
11 Diffusion and External Driving Forces

11.1 Overview

Diffusing particles experience a drift motion in addition to random diffusion,
when an external driving force is applied. Table 11.1 lists examples of driving
forces. An electric field is the most common example of an external force
and is treated in detail below. Another example is the gradient of the non-
ideal part of the chemical potential, which we have considered already in the
previous chapter on interdiffusion. The nature of and analytic expressions for
the driving forces can be deduced from the thermodynamics of irreversible
processes (see Chap. 12 and [1, 2]).

For many ionic solids (see Chaps. 26 and 27) the electrical conductivity
results from the transport of ions rather than electrons as is the case in metals
and semiconductors. When the charge carriers are ions in an electronically
insulating crystal or glass, the ionic motion under the influence of an electric
field is described by the ionic conductivity. The dc conductivity, σdc, relates
the electrical current density, je, via Ohm’s law to the applied electric field E:

je = σdcE . (11.1)

If the ions in the material are labelled i (= 1, 2, . . .), the conductivity can be
written in terms of mobilities ui and charges qi as

σdc =
∑

i

Ci | qi | ui , (11.2)

where Ci is the number density of ions of kind i. An appropriate comparison
between mobility and diffusivity of ions is obtained via the Nernst-Einstein
relation discussed below.

The interplay of electron currents and atomic fluxes is necessary in the
consideration of electromigration in metals [5, 6]. In metals ions are screened
by the conduction electrons. Then, the effective charge of an ion can be very
different from the charge of the ionic cores. An electronic current also exerts
a force on the atomic species. The origin of this force is the scattering of elec-
trons at the ion cores and the associated momentum transfer. The coupling
between electronic and atomic current in metals at elevated temperatures is of
considerable technical relevance, because it is the origin of electromigration.
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Table 11.1. Examples of driving forces for drift motion of atoms

Force Expression Remarks

Gradient of electrical potential
E = −∇U

q∗E q∗: effective electric charge

Gradient of chemical potential
(non-ideal part)

−∇µ µ: chemical potential

Temperature gradient
∇T

−(Q∗/T )∇T
or −S∇T

Q∗: heat of transport
S: Soret coefficient

Stress gradient −∇Uel Uel: elastic interaction energy
due to stress field

Gravitational force mgz m: particle mass
g: acceleration due to gravity

Centrifugal force m∗ω2r m∗: effective atomic mass
ω: angular velocity
r: distance from rotation axis

The latter is a major reason for the degradation of metallic interconnects in
microelectronic devices.

Temperature gradients in a material can also act as driving force on dif-
fusing atoms. The resulting effect is called thermotransport (also thermomi-
gration). If there are simultaneous gradients of temperature and of concen-
tration, we can combine Fick’s first law and thermotransport to give

j = −D
∂C

∂x
− S

∂T

∂x
. (11.3)

A steady state (index ss) can be established for j = 0. We then have(
∂C

∂x

)
ss

= − S

D

(
∂T

∂x

)
ss

. (11.4)

This equation describes the concentration gradient established by thermo-
transport. This effect is called the Ludwig-Soret effect or often just the Soret
effect. The Soret coefficient, S, and the heat of transport, Q∗ ≡ S/T , may be
of either sign, whereas D is always positive. Thermotransport is a relatively
complex phenomenon since the system is, per se, not isothermal. For a more
detailed discussion the reader is referred to [3–5].

In the case of non-ideal alloys the gradient of the chemical potential gives
rise to a driving force. The gradient of the chemical potential can be expressed
as a sum of two terms: the first term contains the concentration gradient and
the second term the gradient of the activity coefficient. This case is discussed
in detail in Chaps. 10 and 12.

A uniform stress field cannot generate a particle flux. However, a driv-
ing force can arise from the stress gradient. Its effects must be considered
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whenever the interaction energy of the particle with the stress field is large
enough. Examples are the Gorski effect, which can be observed for hydrogen
diffusion in metals (see Chap. 14), and the formation of Cottrell atmospheres
in the stress field of dislocations [7].

Gravitational forces are weak and accordingly play no rôle in solid-state
diffusion. In gases and liquids, however, gravitational forces can cause sedi-
mentation effects. The experimental observation of effects of centrifugal forces
requires rapid rotation. Equilibrium sedimentation of Au in solid sodium and
lead has been studied in centrifuge experiments [8]. The results have been
discussed to demonstrate the interstitial nature of fast diffusers.

11.2 Fick’s Equations with Drift

Suppose that an external driving force F acts on diffusing particles. After
a short transition period, a steady state particle flux develops. The drift
velocity v̄ of the particles under the action of the driving force is

v̄ = uF . (11.5)

u is called the mobility. The mobility is the drift velocity for a unit driving
force, i.e. for F = 1. The particle flux is Cv̄ = CuF . The total flux due to
diffusion plus the action of the driving force is

j = −D
∂C

∂x
+ v̄C . (11.6)

The first term is the well-known Fickian term and the second term is the drift
term. Thermodynamics of irreversible processes shows that the distinction
between these two terms is more practical than fundamental (see Chap. 12).
Formally, the second term in Eq. (11.6) is also a flux which is proportional
to a gradient. In the case of an electrical driving force, this is the electrical
potential gradient. If we combine Eq. (11.6) with the continuity equation
(2.4), we get

∂C

∂t
=

∂

∂x

(
D

∂C

∂x

)
− ∂

∂x
(v̄C). (11.7)

If the driving force and, consequently, the drift velocity v̄ and the diffusion
coefficient are independent of x, Eq. (11.7) reduces to

∂C

∂t
= D

∂2C

∂x2
− v̄

∂C

∂x
. (11.8)

Then, it is possible to reduce the problem of solving the differential equation
(11.8) by applying the following transformation [9, 10]

C = C∗ exp
(

v̄

2D
x − v̄2t

4D

)
. (11.9)
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Fig. 11.1. Schematic illustration of diffusion and drift

Substitution of Eq. (11.9) in Eq. (11.8) yields a linear differential equation
for C∗

∂C∗

∂t
= D∆C∗ . (11.10)

Hence solutions for Eq. (11.8) are available, if Eq. (11.10) can be solved for
the given boundary condition.

The concentration field C(x, t) originating from a thin-film diffusion
source is modified by a constant driving force. The appropriate diffusion
equation is Eq. (11.8). Its solution can be obtained by inserting the thin-film
solution without drift, Eq. (3.9), into Eq. (11.9). We get

C(x, t) =
N

2
√

πDt
exp

[
− (x − v̄t)2

4Dt

]
. (11.11)

This corresponds to a Gaussian distribution, the center of which shifts with
the velocity v̄. Equation (11.11) somehow justifies the distinction between
the Fickian term and the drift term in Eq. (11.6). The first term leads to
a broadening of the distribution of diffusing particles and the second term
causes a translation of the whole distribution (Fig.11.1).

The fact that diffusion leads to a Gaussian distribution of the diffusing
particles reveals their underlying random movement, whereas under the influ-
ence of an external force an additional directed motion occurs. On the other
hand, both processes involve the same elementary jumps of the particles. This
indicates that D and v̄ must be related to each other. This relation is known
as the Nernst-Einstein relation. Its derivation and some of its implications
are considered in the following.

11.3 Nernst-Einstein Relation

We consider a system with one mobile component, where the flux resulting
from an external driving force exactly counterbalances the diffusion flux. The
combined effect of a concentration gradient and of a driving force can lead
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to a steady state, if the corresponding fluxes are equal and opposite in sign,
i.e. if the total flux vanishes. Then, we get from Eq. (11.6)

0 = −D̃
∂C

∂x
+ v̄C . (11.12)

The diffusion coefficient D̃ in Eq. (11.12) refers to a chemical composition
gradient as will become evident below. It is definitely conceived as a chemical
diffusion coefficient not as a tracer diffusion coefficient. Lack of appreciation
of this fact leads to misunderstandings and inconsistencies.

Let the diffusing substance be contained in a cylinder and let us suppose
that v̄ = uF is the stationary velocity in negative x-direction due to an
external field. Then, the solution of Eq. (11.12) is

C = C0 exp
(
− v̄

D̃
x

)
, (11.13)

where C0 denotes the stationary concentration at x = 0. Let us further
assume that the external force is the derivative of a potential U :

F = −∂U

∂x
. (11.14)

At thermodynamic equilibrium, the distribution of non-interacting particles
must also follow the Boltzmann distribution1

C(x) = α exp
(
− U

kBT

)
, (11.16)

where kB denotes the Boltzmann constant, T absolute temperature, and α
a constant. Differentiation with respect to x yields

∂C

∂x
= − C

kBT

∂U

∂x
=

CF

kBT
. (11.17)

Substituting this equation in Eq. (11.12), we get

D̃ =
v̄

F
kBT = ukBT = u

RT

NA
. (11.18)

R = kBNA denotes the gas constant and NA the Avogadro number. Equation
(11.18) relates the chemical coefficient D̃ and the mobility u of the diffusing
particles. This relation is called the Nernst-Einstein relation.
1 For a gas in the gravitational field of the earth the potential acting on gas

molecules is U = mgz, where m is their mass, g the acceleration in the gravita-
tional field, and z the height. Then we get

C = C0 exp

„
−mgz

kBT

«
. (11.15)

This is the well-known formula for the decrease of gas concentration in the at-
mosphere with increasing height.
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11.4 Nernst-Einstein Relation
for Ionic Conductors and Haven Ratio

Let us now suppose that the external driving force is the result of an electric
field E acting on ions with charge q. Then we have

F = qE . (11.19)

Using Eq. (11.18) the flux of ions in the electric field can be written as

j = v̄C =
qCD̃

kBT
E . (11.20)

The associated electric current density is

je = qj =
q2CD̃

kBT
E . (11.21)

This equation is Ohm’s law, je = σdcE, with the ionic d.c. conductivity

σdc =
q2CD̃

kBT
. (11.22)

caused by the mobile ions. In the solid-state diffusion literature this relation is
often called in a rather misleading way the Nernst-Einstein relation. However,
we remind the reader that we used in its derivation Eq. (11.16) – an equation
which holds for non-interacting particles only.

More generally, interactions are present between the particles. For this
case, Murch [11] showed that the general form of the Nernst-Einstein rela-
tion is

σdc =
q2CD̃

kBT

(
∂ lnN

∂µ

)
, (11.23)

where µ is the chemical potential of the particles and N their site fraction.
When the distribution of particles is completely ideal (no interaction, not

even site blocking effects), the thermodynamic factor is unity and Eq. (11.23)
reduces to Eq. (11.22). In this special case, the diffusion coefficient D̃ equals
the tracer diffusion coefficient D∗, so that

σdc =
q2CD∗

kBT
. (11.24)

When the particles are ideally distributed but subject to site blocking effects,
Eq. (11.23) can be written as [11]

σdc =
q2CD∗

fkBT
, (11.25)
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where f is the tracer correlation factor (see Chap. 4). This equation is appro-
priate to very dilute solutions. Ionic crystals having a virtually perfect lattice
of ions fall into this category.

Charge diffusion coefficient: In the solid-state diffusion literature
Eq. (11.22) is often used to calculate another ‘diffusion coefficient’ called
the charge diffusion coefficient (sometimes denoted also as the conductivity
diffusion coefficient or the electrical diffusion coefficient) via:

Dσ =
kBTσdc

Cq2
=

RTσdc

NACq2
. (11.26)

R denotes the gas constant and NA the Avogadro number. Dσ has indeed
the dimensions of a diffusion coefficient. However, it does not correspond to
any diffusion coefficient that can be measured by way of Fick’s laws. The
identification of Dσ with a diffusion coefficient is only adequate for non-
interacting particles.

What can be done is to use Eq. (11.26) as a definition of Dσ, recognising
that at the same time Dσ has no Fickian meaning. It is, however, misleading
in these circumstances to call Eq. (11.26) the Nernst-Einstein equation. Equa-
tion (11.26) is then used purely as a means of changing the d.c. conductivity
σdc to a quantity that has the dimensions of a diffusion coefficient.

Haven ratio: It is common practice in solid-state ionics to define the so-
called Haven ratio HR, which is simply the ratio of the tracer diffusion coef-
ficient, D∗, and the charge diffusion coefficient, Dσ:

HR ≡ D∗

Dσ
. (11.27)

In view of the remarks about Dσ, it is appropriate to ask whether the Haven
ratio has a straightforward physical meaning. Apart from some simple models
(mentioned below) a general theory of HR is not yet available.

For a hopping model of ionic conduction, provided that the ionic jumps
are mediated by low concentrations of vacancies like in NaCl (see Chap. 26),
one gets [11, 13]

HR =
f

fAA
. (11.28)

Here f is the tracer correlation factor of the atoms and fAA the physical
or collective correlation factor (see Chap. 12). If one can neglect collective
correlations, which is justified for an almost full or empty lattice of charge
carriers, the interpretation of the Haven ratio is straightforward. This is the
case for diffusion mechanisms such as the vacancy mechanism. Then, the
Haven ratio simply equals the tracer correlation factor:

HR ≈ f . (11.29)
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In such a case, from a measurement of the Haven ratio the correlation factor
and then the mechanism of diffusion can be exposed (see Chap. 7).

For a collective mechanism, such as the interstitialcy mechanism, the dis-
placement of the charge is different from the displacement of the tracer atom.
For a colinear interstitialcy mechanism the charge moves two jump distances
whereas the tracer moves only one (see Chap. 6). The Haven ratio then be-
comes

HR =
fd2

fAAd2
q

, (11.30)

where d and dq are the jump distances of the tracer and of the charge, re-
spectively.

A classic example for identifying the mechanism using experimental Haven
ratios is the work of Friauf [12] on the motion of Ag in AgBr. It was ob-
served that the Haven ratio varies from 0.5 at low temperatures to 0.65
at high temperatures. This behaviour of the Haven ratio was attributed to
the simultaneous action of colinear and non-colinear interstitialcy jumps (see
Chap. 26).

Much less satisfactorily interpreted are Haven ratios for fast ion conduc-
tors with highly disordered sublattices and for ion-conducting glasses. Haven
ratios in such materials have been reviewed by Murch [13] and by Jain and
Kanert [14]. Further comments on the subject of correlations effects and
ionic diffusion can be found in the review by Murch [11] and the literature
cited therein, as well as in a paper on Monte Carlo simulations of the Haven
ratio of alkali ions in oxide glasses [15]. Pressure-dependent diffusivities and
Haven ratios in alkali borate glasses are considered by Imre et al. [18].

11.5 Nernst-Planck Equation – Interdiffusion
in Ionic Crystals

Let us now consider two ionic system AX and BX with two ionic species
A and B, which share the same sublattice of a crystal. Let us assume that
only the species A and B are mobile, the X sublattice being fixed. During
interdiffusion the two mobile species compete for vacancies on the common
sublattice of A and B. Let us first consider the case of an ideal solution and
the absence of an electric driving force. Then fluxes jA and jB are connected
to the concentration gradients via

jA = −D∗
A

∂CA

∂x
and jB = −D∗

B

∂CB

∂x
(11.31)

with
∂CA

∂x
= −∂CB

∂x
. (11.32)
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Since D∗
A and D∗

B are not equal, a net flux of electric charge jA �= jB would
develop. However, the condition of electrical neutrality requires that this net
flux must be zero.

Any electrical field E gives rise to drift fluxes. More general, the flux
equations should then be written as

jA = −D∗
A

∂CA

∂x
+

qCAD∗
A

kBT
E and jB = −D∗

B

∂CB

∂x
+

qCBD∗
B

kBT
E . (11.33)

Here we have introduced the drift term from the Nernst-Einstein equation and
q denotes the (identical) charges of ions A and B. The condition of electrical
neutrality requires

jA + jB = 0 . (11.34)

It follows that
E =

kBT

q

D∗
A − D∗

B

CAD∗
A + CBD∗

B

∂CA

∂x
. (11.35)

We now recall the intrinsic diffusivities of Eq. (10.20), which we repeat for
convenience:

jA = −DI
A

∂CA

∂x
and jB = −DI

B

∂CA

∂x
. (11.36)

Inserting Eqs. (11.33) and (11.35), we arrive at:

DI
A = DI

B =
D∗

AD∗
B

NAD∗
A + NBD∗

B

. (11.37)

This equation is called the Nernst-Planck equation for ideal solutions. For
interdiffusion between ionic crystals AX and BX, there is no Kirkendall effect
because there is no separation of charge and therefore no net vacancy flow.
Equation (11.37) can also be written as

1
DI

A

+
1

DI
B

=
NA

D∗
B

+
NB

D∗
A

. (11.38)

For a non-ideal solution Eq. (11.37) must be multiplied by the thermodynamic
factor Φ:

DI
A = DI

B =
D∗

AD∗
B

NAD∗
A + NBD∗

B

Φ ≡ D̃Nernst−Planck . (11.39)

We mention without prove that in terms of the transport coefficients discussed
in Chap. 12 one gets:

D̃Nernst−Planck =
2f

1 − f

LAB

NANB
. (11.40)

This equation shows that interdiffusion in ionic crystals is completely due to
the off-diagonal term LAB of the Onsager matrix.
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11.6 Nernst-Planck Equation versus Darken Equation

The Nernst-Planck equation (11.39) and the Darken equation (10.34) differ
significantly if the ratio of the tracer diffusivities is far from unity:

D̃Nernst−Planck �= D̃Darken . (11.41)

We have seen above that the interdiffusion coefficient described by the Nernst-
Planck equation corresponds to a consecutive connection of the two diffusiv-
ities; it is controlled by the slower diffusing component. By contrast, the
Darken expression is analogous to the paralled connection of the two diffu-
sivities, which is controlled by the faster diffusing component.

In addition, we note that the Nernst-Planck and the Darken equations
represent two limiting cases of interdiffusion in a binary metallic alloy:

We recall that the Darken equation has been derived under the assump-
tion that vacancies are practically at thermal equilibrium during the inter-
diffusion process and that the vacancy flux compensates the unequal fluxes
of the atomic species A and B. Usually, this is justified for a macroscopic
diffusion sample, when sufficient sinks and sources for vacancies (e.g., dis-
locations) keep the vacancy concentration close to equilibrium in spite of
non-vanishing vacancy fluxes.

Non-equilibrium vacancy distributions can be generated by the difference
of the intrinsic fluxes of atoms, if the density and/or efficiency of vacancy
sources/sinks are insufficient. Nazarov and Gurov have performed an ana-
lysis of interdiffusion in binary alloys taking into account non-equilibrium va-
cancies [16]. They have shown that the evolution of an interdiffusion profile
is then governed by

D̃Nazarov−Gurov =
D∗

AD∗
B

NAD∗
A + NBD∗

B

Φ ≡ D̃Nernst−Planck . (11.42)

The Nernst-Planck expression for interdiffusion in ionic crystals and the
Nazarov-Gurov expression for interdiffusion in a binary alloy with non-
equilibrium vacancies are identical.

Furthermore, the interdiffusion coefficients of Darken and of Nazarov-
Gurov correspond to different space and time regimes. This has been pointed
out by Gusak and coworkers (see, e.g., [17]):

– The Darken expression, Eq. (10.34), governs the interdiffusion process for
long diffusion times

t � τV

CV
. (11.43)

Here τV is the mean life-time of vacancies between their creation at va-
cancy sources and their annilhilation at vacancy sinks. CV denotes the
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vacancy concetration. This condition is fulfilled when the average dis-
tance between vacancy sources and sinks,

√
DV τV , is small as compared

to the width of the interdiffusion zone, i.e. for

D̃Darken t � DV τV , (11.44)

DV denotes the vacancy diffusivity.
– The Nazarov-Gurov equation governs the interdiffusion process for short

diffusion times
t � τV

CV
. (11.45)

This corresponds to

D̃Nazarov−Gurov t � DV τV , (11.46)

Then, the width of the interdiffusion zone is much smaller than the average
distance between vacancy sources and sinks.

Loosely speaking, non-equilibrium vacancies and the Nazarov-Gurov equation
are important on ‘nanoscopic scales’, whereas the Darken equation is relevant
for interdiffusion on ‘macroscopic scales’.

References

1. S.R. de Groot, P. Mazur, Thermodynamics of Irreversible Processes, North-
Holland Publ. Comp., 1952

2. R.E. Howard, A.B. Lidiard, Matter Transport in Solids, in: Reports on Progress
in Physics Vol. XXVII, The Institute of Physics and the Physical Society, Lon-
don, 1964, pp. 161–240

3. J. Philibert, Atom Movements – Diffusion and Mass Transport in Solids, Les
Editions de Physique, Les Ulis, 1991

4. A.R. Allnatt. A.B. Lidiard, Atomic Transport in Solids, Cambridge University
Press, 1993

5. H. Wever, Elektro- und Thermotransport in Metallen, Barth-Verlag, Leipzig,
1973

6. H.B. Huntington, Electromigration in Metals, in: Diffusion in Solids – Recent
Developments, A. S. Nowick, J.J. Burton (Eds.), Academic Press, 1975, p. 303

7. J. Völkl, G. Alefeld, Hydrogen Diffusion in Metals, in: Diffusion in Solids –
Recent Developments, A. S. Nowick, J.J. Burton (Eds.), Academic Press, 1975,
p. 303

8. L.W. Barr, A.D. Le Claire, Philos. Mag, 20, 1289–1291 (1969)
9. R. Fürth, Diffusion, in: Handbuch physikalisch, technische Mechanik, F. Auer-

bach, W. Hort (Eds.), Vol. 7, Leipzig, 1932
10. W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press, Inc., New York,

1960
11. G.E. Murch, Diffusion Kinetics in Solids, Chap. 3 in: Phase Transformations in

Materials, G. Kostorz (Ed.), Wiley-VCh Verlag GmbH, Weinheim, Germany,
2001



190 11 Diffusion and External Driving Forces

12. R.J. Friauf, Phys. Rev. 105, 843 (1957)
13. G.E. Murch, Solid State Ionics 7, 177 (1982)
14. H. Jain, O. Kanert, in: Defects in Insulating Materials, O. Kanert, J.-M. Spaeth

(Eds.), World Scientific Publishing Comp., Ltd., Singapore, 1993
15. S. Voss, S.V. Divinski, A.W. Imre, H. Mehrer, J.N. Mundy, Solid State Ionics

176, 1383 (2005)
16. A.V. Nazarov, K.P. Gurov, Fizika Metallov Metallovedenie 37, 496 (1974); 38,

689 (1974); 45, 855 (1978)
17. A.M. Gusak, S.V. Kornienko, G.V. Lutsenko, presented at Int. Workshop on

Diffusion and Stresses (DS 2006), Lillafüred, Hungary, 2006
18. A.W. Imre, S. Voss, H. Staesche, M.D. Ingram, K. Funke, H. Mehrer, J. Phys.

Chem. B, 111, 5301–5307 (2007)




