
15 Nuclear Methods

15.1 General Remarks

Several nuclear methods are important for diffusion studies in solids. They
are listed in Table 13.1 and their potentials are illustrated in Fig. 13.1. The
first of these methods is nuclear magnetic resonance or nuclear magnetic
relaxation (NMR). NMR methods are mainly appropriate for self-diffusion
measurements on solid or liquid metals. In favourable cases self-diffusion co-
efficients between about 10−20 and 10−10 m2 s−1 are accessible. In the case of
foreign atom diffusion, NMR studies suffer from the fact that a signal from
nuclear spins of the minority component must be detected.

Mössbauer spectroscopy (MBS) and quasielastic neutron scattering
(QENS) are techniques, which have considerable potential for understand-
ing diffusion processes on a microscopic level. The linewidths ∆Γ in MBS
and in QENS have contributions which are due to the diffusive motion of
atoms. This diffusion broadening is observed only in systems with fairly high
diffusivities since ∆Γ must be comparable with or larger than the natural
linewidth in MBS experiments or with the energy resolution of the neutron
spectrometer in QENS experiments. Usually, the workhorse of MBS is the
isotope 57Fe although there are a few other, less favourable Mössbauer iso-
topes such as 119Sn,115Eu, and 161Dy. QENS experiments are suitable for
fast diffusing elements with a large incoherent scattering cross section for
neutrons. Examples are Na self-diffusion in sodium metal, Na diffusion in
ion-conducting rotor phases, and hydrogen diffusion in metals.

Neither MBS nor QENS are routine methods for diffusion measurements.
The most interesting aspect is that these methods can provide microscopic
information about the elementary jump process of atoms. The linewidth for
single crystals depends on the atomic jump frequency and on the crystal
orientation. This orientation dependence allows the deduction of the jump
direction and the jump length of atoms, information which is not accessible
to conventional diffusion studies.

15.2 Nuclear Magnetic Relaxation (NMR)

The technique of nuclear magnetic relaxation has been widely used for many
years to give detailed information about condensed matter, especially about
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its atomic and electronic structure. It was recognised in 1948 by Bloem-
bergen, Purcell and Pound [1] that NMR measurements can provide
information on diffusion through the influence of atomic movement on the
width of nuclear resonance lines and on relaxation times. Atomic diffusion
causes fluctuations of the local fields, which arise from the interaction of nu-
clear magnetic moments with their local environment. The fluctuating fields
either can be due to magnetic dipole interactions of the magnetic moments or
due to the interaction of nuclear electric quadrupole moments (for nuclei with
spins I > 1/2) with internal electrical field gradients. In addition, external
magnetic field gradients can be used for a direct determination of diffusion
coefficients.

We consider below some basic principles of NMR. Our prime aim is an
understanding of how diffusion influences NMR. Solid state NMR is a very
broad field. For a comprehensive treatment the reader is referred to textbooks
of Abragam [2], Slichter[3], Mehring [4] and to chapters in monographs
and textbooks [5–9]. In addition, detailed descriptions of NMR relaxation
techniques are available, e.g., in [10]). Corresponding pulse programs are
nowadays implemented in commercial NMR spectrometers.

15.2.1 Fundamentals of NMR

NMR methods are applicable to atoms with non-vanishing nuclear spin mo-
ment, �I, and an associated magnetic moment

µ = γ�I , (15.1)

where γ is the gyromagnetic ratio, I the nuclear spin, and � the Planck
constant divided by 2π. In a static magnetic field B0 in z-direction, a nuclear
magnetic moment µ performs a precession motion around the z-axis governed
by the equation

dµ

dt
= µ ⊗ B0 . (15.2)

The precession frequency is the Larmor frequency

ω0 = γB0. (15.3)

The degeneracy of the 2I+1 energy levels is raised due to the nuclear Zeeman
effect. The energies of the nuclear magnetic dipoles are quantised according
to

Um = −mγ�B0 , (15.4)

where the allowed values correspond to m = −I,−I + 1, . . . , I − 1, I. For
example, for nuclei with I = 1/2 there are only two energy levels with the
energy difference �ω0.

At thermal equilibrium, the spins are distributed according to the Boltz-
mann statistics on the various levels. Since the energy difference between
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Fig. 15.1. Set-up for a NMR experiment (schematic)

levels for typical magnetic fields (0.1 to 1 Tesla) is very small, the population
difference of the levels is also small. A macroscopic sample in a static magnetic
field B0 in the z-direction displays a magnetisation Meq along the z-direction
and a transverse magnetisation M⊥ = 0. The equilibrium magnetisation of
an ensemble of nuclei (number density N) is given by

M eq = N
γ2

�
2I(I + 1)
3kBT

B0 . (15.5)

A typical experimental set-up for NMR experiments (Fig. 15.1) consists of
a sample placed in a strong, homogeneous magnetic field B0 of the order of
a few Tesla. A coil wound around the sample permits the application of an
alternating magnetic field B1 perpendicular to the z-direction with frequency
ω. Typically, these fields are radio-frequency (r.f.) fields. If the frequency ω
of the transverse r.f. field B1 is close to the Larmor frequency, this field
will induce transitions between the Zeeman levels of the nuclear spins. In
NMR-spectrometers the coil around the sample is used for several steps of
the experiment, such as irradiation of r.f. pulses and detection of the free
induction decay of the ensemble of nuclei (see below).

The analysis of NMR experiments proceeds via a consideration of de-
tailed interactions among nuclear moments and between them and other
components of the solid such as electrons, point defects, and paramagnetic
impurities. This theory has been developed over the past decades and can be
found, e.g., in the textbooks of Abragam [2] and Slichter [3]. Although
this demands the use of quantum mechanics, much can be represented by
semi-classical equations proposed originally by Bloch. The effect of rf-pulse
sequences on the time evolution of the total magnetisation M in an external
field

B = B0 + B1 (15.6)
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is given by the Bloch equation [2, 3]:

dM

dt
= γM ⊗ B − M⊥

T2
− Mz − M eq

z

T1
+ ∇ [D∇(M − Meq)] . (15.7)

The first term in Eq. (15.7) describes the precession of the spins around the
magnetic field B. The second and third terms give the rate of relaxation of
the magnetisation and define two phenomenological constants, T1 and T2,
denoted as relaxation times. They pertain to the longitudinal and transverse
components of the magnetisation. In the absence of any transverse field, T1

determines the rate at which Mz returns to its equilibrium value M eq
z . This

relaxation corresponds to an energy transfer between the spin-system and
the so-called ‘lattice’, where the ‘lattice’ represents all degrees of freedom
of the material with the exception of those of the spin-system. Therefore,
T1 is denoted as the spin-lattice relaxation time. T2 refers to the transverse
part of the nuclear magnetisation and is called the spin-spin relaxation time.
Nuclear spins can be brought to a state of quasi-thermal equilibrium among
themselves without being in thermal equilibrium with the lattice. T2 describes
relaxation to such a state. It follows that T2 ≤ T1. T2 is closely related to the
width of the NMR signal.

The last term in Eq. (15.7) was introduced by Torrey [11] and describes
the time evolution of the magnetisation M , when the sample is also put
into a magnetic field gradient. Meq is the equilibrium value of the magnetic
moment in field B0 and D the diffusion coefficient. Equation (15.7) shows that
various NMR techniques can be used to deduce information about atomic
diffusion.

Elegant pulse techniques of radiofrequency spectroscopy permit the direct
determination of D and of the relaxation times T1 and T2 (see, e.g., Gerstein
and Dybowski [10]).

15.2.2 Direct Diffusion Measurement by Field-Gradient NMR

When a sample is placed deliberately in a magnetic field gradient, G =
∂B/∂z, in addition to a static magnetic field, a direct determination of diffu-
sion coefficients is possible. The basis of such NMR experiments in an inho-
mogeneous magnetic field is the last term of the Bloch equation. In a mag-
netic field gradient the Larmor frequency of a nuclear moment depends on
its positions. Field-gradient NMR (FG-NMR) utilises the fact that nuclear
spins that diffuse in a magnetic field-gradient experience an irreversible phase
shift, which leads to a decrease in transversal magnetisation. This decay can
be observed in so-called spin-echo experiments [12, 13]. The amplitude of the
spin-echo is given by

MG(techo) = M0(techo) exp

⎡
⎣−γ2D

∫ techo

0

(∫ t′

0

G(t′′) dt′′
)2

dt′

⎤
⎦ , (15.8)
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where

M0(techo) = M0(0) exp
(
− techo

T2

)
. (15.9)

techo denotes the time of the spin echo. MG(techo) and M0(techo) are the echo
amplitudes with and without field-gradient G(t). M0(0) is the equilibrium
magnetisation of the spin system.

For a 90-τ -180-τ spin-echo pulse sequence we have techo = 2τ . In a con-
stant magnetic field gradient G0 the solution of Eq. (15.8) is proportional to
the transversal magnetisation M⊥, which is given by

MG(2τ) = M0(0) exp
(
−2τ

T2

)
exp

(
−2

3
γ2DG2

0τ
3

)
. (15.10)

By varying τ or G0 the diffusion coefficient can be determined from the
measured spin-echo amplitude. The diffusion of spins is followed directly by
FG-NMR. Thus, FG-NMR is comparable to tracer diffusion. For a known
G0 value a measurement of the diffusion-related part of the spin echo versus
time can provide the diffusion coefficient without any further hypothesis. In
contrast to tracer diffusion, the FG-NMR technique permits diffusion mea-
surements in isotopically pure systems.

Equation (15.10) shows that the FG-NMR technique is applicable when
the spin-spin relaxation time T2 of the sample is large enough. A signifi-
cant diffusion-related decay of the spin-echo amplitude must occur within T2.
For fixed values of T2 and G0 this requires D-values that are large enough.
The measurement of small D-values requires high field-gradients. This can
be achieved by using pulsed magnetic field-gradients (PFG) as suggested
by McCall [14]. The first experiments with PFG-NMR were performed
by Stejskal and Tanner [13] for diffusion studies in aqueous solutions.
For a comprehensive review of PFG-NMR spectroscopy the reader is re-
ferred, for example, to the reviews of Stilbs [15], Kärger et al. [16], and
Majer [7]. PFG-NMR has been widely applied to study diffusion of hydro-
gen in metals and intermetallic compounds [7]. Applications to anomalous
diffusion processes such as diffusion in porous materials and polymeric ma-
trices can be found in [16]. Diffusion of hydrogen in solids is a relatively fast
process and the proton is particularly suited for NMR studies due to its high
gyromagnetic ratio. Diffusivities of hydrogen between 10−10 and 10−13 have
been studied by PFG-NMR [7].

A fine example for the application of PFG-NMR are measurements of
self-diffusion of liquid lithium and sodium [17]. Figure 15.2 displays self-
diffusivities in liquid and solid Li obtained by PFG-NMR according to Fein-
auer and Majer [18]. At the melting point, the diffusivity in liquid Li is
almost three orders of magnitude faster than in the solid state. Also visible is
the isotope effect of Li diffusion. The diffusivity of 6Li is slightly faster than
that of 7Li.
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Fig. 15.2. Self-diffusion of 6Li and 7Li in liquid and solid Li studied by PFG-NMR
according to Feinauer and Majer [18]

15.2.3 NMR Relaxation Methods

Indirect NMR methods for diffusion studies measure either the relaxation
times T1 and T2, or the linewidth of the absorption line. In addition, other
relaxation times not contained in the Bloch equation can be operationally
defined. The best known of these is the spin-lattice relaxation time in the
rotating frame, T1ρ. This relaxation time characterises the decay of the mag-
netisation when it is ‘locked’ parallel to B1 in a frame of reference rotating
around B0 with the Larmor frequency ω0 = γB0. In such an experiment,
M starts from Meq and decays to B1M

eq/B0. Since T1ρ is shorter than T1,
measurements of T1ρ permit the detection of slower atomic motion than T1.

Let us consider a measurement of the spin-lattice relaxation time T1. If
a magnetic field is applied in the z-direction, T1 describes the evolution of
the magnetisation Mz towards equilibrium according to

dMz

dt
=

M eq
z − Mz

T1
. (15.11)

A measurement of T1 proceeds in two steps. (i) At first, the nuclear mag-
netisation is inverted by the application of an ‘inversion pulse’. (ii) Then, the
magnetisation Mz(t) is observed by a ‘detection pulse’ as it relaxes back to
the equilibrium magnetisation.

The effect of r.f. pulses can be discussed on the basis of the Bloch equation
(15.7). If the resonance condition, ω0 = γB0, is fulfilled for the alternating
B1 field, the magnetisation will precess in the y-z plane with a precession
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Fig. 15.3. Schematic iluustration of a T1 measurement with an inversion-recovery
(π-τ -π/2) pulse sequence

frequency γB1. The application of a pulse of the r.f. field B1 with a duration tp
will result in the precession of the magnetisation to the angle Θp = γB1tp. By
suitable choice of the pulse length the magnetisation can be inverted (Θp = π)
or tilted into the x-y plane (Θp = π/2). During precession in the x-y plane
the magnetisation will induce a voltage in the coil (Fig. 15.1). This signal
is called the free induction decay (FID). If, for example, an initial π-pulse is
applied, Mz(t) can be monitored by the amplitude of FID after a π/2-reading
pulse at the evolution time t, which is varied in the experiment1. This widely
used pulse sequence for the measurement of T1 is illustrated in Fig. 15.3.

NMR is sensitive to interactions of nuclear moments with fields produced
by their local environment. The relaxation times and the linewidth are de-
termined by the interaction between nuclear moments either directly or via
electrons. Apart from coupling to the spins of conduction electrons in met-
als or of paramagnetic impurities in non-metals, two basic mechanisms of
interaction must be considered in relation to atomic movements. The first
interaction is dipole-dipole coupling among the nuclear magnetic moments.
The second interaction is due to nuclear electric quadrupole moments with
internal electric field gradients. Nonzero quadrupolar moments are present
for nuclei with nuclear spins I > 1/2. The diffusion of nuclear moments
causes variations in both of these interactions. Therefore, the width of the
resonance line and the relaxation times have contributions which are due to
the thermally activated jumps of atoms.

1 Without discussing further details, we mention that more complex pulse se-
quences have been tailored to overcome limitations of the simple sequence, which
suffers from the dead-time of the detection system after the strong r.f. pulse.
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Fig. 15.4. Temporal fluctuations of the local field – the origin of motional narrow-
ing

Spin-Spin Relaxation and Motional Narrowing: Let us suppose for the
moment that we need to consider only magnetic dipole interactions, which is
indeed the case for nuclei with I = 1/2. Each nuclear spin precesses, in fact,
in a magnetic field B = B0 +Blocal, where Blocal is the local field created by
the magnetic moments of neighbouring nuclei. The local field experienced by
a particular nucleus is dominated by the dipole fields created by the nuclei
in its immediate neighbourhood, because dipolar fields vary as 1/r3 with
the distance r between the nuclei. Since the nuclear moments are randomly
oriented, the local field varies from one nucleus to another. This leads to
a dispersion of the Larmor frequency and to a broadening of the resonance
line according to

∆ω0 =
1
T2

∝ γ∆Blocal . (15.12)

∆Blocal is an average of the local fields in the sample. In solids without
internal motion, local fields are often quite large and give rise to rather short
T2 values. Typical values without motion of the nuclei are the following:
∆Blocal ≈ 2×10−4 Tesla, T2 ≈ 100µs and ∆ω0 ≈ 104 rad s−1. Such values are
characteristic of a ‘rigid lattice’ regime. The pertaining spin-spin relaxation
time is denoted as T2 (rigid lattice).

Let us now consider how diffusion affects the spin-spin relaxation time
and the linewidth of the resonance line. Diffusion comes about by jumps of
individual atoms from one site to another. The mean residence time of an
atom, τ̄ , is temperature dependent via

τ̄ = τ0 exp
(

∆H

kBT

)
(15.13)

with an activation enthalpy ∆H and a pre-factor τ0. Each time when an
atom jumps into a new site, its nuclear moment will find itself in another
local field. As a consequence, the local field sensed by a nucleus will fluctuate
between ±Blocal on a time-scale characterised by the mean residence time
(Fig. 15.4). If the mean residence time of an atom is much shorter than the
spin-spin relaxation time of the rigid lattice, i.e. for τ̄ � T2 (rigid lattice),
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Fig. 15.5. Schematic illustration of diffusional contributions (random jumps) to
spin-lattice relaxation rates, 1/T1 and 1/T1ρ, and to the spin-spin relaxation rate
1/T2

a nuclear moment will sample many different local fields. The nuclear moment
will behave as though it were in some new effective local field, which is given
by the average of all the local fields sampled. If the sampled local fields
vary randomly in direction and magnitude this average will be quite small,
depending on how many are sampled. The dephasing between the spins grows
more slowly with time than in a fixed local field. The effective local fields of
all the nuclear moments will be small, and the nuclear moments will precess
at nearly the same frequency. Thus, the nuclear moments will not lose their
coherence as rapidly during a FID, and T2 will be longer. A longer FID is
equivalent to a narrower resonance line.

If the diffusion rate is increased, it can be shown by statistical consider-
ations that the width of the resonance line becomes

∆ω′ =
1
T ′

2

= ∆ω2
0 τ̄ . (15.14)

This phenomenon is called motional narrowing. A schematic illustration of
the temperature dependence the spin-spin relaxation rate 1/T2 is displayed
in Fig. 15.5: at low temperatures the relaxation rate of the rigid lattice is
observed, since diffusion is so slow that an atom does not even jump once
during the FID; as τ̄ gets shorter with increasing temperature 1/T ′

2 decreases
and the width of the resonance line gets narrower.

Spin-Lattice Relaxation: When discussing the Bloch equations we have
seen that the spin-lattice relaxation time T1 is the characteristic time during
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which the nuclear magnetisation returns to its equilibrium value. We could
also say the nuclear spin system comes to equilibrium with its environment,
called ‘lattice’. In contrast to spin-spin relaxation, this process requires an
exchange of energy with the ‘lattice’. Spin-lattice relaxation either takes place
by the absorption or emission of phonons or by coupling of the spins to con-
duction electrons (via hyperfine interaction) in metals. The relaxation rate
due to the coupling of nuclear spins with conduction electrons is approxi-
mately given by the Koringa relation(

1
T1

)
e

= const × T, (15.15)

where T denotes the absolute temperature. The relaxation rate due to dipo-
lar interactions, (1/T1)dip, and due to quadrupolar interactions, (1/T1)Q, is
added to that of electrons, so that the total spin-lattice relaxation rate is

1
T1

=
(

1
T1

)
e

+
(

1
T1

)
dip

+
(

1
T1

)
Q

. (15.16)

For systems with nuclear spins I = 1/2, quadrupolar contributions are absent.
The fluctuating fields can be described by a correlation function G(t),

which contains the temporal information about the atomic diffusion pro-
cess [2, 3]. Let us assume as in the original paper by Bloembergen, Pur-
cell and Pound [1] that the correlation function decays exponentially with
the correlation time τc, i.e. as

G(t) = G(0) exp
(
−| t |

τc

)
. (15.17)

This behaviour is characteristic of jump diffusion in a three dimensional sys-
tem and τc is closely related to the mean residence time between successive
jumps. The Fourier transform of Eq. (15.17), which is called the spectral
density function J(ω), is a Lorentzian given by

J(ω) = G(0)
2τc

1 + ω2τ2
c

. (15.18)

Transitions between the energy levels of the spin-system can be induced, i.e.
spin-lattice relaxation becomes effective, when J(ω) has components at the
transition frequency. The spin-lattice relaxation rate is then approximately
given by (

1
T1

)
dip

≈ 3
2
γ4

�
2I(I + 1)J(ω0) . (15.19)

Detailed expressions for the relaxation rates 1
T1

, 1
T2

and 1
T1ρ

can be found,
e.g., in [2, 6].
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Fig. 15.6. Diffusion-induced spin-lattice relaxation rate, (1/T1)dip, of 8Li in solid
Li as a function of temperature according to Heitjans et al. [8]. The B0 val-
ues correspond to Larmor frequencies ω0/2π of 4.32 MHz, 2.14 MHz, 334 kHz, and
53 kHz

The correlation time τc, like the mean residence time τ̄ , will usually obey
an Arrhenius relation

τc = τ0
c exp

(
∆H

kBT

)
, (15.20)

where ∆H is the activation enthalpy of the diffusion process. Since the move-
ment of either atom of a pair will change the correlation function we may
identify τc with one half of the mean residence time τ̄ of an atom at a lattice
site.

The diffusion-induced spin-lattice relaxation rate, (1/T1)dip, is shown in
Fig. 15.6 for self-diffusion of 8Li in lithium according to Heitjans et al. [8].
In a representation of the logarithm of the relaxation rate as function of
the reciprocal temperature, a symmetric peak is observed with a maximum
at ω0τc ≈ 1. At temperatures well above or below the maximum, which
correspond to the cases ω0τc � 1 or ω0τc � 1, the slopes yield ∆H/kB or
−∆H/kB.

The work of Bloembergen, Purcell and Pound [1] is based on the
assumption of the exponential correlation function of Eq. (15.17), which is
appropriate for diffusion in liquids. Later on, the theory was extended to
random walk diffusion in lattices by Torrey [19]. Based on the encounter
model (see Chap. 7) the influence of defect mechanisms of diffusion and the
associated correlation effects have been included into the theory by Wolf [20]
and MacGillivray and Sholl [21]. These refinements lead to results that
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Fig. 15.7. Comparison of self-diffusivities for 6Li in solid Li determined by PFG-
NMR with spin-lattice relaxation results assuming a vacancy mechanism (solid line)
and an interstitial mechanism (dashed line) according to Majer [22]

are broadly similar to those of [1]. However, the refinements are relevant for
a quantitative interpretation of NMR results in terms of diffusion coefficients.
We illustrate this by an example:

Figure 15.7 shows a comparison of diffusion data of 6Li in solid lithium
obtained with PFG-NMR and data deduced from relaxation measurements.
PFG-NMR yields directly 6Li self-diffusion coefficients in solid lithium. No
assumption about the elementary diffusion steps is needed for these data.
The dashed and solid lines are deduced from (1/T1)dip data, assuming two
different atomic mechanisms. Good coincidence of diffusivities from spin-
lattice relaxation and the PFG-NMR data is obtained with the assumption
that Li diffusion is mediated by vacancies. Direct interstitial diffusion clearly
can be excluded [22].

15.3 Mössbauer Spectroscopy (MBS)

The Mössbauer effect has been detected by the 1961 Nobel laureate in physics
R. Mössbauer [23]. The Mössbauer effect is the recoil-free emission and ab-
sorption of γ-radiation by atomic nuclei. Among many other applications,
Mössbauer spectroscopy can be used to deduce information about the move-
ments of atoms for which suitable Mössbauer isotopes exist. There are only
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Fig. 15.8. Mössbauer spectroscopy. Top: moving source experiment; bottom: prin-
ciples

a few nuclei, 57Fe, 119Sn, 151Eu, and 161Dy, for which Mössbauer spectroscopy
can be used. 57Fe is the major ‘workhorse’ of this technique

Information about atomic motion is obtained from the broadening of the
otherwise very narrow γ-line. Thermally activated diffusion of Mössbauer
atoms contributes to the linewidth in a way first recognised by Singwi and
Sjölander in 1960 [24] soon after the detection of the Mössbauer effect.

Mössbauer spectroscopy uses two samples, one playing the rôle of the
source, the other one the rôle of an absorber of γ-radiation as indicated in
Fig. 15.8. In the source the nuclei emit γ-rays, some of which are absorbed
without atomic recoil in the absorber. The radioisotope 57Co is frequently
used in the source. It decays with a half-life time of 271 days into an excited
state of the Mössbauer isotope 57Fe. The Mössbauer level is an excited level
of 57Fe with lifetime τN = 98 ns. It decays by emission of γ-radiation of the
energy Eγ = 14.4 keV to the ground state of 57Fe, which is a stable isotope
with a 2.2% natural abundance. If the Mössbauer isotope is incorporated in
a crystal, the recoil energy of the decay is transferred to the whole crystal.
Then, the width of the emitted γ-line becomes extremely narrow. This is
the effect for which Mössbauer received the Nobel price. The absorber also
contains the Mössbauer isotope. A fraction f of the emitted γ-rays is absorbed
without atomic recoil in the absorber. In the experiment, the source is usually
moved relative to the absorber with a velocity v. Experimantal set-ups with
static source and a moving absorber are also possible. This motion causes
a Doppler shift

∆E =
v

c
Eγ (15.21)

of the source radiation, where c denotes the velocity of light. The linewidth
in the absorber is then recorded as a function of the relative velocity or as
a function of the Doppler shift ∆E.
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Fig. 15.9. Simplified, semi-classical explanation of the diffusional line-broadening
of a Mössbauer spectrum. Q denotes the wave vector of the γ-rays

Diffusion in a solid, if fast enough, leads to a diffusional broadening of
the Mössbauer spectrum. This can be understood in a simplified picture
as illustrated in Fig. 15.9 [25]: at low temperatures, the Mössbauer nuclei
stay on their lattice sites during the emission process. Without diffusion the
natural linewidth Γ0 is observed, which is related to the lifetime of the excited
Mössbauer level, τN , via the Heisenberg uncertainty relation:

Γ0τN ≥ � . (15.22)

At elevated temperatures, the atoms become mobile. A diffusing atom resides
on one lattice site only for a time τ̄ between two successive jumps. If τ̄
is of the same order or smaller than τN , the Mössbauer atom changes its
position during the emission process. When an atom is jumping the wave
packet emitted by the atom is ‘cut’ into several shorter wave packets. This
leads to a broadening of the linewidth Γ , in addition to its natural width Γo.
If τ̄ � τN , the broadening, ∆Γ = Γ − Γ0, is of the order of

∆Γ ≈ �/τ̄ . (15.23)

Neglecting correlation effects (see, however, below) and considering diffusion
on a Bravais lattice with a jump length d the diffusion coefficient is related
to the diffusional broadening via

D ≈ d2

12
∆Γ

�
. (15.24)

Experimental examples for Mössbauer spectra of 57Fe in iron are shown
in Fig. 15.10 according to Vogl and Petry [27]. The Mössbauer source
was 57Co. The linewidth increases with increasing temperature due to the
diffusional motion of Fe atoms. Figure 15.11 shows an Arrhenius diagram
of self-diffusion for γ- and δ-iron, in which the Mössbauer data are com-
pared with tracer results [27]. The jump length d in Eq. (15.24) was as-
sumed to be the nearest neighbour distance of Fe. It can be seen that
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Fig. 15.10. Mössbauer spectra for self-diffusion in polycrystalline Fe from a review
of Vogl and Petry [27]. FWHM denotes the full-width of half maximum of the
Mössbauer line. The spectrum at 1623 K pertains to γ-iron and the spectra at higher
temperatures to δ-iron

the diffusivities determined from the Mössbauer study agree within er-
ror bars with diffusivities from tracer studies. Equation (15.24) is an ap-
proximation and follows from the more general Eq. (15.27). For this aim
Eq. (15.27) is specified to polycrystalline samples and considered for Q �
1/d. For 14.4 keV γ-radiation we have Q = 73 nm−1, which is indeed
much larger than 1/d. The broadening is more pronounced in the high-
temperature δ-phase of iron with the bcc structure as compared to the fcc
γ-phase of iron. This is in accordance with the fact that self-diffusion in-
creases by about one order of magnitude, when γ-iron transforms to δ-iron
(see Chap. 17).
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Fig. 15.11. Self-diffusion in γ- and δ-iron: comparison of Mössbauer (symbols) and
tracer results (solid lines) according to Vogl and Petry [27]

Diffusional Broadening of MBS Signals: A quantitative analysis of
diffusional line-broadening uses the fact that according to van Hove [28]
the displacement of atoms in space and time can be described by the self-
correlation function Gs(r, t). This is the probability density to find an atom
displaced by the vector r within a time interval t. We are interested in the self-
correlation function because the Mössbauer absorption spectrum, σ(Q, ω), is
related to the double Fourier transform of Gs in space and time via

σ(Q, ω) ∝ Re

[∫ ∫
Gs(r, t) exp [i(Q · r − ωt) − Γ0 | t | /2�]drdt

]
,

(15.25)
where Γ0 is the natural linewidth of the Mössbauer transition.

The self-correlation function contains both diffusional motion as well as
lattice vibrations. Usually, these two contributions can be separated. The
vibrational part leads to the so-called Debye-Waller factor, fDW , which gov-
erns the intensity of the resonantly absorbed radiation. The diffusional part
determines the shape of the Mössbauer spectrum. As the wave packets are
emitted by the same nucleus, they are coherent. The interference between
these packets depends on the orientation between the jump vector of the
atom and the wave vector (see Fig. 15.9). If a single-crystal specimen is used,
in certain crystal directions the linewidth is small and in other directions it
is larger.

To exploit Eq. (15.25) a diffusion model is necessary to calculate σ(Q, ω).
For random jumps on a Bravais lattice (Markov process) the shape of the
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resulting Mössbauer spectrum is a Lorentzian [25, 26]

σ(Q, ω) ∝ fDW
∆Γ (Q)/2

[∆Γ (Q)/2]2 + (�ω)2
, (15.26)

where ∆Γ (Q) is the full peak-width at half maximum. This diffusional broad-
ening depends on the relative orientation between radiation and crystal:

∆Γ (Q) =
2�

τ̄

⎛
⎝1 −

∑
j

WjEj

⎞
⎠ where Ej =

1
Nj

Nj∑
k=1

exp(iQ · rk) .

(15.27)
Wj is the probability for a displacement to coordination shell j, Ej the corre-
sponding structure factor, Nj denotes the number of sites in the coordination
shell j, and rk are the displacement vectors to sites in shell j.

For diffusion mediated by vacancies, successive jumps of an atom are
correlated. An extension of Eq. (15.27) for correlated diffusion has been de-
veloped by Wolf [20] on the basis of the so-called encounter model (see
Chap. 7). The mean time between encounters is

τenc = τ̄Zenc , (15.28)

where Zenc is the average number of jumps performed by a Mössbauer atom
in one encounter. Each complete encounter is treated as an effective displace-
ment not correlated to the previous or following encounter. Wolf showed that
the line broadening can be expressed as

∆Γ (Q) =
2�

τ̄Zenc

⎛
⎝1 −

∑
j

W enc
j Ej

⎞
⎠ , (15.29)

where W enc
j is the probability for a displacement of rj by an encounter with

a defect. For further details and for an extension to non-Bravais lattices the
reader is referred to [25, 29].

An important consequence of Eq. (15.26) and of Eq. (15.29) is that both
σ(Q, ω) and ∆Γ depend on the relative orientation between Q and the jump
vector r and hence on the orientation of the crystal lattice. This can be ex-
ploited by measurements on monocrystals. By varying the crystal orientation,
information about the length and direction of the jump vector is obtained.
In that respect MBS and QENS are analogous. Examples for the deduction
of elementary diffusion jumps will be given in the next section.

15.4 Quasielastic Neutron Scattering (QENS)

The scattering of beams of slow neutrons obtained from nuclear reactors or
other high-intensity neutron sources can be used to study structural and dy-
namic properties of condensed matter. Why neutron scattering is a tool with
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Fig. 15.12. Comparison between the dispersion relations of electromagnetic waves
(EM waves) and neutrons

unique properties can be seen from Fig. 15.12, which shows a comparison of
the dispersion relations of electromagnetic waves (EM waves) and neutrons.
For EM waves the frequency ν and the wavelength λ are related via ν = c/λ,
where c is the velocity of light. For (non-relativistic) neutrons of mass mn

the dispersion relation is ν = h/(2mnλ2). Typical atomic vibration frequen-
cies in a solid, νatomic, match with far infrared and microwave frequencies of
EM waves. On the other hand, typical interatomic distances, ratomic, match
with wavelengths of X-rays. Slow and thermal neutrons have the unique fea-
ture that their wavelengths and frequencies match atomic frequencies and
interatomic distances simultaneously.

Neutrons are uncharged probes and interact with nuclei. In contrast to
photons, neutrons have only a weak interaction with matter. This means that
neutron probes permit easy access to bulk properties. Since neutrons can
penetrate suitable sample containers easily. One can also use sophisticated
sample environments, such as wide temperature ranges and high magnetic
fields.

The scattering cross section for neutrons is determined by the sample
nuclei. The distribution of scattering cross sections in the periodic table is
somehow irregular. For example, protons have very high scattering cross sec-
tions and are mainly incoherent scatterers. For deuterons the coherent cross
section is larger than the incoherent scattering cross section. Carbon, nitro-
gen, and oxygen have very small incoherent scattering cross sections and are
mainly coherent scatterers. For sodium, coherent and incoherent scattering
cross sections are similar in magnitude.
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Fig. 15.13. Neutron scattering geometry: in real space (left); in momentum space
(right)

Neutron scattering leads to a spectrum of energy and momentum transfers
(Fig. 15.13). The energy transfer is

�ω = E1 − E0 , (15.30)

where E1 and E0 denote the neutron energies after and before the scatter-
ing process, respectively. The corresponding momentum transfer is �Q. The
scattering vector is

Q = k1 − k0 , (15.31)

where k0 and k1 are the neutron wave vectors before and after the scattering
event. The corresponding neutron wavelenghts are λ1 = 2π/k1 and λ0 =
2π/k0. The values of

Q =
4π

λ0
sin(Θ/2) (15.32)

(Θ = scattering angle Q = modulus of the scattering vector) vary typically
between 1 and 50 nm−1. Therefore, 1/Q can match interatomic distances.
The scattered intensity in such an experiment is proportional to the so-called
scattering function or dynamic structure factor, S(Q, ω), which can be cal-
culated for diffusion processes (see below).

A schematic energy spectrum for neutron scattering with elastic, quasielas-
tic, and inelastic contributions is illustrated in Fig. 15.14. Inelastic peaks are
observed, due to the absorption and emission of phonons.

Quasielastic Scattering: Quasielastic scattering must be distinguished
from the study of periodic modes such as phonons or magnons by inelas-
tic scattering, which usually occurs at higher energy transfers.

For samples with suitable scattering cross sections, diffusion of atoms in
solids can be studied by quasielastic neutron scattering (QENS), if a high-
resolution neutron spectrometer is used. QENS, like MBS, is a technique
which has considerable potential for elucidating diffusion steps on a micro-
scopic level. Both techniques are applicable to relatively fast diffusion pro-
cesses only (see Fig. 13.1). QENS explores the diffusive motion in space for
a range comparable to the neutron wavelength. Typical jump distances and
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Fig. 15.14. Energy spectrum of neutron scattering (schematic)

diffusion paths between 10−8 and 10−10 m can be studied. Let us briefly
anticipate major virtues of QENS. The full peak-width at half maximum of
a Lorentzian shaped quasielastic line is given for small values of Q by

∆Γ = 2DQ2 , (15.33)

where D is the self-diffusion coefficient [31, 32]. Quasielastic line broaden-
ing is due to the diffusive motion of atoms. The pertinent energy trans-
fers �ω typically range from 10−3 to 10−7 eV. For larger scattering vec-
tors, ∆Γ is periodic in reciprocal space and hence depends on the atomic
jump vector like in MBS. For a particle at rest, we have ∆Γ = 0 and
a sharp line at �ω = 0 is observed. This elastic line (Bragg peak) results
from a scattering process in which the neutron transmits the momentum
�Q to the sample as a whole, without energy transfer. For resonance ab-
sorption of γ−rays this corresponds to the well-known Mössbauer line (see
above). We have already seen that in MBS a diffusing particle produces a line
broadening. QENS is described by similar theoretical concepts as used in
MBS [25, 30–32].

Figure 15.15 shows an example of a quasielastic neutron spectrum mea-
sured on a monocrystal of sodium according to Göltz et al. [33]. The
number of scattered neutrons N is plotted as a function of the energy trans-
fer �ω for a fixed scattering vector with Q = 1.3×10−10 m−1. The dashed line
represents the resolution function of the neutron spectrometer. The observed
line is broadened due to the diffusive motion of Na atoms. The quasielastic
linewidth depends on the orientation of the momentum transfer and hence
of the crystallographic orientation of the crystal (see below).

The Dynamic Structure Factor (Scattering Functions): Let us now
recall some theoretical aspects of QENS. The quantity measured in neutron
scattering experiments is the intensity of neutrons, ∆Is, scattered from a col-
limated mono-energetic neutron beam with a current density I0. The intensity
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Fig. 15.15. QENS spectrum of a Na monocrystal at 367.5 K according to Göltz
et al. [33]. Dashed line: resolution functionof the neutron spectrometer

of neutrons scattered into a solid angle element, ∆Ω, and an interval, ∆ω,
from a sample with volume V and number density of scattering atoms, N ,
(see Fig. 15.13) is given by [31]

∆Is = I0NV

(
d2σ

dΩdω

)
∆Ω∆ω , (15.34)

where the double differential scattering cross section is

d2σ

dΩdω
=

k1

k0

σ

4π
S(Q, ω) . (15.35)

The cross section is factorised into three components: the ratio of the wave
numbers k1/k0; the cross section for a rigidly bound nucleus, σ = 4πb2, where
b is the corresponding scattering length of the nucleus; the scattering intensity
is proportional to the dynamical structure factor S(Q, ω). The dynamical
structure factor depends on the scattering vector and on the energy transfer
defined in Eqs. (15.30) and (15.31). It describes structural and dynamical
properties of the sample which do not depend on the interaction between
neutron and nuclei.

The interaction of a neutron with a scattering nucleus depends on the
chemical species, the isotope, and its nuclear spin. In a mono-isotopic sam-
ple, all nuclei have the same scattering length. Then, only coherent scattering
will be observed. In general, however, several isotopes are present according
to their natural abundance. Each isotope i is characterised by its scatter-
ing length bi. The presence of different isotopes distributed randomly in the
sample means that the total scattering cross section is made up of two parts,
called coherent and incoherent.
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The theory of neutron scattering is well developed and can be found,
e.g., in reviews by Zabel [30], Springer [31, 32] and in textbooks of
Squires [37], Lovesey [38], Bee [36], and Hempelmann [39]. Theory shows
that the differential scattering cross section can be written as the sum of a co-
herent and an incoherent part

d2σ

dΩdω
=
(

d2σ

dΩdω

)
coh

+
(

d2σ

dΩdω

)
inc

=
k1

k0

[σcoh

4π
Scoh(Q, ω) +

σinc

4π
Sinc(Q, ω)

]
. (15.36)

Coherent (index: coh) and incoherent (index: inc) contributions depend on
the composition and the scattering cross sections of the nuclei in the sample.
The coherent scattering cross section σcoh is due to the average scattering
from different isotopes

σcoh = 4πb̄2 with b̄ = Σcibi . (15.37)

The incoherent scattering is proportional to the deviations of the individual
scattering lengths from the mean value

σinc = 4π
(
b̄2 − b̄2

)
with b̄2 = Σcib

2
i . (15.38)

The bars indicate ensemble averages over the various isotopes present and
their possible spin states. The ci are the fractions of nuclei i.

Coherent scattering is due to interference of partial neutron waves origi-
nating at the positions of different nuclei. The coherent scattering function,
Scoh(Q, ω), is proportional to the Fourier transform of the correlation func-
tion of any nuclei. Coherent scattering leads to interference effects and col-
lective properties can be studied. Among other things, this term gives rise to
Bragg diffraction peaks.

Incoherent scattering monitors the fate of individual nuclei and inter-
ference effects are absent. The incoherent scattering function, Sinc(Q, ω), is
proportional to the Fourier transform of the correlation function of individual
nuclei. Only a mono-isotopic ensemble of atoms with spin I = 0 would scatter
neutrons in a totally coherent manner. Incoherent scattering is connected to
isotopic disorder and to nuclear spin disorder.

We emphasise that it is the theory of neutron scattering that leads to the
separation into coherent and incoherent terms. The direct experimental de-
termination of two separate functions, Scoh(Q, ω) and Sinc(Q, ω), is usually
not straightforward, unless samples with different isotopic composition are
available. However, sometimes the two contributions can be separated with-
out the luxury of major changes in the isotopic composition. The coherent
and incoherent length bi of nuclei are known and can be found in tables [40].
For example, the incoherent cross section of hydrogen is 40 times larger than
the coherent cross section. Then, coherent scattering can be disregarded.
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Incoherent Scattering and Diffusional Broadening of QENS Sig-
nals: Incoherent quasielastic neutron scattering is particularly useful for
diffusion studies. The incoherent scattering function can be calculated for
a given diffusion mechanism. Let us first consider the influence of diffusion
on the scattered neutron wave in a simplified, semi-classical way: in an ensem-
ble of incoherent scatterers, only the waves scattered by the same nucleus can
interfere. At low temperatures the atoms stay on their sites during the scat-
tering process; this contributes to the elastic peak. The width of the elastic
peak is then determined by the energy resolution of the neutron spectrometer.
At high temperatures the atoms are in motion. Then the wave packets emit-
ted by diffusing atoms are ‘cut’ to several shorter ‘packets’, which leads to
diffusional broadening of the elastic line. This is denoted as incoherent quasi-
elastic scattering. Like in MBS the interference between wave packets emitted
by the same nucleus depends on the relative orientation between the jump
vector of the atom and the scattering direction. Therefore, in certain crystal
direction the linewidth will be small while in other directions it will be large.

For a quantitative description of the incoherent scattering function the
van Hove self-correlation function Gs(r, t) is used as a measure of diffusive
motion. The incoherent scattering function is proportional to the Fourier
transform of the self-correlation function

Sinc(Q, ω) =
1
2π

∫ ∫
Gs(r, t) exp [i(Qr − ωt)]drdt . (15.39)

When atomic motion can simply be described by continuous translational
diffusion in three dimensions, the self-correlation function Gs(r, t) takes the
form of a Gaussian (see Chap. 3)

Gs(r, t) =
1

(4πDt)3/2
exp

(
− r2

4Dt

)
, (15.40)

with D denoting the self-diffusion coefficient of atoms. Its Fourier transform
in space

S(Q, t) = exp
(−Q2Dt

)
(15.41)

is an exponential function of time, the time Fourier transform of which is
a Lorentzian:

Sinc(Q, ω) =
1
π

DQ2

(DQ2)2 + ω2
. (15.42)

This equation shows that for small Q values the linewidth of the quasielastic
line is indeed given by Eq. (15.33). It is thus possible to determine the dif-
fusion coefficient from a measurement of the linewidth as a function of small
scattering vectors.

In the derivation of Eq. (15.42) the continuum theory of diffusion was
used for the self-correlation function. This assumption is only valid for small
scattering vectors |Q| << 1/d, where d is the length of the jump vectors in the
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Fig. 15.16. Top: Self-correlation function Gs for a one-dimensional lattice. Top:
The height of the solid lines represents the probability of occupancy per site.
Asymptotically, the envelope approaches a Gaussian. Bottom: Incoherent contri-
bution Sinc(Q,ω) to the dynamical structure factor and quasi-elastic linewidth ∆Γ
versus scattering vector Q. According to [32]

lattice. For jump diffusion of atoms on a Bravais lattice the self-correlation
function Gs can be obtained according to Chudley and Elliot [41]. The
probability P (rn, t) to find a diffusing atom on a site rn at time t is calculated
using the master equation for P (rn, t):

∂P (rn, t)
∂t

= −1
τ̄

P (rn, t) +
1

Zτ̄

Z∑
i=1

P (rn + li, t) . (15.43)

li (i =1, 2, . . .Z) is a set of jump vectors connecting a certain site with its Z
neighbours. τ̄ denotes the mean residence time. The two terms in Eq. (15.43)
correspond to loss and gain rates due to jumps to and from adjacent sites re-
spectively. With the initial condition P (rn, 0) = δ(rn), the probability P (r, t)
becomes equivalent to the self-correlation function Gs(rn, t). A detailed the-
ory of the master equation can be found in [42, 43]. If P (rn, t) is known
the incoherent scattering function is obtained by Fourier transformation in
space and time according to Eq. (15.39). For a one-dimensional lattice Gs is
illustrated in Fig. 15.16.

The classical model for random jump diffusion on Bravais lattices via
nearest-neighbour jumps was derived by Chudley and Elliot in 1961 [35]
(see also [36]). The incoherent scattering function for random jump motion
on a Bravais lattice is given by
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Sinc(Q, ω) =
2
π

∆Γ (Q)
∆Γ (Q)2 + ω2

. (15.44)

The function ∆Γ (Q) is determined by the lattice structure, the jumps which
are possible, and the jump rate with which they occur. For the scattering of
neutrons in a particular direction Q, the variation with change in energy �ω
is Lorentzian in shape with a linewidth given by ∆Γ .

In the case of polycrystalline samples, the scattering depends on the mod-
ulus Q = |Q| only, but still consists of a single Lorentian line with linewidth

∆Γ =
2
τ̄

[
1 − sin(Qd)

Qd

]
. (15.45)

Here τ̄ is the mean residence time for an atom on a lattice site and d the
length of the jump vector.

For a monocrystal with a simple cubic Bravais lattice one gets for the
orientation dependent linewidth

∆Γ (Q) =
2
3τ̄

[3 − cos(Qxd) − cos(Qyd) − cos(Qzd)] , (15.46)

where Qx, Qy, Qz are the components of Q and d is the length of the jump
vector. The linewidth is a periodic function in reciprocal space. It has a max-
imum at the boundary of the Brillouin zone and it is zero if a reciprocal
lattice point G is reached. This line narrowing is a remarkable consequence
of quantum mechanics.

For vacancy-mediated diffusion successive jumps of atoms are correlated.
Like in the case of MBS, the so-called encounter model can be used for low
vacancy concentrations (see Chap. 7). A vacancy can initiate several corre-
lated jumps of the same atom, such that one encounter comprises Zenc atomic
jumps. As we have seen in Chap. 7, the time intervals between subsequent
atomic jumps within the same encounter are very short as compared to the
time between encounters. As a consequence, the quasielastic spectrum can
be calculated within the framework of the Chudley and Elliot model, where
the rapid jumps within the encounters are treated as instantaneous. The
linewidth of the quasielastic spectrum is described by [33]

∆Γ =
2

τ̄Zenc

[
1 −

∑
rm

Wenc(rm) cos(Qrm)

]
, (15.47)

where Wenc(rm) denotes the probability that, during an encounter, an atom
originally at rm = 0 has been displaced to lattice site rm by one or sev-
eral jumps. The probabilities can be obtained, e.g., by computer simulations.
A detailed treatment based on the encounter model can be found in a paper
by Wolf [46]. Equation (15.47) is equivalent to Eq. (15.29) already discussed
in the section about Mössbauer spectroscopy.
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Fig. 15.17. Quasielastic linewidth as a function of the modulus Q = |Q| for
polycrystalline Na2PO4 according to Wilmer and Combet [47]. Solid lines: fits
of the Chudley-Elliot model

15.4.1 Examples of QENS studies

Let us now consider examples of QENS studies, which illustrate the potential
of the technique for polycrystalline material and for monocrystals.

Na self-diffusion in ion-conducting rotor phases: Sodium diffusion
in solid solutions of sodium orthophosphate and sodium sulfate, xNa2SO4

(1-x)Na3PO4, has been studied by Wilmer and Combet [47]. These ma-
terials belong to a group of high-temperature modifications with both fast
cation conductivity and anion rotational disorder and are thus termed as
fast ion-conducting rotor phases. The quasielastic linewidth of polycrystalline
samples has been measured as a function of the momentum transfer. In the
case of polycrystalline samples, the scattering depends on the modulus of
Q = |Q| only, but still consist of a single Lorentzian line with linewidth
Eq. (15.45). The Q-dependent linebroadening is shown for Na2PO4 at vari-
ous temperatures in Fig. 15.17. The linewidth parameters τ̄ and d have been
deduced. Obviously, the jump rates τ̄−1 incresase with increasing tempera-
ture. Much more interesting is that the jump distance could be determined.
It turned out that sodium diffusion is dominated by jumps between neigh-
bouring tetrahedrally coordinated sites on an fcc lattice, the jump distance
being half of the lattice constant.

At very low values of Q, quasielastic broadening does no longer depend
on details of the jump geometry since the linewidth is dominated by the
long-range diffusion via Eq. (15.33). The linebroadening at the two lowest
accessible Q values (1.9 and 2.9 nm−1) was used to determine the sodium
self-diffusivites [47]. An Arrhenius plot of the sodium diffusivities is shown in
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Fig. 15.18. Self-diffusion of Na in three xNa2SO4(1-x)Na3PO4 rotor phases ac-
cording to Wilmer and Combet [47]

Fig. 15.18. The activation enthalpies decrease from 0.64 eV for pure Na3PO4

to 0.3 eV for a sulphate content of 50%:

Na self-diffusion in Na single-crystals: Quasielastic scattering of sodium
single crystals has been investigated by Göltz et al. [33] and Ait-Salem
et al. [34] and analysed in terms of Eq. (15.47). It was demonstrated that
self-diffusion of sodium occurs by nearest-neighbour jumps in the bcc lat-
tice. Figure 15.19 shows the linebroadening as a function of the momen-
trum transfer Q in directions parallel to 〈111〉, 〈110〉, and 〈100〉 at 362.2K.
Model calculations are also shown, assuming a monovacancy mechnaism with
nearest-neighbour jumps on with a 〈111〉 jumps. The results show that dif-
fusion proceeds via nearest-neighbour jumps.

H diffusion in palladium: QENS measurements have been widely used to
study diffusion of H-atoms in interstitial solutions of hydrogen in palladium.
Interstitial diffusion is uncorrelated (see Chap. 7). It was shown, for exam-
ple, that H-atoms jump between nearest-neighbour octahedral sites of the
interstitial lattice of fcc Pd [44, 45].

15.4.2 Advantages and Limitations of MBS and QENS

For MBS diffusion studies it is necessary to heat the sample to sufficiently
high temperatures that the mean residence time of an atom on a lattice site,
τ̄ , is comparable to or less than the half-life of the Mössbauer level τN . For
metals, this implies temperatures not much below the melting temperature.

Mössbauer spectroscopy is sensitive to the elementary steps of diffusion
on a microscopic scale. A direct determination of jump vectors and jump rates
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Fig. 15.19. Self-diffusion of Na metal. Dependence of the QENS line broadening
in three major crystallographic directions. Theoretical curves have been calculated
for a monovacancy mechanism assuming nearest-neighbour junps (solid lines) and
a〈111〉 jumps (dotted line). From Vogl and Petry [27] according to [33, 34]

is possible, when single-crystal samples are used and the line-broadening is
measured as a function of crystal orientation. In addition, one can deduce the
diffusion coefficient and compare it with data obtained, e.g., by tracer diffu-
sion studies. However, this is not the main virtue of a microscopic method.

The nuclei studied in MBS must have a large value of the recoilless frac-
tion, which limits the number of good isotopes to a few species. As already
mentioned the major ‘workhorse’ of Mössbauer spectroscopy is 57Fe. The iso-
topes 119Sn, 151Eu, and 161Dy are less favourable but still useful isotopes
for diffusion studies. Mössbauer diffusion studies in practice require a diffu-
sional line-broadening that is comparable or larger than the natural linewidth
of the Mössbauer transition. Only relatively large diffusion coefficients can
be measured. For example, 57Fe diffusion coefficients in the range 10−14 to
10−10 m2 s−1 are accessible.

For diffusion studies by quasielastic neutron scattering (QENS) it is nec-
essary to keep the sample at temperatures where the mean residence time of
atoms on a lattice site, τ̄ , is short enough to produce a diffusional broadening,
which exceeds the energy resolution of the neutron spectrometer. For time-
of-flight spectrometry the resolution is in the range of µeV to 0.1meV. This
allows a range of diffusion coefficients between about 10−12 and 10−8 m2 s−1

to be covered. Diffusion coefficients can be determined directly from the Q2

dependence of the linewidth.
QENS has mainly been used to study hydrogen and sodium diffusion in

solids. A prerequisite of QENS is that the element of interest has a large
enough incoherent scattering cross section as compared to the coherent scat-
tering cross section. Only few elements such as hydrogen, sodium, and vana-
dium fulfill this condition. In these cases QENS is unique, since there are no
Mössbauer isotopes for these elements. Otherwise, in luxury experiments dif-
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ferent mixtures of isotopes can be used to separate coherent and incoherent
contributions to scattering. The major merits of QENS and MBS are that
both permit the investigation of the elementary steps of diffusion in solids
on a scale of atomic dimensions and times. Both techniques are applicable to
fast diffusion processes (see Fig. 13.1).
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