
8 Dependence of Diffusion on Temperature

and Pressure

So far, nothing has been said about the dependence of diffusion upon thermo-
dynamic variables such as temperature, pressure, and composition. Diffusion
in solids generally depends rather strongly on temperature, being low at low
temperatures but appreciable at high temperatures. In an Arrhenius diagram
the logarithm of the diffusivity is plotted versus the reciprocal absolute tem-
perature. The wide range of diffusivities and activation parameters, which
can occur in a solid is illustrated in the Arrhenius diagram of Fig. 8.1, where
diffusion coefficients for various elements in lead are displayed. The ‘spec-
trum’ of diffusivities covers many orders of magnitude from the very fast
diffusion of copper to the rather slow self-diffusion of lead. For semiconduc-
tors, an even wider spectrum of foreign atom diffusivities has been reported
(see Chap. 24).

The variation of the diffusion coefficient with pressure, at least for pres-
sures accessible in laboratory devices, is far less striking than that with tem-
perature. Usually, the diffusivity decreases with pressure not more than a fac-
tor of ten for pressures of 1GPa (104 bar). The variation of the diffusivity with
composition can range from the very slight to significant. Examples of the
influence of composition on diffusion can be found in Parts III to VI of this
book. In this chapter, we concentrate on the dependence of the diffusivity on
temperature and pressure.

8.1 Temperature Dependence

8.1.1 The Arrhenius Relation

The temperature dependence of diffusion coefficients is frequently, but by no
means always, found to obey the Arrhenius formula

D = D0 exp
(
−∆H

kBT

)
. (8.1)

In Eq. (8.1) D0 denotes the pre-exponential factor also called the frequency
factor, ∆H the activation enthalpy of diffusion1, T the absolute temperature,
1 In the literature the symbol Q is also used instead of ∆H .
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Fig. 8.1. Arrhenius plot of diffusion for various elements in Pb; activation param-
eters from [1]

and kB the Boltzmann constant. Both ∆H and D0, are called the activation
parameters of diffusion2. The activation enthalpy of a diffusion process

∆H = −kB
∂ lnD

∂(1/T )
(8.4)

corresponds to the negative slope of the Arrhenius diagram. For a tempera-
ture-independent activation enthalpy, the Arrhenius diagram is a straight
line with slope −∆H/kB. The intercept of the extrapolated Arrhenius line

2 Equation (8.1) is also written as

D = D0 exp

„
−∆H

RT

«
, (8.2)

where R denotes the gas constant. Then,

R = NAkB = 8.3145 × 10−3 kJ mol−1 K−1 (8.3)

with NA denoting the Avogadro number. The activation enthalpy ∆H is either
measured in SI units kJmol−1 K−1 or in eV per atom. Note that 1 eV per atom
= 96.472 kJmol−1.
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for T−1 ⇒ 0 yields the pre-exponential factor D0. It can usually be written
as

D0 = gfν0a2 exp
(

∆S

kB

)
, (8.5)

where ∆S is called the diffusion entropy, g is a geometrical factor, f is the
correlation factor, ν0 is the attempt frequency, and a some lattice parameter.
Combining Eqs. (8.1) and (8.5) we can write

D = gfν0a2 exp
(

∆S

kB

)
exp

(
−∆H

kBT

)
= gfν0a2 exp

(
− ∆G

kBT

)
. (8.6)

On the right-hand side of Eq. (8.6), the Gibbs free energy of activation

∆G = ∆H − T∆S (8.7)

has been introduced to combine the activation enthalpy and entropy. Ther-
modynamics tells us that

∂∆H

∂T
= T

∂∆S

∂T
. (8.8)

Thus, the temperature variations of enthalpy and entropy are coupled. If ∆H
is temperature independent, this must hold for ∆S as well and vice versa.

Activation parameters for diffusion in metals and alloys can be found in
the data collection edited by the present author [1] and for semiconductors
and other non-metallic materials in a collection edited by Beke [2].

The physical interpretation of the activation parameters ∆H and of D0

depends on the diffusion mechanism, on the type of diffusion process, and
on the lattice geometry. Simple Arrhenius behaviour should not, however, be
assumed to be universal. Departures from it may arise for reasons which range
from fundamental aspects of the mechanisms of atomic migration (multiple
mechanisms, multiple jump vectors, . . . ) to effects associated with impurities
and/or with microstructural features such as grain boundaries or dislocations.
In this chapter, we consider lattice diffusion. Diffusion along high-diffusivity
paths is the subject of Chaps. 31 and 32.

If several diffusion mechanisms with diffusion coefficients DI , DII , . . . and
activation parameters ∆HI , ∆HII , . . . and D0

I , D0
II , . . . contribute to the

total lattice diffusivity, D, we have

D = DI +DII + . . . = D0
I exp

(
−∆HI

kBT

)
+D0

II exp
(
−∆HII

kBT

)
+ . . . . (8.9)

In such cases, the Arrhenius diagram will show an upward curvature. With
increasing (decreasing) temperature the contribution of the process with the
highest (lowest) activation enthalpy becomes more and more important. The
activation enthalpy defined by Eq. (8.4) is then an effective (or apparent)
value
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∆Heff = ∆HI
DI

DI + DII + . . .
+ ∆HII

DII

DI + DII + . . .
+ . . . , (8.10)

which represents a weighted average of the individual activation enthalpies.
A well-studied example is self-diffusion in metals. Compared with divacancies
(index: 2V), usually the monovacancy mechanism (index: 1V) is the dominat-
ing contribution to self-diffusion in fcc metals at temperatures below about
2/3 of the melting temperature since ∆H1V < ∆H2V . At higher temper-
atures divacancies contribute with a magnitude that varies from metal to
metal (see [3, 4] and Chap. 17).

8.1.2 Activation Parameters – Examples

In what follows, we consider explicitly the physical interpretation of the acti-
vation parameters for three examples, all concerning cubic lattices: interstitial
diffusion, self-diffusion via vacancies, and solute diffusion in a dilute substi-
tutional alloy.

For direct interstitial diffusion (see Chap. 6) in a dilute interstitial
alloy an unoccupied interstice is available next to the jumping atom. Random
walk theory of Chap. 4 tells us that the diffusivity of solute interstitials can
be written as

D = ga2ω = ga2ν0 exp
(
− GM

kBT

)
, (8.11)

where g is a geometrical factor, a the lattice parameter, and ω the jump rate
to a neighbouring interstitial site. For octahedral interstitials in the fcc lattice
we have g = 1 and in the bcc lattice g = 1/6.

As discussed in Chap. 5, the Gibbs free energy of migration GM – the
major parameter in the jump rate ω – can be separated according to

GM = HM − TSM , (8.12)

where HM denotes the enthalpy and SM the entropy of migration of the
interstitial solute. Comparing Eqs. (8.1) and (8.11), the activation parameters
of interstitial diffusion have the following meaning:

∆H ⇒ HM and ∆S ⇒ SM . (8.13)

Direct interstitial diffusion is the simplest diffusion process. The enthalpy and
entropy of diffusion are identical with the pertinent migration quantities of
the interstitial. Activation enthalpies of interstitial diffusers, such as H, C, N,
and O in metals, tend to be fairly low since no defect formation enthalpy is
required. For the same reason, interstitial diffusion is a much faster process
than self- or substitutional solute diffusion.

Self-diffusion and diffusion of substitutional solutes (impurities)
are defect-mediated. The diffusivity is, in essence, a product of geometrical
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terms ga2, a correlation factor (f for self-diffusion or f2 for impurity diffusion)
and of the atomic jump rate (Γ for self-diffusion or Γ2 for impurity diffusion):

D = fga2Γ (self-diffusion), D2 = f2ga2Γ2 (impurity diffusion) . (8.14)

In the case of self-diffusion, the defect availability equals the equilibrium
site fraction of the defect, Ceq

D , discussed in Chap. 5. For a monovacancy
mechanism in an elemental crystal, we have Ceq

D ≡ Ceq
1V . The jump rate of

a self-atom can be written as

Γ = Ceq
D ω = gD exp

(
− GF

D

kBT

)
ω , (8.15)

where ω denotes the defect jump rate. On the right-hand side of Eq. (8.15),
the expression for the equilibrium fraction of defects from Chap. 5 has been
inserted with the Gibbs free energy of defect formation GF

D. gD is a geometric
factor depending on the lattice geometry and the type of the defect. For
monovacancies in a monoatomic solid gD = 1. For self-interstitials in 〈100〉-
dumbbell configuration in an fcc crystal gD = 3.

For solute diffusion in a very dilute substitutional alloy (often denoted as
impurity diffusion) the Lomer relation Eq. (5.31) from Chap. 5 describes the
defect-availability, p, on a site adjacent to a solute. We then find for the jump
rate of a substitutional impurity:

Γ2 = pω2 = Ceq
D exp

(
GB

kBT

)
ω2 = gD exp

(
−GF

D − GB

kBT

)
ω2 . (8.16)

GB denotes the Gibbs free energy of binding between defect and solute and
ω2 the defect-solute exchange rate. The quantity GF

D − GB is the Gibbs free
energy of defect formation on a site adjacent to the solute. For an attractive
interaction (GB > 0) the defect availability p is enhanced whereas for a re-
pulsive interaction (GB < 0) it is reduced compared to the equilibrium defect
concentration in the pure host lattice. As usual, GB can be decomposed ac-
cording to GB = HB − TSB, where HB is the binding enthalpy and SB the
binding entropy (see Chap. 5).

The Gibbs free energies of the defect-mediated jumps can be separated
into the enthalpic and entropic terms according to:

GM = HM − TSM (self-atom), GM
2 = HM

2 − TSM
2 (impurity). (8.17)

GM is the Gibbs free energy of motion for an exchange of the self-atom with
the defect in a pure solvent. GM

2 is the barrier for an exchange-jump between
impurity and defect (e.g., a vacancy). Then, the exchange jump rates read
either

ω = ν0 exp
(
− GM

kBT

)
= ν0 exp

(
SM

kB

)
exp

(
−HM

kBT

)
, (8.18)
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or

ω2 = ν0
2 exp

(
− GM

2

kBT

)
= ν0

2 exp
(

SM
2

kB

)
exp

(
−HM

2

kBT

)
, (8.19)

where ν0, ν0
2 denote the corresponding attempt frequencies. Usually, the De-

bye frequency of the lattice is an adequate approximation for the attempt
frequencies. Of course, values of the Gibbs energies, enthalpies, and entropies
of motion depend on the defect involved and on the material considered.

Inserting the expressions of f and Γ or f2 and Γ2 into Eq. (8.14), we
arrive at the following activation parameters:

– For self-diffusion via one type of defect (subscript D) we get

∆H ⇒ HF
D + HM

D and ∆S ⇒ SF
D + SM

D . (8.20)

The activation enthalpy (entropy) of self-diffusion equals the sum of the
formation and migration enthalpies (entropies) of the diffusion-mediating
defect. For a monovacancy we have ∆H = HF

1V + HM
1V .

– For solute diffusion in a dilute substitutional alloy the activation enthalpy
is a more slightly complex quantity. Combining Eqs. (8.4), (8.14), and
(8.16) we get

∆H2 ⇒ HF
D − HB + HM

2 + C . (8.21)

The correlation term
C = −kB

∂ ln f2

∂(1/T )
(8.22)

arises from the temperature dependence of the correlation factor f2 of im-
purity diffusion (see Chap. 7). The quantity HF

D−HB is the formation en-
thalpy of the defect-impurity complex and HM

2 the barrier for a impurity-
defect exchange. Depending on the various contributions, the activation
enthalpy of substitutional impurity diffusion, ∆H2, can be higher or lower
than the activation enthalpy of self-diffusion (see Chap. 19).

8.2 Pressure Dependence

The effect of hydrostatic pressure p on diffusion can easily be recognised from
the Arrhenius expression Eq. (8.6). A variation of the diffusivity with pressure
is largely due to the fact that the Gibbs free energy of activation varies with
pressure according to

∆G = ∆H − T∆S = ∆E − T∆S + p∆V . (8.23)

Here ∆E denotes the activation energy (∆E is the change in internal energy)
and ∆V the activation volume of diffusion. Thermodynamic tells us that

∆V =
(

∂∆G

∂p

)
T

. (8.24)
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Equation (8.24) can be considered as the definition of the activation volume.
A comprehensive characterisation of a diffusion process requires informa-

tion about three activation parameters, namely:

∆E, ∆S, and ∆V .

The activation energy ∆E and the entropy ∆S are usually well appreciated
in the diffusion literature, whereas the activation volume ∆V is often a ‘for-
gotten’ parameter. Activation enthalpy and activation energy are related via

∆H = ∆E + p∆V . (8.25)

The term p∆V can be significant at high pressures. At ambient pressure, it
is almost negligible for solids. Then ∆E ≈ ∆H and activation energy and
activation enthalpy are synonymous.

Equations (8.6) and (8.24) show that the activation volume can be ob-
tained from measurements of the pressure dependence of the diffusion coeffi-
cient at constant temperature via

∆V = −kBT ·
(

∂ lnD

∂p

)
T

+ kBT · ∂ ln
(
fa2ν0

)
∂p︸ ︷︷ ︸

corr. term

. (8.26)

As an example, Fig. 8.2 shows the self-diffusion coefficient of gold as a function
of pressure at constant temperature. The slope of the logarithm of D as
a function of p corresponds to the first term of Eq. (8.26). The second term
on the right-hand side of Eq. (8.26) is a correction term. It can be estimated
from the isothermal compressibility κT and the Grüneisen constant γG [5–7]:

corr. term ≈ kBTκT γG . (8.27)

Estimates for the correction terms on the basis of Eq. (8.27) lead to small
corrections in the range of 0.01 to 0.03 Ω, where Ω denotes the atomic volume.
Often the correction term can be neglected within the experimental accuracy.
In the case of Fig. 8.2, the activation volume is ∆V = 0.76 Ω.

If several mechanisms with diffusivities DI , DII , . . . operate simultane-
ously (see Eq. 8.9), measurements of the pressure dependence give an effective
activation volume

∆Veff = ∆VI
DI

DI + DII + . . .
+ ∆VII

DII

DI + DII + . . .
+ . . . , (8.28)

which is a weighted average of the activation volumes of the individual ac-
tivation volumes ∆VI , ∆VII , . . . . Since the relative contributions of several
mechanisms vary with temperature (and pressure) the effective activation
volume is temperature (and pressure) dependent.

Activation volumes of ionic conduction (see Chaps. 26 and 27) can be de-
termined from the pressure dependence of the dc conductivity, σdc, according
to
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Fig. 8.2. Pressure dependence of 198Au diffusion in Au single crystals at constant
temperature according to Werner and Mehrer [11]. Ω denotes the atomic volume
of Au

∆Vσ ≈ −kBT
∂ lnσdc

∂p
. (8.29)

The atomistic meaning of ∆Vσ depends on the type of the ion-conducting
material, on the type of disorder (Frenkel or Schottky disorder), and on the
temperature region studied (intrinsic or extrinsic region). Examples are dis-
cussed below.

There are good reasons why the study of pressure effects has consumed
energies of many researcher in the past. First, a thorough understanding of
diffusion requires knowledge about the influence of pressure on the diffusivity.
Second, in favourable cases the value of ∆V itself, its magnitude and sign,
can throw light on the mechanism(s) of diffusion that is (are) operating (see
below). Some selected values for activation volumes are listed in Table 8.1.
For elemental crystals the unit is the atomic volume Ω; for compounds the
unit is the molar volume Vm. For a comprehensive collection of activation
volumes for metals and alloys available until 1990 the reader is referred to
Chap. 10 in [1]. A more recent review about the effects of pressure on self-
and solute diffusion in metals and semiconductors is given in [6].

The microscopic interpretation of the activation volume ∆V depends on
the mechanism of diffusion as it also does for ∆H and ∆S. As discussed in
Chap. 6, self-diffusion in crystalline solids is mediated by defects. In metals,
monovacancies dominate self-diffusion at low and moderate temperatures,
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Table 8.1. Activation volumes of diffusion and ionic conduction; in units of the
atomic volume Ω for elements; in units of the molar volume Vm for compounds.

Diffusion process ∆V/Ω or ∆V/Vm Reference

Cu self-diffusion +0.93 to +1.09 Beyeler and Adda [8]
Ag self-diffusion +0.66 to +0.88 Beyeler and Adda [8],

Rein and Mehrer [9]
Au self-diffusion +0.72 to +0.75 Dickerson et al. [10],

Beyeler and Adda [8]
Werner and Mehrer [11],
Rein and Mehrer [9]

Na self-diffusion +0.4 to +0.75 Mundy [12]

Ge diffusion in silicon -0.68 to -0.28 Södervall et al. [15],
Aziz et al. [16]

N in α-iron +0.05 Bosman et al. [13]
C in α-iron -0.08 to -0.02 Bosman et al. [14]

Al self-diffusion +1.29 Beyeler and Adda [8]

Ge in Al +1.16 to + 1.24 Thürer et al. [17]
Zn in Al +0.74 to +1.09 Erdelyi et al. [18]
Mn in Al +1.67 Rummel et al. [19]
Co in Al +1.64 to 1.93 Rummel et al. [19]

Schottky pair formation:
V F

SP

1.63 for KBr
2.04 for NaCl
1.23 for KBr
1.37 for NaBr

Yoon and Lazarus [22]

Cation migration:
V M

VC

0.21 for KCl
0.26 for NaCl
0.25 for KBr
0.25 for NaBr

Yoon and Lazarus [22]

Intrinsic conduction:
V M

VC
+ V F

SP /2
1.03 for KCl
1.28 for NaCl
0.87 for KBr
0.93 for NaBr

Yoon and Lazarus [22]

Ag ion conduction
α-AgI ≈ 0 Mellander [23]

whereas divacancies contribute to some extent as temperatures approach the
melting temperature. Self-interstitials are important, for example, in silicon.
In what follows, we illustrate the activation volumes for various mechanisms.

8.2.1 Activation Volumes of Self-diffusion

For a defect mechanism of self-diffusion the Gibbs free energy of activation
is composed of a formation (superscript F) and a migration (superscript M)
term (see Sect. 8.1):
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∆G = GF
D + GM

D . (8.30)

Considering Eq. (8.24) it is obvious that the activation volume is also com-
posed of a formation volume, V F

D , and a migration volume, V M
D , of the

diffusion-mediating defect according to

∆V = V F
D + V M

D . (8.31)

The formation volume of a monovacancy is illustrated in Fig. 8.3.
The left-hand side of the figure indicates a vacancy in a ‘rigid’ lattice. Without
relaxation the volume of the crystal would increase by one atomic volume Ω.
The situation illustrated on the right-hand side corresponds to a vacancy
with some relaxation of the neighbouring atoms. This picture indicates for
the formation volume of a monovacancy:

V F
1V = +Ω − Vrel,1V . (8.32)

Usually, inward relaxation is found, which implies that the formation volume
of the vacancy V F

1V is somewhat smaller than Ω as the relaxation volume
Vrel,1V is positive. The amount and sign of relaxation depend on the material.

The formation volume of a divacancy encompasses the increase of
the crystal volume due to the creation of two new lattice sites minus the
relaxation volume Vrel,2V :

V F
2V = +2Ω− Vrel,2V . (8.33)

The formation volume of the divacancy is larger than that of a monovacancy,
i.e. V F

2V > V F
1V . For a material in which diffusion is mediated by mono-

and divacancies the total activation volume increases as the relative diva-
cancy contribution to the total diffusivity increases with temperature (see
Chap. 17).

The formation volume of a self-interstitial is illustrated in Fig. 8.4.
Without relaxation the formation of a self-interstitial would decrease the
crystal volume by one atomic volume. On the other hand, the formation of
a self-interstitial causes (considerable) outward relaxation of the surrounding
lattice.

Fig. 8.3. Schematic illustration of the formation volume of a vacancy
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Fig. 8.4. Illustration of the formation volume of a self-interstitial

Fig. 8.5. Illustration of the migration volume. Upper part: interstitial migration.
Lower part : vacancy migration

V F
I = −Ω + Vrel,I . (8.34)

Whether V F
I is positive or negative depends on the amount of outward relax-

ation. If the relaxation volume Vrel,I is positive and larger than one atomic
volume – as is the case for close-packed metals [20] – the formation volume
is positive. For a less densely packed structure such as silicon, a negative
formation volume of a self-interstitial can be expected.

The migration volume of an atom (or of a defect) refers to the volume
change when the jumping atom is transferred from its equilibrium position
to the saddle-point position. Its illustration is a somewhat ‘dangerous’ pro-
cedure. The jump event occurs in a short time interval of about 10−12 s.
During this short period a complete relaxation of the saddle-point configu-
ration cannot occur because atomic displacements in a solid proceed by the
velocity of sound. Nevertheless, with some precaution Fig. 8.5 may serve as
an illustration of the migration volume.
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Fig. 8.6. Activation volumes for self-diffusion in Au versus temperature: trian-
gles [8], square [9], full circles [11]

The migration volume of a vacancy in close-packed metals is fairly small.
Experimental values around V M = 0.15 Ω have been reported for Au. These
value were determined by studying the effect of hydrostatic pressure on the
annealing rate of vacancies, which had been produced by quenching Au wires
from high temperatures [21]. Similar numbers are reported for Pt. These val-
ues suggest that the major part of the activation volume of vacancy-mediated
self-diffusion in metallic elements (see Table 8.1) must be attributed to the
formation volume.

Figure 8.6 shows the activation volumes ∆V for self-diffusion of Au be-
tween about 600K and the melting temperature TM . ∆V is almost inde-
pendent of temperature indicating that a single mechanism dominates in
the whole temperature range. For Au this is the monovacancy mechanism.
Values between 0.6 and 0.9 Ω are typical for vacancy-mediated diffusion in
close-packed metals such as Cu, Ag, and Au (see Table 8.1). For silver, an in-
crease of the activation volume from about 0.6 to 0.9 Ω has been reported [6,
9] and taken as evidence for the simultaneous action of mono- and divacancies
(see Chap. 17).

A comparison between the activation volumes of self-diffusion of noble
metals and of sodium indicates (see Table 8.1) that the relaxation around
a vacancy is more pronounced for bcc metal. Negative activation volumes
between about −0.6Ω and −0.3Ω have been reported for the diffusion of Ge
in silicon (see Table 8.1). Solute diffusion of Ge in silicon is very similar to
Si self-diffusion and Ge diffuses by the same mechanism as Si. Negative acti-
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vation volumes are considered as evidence (among others) for self-interstitial
mediated diffusion in silicon (see [6, 15] and Chap. 23).

8.2.2 Activation Volumes of Solute Diffusion

For diffusion of interstitial solutes no defect formation term is required.
Then, from Eqs. (8.11) and (8.24) the activation volume is

∆V = V M , (8.35)

where V M is the migration volume of the interstitial solute. As already men-
tioned, ‘small’ atoms such as C, N, and O in metals diffuse by this mechanism.
The effect of pressure was studied for C and N in α-Fe, for C in Co and for
C in Ni and for N and O diffusion in V (for references see Chap. 10 in [1]).
Interstitial diffusion is characterised by small values of the activation volume.
For example, for C and N diffusion in α-iron small values between -0.08 and
+0.05 Ω were reported (see Table 8.1). This implies that interstitial diffusion
is only very weakly pressure dependent.

Diffusion of substitutional impurities is mediated by vacancies. Ac-
cording to Sect. 8.1 the diffusivity can be written as

D2 = ga2ν0 exp
(
−GF

1V − GB

kBT

)
exp

(
−HM

2

kBT

)
f2 , (8.36)

where GB is the Gibbs ebergy of binding between solute and vacancy. HM
2

denotes the activation enthalpy for defect-impurity exchange and f2 the corre-
lation factor of impurity diffusion. Using Eq. (8.24), we get for the activation
volume of solute diffusion:

∆V2 = V F
1V − V B + V M

2 −kBT
∂ ln f2

∂p︸ ︷︷ ︸
C2

. (8.37)

The term V F
1V −V B represents the formation volume of the impurity-vacancy

pair. It is different from the formation volume of the vacancy in the pure sol-
vent due to the volume change V B associated with pair formation. V M

2 is
the migration volume of the vacancy-solute exchange, which in general is
different from the migration volume V M

1V of the vacancy in the pure matrix.
Finally, the term C2 arises from the pressure dependence of the solute cor-
relation factor. V M

2 + C2 can be interpreted as the migration volume of the
solute-vacancy complex.

The activation volumes for various solutes in aluminium listed in Ta-
ble 8.1 show a considerable variation. As we shall see in Chap. 19, transition
metal solutes are slow diffusers, whereas non-transition elements are normal
diffusers in Al. Self-diffusion in Al has been attributed to the simultaneous
action of mono- and divacancies and a similar interpretation is tenable for the
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diffusion of non-transition elements such as Zn and Ge. On the other hand,
transition elements in Al have high activation enthalpies and entropies of
diffusion, which can be attributed to a repulsive interaction between vacancy
and solute (see Chapt 19). The high activation volumes for the transition met-
als diffusers Mn and Co indicate large formation and/or migration volumes
of the solute-vacancy complex [6].

8.2.3 Activation Volumes of Ionic Crystals

The pressure dependence of the ionic conductivity has been studied in sev-
eral alkali halide crystals (KCl, NaCl, NaBr, KBr) with Schottky disorder
by Yoon and Lazarus [22]. These crystals consist of sublattices of cations
(index C) and anions (index A). In the intrinsic region, i.e. at high temper-
atures, cation and anion vacancies, VC and VA, are simultaneously present
in equal numbers (Schottky pairs). In the extrinsic region of crystals, doped
with divalent cations, additional vacancies in the cation sublattice are formed
to maintain charge neutrality (see Chaps. 5 and 26):

(i) In the intrinsic region the conductivity is due to Schottky pairs. The
formation volume of Schottky pairs is

V F
SP = V F

VC
+ V F

VA
, (8.38)

where V F
VC

and V F
VA

denote the formation volumes of cation and anion
vacancies, respectively. The following values for the formation volume of
Schottky pairs have been reported [22] in units cm3 mol−1:

V F
SP : 61 ± 9 for KCl, 55 ± 9 for NaCl, 54 ± 9 for KBr, 44 for NaBr.

(ii) In the extrinsic region the conductivity is dominated by the motion
of cation vacancies because anion vacancies are less mobile. Thus, from
the pressure dependence of the conductivity one obtains the migration
volume of the cation vacancy, V M

VC
. The following values have been re-

ported [22]:

V M
VC

:8 ± 1 for KCl, 11± 1 for NaCl, 11 ± 1 for KBr, 8 ± 1 for NaBr.

Due to the higher mobility of cation vacancies the activation volume of
the ionic conductivity in the intrinsic region, ∆Vσ, is practically given by

∆Vσ = V F
SP /2 + V M

VC
. (8.39)

In principle, anion vacancies also contribute to the conductivity (see
Chap. 26). However, as the anion component of the total conductivity
is usually small this contribution has been neglected in Eq. (8.39).

A comparison between activation volumes in metals and ionic crystals with
Schottky disorder may be useful. In units of the molar volumes of the crystals,
Vm, the activation volumes of the ionic conductivity in the intrinsic region
are:
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∆Vσ:1.03 Vm for KCl, 1.28 Vm for NaCl, 1.23 Vm for KBr, 1.37 Vm for NaBr.

The activation volumes for intrinsic ionic conduction, which is due to the
motion of vacancies, are of the order of one molar volume. These values are
similar to activation volumes of self-diffusion in close-packed metals, where
the activation volume is also an appreciable fraction of the atomic volume
of the material (see above). In contrast, the migration volumes of cation
vacancies are smaller:

V M
VC

:0.21 Vm for KCl, 0.26 Vm for NaCl, 0.25 Vm for KBr, 0.25 Vm for NaBr.

These values indicate a further similarity between metals and ionic crystals.
In both cases, the migration volumes of vacancies are only a small fraction
of the atomic (molar) volume.

The α-phase of silver iodide is a typical example of a fast ion conductor
(see Chap. 27). The immobile I− ions form a body-centered cubic sublattice,
while no definite sites can be assigned to the Ag+ ions. In the cubic unit cell 42
sites are available for only two Ag+ ions. Because of these structural features,
Ag+ ions are easily mobile and no intrinsic defect is needed to promote their
migration. The pressure dependence of the dc conductivity in α-AgI was
studied up to 0.9GPa by Mellander [23]. The activation volume is 0.8 to
0.9 cm3 mol−1. This very low value can be attributed to the migration of Ag+

ions, confirming the view that migration volumes are small.

8.3 Correlations between Diffusion and Bulk Properties

Thermodynamic properties of solids such as melting points, heats of melting,
and elastic moduli reflect different aspects of the lattice stability. It is thus
not surprising that the diffusion behaviour correlates with thermodynamic
properties. Despite these correlations, diffusion remains a kinetic property
and cannot be based solely on thermodynamic considerations. In this sec-
tion, we survey some correlations between self-diffusion parameters and bulk
properties of the material. These relationships, which can be qualified as ‘en-
lightened empirical guesses’, have contributed significantly to the growth of
the field of solid-state diffusion. The most important developments in this
area were: (i) the establishment of correlations between diffusion and melting
parameters and (ii) Zener’s hypothesis to relate the diffusion entropy with
the temperature dependence of elastic constants. These old and useful corre-
lations have been re-examined by Brown and Ashby [24] and by Tiwari
et al. [25].

8.3.1 Melting Properties and Diffusion

Diffusivities at the Melting Point: The observation that the self-diffusi-
vity of solids at the melting point, D(Tm), roughly equals a constant is an old
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one, dating back to the work of van Liempt from 1935 [27]. But it was not
until the mid 1950s that enough data of sufficient precision were available
to recognise that D(Tm) is only a constant for a given structure and for
a given type of bonding: the bcc structure, the close-packed structures fcc
and hdp, and the diamond structured elements all differ significantly. As
data became better, additional refinements were added: the bcc metals were
subdivided into two groups each with characteristic values of D(Tm) [26];
also alkali halides were seen to have a characteristic value of D(Tm) [31].
Figure 8.7 shows a comparison of self-diffusion coefficients extrapolated to the
melting point for various classes of crystalline solids according to Brown and
Ashby [24]. The width of the bar is either twice the standard deviation of the
geometric mean, or a factor of four, whichever is greater. Data for the solidus
diffusivities of bcc and fcc alloys coincide with the range shown for pure
metals. It is remarkable that D(Tm) varies over about 6 orders of magnitude,
being very small for semiconductors and fairly large for bcc metals.

At the melting temperature Tm according to Eq. (8.6) the self-diffusivity
is given by

D(Tm) = D0 exp
(
− ∆H

kBTm

)
= gfa2ν0 exp

(
∆S

kB

)
exp

(
− ∆H

kBTm

)
. (8.40)

The constancy of the diffusivity at the melting point reflects the fact that for
a given crystal structure and bond type the quantities D0 and ∆H/(kBTm)
are roughly constant:

Fig. 8.7. Self-diffusivities at the melting point, D(Tm), for various classes of crys-
talline solids according to Brown and Ashby [24]
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The pre-exponential factor D0 is indeed almost a constant. According
to Eq. (8.5) it contains the attempt frequency ν0, the lattice parameter a,
geometric and correlation factors, and the diffusion entropy ∆S. Attempt
frequencies are typically of the order of the Debye frequency, which lies in
the range of 1012 to 1013 s−1 for practically all solids. The diffusion entropy
is typically of the order of a few kB. Correlation factors and geometric terms
are not grossly different from unity.

The physical arguments for a constancy of the ratio ∆H/(kBTm) are
less clearcut. One helpful line of reasoning is to note that the formation of
a vacancy, like the process of sublimation, involves breaking half the bonds
that link an atom in the interior of the crystal to its neighbours; the enthalpy
required to do so should scale as the heat of sublimation, Hs. The migration
of a vacancy involves a temporary loss of positional order – it is somehow
like local melting – and involves an energy that scales as the heat of melting
(fusion), Hm. One therefore may expect

∆H

kBTm
≈ α

Hs

kBTm
+ β

Hm

kBTm
, (8.41)

where α and β are constants. The first term on the right-hand side contains
the sublimation entropy at the melting temperature, Ss = Hs/Tm; the second
term contains the entropy of melting, Sm = Hm/Tm. These entropy changes
are roughly constant for a given crystal structure and bond type; it follows
that ∆H/(kBTm) should be approximately constant, too.

Activation Enthalpy and Melting Properties: From practical consider-
ations, correlations between melting and activation enthalpy are particularly
useful. Figure 8.8 shows the ratio ∆H/(kBTm) for various classes of crys-
talline solids. It is approximately a constant for a given structure and bond
type. The constants defined in this way vary over a factor of about 3.5. The
activation enthalpy was related to the melting point many years ago [27–29].
These correlations have been reconsidered for metals and alloys by Brown
and Ashby [24] and for pure metals recently by Tiwari et al. [25]. The
activation enthalpy of diffusion is related via

∆H ≈ K1Tm (8.42)

to the melting temperature (expressed in Kelvin) of the host crystal. This
relation is called the van Liempt rule or sometimes also the Bugakov – van
Liempt rule [30].

One may go further by invoking the thermochemical rule of Trouton,
which relates the melting point of materials to their (nearly) constant entropy
of melting, Sm. Trouton’s rule, Sm = Hm/Tm ≈ 2.3 cal/mol = 9.63 J/mol,
allows one to replace the melting temperatuire in Eq. (8.42) by the enthalpy
of melting, Hm. Then, the van Liempt rule may be also expressed as

∆H ≈ K1

Sm
Hm ≡ K2Hm . (8.43)
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Fig. 8.8. Normalised activation enthalpies of self-diffusion, ∆H/(kBTm), for classes
of crystalline solids according to Brown and Ashby [24]

Fig. 8.9. Activation enthalpies of self-diffusion in metals, ∆H , versus melting
temperatures, Tm, according to Tiwari et al. [25]

K1 and K2 are constants for a given class of solids. Plots of Eqs. (8.42) and
(8.43) for metals are shown in Figs. 8.9 and 8.10. Values of the slopes for
metals are: K1 = 146 Jmol−1K−1 and K2 = 14.8 [25].

The validity of Eq. (8.42) has been demonstrated for alkali halides by
Barr and Lidiard [31]. For inert gas solids and molecular organic solids,
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Fig. 8.10. Activation enthalpies of self-diffusion in metals, ∆H , versus melting
enthalpies, Hm, according to Tiwari et al. [25]

the validity of Eqs. (8.42) and (8.43) has been established by Chadwick
and Sherwood [32].

The correlations above are based on self-diffusion, which is indeed the
most basic diffusion process. Diffusion of foreign elements introduces addi-
tional complexities such as the interaction between foreign atom and vacancy
and temperature-dependent correlation factors (see Chaps. 7 and 19). Corre-
lations between the activation enthalpies of self-diffusion and substitutional
impurity diffusion have been proposed by Beke et al. [33].

Activation Volume and Melting Point: The diffusion coefficient is pres-
sure dependent due to the term p∆V in the Gibbs free energy of activation.
The activation volume of diffusion, ∆V , has been discussed in Sect. 8.2.
Nachtrieb et al. [34, 35] observed that the diffusivity at the melting point
is practically independent of pressure. For example, in Pb and Sn the lat-
tice diffusivity, as for most metals, decreases with increasing pressure in such
a way that the increased melting point resulted in a constant rate of diffu-
sion at the same homologous temperature. If one postulates that D(Tm) is
independent of pressure, we have

d [lnD(Tm)]
dp

= 0 . (8.44)

Then, we get from Eq. (8.6)

∆V =
∆H(p = 0)
Tm(p = 0)

dTm

dp
(8.45)
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if the small pressure dependence of the pre-exponential factor is neglected.
This equation predicts that ∆V is controlled by the sign and magnitude
of dTm/dp. In fact, Brown and Asby report reasonable agreement of
Eq. (8.45) with experimental data [24]. In general, dTm/dp is positive for
most metals and indeed their activation volumes are positive as well. For
plutonium dTm/dp is negative and, as expected from Eq. (8.45), the activa-
tion volume of Pu is negative [36].

Later, however, also remarkable exceptions have been reported, which
violate Eq. (8.45). For example, dTm/dp is negative for Ge [37], but the acti-
vation volume of Ge self-diffusion is positive [38] (see also Chap. 23). Neither
the variation of the activation volume with temperature due to varying contri-
butions of different point defects to self-diffusion nor the differences between
the activation volumes of various solute diffusers are reflected by this rule.

8.3.2 Activation Parameters and Elastic Constants

A correlation between the elastic constants and diffusion parameters was
already proposed in the pioneering work of Wert and Zener [39, 40]. They
suggested that the Gibbs free energy for migration (of interstitials), GM ,
represents the elastic work to deform the lattice during an atomic jump.
Thus, the temperature variation of GM should be the same as that of an
appropriate elastic modulus µ:

∂(GM/GM
0 )

∂T
=

∂(µ/µ0)
∂T

. (8.46)

The subscript 0 refers to values at absolute zero. The migration entropy SM

is obtained from the thermodynamic relation

SM = −∂GM

∂T
(8.47)

and HM = GM + TSM yields the migration enthalpy. In the Wert-Zener
picture both HM and SM are independent of T if µ varies linearly with tem-
perature. If this is not the case, both SM and HM are temperature dependent.
Substituting the thermodynamic relation and GM

0 ≈ HM in Eq. (8.46), we
get:

SM ≈ −HM

Tm
· ∂(µ/µ0)
∂(T/Tm)

= Θ
HM

Tm
. (8.48)

At temperatures well above the Debye temperature, elastic constants usu-
ally vary indeed linearly with temperature. The derivative Θ ≡ −∂(µ/µ0)/
∂(T/Tm) is then a constant. Its values lie between −0.25 to −0.45 for most
metals. Then HM and SM are proportional to each other and the model of
Zener predicts a positive migration entropy.

For a vacancy mechanism, Zener’s idea is strictly applicable only to the
migration and not to the formation property of the defect. One can, however,
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always deduce a diffusion entropy via ∆S = kB ln[D0/(gfa2ν0)] from the
measured value of D0. Experimental observations led Zener to extend his
relation to the activation properties of atoms on substitutional sites:

∆S = λΘ
∆H

Tm
. (8.49)

Then the pre-exponential factor can be written as

D0 = fga2ν0 exp
(

λΘ
∆H

Tm

)
. (8.50)

λ is a constant that depends on the structure and on the diffusion mechanism.
For self-diffusion in fcc metals λ ≈ 0.55 and for bcc metals λ ≈ 1. The relation
Eq. (8.49) is often surprisingly well fulfilled. We note that this relation also
suggests that the diffusion entropy ∆S = SM +SF is positive. This conclusion
is supported by the well-known fact that the formation entropy for vacancies,
SF , is positive (see Chap. 5).

8.3.3 Use of Correlations

The value of the correlations discussed above is that they allow diffusivi-
ties to be estimated for solids for which little or no data are available. For
example, when diffusion experiments are planned for a new material, these
rules may help in choosing the experimental technique and adequate thermal
treatments. The correlations should be used with clear appreciation of the
possible errors involved; in some instances, the error is small.

We emphasise that the correlations have been formulated for self-diffusion.
Solute diffusion of substitutional solutes in most metals differs by not more
than a factor of 100 for many solvent metals and the activation enthalpies by
less than 25% from that of the host metal (see Chap. 19).

There are, however, remarkable exceptions: examples are the very slow
diffusion of transition metals solutes in Al and the very fast diffusion of
noble metals in lead and other ‘open metals’ (see Chap. 19). Also diffusion
of interstitial solutes (see Sect. 18.1), hydrogen diffusion (see Sect. 18.2), and
fast diffusion of hybrid foreign elements in Si and Ge (see Chap. 25) do not
follow these rules.
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