
9 Isotope Effect of Diffusion

In this chapter, we consider the diffusion of two chemically identical atoms
that differ in their atomic masses. Their diffusivities are different and this dif-
ference is denoted as isotope effect. The isotope effect, sometimes also called
the mass effect, is of considerable interest. It provides an important experi-
mental means of gaining access to correlation effects. Correlation factors of
self- and solute diffusion are treated in Chap.7 and values for correlation fac-
tors of self-diffusion in several lattices and for various diffusion mechanisms
are listed in Table 7.2. Correlation factors of solute diffusion are the subject
of Sect. 7.5. We shall see below that the isotope effect is closely related to the
correlation factor. Since correlation factors of self-diffusion often take values
characteristic for the diffusion mechanism, isotope effects experiments can
throw light on the mechanism.

9.1 Single-jump Mechanisms

Let us consider two isotopes α and β of the same element labelled by their
isotopic masses mα and mβ . Because of their different masses, the two iso-
topes have different diffusion coefficients in the same host lattice. For self-
and impurity-diffusion in coordination lattices the tracer diffusivities can be
written as:

D∗
α = Aωαfα, and D∗

β = Aωβfβ . (9.1)

The quantity A contains a geometrical factor, the lattice parameter squared,
and for a defect mechanism also the equilibrium fraction of defects or the
defect availability next to the solute. The atom-defect exchange rates ωα

or ωβ are factors in Eq. (9.1). The correlation factors for vacancy-mediated
diffusion in fcc, bcc, and diamond lattices according to Eq. (7.46) have the
same mathematical form, sometimes called the ‘impurity form’ :

fα =
u

ωα + u
, and fβ =

u

ωβ + u
. (9.2)

The quantity u in Eq. (9.2) depends on the exchange rates between vacancy
and solvent atoms but not on the vacancy-tracer exchange rate (see Chap. 7).
Correlation factors of self- and impurity diffusion have the ‘impurity form’
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because tracer isotopes of the same element as the matrix itself are formally
‘solutes’, whose jump rates differ slightly from those of the host atoms due
to the different masses. When the small differences between vacancy-tracer
and vacancy-host atom exchange rates are neglected the correlation factor of
self-diffusion is reduced to one of the values listed in Table 7.2.

After taking the ratio D∗
α/D∗

β and eliminating u and fβ using Eqs. (9.1)
and (9.2), we find

D∗
α − D∗

β

D∗
β

= fα
ωα − ωβ

ωβ
. (9.3)

The tracer-defect exchange rates can be written as

ωα,β = ν0
α,β exp

(
−GM

α,β

kBT

)
(9.4)

where ν0
α,β denote the attempt frequencies of the isotopes α and β, and GM

α,β

the Gibbs free migration energies of their jumps. In the following discussion
we assume

GM
α = GM

β = GM . (9.5)

In other words, the activation enthalpies and entropies of the jump are inde-
pendent of the isotopic masses of the tracers. This is usually well justified,
since the barrier for an atomic jump is determined by the electronic inter-
action, which is identical for two isotopes of the same element, and not by
the masses of the nuclei1. Because of Eq. (9.5) the ratio of the jump rates
reduces to the ratio of the attempt frequencies:

ωα

ωβ
=

ν0
α

ν0
β

. (9.6)

In what follows, we first mention a simple approximation to this frequency
ratio: Einstein’s model for the vibration frequencies of atoms in a solid de-
scribes a crystal as a set of independent harmonic oscillators. Wert [1] has
shown in 1950 that in the classical rate theory, ν0 is the vibration frequency
of an atom in its jump direction. Harmonic oscillator theory tells us that the
vibration frequencies are inversely proportional to the square-root of their
isotopic masses:

ν0
α

ν0
β

≈
√

mβ

mα
. (9.7)

1 Hydrogen diffusion is an exception. For hydrogen isotopes quantum effects (see
Sect. 18.2), such as zero-point vibrations and tunnelling are relevant. Both effects
are mass-dependent. For atoms heavier than Li, quantum effects are usually
negligible.
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Inserting Eq. (9.7) into Eq. (9.3) and making use of Eq. (9.6) yields

(D∗
α − D∗

β)/D∗
β√

mβ/mα − 1
≈ fα . (9.8)

This result was derived by Schoen in 1958 [2]. It suggests that a measure-
ment of the isotope effect permits a determination of the correlation factor.

Unfortunately the derivation of Eq. (9.8) is based on the Einstein approx-
imation, which assumes that all atoms in the crystal vibrate independently.
In other words, the Einstein model neglects many-body effects. Lattice dy-
namics shows that the coupling between atomic vibrations is important and
manifests itself, among other effects, in a spectrum of phonon frequencies.
Based on Vineyard’s [3] classical statistical mechanics treatment of the
atomic jump process (see Chap. 4), Mullen [4] and Le Claire [5, 6] took
into account the influence of many-body effects. They obtain the relation

ωα − ωβ

ωβ
= ∆K

(√
mβ

mα
− 1
)

, (9.9)

where ∆K is denoted as the kinetic energy factor. It is a dimensionless pa-
rameter and denotes the fraction of the kinetic energy of the jumping atom
at the saddle-point with respect to the total kinetic energy, associated with
the motion of all atoms in the jump direction. From Eqs. (9.3) and (9.9) we
find

(D∗
α − D∗

β)/D∗
β√

mβ/mα − 1
= fα∆K ≡ Eα,β , (9.10)

which replaces the approximation of Eq. (9.8). The abbreviation Eα,β intro-
duced in Eq. (9.10) is denoted as the isotope-effect parameter. In an analogous
way, we arrive at

(D∗
β − D∗

α)/D∗
α√

mα/mβ − 1
= fβ∆K ≡ Eβ,α. (9.11)

In principle, the two isotope-effect parameters, Eα,β and Eβ,α, are differ-
ent because fα and fβ are also slightly different. However, the relative mass
differences between two isotope pairs are often small. Then, the differences
between Eβ,α and Eα,β are usually of the order of a few percent and often
smaller than the errors in a typical isotope effect experiment. Therefore, it is
common practice in the literature to use the following approximation:

fα ≈ fβ ≈ f . (9.12)

Equation (9.12) drops the distinction between fα and fβ. f is sometimes
called the geometric correlation factor. f refers to a ‘hypothetical’ tracer
isotope with the same jump rate as the isotopes of the solvent. Then, we may
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drop the distinction between the two isotope effect parameters (i.e. Eα,β ≈
Eβ,α ≈ E) and get

E = f∆K . (9.13)

Because both f and ∆K are positive and not larger than unity we have the
following limits for the isotope effect parameter

0 < E ≤ 1 . (9.14)

Equation (9.13) expresses in compact form the relation between isotope effect
and correlation factor mentioned at the beginning of this chapter. If the
tracer jump is completely decoupled from the motion of other atoms, we have
∆K = 1. This represents the upper limit for the kinetic energy factor. Since
a certain amount of coupling between the diffusing atom and the surrounding
atoms always exists, we expect ∆K < 1.

For the interstitial mechanism we have

E = ∆K (9.15)

since f = 1. If several mechanisms with tracer diffusivities D∗
I , D∗

II , . . . oper-
ate simultaneously (see Eq. 8.9), measurements of the isotope-effect give an
effective isotope-effect parameter, which corresponds to a weighted average

Eeff = EI
D∗

I

D∗
I + D∗

II + . . .
+ EII

D∗
II

D∗
I + D∗

II + . . .
+ . . . , (9.16)

of the isotope effect parameters EI , EII , . . . of the individual mechanisms [7].
A measurement of the isotope effect parameter may not uniquely deter-

mine f and hence the diffusion mechanism. Nevertheless, it is definitely useful
to identify mechanisms, which are consistent with an experimental value of
E, and to reject ones, which are not acceptable.

We remind the reader that in the derivation of Eq. (9.13) we have made
use of the mathematical form of Eq. (9.2). Chap. 7 has shown that there
are indeed important mechanisms for which the correlation factor has this
form. This is the case for the monovacancy mechanisms in cubic coordination
lattices and also for the divacancy mechanism in an fcc lattice [8]. There are,
however, mechanisms where the correlation factor does not have the impu-
rity form (9.2). Examples are mechanisms which have several jump rates such
as diffusion in non-cubic crystals and diffusion mechanisms in cubic crystals,
which involve more than one tracer jump rate (e.g., for nearest-neighbour and
next-nearest neighbour jumps). Sometimes it is possible to derive equations
equivalent to Eq. (9.10) [6]. An example is divacancy diffusion in bcc crys-
tals involving several configurations of a divacancy and transitions between
these configurations [9, 10]. For a more detailed discussion of the validity of
Eq. (9.13) we refer the reader to a review on isotope effects in diffusion by
Peterson [11].
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9.2 Collective Mechanisms

Equation (9.10) has been derived for single-jump mechanisms, where in
a jump event only the tracer atom changes permanently its site. A more
general jump process involves the simultaneous (or collective) jumping of
more than one atom. A simple example is the colinear interstitialcy mecha-
nism (see Fig. 6.7), where two atoms jump simultaneously. For a dumbbell-
interstitialcy mechanism even three atoms are displaced permanently. Other
examples are direct exchange, ring mechanism an chain-like motion of several
atoms. All these mechanisms involve the collective motion of several atoms
(see Chap. 6).

For a mechanism in which n atoms move collectively during one jump
event, the masses in Eq. (9.7) must be replaced by (n − 1)m + mα,β, where
m denotes the average mass of the host atoms [5]. Then,

ν0
α

ν0
β

=

√
(n − 1)m + mβ

(n − 1)m + mα
(9.17)

and the isotope effect parameter is given by [6]

E =
(D∗

α − D∗
β)/D∗

β√
[mβ + (n − 1)m])/[mα + (n − 1)m] − 1

. (9.18)

As a consequence, the isotope effect is reduced. For a highly collective mech-
anism, a very small isotope effect is plausible, due to the ‘dilution’ of the
mass effect by the participation of many solvent atoms in the jump event.
For example, in metallic glasses, collective jump events of chains of atoms
dominate, which typically involve ten to twenty atoms. Indeed the isotope
effect parameter is close to zero (see [15, 16] and Chap. 29).

9.3 Isotope Effect Experiments

Isotope effects in diffusion are usually small effects. An exception is diffusion
of hydrogen isotopes, which is considered later in Sect. 18.2. Depending on
the isotope pair (see Table 9.1), the quantity (D∗

α−D∗
β)/D∗

β is typically of the
order of a few percent. For example, for the isotope pair 105Ag and 110mAg
the term in brackets of Eq. (9.9) is about 0.024. Thus, resolving the effects of
a relatively small mass difference on the diffusion coefficient is a challenging
task. Since the errors in tracer measurements are typically a few percent, it
is not feasible to deduce the isotope effect parameter from determinations of
D∗

α and D∗
β in separate experiments.

Typical experimental situations for isotope effect studies are illustrated
in Fig. 9.1. Two isotopes of one element are diffused simultaneously into the
same sample [11–13]. In this way, errors arising from temperature and time
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Fig. 9.1. Schematic illustration of various isotope effect experiments. Left : isotope
pair A∗/A∗∗ in a solid element A. Middle: isotope pair B∗/B∗∗ in a pure solid A.
Right : isotope pairs A∗/A∗∗ or B∗/B∗∗ in a binary AxBy compound

measurements and from the profiling procedure drop out, since these errors
affect both isotopes in the same way. If the isotopes α and β are co-deposited
in a very thin layer, the diffusion penetration curves of both isotopes (see
also Chap. 13) are given by

Cα,β = C0
α,β exp

(
− x2

4D∗
α,βt

)
, (9.19)

where Cα,β denote their concentrations in depth x after a diffusion anneal
during time t. For a given time the quantities C0

α,β are constants. By taking
the logarithm of the ratio Cα/Cβ, we get from Eq. (9.19)

ln
Cα

Cβ
= ln

C0
α

C0
β

− x2

4D∗
αt

+
x2

4D∗
βt

= ln
C0

α

C0
β

+
x2

4D∗
αt

(
D∗

α

D∗
β

− 1

)
. (9.20)

Using Eq. (9.19) to eliminate x2, we obtain

ln
Cα

Cβ
= const −

(
D∗

α

D∗
β

− 1

)
lnCα . (9.21)

Equation (9.21) shows that from the slope of a plot of ln(Cα/Cβ) versus lnCα

the quantity (D∗
α − D∗

β)/D∗
β can be deduced.

Isotope effect experiments are usually performed with radioisotope pairs.
Examples of such pairs suitable for isotope effect studies are listed in Ta-
ble 9.1. Suppose, for example, that the radioisotopes 195Au and 199Au are
diffused into a single crystal of gold. Then, the isotope effect of self-diffusion
in gold is studied. With the radioisotopes 65Zn and 69Zn diffusing in gold,
the isotope effect of Zn solute diffusion is accessible. In an isotope effect ex-
periment the specific activities (proportional to the concentrations) of both
isotopes must be determined separately. Separation techniques can be based
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Table 9.1. Examples for pairs of radioisotopes suitable for isotope experiments in
diffusion studies

12C 22Na 55Fe 57Co 65Zn 64Cu 105Ag 195Au
13C 24Na 59Fe 60Co 69Zn 67Cu 110Ag 198Au

on the different half-lives of the isotopes, on the differences in the emitted
γ- or β-radiation using γ-spectroscopy, or on a combination of γ- and β-
counting. Half-life separation requires a short-lived and a long-lived isotope.
Scintillation spectroscopy can be used, if the γ spectra are favourable. High-
resolution intrinsic Ge or Ge(Li) detectors are recommended for separation
and corrections for the Compton-scattered radiation must be made. All meth-
ods require careful monitoring of radioactive impurities by either half-life
measurements or by spectroscopy. Very good counting statistics is necessary
to resolve the small differences between the diffusivities of the two isotopes.

Fig. 9.2. Simultaneous diffusion of the radioisotope pair 199Au and 195Au in
monocrystalline Au according to Herzig et al. [14]
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Fig. 9.3. Isotope effect parameters of self-diffusion in Au according to Herzig
et al. [14]

Further details about the experimental techniques in isotope effect experi-
ments can be found in the review of Rothman [12]. In a few experiments,
stable isotope pairs were utilised as diffusers. Then, the separation is achieved
by secondary ion mass spectroscopy (SIMS), which requires good mass reso-
lution and careful background corrections.

Figure 9.2 shows isotope effect measurements for self-diffusion in single
crystals of gold according to Herzig et al. [14]. In this experiment the iso-
tope pair 199Au and 195Au was used. The profile measurement was achieved
by serial sectioning on a microtome. The isotope concentrations Cα and Cβ

in each section were separated by combining γ spectroscopy and half-life
separation. The logarithm of the ratio C(199Au)/C(195Au) is plotted versus
the logarithm of C(199Au), as suggested by Eq. (9.21). Isotope effect param-
eters deduced therefrom are shown in Fig. 9.3. The correlation factor for
self-diffusion via monovacancies in an fcc crystal is f1V = 0.78146 (see Ta-
ble 7.2). The experimental results demonstrate that self-diffusion in gold is
dominated by the monovacancy mechanism with a kinetic energy factor of
∆K ≈ 0.9, which is close to its upper limit 1. The slight decrease of the
isotope effect parameter with increasing temperature has been attributed to
a small contribution of divacancies according to Eq. (9.16). The divacancy
correlation factor (f2V = 0.458, see Table 7.2) is smaller than that of mono-
vacanices. Near the melting temperature Tm, the divacancy contribution in
Au is, however, not more than 20% of the total diffusivity [14].

Reviews of isotope effects in diffusion were given by Le Claire [6] and by
Peterson [11]. A comprehensive collection of isotope effect data, which were
available until 1990, can be found in Chap. 10 of [13]. Diffusion and isotope
effects in metallic glasses have been reviewed by Faupel et al. [15, 16].
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In metallic glasses, isotope effects parameters are usually small and indi-
cate a collective mechanism, which involve the simultaneous chain- or ring-like
motion of several (10 to 20) atoms. As an example, isotope effect measure-
ments involving the isotopes 57Co and 60Co were carried out in the deeply
supercooled liquid state of bulk metallic glasses. The isotope effect parameter
is very small (around 0.1) over the whole temperature range and exhibits no
significant temperature dependence (see Chap. 29) . The magnitude of the
isotope effect is similar to that of the isotope effect found in the glassy state of
conventional metallic glasses [15, 16]. This lends support to the view that the
diffusion mechanism in metallic glasses does not change at the calorimetric
glass transition temperature. Highly collective hopping processes occurring in
the glassy state still determine long-range diffusion in a deeply undercooled
melt.
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