
12 Irreversible Thermodynamics and Diffusion

12.1 General Remarks

So far, we have discussed the usual descriptions of atomic transport in solids
such as diffusion and ionic conduction. Fick’s first law was introduced as
a postulate describing a linear relationship between the flux of a diffusing
species i and its concentration gradient. Ohm’s law describes a linear relation
between the flux of charged species and the gradient of the electric potential.
Fourier’s law is a linear relation between the flux of heat and the temperature
gradient. However, these simple laws may not be sufficient even within the
stated limitation of linear effects. For example, Fick’s first law is sometimes
insufficient for attaining equilibrium of species i because it does not recognise
all driving forces, direct or indirect, acting on i. It may be necessary to allow
that a concentration gradient in one species gives rise to a flux of another.

Diffusion, electrical conduction, and heat flow are examples of irreversible
processes. Non-equilibrium thermodynamics provides a general phenomeno-
logical theory of such processes. In this chapter, we briefly introduce the
macroscopic equations of this theory suggested for the first time by Lars
Onsager (1903–1976), the Norwegian Nobel laureate of 1968. Wide-ranging
treatments, especially of macroscopic formulations of this theory can be found
in textbooks of de Groot and Mazur [1] and Haase [2]. A treatment with
emphasis on the foundations of irreversible thermodynamics by statistical
mechanics has been provided by Kreuzer [3].

Non-equilibrium thermodynamics is based on three major assumptions:

1. The Onsager transport equations of atoms, heat, and electrons are linear
relations between the fluxes J i and the so-called generalised thermody-
namic forces Xi. The phenomenological response for the complete set of
n fluxes assumes a linear form

J i =
n∑

j=1

LijXj , (12.1)

where Lij are called the phenomenological coefficients or transport coef-
ficients. The matrix of coefficients is also called the Onsager matrix or
simply the L matrix. The great importance of the phenomenological co-
efficients stems from their independence of driving forces. For example,
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in solid-state diffusion problems the coefficients Lij are functions of tem-
perature and pressure, but they do not depend on the gradient of the
chemical potential.

2. The Onsager matrix is composed in part of diagonal terms, Lii, connect-
ing each generalised force with its conjugate flux. For example, a gradient
of the chemical potential causes a generalised diffusion ‘force’, and the
associated diffusion response is determined by the material’s diffusivity.
Similarly, an applied temperature gradient creates a generalised force as-
sociated with heat flow. In this case, the amount of heat flow is determined
by the thermal conductivity.
The Onsager matrix also contains off-diagonal coefficients, Lij . Each off-
diagonal coefficient determines the influence of a generalised force on
a non-conjugate flux. For example, a concentration gradient of one species
can give rise to a flux of another species. The electric field, which exerts
a force on electrons in metals to produce an electric current has a cross-
influence on the flow of heat, known as the Peltier effect. Conversely,
the thermal force (temperature gradient) that normally causes heat flow,
also has a cross-influence on the distribution of electrons – known as the
Thomson effect. The Thomson and Peltier effects combine and provide
the basis for thermoelectric devices: thermopiles can be used to convert
heat flow into electric current; in thermocouples a voltage is produced by
a temperature difference. Another example is that an electronic current
and the associated ‘electron wind’ causes a flow of matter called electro-
migration (see also Chap. 11). Electromigration can be a major cause for
the failure of interconnects in microelectronic devices.
The Onsager matrix is symmetric, provided that no magnetic field is
present. The relationship

Lij = Lji (12.2)

is known as the Onsager reciprocity theorem.
3. The central idea of non-equilibrium thermodynamics is that each of the

thermodynamic forces acting with its flux response dissipates free energy
and produces entropy. The characteristic feature of an irreversible process
is the generation of entropy. The rate of entropy production, σ, is basic
to the theory. It can be written as:

Tσ =
n∑
i

J iX i + JqXq . (12.3)

J i denotes the flux of atoms i and Jq the flux of heat.
The thermodynamic forces require some explanation: X i and Xq are
measures for the imbalance generating the pertinent fluxes. The thermal
force Xq

Xq = − 1
T

∇T (12.4)
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is determined by the temperature gradient∇T . When only external forces
are acting, the Xi are identical with these forces. If, for example, an ionic
system with ions of charge qi is subject to an electric field E, each ion
of type i experiences a mechanical force F i = qiE. In the presence of
a composition gradient the appropriate force is related to the gradient of
chemical potential ∇µi. Then, the thermodynamic force Xi is the sum
of the external force exerted by the electric field and the gradient of the
chemical potential of species i:

Xi = F i − T∇
(µi

T

)
= F i − ∇µi . (12.5)

Here the gradient of the chemical potential is that part due to gradients
in concentration, but not to temperature.
Thermodynamic equilibrium is achieved when the entropy production
vanishes:

σ = 0 . (12.6)

Then, there are no irreversible processes any longer and the thermody-
namic forces and the fluxes vanish.

12.2 Phenomenological Equations
of Isothermal Diffusion

In this section, we apply the phenomenological transport equations to solid-
state diffusion problems. We give a brief account of some major aspects rel-
evant for transport of matter, which are treated in more detail in [4–6]. The
phenomenological equations are on the one hand very powerful. On the other
hand, they lead quickly to cumbersome expressions. Therefore, only a few
examples will be given. Detailed expressions for the phenomenological coef-
ficients in terms of the elementary jump characteristics must be provided by
atomistic models.

Here, we consider the consequences of phenomenological equations for
isothermal diffusion. In a binary system we have 3 transport coefficients –
two diagonal ones and one off-diagonal coefficient. For a ternary system six
transport coefficients must be taken into account. One of the crucial questions
is, whether the off-diagonal terms are sufficiently different from zero to be
important for data analysis. If they are negligible, the analysis can be largely
simplified. This assumption in made in some models for diffusion, e.g., in
the derivation of the Darken equations for a binary system (see Chap. 10).
We shall see below, however, that neglecting off-diagonal terms is not always
justified.

12.2.1 Tracer Self-Diffusion in Element Crystals

Fundamental mobilities of atoms in solids can be obtained by monitoring
radioactive isotopes (‘tracers’) (see Chap. 13). Let us consider the diffusion
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of an isotope A∗ in a solid A, where A∗ and A are chemically identical. Let
us further suppose that diffusion occurs via vacancies (index V ). Taking into
account the reciprocity relations, the Onsager flux equations can be written
as1:

JA∗ = LA∗A∗XA∗ + LA∗AXA + LA∗V XV ,

JA = LA∗AXA∗ + LAAXA + LAV XV ,

JV = LA∗V XA∗ + LAV XA + LV V XV . (12.7)

Let us now suppose that in an isothermal experiment vacancies are always
maintained at thermal equilibrium. This is possible if sources and sinks of
vacancies such as dislocations are sufficiently numerous and active during the
diffusion process. Under such conditions, the chemical potential of vacancies
is constant everywhere and hence XV = 0. Then, the flux equations for the
components apply directly in the laboratory reference frame:

JA∗ = LA∗A∗XA∗ + LA∗AXA

JA = LA∗AXA∗ + LAAXA . (12.8)

Tracer atoms A∗ and matrix atoms A form an ideal (isotopic) solution. Let
CA∗ and CA denote their concentrations and µA∗ and µA their chemical
potentials, respectively. These are:

µA∗ = µ0
A∗(p, T ) + kBT lnCA∗ ,

µA = µ0
A(p, T ) + kBT lnCA . (12.9)

The reference potentials µ0
A∗(p, T ) and µ0

A(p, T ) depend on pressure and tem-
perature but not on concentration. The corresponding forces are

XA∗ = −kBT
1

CA∗

∂CA∗

∂x
,

XA = −kBT
1

CA

∂CA

∂x
. (12.10)

For tracer self-diffusion in an element crystal we have

JA∗ + JA = 0 , (12.11)

i.e. the fluxes are equal in magnitude and opposite in sign. Furthermore, since
CA∗ +CA is constant, the concentration gradients are equal in magnitude and
opposite in sign, i.e. ∂CA∗/∂x = −∂CA/∂x. We then have

JA∗ = −
(

LA∗A∗

CA∗
− LA∗A

CA

)
kBT︸ ︷︷ ︸

DA∗
A

∂CA∗

∂x
, (12.12)

JA = −
(

LAA

CA
− LA∗A

CA∗

)
kBT

∂CA

∂x
. (12.13)

1 For simplicity reasons we consider unidirectional flow (in x direction) and omit
the vector notation.
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Since JA∗ = −JA we get:

LA∗A∗

CA∗
− LA∗A

CA
=

LAA

CA
− LA∗A

C∗
A

. (12.14)

Recalling that the diffusivity of a tracer is defined through Fick’s law

JA∗ = −DA∗
A

∂CA∗

∂x
, (12.15)

we obtain by comparison with Eqs. (12.12):

DA∗
A =

(
LA∗A∗

CA∗
− LA∗A

CA

)
kBT =

(
LAA

CA
− LA∗A

CA∗

)
kBT (12.16)

Since for tracer diffusion always CA∗ � CA, we also have

DA∗
A =

LA∗A∗

CA∗
kBT =

(
LAA

CA
− LA∗A

CA∗

)
kBT . (12.17)

The first term on the right-hand side of Eq. (12.17) is sometimes denoted
as the ‘true’ self-diffusion coefficient, DA

A ≡ kBTLAA/CA. The quantity DA
A

denotes self-diffusion in the absence of a tracer – a quantity that is difficult
to measure directly2. We then get

DA∗
A =

[
1 − LA∗A

LAA

CA

CA∗

]
︸ ︷︷ ︸

f

DA
A , (12.18)

where f is the correlation factor of tracer self-diffusion (see Chap. 7). This
equation shows that the coupling between the fluxes is the origin of correlation
effects. For LA∗A = 0 the correlation factor would be unity. We also note that
in addition to the defect two atomic species (here A∗ and A) must be present
to obtain correlation. This is a rule that we have already stated in Chap. 4.

12.2.2 Diffusion in Binary Alloys

In this section, we discuss the Onsager equations for solid-state diffusion
via vacancies in a substitutional binary alloy and the structure and physical
meaning of the pertinent phenomenological coefficients. We suppose that the
system is isothermal and that external forces are absent, i.e. Xq = 0 and
Fi = 0. We then have a system of two atomic components A and B and
vacancies (index V) on a single lattice. Taking into account the reciprocity
relations the Onsager flux equations can be written as:
2 In favourable cases, PFG-NMR (see Chap. 13) can be applied to measure this

quantity.
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JA = LAAXA + LABXB + LAV XV ,

JB = LABXA + LBBXB + LBV XV ,

JV = LAV XA + LBV XB + LV V XV . (12.19)

To promote atomic diffusion, either A or B atoms exchange with vacancies
on the same lattice. Therefore, the fluxes defined relative to that lattice (in
regions outside the diffusion zone) necessarily must obey

JV = −(JA + JB) . (12.20)

In other words, the flux of vacancies is equal and opposite in sign to the total
flux of atoms3. In view of the constraint imposed by Eq. (12.20), each term
on the right-hand side of Eq. (12.19) must vanish column by column. We get:

(LAA + LAB + LAV )XA = 0,

(LAB + LBB + LBV )XB = 0,

(LAV + LBV + LV V )XV = 0 . (12.21)

These equations must hold for arbitrary values of the forces Xi. Hence each
bracket term must vanish separately:

−LAV = LAA + LAB ,

−LBV = LAB + LBB ,

−LV V = LAV + LBV . (12.22)

These equations show that the kinetic coefficients of the vacancy flux are
related to those of the atomic species. If Eq. (12.22) is combined with the
flux equations (12.19), the following expressions for the fluxes of the atomic
species are obtained:

JA = LAA(XA − XV ) + LAB(XB − XV ),
JB = LAB(XA − XV ) + LBB(XB − XV ) . (12.23)

The vacancy flux may be written as

JV = LAV (XA − XV ) + LBV (XB − XV ) . (12.24)

Let us now assume that vacancies are always maintained close to their ther-
mal equilibrium concentration. Then, the chemical potential of vacancies is
constant everywhere and XV = 0. Equations (12.23) then reduce to

JA = LAAXA + LABXB ,

JB = LABXA + LBBXB . (12.25)
3 In this context the reader should also see the discussion of the ‘vacancy wind’ in

Chap. 10.
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The chemical potential of a real solid solution is given by

µi = µ0
i (p, T ) + kBT ln(Niγi) , (12.26)

where γi is the activity coefficient and Ni mole fractions of species i. Using
NA + NB ≈ 1, i.e. CV � CA + CB , we obtain:

JA = −
(

LAA

NA
− LAB

NB

)
kBTΦ︸ ︷︷ ︸

DI
A

∂NA

∂x
,

JB = −
(

LBB

NB
− LAB

NA

)
kBTΦ︸ ︷︷ ︸

DI
B

∂NB

∂x
. (12.27)

Here we have used that the Gibbs-Duhem relation of thermodynamics
provides an additional constraint: the factors (1 + ∂ ln γA/∂ lnNA) and
(1+∂ ln γB/∂ lnNB) are equal to each other. This common factor is abbrevi-
ated by Φ and denoted as the thermodynamic factor (see Chap. 10). We note
that one common thermodynamic factor exists for binary alloys. For ternary
or higher order systems several thermodynamic factors are necessary.

Equations (12.27) have the form of Fick’s first law with diffusion coeffi-
cients, DI

A and DI
B, denoted as the intrinsic diffusion coefficients :

DI
A =

LAA

NA

(
1 − LABNA

LAANB

)
kBTΦ,

DI
B =

LBB

NB

(
1 − LABNB

LBBNA

)
kBTΦ . (12.28)

The intrinsic diffusivities are in general different and can be determined sep-
arately. The two quantities that are usually measured to obtain the intrinsic
diffusivities are (i) the chemical interdiffusion coefficient D̃, and (ii) the Kirk-
endall velocity vK (see Chap. 10):

In interdiffusion plus Kirkendall experiments, diffusion couples (either A-
B or AxB1−x-AyB1−y) are studied and the initial interfaces contain inert
markers. The fluxes JA and JB relative to the local crystal lattice are gener-
ally such that their sum is non-zero, which according to Eq. (12.20) implies
that the vacancy flux is also non-zero. Since the fluxes vary with position one
also has:

divJV = div(−JA − JB) �= 0 . (12.29)

This condition requires vacancies to disappear or to be created at inner
sources or sinks (e.g., dislocations) in the diffusion zone of the sample. When
this occurs, regions where diffusion fluxes are large will move relative to
regions where fluxes are small. The concentration distribution after an in-
terdiffusion experiment, analysed with respect to the unaffected ends of the
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couple, links the concentration gradients to the fluxes of atoms relative to
the fixed parts of the sample. In the simplest case these fluxes are

J ′
A = JA − NA(JA + JB) ,

J ′
B = JB − NB(JA + JB) . (12.30)

Here we have assumed that the velocity v of the local lattice relative to the
non-diffusing parts of the sample is −v(JA + JB). This implies that there is
no change in the cross-section or shape of the sample, i.e. that the vacancies
condense on lattice planes perpendicular to the diffusion flow. It also implies
that the volume per lattice site remains constant. From Eqs. (12.27), (12.30),
and NA + NB = 1, because the vacancy site fraction is very small, it also
follows

J ′
A = −(NBDI

A + NADI
B)

∂NA

∂x
,

J ′
B = −(NBDI

A + NADI
B)

∂NB

∂x
. (12.31)

The quantity
D̃ = NBDI

A + NADI
B . (12.32)

is the interdiffusion coefficient introduced already in Chap. 10. It is the same
for both components. The Kirkendall velocity vK characterises the motion of
the diffusion zone relative to the fixed end of the sample and can be observed
by inserting inert markers (see Chap. 10). Since ∂NA/∂x = −∂NB/∂x it is
given by:

vK = (DI
A − DI

B)
∂NA

∂x
. (12.33)

The Kirkendall effect is a consequence of unequal intrinsic diffusivities and
results from the non-zero vacancy flux in the diffusion zone.

We now have convinced ourselves that the equations of Darken and Man-
ning discussed in Chap. 10 have a basis in the phenomenological equations.
We note, however, that although measurements of interdiffusion and the Kirk-
endall shift have been made on a number of alloy systems it is clear that only
two quantities, DI

A and DI
B, can be obtained. This is insufficient to deduce

the three independent phenomenological coefficients LAA, LAB, and LBB for
a binary alloy system.

Such a situation, in which the number of experimentally accessible quan-
tities is less than the number of the independent Onsager coefficients, is not
uncommon. This is one reason for the theoretical interest in these coefficients.
It is also the reason for the interest in relations between the phenomenolog-
ical coefficients. Such relations are called ‘sum rules’. Sum rules have been
identified in several cases [6] and some of them are discussed in Sect. 12.3.2.
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12.3 The Phenomenological Coefficients

The physical meaning of diffusion coefficients is well appreciated. However,
this is less so for the phenomenological coefficients. The purpose of this sec-
tion is to provide some insight into the phenomenological coefficients, their
structure, relations between phenomenological coefficients and diffusion coef-
ficients, and relations among phenomenological coefficients. An introduction
for non-specialists in this area, which we follow in parts below, has been given
by Murch and Belova [6].

Consider, for example, diffusion in a binary alloy. We have eliminated
the vacancies as a third component because we have made the assumption
that vacancies are maintained at their equilibrium concentration. Then, it
suffices to introduce the phenomenological coefficients LAA, LAB, and LBB

as we have done in the previous section. According to the Onsager reci-
procity theorem the L matrix is symmetric, i.e. LAB = LBA. We simply
have three independent coefficients, two diagonal ones and one off-diagonal
coefficient.

Let us now consider a ‘thought experiment’: suppose that A atoms in
a binary AB alloy can respond to an external electric field E but the B atoms
cannot. This is expressed by writing the driving force on A with charge qA as
XA = qAE, whereas the driving force on B is XB = 0. One might first expect
that the A atoms would simply drift in the field and the B atoms would be
unaffected. The Onsager flux equations show indeed that the flux of A atoms
is given by JA = LAAqAE. But the Onsager flux equations also show that
the flux of B atoms is not zero but given by JB = LABqAE. This equation
says that the B atoms should also drift in the field, although the B atoms do
not feel the field directly. The drifting A atoms appear to drag the B atoms
along with them, thereby giving rise to a flux of B atoms. In principle, the
off-diagonal coefficient LAB can be either positive or negative depending on
the type of interaction. If LAB were to be negative, it would mean that the B
atoms would drift up-field whilst the A atoms drift down-field. This example
may suffice to illustrate that the off-diagonal coefficient can be responsible
not only for an atomic flux but also that it can change the magnitude and
even the direction of an atom flux.

As discussed in Chap. 4, the tracer diffusion coefficient is related to the
mean square of the displacement R of a particle during time t as [8]:

D∗ =
〈R2〉
6t

, (12.34)

where the brackets 〈〉 indicate an average over an ensemble of a large number
of particles. This relation is called the Einstein relation or sometimes also the
Einstein-Smoluchowski relation. The diffusion coefficient is understood to be
a tracer diffusion coefficient indicated by the superscript * placed on D. The
implication is that in principle we can follow each particle explicitly.
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The Einstein expression for tracer diffusion coefficient is usually expanded
for solid-state diffusion according to ‘hopping models’, in which atoms jump
from one site to another in a lattice with a long residence time at lattice sites
between the jumps. For the simplest case, diffusion on a cubic Bravais lattice
with jump distance d and jump rate Γ , we have (see Chap. 6)

D∗ =
1
6
d2Γf (12.35)

where f is the tracer correlation factor. This equation shows that the tracer
diffusion coefficient is the product of two parts: a correlated part embodied
in the tracer correlation factor and an uncorrelated part that contains the
jump distance squared and the jump rate. We remember that according to
Eq. (7.22) the tracer correlation factor can be expanded as

f = 1 + 2
∞∑

j=1

〈cos θ(j)〉 . (12.36)

〈cos θ(j)〉 is the average of the cosine of the angle between the first and the j’s
succeeding tracer jump. In vacancy-mediated solid-state diffusion 〈cos θ(1)〉 is
invariably negative because the first jump is more likely to be reversed, either
as the result of the vacancy being still present at the nearest-neighbour site to
the tracer, or perhaps as a result of re-ordering jump immediately following
a disordering one, or a combination of both. For a vacancy mechanism the
values of 〈cos θ(j)〉 also alternate in sign. The phenomenon of tracer correla-
tion has been the subject of an extensive literature over several decades and
is discussed in Chap. 7.

In 1982 Allnatt [7] showed on the basis of a linear response theory
that the phenomenological coefficients for isothermal diffusion in solids can
be expressed via generalised Einstein formulae, similar in character to the
Einstein-Smoluchowski relation. These relations can be written as:

Lii =
〈Ri · Ri〉
6V kBT t

,

Lij =
〈Ri · Rj〉
6V kBT t

, (12.37)

where Ri and Rj are the collective displacements of atoms i and j, V is
the volume of the system. The collective displacement of a species in each
case can be thought of as the displacement of the centre of mass of that
species. Imagine in a ‘thought experiment’ a volume V containing N lattice
sites on which two species A and B are randomly distributed. This might
represent a binary alloy. Let diffusion occur for some time t. Then, we cal-
culate the displacements of the centres of mass of A atoms, RA, and of B
atoms, RB, and repeat the experiment a large number of times in order to
produce the ensemble average. In this way, we would be able to calculate the
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phenomenological coefficients LAA, LBB, and LAB from Eqs. (12.37). This
provides indeed a convenient route for the evaluation of the phenomenological
coefficients in Monte Carlo computations (see, e.g., [9, 10]).

Similar to the tracer diffusion coefficient the phenomenological coefficients
can be decomposed into correlated and into non-correlated parts

Lii =
fiid

2Cini

6kBT t
, (12.38)

Lij =
f

(i)
ij d2Cini

6kBT t
, or alternatively (12.39)

Lij =
f

(j)
ij d2Cjnj

6kBT t
. (12.40)

ni denotes the number of jumps of species i during the time t. Ci = NiN/V
with Ni denoting the fraction of species i and N the total number of sites in
volume V . The correlated parts of the phenomenological coefficients, the fij ,
are denoted as the correlation functions or collective correlation factors. In
very much the same way that the tracer correlation factors can be expressed
in terms of the average cosines of the angles between a given jump of the
tracer and its succeeding jumps via Eq. (12.36), the diagonal and off-diagonal
collective correlation factors can also be expressed in terms of the average of
the cosines of the angle between a given jump of a species and the subsequent
jump of the same (diagonal) or another (off-diagonal) species. The diagonal
correlation factors are given by

fii = 1 + 2
∞∑

k=1

〈cos θ
(k)
ii 〉 , (12.41)

where 〈cos θ
(k)
ii 〉 is the average of the cosine of the angle between some jump

of an atom of species i and the k’th succeeding jump of the same or another
atom of species i. The expressions for the off-diagonal collective correlation
factors are a bit more complicated in notation, but they are structurally
related to Eq. (12.41). For simplicity, the following expression are given only
for a binary system:

f
(A)
AB =

∞∑
k=1

〈cos θ
(k)
AB〉 +

CBnB

CAnA

∞∑
k=1

〈cos θ
(k)
BA〉, (12.42)

f
(B)
AB =

CAnA

CBnB

∞∑
k=1

〈cos θ
(k)
AB〉 +

∞∑
k=1

〈cos θ
(k)
BA〉 , (12.43)

where 〈cos θ
(k)
ij 〉 is the average cosine of the angle between any given jump of

the i species and the k’th succeeding jump of the j species.
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12.3.1 Phenomenological Coefficients, Tracer Diffusivities,
and Jump Models

Tracer diffusion coefficients are directly accessible from experiments (see
Chap. 13). On the other hand, direct measurements of phenomenological co-
efficients are difficult. Accordingly, there is interest in relations between the
tracer diffusivities and phenomenological coefficients. There are also expres-
sions for phenomenological coefficients in terms of atomistic hopping models.
In what follows, we consider examples of such relations and expressions.

Relations for Self-diffusion: In the previous section, we obtained equa-
tions which related kinetic coefficients for an element crystal to the tracer
self-diffusion coefficient. After some algebra we get

LA∗A∗ ≈ CA∗DA∗
A

kBT
(12.44)

and

LAA∗ = LA∗A =
CA∗DA∗

A

kBT

(1 − f)
f

. (12.45)

The off-diagonal transport coefficient is related to tracer correlation. For un-
correlated diffusion, i.e. for f = 1, it vanishes.

Relations for Dilute Binary Alloys: For a dilute alloy of solute B in
solvent A, i.e. for NB → 0 we have Φ → 1. It can be shown that �LBB/NB

approaches a finite value, whereas LAB/NA goes to zero. Then, we get from
the second equation (12.28):

DI
B(0) = kBT

LBB

NB
= DB∗

A (0) , (12.46)

where DB∗
A (0) is the solute diffusion coefficient at infinite dilution. It is mea-

surable, e.g. by using tracer B∗. From the first equation (12.28) we have

DI
A(0) =

LAA

CA

(
1 − LABNA

LBBNB

)
kBT �= LAA

NA
kBT . (12.47)

In this case the off-diagonal term LAB cannot be neglected.
It may be of some interest to consider in a very dilute alloy the phe-

nomenological coefficients in the framework of the five-frequency model of
diffusion suggested by Lidiard. This model is described in Chap. 7. It is
very useful for describing solute and solvent diffusion in a very dilute bi-
nary alloy. We remind the reader that in this model five exchange jump-rates
between vacancies and A or B atoms are specified, namely: ω2 for solute-
vacancy exchange, ω1 for rotation of the vacancy-solute complex, ω3 (ω4) for
dissociation (association) of the vacancy-solute complex, and ω for vacancy
jumps in the solvent. According to [4] the phenomenological coefficients are:
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LAA =
d2ωCV

kBT

(
1 − 12NB

ω4

ω3

)
ω

−d2CV NB

kBT

ω4

ω3

[
40ω1ω3 + 40ω2

3 + 14ω2ω3 + 4ω1ω2

ω1 + ω2 + 7ω3/2
+

7ω3ω

ω4

]

LBB =
d2CV NB

kBT

ω4

ω3

ω2(ω1 + 7ω3/2)
ω1 + ω2 + 7ω3/2

LAB =
d2CV NB

kBT

ω4

ω3

ω2(−2ω1 + 7ω3)
ω1 + ω2 + 7ω3/2

(12.48)

The so-called Heumann relation [18] was also derived on the basis of the
five-frequency model. It can be shown that in the limit CB → 0, the ratio of
LAB(0)/LBB(0) is given by:

LAB(0)
LBB(0)

=
DA∗

A (0)
DB∗

A (0)

[
1
f
− DI

A(0)
DA∗

A (0)

]
, (12.49)

where DA∗
A (0), DB∗

A (0) are the tracer diffusivities of A and B and DI
A(0) the

intrinsic diffusion coefficient of A in the limit CB → 0.

Relations for Concentrated Binary Alloys: Let us first briefly consider
relations based on the original Darken equations [11]. In essence, Darken
neglects the off-diagonal coefficients entirely. If this is assumed, the diago-
nal phenomenological coefficients can be related to the corresponding tracer
diffusion coefficient in a binary alloy:

LAA ≈ NADA∗
A

kBT
, LBB ≈ NBDB∗

B

kBT
, LAB = 0 . (12.50)

The Darken equations neglect all correlation information as embodied in
tracer correlation factors, collective correlation factors, and vacancy-wind
factors [24]. The neglect of the off-diagonal phenomenological coefficients can
be dangerous. However, in most cases, it is reasonable as a first approxima-
tion.

The random alloy model with the vacancy mechanism introduced by
Manning is probably the most important model for dealing with diffusion
in concentrated alloys that are disordered [12, 13]. The atomic species A and
B exchange sites with vacancies with the jump rates ωA or ωB, respectively.
Then, the Darken relation is replaced by the Darken-Manning relation which
includes the vacancy wind corrections (see Chap. 10). In the random alloy
model, the phenomenological coefficients are directly related to the tracer
diffusion coefficients via the Manning relations :

Lii =
NiD

i∗
i

kBT

[
1 +

(1 − f)
f

NiD
i∗
i

NADA∗
A + NBDB∗

B

]
,

LAB =
(1 − f)

f

NADA∗
A NBDB∗

B

kBT (NADA∗
A + NBDB∗

B )
. (12.51)
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f is the tracer correlation factor: e.g., f = 0.781 for the fcc lattice and
f = 0.732 for the bcc lattice.

The random alloy model seems to have more general validity. Computer
simulations by Murch and coworkers have shown that the Manning re-
lations are quite good approximations, even for ordered alloys, at least at low
levels of order [14–16]. The Manning relations have also been re-derived for
ordered alloys [17].

12.3.2 Sum Rules – Relations
between Phenomenological Coefficients

Various relations usually called sum rules have been identified between the
phenomenological coefficients in randomly mixed systems. Sum rules reduce
the number of independent phenomenological coefficients.

As an example, we consider the sum rules between the phenomenological
coefficients in the random alloy model with a vacancy mechanism. The atom-
vacancy exchange rates ωi can be considered in two rather different ways.
In the first way, one can consider them as explicit jump rates that depend
only on the species i and not on the surroundings. For example, ωA in the
binary random alloy then simpls represents the average jump rate of a given
A atom at all compositions and environments. In the second more general
way, one considers that the ωi represent an average jump rate of species i as
it migrates through the lattice sampling the various environments. Since the
average environment of an atom will change with composition, the ωi can
also be expected to change with composition.

Moleko and Allnatt [19] identified the following sum rules for an
n-component random alloy for diffusion via a vacancy mechanism:

n∑
i=1

Lij
ωj

ωi
=

Zd2

6kBT
CV ωjNj, j = 1, . . . , n . (12.52)

Here Z is the coordination number and d the jump distance. Equations
(12.52) relate the phenomenological coefficients to the vacancy-atom ex-
change rates and reduce the number of independent phenomenological co-
efficients.

In addition, we mention that the sum rules can be restated in terms of
collective correlation factors as:

n∑
i=1

f
(j)
ij

ωj

ωi
= 1, j = 1, . . . n . (12.53)

For a binary random alloy the sum rule relations (12.52) reduce to two equa-
tions:
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LAA + LAB
ωA

ωB
=

Zd2

6kBT
CV ωANA, (12.54)

LBB + LAB
ωB

ωA
=

Zd2

6kBT
CV ωBNB . (12.55)

Hence there is only one independent coefficient and not three. In a ternary
random alloy, the number of independent coefficients is reduced from six to
three. On the other hand, the reader should keep in mind that the random
alloy model introduces two vacancy jump rates for a binary alloy and three
jump rates for a ternary alloy.

For the derivation of sum rules we refer the reader to the original papers.
The sum rules introduced by Moleko and Allnatt for the random alloy
model were the first ones that were discovered. In the meantime, various sum
rules have been identified for a number of other mechanisms and situations by
Murch and coworkers. Such situations include the dumb-bell interstitial
mechanism in the binary random alloy [20], the divacancy mechanism in
the fcc random alloy [21], the vacancy-pair mechanism in ionic materials
with randomly mixed cations [22], and for an intermetallic compound with
randomly mixed sublattices [23]. Interdiffusion data in multicomponent alloys
as a source of quantitative fundamental diffusion information are summarised
in [24].
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