
10 Interdiffusion and Kirkendall Effect

Diffusion processes in alloys with composition gradients are of great practical
interest. In the preceding chapters, we have assumed that the concentra-
tion gradient is the only cause for flow of matter. Such situations can be
studied using small amounts of trace elements in otherwise homogeneous
materials. We will discuss the experimental procedure for tracer experiments
in Chap. 13. From a general viewpoint, the diffusion flux is proportional
to the gradient of the chemical potential. The chemical potential is propor-
tional to the concentration gradient only for dilute systems or ideal solid
solutions. The gradient of the chemical potential gives rise to an ‘internal’
driving force and the intermixing of a binary A-B system can be described
by a concentration-dependent chemical or interdiffusion coefficient. In a bi-
nary alloy there is a single interdiffusion coefficient that characterises inter-
diffusion. The interdiffusion coefficient is usually a composition-dependent
quantity. On the other hand, interdiffusion is due to the diffusive motion
of A and B atoms, which in general have different intrinsic diffusion coef-
ficients. This difference manifests itself in the Kirkendall effect, a shift of
the diffusion zone with respect to the ends of the diffusion couple. We con-
sider first interdiffusion and the Boltzmann-Matano and Sauer-Freise meth-
ods for the determination of the interdiffusion coefficient. Further sections
are devoted to intrinsic diffusion, Kirkendall effect, and to the Darken rela-
tions. The Darken-Manning relations, the so-called vacancy-wind effect, and
the stability or instability of Kirkendall planes are described. A discussion
of interdiffusion in ionic systems and the Nernst-Planck equation and its
relation to the Darken equation is postponed to the end of the next chap-
ter.

10.1 Interdiffusion

Let us consider a binary diffusion couple, in which the chemical composi-
tion varies in the diffusion zone over a certain range. Diffusing atoms then
experience different chemical environments and hence have different diffu-
sion coefficients. As already mentioned in Chap. 2, this situation is called
interdiffusion or chemical diffusion. We use the symbol D̃ to indicate that
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the diffusion coefficient is concentration-dependent and call it the interdif-
fusion or chemical diffusion coefficient. Fick’s second law Eq. (2.5) then
reads
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The second term on the right-hand side represents an ‘internal driving force’
(see also Chap. 11). Mathematically, Eq. (10.1) is a non-linear partial dif-
ferential equation. For an arbitrary concentration dependence of D̃(C) it
can usually be not solved analytically. In addition, theoretical models which
permit the calculation of the composition-dependent diffusivity from deeper
principles are at present not broadly available.

The strategy illustrated in Chaps. 2 and 3 for calculating the concen-
tration field for given initial and boundary conditions is not applicable
to interdiffusion. We shall see, however, that it is possible to determine
the concentration-dependent diffusivity, D̃, from a measured concentration
field by using Eq. (10.1). Two methods for extracting diffusivities from
concentration-depth profiles – the classical Boltzmann-Matano method and
related approaches proposed by Sauer and Freise – are considered below.
Boltzmann’s transformation of Fick’s second law is fundamental for both
methods and is discussed first.

10.1.1 Boltzmann Transformation

In 1894 the famous Ludwig Boltzmann [1] showed that the nonlinear par-
tial differential equation (10.1) can be transformed to a nonlinear but ordi-
nary differential equation if D̃ is a function of C(x) alone. He introduced the
variable

η ≡ x − xM

2
√

t
, (10.2)

which is a combination of the space and time variables x and t, respectively.
xM refers to a special reference plane – the so-called Matano plane – to be
defined below. Applying chain-rule differentiation to Eq. (10.1), we get the
following identity:

∂

∂x
≡ d

dη

∂η

∂x
=

1
2
√

t

d
dη

. (10.3)

The operator on the left-hand side of Eq. (10.1) is
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The right-hand side of Eq. (10.1) can also be written in terms of η as
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Fig. 10.1. Schematic illustration of the Boltzmann-Matano method for a binary
diffusion couple with starting compositions CL and CR

By recombining left- and right-hand sides and using the Boltzmann variable
we get Fick’s second law as an ordinary differential equation for C(η):

−2η
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. (10.6)

Some authors omit the factor 2 in the definition Eq. (10.2) of η. Then, a factor
of 1/2 instead of 2 appears in the equation corresponding to Eq. (10.6).
However, when finally transformed in ordinary time and space coordinates,
the solutions obtained are identical.

10.1.2 Boltzmann-Matano Method

The Boltzmann-transformed version of Fick’s second law Eq. (10.6) is a non-
linear ordinary differential equation. This equation allows us to deduce
the concentration-dependent interdiffusion coefficient from an experimen-
tal concentration-depth profile, C(x). Appropriate boundary conditions for
an interdiffusion experiment have been suggested by the Japanese scientist
Matano in 1933 [2]. He considered a binary diffusion couple, which consists
of two semi-infinite bars joined at time t = 0. The initial conditions are

C = CL for (x < 0, t = 0),
C = CR for (x > 0, t = 0) . (10.7)

During a diffusion anneal of time t, a concentration profile C(x) develops.
This profile can be measured on a cross section of the diffusion zone, e.g., by
electron microprobe analysis (see Chap. 13). Such a profile is schematically
illustrated in Fig. 10.1.
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Carrying out an integration between CL and a fixed concentration C∗, we
get from Eq. (10.6)

−2
∫ C∗

CL

ηdC = D̃

(
dC

dη

)
C∗

− D̃

(
dC

dη

)
CL
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Matano’s geometry guarantees vanishing gradients dC/dη as C∗ approaches
CL (or CR). Using (dC/dη)CL = 0 and solving Eq. (10.8) for D̃ yields

D̃(C∗) = −2

∫ C∗

CL
ηdC

(dC/dη)C=C∗
. (10.9)

We transform Eq. (10.9) back to space and time coordinates using the Boltz-
mann variable Eq. (10.2) and get

D̃(C∗) = − 1
2t

∫ C∗

CL
(x − xM )dC

(dC/dx)C∗
. (10.10)

This relation is called the Boltzmann-Matano equation. It permits us to deter-
mine D̃ for any C∗ from an experimental concentration-distance profile. For
the analysis, the position of the Matano plane, xM , must be known. Carrying
out the integration between the limits CL and CR, we get from Eq. (10.6)∫ CR

CL

ηdC = 0 . (10.11)

Equation (10.11) can be considered as the definition of the Matano plane.
xM must be chosen in such a way that Eq. (10.11) is fulfilled.

In order to determine the Matano plane, we have to remember that at
the beginning of the experiment the concentration of the diffusing species
was CL (CR) on the left-hand (right-hand) side. Let us suppose, for example,
CL < CR. Then, at the end of the experiment, the surplus of the diffusing
species found on the left-hand side must have arrived by diffusion from the
right-hand side. The location of the Matano plane can be determined from
the conservation condition
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=

∞∫
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. (10.12)

When integrated by parts, the integrals in Eq. (10.12) transform to integrals
with C as the running variable instead of x. If we apply the Matano boundary
conditions Eq. (10.7), we get

(CL − CR)xM +

CM∫
CL

xdC +

CR∫
CM

xdC = 0 , (10.13)
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where CM denotes the concentration at the Matano plane. If we choose the
Matano plane as origin of the x-axis (xM = 0), the first term in Eq. (10.13)
vanishes. Then, the following integrals balance across the Matano plane:

CM∫
CR

xdC +

CL∫
CM

xdC = 0 . (10.14)

Although the location of the Matano plane is not known a priori, it can
be found from experimental concentration-distance data by balancing the
horizontally hatched areas in Fig. 10.1.

In summary, the determination of interdiffusion coefficients from an ex-
perimental concentration-distance profile via the Boltzmann-Matano method
requires the following steps:

1. Determine the position of the Matano plane from Eq. (10.11) and use
this position as the origin of the x-axis.

2. Choose C∗ and determine the integral
∫ C∗

CL
xdC from the experimen-

tal concentration-distance data. The integral corresponds to the double-
hatched area A∗ in Fig. 10.1.

3. Determine the concentration gradient S = (dC/dx)C∗ . S corresponds to
the slope of the concentration-distance curve at the position x∗.

4. Determine the interdiffusion coefficient D̃ for C = C∗ from the Boltz-
mann-Metano equation (10.10) as: D̃(C∗) = −A∗/(2tS).

We draw the readers attention to the following points:

(i) The Boltzmann-Matano equation (10.10) refers to an ‘infinite’ system.
Its application to an experiment requires that the concentration changes
must not have reached the boundaries of the system.

(ii) Close to the end-member compositions, the Boltzmann-Matano proce-
dure may incur relatively large errors in D̃ because far away from the
Matano plane both the integral A∗ and the slope S become very small.

(iii) The initial interface of a diffusion couple can be tagged by inert diffu-
sion markers (e.g., ThO2 particles, thin Mo or W wires). The plane of
the markers in the diffusion couple is denoted as the Kirkendall plane.
Usually, for t �= 0 the positions of the Matano plane and of the Kirk-
endall plane will be different. This is called the Kirkendall effect and is
discussed in Sect. 10.2.

(iv) This method is applicable when the volume of the diffusion couple does
not change during interdiffusion.

The Boltzmann-Matano method has been modified by Sauer and Freise [3]
and later by den Broeder [4]. These authors introduce a normalised con-
centration variable Y defined by:

Y =
C − CR

CL − CR
. (10.15)
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If no volume change occurs upon interdiffusion, the Sauer-Freise solution can
be written in the following way:

D̃(C∗) =
1

2t(dC/dx)x∗
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⎣(1 − Y ))

∞∫
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x∗∫
−∞

(CL − C∗)dx

⎤
⎦ .

(10.16)
Here C∗ is the concentration at the position x∗. The Sauer-Freise approach
circumvents the need to locate the Matano plane. In this way, errors associ-
ated with finding its position are eliminated. On the other hand, application
of Eq. (10.16) to the analysis of an experimental interdiffusion profile, like
the Boltzmann-Matano method, requires the computation of two integrals
and of one slope.

10.1.3 Sauer-Freise Method

When the volume of a diffusion couple changes during interdiffusion neither
the Boltzmann-Matano equation (10.10) nor Eq. (10.16) can be used. Fick’s
law then needs a correction term [5, 6]. Volume changes in a binary diffusion
couple occur whenever the total molar volume Vm of an A-B alloy deviates
from Vegard’s rule, which states that the total molar volume of the alloy is
obtained from Vm = VANA +VBNB, where VA, VB denote the molar volumes
of the pure components and NA, NB the molar fractions of A and B in the
alloy. Vegard’s rule is illustrated by the dashed line in Fig. 10.2.

Non-ideal solid solution alloys exhibit deviations from Vegard’s rule, as
indicated by the solid line in Fig. 10.2. Diffusion couples of such alloys change
their volume during interdiffusion. Couples with positive deviations from Ve-
gard’s rule swell, couples with negative deviations shrink. The partial molar
volumes of the components A and B, ṼA ≡ ∂Vm/∂NA and ṼB ≡ ∂Vm/∂NB,
are related to the total molar volume via:

Vm = ṼANA + ṼBNB . (10.17)

As indicated in Fig. 10.2, the partial molar volumes can be obtained graphi-
cally as intersections of the relevant tangent with the ordinate.

Sauer and Freise [3] deduced a solution for interdiffusion with volume
changes. Instead of Eq. (10.15), they introduced the ratio of the mole fractions

Y =
Ni − NR

i

NL
i − NR

i

, (10.18)

with NL
i and NR

i being the unreacted mole fractions of component i at
the left-hand or right-hand side of the diffusion couple. The interdiffusion
coefficient D̃ is then obtained from
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Fig. 10.2. Molar volume of an A-B solid solution alloy (solid line) versus composi-
tion. The dashed line repesents the Vegard rule. The partial molar volumes, ṼA and
ṼB , and the molar volumes of the pure components, VA and VB, are also indicated
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In order to evaluate Eq. (10.19), it is convenient to construct from the ex-
perimental composition-distance profile and from the Vm data two graphs,
namely the integrands Y/Vm and (1 − Y )/Vm versus x, as illustrated in
Fig. 10.3. The two integrals in Eq. (10.19) correspond to the hatched areas.
Equations (10.19) and (10.16) contain two infinite integrals in the running
variable. Their application to the analysis of an experimental concentration-
depth profile requires accurate computation of a gradient and of two integrals.

Fig. 10.3. Composition profiles constructed according to the Sauer-Freise method.
Vm,L and Vm,R are the molar volumes of the left-hand and right-hand end-members
of the diffusion couple
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10.2 Intrinsic Diffusion and Kirkendall Effect

So far, we have described diffusion of a two-component system by a single
interdiffusion coefficient, which depends on composition. In general, the rate
of transfer of A atoms is greater/smaller than that of B atoms. Thus, there
are two diffusion coefficients, DI

A and DI
B, which are denoted as the intrinsic

diffusion coefficients of the components. They are concentration dependent
as well. On the other hand, there is only one diffusion process, namely the
intermixing of A and B. These two apparently contradictory facts are closely
related to the question of how we specify the reference frame for the diffusion
process. We know that the atoms in a crystalline solid are held in a lattice
structure and we shall therefore retain the form of Fick’s first law for the
diffusion fluxes relative to a frame fixed in the local crystal lattice (intrinsic
diffusion fluxes):

jA = −DI
A

∂CA

∂x
, jB = −DI

B

∂CB

∂x
. (10.20)

The inequality of these fluxes leads to a net mass flow accompanying the
interdiffusion process, which causes the diffusion couple to shrink on one side
and to swell on the other side. This observation is called the Kirkendall ef-
fect. It was discovered by Kirkendall and coworkers in a copper-brass
diffusion couple in the 1940s [7, 8]. The Kirkendall shift can be observed by
incorporating inert inclusions, called markers (e.g., Mo or W wires, ThO2

particles), at the interface where the diffusion couple is initially joined. The
original Kirkendall experiment is illustrated in Fig. 10.4. It showed that Zn
atoms diffused faster outwards than Cu atoms inward (DI

Zn > DI
Cu) causing

the inner brass core to shrink. This in turn resulted in the movement of the
inert Mo wires. In the period since, it has been demonstrated that the Kirk-
endall effect is a widespread phenomenon of interdiffusion in substitutional
alloys.

Fig. 10.4. Schematic illustration of a cross section of a diffusion couple composed
of pure Cu and brass (Cu-Zn) prepared by Smigelskas and Kirkendall [8] before
and after heat treatment. The Mo markers placed at the original contact surface
moved towards each other. It was concluded that Zn atoms diffused faster outwards
than Cu atoms move inwards (DI

Zn > DI
Cu)
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The Kirkendall effect was received by contemporary scientists with much
surprise. Before the 1940s it was commonly believed that diffusion in solids
takes place via direct exchange or ring mechanism (see Chap. 6), which im-
ply that the diffusivities of both components of a binary alloy are equal. The
fact that in a solid-state diffusion process the species diffuse at different rates
changed the existing atomistic models on solid-state diffusion completely.
The Kirkendall effect lended much support to the vacancy mechanism of
diffusion1.

The position of the Kirkendall plane, xK , moves parabolically in time
with respect to the laboratory-fixed frame:

xK = K
√

t . (10.21)

Here K is a (temperature-dependent) constant. The parabolic shift indicates
that we are dealing with a diffusion-controlled process. We also note that
the Kirkendall plane is the only marker plane that starts moving from the
beginning. The Kirkendall velocity vK is given by

vK ≡ dxK

dt
=

xK

2t
(10.22)

From the position of the Kirkendall plane one can deduce information about
the intrinsic diffusivities. Van Loo showed that their ratio is given by [10]:
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B
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ṼB
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⎢⎢⎢⎣

NR
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∞∫
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−(NR
B )

xK∫
−∞

1
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A)dx + NL

B

∞∫
xK

1
Vm

(NR
A − NA)dx

⎤
⎥⎥⎥⎦ .

(10.23)
Ni is the mole fraction of component i, with NL

i and NR
i the unreacted left-

hand (x → −∞) and right-hand (x → −∞) ends of the couple, respectively.
Since the discovery of the Kirkendall effect by Smigelskas and Kirk-

endall [8] and its analysis by Darken [9], this effect assumed a promi-
nent rôle in the diffusion theory of metals. It was considered as evidence
for vacancy-mediated diffusion in solids. There are also technological fields
in which the Kirkendall effect is of great interest. Examples are composite
materials, coating technologies, microelectronic devices, etc. The interactions
accompanying the Kirkendall effect between constituents of such structures
can, for example, induce stress and even deformation on a macroscopic scale.
It can also cause migration of microscopic inclusions inside a reaction zone
and Kirkendall porosity.
1 Nowadays, we know that the Kirkendall effect can manifest itself in many phe-

nomena such as the development of diffusional porosity (Kirkendall voids), gen-
eration of internal stresses [13, 14], and even by deformation of the material
on a macroscopic scale [15]. These diffusion-induced processes are of concern
in a wide variety of structures including composite materials, coatings, welded
components, and thin-film electronic devices.
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10.3 Darken Equations

The first theoretical desciption of interdiffusion and Kirkendall effect was
attempted by Darken in 1948 [9]. For a binary substitutional alloy he used
the two intrinsic diffusivities introduced above to describe the interdiffusion
process. The Kirkendall velocity vK can be expressed in terms of the intrinsic
fluxes, jA and jB , and partial molar volumes, ṼA and ṼB , as

vK = −(ṼAjA + ṼBjB) . (10.24)

Given the fact that dCA = −(ṼB/ṼA)dCB , we can write for the Kirkendall
velocity

vK = ṼB(DI
B − DI

A)
∂CB

∂x
, (10.25)

where ∂CB/∂x denotes the concentration gradient at the Kirkendall plane.
Following Darken’s approach, the laboratory-fixed interdiffusion flux J (at
the Kirkendall plane) can be written as the sum of an intrinsic diffusion flux
of one of the components i plus (or minus) a Kirkendall drift term vKCi:

J = −DI
i

∂Ci

∂x
± vKCi i = A, B . (10.26)

Substituting Eq. (10.25) in Eq. (10.26) one arrives at a general expression for
the interdiffusion coefficient:

D̃ = CBṼBDI
A + CAṼADI

B . (10.27)

Equations (10.25) and (10.27) provide a description of isothermal diffusion
in a binary substitutional alloy. They also provide a possibility to determine
the intrinsic diffusivities from measurements of the interdiffusion coefficient
and the Kirkendall velocity.

From a fundamental point of view, the assumption that the concentration
gradients are the driving forces of diffusion as given by Fick’s laws is not cor-
rect. Instead, as already stated at the beginning of this chapter, the gradient
of the chemical potential µi of component i is the real driving force. The flux
of component i (i = A, B) in a binary alloy can be written as [16, 17]

ji = −BiCi
∂µi

∂x
, (10.28)

where Bi denotes the mobility of component i. The chemical potential can
be expressed in terms of the thermodynamic activity, ai, via

µi = µ0
i + RT ln ai , (10.29)

where µ0
i is the standard chemical potential (at 298K and 1bar) and R is

the ideal gas constant (R = 8.3143 J mol−1K−1). The atomic mobility Bi
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is connected to the tracer diffusion coefficient D∗
i of component i via the

Nernst-Einstein relation (see Chap. 11):

D∗
i = BiRT . (10.30)

Substituting Eqs. (10.30) and (10.28) in Eq. (10.20) and knowing that CA =
NA/Vm and dNA = (V 2

m/ṼA)dCA one obtains relations between the intrinsic
and the tracer diffusion coefficients:

DI
A = D∗

A

Vm

ṼB

∂ ln aA

∂ lnNA
and DI

B = D∗
B

Vm

ṼA

∂ ln aB

∂ lnNB
. (10.31)

The quantity Φ ≡ ∂ ln ai/∂ lnNi is denoted as the thermodynamic factor.
The thermodynamics of binary systems tells us that the thermodynamic

factor can also be expressed as follows [21]:

Φ =
NA NB

R T

d2G

dN2
i

=
∂ln ai

∂lnNi
= 1 +

∂ln γi

∂lnNi
, (10.32)

Here G denotes the Gibbs free energy and γi ≡ ai/Ni the coefficient of
thermodynamic activity of species i ( = A or B). In addition, as a consequence
of the Gibbs-Duhem relation there is only one thermodynamic factor for
a binary alloy:

Φ =
∂ ln aA

∂ lnNA
=

∂ ln aB

∂ lnNB
(10.33)

Substiting Eq. (10.31) in Eq. (10.27) and knowing the relation Ci ≡ Ni(CA +
CB) = Ni/Vm between concentrations and mole fractions, we obtain for the
interdiffusion coefficient

D̃Darken = (NAD∗
B + NBD∗

A) Φ . (10.34)

Equations (10.31) and (10.34) are called the Darken equations. Sometimes the
name Darken-Dehlinger equations is used. These relations are widely used in
practice for substitutional binary alloys. Their simplicity provides an obvious
convenience. We shall assess its accuracy below and also in Chap. 12.

If thermodynamic data are available, either from activity measurements
or from theoretical models, Eqs. (10.31) or (10.34) allow to relate the intrinsic
diffusivities and the interdiffusion coefficient to the tracer diffusivities. For
an ideal solid solution alloy we have γi = 1 and ai = Ni and hence Φ = 1
(Raoult’s law). For non-ideal solutions Φ deviates from unity. It is larger
than unity for phases with negative deviations of G from ideality and smaller
than unity in the opposite case. Negative deviations are expected for systems
with order. Therefore, thermodynamic factors of intermetallic compounds
are often larger, sometimes even considerably larger than unity due to the
attractive interaction between the constituents of the intermetallic phase. As
a consequence, interdiffusion coefficients are often larger than the term in
paranthesis of Eq. (10.34).
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10.4 Darken-Manning Equations

Soon after the detection of the Kirkendall effect and its phenomenological
description via the Darken equations, Seitz in 1948 [11] and Bardeen in
1949 [12] recognised that the original Darken equations are approximations.
From an atomistic point of view, interdiffusion in substitutional alloys is medi-
ated by vacancies. It was shown that the Darken equations are obtained if the
concentration of vacancies is in thermal equilibrium during the interdiffusion
process. For the Kirkendall effect to occur, vacancies must be created at one
site and annihilated on the other side of the interdiffusion zone so that a va-
cancy flux is created to maintain local equilibrium. This implies that sources
and sinks for vacancies are abundant in the diffusion couple. The vacancy
flux causes the so-called vacancy-wind effect – a correction term that must
be added to the original Darken equations to obtain the Darken-Manning
relations.

The relations between tracer diffusivities and intrinsic diffusivities and
the interdiffusion coefficient discussed in the previous section are incomplete
for a vacancy mechanism, because of correlation effects. The exact expres-
sions are similar to those discussed above but with vacancy-wind factors (see,
e.g., [17, 21, 22]). The intrinsic diffusion coefficients Eq. (10.31) with vacancy-
wind corrections, rA and rB, can be written as

DI
A = D∗

A

Vm

ṼB

ΦrA and DI
B = D∗

B

Vm

ṼA

ΦrB . (10.35)

The vacancy-wind factors can be expressed in terms of the tracer and collec-
tive correlation factors:

rA =
fAA − NAf

(A)
AB /NB

fA
and rB =

fBB − NAf
(B)
AB /NA

fA
. (10.36)

The fi are the tracer correlation factors and fij the collective correlation
factors sometimes also called correlations functions [22] (see also Chap. 12).

Perhaps the best-known vacancy-wind factor is the total vacancy-wind
factor, S, occuring in the generalised Darken equation:

D̃ = (NAD∗
B + NBD∗

A) ΦS = D̃DarkenS . (10.37)

Equation (10.37) is also called the Darken-Manning equation and S is also
denoted as the Manning factor. It can be expressed as

S =
NAD∗

BrB + NBD∗
ArA

NAD∗
B + NBD∗

A

. (10.38)

Manning [18, 19] developed approximate expressions for vacancy-wind
factors in the framework of a model called the random alloy model. The term
random alloy implies that vacancies and A and B atoms are distributed at
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random on the same lattice, although the rates at which atoms exchange
with vacancies are allowed to be different. For a random alloy, the individual
vacancy-wind factors are

rA = 1 +
(1 − f)

f

NA(D∗
A − D∗

B)
(NAD∗

A + NBD∗
B)

and

rB = 1 +
(1 − f)

f

NA(D∗
B − D∗

A)
(NAD∗

A + NBD∗
B)

, (10.39)

where f is the tracer correlation factor for self-diffusion. A transparent deriva-
tion of Eq. (10.39) can be found in [20]. For convenience let us assume that
D∗

A ≥ D∗
B. Then, from these expressions we see that the factors rA and rB

take the limits
1.0 ≤ rA ≤ 1

f
and 0.0 ≤ rB ≤ 1.0 . (10.40)

There is also a ‘forbidden region’ NA ≤ 1 − f , where rB can take negative
values (unphysical for this model) if D∗

A/D∗
B > NB/(NB−f). In other words,

there is a concentration-dependent upper limit for the ratio of the tracer
diffusivities in this region. Manning also provides an expression for the total
vacancy-wind factor:

S = 1 +
(1 − f)

f

NANB(D∗
A − D∗

B)2

(NAD∗
A + NBD∗

B)(NAD∗
B + NBD∗

A)
. (10.41)

From Eq. (10.41) it is seen that S varies within narrow limits:

1 ≤ S ≤ 1/f . (10.42)

Thus, in the framework of the random alloy model the total vacancy-wind
factor S is not much different from unity. The Manning expressions for the
vacancy-wind factors have been used for some 30 years. Extensive computer
simulations studies in simple cubic, fcc, and bcc random alloys by Belova
and Murch [23] have shown that the Manning formalism is not as accurate
as commonly thought. It is, however, a reasonable approximation when the
ratio of the atom vacancy exchange rates are not too far from unity.

Vacancy-wind corrections for chemical diffusion in intermetallic com-
pounds depend on the structure, the type of disorder and on the diffu-
sion mechanism. Belova and Murch have also contributed significantly to
chemical diffusion in ordered alloys by considering among others L12 struc-
tured compounds [24], D03 and A15 structured alloys [26], and B2 structured
compounds [25].

10.5 Microstructural Stability of the Kirkendall Plane

Kirkendall effect induced migration of inert markers inside the diffusion zone
and the uniqueness of the Kirkendall plane have not been questioned for
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quite a long time. In recent years, the elucidation of the Kirkendall effect
accompanying interdiffusion has taken an additional direction. Cornet and
Calais [29] were the first to describe hypothetical diffusion couples in which
more than one ‘Kirkendall marker plane’ can emerge. Experimental discov-
eries also revealed a more complex behaviour of inert markers situated at
the original interface of a diffusion couple in both spatial and temporal do-
mains. Systematic studies of the microstructural stability of the Kirkendall
plane were undertaken by van Loo and coworkers [30–35]. Clear evi-
dence for the ideas of Cornet and Calais was found and led to further
developments in the understanding of the Kirkendall effect. In particular, it
was found that the Kirkendall plane, under predictable circumstances, can
be multiple, stable, or unstable.

The diffusion process in a binary A-B alloy can best be visualised by
considering the intrinsic fluxes, jA and jB , of the components in Eq. (10.20)
with respect to an array of inert markers positioned prior to annealing along
the anticipated diffusion zone. According to Eq. (10.25) the sum of the oppo-
sitely directed fluxes of the components is equal to the velocity of the inert
markers, v, with respect to the laboratory-fixed frame of reference:

v = ṼB(DI
B − DI

A)
∂CB

∂x
, (10.43)

with ṼB being the partial molar volume of component B. Multifoil experi-
ments, in which a diffusion couple is composed of many thin foils with mark-
ers at each interface, permit a determination of v at many positions inside
a diffusion couple. Thus a v versus x curve (marker-velocity curve) can be
determined experimentally.

In a diffusion-controlled intermixing process, those inert markers placed
at the interface where the concentration step is located in the diffusion couple
is the Kirkendall plane. The markers in the Kirkendall plane are the only ones
that stay at a constant composition and move parabolically with a velocity
given by Eq. (10.22), which we repeat for convenience:

vK =
dx

dt
=

xK

2t
. (10.44)

xK is the position of the Kirkendall plane at time t.
The location of the Kirkendall plane(s) in the diffusion zone can be found

graphically at the point(s) of intersection(s) between the marker-velocity
curve and the straight line given by Eq. (10.44) (see Fig. 10.5). In order
to draw the line vK = xK/2t, one needs to know the position in the diffusion
zone where the ‘Kirkendall markers’ were located at time t = 0. If the total
volume does not change during interdiffusion this position can be determined
via the usual Boltzmann-Matano analysis. If the partial molar volumes are
composition dependent, the Sauer-Freise method should be used.

The nature of the Kirkendall plane(s) in a diffusion couple depends on
the gradient of the marker-velocity curve at the point of intersection with the
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straight line xK/2t. For illustration, let us consider a hypothetical diffusion
couple of A-B alloys with the end-members AyB1−y and AzB1−z where y > z.
Let us suppose that on the A-rich side of the diffusion zone A is the faster
diffusing species, whereas on the B-rich side B is the faster diffusing species.
Figure 10.5 shows schematic representations of the marker-velocity curves in
different situations. For some diffusion couples the straight line, vK = x/2t,
may intersect the marker-velocity curve in the diffusion zone once at a point
with a negative gradient (upper part). At this point of intersection one can
expect one stable Kirkendall plane. Markers, which by some perturbation

Fig. 10.5. Schematic velocity diagrams, pertaining to diffusion couples between
the end-members AyB1−y and AzB1−z for y > z. On the A-rich side A diffuses
faster and on the B-rich side B diffuses faster. Different situations are shown, which
pertain to one stable Kirkendall plane (upper part), to an unstable plane (middle
part), and to two stable Kirkendall planes, K1 and K3, and an unstable plane K2
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move ahead of the Kirkendall plane, will slow down, because of the lower
velocity; markers behind this plane will move faster. The stable Kirkendall
plane acts as an ‘attractor for inert markers’. By changing the end-member
compositions the straight line, vK = x/2t, may intersect the marker-velocity
curve at a point with a positive velocity gradient (middle part). Markers
slightly ahead of this plan will move faster, whereas markers behind this
plane will move slower. This will result in scatter of the markers and there
will be no unique plane acting as the Kirkendall plane (unstable Kirkendall
plane). The lower part of Fig. 10.5 illustrates a situation where the straight
line intersects the marker-velocity curve three times at K1, K2, and K3. In
this case one might expect that three Kirkendall planes will be present in
the sample. In reality, one finds two stable Kirkendall planes, K1 and K3.
An unstable plane, K2, is located between two stable Kirkendall planes and
the stable planes will accumulate the markers during the initial stage of
interdiffusion.

The presence of stable and unstable Kirkendall planes has been verified,
for example, in Ni-Pd and Fe-Pd diffusion couples [31]. The marker-velocity
curves over the whole homogeneity range have been determined in multifoil
experiments. It was indeed found that for Ni-Pd a stable Kirkendall plane
is present and the straight line, vK = x/2t, intersects the marker-velocity
curve at a point with a negative gradient. An unstable Kirkendall plane is
found in Fe-Pd and the gradient of the marker-velocity curve is positive at
the intersection point.
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