
16 Electrical Methods

Measurements of electrical properties of materials are of interest for diffu-
sion experiments in several areas of materials science. Impedance spectroscopy
plays an important rôle for ion-conducting materials. With the availabil-
ity of commercially made impedance bridges covering wide frequency ranges
impedance studies became popular among electrochemists and materials sci-
entists. For an introduction to the field of impedance spectroscopy the reader
may consult the textbook of Macdonald [1]. In semiconducting materials
electrically active foreign atoms have a strong influence on the electrical con-
ductivity. For diffusion studies in semiconductors electrical measurements are
useful. In particular spreading resistance profiling, introduced by Mazur and
Dickey in the 1960s [2], has become a powerful tool for measuring spatial
distributions of electrically active atoms in semiconductors.

Electrical resistivity measurements on metals have sometimes also been
used to study diffusion. These studies utilise the resistivity change that occurs
upon in- or out-diffusion of foreign elements. This method is fairl¡y indirect
and diffusion profiles cannot be obtained. Therfore, we refrain from discussing
such experiments.

16.1 Impedance Spectroscopy

In ion-conducting materials with negligible electronic conduction such as ionic
crystals, ion-conducting glasses, and oxides the conductivity results from the
hopping motion of ions. For such materials the measurement of the electrical
conductivity is an indispensable complement to that of tracer diffusion. As
discussed in Chap. 11, the dc conductivity, σdc, is related to the charge or
diffusivity, Dσ, via

Dσ =
σdckBT

Nionq2
. (16.1)

Nion denotes the number density of mobile ions and q the electrical charge
per ion.

Measurements of the ionic conductivity are carried out with an ac bridge
to avoid polarisation effects at the electrodes. An experimental set-up is illus-
trated in Fig. 16.1. The measurements are usually made with cells which have
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Fig. 16.1. Schematic illustration of an impedance bridge with sample and elec-
trodes

two identical electrodes applied to the faces of a sample in the form of a cir-
cular cylinder or rectangular parallelepiped. The general approach is to apply
an electrical ac stimulus of frequency ν (a known voltage or current) and to
observe the resulting response (current or voltage). Usually, impedance spec-
troscopy can cover a frequency range from about 10−3 Hz to several MHz.
The experimental set-up requires a variable frequency generator and a vector
ammeter and volt-meter for current and voltage measurements including the
phase-shift between current Î(ν) and voltage V̂ (ν). The complex impedance
is defined as

Ẑ(ν) ≡ V̂ (ν)
Î(ν)

. (16.2)

It is composed according to

Ẑ(ν) = Z ′ − iZ ′′ (16.3)

of real and imaginary parts, Z ′ and Z ′′. i denotes the imaginary unit. The
complex conductivity

σ̂(ν) = σ′(ν) + iσ′′(ν) (16.4)

is also composed of a real part, σ′, and an imaginary part, σ′′. Conductivity
and complex impedance are related via

σ̂(ν) =
1

Ẑ(ν)
d0

A
, (16.5)

where d0 and A denote the thickness and the electrode area of the sample,
respectively.
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For a discussion of impedance measurements, it is convenient to recall
that the complex impedance of a circuit formed by an ohmic resistance R
and a capacitance C parallel to it is given by

Ẑ =
R

1 + iωCR
, (16.6)

where ω = 2πν denotes the angular frequency. Then, the real and imaginary
parts of the impedance can be written as

Z ′ =
R

1 + ω2R2C2
and Z ′′ =

ωCR2

1 + ω2R2C2
. (16.7)

The representation of the impedance in the complex Z ′−Z ′′ plane is denoted
as the Cole diagram. For a RC-circuit the values of Ẑ(ω) plotted in the Z ′

versus −Z ′′ plane fall on a semicircle of diameter R, passing through the
origin for ω → ∞, through (R, 0) for ω = 0, and through (R/2, R/2) for
ω = (RC)−1.

When several circuits of this type are connected in series, the graphic
representation is a series of semicircles as illustrated in Fig. 16.2. An ensem-
ble of three RC circuits in series can represent a measurement cell. The cell
may consist of a polycrstalline sample plus electrodes. Each circuit represents
a conductivity process: RV and CV volume conduction, Rb and Cb boundary
conduction, and Re and Ce the electrode process. One should, however, keep
in mind that the representation of the total impedance of an experimental
set-up by RC-circuits can be oversimplified. Sometimes other equivalent cir-
cuits may better represent the actual processes. Furthermore, sometimes the
centers of the arcs are below the Z ′-axis.

As a simple experimental example, Fig. 16.3 shows the Cole diagram
for an ion-conducting alkali-borate glass according to Imre et al. [3]. The
semicircles represent the volume conduction process at various temperatures.
Grain boundaries are absent in a glass and the electrode process is located
at lower frequencies not displayed in the figure. The dc resistance of the
sample is given by the intercept of the arcs with the Z ′-axis. It decreases
with increasing temperature. The dc conductivity can be deduced from the
ohmic resistance observed at the intersection of the ‘semicircle’ with the Z ′-
axis of Fig. 16.3. The real part of the conductivity times temperature (σ′×T )
of the same material is shown in Fig. 16.4 as a function of the frequency ν
for various temperatures. The low frequency plateau in Fig. 16.4 corresponds
to the dc conductivity. This plateau reflects the long-range transport of ions.
The dc-conductivity increases with temperature Arrhenius activated.

Using relation Eq. (16.1), the charge diffusivity, Dσ, can be deduced (see
Chap. 11). This quantity is displayed in the Arrhenius diagram of Fig 16.5
together with the tracer diffusivity of 22Na measured on the same material
according to [4]. As discussed in Chap. 11 the ratio between tracer diffusivity
D∗ and the conductivity diffusivity is denoted as the Haven ratio, HR ≡
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Fig. 16.2. Circuits for the complex impedance and Cole diagram

Fig. 16.3. Complex impedance (Cole diagram) for three temperatures representing
volume conduction of a sodium-borate glass [3]

D∗/Dσ, which is usually less than unity. A measurement of the Haven ratio
can provide useful information about the atomic mechanism of diffusion and
the correlation effects involved. In the illustrated case, the Haven ratio is
temperature-independent indicating that the mechanism of ionic motion does
not change with temperature.

The increase of the conductivity at higher frequencies is called dispersion.
The conductivity dispersion reflects the fact that ionic jumps are correlated
(see, e.g., [5]). An onset frequency of dispersion, νonset, may be defined by
the condition σ′(ν) = 2σdc. The fact that the onset frequencies in Fig. 16.4
lie on a straight line with a slope of unity shows that σdc × T and νonset

are thermally activated with the same activation enthalpy. This behaviour
is sometimes denoted as Summerfield scaling [6]. Microscopically, it implies
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Fig. 16.4. Conductivity spectra of a sodium borate glass in a diagram of logarithm
σ′ × T versus logarithm of the frequency ν. The onset frequencies of dispersion for
various temperatures are connected by a straight line

Fig. 16.5. Arrhenius diagram of the charge diffusivity Dσ and the tracer diffusivity
D∗ of 22Na for a sodium borate glass

that the same jump processes occur at different temperatures. Of course, their
jump rate is higher at higher temperatures. Summerfield scaling is observed
for several materials but by no means in all ion conducting materials. For
more information about conduction in disordered ionic materials the reader
may consult Chap. 30 and reviews, e.g., by Ingram [7], Dieterich and
Maas [8], Funke and coworkers [9], and by Bunde et al. [10].
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16.2 Spreading Resistance Profiling

In semiconductors, the resistivity in the extrinsic domain is related to the con-
centration of electrically active foreign atoms. The concentration distribution
of such atoms can be deduced by measuring the spreading resistance Rs (see
below). Spreading resistance profiling (SRP) [2] has become a useful tool for
measuring spatial distributions of electrically active atoms in semiconducting
samples. SRP is widely used in silicon technology to monitor depth profiles
of dopants after processing steps and to check the lateral uniformity in the
resistivity of virgin Si wafers. In addition, SRP has been successfully applied
in basic studies of diffusion processes in Si (see, e.g., [11, 12]), in Ge [13] and
to a lesser extent in GaAs [14].

SRP is a two-point-probe technique, which measures the electrical resis-
tance on semiconductor surfaces with a much higher spatial resolution than
the traditional four-point-probe technique. The concentration-depth profile
for foreign atoms can be established by measuring the resistance of the sam-
ple between two ‘points’ as indicated in Fig. 16.6. The probe tips, usually
made of a tungsten-osmium alloy, are separated by a distance of typically
100µm or less. The current between the probes spreads over a small space
region near the semiconductor surface, which explains the notion ‘spreading
resistance’. A SRP device is commonly operated in an automatic-stepping
mode with probe-tip steps varying from 5 to 25µm. The measurements can
be either performed on a cross section of the sample or for shallow profiles
on a bevelled section as indicated in Fig. 16.6. An example for an experimen-
tal spreading resistance profile is displayed in the left part of Fig. 16.7. The
right part shows the concentration-depth profile deduced from the spreading
resistance profile. The employed procedure is described below.

Fig. 16.6. Spreading resistance profiling (schematic)
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Fig. 16.7. Spreading resistance profile of Se in Si (left) and concentration depth
profile of Se deduced therefrom (right)

The SRP technique relies on the fact that the ideal resistance of a small-
diameter metal probe in perfect contact with the plane surface of a semi-
infinite semiconductor is given by

Rs =
ρ

4a
, (16.8)

where ρ denotes the resistivity of the semiconductor and a the radius of the
contact area. The spreading resistance, Rs, originates from the radial flow of
the current from the probe tip into the semiconductor. Due to the special
configuration, about 80% of the potential drop occurs within a distance of
5a. In practice, the SRP contact radius can be made as small as a few µm,
which leads to a corresponding small sampling volume. Theoretically, the two-
probe arrangement doubles Rs with regard to Eq. (16.8), provided that the
probe-tip separation is much larger than the contact radius. In reality, the
contacts are not planar circles but irregularly shaped microcontacts. This
gives rise to substantial contact resistance, which cannot be derived with
sufficient accuracy from theory. Therefore, in SRP analysis the relationship
between ρ and Rs is established by calibration using homogeneously doped
samples of the same material, conductivity type, and surface orientation as
the test sample under consideration.

Standard semiconductor theory is used to establish the relation between
the resistivity and the concentration of the electrically active foreign atoms.
We illustrate this procedure for a singly ionizable donor atom X in an oth-
erwise undoped semiconductor. For a given Fermi energy EF , the electron
concentration n is obtained as

n = NC exp
(

EF − EC

kBT

)
, (16.9)
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where EC denotes the energy of the conduction band edge and NC the effec-
tive density of states in the conduction band. The latter quantity is closely
related to the effective electron mass mn according to

NC = 2
(

2πmnkBT

h2

)3/2

, (16.10)

where h is the Planck constant. The hole concentration p follows from

np = n2
i = NCNV exp

[
−EG(T )

kBT

]
(16.11)

with the intrinsic carrier density ni, the temperature-dependent band gap
energy, EG(T ), and the effective density of states, NV , in the valence band.
Having obtained electron and hole concentrations, the charge neutrality con-
dition

n = Cion
X + p (16.12)

yields the concentration Cion
X of ionized foreign atoms. Values of Cion

X dis-
tinctly above 10−16cm−3 lead to enhanced scattering of charge carriers, which
may be taken into account by expressions for the carrier mobilities of elec-
trons µn = µn(Cion

X , T ) and holes µn = µn(Cion
X , T ). Empirical expressions

of this kind can be found in the literature [15]. In a subsequent step the
resistivity is obtained from

1
ρ

= qµnn + qµpp , (16.13)

where q denote the charge per carrier. For singly ionizable donor atoms
the second term on the right hand side of Eq. (16.13) can be neglected for
Cion

X � ni. Once the calculated resistivity ρ(EF , T ) value has converged to
the experimental one, EF and Cion

X (EF , T ) are known. Then, the electrically
neutral foreign atom concentration, C0

X , results from

Cion
X

C0
X

= gX exp
(

EX − EF

kBT

)
. (16.14)

This equation accounts for the electron occupation probability of a foreign
atom with a donor level, EX , and a degeneration factor, gX . The latter equals
2 for common group-V dopants such as P in silicon. Finally, the total foreign
atom concentration follows from

CX = Cion
X + C0

X . (16.15)

Background doping can be taken into account by including additional terms
in the charge neutrality Eq. (16.12). The alternative case in which the foreign
atom X has acceptor character can be treated in a similar set of equations
reflecting the reversed rôle of holes and electrons as majority and minority
charge carriers. For further details about SRP the reader may consult a paper
by Voss et al. [16].
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