
14 Mechanical Spectroscopy

14.1 General Remarks

The discoveries of thermally-activated anelastic relaxation processes in solids
by Snoek [1], Zener [2, 3] and Gorski [4] were made more than half a cen-
tury ago. Since then, anelastic measurements have become an established
tool for the study of atomic movements in solids. Relaxation methods and
the closely related internal friction (or damping) methods make use of the
fact that atomic motion in a solid can be induced by the application of con-
stant or oscillating mechanical stress. Nowadays, anelastic measurements are
also denoted by the title mechanical spectroscopy.

Under the influence of an applied stress or strain, an instantaneous elastic
effect (Hooke’s law) is observed, followed by strain or stress which varies with
time. The latter effect is called anelasticity or anelastic relaxation. Anelastic
behaviour is reversible. If stress (strain) is removed the sample will return –
after some time – to its initial shape. This distinguishes anelastic from plastic
behaviour.

Light interstitials, such as H, C, N, and O as well as substitutional so-
lutes and solute-defect complexes are accompanied by local straining of the
surrounding lattice. The presence of microstrains surrounding a diffusing
atom allows interaction between a macroscopic stress field arising from ex-
ternal forces applied to the material. This interaction generates a rich va-
riety of stress-assisted diffusion effects. Stress-mediated motion can cause
time-dependent anelastic (recoverable) strains that result in several types of
internal friction processes encountered in many materials.

Sometimes, anelastic relaxation involves the reorientation of point defects
which act as elastic dipoles as illustrated in Fig. 14.1. Reorientation relax-
ations are short-range processes, which in some cases involve only one or few
atomic jump(s). However, only in some special cases, exemplified by Snoek re-
laxation, the same jump produces both reorientation and diffusion. Only then,
a simple relationship exists between the relaxation time and the long-range
diffusion coefficient. Long-range diffusion controls the so-called Gorski relax-
ation illustrated in Fig. 14.2. Gorsky relaxation can be produced by bending
a sample containing defects, which act as dilatation centers. In practice, the
only experimentally known example of Gorski relaxation is due to hydrogen
diffusion metals. It can be observed because hydrogen diffusion is very fast.
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Fig. 14.1. Schematic illustration of anelastic relaxation caused by reorientation of
elastic dipoles (represented by grey ellipses)

Fig. 14.2. Schematic illustration of Gorski-effect

One should, however, keep in mind that mechanical relaxation and in-
ternal friction may arise from various sources. These can range from point-
defect reorientations, long-range diffusion, dislocation effects, grain-boundary
processes, and phase transformations to visco-elastic behaviour and plastic
deformation. Some point-defect relaxations are diffusion-related, some are
not. For point-defect relaxations of trapped and paired defects, the nature
and the activation enthalpy of the reorientation jump can be significantly
different from those associated with long-range diffusion. A review of the
substantial body of work that has been accumulated on the study of atomic
movement by anelastic methods is beyond the scope of this chapter.

Several textbooks, e.g., those of Zener [3] and Nowick and Berry [5]
and reviews by Berry and Pritchet [6, 7] are available for the interested
reader. A review about the potential of mechanical loss spectroscopy for in-
organic glasses and glass ceramics has been given by Roling [8]. A compre-
hensive treatment of magnetic relaxation effects can be found in a textbook
of Kronmüller [9].

In the present chapter, we first mention the basic concepts of mechanical
loss spectroscopy, i.e. of anelastic behaviour and internal friction. Then, we
describe some examples of diffusion-related anelasticity such as the Snoek
effect, the Zener effect, the Gorski effect, and give an example of a mechanical
loss spectrum of glasses.
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14.2 Anelasticity and Internal Friction

From the viewpoint of mechanical stress-strain behaviour, we may regard an
ideal solid as one which obeys Hooke’s law and thus behaves in an ideally
elastic manner. Such a solid would always recover completely and instanta-
neously on removal of an applied stress. If set into vibration, the solid would
vibrate forever with undiminished amplitude if totally isolated from its sur-
roundings. The mechanical behaviour of real solids at low stress levels (below
the yield stress) is modified by the appearance of anelasticity, which develops
at a rate controlled by the atomic movements. It can often be traced back to
the presence of mobile atoms or point defects.

A quantitative description of the anelastic behaviour of materials can be
found by analysing a model having the name standard linear solid, which was
originally proposed by Voigt [10] and by Poynting and Thomson [11].
In this model, stress σ, strain ε, and their respective time derivatives, σ̇ and
ε̇, are related through a linear response equation:

σ + τεσ̇ = MR(ε + τσ ε̇) . (14.1)

This anelastic equation of state is a generalisation of Hooke’s law of linear
elasticity. Equation (14.1) contains three material parameters: the strain re-
laxation time τε, the stress relaxation time τσ (sometimes also denoted as
the stress retardation time), and the relaxed elastic modulus MR. Figure 14.3
illustrates in its left part the strain response of a standard linear solid in-
duced by an instantaneous application and subsequent removal of a constant
stress. The continued relaxation of the strain after removal of the stress is also
termed the elastic aftereffect. The stress response induced by instantaneous
application and removal of strain is illustrated in the right part. Note that
τσ and τε are different. It is obvious from Eq. (14.1) that for vanishing time
derivatives Eq. (14.1) reduces to Hooke’s law. Under uniaxial stress MR is
termed the Young modulus, whereas under applied shear MR is termed the
shear modulus.

Periodic Stress and Strain: Let us now suppose that a uniaxial, periodic
stress-time function of frequency ω and amplitude σ0 of the form

σ = σ0 exp [iωt] (14.2)

is imposed on the material. The time-dependent strain response of an anelas-
tic solid then is

ε = ε0 exp [i(ωt − δ)] , (14.3)

where δ is the phase shift between σ and ε. For a completely elastic material,
σ and ε are in phase and the phase shift is zero for all frequencies. The stress-
strain behaviour for an anelastic material under periodic stress is illustrated
in Fig. 14.4. For an anelastic material a hysteresis loop is obtained. The area



240 14 Mechanical Spectroscopy

Fig. 14.3. Schematic illustration of anelastic behaviour. The strain response for
an instantaneous stress-time function is shown in the left half. The stress response
for an instantaneous strain-time function corresponds to the right half

Fig. 14.4. Stress-strain relations for a periodically driven anelastic material at
three different frequencies

inside the hysteresis represents the dissipated energy per unit volume and
per cycle (see below).

It is convenient to introduce a complex elastic modulus M̂ via

σ = M̂ε, (14.4)

which can be split up according to

M̂ = M ′ + iM ′′ , (14.5)

i.e. into real and imaginary parts M ′ and M ′′, respectively. Assuming peri-
odic strain with a frequency ω and substituting Eqs. (14.4) and (14.5) into
Eq. (14.1) yields after a few steps of algebra

M̂ = MR
1 + τσiω

1 + τεiω
. (14.6)
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After separation into real and imaginary parts we get

M ′(ω) = MR
1 + τετσω2

1 + ω2τ2
ε

= MR + ∆M
ω2τ2

ε

1 + ω2τ2
ε

(14.7)

and

M ′′(ω) = MR
(τσ − τε)ω
1 + ω2τ2

ε

= ∆M
ωτε

1 + ω2τ2
ε

, (14.8)

where the abbreviations

∆M ≡ MU − MR and ∆ ≡ ∆M/MR (14.9)

have been introduced. At high frequencies, the time scale for stress and
strain removals becomes small compared to the relaxation times. Then M ′

approaches an unrelaxed elastic modulus

MU =
MRτσ

τε
, (14.10)

which denotes the stress increment per unit strain at high frequency. Note
that MU and MR are different because τσ and τε are different. The tangent
of the loss angle δ is given by

tan δ ≡ M ′′/M ′ = ∆M
ωτε

MR + MUω2τ2
ε

≡ ∆
ω(τσ − τε)
1 + τστεω2

. (14.11)

Internal Friction: Internal friction is the dissipation of mechanical energy
caused by anelastic processes occurring in a strained solid. The internal fric-
tion, usually called Q−1, in a cyclically driven anelastic solid is defined as

Q−1 ≡ ∆Edissipated

Estored
, (14.12)

where ∆Edissipated is the energy dissipated as heat per unit volume of the
material over one cycle. Estored denotes the peak elastic energy stored per
unit volume. For a periodically strained solid subject to sinusoidal stress, the
internal friction is given by the following ratio of energy integrals:

Q−1 =

∫ 2π

0
σ(ωt)ε̇(ωt)out−of−phased(ωt)∫ 2π

0 σ(ωt)ε̇(ωt)in−phased(ωt)
. (14.13)

Substituting the out-of-phase and in-phase components of the strain rate ε̇
yields after some algebra the following relation between internal friction and
the tangent of the loss angle:

Q−1 = π tan δ . (14.14)
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It is convenient to combine the stress and strain relaxation times to a mean
relaxation time τ , which is defined as the geometric mean of the two funda-
mental times:

τ ≡ √
τστε . (14.15)

We will see later that τ sometimes can be associated with atomic jump pro-
cesses occurring in the strained solid, having a well-defined activation en-
thalpy. It is also convenient to combine the relaxed and the unrelaxed moduli
to a mean modulus M via

M ≡
√

MRMU =
√

τσ

τε
MR =

√
τε

τσ
MU . (14.16)

Using the definitions of the mean modulus Eq. (14.16), the mean relaxation
time Eq. (14.15) and Eq. (14.11), yields a basic expression for internal friction:

Q−1 = π tan δ = π
∆M

M

ωτ

1 + ω2τ2
. (14.17)

The term π∆M/M is called the relaxation strength. The second term de-
scribes the frequency dependence of internal friction. Figure 14.5 shows a di-
agram of Q−1 versus the logarithm of ωτ . The frequency-dependent modulus
M ′ is also shown, which varies between the relaxed modulus MR at low fre-
quencies and the unrelaxed modulus MU at high frequencies. The maximum
of internal friction occurs when

ωτ = 1 (14.18)

is fulfilled. This relation is an important condition for the analysis of anelas-
ticity. If an anelastic solid is strained periodically with a frequency ω the
maximum energy loss occurs, when the imposed frequency and relaxation
time of the process match.

14.3 Techniques of Mechanical Spectroscopy

Usually, the relaxation time τ is thermally activated according to

τ ∝ exp
(

∆H

kBT

)
, (14.19)

where ∆H denotes some activation enthalpy. Thus, by varying the temper-
ature at constant frequency ω a maximum of internal friction occurs on the
temperature scale. This is the usual way of measuring internal friction peaks,
as temperature is easier to vary than frequency. The latter is often more or
less fixed by the internal friction device.

By using different experimental techniques, the mechanical loss can be
determined at frequencies roughly between 10−5 and 5×1010 Hz. It is conve-
nient to perform temperature-dependent measurements at fixed frequencies.
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Fig. 14.5. Internal friction, Q−1 = π tan δ, and frequency dependent modulus, M ′,
as functions of ωτ

In this case, a thermally activated process manifests itself in a loss peak,
which shifts to higher temperatures as the frequency is increased. Informa-
tion on the activation enthalpy is then obtained from the peak temperatures,
Tpeak, shifting with frequencies ω by using the equation:

∆H = −kB
d lnω

d(1/Tpeak)
. (14.20)

In the Hz regime torsional pendulums operating at their natural frequen-
cies can be used. A major disadvantage of this technique is that the range of
available frequencies is very narrow, often less than half a decade. This makes
it difficult to determine accurate values of the activation enthalpies and to
analyse frequency-temperature relations in detail. In order to overcome this
limitation devices with forced oscillations are in use. The frequency window
of this technique ranges approximately from 30Hz up to 105 Hz.

At higher frequencies, the mechanical loss of solids can be studied by
resonance methods [14, 15]. At even higher frequencies, in the MHz and GHz
regimes, ultrasonic absorption and Brillouin light scattering can be used.
However, most mechanical loss studies have been done and are still done
with the help of low-frequency methods.

Starting in the 1990s, there have been efforts to make use of commercially
available instrumentation for dynamic mechanical thermal analysis (DMTA)
These devices usually operate in the three-point-bending mode. Among other
systems, this technique has been applied to study relaxation processes in
oxide glasses [16–18].
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Fig. 14.6. Octahedral interstitial sites in the bcc lattice

14.4 Examples of Diffusion-related Anelasticty

14.4.1 Snoek Effect (Snoek Relaxation)

The Snoek effect is the stress-induced migration of interstitials such as C,
N, or O in bcc metals. Although effects of internal friction in bcc iron were
reported as early as the late 19th century, this phenomenon was first carefully
studied and analysed by the Dutch scientist Snoek [1]. Interstitial solutes in
bcc crystals usually occupy octahedral interstitial sites illustrated in Fig. 14.6.
Octahedral sites in the bcc lattice have tetragonal symmetry inasmuch the
distance from an interstitial site to neighbouring lattice atoms is shorter along
〈100〉 than along 〈110〉 directions. The microstrains surrounding interstitial
solutes have tetragonal symmetry as well, which is lower than the cubic sym-
metry of the matrix. Another way of expressing this is to say that interstitial
solutes give rise to permanent elastic dipoles.

Figure 14.6 illustrates the three possible orientations of octahedral sites
denoted as X-, Y-, and Z-sites. Without external stress all sites are energet-
ically equivalent, i.e. EX = EY = EZ , and the population n0

j of interstitial
sites by solutes is n0

X = n0
Y = n0

Z = n0/3. n0 denotes the total number of
interstitials. If an external stress is applied this degeneracy is partly or com-
pletely removed, depending on the orientation of the external stress. For ex-
ample, with uniaxial stress in the Z-direction Z-sites are energetically slightly
different from X- and Y-sites, i.e. EZ �= EX = EY . In contrast, uniaxial stress
in 〈111〉 direction does not not remove the energetic degeneracy, because all
sites are energetically equivalent. In thermodynamic equilibrium the distri-
bution of interstitial solutes on the X-, Y-, and Z-sites is given by

neq
i = n0 exp(−Ei/kBT )∑

j=X,Y,Z exp(−Ej/kBT )
. (14.21)

In general, under the influence of a suitable oriented external stress the ‘solute
dipoles’ reorient, if the interstitial atoms have enough mobility. This redis-
tribution gives rise to a strain relaxation and/or to an internal friction peak.
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The relaxation time or the frequency/temperature position of the internal
friction peak can be used to deduce information about the mean residence
time of a solute on a certain site.

In order to deduce this information, we consider the temporal develop-
ment of interstitial subpopulations nX , nY , nZ on X-, Y-, and Z-sites. Suppose
that uniaxial stress is suddenly applied in Z-direction. This stress disturbs
the initial equipartition of interstitials on the various types of sites and redis-
tribution will start. Fig 14.6 shows that every X-site interstitial that performs
a single jump ends either on a Y- or on a Z-site. Interstitials on Y- and Z-sites
jump with equal probabilities to X-sites. The rate of change of the interstitial
subpopulations can be expressed in terms of the interstitial jump rate, Γint,
as follows:

dnX

dt
= −2ΓintnX + Γint(nY + nZ) . (14.22)

The first term on the right-hand side in Eq. (14.22) represents the loss of
interstitials located at X-sites due to hops to either Y- or Z-sites. The second
term on the right-hand side represents the gain of interstitials at X-sites from
other interstitials jumping from either Y- or Z-sites. Corresponding equations
are obtained for nY and nZ by cyclic permutation of the indices. Since the
total number of interstitials, n0, is conserved, we have

n0 = nX + nY + nZ . (14.23)

Substitution of Eq. (14.23) into Eq. (14.22) yields

dnX

dt
= −ΓintnX +

Γint

2
(n0 − neq

X ) = −3
2
Γint

(
nX − n0/3

)
. (14.24)

Equation (14.24) is an ordinary differential equation for the population dy-
namics of interstitial solutes. Its solution can be written in the form

nX(t) = neq
X +

(
n0

X − neq
X

)
exp

(
− t

τR

)
, (14.25)

where the relaxation time τR is given by

τR =
2

3Γint
. (14.26)

The relaxation time is closely related to the mean residence time, τ̄ , of an in-
terstitial solute on a given site. Because an interstitial solute on an octahedral
site can leave its site in four directions with jump rate Γint, we have

τ̄ =
1

4Γint
. (14.27)
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The solute jump rate can be written in the form

Γint = ν0 exp
(
−HM

int

kBT

)
, (14.28)

where ν0 and HM
int denote attempt frequency and activation enthalpy of a so-

lute jump. Then, the relaxation time of the Snoek effect is

τR =
4
3
τ̄ =

1
6ν0

exp
(

HM
int

kBT

)
. (14.29)

The jump of an interstitial solute which causes Snoek relaxation and the
elementary diffusion step (jump length d = a/2, a = lattice parameter) are
identical. The diffusion coefficient developed from random walk theory for
octahedral interstitials in the bcc lattice is given by

D =
1
6
Γintd

2 =
1
24

Γinta
2 . (14.30)

Substituting Eqs. (14.27) and (14.29) into Eq. (14.30) yields

D =
1
36

a2

τR
. (14.31)

This equation shows that Snoek relaxation can be used to study diffusion
of interstitial solutes in bcc metals by measuring the relaxation time. It is
also applicable to interstitial solutes in hcp metals since the non-ideality
of the c/a-ratio gives rise to an asymmetry in the octahedral sites. Very
pure and very dilute interstitial alloys must be used, if the Snoek effect of
isolated interstitials is in focus. Otherwise, solute-solute or solute-impurity
interactions could cause complications such as broadening or shifts of the
internal friction peak.

Figure 14.7 shows an Arrhenius diagram of carbon diffusion in α-iron. For
references the reader may consult Le Claire’s collection of data for intersti-
tial diffusion [12] and/or a paper by da Silva and McLellan [13]. The data
above about 700K have been obtained with various direct methods including
diffusion-couple methods, in- and out-diffusion, or thin layer techniques. The
data below about 450K were determined with indirect methods, including in-
ternal friction, elastic after-effect, or magnetic after-effect measurements. The
data cover an impressive range of about 14 orders of magnitude in the carbon
diffusivity. Extremely small diffusivities around 10−24 m2 s−1 are accessible
with the indirect methods, illustrating the potential of these techniques. The
Arrhenius plot of C diffusion is linear over a wide range at lower temper-
atures. There is some small positive curvature at higher temperatures. One
possible origin of this curvature could be an influence the magnetic transition,
which takes place at the Curie temperature TC . In the case of self-diffusion
of iron this influence is well-studied (see Chap. 17).
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Fig. 14.7. Diffusion coefficient for C diffusion in α-Fe obtained by direct and
indirect methods: DIFF = in- and out-diffusion or diffusion-couple methods;
IF = internal friction; EAE = elastic after effect, MAE = magnetic after effect

It is interesting to note that the Snoek effect cannot be used to study
interstitial solutes in fcc metals. Interstitial solutes in fcc metals are also
incorporated in octahedral sites. In contrast to octahedral sites in the bcc
lattice, which have tetragonal symmetry, octahedral sites in the fcc lattice
and the microstrains associated with an interstitial solute in such sites have
cubic symmetry. Interstitial solutes produce some lattice dilation but no elas-
tic dipoles. Therefore, an external stress will not result in changes of the
interstitial populations in an fcc matrix.

14.4.2 Zener Effect (Zener Relaxation)

The Zener effect, like the Snoek effect, is a stress-induced reorientation of
elastic dipoles by atomic jumps. Atom pairs in substitutional alloys, pairs
of interstitial atoms, solute-vacancy pairs possessing lower symmetry than
the lattice can form dipoles responsible for Zener relaxation. For example, in
strain-free dilute substitutional fcc alloys solute atoms are distributed ran-



248 14 Mechanical Spectroscopy

domly and isotropically. Solute-solute pairs on nearest-neighbour sites are
uniformly distributed among the six 〈110〉 directions. The size difference be-
tween solute and solvent atoms causes pairs to create microstrains with strain
fields of lower symmetry than that of the cubic host crystal.

A well-studied example of solute-solute pair reorientation in fcc materials
was reported already by Zener [2]. He observed a strong internal friction
peak in Cu-Zn alloys (α-brass) around 570K. The stress-mediated reorienta-
tion of random Zn-Zn pairs along 〈110〉 in fcc crystals is somewhat analogous
to the Snoek effect. Le Claire and Lomer interpreted this relaxation on the
basis of changing directional short-range order under the influence of external
stress. In reality, the Zener effect in dilute substitutional fcc alloys depends
on several exchange jump frequencies between solute atoms and vacancies.
Therefore, it is difficult to relate the effect to the diffusion of solute atoms
in a quantitative manner. A satisfactory model, such as is available for the
Snoek effect of dilute interstitial bcc alloys, is not straightforward. The acti-
vation enthalpy of the process can be determined. However, in a pair model
for low solute concentrations the activation energy is more characteristic of
the rotation of the dipoles than of long-range diffusion.

14.4.3 Gorski Effect (Gorski Relaxation)

In contrast to reorientation relaxations discussed above, the Gorski effect is
due to the long-range diffusion of solutes B which produce a lattice dilatation
in a solvent A. This effect is named after the Russian scientist Gorski [4]. Re-
laxation is initiated, for example, by bending a sample to introduce a macro-
scopic strain gradient. This gradient induces a gradient in the chemical poten-
tial of the solute, which involves the size-factor of the solute and the gradient
of the dilatational component of the stress. Solutes redistribute by ‘up-hill’
diffusion and develop a concentration gradient, as indicated in Fig. 14.2. This
transport produces a relaxation of elastic stresses, by the migration of solutes
from the regions in compression to those in dilatation. The associated anelas-
tic relaxation is finished when the concentration gradient equalises with the
chemical potential gradient across the sample. For a strip of thickness d, the
Gorski relaxation time, τG, is given by

τG =
d2

π2ΦDB
, (14.32)

where DB is the diffusion coefficient of solute B and Φ is the thermody-
namic factor. A thermodynamic factor is involved, because Gorski relaxation
establishes a chemical gardient.

Equation (14.32) shows that with the Gorski effect one measures the time
required for diffusion of B atoms across the sample. The Gorski relaxation
time is a macroscopic one, in contrast to the relaxation time of the Snoek
relaxation. If the sample dimensions are known, an absolute value of the
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Fig. 14.8. Mechanical loss spectrum of a Na2O4SiO4 at a frequency of 1Hz ac-
cording to Roling and Ingram [18, 19]

diffusivity is obtained. For a derivation of Eq. (14.32) we refer the reader
to the review by Völkl [20]. The Gorski effect is detectable if the diffusion
coefficient of the solute is high enough. Gorski effect measurements have been
widely used for studies of hydrogen diffusion in metals [6, 20–22].

14.4.4 Mechanical Loss in Ion-conducting Glasses

Diffusion and ionic conduction in ion-conducting glasses is the subject of
Chap. 30. Mechanical loss spectroscopy is also applicable for the characteri-
sation of dynamic processes in glasses and glass ceramics. This method can
provide information on the motion of mobile charge carriers, such as ions and
polarons, as well as on the motion of network forming entities. Mixed mo-
bile ion effects in different types of mixed-alkali glasses, mixed alkali-alkaline
earth glasses, mixed alkaline earth glasses, and mixed cation anion glasses.
For references see, e.g., a review of Roling [8].

Let us consider an example: Fig. 14.8 shows the loss spectrum of a sodium
silicate glass according to Roling and Ingram [18, 19]. Such a spectrum
is typical for ion conducting glasses. The low-temperature peak near 0 ◦C is
attributed to the hopping motion of sodium ions, which can be studied by
conductivity measurements in impedance spectroscopy and by tracer diffusion
techniques as well (for examples see Chap. 30). The activation enthalpy of
the loss peak is practically identical to the activation enthalpy of the dc
conductivity, which is due to the long-range motion of sodium ions [19]. The
intermediate-temperature peak at 235 ◦C is attributed to the presence of
water in the glass. The increase of tan δ near 350 ◦C is caused by the onset
of the glass transition.
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14.5 Magnetic Relaxation

In ferromagnetic materials, the interaction between the magnetic moment
and local order can give rise to various relaxation phenomena similar to those
observed in anelasticity. Their origin lies in the induced magnetic anisotropy
energy, the theory of which was developed by the French Nobel laureate
Neel [24].

An example, which is closely related to the Snoek effect, was reported for
the first time in 1937 by Richter [23] for α-Fe containing carbon. The direc-
tion of easy magnetisation in α-iron within a ferromagnetic domain is one of
the three 〈100〉 directions. Therefore, the octahedral X-, Y-, and Z-positions
for carbon interstitials are energetically not equivalent. A repopulation among
these sites takes place when the magnetisation direction changes. This can
happen when a magnetic field is applied. Suppose that the magnetic suscepti-
bility χ is measured by applying a weak alternating magnetic field. Beginning
with a uniform population of the interstitials, after demagnetisation a redis-
tribution into the energetically favoured sites will occur. This stabilises the
magnetic domain structure and reduces the mobility of the Bloch walls. As
a consequence, a temporal decrease of the susceptibility χ is observed, which
can be described by

χ(t) = χ0 − ∆χs

[
1 − exp

(
− t

τR

)]
, (14.33)

where ∆χs = χ0−χ(∞) is denoted as the stabilisation susceptibility, t is the
time elapsed since demagnitisation, and τR is the relaxation time. The rela-
tionship between jump frequency, relaxation time, and diffusion coefficient is
the same as for anelastic Snoek relaxation.

The magnetic analogue to the Zener effect is directional ordering of fer-
romagnetic alloys in a magnetic field, which produces an induced magnetic
anisotropy. The kinetics of the establishment of magnetic anisotropy after
a thermomagnetic treatment can yield information about the activation en-
ergy of the associated diffusion process. The link between the relaxation time
and diffusion coefficient is as difficult to establish as in the case of the Zener
effect.

A magnetic analogue to the Gorski effect is also known. In a magnetic
domain wall, the interaction between magnetostrictive stresses and the strain
field of a defect (such as interstitials in octahedral sites of the bcc lattice, diva-
cancies, etc.) can be minimised by diffusional redistribution in the wall. This
diffusion gives rise to a magnetic after-effect. The relaxation time is larger by
a factor δB/a (δB = thickness of the Bloch wall, a = lattice parameter) than
for magnetic Snoek relaxation. The variation of the susceptibility with time
is more complex than in Eq. (14.33). A comprehensive treatment of mag-
netic relaxation effects can be found in the textbook of Kronmüller [9].
Obviously, magnetic methods are applicable to ferromagnetic materials at
temperatures below the Curie point only.
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