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Abstract. Algorithmic debugging is a debugging technique that has
been extended to practically all programming paradigms. It is based on
the answers of the programmer to a series of questions generated au-
tomatically by the algorithmic debugger. Therefore, the performance of
the technique is strongly dependent on the number and the complexity
of these questions. In this work we overview and compare current strate-
gies for algorithmic debugging and we introduce some new strategies and
discuss their advantages over previous approaches.

1 Introduction

Algorithmic debugging is a debugging technique which relies on the program-
mer having an intended interpretation of the program. In other words, some
computations of the program are correct and others are wrong with respect to
the programmer’s intended semantics. Therefore, algorithmic debuggers com-
pare the results of sub-computations with what the programmer intended. By
asking the programmer questions or using a formal specification the system can
identify precisely the location of a program’s bug.

Essentially, algorithmic debugging is a two-phase process: An execution tree
(see, e.g., [12]), ET for short, is built during the first phase. Each node in this
ET corresponds to an equation which consists of a function call with completely
evaluated arguments and results1. Roughly speaking, the ET is constructed as
follows: The root node is the main function of the program; for each node n
with associated function f , and for each function call in the right-hand side of
the definition of f , a new node is recursively added to the ET as the child of n.
This notion of ET is valid for functional languages but it is insufficient for other
paradigms as the imperative programming paradigm. In general, the information
included in the nodes of the ET incudes all the data needed to determine if the
equations are correct. For instance, in the imperative programming paradigm,
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with the function (or procedure) of each node it is included the value of all global
variables when the function was called. Similarly, in object-oriented languages,
every node with a method invocation includes the values of the attributes of
the object owner of this method (see, e.g., [4]). In the second phase, the debug-
ger traverses the ET asking an oracle (typically the programmer) whether each
equation is correct or wrong. At the beginning, the suspicious area which con-
tains those nodes that can be buggy (a buggy node is associated with a buggy
rule of the program) is empty; but, after every question, some nodes of the ET
leave the suspicious area. When all the children of a node with a wrong equa-
tion (if any) are correct, the node becomes buggy and the debugger locates the
bug in the function definition of this node [14]. If a bug symptom is detected
then algorithmic debugging is complete [16]. It is important to say that, once
the execution tree is built, the problem of traversing it and selecting a node is
independent of the language used; hence algorithmic debugging strategies can
theoretically work for any language.

Unfortunately, in practice—for real programs—algorithmic debugging can
produce long series of questions which are semantically unconnected (i.e., con-
secutive questions which refer to different and independent parts of the compu-
tation) making the process of debugging too complex.

Furthermore, questions can also be very complex. For instance, during a de-
bugging session with a compiler, the algorithmic debugger of the Mercury lan-
guage [10]—currently, one of the most advanced algorithmic debuggers—asked
a question of more than 1400 lines.

Therefore, new techniques and strategies to reduce the number of questions,
to simplify them and to improve the order in which they are asked are a necessity
to make algorithmic debuggers usable in practice.

In this paper we review and compare the current algorithmic debugging strate-
gies and propose three new strategies (less YES first, divide by YES and query,
and dynamic weighting search) that can further reduce the number of questions
asked during an algorithmic debugging session.

The rest of the paper is organized as follows. The next section shows an
example of algorithmic debugging session that will be used along the paper.
Section 3 reviews current algorithmic debugging strategies and proposes three
new strategies. In Section 4 we present a comparison of all techniques and we
study their costs. Finally, Section 5 concludes.

2 Algorithmic Debugging

During the algorithmic debugging process, an oracle is prompted with equa-
tions and asked about their correctness; it answers “YES” when the result is
correct or “NO” when the result is wrong. Some algorithmic debuggers also ac-
cept the answer “I don’t know” when the programmer cannot give an answer
(e.g., because the question is too complex). After every question, some nodes of
the ET leave the suspicious area. When there is only one node in the suspicious



A Comparative Study of Algorithmic Debugging Strategies 145

area, the process finishes reporting this node as buggy. It should be clear that
algorithmic debugging finds one bug at a time. In order to find different bugs,
the process should be restarted again for each different bug.

main = sqrtest [1,2]

sqrtest x = test (computs (listsum x))

test (x,y,z) = (x==y) && (y==z)

listsum [] = 0
listsum (x:xs) = x + (listsum xs)

computs x = ((comput1 x),(comput2 x),(comput3 x))

comput1 x = square x

square x = x*x

comput2 x = listsum (list x x)

list x y | y==0 = []
| otherwise = x:list x (y-1)

comput3 x = listsum (partialsums x)

partialsums x = [(sum1 x),(sum2 x)]

sum1 x = div (x * (incr x)) 2
sum2 x = div (x + (decr x)) 2

incr x = x + 1
decr x = x - 1

Fig. 1. Example program

Let us illustrate the process with an example2.

Example 1. Consider the buggy program in Fig. 1 adapted to Haskell from [7].
This program sums a list of integers [1,2] and computes the square of the re-
sult with three different methods. If the three methods compute the same result
the program returns True; otherwise, it returns False. Here, one of the three
methods—the one adding the partial sums of its input number—contains a bug.
From this program, an algorithmic debugger can automatically generate the ET

2 While almost all the strategies presented here are independent of the programming
paradigm used, in order to be concrete and w.l.o.g. we will base our examples on the
functional programming paradigm.
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Fig. 2. Execution tree of the program in Fig. 1
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Starting Debugging Session...

(1) main = False? NO
(2) sqrtest [1,2] = False? NO
(3) test [9,9,8] = False? YES
(4) computs 3 = [9,9,8]? NO
(5) comput1 3 = 9? YES
(7) comput2 3 = 9? YES
(16) comput3 3 = 8? NO
(17) listsum [6,2] = 8? YES
(20) partialsums 3 = [6,2]? NO
(21) sum1 3 = 6? YES
(23) sum2 3 = 2? NO
(24) decr 3 = 2? YES

Bug found in rule:
sum2 x = div (x + (decr x)) 2

Fig. 3. Debugging session for the program in Fig. 1

of Fig. 2 (for the time being, the reader can ignore the distinction between dif-
ferent shapes and white and dark nodes) which, in turn, can be used to produce
a debugging session as depicted in Fig. 3. During the debugging session, the sys-
tem asks the oracle about the correctness of some ET nodes w.r.t. the intended
semantics. At the end of the debugging session, the algorithmic debugger deter-
mines that the bug of the program is located in function “sum2” (node 23). The
definition of function “sum2” should be: sum2 x = div (x*(decr x)) 2

3 Algorithmic Debugging Strategies

Algorithmic debugging strategies are based on the fact that the ET can be
pruned using the information provided by the oracle. Given a question associated
with a node n of the ET, a NO answer prunes all the nodes of the ET except
the subtree rooted at n; and a YES answer prunes the subtree rooted at n. Each
strategy takes advantage of this property in a different manner.

A correct equation in the tree does not guarantee that the subtree rooted at
this equation is free of errors. It can be the case that two buggy nodes caused the
correct answer by fluke [6]. In contrast, an incorrect equation does guarantee that
the subtree rooted at this equation does contain a buggy node [12]. Therefore, if
a program produced a wrong result, then the equation in the root of the ET is
wrong and thus there must be at least one buggy node in the ET. We will assume
in the following that the debugging session has been started after discovering a
bug symptom in the output of the program, and thus the root of the tree contains
a wrong equation. Hence, we know that there is at least one bug in the program.
We will also assume that the oracle is able to answer all the questions. Then, all
the strategies will find the bug.



148 J. Silva

3.1 Single Stepping (Shapiro, 1982)

The first algorithmic debugging strategy to be proposed was single stepping
[16]. In essence, this strategy performs a bottom-up search because it proceeds
by doing a post-order traversal of the ET. It asks first about all the children of a
given node, and then (if they are correct) about the node itself. If the equation
of this node is wrong then this is the buggy node; if it is correct, then the post-
order traversal continues. Therefore, the first node answered NO is identified as
buggy (because all its children have already been answered YES).

For instance, the sequence of 19 questions asked for the ET in Fig. 2 would
be: 3-YES, 6-YES, 5-YES, 11-YES, 10-YES, 9-YES, 8-YES, 15-YES, 14-YES, 13-YES,
12-YES, 7-YES, 19-YES, 18-YES, 17-YES, 22-YES, 21-YES, 24-YES, 23-NO.

Note that in this strategy questions are semantically unconnected.

3.2 Top-Down Search (Av-Ron, 1984)

Due to the fact that questions are asked in a logical order, top-down search [1]
is the strategy that has been traditionally used (see, e.g., [3,9]) to measure the
performance of different debugging tools and methods. It basically consists in a
top-down, left-to-right traversal of the ET and, thus, the node asked is always a
child or a sibling of the previous question node. When a node is answered NO,
one of its children is asked; if it is answered YES, one of its siblings is. Therefore,
the idea is to follow the path of wrong equations from the root of the tree to
the buggy node. For instance, the sequence of 12 questions asked for the ET in
Fig. 2 is shown in Fig. 3.

This strategy significantly improves single stepping because it prunes a part
of the ET after every answer. However, it is still very naive, since it does not take
into account the structure of the tree (e.g., how balanced it is). For this reason,
a number of variants aiming at improving it can be found in the literature:

Top-Down Zooming (Maeji and Kanamori, 1987). During the search of
previous strategies, the rule or indeed the function definition may change from
one query to the next. If the oracle is human, this continuous change of function
definitions slows down the answers of the programmer because he has to switch
thinking once and again from one function definition to another. This drawback
can be partially overcome by changing the order of the questions: In this strategy
[11], recursive child calls are preferred.

The sequence of questions asked for the ET in Fig. 2 is exactly the same as
with top-down search (Fig. 3) because no recursive calls are found.

Another variant of this strategy called exception zooming, introduced by Ian
MacLarty [10], selects first those nodes that produced an exception at runtime.

Heaviest First (Binks, 1995). Selecting always the left-most child does not
take into account the size of the subtrees that can be explored. Binks proposed
in [2] a variant of top-down search in order to consider this information when
selecting a child. This variant is called heaviest first because it always selects the
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child with a bigger subtree. The objective is to avoid selecting small subtrees
which have a lower probability of containing the bug.

For instance, the sequence of 9 questions asked for the ET in Fig. 2 would
be3: 1-NO, 2-NO, 4-NO, 7-YES, 16-NO, 20-NO, 21-YES, 23-NO, 24-YES.

Less YES First (Silva, 2006). This section introduces a new variant of top-
down search which further improves heaviest first. It is based on the fact that
every equation in the ET is associated with a rule of the source code (i.e., the
rule that the debugger identifies as buggy when it finds a buggy node in the ET).
Taking into account that the final objective of the process is to find the program’s
rule which contains the bug—rather than a node in the ET—and considering
that there is not a relation one-to-one between nodes and rules because several
nodes can refer to the same rule, it is important to also consider the node’s rules
during the search. A first idea could be to explore first those subtrees with a
higher number of associated rules (instead of exploring those subtrees with a
higher number of nodes).

Example 2. Consider the following ET:

1

2 5 8

3 4 6 7 8 8 7

where each node is labeled with its associated rule and where the oracle answered
NO to the question in the root of the tree. While heaviest first selects the right-
most child because this subtree has four nodes instead of three, less YES first
selects the left-most child because this subtree contains three different rules
instead of two.

Clearly, this approach relies on the idea that all the rules have the same proba-
bility of containing the bug (rather than all the nodes). Another possibility could
be to associate a different probability of containing the bug to each rule, e.g.,
depending on its structure: Is it recursive? Does it contain higher-order calls?.

The probability of a node to be buggy is q · p where q is the probability that
the rule associated to this node is wrong, and p is the probability of this rule to
execute incorrectly. Therefore, under the assumption that all the rules have the
same probability of being wrong, the probability P of a branch b to contain the
bug is P =

∑ n
i=1 pi

R where n is the number of nodes in b, R is the number of rules
in the program, and pi is the probability of the rule in node i to produce a wrong
3 Here, and in the following, we will break the indeterminism by selecting the left-most

node in the figures. For instance, the fourth question could be either (7) or (16)
because both have a weight of 9. We selected (7) because it is on the left.
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result if it is incorrect. Clearly, if we assume that a wrong rule always produces
a wrong result4 we have that P =

∑r
i=1 pi

R and ∀i.pi = 1, then the probability

is
r

R
where r is the number of rules in b, and thus, this strategy is (on average)

better than heaviest first. For instance, in Example 2 the left-most branch has
a probability of 3

8 to contain a buggy node, while the right-most branch has a
probability of 2

8 despite it has more nodes.
However, in general, a wrong rule can produce a correct result, and thus we

need to consider the probability of a wrong rule to return a wrong answer. This
probability has been approximated by the debugger Hat-delta (see Section 3.4)
by using previous answers of the oracle. The main idea is that a rule answered
NO n times out of m is more likely to be wrong than a rule answered NO n′

times out of m if n′ < n � m.
Here, we use this idea in order to compute the probability of a branch to

contain a buggy node. Hence, this strategy is a combination of the ideas from
both heaviest first and Hat-delta. However, while heaviest first considers the
structure of the tree and does not take into account previous answers of the
user, Hat-delta does the opposite; thus, the advantage of less YES first over
them is the use of more information (both the structure of the tree and previous
answers of the user).

A direct generalization of Hat-delta for branches would result in counting the
number of YES answers of a given branch; but this approach would not take into
account the number of rules in the branch. In contrast, we proceed as follows:
When a node is set correct, we mark its associated rule and all the rules of its
descendants as correctly executed. If a rule has been executed correctly before,
then it will likely execute correctly again. The debugger associates to each rule of
the program the number of times it has been executed in correct computations
based on previous answers. Then, when we have to select a child to ask, we can
compute the total number of rules in the subtrees rooted at the children, and
the total number of answers YES for every rule.

This strategy selects the child whose subtree is less likely to be correct (and
thus more likely to be wrong). To compute this probability we calculate for every
branch b a weight wb with the following equation:

wb =
n∑

i=1

1

r
(Y ES)
i

where n is the number of nodes in b and r
(Y ES)
i is the number of answers YES

for the rule r of the node i.
As with heaviest first, we select the branch with the biggest weight, the dif-

ference is that this equation to compute the weight takes into account previous
answers of the user. Moreover, we assume that initially all the rules have been

4 This assumption is valid for instance in those flattened functional languages where
all the conditions in the right-hand side of function definitions have been distributed
between its rules. This is relatively frequent in internal languages of compilers, but
not in source languages.
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answered YES once, and thus, at the beginning, this strategy asks those branches
with more nodes, but it becomes different as the number of questions asked in-
creases.

With this strategy, the sequence of 9 questions asked for the ET in Fig. 2 is:
1-NO, 2-NO, 4-NO, 7-YES, 16-NO, 20-NO, 21-YES, 23-NO, 24-YES.

3.3 Divide and Query (Shapiro, 1982)

In 1982, together with single stepping, Shapiro proposed another strategy: the
so-called divide & query (D&Q) [16]. The idea of D&Q is to ask in every step a
question which divides the remaining nodes in the ET by two, or, if this is not
possible, into two parts with a weight as similar as possible. In particular, the
original algorithm by Shapiro always chooses the heaviest node whose weight is
less than or equal to w/2 where w is the weight of the suspicious area in the ET.
This strategy has a worst case query complexity of order b log2 n where b is the
average branching factor of the tree and n its number of nodes.

This strategy works well with a large search space—this is normally the case of
realistic programs—because its query complexity is proportional to the logarithm
of the number of nodes in the tree. If the ET is big and unbalanced this strategy
is better than top-down search [3]; however, the main drawback of this strategy
is that successive questions may have no connection, from a semantic point of
view, with each other; requiring the programmer more time for answering the
questions.

For instance, the sequence of 6 questions asked for the ET in Fig. 2 is: 7-YES,
16-NO, 17-YES, 21-YES, 24-YES, 23-NO.

Hirunkitti’s Divide and Query (Hirunkitti and Hogger, 1993). In [8],
Hirunkitti and Hogger noted that Shapiro’s algorithm does not always choose the
node closest to the halfway point in the tree and addressed this problem slightly
modifying the original divide & query algorithm. Their version of divide & query
is the same as the one of Shapiro except that their version always chooses a node
which produces a least difference between:

– w/2 and the heaviest node whose weight is less than or equal to w/2
– w/2 and the lightest node whose weight is greater than or equal to w/2

where w is the weight of the suspicious area in the computation tree.
For instance, the sequence of 6 questions asked for the ET in Fig. 2 is: 7-YES,

16-NO, 17-YES, 21-YES, 24-YES, 23-NO.

Biased Weighting Divide and Query (MacLarty, 2005). MacLarty pro-
posed in his PhD thesis [10] that not all the nodes should be considered equally
while dividing the tree. His variant of D&Q divides the tree by only considering
some kinds of nodes and/or by associating a different weight to every kind of node.

In particular, his algorithmic debugger was implemented for the functional
logic language Mercury [5] which distinguishes between 13 different node types.
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Divide by YES and Query (Silva, 2006). The same idea used in less YES
first can be applied in order to improve divide & query. Instead of dividing the
ET into two subtrees with a similar number of nodes, we can divide it into two
subtrees with a similar weight. The problem that this strategy tries to address is
the D&Q’s assumption that all the nodes have the same probability of containing
the bug. In contrast, this strategy tries to compute this probability.

By using the equation to compute the weight of a branch, this strategy com-
putes the weight associated to the subtree rooted at each node. Then, the node
which divides the tree into two subtrees with a more similar weight is selected.
In particular, the node selected is the node which produces a least difference
between:

– w/2 and the heaviest node whose weight is less than or equal to w/2
– w/2 and the lightest node whose weight is greater than or equal to w/2

where w is the weight of the suspicious area in the ET.
As with D&Q, different nodes could divide the ET into two subtrees with a

similar weights; in this case, we could follow another strategy (e.g., Hirunkitti)
in order to select one of them.

We assume again that initially all the rules have been answered YES once.
Therefore, at the beginning this strategy is similar to D&Q, but the differences
appear as the number of answers increases.

Example 3. Consider again the ET in Example 2. Similarly to D&Q, the first
node selected is the top-most “8” because only structural information is available.
Let us assume that the answer is YES. Then, we mark all the nodes in this branch
as correctly executed. Therefore, the next node selected is “2”; because, despite
the subtrees rooted at “2” and “5” have the same number of nodes and rules,
we now have more information which allows us to know that the subtree rooted
at “5” is more likely to be correct since node “7” has been correctly executed
before.

The main difference with respect to D&Q is that divide by YES & query not
only takes into account the structure of the tree (i.e., the distribution of the
program rules between its nodes), but also previous answers of the user.

With this strategy, the sequence of 5 questions asked for the ET in Fig. 2 is:
7-YES, 16-NO, 21-YES, 23-NO, 24-YES.

3.4 Hat-Delta (Davie and Chitil, 2005)

Hat [19] is a tracer for Haskell. Davie and Chitil introduced a declarative debug-
ger tool based on the Hat’s traces that includes a new strategy called Hat-delta
[6]. Initially, Hat-delta is identical to top-down search but it becomes different as
the number of questions asked increases. The main idea of this strategy is to use
previous answers of the oracle in order to compute which node has an associated
rule that is more likely to be wrong (e.g., because it has been answered NO more
times than the others).
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This strategy assumes that a rule answered NO n times out of m is more
likely to be wrong than a rule answered NO n′ times out of m if n′ < n � m.
During a debugging session, a sequence of questions, each of them related to
a particular rule, is asked. In general, after every question, it is possible to
compute the total number of questions asked for each rule, the total number
of answers YES/NO, and the total number of nodes associated with this rule.
Moreover, when a node is set correct or wrong, Hat-delta marks all the rules of
its descendants as correctly or incorrectly executed respectively. This strategy
uses all this information to select the next question. In particular, three different
heuristics have been proposed based on this idea [6]:

– Counting the number of YES answers. If a rule has been executed correctly
before, then it will likely execute correctly again. The debugger associates to
each rule of the program the number of times it has been executed in correct
computations based on previous answers.

– Counting the number of NO answers. This is analogous to the previous
heuristic but collecting wrong computations.

– Calculating the proportion of NO answers. This is derived from the previous
two heuristics. For a node with associated rule r we have:

number of answers NO for r
number of answers NO/YES for r

If r has not been asked before a value of 1
2 is assigned.

Example 4. Consider this program:

4|0|0 sort [] = []
8|4| 1

3 sort (x:xs) = insert x (sort xs)
4|0|0 insert x [] = [x]

insert x (y:ys)
4|0|0 | x<y = x:y:ys
0|0| 1

2 | otherwise = insert x ys

where the left numbers indicate respectively the number of times each rule has
been executed correctly, the number of times each rule has failed and the pro-
portion of NO answers for this rule.

With this information, otherwise = insert x ys is more likely to be wrong.

3.5 Subterm Dependency Tracking (MacLarty et al., 2005)

In 1986, Pereira [15] noted that the answers YES, NO and I don′t know were
insufficient; and he pointed out another possible answer of the programmer:
Inadmissible (see also [13]). An equation or, more precisely, some of its
arguments, are inadmissible if they violate the preconditions of its function def-
inition. For instance, consider the equation insert ‘b’ “cc” = “bcc”, where
function insert inserts the first argument in a list of mutually different charac-
ters (the second argument). This equation is not wrong but inadmissible, since
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the argument “cc” has repeated characters. Hence, inadmissibility allows us to
identify errors in left-hand sides of equations.

However, with only these four possible answers the system fails to get funda-
mental information from the programmer about why the equation is wrong or
inadmissible. In particular, the programmer could specify which exact (sub)term
in the result or the arguments is wrong or inadmissible respectively. This pro-
vides specific information about why an equation is wrong (i.e., which part of
the result is incorrect? is one particular argument inadmissible?).

Consider again the equation insert ‘b’ “cc” = “bcc”. Here, the program-
mer could detect that the second argument should not have been computed; he
could then mark the second argument (“cc”) as inadmissible. This information is
essential because it allows the debugger to avoid questions related to the correct
parts of the equation and concentrate on the wrong parts.

Based on this idea, MacLarty et al. [10] proposed a new strategy called sub-
term dependency tracking. Essentially, once the programmer selects a particular
wrong subterm, this strategy searches backwards in the computation for the
node that introduced the wrong subterm. All the nodes traversed during the
search define a dependency chain of nodes between the node that produced the
wrong subterm and the node where the programmer identified it. The sequence
of questions defined in this strategy follows the dependency chain from the origin
of the wrong subterm.

For instance, if the programmer is asked question 3 from the ET in Fig. 2,
his answer would be YES but he could also mark subexpression “8” as inad-
missible. Then, the system would compute the chain of nodes which passed this
subexpression from the node which computed it up to question 3. This chain is
formed by nodes 2, 4, 16 and 17. The system would ask first 17, then 16, and
finally 4 following the computed chain.

In our example, the sequence of 8 questions asked for the ET in Fig. 2, com-
bining this strategy with top-down search, is: 1-NO, 2-NO, 3-YES (the programmer
marks “8”), 17-YES, 16-NO, 20-NO (the programmer marks “2”), 23-NO, 24-YES.

3.6 Dynamic Weighting Search (Silva, 2006)

Subterm dependency tracking relies on the idea that if a subterm is marked,
then the error will likely be in the sequence of functions that produced and
passed the incorrect subterm up to the function where the programmer found
it. However, the error could also be in any other equation previous to the origin
of the dependency chain.

Here, we propose a new strategy which is a generalization of subterm de-
pendency tracking and which can integrate the knowledge acquired by other
strategies in order to formulate the next question.

The main idea is that every node in the ET has an associated weight (rep-
resenting the probability of being buggy). After every question, the debugger
gets information that changes the weights and it asks for the node with a higher
weight. When the associated weight of a node is 0, then this node leaves the
suspicious area of the ET. Weights are modified based on the assumption that
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those nodes of the tree which produced or manipulated a wrong (sub)term, are
more likely to be wrong than those that did not. Here, w.l.o.g., we compute
weights instead of probabilities and we assume initially that all the nodes have
a weight 1 and that a weight 0 means “out of the suspicious area”.

Computing Weights from Subterms
Firstly, as with subterm dependency tracking, we allow the oracle to mark a
subterm from an equation as wrong (instead of the whole equation). Let us
assume that the programmer is being asked about the correctness of the equation
in a node n1, and he marks a subterm s as wrong (or inadmissible). Then, the
suspicious area is automatically divided into four sets. The first set contains the
node, say n2, that introduced s into the computation and all the nodes needed
to execute the equation in node n2. The second set contains the nodes that,
during the computation, passed the wrong subterm from equation to equation
up to node n1. The third set contains all the nodes which could have influenced
the expression s in node n2 from the beginning of the computation. Finally, the
rest of the nodes form the fourth set. Since these nodes could not produce the
wrong subterm (because they could not have influenced it), the nodes in the
fourth set are extracted from the suspicious area and, thus, the new suspicious
area is formed by the sets 1, 2 and 3.

Each subset can be assigned a different probability of containing the bug. Let
us show it with an example.

Example 5. Consider the ET in Fig. 2, where the oracle was asked about the
correctness of equation 3 and he pointed out the computed subterm “8” as
inadmissible. Then, the four sets are denoted in the figure by using different
shapes and colors:

– Set 1: those nodes which evaluated the equation 20 to produce the wrong
subterm are denoted by an inverted trapezium.

– Set 2: those nodes that passed the wrong subterm until the programmer
detected it in the equation 3 are denoted by an ellipse.

– Set 3: those nodes that could influence the wrong subterm are denoted by
a trapezium.

– Set 4: the rest of nodes are denoted by a grey rectangle.

The source of a wrong subterm is the equation which computed it. From our
experience, all the nodes involved in the evaluation of this equation are more
likely to contain the bug. However, it is also possible that the functions that
passed this wrong term during the computation should have modified it and they
did not. Therefore, they could also contain the bug. Finally, it is also possible
(but indeed less likely) that the equation that computed the wrong subterm had
a wrong argument and this was the reason why it produced a wrong subterm.
In this case, this inadmissible argument should be further inspected. In the
example, the wrong term “8” was computed because equation 20 had a wrong
argument “[6,2]” which should be “[6,3]”; the nodes which computed this
wrong argument have a trapezium shape.
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Consequently, in the previous example, after the oracle marked “8” as wrong
in equation 3, we could increase the weight of the nodes in the first subset with 3,
the nodes in the second subset with 2, and the nodes in the third subset with 1.
The nodes in the fourth subset can be extracted from the suspicious area because
they could not influence the value of the wrong subterm and, consequently, their
probability of containing the bug is zero5.

These subsets of the ET are in fact slices of different parts of the computation.
In [17] it is defined a method to automatically compute each subset. In addition,
[17] also introduces an algorithm to combine information from different strate-
gies. This algorithm can help dynamic weighting search to integrate information
used by other strategies (e.g., previous answers of the oracle) in order to modify
nodes’ weights.

4 Comparing Strategies

A summary of the information used by every strategy is shown in Fig. 4. The
meaning of each column is the following:

– ‘(Struct)ure’ is marked if the strategy takes into account the distribution of
nodes (or rules) in the tree;

– ‘Rules ’ is marked if the strategy considers the rules associated with nodes;
– ‘(Sem)antics ’ is marked if the strategy follows an order of semantically re-

lated questions, the more marks the more strong relation between questions;
– ‘(Inadm)issibility’ is marked if the strategy accepts “inadmissible” answers;
– ‘History’ is marked if the strategy considers previous answers in order to

select the next node to ask (besides cutting the tree);
– ‘(Div)isible’ is marked if the strategy can work with a subset of the whole

ET. ETs can be huge and thus, it is desirable not to explore the whole
tree after every question. Some strategies allow us to only load a part of
the tree at a time, thus significatively speeding up the internal processing
of the ET; and hence, being much more scalable than other strategies that
need to explore the whole tree before every question. For instance, top-down
can load the nodes whose depth is less than d, and ask d questions before
loading another part of the tree. Note, however, that some of the non-marked
strategies could work with a subset of the whole ET if they where restricted.
For instance, heaviest first could be restricted by simply limiting the search
for the heaviest branch to the loaded nodes of the ET. Other strategies
need more simplifications: less YES first or Hat-delta could be restricted
by only marking as correctly executed the first d levels of descendants of a
node answered YES; and then restricting the search for the heaviest branch
(respectively node) to the loaded nodes of the ET. Finally,

– ‘Cost ’ represents the worst case query complexity of the strategy. Here, n
represents the number of nodes in the ET, d its maximum depth and b its
branching factor.

5 A proof can be found in [18].
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Strategy Struct. Rules Sem. Inadm. History Div. Cost
Single Stepping - - - - - � n
Top-Down Search - - � - - � b · d
Top-Down Zooming - - �� - - � b · d
Heaviest First � - � - - - b · d
Less YES First � � � - � - b · d
Divide & Query � - - - - - b · log2n
Biased Weighting D&Q � - - - - - b · log2n
Hirunkitti’s D&Q � - - - - - b · log2n
Divide by YES & Query � � - - � - b · d
Hat-delta - � - - � - n
Subterm Dependency Tracking - - ��� � - - n
Dynamic Weighting Search � � - � � - n

Fig. 4. Comparing algorithmic debugging strategies

The cost of single stepping is too expensive. Its worst case query complexity
is order n, and its average cost is n/2.

Top-down and its variants have a cost of b ·d which is significantly lower than
the one of single stepping. The improvement of top-down zooming over top-down
is based on the time needed by the programmer to answer the questions; their
query complexity is the same.

In contrast, while in the worst case the costs of top-down and heaviest first are
equal, in the mean case heaviest first performs an improvement over top-down.
In particular, on average, for each wrong node with b children si, 1 ≤ i ≤ b:

– Top-down asks
b + 1

2
of the children.

– Heaviest first asks
∑b

i=1 weight(si) · pos(si)
∑b

i=1 weight(si)
of the children.

where function weight computes the weight of a node and function pos
computes the position of a node in a list containing it and all its brothers
which is ordered by their weights.

In the case of less YES first, the improvement is based on the fact that the
heaviest branch is not always the branch with a higher probability of containing
the buggy node. While heaviest first and less YES first have the same worst case
query complexity, their average cost must be compared empirically.

D&Q and its variants are optimal in the worst case, with a cost order of
(b · (log2n)). The worst case cost of divide by YES and query is b · d; it happens
when the ET is completely balanced and the buggy node is in a leaf.

The cost of the rest of strategies is highly influenced by the answers of the
user. The worst case of Hat-delta happens when the branching factor is 1 and
the buggy node is in the leaf of the ET. In this case the cost is n. However, in
normal situations, when the ET is wide, the worst case is still close to n; and it
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occurs when the first branch explored is answered YES, and the information of
YES answers obtained makes the algorithmic debugger explore the rest of the
ET bottom up.

Despite subterm dependency tracking is a top-down version enriched with
additional information provided by the oracle, this information (that we assume
correct here to compute the costs) could make the algorithmic debugger ask
more questions than with the standard top-down. In fact, this strategy—and
also dynamic weighting search if we assume that top-down is used by default—
has a worst case query complexity of n because the expressions marked by the
programmer can make the algorithmic debugger explore the whole ET.

5 Conclusions

This article introduces three new strategies and some optimizations for algorith-
mic debugging. Less YES first tries to improve heaviest first and divide by YES
& query tries to improve D&Q by considering previous answers of the oracle
during the search. Dynamic weighting search allows the user to specify the exact
part of an equation which is wrong. This extra information can produce a much
more accurate debugging session.

We have compared the most important algorithmic debugging strategies from
a theoretical perspective. The comparison has been done according to seven
dimensions including their worst case query complexity; and have produced some
objective criteria to determine which strategy is better depending on the context.

We have implemented all the strategies and incorporated them in the algo-
rithmic debugger DDT [3]. As future work, we plan to perform an empirical
comparison of all the strategies in order to determine a weighting for their com-
bination. With the knowledge acquired from the experiment we will be able to
approximate the strategies’ weights and to determine how they should change
and on which factors this change depends.
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