this we can estimate an upper bound on the maximum sensing
interval for each component in the state. There have been ongoing efforts to
generalize Lyapunov stability theory to systems with hybrid nature [4,5,6,7,8].
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c© Springer-Verlag Berlin Heidelberg 2007



A Controller Design Method Under Infrequent, Asynchronous Sensing 791

Our developments allow us to take advantage of the abundant tools available for
the continuous design.

2 Controller Design

Consider a continuous system with control on IRn described by ẋ = f(x) +
g(x)u + F (x, t) where x = (x1, ..., xn) ∈ R

n, u ∈ IRm is the control and F (x, t)
represents the perturbations. Suppose such system has an equilibrium at x = 0.
It may be possible to find a control Lyapunov function V (x) from which a
control law u can be derived to stabilize the equilibrium following [10]. Suppose
an estimated perturbation F̂ is available. If there exist functions Y (x) and Z(x)
such that Y T (x) = ∇V T g(x) and Y T (x)Z(x) = ∇V T f(x) for all x, then V̇ =
Y T (x)(F̂ (x, t) + u + Z(x)) + ∇V T F (x, t) − Y T (x)F̂ (x, t). The design of u is
u = −Z(x) − K Y (x) − F̂ (x, t).

We assume that the control interval Δt, the time between two control actions,
is fixed. We also assume each sensing interval ΔTi, the time between measure-
ments of xi, is fixed and ΔTi = PiΔt where Pi > 1 is an integer for i = 1, ..., n.
A simple recursive Euler predictor can be employed to estimate the states from
measurements: x−k+1 = x+

k + f(x+
k )Δt + g(x+

k )ukΔt + F̂ (x+
k , tk)Δt. The symbol

x+
k represents the updated state at step k that has incorporated available sensor

information. The symbol x−k+1 represents the predicted state at step k + 1. If
no measurements are taken at step k, then we let x+

k = x−k . Note that more
sophisticated predictors can be applied [9].

Suppose we use a discretized control law: uk = −Z(x+
k )−K Y (x+

k )−F̂ (x+
k , tk).

Suppose further that the Lyapunov function V is quadratic. Then V −k+1 − V +
k =

∇(V +
k )T (x−k+1 − x+

k ) + 1
2 (x−k+1 − x+

k )T H+
k (x−k+1 − x+

k ) where ∇V +
k and H+

k

represents the gradient and Hessian of function V at x+
k .

Suppose the estimate of the perturbation satisfies Y T F̂ − ∇V T F = 0 when
measurements are taken. Under the proposed control we have

V −k+1 − V +
k = −K Y T

k YkΔt +
∥∥∥ fk + F̂k − gk(Zk + F̂k + KYk)

∥∥∥2

H+
k

Δt2 (1)

where we let F̂k = F̂ (x+
k , tk) and gk, Yk, Zk and fk are defined similarly. Matrix

H+
k defines a pseudo inner product 〈·, ·〉H+

k
and its induced norm ‖ · ‖H+

k
.

From (1) we can determine the value of K that achieves the largest decrease
in V as Kk = (2 〈Ak, gkYk〉H+

k
Δt + Y T

k Yk)/(2 ‖ gkYk ‖2
H+

k
Δt) where Ak = fk +

F̂k − gk(Zk + F̂k). The maximum decrease in V is

(V −k+1 − V +
k )∗ = ‖Ak ‖2

H+
k

Δt2 −

(
2 〈Ak, gkYk〉H+

k
Δt + Y T

k Yk

)2

4 ‖ gkYk ‖2
H+

k

. (2)
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3 Asynchronous Sensing

If there exist rational numbers ail such that ΔTi = ailΔTl for all i, l = 1, ..., n,
we say the asynchronous sensing is resonant. By assumptions made in Sec. 2 we
develop results for the resonant case.

Let jm and jm+1 be two time indices. We use the symbol Γi(jm, jm+1) to
represent the set of time indices when measurements for xi are available within
the interval [jm, jm+1). In the resonant case, we can always find an (infinite)
sequence {jm} such that: (S1) The interval jm+1 − jm is constant for all m. (S2)
Γi(jm, jm+1) is not empty for all i. (S3) There exists i such that a measurement
for xi is available at each jm.

We often write Γi(jm, jm+1) simply as Γi. Let Ni be the total number of
elements in Γi and let N =

∑
i Ni. Since N is finite, we can construct an N

dimensional vector v that contains all members of Γi for all i. We call v the
asynchronous index vector. Note that N is constant for all [jm, jm+1).

Consider the DCLF V (x) where x ∈ IRn. Let p assume all possible values for
p ∈ Γi and for i = 1, 2, ..., n. We use V −p and V +

p to denote the function value
before and after the update. Let x−p , x+

p , ∇V −p and H−p be the state vector before
measurement, the state vector after measurement, the gradient vector and the
Hessian at the time instant indexed by p.

Definition 1. Consider the interval [jm, jm+1). On this interval, we define the
asynchronous state vector before update as the N dimensional vector x̂a whose
r-th component satisfies (x̂a)r = (x−vr

)i where vr is the r-th component of the
asynchronous index vector v and vr ∈ Γi. We define the asynchronous state
vector after update as the N dimensional vector xa whose r-th component satis-
fies (xa)r = (x+

vr
)i. We define the asynchronous gradient as the N dimensional

vector ∇aV whose r-th component satisfies (∇aV )r = (∇V −vr
)i. We define the

asynchronous Hessian as the N × N matrix Ha whose elements satisfy, for
r, l = 1, 2, ..., N , (Ha)r,l = (H−vr

)i1,i1 if r = l, (Ha)r,l = (H−vr
)i1,i2 if vr = vl but

i1 �= i2, and (Ha)r,l = 0 for other cases, where indices i1 and i2 are such that
vr ∈ Γi1 and vl ∈ Γi2 .

As a convention, we let V −p = V +
p if p /∈ Γi for any i. We compare the value

of the candidate function V at two time instants jm and jm+1 when the same
part of the states have been updated. The difference between the function val-
ues V −jm

and V −jm+1
can be written as V −jm+1

− V −jm
=

∑jm+1−1
p=jm

(
V +

p − V −p
)

+∑jm+1−1
p=jm

(
V −p+1 − V +

p

)
. Using the discretized controller uk with adaptive gain

Kk from Sec. 2, for V −jm+1
− V −jm

≤ 0 to hold, we need
∑jm+1−1

p=jm

(
V +

p − V −p
)

≤∑jm+1−1
p=jm

(V +
p − V −p+1)

∗. We introduce the notion of an asynchronously positive
invariant set. This notion is closely related to Poisson stability c.f. [3].

Definition 2. Consider an infinite sequence {jm} that satisfies assumptions
(S1-S3). We say a set M ⊂ IRN is asynchronously positive invariant for {jm}
if for xa(j0, j1) ∈ M , we have xa(jm, jm+1) ∈ M for all m ≥ 0.
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We let the set E1 ⊂ IRN be the set of all asynchronous states xa where V −jm+1
−

V −jm
≤ 0 is satisfied for the sequence {jm}. Let the set M1 be the set of xa where

V (Φ−jm+1
(xa(jm, jm+1))) ≤ c1 for some c1 ≥ 0 where Φ−jm+1

is the state transition
map from xa(jm, jm+1) to x−jm+1

.

Proposition 1. If M1 ⊂ E1, then M1 is asynchronously positive invariant.

Let ea = xa − x̂a. This ea contains all the corrections to the states when mea-
surements are available. To estimate the upper bound for sensing intervals, some
assumptions are needed regarding how the prediction error depends on time. If
x+

i (t) = x−i (t), we assume that |x+
i (t + τ) − x−i (t + τ)| ≤ L τq for i = 1, 2, ..., n

where L > 0, q ≥ 1 and for all t, τ ≥ 0. Under this assumption, the asynchronous
error satisfies ‖ ea ‖ ≤ L ΔT q

i

(∑n
l=1 Nla

2
li

) 1
2 for any given i.

Proposition 2.
∑jm+1−1

p=jm

(
V +

p − V −p
)

= (∇aV )T ea + 1
2 (ea)T Haea.

We now know |
∑jm+1−1

p=jm

(
V +

p − V −p
)
| ≤ ‖ ∇V a ‖ ‖ ea ‖+ 1

2 ‖ Ha ‖ ‖ ea ‖2 . Then a
sufficient condition for V −jm+1

−V −jm
≤ 0 is ‖∇V a ‖ ‖ ea ‖+ 1

2 ‖ Ha ‖ ‖ ea ‖2 ≤ ΔV ∗

where ΔV ∗ =
∑jm+1−1

p=jm
(V +

p −V −p+1)
∗. If this condition is satisfied for all xa ∈ M1,

then M1 ⊂ E1 and M1 is asynchronously positive invariant by Prop. 1. We can
estimate the maximum sensing interval ΔTi for M1 to be asynchronously positive
invariant as

ΔT ∗i = inf
xa∈M1

⎛
⎜⎝− ‖∇V a ‖ +

(
‖∇V a ‖2 + 2 ‖Ha ‖ ΔV ∗

) 1
2

L (
∑n

l=1 Nla2
li)

1
2 ‖Ha ‖

⎞
⎟⎠

1
q

. (3)
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Piazza, C. 668
Platzer, André 473, 746
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