
5 Point Defects in Crystals

The Russian scientist Frenkel in 1926 [1] was the first author to introduce
the concept of point defects (see Chap. 1). He suggested that thermal agita-
tion causes transitions of atoms from their normal lattice sites into interstitial
positions leaving behind lattice vacancies. This type of disorder is nowadays
denoted as Frenkel disorder and contained already the concepts of vacancies
and self-interstitials. Already in the early 1930s Wagner and Schottky [2]
treated a fairly general case of disorder in binary AB compounds considering
the occurrence of vacancies, self-interstitials, and of antisite defects on both
sublattices.

Point defects are important for diffusion processes in crystalline solids.
This statement mainly derives from two features: one is the ability of point
defects to move through the crystal and to act as ‘vehicles for diffusion’
of atoms; another is their presence at thermal equilibrium. Of particular
interest in this chapter are diffusion-relevant point defects, i.e. defects which
are present in appreciable thermal concentrations.

In a defect-free crystal, mass and charge density have the periodicity of
the lattice. The creation of a point defect disturbs this periodicity. In metals,
the conduction electrons lead to an efficient electronic screening of defects.
As a consequence, point defects in metals appear uncharged. In ionic crystals,
the formation of a point defect, e.g., a vacancy in one sublattice disturbs the
charge neutrality. Charge-preserving defect populations in ionic crystals in-
clude Frenkel disorder and Schottky disorder, both of which guarantee global
charge neutrality. Frenkel disorder implies the formation of equal numbers
of vacancies and self-interstitials in one sublattice. Schottky disorder con-
sists of corresponding numbers of vacancies in the sublattices of cations and
anions. For example, in AB compounds like NaCl composed of cations and
anions with equal charges opposite in sign the number of vacancies in both
sublattices must be equal to preserve charge neutrality. Point defects in semi-
conductors introduce electronic energy levels within the band gap and thus
can occur in neutral or ionised states, depending on the position of the Fermi
level. In what follows, we consider at first point defects in metals and then
proceed to ionic crystals and semiconductors.

Nowadays, there is an enormous body of knowledge about point defects
from both theoretical and experimental investigations. In this chapter, we
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provide a brief survey of some features relevant for diffusion. For more com-
prehensive accounts of the field of point defects in crystals, we refer to the
textbooks of Flynn [3], Stoneham [4], Agullo-Lopez, Catlow and
Townsend [5], to a review on defect in metals by Wollenberger [6], and to
several conference proceedings [9–12]. For a compilation of data on point de-
fects properties in metals, we refer to a volume edited by Ullmeier [13]. For
semiconductors, data have been assembled by Schulz [14], Stolwijk [15],
Stolwijk and Bracht [16], and Bracht and Stolwijk [17]. Proper-
ties of point defects in ionic crystals can be found in reviews by Barr
and Lidiard [7] and Fuller [8] and in the chapters of Benière [18] and
Erdely [19] of a data collection edited by Beke.

5.1 Pure Metals

5.1.1 Vacancies

Statistical thermodynamics is a convenient tool to deduce the concentra-
tion of lattice vacancies at thermal equilibrium. Let us consider an elemental
crystal, which consists of N atoms (Fig. 5.1). We restrict the discussion to
metallic elements or to noble gas solids in which the vacancies are in a single
electronic state and we suppose (in this subsection) that the concentration
is so low that interactions among them can be neglected. At a finite temper-
ature, n1V vacant lattice sites (monovacancies, index 1V ) are formed. The
total number of lattice sites then is

N ′ = N + n1V . (5.1)

The thermodynamic reason for the occurrence of vacancies is that the Gibbs
free energy of the crystal is lowered. The Gibbs free energy G(p, T ) of the

Fig. 5.1. Vacancies in an elemental crystal
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crystal at temperature T and pressure p is composed of the Gibbs function
of the perfect crystal, G0(p, T ), plus the change in the Gibbs function on
forming the actual crystal, ∆G:

G(p, T ) = G0(p, T ) + ∆G , (5.2)

where
∆G = n1V GF

1V − TSconf . (5.3)

In Eq. (5.3) the quantity GF
1V represents the Gibbs free energy of formation

of an isolated vacancy. It corresponds to the work required to create a va-
cancy by removing an atom from a particular, but arbitrary, lattice site and
incorporating it at a surface site (‘Halbkristalllage’). Not only surfaces also
grain boundaries and dislocations can act as sources or sinks for vacancies.
If a vacancy is created, the crystal lattice relaxes around the vacant site and
the vibrations of the crystal are also altered. The Gibbs free energy can be
decomposed according to

GF
1V = HF

1V − TSF
1V (5.4)

into the formation enthalpy HF
1V and the formation entropy SF

1V . The last
term on the right-hand side of Eq. (5.3) contains the configurational entropy
Sconf , which is the thermodynamic reason for the presence of vacancies.

In the absence of interactions, all distinct configurations of n1V vacancies
on N ′ lattice sites have the same energy. The configurational entropy can be
expressed through the equation of Boltzmann

Sconf = kB ln W1V , (5.5)

where W1V is the number of distinguishable ways of distributing n1V mono-
vacancies among the N ′ lattice sites. Combinatoric rules tell us that

W1V =
N ′!

n1V !N !
. (5.6)

The numbers appearing in Eq. (5.6) are very large. Then, the formula of
Stirling, lnx! ≈ x lnx, approximates the factorial terms and we get

lnW1V ≈ (N + n1V ) ln(N + n1V ) − n1V lnn1V − N lnN . (5.7)

Thermodynamic equilibrium is imposed on a system at given temperature
and pressure by minimising its Gibbs free energy. In the present case, this
means

∆G ⇒ Min . (5.8)

The equilibrium number of monovacancies, neq
1V , is obtained, when the Gibbs

free energy in Eq. (5.3) is minimised with respect to n1V , subject to the
constraint that the number of atoms, N , is fixed. Inserting Eqs. (5.5) and (5.7)
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into Eq. (5.3), we get from the necessary condition for thermal equilibrium,
∂∆G/∂n1V = 0:

HF
1V − TSF

1V + kBT ln
neq

1V

N + neq
1V

= 0 (5.9)

By definition we introduce the site fraction of monovacancies1 via:

C1V ≡ n1V

N + n1V
. (5.10)

This quantity also represents the probability to find a vacancy on an arbitrary,
but particular lattice site. In thermal equilibrium we have Ceq

1V ≡ neq
1V /(N +

neq
1V ). Solving Eq. (5.9) for the equilibrium site fraction yields

Ceq
1V = exp

(
−GF

1V

kBT

)
= exp

(
SF

1V

kB

)
exp

(
−HF

1V

kBT

)
. (5.11)

This equation shows that the concentration of thermal vacancies increases
via a Boltzmann factor with increasing temperature. The temperature depen-
dence of Ceq

1V is primarily due to the formation enthalpy term in Eq. (5.11).
We note that the vacancy formation enthalpy is also given by

HF
1V = −kB

∂ lnCeq
1V

∂(1/T )
. (5.12)

This quantity is often determined in experiments which measure relative con-
centrations. Such measurements are less tedious than measurements of abso-
lute concentrations (see below). In the analysis of experiments, it is frequently
assumed that formation enthalpy and entropy are independent of tempera-
ture; this is often, though not always, justified.

5.1.2 Divacancies

Divacancies (2V) are point defects that form in a crystal as the simplest
complex of monovacanies (1V). This is a consequence of the mass-action
equilibrium for the reaction

1V + 1V � 2V . (5.13)

The probability that a given lattice site in a monoatomic crystal is vacant
equals the site fraction of monovacancies. Let us suppose that a divacancy
consists of two monovacancies on nearest-neighbour lattice sites. For non-
interacting monovacancies, the probability of forming a divacancy is propor-
tional to (C1V )2. For a coordination lattice (coordination number Z) the
1 Concentrations as number densities are given by C1V N , when N is taken as the

number density of atoms.
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equilibrium fraction of divacancies Ceq
2V that form simply for statistical rea-

sons is given by Z
2 (Ceq

1V )2. However, there is also a gain in enthalpy (and en-
tropy) when two vacancies are located on adjacent lattice sites. Fewer bonds
to neighbouring atoms must be broken, when a second vacancy is formed next
to an already existing one. Interactions between two vacancies are accounted
for by a Gibbs free energy of binding GB

2V , which according to

GB
2V = HB

2V − TSB
2V (5.14)

can be decomposed into an enthalpy HB
2V and an entropy SB

2V of interaction.
For GB

2V > 0 the interaction is attractive and binding occurs, whereas for
GB

2V < 0 it is repulsive. Combining Eq. (5.14) with the mass-action law for
Eq. (5.13) yields

Ceq
2V =

Z

2
exp

(
GB

2V

kBT

)
(Ceq

1V )2 . (5.15)

Equation (5.15) shows that at thermal equilibrium the divacancy concentra-
tion rises faster with increasing temperature than the monovacancy concen-
tration (see Fig. 5.2). With increasing GB

2V the equilibrium concentration of
divacancies increases as well.

The total equilibrium concentration of vacant lattice sites, Ceq
V , in the

presence of mono- and divacancies (neglecting higher agglomerates) is then

Ceq
V = Ceq

1V + 2Ceq
2V . (5.16)

For a typical monovacancy site fraction in metals of 10−4 near the melting
temperature (see below), the fraction of non-interacting divacancies would be

Fig. 5.2. Arrhenius diagram of equilibrium concentrations of mono- and divacan-
cies in metals (schematic)



74 5 Point Defects in Crystals

Z
2 × 10−8. Typical interaction energies of a few 0.1 eV increase the divacancy
concentration by factors of 10 to 100. Therefore, the divacancy concentration
at thermal equilibrium is less or much less than that of monovacancies. Nev-
ertheless, divacancies in close-packed metals can contribute to some extent to
the diffusive transport (see Chaps. 6 and 17). The major reason is that diva-
cancies are more effective diffusion vehicles than monovacancies, since their
mobility can be considerably higher than that of monovacancies [20]. The
contribution of higher agglomerates than divacancies is usually negligible.

5.1.3 Determination of Vacancy Properties

The classical method for an absolute measurement of the total vacancy con-
centration, Eq. (5.16), is differential dilatometry (DD). The idea is to
compare macroscopic and microscopic volume changes as functions of tem-
perature. To understand this method, we consider a monoatomic crystal with
N atoms. We denote its macroscopic volume in the defect-free state as V0

and the volume per lattice site as Ω0. A defect-free state can usually be re-
alised by cooling slowly to low enough temperatures. As long as the thermal
concentration of vacant lattice sites is negligible, we have V0 = NΩ0. With
increasing temperature the volume increases due to thermal expansion and
due the formation of new lattice sites. Then, the macroscopic volume and
the volume per lattice site take the values V (T ) and Ω(T ), respectively. The
change in the macroscopic volume is given by

∆V ≡ V (T ) − V0 = (N + n)Ω(T ) − NΩ0 = N∆Ω + nΩ(T ) , (5.17)

where ∆Ω ≡ Ω(T )−Ω0. n is the number of new lattice sites. Equation (5.17)
can be rearranged to give

∆V

V0
=

∆Ω
Ω0

+
n

N

Ω(T )
Ω0

. (5.18)

This equation reflects the two major physical reasons of the macroscopic
volume change: ∆Ω/Ω0 is the thermal expansion of the unit cell and the
second term on the right-hand side stands for the additional lattice sites.

If nV vacant sites and nI self-interstitials are created, we have n = nV −nI

new lattice sites. The difference between the total self-interstitial fraction,
Ceq

I , and the total site fraction of vacant lattice sites, Ceq
V , is given by

Ceq
V − Ceq

I =
∆V

V0
− ∆Ω

Ω0
. (5.19)

In Eq. (5.19) the effect of thermal expansion in the ratio Ω(T )/Ω0 and higher
order terms in n/N have been omitted.
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In metals, self-interstitials need not to be considered as equilibrium defects
(see below). We then have

Ceq
V =

∆V

V0
− ∆Ω

Ω0
. (5.20)

For cubic crystals Eq. (5.20) can be rewritten as

Ceq
V = 3

(
∆l

l0
− ∆a

a0

)
, (5.21)

where ∆l/l0 is the relative length change of the sample and ∆a/a0 the lattice
parameter change. In deriving Eq. (5.21) from Eq. (5.20) quadratic and cubic
terms in ∆l/l0 and ∆a/a0 have been neglected, because already the linear
terms are of the order of a few percent or less.

Equation (5.21) shows what needs to be done in DD-experiments. The
macroscopic length change and the expansion of the unit cell must be mea-
sured simultaneously2. The expansion of the unit cell can be measured in
very precise X-ray or neutron diffraction studies. As already mentioned, near
the melting temperature of metallic elements Ceq

V does not exceed 10−3 to
10−4 (see Table 5.1) and is much smaller at lower temperatures. Thus, precise
measurements of Ceq

V are very ambitious. Both length and lattice parameter
changes must be recorded with the extremely high accuracy of about 10−6.

Differential dilatometry experiments were introduced by Feder and
Nowick [21] and Simmons and Balluffi [22, 23] around 1960 and later

Fig. 5.3. Length and lattice parameter change versus temperature for Au according
to Simmons and Balluffi [23]

2 For uniaxial crystals measurements in two independent directions are necessary.
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used by several authors. As an example, Fig. 5.3 shows measured length and
lattice parameter expansion versus temperature for gold in the interval 900
to 1060 ◦C according to [23]. ∆l/l is larger than ∆a/a at high temperatures
due to the presence of lattice vacancies. This technique demonstrated that
the dominant, thermally created defects in metals are vacancies and the ex-
ponential dependence of the vacancy concentration on temperature was also
confirmed. The great advantage of DD experiments is that the total vacancy
content as a function of temperature can be obtained. If monovacancies are
the dominant species, both the formation enthalpy and the formation en-
tropy can be deduced. When the divacancy contribution is not negligible,
additional divacancy properties can be obtained [20].

The basic weakness of DD experiments is the unsufficient accuracy in
the range below about Ceq

V ≈ 10−5, where the divacancy contribution would
be low enough to permit a direct measurement of the formation properties
of monovacancies. This is illustrated for aluminium in Fig. 5.4 according to
Seeger [24]. The thermal expansion measurements of various groups [25–27]
cover, with a reasonable accuracy only the concentration range between 10−3

to 10−5. Fortunately, there are additional techniques such as positron annihi-
lation spectroscopy (see below) that supplement DD measurements very well.
An analysis of DD measurements together with these additional data yields
the line in Fig. 5.4, which corresponds to a monovacancy contribution with
HF

1V =0.66 eV and SF
1V = 0.8kB. Near the melting temperature the fraction

of vacant sites associated as divacancies is about 50%.

Fig. 5.4. Equilibrium concentration of vacant lattice sites in Al determined by DD
measurements according to [24]. DD data: + [25], • [27], × [26]. The concentration
range covered by positron lifetime measurements is also indicated
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Despite the elegance of DD experiments, much information on defect prop-
erties is obtained from other ingenious experiments, which are less direct,
some of which are mentioned in what follows:

Formation enthalpies can be deduced from experiments which do not
involve a determination of the absolute vacancy concentration. A frequently
used method is rapid quenching (RQ) from high temperatures, TQ. The
quenched-in vacancy population can be studied in measurements of the resid-
ual resistivity. For example, thin metal wires or foils can be rapidly quenched.
Their residual resistivities before and after quenching, ρ0 and ρQ, can be
measured accurately at liquid He temperature. The residual resistivity after
quenching increases due to the additional scattering processes of conduction
electrons at ‘frozen in’ vacancies. The increase of the residual resistivity, ∆ρ,
is proportional to the frozen-in vacancy concentration Ceq

V (TQ):

∆ρ ≡ ρQ − ρ0 = ρV Ceq
V (TQ) . (5.22)

ρV is a defect-related quantity, which accounts for the resistivity increase
per vacant site. In a successful quenching experiment, the equilibrium va-
cancy population is completely ‘frozen in’. Vacancy losses to sinks such as
dislocations, grain-boundaries, or surfaces can cause problems in quenching
experiments. Since the residual resistivity increase per vacant site is usu-
ally unknown, only formation enthalpies can be determined from RQ experi-
ments when ∆ρ is measured for various quenching temperatures. Formation
entropies SF are not accessible from such experiments. Only the product
ρV exp(SF /kB) can be deduced.

Transmission electron microscopy (TEM) of quenched-in vacancy
agglomerates is a further possibility to determine vacancy concentrations.
Upon annealing vacancies become mobile and can form agglomerates. If the
agglomerates are large enough they can be studied by TEM. In addition to
vacancy losses during the quenching process, the invisibility of very small
agglomerates can cause problems.

A very valuable tool for the determination of vacancy formation enthalpies
is positron annihilation spectroscopy (PAS). The positron is the an-
tiparticle of the electron. It is, for example, formed during the β+ decay
of radioisotopes. High-energy positrons injected in metals are thermalised
within picoseconds. A thermalised positron diffuses through the lattice and
ends its life by annihilation with an electron. Usually, two γ-quanta are emit-
ted according to

e+ + e → 2γ .

The energy of each γ-quantum is about 511 keV. The positron lifetime de-
pends on the total electron density. Vacancies can trap positrons. Because of
the missing core electrons at the vacant lattice site, the local electron den-
sity is significantly reduced. Therefore, the lifetime of trapped positrons is
enhanced as compared to that of positrons annihilating in the perfect lattice.
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Positrons in a vacancy-containing crystal end their life either by annihilation
as free positrons or as trapped positrons. The lifetimes of both fates are differ-
ent and the trapping probability increases with the vacancy concentration.
Lifetime measurements are possible using, e.g., 22Na as a positron source.
This nuclide emits γ-quanta simultaneously at the ‘birth’ of the positron.
The positrons ‘death’ is accompanied by the emission of two 511keV annihi-
lation quanta.

The interpretation of positron lifetime measurements is provided by
a trapping model: a thermalised positron diffusing through a metal is trapped
by a vacancy with the trapping rate σ. The positron lifetime in the trapped
state, τt, exceeds that in the free state, τf , when the positron is located in
an interstitial position of the perfect crystal. If untrapping is disregarded two
distinct lifetimes of the positron are predicted by this model:

(i) The trapped positron is annihilated with a lifetime τt.
(ii) A positron diffusing through the crystal may end its existence as a ‘free’

particle either by the annihilation rate 1/τf or by being trapped by a va-
cancy with the trapping rate σC1V , where σ is the trapping cross section.
This results in a lifetime given by τf/(1 + τfσC1V ). If one assumes that
initially all positrons are free, one gets for their mean lifetime:

τ̄ = τf
1 + τtσC1V

1 + τfσC1V
. (5.23)

Figure 5.5 shows as an example measurements of the mean lifetime of
positrons in aluminium as a function of temperature [28]. The mean life-
time increases from about 160 ps near room temperature and reaches a high

Fig. 5.5. Mean lifetime of positrons in Al according to Schaefer et al. [28]
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Table 5.1. Monovacancy properties of some metals. Ceq
1V is given in site fractions

Metal HF
1V /eV SF

1V /kB Ceq
1V at Tm Method(s)

Al 0.66 0.6 9.4 × 10−4 DD + PAS
Cu 1.17 1.5 2 × 10−4 DD + PAS
Au 0.94 1.1 7.2 × 10−4 DD
Ag 1.09 – 1.7 × 10−4 DD
Pb 0.49 0.7 1.7 × 10−4 DD
Pt 1.49 1.3 – RQ
Ni 1.7 – – PAS
Mo 3.0 – – PAS
W 4.0 2.3 1 × 10−4 RQ + TEM

temperature value of about 250ps. From a fit of Eq. (5.23) to the data the
product σC1V can be deduced. If the trapping cross section is known the
vacancy concentration is accessible. If σ is constant, the vacancy formation
enthalpy can be deduced from the temperature variation of σC1V . At high
temperature, i.e. for high vacancy concentrations, all positrons are annihi-
lated from the trapped state. Under such conditions the method is no longer
sensitive to a further increase of the vacancy concentration and the curve τ̄
versus T saturates. The maximum sensitivity of positron annihilation mea-
surements occurs for vacant site fractions between about 10−4 and 10−6 (see
Fig. 5.4).

A unique feature of PAS is that it is sensitive to vacancy-type defects, but
insensitive to interstitials. Measurements of the mean positron lifetime is one
technique of PAS. Other techniques, not described here, are measurements
of the line-shape of the annihilation line and lifetime spectroscopy. Review
articles on PAS applications for studies of vacancy properties in metals are
provided by Seeger [24], Doyama and Hasiguti [29], Hautojärvi [30],
and Schaefer et al. [31]. Vacancy properties of metals are listed in Ta-
ble 5.1 according to [6].

5.1.4 Self-Interstitials

Using statistical thermodynamics and a reasoning analogous to that for va-
cancies, the equilibrium fraction of self-interstitials in pure metals can be
written as

Ceq
I = gI exp

(
− GF

I

kBT

)
= gI exp

(
SF

I

kB

)
exp

(
− HF

I

kBT

)
. (5.24)

GF
I denotes the Gibbs free energy of formation, SF

I and HF
I the correspond-

ing formation entropy and enthalpy, and gI a geometric factor. For example,
in fcc metals gI = 3 accounts for the fact that self-interstitials occur in the
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Fig. 5.6. Dumbbell configuration of a self-interstitial in an fcc lattice

so-called dumbbell configuration illustrated in Fig. 5.6, which implies three
possible 〈100〉 orientations for a self-interstitial with its midpoint at the same
lattice site.

In close-packed metals the formation enthalpy of a self-interstitial is con-
siderably higher than that of a vacancy (see, e.g., Table 6 in the review of
Wollenberger [6] and the data compilation of Ullmaier [13]):

HF
I ≈ (2 to 3) × HF

1V . (5.25)

Therefore, at thermal equilibrium

Ceq
V >>> Ceq

I , (5.26)

i.e. the overwhelming thermal defect population is of the vacancy type.
Self-interstitials are produced athermally (together with an equal number

of vacancies), when a metal is subject to irradiation with energetic particles.
Thus, self-interstitials play a significant rôle in the radiation damage and in
radiation-enhanced diffusion [9, 11]. In some ionic crystals, Frenkel disorder is
established at thermal equilibrium (see Sect. 5.3 and Chap. 26). For example,
in silver halides Frenkel pairs are formed, which consist of self-interstitials and
vacancies in the cation sublattice of the crystal.

Semiconductors are less densely packed than metals and offer more
space in their interstitial sites. Therefore, the formation enthalpies of self-
interstitials and vacancies are not much different. Depending on the semi-
conductor, both types of defects can play a rôle under thermal equilibrium
conditions. This is the case for example for Si, whereas in Ge vacancies dom-
inate self-diffusion (see Sect. 5.5 and Chap. 23).

5.2 Substitutional Binary Alloys

A knowledge of the vacancy population in substitutional alloys is of consider-
able interest as well. Let us consider first dilute substituional alloys and then
make a few remarks about the more complex case of concentrated alloys.



5.2 Substitutional Binary Alloys 81

5.2.1 Vacancies in Dilute Alloys

A binary alloy of atoms B and A is denoted as dilute if the number of B atoms
is not more than a few percent of the number of A atoms. Then, B is called the
solute and A the solvent (or matrix ). Depending on the solute/solvent combi-
nation interstitial and substitutional alloys are to be distinguished. Small so-
lutes such as H, C, and N usually form interstitial alloys whereas solute atoms,
which are similar in size to the solvent atoms form substitutional alloys.

In a substitutional alloy, A and B atoms and vacancies occupy sites of the
same lattice. However, we have to distinguish whether a vacancy is formed
on a site, where it is surrounded by A atoms only, or whether the vacancy
is formed on a neighbouring site of a solute atom. In the latter case, we talk
about a solute-vacancy pair (see Fig. 5.7). For simplicity let us suppose that
the solute-vacancy interaction is restricted to nearest-neighbour sites, which
is often reasonable for metals. The Gibbs free energy of vacancy formation
in the undisturbed solvent, GF

1V (A), is different from the Gibbs free energy
of vacancy formation next to a B atom, GF

1V (B):

GF
1V (A) �= GF

1V (B) . (5.27)

For GF
1V (A) > GF

1V (B) the vacancy-solute interaction is attractive, whereas
for GF

1V (A) < GF
1V (B) it is repulsive. According to Lomer [32] the total

vacancy fraction in a dilute alloy, Ceq
V (CB), is given by

Ceq
V (CB) = (1 − ZCB) exp

[
−GF

1V (A)
kBT

]
+ ZCB exp

[
−GF

1V (B)
kBT

]
, (5.28)

Fig. 5.7. Vacancies in a dilute substitutional alloy
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where Z denotes the coordination number and CB the solute fraction. Equa-
tion (5.28) is a good approximation for CB < 0.01. We recognise that the first
term corresponds to the concentration of unpaired vacancies. It is reduced
by a factor (1 − ZCB) relative to that of the pure solvent. The second term
is the fraction of solute-vacancy pairs. If we introduce the Gibbs free energy
of interaction between solute and vacancy

GB ≡ GF
1V (A) − GF

1V (B) , (5.29)

Eq. (5.28) can be written as

Ceq
V = exp

(
−GF

1V (A)
kBT

)[
1 − ZCB + ZCB exp

(
GB

kBT

)]
(5.30)

and is sometimes called the Lomer equation.
The first factor in Eq. (5.30) is the equilibrium vacancy fraction in the

pure solvent. The factor in square brackets is larger/smaller than unity if GB

is positive/negative. For binding/repulsion between solute and vacancy the
total vacancy content in the alloy is higher/lower than in the pure solvent.
In dilute alloys of the noble metals with solute elements lying to their right
in the periodic table, GB is typically about 0.2 eV [13]. We note that the
quantity

p = Ceq
1V exp

(
GB

kBT

)
(5.31)

denotes the probability that a vacancy occupies a nearest-neighbour site of
a solute, when Ceq

1V is measured in site fractions. The expressions (5.30) and
(5.31) are of interest for diffusion in dilute alloys, which will be considered in
Chap. 19.

5.2.2 Vacancies in Concentrated Alloys

The Lomer equation is valid for very dilute alloys (CB ≤ 0.01). In its deriva-
tion only associates between one solute atom and vacancy are considered.
In concentrated alloys, associates between several solute atoms and vacancy
and interactions between atoms of an associate become also important. To
the author’s knowledge robust theoretical models for the vacancy population
in concentrated substitutional alloys are not available. An approximation was
treated by Dorn and Mitchell [33]. These authors attribute to each as-
sociate consisting of i solute atoms and one vacancy the (same) Gibbs free
energy Gi. By standard thermodynamic reasoning, they derive the following
expression for the total vacancy concentration in a concentrated alloy

Ceq
V (CB) =

Z∑
i=0

(
Z

i

)
CZ−i

A Ci
B exp

(
− Gi

kBT

)
, (5.32)
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where Z denotes the coordination number. The term for i = 0 represents
the vacancy content of free vacancies in the solvent. A limitation to the
terms for i = 0 and i = 1 reproduces Lomer’s equation using G0 ≡ GF

1V (A)
and Gi = GF

1V (B). In the derivation of Eq. (5.32) a random distribution of
atoms has been assumed. For a generalisation of Eq. (5.32) by including an
interaction between atoms we refer to [34].

5.3 Ionic Compounds

Let us consider thermal defects in ionic crystals such as the alkali halides,
silver chloride and bromide. These materials crystallise in sodium chloride
and cesium chloride structures. They are strongly stoichiometric and have
wide band gaps so that thermally produced electrons or holes can be ignored.
These materials are the classical ion conductors, whose conductivity arises
from the presence and mobility of vacancies and/or self-interstitials.

The classical ionic conductors are to be distinguished from the fast ion
conductors. As a general rule, fast ion conductors are materials with an open
structure, which allows for the rapid motion of relatively small ions. A fa-
mous example is silver iodide, for which fast ionic conduction was reported as
early as 1914 [35]. It displays a first order phase transition between a fast ion-
conducting phase (α-AgI) above 147 ◦C and a normal conducting phase at
lower temperatures. α-AgI has a body-centered cubic sublattice of practically
immobile I− ions. Each unit cell displays 42 interstitial sites (6 octahedral,
12 tetrahedral, 24 trigonal) over which the two Ag+ ions per unit cell are dis-
tributed (see Fig. 27.2). Since there are many more sites than Ag+ ions, the
latter can migrate easily. Other examples are β-alumina, some compounds
with fluorite structure such as some halides such as CaF2 and PbF2 and
oxides like doped ZrO2, which are fluorine or oxygen ion conductors at el-
evated temperatures. These materials require a different approach, because
in the sublattice of one ionic species the fraction of vacant sites is high (see
Chap. 27).

To be specific, we consider here classical ionic crystals with CA stoichiom-
etry (C=cation, A=anion). They are composed of anions and cations which
carry equal charges opposite in sign. Let us further assume that all cation
sites are equivalent and all anion sites likewise; in other words, there are two
filled sublattices. The defect population that can develop in such a crystal
has the structural constraint that the number of C atoms and of A atoms
must be equal. This can also be viewed as a condition of electroneutrality by
assigning ionic charges to the atoms C and A.3 Then, only charge-preserving
3 Electroneutrality must be fulfilled in the volume of ionic crystal. In the vicinity

of charged dislocations, grain boundaries or surfaces, unbalanced point defect
populations can develop. In compounds with additional electronic defects the
requirements of structure and of electroneutrality are different (see, e.g., the
textbook of Maier [36]).
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defect populations can develop. In addition, the formation of antisite defects
need not to be considered due to the high Coulomb energy of an ion placed
in the ‘wrong’ sublattice. In what follows, we consider two important cases
of disorder in CA ionic crystals. For a more general treatment the reader is
referred, e.g., to the textbook of Allnatt and Lidiard [37].

5.3.1 Frenkel Disorder

Let us suppose that vacancies (VC) and self-interstitials (IC) in the C sub-
lattice are formed from cations on cation sites (CC) according to the quasi-
chemical reaction

CC � VC + IC . (5.33)

This type of disorder is called Frenkel disorder (Fig. 5.8), as it was first
suggested by the Russian scientist Frenkel [1]. Pairs of vacancies and self-
interstitials are denoted as Frenkel pairs. According to the law of mass action
we may write

Ceq
VC

Ceq
IC

= exp
(

SFP

kB

)
exp

(
−HFP

kBT

)
≡ KFP . (5.34)

Here Ceq
VC

and Ceq
IC

denote equilibrium site fractions of vacancies and self-
interstitials in the C sublattice. KFP is called the Frenkel product. The for-
mation enthalpy HFP and entropy SFP for (non-interacting) Frenkel pairs
can be split according to

HFP = HF
VC

+ HF
IC

and SFP = SF
VC

+ SF
IC

(5.35)

into sums of formation enthalpies, HF
VC

+ HF
IC

, and formation entropies,
SF

VC
+ SF

IC
, of vacancies and self-interstitials. Charge neutrality of undoped

Fig. 5.8. Frenkel disorder in the cation sublattice of a CA ionic crystal
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crystals requires that the numbers of vacancies and self-interstitials are equal,
i.e. Ceq

VC
= Ceq

IC
. Then we get

Ceq
VC

= Ceq
IC

= exp
(

SFP

2kB

)
exp

(
− HFP

2kBT

)
. (5.36)

Frenkel disorder occurs in the silver sublattices of silver chloride and bro-
mide [38, 39]. Frenkel-pair formation properties of these silver halides are
listed in Table 5.2.

5.3.2 Schottky Disorder

Let us consider once more a binary ionic CA compound composed of cations
on the C sublattice, CC , and anions on the A sublattice, AA. The constraint
of electroneutrality is fulfilled, when vacancies in both sublattices, VC and
VA, are formed according to the reaction

CC + AA + 2 new lattice sites � VC + VA. (5.37)

in equal numbers (Fig. 5.9). Applying the law of mass-action to this reaction,
we get for thermal equilibrium

Ceq
VC

Ceq
VA

= exp
(

SSP

kB

)
exp

(
−HSP

kBT

)
≡ KSP , (5.38)

where CVC and CVA denote site fractions of cation and anion vacancies, re-
spectively. HSP and SSP denote enthalpy and entropy for the formation of
a Schottky pair (cation vacancy plus anion vacancy).

Fig. 5.9. Schottky disorder in an CA ionic crystal
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Table 5.2. Formation enthalpies of Schottky- and Frenkel pairs of ionic crystals

Ionic compound (HSP or HFP)/eV (SSP or SFP)/kB Type of disorder

NaCl 2.44 9.8 Schottky
KCl 2.54 7.6 Schottky
NaI 2.00 7.6 Schottky
KBr 2.53 10.3 Schottky
LiF 2.68 Schottky
LiCl 2.12 Schottky
LiBr 1.80 Schottky
LiI 1.34 Schottky

AgCl 1.45–1.55 5.4–12.2 Frenkel
AgBr 1.13–1.28 6.6–12.2 Frenkel

This type of disorder is called Schottky disorder and KSP is denoted as
the Schottky product. Charge neutrality in an undoped crystal requires equal
concentrations of cation and anion vacancies:

Ceq
VC

= Ceq
VA

= exp
(

SSP

2kB

)
exp

(
− HSP

2kBT

)
. (5.39)

For non-interacting Schottky pairs, the enthalpy and entropy of pair forma-
tion according to

HSP = HF
VC

+ HF
VA

and SSP = SF
VC

+ SF
VA

(5.40)

can be expressed in terms of the formation enthalpies, HF
VC

and HF
VA

, and
entropies, SF

VC
and SF

VA
, of cation and anion vacancies. Experience shows that

Schottky disorder dominates the defect population in most alkali halides and
in many oxides. Schottky-pair formation properties are listed in Table 5.2.
Crystals doped with aliovalent ions are considered in detail in Chap. 26. In
doped crystals, the Schottky product is still valid.

5.4 Intermetallics

Intermetallics are a fascinating group of materials, which attract attention
from the viewpoints of fundamentals as well as applications [40, 41]. Binary
intermetallics are composed of two metals or of a metal and a semimetal.
Their crystal structures are different from those of the elements. This def-
inition includes both intermetallic phases and ordered alloys. Intermetallics
form a numerous and manifold group of materials and comprise a greater
variety of crystal structures than metallic elements [48]. They crystallise in
structures with ordered atomic distributions in which atoms are preferen-
tially surrounded by unlike atoms. Some frequent structures are illustrated
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in Chap. 20. Some intermetallics are ordered up to their melting tempera-
ture, others undergo order-disorder transitions in which an almost random
arrangement of atoms is favoured at high temperatures. Such transitions
occur, for example, between the β′ and β phases of the Cu–Zn system or
in Fe–Co. There are intermetallic phases with wide phase fields and others
which exist as stoichiometric compounds. Examples for both types can even
be found in the same binary alloy system. For example, the Laves phase in
the Co-Nb system (approximate composition Co2Nb) exists over a composi-
tion range of about 5 at. %, whereas the phase Co7Nb2 is a line compound.
Some intermetallics occur for certain stoichiometric compositions only. Oth-
ers are observed for off-stoichiometric compositions. Some phases compensate
off-stoichiometry by vacancies, others by antisite atoms.

Thermal defect populations in intermetallics can be rather complex and
we shall confine ourselves to a few remarks. Intermetallic compounds are
physically very different from the ionic compounds considered in the previous
section. Combination of various types of disorder are conceivable: vacancies
and/or antisite defects on both sublattices can form in some intermetallics.
As self-interstitials play no rôle in thermal equilibrium for pure metals, it is
reasonable to assume that this holds true also for intermetallics.

To be specific, let us suppose a formula AxBy for the stoichiometric com-
pound and that there is a single A sublattice and a single B sublattice. This
is, for example, the case in intermetallics with the B2 and L12 structure (see
Fig. 20.1). The basic structural elements of disorder are listed in Table 5.3.

A first theoretical model for thermal disorder in a binary AB intermetal-
lic with two sublattices was treated in the pioneering work of Wagner and
Schottky [2]. Some of the more recent work on defect properties of inter-
metallic compounds has been reviewed by Chang and Neumann [42] and
Bakker [43].

In some binary AB intermetallics so-called triple defect disorder occurs.
These intermetallics form VA defects on the A sublattice on the B rich side
and AB antisites on the B sublattice on the A rich side of the stoichiometric
composition. This is, for example, the case for some intermetallics with B2
structure where A = Ni, Co, Pd . . . and B = Al, In, . . . Some other inter-
metallics also with B2 structure such as CuZn, AgCd, . . . can maintain high
concentrations of vacancies on both sublattices.

Table 5.3. Elements of disorder in intermetallic compounds

AA = A atom on A sublattice
BB = B atom on B sublattice
VA = vacancy on A sublattice
VB = vacancy on B sublattice
BA = B antisite on A sublattice
AB = A antisite on B sublattice
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Triple defects (2VA + AB), bound triple defects (VAABVA) and vacancy
pairs (VAVB) have been suggested by Stolwijk et al. [46]. They can form
according to the reactions

VA + VB � 2VA + AB︸ ︷︷ ︸
triple defect

� VAABVA︸ ︷︷ ︸
bound triple defect

and VA + VB � VAVB︸ ︷︷ ︸
vacancy pair

.

(5.41)
Very likely bound agglomerates are important in intermetallics for thermal
disorder and diffusion in addition to single vacancies. In this context it is
interesting to note that neither triple defects nor vacancy pairs disturb the
stoichiometry of the compound.

The physical understanding of the defect structure of intermetallics is
still less complete compared with metallic elements. However, considerable
progress has been achieved. Differential dilatometry (DD) and positron an-
nihilation studies (PAS) performed on intermetallics of the Fe-Al, Ni-Al and
Fe-Si systems have demonstrated that the total content of vacancy-type de-
fects can be one to two orders of magnitude higher than in pure metals [44,
45]. The defect content depends strongly on composition and its temperature
dependence can show deviations from simple Arrhenius behaviour. According
to Schaefer et al. [44] and Hehenkamp [45] typical defect concentrations
in these compounds near the solidus temperature can be as high as several
percent.

5.5 Semiconductors

Covalent crystals such as diamond, Si, and Ge are more different from the
defect point of view as one might expect from their chemical classification
as group IV elements. Diamond is an electrical insulator, whose vacancies
are mobile at high temperatures only. Si is a semiconductor which supports
vacancies and self-interstitials as intrinsic defects. By contrast, Ge is a semi-
conductor in which vacancies as intrinsic defects predominate like in the
metallic group IV elements Sn and Pb.

Because Si and Ge crystallise in the diamond structure with coordination
number 4, the packing density is considerably lower than in metals. This
holds true also for compound semiconductors. Most compound semiconduc-
tors formed by group III and group V elements like GaAs crystallise in the
zinc blende structure, which is closely related to the diamond structure. Semi-
conductor crystals offer more space for self-interstitials than close-packed
metal structures. Formation enthalpies of vacancies and self-interstitials in
semiconductors are comparable. In Si, both self-interstitials and vacancies
are present in thermal equilibrium and are important for self- and solute dif-
fusion. In Ge, vacancies dominate in thermal equilibrium and appear to be
the only diffusion-relevant defects (see Chap. 23 and [47, 50]).
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Semiconductors have in common that the thermal defect concentrations
are orders of magnitude lower than in metals or ionic crystals. This is a con-
sequence of the covalent bonding of semiconductors. Defect formation ener-
gies in semiconductors are higher than in metals with comparable melting
temperatures. Neither thermal expansion measurements nor positron annihi-
lation studies have sufficient accuracy to detect the very low thermal defect
concentrations.

Point defects in semiconductors can be neutral and can occur in various
electronic states. This is because point defects introduce energy levels into the
band gap of a semiconductor. Whether a defect is neutral or ionised depends
on the position of the Fermi level as illustrated schematically in Fig. 5.10.
A wealth of detailed information about the electronic states of point defects
in these materials has been obtained by a variety of spectroscopic means and
has been compiled, e.g., by Schulz [14].

Let us consider vacancies and self-interstitials X ∈ (V, I) and suppose that
both occur in various ionised states, which we denote by j ∈ (0, 1±, 2±, . . . ).
The total concentration of the defect X at thermal equilibrium can be written
as

Ceq
X = Ceq

X0 + Ceq
X1+ + Ceq

X1− + Ceq
X2+ + Ceq

X2− + . . . . (5.42)

Whereas the equilibrium concentration of uncharged defects depends only
on temperature (and pressure), the concentration of charged defects is ad-
ditionally influenced by the position of the Fermi energy and hence by the
doping level. If the Fermi level changes due to, e.g., background doping the
concentration of charged defects will change as well.

The densities of electrons, n, and of holes, p, are tied to the intrinsic
carrier density, ni, via the law of mass action relation

np = n2
i . (5.43)

Fig. 5.10. Electronic structure of semiconductors, with a defect with double ac-
ceptor character (left) and donor character (right)
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Then, Eq. (5.42) can be rewritten as

Ceq
X =Ceq

X0 + Ceq
X1+(ni)

ni

n
+ Ceq

X1−(ni)
n

ni
+ Ceq

X2+(ni)
(ni

n

)2

+ Ceq
X2−(ni)

(
n

ni

)2

+ . . . , (5.44)

where Ceq
Xj±(ni) denotes the equilibrium concentration under intrinsic con-

ditions for defect X with charge state j±. From Eq. (5.44) it is obvious
that n-doping will enhance (decrease) the equilibrium concentration of neg-
atively (positively) charged defects. Correspondingly, p-doping will enhance
(decrease) the equilibrium concentration positively (negatively) charged de-
fects.

Furthermore, the ratio n/ni varies with temperature because the intrinsic
carrier density according to

ni =
√

N c
effNv

eff exp
(
− Eg

2kBT

)
(5.45)

increases with increasing temperature. N c
eff and Nv

eff denote the effective den-
sities of states in the conduction and valence band, respectively. The values
of ni at different temperatures are determined mainly by the band gap en-
ergy Eg of the semiconductor. For a given background doping concentration
the ratio n/ni will be large at low temperatures and approaches unity at
high temperatures. Then, the semiconductor reaches intrinsic conditions. The
band gap energy is characteristic for a given semiconductor. It increases in
the sequence Ge (0.67 eV), Si (1.14 eV), GaAs (1.43 eV). The intrinsic carrier
density at a fixed temperature is highest for Ge and lowest for GaAs. Thus,
doping effects on the concentration of charged defects are most prominent
for GaAs and less pronounced for the elemental semiconductors.

Let us consider as an example a defect X which introduces a single X1−

and a double X2− acceptor state with energy levels EX1− and EX2− above the
valence band edge. Then, the ratios between charged and uncharged defect
populations in thermal equilibrium are given by

Ceq
X1−

Ceq
X0

=
1

gX1−
exp

(
Ef − EX1−

kBT

)
,

Ceq
X2−

Ceq
X0

=
1

gX2−
exp

(
2Ef − EX2− − EX1−

kBT

)
, (5.46)

where Ef denotes the position of the Fermi level. The degeneracy factors
gX1− and gX2− take into account the spin degeneracy of the defect and the
degeneracy of the valence band. The total concentration of point defects in
thermal equilibrium for the present example is given by

Ceq
X = Ceq

X0

(
1 +

Ceq
X1−

Ceq
X0

+
Ceq

X2−

Ceq
X0

)
. (5.47)
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Diffusion in semiconductors is affected by doping since defects in various
charge states can act as diffusion-vehicles. Diffusion experiments are usually
carried out at temperatures between the melting temperature Tm and about
0.6 Tm. As the intrinsic carrier density increases with increasing temperature,
doping effects in diffusion are more pronounced at the low temperature end
of this interval. One can distinguish two types of doping effects:

– Background doping is due to a homogeneous distribution of donor or ac-
ceptor atoms, that are introduced during the process of crystal growing.
Background doping is relevant for diffusion experiments, when at the dif-
fusion temperature the carrier density exceeds the intrinsic density.

– Self-doping is relevant for diffusion experiments of donor or acceptor ele-
ments. If the in-diffused dopant concentration exceeds either the intrinsic
carrier density or the available background doping, complex diffusion pro-
files can arise.
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