
3 Solutions of the Diffusion Equation

The aim of this chapter is to give the reader a feeling for properties of the
diffusion equation and to acquaint her/him with frequently encountered so-
lutions. No attempt is made to achieve completeness or full rigour. Solutions
of Eq. (2.6), giving the concentration as a function of time and position, can
be obtained by various means once the boundary and initial conditions have
been specified. In certain cases, the conditions are geometrically highly sym-
metric. Then it is possible to obtain explicit analytic solutions. Such solutions
comprise either Gaussians, error functions and related integrals, or they are
given in the form of Fourier series.

Experiments are often designed to satisfy simple initial and boundary
conditions (see Chap. 13). In what follows, we limit ourselves to a few simple
cases. First, we consider solutions of steady-state diffusion for linear, axial,
and spherical flow. Then, we describe examples of non-steady state diffusion
in one dimension. A powerful method of solution, which is mentioned briefly,
employs the Laplace transform. We end this chapter with a few remarks
about instantaneous point sources in one, two, and three dimensions.

For more comprehensive treatments of the mathematics of diffusion we
refer to the textbooks of Crank [1], Jost [2], Ghez [3] and Glicksman [4].
As mentioned already, the conduction of heat can be described by an anal-
ogous equation. Solutions of this equation have been developed for many
practical cases of heat flow and are collected in the book of Carslaw and
Jaeger [5]. By replacing T with C and D with the corresponding thermal
property these solution can be used for diffusion problems as well. In many
other cases, numerical methods must be used to solve diffusion problems. De-
scribing numerical procedures is beyond the scope of this book. Useful hints
can be found in the literature, e.g., in [1, 3, 4, 6, 7].

3.1 Steady-State Diffusion

At steady state, there is no change of concentration with time. Steady-state
diffusion is characterised by the condition

∂C

∂t
= 0 . (3.1)
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For the special geometrical settings mentioned in Sect. 2.2, this leads to
different stationary concentration distributions:

For linear flow we get from Eqs. (2.10) and (3.1)

D
∂2C

∂x2
= 0 and C(x) = a + Ax , (3.2)

where a and A in Eq. (3.2) denote constants. A constant concentration gradi-
ent and a linear distribution of concentration is established under linear flow
steady-state conditions, if the diffusion coefficient is a constant.

For axial flow substitution of Eq. (3.1) into Eq. (2.8) gives

∂

∂r

(
r
∂C

∂r

)
= 0 and C(r) = B ln r + b , (3.3)

where B and b denote constants.
For spherical flow substitution of Eq. (3.1) into Eq. (2.9) gives

∂

∂r

(
r2 ∂C

∂r

)
= 0 and C(r) =

Ca

r
+ Cb . (3.4)

Ca and Cb in Eq. (3.4) denote constants.
Permeation through membranes: The passage of gases or vapours
through membranes is called permeation. A well-known example is diffusion of
hydrogen through palladium membranes. A steady state can be established in
permeation experiments after a certain transient time (see Sect. 3.2.4). Based
on Eqs. (3.2), (3.3), and (3.4) a number of examples are easy to formulate
and are useful in permeation studies of diffusion:
Planar Membrane: If δ is the thickness, q the cross section of a planar mem-
brane, and C1 and C2 the concentrations at x = 0 and x = δ, we get from
Eq. (3.2)

C(x) = C1 +
C2 − C1

δ
x; J = qD

C1 − C2

δ
. (3.5)

If J, C1, and C2 are measured in an experiment, the diffusion coefficient can
be determined from Eq. (3.5).
Hollow cylinder: Consider a hollow cylinder, which extends from an inner
radius r1 to an outer radius r2. If at r1 and r2 the stationary concentrations
C1 and C2 are maintained, we get from Eq. (3.3)

C(r) = C1 +
C1 − C2

ln(r1/r2)
ln

r

r1
. (3.6)

Spherical shell: If the shell extends from an inner radius r1 to an outer ra-
dius r2, and if at r1 and r2 the stationary concentrations C1 and C2 are
maintained, we get from Eq. (3.4)

C(r) =
C1r1 − C2r2

r1 − r2
+

(C1 − C2)
( 1

r1
− 1

r2
)

1
r

. (3.7)
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For the geometrical conditions treated above, it is also possible to solve the
steady-state equations, if the diffusion coefficient is not a constant [8]. So-
lutions for concentration-dependent and position-dependent diffusivities can
be found, e.g., in the textbook of Jost [2].

3.2 Non-Steady-State Diffusion in one Dimension

3.2.1 Thin-Film Solution

An initial condition at t = 0, which is encountered in many one-dimensional
diffusion problems, is the following:

C(x, 0) = M δ(x) . (3.8)

The diffusing species (diffusant) is deposited at the plane x = 0 and allowed
to spread for t > 0. M denotes the number of diffusing particles per unit
area and δ(x) the Dirac delta function. This initial condition is also called
instantaneous planar source.

Sandwich geometry: If the diffusant (or diffuser) is allowed to spread into
two material bodies occupying the half-spaces 0 < x < ∞ and −∞ < x < 0,
which have equal and constant diffusivity, the solution of Eq. (2.10) is

C(x, t) =
M

2
√

πDt
exp

(
− x2

4Dt

)
. (3.9)

Thin-film geometry: If the diffuser is deposited initially onto the surface
of a sample and spreads into one half-space, the solution is

C(x, t) =
M√
πDt

exp
(
− x2

4Dt

)
. (3.10)

These solutions are also denoted as Gaussian solutions. Note that Eqs. (3.9)
and (3.10) differ by a factor of 2. Equation (3.10) is illustrated in Fig. 3.1
and some of its further properties in Fig. 3.2.

The quantity 2
√

Dt is a characteristic diffusion length, which occurs fre-
quently in diffusion problems. Salient properties of Eq. (3.9) are the following:

1. The diffusion process is subject to the conservation of the integral number
of diffusing particles, which for Eq. (3.9) reads

+∞∫
−∞

M

2
√

πDt
exp

(
− x2

4Dt

)
dx =

+∞∫
−∞

Mδ(x)dx = M . (3.11)

2. C(x, t) and ∂2C/∂x2 are even functions of x. ∂C/∂x is an odd function
of x.
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Fig. 3.1. Gaussian solution of the diffusion equation for various values of the
diffusion length 2

√
Dt

Fig. 3.2. Gaussian solution of the diffusion equation and its derivatives

3. The diffusion flux, J = −D∂C/∂x, is an odd function of x. It is zero at
the plane x = 0.

4. According to the diffusion equation the rate of accumulation of the dif-
fusing species ∂C/∂t is an even function of x. It is negative for small |x|
und positive for large |x|.
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The tracer method for the experimental determination of diffusivities exploits
these properties (see Chap. 13). The Gaussian solutions are also applicable if
the thickness of the deposited layer is very small with respect to the diffusion
length.

3.2.2 Extended Initial Distribution
and Constant Surface Concentration

So far, we have considered solutions of the diffusion equation when the diffu-
sant is initially concentrated in a very thin layer. Experiments are also often
designed in such a way that the diffusant is distributed over a finite region. In
practice, the diffusant concentration is often kept constant at the surface of
the sample. This is, for example, the case during carburisation or nitridation
experiments of metals. The linearity of the diffusion equation permits the use
of the ‘principle of superposition’ to produce new solutions for different ge-
ometric arrangements of the sources. In the following, we consider examples
which exploit this possibility.

Diffusion Couple: Let us suppose that the diffusant has an initial distri-
bution at t = 0 which is given by:

C = C0 for x < 0 and C = 0 for x > 0 . (3.12)

This situation holds, for example, when two semi-infinite bars differing in
composition (e.g., a dilute alloy and the pure solvent material) are joined
end to end at the plane x = 0 to form a diffusion couple. The initial distribu-
tion can be interpreted as a continuous distribution of instantaneous, planar
sources of infinitesimal strength dM = C0dξ at position ξ spread uniformly
along the left-hand bar, i.e. for x < 0. A unit length of the left-hand bar
initially contains M = C0 · 1 diffusing particles per unit area. Initially, the
right-hand bar contains no diffusant, so one can ignore contributions from
source points ξ > 0. The solution of this diffusion problem, C(x, t), may be
thought as the sum, or integral, of all the infinitesimal responses resulting
from the continuous spatial distribution of instantaneous source releases from
positions ξ < 0. The total response occurring at any plane x at some later
time t is given by the superposition

C(x, t) = C0

0∫
−∞

exp
[−(x − ξ)2/4Dt

]
2
√

πDt
dξ =

C0√
π

∞∫
x/2

√
Dt

exp(−η2)dη . (3.13)

Here we used the variable substitution η ≡ (x − ξ)/2
√

Dt. The right-hand
side of Eq. (3.13) may be split and rearranged as

C(x, t) =
C0

2

⎡
⎢⎣ 2√

π

∞∫
0

exp (−η2)dη − 2√
π

x/2
√

Dt∫
0

exp (−η2)dη

⎤
⎥⎦ . (3.14)
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It is convenient to introduce the error function1

erf (z) ≡ 2√
π

z∫
0

exp (−η2)dη , (3.15)

which is a standard mathematical function. Some properties of erf (z) and
useful approximations are discussed below. Introducing the error function we
get

C(x, t) =
C0

2

[
erf (∞) − erf

(
x

2
√

Dt

)]
≡ C0

2
erfc

(
x

2
√

Dt

)
, (3.16)

where the abbreviation
erfc(z) ≡ 1 − erf(z) (3.17)

is denoted as the complementary error function. Like the thin-film solution,
Eq. (3.16) is applicable when the diffusivity is constant. Equation (3.16) is
sometimes called the Grube-Jedele solution.

Diffusion with Constant Surface Concentration: Let us suppose that
the concentration at x = 0 is maintained at concentration Cs = C0/2. The
Grube-Jedele solution Eq. (3.16) maintains the concentration in the midplane
of the diffusion couple. This property can be exploited to construct the diffu-
sion solution for a semi-infinite medium, the free end of which is continuously
exposed to a fixed concentration Cs:

C = Cserfc
(

x

2
√

Dt

)
. (3.18)

The quantity of material which diffuses into the solid per unit area is:

M(t) = 2Cs

√
Dt/π . (3.19)

Equation (3.18) is illustrated in Fig. 3.3. The behaviour of this solution reveals
several general features of diffusion problems in infinite or semi-infinite media,
where the initial concentration at the boundary equals some constant for all
time: The concentration field C(x, t) in these cases may be expressed with

1 The probability integral introduced by Gauss is defined as

Φ(a) ≡ 2√
2π

aZ
0

exp (−η2/2)dη .

The error function and the probability integral are related via

erf(z) = Φ(
√

2z) .
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Fig. 3.3. Solution of the diffusion equation for constant surface concentration Cs

and for various values of the diffusion length 2
√

Dt

a single variable z = x/2
√

Dt, which is a special combination of space-time
field variables. The quantity z is sometimes called a similarity variable which
captures both, the spatial and temporal features of the concentration field.
Similarity scaling is extremely useful in applying the diffusion solution to
diverse situations. For example, if the average diffusion length is increased by
a factor of ten, the product of the diffusivity times the diffusion time would
have to increase by a factor of 100 to return to the same value of z.

Applications of Eq. (3.18) concern, e.g., carburisation or nitridation of
metals, where in-diffusion of C or N into a metal occurs from an atmosphere,
which maintains a constant surface concentration. Other examples concern
in-diffusion of foreign atoms, which have a limited solubility, Cs, in a matrix.

Diffusion from a Slab Source: In this arrangement a slab of width 2h
having a uniform initial concentration C0 of the diffusant is joined to two
half-spaces which, in an experiment may be realised as two bars of the pure
material. If the slab and the two bars have the same diffusivity, the diffusion
field can be expressed by an integral of the source distribution

C(x, t) =
C0

2
√

πDt

+h∫
−h

exp
[
− (x − ξ)2

4Dt

]
dξ . (3.20)

This expression can be manipulated into standard form and written as

C(x, t) =
C0

2

[
erf
(

x + h

2
√

Dt

)
+ erf

(
x − h

2
√

Dt

)]
. (3.21)
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Fig. 3.4. Diffusion from a slab of width 2h for various values of
√

Dt/h

The normalised concentration field, C(x/h, t)/C0, resulting from Eq. (3.21)
is shown in Fig. 3.4 for various values of

√
Dt/h.

Error Function and Approximations: The error function defined in
Eq. (3.15) is an odd function and for large arguments |z| approaches asymp-
totically ±1:

erf (−z) = erf (z), erf (±∞) = ±1, erf (0) = 0 . (3.22)

The complementary error function defined in Eq. (3.17) has the following
asymtotic properties:

erfc(−∞) = 2, erfc(+∞) = 0, erfc(0) = 1 . (3.23)

Tables of the error function are available in the literature, e.g., in [4, 9–11].
Detailed calculations cannot be performed just relying on tabular data.

For advanced computations and for graphing one needs, instead, numerical
estimates for the error function. Approximations are available in commercial
mathematics software. In the following, we mention several useful expres-
sions:

1. For small arguments, |z| < 1, the error function is obtained to arbitrary
accuracy from its Taylor expansion [10] as

erf (z) =
2√
π

[
z − z3

(3 × 1)!
+

z5

(5 × 2)!
− z7

(7 × 3)!
+ . . .

]
. (3.24)



3.2 Non-Steady-State Diffusion in one Dimension 45

2. For large arguments, z � 1, it is approximated by its asymptotic form

erf(z) = 1 − exp(−z2)
2
√

π

(
1 − 1

2z2
+ . . .

)
. (3.25)

3. A convenient rational expression reported in [11] is the following:

erf (z) = 1 − 1
(1 + 0.278393z + 0.230389z2 + 0.000972z3 + 0.078108z4)4

+ ε(z) . (3.26)

This expression works for z > 0 with an associated error ε(z) less than
5 × 10−4.

3.2.3 Method of Laplace Transformation

The Laplace transformation is a mathematical procedure, which is useful
for various problems in mathematical physics. Application of the Laplace
transformation to the diffusion equation removes the time variable, leaving
an ordinary differential equation, the solution of which yields the transform
of the concentration field. This is then interpreted to give an expression for
the concentration in terms of space variables and time, satisfying the ini-
tial and boundary conditions. Here we deal only with an application to the
one-dimensional diffusion equation, the aim being to describe rather than to
justify the procedure.

The solution of many problems in diffusion by this method calls for no
knowledge beyond ordinary calculus. For more difficult problems the theory
of functions of a complex variable must be used. No attempt is made here
to explain problems of this kind, although solutions obtained in this way are
quoted, e.g., in the chapter on grain-boundary diffusion. Fuller accounts of
the method and applications can be found in the textbooks of Crank [1],
Carslaw and Jaeger [5], Churchill [12] and others.

Definition of the Laplace Transform: The Laplace transform f̄(p) of
a known function f(t) for positive values of t is defined as

f̄(p) =

∞∫
0

exp(−pt)f(t)dt . (3.27)

p is a number sufficiently large to make the integral Eq. (3.27) converge.
It may be a complex number whose real part is sufficiently large, but in the
following discussion it suffices to think of it in terms of a real positive number.

Laplace transforms are common functions and readily constructed by car-
rying out the integration in Eq. (3.27) as in the following examples:
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f(t) = 1, f̄(p) =

∞∫
0

exp(−pt)dt =
1
p

, (3.28)

f(t) = exp(αt), f̄(p) =

∞∫
0

exp(−pt) exp(αt)dt =
1

p − α
, (3.29)

f(t) = sin(ωt), f̄(p) =

∞∫
0

exp(−pt) sin(ωt)dt =
ω

p2 + ω2
. (3.30)

Semi-infinite Medium: As an application of the Laplace transform, we
consider diffusion in a semi-infinite medium, x > 0, when the surface is
kept at a constant concentration Cs. We need a solution of Fick’s equation
satisfying this boundary condition and the initial condition C = 0 at t = 0 for
x > 0. On multiplying both sides of Fick’s second law Eq. (2.6) by exp(−pt)
and integrating, we obtain

D

∞∫
0

exp(−pt)
∂2C

∂x2
dt =

∞∫
0

exp(−pt)
∂C

∂t
dt . (3.31)

By interchanging the orders of differentiation and integration, the left-hand
term is then

D

∞∫
0

exp(−pt)
∂2C

∂x2
dt = D

∂2

∂x2

∞∫
0

C exp(−pt)dt = D
∂2C̄

∂x2
. (3.32)

Integrating the right-hand term of Eq. (3.31) by parts, we have

∞∫
0

exp(−pt)
∂C

∂t
dt = [C exp(−pt)]∞0 + p

∞∫
0

C exp(−pt)dt = pC̄ , (3.33)

since the term in brackets vanishes by virtue of the initial condition and
through the exponential factor. Thus Fick’s second equation transforms to

D
∂2C̄

∂x2
= pC̄ . (3.34)

The Laplace transformation reduces Fick’s second law from a partial differ-
ential equation to the ordinary differential equation Eq. (3.34). By treating
the boundary condition at x = 0 in the same way, we obtain

C̄ =

∞∫
0

Cs exp(−pt)dt =
Cs

p
. (3.35)
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The solution of Eq. (3.34), which satisfies the boundary condition and for
which C̄ remains finite for large x is

C̄ =
Cs

p
exp

(√
p

D

)
x . (3.36)

Reference to a table of Laplace transforms [1] shows that the function whose
transform is given by Eq. (3.36) is the complementary error function

C = Cserfc
(

x

2
√

Dt

)
. (3.37)

We recognise that this is the solution given already in Eq. (3.16).

3.2.4 Diffusion in a Plane Sheet – Separation of Variables

Separation of variables is a mathematical method, which is useful for the
solution of partial differential equations and can also be applied to diffusion
problems. It is particularly suitable for solutions of Fick’s law for finite sys-
tems by assuming that the concentration field can be expressed in terms of
a periodic function in space and a time-dependent function. We illustrate this
method below for the problem of diffusion in a plane sheet.

The starting point is to strive for solutions of Eq. (2.10) trying the ‘Ansatz’

C(x, t) = X(x)T (t) , (3.38)

where X(x) and T (t) separately express spatial and temporal functions of x
and t, respectively. In the case of linear flow, Fick’s second law Eq. (2.10)
yields

1
DT

dT

dt
=

1
X

d2X

dx2
. (3.39)

In this equation the variables are separated. On the left-hand side we have
an expression depending on time only, while the right-hand side depends on
the distance variable only. Then, both sides must equal the same constant,
which for the sake of the subsequent algebra is chosen as −λ2:

1
DT

∂T

∂t
=

1
X

∂2X

∂2x
≡ −λ2 . (3.40)

We then arrive at two ordinary linear differential equations: one is a first-order
equation for T (t), the other is a second-order equation for X(x). Solutions
to each of these equations are well known:

T (t) = T0 exp (−λ2Dt) (3.41)

and
X(x) = a sin (λx) + b cos (λx) , (3.42)
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where T0, a, and b are constants. Inserting Eqs. (3.41) and (3.42) in (3.38)
yields a particular solution of the form

C(x, t) = [A sin (λx) + B cos (λx)] exp (−λ2Dt) , (3.43)

where A = aT0 and B = bT0 are again constants of integration. Since
Eq. (2.10) is a linear equation its general solution is obtained by summing
solutions of the type of Eq. (3.43). We get

C(x, t) =
∞∑

n=1

[An sin (λnx) + Bn cos (λnx)] exp (−λ2
nDt) , (3.44)

where An, Bn and λn are determined by the initial and boundary conditions
for the particular problem. The separation constant −λ2 cannot be arbitrary,
but must take discrete values. These eigenvalues uniquely define the eigen-
functions of which the concentration field C(x, t) is composed.

Out-diffusion from a plane sheet: Let us consider out-diffusion from
a plane sheet of thickness L. An example provides out-diffusion of hydrogen
from a metal sheet during degassing in vacuum. The diffusing species is ini-
tially distributed with constant concentration C0 and both surfaces of the
sheet are kept at zero concentration for times t > 0:

Initial condition C = C0, for 0 < x < L at t = 0
Boundary condition C = 0, for x = 0 and x = L at t > 0.

The boundary conditions demand that

Bn = 0 and λn =
nπ

L
, where n = 1, 2, 3, . . . (3.45)

The numbers λn are the eigenvalues of the plane-sheet problem. Inserting
these eigenvalues, Eq. (3.44) reads

C(x, t) =
∞∑

n=1

An sin
(nπ

L
x
)

exp
(
−n2π2D

L2
t

)
. (3.46)

The initial conditions require that

C0 =
∞∑

n=1

An sin
(nπ

L
x
)

. (3.47)

By multiplying both sides of Eq. (3.47) by sin(pπx/L) and integrating from
0 to L we get

L∫
0

sin
(pπx

L

)
sin
(nπx

L

)
dx = 0 (3.48)
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for n �= p and L/2 for n = p. Using these orthogonality relations all terms
vanish for which n is even. Thus

An =
4C0

nπ
; n = 1, 3, 5, . . . (3.49)

The final solution of the problem of out-diffusion from a plane sheet is

C(x, t) =
4C0

π

∞∑
j=0

1
2j + 1

sin
[
(2j + 1)π

L
x

]
exp

[
− (2j + 1)2π2D

L2
t

]
, (3.50)

where for convenience 2j + 1 was substituted for n so that j takes values
0, 1, 2, . . . . Each term in Eq. (3.50) corresponds to a term in the Fourier
series (here a trigonometrical series) by which for t = 0 the initial distribution
Eq. (3.47) can be represented. Each term is also characterised by a relaxation
time

τj =
L2

(2j + 1)2π2D
, j = 0, 1, 2, . . . (3.51)

The relaxation times decrease rapidly with increasing j, which implies that
the series Eq. (3.50) converges satisfactorily for moderate and large times.

Desorption and Absorption: It is sometimes of interest to consider the
average concentration in the sheet, C̄, defined as

C̄(t) =
1
L

∫ L

0

C(x, t)dx . (3.52)

Inserting Eq. (3.50) into Eq. (3.52) yields

C̄(t)
C0

=
8
π2

∞∑
j=0

1
(2j + 1)2

exp
(
− t

τj

)
. (3.53)

We recognise that for t � τ1 the average concentration decays exponentially
with the relaxation time

τ0 =
L2

π2D
. (3.54)

Direct applications of the solution developed above concern degassing of
a hydrogen-charged metal sheet in vacuum or decarburisation of a sheet of
steel. If we consider the case t � τ1, we get

C(x, t) ≈ 4C0

π
sin
(πx

L

)
exp

(
− t

τ0

)
. (3.55)

The diffusion flux from both surfaces is then given by

|J | = 2D

(
∂C

∂x

)
x=0

=
8DC0

L
exp

(
− t

τ0

)
. (3.56)
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Fig. 3.5. Absorption/desorption of a diffusing species of/from a thin sheet for
various values of Dt/l2

An experimental determination of |J | and/or of the relaxation time τ0 can
be used to measure D.

The solution for a plane sheet with constant surface concentration main-
tained at Cs and uniform initial concentration C0 inside the sheet (region
−l < x < +l) is a straightforward generalisation of Eq. (3.50). We get

C − C0

Cs − C0
= 1 − 4

π

∞∑
j=0

(−1)j

2j + 1
cos
[
(2j + 1)π

2l
x

]
exp

[
− (2j + 1)2π2D

4l2
t

]
.

(3.57)
For Cs < C0 this solution describes desorption and for Cs > C0 absorption.
It is illustrated for various normalised times Dt/l2 in Fig. 3.5.

3.2.5 Radial Diffusion in a Cylinder

We consider a long circular cylinder, in which the diffusion flux is radial
everywhere. Then the concentration is a function of radius r and time t, and
the diffusion equation becomes

∂C

∂t
=

1
r

∂

∂r

(
rD

∂C

∂r

)
. (3.58)

Following the method of separation of the variables, we see that for con-
stant D

C(r, t) = u(r) exp(−Dα2t) (3.59)
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is a solution of Eq. (3.58), provided that u satisfies

∂2u

∂r2
+

1
r

∂u

∂r
+ α2u = 0 , (3.60)

which is the Bessel equation of order zero. Solutions may be obtained in
terms of Bessel functions, suitably chosen so that the initial and boundary
conditions are satisfied.

Let us suppose that the surface concentration is constant and that the
initial distribution of the diffusant is f(r). For a cylinder of radius R, the
conditions are:

C = C0, r = R, t ≥ 0 ;
C = f(r), 0 < r < R, t = 0 .

The solution to this problem is [1]

C(r, t) = C0

[
1 − 2

R

∞∑
n=1

1
αn

J0(rαn)
J1(Rαn)

exp(−Dα2
nt)

]

+
2

R2

∞∑
n=1

exp(−Dα2
nt)

J0(rαn)
J2

1 (Rαn)

∫
rf(r)J0(rαn)dr . (3.61)

In Eq. (3.61) J0 is the Bessel function of the first kind and order zero
and J1 the Bessel function of first order. The αn are the positive roots of
J0(Rαn) = 0.

If the concentration is initially uniform throughout the cylinder, we have
f(r) = C1 and Eq. (3.61) reduces to

C − C1

C0 − C1
= 1 − 2

R

∞∑
n=1

exp(−Dα2
nt)J0(αnr)

αnJ1(αnR)
. (3.62)

If M(t) denotes the quantity of diffusant which has entered or left the cylinder
in time t and M(∞) the corresponding quantity at infinite time, we have

M(t)
M(∞)

= 1 −
∞∑

n=1

4
α2

nR2
exp(−Dα2

nt) . (3.63)

.

3.2.6 Radial Diffusion in a Sphere

The diffusion equation for a constant diffusivity and radial flux takes the
form

∂C

∂t
= D

(
∂2C

∂r2
+

2
r

∂C

∂r

)
. (3.64)
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By substituting
u(r, t) = C(r, t)r , (3.65)

Eq. (3.64) becomes
∂u

∂t
= D

∂2u

∂r2
. (3.66)

This equation is analogous to linear flow in one dimension. Therefore, solu-
tions of many problems of radial flow in a sphere can be deduced from those
of the corresponding linear flow problems.

If we suppose that the sphere is initially at a uniform concentration C1

and the surface concentration is maintained constant at C0, the solution is [1]

C − C1

C0 − C1
= 1 +

2R

π

∞∑
n=1

(−1)n

n
sin
(nπr

R

)
exp(−Dn2π2t/R2) . (3.67)

The concentration at the centre is given by the limit r → 0, that is by

C − C1

C0 − C1
= 1 + 2

∞∑
n=1

(−1)n exp(−Dn2π2t/R2) . (3.68)

If M(t) denotes the quantity of diffusant which has entered or left the sphere
in time t and M(∞) the corresponding quantity at infinite time, we have

M(t)
M(∞)

= 1 − 6
π2

∞∑
n=1

1
n2

exp(−Dn2π2t/R2) . (3.69)

The corresponding solutions for small times are

C − C1

C0 − C1
=

R

r

∞∑
n=0

[
erfc

(2n + 1) − r

2
√

Dt
− erfc

(2n + 1) + r

2
√

Dt

]
(3.70)

and
M(t)
M(∞)

= 6

√
Dt

R2

[
1√
π

+ 2
∞∑

n=1

ierfc
nR√
Dt

]
− 3

Dt

R2
, (3.71)

where ierfc denotes the inverse of the complementary error function.

3.3 Point Source in one, two, and three Dimensions

In the previous section, we have dealt with one-dimensional solutions of the
linear diffusion equation. As examples for diffusion in higher dimensions,
we consider now diffusion from instantaneous sources in two- and three-
dimensional media.

The diffusion response for a point source in three dimensions and for
a line source in two dimensions differs from that of the thin-film source in
one dimension given by Eq. (3.9). Now we ask for particular solutions of
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Fick’ second law under spherical or axial symmetry conditions described by
Eqs. (2.12) and (2.11). Let us suppose that in the case of spherical flow
a point source located at |r3| = 0 releases at time t = 0 a fixed number N3

of diffusing particles into an infinite and isotropic medium. Let us also sup-
pose that in the case of axial flow a line source located at |r2| = 0 releases
N2 diffusing particles into an infinite and isotropic medium. The diffusion
flow will be either spherical or axisymmetric, respectively. The concentration
fields that develop around instantaneous plane-, line-, and point-sources in
one, two, three dimensions, can all be expressed in homologous form by

C(rd, t) =
Nd

(4πDt)d/2
exp

(
−|rd|2

4Dt

)
(d = 1, 2, 3). (3.72)

In Eq. (3.72) rd denotes the d-component vector extending from the source lo-
cated at rd = 0 to the field point, rd, of the concentration field. If the source
strength Nd denotes the number of particles in all three dimensions, the
diffusion fields predicted by Eq. (3.72) must be expressed in dimensionality-
compatible concentration units. These are [number per length] for d = 1,
[number per length2] for d = 2, and [number per length3] for d = 3. We note
that the source solutions are all linear, in the sense that the concentration
response is proportional to the initial source strength.
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