

Lecture Notes in Computer Science 4407

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Germán Puebla (Ed.)

Logic-Based
Program Synthesis
and Transformation

16th International Symposium, LOPSTR 2006

Venice, Italy, July 12-14, 2006

Revised Selected Papers

13

Volume Editor

Germán Puebla
Technical University of Madrid (UPM), School of Computer Science
Campus de Montegancedo, 28660 Boadilla del Monte (Madrid), Spain
E-mail: german@fi.upm.es

Library of Congress Control Number: 2007922566

CR Subject Classification (1998): F.3.1, D.1.1, D.1.6, D.2.4, I.2.2, F.4.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71409-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71409-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12035236 06/3142 5 4 3 2 1 0

Preface

This volume contains a selection of papers presented at LOPSTR 2006, the 16th
International Symposium on Logic-Based Program Synthesis and Transforma-
tion, held in Venice, Italy, July, 12-14 2006.

The aim of the LOPSTR series is to stimulate and promote international
research and collaboration on logic-based program development. Previous LOP-
STR events were held in London (2005, 2000), Verona (2004), Uppsala (2003),
Madrid (2002), Paphos (2001), Venice (1999), Manchester (1998, 1992, 1991),
Leuven (1997), Stockholm (1996), Arnhem (1995), Pisa (1994), and Louvain-la-
Neuve (1993).

We would like to thank all those who submitted contributions to LOPSTR.
Overall, we received 41 submissions (29 full papers and 12 extended abstracts).
Each submission received at least three reviews. The committee decided to accept
nine of these full papers for presentation and for inclusion in the final conference
proceedings. In addition, eight extended abstracts, including two tool demon-
strations, were accepted for presentation only. After the conference, authors of
extended abstracts describing research judged to be mature enough for possible
publication in the present volume were invited to submit full papers. In this
second reviewing process, five additional papers were accepted for publication in
the current LNCS volume, together with revised versions of the nine full papers
previously accepted.

We would also like to thank Shaz Qadeer and Massimo Marchiori for agreeing
to give invited talks and for their contribution to these proceedings.

I am very grateful to the authors of the papers, the reviewers, and in particu-
lar to the members of the Program Committee for their invaluable help. Thanks
also to Andrei Voronkov for his support with the use of EasyChair, which greatly
simplified the submission, reviewing and discussion process, as well as the prepa-
ration of the proceedings.

LOPSTR 2006 was co-located with PPDP 2006 (ACM Symposium on Princi-
ples and Practice of Declarative Programming) and ICALP 2006 (International
Colloquium on Automata, Languages and Programming).

My warmest thanks go to Sabina Rossi (Local Arrangements Chair), who
was always willing to help in any aspect of the organization of the event. Special
thanks also to Annalisa Bossi and Michele Bugliesi who, together with Sabina,
took care of the overall planning and local organization of LOPSTR 2006.

December 2006 Germán Puebla

Conference Organization

Program Chair

Germán Puebla

Program Committee

Slim Abdennadher
Roberto Bagnara
Gilles Barthe
John Gallagher
Robert Glück
Michael Hanus
Patricia M. Hill
Kazuhiko Kakehi
Andy King
Michael Leuschel
Fred Mesnard
Sabina Rossi
Grigore Rosu
Wim Vanhoof
Germán Vidal

Local Organization

Sabina Rossi (Local Arrangements Chair)
Annalisa Bossi
Michele Bugliesi

External Reviewers

James Avery, Bernd Braßel, Diego Calvanese, Stephen Bond, Alvaro Cortes,
Guillaume Dufay, Santiago Escobar, Marc Fontaine, Samir Genaim, Mark Hills,
Frank Huch, Dongxi Liu, Wafik Boulos Lotfallah, Thomas Lukasiewicz, Damiano
Macedonio, Claude Marché, Viviana Mascardi, Thierry Massart, Kazutaka Mat-
suda, Nancy Mazur, Antoine Miné, Torben Mogensen, Akimasa Morihata, Klaus
Ostermann, Etienne Payet, Andrea Pescetti, Alberto Pettorossi, Carla Piazza,
David Pichardie, Andrei Popescu, Maurizio Proietti, Traian Florin Serbanuta,
Fausto Spoto, Xavier Urbain, Brent Venable, Tetsuo Yokoyama, Enea Zaffanella.

Table of Contents

Invited Talks

How to Talk to a Human: The Semantic Web and the Clash of the
Titans . 1

Massimo Marchiori

CHESS: Systematic Stress Testing of Concurrent Software 15
Madan Musuvathi and Shaz Qadeer

Program Development

ARM: Automatic Rule Miner . 17
Slim Abdennadher, Abdellatif Olama, Noha Salem, and Amira Thabet

Constructing Consensus Logic Programs . 26
Chiaki Sakama and Katsumi Inoue

Partial Evaluation and Program Transformation

Supervising Offline Partial Evaluation of Logic Programs Using Online
Techniques . 43

Michael Leuschel, Stephen-John Craig, and Dan Elphick

Improving Offline Narrowing-Driven Partial Evaluation Using
Size-Change Graphs . 60

Gustavo Arroyo, J. Guadalupe Ramos, Josep Silva, and
Germán Vidal

Towards Description and Optimization of Abstract Machines in an
Extension of Prolog . 77

José F. Morales, Manuel Carro, and Manuel Hermenegildo

Security and Synthesis

Combining Different Proof Techniques for Verifying Information Flow
Security . 94

Heiko Mantel, Henning Sudbrock, and Tina Kraußer

On the Automated Synthesis of Proof-Carrying Temporal Reference
Monitors . 111

Simon Winwood, Gerwin Klein, and Manuel M.T. Chakravarty

VIII Table of Contents

Synthesis of Asynchronous Systems . 127
Sven Schewe and Bernd Finkbeiner

Debugging and Testing

A Comparative Study of Algorithmic Debugging Strategies 143
Josep Silva

A Program Transformation for Tracing Functional Logic
Computations . 160

Bernd Brassel, Sebastian Fischer, and Frank Huch

Termination and Analysis

Automated Termination Analysis for Logic Programs by Term
Rewriting . 177

Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and
René Thiemann

Detecting Non-termination of Term Rewriting Systems Using an
Unfolding Operator . 194

Étienne Payet

Polytool: Proving Termination Automatically Based on Polynomial
Interpretations . 210

Manh Thang Nguyen and Danny De Schreye

Grids: A Domain for Analyzing the Distribution of Numerical
Values . 219

Roberto Bagnara, Katy Dobson, Patricia M. Hill,
Matthew Mundell, and Enea Zaffanella

Author Index . 237

How to Talk to a Human:

The Semantic Web and the Clash of the Titans

Massimo Marchiori1,2

1 University of Padua (UNIPD)
massimo@math.unipd.it

2 Utility Labs (UTILABS)
massimo@utilabs.org

Abstract. The Semantic Web has managed to produce an enormous
buzzword. However, despite it cannot be considered a new technology
anymore, it didn’t fly off yet, and has remained unexpressed in its po-
tentials. In this article we try to analyze the possible reasons, and also
the tension that the Semantic Web has with XML. We emphasize the
need for consideration of the more comprehensive social environment,
together with a more formal modeling of the mechanics of the Web and
its information flows.

1 The Semantic Web and XML: The Eternal Quest

The Semantic Web (mostly, in its RDF [1] incarnation) and XML have been
often seen as two distinct worlds, and as such, each of them has a community of
people who think the other side of the fence is doing things ”the wrong way”.

Given XML’s success, and the current dual lack of success of the Seman-
tic Web/RDF, it is normal that the latter has been often criticized, using the
following ”fundamental question”:

Q: What can you do with RDF that you can’t do with XML?

The fundamental question is both tricky and crucial. This question has been
source of embarrassment, and of misunderstandings, for both worlds, and has
somehow contributed to the lack of proper understanding of the potential of the
Semantic Web in the context of the bigger XML world.

We were saying the question is tricky. The classic general answer which is
given is:

Q: What can you do with RDF that you can’t do with XML?

A: Semantics!

This usually leaves the XML-World unsatisfied, because this is in fact a very
fuzzy answer. Saying that with RDF you can do semantics, equals more or less
to say that with the Semantic Web you can do... semantics, which doesn’t sound
too good to critical eyes. So then, the ”socratic dialogue” goes on, and the XML-
World usually replies with

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 1–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M. Marchiori

XML-World: What do you mean?

More or less, the debate between RDF-World and XML-World then goes on
like this:

RDF-World: With RDF I can do X.

XML-World, Well, I can do X with XML too, so what?

RDF-World: But, with RDF I can do Y.

XML-World, Well, I can do Y with XML as well, so what?

(and so on, and so on...)

The point is that the answer is in fact quite easy, and it is one that few people
in RDF-World would dare to mention explicitly:

Q: What can you do with RDF that you can’t do with XML?

A: Nothing!

This comes trivially from the fact that RDF is XML, and therefore, there’s
no magic in RDF: RDF is just a dialect of XML, and as such, there’s nothing
RDF can do ”more” than XML: the question, posed this way, is just bogus.

But so, does this mean the XML world is right, and that the Semantic Web
is superfluous?

2 The Semantic Web to the Rescue: Closed vs. Open
Worlds

The answer to the previous question is not that easy: it really depends on what
level of precision we want to analyze. It is certainly true that with XML you
can do anything you want, but that doesn’t prevent RDF (and the related tower
of technologies) to be a successful dialect/specialization of XML, like there are
many around. But specialization for what, precisely?

XML has been labeled as the best invention after peanut butter: versatile, flex-
ible, powerful. However, there is one thing for which XML, at least apparently,
doesn’t work so well: aggregating information.

XML’s strength is its specialization capabilities: given an information locale,
everybody can easily write a local dialect to express that information. In other
words, XML works extremely well in the closed world context: an environment
where there is a centralized vocabulary control. However, there is another sce-
nario, which didn’t fit the original design of XML: the open-world model, where
there is no centralized vocabulary control. In such scenarios, everybody can
develop its own local dialect, and then the big problem is how to exchange
information between the different vocabularies, integrating various information
sources that have no control over each other. Like for the Tower of Babel, where

How to Talk to a Human: The Semantic Web and the Clash of the Titans 3

the multitude of languages has been the disgrace of Humanity, in the open-world
model the different languages can provoke heavy interoperability problems (what
linguistics call very appropriately the Lost in translations effect).

RDF, more or less consciously, was designed with this fundamental goal in
mind (besides the related ”give more semantics” mantra): reducing almost to
zero the complexity of aggregating information (which, essentially, becomes a
merge of graphs). The connections among information pieces are established via
the URIs: so, when merging graphs, nodes are considered equal if they have
the same URI. Therefore, URIs become the fundamental key to distinguish web
object. This choice is compatible, and actually stems from, one of the very first
Web Axioms stated by Tim Berners-Lee (the so-called Universality 2 axiom, cf.
[2] and compare with the later [3]): meaningful resources on the Web should be
identified by URIs.

Thus, RDF is (also) XML, but RDF has been designed to work in the open-
world model: while XML works better in the closed-world model, RDF does in
the open-world model.

3 Just Aggregation?

So, a first important point that distinguishes ”generic” XML from RDF is the
complexity of information aggregation. While being an important point, that
alone doesn’t give the whole picture.

In fact, the Web is, as a whole, semantically speaking, a huge open-world
model: so, how come that the Semantic Web didn’t rapidly gain success? Some-
thing must have gone wrong, and to trace that, we need to start back from the
original definition that Tim Berners-Lee gave of the Semantic Web: an extension
of the current web in which information is given well-defined meaning, better en-
abling computers and people to work in cooperation”. Computers. . . and people!
What about the people?

4 The Benefits

What is missing in the equation is the utilization model, i.e., the complete benefits
(goals) that the new technology is supposed to provide.

Saying that RDF ”works better” in the open-world model is a simplistic as-
sertion, as we haven’t quite defined what ”better” means. If better means aggre-
gating information, the assertion is correct. But aggregation alone isn’t what the
Semantic Web promise to do (if it were so, the benefits alone wouldn’t be quite
clear): the goals of the Semantic Web are more ambitious, and for that reason,
the original idea of the Semantic Web includes the well-known ”Semantic Web
tower” (see for example [4]), i.e., a full tower of technologies that better describe
the operational model, and therefore help clarifying the benefits.

So for instance, aggregation of information isn’t much helpful if we don’t have
a clear working model that allows us to benefit from that feature. In order to
exploit information aggregation we can then for example also include a logic into

4 M. Marchiori

the picture: a logic allows to make deductions, and so in principle augments by
far the benefits of having aggregated information on the Web. Initial step into
this direction have been done with the RDF Semantics, RDF-Schema, OWL, and
this line has been continuing more recently with the work of W3C’s RIF effort,
devoted to specify a Rules Interchange Format that will allow even more flexibil-
ity in ”programming” the rules shaping web information. This is all consistent
with the big view of the Semantic Web Tower.

5 The Costs

But then, there is also the other side of the coin, the dual part that has to
be considered every time that we want to analyze the behavior of a successful
technology: the cost factor.

The overall cost is in general a complex thing to compute, but roughly, it can
be seen as the sum of two components: the technological cost (the cost for the
machine), and the social cost (the cost for the people). We can summarize the
concept this way:

Cost = Technology + Society

Both aspects, technology and society, are equally very important. What have
happened so far is that the societal cost of the Semantic Web hasn’t been object
of much attention, and the whole design has been centered on the technological
cost, making best efforts to ensure that the technologies in the Semantic Web
Tower would have a relatively low technological cost. But in the overall Semantic
Web operational model, the scenario is much bigger than just the computational
complexity of a logic: it includes the much wider scenario of the Web, its informa-
tion flows, machines, and the people. Therefore, we need to rethink the situation
and not just wear the eyeglasses of the technologist, caring mostly about the
computers (classic semantic web stack). Sure, there is the need to monitor and
balance the technical cost, but also to consider at least another dimension for
the social cost (what has been called the P axis, P as Perception/People, in [5]).

Only when we have a complete measure for the cost we can proceed to mea-
sure the cost/benefit ratio (shortly, C/B), which is a major indicator of success,
especially in environment like the Web.

5.1 The C/B Ratio

The C/B ratio provides a uni-dimensional space that can give a rough estimate
of the chances of success of a technology (ranging from 0, the optimum, to
infinity, the worst). Minimizing the cost/benefit can happen in a variety of ways,
depending on the balance between C and B. In the Web, the important thing
to take into account is the dynamics of C and B within the web environment
and the users. For instance, in a web-wide application cost usually grows at
least linearly with the size of the web (or of the sub-web/community taken into
consideration), which can be extremely dangerous. On the other hand, B also in

How to Talk to a Human: The Semantic Web and the Clash of the Titans 5

such applications usually depends on the size of the user base, which is very low
in the starting adoption phase. Therefore, if we are not careful the corresponding
dynamic system will not lead to a success situation, because the too high C/B
in the initial phases will prevent an evolution that makes the C/B decrease and
reach a wide enough user base. So, in order to produce a network effect, either
the initial cost has to be extremely low, or the initial benefit has to be very high.

5.2 The Cost of URIs

The previous C/B discussion then naturally leads to consider: what are the costs
of the Semantic Web? An interesting exercise is to measure the technological cost
for the semantic web architecture (e.g. in the Semantic Web tower). The analysis
will then reveal, in fact, a nice result: the technological (computational) cost is
usually low/moderate according to where one sits in the Tower (although inter-
estingly, even in this respect, computational cost has started to grow a lot, see for
instance the logic behind the higher layer of OWL). However, when one views at
the historical progression of the Semantic Web (still ongoing. . .), the situation is
that there is an overgrowing set of specifications: RDF Model & Syntax / RDF
Schema / RDF/XML Syntax revised / RDF Vocabulary Description Language
/ RDF Concepts and Abstract Syntax / RDF Semantics / OWL (OWL-DL /
OWL-Full)/ SPARQL / RDF-A / Rules. . . and the list is still growing.

So, what has been happening here? Will the user be able to sustain the social
complexity that these layers are going to produce? The answer, for the moment,
is in front of everybody: not yet. The overall cost seems too high for the moment.
And this comes from a variety of factor, given that as said, the scenario to con-
sider is much bigger than what has been formally analyzed so far (computational
complexity of logics): the Web, the people, information flows.

For instance, let’s just revisit the basic association mechanism of the semantic
web: aggregation via URIs. An old gag that used to be around in the semantic
web circles was the following:

Q: How many Semantic Web scientists does it take to change a light bulb?
A: Ten. One to screw the bulb, and nine to agree on what a light bulb is.

This gag is significant for the suggestion it is giving: it’s hard to all agree on a
concept. If URIs are meant to be identification names, they are the centralized
part of an otherwise decentralized and distribute environment, the web. But how
to achieve consensus without control? In other words, there is a significant social
problem with URIs when they are used as universal aggregators of information.
This gives raise to the URI Variant problem: in general, there can be many
variants (URI) for the same concept. The URI Variant problem is particularly
bad in view of the URI Variant Law : utility of a URI can decrease exponentially
with the number of its variants (in other words, the worst-case is exponential).

This is not enough, because the social problem is not just on what common
URI to agree, among many. There is also the other side of the coin, which
is much more difficult: how to agree on the semantics of a specific URI. This
is sometimes called the URI meaning problem: in other words, for two different

6 M. Marchiori

people in the web the same URI might well mean different things (after all, there
is no centralized interpretation for URIs). This problem is rather severe, because
it does not simply affect computational complexity (like the URI variant), but
deeply touch the relationship between the web and the people who interact
with/in it.

So, all in all, what seemed a strength of the Semantic Web, i.e., almost zero
cost for aggregating information, is now revealing deeper faces: while the direct
technological cost is indeed very low, there is an underlying social cost that is
in fact quite high.

Therefore, this extra variable of the social cost, makes the original simplistic
observation, that information aggregation in the Semantic Web is very easy and
effective, not quite true any more, and emphasizes the lack of a precise opera-
tional model and consequent cost/benefit analysis that have occurred so far.

5.3 Another Perspective: Lost in Navigation

Social costs are not limited to URIs, of course, but they can pervade the same
data model. Data structures can have a rigid architecture, or lean towards a more
liberal framework, therefore going from the areas of structured data, passing thru
the intermediate realm of semi-structured data, and ending in the opposite ex-
treme, the area of unstructured data. Within this wide spectrum, we find for
instance in small-size data management on one extreme (structured) spread-
sheets and the table model, and on the other extreme (unstructured) things
like Zig-Zag, the innovative (for the time) concept by Ted Nelson (cf. [6]. In
large(r)-size data management, going on with the parallelism, we find relational
databases and the relational model (structured), then we can proceed with XML
(semi-structured), then ending with RDF (unstructured).

It is therefore interesting to follow the parallelism, and note that the previous
unstructured models (like Zig-Zag) didn’t have much success, while the more
structured ones did. What are the main reasons? This can be explained by using
the so-called Heisenberg Principle for data handling: If you stretch the flexibility
aspect (benefit), you lose in efficiency (cost).

Note that here efficiency doesn’t just mean computational efficiency, but effi-
ciency in-the-large, also for the user. In fact, preliminary studies by the author
shows that one can quantify the degree of lost in navigation (that is to say, in-
formally, the capability by the user to grasp the data structure, and to navigate
without errors in it): the lost in navigation effect increases (not surprisingly)
from structured to semi-structured to unstructured. What is more surprising is
that there is quite a gap when passing to unstructured models like RDF and
graph-like ones. In other words, the amount of flexibility that these kinds of
models give, has a very high price that the user needs to pay. This can explain
more formally why unstructured data didn’t gain so far the wide success they
were expected to. What this also means is that, in order to lower the cost/benefit
ratio, there is the need for extra efforts to raise the benefit.

How to Talk to a Human: The Semantic Web and the Clash of the Titans 7

On a related side, the gap occurring inbetween structured and semi-structured
data is comparatively rather small, which might also explain why technologies
like XML managed to gain success, despite the initial dominant position of struc-
tured data approaches.

5.4 Technologies Examples: The Good and the Bad

Let’s sweep out of the XML / Semantic Web scenario, and for the sake of illus-
tration, try to see some other examples of more specific technologies and their
related cost/benefit.

A first pair of examples is interesting, and comes from privacy technologies
developed by the author: P3P and APPEL.

P3P (standing for Platform for Privacy Preferences) is the world standard for
Privacy on the Web ([7]). Analyzing the P3P specification will easily show that
the P3P technical cost is very low (in fact, not surprisingly, as this was a crucial
requirement). As far as the Social Cost is concerned, it is moderate for site main-
tainers: the moderate complexity essentially stems from building the privacy pol-
icy for the site, although this can be ameliorated by specific tools, and in any case
approximate policies can be written that are much easier; complementary, pub-
lishing the privacy policy is very easy and has a very low cost.

Now let’s turn our attention to the benefits side. The benefit is moderate
for users (this can be evaluated by using the many privacy surveys available),
whereas, interestingly enough, it is very high for site maintainers. The reason?
When Internet Explorer passed from version 5 to version 6, it actually incorpo-
rated the P3P technology, and in a very stringent way: sites not P3P compliant
had severe problems and their cookies were essentially blocked by the browsers.
This crucial step provoked a huge rise in the benefit of implementing P3P (even
if just at the site maintainers side), and therefore boosted the C/B ratio of
P3P, despite cost wasn’t low (this C/B boost can be also verified by using the
statistical P3P dashboards published by Ernst&Young on the subject).

Now, we want also to consider the other side of the coin, as we said initially
that we were going to consider a pair of technologies: P3P and APPEL. APPEL
[8] is the companion technology to P3P: the acronym stands for A Privacy Pref-
erence Language, and it is a language that enables users (via their browser, for
instance), to program on a fine level whether or not to enter a web site, according
to the privacy level the site itself provides.

The technological cost for APPEL is moderate, as it can be easily seen. On
the other hand, the social cost is high: users need to get knowledge of the privacy
possibilities, and to adequately shape a set of preferences. This was too much,
given both the relative user interest in privacy (versus content, for instance),
and the complexity of programming/shaping a fine level behavior. On the other
hand, the benefit here was also relatively small, as the additional privacy con-
trol wasn’t enough more than for instance some easy pre-defined levels (that
Internet Explorer in fact implemented). As a result, the C/B ratio never got
sufficiently low, and APPEL didn’t fly (in fact, it was never promoted to W3C
Recommendation, and remains a proposed technology).

8 M. Marchiori

On a wider historical perspective, it would have been much better for W3C,
if still wanting to target fine privacy user control, to use a more general-purpose
reasoning tool (so to at least try to increase the benefit), either in the Semantic
Web area (viewing privacy policies as RDF data), or in the more classic XML
data handling area (using technologies like XQuery for instance).

5.5 Talk to a Human: Blogs and the Grillo Case

Leaving aside privacy, another good example to consider is a mainstream one:
blogs. Blogs have been so successful that it’s interesting to see what the reasons
are, especially given that, historically, they had been greeted with much scep-
ticism. Why? Because, from the technological viewpoint, blogs are a relatively
trivial technology. This is the reason why in the technological world, blogs had
initially received so little attention: trivial technology, no real innovation, and
why should people bother about writing a diary online?

Things went differently than those critics planned. Sure, the technological
level of blogs might well be low, but what really matters is the C/B ratio. Let’s
see things deeper. The benefit, at least initially, was moderate (now the blog
networking/echo effect has raised this initial value to high). The technical cost
for blogs is very low. And, even more important, the social cost is extremely low
(what is easiest than writing?). As a result, in the initial step a moderate benefit
was more than adequately counterbalanced by very low costs, which made the
C/B ratio low enough to make blogs spread. A paradigmatic social example that
well illustrates the blog C/B power is one of the Times magazine European Heros
for the year 2005: Beppe Grillo. Grillo is a famous Italian comic actor, which at
a point of his career became totally against computers, arriving, in his shows,
to smash a computer with a hammer. Then, he discovered blog technology. The
entry level was so easy, that he could approach the technology without the
complexity that had lead him to previously hammer down computers. And, in
his own words, he gave that thing a try, even if the benefits weren’t clear at
all to him. Nowadays, Grillo’s opinion on the Internet, thanks to the blog, have
radically changed, and he is an Internet evangelist (!), with his blog (cf. [9])
ranked as the number 1 blog in Europe and among the top ones in the world
(first non-USA blog, number 28 world-wide).

Talk to a human, talk to humans.

6 The Web and the Information Flows

Trying to grasp the operational model in which the Semantic Web operates is
a significant task: as seen, entering people in the loop makes the C/B analysis
far from trivial, and can lead to important insight. But as we have said, the
overall operational scenario is bigger, involving the Web, its information flows,
machines, and the people. A natural goal would be to have a more formal way
to discuss the operational model, so to be able to do more precise and scientific
kinds of analysis. This also implies that we need to fill in what are the information

How to Talk to a Human: The Semantic Web and the Clash of the Titans 9

flows present in the Web: before even starting to formally discussing properties
of an operational model living in the Web, we ought to have a formal model that
we can reason upon, describing the information flows mechanics that underline
every higher-level handling of information.

7 Towards a Web Algebra

Going alone the line of a more formal approach, the reason why it’s not easy
to answer the question ”what is the Semantic Web” is that the semantic web
is essentially a way to build a shared information system. ”Shared” here means
essentially that the distributed nature of the Web enables information to be
spread out on the Web, and then composed together. Therefore, the problem
here is that to define how the semantic web works, we need to take into ac-
count in the big picture not just the specific language (XML dialect), like RDF,
that is used to encode knowledge. We also need to take into account the way
information is composed, that is to say, we need to consider in the picture the
Web and the related process model. In other words, the fundamental equation to
take into account, when wholly describing the semantic web (from the technical
viewpoint), can be roughly stated as

Semantic Web = Semantics + Web

So far, just the ”Semantics” part has been considered, and the ”Web” part
has mostly been left out, or considered as an appendix.

7.1 Infoshares and Infostructures

We then proceed with somehow more formal definition. First, we need to set the
stage for a general logical setting, where reasoning takes place:

Definition 1. An information system is a poset (S, �S).

So, given an information system (S, �S), and two elements a and b of S (a ∈
S � b), we say that “b follows from a”, or also that “from a we can infer b, when
a �S b.

Then, we go on with the definition of the more general environment where
the various shared reasonings can take place:

Definition 2 (Infoshare)
Given an ordinal k, a k-infoshare is composed by:

– A gateways set Λ, which is a semi-lattice.
– A shared spaces set SSS
– For each i, 0 < i ≤ k:

• An information system Ai

• A map TAKEAi : Λ × SSS → Ai

• A map PUBAi : Λ × SSS × Ai → SSS

10 M. Marchiori

We will usually omit the index k in a k-infoshare, and just talk of an infos-
hare. Also, given an infoshare, we will refer to members of its gateways set as
“gateways”, and to members of its shared spaces set as “shared spaces”. In the
gateway set, we indicate with ⊥ the non-interference relationship (i.e., we write
λ ⊥ λ′ to state that two gateways do not intersect).

En passant, note that in the above definition the TAKEAi and PUBAi are to-
tal (always defined): a relaxation of these assumptions is provided for illustration
in the Appendix at the end of the paper.

An infoshare alone is little more than an algebraic container of the information
flows: in order to have an information algebra, we need to enrich the structure
with more axioms, that give some basic rules on the behavior of the information
handling:

Definition 3 (Infostructure)
An infostructure is an infoshare such that the following axioms hold:

– Incrementality:
λ ≥ λ′ ⇒ TAKEA (λ, S) ≥ TAKEA (λ′, S)

– Locality:
λ ⊥ λ′ ⇒ TAKEA (λ′, PUBB (λ, S, x)) = TAKEA (λ′, S)

– Echo:
TAKEA (λ, PUBA (λ, S, x)) = x

– Update:
λ ≥ λ′ ⇒ PUBA (λ, PUBB (λ′, S, y), x) = PUBA (λ, S, x)

– Separation:
λ ⊥ λ′ ⇒ PUBA (λ, PUBB (λ′, S, y), x) = PUBB (λ′, PUBA (λ, S, x), y)

– Freedom:
∀λ ∈ Λ. ∃λ′ ∈ Λ. λ ⊥ λ′

The axioms that constitute the infostructure can be described as follows:

– Incrementality: this states that the more gateways we use, the more infor-
mation we get. This is what makes partial evaluation possible (sound), and
so makes reasoning scalable in-the-large.

– Locality:this expresses the fact that if two gateways sets are in non-interference
(w.r.t. the semi-lattice structure of the gateways set, i.e., they don’t have a
common component) then even if some publication occurs in a set, the infor-
mation that can be taken out of the other set stays unchanged. So, separate ar-
eas/teams can safely work independently, and legacy information is preserved
if appropriate separate gateways are used.

– Echo: if something is published, and then retrieved, there is no loss of infor-
mation. This expresses safety of the publication process: every bit of infor-
mation that is put in the SIS, can be retrieved, with no losses.

– Update: if something is published, this overrides previous publishing in
the gateways. So, this axiom corresponds to the possibility to update old/
incomplete/ incorrect information.

How to Talk to a Human: The Semantic Web and the Clash of the Titans 11

– Separation publishing at two gateways sets that are in non-interference is
independent on the order. This allows asynchronous processing between dif-
ferent teams and different applications: they don’t have to ”wait on each
other” to publish information. With no cycles lost, this enables for a true
parallel information system.

– Freedom: given a gateway set, there is always another gateway set that
doesn’t interfere. In simpler words, there’s always room to expand and put
new information.

Of course, the proposed modeling is an approximation of the simple informa-
tion system, and more refined axiomatic systems can be introduced, depending
on the level of details we want to analyze and model. Nevertheless, even such
a simplified model can give quite some hints. For example, a consequence of
the fact that the TAKEAi functions are total (i.e., always defined) is the in-
formation compression property, which says, roughly speaking, that the amount
of information is independent on the gateways (even more informally, one can
”compress” information coming from many gateways into fewer gateways). In
the case of the Web (with URL sets as gateways), this means that one can also
aggregate information within a single page (so, the semantic layer and URLs are
somehow orthogonal). It is interesting to note that RDF has the compression
property (and so, it is indeed an aggregator language), while XML (cf. [10])does
not, due to the in-famous unique root constraint. This shows that aggregation of
information wasn’t at all one of the design priorities of XML. In fact, given that
compression is an essential feature for data handling, the compression property
has later been re-introduced ”under the hood” in the XML world, either using
dummy root elements to do aggregation, or using the concept of XML collection
(like for instance in the XQuery language, cf. [11]).

7.2 Info-extensions

As an example of use of infostructures, we can for example start to model a
simplified open-world scenario, where there are several systems that publish and
retrieve information: what are some conditions that ensure a certain degree of
consistency of the information, i.e., that allows safe aggregation between different
information worlds? To answer this question, we can introduce a relationship that
information system can satisfy:

Definition 4. Given two information systems A, B ∈ IS, we say that B is a
info-extension (briefly, i-extension) of A, and write A � B, iff
∀λ, λ′ ∈ Λ, S ∈ SSS, x ∈ A.

TAKEA (λ, S) �A x ⇒ TAKEB (λ, S) �B TAKEB (λ′, PUBA (λ′, S, x))

The following two lemmata show that � provides an ordering structure:

Lemma 1 (�-transitivity)
The relationship � is transitive.

Lemma 2 (�-reflexivity)
The relationship � is reflexive.

12 M. Marchiori

Before going on, we now need a few definitions.

Definition 5. Given an infoshare, we can construct the corresponding term al-
gebra, which we call the infoalgebra. Thenn, given a term τ in the infoalgebra,
we denote with:

– Active(τ) the set of all the λ ∈ Λ that appear as an argument of any PUB
in τ .

– Passive(τ) the set of all the λ ∈ Λ that appear as an argument of any TAKE
in τ .

– Before(τ) the initial element S ∈ SSS used to build τ
– After(τ) the element S′ ∈ SSS obtained by ”evaluating” τ , i.e. by applying

all the functions TAKE and PUB present in τ .

We then have the fundamental:

Theorem 1 (Passive-Active)
Suppose to have a term τ in the infoalgebra (say, τ), and the involved information
systems form an info-extensionn chain, with A as top. Then we have:

TAKEA
(∨

Passive(τ), Before(τ)
)

�A TAKEA
(∨

Active(τ), After(τ)
)

Note the importance of the Passive-Active theorem, that essentially shows that
info-extensions provide a well-formed layering structure: in an infoshare there
is a top A, then A “stays the same” (remain consistent), unregarding of what
has been happening on the infoshares below. This regulation of the information
flows allows for a successful integration of information.

It is interesting to compare the information flow behavior of info-extensions
with the current information modeling of the Semantic Web Tower, where no
general information extension concept had been defined, for lack of a basic op-
erational model to start with. As a result, extensions have been first interpreted
as strict logical extensions, and then somehow ”patched” so to ensure consis-
tency of information in a web-free embedding modeling. Info-extensions, on the
other hand, provide for a more flexible general mechanism that allows more flex-
ibility, allowing to deal more nicely with scenarios where one can’t enforce a
one-solution-fits-all, but where there will be many competing solutions (at the
same time, and also over time), possibly sharing common knowledge grounds.

8 The Future: From Towers to Trees?

We hope to have given some hints on what are the crucial issues that should
lead the discussion in judging how the Semantic Web can be an effective way
of better handling information on the Web. What is needed is a much wider
perspective, including the definition of operational models that take into account
the technological structure (the Web, the machines) as well as its interactions
with the societal structure (the information flows, the people). Here we have
just started to scratch the surface, but it is obvious that a better science of

How to Talk to a Human: The Semantic Web and the Clash of the Titans 13

successful information handling for the Web should come from a refined analysis
that underlines models, axioms, principles and human factors. Such analysis
would help a lot in shaping successful standards and solution for web information,
and also help to understand what are the real principles to focus on. For instance,
coming back to the original ”XML versus RDF” clash described at the beginning,
it is interesting to note how once identified an operational model, alternative
possible solutions naturally arise: nobody prevents for instance to lower the cost
for people that publish (PUB) information, by directly using XML instead of
RDF. If this solution is chosen, then suitable interpretations of XML documents
can be provided, so to define an infostructure (on this point, remember the basic
discussion on the compression property in subsection 7.1). Then, infostructures
can be assembled by using infoextensions, in a scenario where information flows
grow like a tree, with several possible branches and leaves. Given the relative drop
in the cost factor, that avoids information duplication/reshaping in RDF, this
might prove to be quite a viable approach for the future. In fact, this approach
can be brought even further, by considering not just XML but also XHTML and
HTML, so making the initial cost factor for publication of information radically
drop: sure, the initial benefits would be lower too, but to start the network effect,
after all, we maybe need to talk to humans first. And nobody prevents from then
having more specialized semantic web solutions, in the spirit of RDF and the
Semantic Web Tower, grow as a branch of the bigger Web Tree.

Acknowledgments

I would like to thank German Puebla for his extreme kindness and support.

References

1. W3C: Resource description framework (RDF). http://www.w3.org/RDF/ (1997)
2. Berners-Lee, T.: Universal resource identifiers – axioms of web architecture.

http://www.w3.org/DesignIssues/Axioms.html (1996)
3. Berners-Lee, T., et al.: Architecture of the World Wide Web, volume one.

http://www.w3.org/TR/webarch/ (2004)
4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American

284 (2001) 34–43
5. Marchiori, M.: The semantic web made easy. http://www.w3.org/RDF/Metalog/

docs/sw-easy (2003)
6. Nelson, T.: Zig-Zag R© Software. http://xanadu.com/zigzag/ (1999)
7. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The

platform for privacy preferences 1.0 (p3p1.0) specification. http://www.w3.org/
TR/P3P/ (2002)

8. Cranor, L., Langheinrich, M., Marchiori, M.: A P3P preference exchange language
1.0 (APPEL1.0). http://www.w3.org/TR/P3P-preferences (2002)

9. Grillo, B.: Beppe Grillo’s Blog. http://www.beppegrillo.it/ (2005)
10. Bray, T., et al.: Extensible markup language (XML) 1.0 (fourth edition). http://

www.w3.org/TR/REC-xml/ (2006)
11. Boag, S., et al.: XQuery 1.0: An XML query language. http://www.w3.org/TR/

xquery/ (2006)

14 M. Marchiori

Appendix: Deeper Modeling

The fact each PUB function in an infostructure is supposed to be a total function
is quite an assumption. This, because from the Echo axiom, if a PUBA is always
defined (as, TAKEA is always defined too) then information in A can’t know
about the gateway it came from. In other words, A is in a sense ”separated”
from the gateway structure, which is good as it makes for a simpler modeling,
but also limitative in some scenarios.

The assumption of totality for the publication functions can be be relaxed,
and a more sophisticated modeling taken into consideration. For instance, the
infostructures axioms can be rewritten using a Def () functor that checks whether
or not the specific instance of a publication function is defined:

– Incrementality:
λ ≥ λ′ ⇒ TAKEA (λ′, S) ≥ TAKEA (λ, S)

– Locality:
λ ⊥ λ′∧Def (PUBB (λ, S, x))⇒TAKEA (λ′, PUBB (λ, S, x))=TAKEA (λ′, S)

– Echo:
Def (PUBA (λ, S, x)) ⇒ TAKEA (λ, PUBA (λ, S, x)) = x

– Update:
λ≤λ′∧Def (PUBA (λ, S, x))⇒PUBA (λ, PUBB (λ′, S, y), x)=PUBA (λ, S, x)

– Separation:
λ ⊥ λ′∧Def (PUBA (λ, PUBB (λ′, S, y), x))⇒PUBA (λ, PUBB (λ′, S, y), x) =
PUBB (λ′, PUBA (λ, S, x), y)

– Freedom:
∀λ ∈ Λ. ∀S ∈ SSS. ∃x ∈ A. ∃λ′ ∈ Λ. λ ⊥ λ′ ∧ Def (PUBA (λ′, S, x))

More sophisticated modeling would also include the time variable (which now
is implicit in the axioms), making the axiomatization more similar, in spirit,
to a modal logic (although, somehow complicating the analysis). Note that this
only concerns the modeling of the web environment: a comprehensive formal
modeling would also properly take into account the social aspects of the pop-
ulation dynamics, and formalize the concept of Cost and Benefit discussed in
Sections 5 and 4.

CHESS: Systematic Stress Testing of

Concurrent Software

Madan Musuvathi and Shaz Qadeer

Microsoft Research

Concurrency is a fundamental attribute of systems software. Asynchronous com-
putation is the norm in important software components such as operating sys-
tems, databases, and web servers. As multi-core architectures find their way into
mainstream desktop computers, we are likely to see an increasing use of multi-
threading in application software as well. Unfortunately, the design of concurrent
programs is a very challenging task. The main intellectual difficulty of this task
lies in reasoning about the interaction between concurrently executing threads.
Nondeterministic thread scheduling makes it extremely difficult to reproduce
behavior from one run of the program to another. As a result, the process of
debugging concurrent software becomes tedious resulting in a drastic decrease
in the productivity of programmers. Since concurrency is both important and
difficult to get right, it is imperative that we develop techniques and tools to
automatically detect and pinpoint errors in concurrent programs.

The current state-of-the-art in testing concurrent software is unsatisfactory
for two reasons. The first problem is that testing is not systematic. A concurrent
test scenario is executed repeatedly in the hope that a bad thread schedule will
eventually happen. Testers attempt to induce bad schedules by creating thou-
sands of threads, running the test millions of times, and forcing context switches
at special program locations. Clearly, these approaches are not systematic be-
cause there is no guarantee that one execution will be different from another. The
second problem is that a bad schedule, if found, is not repeatable. Consequently,
the programmer gets little debugging help once a bug has been detected.

The CHESS project at Microsoft Research attempts to address these limita-
tions by providing systematic, repeatable, and efficient enumeration of thread
schedules. CHESS instruments the program execution in order to get control of
the scheduling. The instrumentation allocates a semaphore for each thread that
is created, and preserves the invariant that at any time every thread but one is
blocked on its semaphore. Thus, the underlying operating system scheduler is
forced to schedule the one thread that is not blocked. When this thread reaches
the next point in its execution that is instrumented, a different thread can be
scheduled by performing appropriate operations on their respective semaphores.
This mechanism allows CHESS to implement a simple depth-first search of
thread schedules, thereby providing the guarantee that each thread schedule
generated is different. Moreover, if a schedule results in an error, it can be re-
played ad infinitum.

Clearly, the number of possible schedules for realistic concurrent programs is
huge. For example, the number of executions for a program with n threads, each

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 15–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 M. Musuvathi and S. Qadeer

of which executes k steps can be as large as Ω(nk). CHESS uses two techniques
to manage the complexity of exploring such a large search space.

Iterative context-bounding. In previous work on analysis of concurrent soft-
ware, we have observed that many subtle concurrency errors are manifested in
executions with a small number of context switches [6,5]. At the same time, the
total number of executions with at most c context switches is O(n2ckc). While
the total number of executions is exponential in k, the number of executions for
any fixed context-switch bound is polynomial in k. CHESS enumerates thread
schedules in order of increasing number of context switches. We believe that
this strategy for prioritizing search increases the likelihood of finding erroneous
executions.

Partial-order reduction. This technique exploits the fact that events in a
multithreaded execution are partially rather than totally ordered. All lineariza-
tions of a partially-ordered execution are equivalent and it suffices to explore any
one of them. In order to avoid enumerating equivalent executions, the partial
order corresponding to a linearization must be computed. This partial order,
also known as the happens-before relation [3], has traditionaly been computed
using clock vectors [4]. We have recently proposed a new algorithm [1] for com-
puting the happens-before relation that is significantly more efficient in practice
compared to the clock vector algorithm. CHESS combines this algorithm with a
dynamic partial-order reduction strategy due to Flanagan and Godefroid [2] to
systematically and efficiently enumerate non-equivalent executions.

References

1. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: Efficiently com-
puting the happens-before relation using locksets, 2006. Full version available at
http://www.research.microsoft.com/~qadeer/fatesrv06-fullversion.ps.

2. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In POPL 05: Principles of Programming Languages, pages 110–121. ACM
Press, 2005.

3. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

4. Friedemann Mattern. Virtual time and global states of distributed systems. In Inter-
national Workshop on Parallel and Distributed Algorithms, pages 215–226. North-
Holland, 1989.

5. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS 05: Tools and Algorithms for the Construction and Analysis of Systems,
volume 3440 of Lecture Notes in Computer Science, pages 93–107. Springer, 2005.

6. S. Qadeer and D. Wu. KISS: Keep it simple and seqeuential. In PLDI 04: Program-
ming Language Design and Implementation, pages 14–24. ACM, 2004.

ARM: Automatic Rule Miner

Slim Abdennadher, Abdellatif Olama, Noha Salem, and Amira Thabet

Department of Computer Science, German University in Cairo
{slim.abdennadher, abdellatif.olama, noha.salem, amira.thabet}@guc.edu.eg

http://www.cs.guc.edu.eg

Abstract. Rule-based formalisms are ubiquitous in computer science.
However, a difficulty that arises frequently when specifying or program-
ming the rules is to determine which effects should be propagated by
these rules. In this paper, we present a tool called ARM (Automatic
Rule Miner) that generates rules for relations over finite domains.

ARM offers a rich functionality to provide the user with the possibility
of specifying the admissible syntactic forms of the rules.

Furthermore, we show that our approach performs well on various
examples, e.g. generation of firewall rules or generation of rule-based
constraint solvers. Thus, it is suitable for users from different fields.

1 Introduction

Historically, developing rules has been the province of the human experts. Typi-
cally, learning the rules in any application domain requires a long apprenticeship.
However, when a new knowledge domain immerses then it becomes actually an
unaffordable luxury to spend time developing rules in the conventional manner.

Therefore, the trend towards generating the rules in an automated manner is
rapidly expanding. To introduce the different available techniques it is important
to present the general steps of automatic rule generation.

The first step is the knowledge acquisition, which is the action of collecting
the data and representing it in the appropriate form as input to the second step.
This process is indispensable to build either self-learning or expert systems. The
knowledge collection is done with the aid of a field expert and involves a lot of
computer science irrelevant details, however the representation of the knowledge
has to be thought through in order to better serve the data-mining/rule-inference
process. The second and most important step, which is the center of this paper
is the knowledge elicitation, which involves inferring more information than ex-
tensionally provided in the knowledge base, i.e. the generation of general rules
that are induced from the given data. This procedure is carried out by experts,
who employ usually one of three options:

1. Human manual classification, where experts spend a lot of time studying the
technical as well as the practical aspects of the knowledge base and work out
the clusters manually.

2. Semi-automatic structuring, where the computer scientists are required to
build up an entire expert system manually and then use this expert system
afterwards in the induction process.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 17–25, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 S. Abdennadher et al.

3. Automatic selection and generation, where there exists some kind of a system
that carries out the process with no - or minor - human intervention.

The motivation for automatic rule generation lies in the advantages offered
thereby. The automated generation process is indispensable if no knowledge en-
gineers exist to mine the data manually in order to acquire the deep knowledge.
Automatic generation of rules is needed in the fields where it is important to
assess and validate experts knowledge in a faster and more reliable manner,
especially in applications where the lack of reliability is dangerous.

Last but not least, the knowledge provided in most of the application fields is
incomplete and sometimes it is useful to be able to induce the rules automatically
each time the knowledge base has to be updated. Such updates, if done manually,
highly affect the cost.

As mentioned before, automatic rule generation - sometimes referred to as
data mining - is a way of extracting rules directly from data and presenting
them in an easily understood format. Some of the intelligent techniques that
are used include Neural Networks, Genetic Algorithms, Fuzzy Logic and also
Neurofuzzy Logic [10].

In this paper, we present a tool that is based on an algorithm previously
proposed to generate rule-based constraint solvers [1,2]. However, the algorithm
turned out to be of great use in different fields that provide crucial services to the
various sectors in research as well as in industry and medicine. The power of the
tool is accentuated by its high expressivity and beneficial flexibility. It is more
expressive than usual automatic rule generation tools implemented in applica-
tions based on Artificial Intelligence since the rules inferred from the knowledge
base do not propagate only equality constraints. Using ARM it is possible to
propagate all sorts of constraints provided that the required constraint solvers
exist. Thus, it is possible to customize the generated rules according to any type
of application (further elaboration in Section 2).

The paper is organized as follows: In Section 2 the representation of the knowl-
edge base as well as the algorithm is briefly described. Three different applica-
tions that benefit from the algorithm implemented in ARM are elaborated in
Section 3. In Section 4, an explicit and detailed explanation of the tool ARM
is presented, where eventually in Section 5, future perspectives and conclusions
are discussed.

2 Algorithm

Knowledge is classified into facts, statements that are always true, and rules,
more complicated and more general statements. Facts are considered to be ex-
tensional definitions of some sort of relations. Rules, which denote the intensional
definition of the relation, are conditionable; in the sense that they are customized
to condition-action situations, like expert and prediction systems.

There are two main different types of rules that could be generated given a
specific knowledge base: propagation rules and simplification rules. Simplification

ARM: Automatic Rule Miner 19

rules, as the name suggests, simplify the knowledge base by removing one or
more facts and replacing them by other simpler ones, whereas propagation rules
induce a process of deriving new facts from given ones and adding them to the
existing knowledge.

Our algorithm generates first only propagation rules. Often, some propagation
rules can be transformed into simplification rules. Thus, in a second step a post-
processing approach based on a confluence test is performed [2]. The algorithm
for generating propagation rules has been developed based on previous work
done in the field of knowledge discovery.

The algorithm of the tool at hand allows the user to define the form of the rules
to be generated. As mentioned before, this tool accepts any type of constraints
on both sides of the rule. Technically a rule consists of two parts, called the
left-hand side (LHS) and the right-hand side (RHS). The antecedent is written
first and called the head of the rule, the consequent is called the body.

Simplification rules are rules of the form LHS ⇔ RHS and propagation rules
are rules of the form LHS ⇒ RHS, where LHS and RHS are sets of constraints.

Using ARM the user has the possibility to specify the admissible syntactic
forms of the rules. The user determines the relation for which rules have to be
generated, i.e. the LHS, and chooses the candidate constraints to form conjunc-
tions together with the left hand side. Usually, these candidate constraints are
simply equality constraints. For the right hand side of the rules the user spec-
ifies also the form of candidate constraints she/he wants to see there. Finally,
the user determines the semantics of the constraint on the LHS by means of
its extensional definition which must be finite, and provides the semantics of
the candidate constraints and the candidate RHS by two constraint theories.
Furthermore, it is assumed that the constraints defined are handled by an ap-
propriate constraint solver.

To compute the rules the algorithm enumerates each possible LHS constraint
(noted Clhs) and for each determines the corresponding RHS constraint (noted
Crhs).

For each LHS Clhs the corresponding RHS Crhs is computed in the following
way:

1. if Clhs has no solution then Crhs = {false} and we have the failure rule
Clhs ⇒ {false}.

2. if Clhs has at least one solution then Crhs is the set of all atomic constraints
which are candidates for the RHS part and that are true for all solution of
Clhs. If Crhs is not empty we have the rule Clhs ⇒ Crhs.

The algorithm uses pruning strategies to reduce the number of rules gener-
ated. This way it becomes much more efficient if during the enumeration of all
possible rule LHS, a given LHS is considered before any of its supersets. So a
specific ordering for this enumeration is imposed in the algorithm. Moreover,
this ordering allows to discover early covering rules avoiding then the generation
of many uninteresting covered rules.

20 S. Abdennadher et al.

3 Application

Many applications require data-mining and rule generation. In this section, three
applications from three different domains are presented to endorse the generality
of the proposed tool for automated generation of rules.

3.1 Firewall Design

The function of a firewall is to examine each packet that attempts to enter a
private network and decide whether to accept the packet and allow it to proceed
or to discard it. A typical firewall design consists of a sequence of rules. To
make a decision concerning some packets, the firewall rules are compared, one
by one, with the packet until one rule is found to be satisfied by the packet:
this rule determines the fate of the packet. The first method ever for designing
the sequence of rules in a firewall to be consistent, complete, and compact using
Firewall Decision Diagram was proposed by [7]. Using ARM it is possible to
use the extensional definitions of a packet to generate the firewall rules. There
are usually five primary fields that describe the packet in any firewall and are
used for deciding the course of a packet: discard or accept. The following is
an excerpt of the knowledge base of a firewall with simplified representation of
a network packet pack(F0,F1,A) with only two parameter fields, F0 and F1
together with the action A to be taken upon the arrival of this packet, where a
stands for accept and d stands for discard:

pack(4, 2, a). pack(4, 3, a). pack(4, 5, a). pack(4, 6, a).
pack(4, 7, a). pack(4, 0, d). pack(4, 1, d). pack(4, 4, d).
pack(4, 8, d). pack(4 ,9, d). pack(5, 2, a). pack(5, 3, a).
pack(5, 5, a). pack(5, 6, a). pack(5, 7, a). pack(5, 0, d).
pack(5, 1, d). pack(5, 4, d). pack(5, 8, d). pack(5, 9, d).
pack(6, 2, a). pack(6, 3, a). pack(6, 5, a). pack(6, 6, a).
pack(6, 7, a). pack(6, 0, d). pack(6, 1, d). pack(6, 4, d).
pack(6, 8, d). pack(6, 9, d). pack(7, 2, a). pack(7, 3, a).
pack(7, 5, a). pack(7, 6, a). pack(7, 7, a). pack(7, 0, d).
pack(7, 1, d). pack(7, 4, d). pack(7, 8, d). pack(7, 9, d).
pack(0, 0, d). pack(0, 1, d). pack(0, 2, d). pack(0, 3, d).
pack(0, 4, d). pack(0, 5, d). pack(0, 6, d). pack(0, 7, d).
pack(0, 8, d). pack(0, 9, d). pack(1, 0, d). pack(1, 1, d).
pack(1, 2, d). pack(1, 3, d). pack(1, 4, d). pack(1, 5, d).
pack(1, 6, d). pack(1, 7, d). pack(1, 8, d). pack(1, 9, d).
pack(2, 0, d). pack(2, 1, d). pack(2, 2, d). pack(2, 3, d).
pack(2, 4, d). pack(2, 5, d). pack(2, 6, d). pack(2, 7, d).
pack(2, 8, d). pack(2, 9, d). pack(3, 0, d). pack(3, 1, d).
pack(3, 2, d). pack(3, 3, d). pack(3, 4, d). pack(3, 5, d).
pack(3, 6, d). pack(3, 7, d). pack(3, 8, d). pack(3, 9, d).
pack(8, 0, d). pack(8, 1, d). pack(8, 2, d). pack(8, 3, d).
pack(8, 4, d). pack(8, 5, d). pack(8, 6, d). pack(8, 7, d).
pack(8, 8, d). pack(8, 9, d). pack(9, 0, d). pack(9, 1, d).
pack(9, 2, d). pack(9, 3, d). pack(9, 4, d). pack(9, 5, d).
pack(9, 6, d). pack(9, 7, d). pack(9, 8, d). pack(9, 9, d).

ARM: Automatic Rule Miner 21

For this knowledge base of the firewall, ARM will automatically generate
among others the following propagation rule provided the user specifies that the
right hand side of the rules may consist of a conjunction of equality constraints.

pack(F0,9,A) ⇒ A=d.
pack(F0,8,A) ⇒ A=d
...
pack(7,7,A)⇒ A=a.
pack(7,6,A)⇒ A=a.
...

The first rule means that for any values for F0, if the second field has the value
9, then the packet should be discarded.

The ARM tool can generate a more compact representation of the rules, if the
user specifies to have membership constraints in the left hand side of the rules:

pack(F0,F1,A), F1 in[0,1,4,8,9]⇒ A=d.
pack(F0,F1,A), F0 in[0,1,2,3,8,9] ⇒ A=d.
pack(F0,F1,A), F0 in [4,5,6,7], F1 in [2,3,5,6,7] ⇒ A=a.

3.2 Generation of Constraint Solvers

Originally the algorithm presented in Section 2 was introduced to generate rule-
based constraint solvers for finite constraints given their extensional represen-
tation [1]. The generated rules can be executed using the Constraint Handling
Rules framework [5,6].

For example, for the logical operator and that can be defined extensionally by
the triples {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and for the logical operator neg
that can be defined by the pairs {(0, 1), (1, 0)}, where 1 stands for truth and 0
for falsity, the algorithm can generate, among other, the following rules:

and(0, Y, Z) ⇔ Z=0.

and(1, Y, Z) ⇔ Y =Z.

and(X, X, Z) ⇔ X=Z.

neg(X, 0) ⇔ X=1.

neg(X, X) ⇒ false.

and(X, Y, Z), neg(X, Y) ⇔ Z=0, neg(X, Y).

The algorithm performs well on various examples, including Boolean con-
straints, multi-valued logic, Allen’s qualitative approach to temporal logic and
qualitative spatial reasoning with the Region Connection Calculus [1].

4 Arm Features

4.1 How to Run ARM

ARM can be run as an application. The application version of ARM requires the
installation of SICStus Prolog version 3.8.6 or later as well as the Java to Prolog

22 S. Abdennadher et al.

interface package Jasper (se.sics.jasper). If ARM was started successfully, the
start screen shown in Figure 1 appears. On the start screen one has to choose ei-
ther of the two available options which will determine how ARM will specify the
domain for each of the parameters of a relation. Choosing the N-to-1 option will
result in setting a single domain which is applied to each of the parameters of the
relation based on the values that were used in the specified tuples. The N-to-N
option sets a separate domain for each parameter of the relation. This feature will
suppress the generation of a huge number of failure rules. For example, for the
firewall design example, if the user will choose the N-to-1 option, then rules like

pack(F0,F1,4) ⇒ false.

will be generated, although it is clear from the begining that the third argument
of the predicate pack cannot take the value 4. Thus for the firewall design ex-
ample, the user should specify the values of each parameter using the N-to-N
option. For the constraint solving example, all arguments have the domain {0, 1},
thus the user should choose the N-to-1 option.

Fig. 1. Start-up Window

After choosing either option by clicking the appropriate button, the main view
of ARM will appear as shown in Figure 2.

From the relationsmenu one can add rules to the relations list. By click-
ing on the add button a pop-up window will appear where the name of the rela-
tion can be entered. By clicking the name of a relation from the relations list
the tuples associated with the selected relation will be displayed in the
tuples list, part of the tuples menu. Tuples associated with a relation can
be added or removed using the add and remove buttons. By clicking the add

ARM: Automatic Rule Miner 23

button of the tuples menu a pop-up window containing a text field will appear
where a space-separated list of values should be entered to represent a tuple to
be associated with the highlighted relation of the relations menu.

Each of the two drop-down lists at the bottom of the main view window
contains available constraints that could be added to the list of constraints to be
added to the right-hand-side and left-hand-side of the generated rules. Choosing
a constraint from the drop-down list and clicking the add button will add the
constraint to the specified side of the rules.

After finalizing the selection of relations, associated tuples and constraints,
the generate rules button should be clicked to display the result of generating
the rules according to the specified input.

Fig. 2. ARM’s Main View

24 S. Abdennadher et al.

4.2 Implementation of ARM

ARM’s graphical user interface is implemented in Java using the Java Software
Development Kit (J2SDK) version 1. The underlying generation of rules is im-
plemented partly in Java, however the main part is implemented in SICStus
Prolog.

As described in Section 2, ARM needs to enumerate LHS constraints. Our
implementation follows the idea of direct extraction of association rules by ex-
ploring a tree corresponding to the LHS search space. This tree is expanded and
explored using a depth first strategy, in a way that constructs only necessary
LHS candidates and allows to remove uninteresting candidates by cutting whole
branches of the tree. The branches of the tree are developed using a partial or-
dering on the LHS candidates such that the more general LHS are examined
before more specialized ones. The partial ordering used in our implementation
is the θ-subsumption [9] ordering commonly used in ILP to structure the search
space (e.g., the Warmr algorithm [4] to mine frequent Datalog queries). To
prune branches in the tree, one of the two main criteria has been inspired by the
Close algorithm [8] devoted to the extraction of frequent itemsets in dense1

data sets.
The interaction between Java and Prolog is provided using the bidirectional

interface Jasper. Jasper is used as a Java package (se.sics.jasper) for the purposes
of ARM since the interaction is needed only in one direction, more specifically,
the Java graphical user interface will query the SICStus Prolog and obtain a
result which will be displayed by Java again.

SICStus Prolog performs the role of a base layer for communication between
the knowledge base on one side and the inference engine and constraint solver on
the other side. As a rule-based programming language, Prolog helps in simpli-
fying this task. SICStus provides several choices for developing user interfaces,
however Java stands out among other alternatives like C and Tcl/Tk especially
because of the portability issue which is overcome by default when using Java.

Through the Java-Prolog interaction, the user of ARM will be able to gener-
ate rules. The rules will be generated based on the facts provided by the user.
The construction is done through the graphical interface which will trigger the
formation of an underlying knowledge base of relations together with associated
tuples. The knowledge base will then be formatted by Java, the appropriate
query will be generated. The result is submitted through Jasper to the Prolog
interpreter which will in turn respond with the corresponding list of rules.

5 Conclusion

ARM is a tool for generating rules from relational data. We have shown that
this tool can be used in different application fields: generation of firewall rules
and rule-based constraint solvers.

The tool can be run as an application under http://cs.guc.edu.eg/arm
1 e.g., data sets containing many strong correlations.

ARM: Automatic Rule Miner 25

Future work includes the extension of the tool to generate rules for relations
defined intensionally eventually over non finite domains. A first preliminary step
in this direction has recently been proposed in [3].

References

1. S. Abdennadher and C. Rigotti. Automatic generation of propagation rules for
finite domains. In 6th International Conference on Principles and Practice of
Constraint Programming, CP’00, LNCS 1894. Springer-Verlag, 2000.

2. S. Abdennadher and C. Rigotti. Automatic generation of rule-based constraint
solvers over finite domains. ACM Transactions on Computational Logic, 5(2),
2004.

3. S. Abdennadher and C. Rigotti. Automatic generation of CHR constraint solvers.
Journal of Theory and Practice of Logic Programming (TPLP), 5(2), 2005.

4. Luc Dehaspe and Hannu Toivonen. Discovery of frequent DATALOG patterns.
Data Mining and Knowledge Discovery, 3(1):7–36, 1999.

5. T. Frühwirth. Theory and practice of constraint handling rules, special issue on
constraint logic programming. Journal of Logic Programming, 37(1-3), October
1998.

6. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer-Verlag, 2003.

7. X. A. Liu M. G. Gouda. Firewall design: Consistency, completeness, and compact-
ness. In 24th IEEE International Conference on Distributed Computing Systems,
2004.

8. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining of
association rules using closed itemset lattices. Information Systems, 24(1):25–46,
1999.

9. Gordon Plotkin. A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153–163. Edinburgh University Press, 1970.

10. P. Smyth U. Fayyad, G. Piatestsky. From data mining to knowledge discovery in
databases. American Association for Artificial Intelligence, 1996.

Constructing Consensus Logic Programs

Chiaki Sakama1 and Katsumi Inoue2

1 Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp
2 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ki@nii.ac.jp

Abstract. In this paper, we suppose an agent which has a knowledge base repre-
sented by a logic program under the answer set semantics. We then consider the
following two problems: given two programs P1 and P2, which have the sets of
answer sets AS(P1) and AS(P2), respectively; (i) find a program Q which has
the answer sets as the minimal elements of { S ∩ T | S ∈ AS(P1) and T ∈
AS(P2) }; (ii) find a program R which has the answer sets as the maximal ele-
ments of the above set. A program Q satisfying (i) is called minimal consensus
between P1 and P2; and R satisfying (ii) is called maximal consensus between P1

and P2. Minimal/maximal consensus extracts common beliefs that are included in
an answer set of every program. Consensus provides a method of program devel-
opment under a specification of constructing a program that reflects the meaning
of two or more programs. In application, it contributes to a theory of building
consensus in multi-agent systems.

1 Introduction

Logic programming provides a formal language for representing knowledge and belief
of an agent. The declarative semantics of a program is given by a set of canonical mod-
els which represent belief sets of an agent. Our primary interest in this paper is: what are
the suitable conclusions drawn from a collection of programs, and how to synthesize a
program having such a collective semantics. Those problems become especially impor-
tant when there exist more than one agent in multi-agent environments. In a multi-agent
community, multiple agents generally have different beliefs and intentions. To make de-
cision and act as a whole community, they must seek consensus which is acceptable to
every individual agent. Suppose a multi-agent system in which each agent has a knowl-
edge base represented by a logic program under the answer set semantics [8]. Answer
sets represent sets of literals corresponding to beliefs which can be built by a rational
reasoner on the basis of a program [2]. An agent may have (conflicting) alternative
sets of beliefs, which are represented by multiple answer sets of a program. Different
agents have different collections of answer sets in general. We then capture building
consensus among multiple agents as the problem of finding a new program which has
consequences common to all programs.

Before formally stating the problem, suppose the following scenario: John and Mary
are a couple. John wants to buy a new personal computer. To achieve the goal, he con-
siders two options to save money. The first option is to stop bar-hopping. The second

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 26–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Constructing Consensus Logic Programs 27

one is to give up a family trip this year. These two options are indefinite at the moment.
John’s belief is represented by the program:

P1 : ← not pc,

pc ← money,

money ← ¬ bhop,

money ← ¬ trip,

bhop ; ¬ bhop ←,

trip ; ¬ trip ←,

where “;” represents disjunction and not represents negation as failure. On the other
hand, Mary plans to save money to buy her new dress. She also has two options: giving
up a family trip or going to no restaurant. She usually does not go to a restaurant. If
the family gives up a trip, however, she wants to have a special dinner at a restaurant,
instead. She also has indefinite belief on giving up a trip. Mary’s belief is represented
by the program:

P2 : ← not dress,

dress ← money,

money ← ¬ trip,

money ← ¬ restaurant,

¬ restaurant ← not restaurant,

restaurant ← ¬ trip,

trip ; ¬ trip ← .

In this situation, P1 has three answer sets: S1 = { pc, money, ¬ bhop, trip }, S2 =
{ pc, money, bhop, ¬ trip }, and S3 = { pc, money, ¬ bhop, ¬ trip }. And P2 has
two answer sets: T1 = { dress, money, ¬ restaurant, trip } and T2 = { dress,
money, ¬ trip, restaurant }. Then, which conclusions should be drawn as consensus
of the couple? Since money is included in every answer set of two programs, it seems
no doubt to have { money } as a result of consensus. In fact, John and Mary agree to
save money, although their purposes are different. On the other hand, { money, trip }
is a subset of both S1 and T1, and { money, ¬ trip } is a subset of S2, S3 and T2.
So these two sets are also considered as admissible results of consensus. In the set
{ money, trip }, the couple agrees with both saving money and having a trip. In this
case, each person considers another way to save money. In the set { money, ¬ trip },
the couple agrees with giving up a trip to save money.

This example illustrates that there are two different types of consensus. The first one
collects minimal sets of beliefs that are included in an answer set of every program. By
contrast, the second one collects maximal sets of beliefs that are included in an answer
set of every program. These two types of consensus provide different results in general.
The purpose of this paper is to develop a theory of such consensus among multiple logic
programs.

28 C. Sakama and K. Inoue

Formally, the problems considered in this paper are described as follows:

Given : two programs P1 and P2;

Find : (1) a program Q satisfying
AS(Q) = min({ S ∩ T | S ∈ AS(P1) and T ∈ AS(P2) });

(2) a program R satisfying
AS(R) = max({ S ∩ T | S ∈ AS(P1) and T ∈ AS(P2) }),

where min(X) = { Y ∈ X | ¬∃Z ∈ X s.t. Z ⊂ Y } and max(X) = { Y ∈ X |
¬∃Z ∈ X s.t. Y ⊂ Z }.

The program Q satisfying (1) is called minimal consensus between P1 and P2; and
the program R satisfying (2) is called maximal consensus between P1 and P2. We in-
vestigate the declarative nature of these two types of consensus, and develop methods
for constructing consensus programs from multiple programs.

The rest of this paper is organized as follows. Section 2 presents basic notions used
in this paper. Section 3 introduces a framework of consensus among logic programs.
Section 4 provides a method for constructing consensus programs. Section 5 addresses
applications to multi-agent systems. Section 6 discusses related issues, and Section 7
summarizes the paper.

2 Preliminaries

A program considered in this paper is an extended disjunctive program (EDP) which is
a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln (n ≥ m ≥ l ≥ 0)

where each Li is a positive/negative literal, i.e., A or ¬A for an atom A, and not is
negation as failure (NAF). not L is called an NAF-literal. The symbol “;” represents
disjunction. The left-hand side of the rule is the head, and the right-hand side is the
body. For each rule r of the above form, head(r), body+(r) and body−(r) denote
the sets of literals {L1, . . . , Ll}, {Ll+1, . . . , Lm}, and {Lm+1, . . . , Ln}, respectively.
Also, not body−(r) denotes the set of NAF-literals {not Lm+1, . . . , not Ln}. A dis-
junction of literals and a conjunction of (NAF-)literals in a rule are identified with its
corresponding sets of literals. A rule r is often written as head(r) ← body(r) where
body(r) = body+(r) ∪ not body−(r). A rule r is disjunctive if head(r) contains more
than one literal. A rule r is an integrity constraint if head(r) = ∅; and r is a fact if
body(r) = ∅. A rule r is a conditional fact if body+(r) = ∅. A program is NAF-free if
no rule contains NAF-literals. A program is a kernel form if it consists of conditional
facts only. A program with variables is considered a shorthand for its ground instantia-
tion, and this paper handles ground programs unless stated otherwise.

The semantics of EDPs is given by the answer set semantics [8]. Let Lit be the set
of all ground literals in the language of a program. A set S(⊆ Lit) satisfies a ground
rule r if body+(r) ⊆ S and body−(r) ∩ S = ∅ imply head(r) ∩ S �= ∅. In particular,
S satisfies a ground integrity constraint r with head(r) = ∅ if either body+(r) �⊆ S or
body−(r)∩S �= ∅. S satisfies a ground program P if S satisfies every ground rule in P .
Let P be a ground NAF-free EDP. Then, a set S(⊆ Lit) is an answer set of P if S is

Constructing Consensus Logic Programs 29

a minimal set such that (i) S satisfies P ; and (ii) if S contains a pair of complementary
literals L and ¬L, S = Lit. Next, let P be any ground EDP and S ⊆ Lit. For every
ground rule r in P , the rule head(r) ← body+(r) is included in the reduct PS if
body−(r)∩S = ∅. Then, S is an answer set of P if S is an answer set of PS . A program
has none, one, or multiple answer sets in general. The set of all answer sets of P is
written as AS(P). Note that the collection AS(P) is an anti-chain set, i.e., no element
S ∈ AS(P) is a proper subset of another element T ∈ AS(P). A program having
a single answer set is called categorical [2]. Categorical programs include important
classes of programs such as definite programs, stratified programs, and call-consistent
programs. An answer set is consistent if it is not Lit. A program P is consistent if it has
a consistent answer set; otherwise, P is inconsistent. An inconsistent program has either
no answer set (incoherent) or the single answer set Lit (contradictory). A literal L is a
consequence of skeptical reasoning (resp. credulous reasoning) in P if L is included in
every (resp. some) answer set of P . The set of all literal consequences under skeptical
(resp. credulous) reasoning in P is written as skp(P) (resp. crd(P)). By the definition,
skp(P) = Lit and crd(P) = ∅ if P is incoherent; and skp(P) = crd(P) = Lit if P
is contradictory. Clearly, skp(P) ⊆ crd(P) for any consistent program P .

Example 2.1. Let P be the program:
p ; q ←,

r ← p,

r ← q,

where AS(P) = {{p, r}, {q, r}}. Then, crd(P) = { p, q, r } and skp(P) = {r}.

3 Consensus Logic Programs

In this section, we introduce a framework of consensus among multiple programs.
Throughout the paper, different programs are assumed to have the same underlying
language. This implies that every program has the same set Lit of all ground literals in
the language.

Definition 3.1. Let P1 and P2 be two programs. Then, define

cons(P1, P2) = { S ∩ T | S ∈ AS(P1) and T ∈ AS(P2) }.

In particular, cons(P1, P2) = ∅ if AS(P1) = ∅ or AS(P2) = ∅.

Definition 3.2. Let P1 and P2 be two programs. A program Q is called minimal con-
sensus (between P1 and P2) if it satisfies the condition

AS(Q) = min(cons(P1, P2))

where min(X) = { Y ∈ X | ¬∃Z ∈ X s.t. Z ⊂ Y }. On the other hand, a program
R is called maximal consensus (between P1 and P2) if it satisfies the condition

AS(R) = max(cons(P1, P2))

where max(X) = { Y ∈ X | ¬∃Z ∈ X s.t. Y ⊂ Z }. Each element in AS(Q) (resp.
AS(R)) is called a result of minimal (resp. maximal) consensus (between P1 and P2).

30 C. Sakama and K. Inoue

We will often omit “between P1 and P2” when it is clear from the context. The above
program Q or R is also called a (minimal or maximal) consensus program.

Intuitively, a result of minimal consensus represents a minimal agreement. That is,
an answer set of Q is a minimal set of beliefs which are included in both an answer
set of P1 and an answer set of P2. By contrast, a result of maximal consensus repre-
sents a maximal agreement. A minimal/maximal consensus is a program which has the
meaning as a collection of such minimal/maximal agreement.

Example 3.1. For AS(P1) = {{p, s}, {q}} and AS(P2) = {{p, t}, {r}}, cons(P1,
P2) = {∅, {p}}. Then, the result of minimal consensus is ∅, while the result of maximal
consensus is { p }.

The following properties directly hold by Definition 3.2.

Proposition 3.1. Let P1 and P2 be two programs, Q a minimal consensus, and R a
maximal consensus. Consensus programs have the following properties.

1. Q and R are consistent iff both P1 and P2 are consistent, or one is consistent and
the other is contradictory. In particular, if P1 is contradictory, AS(Q) = AS(R) =
AS(P2).

2. Q and R are contradictory iff both P1 and P2 are contradictory.
3. Q and R are incoherent iff either P1 or P2 is incoherent.

Proposition 3.2. When two programs P1 and P2 are both categorical, minimal and
maximal consensus coincide.

By Proposition 3.1, when one of two programs is inconsistent, the results of consensus
are rather trivial. We thus consider consensus of consistent programs hereafter.

Proposition 3.3. Let P1 and P2 be two consistent programs, Q a minimal consensus,
and R a maximal consensus. Then,

1. ∀U ∈ AS(Q), ∃S ∈ AS(P1) and ∃T ∈ AS(P2) such that U ⊆ S and U ⊆ T .
2. ∀V ∈ AS(R), ∃S ∈ AS(P1) and ∃T ∈ AS(P2) such that V ⊆ S and V ⊆ T .
3. ∀S ∈ AS(P1) and ∀T ∈ AS(P2), ∃ U ∈ AS(Q) such that U ⊆ S and U ⊆ T .

Proof. Since U = S ∩ T for some S ∈ AS(P1) and T ∈ AS(P2), U ⊆ S and U ⊆ T
hold. Thus, 1 and 2 hold. As U is a minimal element of cons(P1, P2), the result 3
follows. �

Proposition 3.3 asserts that a result of minimal/maximal consensus reflects a part of
beliefs included in an answer set of every program. Conversely, beliefs included in an
answer set of every program are partly reflected as a result of minimal consensus. By
contrast, beliefs included in an answer set of a program may not be reflected as a result
of maximal consensus.

Example 3.2. In Example 3.1, the result of maximal consensus { p } reflects a part of
beliefs in the answer set {p, s} of P1 and a part of beliefs in the answer set {p, t} of
P2. But beliefs in the answer set {q} of P1 and {r} of P2 is not reflected as a result of
maximal consensus.

Constructing Consensus Logic Programs 31

Comparing results of minimal consensus and maximal consensus, a result of maximal
consensus generally contains more information than a result of minimal consensus. A
result of minimal consensus easily becomes an empty set as in Example 3.1.

It may happen that the results of consensus coincide with answer sets of one of the
original programs.

Definition 3.3. For two programs P1 and P2, let Q be a minimal consensus and R a
maximal consensus. When AS(Q) = AS(P1) (resp. AS(R) = AS(P1)), P1 domi-
nates P2 under minimal (resp. maximal) consensus.

Every consistent program dominates contradictory programs under minimal/maximal
consensus (Proposition 3.1(1)). When P1 dominates P2 under minimal/maximal con-
sensus, we can easily have a consensus program as P1. The next proposition presents a
situation in which such domination happens.

Proposition 3.4. Let P1 and P2 be two consistent programs. Then,

1. If S ⊆ T for any S ∈ AS(P1) and for any T ∈ AS(P2),
P1 dominates P2 under minimal/maximal consensus.

2. If S ⊆ T for any S ∈ AS(P1) and for some T ∈ AS(P2),
P1 dominates P2 under maximal consensus.

Proof. (1) If S ⊆ T for any S ∈ AS(P1) and for any T ∈ AS(P2), it holds that
cons(P1, P2) = AS(P1). Then, AS(Q) = AS(R) = AS(P1) and P1 dominates P2
under minimal/maximal consensus. (2) If S ⊆ T for any S ∈ AS(P1) and for some
T ∈ AS(P2), S ∩ T = S holds for such T . For any T ′ ∈ AS(P2) such that S �⊆ T ′,
S ∩ T ′ ⊂ S holds. As S ∩ T ′ ⊂ S ∩ T , AS(R) = AS(P1). Hence, P1 dominates P2
under maximal consensus. �

Skeptical/credulous inference in consensus programs has the following properties.

Proposition 3.5. Let P1 and P2 be two consistent programs, Q a minimal consensus,
and R a maximal consensus. Then,

1. skp(Q) = skp(P1) ∩ skp(P2).
2. skp(Q) ⊆ skp(R).
3. crd(R) = crd(P1) ∩ crd(P2).
4. crd(Q) ⊆ crd(R).

Proof. 1. For any L ∈ Lit, L ∈ skp(Q)
iff ∀U ∈ min(cons(P1, P2)), L ∈ U
iff ∀V ∈ cons(P1, P2), L ∈ V
iff (∀S ∈ AS(P1), L ∈ S) and (∀T ∈ AS(P2), L ∈ T)
iff L ∈ skp(P1) ∩ skp(P2).

2. For any L ∈ Lit, L ∈ skp(Q)
iff ∀U ∈ min(cons(P1, P2)), L ∈ U
only if ∀V ∈ max(cons(P1, P2)), L ∈ V
iff L ∈ skp(R).

32 C. Sakama and K. Inoue

3. For any L ∈ Lit, L ∈ crd(R)
iff ∃U ∈ max(cons(P1, P2)), L ∈ U
iff ∃V ∈ cons(P1, P2), L ∈ V
iff (∃S ∈ AS(P1), L ∈ S) and (∃T ∈ AS(P2), L ∈ T)
iff L ∈ crd(P1) ∩ crd(P2).

4. For any L ∈ Lit, L ∈ crd(Q)
iff ∃U ∈ min(cons(P1, P2)), L ∈ U
only if ∃V ∈ max(cons(P1, P2)), L ∈ V
iff L ∈ crd(R). �
Thus, minimal consensus extracts skeptical consequences that are common between
two programs. By contrast, maximal consensus extracts credulous consequences that
are common between two programs. The converse inclusion relations in the second and
fourth items of Proposition 3.5 do not hold in general.

Example 3.3. Let AS(P1)={{p, q}, {q, r}} and AS(P2)={{p, q}} where skp(P1) =
{q}, crd(P1) = { p, q, r }, and skp(P2) = crd(P2) = { p, q }. The result of mini-
mal consensus is AS(Q) = {{q}} and the result of maximal consensus is AS(R) =
{{p, q}}. Then, crd(Q) ⊆ crd(R) and skp(Q) ⊆ skp(R).

Proposition 3.5 shows that minimal consensus (resp. maximal consensus) is appropriate
for making consensus among skeptical (resp. credulous) reasoners. In building consen-
sus, the problem of interest is the case where one program does not dominate the other
and the result of consensus is consistent. In the next section, we present methods for
computing consensus programs.

4 Computing Consensus Programs

This section assumes function-free logic programs which are instantiated to finite
ground programs. The following transformations are applied to a finite ground EDP P .

– (Elimination of tautologies)
Delete a rule r from P if head(r) ∩ body+(r) �= ∅.

– (Elimination of non-minimal rules)
Delete a rule r from P if there is another rule r′ in P such that head(r′) ⊆ head(r),
body+(r′) ⊆ body+(r) and body−(r′) ⊆ body−(r).

– (Partial evaluation) [3,11] If P contains a rule head(r) ← body(r) such that L ∈
body+(r), and contains ri (i = 1, . . . , n) with L ∈ head(ri), replace r with the
following n rules: head(r) ∪ (head(ri) \ {L}) ← (body(r) \ {L}) ∪ body(ri).

– (Elimination of unfired rules)1

Delete a rule r from P if head(r′) ∩ body+(r) = ∅ for any rule r′ in P .

Let T (P) be a program which is obtained from P by applying one of the transforma-
tions presented above. Also, let T k+1(P) = T (T k(P)) (k ≥ 0) where T 0(P) = P .
Iterative application of transformations reaches a fixpoint T n(P) = T n−1(P) (n ≥ 1)
and satisfies the following property.

1 This transformation is considered a special case of partial evaluation in clausal logic [7]. We
separate this one here as extended disjunctive programs are outside of clausal logic.

Constructing Consensus Logic Programs 33

Proposition 4.1. ([3]) Let P be a program, and T transformations presented above.
Then, there is a fixpoint T n(P) = T n−1(P). Moreover, for any such n, T n(P) is a
kernel form and AS(P) = AS(T n(P)).

In what follows, a fixpoint T n(P), which is in a kernel form, is represented by ker(P).

Definition 4.1. Let P1 and P2 be two programs, and Σ ⊆ 2Lit an anti-chain over Lit.

1. Compute kernel forms ker(P1) and ker(P2).
2. Let S ∈ Σ. For any rule r ∈ ker(P1) ∪ ker(P2) satisfying head(r) ∩ S �= ∅,

construct a rule r∗ such that
– head(r∗) = head(r) ∩ S,
– body(r∗) = body(r) ∪ { not L | L ∈ head(r) \ S }

∪ { not M | M ∈ T \ S for any T ∈ Σ }.
Put R(S) = {r∗} as the set of all such rules.

3. For any S ∈ Σ, collect R(S) as
⋃

S∈Σ R(S).

We define P1 �Σ P2 =
⋃

S∈Σ R(S).

The intuitive meaning of the transformation is as follows. First, kernel forms of P1 and
P2 are computed by the fixpoint construction of T . In the second step, from ker(P1)
and ker(P2), any rule r which derives each literal in S is first selected. The rule r is
transformed to r∗ by (1) restricting disjuncts in the head(r) to those literals appearing
in S, (2) literals in head(r) \ S are shifted to the body as the set of NAF-literals, and
(3) any literal appearing in T ∈ Σ but not in S is appended as the set of NAF-literals.
The newly appended NAF-literals do not contribute to the derivation of literals in S.
Finally, in the third step, those generated rules r∗ are collected as a single program. Note
that P1 �Σ P2 contains no integrity constraint. Integrity constraints do not contribute to
producing any element included in a set S ∈ Σ. The program P1�ΣP2 may contain non-
minimal rules which are redundant. In this case, those rules are eliminated according to
the second transformation in T .

Example 4.1. Consider two programs:

P1 : p ← q,

q ← not r,

r ← not q,

P2 : p ← r,

q ; r ←,

and Σ = {{p}, {q}, {r}}. First, ker(P1) and ker(P2) become

ker(P1) : p ← not r,

q ← not r,

r ← not q,

ker(P2) : p ; q ←,

q ; r ← .

34 C. Sakama and K. Inoue

For {p} ∈ Σ, the first rule in ker(P1) and the first rule in ker(P2) are transformed to
the same rule:

R({p}) : p ← not q, not r .

Likewise, for {q} ∈ Σ and {r} ∈ Σ, transformed rules become

R({q}) : q ← not p, not r ,

R({r}) : r ← not p, not q .

As a result, P1 �Σ P2 becomes

p ← not q, not r,

q ← not p, not r,

r ← not p, not q.

The operator �Σ has the following properties.

Proposition 4.2. The operation �Σ is commutative and associative.

Proof. The commutative law P1 �Σ P2 = P2 �Σ P1 is straightforward. To see the
associative law, both (P1 �Σ P2) �Σ P3 and P1 �Σ (P2 �Σ P3) consist of rules r∗ build
from any r ∈ ker(P1) ∪ ker(P2) ∪ ker(P3). As Σ is common, two programs contain
the same transformed rules. Hence, (P1 �Σ P2) �Σ P3 = P1 �Σ (P2 �Σ P3). �

The proposition implies that the operation �Σ is confluent; given an anti-chain set Σ
and a set of programs, the operation produces the same program independent of the
order of computation.

Lemma 4.3. Let P be a program, and S a consistent answer set of P . Then, for any
L ∈ Lit, L ∈ S iff there is a rule r ∈ ker(P) such that L ∈ head(r), S ∩ (head(r) \
{L}) = ∅, and S ∩ body−(r) = ∅.

Proof. Suppose that for some literal L ∈ S, there is no rule r ∈ ker(P) satisfying the
condition. Then, for every rule r ∈ ker(P), L �∈ head(r) or S ∩ (head(r) \ {L}) �= ∅
or S∩body−(r) �= ∅. Thus, for every rule r ∈ ker(P), S∩body−(r) = ∅ implies either
L �∈ head(r) or S∩(head(r)\{L}) �= ∅ (†). Next, consider the reduct ker(P)S . Since
S is an answer set of ker(P) (Proposition 4.1), S is a minimal set satisfying ker(P)S .
For any rule r′ ∈ ker(P)S , (†) implies either L �∈ head(r′) or S ∩ (head(r′) \ {L}) �=
∅. In this case, S′ = S \ {L} satisfies r′. This contradicts the fact that S is a minimal
set satisfying ker(P)S .

Conversely, suppose L �∈ S in the presence of a rule r ∈ ker(P) satisfying the
condition. Then, L ∈ head(r), S ∩ (head(r) \ {L}) = ∅, and S ∩ body−(r) = ∅ imply
that S does not satisfy r. This contradicts the fact that S satisfies ker(P). �

Lemma 4.4. Let P1 and P2 be two consistent programs, and Σ ⊆ cons(P1, P2) an
anti-chain over 2Lit. Then, AS(P1 �Σ P2) = Σ.

Proof. Let U ∈ Σ. For any r∗ ∈ P1 �Σ P2, if r∗ ∈ R(U ′) for U ′ ∈ Σ with U ′ �= U ,
body(r∗) includes not L for L ∈ U \U ′. Every such rule is eliminated in (P1 �Σ P2)U .

Constructing Consensus Logic Programs 35

Then, (P1 �Σ P2)U consists of facts: head(r) ∩ U ← where body−(r) ∩ U = ∅.
Thus, U satisfies (P1 �Σ P2)U . Suppose that there is a set V ⊆ U which satisfies
(P1�ΣP2)U . Then, there is a literal L ∈ U\V . For any fact head(r∗) ← in (P1�ΣP2)U ,
V ∩(head(r∗)\{L}) �= ∅. By V ⊆ U , this implies U∩(head(r∗)\{L}) �= ∅ (†). On the
other hand, by U = S ∩T for some S ∈ AS(P1) and T ∈ AS(P2), L ∈ S ∩T implies
that there is a rule r1 ∈ ker(P1) such that L ∈ head(r1), S ∩ (head(r1) \ {L}) = ∅,
and S ∩ body−(r1) = ∅; and there is a rule r2 ∈ ker(P2) such that L ∈ head(r2),
T ∩(head(r2)\{L}) = ∅, and T ∩body−(r2) = ∅ (Lemma 4.3). As U ⊆ S and U ⊆ T ,
U ∩ (head(r1)\{L}) = ∅ and U ∩body−(r1) = ∅; and U ∩ (head(r2)\{L}) = ∅ and
U ∩ body−(r2) = ∅. Such r1 and r2 are transformed to r∗1 and r∗2 in R(U) ⊆ P1 �Σ P2,
where head(r∗1) = head(r∗2) = L; and body−(r∗1) = body−(r1)∪ (head(r1) \ {L})∪
{ M | M ∈ U ′\U for any U ′ ∈ Σ } and body−(r∗2) = body−(r2)∪(head(r2)\{L})∪
{ M | M ∈ U ′\U for any U ′ ∈ Σ }. By U∩body−(r∗1) = U∩body−(r∗2) = ∅, (P1�Σ

P2)U includes the fact L ←. Thus, U ∩ (head(r∗1)\{L}) = U ∩ (head(r∗2)\{L}) = ∅
for the fact L ← in (P1 �Σ P2)U . This contradicts the assertion (†). Hence, there is no
such L, thereby U = V . Therefore, U is a minimal set satisfying (P1 �Σ P2)U , and an
answer set of P1 �Σ P2.

Conversely, let U ∈ AS(P1 �Σ P2). Then, for any L ∈ U there is a rule r∗ in
P1 �Σ P2 such that L ∈ head(r∗), U ∩ (head(r∗) \ {L}) = ∅, and U ∩ body−(r∗) = ∅
(Lemma 4.3). As L ∈ head(r∗) implies L ∈ V for some V ∈ Σ, L ∈ U implies
L ∈ V for some V ∈ Σ (‡). Suppose that there is no V ∈ Σ such that U ⊆ V . Then,
for any V ∈ Σ, there is a literal L′ ∈ U \ V . Since L′ is included in some V ′ ∈ Σ
(by (‡)), every r∗ ∈ R(V) contains not L′ in body(r∗). Then, R(V)U becomes ∅, so
(P1 �Σ P2)U =

⋃
V ∈Σ R(V)U = ∅. Thus, U �∈ AS(P1 �Σ P2). Contradiction. Hence,

there is V ∈ Σ such that U ⊆ V . By the above proof, V ∈ Σ is an answer set of
P1 �Σ P2. Hence, U ⊆ V implies V ⊆ U . Therefore, U = V and U ∈ Σ. �

Given two programs P1 and P2, let Q be a minimal consensus and R a maximal con-
sensus. By Definition 3.2, both AS(Q) and AS(R) are anti-chains over 2Lit, and
AS(Q) ⊆ cons(P1, P2) and AS(R) ⊆ cons(P1, P2) hold. So we can apply the proce-
dure of Definition 4.1 for Σ = AS(Q) and Σ = AS(R). For notational simplicity, we
write �AS(Q) as �Q, and �AS(R) as �R.

Theorem 4.5. Let P1 and P2 be two consistent programs. Then, a minimal consensus
Q is given as the program P1�QP2, and a maximal consensus R is given as the program
P1 �R P2.

Proof. The results follow from Lemma 4.4. �

The result of Theorem 4.5 presents that the program P1 �Q P2 realizes minimal consen-
sus, and P1 �R P2 realizes maximal consensus.

Example 4.2. In Example 4.1, Σ is the result of maximal consensus AS(R) between
P1 and P2. Hence, AS(R) = AS(P1 �R P2) holds.

A consensus program P1 �Q P2 or P1 �R P2 is constructed inductively by the result
of consensus AS(Q) or AS(R). The need of a consensus program, in addition to the
results of consensus, is explained as follows. A result of consensus represents common

36 C. Sakama and K. Inoue

beliefs included in an answer set of every program. However, it brings no information
on which the consensus is ground. A consensus program includes sufficient conditions
in the original programs to derive beliefs included in the results of consensus. In the
next section, we illustrate the use of consensus programs using an example.

By Definition 4.1, the procedure for computing P1 �Σ P2 includes computation of
kernel forms of P1 and P2 at the first step, which requires exponential computation in
the worst case. Once kernel forms are computed, the second and third steps are exe-
cuted in time polynomial to |ker(P1) ∪ ker(P2)| × |Σ|, where |ker(P)| represents the
number of rules in ker(P) and |Σ| represents the number of sets in Σ. In practice, the
computation of kernel programs could be done as a compilation process. On the other
hand, in runtime environments the computation could be done only for the part of rules
that are required to build consensus. The latter case is formally stated below.

Definition 4.2. Let P1 and P2 be two programs, and C a minimal/maximal consensus
program. Given a set D of literals, a program C′ ⊆ C is called a consensus program
with respect to D if C′ = { r | r ∈ C and head(r) ∩ D �= ∅ }.

A consensus program with respect to a particular set D is obtained as

σD(P1 �Σ P2) = { r | r ∈ P1 �Σ P2 and head(r) ∩ D �= ∅ }

where Σ is either AS(Q) or AS(R), and D ∩ S �= ∅ for some S ∈ Σ. Generally,
σD(P1 �Σ P2) has a computational advantage over P1 �Σ P2. This is because we are in-
terested in a particular set D of literals, there is no need for computing the whole kernel
programs ker(P1) and ker(P2) in the first step of Definition 4.1. Instead, for every rule
r ∈ P1 satisfying head(r) ∩ D �= ∅, iteratively applying the program transformations
T produces the set of conditional facts such that

Γ1 = { r | head(r) ∩ D �= ∅ and body+(r) = ∅ }

where Γ1 ⊆ ker(P1) holds. Likewise, a set Γ2(⊆ ker(P2)) of conditional facts is
produced by P2. Then, for such Γ1 and Γ2, the procedure of Definition 4.1 is modified
as follows.

Definition 4.3. Let P1 and P2 be two programs, and Σ ⊆ 2Lit an anti-chain over Lit.
Given a set D of literals such that D ∩ S �= ∅ for some S ∈ Σ;

1. Compute sets of conditional facts Γ1 and Γ2 as presented above.
2. Let S ∈ Σ. For any rule r ∈ Γ1 ∪ Γ2 satisfying head(r) ∩ S �= ∅, construct a rule

r∗ as in Definition 4.1, and put R′(S) = {r∗} as the set of all such rules.
3. For any S ∈ Σ, collect R′(S) as

⋃
S∈Σ R′(S).

Put σD(
⋃

S∈Σ R′(S)) = { r | r ∈
⋃

S∈Σ R′(S) and head(r) ∩ D �= ∅ }.

Proposition 4.6. σD(P1 �Σ P2) = σD(
⋃

S∈Σ R′(S)).

Proof. Any r∗ ∈ σD(P1 �Σ P2) satisfies head(r∗) ∩ D = head(r) ∩ S ∩ D �= ∅ for
r ∈ ker(P1) ∪ ker(P2) and S ∈ Σ. On the other hand, any r∗ ∈ σD(

⋃
S∈Σ R′(S))

satisfies head(r∗) ∩ D = head(r) ∩ S ∩ D �= ∅ for r ∈ Γ1 ∪ Γ2 and S ∈ Σ. Since
Γi = { r | r ∈ ker(Pi) and head(r) ∩ D �= ∅ } (i = 1, 2), the result holds. �

Constructing Consensus Logic Programs 37

Example 4.3. In Example 4.1, let D = {p}. Then,

Γ1 : p ← not r ,

Γ2 : p ; q ←

are obtained as conditional facts with respect to D from P1 and P2, respectively. Each
rule in Γ1 ∪ Γ2 is transformed to

p ← not q, not r,

q ← not p, not r

in P1 �Σ P2. As a result, σD(P1 �Σ P2) contains the single rule

p ← not q, not r .

5 Application to Multi-agent Consensus

In multi-agent systems, consensus could be achieved in different ways. In one way,
agents have their own knowledge bases and build consensus through communication.
In this case, every agent can share the result of consensus. In another way, there is a
master agent who coordinates slave agents. In this case, the master agent builds con-
sensus but slave agents are not necessarily share the result of consensus. In both cases,
a consensus program serves as a social knowledge base which best reflects belief of
individual agents. As shown in Proposition 4.2, the operation �Σ is applied to more
than two programs. Thus, minimal/maximal consensus are considered in multi-agent
systems in which agents have knowledge bases represented by logic programs. In this
section, we give an example to illustrate a process of building consensus among such
agents.

Example 5.1. There are three agents, John, Mary, and Susie, who cook dinner together.
Each agent has different preference as follows:

1. John wants to have either meat or fish. If he eats meat, he wants to have salad. Else
if he eats fish, he wants to have soup. Concerning drinks, he prefers red wine in
case of meat, and white wine in case of fish.

2. Mary is vegetarian, so she eats neither meat nor fish. Instead, she wants to have
both salad and soup. She likes wine, but no preference between red and white.

3. Susie likes meat and wants to take either salad or soup. She usually drinks beer, but
she will give up beer if other two agents agree with drinking red wine. She do not
want white wine.

The three agents can communicate on-line. They do not share all their knowledge, but
they are informed of results of consensus.

Beliefs of those agents are encoded by the following three logic programs.

Pj : meat ← not fish,

fish ← not meat,

38 C. Sakama and K. Inoue

salad ← meat,

soup ← fish,

red ← meat,

white ← fish ,

Pm : salad ←,

soup ←,

red ; white ←,

← meat,

← fish ,

Ps : meat ←,

salad ; soup ←,

beer ← not ¬ beer,

¬ beer ← red,

← white.

Here, Pj , Pm, and Ps correspond to John, Mary, and Susie, respectively. Each program
has the answer sets:

AS(Pj) : { meat, salad, red }, { fish, soup, white };
AS(Pm) : { salad, soup, red }, { salad, soup, white };
AS(Ps) : { meat, salad, beer }, { meat, soup, beer }.

In this situation, the result of minimal consensus is the empty set, while the result of
maximal consensus is { salad } or { soup }. If three agents are credulous reasoners,
every agent agrees with cooking either salad or soup. The maximal consensus program
Pj �R Pm �R Ps then becomes

salad ← not soup,

soup ← not salad,

after eliminating non-minimal rules. The program represents common knowledge
agreed by the agents.

The story goes on. Three agents notice that there is no consensus about drink. How-
ever, Susie can change her preference if the other two agents agree with drinking red
wine. Then, she asks John and Mary to let her know their consensus about drinking.
In response to this, John and Mary construct a consensus program with respect to
drinking. The maximal consensus results in {{ salad, red }, { soup, white }}. Then,
for D = { red, white }, the maximal consensus program with respect to D becomes
σD(Pj �R Pm):

red ← not soup, not white,

white ← not red, not salad,

Constructing Consensus Logic Programs 39

after eliminating non-minimal rules. As a result, John and Mary inform Susie of their
consensus program with respect to D. Susie then updates her program as P+

s = Ps ∪
σD(Pj �R Pm):

P+
s : meat ←,

salad ; soup ←,

beer ← not ¬ beer,

¬ beer ← red,

← white,

red ← not soup, not white,

white ← not red, not salad.

The updated program has the single answer set: { meat, salad, ¬beer, red }. The re-
sult of maximal consensus among Pj , Pm and P+

s then becomes { salad, red }. That
is, three agents now agree with preparing salad and red wine.

Note that in making the final consensus, the consensus program plays an important
role. This is because John and Mary agree on drinking red wine on the condition that
they do not take both soup and white wine. The consensus program σD(Pj �R Pm)
contains this information. So, if Susie took soup, the agreement (drinking red wine)
could not be reached. On the other hand, a simple result of consensus, red or white,
does not bring information on which the consensus is ground. This explains the need of
constructing a consensus program, even after obtaining the results of consensus.

6 Related Work

Several studies argue the semantic issue of multiple logic programs. Baral et al. [1] in-
troduce algorithms for combining multiple logic programs. Given two stratified logic
programs P1 and P2, they produce a program which has an answer set as a subset of
an answer set of the program union P1 ∪ P2. Program union or merging is the simplest
operation for combining different theories. When programs are nonmonotonic, how-
ever, merging does not always produce consensus among agents, even though they do
not contradict one another. Consider the following example from [8]. A brave driver
crosses railway tracks in the absence of information on an approaching train:

cross ← not train .

On the other hand, a careful driver crosses railway tracks in the presence of information
on no approaching train:

cross ← ¬ train .

Simply merging these two programs produces the single solution {cross}, which would
be unacceptable for the careful driver. In our framework, both minimal and maximal
consensus produce the empty set.

Brogi et al. [4] introduce meta-level operations for composing normal logic pro-
grams. Among them, the intersection operation combines two programs by merging

40 C. Sakama and K. Inoue

pair of rules with unifiable heads. For instance, given two programs:

P1 : likes(x, y) ← not bitter(y),
hates(x, y) ← sour(y),

P2 : likes(Bob, y) ← sour(y),

the program P1 ∩ P2 consists of the single rule:

likes(Bob, y) ← not bitter(y), sour(y).

The produced rule specifies information which is common to the original two programs.
However, the operation is performed on individual rules, so that resulting rules do not
always produce common conclusions. For instance, suppose two programs P1 = { p ←
q, not r, q ← } and P2 = { p ← not q, r, r ← }. Applying intersection operation,
the result becomes P1 ∩ P2 = { p ← q, r, not q, not r }, which never produces the
common conclusion p. By contrast, the consensus program becomes P1 �Q P2 = P1 �R

P2 = { p ← not q, p ← not r }, which has the single answer set {p}.
Buccafurri and Gottlob [5] introduce a framework of compromise logic programs

which aims at reaching common conclusions. Given a collection of programs T =
{P1, . . . , Pn}, the joint fixpoint semantics of T is defined as the set of minimal elements
of JFP (T) = FP (P1) ∩ · · · ∩ FP (Pn) where FP (Pi) is the set of all fixpoints of
Pi. For instance, when two programs P1 = { p ← } and P2 = { p ← p } are given,
by FP (P1) = {{p}} and FP (P2) = {∅, {p}} the joint fixpoint semantics becomes
{p}. Thus, in their framework a tautology p ← p has a special meaning that “if p is
required by another agent, let it be”. With this reading, however, P1 = { p ← } and
P3 = { p ← p, q ← } have the joint fixpoint semantics ∅, that is, P3 does not
tolerate p when another irrelevant fact q exists in the program. By contrast, the result
of minimal/maximal consensus is not affected by the existence of tautologies and the
result is P1 �Q P2 = P1 �R P2 = P1 �Q P3 = P1 �R P3 = ∅.

Consensus is a result of agreement among multiple agents, and the process of reach-
ing agreement is called negotiation. Meyer et al. [10] introduce a logical framework for
negotiating agents. They introduce two different modes of negotiation: concession and
adaptation. They characterize such negotiation by rational postulates and provide meth-
ods for constructing outcomes. In their framework each agent is represented by classical
propositional theories, so that those postulates are not generally applied to nonmono-
tonic theories. Moreover, their negotiation outcome coincides with the result of merging
when two propositional theories are consistent with each other. This is different from
our results of consensus as discussed above. Foo et al. [6] introduce a theory of multi-
agent negotiation in answer set programming. Starting from the initial agreement set
S ∩ T for an answer set S of an agent and an answer set T of another agent, each agent
extends this set to reflect its own demand while keeping consistency with demand of
the other agent. When two answer sets S and T do not contradict each other, their al-
gorithm just returns the union S ∪ T as the trivial deal. In the “cross-train” example,
the algorithm returns { cross } as the solution, which would be unsatisfactory as stated
above. Wooldridge and Parsons [14] provide conditions for multiple agents to reach an
agreement. Given formulas ψi (1 ≤ i ≤ n) as proposals made by n agents on the final

Constructing Consensus Logic Programs 41

round of negotiation, an agreement is reached if ψ1 ∧ · · · ∧ ψn is satisfiable. Another
stronger condition requires convergence to equivalent proposals ψ1 ⇔ · · · ⇔ ψn. For
instance, given two proposals ψ1 = p ∨ q and ψ2 = p ∨ ¬q, the first type of agreement
succeeds as ψ1 ∧ ψ2 ≡ p, while the second type of agreement fails as ψ1 �≡ ψ2. In the
context of logic programming, two programs { p ; q ← } and { p ; ¬q ← } has the result
of maximal consensus {p} and the result of minimal consensus ∅. Thus, two types of
agreement correspond to different results of consensus. Such correspondence does not
hold in general, however. When ψ1 = p and ψ2 = q, the first type of agreement pro-
duces ψ1 ∧ ψ2 ≡ p ∧ q. The result corresponds to merging two theories and is different
from the result of minimal/maximal consensus.

Sakama and Inoue [12] introduce a framework of coordination between logic pro-
grams. Given two programs P1 and P2, they construct (i) a program Q which has the set
of answer sets such that AS(Q) = AS(P1)∪AS(P2); and (ii) a program R which has
the set of answer sets such that AS(R) = AS(P1)∩AS(P2). The program Q is called
generous coordination and R is called rigorous coordination of two programs. Com-
pared with the framework of consensus in this paper, generous/rigorous coordination
does not change answer sets of the original programs. That is, generous one collects
every answer set of each program, while rigorous one picks up answer sets that are
common to each program. By contrast, the result of consensus in this paper extracts
partial information that are commonly included in an answer set of every program.
Thus, coordination and consensus result in different effects, and are used for different
purposes. Sakama and Inoue [13] propose a method of combining answer sets of differ-
ent programs. Given two programs P1 and P2, they construct a program Q satisfying
AS(Q) = min(AS(P1) � AS(P2)) where AS(P1) � AS(P2) = { S � T | for S ∈
AS(P1) and T ∈ AS(P2), S � T = S∪T if S ∪ T is consistent; otherwise, S�T =
Lit }. The program Q is called a composition of P1 and P2. The result of composition
combines answer sets of two programs, and extends some answer sets of one program
by additional information of another program. This is in contrast to our present work
which takes intersection of answer sets of two programs. Coordination, composition,
and consensus are thus all intended to formalize different types of social behaviors of
multiple agents in logic programming. A recent study [9] reveals that those theories
have close relations to a theory of generalization in answer set programming.

7 Conclusion

This paper introduced the notion of consensus that extracts common beliefs from
answer sets of multiple logic programs. Two different types of consensus, minimal
consensus and maximal consensus, were considered, and a method of constructing con-
sensus programs was developed. We applied the framework to building consensus in
multi-agent systems. From the viewpoint of program synthesis, construction of con-
sensus programs is considered as a program development under a specification that
requests a program reflecting the meanings of two or more programs. In application, it
serves as a step on understanding social behaviors of multiple agents by means of logic
programming.

42 C. Sakama and K. Inoue

The procedure for constructing consensus programs requires computation of all an-
swer sets of programs. This may often be infeasible when a program possesses an expo-
nential number of answer sets. The same problem, however, arises in computing answer
sets by existing answer set solvers. In future work, we will refine the present framework
and investigate formulation of other types of social behaviors among logic program-
ming agents.

References

1. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE Transactions
of Knowledge and Data Engineering, 3(2):208–220, 1991.

2. C. Baral and M. Gelfond. Logic programming and knowledge representation. Journal of
Logic Programming, 19/20:73–148, 1994.

3. S. Brass and J. Dix. Semantics of (disjunctive) logic programs based on partial evaluation.
Journal of Logic Programming, 40(1):1–46, 1999.

4. A. Brogi, S. Contiero, and F. Turini. Programming by combining general logic programs.
Journal of Logic and Computation, 9(1):7–24, 1999.

5. F. Buccafurri and G. Gottlob. Multiagent compromises, joint fixpoints, and stable models.
Computational Logic: Logic Programming and Beyond, Lecture Notes in Artificial Intelli-
gence 2407, pp. 561–585, Springer, 2002.

6. N. Foo, T. Meyer, Y. Zhang, and D. Zhang. Negotiating logic programs. Proceedings of the
6th Workshop on Nonmonotonic Reasoning, Action and Change, 2005.

7. P. A. Gardner and J. C. Shepherdson. Unfold/fold transformations of logic programs. in:
J-L. Lassez and G. Plotkin (eds.), Computational Logic, Essays in Honor of Alan Robinson,
pp. 565-583, MIT Press, 1991.

8. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3/4):365–385, 1991.

9. K. Inoue and C. Sakama. Generality relations in answer set programming. Proceedings of the
22nd International Conference on Logic Programming, Lecture Notes in Computer Science
4079, pp. 211–225, Springer, 2006.

10. T. Meyer, N. Foo, R. Kwok, and D. Zhang. Logical foundation of negotiation: outcome,
concession and adaptation. Proc. AAAI-04, pp. 293–298, MIT Press, 2004.

11. C. Sakama and H. Seki. Partial deduction in disjunctive logic programming. Journal of Logic
Programming, 32(3):229–245, 1997.

12. C. Sakama and K. Inoue. Coordination between logical agents. Proceedings of the 5th
International Workshop on Computational Logic in Multi-Agent Systems, Lecture Notes in
Artificial Intelligence 3487, pp. 161–177, Springer, 2005.

13. C. Sakama and K. Inoue. Combining answer sets of nonmonotonic logic programs. Pro-
ceedings of the 6th International Workshop on Computational Logic in Multi-Agent Systems,
Lecture Notes in Artificial Intelligence 3900, pp. 320–339, Springer, 2006.

14. M. Wooldridge and S. Parsons. Languages for negotiation. Proceedings of the 14th European
Conference on Artificial Intelligence, pp. 393–397, IOS Press, 2000.

Supervising Offline Partial Evaluation of Logic

Programs Using Online Techniques�

Michael Leuschel, Stephen-John Craig, and Dan Elphick

Institut für Informatik, Universität Düsseldorf
D-40225, Düsseldorf, Germany

leuschel@cs.uni-duesseldorf.de

Abstract. A major impediment for more widespread use of offline par-
tial evaluation is the difficulty of obtaining and maintaining annotations
for larger, realistic programs. Existing automatic binding-time analyses
still only have limited applicability and annotations often have to be cre-
ated or improved and maintained by hand, leading to errors. We present
a technique to help overcome this problem by using online control tech-
niques which supervise the specialisation process in order to detect such
errors. We discuss an implementation in the logen system and show on
a series of examples that this approach is effective: very few false alarms
were raised while infinite loops were detected quickly. We also present
the integration of this technique into a web interface, which highlights
problematic annotations directly in the source code. A method to auto-
matically fix incorrect annotations is presented, allowing the approach
to be also used as a pragmatic binding time analysis. Finally we show
how our method can be used for efficiently locating errors with built-ins
inside Prolog source code.

1 Introduction

Partial evaluation [11] is a source-to-source program transformation technique
which specialises programs by fixing part of the input of some source program
P and then pre-computing those parts of P that only depend on the fixed part
of the input. The so-obtained transformed programs are less general than the
original but often more efficient. The part of the input that is fixed is referred
to as the static input, while the remainder of the input is called the dynamic
input. The research into controlling partial evaluation can be broadly partitioned
into two schools of thought: the offline and the online approach. In the online
approach all control decisions (i.e., deciding which parts of the input are static
and which parts of the program should be pre-computed) are made online, during
the specialisation process. The idea of the offline approach is to separate the
specialisation process into two phases (cf. Fig. 1):

– First a binding-time analysis (BTA for short) is performed which, given
a program and an approximation of the input available for specialisation,

� This research has been carried out as part of the EU funded project IST-2001-38059
ASAP (Advanced Specialization and Analysis for Pervasive Systems).

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 43–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

44 M. Leuschel, S.-J. Craig, and D. Elphick

Specialised
ProgramSource

Program
BTA

Annotated
Source

Program

Offline Partial
Evaluator

Specialised
Program

Static
Input

Approximation of
Static Input

Online
Watchdog

Alarm

observeraise

Fig. 1. Offline Partial Evaluation and the new watchdog mode

approximates all values within the program and generates annotations that
steer (or control) the specialisation process.

– A (simplified) specialisation phase, which is guided by the result of the BTA.
A short summary of the advantages and disadvantages of offline specialisation
wrt to online specialisation is as follows:

– The offline approach is in principle less precise (see, however, [6]) as it has
to make decisions before the actual static values are known.

– The offline approach leads to simpler specialisers, thus making self-application
easier and leading to more efficient specialisation. Especially the specialisa-
tion phase proper (i.e., after the BTA has been performed) is usually consid-
erably faster than specialisation using an online specialiser. This is relevant
in situations where the same source program is re-specialised multiple times
w.r.t. the same approximation of the static data.

– The offline approach is more predictable, as it is relatively clear from the
annotation which parts of the code will be pre-computed. This also means
that it is easier to tune the offline approach by editing the annotations.

An offline system for logic programming is the logen system [19]. logen has
successfully been applied to non-trivial interpreters, and can be used to achieve
Jones-optimality [23]. for a variety of interpreters [17], i.e., completely removing
the interpretation overhead.1 As such, logen is of potential interest for many
logic programming areas and applications; for example, logen has been applied
to optimise access control checks in deductive databases [2], to compile denota-
tional semantics language specifications into abstract machine code [31], or to
pre-compile Object Petri nets for later model checking. However, the learning
curve for logen is still considerable and the logen system has up until now
still proven to be too difficult to be used by non-experts in partial evaluation.
The main difficulty lies in coming up with the correct annotations (and then
maintaining them as the source program evolves). Indeed, while some errors
(i.e., annotating an argument as static even though it is dynamic) can be easily

1 Achieving this predictably for a variety of interpreters using online approaches is not
yet fully understood; see, however, [30].

Supervising Offline Partial Evaluation of Logic Programs 45

identified by various abstract interpretation schemes (see, e.g., [5, 8]), ensuring
termination of the specialisation process is a major obstacle. Recent work has
led to a fully automatic BTA [8], but unfortunately the BTA still only provides
partial termination guarantee2; is sometimes overly conservative, especially for
the more involved (and more interesting) applications; and can be too costly to
apply for larger, real-life Prolog programs. Finally, the BTA of [8] does not yet
deal with many of Prolog’s built-ins and non-logical control constructs.

In this paper we present a way to tackle and solve this problem from a new
angle. The main idea is to use online techniques to supervise an offline specialiser.
The central idea is that the user can turn on a watchdog mode which activates
powerful online control methods to supervise the offline specialiser (see Fig. 1).
If the online control detects a potential infinite loop (or some other problem
such as incorrectly calling a built-in) an alarm is raised, helping the user to
identify and fix errors in the annotation. This watchdog mode will obviously slow
down the specialisation process, invalidating one of the advantages of the offline
approach. However, it is the intention that this watchdog would only be activated
in the initial development or maintenance phase of the annotation or when an
error (e.g., apparent non-termination) arises: it is not our intention to have the
watchdog mode permanently enabled (in that case an online partial evaluator
would be more appropriate). In this paper we formally develop this idea, present
an implementation inside the logen system [19] and evaluate its performance on
a series of examples. We show that on most correct annotations no false alarms
are raised, while on incorrect annotations the problems are spotted quickly and
useful feedback is given. We also present a web interface that can further help
the user to quickly spot and automatically fix the problems identified by the
watchdog. We thus hope that this new technique will make it possible for users
to quickly find errors in their annotations. This hope is underpinned by several
initial case studies within the ASAP project.

2 Offline Partial Evaluation

We now describe the process of offline partial evaluation of logic programs.
Throughout this paper we suppose familiarity with basic notions in logic pro-
gramming. We follow the notational conventions of [22]. Formally, evaluating a
logic program P for an atom A consists in building a so-called SLD-tree and then
extracting the computed answer substitutions from every non-failing branch of
that tree. Take for example the following program to match a regular expression
against a (difference) list of characters:

re(empty,T,T). re(ch(X),[X|T],T).
re(or(X,Y),H,T) :- re(X,H,T). re(or(X,Y),H,T) :- re(Y,H,T).
re(star(X),T,T).
re(star(X),H,T) :- re(X,H,T1),re(star(X),T1,T).
re(cat(X,Y),H,T) :- re(X,H,T1),re(Y,T1,T).

2 [9] does provide full termination guarantees for functional programs but is not avail-
able in a running system and does seem not cope very well with interpreters.

46 M. Leuschel, S.-J. Craig, and D. Elphick

As an example, the SLD-tree for re(star(ch(a)),[C],[]) is presented on
the left in Fig. 2. The underlined atoms are called selected atoms. Here there is
only one branch, and its computed answer is C = a.

re(star(ch(a)),[C],[])

re(ch(a),[C],T1),re(star(ch(a)),T1,[])

re(star(ch(a)),[],[])

C=a

re(star(ch(a)),X,[])

re(ch(a),X,T1),re(star(ch(a)),T1,[])

re(star(ch(a)),T1,[])

X=[a|T1]

X=[]

Fig. 2. Complete and Incomplete SLD-trees for the regular expression program

Partial evaluation (also sometimes called partial deduction) for logic programs
proceeds by building possibly incomplete SLD-trees, i.e., trees in which it is
possible not to select certain atoms. The right side of Fig. 2 contains such an
incomplete SLD-tree, where the call re(star(ch(a)),T1,[]) is not selected.
Formally, partial evaluation builds a series of incomplete SLD-trees for a set
of atoms A that is chosen in such a way that all unselected leaf atoms (such
as re(star(ch(a)),T1,[])in Fig. 2) as well as all user queries of interest are
an instance of some atom in A. The specialised program is then extracted from
those trees by producing one new specialised predicate for every atom in A, with
one clause constructed per non-failing branch. The arguments of the specialised
predicate are the variables of the corresponding atom in A. E.g., for A = {
re(star(ch(a)),X,[])} and for the SLD-tree in Fig. 2, we would get:

re__0([]). re__0([a|A]) :- re__0(A).

Partial evaluation techniques for logic programs often start off with an initial
atom A0 of interest: A = {A0}. For every atom in A an SLD-tree is built, and
then all unselected leaf atoms which are not an instance of an atom in A are
added to A. This is repeated until all unselected leaf atoms are an instance
of some atom in A. To ensure termination, generalisation techniques have to
be applied; i.e., atoms in A may be replaced by a more general atom. The
control of partial evaluation for logic programs is thus naturally separated into
two components [24] (see also [16]): The local control controls the construction
of the SLD-trees for the atoms in A and thus determines what the residual
clauses for the atoms in A are. The process of constructing these trees is also
called unfolding. The global control controls the content of A, it decides which
specialised predicates are present in the residual program and ensures that all
unselected leaf atoms are an instance of some atom in A.

In offline partial deduction the local and global control are guided by anno-
tations. The logen system [19] uses two kinds of annotations for this:

– Filter declarations, which declare which arguments (or subarguments) to
which predicates are static and which ones dynamic. This influences the

Supervising Offline Partial Evaluation of Logic Programs 47

global control only. More precisely, for unselected leaf atoms the dynamic
(sub-)arguments are replaced by fresh variables; it is then checked whether
a variant of this generalised atom already exists in A; if not the generalised
atom is added to A.

– Clause annotations, which indicate for every call in the body how that call
should be treated during unfolding; i.e., it influences the local control only.
For now, we assume that a call is either annotated by memo — indicating
that it should not be selected – or by unfold — indicating that it should
be selected. Built-ins (or predicates whose source is not available) can be
annotated as either call — indicating that the call should be executed at
specialization time — or as rescall — indicating that the call should not be
executed at specialization time.

First, let us consider, e.g., an annotated version of the regular expression program
above in which the filter declarations annotate the first and third arguments as
static while the second one is dynamic: :- filter re(static,dynamic,static).

Then let the clause annotations annotate the call re(star(X),T1,T) in the last
clause as memo and all the other calls as unfold. Given a specialisation query
re(star(ch(a)),X,[]), offline partial deduction would proceed as follows:

1. The atom re(star(ch(a)),X,[]) is generalised by replacing the dynamic ar-
guments by variables. In this case, the second argument is already a variable.

2. The generalised atom is added to A and then unfolded. This generates ex-
actly the right SLD-tree depicted in Fig. 2.

3. The leaf atoms of the tree are again generalised and are added to A if no
variant is already in A. In this case there is only one leaf atom—namely
re(star(ch(a)),T1,[])—whose second argument is again already a variable
and a variant of which is already in A. Thus no further unfolding is required.

4. The specialised code is produced by mapping each atom in A to a fresh
predicate whose arguments are the variables of the atoms. In this case
re(star(ch(a)),X,[]) would be mapped to, e.g., re 0(X) resulting in the
same specialised code as above:

re__0([]). re__0([a|A]) :- re__0(A).

3 Watchdog Mode

Below we show how offline partial evaluation can be supervised by online tech-
niques, in order to identify non-terminating annotations. We first need the con-
cept of a well-quasi order, which is used for many online techniques:

Definition 1. A quasi order ≤S on a set S is a reflexive and transitive binary
relation on S × S. A sequence of elements s1, s2, . . . in S is called admissible
with respect to ≤S iff there are no i < j such that si ≤S sj. The relation ≤S

is a well-quasi order (wqo) on S iff there are no infinite admissible sequences
with respect to ≤S.

48 M. Leuschel, S.-J. Craig, and D. Elphick

A widely used wqo is the homeomorphic embedding relation �. The following
is an adaptation of the definition from [28] (see, e.g., [14, 15] for a summary of
its use in online control). In what follows, we define an expression to be either a
term, an atom, a conjunction, or a goal.

Definition 2. The (pure) homeomorphic embedding relation � on expressions
is inductively defined as follows (i.e. � is the least relation satisfying the rules):

1. X � Y for all variables X, Y
2. s � f(t1, . . . , tn) if s � ti for some i
3. f(s1, . . . , sn) � f(t1, . . . , tn) if n ≥ 0 and ∀i ∈ {1, . . . , n} : si � ti.

Notice that n is allowed to be 0 and we thus have c � c for all constant and
proposition symbols. When s � t we also say that s is embedded in t or t is
embedding s. By s � t we denote that s � t and t �� s. The intuition behind the
above definition is that A � B iff A can be obtained from B by “striking out”
certain parts. E.g., we have p(0) � p(s(0)) and f(a, b) � h(f(g(a)), b).

For a finite set of function symbols, � is a well-quasi order, i.e., for every
infinite sequence of expressions s1, s2, . . . there exists i < j such that si � sj .
This property has been used in various online control algorithms (first in [28] for
supercompilation and then in [20] for partial evaluation of logic programs and
then in various other techniques, e.g., [1]). Its main use is to ensure termina-
tion by stopping unfolding/specialisation when a new expression to specialise sj

embeds some earlier expression si of the specialisation history.
In the case of specialisation we know that the function symbols occurring

within a given program (text) are finite. Thus for pure logic programs with-
out built-ins, � is a well-quasi order for calls that can occur at runtime or at
specialisation time. However, certain built-ins (such as is/2 or functor/3) per-
mit a program to generate an unbounded number of new function symbols. For
this we employ the solution from [20, 15]: all function symbols not occurring
within the original program text are classified as dynamic and we add the rule:
f(s1, . . . , sn) � g(t1, . . . , tm) if f/n and g/m are dynamic function symbols.3

We now show how we have used � to act as a “watchdog” in offline specialisa-
tion which is used to supervise both the unfolding process and the memoisation.
Let us first discuss the supervision of the local control. Suppose that we are con-
structing the SLD-tree for a given atom A. A simple solution would be, whenever
an atom is unfolded, to check whether the sequence of selected literals starting
from A up to (and including) the currently selected atom is admissible wrt �.

However, it is well known ([4], see also [16]) in online partial evaluation of
logic programs that examining the sequence of selected atoms does give rise to
suboptimal techniques. Indeed, this sequence does not contain the information
which selected atom actually descends from which other selected atom. This
shortcoming can be remedied by working on the sequence of covering ancestors of
the selected atom, i.e., only those atoms from which the selected atom descends

3 It would be possible to refine this slightly by adding the requirement that there
exists a subsequence of t1, . . . , tm which embeds the arguments to s1, . . . , sn.

Supervising Offline Partial Evaluation of Logic Programs 49

(via resolution). More formally, covering ancestors [4] can be captured in the
following definitions.

Definition 3. If a program clause H ← B1, . . . , Bn is used in a derivation step
with selected atom A then, for each i, A is the parent of the instance of Bi

in the resolvent and in each subsequent goal where an instance originating from
Bi appears (up to and including the goal where Bi is selected). The ancestor
relation is the transitive closure of the parent relation. Let G0, G1, . . . , Gn be
an SLD-derivation with selected atoms A1,A2, . . . , An. The covering ances-
tor sequence of Ai, a selected atom, is the maximal subsequence Aj1 , Aj2 ,
. . .Ajm = Ai of A1, A2, . . . , Ai such that all atoms in the sequence have the
same predicate symbol and,∀1 ≤ k < m it holds that Ajk

is an ancestor of Ajk+1 .

For every atom that is unfolded the supervisor will check whether the cover-
ing ancestor sequence of the selected atom is admissible wrt �. If it is then
specialization will proceed normally. Otherwise, an alarm will be raised: e.g.,
a warning message will be printed and the specialization process will suspend,
allowing the user to choose between aborting or continuing the specialisation
process. For example, in the SLD-tree on the left in Fig. 2, when selecting the
call re(star(ch(a)),[],[])) the watchdog will check whether the sequence
〈re(star(ch(a)),[C],[]) re(star(ch(a)),[],[])〉 is admissible wrt �. As
it is admissible, no alarm is raised.

Let us now examine the global control, which builds up the set A of atoms
to be specialised. To achieve more refined control, the set A is often structured
as a tree [24, 20], called a specialisation tree. Basically, if after unfolding some
atom Aj we have to add one of the unselected leaf atoms Ak in the SLD-tree to
the set A, then we register Ak as a child of Aj in the specialisation tree. We can
thus do the following for atoms annotated as memo: we first build up the global
specialisation tree, i.e., when a call Ak gets memoed during unfolding of Ai, and
Ak is not an instance of another atom that has already been specialised, then we
add Ak as a child of Ai in the specialisation tree. Furthermore, we check whether
the sequence of ancestors of Ak in the tree is admissible wrt �. If it is not, we
raise an alarm and allow the user to choose between aborting or continuing the
specialisation process.

The Implementation. We have integrated the above idea and technique into
the logen system. The logen system uses the so-called “cogen” approach to
specialisation, i.e., given an annotated source program it directly generates a
specialised specialiser for this source program and the annotation (called a gen-
erating extension). In particular, for every clause of the source program logen
derives an “unfolder” clause in the generating extension, having an extra ar-
gument to compute the residual code. Similarly, memoisation predicates are
constructed for the memoised predicates. To implement our watchdog mode the
unfolder predicates do not carry enough information to determine whether un-
folding the body literals is actually safe or not: we need access to the cov-
ering ancestor sequence. For memoised calls, we additionally need the global

50 M. Leuschel, S.-J. Craig, and D. Elphick

specialisation tree. We have adapted the compilation strategy of logen so that
in watchdog mode an extra argument is maintained by the unfolder and mem-
oisation predicates, where both the covering ancestor sequence and the special-
isation tree are built up. In Section 4, we examine empirically whether our
approach is efficient enough to be practical and precise enough to be useful.

Let us now use the watchdog on our regular expression example. First, we
annotate all calls as unfold and run logen from the command line with the
watchdog mode enabled:

% logen re.pl "re(star(ch(a)),X,[])" -w
<| HOMEOMORPHIC WARNING |> : UNFOLDING re(star(ch(a)),A,[]),
History: [re(star(ch(a)),B,[])]
A predicate is possibly being unfolded infinitely often.
You may want to annotate the call as memo.
Type ’c’ to continue unfold, ’F’ to fail branch,
’C’ to continue without further intervention, anything else to abort:

As can be seen, the watchdog has correctly spotted (after a few ms) that
we were about to infinitely unfold the atom re(star(ch(a)),X,[]). If we now
correct our annotation, as suggested, by memoing the last call to re/2 in the
last clause we get the following:

% logen re.pl "re(star(ch(a)),X,[])" -w
/* re(star(ch(a)),A,[]) :-re__0(A). */
re__0([]).
re__0([a|A]) :- re__0(A).

I.e., this time the watchdog has not raised an alarm, and indeed our speciali-
sation now terminates.

4 Experiments

In the first series of experiments we ran our watchdog technique on a series
of correctly annotated, terminating examples. We have gathered some simple
programs as well as a variety of successful applications of the logen system
documented in the literature. The purpose was twofold: first, test whether, de-
spite the overhead, the approach is practical, and second, whether the number
of false alarms is low enough for the approach to be useful.

The results of the experiments are summarised in Table 1. All experiments
were run using Ciao Prolog 1.13 on a Macintosh PowerPC Dual G5, 2.7 GHz with
4.5 GB of RAM running Mac OS X 10.4. The cogen time in the second column is
the time needed to run the cogen of the logen system to generate the generating
extension. Column three contains the same figure for the watchdog mode. The
fourth column then contains the time needed to run the generating extension on
a single specialisation query. Column five contains the same figure for the watch-
dog mode. The sixth column contains the number of alarms, and thus the number

Supervising Offline Partial Evaluation of Logic Programs 51

Table 1. The watchdog approach for correct annotations

Benchmark Cogen Cogen Spec. Spec. False Overhead Overhead
watch watch Alarms One Shot Just Spec.

match 43 ms 65 ms 1.4 ms 1.7 ms 0 1.50 1.21
transpose 44 ms 66 ms 0.5 ms 0.8 ms 0 1.50 1.60
ex depth 45 ms 68 ms 1.7 ms 2.3 ms 0 1.51 1.35
inter medium 48 ms 71 ms 0.4 ms 12.5 ms 0 1.73 31.25
vanilla list 44 ms 67 ms 1.0 ms 1.3 ms 0 1.52 1.30
liftsolve 49 ms 74 ms 1.7 ms 72.3 ms 0 2.89 42.53
lambdaint 60 ms 92 ms 1.6 ms 11.7 ms 0 1.68 7.31
db access 115 ms 145 ms 1.2 ms 10.8 ms 1 1.34 9.00
matlab 94 ms 146 ms 3.4 ms 40.0 ms 0 1.91 11.76
pascal 70 ms 107 ms 3.0 ms 27.3 ms 0 1.84 9.10
picsim 258 ms 390 ms 145.8 ms 1999.4 ms 0 5.92 13.71

Average 0.09 2.12 11.83

of false alarms (as all annotations ensure termination). The overhead of the
watchdog mode in “one-shot” situations (i.e., a single specialisation) is presented
in column seven, while the overhead of the specialisation process without the
cogen time is presented in the last column. The benchmark programs are as
follows. First, match is the semi-naive pattern matcher from [13], specialised
for the pattern [a,a,b]. transpose and ex depth are also taken from [13],
while inter medium is taken from [8]. vanilla list is a variation of the vanilla
interpreter (see [17]) specialised for an object program which is in turn the same
interpreter but with the append as object program. liftsolve is the interpreter
for the ground representation from [13] specialised for the append program.
lambdaint is the interpreter for a small functional language presented in [17],
specialised for the Fibonacci function. db access is the interpreter for access
control from [2] specialised for a particular policy and query pattern (query Q4
in [2]). matlab is the interpreter for a subset of the Matlab language also used
in [21], specialised for the factorial function. pascal is the denotational semantics
interpreter for a small Pascal like language used in [31], specialised for a small
Pascal program so as to obtain assembly like code. picsim is an emulator for
the machine language of PIC processors written by Kim Henriksen and John
Gallagher [10], specialised for a particular machine program (so as to extract
analysis information by further abstract interpretation).

In summary the results are very satisfactory. The overhead on the specialisa-
tion is usually an order of magnitude (this is to be expected, as every unfolding
step and memoisation step is supervised and checked against the history of un-
foldings and earlier memoisations respectively), even though the overhead on
the total time in “one-shot” situations (i.e. time for both the cogen and the spe-
cialisation) is often much less, e.g., 84 % for the pascal experiment or 50 % for
the match benchmark. What is most encouraging, however, is the low number of
false alarms: on only one of the experiments false alarms were raised, and even
there only a single alarm was raised.

52 M. Leuschel, S.-J. Craig, and D. Elphick

We now examine how our approach fares when the annotations are erroneous
and do not ensure termination of the specialiser. This is probably a more typical
use case, as the watchdog would usually be turned on in exactly those circum-
stances. It is, however, more difficult to present empirical data in that setting:
the notion of overhead makes no sense as the offline approach does not terminate;
it is also difficult to quantify the earliest possible moment when non-termination
can be “detected.” Still, we will try to show on a series of examples that our
watchdog technique does find the problem and does so quickly.

In Section 3 we have already looked at a simple example. Let us now examine
the behaviour of the watchdog method on some more realistic examples. Take the
ex depth interpreter used in the previous section, counting the depth of SLD-
trees, but marking this time the depth argument as static rather than dynamic.4

Termination is no longer guaranteed, and this is a common annotation mistake
in offline partial evaluation. This is spotted quickly by our technique (after less
than 5 ms):

% logen ex_depth_nonterm.pl "solve([inboth(X,Y,Z)],0,Depth)." -w
<| HOMEOMORPHIC WARNING|> : MEMO Atom solve([member(A,B)],s(s(s(0))),C),
History: [solve([member(D,E)],s(s(0)),F),solve([member(G,H),member(I,J)],
s(0),K), solve([inboth(L,M,N)],0,O)]

Let us now take the same annotation, but this time unfold all calls to solve.
As above, this is correct from the point of view of binding times (i.e., all argu-
ments marked as static are really static). However, termination is not guaranteed,
something which our technique spots quickly (again after less than 6 ms):

% logen ex_depth_nonterm_local.pl "solve([inboth(X,Y,Z)],0,Depth)." -w
<| HOMEOMORPHIC WARNING |> : UNFOLDING solve([member(A,B)],s(s(s(C))),D),
History: [solve([member(E,F)],s(s(G)),H),solve([member(I,J),member(I,K)],
s(L),M), solve([inboth(N,O,P)],Q,R)]

The problems above were spotted at a very early stage, where it is easy for the
user to identify the causes. In both cases the specialiser without watchdog mode
will not terminate. Finally, we have tried two bigger examples: the lambdaint
and pascal interpreters from the previous subsection. In the former we anno-
tated the apply construct and in the latter the while construct as unfoldable.
After less than 25 ms and 60 ms and 9 and 11 unfolding steps respectively the
problem was detected by the watchdog.

5 The Web Interface and Semi-automatic Correction

Further Error Conditions. In addition to non-termination there are various
other errors that often arise in hand-crafted annotations. First, a common mis-
take is to annotate built-ins as call even though they are not guaranteed to be
sufficiently instantiated at specialisation time. Another common mistake is to

4 This required adapting one clause for the binding times to be correct.

Supervising Offline Partial Evaluation of Logic Programs 53

make the filter declarations too narrow, so that not all memoised calls are cov-
ered by the filter declaration. We have extended our watchdog technique so that
these conditions are detected. This means that all calls to built-ins are explicitly
checked by the watchdog, and the filter errors are also caught and presented to
the user.5 Another common mistake relates to backpropagation of bindings [26]
in the context of non-logical built-ins and connectives. Here the watchdog uses
co-routining to detect those backpropagations.

Graphical Web Interface. In [18] we have presented a graphical web interface
for the logen system, which allows the user to edit annotations for a given
Prolog program in a user friendly way: the Prolog program to be annotated is
presented with comments and formatting intact and colour coding (as well as
“mouse over” information) is used to display the annotation. The annotations
can be edited using an intuitive point and click interface.

In order to make it easier for users to understand and act upon the feedback
provided by the watchdog, it would make sense to provide the watchdog infor-
mation by highlighting the problematic annotations directly in the source code
frame of the web interface. For this we had to extend the scheme presented in
Section 3, in that the generating extensions also need to keep track of program
points (in addition to the covering ancestor sequence and the specialisation tree).
This information (along with a description of the error) is then fed back in XML
format to the web interface to locate the source of the error and highlight it.
Once this framework was in place, it was possible to extend the XML format
to convey further information, such as how to fix an incorrect annotation. Be-
low we show how these suggestions can be computed, again using online control
techniques. To use this information the web interface uses XSLT to translate
logen’s XML suggestions into Javascript statements for fixing the annotations,
which are executed if the user presses the “fix” button.

Correcting Annotations. Let us first summarise the four classes of problems
that our watchdog can catch, along with a summary of the fixes that can be
applied. Note that there could be alternate ways to fix the problems below; e.g.,
by unfolding more user predicates to make more things static. Our underlying
assumption here is that the user will progress from more aggressive annotations
to less aggressive ones (with less calls marked as unfold and call).

– Problem 1: dangerous unfolding is detected by �. Fix: mark this call as
memo.

– Problem 2: a built-in is marked as call but is not sufficiently instantiated
(or throws an exception). Fix: mark the built-in as rescall.

– Problem 3: a call marked as memo is not covered by its filter declaration.
Fix: generalise the filter declaration to cover the call. Details are presented
below.

– Problem 4: � has detected a potential infinite memoisation. Fix: generalise
the filter declaration to throw part of the static information away.

5 The filter errors are now actually also caught in normal mode as this extra checking
does not incur a significant overhead.

54 M. Leuschel, S.-J. Craig, and D. Elphick

For the first two entries the fix is straightforward; for the latter two the compu-
tation of the updated filter declarations is more subtle. There are various ways
this could be achieved. Below we present solutions inspired by online control
techniques.

We first need to recall some background on logen’s filter declarations: a
filter declaration assigns every argument of every predicate a binding-type. A
binding type is a generalisation of the classical binding-times (static, dynamic;
see, e.g., [11]), making it possible to precisely specify which subarguments are
static or dynamic (rather than having to declare the entire argument as either
static or dynamic). logen’s binding types are expressed using the standard
formalism employed by polymorphically typed languages (e.g. [27]). Formally,
a type is either a type variable or a type constructor of arity n ≥ 0 applied to
n types. We presuppose the existence of three 0-ary type constructors: static,
dynamic, and nonvar. These constructors are given a pre-defined meaning.

Definition 4. A type definition for a type constructor c of arity n is of the form

c(V1, . . . , Vn) −→ f1(T 1
1 , . . . , T n1

1) ; . . . ; fk(T 1
k , . . . , T nk

k)

with k ≥ 1, n, n1, . . . , nk ≥ 0 and where f1, . . . , fk are distinct function symbols,
V1, . . . , Vn are distinct type variables, and T j

i are types which only contain type
variables in {V1, . . . , Vn}.
A type system Γ is a set of type definitions, exactly one for every type constructor
c different from static, dynamic, and nonvar.

From now on we will suppose that the underlying type system Γ is fixed. logen
also allows function symbols to be used as type constructors and we thus also
suppose that every function symbol of arity n is also a type constructor of arity n,
defined by f(V1, . . . , Vn) −→ f(V1, . . . , Vn) in Γ . As an example, the parametric
type list(T) can be declared as follows in logen (following the notations of
Mercury): :- type list(T) ---> [] ; [T | list(T)].

We define type substitutions to be finite sets of the form {V1/τ1, . . . , Vk/τk},
where every Vi is a type variable and τi a type. Type substitutions can be applied
to types (and type definitions) to produce instances in exactly the same way
as substitutions can be applied to terms. For example, list(V){V/static} =
list(static). A type or type definition is called ground if it contains no type
variables.

Definition 5. We now define type judgements relating terms to types in Γ .
– t : dynamic holds for any term t
– t : static holds for any ground term t
– t : nonvar holds for any non-variable term t
– f(t1, . . . , tn) : c(τ ′

1, . . . , τ
′
k) if there exists a ground instance of a type defini-

tion in Γ which has the form c(τ ′
1, . . . , τ

′
k) −→ . . . f(τ1, . . . , τn) . . . and where

ti : τi for 1 ≤ i ≤ n.

Here are a few examples, using the type system Γ1 above. First, we have s(0) :
static, s(0) : nonvar, and s(0) : dynamic. Also, s(X) : nonvar, s(X) : dynamic

Supervising Offline Partial Evaluation of Logic Programs 55

but not s(X) : static. A few examples with lists are: [s(0)] : list(static),
[X, Y] : list(dynamic).

The following fixes problem 3 identified earlier, i.e., it computes a new binding
type for an argument t which has incorrectly been assigned a binding type τ :

Definition 6. Let t be a term and τ a binding type. tgen(t, τ) =
– τ if t : τ ;
– dynamic if ¬(t : τ) and t is a variable;
– f(tgen(t1, τ1), . . . , tgen(tk, τk)) if t = f(t1, . . . , tn) and τ = f(τ ′

1, . . . , τ
′
k)

and ¬(t : τ);
– nonvar otherwise.

For example, tgen(s(0), static) = static, tgen(p(X), static) = nonvar, and
tgen(X, static) = dynamic. Also tgen(p(s(X), 0), p(static, static)) =
p(nonvar, static), and tgen([a, X], list(nonvar)) = nonvar. The above algo-
rithm does not try to invent new types and the last example shows that there
are ways to make the algorithm more precise (by inferring list(dynamic) rather
than nonvar). However, the algorithm does guarantee termination and correct-
ness in the following sense:

Proposition 1. For every infinite sequence of terms t1, t2, . . . and for every
binding type τ0 the sequence τ1, τ2, . . . with τi = tgen(ti, τi−1) stabilises and
there exists a k > 0 such that for all j > k we have tj : τj .

The proposition follows from the fact that by construction t : tgen(t, τ) and
for any given type τ only finitely many more general types can be obtained by
applying tgen.

Dangerous Memoisation. The watchdog flags a memoisation of a call as dan-
gerous if it can find an ancestor in the specialization tree which is embedded in
the call. To fix this (potential) problem detected by the watchdog we make use
of the following definition:

Definition 7. Let a = p(a1, . . . , an) and b = p(t1, . . . , tn) be two atoms such
that a� b. Then the growing argument positions of b wrt a are all indices i such
that ti is not a variant of ai.

It can be seen that for every growing argument position i we have ai � bi. A
simple solution is now to compute all growing argument positions and adapt the
filter declaration so that the corresponding arguments are given the binding-type
dynamic (i.e., these arguments will be replaced by fresh variables during memo-
isation). This is the solution that we have currently implemented within logen.
A more subtle solution could be developed by employing most specific generalisa-
tion (msg) [12] a common technique used for controlling generalisation in online
specialisation [16]: the msg of a set of terms S is the most specific term such
that all expressions in S are instances of it. We can now compute the msg on the
growing arguments and then only replace the variables by dynamic. For example,
given the memoised call p(b, p(s(s(0)), 1)), [W]) with filter declaration :- filter

56 M. Leuschel, S.-J. Craig, and D. Elphick

p(static,static,list(dynamic)) and with covering ancestor p(a, p(s(0), 1), [V])
we have msg({p(s(s(0)), 1), p(s(0), 1)}) = p(s(Z), 1) and thus obtain the new
declaration: :- filter p(static,p(s(dynamic),static),list(dynamic)).

Pragmatic BTA, Debugging and ASAP Case Studies. The above new
methods and the accompanying web interface make it now much easier for users
to fix their incorrect annotations. Furthermore, it also enables a pragmatic BTA
to be performed. Basically, the idea is to start off with an initial annotation where
all user predicates are marked as unfold and all built-ins as call. The specialiser
is then run in watchdog mode on a series of representative specialisation queries.
Every time a problem is detected the fix computed by logen is applied. This
is repeated until all sample queries can be specialised without error. One should
also combine this process with the filter propagation algorithm of [8] to ensure
that the annotations are correct wrt static information. It is easy to see that
this process must terminate. However, the approach does obviously not guarantee
that specialisation will terminate for all queries. Still, this approach has proven
to be successful on some larger case studies within the European project ASAP.
In the first study, logen was used to specialise an interpreter for a process
language with the aim of automatic task scheduling on pervasive devices. In
another case study a complete emulator for PIC assembly [10] was successfully
specialised by logen for arbitrary PIC programs (for further analysis such as
dead code detection). In both cases the automatic BTA was not applicable (due
to the size of the interpreters and due to the various built-ins used), but the
watchdog mode enabled us to annotate the programs with much less effort (e.g.
a few hours for the process language interpreter) than was previously possible.
Note that once the annotation was developed, the watchdog mode was turned off
allowing the offline specialiser to run at full speed for the various applications.

Another application of our method and web interface is debugging. For in-
stance, we had a version of the task scheduling interpreter containing a built-in
error (calling T2 =.. [Op,V0|V1] instead of T2 =.. [Op,V0,V1]). When one
executes the main method of this program one simply gets the following mes-
sage: ERROR: illegal arithmetic expression, without any indication about
the call or the location of the error. Using a debugger to locate such errors is
often not practical: the error was reached after 175 steps (and more tricky prob-
lems will easily require thousands or millions of steps given that current Prolog
systems can exceed 20 Million logical inferences per second) and when using
the debugger’s leap command one gets the same message as above, without any
indication about the problematic built-in nor its location. Our watchdog ap-
proach can be used as an automatic debugger to locate those problems (as well
as locating loops). The idea is to use a simple BTA which annotates all calls to
user predicates as unfold and all calls to built-ins as call (this BTA is available
via the web interface). Specializing then corresponds to supervised execution,
where checks and program point information has been weaved into the source
program. We thus get information about the actual call that causes the problem
(as well as precise program point information which is used by the web interface
to highlight the location of the error):

Supervising Offline Partial Evaluation of Logic Programs 57

% logen task_csp_scheduler_err.pl "main([2,3,4])" -wb
<| BUILT-IN ERROR |> : CALL Atom _7966=..[+,2|10]

The -wb option tells logen to check only built-ins and not user predicates
for potential loops (in order to reduce the overhead). Some experimental data
for the overhead of this approach can be seen in the table below. As can be seen,
the overhead is very reasonable.

Benchmark original original logen logen -wb
(consulted) (compiled) (normal) (watch)

lambdaint 2.18 ms 1.22 ms 1.29 ms 4.48 ms
task scheduler 1.15 ms 0.61 ms 0.59 ms 2.83 ms

6 Related Work and Conclusion

We believe that our idea to use online techniques to supervise an offline spe-
cialiser to be new. However, in the past several researchers have investigated hy-
brid strategies6 (e.g., [3, 7, 11]) where offline partial evaluators were augmented
with online constructs. The aim there was different (to augment specialisation
power) and only very few actual techniques or implementations exist ([29] is
one). Another related work is [25] where program transformations are used to
construct justifications for computed answers.

We have presented the idea of using online techniques in general and the home-
omorphic embedding relation in particular to supervise an offline specialiser,
in an effort to help the development of correct annotations by identifying er-
ror conditions. We have implemented this technique within the logen system
and have shown that this technique turned out to be very effective: very few
false alarms were raised and the overhead was low enough for the technique to
be practically usable. We have presented an improved web interface that feeds
back this information to the user in an intuitive way, and we have presented
techniques to automatically computed fixes for the spotted problems. We have
applied our ideas to various case studies, and the techniques have enabled us
to annotate and specialise much larger programs than was previously possible.
These new features of logen can also be tried out at using a web interface at
http://stups.cs.uni-duesseldorf.de/~pe/weblogen.

Our technique can also be used as a pragmatic BTA: one simply starts with
a maximally aggressive annotation and then lets the watchdog find and fix the
errors. While this does not produce termination guarantees, it has proven very
effective in practice and can easily deal with larger source programs and with
many built-ins. Another application of our watchdog mode is to locate built-in
errors or non-termination problems in user programs, and highlight those errors
directly within the user’s source program.

The logen system has found many uses; from specialising PIC assembly code
emulators, to point cut languages for aspect orientation over to CTL model
6 Sometimes called mixline annotations.

58 M. Leuschel, S.-J. Craig, and D. Elphick

checkers. But so far using logen required considerable expertise in partial eval-
uation, hampering a more widespread usage. With this work we hope to make
logen and the underlying technology accessible to a broader community.

Acknowledgements. We would like to thank Marc Fontaine for useful feedback.

References

1. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic
Programs. ACM Transactions on Programming Languages and Systems, 20(4):768–
844, 1998.

2. S. Barker, M. Leuschel, and M. Varea. Efficient and flexible access control via logic
program specialisation. In Proceedings PEPM’04, pages 190–199. ACM Press, 2004.

3. A. Bondorf. Towards a self-applicable partial evaluator for term rewriting systems.
In D. Bjørner, A. P. Ershov, and N. D. Jones, editors, Partial Evaluation and Mixed
Computation, pages 27–50. North-Holland, 1988.

4. M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding
infinite unfolding during partial deduction. New Generation Computing, 11(1):47–
79, 1992.

5. M. Bruynooghe, M. Leuschel, and K. Sagonas. A polyvariant binding-time analysis
for off-line partial deduction. In C. Hankin, editor, Proceedings ESOP’98, LNCS
1381, pages 27–41. Springer-Verlag, April 1998.

6. N. H. Christensen and R. Glück. Offline partial evaluation can be as accurate
as online partial evaluation. ACM Transactions on Programming Languages and
Systems, 26(1):191–220, 2004.

7. C. Consel. Binding time analysis for high order untyped functional languages.
In LFP ’90: Proceedings of the 1990 ACM conference on LISP and functional
programming, pages 264–272, New York, NY, USA, 1990. ACM Press.

8. S.-J. Craig, J. Gallagher, M. Leuschel, and K. S. Henriksen. Fully automatic
binding-time analysis for Prolog. In S. Etalle, editor, Proceedings LOPSTR 2004,
LNCS 3573, pages 53–68. Springer-Verlag, August 2004.

9. A. J. Glenstrup and N. D. Jones. BTA algorithms to ensure termination of off-
line partial evaluation. In Perspectives of System Informatics: Proceedings of the
Andrei Ershov Second International Memorial Conference, LNCS 1181, pages 273–
284. Springer-Verlag, 1996.

10. K. S. Henriksen and J. P. Gallagher. Analysis and specialisation of a PIC pro-
cessor. In Proceedings of the IEEE International Conference on Systems, Man &
Cybernetics (2), pages 1131–1135, The Hague, The Netherlands, 2004.

11. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

12. J.-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
625. Morgan-Kaufmann, 1988.

13. M. Leuschel. The ecce partial deduction system and the dppd library of bench-
marks. Obtainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

14. M. Leuschel. On the power of homeomorphic embedding for online termination. In
G. Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503, pages 230–245,
Pisa, Italy, September 1998. Springer-Verlag.

Supervising Offline Partial Evaluation of Logic Programs 59

15. M. Leuschel. Homeomorphic embedding for online termination of symbolic meth-
ods. In T. Æ. Mogensen, D. Schmidt, and I. H. Sudborough, editors, The Essence
of Computation - Essays dedicated to Neil Jones, LNCS 2566, pages 379–403.
Springer-Verlag, 2002.

16. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–
515, July & September 2002.

17. M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof. Specializing interpreters
using offline partial deduction. In M. Bruynooghe and K.-K. Lau, editors, Program
Development in Computational Logic, LNCS 3049, pages 341–376. Springer-Verlag,
2004.

18. M. Leuschel, D. Elphick, M. Varea, S. Craig, and M. Fontaine. The Ecce and
Logen partial evaluators and their web interfaces. In F. T. John Hatcliff, editor,
Proceedings of PEPM’06, pages 88–94. IBM Press, Januar 2006.

19. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in Prolog using a hand-written compiler generator. Theory and Practice of Logic
Programming, 4(1):139–191, 2004.

20. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, January 1998.

21. M. Leuschel and G. Vidal. Forward slicing by conjunctive partial deduction and
argument filtering. In M. Sagiv, editor, Proceedings ESOP 2005, LNCS 3444, pages
61–76. Springer-Verlag, April 2005.

22. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
23. H. Makholm. On Jones-optimal specialization for strongly typed languages. In

W. Taha, editor, Semantics, Applications, and Implementation of Program Gener-
ation, LNCS 1924, pages 129–148. Springer-Verlag, 2000.

24. B. Martens and J. Gallagher. Ensuring global termination of partial deduction
while allowing flexible polyvariance. In L. Sterling, editor, Proceedings ICLP’95,
pages 597–613, Kanagawa, Japan, June 1995. MIT Press.

25. G. Pemmasani, H.-F. Guo, Y. Dong, C. R. Ramakrishnan, and I. V. Ramakrishnan.
Online justification for tabled logic programs. In Proceedings FLOPS 2004, LNCS
2998, pages 24 – 38. Springer-Verlag, January 2004.

26. D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12(1):7–51, 1993.

27. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
An efficient purely declarative logic programming language. The Journal of Logic
Programming, 29(1–3):17–64, 1996.

28. M. H. Sørensen and R. Glück. An algorithm of generalization in positive supercom-
pilation. In J. W. Lloyd, editor, Proceedings of ILPS’95, the International Logic
Programming Symposium, pages 465–479, Portland, USA, 1995. MIT Press.

29. M. Sperber. Self-applicable online partial evaluation. In O. Danvy, R. Glück,
and P. Thiemann, editors, Partial Evaluation, International Seminar, LNCS 1110,
pages 465–480, Schloß Dagstuhl, 1996. Springer-Verlag.

30. W. Vanhoof and B. Martens. To parse or not to parse. In N. Fuchs, editor, Logic
Program Synthesis and Transformation. Proceedings of LOPSTR’97, LNCS 1463,
pages 322–342, Leuven, Belgium, July 1997.

31. Q. Wang, G. Gupta, and M. Leuschel. Towards provably correct code generation
via Horn logical continuation semantics. In M. V. Hermenegildo and D. Cabeza,
editors, Proceedings PADL’05, of LNCS 3350, pages 98–112. Springer, 2005.

Improving Offline Narrowing-Driven Partial

Evaluation Using Size-Change Graphs�

Gustavo Arroyo, J.Guadalupe Ramos, Josep Silva, and Germán Vidal

Technical University of Valencia,
Camino de Vera s/n, 46022 Valencia, Spain

{garroyo,guadalupe,jsilva,gvidal}@dsic.upv.es

Abstract. An offline approach to narrowing-driven partial evaluation
(a partial evaluation scheme for first-order functional and functional
logic programs) has recently been introduced. In this approach, program
annotations (i.e., the expressions that should be generalised at partial
evaluation time to ensure termination) are based on a simple syntac-
tic characterisation of quasi-terminating programs. This work extends
the previous offline scheme by introducing a new annotation strategy
which is based on a combination of size-change graphs and binding-time
analysis. Preliminary experiments point out that the number of program
annotations is significantly reduced compared to the previous approach,
which means that faster residual programs are often produced.

1 Introduction

Narrowing [30] extends the reduction principle of functional languages by re-
placing matching with unification (as in logic programming). Narrowing-driven
partial evaluation (NPE) [1] is a powerful specialisation technique for the first-
order component of many functional and functional logic languages like Haskell
[28] or Curry [18]. In NPE, some refinement of narrowing is used to perform
symbolic computations. Currently, needed narrowing [4], a narrowing strategy
that only selects a function call if its reduction is necessary to compute a value,
is the strategy that presents better properties. In general, the narrowing space
(i.e., the counterpart of the SLD search space in logic programming) of a term
may be infinite. However, even in this case, NPE may still terminate when the
original program is quasi-terminating w.r.t. the considered narrowing strategy,
i.e., when only finitely many different terms—modulo variable renaming—are
computed. The reason is that the (partial) evaluation of multiple occurrences of
the same term (modulo variable renaming) in a computation can be avoided by
inserting a call to some previously encountered variant (a technique known as
specialisation-point insertion in the partial evaluation literature).

� This work has been partially supported by the EU (FEDER) and the Spanish MEC
under grant TIN2005-09207-C03-02, by the Mexican SEIT-ANUIES and DGEST
beca-comisión and by the ICT for EU-India Cross-Cultural Dissemination Project
ALA/95/23/2003/077-054.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 60–76, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving Offline Narrowing-Driven Partial Evaluation 61

Recently, [29] identified a class of quasi-terminating rewrite systems (w.r.t.
needed narrowing) that are called non-increasing. This characterisation is purely
syntactic and very easy to check, though too restrictive to be useful in practice.
Therefore, [29] introduces an offline scheme for NPE by

– annotating the program expressions that violate the non-increasingness prop-
erty and

– considering a slight extension of needed narrowing to perform partial com-
putations so that annotated subterms are generalised at specialisation time
(which ensures the termination of the process).

In this work, we improve on the simpler characterisation of non-increasing rewrite
systems by using size-change graphs [24] to approximate the changes in parame-
ter sizes from one function call to another. In particular, we use the information
in the size-change graphs to identify a particular form of quasi-termination,
called PE-termination, which implies that only finitely many different function
calls (modulo variable renaming) can be produced in a computation. For this
purpose, the output of a standard binding-time analysis is also used in order
to have information on which function arguments are static (and thus ground)
and which are dynamic. When the information gathered from the combined use
of size-change graphs and binding-time analysis does not allow us to infer that
the rewrite system quasi-terminates, we proceed as in [29] and annotate the
problematic subterms to be generalised at partial evaluation time.

Related Work

Regarding quasi-termination, we find relatively few works devoted to quasi-
termination analysis of functional or logic programs (and no previous work on
quasi-termination of functional logic programs). The notion of quasi-termination
was originally introduced in term rewriting by Dershowitz [12], where a rewrite
derivation is called quasi-terminating when it only contains finitely many differ-
ent terms. Within logic programming, one of the first approaches is [11], where
the authors introduce the notion of quasi-acceptability, a sufficient and necessary
condition for quasi-termination. This work has been extended in [32].

As for size-change analysis, this approach was originally introduced in [24] in
the context of functional programming. The scheme was later adapted to term
rewriting in [31].

Finally, regarding the use of quasi-termination analysis for ensuring the ter-
mination of offline partial evaluation, there are a few related approaches. Quasi-
termination was soon recognised as an essential property to guarantee the ter-
mination of partial evaluation (see, e.g., the pioneering work of Holst [20]). In
particular, we share many similarities with the approach introduced by Glen-
strup and Jones [16], where a quasi-termination analysis based on size-change
graphs is used to ensure the termination of an offline partial evaluator for first-
order functional programs. However, transferring Glenstrup and Jones’ scheme
to function logic programming is not straightforward because narrowing compu-
tations propagate bindings forward in the computations (as logic programming

62 G. Arroyo et al.

does). As a consequence, several additional conditions should be introduced in
order to preserve the termination of partial evaluation. Furthermore, we consider
simpler size-change graphs (i.e., the “may-increase” relation of [16] is not used
in this work). This may somewhat weaken the power of our size-change analysis,
but it could be straightforwardly extended along the lines of [16].

Plan of the Paper

This paper is structured as follows. After providing some preliminary definitions
in Sect. 2, we recall the original approach to offline narrowing-driven partial eval-
uation in Sect. 3. Then, Sect. 4 introduces a quasi-termination analysis based on
size-change graphs and states the main result of the paper. Section 5 presents the
new annotation procedure and illustrates it with an example. Section 6 describes
an experimental evaluation of our approach by using a prototype implementa-
tion of the offline partial evaluator. Finally, Sect. 7 concludes and points out
some directions for future work. More details and missing proofs can be found
in [5].

2 Preliminaries

Term rewriting [6] offers an appropriate framework to model the first-order com-
ponent of many functional and functional logic programming languages. There-
fore, we follow the standard framework of term rewriting for developing our
results.

A set of rewrite rules (or oriented equations) l → r such that l is a nonvariable
term and r is a term whose variables appear in l is called a term rewriting system
(TRS for short); terms l and r are called the left-hand side and the right-hand
side of the rule, respectively. Given a TRS R over a signature F , the defined
symbols D are the root symbols of the left-hand sides of the rules and the
constructors are C = F \ D. We restrict ourselves to finite signatures and TRSs.
We denote the domain of terms and constructor terms by T (F , V) and T (C, V),
respectively, where V is a set of variables with F ∩ V = ∅.

A TRS R is constructor-based if the left-hand sides of its rules have the
form f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C, V), for all
i = 1, . . . , n. The set of variables appearing in a term t is denoted by Var(t). A
term t is linear if every variable of V occurs at most once in t. R is left-linear
(resp. right-linear) if l (resp. r) is linear for all rules l → r ∈ R. The definition
of f in R is the set of rules in R whose root symbol in the left-hand side is f . A
function f ∈ D is left-linear (resp. right-linear) if the rules in its definition are
left-linear (resp. right-linear).

The root symbol of a term t is denoted by root(t). A term t is operation-
rooted (resp. constructor-rooted) if root(t) ∈ D (resp. root(t) ∈ C). As it is
common practice, a position p in a term t is represented by a sequence of natural
numbers, where ε denotes the root position. Positions are used to address the
nodes of a term viewed as a tree: t|p denotes the subterm of t at position p and

Improving Offline Narrowing-Driven Partial Evaluation 63

t[s]p denotes the result of replacing the subterm t|p by the term s. A term t is
ground if Var(t) = ∅. A term t is a variant of term t′ if they are equal modulo
variable renaming. A substitution σ is a mapping from variables to terms such
that its domain Dom(σ) = {x ∈ V | x �= σ(x)} is finite. The identity substitution
is denoted by id. A substitution σ is constructor, if σ(x) is a constructor term
for all x ∈ Dom(σ). Term t′ is an instance of term t if there is a substitution σ
with t′ = σ(t). A syntactic object s1 is more general than a syntactic object s2,
denoted s1 � s2, if there exists a substitution θ such that s2 = s1θ. A unifier
of two terms s and t is a substitution σ with σ(s) = σ(t); furthermore, σ is the
most general unifier of s and t, denoted by mgu(s, t) if, for every other unifier θ
of s and t, we have that σ � θ. In the following, we write on for the sequence of
objects o1, . . . , on.

Inductively sequential TRSs [3] are a subclass of left-linear constructor-based
TRSs. Essentially, a TRS is inductively sequential when all its operations are
defined by rewrite rules that, recursively, make on their arguments a case distinc-
tion analogous to a data type (or structural) induction. Inductive sequentiality
is not a limiting condition for programming. In fact, the first-order component
of many functional (logic) programs written in, e.g., Haskell, ML or Curry, are
inductively sequential.

Example 1. Consider the following rules which define the less-or-equal function
on natural numbers (built from zero and succ):

zero � y → true
succ(x) � zero → false
succ(x) � succ(y) → x � y

This function is inductively sequential since its left-hand sides can be hierarchi-
cally organised as follows:

n � m =⇒

⎧
⎨
⎩

zero � m

succ(x) � m =⇒
{

succ(x) � zero
succ(x) � succ(y)

where arguments in a box denote a case distinction (this is similar to the notion
of definitional tree in [3]).

The evaluation of terms w.r.t. a TRS is formalised with the notion of rewriting.
A rewrite step is an application of a rewrite rule to a term, i.e., t →p,R s if there
exists a position p in t, a rewrite rule R = (l → r) and a substitution σ with
t|p = σ(l) and s = t[σ(r)]p (p and R will often be omitted in the notation of
a reduction step). The instantiated left-hand side σ(l) is called a redex. A term
t is called irreducible or in normal form if there is no term s with t → s. We
denote by →+ the transitive closure of → and by →∗ its reflexive and transitive
closure. Given a TRS R and a term t, we say that t evaluates to s iff t →∗ s and
s is in normal form.

Functional logic programs mainly differ from purely functional programs in
that function calls may contain free variables. In order to evaluate such terms

64 G. Arroyo et al.

containing variables, narrowing nondeterministically instantiates the variables
such that a rewrite step is possible [17]. Formally, t �p,R,σ t′ is a narrowing
step iff p is a nonvariable position of t and σ(t) →p,R t′ (we sometimes omit p,
R and/or σ when they are clear from the context). The substitution σ is very
often the most general unifier1 of t|p and the left-hand side of (a variant of) R,
restricting its domain to Var(t). As in proof procedures for logic programming,
we assume that the rules of the TRS always contain fresh variables if they are
used in a narrowing step. We denote by t0 �∗

σ tn a sequence of narrowing steps
t0 �σ1 . . . �σn tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id).

In order to avoid unnecessary computations and to deal with infinite data
structures, a demand-driven generation of the search space has been advocated
by a number of lazy narrowing strategies [15,26,27]. Because of its optimality
properties w.r.t. the length of derivations and the number of computed solutions,
we consider needed narrowing [4] in the following.

We say that s �p,R,σ t is a needed narrowing step iff σ(s) →p,R t is a needed
rewrite step in the sense of Huet and Lévy [21], i.e., in every computation from
σ(s) to a normal form, either σ(s)|p or one of its descendants must be reduced.
Here, we are interested in a particular needed narrowing strategy, denoted by λ
in [4, Def. 13], which is based on the notion of a definitional tree [3] (a hierarchical
structure containing the rules of a function definition, which is used to guide the
needed narrowing steps). This strategy is basically equivalent to lazy narrowing
[27] where narrowing steps are applied to the outermost function, if possible,
and inner functions are only narrowed if their evaluation is demanded by a
constructor symbol in the left-hand side of some rule (i.e., a typical call-by-
name evaluation strategy). The main difference is that needed narrowing does
not compute the most general unifier between the selected redex and the left-
hand side of the rule but only a unifier. The additional bindings are required to
ensure that only “needed” computations are performed (see, e.g., [4]) and, thus,
needed narrowing generally computes a smaller search space.

Example 2. Consider again the rules defining function “�” of Example 1. In
a term like t1 � t2, needed narrowing proceeds as follows: First, t1 should be
evaluated to some head normal form (i.e., a free variable or a constructor-rooted
term) since all three rules defining “�” have a non-variable first argument. Then,

1. If t1 evaluates to zero then the first rule is applied.
2. If t1 evaluates to succ(t′1) then t2 is evaluated to head normal form:

(a) If t2 evaluates to zero then the second rule is applied.
(b) If t2 evaluates to succ(t′2) then the third rule is applied.
(c) If t2 evaluates to a free variable, then it is instantiated to a constructor-

rooted term, here zero or succ(x) and, depending on this instantiation,
we proceed as in cases (a) or (b) above.

3. Finally, if t1 evaluates to a free variable, needed narrowing instantiates it to a
constructor-rooted term (zero or succ(x)). Depending on this instantiation,
we proceed as in cases (1) or (2) above.

1 Some narrowing strategies (e.g., needed narrowing) compute unifiers that are not
the most general, see below.

Improving Offline Narrowing-Driven Partial Evaluation 65

A precise definition of inductively sequential TRSs and needed narrowing is not
necessary in this work (the interested reader can find detailed definitions in [3,4]).
In the following, we use needed narrowing to refer to the particular strategy λ
in [4, Def. 13].

3 A Simple Offline NPE Scheme

In this section, we briefly present the offline approach to NPE from [29]. Given an
inductively sequential TRS R, the first stage of the process consists in computing
the annotated TRS. In [29], annotations were added to those subterms that
violate the non-increasingness condition, a simple syntactic characterisation of
programs that guarantees the quasi-termination of computations. Nevertheless,
annotations can be based on other, more refined, analyses—the goal of this
paper—as long as the annotated program still ensures the termination of the
specialisation process.

For the annotation stage, the signature F of a program is extended with a
fresh symbol: “•”. A term t is then annotated by replacing t by •(t).

Then, the second stage, i.e., the proper partial evaluation, proceeds as follows:

– it takes the annotated TRS, together with an initial term t,
– and constructs its associated (finite) generalising needed narrowing tree (see

below) where, additionally, a test is included to check whether a variant of
the current term has already been computed and, if so, stop the derivation.

Finally, a residual—partially evaluated—program is extracted from the general-
ising needed narrowing tree. Essentially, a generalising needed narrowing deriva-
tion s �∗

σ t is composed of

a) proper needed narrowing steps, for operation-rooted terms with no annota-
tions,

b) generalisations, for annotated terms, e.g., f(•(g(y)), x) is reduced to both
f(w, x) and g(y), where w is a fresh variable, and

c) constructor decompositions, for constructor-rooted terms with no annota-
tions, e.g., c(f(x), g(y)) is reduced to f(x) and g(y) when c ∈ C and f, g ∈ D.

The substitution in s �∗
σ t is the composition of the substitutions labelling the

proper needed narrowing steps of s �∗
σ t. Consider, for instance, the following

definitions of the addition and product on natural numbers built from zero and
succ:

add(zero, y) → y prod(zero, y) → zero
add(succ(x), y) → succ(add(x, y)) prod(succ(x), y) → add(prod(x, y), y)

According to [29], this program is not non-increasing because of the nested func-
tions in the right-hand side of the second rule of function prod . Therefore, it is
annotated as follows:

add(zero, y) → y prod(zero, y) → zero
add(succ(x), y) → succ(add(x, y)) prod(succ(x), y) → add(•(prod(x, y)), y)

66 G. Arroyo et al.

E.g., the following needed narrowing computation is not quasi-terminating w.r.t.
the original program (the selected function call is underlined):

prod(x, y) �{x �→succ(x′)} add(prod(x′, y), y)
�{x′ �→succ(x′′)} add(add (prod(x′′, y), y), y) � . . .

In contrast, the corresponding computation by generalising needed narrowing is
quasi-terminating (generalisation steps are denoted by “�•”):

add(w, y) � . . .

prod(x, y) �{x �→succ(x′)} add(•(prod(x′, y)), y)

• ������������

•
������������

prod(x′, y) � . . .

Our generalisation step is somehow equivalent to the splitting operation of con-
junctive partial deduction (CPD) of logic programs [10]. While CPD considers
conjunctions of atoms, we deal with terms possibly containing nested function
symbols. Therefore, flattening a nested function call is basically equivalent to
splitting a conjunction (in both cases some information is lost). A similar rela-
tion between term generalisation and CPD is also pointed out in [2,23].

We skip the details of the extraction of residual programs from generalising
needed narrowing trees since it is orthogonal to the topic of this paper (a more
detailed description can be found in [29]).

4 Ensuring Quasi-termination with Size-Change Graphs

In this section, we first recall some basic notions on size-change graphs from
[31], where the original scheme of [24] is adapted to term rewriting, and, then,
we introduce our new approach for ensuring quasi-termination.

A transitive and antisymmetric binary relation 	 is an order and a transitive
and reflexive binary relation � is a quasi-order. A binary relation 	 is well
founded iff there exist no infinite decreasing sequence t0 	 t1 	 t2 	 . . . In the
following, we say that a given order “	” is closed under substitutions (or stable)
if s 	 t implies σ(s) 	 σ(t) for all s, t ∈ T (F , V) and substitution σ.

Size-change graphs are parameterized by a so called reduction pair:

Definition 1 (reduction pair). We say that (�,) is a reduction pair if �
is a quasi-order and 	 is a well-founded order on terms where both � and 	 are
closed under substitutions and compatible (i.e., � ◦ 	 ⊆ 	 and 	 ◦ � ⊆ 	 but
� ⊆ 	 is not necessary, where “ ◦” is defined on binary relations R and R′ as
follows: R ◦ R′ = {(a, c) | (a, b) ∈ R and (b, c) ∈ R′}). We also require that s R t
implies Var(t) ⊆ Var(s) for all R ∈ {�, 	} and terms s and t.

Informally speaking, the restriction Var(t) ⊆ Var(s) above is necessary in order
to correctly propagate groundness information through narrowing steps.

Improving Offline Narrowing-Driven Partial Evaluation 67

Definition 2 (size-change graph). Let (�,) be a reduction pair. For every
rule f(sn) → r of a TRS R and every subterm g(tm) of r where g ∈ D, we have
a size-change graph as follows:

– The graph has n output nodes marked with {1f , . . . , nf} and m input nodes
marked with {1g, . . . , mg}.

– If si 	 tj, then there is a directed edge marked with 	 from if to jg. Other-
wise, if si � tj, then there is an edge marked with � from if to jg.

A size-change graph is thus a bipartite labelled graph G = (V, W, E) where V =
{1f , . . . , nf} and W = {1g, . . . , mg} are the labels of the output and input nodes,
respectively, and we have edges E ⊆ V × W × {�, 	}.

Size-change graphs are used to represent the way each function parameter changes
from one call to another, according to a given reduction pair. In order to analyse
the termination (or quasi-termination) of a program, it suffices to focus on its
loops. For this purpose, we now compute the transitive closure of the size-change
relations as follows:

Definition 3 (multigraph, concatenation). Every size-change graph of R is
a multigraph of R and if

G = ({1f , . . . , nf}, {1g, . . . , mg}, E1)

and

H = ({1g, . . . , mg}, {1h, . . . , ph}, E2)

are multigraphs of R w.r.t. the same reduction pair (�,), then the concatena-
tion

G · H = ({1f , . . . , nf}, {1h, . . . , ph}, E)

is also a multigraph of R. For 1 ≤ i ≤ n and 1 ≤ k ≤ p, E contains an edge
from if to kh iff E1 contains an edge from if to some jg and E2 contains an
edge from jg to kh. Furthermore, if some of the edges are labelled with “	”, then
the edge in E is labelled with “	” as well. Otherwise, it is labelled with “�”.

A multigraph G is idempotent if G = G · G (which implies that its input and
output nodes are both labelled with {1f , . . . , nf} for some f). In the following, we
will only focus on the idempotent multigraphs of a program, since they represent
its (potential) loops.

Example 3. Consider the following example which computes the reverse of a
given list:

rev([]) → [] app([], y) → y
rev(x : xs) → app(rev (xs), x : []) app(x : xs, y) → x : app(xs, y)

where “[]” and “:” are the list constructors. In this example, we consider a
particular reduction pair (�,) defined as follows:

68 G. Arroyo et al.

– s � t iff Var(t) ⊆ Var(s) and for all x ∈ Var(t), dv(t, x) � dv (s, x);
– s 	 t iff Var(t) ⊆ Var(s) and for all x ∈ Var(t), dv(t, x) < dv (s, x).

where the depth of a variable x in a constructor term t [8], dv(t, x), is defined
as follows:

dv(c(tn), x) = 1 + max (dv (tn, x)) if x ∈ Var(c(tn))
dv(c(tn), x) = −1 if x �∈ Var(c(tn))

dv(y, x) = 0 if x = y
dv(y, x) = −1 if x �= y
dv (t, x) = −1 if t is not a constructor term

with c ∈ C a constructor symbol of arity n � 0. The corresponding size-change
graphs of this program are the following:

G1 : 1rev
� �� 1rev G2 : 1rev �

�������� 1app

2app

G3 : 1app
� �� 1app

2app
� �� 2app

where G1 and G3 are also the idempotent multigraphs of the program.

Definition 4 (PE-termination, PE-terminating TRS). A needed narrow-
ing computation is PE-terminating if only a finite number of nonvariant function
calls (i.e., redexes) have been unfolded. A TRS is PE-terminating if every pos-
sible needed narrowing computation is PE-terminating.

Observe that a PE-terminating TRS does not ensure the quasi-termination of
its computations. For instance, given the TRS of Example 3 and the initial call
rev(xs), we have the following needed narrowing derivation:

rev(xs) �{xs�→y:ys} app(rev(ys), y : [])
�{ys�→z:zs} app(app(rev(zs), z : []), y : [])
�{zs�→w:ws} . . .

Although this derivation contains an infinite number of different terms, there is
only a finite number of nonvariant function calls. Fortunately, this is sufficient
to ensure termination in many partial evaluation schemes because they often
include some form of memoisation.

Online methods for partial evaluation usually consider a distinction between
the so called local and global control levels. The local control should ensure
that function (or procedure) calls are not unfolded infinitely, while the global
control should take care of not unfolding infinitely many function (or procedure)
calls. In fact, this distinction can be applied to both online or offline partial
evaluators. In some cases, the distinction is made explicit (e.g., in the online
partial evaluationscheme for logic programs of [13]) and in some other cases it

Improving Offline Narrowing-Driven Partial Evaluation 69

is left implicit.2 The main difference between these partial evaluators is that, in
the online case, both the local and the global control take decisions on-the-fly,
while in the offline case all decisions are taken before the actual specialisation
starts (i.e., offline partial evaluators mainly follow the program annotations).

In this work, we consider a simple offline partial evaluation procedure as
follows:

– Local control : here, we stop generalising needed narrowing derivations (i.e.,
needed narrowing derivations where annotated subterms are replaced by
fresh variables) when the selected function call is a variant of a previously
reduced function call in the same derivation. Observe that our local control
examines the previous function calls in order to determine if a given func-
tion call should be unfolded or not. This should not be considered an online
strategy but a simple memoisation technique. Furthermore, one could also
consider cheaper (though less precise) strategies like, e.g., a depth-k unfold-
ing strategy where narrowing computations stop after k function unfoldings
and no variant checking is necessary.

– Global control :once the unfolding of a function call stops, the non-constructor
terms in the leaves of the generalising needed narrowing tree are fully flat-
tened before adding them to the set of (to be) partially evaluated calls.
For instance, given the term f(g(x), h(y)), the function calls f(w1, w2), g(x)
and h(y) are added to the current set of (to be) partially evaluated calls,
where w1, w2 are fresh variables. This flattening step is required in order for
PE-termination to imply the termination of the partial evaluation process.

Now, we consider that the output of a simple (monovariant) binding-time anal-
ysis (BTA) is available. Informally speaking, given a TRS and the information
on which parameters of the initial function call are static and which are dy-
namic, a BTA maps each program function to a list of static/dynamic values.
Here, we consider that a static parameter is definitely known at specialisation
time (hence it is ground), while a dynamic parameter is possibly unknown at
specialisation time. The output of the BTA must be congruent [22]: the value
of every static parameter is determined by the values of other static parameters
(and thus ultimately by the available input).

In the following, we will also require the component � of a reduction pair
(�,) to be bounded, i.e., the set {s | t � s} must contain a finite number
of nonvariant terms for any term t. Some closely related notions are that of
rigidity [7] and instantiated enough [25], both defined w.r.t. a so called norm.
These notions are used in many termination analyses for logic programs (e.g.,
[9,14,25]).

2 For instance, many partial evaluators for functional programs (see, e.g., [22]) include
an algorithm that iteratively (1) takes a function call, (2) performs some symbolic
evaluations, and (3) extracts from the partially evaluated expression the set of pend-
ing function calls—the so-called successors of the initial function call—to be pro-
cessed in the next iteration of the algorithm. Steps (1) and (3) would correspond to
the global control while step (2) would correspond to the local control.

70 G. Arroyo et al.

The following theorem states sufficient conditions to ensure PE-termination.
The proof of correctness is based on Ramsey’s Theorem (see [5]).

Theorem 1. Let R be a TRS and (�,) a reduction pair. R is PE-terminating
w.r.t. any linear term if every idempotent multigraph associated to a function f/n
contains either

(i) at least one edge if
�−→ if for some i ∈ {1, . . . , n} such that if is static, or

(ii) an edge if
R−→ if , R ∈ {�, 	}, for all i = 1, . . . , n, such that � is bounded.

Also, we require R to be right-linear w.r.t. the dynamic variables, i.e., no repeated
occurrence of the same dynamic variable may occur in a right-hand side.

Boundedness of “�” in the second case (ii) above is necessary to ensure that no
infinite sequences of nonvariant function calls with arguments of the same “size”
according to � are allowed. Consider, for instance, an order � which is based on
the length of a list, i.e., t1 � t2 if t1 and t2 are lists and the number of elements
of t2 is less than or equal to the number of elements of t1. In this case, � is
not bounded: consider, e.g, the term [x] so that the set {s | [x] � s} contains
infinitely many nonvariant terms. Therefore, one can have infinite sequences of
calls with nonvariant arguments where each argument is less than or equal to
the previous one in the sequence:

f([x]) � f([succ(x)]) � f([succ(succ(x))]) � . . .

with [x] � [succ(x)] � [succ(succ(x))] �

Example 4. The last condition of Theorem 1 on right-linearity of dynamic vari-
ables is required in order to avoid situations like the following one: given the
TRS

double(x) → add(x, x)
add(zero, y) → y
add(succ(x), y) → succ(add(x, y))

although double and add seem clearly terminating (and thus quasi-terminating),
the following infinite computation is possible:

double(x) �{ } add(x, x)
�{x �→succ(x′)} succ(add(x′, succ(x′)))
�{x′ �→succ(x′′)} succ(succ(add (x′′, succ(succ(x′′)))))
�{x′′ �→succ(x′′′)} . . .

which is not quasi-terminating nor PE-terminating.

5 Annotation Procedure

In this section, we introduce our new annotation procedure for offline narrowing-
driven partial evaluation. Analogously to [29], rather than requiring source pro-
grams to fulfil the conditions of Theorem 1, we use this result to determine which
subterms (if any) violate the conditions of this theorem.

Improving Offline Narrowing-Driven Partial Evaluation 71

The annotation procedure proceeds as follows: it considers every function
symbol f/n of the program such that f has an associated idempotent multigraph
(i.e., there is a potential loop that involves function f), and performs one of the
following actions:

1. if the conditions of Theorem 1 hold, no annotation is added to the program;
2. otherwise, each argument tj of every function call f(t1, . . . , tj , . . . , tn) with no

edge jf
R−→ jf , R ∈ {�, 	}, is annotated as follows: f(t1, . . . , •(tj), . . . , tn);3

3. finally, if there is more than one occurrence of the same dynamic variable (not
yet annotated) in the right-hand side of a program rule, then all occurrences
but one (e.g., the leftmost one) are annotated.

Roughly speaking, the correctness of the annotation procedure follows from the
following facts:

– Let us consider a function call f/n with an associated idempotent multigraph
(note that, by Theorem 1, termination can be ensured by focusing only on
those program functions that have an associated idempotent multigraph).

– If the conditions of Theorem 1 hold, we have that from every call f(t1, . . . , tn)
to the next call f(s1, . . . , sn) in a computation the following conditions hold:

• there exists some i ∈ {1, . . . , n} such that ti 	 si and the i-th argument
of f is static (i.e., both ti and si are ground), which means that only
finitely many different calls to f can be produced;4

• otherwise, we have that either ti � si or si is annotated (and thus
generalising needed narrowing replaces this argument by a fresh variable)
for all i = 1, . . . , n, which means that only finitely many nonvariant calls
to function f can be produced since � is bounded.

– Finally, the only exception to the above reasoning comes from the possible
non right-linearity of the program w.r.t. dynamic variables, which is avoided
by also annotating all but one such variables, so that situations like the one
illustrated by Example 4 are no longer possible.

Let us illustrate the complete process with an example.

Example 5. Consider the well known Ackermann function:

ack(zero, n) → succ(n)
ack(succ(m), zero) → ack (m, succ(zero))
ack(succ(m), succ(n)) → ack (m, ack(succ(m), n))

First, we compute the size-change graphs of this program (here, we consider the
same reduction pair of Example 3):

G1 : 1ack
� �� 1ack

2ack 2ack

G2 : 1ack
� �� 1ack

1ack 2ack

G3 : 1ack
� �� 1ack

2ack
� �� 2ack

3 Analogously to [29], we use a fresh symbol, denoted by •, to annotate problematic
subterms that should be generalised at partial evaluation time.

4 This case is similar to the bounded anchoring principle of [16].

72 G. Arroyo et al.

where graph G1 is associated to the second rule and graphs G2 and G3 are
associated to the third rule. In this example, these graphs coincide with the
idempotent multigraphs of the program.

Assume that we want to specialise this program w.r.t. the initial function call
ack (succ(succ(succ(zero))), y), i.e., the first argument is static (ground). Clearly,
the binding-time analysis returns the division {ack �→ [S, D]}, which means that
the first argument of every call to ack is static and the second argument is
dynamic. In this case, we have that

– the first condition of Theorem 1 holds for G1 and G2 since the first argument
of ack is static and there is an edge 1ack

�−→ 1ack , and
– the second condition of Theorem 1 holds for G3 since there is an edge asso-

ciated to each argument (and � is bounded).

Furthermore, the right-linearity condition also holds since the only repeated
occurrences of the same variable are the repeated occurrences of variable m in
the third rule. However, no annotation is required in this case since variable m
is static according to the output of the binding-time analysis. Therefore, the
annotated program coincides with the original one.

Consider now that we want to specialise function ackermann w.r.t. the initial
call ack (x, succ(succ(succ(zero)))), i.e., the second argument is static (ground).
Here, the binding-time analysis returns the division {ack �→ [D, D]} (because of
the nested calls in the third rule). In this case, we have that

– the second condition of Theorem 1 holds for G3 since there is an edge asso-
ciated to each argument,

– but, since no condition holds for both G1 and G2, we should annotate the
second argument of every call to function ack .

The annotated program is thus as follows:

ack(zero, n) → succ(n)
ack(succ(m), zero) → ack (m, •(succ(zero)))
ack(succ(m), succ(n)) → ack (m, •(ack(succ(m), •(n))))

Observe that there is no violation of the right-linearity condition since one of
the repeated occurrences of variable m in the third rule is already inside a •.

6 Experimental Evaluation

We have undertaken an implementation of the improved annotation procedure.
In particular, we have included the new annotation procedure into an offline
partial evaluator for Curry programs [29]. This partial evaluator has been im-
plemented in Curry itself [18]. In its current form, only a subset of Curry is
considered. The extension to the remaining features of Curry (e.g., constraints,
higher-order functions, built-ins, etc) is planned. The sources of the partial

Improving Offline Narrowing-Driven Partial Evaluation 73

Table 1. Benchmark results

simple improved
benchmark codesize original peval speedup1 peval speedup2

ackermann 739 3363 1077 3.12 688 4.89
allones 662 1522 1444 1.05 1452 1.05
dec list 825 589 587 1.00 525 1.12
gauss 2904 308 320 0.96 252 1.22
inc list 817 937 834 1.12 730 1.28
insert sort 1005 1953 1280 1.53 1322 1.48
kmpA∗B 30580 428 298 1.44 227 1.89
kmpB∗A 30582 86 80 1.08 72 1.21
power 794 591 602 0.98 571 1.03

Average 7656 1086 725 1.36 649 1.68

evaluator and a detailed explanation of the benchmarks considered below are
publicly available from

http://www.dsic.upv.es/users/elp/german/offpeval/

Table 1 shows the results of some benchmarks. For each benchmark, we show the
size (in bytes) of each program (codesize), the run time of the original program
(original), the run time for executing the residual program specialised with the
previous offline partial evaluator which uses the simpler annotation procedure
(simple peval), the run time for executing the residual program produced with
the partial evaluator which includes the new annotation procedure (improved
peval), and the speedup achieved by each partial evaluator; speedups are given
by orig/spec, where orig and spec are the absolute run times of the original and
specialised programs, respectively. Times are expressed in milliseconds and are
the average of 10 executions on a 2.4 GHz Linux-PC (Intel Pentium IV with 512
KB cache). Run time input goals were chosen to give a reasonably long overall
time. All programs (including the partial evaluators) were executed with the
Curry to Prolog compiler of PAKCS [19].

As it can be seen in Table 1, residual programs obtained with the improved
partial evaluator run (in the average) 7% faster than the residual programs
obtained with the previous partial evaluator. This is not an impressive improve-
ment but demonstrates that the novel annotation procedure is able to produce
faster specialised programs. Analysis and specialisation times are not shown be-
cause they are generally very small. We note that the current partial evaluator
is rather simple (i.e., it follows the simple strategy mentioned in Sect. 4). We
expect to produce faster residual programs by improving the control procedures
involved in the specialisation phase.

7 Conclusions and Future Work

This work introduced a new annotation procedure for the offline partial eval-
uation of functional logic programs. This procedure combines the information

74 G. Arroyo et al.

gathered from a simple binding-time analysis and a size-change analysis [24].
In contrast to previous approaches like [16], several extensions were necessary
to cope with the logic component of the considered functional logic language
(e.g., the conditions of boundedness and right-linearity in Theorem 1 were not
needed in [16]). Preliminary experiments point out the improved performance of
a partial evaluator which included the new annotation procedure.

In order to further improve the precision of the partial evaluator, we are
currently implementing a polyvariant version of the program annotation stage.
In this case, every function call is treated separately according to the information
gathered from the associated idempotent multigraph. The resulting algorithm
would be more expensive but also more precise.

Acknowledgements

We gratefully acknowledge the anonymous referees as well as the participants of
LOPSTR 2006 for many useful comments and suggestions.

References

1. E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional Logic
Program Specialization. New Generation Computing, 20(1):3–26, 2002.

2. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic
Programs. ACM TOPLAS, 20(4):768–844, 1998.

3. S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Conference on Algebraic and
Logic Programming (ALP’92), pages 143–157. Springer LNCS 632, 1992.

4. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 47(4):776–822, 2000.

5. G. Arroyo, J.G. Ramos, J. Silva, and G. Vidal. Improving Offline Narrowing-
Driven Partial Evaluation Using Size-Change Graphs. Technical report, Tech-
nical University of Valencia, 2006. Available from the following URL:
http://www.dsic.upv.es/users/elp/german/papers.html.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

7. A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by
Exploiting Term Properties. In S. Abramsky and T.S.E. Maibaum, editors, Proc.
of TAPSOFT’91, pages 153–180. Springer LNCS 494, 1991.

8. W.N. Chin and S.C. Khoo. Better Consumers for Program Specializations. Journal
of Functional and Logic Programming, 1996(4), 1996.

9. Michael Codish and Cohavit Taboch. A semantic basis for the termination analysis
of logic programs. J. Log. Program., 41(1):103–123, 1999.

10. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M.H.
Sørensen. Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and
Experiments. Journal of Logic Programming, 41(2&3):231–277, 1999.

11. S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K.F. Sagonas. Termi-
nation Analysis for Tabled Logic Programming. In Proc. of LOPSTR’97, pages
111–127. Springer LNCS 1463, 1998.

Improving Offline Narrowing-Driven Partial Evaluation 75

12. N. Dershowitz. Termination of Rewriting. Journal of Symbolic Computation,
3(1&2):69–115, 1987.

13. J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of the
ACM Symp. on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’93), pages 88–98. ACM, New York, 1993.

14. S. Genaim, M. Codish, J.P. Gallagher, and V. Lagoon. Combining Norms to Prove
Termination. In Proc. of 3rd Int’l Workshop on Verification, Model Checking, and
Abstract Interpretation (VMCAI’02), pages 126–138. Springer LNCS 2294, 2002.

15. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A Logic
plus Functional Language. Journal of Computer and System Sciences, 42:363–377,
1991.

16. A.J. Glenstrup and N.D. Jones. Termination analysis and specialization-point in-
sertion in offline partial evaluation. ACM Trans. Program. Lang. Syst., 27(6):1147–
1215, 2005.

17. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19&20:583–628, 1994.

18. M. Hanus. Curry: An Integrated Functional Logic Language. Available at:
http://www.informatik.uni-kiel.de/~mh/curry/, 2003.

19. M. Hanus (ed.), S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS 1.6.0: The Portland Aachen Kiel Curry System—User
Manual. Technical report, University of Kiel, Germany, 2004.

20. C.K. Holst. Finiteness Analysis. In Proc. of Functional Programming Languages
and Computer Architecture, pages 473–495. Springer LNCS 523, 1991.

21. G. Huet and J.J. Lévy. Computations in orthogonal rewriting systems, Part I + II.
In J.L. Lassez and G.D. Plotkin, editors, Computational Logic – Essays in Honor
of Alan Robinson, pages 395–443, 1992.

22. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

23. L. Lafave and J.P. Gallagher. Constraint-based Partial Evaluation of Rewriting-
based Functional Logic Programs. In Proc. of the 7th Int’l Workshop on Logic Pro-
gramming Synthesis and Transformation (LOPSTR’97), pages 168–188. Springer
LNCS 1463, 1997.

24. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The Size-Change Principle for Pro-
gram Termination. In ACM Symposium on Principles of Programming Languages
(POPL’01), volume 28, pages 81–92. ACM press, 2001.

25. Naomi Lindenstrauss and Yehoshua Sagiv. Automatic termination analysis of logic
programs. In ICLP, pages 63–77, 1997.

26. R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A Demand Driven Com-
putation Strategy for Lazy Narrowing. In Proc. of 5th Int’l Symposium on Pro-
gramming Language Implementation and Logic Programming (PLILP’93), pages
184–200. Springer LNCS 714, 1993.

27. J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Func-
tions and Predicates: The language Babel. J. Logic Programming, 12(3):191–224,
1992.

28. S. Peyton-Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

29. J.G. Ramos, J. Silva, and G. Vidal. Fast Narrowing-Driven Partial Evaluation
for Inductively Sequential Systems. ACM SIGPLAN Notices (Proc. of ICFP’05),
40(9):228–239, 2005.

30. J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity and Associativity. Journal of the ACM, 21(4):622–642, 1974.

76 G. Arroyo et al.

31. R. Thiemann and J. Giesl. The size-change principle and dependency pairs for
termination of term rewriting. Appl. Algebra Eng. Commun. Comput., 16(4):229–
270, 2005.

32. S. Verbaeten, K. Sagonas, and D. De Schreye. Termination Proofs for Logic Pro-
grams with Tabling. ACM Transactions on Computational Logic, 2(1):57–92, 2001.

Towards Description and Optimization of

Abstract Machines in an Extension of Prolog�

José F. Morales1, Manuel Carro2, and Manuel Hermenegildo2,3

1 U. Complutense de Madrid (UCM)
jfmc@fdi.ucm.es

2 T. University of Madrid (UPM)
{mcarro,herme}@fi.upm.es
3 U. of New Mexico (UNM)

herme@unm.edu

Abstract. Competitive abstract machines for Prolog are usually large,
intricate, and incorporate sophisticated optimizations. This makes them
difficult to code, optimize, and, especially, maintain and extend. This is
partly due to the fact that efficiency considerations make it necessary
to use low-level languages in their implementation. Writing the abstract
machine (and ancillary code) in a higher-level language can help harness
this inherent complexity. In this paper we show how the semantics of ba-
sic components of an efficient virtual machine for Prolog can be described
using (a variant of) Prolog which retains much of its semantics. These
descriptions are then compiled to C and assembled to build a complete
bytecode emulator. Thanks to the high level of the language used and
its closeness to Prolog the abstract machine descriptions can be manip-
ulated using standard Prolog compilation and optimization techniques
with relative ease. We also show how, by applying program transforma-
tions selectively, we obtain abstract machine implementations whose per-
formance can match and even exceed that of highly-tuned, hand-crafted
emulators.

Keywords: Prolog, Abstract Machines, Compilation, Optimization,
Program Transformation.

1 Introduction

Designing and implementing competitive “abstract” (or “virtual”) machines is
not without difficulties. In particular, the extensive code optimizations required
for performance make development and, especially, maintenance and further

� This work was funded in part by the Information Society Technologies program
of the European Commission, Future and Emerging Technologies under the IST-
15905 MOBIUS project, by the Spanish Ministry of Education under the TIN-2005-
09207 MERIT project, and the Madrid Regional Government under the PROMESAS
project. Manuel Hermenegildo is also supported by the Prince of Asturias Chair in
Information Science and Technology at UNM.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 77–93, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

78 J.F. Morales, M. Carro, and M. Hermenegildo

modification non-trivial. Implementing or testing new optimizations is often in-
volved, as decisions previously taken need to be revisited and low level and
tedious recoding is often necessary to test a new idea.

Systems based on virtual machines are typically composed of a compiler from
the source language (LP) to bytecode language (LB , aimed at being fast to
interpret, for which an intermediate-level symbolic representation LA usually
exists), plus an emulator for LB written in a lower-level language LC . In our
particular case, LP is Prolog, LA is symbolic WAM code, and LC is C.

Complexity of virtual machines and low level of LC has led to several propos-
als in order to raise the level at which the virtual machine is written, while trying
to maintain the possibility of translating it to the in principle more efficient LC

language. A particularly interesting possibility when LP is a general-purpose lan-
guage (as in our case) is to use LP itself to write its virtual machine. This has
been done for example in JavaInJava [1] and PyPy [2]. However, making these
implementations competitive with existing hand-tuned abstract machines is un-
doubtedly a challenge: JavaInJava reports initial slowdowns of approximately
700 times w.r.t. then-current implementations, and PyPy started at the 2000×
slowdown level.

This slowdown is largely due to the “semantic gap” existing between LP and
LC , even in the case of imperative and O.O. languages such as Java or Python.
LP should be precise enough to describe the algorithms underlying the basic
operations of the abstract machine with, at most, a constant slowdown (i.e.,
with no penalty regarding computational complexity). In order to achieve this,
and in addition to using improved compilation technology, we made changes to
the initial LP in the form of extensions which make it easier to reflect (or control)
LC characteristics not originally available such as, e.g., data sizes, alignments,
unboxing, etc. We will refer to this extended version of LP as LI . A similar
approach has made it possible to, for example, reduce the slowdown of PyPy to
3.5÷ – 11.0÷ in more recent versions [2].

The approach of coding completely the whole abstract machine in LP or LI

at once has the disadvantage of making it almost inevitable (as illustrated by,
e.g., PyPy) to start from a large slowdown and then work slowly towards regain-
ing performance. This makes it difficult to use the generated virtual machines
as “production” software (which would therefore be routinely tested) and, espe-
cially, it makes it difficult to study how a certain optimization will carry over to
a complete, optimized abstract machine.

We propose herein another possibility which is to proceed the other way
around by starting from a highly optimized abstract machine, keeping some
key elements coded in LC and gradually replacing different pieces of code with
code written in LI , making sure that no performance is lost at each step. In our
implementation, and following this approach, we have chosen to generate the
bytecode fetching and decoding loop directly in LC using the emulator genera-
tor of [3]. This automates the generation of efficient emulators, makes devising
and generating bytecode easy, and, notwithstanding, it makes it possible to write
the definitions of the abstract machine instructions in LI . This is not at odds

Towards Description and Optimization of Abstract Machines 79

with compilation to native code and just-in-time systems, where a sizable part
of the emulator machinery is still there in the form of runtime libraries.

We started with an efficient, WAM-based abstract machine for Prolog initially
coded in C and we rewrote parts of it in a variant of Prolog (LI) which we
have termed ImProlog and which both extends and restricts Prolog. ImProlog
can be translated into very efficient C and at the same time its semantics is
close enough to Prolog so as to be able to reuse many compilation techniques
(certain analyses, specialization, etc.). This allows obtaining highly optimized
and specialized emulators while avoiding obscure, redundant implementations
or overuse of C macros. In addition, the combination of this approach with an
emulator generator makes it possible to carry out non-trivial optimizations, such
as instruction merging, automatically.

2 A Prolog Variant to Describe Virtual Machines

In this section we will describe our LI language, ImProlog, and the analysis and
code generation techniques used to produce highly efficient code from it.

2.1 New Features in the Language

ImProlog adds two features to Prolog that can be modeled as new language con-
structs (expressible, however, within standard Prolog):

Native types and operations on them: They are opaque (“hidden” types
in terms of the Ciao module system and assertion language [4]), and used
to reflect in LI the basic data representations of LC and the data types re-
quired by the abstract machine (e.g., integers, floats, tagged words, etc.).

Mutable variables (mutvars): They associate an identifier (which can be
any first-order ground term) with an arbitrary term.
Two operations are defined over mutable variables:

Access: @MutV ar acts as a function which returns the value previously
stored in MutV ar.

Assignment: MutV ar <= V alue assigns V alue to the identifier MutV ar.
The assignment is imperative and non-backtrackable. If MutV ar is a free
variable then a new, unique identifier is allocated for it. If it is a ground
term, it is used as identifier. Its behavior remains unspecified otherwise.

Figure 1 shows an example of ImProlog code which defines how to dereference
a variable to reach a term. Similarly to the standard algorithm, it follows a
reference chain and stops when the value pointed to is the same as the pointing
term. Note the use of mutable variables and the operations on native types
tagof/2 and tagval/2, which check the tag of a tagged word and retrieve the
value of the tagged word, respectively.

The extensions included in ImProlog can easily be defined in full Prolog, as
shown in Figure 2 (we assume that new id/1 returns a new, unique identifier in

80 J.F. Morales, M. Carro, and M. Hermenegildo

deref(Reg) :-
(tagof(@Reg,ref) ->

tagval(@Reg,V), T = @V,
(@Reg = T -> true
; Reg <= T, deref(Reg))

; true).

Fig. 1. Dereference operation

tagof(tagged(Tag,Val),Tag).
tagval(tagged(Tag,Val),Val).
:- dynamic (@)/2.
Id <= V :-
(var(Id) -> new_id(Id) ; true),
retract(@(Id,_)), assertz(@(Id,V)).

Fig. 2. Prolog semantics of extensions

each call and that a trivial syntactic transformation makes goals @(X, Y) and
Y = @X equivalent). As @/2 can be expressed in Prolog, we would not need any
additional machinery to write (and run) our virtual machine in a Prolog system
and as a Prolog program, should we want to make that experiment. But that
would clearly not be without an immense performance penalty (at least without
complex optimizations), which is against our initial aims. By making these new
constructs natively known by the compiler, and restricting their application to
the cases which are useful to describe the virtual machine, we can compile them
efficiently time- and memory-wise, and they become easy to map onto low-level
primitive constructs of LC .

2.2 Conditions to Ensure Efficient Code Generation

As shown in [5,6,7] and other work (see [8] for more references), generation of
highly efficient executables from logic programs heavily depends on reducing
the computational overhead that supports the extended semantic capabilities
of Prolog for the specific cases in which the full power of the language is not
needed. This generally requires a wealth of compile-time information regarding
types, modes, determinism, non-failure, and other properties of the program.

This information is generally inferred by means of static analysis.1 When such
information can be inferred, optimizations are performed, and less efficient code
is generated otherwise. However, since our initial goal was to ensure efficiency,
we will, instead of allowing the generation of suboptimal code, impose a number
of constraints on the ImProlog code that can be written when describing the
abstract machine: precisely those that will allow an almost direct (often one-
to-one) translation to LC code. The compiler will raise an (efficiency-related)
error while processing the code that describes the virtual machine and abort its
generation if the necessary conditions are not met. This is obviously too drastic
a solution for general programs, but a good compromise in our application.

Program analysis combined with program assertions allows the compiler to
identify when it is safe (or possible) to generate code based on these constraints.
The conditions that must hold after analysis are that code must be deterministic
(with optional support for failure continuations, as in if-then-else constructs,

1 It can be also provided by program annotations written by the user, which will
indeed be necessary in some cases in practice.

Towards Description and Optimization of Abstract Machines 81

but not for full non-determinism), and that no garbage collection, trailing, or
boxing should be required. The analyses used to ensure that those restrictions
hold are listed in the next section.

2.3 Analysis

Following the order in which they are applied in the compiler, the analyses used
can be divided into three main groups.

Traditional Prolog Analyses: These include analyses for types, modes, de-
terminism, and non-failure. They are instrumental to decide the best data rep-
resentation and to detect which pieces of code may require choice points or fail-
ure continuations. They are performed using the abstract interpretation-based
analyzer in CiaoPP [9]. As CiaoPP was designed with extensibility in mind,
knowledge about ImProlog native types and associated operations can be given
to CiaoPP via (Ciao) assertions, without having to actually change the analyzer.
Assertions are also used to state the types, modes, etc. of externally defined fa-
cilities and routines (so that they can be taken into account by the analyzers)
and to declare properties to be met at the entry point of each abstract machine
instruction, which is typically written as a predicate. This information includes
implementation decisions such as the use of short or long native integers, etc.

In addition to assertions, the type of some mutable variables may be further
restricted by knowledge about the location they refer to or by type-constraining
program calls. For example, mutables for X(i) registers are always bound to
elements of type ‘tagged’. A typed specification of the assignment operation
could be written as follows:

Id <= Val :- id_type(Id, Type), Type(Val),
retract(@(Id, _)), assertz(@(Id, Val)).

where id type/2 relates an identifier with the name of its type, and Type(Val)
is a higher-order call which states the type of Val. As we will see later, this
knowledge helps in unboxing and analysis of mutables. Type analysis can ensure
that Type(Val) always holds and it can therefore be harmlessly removed. This
additional information makes mapping to C much easier.

Imperative State Analysis: Analysis of the value of mutable variables re-
quires tracking their (imperative) state, which is updated using rules that reflect
the actual operational semantics (i.e., sequential execution of OR-alternatives,
etc.). Since LI programs are limited to the deterministic case, the complexity
of this analysis is reduced with respect to a more general case. The domains
used are precise enough to identify an abstraction of some properties of mutable
variables (e.g., whether they represent an X register, a Y register, a heap loca-
tion, etc.). Strict type restrictions for some identifiers are applied here, thereby
increasing the performance of the analysis. The analysis is conservative: every
time a mutable may be written to (directly or by code which is externally avail-
able, and therefore difficult of impossible to access and analyze) its state is set to
the top value of the domain lattice. Different mutable variables may be aliased

82 J.F. Morales, M. Carro, and M. Hermenegildo

(i.e., they can point to the same location), and only a limited alias analysis is
performed; it takes advantage of the knowledge of the compiler regarding the
memory location of the variable: e.g., a mutable variable living in X(0) cannot
share with a mutable variable living in Y(1). This simple approach was effective
enough for the purpose of this work.

Analysis for Unboxing: This analysis tries to determine whether the type of
some variable is known at all points where it is reachable. If so, then there is
no need to reserve space for a tag to check its type at runtime. This requires
a previous pass to determine the scope of the identifiers for mutable variables
in order to establish in which program points they may be accessed. This is
also needed in order to assign memory locations at compile time to the mutable
variables created within the body of a predicate and which are not allocated on
the heap. Since non-determinism is not allowed, and according to the compilation
scheme we follow, if a variable name cannot be reached outside the scope of
a predicate it can be safely mapped to a (local) C variable. A conservative
approximation, which is easier to check and precise enough, is the following: the
variable name can be read from, assigned to, and passed as argument to other
predicates, but it cannot be assigned to anything else than other local variables.

2.4 Code Generation

The information provided by the analysis is used to optimize code generation,
especially in order to partially evaluate away whole sections of code (e.g., simpli-
fying conditionals, reducing calls to true/noop, etc.). The algorithm extends that
of ciaocc [7] to support ImProlog and also simplifies it in view of the constraints
on the code specified in Section 2.2.

Predicates that may or may not fail are mapped to C functions with boolean
or void return types, respectively. Generation of code for several clauses or pred-
icates in the same C function and jumping to C labels is also supported (e.g., to
transform recursions into loops). Additionally, an interface to internal compiler
modules is provided. This makes it possible to invoke instruction compilation
from within the emulator generator.

Schematically, compilation distinguishes among control constructs, external
C functions, and builtins. Compilation of control is as follows:

– A block G1, G2 is translated to the code for G1 having its success continua-
tion pointing to G2, followed by the code for G2.

– The construct G1 -> G2 ; G3 is compiled into an if-then-else, where G1
is compiled in a context where the failure continuation points to G3. G2 and
G3 are compiled in the same context where the whole construct appeared
(i.e., success / failure continuations point to where G1 -> G2 ; G3 did).

For a goal G which calls a C function f(), arguments are compiled (see later)
and then f() is called. If the predicate is semi-deterministic, the emitted code

Towards Description and Optimization of Abstract Machines 83

checks the return code and, if necessary, a jump to the failure continuation is
made. When G corresponds to a built-in, its compilation proceeds as follows:

– true does nothing.
– fail is translated to a jump to the failure continuation.
– A <= B is translated into assignment instructions. If A was not initialized it

is declared.
– A = B is handled as follows:

• When A is unbound and B is ground (and also for the symmetrical case),
the builtin is translated into the declaration of A plus an assignment
statement that moves the value of executing the compiled code corre-
sponding to B to the memory location associated with A.

• When A and B are both ground, the builtin is translated into a compar-
ison of the values resulting from executing the compiled code of both
expressions.

Note that although full unification may be assumed during program transfor-
mations, it is ultimately reduced to the two cases above. This has to be possible
in order to avoid bootstrapping problems: e.g., (full) unification, also defined in
ImProlog, should not be based itself on a full unification built-in.

Prolog logical variables and mutable variables are mapped to C variables
(which can be global, local, or be passed as function arguments). The type of
those C variables is extracted from the declarations and using type inference.
Due to the determinism of ImProlog, trailing is unnecessary.

During compilation a symbol table keeps track of the type and memory lo-
cation (or C variable) associated to each variable. All variables have to have an
associated type in order to perform unboxing (an error is flagged otherwise),
and all types are either native types or mutables whose value is of a native type.
For a variable whose associated C type is Tc, a declaration of variable named V,
with C type Vt, is emitted, and the associated memory location is set to Mem, as
follows:

– If the variable is not mutable, Vt is Tc and Mem is V.
– If the variable is mutable:

• if its scope is local, then Vt is Tc and Mem is V, or
• Vt is (Tc *) and Mem is *V, otherwise.

For simplicity we assume that goal arguments have been normalized and only
variables or @ expressions appear. Compilation of arguments, assuming that the
memory location for A is Mem, is as follows:

– @A is translated to Mem (and A must be a mutable variable in this case).
– A is translated to &Mem (if A is mutable), or
– A is translated to Mem otherwise.

3 Generating Emulators with ImProlog

We now sketch how WAM instructions can be described using ImProlog and how
the full emulator is assembled using a generic abstract machine generator.

84 J.F. Morales, M. Carro, and M. Hermenegildo

3.1 Defining WAM Instructions in ImProlog

The definition of every WAM instruction in ImProlog looks just like a regular
predicate, and the types, modes, etc. of each of their arguments have to be
declared using (Ciao) assertions. Figure 3 shows the definition of an instruction
which tries to unify a term and a constant. The pred/1 declaration states that
the first argument is a mutable variable and that the second is a tagged word
containing a constant. The predicates deref/1 (from Figure 1) and bind/2 (also
a defined predicate) are used in the instruction definition.

:- pred u_cons(mutable, cons).
u_cons(A, Cons) :-

T <= @A, deref(T),
(tagof(@T, ref) -> bind(@T,Cons) ; @T = Cons).

Fig. 3. Unification with a constant

The general compilation process to C, described later, is able to unfold (if
so desired) the definition of the predicates called by u cons/2 and to propagate
information from the code inside the instruction in order to optimize the resulting
piece of the emulator. After the set of transformations instruction definitions are
subject to, the generated C code is of high quality.

Our approach has been to define a reduced number of instructions (50 is a
ballpark figure) and let the merging and specialization process (see Section 4)
generate all instructions needed to have a competitive emulator. Note that effi-
cient emulators tend to have a large number of instructions (hundreds or even
thousands) and many of them are variations (obtained through specialization,
merging, etc.) on common blocks [10,11]. These common blocks are the simple
instructions we aim at representing explicitly in ImProlog.

In the experiments we performed (Section 5) the emulator with a larger num-
ber of instructions had 199 different opcodes (not counting those which result
from padding some other instruction with zeroes to ensure a correct alignment
in memory). Starting with a simple instruction set makes it easier to maintain
instruction sets and to make sure that they are consistent. Complex instructions
are generated automatically in a (by construction) correct way.

3.2 Assembling the Emulator

To avoid the burden associated with the coding and LC -dependent details of the
emulator, we chose to use here the framework previously described in [3], where
instruction semantics and bytecode representation are independently handled
and assembled together using an emulator compiler. Using the terminology of
[3] we define the relation between LA and LB by means of several pieces:2

2 A complete description, not included due to space constraints, would detail all ex-
pected elements for a WAM: X and Y registers, atoms, numbers, functors, etc.

Towards Description and Optimization of Abstract Machines 85

Menc which declares how bytecode encodes LA instructions and data (e.g. X(0)
is encoded as the number 0).

Mdec which declares how bytecode should be decoded to return the initial in-
struction format in LA (e.g., for an instruction which uses as argument an
X register, a 0 means X(0)).

Marg which expresses how LA expressions are translated to LC , e.g., how X(0)
goes to x[0] (assuming X registers end up in an array).

Higher-level instruction definitions in LI (which abstract away bytecode repre-
sentation issues) and program assertions are processed to generate:

Mdef which contains the definition of each instruction in the language LA in
terms of LC code.

Mins′ which describes the instruction set with opcode numbers and the format
of each instruction, i.e., the type in LA for each instruction argument.

The instruction set Mins′ is generated by reading the information for each
instruction contained in the assertions, interpreting types as LA elements, and
assigning opcodes to each instruction, either automatically or via user annota-
tions. The definition of Mdef is based on cgen, that generates LC code from LI

as defined in Figure 4. In this figure, mem storage stands for a look-up table
which relates each LA-level variable argi with its type and location in LC , ai.
The pseudo-instruction failure ins takes care of causing a failure. Some LA

instructions are not supposed to fail (e.g., pushing a choicepoint), while others,
such as performing a unification, can fail. In the former case cgen is able to
discard the else part and simplify the then part; in the latter case, jumps to
failure ins are inserted in the appropriate places.

The components Menc and Mins′ are used to generate the LA to LB compiler
back-end. The rest of the components and Mins′ are used by the emulator
compiler. The emulator has to understand LB and therefore it has to agree in
its format with what the compiler back-end emits. Note that the overall emulator
structure is largely independent of the code of the instructions.3 A summarized
definition of the emulator compiler and how it uses the different pieces in M can
be found in Figure 4. The scheme of the generated emulator code is somewhat
similar to what the Janus compilation scheme [12] produces, although in the
Janus case the continuation to every call (in the source code) is known statically.
The compiler can therefore generate a direct jump to a fixed label, while in
our case the continuation can in principle be any program point which comes
from the bytecode program itself and is not known until the emulator is being
executed.

Example 1. Code for a specialized instruction. From the instruction in Figure 3,
which unifies a term living in some variable with a constant, we can derive a
specialized version in which the term is supposed to live in an X register. The
declaration:
3 Assuming that no global transformations are done, which we are not addressing here.

86 J.F. Morales, M. Carro, and M. Hermenegildo

emucomp(M) =
[emuB(p, prg) ≡

case get opcode(p, prg) of
opcode1 : inscomp(opcode1, M)
. . .
opcoden : inscomp(opcoden, M)]

where opcodei ∈ domain(Mins′)

inscomp(opcode,M) =
[Mdef (p

′, cont, name,Margs(args)); cont(p′)]
where
〈name, format〉 = Mins′(opcode)
〈args, p′〉 = decodeins(format , [p], [prg],M)
cont = λa.[emuB(a, prg); return]

Mdef (next, cont, name, [arg1, . . . , argn]) =
�cgen�(name(a1, . . . , an) → true; failure ins)

where mem storage[a1 : arg1, . . . , an : argn]

Fig. 4. Emulator compiler

loop:
switch(Op(short,P,0)) {
...
case 97: goto ux_cons;
...
}

void deref(tagged_t *a0) {
deref:

if (tagged_tag(*a0) == REF) {
tagged_t t0;
t0 = *(tagged_val(*a0));
if ((*a0) != t0) {

*a0 = t0;
goto deref; }}}

...
ux_cons:
tagged t;
t = X(Op(short,P,2));
deref(&t);
if (TagOf(t) == REF) {

bind(t, Op(tagged,P,4));
} else {

if (t != Op(tagged,P,4))
goto failure_ins;

}
P = Skip(P,8);
goto loop;
...

Fig. 5. Schema for the code generated for a simple instruction

:- ins_alias(ux_cons, u_cons(xreg_mutable, any)).

states precisely that, assigns the (symbolic) name ux cons to the new instruction,
and specifies that the first argument lives in an X register. The declaration:

:- ins_entry(97, ux_cons).

indicates that the emulator has an entry with opcode 97 for that instruction.4

Figure 5 shows the code generated for the instruction (right) and a fragment of
the emulator generated by the emulator compiler in Figure 4.

We want to note that we deliberately stay within standard C: the use of C
extensions (such as storing labels in variables, which are provided by gcc and
used, for example, in [13,14]), is outside the scope of this paper.

4 In fact, different assignments of instruction numbers to opcodes can have an impact
on the final performance, as they dictate how the code is laid out in the emulator
switch. This affects, for example, the behavior of the cache.

Towards Description and Optimization of Abstract Machines 87

4 Automatic Generation of Abstract Machine Variations

Substantial work has been devoted to abstract machine generation strategies
such as, e.g., [10,11], which explore different design variations with the objective
of achieving highly optimized emulators. By making the semantics of the abstract
machine instructions explicit in a language like ImProlog, which can be easily
processed automatically, such variations can be formulated mostly as automatic
transformations. Adding new transformation rules and testing them together
with the existing ones becomes a relatively easy task.

We will briefly describe some of these transformations, which will be experi-
mentally evaluated in Section 5. Each transformation is identified by a two-letter
code. We make a distinction between transformations which change the instruc-
tion set (e.g., creating new instructions) and those which only affect the way
code is generated.

4.1 Instruction Set Transformations

New instructions are currently synthesized from existing ones by explicitly un-
folding shared pieces of code, by merging instructions (different or not), and by
performing specialization for some operand values, types, or locations.

Instruction Merging [om]: Merging generates larger instructions from se-
quences of smaller ones, and aims at saving fetch cycles at the expense of
an increased switch size. This technique has been used extensively in high-
performance systems (e.g., Quintus Prolog, SICStus, Yap, etc.). The performance
of different combinations has been studied empirically [10], but in that paper new
instructions were generated by hand, although deciding which instructions had
to be created was done by means of profiling. In our framework all that is needed
in order to emit code for a merged instruction is a single declaration. Merging
is done automatically through code unfolding based on the definitions of the
component instructions. This makes it possible to define a set of optimal user
rules for merging.

Instructions with a Variable Number of Operands [vo]: For some instruc-
tion families a number of instructions (e.g., unify with void) can be collapsed
into a single instruction with a variable number of operands. Code generation
emits a loop whose internal iteration code comes directly from the single instruc-
tion definition.

Instructions for Built-ins [ib]: Calling external library code or built-ins often
requires ad-hoc instructions (to make the appropriate parameter conversion,
etc.). A single family of instructions that call a foreign C function can be used
to do that, and this is the default option. The same instruction can then be
specialized for a predefined set of built-ins, thus generating a special instruction
set that includes faster calls to, e.g., arithmetic operations.

88 J.F. Morales, M. Carro, and M. Hermenegildo

4.2 Transformations of Instruction Code

Some transformations do not create new instructions, but perform instead dif-
ferent optimizations on already existing instructions by manipulating the code
or choosing alternative translation schemes.

Unfolding Rules [ur]: Simple predicates are unfolded throughout the code
before compilation. In the case of instruction merging, unfolding is used to merge
the code of two or more instructions into a single piece of code. In some cases
unfolding can be limited so that common pieces of instructions can be shared.
This transformation enables or disables a set of predefined unfolding rules.

Different Tag Switching Schemes [ts]: Tags are used to detect dynamically
the type of basic data (atom, structure, number, variable, etc.) contained in a
machine word, so that different actions can be taken depending on this type. The
corresponding tag switching code is a heavily-used operation which is worth op-
timizing as much as possible. This option generates either an automatic C switch
(when enabled) or a set of predefined switch patterns based on tag encodings
(when disabled).

Connected Continuations [jc]: Tests (or other actions) are sometimes un-
necessarily repeated because they appear at the end of an operation and at the
beginning of the next one. They are redundant at this point, because they are
bound to fail or succeed depending on their behavior in the previous operation.
For example, in the fragment deref(T), (ref(T) -> A ; B), T is checked to
test whether it is a reference just before exiting deref/1. Code can be generated
that jumps directly to the implementation of A or B depending on the result of
this test. This option enables or disables the optimization.

Read/Write Mode Specialization [rw]: WAM-based implementations
sometimes use a flag to test whether heap structures (i.e., the memory rep-
resentation of functors) are being read (matched against) or written (created).
According to the value of this flag, several instructions adapt their behavior with
an if-then-else. A common optimization is to partially evaluate the switch in-
side the emulator loop to generate two different, parallel switch structures, one
for each of the read/write possibilities. We can generate instruction sets (and
emulators) where this optimization has been turned on or off.

5 Experimental Evaluation

We will report here on experimental data regarding the performance which was
achieved on a set of benchmarks by a collection of emulators, all of them auto-
matically generated through different combinations of options. In particular, by
using all compatible possibilities for the transformation and generation options
given in Section 4 we generated 96 different emulators (instead of 27 = 128, as
not all options are independent; for example, vo needs om to be performed).

Towards Description and Optimization of Abstract Machines 89

This bears a close relationship with [11], but here we are not changing the inter-
nal data structure representation (and of course our instructions are all coded in
ImProlog). It is also related to the experiment reported in [10], but the tests we
perform are more extensive and cover more variations. Additionally, [10] starts
off by being selective about the instructions to merge; this is a point we want to
address in the future by using instruction-level profiling.

Our initial point was a “bare” instruction set comprising the “common basic
blocks” of a relatively efficient abstract machine (the “stock” abstract machine
of Ciao 1.10, itself an independent branch off the original SICStus Prolog 0.5/0.7
emulator, and with performance currently just below modern SICStus versions).
Figures 6 to 7 summarize overall results for the experiments, as the data gath-
ered —96 emulators × 13 benchmarks = 1248 performance figures— is too large
to be examined in detail here. In those figures we plot, for three different cases,
the resulting speed of every emulator using a dot per emulator. Every benchmark
was run several times on each emulator to arrive at meaningful time measures,
in a Linux machine with a Pentium 4 processor and using gcc 3.4 as C compiler.
Although most of the benchmarks we used are relatively well known, we include
a brief description in [15].

In order to encode emulator generation options in the corresponding dots, each
available option in Sections 4.1 and 4.2 is assigned a bit in a binary number
(a ’1’ means activating the option and a ’0’ means deactivating it). Every value
in the y axis of the figures corresponds to a combination of the three options
in Section 4.1, but only 6 combinations are plotted due to dependencies among
options. Options in Section 4.2, which correspond to transformations in the way
code is generated, are represented with four bits which are encoded as 16 different
dot shapes (shown in each figure). Every combination of emulator generation
options is thus assigned a different 7-bit number and a different dot shape and
location. The x coordinate represents the relative speed w.r.t. the hand-coded
emulator currently in Ciao 1.10, which is assigned speedup 1.0.

Of course, different selections for the bits assigned to the y coordinate and
to the dot shapes would yield a different picture. However, our selection seems
intuitively appropriate, as it addresses separately two different families of
transformations. Indeed, Figure 6, which uses the geometric average5 of all
benchmarks to determine the overall performance, shows a quite well defined
clustering around eight centers. Although it is not immediate from the picture
(it has to be “decoded”), poorer speedups come from not activating some instruc-
tion creation options (which, for the stock emulator, really means deactivating
them, since merging and specialization was made by hand quite some time ago,
and the resulting instructions are already part of the emulator).

As a side note, while this figure portrays an average behavior, there were
benchmarks whose results actually tracked this average behavior quite faithfully.
An example is the the doubly recursive Fibonacci, which is often disregarded as
unrealistic but which, for this particular experiment, turns out to predict very
well the (geometric) average behavior of all benchmarks. All in all, this picture

5 As a means to alleviate the effect of extremely good or bad cases.

90 J.F. Morales, M. Carro, and M. Hermenegildo

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 o
pt

s

speed-up relative to default Ciao opts

Showing Geometric mean of benchmark set

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Fig. 6. Geometric average of all benchmarks (a dot per emulator)

(or, rather, the method which led to it) tries to reveal families of optimization
options which give similar speed by showing dot clusters. Interestingly enough,
once a set of generation options for LB is fixed, the changes in the generation of
LC have (in general – see below) a relatively low impact. The general question
which options should be used for the “stock” emulator to be offered to general
users is answered by selecting a set of options somewhere in the topmost, right-
most cluster.

In any case, there are combinations of code generation options which achieve
a speedup of 1.05, on average. While this may appear modest, consider that by
starting with a simple instruction set (coded in ImProlog!) and applying system-
atically a set of transformation and code generation options, we have managed to
match (and exceed) the time performance (memory performance was untouched)
of an emulator which was hand-coded by very proficient programmers, and in
which decisions were thoroughly tested along several years. Moreover, the trans-
formation rules we have applied in our case are of course not the only ones, and
we look forward to performing a more aggressive merging guided by profiling
(merging is right now limited in depth to avoid a combinatorial explosion in the
number of instructions). Similar work, with more emphasis on the production of
languages for microprocessors is presented in [16], where a set of benchmarks is
used to guide the (constrained) synthesis of such a set of instructions.

Figure 7 shows two cases of particular interest. The plot for queens11 is a
typical case which departs from the average behavior but which still resembles
it. As a relevant difference, a much better speedup (around 1.25)6 is achieved
with some combinations of flags. On the other hand, the plot for crypt presents
a completely different landscape: a plot where variations on the code generation
scheme are as relevant as variations on the bytecode itself. This points to the
need to find other clustering arrangements which shed some light on the inter-
actions among different emulator code and bytecode generation schemes. Our
experiments, however, lead us to think that in some cases the behavior tends to

6 Which of course means that some benchmarks do not get any speedup.

Towards Description and Optimization of Abstract Machines 91

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 o
pt

s

speed-up relative to default Ciao opts

Showing benchmark queens11

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 o
pt

s

speed-up relative to default Ciao opts

Showing benchmark crypt

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Fig. 7. Crypt: extreme case of spreading. Queens: scattered distribution.

be almost chaotic, as the lack of registers in the target architecture (i86) makes
optimization a difficult task for the C compiler. This is supported by similar
experiments on a PowerPC architecture, which has more general purpose regis-
ters, and in which the results are notably more stable across benchmarks. The
overall conclusions for the best options and speedups remain roughly the same,
only with less variance.

Table 1 tries to isolate the effects of separate options. It does so by listing, for
each benchmark, including the geometric average, which options produced the
best and the worst results time-wise. While there is no obvious conclusion, instruc-
tion merging is a clear winner, probably followed by having a variable number of
operands, and then by specialized calls to built-ins. The first and second options
save fetch cycles, while the third one saves processing time in general.

It can come as a surprise that using separate switches for read/write modes,
instead of checking the mode in every instruction which needs to do so, does
not seem to bring any advantage. A similar result was already observed in [11],
and was attributed to modern architectures performing branch prediction and
speculative work with redundant units. Therefore, short if-then-else statements
might get both branches executed in parallel with the evaluation of the condition.
Besides, implementing read/write modes with two switches basically doubles the
size of the core of the emulator. A similar size growth happens when extensive
merging is performed. In both cases a side effect is that of an increased cache
miss ratio and the corresponding reduced performance.

92 J.F. Morales, M. Carro, and M. Hermenegildo

Table 1. Options which gave best/worst performance

Benchmark
Best performance

vo ib om ts jc ur rw Speed-up
default x x x x x 1.00

all (geom.) x x x x x 1.05

boyer x x x x 1.18
crypt x x x 1.22
deriv x x x x 1.10
factorial x x x 1.02
fib x x x x x x 1.02
knights x x x x 1.06
nreverse x x x x 1.03
poly x x x x x 1.02
primes x x x x 1.10
qsort x x x x 1.05
queens11 x x x x x x x 1.26
query x x x x x x 1.06
tak x x x x 1.23

Worst performance
vo ib om ts jc ur rw Speed-down
x x x x x 1.00

x x 0.7

x 0.70
x x 0.86

x x 0.62
x x 0.76

x x x 0.75
x x x x 0.72

x x x 0.57
x x 0.56

x x x 0.73
x x 0.54
x x x 0.77

x x 0.71
x x x x 0.69

6 Conclusions

We have designed a language (ImProlog, a variation of Prolog with some impera-
tive features) and used it to describe the semantics of instructions of a bytecode
interpreter. ImProlog, with the proposed constraints, makes it possible both to
perform non-trivial transformations (e.g., partial evaluation, unfolding, merging,
etc.) and to generate efficient low-level code (using the cgen compiler) for each of
the emulator instructions. Different transformations and code generation options
can be applied, which result in different grades of optimization / specialization
and different bytecode languages.

The low-level code for each instruction and the definition of the bytecode can
be taken as input by a previously developed emulator generator to assemble
full, high-quality emulators. Since the process of generating instruction code
and bytecode format is automatic, we were able to produce and test different
versions thereof to which several combinations of code generation options were
applied.

We have also studied how these combinations perform with a series of bench-
marks in order to find, e.g., what is the “best” average solution and how inde-
pendent coding rules affect the overall speed. We have in this way as one case the
regular emulator we started with (and which was decomposed to break complex
instructions into basic blocks). However, we also found out that it is possible to
outperform it by using some code patterns and optimizations not explored in the
initial emulator, and, what is more important, starting from abstract machine
definitions written in ImProlog. We intend to continue this line of exploration
of improved abstract machines and incorporating them in the standard Ciao
distributions.

Towards Description and Optimization of Abstract Machines 93

References

1. Taivalsaari, A.: Implementing a Java Virtual Machine in the Java Programming
Language. Technical report, Sun Microsystems (1998)

2. Rigo, A., Pedroni, S.: PyPy’s Approach to Virtual Machine Construction. In:
Dynamic Languages Symposium 2006, ACM Press (2006)

3. Morales, J., Carro, M., Puebla, G., Hermenegildo, M.: A generator of efficient
abstract machine implementations and its application to emulator minimization.
In Meseguer, P., Larrosa, J., eds.: International Conference on Logic Programming.
LNCS, Springer Verlag (2005)

4. Puebla, G., Bueno, F., Hermenegildo, M.: An Assertion Language for Constraint
Logic Programs. In Deransart, P., Hermenegildo, M., Maluszynski, J., eds.: Anal-
ysis and Visualization Tools for Constraint Programming. Number 1870 in LNCS.
Springer-Verlag (2000) 23–61

5. Van Roy, P., Despain, A.: High-Performance Logic Programming with the Aquarius
Prolog Compiler. IEEE Computer Magazine (1992) 54–68

6. Taylor, A.: High Performance Prolog Implementation through Global Analysis.
Slides of the invited talk at PDK’91, Kaiserslautern (1991)

7. Morales, J., Carro, M., Hermenegildo, M.: Improving the Compilation of Prolog to
C Using Moded Types and Determinism Information. In: Proceedings of the Sixth
International Symposium on Practical Aspects of Declarative Languages. Number
3057 in LNCS, Heidelberg, Germany, Springer-Verlag (2004) 86–103

8. Van Roy, P.: 1983-1993: The Wonder Years of Sequential Prolog Implementation.
Journal of Logic Programming 19/20 (1994) 385–441

9. Hermenegildo, M., Puebla, G., Bueno, F., López-Garćıa, P.: Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In:
10th International Static Analysis Symposium (SAS’03). Number 2694 in LNCS,
Springer-Verlag (2003) 127–152

10. Nässén, H., Carlsson, M., Sagonas, K.: Instruction Merging and Specialization in
the SICStus Prolog Virtual Machine. In: Proc. 3rd ACM SIGPLAN Int. Conf. on
Principles and Practice of Declarative Programming, ACM Press (2001) 49–60

11. Demoen, B., Nguyen, P.L.: So Many WAM Variations, So Little Time. In: Com-
putational Logic 2000, Springer Verlag (2000) 1240–1254

12. Gudeman, D., Bosschere, K.D., Debray, S.: jc: An efficient and portable sequential
implementation of janus. In: Proc. of 1992 Joint International Conference and
Symposium on Logic Programming, MIT Press (1992) 399–413

13. Henderson, F., Conway, T., Somogyi, Z.: Compiling Logic Programs to C Using
GNU C as a Portable Assembler. In: ILPS 1995 Postconference Workshop on
Sequential Implementation Technologies for Logic Programming. (1995) 1–15

14. Codognet, P., Diaz, D.: WAMCC: Compiling Prolog to C. In Sterling, L., ed.:
International Conference on Logic Programming, MIT PRess (1995) 317–331

15. Morales, J., Carro, M., Hermenegildo, M.: Description and Optimization of Ab-
stract Machines in an Extension of Prolog. Technical Report CLIP8/2006.0, Tech-
nical University of Madrid (UPM), School of Computer Science, UPM (2006)

16. Holmer, B.K.: Automatic Design of Computer Instruction Sets. PhD thesis,
University of California at Berkeley (1993)

Combining Different Proof Techniques for

Verifying Information Flow Security

Heiko Mantel, Henning Sudbrock, and Tina Kraußer

Security Engineering Group, RWTH Aachen University, Germany
{mantel,sudbrock,krausser}@cs.rwth-aachen.de

Abstract. When giving a program access to secret information, one
must ensure that the program does not leak the secrets to untrusted
sinks. For reducing the complexity of such an information flow analy-
sis, one can employ compositional proof techniques. In this article, we
present a new approach to analyzing information flow security in a com-
positional manner. Instead of committing to a proof technique at the
beginning of a verification, this choice is made during verification with
the option of flexibly migrating to another proof technique. Our approach
also increases the precision of compositional reasoning in comparison to
the traditional approach. We illustrate the advantages in two exemplary
security analyses, on the semantic level and on the syntactic level.

1 Introduction

Information flow security aims at answering the question: Is a given system suf-
ficiently trustworthy to access secret information? The two main research prob-
lems are, firstly, finding adequate, formal characterizations of trustworthiness
and, secondly, developing sound and efficient verification techniques based on
these characterizations. Information flow security has been a focal research topic
in computer security for more than 30 years. Nevertheless, the problem to se-
cure the flow of information in systems is far from being solved. In [28], the state
of the art was surveyed for approaches to capturing and analyzing information
flow security of concrete programs. For information flow security at the level of
more abstract specifications, a broad spectrum of approaches has been devel-
oped (see, e.g., [12,19,20,11,26,17,5]). The most popular verification techniques
are the unwinding technique on the level of specifications (see, e.g., [13,24,18,4]),
and security type systems and program logics on the level of programs (see [28]
for a good overview). In this article, we focus on a multi-threaded programming
language.

We use the standard scenario for investigating information flow security of
imperative programs. That is, the initial values of some variables, the so called
high variables, constitute the secrets that must be protected while the remaining
variables, the low variables, initially store public data. We assume an attacker ζ
who can observe the values of low variables before and at the end of a program
run. The security requirement is that no information flows from the high variables

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 94–110, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combining Different Proof Techniques 95

into low variables during program execution. We use l to denote low variables
and h to denote high variables, i.e. variables that may store secrets.

There are various possibilities for how a program could accidentally or ma-
liciously leak secrets. It could copy a secret into a low variable as, e.g., in
P1 = l:=h. Such leaks are referred to as intra-command leaks or explicit leaks
[9]. More subtly, a secret could influence the flow of control, leading to different
assignments to low variables as, e.g., in P2 = if h = 0 then l:=0 else l:=1 fi. If
the value of l is 0 at the end of the run, h = 0 must have held initially, and if
l is 1 then h �= 0 held. Such information leaks are referred to as inter-command
leaks or implicit leaks. Even more subtle leaks originate in a multi-threaded
setting.

Verification techniques are often based on characterizations of information
flow security that are compositional with respect to the primitives of the pro-
gramming language. Two well known observations motivated our work:

– Compositionality is indeed helpful, both for making verification techniques
efficient and for simplifying the derivation of results at the meta level, e.g.,
for proving a soundness theorem for a syntactic, type-based analysis.

– Compositionality leads to overly restrictive characterizations of security.
Simple programs that are typically rejected include, e.g., while h ≤ 10 do h :=
h + 1 od, l:=h; l:=0, h:=0; l:=h, and if h = 0 then l := 0 else l := 0 fi (for
instance, the security type systems in [32,29] reject all these programs).

More recent work aimed at relaxing security definitions and type systems such
that intuitively secure programs like the above examples are not rejected any-
more by a security analysis. For instance, [30] and [25] provide solutions for,
e.g, while h ≤ 10 do h := h + 1 od (possibly requiring the addition of auxiliary
commands to the program), and [15] offers a solution for, e.g., if h = 0 then l :=
0 else l := 0 fi. While this progress is promising, the approach taken requires the
incremental improvement of each individual analysis technique. In this article,
we present an alternative approach. We show that and how different analysis
techniques can be combined, effectively developing a higher-level security calcu-
lus that can be extended with existing verification techniques as plugins. This
approach applies to the semantic level, where one applies (semantic) character-
izations of security that enjoy desirable meta properties (such as, e.g., compo-
sitionality) and uses a calculus for some general-purpose logic for verification.
The approach also applies to the syntactic level, where one uses specific security
calculi (such as, e.g., security type systems) for verification. Instead of eliminat-
ing weaknesses of each individual verification technique, our approach aims at
combining the strengths of available techniques.

In summary, the contributions of this article are, firstly, a novel approach to
verifying information flow security and, secondly, the illustration of how different
verification techniques can be beneficially combined in the information flow anal-
ysis of a fairly realistic example program. The article constitutes an initial step
in the proposed direction, and some issues such as finding a fully satisfactory
baseline characterization will need further investigation.

96 H. Mantel, H. Sudbrock, and T. Kraußer

2 Information Flow Security in an Imperative Language

To make our approach concrete, we introduce a simple, multi-threaded pro-
gramming language that includes assignments, conditionals, loops, a command
for dynamic thread creation, and a sync command. Without sync command and
arrays, this language is also used, e.g., in [29]. The set Com of commands is
defined by (where V is a command vector in Com =

⋃
n∈N

Comn)

C ::= skip | Id :=Exp | Arr[Exp1]:=Exp2 | C1; C2 | if B then C1 else C2 fi
| while B do C od | fork(CV) | sync.

We restrict program variables to Booleans, integers, and arrays. The length
of an array Arr is denoted by Arr.length and is treated like a constant. The ith
element of Arr is denoted by Arr[i] and treated like a variable. Expressions are
program variables, constants, and terms resulting from applying operators to
expressions: Exp ::= Const | Var | Arr[Exp] | Arr.length | op(Exp1, . . . ,Expn).

A state is a mapping from variables in a given set Var to values in a given
set Val . The set of states is denoted by S. We use [v = n]s to denote the state
that maps v to n and all other variables to the same values like the state s.
We treat arrays like in [8]: If an array access a[i] is out of bounds (i.e. i < 0
or i ≥ a.length) then a dummy value is returned (0 for integers and False for
Booleans), no exception is raised and no buffer overflow occurs. We use the
judgment 〈|Exp, s|〉 ↓ n for specifying that expression Exp evaluates to value n in
state s. Expression evaluation is assumed to be total and to occur atomically.

〈|skip, s|〉 � 〈|〈〉, s|〉
〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉 � 〈|〈〉, [Id = n]s|〉

〈|Exp ′, s|〉 ↓ i 0≤ i<Arr.length 〈|Exp, s|〉 ↓ n

〈|Arr[Exp ′]:=Exp, s|〉 � 〈|〈〉, [Arr[i] = n]s|〉
〈|Exp ′, s|〉 ↓ i (i<0 ∨ i≥Arr.length)

〈|Arr[Exp ′]:=Exp, s|〉 � 〈|〈〉, s|〉

〈|C1, s|〉 � 〈|〈〉, t|〉
〈|C1; C2, s|〉 � 〈|C2, t|〉

〈|C1, s|〉 � 〈|〈C′
1〉V, t|〉

〈|C1; C2, s|〉 � 〈|〈C′
1; C2〉V, t|〉 〈|fork(CV), s|〉 � 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True
〈|if B then C1 else C2 fi, s|〉 � 〈|C1, s|〉

〈|B, s|〉 ↓ False
〈|if B then C1 else C2 fi, s|〉 � 〈|C2, s|〉

〈|B, s|〉 ↓ True
〈|while B do C od, s|〉 � 〈|C; while B do C od, s|〉

〈|B, s|〉 ↓ False
〈|while B do C od, s|〉 � 〈|〈〉, s|〉

Fig. 1. Small-step deterministic semantics

〈|Ci, s|〉 � 〈|W, t|〉
〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W 〈Ci+1 . . . Cn−1〉, t|〉

∀i ∈ {0, . . . , n − 1} : (Ci = sync ∧ V ′
i = 〈〉) ∨ (Ci = sync; Di ∧ V ′

i = 〈Di〉)
〈|〈C0, . . . , Cn−1〉, s|〉 → 〈|V ′

0 . . . V ′
n−1, s|〉

Fig. 2. Small-step non-deterministic semantics

Combining Different Proof Techniques 97

A configuration is a pair 〈|V, s|〉 where the vector V specifies the threads that
are currently active and s defines the current state of the memory.

The operational semantics is formalized in Figures 1 and 2. Deterministic
judgments have the form 〈|C, s|〉 � 〈|W, t|〉 expressing that command C performs
a computation step in state s, yielding a state t and a vector of commands W,
which has length zero if C terminated, length one if it has neither terminated nor
spawned any threads, and length greater than one if new threads were spawned.
That is, a command vector of length n can be viewed as a pool of n threads that
run concurrently. Non-deterministic judgments have the form 〈|V, s|〉 → 〈|V ′, t|〉
(note the new arrow), where V and V ′ are thread pools, expressing that some
thread Ci in V performs a step in state s resulting in the state t and some thread
pool W ′. The global thread pool V ′ results then by replacing Ci with W ′.

Our sync command blocks a given thread until each other thread has termi-
nated or is blocked. Executing sync unblocks all threads (see the rule in Figure 2).

The following example illustrates the subtle possibilities for leaking informa-
tion in a multi-threaded setting. It also demonstrates that the parallel composi-
tion of two secure programs can result in an insecure program.

Example 1. If P3 = h:=0; P2 (where P2 = if h = 0 then l:=0 else l:=1 fi) runs
concurrently with P4 = h:=h′ under a shared memory and a round robin sched-
uler then the final value of l is 0 (respectively, 1) given that the initial value of
h′ is 0 (respectively, not 0). This is illustrated below where (vl, vh, vh′) denotes
the state s with s(l) = vl, s(h) = vh, and s(h′) = vh′ :

〈|〈P3, P4〉, (0, 0, 0)|〉
→ 〈|〈P2, P4〉, (0, 0, 0)|〉
→ 〈|〈P2〉, (0, 0, 0)|〉
→ 〈|〈l:=0〉, (0, 0, 0)|〉 → 〈|〈〉, (0, 0, 0)|〉

〈|〈P3, P4〉, (0, 0, 1)|〉
→ 〈|〈P2, P4〉, (0, 0, 1)|〉
→ 〈|〈P2〉, (0, 1, 1)|〉
→ 〈|〈l:=1〉, (0, 1, 1)|〉 → 〈|〈〉, (1, 1, 1)|〉

That is, the final value of l equals the initial value of h′ and, hence, the attacker
is able to reconstruct the secret, initial value of h′ from his observation of l. ♦

In the following, we adopt the naming conventions used so far: s and t denote
states, Exp denotes an expression, B denotes a Boolean expression, Arr denotes
an array, C and D denote commands, and V and W denote command vectors.

2.1 Security Policy, Labelings, and Security Condition

We assume a security lattice that comprises two security domains, a high level
and a low level where the requirement is that no information flows from high
to low. This is the simplest policy for which the problem of information flow
security can be investigated. Each program variable is associated with a security
domain by means of a labeling lab : Var → {low , high}. The intuition is that
values of low variables can be observed by the attacker and, hence, should only
be used to store public data. High variables are used for storing secret data and
their content is not observable for the attacker. For a given array Arr, the content
has a security domain (denoted lab(Arr)) and the length has a security domain
(denoted lab(Arr.length)) that must be at or below the one for the content.

98 H. Mantel, H. Sudbrock, and T. Kraußer

All elements of the array are associated with the same security domain. If Arr :
high then Arr[i] : high and if Arr : low and i : low then Arr[i] : low . If Arr : low
and i : high then Arr[i] has no security domain and cannot be typed (see [10]).

As before, h and l denote high and low variables, respectively. An expression
Exp has the security domain low (denoted by Exp : low) if all variables in
Exp have domain low and, otherwise, has security domain high (denoted by
Exp : high). The intuition is that values of expressions with domain high possibly
depend on secrets while values of low expressions can only depend on public data.

Definition 1. Two states s, t ∈ S are low equal (denoted by s =L t) iff

∀var ∈ Var : lab(var) = low =⇒ s(var) = t(var) .

Two expressions Exp,Exp′ are low equivalent (denoted by Exp ≡L Exp′) iff

∀s, s′ ∈ S : (s =L s′ ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, s′|〉 ↓ n′) =⇒ n = n′ .

We decided to use a possibilistic security condition (like in [31]) despite the fact
that this condition is not entirely satisfactory from a practical perspective as
it does not take scheduling into account (unlike the conditions in, e.g., [32,30])
and, in particular, is not scheduler independent (unlike the condition in [29]).
However, possibilistic security is conceptually simple and suitable for illustrating
our verification technique, and this is our focus in this article.

Definition 2. A symmetric relation R on command vectors is a possibilistic
low indistinguishability iff for all V, W ∈ Com with V R W the following holds:

∀s, s′, t ∈ S : ((s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉)
⇒ ∃t′ ∈ S : (〈|W, t|〉 →∗ 〈|〈〉, t′|〉 ∧ s′ =L t′)).

The union of all possibilistic low indistinguishabilities, ∼L, is again a possibilis-
tic low indistinguishability. Note that ∼L is transitive and symmetric, but not
reflexive. For instance, l:=h ∼L l:=h does not hold. Intuitively, only programs
with secure information flow are related to themselves.

Definition 3. A program V is possibilistic low secure iff V ∼L V .

The idea of possibilistic security is that an observer without knowledge of the
scheduler cannot infer from the values of low-level variables that some high
variable did not have a particular value. That is, any low output that is possible
after the system starts in a state s is also possible when the system starts in any
other state that is low equal to s.

Example 2. It is easy to see that P1 = l:=h and P2 = if h = 0 then l:=0 else l:=1 fi,
both are not possibilistic low secure. Moreover, P3 and P4 from Example 1, each
is possibilistic low secure, but 〈P3, P4〉 is not (take s and t as in Example 1). ♦

3 Combining Calculus

In general, compositional reasoning about information flow security is not sound.
This applies, in particular, to our baseline condition, possibilistic low security,

Combining Different Proof Techniques 99

which is neither preserved under parallel composition nor under sequential
composition, in general (see Example 2 and below). For making compositional
reasoning sound, one must strengthen the definition of secure information flow
until one arrives at a compositional property. This approach is taken, e.g., in the
derivation of the strong security condition [29]. However, the resulting compos-
able security definitions are over-restrictive in the sense that they are violated
by many programs that are intuitively secure.

In this section, we present an approach for deducing the security of a composed
program from the fact that each sub-program satisfies some notion of security
that is stronger than the baseline property. We derive sufficient conditions for
sequential composition, for parallel composition, for conditional branching, and
for while loops. This leads us to four compositionality results. These constitute
the theoretical basis of our combining calculus, which allows one to flexibly
apply available verification techniques during an information flow analysis. We
then revisit some available verification techniques and provide plugin-rules that
enable the use of these techniques in a derivation with our combining calculus.

3.1 Compositionality Results and Basic Calculus Rules

Auxiliary concepts. If C ∼L C′ and D ∼L D′ hold then C; D ∼L C′; D′ does
not necessarily hold because threads spawned during execution of C might still
be running when D begins execution, influencing computations in D through
shared variables. For instance, the program fork(skip, P2; l:=2); l′:=l where P2 =
if h = 0 then l:=0 else l:=1 fi does not satisfy the baseline property (due to the race
between the second assignment to l and the assignment to l′) although it is the
sequential composition of two programs that both satisfy the baseline property.
If the main thread is the last thread to terminate before D (respectively D′) can
begin execution then such problems cannot occur.

Definition 4. A thread pool V is main-surviving (denoted by MS(V)), if for
arbitrary states s and t as well as for each thread pool 〈C0, . . . , Cn−1〉 with
〈|V, s|〉 →∗ 〈|〈C0, . . . , Cn−1〉, t|〉 one of the following two conditions holds:

– There is no state t′ such that 〈|C0, t|〉 � 〈|〈〉, t′|〉.
– n = 1.

One can make a program main-surviving by adding sync statements. Consider as
an example the program fork(h := 0, h := h′), which is not main-surviving as
both conditions in Definition 4 are violated. Main-surviving programs are, e.g.,
fork(h := 0, h := h′); sync and fork(sync; h := 0, h := h′).

Parallel composition shares the problems of sequential composition: given
V ∼L V ′ and W ∼L W ′ one does not necessarily obtain V W ∼L V ′W ′. This
is caused by shared variables, which allow one thread to influence the behavior
of another thread. Even if the composed thread pools have no low variables in
common, we do not obtain a general compositionality theorem (see Example 1).
A sufficient condition for preserving low indistinguishability is the disjointness
of all variables.

100 H. Mantel, H. Sudbrock, and T. Kraußer

Definition 5. We say that two thread pools V and W are variable independent
(V ≷W) if the sets of variables occurring in V respectively W are disjoint.

Compositionality. We are now ready to present our compositionality results:

Theorem 1. Let C, C′, D, and D′ be commands and V, V ′,W, and W ′ be thread
pools such that C ∼L C′, D ∼L D′, V ∼L V ′ and W ∼L W ′. Then

1. if C and C′ are main-surviving then C; D ∼L C′; D′;
2. if V ≷W and V ′ ≷W ′ then V W ∼L V ′W ′;
3. if B ≡L B′ then if B then C else D fi ∼L if B′ then C′ else D′ fi; and
4. if B ≡L B′ and C and C′ are main-surviving, then while B do C od ∼L

while B′ do C′ od.

A note with the proof of Theorem 1 is available on the authors’ homepage.

Basic calculus rules. We raise the possibility for compositional reasoning about
low indistinguishability with Theorem 1 to compositional reasoning about in-
formation flow security. This results in the calculus rules depicted below. The
judgment � bls(V) intuitively means that the program V is possibilistic low
secure. A soundness result is provided in Section 3.4.

[SEQ]
� bls(C) � bls(D) MS(C)

� bls(C; D)
[PAR]

� bls(V) � bls(W) V ≷W

� bls(V W)

[ITE]
� bls(C) � bls(D) B ≡L B

� bls(if B then C else D fi)
[FRK]

� bls(〈C〉V)
� bls(fork(CV))

[WHL]
� bls(C) MS(C) B ≡L B

� bls(while B do C od)
[SNC]

� bls(C)
� bls(C; sync)

It should be noted that it is not intended that one proves the security of a com-
plex program solely with the above rules. There are many secure programs for
which the side conditions main surviving and variable independence are too re-
strictive. For analyzing such programs with the combining calculus, one employs
plugin rules. The combining calculus is not intended as an alternative to existing
security-analysis techniques, but rather as a vehicle for using different analysis
techniques in combination. The plugins presented in the following, in particular,
allow one to analyze programs that contain races.

3.2 Plugin: Strong Security

Definition 6 ([29]). The strong low-bisimulation �L is the union of all sym-
metric relations R on command vectors V, V ′ ∈ Com of equal size, i.e. V =
〈C0, . . . , Cn−1〉 and V ′ = 〈C′

0, . . . , C
′
n−1〉, such that

∀s, s′, t∈ S : ∀i∈{0, . . . , n − 1} : ∀W ∈ Com:
[(V R V ′ ∧ s =L s′ ∧ 〈|Ci, s|〉 � 〈|W, t|〉)
⇒ ∃W ′ ∈ Com: ∃t′ ∈ S:(〈|C′

i, s
′|〉 � 〈|W ′, t′|〉 ∧ W R W ′ ∧ t =L t′)] .

Combining Different Proof Techniques 101

Note that �L is only a partial equivalence relation, i.e. it is transitive and sym-
metric, but not reflexive. In fact, �L only relates secure programs to themselves
(note the structural similarity to the relationship between Definitions 2 and 3).

Definition 7 ([29]). A program V is strongly secure iff V �L V holds.

The strong security condition is scheduler independent and enjoys composition-
ality results that make it a suitable basis for a compositional security analysis.

Theorem 2 ([29,22]). Let C, D and V be strongly secure programs that do not
contain sync statements. If B ≡L B then C; D, fork(CV), if B then C else D fi,
and while B do C od are strongly secure. If C �L D holds then if B then C else D fi
is also strongly secure (even for B : high).

Proof. [22] extends the proof in [29] to the language with arrays. ��

The strong security condition constitutes a conservative approximation of our
security definition as the following theorem demonstrates.

Theorem 3. If V is strongly secure and does not contain any sync statements,
then V is possibilistic low secure.

Proof. Let s =L t. If 〈|V, s|〉 →∗ 〈|〈〉, s′|〉) then one can, by applying Definition 6,
inductively construct (over the length of the computation sequence) a computa-
tion 〈|W, t|〉 →∗ 〈|〈〉, t′|〉 of the same length such that s′ =L t′. ��

While the strong security condition can be suitable for reasoning about secure
information flow, there are also situations where it is too restrictive.

Example 3. The programs l := h; l := 1, if h then skip else skip; skip fi, and
while h > 0 do h := h − 1 od all have secure information flow (according to
Definition 3). However, none of these programs is strongly secure. ♦

[PSLS]
V �L V V is sync-free

� bls(V)
The problems in Example 3 can be overcome by
applying our combining calculus, in which strong
security constitutes only one of several plugins. Its plugin rule is depicted to the
right. When this rule is applied, the premise could be proved, e.g., with a security
type system (see Section 5), or with some general-purpose theorem prover.

3.3 Plugin: Low-Deterministic Security

Roscoe pioneered a characterization of information flow security based on the
notion of low determinism. The resulting security definitions for the process
algebra CSP [23] are intuitively convincing as they ensure that the low-level
behavior of a process is deterministic, no matter what the high-level behavior
is. A disadvantage, however, is that it is unnecessarily restrictive with respect
to nondeterministic system behavior on the low level. Zdancewic and Myers
[33] argue that this disadvantage is acceptable when the approach is applied to
concrete programs. We adopt this approach to our setting.

102 H. Mantel, H. Sudbrock, and T. Kraußer

Definition 8. A program V is low-deterministic secure iff

∀s, t, s′, t′ ∈ S : [(s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉 ∧ 〈|V, t|〉 →∗ 〈|〈〉, t′|〉) =⇒ s′ =L t′].

That is, if one runs a program that is low-deterministic secure in two arbitrary
starting states that are low equal then all final states are also low equal.

Theorem 4. Let V be a program that is low-deterministic secure. Assume fur-
ther, that if the program can terminate in some state it can terminate in each
low equal state (written PLT(V)). Then V is possibilistic low secure.

Proof. Let s, s′, t, t′ be states such that s =L t. Assume that 〈|V, s|〉 →∗ 〈|〈〉, s′|〉
for some state s′. By assumption, V can terminate in t. Hence, there exists t′ ∈ S
such that 〈|V, t|〉 →∗ 〈|〈〉, t′|〉. From Definition 8, we obtain s′ =L t′. ��

[PLDS]
|= lds(V) , PLT(V)

� bls(V)
In the plugin-rule depicted to the right, we use the
judgment |= lds(V) . This judgment captures the in-
tuition that V is low-deterministic secure. Again, first-order logic could be used
to express and prove the semantic preconditions.

3.4 Soundness and Examples

The combining calculus is sound in the following sense:

Theorem 5. Let V be a program such that � bls(V) is derivable in the com-
bining calculus. Then V is possibilistic low secure.

Proof. The soundness of the rules [SEQ], [PAR], [ITE], and [WHL] follows di-
rectly from Theorem 1, while the soundness of rule [FRK] follows from the
soundness of [PAR], the definition of possibilistic low security, and the opera-
tional semantics. Rule [SNC] is sound since, firstly, a sync statement does not
change the state, and, secondly, the sync statement is appended at the end of
the command C and therefore does not retard the execution of subsequent com-
mands. The plugin-rules are sound by Theorems 3 and 4. ��

We illustrate the usage of the combining calculus with a simple example. Con-
sider the program fork(l := 0, l := 1); sync; while h ≤ 5 do h := h + 1 od.
By applying [SEQ] we obtain three new proof obligations, firstly � bls(fork(l :=
0, l := 1); sync), secondly � bls(while h ≤ 5 do h := h + 1 od), and thirdly
MS(fork(l := 0, l := 1); sync). The first one can be proved by the application of
[SNC] and subsequently [PSLS], followed by an analysis of strong security, while
the second one can be proved by the application of [PLDS], followed by an anal-
ysis of low-deterministic security. The third obligation is obviously true. Strong
security does not suffice to prove the program secure, since while loops with high
guards are rejected; an analysis of the whole program with low-deterministic se-
curity would also fail due to the race between l := 0 and l := 1.

Combining Different Proof Techniques 103

4 Information Flow Security of a PDA Application

In this section, we illustrate how the possibility of combining proof techniques can
be exploited in a concrete security analysis. The security of the example program
can be successfully verified by combining strong security and low-deterministic
security, while none of these security definitions alone provides a suitable basis
for the analysis. The example application is a multi-threaded program for man-
aging finances on mobile devices. The program gives an overview of the current
stock portfolio, possibly illustrating profits, losses, and other trends with statis-
tics. When the user starts the application he obtains a listing of his portfolio,
revealing name and quantity for each stock. In parallel to printing, the current
rates of EuroStoxx50 entries are retrieved. When all data is available, informative
statistics can be computed. For minimizing idle time during this computation, a
background thread already incrementally prepares the printout of the statistics.
Finally the statistics is displayed, together with a pay-per-click commercial.

fork⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

//getPortfolio:
esOPl:= getES50old;
ih:=0; pfNameh:=getPFNames;
pfNumh:=getPFNum;
while (ih<pfNameh.length) do
pfTabPrinth:= pfNameh[ih] + ”|”
+ pfNumh[ih];

ih:= ih+ 1 od

,

//getEuroStoxx50:
jl:=0; nwOutBufl:= getES50;
while (nwInBufl= ””) do skip od;
strArrl:= split(nwInBufl, ”:”);
while (jl<50) do
esNamel[jl] := strArrl[2*jl];
esPl[jl] := strArrl[2*jl+1];
jl:= jl+1 od;

coShortl:= strArrl[100];
coFulll:= strArrl[101]; coIdl:= strArrl[102]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;sync;
fork⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

//computeStatistics:
kl:=0;
while (kl<50) do
lPFh:= locPF(esNamel[kl], pfNameh);
//calculate profit for stock at position kl

sth[kl]:=(esOPl[kl] -esPl[kl])* pfNumh[lPFh]
kl:= kl+1 od

,

//generateOutput:
ml:=0;
while (ml<50) do
while (kl≤ml) do skip od;
outLh[ml] := ml+ ”|”
+ esNamel[ml]+ ”|”
+ esPl[ml] + ”|” + sth[ml];

ml:= ml+1 od

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

//displayOutputAndCommercial:
;nl:=0; stTabPrinth(”No. | Name | Price | Profit”);
while (nl<50) do stTabPrinth:= outLh[nl]; nl:= nl+ 1 od;
stTabPrinth:= coShortl+ ”Press # to get more information.”;
while (keyl= ’ ’) do skip od;
if (keyl �= ’#’) then coDispPrinth:= coFulll; nwOutBufl:= ”shownComm:”+ coIdl

else skip fi

Fig. 3. Implementation

104 H. Mantel, H. Sudbrock, and T. Kraußer

The implementation of the application (Figure 3) is divided into five blocks:
reading the portfolio from non-volatile storage (getPortfolio), retrieving current
stock rates (getEuroStoxx50), computing statistics (computeStatistics), preparing a
printout of the statistics (generateOutput), displaying the printout, advertising
the commercial by a preview, and waiting for the user’s input (displayOutputAnd-
Commercial). If the user decides to view the commercial, it is displayed in full
and a confirmation message is sent to the server.

As an example, we give a detailed description of getEuroStoxx50: After the
initialization of the loop variable jl (where the subscript l indicates that j is
a low variable), a request is sent to the network interface represented by the
variable nwOutBufl. Due to the lack of interrupts we have to do busy waiting
until the variable nwInBufl representing the incoming network stream contains
an answer. The answer is a string (sequence of ASCII numbers) containing name
and current rate of each stock listed in the EuroStoxx50, separated by colons.
To avoid a second network request, the commercial, including the preview, the
full version, and a reference ID are already included, again separated by colons.
The operation split in the third line of getEuroStoxx50 is similar to the method
split of the Java String class. It splits a single string in an atomic step into an
array of strings, which then is processed further in the subsequent loop. After
extracting the commercial data from the array its memory could be deallocated
(but this is outside our language).

We assume that the application is running in a sandbox that protects the
memory from programs outside the sandbox. The only exception is the under-
lying operating system with whom the application communicates via predefined
interface variables. Besides the two interface variables for network communi-
cation (nwInBufl, nwOutBufl), the program uses display variables (pfTabPrinth,
stTabPrinth, coDispPrinth), variables that represent parts of the non-volatile stor-
age (getES50old, getPFNames, getPFNum), and the keyboard variable (keyl). As-
signments to these variables in the program correspond to the output of the
information on the associated interface. Reading these variables corresponds to
retrieving input through the operating system.

The parallel execution of getEuroStoxx50 and getPortfolio prevents blocking dur-
ing time-consuming network activity. Concurrent programming increases effi-
ciency and also complies with programming recommendations for mobile devices
like, e.g., [14,16]. For simplicity, computeStatistics calculates only the user’s profit
for each stock. One could easily imagine more complex statistics. The atomic op-
eration locPF in computeStatistics locates the index of the kth stock value within
the portfolio and returns −1 if the value is not present.

The secret to be protected in the given scenario is the content of the port-
folio. The sink where this information could be leaked is the network interface
(assuming that the display is only accessible for users who are permitted to read
the printouts). Both assignments to the nwOutBufl are intuitively secure. Hence,
there is no direct leakage of secrets and starting a more detailed information
flow analysis is appropriate. For the security analysis, we use a combination of
low-deterministic security and strong security. The strong security of a program

Combining Different Proof Techniques 105

Fig. 4. Portfolio Tab Fig. 5. Statistics Tab Fig. 6. Commercial Screen

implies that the run-time of this program is independent of the initial value of
high variables. This is obviously not the case for the loop in getPortfolio, where the
run-time is directly influenced by the value of the high variable pfNameh.length.
However, each of the five program blocks can be successfully analyzed. The result
of this investigation is expressed by the following two theorems. Due to space
restrictions we only sketch the proof of the first one.

Theorem 6. The program getPortfolio is low-deterministic secure.

Proof. Since ih is incremented in the body of the loop, the loop will eventually
terminate. Moreover, the only assignment to a low variable, esOPl := getES50old,
does not depend on the initial high values. Hence the final value of low variables
depends deterministically on their initial values. ��

Theorem 7. The programs getEuroStoxx50, computeStatistics, generateOutput, and
displayOutputAndCommercial are strongly secure.

From these two theorems and the compositionality of strong security, we con-
clude that the program fork(computeStatistics, generateOutput); displayOutputAnd-
Commercial is strongly secure. From the plugin-rules [PSLS] and [PLDS], we
obtain that getPortfolio and getEuroStoxx50 both satisfy the baseline policy. The
parallel execution of these programs also satisfies the baseline policy according
to rule [PAR], since variable independence holds. After an application of [FRK],
an application of [SNC], and an application of [SEQ], we conclude that the entire
program satisfies the baseline property. Hence the program is possibilistic low
secure.

The application shows that the combining calculus is applicable for fairly re-
alistic programs. The advantages will become even clearer in Section 5 where
we integrate security type systems. Using a type system for the strong security
condition, one can efficiently verify four parts of the program and only the re-
maining part would require a semantic check of low-deterministic security (for
which no suitable calculus is available yet).

106 H. Mantel, H. Sudbrock, and T. Kraußer

5 Plugins for Type-Based Analysis Techniques

While Sections 3 and 4 presented plugin rules for semantic security definitions,
this section illustrates how syntactic, type-based analysis techniques can be in-
tegrated and beneficially exploited. We provide two additional plugins for the
combining calculus: one to integrate the security type system proposed in [6]
and one to integrate the security type system from [29]. When introducing the
second type system, we also illustrate the possibility to integrate transforming
type systems. Such type systems may generate a secure program from a given,
possibly insecure program. Additionally, we show how to combine transforming
and non-transforming analysis techniques.

5.1 Plugin : Boudol and Castellani’s Security Type System

In [6] Boudol and Castellani propose a type system that does not generally reject
programs containing loops with high guards, unlike the type systems in, e.g., [29]
or [31]. The type judgments are of the form Γ � C : (τ, σ) cmd, where C is a
command, τ and σ are security labels, and the context Γ is a mapping from
variables to security labels. In the type judgment, τ is a lower bound for the
level of the variables to which assignments are made in C, and σ is an upper
bound for the security levels occurring in the guards of loops and conditionals
in C. After adapting the typing rules to our language, fixing a variable labeling
and the induced context Γ , we obtain the following result:

Theorem 8. Let C be a command that always terminates. If Γ � C : (τ, σ) cmd
can be derived for some security labels τ and σ, then C is possibilistic low secure.1

[TBC]
Γ � C : (τ, σ) cmd

� bls(C)
For programs that always terminate we obtain the
plugin rule depicted to the right. The combining cal-
culus extended by this rule is sound due to Theorem 8.

5.2 Plugin : Sabelfeld and Sand’s Security Type System

In [29] Sabelfeld and Sands propose a transforming type system approximating
the strong security condition. Its judgments are of the form V ↪→ V ′ : Sl, where
V is the program to be checked, V ′ a transformation of the program, and Sl
is the type of V ′. The type contains auxiliary information that is used for the
transformation of the program. They provide the following theorem:

Theorem 9 ([29]). Whenever V ↪→ V ′ : Sl, then V ′
�L V ′.

That is, when the type check succeeds, then the transformed program is strongly
secure. To integrate plugins for transforming type systems we extend the com-
bining calculus with the transforming rules in Figure 7. The intuition of the judg-
ment � C ↪→ bls(C′) is that the program C is transformed into the possibilistic
low secure program C′. The rules [MIX1] and [MIX2] permit the combination of
1 The typing rules differ slightly from the ones used in [6]. The adapted rules and the

soundness argument will be provided in a technical report.

Combining Different Proof Techniques 107

[SEQ’]
 C ↪→ bls(C′) D ↪→ bls(D′) MS(C′)

 C; D ↪→ bls(C′; D′)

[PAR’]
 V ↪→ bls(V ′) W ↪→ bls(W ′) V ′ ≷ W ′

 V W ↪→ bls(V ′W ′)

[ITE’]
 C ↪→ bls(C′) D ↪→ bls(D′) B ≡L B

 if B then C else D fi ↪→ bls(if B then C′ else D′ fi)

[FRK’]
 〈C〉V ↪→ bls(〈C′〉V ′)

 fork(CV) ↪→ bls(fork(C′V ′))
[SNC’]

 C ↪→ bls(C′)

 C; sync ↪→ bls(C′; sync)

[MIX1]
 bls(C)

 C ↪→ bls(C)
[MIX2]

 C ↪→ bls(C′)

 bls(C′)

Fig. 7. Additional rules for the combining calculus

transforming as well as non-transforming analysis techniques. The first one relies
on the fact that a possibilistic low secure program can be securely transformed
into itself.

[TSS]
V ↪→ V ′ : Sl V ′ is sync-free

� V ↪→ bls(V ′)
The soundness proof of the extended cal-

culus goes along the same lines as the proof
of Theorem 5. We are now ready to add a
plugin for Sabelfeld’s and Sand’s proof technique. The addition is sound due to
Theorem 9 and Theorem 3.

5.3 Exemplary Type-Based Security Analysis

We exemplify the use of the plugin rules [TBC] and [TSS] with a syntactical
analysis of the program from Section 4. We already argued that some blocks
of the program are strongly secure. Hence we use the combining calculus rules
supporting transforming type systems. After applying rule [SEQ’]

1. MS(fork(getPortfolio, getEuroStoxx50)),
2. � fork(getPortfolio, getEuroStoxx50) ↪→ bls(C), and
3. � fork(computeStatistics, generateOutput); displayOutputAndCommercial ↪→ bls(D)

remain to be derived in the calculus. The first statement can be syntactically
shown, since the first thread, getPortfolio, does not contain any conditionals and
ends with a sync statement, while the second thread, getEuroStoxx50, does not
contain any sync statements.

For the second proof obligation we do not use transforming type systems.
We hence instantiate C with fork(getPortfolio, getEuroStoxx50) and apply rule
[MIX1], obtaining � bls(fork(getPortfolio, getEuroStoxx50)). After applying rule
[PAR], we get three new proof obligations, namely getPortfolio ≷ getEuroStoxx50,
� bls(getPortfolio) and � bls(getEuroStoxx50). The first statement can be easily
verified syntactically. Since getPortfolio and getEuroStoxx50 are programs that al-
ways terminate given that the network always answers the network request and

108 H. Mantel, H. Sudbrock, and T. Kraußer

that can be checked automatically with the type system provided by Boudol
and Castellani we apply the rule [TBC] to the other two statements and obtain
the new proof obligations Γ � getPortfolio : (τ, σ) cmd and Γ � getEuroStoxx50 :
(τ ′, σ′) cmd. Now we need to continue using rules of the adapted type sys-
tem from [6]. One can deduce that getPortfolio can be typed with (L, H) cmd
(getPortfolio contains assignments to low variables and high guards, but the low
assignment happens before the loop), while getEuroStoxx50 can be typed with
(L, L) cmd (getEuroStoxx50 contains assignments to low variables, but no high
guards).

For the third proof obligation we apply the rule [TSS], obtaining the obligation
fork(computeStatistics, generateOutput); displayOutputAndCommercial ↪→ D : Sl. For
a deduction we use Sabelfeld’s and Sand’s transforming type system. Since nei-
ther computeStatistics, nor generateOutput, nor displayOutputAndCommercial contain
high guards the type system does not perform any modification and we obtain
E ↪→ E : Sl for some type Sl and E = fork(computeStatistics, generateOutput);
displayOutputAndCommercial.

Due to space restrictions we omit a more detailed derivation.

6 Conclusion

Obviously, the idea of combining different proof techniques is no novelty. The
contribution of this article is the illustration of how one can benefit more con-
cretely from combining proof techniques in the information flow analysis of a
given program. To our knowledge, no such result was presented before. More-
over, we introduced the combining calculus as a deductive framework that is
based on conditional compositionality results and an extensible set of plugin-
rules for existing verification techniques. As examples, we presented plugin-rules
for restrictive security characterizations (strong security and low-determinism se-
curity), which could be verified with general-purpose logics, and plugin-rules for
typing judgments that can be derived with security type systems, i.e. special-
purpose calculi. We illustrated both possibilities in a fairly realistic example
program. The addition of further plugin-rules would be desirable, for instance,
to support verification techniques with program-logics (see, e.g., [2,7]).

Based on the experiences gained, our impression is that a baseline charac-
terization of information flow security need not be fully compositional, which
is in contrast, e.g., to the opinion stated in [21]. Nevertheless, the baseline
characterization employed in the current article, which is a possibilistic property
(like, e.g., in [31,6]), requires further improvements, in particular, regarding
scheduling aspects. We are currently researching a security definition that is
scheduler independent, but less restrictive than strong security or low-determi-
nism security (which are both scheduler independent). Strong security is known
to be the least restrictive security definition that is scheduler independent and
compositional [27]. However, as we are not requiring full compositionality, less
restrictive characterizations that can serve as a justification of our combining
calculus exist (without changing the calculus), where the disjunction of strong
security and low-determinism security is an obvious candidate.

Combining Different Proof Techniques 109

Another direction is the migration to practically relevant languages such as
Java source code or bytecode. In this context, approaches for sequential sub-
languages are available (see, e.g., [1,3]), and it is not obvious how to generalize
them to a multi-threaded setting. Hence, the possibility of creating a combining
calculus for Java with plugin-rules for such approaches is attractive and appears,
in principle, possible with the help of a rule like [PAR].

Acknowledgments. This work was funded in part by the German Research
Association (DFG) in the Computer Science Action Program and by the In-
formation Society Technologies program of the European Commission, Future
and Emerging Technologies under the IST- 2005-015905 MOBIUS project. This
article reflects only the authors’ views and the Commission, the DFG, and the
authors are not liable for any use that may be made of the information contained
therein.

References

1. A. Banerjee and D. A. Naumann. Using Access Control for Secure Information
Flow in a Java-like Language. In IEEE Computer Security Foundations Workshop,
pages 155–169, 2003.

2. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In IEEE Computer Security Foundations Workshop, pages 100–114,
2004.

3. G. Barthe and T. Rezk. Non-Interference for a JVM-like Language. In ACM SIG-
PLAN International Workshop on Types in Languages Design and Implementation,
pages 103–112, 2005.

4. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Unwinding in Information Flow
Security. ENTCS 99, pages 127–154, 2004.

5. A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Secure Contexts for Confidential
Data. In IEEE Computer Security Foundations Workshop, pages 14–25, 2003.

6. Gérard Boudol and Ilaria Castellani. Noninterference for Concurrent Programs
and Thread Systems. Theoretical Computer Science, 281(1-2):109–130, 2002.

7. Á. Darvas, R. Hähnle, and D. Sands. A Theorem Proving Approach to Analysis
of Secure Information Flow. In International Conference on Security in Pervasive
Computing, LNCS 3450, pages 193–209, 2005.

8. Z. Deng and G. Smith. Lenient Array Operations for Practical Secure Information
Flow. In IEEE Computer Security Foundations Workshop, pages 115–124, 2004.

9. D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
10. D. E. Denning and P. J. Denning. Certification of Programs for Secure Information

Flow. Communications of the ACM, 20(7):504–513, 1977.
11. R. Focardi and R. Gorrieri. A Classification of Security Properties for Process

Algebras. Journal of Computer Security, 3(1):5–33, 1995.
12. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE

Symposium on Security and Privacy, pages 11–20, 1982.
13. J. A. Goguen and J. Meseguer. Inference Control and Unwinding. In IEEE Sym-

posium on Security and Privacy, pages 75–86, 1984.
14. J. Knudsen. Networking, User Experience, and Threads, 2002.

http://developers.sun.com/techtopics/mobility/midp/articles/threading/.

110 H. Mantel, H. Sudbrock, and T. Kraußer

15. B. Köpf and H. Mantel. Eliminating Implicit Information Leaks by Transforma-
tional Typing and Unification. In International Workshop: Formal Aspects in Secu-
rity and Trust, Revised Selected Papers, LNCS 3866, pages 47–62. Springer-Verlag,
2006.

16. Q. H. Mahmoud. Preventing Screen Lockups of Blocking Operations, 2004.
http://developers.sun.com/techtopics/mobility/midp/ttips/screenlock/.

17. H. Mantel. Possibilistic Definitions of Security – An Assembly Kit. In IEEE
Computer Security Foundations Workshop, pages 185–199, 2000.

18. H. Mantel. Unwinding Possibilistic Security Properties. In European Symposium
on Research in Computer Security, LNCS 1895, pages 238–254, 2000.

19. D. McCullough. Specifications for Multi-Level Security and a Hook-Up Property.
In IEEE Symposium on Security and Privacy, pages 161–166, 1987.

20. J. D. McLean. A General Theory of Composition for Trace Sets Closed under
Selective Interleaving Functions. In IEEE Symposium on Research in Security and
Privacy, pages 79–93, 1994.

21. J. K. Millen. Hookup Security for Synchronous Machines. In IEEE Symposium on
Research in Security and Privacy, pages 84–90, 1990.

22. C. Pöpper. A Security Analyzer for Multi-Threaded Programs. Diploma thesis,
ETH Zurich, March 2005.

23. A. W. Roscoe. CSP and Determinism in Security Modelling. In IEEE Symposium
on Security and Privacy, pages 114–127, 1995.

24. J. M. Rushby. Noninterference, Transitivity, and Channel-Control Security Policies.
Technical Report CSL-92-02, SRI International, 1992.

25. A. Russo and A. Sabelfeld. Securing Interaction between Threads and the Sched-
uler. In IEEE Computer Security Foundations Workshop, 2006.

26. P. Y. A. Ryan and S. A. Schneider. Process Algebra and Non-interference. In
IEEE Computer Security Foundations Workshop, pages 214–227, 1999.

27. A. Sabelfeld. Confidentiality for Multithreaded Programs via Bisimulation. In
Andrei Ershov International Conference on Perspectives of System Informatics,
LNCS 2890, pages 260–274, 2003.

28. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communication, 21(1):5–19, 2003.

29. A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Pro-
grams. In IEEE Computer Security Foundations Workshop, pages 200–215, 2000.

30. G. Smith. Probabilistic Noninterference through Weak Probabilistic Bisimulation.
In IEEE Computer Security Foundations Workshop, pages 3–13, 2003.

31. G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imperative
Language. In ACM Symposium on Principles of Programming Languages, pages
355–364, 1998.

32. D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Language.
In IEEE Computer Security Foundations Workshop, pages 34–43, 1998.

33. S. Zdancewic and A. C. Myers. Observational Determinism for Concurrent Pro-
gram Security. In IEEE Computer Security Foundations Workshop, pages 29–43,
2003.

On the Automated Synthesis of Proof-Carrying
Temporal Reference Monitors

Simon Winwood1,2, Gerwin Klein1,2, and Manuel M. T. Chakravarty1

1 University of New South Wales
School of Computer Science & Engineering

Sydney, Australia
2 National ICT Australia�

{sjw,chak}@cse.unsw.edu.au
gerwin.klein@nicta.com.au

Abstract. We extend the range of security policies that can be guar-
anteed with proof carrying code from the classical type safety, control
safety, memory safety, and space/time guarantees to more general secu-
rity policies, such as general resource and access control. We do so by
means of (1) a specification logic for security policies, which is the past-
time fragment of LTL, and (2) a synthesis algorithm generating reference
monitor code and accompanying proof objects from formulae of the spec-
ification logic. To evaluate the feasibility of our approach, we developed
a prototype implementation producing proofs in Isabelle/HOL.

1 Introduction

Proof carrying code (PCC) [1] is inherently trustworthy, independent of its origin
or previous opportunities for tampering. The guarantees provided by PCC are,
however, not universal: they are relative to a security policy agreed upon by the
code producer and consumer. It is the code producer’s obligation to annotate
the code with a proof object that establishes the code’s compliance with the
security policy. This proof object, consisting of steps in a formal logic, can be
checked with a simple proof checker. Thus, the trustworthiness of the code can
be established with mathematical rigour.

Existing research into the generation of proof-carrying code focuses on secu-
rity policies which can be derived from properties of high-level languages and
their type systems, such as type safety [2], control and memory safety [3], and
space/time guarantees [4]. The contribution of this paper is to extend the ap-
proach to more general security policies, such as general resource and access
control. An example of such a policy is one where “a user may perform an op-
eration only if they have been granted a capability for that operation and that
capability hasn’t been revoked.” Such properties are beyond the semantic guar-
antees of high-level languages; hence, we need (1) a formal device to express such
policies and (2) a method for generating proof-carrying code for these policies.
� National ICT Australia is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research Council.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 111–126, 2007.
© Springer-Verlag Berlin Heidelberg 2007

112 S. Winwood, G. Klein, and M.M.T. Chakravarty

To address Point (1), we introduce a fragment of LTL [5] lacking the usual
future operators (until and next), which we call propositional pure-past tem-
poral logic (P3TL), as a specification logic for security policies in Section 3.
P3TL can express a wide range of security policies, while enabling the auto-
matic synthesis of reference monitors [6] that enforce P3TL policies. This sec-
ond property is key to solving Point (2). More precisely, in Section 5, we will
give an algorithm to synthesise, firstly, a reference monitor checking a given
P3TL policy, and secondly, a proof object demonstrating that the reference
monitor code indeed meets the policy. Such a reference monitor in conjunction
with a framework to constrain application code to abide by the rules of a ref-
erence monitor is sufficient to produce PCC for P3TL policies. To be complete,
this framework must also provide machine checkable proof that the application
code cannot subvert the reference monitor. We introduced one such framework
based on hybrid sandboxing accompanied by a proof in the theorem prover Is-
abelle/HOL in previous work [7]. We will describe this set up in more detail in
Section 2.

The proof of compliance of synthesised reference monitors is in a Hoare-like
logic discussed in Section 4 and formalised in Isabelle/HOL. We implemented a
prototype synthesis tool in Isabelle/HOL to demonstrate the practical feasibility
of our approach.

In summary, our specific contributions are these:
– a formalisation of a simple language and program logic for reference monitors

(Section 4); and,
– a synthesis algorithm for reference monitors and proof objects from P3TL

formulae (Section 5).
In contrast to previous work on generating reference monitors from temporal
logics, we simultaneously generate a proof object that demonstrates that the
generated code enforces the security policy. We discuss related work further in
Section 6.

2 Our Approach

Fig. 1 shows an application scenario in which our technique is useful. Assume
a code producer generating a PCC program, certified for some policy φ. The
code consumer, however, requires a stronger policy, ψ, where the additional
guarantees of ψ over φ are beyond those that can be directly included during
PCC generation. The method introduced in this paper enables the synthesis of
a reference monitor for ψ; this can then be inserted into the PCC program,
possibly by rewriting parts of the application, to bridge the gap between φ
and ψ. This paper presents an algorithm for synthesising such monitors with
matching proofs. In previous work [7], we showed how such a monitor can be
integrated into an existing application in the special case where that existing
application does not use PCC at all; i.e., φ is empty. The general case, de-
picted in Fig. 1, where two policies need to be integrated is left for future work.

On the Automated Synthesis of Proof-Carrying 113

Compile

φ

source app. + proof

+

Synthesise

ψ

monitor + proof

+

Merge + +

ψ

Check

Run

TrustedUntrusted

Replaced code
Code

Proofs

Fig. 1. A possible application of our approach: generate a monitor for the stronger
policy ψ and insert it into the application. This paper presents the monitor and proof
synthesis component.

2.1 The Monitor Environment

We require that the surrounding PCC infrastructure ensures the monitor invari-
ant, containing assertions about the monitor state, be maintained outside the
monitor; in a typical system, we expect the monitor state to be hidden from
the rest of the system, either through a module mechanism or through general
memory safety — the latter is the option we explored in [7]. If a to be secured
operation occurs outside the monitor, the invariant will, in general, be invali-
dated — this will be detected at proof check time, and the program rejected.
Of course, it is perfectly valid for there to be secured operations outside the
monitor if the outside code can ensure that the invariant is maintained and that
assurance is reflected in the code’s proof annotations.

2.2 The Prototype

We have implemented a prototype synthesis tool. The tool generates an Isabelle
theory file containing both the monitor code and proofs. The tool is Isabelle-
specific, however we expect an implementation for another logical framework
to have many similarities. The prototype, along with the Isabelle theory file, is
freely available.1

While we make extensive use of Isabelle, we have been careful to ensure that
there is no intrinsic reliance upon any particular feature. In the generated proofs,
we avoid, where possible, use of Isabelle’s automated tactics, using them only
when the lemma to be proved is Isabelle-specific. This includes, for example,
lemmas relating to substitution: because we make use of the meta-logic’s sub-
stitution (we use a shallow embedding for the assertion logic), the proof will be
Isabelle-specific, and thus no general proof is available. Conversely, the moni-
tor’s proof obligations are independent of the particular meta-logic, and so we
use individual proof rules for the main part of the proof.
1 http://www.cse.unsw.edu.au/~sjw/papers/synthesis.html

http://www.cse.unsw.edu.au/~sjw/papers/synthesis.html

114 S. Winwood, G. Klein, and M.M.T. Chakravarty

3 Policy Logic

In this section we introduce the logic we use for describing security policies.

Example 1. Consider a simple version of the Chinese Wall security policy[8]

A user may access files for any client, but once they have done so, they
may only access files for that client.

Given an operator which denotes "at some time in the past", this policy may
be expressed as2

access(f) ∧ f ∈ C −→ ¬(access(g) ∧ g /∈ C)

which states a policy equivalent to the one above: access to an object belonging
to a client is allowed only if at no point in the past has the user accessed an
object belonging to another client.

Example 2. Now consider a policy modelling a capability system

A user may perform an operation only if they have been granted a ca-
pability for that operation and that capability hasn’t been revoked.

We may encode this policy as follows

operateo −→ ¬ revokeo S granto

where ψ S φ means φ was true at some point in the past, and ψ ever since.

These policies, like many others, express properties over a series of events: the
first policy that some event had not occurred in the past; the second policy that
some event had occurred, and in the meantime another had not.

Given our general goal of synthesising reference monitors, our policy logic
needs to fulfill two requirements: (1) we must be able to use reference monitors
to implement all policies that are expressible in the logic and (2) the logic must
be powerful enough to express common policies, such as those above.

The latter means that the logic must be able to express properties over be-
haviours of the program, not just over individual states. The former means that
the logic should express safety properties only, as liveness properties cannot be
implemented by reference monitors [6].

These two requirements still leave some choice. We have settled on the safety
fragment [5] of propositional linear temporal logic (LTL); for the remainder of
the paper we will denote this fragment propositional pure-past temporal logic
(P3TL). As the name signifies, this is a propositional logic containing temporal
operators that refer solely to previous worlds. The logic differs from traditional
temporal logics in that it lacks the usual future (until and next) operators — a
formula ψ in P3TL is equivalent to � ψ in the LTL of Manna and Pnueli [5]. A
similar logic (ptLTL) is used by Havelund and Rosu [9].
2 In this section, to simplify the formalisations, we are a little loose with syntax.

On the Automated Synthesis of Proof-Carrying 115

〈σ, n〉 |= « a» = a σ[n]

〈σ, n〉 |= ϕ [⇒] ψ = 〈σ, n〉 |= ϕ −→ 〈σ, n〉 |= ψ
〈σ, n〉 |= ϕ S ψ = ∃ i≤n. 〈σ, i〉 |= ψ ∧ (∀ j∈(i..n]. 〈σ, j〉 |= ϕ)
〈σ, n〉 |= ϕ = n �= 0 −→ 〈σ, n - 1〉 |= ϕ

Fig. 2. Semantics of P3TL

A more powerful logic, such as a first-order variant of P3TL, would enable
more policies and more succinct versions of those already mentioned. Unfortu-
nately, synthesising reference monitors for these logics is much more difficult than
for P3TL — the state space for P3TL is fixed, while that of a first-order logic
is potentially unbounded. We leave extension of our system to more powerful
logics as future work.

The following is the syntax of P3TL

form ::= « atom» | form1 [⇒] form2 | form1 S form2 | form

The logic consists of atoms and the operators implication, since, and weak pre-
vious. Implication is the usual binary operator; to distinguish it from that of
HOL, we write ϕ [⇒] ψ. The syntax for the since and weak previous operators
is standard.

The definition of P3TL is parameterised over the type of states; atoms are HOL
predicates on such states. Our implementation of P3TL is then a deep embedding
into Isabelle/HOL, but uses a shallow embedding for atomic propositions.

Example 3. A traditional state space would be a tuple or record of variables.
The predicate «λs. x s = 7» then, for instance, states that the variable x in
record s should have value 7.

The following gives the definitions for the other propositional connectives (nega-
tion, conjunction, disjunction, etc.) as well as the usual temporal operators:
strong previous (ϕ), once (ϕ), and so-far (ϕ). The two previous operators
(strong and weak) differ only at the initial state: ϕ is false and ϕ is true. In
particular, ⊥ is true only at the initial state.

 = «λs. True» ϕ = [¬] (([¬] ϕ)) (Previously)
⊥ = «λs. False» ϕ = S ϕ (Once)
[¬] ϕ = ϕ [⇒] ⊥ ϕ = [¬] (([¬] ϕ)) (So-far)
ϕ [∧] ψ = [¬] (ϕ [⇒] [¬] ψ) ϕ [∨] ψ = [¬] ϕ [⇒] ψ

Fig. 2 gives the semantics of P3TL using an indexed model 〈σ,n〉. The first
element, σ, is a sequence of worlds, and the second, n, is the index of the current
state.

An atom « a» is valid in 〈σ,n〉 iff the function a maps the n-th state in σ

(denoted σ[n]) to true. An implication is valid iff the validity of the premise
implies the validity of the conclusion at the same index n. The formula ϕ S ψ

is valid at 〈σ,n〉 iff ψ was valid at some earlier state i and ϕ was valid at all
states j from i to n. The weak previous operator ϕ is valid iff there is either no
previous state (n = 0) or ϕ was valid at index n - 1.

116 S. Winwood, G. Klein, and M.M.T. Chakravarty

4 A Language and Logic for Reference Monitors

4.1 The Programming Language

This section describes the language we use for reference monitors. It is a sim-
ple imperative if-while language, using Isabelle/HOL’s functions for expressions.
Whilst it is usual in expositions on proof-carrying code systems to use a very
low-level language (e.g., an assembly language), we chose this comparatively
high-level language to simplify the presentation; issues such as memory alloca-
tion are orthogonal to the contribution of this work and would only obscure the
central points. We expect that low-level languages will present few additional
theoretical hurdles — indeed, Barthe et. al. [10] note that, in the absence of op-
timisations, transformation to a low-level language preserves proof obligations.

The syntax of programs is shown below. The nonterminal basic denotes func-
tions from states to states, bexp functions from states to booleans, and form
P3TL formulae.

stmt ::= Do basic | stmt1 ; stmt2
| IF bexp THEN stmt1 ELSE stmt2 FI | WHILE bexp DO stmt OD
| Secure form

As with P3TL, the syntax is parameterised over the states of the program.
The Do statement provides the means to model assignment and simple state
transformations directly as HOL functions. The Secure statement represents the
operation to be secured, abstracting away from the particular operation’s se-
mantics. It is parameterised by a P3TL formula representing the security policy.

Example 4. The followingmonitor checks the Chinese Wall policy from Example 1

IF (λs. ∃ f. access s f ∧ f ∈ C) THEN
IF (λs. seen s = 1) THEN

Do (λs. s(|error := 1|))
ELSE

Secure ψ

FI
ELSE

Secure ψ

FI

The state variable seen records whether we have previously seen a conflicting
access — the code to maintain this is omitted. The expression s(|error := 1|)
updates error in record s.

The states over which the language operates are tuples (s, σ), where s is
the program state, usually modelled as an Isabelle record3, and σ a sequence
3 As we use the Do statement to model assignment, taking a state update function as

an argument, there is no requirement that a record is used — it merely simplifies
use of the language.

On the Automated Synthesis of Proof-Carrying 117

s −t→ s’

(s, ss) −Do f→ (f s, ss)

s −e→ t t −e’→ s’

s −e; e’→ s’

b (fst s) s −e→ s’

s −IF b THEN e ELSE e’ FI→ s’

¬ b (fst s) s −e’→ s’

s −IF b THEN e ELSE e’ FI→ s’

¬ b (fst s)

s −WHILE b DO e OD→ s

b (fst s) s −e→ t t −WHILE b DO e OD→ s’

s −WHILE b DO e OD→ s’

s’ = (if (s, ss) |= ϕ then (s, ss @ [s]) else arbitrary)

(s, ss) −Secure ϕ→ s’

Fig. 3. Semantics of programs

representing a trace of previously seen states. This trace serves as the model
when checking P3TL formulae; it records the state at security events only, not all
state changes in the program. Note that the trace is only required for reasoning
about policies and does not appear at runtime.

In monitoring P3TL policies, we interpret the validity of formulae relative to
the current state, that is, the last state in the sequence. We thus use an anchored
interpretation [11]. Satisfaction of P3TL formulae by a program state is then

(s, σ) |= ϕ = 〈σ @ [s], |σ|〉 |= ϕ

Fig. 3 shows a big step semantics for our language. The semantics are stan-
dard [12], apart from the Secure statement: the effect of Secure ϕ is to record
the current state in the state history. Execution of Secure ϕ is only defined,
however, when the current state satisfies the security policy ϕ.

A full implementation of our system would replace the Secure statement by, for
example, a system call statement. Again, modelling the behaviour of system calls
is orthogonal to the aims of this paper; the much-simplified Secure is sufficient.

4.2 The Program Logic

So far we have defined a logic for policies and a language to implement reference
monitors. This section introduces a logic for reasoning reasons about programs
that allows us to formally verify that safety policies are respected.

The rules of this Hoare-like program logic are shown in Fig 4. The triple � {P}
T {Q} denotes that a statement T that starts execution in a state satisfying P and
terminates will finish in a state satisfying Q. Both P and Q are assertions, that is,
HOL predicates on states.

As with the semantics in Sect. 4.1, the proof rules are standard apart from the
Secure statement. We have one rule for each syntactic construct and the usual
rule of consequence.

118 S. Winwood, G. Klein, and M.M.T. Chakravarty

�

� λ

� �
�

� λ ∧ � λ ∧ ¬

�

� λ ∧ λ ∧ ¬

�

∀ −→ ∀ −→ �
�

∀ −→ |= ϕ ∀ −→

� ϕ

Fig. 4. A Hoare-like logic for the programming language

The new rule for Secure demands that all states that satisfy the precondition
be models of the security policy ϕ; this check links the assertion logic to P3TL,
the policy logic. In addition, the rule’s postcondition reflects the effect of Secure
on the program state, i.e. recording the event in the trace.

Following the standard practise [12] of using a shallow embedding of asser-
tions into Isabelle/HOL means that we can take direct advantage of Isabelle’s
tactics and libraries to reason about programs. The assertion logic and program
expressions, however, are more powerful than strictly required4.

We have shown this Hoare-logic to be sound in the following sense.

Theorem 1. If � {P} e {Q} and P s and s −e→ s’ then Q s’.

Note that our definition of the semantics of Secure ensures that programs cannot
get stuck because of policy violation. The only reason that there might be no s’
such that s −e→ s’ in this theorem is non-termination of while loops.

5 Synthesis

In this section we discuss the synthesis algorithm; that is, the algorithm that
takes a P3TL formula and emits a reference monitor which enforces the policy,
and a proof that the generated monitor does indeed enforce the policy.

We will use the example policy

(« λs. x s = 1») [⇒](« λs. x s < 5» S «λs. y s = 1») (*)

4 We also have a deep embedding for all logics. We use the shallow embedding as it
is much briefer and clearer: the interaction between the assertion logic and P3TL,
although non-trivial, is not the main focus of this paper.

On the Automated Synthesis of Proof-Carrying 119

as a running example throughout this section. Although this example has no
correspondence to a real-world policy (even a small such policy would be too big
for the limited space available), it contains enough complexity to be of interest.

5.1 Checking P3TL Satisfaction

In the synthesis of P3TL formulae, the following definition is required

Definition 1. The past formulae of a formula are sub-formulae

1. of the form φ S ψ; or
2. that occur after , e.g. ψ in ψ.

The number of sub-formulae is linear in the size of the formula.

Example 5. The past formulae for our example policy (*) are « λs. x s = 1»
and «λs. x s < 5» S «λs. y s = 1» . Terms in our examples which relate to
these formulae will have suffixes 0 and 1, respectively. For example, state_0 is
Σ«λs. x s = 1» .

Note that a since formula may be unfolded according to the equality:

φ S ψ = ψ [∨]((φ S ψ) [∧] φ)

Applying this rule repeatedly yields a formula in which all since formulae occur
only after a operator. Thus, truth of the rewritten formula depends only on the
truth of propositions in the current world and the truth of sub-formulae in the
immediately previous world. Furthermore, note that these sub-formulae are all
past formulae.

To check if a sequence σ satisfies a policy, we start by setting all formulae of
the form ϕ to false (as per the semantics of). Starting from the initial state,
check and record the truth of all past formulae. At the last state in σ, check the
truth of the rewritten policy, using the recorded past formulae from the previous
state.

Thus, to monitor a policy, we need only keep track of its past formulae. This
implies that we do not require an explicit representation of worlds in our monitor,
and that checking a P3TL formula can be done efficiently.

5.2 Monitor Synthesis

The algorithm for constructing a monitor for a P3TL formula is then as follows:

1. For each past formulae ψ, allocate a state bit, Σψ, which records the truth
of the formula in the previous world, i.e. Σψ ↔ ψ;

2. Construct a program fragment which checks the truth of each past formula
ψ in the current world, i.e., with respect to the current program state. When
constructing the fragment, if a sub-formula of ψ of the form φ is seen, emit
code which checks the state bit Σφ;

120 S. Winwood, G. Klein, and M.M.T. Chakravarty

IF (λs. x s = 1) THEN
Do (λs. s(|tmp_0 := 1|))

ELSE
Do (λs. s(|tmp_0 := 0|))

FI
IF (λs. y s = 1) THEN
Do (λs. s(|tmp_1 := 1|))

ELSE
IF (λs. state_1 s = 1) THEN

IF (λs. x s < 5) THEN
Do (λs. s(|tmp_1 := 1|))

ELSE
Do (λs. s(|tmp_1 := 0|))

FI
ELSE
Do (λs. s(|tmp_1 := 0|))

FI
FI

(cont.)

IF (λs. state_0 s = 1) THEN
IF (λs. tmp_1 s = 1) THEN
Secure policy;
Do (λs. s(|state_0 := tmp_0 s|));
Do (λs. s(|state_1 := tmp_1 s|))

ELSE
Skip

FI
ELSE
Secure policy;
Do (λs. s(|state_0 := tmp_0 s|));
Do (λs. s(|state_1 := tmp_1 s|))

FI

Fig. 5. Generated code for policy (*). The left hand column contains the state main-
tenance code, while the right side contains the policy checking code.

3. Construct a monitor fragment for the main formula. In the case that the
formula holds, execute the secure statement and update the monitor state,
otherwise handle the security violation; and

4. Sequentially compose the fragments to generate the final monitor.

Fig. 6 presents the algorithm for constructing a monitor fragment. The no-
tation S[[ψ]](tc,fc) denotes the algorithm applied to formula ψ, with arguments
tc (true case) and fc (false case). The leaves of the fragment, tc and fc, are
assignments in the case of a past formula, and a secure statement along with
state update in the case of the policy.

Example 6. The monitor generated for our example policy is shown in Fig. 5.
Our implementation includes an optimisation: rather than re-check a formula,
monitor fragments may refer to previously established past formula by checking
the corresponding variable.

The monitor fragment for the past formula «λs. x s = 1» (the first 5 lines
of Fig. 5) was generated by

S[[«λs. x s = 1»]](Do (λs. s(|tmp_0 := 1|)),Do (λs. s(|tmp_0 := 0|)))

Not shown are the proof handling aspects; in our prototype, the Do statements
are functions taking a proof of «λs. x s = 1» and ¬«λs. x s = 1» respectively.
These proofs are then stored for later extraction.

If we, for the moment, ignore proof generation, the synthesis algorithm is straight-
forward: when an atom is seen, generate code which checks the atom and uses

On the Automated Synthesis of Proof-Carrying 121

S[[«a»]](tc, fc) =IF a THEN (tc atomI) ELSE (fc natomI)
S[[ψ [⇒] φ]](tc, fc) = let

tc′ = λ r .S[[φ]](tc · impI1, fc · (nimpI r))
in
S[[ψ]](tc′, tc · implI2)

S[[[¬]ψ]](tc, fc) =S[[ψ]](fc · nnegI, tc · negI)
S[[ψ]](tc, fc) =IF (Σψ) THEN (tc inv-πψ) ELSE (fc ninv-πψ)
S[[ψ S φ]](tc, fc) =S[[φ [∨]((ψ S φ) [∧] ψ)]](tc · sinceI, fc · nsinceI)

Fig. 6. The algorithm for constructing a monitor fragment. It generates both a mon-
itor fragment and proof annotations. The parameters tc and fc are functions which
take proof annotations and return the statements to be used in each branch of the
conditional; the term tc · sinceI composes rule sinceI with tc, thus adding a new rule
to the proof tree at tc.

s |= ϕ

ϕ (fst s)

s |= «ϕ»
atomI

¬ ϕ (fst s)

¬ s |= «ϕ»
natomI

s |= ϕ

s |= ψ [⇒] ϕ
implI1

¬ s |= ψ

s |= ψ [⇒] ϕ
implI2

s |= ϕ ¬ s |= ψ

¬ s |= ϕ [⇒] ψ
nimplI

¬ s |= ϕ

s |= [¬] ϕ
negI

s |= ϕ

¬ s |= [¬] ϕ
nnegI

s |= ψ [∨] ((ϕ S ψ) [∧] ϕ)

s |= ϕ S ψ
sinceI

¬ s |= ψ [∨] ((ϕ S ψ) [∧] ϕ)

¬ s |= ϕ S ψ
nsinceI

Fig. 7. Derived introduction rules for P3TL

tc in the true case, fc in the false case; in the case of a negation, [¬]ψ, generate
code for ψ but switch the leaves — if ψ holds, then use fc, otherwise tc. Note
that negation produces no extra code; it merely swaps leaves. This means that
special cases for conjunction and disjunction are not required: unfolding the def-
initions results in no additional code; a previous formula, ψ, results in a check
of the state component for that formula, Σψ.

5.3 Proof Synthesis

The main monitor theorem is

� {invψ} monitor {invψ}

which states that the monitor preserves the invariant, discussed below. The proof
that the monitor enforces the security policy is implicit in the use of any Secure

122 S. Winwood, G. Klein, and M.M.T. Chakravarty

statements: wherever an operation occurs in the monitor, a proof obligation
is required which states that the policy holds (c.f. rule secure). Thus, as
our proof system is sound (Theorem 1), a proof of the main theorem implies
that execution of a Secure statement occurs only when the security policy is
true.

The proof of the main theorem is generated from the monitor fragments using
a verification condition generator style algorithm. The proof requires a number
of lemmas for both re-establishing the monitor invariant and for showing the
policy holds for Secure statements. The generation of these proof obligations is
discussed below.

The monitor invariant. The monitor maintains state between invocations, in
particular Σφ for each past formula φ, and so a monitor invariant is required. This
invariant relates the value of each state variable to the truth of the corresponding
formula in the previous state.

invψ ≡
∧

φ∈past(ψ)

Σφ ↔ φ

where ψ is the security policy and past(ψ) are the past formulae of ψ.
The past formula monitor fragments are then responsible for reestablishing

the monitor invariant. This is done in two steps: firstly, the monitor checks
the past formula, φ, and sets a temporary variable, Δφ, accordingly; secondly,
the monitor updates the real monitor state after execution of the Secure
statement.

This two-step process is required for a number of reasons: primarily, later
monitor fragments may require the state variable to establish the truth of other
formulae, past or policy; and, secondly, if the security policy doesn’t hold, then
the monitor may elect to silently ignore the request. In this case, the initial value
of the state variables is still correct — no secure operation is performed, and
thus the invariant is still true. This is the behaviour of monitors generated by our
prototype. We then define, for each past formula, a pre-invariant Ξφ ≡ Δφ ↔ φ.
This correspondence is used to generate the invariant — after execution of Secure
statement and state update, we can use this to derive Σφ ↔ φ

Example 7. Our prototype generates a number of auxiliary lemmas for manipu-
lating the invariant. These include

– projection rules (the inv-πφ rules mentioned in Fig. 6)

invariant (s, σ) state_1 s = 1

(s, σ) |= («λs. x s < 5» S «λs. y s = 1»)
inv-π1

– rules for invariance under assignment (X is an arbitrary function)

invariant (s(|tmp_1 := X s|), σ) = invariant (s, σ)

On the Automated Synthesis of Proof-Carrying 123

Proof obligations. The proof of the main theorem requires, for each assign-
ment in each past formula monitor fragment, a proof obligation of the form

invψ ∧ Ξφ1 ∧ . . . ∧ Ξφm ∧ a1 ∧ . . . ∧ an −→ inv′
ψ ∧ Ξ ′

φ1
∧ . . . ∧ Ξ ′

φm
∧ Ξ ′

φ

A formula is primed to denote it’s truth after the assignment. The terms Ξφ1 ∧
. . . ∧ Ξφm are the past formula equivalences established by previous monitor
fragments, a1, . . . , an are the atoms (or their negation, in the case of a false
branch) that were checked by the conditionals in the current monitor fragment,
and φ is the formula from which the monitor fragment was produced, with Δφ

replaced by True or False depending on which branch the assignment occurs.
These proofs state that the monitor fragment correctly establishes Ξφ and

does not invalidate previously established equivalences or the invariant.
The obligations for Secure statements are similar but for the last term in the

conjunction: in this case, it is the policy. In addition, the secure rule allows us
to generate P3TL terms of the form φ, assuming we have φ — this is how the
conversion from pre-invariant to invariant occurs.

Example 8. The following obligation is generated for the fourth assignment in
Fig. 5.

∀ s σ. invariant (s, σ) ∧
pre_sd0 (s, σ) ∧ y s �= 1 ∧ state_1 s = 1 ∧ x s < 5 −→
invariant (s(|tmp_1 := 1|), σ) ∧
pre_sd0 (s(|tmp_1 := 1|), σ) ∧ pre_sd1 (s(|tmp_1 := 1|), σ)

Proof construction. Much of complexity of the algorithm in Fig. 6 arises
because the leaves of the tree are annotated with the proof, and the algorithm
builds the tree from the leaves up. The proofs require information that is not
initially available, i.e., the proofs for sub-formulae, so the arguments to the
synthesis function, tc and fc, are functions from proofs to program fragments.
In particular, if the fragment is checking the truth of φ, tc will be a function
from a proof of φ, and fc a function from a proof of ¬φ.

Fig. 7 shows the P3TL proof rules used by the algorithm, except for the
invariant projection lemmas which are described above. All of these rules are
derived from the semantics of P3TL (using Isabelle) as lemmas, but are intended
to be derivable in a syntactic proof system (such as that in Lichtenstein and
Pnueli [13]). Each rule occurs in the positive and negated form, as some proof
rules require negated forms of past formulae (e.g., rule ninv-πφ). Note that the
atom rules convert assertions into P3TL atoms.

The algorithm assumes these rules are available as functions which build proofs.
As the assumptions of the proof are assertions (the invariant and a1, . . . , an as
above), those rules without premises of the form s |= ψ are treated as constants,
as in the case for atoms.

In the case of an implication, ψ [⇒] φ, we construct a function tc′ which takes
as argument a proof of ψ and produces a fragment which checks φ. Note that
nimpI is partially applied to the proof of ψ in the false case; the result is a
function from ¬φ as required. The remaining cases are straightforward.

124 S. Winwood, G. Klein, and M.M.T. Chakravarty

Example 9. The following is the proof generated for the obligation in Example 8

π1
σ

σ |= ϕ

σ |= λ

¬ σ |= ¬ λ

¬ σ |= ψ

σ |= ¬ ψ

σ |= ¬ λ ⇒ ¬ ψ

σ |= ϕ

(| |) σ |= ϕ

where ψ = («λs. x s < 5» S «λs. y s = 1») [⇒] [¬] «λs. y s = 1» and ϕ = «λs. x
s < 5» S «λs. y s = 1» .

The above proof is generated in two steps: firstly (not shown) the previously
established facts are shown to be true after the assignment using the assignment
invariance rules described above; and secondly, shown above, the new equivalence
is established using the proof constructed by the algorithm in Fig. 6.

After the assignment (tmp_1 s = 1) = (s, σ) |= ϕ, as required.

5.4 Discussion

Tableau construction [14] algorithms give an exponential state space due to the
use of subset construction, and thus can generate monitors whose worst-case
size is exponential in the size of the input formula. Our approach, while tableau-
based, has a worst-case size that is (O(n2)) in the size of the input formula. This
size reduction is due to the past formula monitor fragments which dynamically
calculate the automata transitions. This comes at a cost, however: the time
complexity of our approach is quadratic, while that of a simpler automata-based
solution is linear in the size of the formula.

6 Related Work

Bernard and Lee [15] present a proof carrying code framework based on temporal
logic. In contrast, our system is closer to that of a traditional PCC framework —
we require temporal terms only when dealing with the high-level safety policy;
this should make extending existing programs simpler. Nevertheless, we envisage
no major issues in synthesising monitors for their framework.

Synthesis from temporal logics, traditionally used in the model checking com-
munity (e.g. Spin [16]) has gained recent popularity for constructing program
reference monitors [17,18,19].

In particular, our approach is similar to that of the PathExplorer project [9].
They construct monitors for safety properties using an algorithm that is very
close to that we presented. These monitors can then be automatically inserted
into Java programs for run-time testing. The major difference is that our algo-
rithm also generates proofs.

On the Automated Synthesis of Proof-Carrying 125

Peled and Zuck [20] generate a proof from model-checking results. This proof
shows properties of the target system; in theory, we may be able to generate the
monitor and then apply their technique to generate the proof. It is, however,
unclear whether that approach would be feasible in practice.

7 Conclusions and Future Work

In this paper we introduced a temporal logic for formulating security policies
— propositional pure past temporal logic — and showed how to automatically
generate efficient reference monitor implementations that check the required
policy, along with a machine-checkable proof of their safety.

We have implemented a prototype targeting Isabelle/HOL; the majority of
formal matter, and all of the theorems, in this paper were generated using Is-
abelle’s presentation mechanism [21] from the Isabelle proofs. This means what
we show is what we proved.

The main contribution of this paper is to show how reference monitor synthe-
sis, proof generation, and the policy logic are defined and interact. In future, we
are interested in refining the system towards one in which the reference moni-
tors are implemented in a low-level language and inserted into consumer code by
binary rewriting, as demonstrated in [7]. Also desirable is a richer policy logic,
such as a first order variant of P3TL; finally, a higher-level language that can be
compiled into P3TL would ease the job of writing security policies.

Acknowledgements

We wish to thanks Kai Engelhardt and Harvey Tuch, along with the anonymous
reviewers, for their valuable comments on earlier versions of this paper.

References

1. Necula, G.C.: Proof-carrying code. In: Proc. of POPL’97, Paris (1997) 106–119
2. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly

language. TOPLAS 21 (1999) 527–568
3. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler. In:

Proc. of PLDI’98. Volume 33,5., New York, ACM Press (1998) 333–344
4. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile resource

guarantees for smart devices. In: Proc. of CASSIS’04. Volume 3362 of LNCS.,
Springer (2005) 1–26

5. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, New York (1995)

6. Schneider, F.B.: Enforceable security policies. Information and System Security
3 (2000) 30–50

7. Winwood, S., Chakravarty, M.M.T.: Secure untrusted binaries - provably!. In:
Proc. of FAST’05. Volume 3866 of LNCS., Springer (2006) 171–186

8. Brewer, D.F.C., Nash, M.J.: The Chinese Wall security policy. In: IEEE Sympo-
sium on Security and Privacy. (1989) 206–214

126 S. Winwood, G. Klein, and M.M.T. Chakravarty

9. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Proc. of
TACAS’02. Volume 2280 of LNCS., Springer (2002) 342–356

10. Barthe, G., Rezk, T., Saabas, A.: Proof obligations preserving compilation. In:
Proc. of FAST’05. Volume 3866 of LNCS., Springer (2006) 112–126

11. Manna, Z., Pnueli, A.: The anchored version of the temporal framework. In
de Bakker, J.W., de Roever, W.P., Rozenberg, G., eds.: Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. Volume 354 of
LNCS., Springer (1989) 201–284

12. Nipkow, T.: Hoare logics in Isabelle/HOL. In Schwichtenberg, H., Steinbrüggen,
R., eds.: Proof and System-Reliability, Kluwer (2002) 341–367

13. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: Decidability and com-
pleteness. Logic Journal of the IGPL 8 (2000) 55–85

14. Geilen, M.: On the construction of monitors for temporal logic properties. Vol-
ume 55. (2001)

15. Bernard, A., Lee, P.: Temporal logic for proof-carrying code. In: Proc. of CADE’02,
London, UK, Springer-Verlag (2002) 31–46

16. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23 (1997)
279–295

17. Chen, F., d’Amorim, M., Rosu, G.: A formal monitoring-based framework for
software development and analysis. In: Proc. of ICFEM’04. Volume 3308 of LNCS.,
Springer (2004) 357–372

18. d’Amorim, M., Rosu, G.: Efficient monitoring of omega-languages. Volume 3576
of LNCS. (2005) 364–378

19. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring with LTL
in EAGLE. In: Proc. of PADTAD’04. (2004)

20. Peled, D., Zuck, L.: From model checking to a temporal proof. In: Proc. of SPIN’01,
New York, NY, USA, Springer (2001) 1–14

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

Synthesis of Asynchronous Systems�

Sven Schewe and Bernd Finkbeiner

Universität des Saarlandes, 66123 Saarbrücken, Germany
{schewe|finkbeiner}@cs.uni-sb.de

Abstract. This paper addresses the problem of synthesizing an asyn-
chronous system from a temporal specification. We show that the cost
of synthesizing a single-process implementation is the same for syn-
chronous and asynchronous systems (2EXPTIME-complete for CTL*
and EXPTIME-complete for the μ-calculus) if we assume a full
scheduler (i.e., a scheduler that allows every possible scheduling), and
exponentially more expensive for asynchronous systems without this as-
sumption (3EXPTIME-complete for CTL* and 2EXPTIME-complete
for the μ-calculus). While multi-process synthesis for synchronous dis-
tributed systems is possible for certain architectures (like pipelines and
rings), we show that the synthesis of asynchronous distributed systems is
decidable if and only if at most one process implementation is unknown.

1 Introduction

Synthesis automatically transforms a specification into an implementation that
is guaranteed to satisfy the specification. For synchronous systems, the syn-
thesis problem is well-understood. Synthesizing single-process implementations
is EXPTIME-complete for the μ-calculus [5,9], and 2EXPTIME-complete for
linear-time temporal logic (LTL) and computation-tree logic (CTL*) [7,9,6].
Multi-process synthesis, the problem of finding implementations for the pro-
cesses in a given distributed architecture, has been solved for pipelines [13],
rings [10], and in general for all architectures without information forks (i.e.,
pairs of processes with incomparable information) [3].

By contrast, the problem of synthesizing asynchronous systems has so far re-
ceived very little attention: the synthesis algorithms in the literature are limited
to LTL specifications and single-process implementations. The first solution for
asynchronous synthesis with specifications in LTL, but without fairness condi-
tions, is due to Pnueli and Rosner [12]. Anuchitanukul and Manna [1] later showed
that fairness conditions can be included in a deductive approach; Vardi [14] pro-
vided an automata-based algorithm for the same problem.

The question arises if the lack of synthesis algorithms for asynchronous sys-
tems is a coincidence or rather an indication of an inherent hardness of the
synthesis problem for asynchronous systems. In this paper, we systematically
� This work was partly supported by the German Research Foundation (DFG) as

part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 127–142, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 S. Schewe and B. Finkbeiner

study the challenges in extending synthesis to the asynchronous case and, in
doing so, give a comprehensive answer to this question.

Challenge 1: Synthesizing asynchronous processes for branching-time
specifications. We begin by generalizing the synthesis of single-process imple-
mentations from linear-time to branching-time specifications. The behavior of
an asynchronous process depends on the scheduler: while synchronous processes
are aware of each change to their inputs, asynchronous processes may fail to
see certain changes (when the writing process is scheduled more often than the
reading process) and may see duplicate input values (when the reading process
is scheduled multiple times between two writes). For linear-time specifications,
asynchronous processes are typically analyzed in combination with a full sched-
uler, which allows every possible scheduling to occur along some path of the
computation tree. In our first algorithm, we adapt this setting to branching-time
specifications and synthesize an asynchronous process implementation such that
the computation tree that results from the combination with a full scheduler sat-
isfies the branching-time specification. The algorithm runs in exponential time
for μ-calculus specifications and in double exponential time for CTL*. We thus
obtain the result that under full scheduling, the cost of synthesizing single-process
implementations is the same for synchronous and asynchronous systems.

Challenge 2: Synthesizing scheduler-independent implementations.
Dropping the assumption of a full scheduler leads to the problem of synthesiz-
ing scheduler-independent implementations: we require that the implementation
must satisfy the specification for every scheduler. For LTL (and, more generally,
for universal specifications), the two synthesis problems coincide. For branching-
time specifications, scheduler-independent synthesis is the strictly more general
problem. Consider the existential specification “there is a path where the output
of the process changes in every second step.” This specification can trivially be
satisfied under the assumption of a full scheduler, but there is no implementation
that guarantees this specification for all schedulers. Scheduler-independent syn-
thesis allows us to explicitly state the assumptions on the scheduler as part of the
specification. An interesting example for such an assumption is fairness. While
synthesis under full scheduling allows us to find implementations that perform
correctly on fair paths (“there is a fair scheduling where the output of the process
changes in every second step”), scheduler-independent synthesis allows us to find
implementations that perform correctly whenever the scheduling is fair (“if the
scheduler is fair on all paths then there is a path where the output of the process
changes in every second step”). In our second algorithm, we synthesize an asyn-
chronous process implementation such that any computation tree that results
from the combination of the process with some scheduler satisfies the branching-
time specification. The algorithm runs in double exponential time for μ-calculus
specifications and in triple exponential time for CTL*. We provide matching
lower bounds for both logics, obtaining the result that scheduler-independent
synthesis is exponentially harder than synthesis under full scheduling.

Synthesis of Asynchronous Systems 129

Challenge 3: Synthesizing asynchronous distributed systems. We finally
consider the multi-process synthesis problem, where the distributed architecture
is given as a directed graph. Each process is either identified as black-box, if its
implementation is to be determined by the synthesis algorithm, or as white-box,
if the implementation is already known and fixed. In the synchronous case, the
distributed synthesis problem is decidable if and only if the architecture does
not contain an information fork [3]. We show that in the asynchronous case, the
distributed synthesis problem is decidable if and only if the architecture contains
only a single black-box process.

Our results thus demonstrate that, except for the case of single-process imple-
mentations and full scheduling, the synthesis of asynchronous systems is indeed
harder than the synthesis of synchronous systems. Our algorithms solve the
distributed synthesis problem for architectures with a single black-box process.
Since the synthesis problem is undecidable for all architectures with two or more
black-box processes, it is impossible to extend our algorithms to a larger set of
architectures.

2 The Synthesis Problem

We study the synthesis problem in the general setting of distributed systems.
The synthesis problem is to decide for the triple (A, ϕ, {sw|w ∈ W}), consisting
of an architecture A, a specification ϕ, and a set of white-box strategies {sw|w ∈
W}, whether there exists a finite-state program (or strategy) for each black-box
process in A, such that the joint behavior satisfies ϕ.

Architectures. An architecture A is a tuple (P, W, penv , E, O, H), where P is a
set of processes with a subset W ⊂ P of white-box processes and a distinguished
environment process penv ∈ P �W . (P, E) is a directed graph, O = {Oe|e ∈ E} a
set of nonempty sets of (output) variables for every edge and H = {Hp|p ∈ P} a
pairwise disjoint set of (possibly empty) sets of hidden variables for every process
such that

⋃
e∈E Oe∩

⋃
p∈P Hp = ∅ and e, e′ ∈ E, Oe∩Oe′ �= ∅ ⇒ pr1(e) = pr1(e′)

hold (where pr1 denotes the projection on the first element).
As additional notation, we use V =

⋃
e∈E Oe∪

⋃
p∈P Hp for the set of variables,

Ip =
⋃

p′∈P O(p′,p) and Op =
⋃

p′∈P O(p,p′) ∪ Hp for the input and output,
respectively, of a process p, and P− = P �{penv} for the set of system processes.
The set B = P−

� W contains the black-box processes; we assume additionally
that, for all b ∈ B, the output of a black-box process Ob is not empty (otherwise,
the output is known and we turn b into a white-box process).

Implementations. A process p is implemented by a strategy, i.e., a function
sp : (2Ip)∗ → 2Op . A strategy is finite-state if it can be represented by a finite-
state automaton. An implementation of an architecture consists of strategies
S = {sp| p ∈ B} for all black-box processes.

An implementation defines a computation tree. As usual, a tree is given as
a prefix-closed subset Y ⊆ Υ ∗ of all finite words over a given set of direc-
tions Υ . If Y contains the empty word ε and a successor for every element

130 S. Schewe and B. Finkbeiner

(∀y ∈ Y ∃υ ∈ Υ. y ·υ ∈ Υ), Y is called total, and if Y = Υ ∗, the tree is called full.
For given finite sets Σ and Υ , a Σ-labeled Υ -tree is a pair 〈Y, l〉 with Y ⊆ Υ ∗

and a labeling function l : Y → Σ that maps every node of Y to a letter of Σ.

Computations. The computation tree identifies the system state (i.e., the
values of the system variables and the currently scheduled processes) for every
possible history of input assignments and scheduling decisions. For an implemen-
tation S and a set of white-box strategies {sw|w ∈ W}, we define the computation
tree as the full 2V ∪P -labeled (2Oenv ∪{⊥})×2P −

-tree 〈((2Oenv ∪{⊥})×2P −
)∗, c〉

with the following properties1:

– c(ε) = ρ0 ∪
⋃

p∈P − sp(ε) and
– c(x · (υ, π)) = υ̂ ∪ π ∪

⋃
p∈P − sp(visp(x)), with

• υ̂ = υ ∪ {penv}, if υ �= ⊥,
• υ̂ = c(x) ∩ Oenv , if υ = ⊥, and
• visp : ((2Oenv ∪ {⊥}) × 2P −

)∗ → (2Ip)∗, which maps a path in the com-
putation tree to the input history of a process p, i.e.,

∗ visp(ε) = ε,
∗ visp(x · (υ, π)) = visp(x) if p /∈ π, and
∗ visp(x · (υ, π)) = visp(x) · (c(x) ∩ Ip) if p ∈ π.

Intuitively, ⊥ denotes that the environment is not scheduled. In this case, the
values of its output variables Oenv remain unchanged.

The Scheduler. In every step, the scheduler makes a (possibly nondetermin-
istic) choice which processes are scheduled. In a full scheduler, all choices are
possible in each step. In general, some choices may be disabled, and the set of
choices may depend on the history of states.

We formalize the scheduler as a function from ((2Oenv ∪ {⊥}) × 2P −
)∗ to the

set of potential scheduling decisions P = 22P

, which consists of the sets of non-
empty subsets of the set of processes. We represent the function as a P-labeled
ΥA-tree 〈ΥA

∗, scheduler 〉, where ΥA = (2Oenv ∪ {⊥}) × 2P −
denotes the set of

directions, and the label refers to the nondeterministic choice of the scheduler.
A scheduler 〈ΥA

∗, scheduler 〉 defines a subset Yscheduler ⊆ ΥA
∗ of reachable nodes

of ΥA
∗. Yscheduler can be defined inductively as the smallest subset of ΥA

∗ with

– ε ∈ Yscheduler ,
– ∀y∈Yscheduler . P

′ ∈ scheduler (υ) ∧ penv∈P ′

⇒ ∀O ⊆ Oenv . y · (O, P ′
� {penv})∈Yscheduler , and

– ∀y ∈ Yscheduler . P
′ ∈ scheduler (υ) ∧ penv /∈ P ′ ⇒ y · (⊥, P ′) ∈ Yscheduler .

1 For technical convenience, we fix ρ0 ⊆ Oenv ∪ P , called the fixed-root, which is
comparable to the fixing of a root direction in the synchronous case [7,8].

Synthesis of Asynchronous Systems 131

The Synthesis Problem. A triple (A, ϕ, {sw|w ∈ W}), consisting of an ar-
chitecture A, a specification ϕ, and a set of white-box strategies {sw|w ∈ W}, is
called

– realizable under full scheduling if there exists an implementation S, such that
the computation tree 〈ΥA

∗, c〉 of S satisfies ϕ; and
– scheduler-independently realizable if there exists an implementation S with

the computation tree 〈ΥA
∗, c〉 such that, for all schedulers 〈ΥA

∗, scheduler〉,
〈Yscheduler , c〉 satisfies ϕ.

We call an architecture A (scheduler-independently) decidable if an algorithm
exists that decides for all specifications ϕ and all sets of finite-state white-
box strategies {sw|w ∈ W} if (A, ϕ, {sw|w ∈ W}) is (scheduler-independently)
realizable.

3 Single-Process Synthesis Under Full Scheduling

In this section, we show that under the assumption of full scheduling, the cost
of synthesizing single-process implementations is the same for synchronous and
asynchronous systems. We develop an automata-theoretic synthesis algorithm
for asynchronous systems with a single black-box process. The algorithm runs in
EXPTIME in the length of a CTL or μ-calculus specification and in 2EXPTIME
in the length of a CTL* specification.

3.1 Preliminaries: Tree Automata

An alternating automaton A = (Σ, Q, q0, δ, α) runs on full Σ-labeled Υ -trees (for
a predefined finite set Υ of directions). Q denotes a finite set of states, q0 ∈ Q
denotes a designated initial state, δ denotes a transition function δ : Q × Σ →
B

+(Q × Υε), where Υε denotes Υ ∪ {ε}, and α is an acceptance condition.
A run tree on a given Σ-labeled Υ -tree 〈Υ ∗, l〉 is a Q × Υ ∗-labeled tree where

the root is labeled with (q0, ε) and where for a node n with a label (q, x) and a
set child (n) of children, the labels of these children have the following properties:

– for all children m ∈ child (n) of n, the label of m is (qm, x · υm) for some
qm ∈ Q and υm ∈ Υε such that (qm, υm) is an atom of δ(q, l(x)), and

– the set of atoms defined by the children of n satisfies δ(q, l(x)).

A run tree is accepting if all its paths fulfill the acceptance condition. A parity
condition is a function α from Q to a finite set C ⊂ N of colors. A path is accepted
if the highest color appearing infinitely often is even.

A full Σ-labeled Υ -tree is accepted if it has an accepting run tree. The set of
trees accepted by an alternating automaton A is called its language L(A). An
automaton called is empty, if its language is empty. The acceptance of a tree
can also be viewed as the outcome of a game, where player accept chooses, for
every pair (q, σ) ∈ Q × Σ, a set of atoms of δ(q, σ), satisfying δ(q, σ), and player

132 S. Schewe and B. Finkbeiner

reject chooses one of these atoms, which is executed. The input tree is accepted
iff player accept has a strategy enforcing a path fulfilling α.

If δ : Q × Σ → B
+(Q × Υ), i.e., if there are no ε-transitions, the alternating

automaton is called ε-free. A nondeterministic automaton is a special ε-free
alternating automaton, where the image of δ consists only of such formulas
that, when rewritten in disjunctive normal form, contain exactly one element of
Q × {υ} for all υ ∈ Υ in every disjunct. For nondeterministic automata, every
node of a run tree corresponds to a node in the input tree. The emptiness of
a nondeterministic automaton can be checked with the emptiness game, where
player accept also chooses the letter of the input alphabet. A nondeterministic
automaton is empty iff the emptiness game is won by reject.

Symmetric alternating automata are a variant of alternating automata that
run on total Σ-labeled trees. For a symmetric alternating automaton S =
(Σ, Q, q0, δ, α), Q, q0, and α are defined as before. The transition function
δ : Q × Σ → B

+(Q × {�, ♦, ε}) now maps a state and an input letter to a
positive boolean combination over atoms that refer to all (�) successor nodes,
some (♦) successor node or the current (ε) node.

3.2 Overview

The algorithm assumes an architecture A with a single black-box process b.
It starts by representing a specification ϕ as a symmetric alternating parity
automaton Aϕ, which is transformed into a nondeterministic automaton Nϕ

that accepts a tree 〈(2Ib)∗, sb〉 iff sb is an implementation of ϕ. The solution of
the emptiness game for Nϕ then provides such an implementation.

The following are the main steps of the algorithm:

– From formulas to automata. We first construct the symmetric alternat-
ing parity automaton Aϕ, with L(Aϕ) = Mϕ (Lemma 1).
In this section, Aϕ is only used for 2V ∪P -labeled ΥA-trees, i.e., for trees with
the shape and labeling of the computation trees.

– From computation trees to strategy trees. We then construct the
alternating parity automaton Sϕ that accepts a strategy tree 〈(2Ip)∗, sp〉 iff
its computation tree is accepted by Aϕ (Lemma 2).

– Nondeterminization. In a third step, we construct a nondeterministic
parity automaton Nϕ, with L(Nϕ) = L(Sϕ) (Lemmata 3 and 4).

– Strategy construction. Finally, we construct a strategy for the black-
box process such that the induced computation tree is a model of ϕ (or
demonstrate that no such strategy exists) by solving the emptiness game for
Nϕ (Lemma 5).

We now describe the automata transformations of the construction in more
detail.

3.3 From Formulas to Automata

The symmetric alternating parity automaton Aϕ can be built from a temporal
or fixed point specification ϕ using standard constructions.

Synthesis of Asynchronous Systems 133

Lemma 1. Given a μ-calculus specification ϕ, we can construct a symmetric
alternating automaton Aϕ with O(|ϕ|) states such that L(Aϕ) = Mϕ [8,9].
Given a CTL* specification ϕ, we can construct a symmetric alternating au-
tomaton Aϕ with 2O(|ϕ|) states such that L(Aϕ) = Mϕ [8]. ��

Aϕ can be transformed into an ordinary alternating automaton over full Υ -trees
by replacing each occurrence of (q, �) and (q, ♦) in the transition function by∧

υ∈Υ (q, υ) and
∨

υ∈Υ (q, υ), respectively.

3.4 From Computation Trees to Strategy Trees

The central automata transformation for asynchronous synthesis is the transfor-
mation of an alternating parity automaton Aϕ recognizing a set of computation
trees into an alternating parity automaton Sϕ that accepts those implementa-
tions whose computation trees are accepted by Aϕ.

We assume that the strategies {sw|w ∈ W} of the white-box processes are
given as a family of strategy automata {Sw = (Iw , Sw, sw

0 , dw, ow)|w ∈ W}. A
strategy automaton is a Moore machine, where

– a state s ∈ Sw represents the quotient class of equivalent positions in the
strategy tree 〈(2Iw)∗, sw〉;

– the initial state sw
0 represents the quotient class including the root of the

strategy tree;
– ow : Sw → 2Ow maps each state of Sw to an output label of the process w;
– upon reading an input υ ∈ 2Iw ∪ {ε}, the automaton proceeds to the state

s′ = dw(s, υ), and returns the label ow(s′) of this state.
An ε-transition does not change the state (dw(s, ε) = s).

We construct the automaton Sϕ accepting the strategy trees of the black-box
process by simulating Aϕ on the (implicitly defined) computation tree.

Given a strategy sb of the black-box process b and a set of strategies {sw|w ∈
W} for the white-box processes, represented by strategy automata {Sw|w ∈ W},
the computation tree 〈((2Oenv ∪ {⊥}) × 2P −

)∗, c〉 can be constructed by setting
c : ε �→

⋃
w∈W

Sw(ε) ∪ sb(ε) ∪ ρ0, and c : x · (υ, π) �→
⋃

w∈π∩W

Sw(c(x) ∩ (Ip)) ∪
⋃

w∈W�π

Sw(ε)∪ υ̂∪π∪sb(visb(x)), where visb and υ̂ are taken from the definition

of computation trees.
To obtain Sϕ, we add the output of the environment and of the white-box

processes to the states of the automaton.

Lemma 2. Let A = (P, W, penv , E, O, H) be a given architecture with B = {b},
let {sw|w ∈ W} be a given set of white-box strategies represented as strategy
automata {Sw = (Iw, Sw, sw

0 , dw, ow)|w ∈ W}, and let Aϕ = (2V ∪P , Q, q0, δ, α)
be an alternating parity automaton running on 2V ∪P -labeled (2Oenv ∪ {⊥}) ×
2P −

-trees. Then we can, for S =
⊗

w∈W Sw, construct an alternating parity
automaton S = (2Op , Q×S ×2P∪Oenv , q′0, δ′, α′) running on 2Op-labeled 2Ip-trees
that accepts a strategy tree 〈(2Ip)∗, sp〉 if its computation tree is accepted by A.

134 S. Schewe and B. Finkbeiner

Proof. We simulate the behavior of Aϕ on the computation tree 〈ΥA
∗, c〉 that

is defined by the strategy tree 〈(2Ib)∗, sb〉. First, we set q′0 to (q0, {sw
0 }w∈W , ρ0).

For Σ = 2V ∪P , Υ = ΥA = (2Oenv ∪ {⊥}) × 2P −
and δ : Q × Σ → Q × Υε with

δ : (q, σ) �→ bn
(q,σ)(qi, υi)i∈Nn that assigns positive boolean combinations of states

and directions to each state and input letter, we define δ′ : Q × S × 2Oenv∪P ×
2Ob → Q × S × 2Ip

ε as δ′ : (q, s, σenv , σb) �→ bn
(q,

⋃
w∈W ow(s)∪σenv∪σb)

(qi, f(s, σenv ,

σb, υi), g(s, σenv , σb, υi))i∈Nn , where f and g are auxiliary functions.
The function f preserves the correct states of the strategy automata Sw in S

and memorizes the values of the variables controlled by the environment (Oenv ∪
P). The former is done by applying the correct transition functions to the states
of the strategy automata, the latter by storing the correct environment output.
f : {sw}w∈W × σenv × σb × υ �→ ({sw′}w∈W , σ′

env) has the following properties:

– ∀w ∈ W : w /∈ υ ⇒ sw′ = sw,
– ∀w ∈ W : w ∈ υ ⇒ sw′ = dw(sw, (

⋃
w∈W

ow(sw) ∪ σenv ∪ σb) ∩ Iw);

– υ = ε ⇒ σ′
env = σenv ,

– υ �= ε ⇒ σ′
env ∩ P− = υ ∩ P− and

• ⊥ ∈ υ ⇒ σ′
env ∩ Oenv = σenv ∩ Oenv , penv /∈ σ′

env and
• ⊥ /∈ υ �= ε ⇒ σ′

env ∩ Oenv = υ ∩ Oenv , penv ∈ σ′
env .

The function g maps the label and direction of the computation tree to a direc-
tion in the strategy tree of b; if b is scheduled, g(υ) is the Ib part of the label, if
b is not scheduled (including the ε-transition), the position in the strategy tree
remains unchanged. g : S×2Oenv∪P ×2Ob ×Υε → 2Ib

ε has the following properties:

– g : υ �→ ε if b /∈ υ and
– g : υ �→ (

⋃
w∈W

ow(sw) ∪ σenv ∪ σb) ∩ Ib if b ∈ υ.

Obviously, for α′ : (q, s, o) �→ α(q), a strategy tree is accepted by S iff its
computation tree is accepted by A. ��

3.5 Nondeterminization

To check Sϕ for emptiness, we first eliminate the ε-transitions and then construct
an equivalent nondeterministic parity automaton.

Lemma 3. [15,9] Given an alternating parity automaton S with n states, we
can construct an ε-free alternating parity automaton S′ with at most n2 states.

��

Lemma 4. [11,3] Given an alternating parity automaton Sϕ with n states, we
can construct a nondeterministic parity automaton Nϕ with nO(n2) states and
O(n2) colors. ��

Synthesis of Asynchronous Systems 135

3.6 Strategy Construction

In the last step, we obtain a strategy by solving the emptiness game of the
resulting nondeterministic parity automaton Nϕ.

Lemma 5. Given a nondeterministic automaton N = (Σ, Q, q0, δ, α) running
on Σ-labeled Υ -trees with n states and c colors, we can construct a regular tree
accepted by N or show that the language of N is empty in time nO(c).

Proof. The nonemptiness problem can be reduced to a parity game with at most
n+n|Υ | states and c colors: Player accept owns the states Q and chooses a label
σ ∈ Σ and a conjunction

∧
υ∈Υ (qυ , υ) satisfying δ(q, σ). Player reject owns these

conjunctions and can move from a state
∧

υ∈Υ (qυ, υ) to a state qυ by choosing
a direction υ ∈ Υ . The colors of the states of player accept are defined by the
coloring function α, while all states of player reject are colored by the minimum
color in the mapping of α. This parity game can be solved in time nO(c) [4].

N is empty iff player reject has a winning strategy, and the Σ-projection of
a memoryless winning strategy for player accept defines a regular tree. ��

3.7 Complexity

The construction described in Section 3.2 provides EXPTIME and 2EXPTIME
upper bounds for the synthesis problems under full scheduling in case of μ-calculus
and CTL* specifications, respectively. Matching lower bounds can be inferred from
the known lower bounds for the synthesis problems for CTL and CTL* in syn-
chronous systems by applying linear specification transformations.

Theorem 1. The distributed synthesis problem under full scheduling for archi-
tectures with a single black-box process is EXPTIME-complete for specifications
in CTL and the μ-calculus and 2EXPTIME-complete for CTL* specifications.

Proof. The upper bounds follow from the construction suggested in Section 3.2
together with the Lemmata 1 through 5.

We establish the lower bound for the special case of architectures without
white-box processes. We reduce the synthesis problem for this case from the
synthesis problem for the synchronous setting, which is EXPTIME-hard for CTL
and 2EXPTIME-hard for CTL* [8]. The reduction is by a linear transformation
of each CTL or CTL* formula ϕsync that reasons only over the specification
variables V , to a CTL or CTL* specification ϕasync , respectively, such that
ϕasync is realizable iff ϕsync if realizable in the synchronous setting.

For CTL specifications, we replace every occurrence of AϕUψ, EϕUψ, AXψ
and EXψ by AϕU(ψ∨¬b∨¬penv), E(ϕ∧b∧penv)U(ψ∧b∧penv), AX(b∧penv → ψ)
and EX(b ∧ penv ∧ ψ), respectively.

For CTL* specifications, we replace every occurrence of Aπ by A(G(b ∧
penv) → π) and every occurrence of Eπ by E(G(b ∧ penv) ∧ π).

A strategy sb for the black-box process is obviously a realization for the trans-
formed specification iff sb realizes the original specification in the synchronous
setting.

136 S. Schewe and B. Finkbeiner

The EXPTIME lower bound for CTL implies the EXPTIME lower bound for
the μ-calculus, and the EXPTIME upper bound for the μ-calculus establishes a
matching upper bound for CTL. ��

4 Synthesis of Scheduler-Independent Implementations

We now present an algorithm for scheduler-independent synthesis, where we
only consider implementations that satisfy the specification for all schedulers.
Scheduler-independent synthesis can also be used to find implementations that
satisfy their specification if the scheduler satisfies assumptions that are explicitly
stated in the specification.

4.1 Overview

We again begin with an overview over the main steps of the construction. The
algorithm runs in 2EXPTIME and 3EXPTIME in the length of a μ-calculus and
CTL* specification, respectively.

– From formulas to symmetric automata. We first construct the sym-
metric alternating parity automaton Aϕ, with L(Aϕ) = Mϕ (Lemma 1).

– Considering a scheduler. We then construct the alternating parity au-
tomaton Bϕ that accepts the product 〈ΥA

∗, scheduler × c〉 of a scheduler
〈ΥA

∗, scheduler 〉 and a computation tree 〈ΥA
∗, c〉 iff 〈Yscheduler , c〉 is accepted

by Aϕ (Lemma 6).
– Quantification over all schedulers. In a third step, we construct an

alternating automaton Cϕ that accepts a computation tree 〈ΥA
∗, c〉 iff, for

all schedulers 〈ΥA
∗, scheduler 〉, the product 〈ΥA

∗, scheduler × c〉 of the com-
putation tree and the scheduler is accepted by Bϕ (Lemmata 3 and 7).

– Strategy construction. Finally, we construct a strategy for the black-
box process such that the induced computation tree is accepted by Cϕ or
demonstrate that no such strategy exists (Lemmata 2 through 5).

4.2 Considering a Scheduler

To check whether a symmetric alternating automaton A accepts 〈Yscheduler , c〉
for a given scheduler 〈ΥA

∗, scheduler 〉 and a given a computation tree 〈ΥA
∗, c〉,

we use the scheduler to determine which successors of a node y ∈ Yscheduler are
contained in Yscheduler . For universal atoms (q, �), the copies are sent only to
these successors, and for existential atoms, the copy is sent to one of them.

Lemma 6. Given a symmetric alternating automaton A = (2V ∪P , Q, q0, δ, α),
running on total 2V ∪P -labeled trees, we can construct an alternating automaton
B = (P×2V ∪P , Q, q0, δ

′, α) running on full P×2V ∪P -labeled ΥA-trees that accepts
a tree 〈ΥA

∗, scheduler × c〉 iff 〈Yscheduler , c〉 is accepted by A.

Synthesis of Asynchronous Systems 137

Proof. B simply uses the first element of the label of each node in 〈ΥA
∗, scheduler

× c〉 it traverses to determine which successors, according to the definition of
Yscheduler , really exist.

δ′(q′; π, σ) can be constructed from δ(q′; σ) by replacing, for all q ∈ Q,

– each occurrence of (q, �) and (q, ♦) by (q, (⊥, π)) if penv /∈ π,
– each occurrence of (q, �) by

∧
O⊆Oenv

(q, (O, π)) if penv ∈ π, and
– each occurrence of (q, ♦) by

∨
O⊆Oenv

(q, (O, π)) if penv ∈ π. ��

4.3 Quantification over All Schedulers

We are only interested in implementations that realize the specification for all
schedulers.

For a Σ ×Ξ-labeled Υ -tree 〈Y, l〉, we denote the Ξ-projection proj Ξ : 〈Y, l〉 �→
〈Y, lΞ〉 with l(y) = (σ, ξ) ⇒ lΣ : y �→ ξ that maps Σ × Ξ-labeled Υ -trees to
Ξ-labeled Υ -trees.

Lemma 7. [2] Given an ε-free alternating automaton B running on Σ × Ξ-
labeled Υ -trees, we can construct an ε-free alternating automaton C that accepts
a Ξ-labeled Υ tree 〈Υ ∗, l〉 iff B accepts all Σ × Ξ-labeled Υ -trees 〈Υ ∗, l′〉 with
〈Υ ∗, l〉 = proj Ξ(〈Υ ∗, l′〉). The number of states of C is exponential in the number
of states of B, and the number of colors of C is quadratic in the number of states
of B. ��

4.4 Complexity

The construction provides 2EXPTIME and 3EXPTIME upper bounds in the
length of a specification for the scheduler-independent synthesis problems of
μ-calculus and CTL* specifications, respectively.

The 3EXPTIME hardness of scheduler-independent realizability checking for
CTL* can be obtained by a reduction from the CTL* synthesis problem for
synchronous systems in reactive environments [6].

Theorem 2. The scheduler-independent realizability and synthesis problem is
2EXPTIME-complete for μ-calculus specifications and in 3EXPTIME-complete
for specifications in CTL*.

Proof. The upper bounds follow from the construction suggested in this section.
To establish the lower bound for CTL* specifications, we transform a CTL*
specification ϕ, which reasons only over the communication variables V , into a
CTL* specification ψϕ, which is scheduler-independent realizable iff ϕ is realiz-
able in a synchronous setting with a reactive environment [6]. The environment
is called reactive if it can disable a subset (but not all) of its responses in each
turn. A full 2Ob∪Ib -labeled 2Ib-tree 〈(2Ib)∗, l〉 is a realization of ϕ in a reactive
environment iff every total subtree of 〈(2Ib)∗, l〉 is a model of ϕ and the 2Ib-
projection of 〈(2Ib)∗, l〉 is a tree, where every node is labeled with its direction
(proj 2Ib (〈(2Ib)∗, l〉) = 〈(2Ib)∗, dir 〉).

138 S. Schewe and B. Finkbeiner

Our transformation puts three assumptions on the scheduler: First, we assume
that the environment is always scheduled (α1 = AGpenv). Then, we assume that
the process b is scheduled initially and, once it is not scheduled is never scheduled
again (α2 = b∧Ab U G¬b). And last, we assume that if b is scheduled, then there
is a path where b as always scheduled (α3 = AG (b → EGb)).

For architectures without white-box processes and Oenv = Ib, there is a
natural bijection between total 2Ib-trees and schedulers that fulfills these as-
sumptions: We simply map a total 2Ib-tree Y to the scheduler 〈((2Ib ∪ {⊥}) ×
2{b})∗, schedulerY 〉 that always schedules the environment and b is scheduled iff
the 2Ib projection of the input sequence is in Y :

b ∈ schedulerY (y) ⇔ y ∈ (2Ib × {b})∗ ∧ proj 2Ib (y) ∈ Y.

The restriction of the scheduler tree of schedulerY to those nodes where b is
scheduled results in a tree that is isomorphic to Y . Consequently, if we trans-
form a CTL* specification ϕ to a specification ϕ′ by replacing all quantifications
over all paths/some path by quantifications over all paths/some path, where b is
constantly scheduled, an implementation 〈(2Ib)∗, sb〉 realizes ϕ for a given total
tree Y in the synchronous setting iff it realizes ϕ′ for the scheduler schedulerY .
〈(2Ib)∗, sb〉 is therefore a realization of ϕ in a synchronous setting with a reactive
environment iff it is a realization of ϕ for all schedulers which satisfy the assump-
tions α1, α2 and α3. This is equivalent to realizing ψϕ = (α1 ∧α2 ∧α3) → ϕ′ for
all schedulers.

Since ϕ′ can be obtained from ϕ by replacing each occurrence of Aπ and Eπ
in ϕ by A(Gb → π) and E(Gb ∧ π), respectively, the length of ψϕ is linear in
the length of ϕ. The 3EXPTIME hardness of scheduler-independent realizability
checking for CTL* specifications therefore follows from the 3EXPTIME hardness
of realizability checking for CTL* specifications in a synchronous setting with
a reactive environment [6]. The 2EXPTIME hardness for realizability checking
for the μ-calculus is a direct implication.

4.5 Synthesis with Explicit Assumptions on the Scheduler

We close the discussion of scheduler-independent synthesis with the remark that
this type of synthesis can also be used to find implementations that satisfy a spec-
ification ϕ as long as the scheduler satisfies an explicitly stated assumption α:
we simply weaken the specification to ϕ′ = α → ϕ.

The assumption α might, for example, specifically specify a round-robin sched-
uler. The most common assumption on schedulers, however, is fairness : A schedul-
ing is considered impartial towards a process p if p is scheduled infinitely often,
just if p is infinitely often disabled or scheduled, and compassionate if p being
enabled infinitely often implies that p is scheduled infinitely often. The enabled-
ness enabled(p) of a process p ∈ P− can be expressed using new hidden vari-
ables for the processes. Quantifying over all fair schedulers for a specification
ϕ is equivalent to quantifying over all schedulers for a modified specification ϕ′

that is satisfied both if ϕ is satisfied or if the scheduler is not fair. With the
fairness condition expressed as a path formula (for example, justice is expressed

Synthesis of Asynchronous Systems 139

by πp = GF¬enabled (p)∨GFp), we obtain the fairness constraint π =
∧

p∈P − πp.
The modified specification ϕ′ is the disjunction ϕ′ = ¬Aπ → ϕ.

Synthesis under full scheduling and scheduler-independent synthesis thus give
us two different approaches to deal with fairness assumptions. While synthe-
sis under full scheduling allows us to require that a property hold for all fair
schedules (by replacing all occurrences of Aψ and Eψ in CTL* specifications by
A(π → ψ) and E(π ∧ ψ), respectively), scheduler-independent synthesis allows
us to require that a property hold for all fair schedulers.

5 Multi-process Synthesis

The algorithms from Sections 3 and 4 solve the synthesis problem for all
architectures with a single black-box process. We now show that for all ar-
chitectures with more than one black-box process, the synthesis problem is
undecidable. Our synthesis algorithms thus cover all decidable asynchronous
architectures.

The following theorem states the undecidability result for synthesis under full
scheduling; the undecidability of scheduler-independent synthesis follows as a
corollary.

Theorem 3. The synthesis problem is undecidable for all architectures with at
least two black-box processes and CTL or LTL specifications.

Proof. We prove undecidability with a reduction from Post’s Correspondence
Problem (PCP). For a given alphabet A, an instance of PCP consists of an
indexed set of pairs of words (ui, vi), ui, vi ∈ A+, i ∈ I = {1, . . . , n}, over an
alphabet A. A solution of PCP is a sequence of indices i1, i2, . . . , im ∈ I+ such
that ui1 · ui2 · . . . · uim = vi1 · vi2 · . . . · vim .

We consider architectures that have at least two different black-box processes
p and q, where both p and q have at least one binary output or hidden variable.
The basic idea of the reduction is to let process p compute the sequence of indices
i1, i2, . . . , im and to let q produce the corresponding word ui1 · ui2 · . . . · uim =
vi1 · vi2 · . . . · vim . To check that the word produced by q corresponds to the
sequence produced by p, we consider two different schedulings, one in which p
produces the indices along the u-words and one in which p produces the indices
along the v-words.

We ensure that the two processes always see the constant input 0 along both
paths and must therefore produce the same output on both paths. For the white-
box processes we fix strategies that map any input history to 0. For all black-box
processes except p and q (if any) and the environment, we specify that their
output variables are globally set to 0. Let the formulas for this requirement,
which are in both LTL and CTL, be denoted by γb and γenv , respectively.

Each index produced by process p is preceded and followed by the constant 0,
and terminated by the special symbol ⊥: 0, i1, 0, 0, i2, 0, . . . , 0, im, 0, ⊥. To
each letter l produced by process q, we add a flag fu indicating if this particular
letter is the first letter of the u-word in the sequence, and a flag fv, if it is the first

140 S. Schewe and B. Finkbeiner

letter of the v-word. Each letter is again preceded and followed by the constant 0,
and the sequence is terminated by ⊥: 0, l1, fu1, fv1, 0, 0, l2, fu2, fv2, 0, . . . , 0, lk,
fuk, fvk, 0, ⊥.

We assume that the encodings of the indices and letters with flags have equal
length N . Each encoding of 0, i, 0 and 0, l, wi, wj , 0 starts with a sequence (say,
0111) that will occur nowhere else in any sequence encoding some sequence of
indices or letters with flags, which allows us to identify where the output of an
index or letter with flags starts.

LTL. We set ϕu = α1 → (γ1 ∧ (α2 → γ2)) for the following path assumptions
α1, α2 and guarantees γ1, γ2:

– α1: globally, the concurrent scheduling of p and q is succeeded by a sequence
of N − 1 times where only p is scheduled, which is succeeded by a finite
sequence where q is not scheduled, which is succeeded by a further concurrent
scheduling of p and q;

– γ1: globally, the concurrent scheduling of p and q initializes the output of an
index i ∈ I ∪ {⊥};

– α2: globally, an output sequence of an index i ∈ I that is started by a
concurrent scheduling of p and q is succeeded by |ui| · N − 1 (where |ui|
denotes the length of the word ui) positions in which only q is scheduled,
which is succeeded by a concurrent scheduling of p and q; an output sequence
of ⊥ by p that is started by a concurrent scheduling of p and q is succeeded
by N − 1 positions in which only q is scheduled;

– γ2: the concurrent scheduling of p and q initialize the output of an index
i ∈ I followed by the output of ui, until the concurrent scheduling of p and
q initialize the emission of ⊥ by p, followed by the emission of ⊥ by q.

If ϕv is defined correspondingly and γ⊥ denotes the guarantee that ⊥ is not
immediately emitted, then ψ = γb ∧ γ⊥ ∧ p ∧ q ∧ γenv → (ϕu ∧ ϕv) is realizable
iff the correspondence problem has a solution.

CTL. For ϕu = EϕUϕ⊥, where ϕ⊥ denotes that p and q would start to emit
⊥, ϕ is the conjunction of the following assertions:

– if p would (if continously scheduled alone) start to emit ui, q would start to
emit j and the output variables of p and q are set to 0 then i = j and p and
q are both scheduled concurrently;

– if p would not start to emit a word ui and (q would start to output an index
or the output variables of p are not set to 0) then only p is scheduled;

– if neither p nor q would start to emit a word or an index, respectively, or the
output variables of q are not set to 0 then only q is scheduled;

– the output variables of the environment are all set to 0.

If ϕv is defined correspondingly and γ0 denotes that the output variables of p and
q are set to 0, then ψ = γb∧γ0∧ϕu ∧ϕv ∧¬ϕ⊥ is realizable iff the correspondence
problem has a solution. ��

Synthesis of Asynchronous Systems 141

The undecidability of scheduler-independent synthesis follows because for LTL,
realizability under full scheduling and scheduler-independent realizability coin-
cide: Since LTL is a trace language, 〈ΥA

∗, l〉 |= ϕ implies 〈Yscheduler , l〉 |= ϕ for
every total tree Yscheduler ⊆ ΥA

∗ and every LTL specification ϕ.
The assumption α = AG

∧
P ′⊆P EX(

∧
p∈P ′ p∧

∧
p∈P�P ′ ¬p) of a full scheduler

can be expressed in CTL, and realizability of a CTL specification ϕ under full
scheduling coincides with the scheduler-independent realizability of α → ϕ.

Corollary 1. The distributed scheduler-independent synthesis problem is unde-
cidable for all architectures with at least two black-box processes and CTL or
LTL specifications. ��

6 Conclusions

The first synthesis algorithms for synchronous and asynchronous systems were
introduced almost simultaneously in the late 1980’s for trace languages. In the
synchronous paradigm, synthesis has received great attention ever since, while,
in the asynchronous setting, results have been few and far between. In the in-
troduction, we raised the question whether this is due to an inherent hardness
of the problem.

The results of this paper show that the cost of synthesizing asynchronous
systems depends on the treatment of the scheduler. Synthesizing asynchronous
systems is computationally no more expensive than synthesizing synchronous
systems when using the most commonly used semantics, which presumes a full
scheduler. Asynchronous synthesis without assumptions on the scheduler, on the
other hand, is exponentially harder.

The undecidability of the multi-process synthesis problem underlines that the
synthesis of asynchronous systems is indeed more difficult than the synthesis
of synchronous systems: while it is possible to solve the distributed synthesis
problem for several synchronous architectures with multiple black-box processes
(like pipelines and rings), distributed synthesis for asynchronous systems is only
decidable if the architecture contains at most one black-box process.

However, we consider the solution of the distributed synthesis problem, even
when restricted to only one black-box process, a significant step forward. Model
checking (which can be seen as the special case of the distributed synthesis
problem where all processes are white-box) has brought formal methods to in-
dustrial practice in the test and verification phase. Distributed synthesis allows
the application of formal methods in the much earlier design phase. An in-
completely implemented system defines an architecture with a single black-box
process (representing the unfinished part of the system) in addition to the com-
pleted white-box processes. By checking the realizability of the specification for
this architecture, we can recognize design errors as soon as they are introduced
into the implementation.

142 S. Schewe and B. Finkbeiner

References

1. A. Anuchitanukul and Z. Manna. Realizability and synthesis of reactive modules.
In Proc. CAV, pages 156–168. Springer-Verlag, June 1994.

2. B. Finkbeiner and S. Schewe. Semi-automatic distributed synthesis. In Proc.
ATVA, pages 263–277. Springer-Verlag, October 2005.

3. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. LICS, pages
321–330. IEEE Computer Society Press, June 2005.

4. M. Jurdziński. Small progress measures for solving parity games. In Proc. STACS,
pages 290–301. Springer-Verlag, 2000.

5. D. Kozen and R. J. Parikh. A decision procedure for the propositional μ-calculus.
In Proc. Logic of Programs, pages 313–325. Springer-Verlag, 1983.

6. O. Kupferman, P. Madhusudan, P. Thiagarajan, and M. Y. Vardi. Open systems
in reactive environments: Control and synthesis. In Proc. 11th Int. Conf. on Con-
currency Theory, pages 92–107. Springer-Verlag, 2000.

7. O. Kupferman and M. Y. Vardi. Synthesis with incomplete informatio. In Proc.
ICTL, pages 91–106, Manchester, July 1997.

8. O. Kupferman and M. Y. Vardi. Church’s problem revisited. The bulletin of
Symbolic Logic, 5(2):245–263, June 1999.

9. O. Kupferman and M. Y. Vardi. μ-calculus synthesis. In Proc. MFCS, pages
497–507. Springer-Verlag, 2000.

10. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Proc. LICS,
pages 389–398. IEEE Computer Society Press, July 2001.

11. D. E. Muller and P. E. Schupp. Simulating alternating tree automata by non-
deterministic automata: new results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci., 141(1-2):69–107, 1995.

12. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In Automata, Languages and Programming, 16th International Colloquium, pages
652–671. Springer-Verlag, 1989.

13. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
Proc. FOCS, pages 746–757. IEEE Computer Society Press, 1990.

14. M. Y. Vardi. An automata-theoretic approach to fair realizability and synthesis.
In Proc. CAV, pages 267–278. Springer-Verlag, July 1995.

15. T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. FSTTCS,
pages 110–121. Springer-Verlag, Dec. 1999.

A Comparative Study of

Algorithmic Debugging Strategies�

Josep Silva

DSIC, Technical University of Valencia
Camino de Vera s/n, E-46022 Valencia, Spain

jsilva@dsic.upv.es

Abstract. Algorithmic debugging is a debugging technique that has
been extended to practically all programming paradigms. It is based on
the answers of the programmer to a series of questions generated au-
tomatically by the algorithmic debugger. Therefore, the performance of
the technique is strongly dependent on the number and the complexity
of these questions. In this work we overview and compare current strate-
gies for algorithmic debugging and we introduce some new strategies and
discuss their advantages over previous approaches.

1 Introduction

Algorithmic debugging is a debugging technique which relies on the program-
mer having an intended interpretation of the program. In other words, some
computations of the program are correct and others are wrong with respect to
the programmer’s intended semantics. Therefore, algorithmic debuggers com-
pare the results of sub-computations with what the programmer intended. By
asking the programmer questions or using a formal specification the system can
identify precisely the location of a program’s bug.

Essentially, algorithmic debugging is a two-phase process: An execution tree
(see, e.g., [12]), ET for short, is built during the first phase. Each node in this
ET corresponds to an equation which consists of a function call with completely
evaluated arguments and results1. Roughly speaking, the ET is constructed as
follows: The root node is the main function of the program; for each node n
with associated function f , and for each function call in the right-hand side of
the definition of f , a new node is recursively added to the ET as the child of n.
This notion of ET is valid for functional languages but it is insufficient for other
paradigms as the imperative programming paradigm. In general, the information
included in the nodes of the ET incudes all the data needed to determine if the
equations are correct. For instance, in the imperative programming paradigm,
� This work has been partially supported by the EU (FEDER) and the Spanish

MEC under grant TIN2005-09207-C03-02, by the ICT for EU-India Cross-Cultural
Dissemination Project ALA/95/23/2003/077-054, and by the Vicerrectorado de
Innovación y Desarrollo de la UPV under project TAMAT ref 5771.

1 Or as much as needed if we consider a lazy language.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 143–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

144 J. Silva

with the function (or procedure) of each node it is included the value of all global
variables when the function was called. Similarly, in object-oriented languages,
every node with a method invocation includes the values of the attributes of
the object owner of this method (see, e.g., [4]). In the second phase, the debug-
ger traverses the ET asking an oracle (typically the programmer) whether each
equation is correct or wrong. At the beginning, the suspicious area which con-
tains those nodes that can be buggy (a buggy node is associated with a buggy
rule of the program) is empty; but, after every question, some nodes of the ET
leave the suspicious area. When all the children of a node with a wrong equa-
tion (if any) are correct, the node becomes buggy and the debugger locates the
bug in the function definition of this node [14]. If a bug symptom is detected
then algorithmic debugging is complete [16]. It is important to say that, once
the execution tree is built, the problem of traversing it and selecting a node is
independent of the language used; hence algorithmic debugging strategies can
theoretically work for any language.

Unfortunately, in practice—for real programs—algorithmic debugging can
produce long series of questions which are semantically unconnected (i.e., con-
secutive questions which refer to different and independent parts of the compu-
tation) making the process of debugging too complex.

Furthermore, questions can also be very complex. For instance, during a de-
bugging session with a compiler, the algorithmic debugger of the Mercury lan-
guage [10]—currently, one of the most advanced algorithmic debuggers—asked
a question of more than 1400 lines.

Therefore, new techniques and strategies to reduce the number of questions,
to simplify them and to improve the order in which they are asked are a necessity
to make algorithmic debuggers usable in practice.

In this paper we review and compare the current algorithmic debugging strate-
gies and propose three new strategies (less YES first, divide by YES and query,
and dynamic weighting search) that can further reduce the number of questions
asked during an algorithmic debugging session.

The rest of the paper is organized as follows. The next section shows an
example of algorithmic debugging session that will be used along the paper.
Section 3 reviews current algorithmic debugging strategies and proposes three
new strategies. In Section 4 we present a comparison of all techniques and we
study their costs. Finally, Section 5 concludes.

2 Algorithmic Debugging

During the algorithmic debugging process, an oracle is prompted with equa-
tions and asked about their correctness; it answers “YES” when the result is
correct or “NO” when the result is wrong. Some algorithmic debuggers also ac-
cept the answer “I don’t know” when the programmer cannot give an answer
(e.g., because the question is too complex). After every question, some nodes of
the ET leave the suspicious area. When there is only one node in the suspicious

A Comparative Study of Algorithmic Debugging Strategies 145

area, the process finishes reporting this node as buggy. It should be clear that
algorithmic debugging finds one bug at a time. In order to find different bugs,
the process should be restarted again for each different bug.

main = sqrtest [1,2]

sqrtest x = test (computs (listsum x))

test (x,y,z) = (x==y) && (y==z)

listsum [] = 0
listsum (x:xs) = x + (listsum xs)

computs x = ((comput1 x),(comput2 x),(comput3 x))

comput1 x = square x

square x = x*x

comput2 x = listsum (list x x)

list x y | y==0 = []
| otherwise = x:list x (y-1)

comput3 x = listsum (partialsums x)

partialsums x = [(sum1 x),(sum2 x)]

sum1 x = div (x * (incr x)) 2
sum2 x = div (x + (decr x)) 2

incr x = x + 1
decr x = x - 1

Fig. 1. Example program

Let us illustrate the process with an example2.

Example 1. Consider the buggy program in Fig. 1 adapted to Haskell from [7].
This program sums a list of integers [1,2] and computes the square of the re-
sult with three different methods. If the three methods compute the same result
the program returns True; otherwise, it returns False. Here, one of the three
methods—the one adding the partial sums of its input number—contains a bug.
From this program, an algorithmic debugger can automatically generate the ET

2 While almost all the strategies presented here are independent of the programming
paradigm used, in order to be concrete and w.l.o.g. we will base our examples on the
functional programming paradigm.

146 J. Silva

(1
)

m
a
in

 =
 F

a
ls

e

(2
)

s
q
rt

e
s
t

[1
,2

]
=

 F
a
ls

e

(3
)

te
s
t

(9
,9

,8
)

=
 F

a
ls

e
(4

)
c
o
m

p
u
ts

 3
 =

 (
9
,9

,8
)

(2
5
)

li
s
ts

u
m

 [
1
,2

]
=

 3

(5
)

c
o
m

p
u
t1

 3
 =

 9
(7

)
c
o
m

p
u
t2

 3
 =

 9
(1

6
)

c
o
m

p
u
t3

 3
 =

 8

(6
)

s
q
u
a
re

 3
 =

 9
(8

)
li
s
ts

u
m

 [
3
,3

,3
]

=
 9

(1
2
)

li
s
t

3
 3

 =
 [

3
,3

,3
]

(9
)

li
s
ts

u
m

 [
3
,3

]
=

 6

(1
0
)

li
s
ts

u
m

 [
3
]

=
 3

(1
1
)

li
s
ts

u
m

 [
]

=
 0

(1
3
)

li
s
t

3
 2

 =
 [

3
,3

]

(1
4
)

li
s
t

3
 1

 =
 [

3
]

(1
5
)

li
s
t

3
 0

 =
 [

]

(1
7
)

li
s
ts

u
m

 [
6
,2

]
=

 8
(2

0
)

p
a
rt

ia
ls

u
m

s
 3

 =
 [

6
,2

]

(1
8
)

li
s
ts

u
m

 [
2
]

=
 2

(1
9
)

li
s
ts

u
m

 [
]

=
 0

(2
1
)

s
u
m

1
 3

 =
 6

(2
3
)

s
u
m

2
 3

 =
 2

(2
2
)

in
c
r

3
 =

 4
(2

4
)

d
e
c
r

3
 =

 2

(2
6
)

li
s
ts

u
m

 [
2
]

=
 2

(2
7
)

li
s
ts

u
m

 [
]

=
 0

Fig. 2. Execution tree of the program in Fig. 1

A Comparative Study of Algorithmic Debugging Strategies 147

Starting Debugging Session...

(1) main = False? NO
(2) sqrtest [1,2] = False? NO
(3) test [9,9,8] = False? YES
(4) computs 3 = [9,9,8]? NO
(5) comput1 3 = 9? YES
(7) comput2 3 = 9? YES
(16) comput3 3 = 8? NO
(17) listsum [6,2] = 8? YES
(20) partialsums 3 = [6,2]? NO
(21) sum1 3 = 6? YES
(23) sum2 3 = 2? NO
(24) decr 3 = 2? YES

Bug found in rule:
sum2 x = div (x + (decr x)) 2

Fig. 3. Debugging session for the program in Fig. 1

of Fig. 2 (for the time being, the reader can ignore the distinction between dif-
ferent shapes and white and dark nodes) which, in turn, can be used to produce
a debugging session as depicted in Fig. 3. During the debugging session, the sys-
tem asks the oracle about the correctness of some ET nodes w.r.t. the intended
semantics. At the end of the debugging session, the algorithmic debugger deter-
mines that the bug of the program is located in function “sum2” (node 23). The
definition of function “sum2” should be: sum2 x = div (x*(decr x)) 2

3 Algorithmic Debugging Strategies

Algorithmic debugging strategies are based on the fact that the ET can be
pruned using the information provided by the oracle. Given a question associated
with a node n of the ET, a NO answer prunes all the nodes of the ET except
the subtree rooted at n; and a YES answer prunes the subtree rooted at n. Each
strategy takes advantage of this property in a different manner.

A correct equation in the tree does not guarantee that the subtree rooted at
this equation is free of errors. It can be the case that two buggy nodes caused the
correct answer by fluke [6]. In contrast, an incorrect equation does guarantee that
the subtree rooted at this equation does contain a buggy node [12]. Therefore, if
a program produced a wrong result, then the equation in the root of the ET is
wrong and thus there must be at least one buggy node in the ET. We will assume
in the following that the debugging session has been started after discovering a
bug symptom in the output of the program, and thus the root of the tree contains
a wrong equation. Hence, we know that there is at least one bug in the program.
We will also assume that the oracle is able to answer all the questions. Then, all
the strategies will find the bug.

148 J. Silva

3.1 Single Stepping (Shapiro, 1982)

The first algorithmic debugging strategy to be proposed was single stepping
[16]. In essence, this strategy performs a bottom-up search because it proceeds
by doing a post-order traversal of the ET. It asks first about all the children of a
given node, and then (if they are correct) about the node itself. If the equation
of this node is wrong then this is the buggy node; if it is correct, then the post-
order traversal continues. Therefore, the first node answered NO is identified as
buggy (because all its children have already been answered YES).

For instance, the sequence of 19 questions asked for the ET in Fig. 2 would
be: 3-YES, 6-YES, 5-YES, 11-YES, 10-YES, 9-YES, 8-YES, 15-YES, 14-YES, 13-YES,

12-YES, 7-YES, 19-YES, 18-YES, 17-YES, 22-YES, 21-YES, 24-YES, 23-NO.
Note that in this strategy questions are semantically unconnected.

3.2 Top-Down Search (Av-Ron, 1984)

Due to the fact that questions are asked in a logical order, top-down search [1]
is the strategy that has been traditionally used (see, e.g., [3,9]) to measure the
performance of different debugging tools and methods. It basically consists in a
top-down, left-to-right traversal of the ET and, thus, the node asked is always a
child or a sibling of the previous question node. When a node is answered NO,
one of its children is asked; if it is answered YES, one of its siblings is. Therefore,
the idea is to follow the path of wrong equations from the root of the tree to
the buggy node. For instance, the sequence of 12 questions asked for the ET in
Fig. 2 is shown in Fig. 3.

This strategy significantly improves single stepping because it prunes a part
of the ET after every answer. However, it is still very naive, since it does not take
into account the structure of the tree (e.g., how balanced it is). For this reason,
a number of variants aiming at improving it can be found in the literature:

Top-Down Zooming (Maeji and Kanamori, 1987). During the search of
previous strategies, the rule or indeed the function definition may change from
one query to the next. If the oracle is human, this continuous change of function
definitions slows down the answers of the programmer because he has to switch
thinking once and again from one function definition to another. This drawback
can be partially overcome by changing the order of the questions: In this strategy
[11], recursive child calls are preferred.

The sequence of questions asked for the ET in Fig. 2 is exactly the same as
with top-down search (Fig. 3) because no recursive calls are found.

Another variant of this strategy called exception zooming, introduced by Ian
MacLarty [10], selects first those nodes that produced an exception at runtime.

Heaviest First (Binks, 1995). Selecting always the left-most child does not
take into account the size of the subtrees that can be explored. Binks proposed
in [2] a variant of top-down search in order to consider this information when
selecting a child. This variant is called heaviest first because it always selects the

A Comparative Study of Algorithmic Debugging Strategies 149

child with a bigger subtree. The objective is to avoid selecting small subtrees
which have a lower probability of containing the bug.

For instance, the sequence of 9 questions asked for the ET in Fig. 2 would
be3: 1-NO, 2-NO, 4-NO, 7-YES, 16-NO, 20-NO, 21-YES, 23-NO, 24-YES.

Less YES First (Silva, 2006). This section introduces a new variant of top-
down search which further improves heaviest first. It is based on the fact that
every equation in the ET is associated with a rule of the source code (i.e., the
rule that the debugger identifies as buggy when it finds a buggy node in the ET).
Taking into account that the final objective of the process is to find the program’s
rule which contains the bug—rather than a node in the ET—and considering
that there is not a relation one-to-one between nodes and rules because several
nodes can refer to the same rule, it is important to also consider the node’s rules
during the search. A first idea could be to explore first those subtrees with a
higher number of associated rules (instead of exploring those subtrees with a
higher number of nodes).

Example 2. Consider the following ET:

1

2 5 8

3 4 6 7 8 8 7

where each node is labeled with its associated rule and where the oracle answered
NO to the question in the root of the tree. While heaviest first selects the right-
most child because this subtree has four nodes instead of three, less YES first
selects the left-most child because this subtree contains three different rules
instead of two.

Clearly, this approach relies on the idea that all the rules have the same proba-
bility of containing the bug (rather than all the nodes). Another possibility could
be to associate a different probability of containing the bug to each rule, e.g.,
depending on its structure: Is it recursive? Does it contain higher-order calls?.

The probability of a node to be buggy is q · p where q is the probability that
the rule associated to this node is wrong, and p is the probability of this rule to
execute incorrectly. Therefore, under the assumption that all the rules have the
same probability of being wrong, the probability P of a branch b to contain the
bug is P =

∑ n
i=1 pi

R where n is the number of nodes in b, R is the number of rules
in the program, and pi is the probability of the rule in node i to produce a wrong
3 Here, and in the following, we will break the indeterminism by selecting the left-most

node in the figures. For instance, the fourth question could be either (7) or (16)
because both have a weight of 9. We selected (7) because it is on the left.

150 J. Silva

result if it is incorrect. Clearly, if we assume that a wrong rule always produces
a wrong result4 we have that P =

∑r
i=1 pi

R and ∀i.pi = 1, then the probability

is
r

R
where r is the number of rules in b, and thus, this strategy is (on average)

better than heaviest first. For instance, in Example 2 the left-most branch has
a probability of 3

8 to contain a buggy node, while the right-most branch has a
probability of 2

8 despite it has more nodes.
However, in general, a wrong rule can produce a correct result, and thus we

need to consider the probability of a wrong rule to return a wrong answer. This
probability has been approximated by the debugger Hat-delta (see Section 3.4)
by using previous answers of the oracle. The main idea is that a rule answered
NO n times out of m is more likely to be wrong than a rule answered NO n′

times out of m if n′ < n � m.
Here, we use this idea in order to compute the probability of a branch to

contain a buggy node. Hence, this strategy is a combination of the ideas from
both heaviest first and Hat-delta. However, while heaviest first considers the
structure of the tree and does not take into account previous answers of the
user, Hat-delta does the opposite; thus, the advantage of less YES first over
them is the use of more information (both the structure of the tree and previous
answers of the user).

A direct generalization of Hat-delta for branches would result in counting the
number of YES answers of a given branch; but this approach would not take into
account the number of rules in the branch. In contrast, we proceed as follows:
When a node is set correct, we mark its associated rule and all the rules of its
descendants as correctly executed. If a rule has been executed correctly before,
then it will likely execute correctly again. The debugger associates to each rule of
the program the number of times it has been executed in correct computations
based on previous answers. Then, when we have to select a child to ask, we can
compute the total number of rules in the subtrees rooted at the children, and
the total number of answers YES for every rule.

This strategy selects the child whose subtree is less likely to be correct (and
thus more likely to be wrong). To compute this probability we calculate for every
branch b a weight wb with the following equation:

wb =
n∑

i=1

1

r
(Y ES)
i

where n is the number of nodes in b and r
(Y ES)
i is the number of answers YES

for the rule r of the node i.
As with heaviest first, we select the branch with the biggest weight, the dif-

ference is that this equation to compute the weight takes into account previous
answers of the user. Moreover, we assume that initially all the rules have been

4 This assumption is valid for instance in those flattened functional languages where
all the conditions in the right-hand side of function definitions have been distributed
between its rules. This is relatively frequent in internal languages of compilers, but
not in source languages.

A Comparative Study of Algorithmic Debugging Strategies 151

answered YES once, and thus, at the beginning, this strategy asks those branches
with more nodes, but it becomes different as the number of questions asked in-
creases.

With this strategy, the sequence of 9 questions asked for the ET in Fig. 2 is:
1-NO, 2-NO, 4-NO, 7-YES, 16-NO, 20-NO, 21-YES, 23-NO, 24-YES.

3.3 Divide and Query (Shapiro, 1982)

In 1982, together with single stepping, Shapiro proposed another strategy: the
so-called divide & query (D&Q) [16]. The idea of D&Q is to ask in every step a
question which divides the remaining nodes in the ET by two, or, if this is not
possible, into two parts with a weight as similar as possible. In particular, the
original algorithm by Shapiro always chooses the heaviest node whose weight is
less than or equal to w/2 where w is the weight of the suspicious area in the ET.
This strategy has a worst case query complexity of order b log2 n where b is the
average branching factor of the tree and n its number of nodes.

This strategy works well with a large search space—this is normally the case of
realistic programs—because its query complexity is proportional to the logarithm
of the number of nodes in the tree. If the ET is big and unbalanced this strategy
is better than top-down search [3]; however, the main drawback of this strategy
is that successive questions may have no connection, from a semantic point of
view, with each other; requiring the programmer more time for answering the
questions.

For instance, the sequence of 6 questions asked for the ET in Fig. 2 is: 7-YES,

16-NO, 17-YES, 21-YES, 24-YES, 23-NO.

Hirunkitti’s Divide and Query (Hirunkitti and Hogger, 1993). In [8],
Hirunkitti and Hogger noted that Shapiro’s algorithm does not always choose the
node closest to the halfway point in the tree and addressed this problem slightly
modifying the original divide & query algorithm. Their version of divide & query
is the same as the one of Shapiro except that their version always chooses a node
which produces a least difference between:

– w/2 and the heaviest node whose weight is less than or equal to w/2
– w/2 and the lightest node whose weight is greater than or equal to w/2

where w is the weight of the suspicious area in the computation tree.
For instance, the sequence of 6 questions asked for the ET in Fig. 2 is: 7-YES,

16-NO, 17-YES, 21-YES, 24-YES, 23-NO.

Biased Weighting Divide and Query (MacLarty, 2005). MacLarty pro-
posed in his PhD thesis [10] that not all the nodes should be considered equally
while dividing the tree. His variant of D&Q divides the tree by only considering
some kinds of nodes and/or by associating a different weight to every kind of node.

In particular, his algorithmic debugger was implemented for the functional
logic language Mercury [5] which distinguishes between 13 different node types.

152 J. Silva

Divide by YES and Query (Silva, 2006). The same idea used in less YES
first can be applied in order to improve divide & query. Instead of dividing the
ET into two subtrees with a similar number of nodes, we can divide it into two
subtrees with a similar weight. The problem that this strategy tries to address is
the D&Q’s assumption that all the nodes have the same probability of containing
the bug. In contrast, this strategy tries to compute this probability.

By using the equation to compute the weight of a branch, this strategy com-
putes the weight associated to the subtree rooted at each node. Then, the node
which divides the tree into two subtrees with a more similar weight is selected.
In particular, the node selected is the node which produces a least difference
between:

– w/2 and the heaviest node whose weight is less than or equal to w/2
– w/2 and the lightest node whose weight is greater than or equal to w/2

where w is the weight of the suspicious area in the ET.
As with D&Q, different nodes could divide the ET into two subtrees with a

similar weights; in this case, we could follow another strategy (e.g., Hirunkitti)
in order to select one of them.

We assume again that initially all the rules have been answered YES once.
Therefore, at the beginning this strategy is similar to D&Q, but the differences
appear as the number of answers increases.

Example 3. Consider again the ET in Example 2. Similarly to D&Q, the first
node selected is the top-most “8” because only structural information is available.
Let us assume that the answer is YES. Then, we mark all the nodes in this branch
as correctly executed. Therefore, the next node selected is “2”; because, despite
the subtrees rooted at “2” and “5” have the same number of nodes and rules,
we now have more information which allows us to know that the subtree rooted
at “5” is more likely to be correct since node “7” has been correctly executed
before.

The main difference with respect to D&Q is that divide by YES & query not
only takes into account the structure of the tree (i.e., the distribution of the
program rules between its nodes), but also previous answers of the user.

With this strategy, the sequence of 5 questions asked for the ET in Fig. 2 is:
7-YES, 16-NO, 21-YES, 23-NO, 24-YES.

3.4 Hat-Delta (Davie and Chitil, 2005)

Hat [19] is a tracer for Haskell. Davie and Chitil introduced a declarative debug-
ger tool based on the Hat’s traces that includes a new strategy called Hat-delta
[6]. Initially, Hat-delta is identical to top-down search but it becomes different as
the number of questions asked increases. The main idea of this strategy is to use
previous answers of the oracle in order to compute which node has an associated
rule that is more likely to be wrong (e.g., because it has been answered NO more
times than the others).

A Comparative Study of Algorithmic Debugging Strategies 153

This strategy assumes that a rule answered NO n times out of m is more
likely to be wrong than a rule answered NO n′ times out of m if n′ < n � m.
During a debugging session, a sequence of questions, each of them related to
a particular rule, is asked. In general, after every question, it is possible to
compute the total number of questions asked for each rule, the total number
of answers YES/NO, and the total number of nodes associated with this rule.
Moreover, when a node is set correct or wrong, Hat-delta marks all the rules of
its descendants as correctly or incorrectly executed respectively. This strategy
uses all this information to select the next question. In particular, three different
heuristics have been proposed based on this idea [6]:

– Counting the number of YES answers. If a rule has been executed correctly
before, then it will likely execute correctly again. The debugger associates to
each rule of the program the number of times it has been executed in correct
computations based on previous answers.

– Counting the number of NO answers. This is analogous to the previous
heuristic but collecting wrong computations.

– Calculating the proportion of NO answers. This is derived from the previous
two heuristics. For a node with associated rule r we have:

number of answers NO for r
number of answers NO/YES for r

If r has not been asked before a value of 1
2 is assigned.

Example 4. Consider this program:

4|0|0 sort [] = []
8|4| 1

3 sort (x:xs) = insert x (sort xs)
4|0|0 insert x [] = [x]

insert x (y:ys)
4|0|0 | x<y = x:y:ys
0|0| 1

2 | otherwise = insert x ys

where the left numbers indicate respectively the number of times each rule has
been executed correctly, the number of times each rule has failed and the pro-
portion of NO answers for this rule.

With this information, otherwise = insert x ys is more likely to be wrong.

3.5 Subterm Dependency Tracking (MacLarty et al., 2005)

In 1986, Pereira [15] noted that the answers YES, NO and I don′t know were
insufficient; and he pointed out another possible answer of the programmer:
Inadmissible (see also [13]). An equation or, more precisely, some of its
arguments, are inadmissible if they violate the preconditions of its function def-
inition. For instance, consider the equation insert ‘b’ “cc” = “bcc”, where
function insert inserts the first argument in a list of mutually different charac-
ters (the second argument). This equation is not wrong but inadmissible, since

154 J. Silva

the argument “cc” has repeated characters. Hence, inadmissibility allows us to
identify errors in left-hand sides of equations.

However, with only these four possible answers the system fails to get funda-
mental information from the programmer about why the equation is wrong or
inadmissible. In particular, the programmer could specify which exact (sub)term
in the result or the arguments is wrong or inadmissible respectively. This pro-
vides specific information about why an equation is wrong (i.e., which part of
the result is incorrect? is one particular argument inadmissible?).

Consider again the equation insert ‘b’ “cc” = “bcc”. Here, the program-
mer could detect that the second argument should not have been computed; he
could then mark the second argument (“cc”) as inadmissible. This information is
essential because it allows the debugger to avoid questions related to the correct
parts of the equation and concentrate on the wrong parts.

Based on this idea, MacLarty et al. [10] proposed a new strategy called sub-
term dependency tracking. Essentially, once the programmer selects a particular
wrong subterm, this strategy searches backwards in the computation for the
node that introduced the wrong subterm. All the nodes traversed during the
search define a dependency chain of nodes between the node that produced the
wrong subterm and the node where the programmer identified it. The sequence
of questions defined in this strategy follows the dependency chain from the origin
of the wrong subterm.

For instance, if the programmer is asked question 3 from the ET in Fig. 2,
his answer would be YES but he could also mark subexpression “8” as inad-
missible. Then, the system would compute the chain of nodes which passed this
subexpression from the node which computed it up to question 3. This chain is
formed by nodes 2, 4, 16 and 17. The system would ask first 17, then 16, and
finally 4 following the computed chain.

In our example, the sequence of 8 questions asked for the ET in Fig. 2, com-
bining this strategy with top-down search, is: 1-NO, 2-NO, 3-YES (the programmer

marks “8”), 17-YES, 16-NO, 20-NO (the programmer marks “2”), 23-NO, 24-YES.

3.6 Dynamic Weighting Search (Silva, 2006)

Subterm dependency tracking relies on the idea that if a subterm is marked,
then the error will likely be in the sequence of functions that produced and
passed the incorrect subterm up to the function where the programmer found
it. However, the error could also be in any other equation previous to the origin
of the dependency chain.

Here, we propose a new strategy which is a generalization of subterm de-
pendency tracking and which can integrate the knowledge acquired by other
strategies in order to formulate the next question.

The main idea is that every node in the ET has an associated weight (rep-
resenting the probability of being buggy). After every question, the debugger
gets information that changes the weights and it asks for the node with a higher
weight. When the associated weight of a node is 0, then this node leaves the
suspicious area of the ET. Weights are modified based on the assumption that

A Comparative Study of Algorithmic Debugging Strategies 155

those nodes of the tree which produced or manipulated a wrong (sub)term, are
more likely to be wrong than those that did not. Here, w.l.o.g., we compute
weights instead of probabilities and we assume initially that all the nodes have
a weight 1 and that a weight 0 means “out of the suspicious area”.

Computing Weights from Subterms
Firstly, as with subterm dependency tracking, we allow the oracle to mark a
subterm from an equation as wrong (instead of the whole equation). Let us
assume that the programmer is being asked about the correctness of the equation
in a node n1, and he marks a subterm s as wrong (or inadmissible). Then, the
suspicious area is automatically divided into four sets. The first set contains the
node, say n2, that introduced s into the computation and all the nodes needed
to execute the equation in node n2. The second set contains the nodes that,
during the computation, passed the wrong subterm from equation to equation
up to node n1. The third set contains all the nodes which could have influenced
the expression s in node n2 from the beginning of the computation. Finally, the
rest of the nodes form the fourth set. Since these nodes could not produce the
wrong subterm (because they could not have influenced it), the nodes in the
fourth set are extracted from the suspicious area and, thus, the new suspicious
area is formed by the sets 1, 2 and 3.

Each subset can be assigned a different probability of containing the bug. Let
us show it with an example.

Example 5. Consider the ET in Fig. 2, where the oracle was asked about the
correctness of equation 3 and he pointed out the computed subterm “8” as
inadmissible. Then, the four sets are denoted in the figure by using different
shapes and colors:

– Set 1: those nodes which evaluated the equation 20 to produce the wrong
subterm are denoted by an inverted trapezium.

– Set 2: those nodes that passed the wrong subterm until the programmer
detected it in the equation 3 are denoted by an ellipse.

– Set 3: those nodes that could influence the wrong subterm are denoted by
a trapezium.

– Set 4: the rest of nodes are denoted by a grey rectangle.

The source of a wrong subterm is the equation which computed it. From our
experience, all the nodes involved in the evaluation of this equation are more
likely to contain the bug. However, it is also possible that the functions that
passed this wrong term during the computation should have modified it and they
did not. Therefore, they could also contain the bug. Finally, it is also possible
(but indeed less likely) that the equation that computed the wrong subterm had
a wrong argument and this was the reason why it produced a wrong subterm.
In this case, this inadmissible argument should be further inspected. In the
example, the wrong term “8” was computed because equation 20 had a wrong
argument “[6,2]” which should be “[6,3]”; the nodes which computed this
wrong argument have a trapezium shape.

156 J. Silva

Consequently, in the previous example, after the oracle marked “8” as wrong
in equation 3, we could increase the weight of the nodes in the first subset with 3,
the nodes in the second subset with 2, and the nodes in the third subset with 1.
The nodes in the fourth subset can be extracted from the suspicious area because
they could not influence the value of the wrong subterm and, consequently, their
probability of containing the bug is zero5.

These subsets of the ET are in fact slices of different parts of the computation.
In [17] it is defined a method to automatically compute each subset. In addition,
[17] also introduces an algorithm to combine information from different strate-
gies. This algorithm can help dynamic weighting search to integrate information
used by other strategies (e.g., previous answers of the oracle) in order to modify
nodes’ weights.

4 Comparing Strategies

A summary of the information used by every strategy is shown in Fig. 4. The
meaning of each column is the following:

– ‘(Struct)ure’ is marked if the strategy takes into account the distribution of
nodes (or rules) in the tree;

– ‘Rules ’ is marked if the strategy considers the rules associated with nodes;
– ‘(Sem)antics ’ is marked if the strategy follows an order of semantically re-

lated questions, the more marks the more strong relation between questions;
– ‘(Inadm)issibility’ is marked if the strategy accepts “inadmissible” answers;
– ‘History’ is marked if the strategy considers previous answers in order to

select the next node to ask (besides cutting the tree);
– ‘(Div)isible’ is marked if the strategy can work with a subset of the whole

ET. ETs can be huge and thus, it is desirable not to explore the whole
tree after every question. Some strategies allow us to only load a part of
the tree at a time, thus significatively speeding up the internal processing
of the ET; and hence, being much more scalable than other strategies that
need to explore the whole tree before every question. For instance, top-down
can load the nodes whose depth is less than d, and ask d questions before
loading another part of the tree. Note, however, that some of the non-marked
strategies could work with a subset of the whole ET if they where restricted.
For instance, heaviest first could be restricted by simply limiting the search
for the heaviest branch to the loaded nodes of the ET. Other strategies
need more simplifications: less YES first or Hat-delta could be restricted
by only marking as correctly executed the first d levels of descendants of a
node answered YES; and then restricting the search for the heaviest branch
(respectively node) to the loaded nodes of the ET. Finally,

– ‘Cost ’ represents the worst case query complexity of the strategy. Here, n
represents the number of nodes in the ET, d its maximum depth and b its
branching factor.

5 A proof can be found in [18].

A Comparative Study of Algorithmic Debugging Strategies 157

Strategy Struct. Rules Sem. Inadm. History Div. Cost

Single Stepping - - - - - � n
Top-Down Search - - � - - � b · d
Top-Down Zooming - - �� - - � b · d
Heaviest First � - � - - - b · d
Less YES First � � � - � - b · d
Divide & Query � - - - - - b · log2n
Biased Weighting D&Q � - - - - - b · log2n
Hirunkitti’s D&Q � - - - - - b · log2n
Divide by YES & Query � � - - � - b · d
Hat-delta - � - - � - n
Subterm Dependency Tracking - - ��� � - - n
Dynamic Weighting Search � � - � � - n

Fig. 4. Comparing algorithmic debugging strategies

The cost of single stepping is too expensive. Its worst case query complexity
is order n, and its average cost is n/2.

Top-down and its variants have a cost of b ·d which is significantly lower than
the one of single stepping. The improvement of top-down zooming over top-down
is based on the time needed by the programmer to answer the questions; their
query complexity is the same.

In contrast, while in the worst case the costs of top-down and heaviest first are
equal, in the mean case heaviest first performs an improvement over top-down.
In particular, on average, for each wrong node with b children si, 1 ≤ i ≤ b:

– Top-down asks
b + 1

2
of the children.

– Heaviest first asks
∑b

i=1 weight(si) · pos(si)∑b
i=1 weight(si)

of the children.

where function weight computes the weight of a node and function pos
computes the position of a node in a list containing it and all its brothers
which is ordered by their weights.

In the case of less YES first, the improvement is based on the fact that the
heaviest branch is not always the branch with a higher probability of containing
the buggy node. While heaviest first and less YES first have the same worst case
query complexity, their average cost must be compared empirically.

D&Q and its variants are optimal in the worst case, with a cost order of
(b · (log2n)). The worst case cost of divide by YES and query is b · d; it happens
when the ET is completely balanced and the buggy node is in a leaf.

The cost of the rest of strategies is highly influenced by the answers of the
user. The worst case of Hat-delta happens when the branching factor is 1 and
the buggy node is in the leaf of the ET. In this case the cost is n. However, in
normal situations, when the ET is wide, the worst case is still close to n; and it

158 J. Silva

occurs when the first branch explored is answered YES, and the information of
YES answers obtained makes the algorithmic debugger explore the rest of the
ET bottom up.

Despite subterm dependency tracking is a top-down version enriched with
additional information provided by the oracle, this information (that we assume
correct here to compute the costs) could make the algorithmic debugger ask
more questions than with the standard top-down. In fact, this strategy—and
also dynamic weighting search if we assume that top-down is used by default—
has a worst case query complexity of n because the expressions marked by the
programmer can make the algorithmic debugger explore the whole ET.

5 Conclusions

This article introduces three new strategies and some optimizations for algorith-
mic debugging. Less YES first tries to improve heaviest first and divide by YES
& query tries to improve D&Q by considering previous answers of the oracle
during the search. Dynamic weighting search allows the user to specify the exact
part of an equation which is wrong. This extra information can produce a much
more accurate debugging session.

We have compared the most important algorithmic debugging strategies from
a theoretical perspective. The comparison has been done according to seven
dimensions including their worst case query complexity; and have produced some
objective criteria to determine which strategy is better depending on the context.

We have implemented all the strategies and incorporated them in the algo-
rithmic debugger DDT [3]. As future work, we plan to perform an empirical
comparison of all the strategies in order to determine a weighting for their com-
bination. With the knowledge acquired from the experiment we will be able to
approximate the strategies’ weights and to determine how they should change
and on which factors this change depends.

Acknowledgements

I greatly thank Olaf Chitil, Thomas Davie and Yong Luo for many discussions
about the contents of this paper. I also want to thank the anonymous referees
of LOPSTR’06 for their helpful comments.

References

1. E. Av-Ron. Top-Down Diagnosis of Prolog Programs. PhD thesis, Weizmanm
Institute, 1984.

2. D. Binks. Declarative Debugging in Gödel. PhD thesis, University of Bristol, 1995.
3. R. Caballero. A Declarative Debugger of Incorrect Answers for Constraint

Functional-Logic Programs. In Proc. of the 2005 ACM SIGPLAN Workshop on
Curry and Functional Logic Programming (WCFLP’05), pages 8–13, New York,
USA, 2005. ACM Press.

A Comparative Study of Algorithmic Debugging Strategies 159

4. R. Caballero. Algorithmic Debugging of Java Programs. In Proc. of the 2006
Workshop on Functional Logic Programming (WFLP’06), pages 63–76. Electronic
Notes in Theoretical Computer Science, 2006.

5. T. Conway, F. Henderson, and Z. Somogyi. Code Generation for Mercury. In In
Proc. of the International Logic Programming Symposium, pages 242–256, 1995.

6. T. Davie and O. Chitil. Hat-delta: One Right Does Make a Wrong. In Seventh
Symposium on Trends in Functional Programming, TFP 06, April 2006.

7. P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimóthy. Generalized Algorithmic
Debugging and Testing. LOPLAS, 1(4):303–322, 1992.

8. V. Hirunkitti and C. J. Hogger. A Generalised Query Minimisation for Program
Debugging. In Proc. of International Workshop of Automated and Algorithmic
Debugging (AADEBUG’93), pages 153–170. Springer LNCS 749, 1993.

9. G. Kokai, J. Nilson, and C. Niss. GIDTS: A Graphical Programming Environment
for Prolog. In Workshop on Program Analysis For Software Tools and Engineering
(PASTE’99), pages 95–104. ACM Press, 1999.

10. I. MacLarty. Practical Declarative Debugging of Mercury Programs. PhD thesis,
Department of Computer Science and Software Engineering, The University of
Melbourne, 2005.

11. M. Maeji and T. Kanamori. Top-Down Zooming Diagnosis of Logic Programs.
Technical Report TR-290, ICOT, Japan, 1987.

12. L. Naish. A Declarative Debugging Scheme. Journal of Functional and Logic
Programming, 1997(3), 1997.

13. L. Naish. A Three-Valued Declarative Debugging Scheme. In Proc. of Workshop
on Logic Programming Environments (LPE’97), pages 1–12, 1997.

14. H. Nilsson and P. Fritzson. Algorithmic Debugging for Lazy Functional Languages.
Journal of Functional Programming, 4(3):337–370, 1994.

15. L. M. Pereira. Rational Debugging in Logic Programming. In Proc. on Third
International Conference on Logic Programming, pages 203–210, New York, USA,
1986. Springer-Verlag LNCS 225.

16. E.Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1982.
17. J. Silva. A Classification of Algorithmic Debugging Strategies. Technical Re-

port DSIC-II/12/06, UPV, 2006. Available from URL: http://www.dsic.upv.es/
~jsilva/research.htm#techs

18. J. Silva and O. Chitil. Combining Algorithmic Debugging and Program Slicing. In
Proc. of 8th ACM-SIGPLAN International Symposium on Principles and Practice
of Declarative Programming (PPDP’06), pages 157–166. ACM Press, 2006.

19. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-View Tracing for
Haskell: a New Hat. In Proc. of the 2001 ACM SIGPLAN Haskell Workshop, pages
151–170. Universiteit Utrecht UU-CS-2001-23, 2001.

$http://www.dsic.upv.es/~jsilva/research.htm#techs$
$http://www.dsic.upv.es/~jsilva/research.htm#techs$

A Program Transformation for Tracing

Functional Logic Computations�

Bernd Brassel, Sebastian Fischer, and Frank Huch

Institute of Computer Science
University of Kiel, 24098 Kiel, Germany

{bbr,sebf,fhu}@informatik.uni-kiel.de

Abstract. Tracing program executions is a promising technique to find
bugs in lazy functional logic programs. In previous work we developed an
extension of a heap based semantics for functional logic languages which
generates a trace reflecting the computation of the program. This exten-
sion was also prototypically implemented by instrumenting an interpreter
for functional logic programs. Since this interpreter is too restricted for
real world applications, we developed a program transformation which
efficiently computes the trace by means of side effects during the com-
putation. This paper presents our program transformation.

1 Introduction

Modern functional logic languages provide features like laziness and non-deter-
minism (e.g., Curry [9] and Toy [11]) which makes these languages powerful but
also operationally more complex. Although programs are defined on a high level
of abstraction, they can still contain bugs. Tools which help finding such bugs
(usually called debuggers) are needed. Unfortunately, such debuggers cannot be
defined as easily as in strict, deterministic or even imperative languages. Be-
cause of laziness, sharing and non-determinism it is very difficult to understand
the real evaluation performed at execution time. The sophisticated evaluation
strategies imply complicated and incomprehensible execution traces. Thus, from
the programmer’s point of view, following the actual trace of a computation is
almost useless when debugging lazy functional logic programs. Therefore, tools
following this approach, like TeaBag [2], are not useful for real world applica-
tions. A naive possibility to cope with this problem would be to manually change
to a simpler strategy like strict evaluation. But this will not work in applications
actually making use of the advantages of lazy evaluation, e.g. using infinite data
structures. In addition to this, a good debugging tool should provide means to
selectively browse the program’s execution, e.g. the user should be able to choose
only those sub computations he is interested in.

For functional logic languages several works have advocated the construction
of declarative traces that reflect an actual computation and can be presented to
the user within a viewing tool, abstracting from the actual lazy execution. The
� This work has been partially supported by the DFG under grant Ha 2457/5-1.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 160–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Program Transformation for Tracing Functional Logic Computations 161

main approaches are: Observations (cf. COOSy [3]) and declarative debugging
(cf. DDT [5]). Both have predecessors in functional programming, e.g. observa-
tions in Hood [7] and declarative debugging in Freja [12]. Declarative debugging
was originally developed for logic programming, called algorithmic debugging
there [14]. For the functional language Haskell [13] there exists an additional
important approach, Hat [15], which enables the exploration of a computation
backwards starting at the program output or error message. Recently, Hat has
been improved in such a way that it covers all previous three approaches thanks
to the construction of an extended trail [6]: the augmented redex trail (ART).

In general, these approaches to debugging are based on some program trans-
formation. For instance, Hat’s ART is defined (indirectly) through the transfor-
mation that enables its creation: the source program is first instrumented and
then executed to create the trail. Therefore, it is not easy to understand how
the ART of a computation should be constructed (e.g., by hand), it remains
unclear which assumptions about the operational semantics are made and, most
importantly, there are no correctness results for the transformation [6].

As a consequence, we chose another way and first developed a formal se-
mantics for tracing functional logic computations [4]. This approach defines an
instrumentation of the standard operational semantics of lazy functional logic
languages. The defined trace is proven to be correct with respect to the opera-
tional semantics, i.e., it exactly reflects the operational semantics. Our approach
is also prototypically implemented within an interpreter and can be used for trac-
ing small programs. Unfortunately, this interpreter does not scale in practice.
Furthermore, many external libraries (e.g., for CGI programming or system calls)
are not integrated. Hence, the interpreter is not useful for debugging real-world
applications. As a solution, we developed a program transformation which in our
case exactly implements the formal and correct specification of [4]. Although the
ad-hoc transformations defined for lazy functional computations are a good fun-
dament for our transformation, we have to consider the setting of functional
logic computations in which free variables and non-determinism complicates the
resulting trace structure and the program transformation considerably.

Although our approach covers tracing for arbitrary lazy functional logic lan-
guages, it is implemented in and for Curry [9]. This results in some Curry spe-
cific restrictions, e.g., required by the type system, to how we implement the
program transformation. Furthermore, there are some additional (unsafe) func-
tions needed to perform IO during a computation or to test whether a value is a
free variable. These functions are provided in the Curry implementation PAKCS.
Transferring this approach to another functional logic language or another Curry
implementation requires similar functions or choosing a different approach.

2 Instrumented Semantics

In this section we briefly introduce the instrumented operational semantics which
constructs the trace graph, cf. [4]. The instrumented semantics is shown in Table 1.
These rules define a conservative extension of the original semantics [1].

162 B. Brassel, S. Fischer, and F. Huch

Program P ::= D1 . . . Dm

Definition D ::= f(x1, . . . , xn) = e

Expression e ::= x (variable)
| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {pn → en} (rigid case)
| fcase e of {pn → en} (flexible case)
| e1 or e2 (disjunction)
| let xn = en in e (let binding)

Pattern p ::= c(x1, . . . , xn)

Fig. 1. Syntax for flat programs

The semantics is defined for a flat core language (Figure 1) for functional logic
computations similar to intermediate languages used in common implementations
of functional logic languages. Furthermore, the programs are supposed to be nor-
malized which means a variable is introduced for every sub-expression occurring
in the right-hand side of a function definition by means of a let expression. The
definitions obey the following naming conventions:

Γ, Δ, Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(xn)

A heap is a partial mapping from variables to expressions (the empty heap is
denoted by []). The value associated to variable x in heap Γ is denoted by Γ [x].
Γ [x �→ e] denotes a heap with Γ [x] = e, i.e., we use this notation either as a
condition on a heap Γ or as a modification of Γ . In a heap Γ , a free variable x is
represented by a circular binding of the form Γ [x] = x. A value is a constructor
rooted term or a free variable (w.r.t. the associated heap).

A configuration of the semantics is a tuple 〈Γ, e, S, G, r, p〉, where Γ is the
current heap, e is the expression to be evaluated (often called the control), S
is the stack (a list of variable names and case alternatives where the empty
stack is denoted by []) which represents the current context, G is a directed
graph (the trail built so far), and r, p are references for the current and parent
nodes of the expression in the control. An initial configuration has the form:
〈[], main, [], G∅, r, �〉, where G∅ denotes an empty graph, r is a reference and �
denotes the null reference. A final configuration has the form: 〈Δ, �, [], G, �, p〉.

Similarly to the ART model, our trail is a directed graph with nodes iden-
tified by references1 that are labeled with expressions. We adopt the following
conventions:

– r �→ e means that the node with reference r is labeled with expression e.
– r �→

q
means that node q is the successor of node r.

– r
p�→ means that node p is the parent of node r.

1 The domain for references is not fixed. For instance, we can use natural numbers as
references but more complex domains are also possible.

A Program Transformation for Tracing Functional Logic Computations 163

T
ab

le
1.

S
m

a
ll
-S

te
p

T
ra

ci
n
g

S
em

a
n
ti
cs

R
u
le

H
ea

p
C

on
tr

ol
S

ta
ck

G
ra

p
h

R
ef

.
P

a
r.

va
rc

on
s

Γ
[x

�→
t]

x
S

G
r

p
=
⇒

Γ
[x

�→
t]

t
S

G
��

(x
�

r)
r

p
va

re
xp

Γ
[x

�→
e]

x
S

G
r

p
=
⇒

Γ
[x

�→
e]

e
x

:
S

G
��

(x
�

r)
r

p
va

l
Γ

v
x

:
S

G
r

p
=
⇒

Γ
[x

�→
v
]

v
S

G
r

p
fu

n
Γ

f
(x

n
)

S
G

r
p

=
⇒

Γ
ρ
(e

)
S

G
[r

p �→ q
f
(x

n
)]

q
r

le
t

Γ
le

t
x

k
=

e k
in

e
S

G
r

p

=
⇒

Γ
[y

k
�→

ρ
(e

k
)]

ρ
(e

)
S

G
r

p
or

Γ
e 1

or
e 2

S
G

r
p

=
⇒

Γ
e i

S
G

[r
p �→ q

e 1
or

e 2
]

q
r

ca
se

Γ
(f

)c
as

e
x

of
{p

k
→

e k
}

S
G

r
p

=
⇒

Γ
x

((
f
){

p
k

→
e k

},
r)

:
S

G
[r

p �→
(f

)c
as

e
x

of
{p

k
→

e k
}]

q
r

se
le

ct
Γ

c(
y

n
)

((
f
){

p
k

→
e k

},
r′)

:
S

G
r

p

=
⇒

Γ
ρ
(e

i
)

S
G

[r
p �→

c(
y

n
),

r′
�→ q

]
q

r′

gu
es

s
Γ

[y
�→

y
]

y
(f

{p
k

→
e k

},
r′)

:
S

G
r

p

=
⇒

Γ
[y

�→
ρ
(p

i
),

y
n

�→
y

n
]
ρ
(e

i
)

S
G

[r
p �→ q

Fr
ee

,q
r

′ �→
ρ
(p

i
),

y
�

r,
r′

�→ s
]
s

r′

w
h
er

e
in

va
rc

on
s:

t
is

co
n
st

ru
ct

o
r-

ro
o
te

d
le

t:
ρ

=
{x

k
�→

y
k
}

a
n
d

y
k

a
re

fr
es

h
va

re
xp

:
e

is
n
o
t

co
n
st

ru
ct

o
r

ro
o
te

d
a
n
d

e
�=

x
or

:
i
∈

{1
,2

}
va

l:
v

is
co

n
st

ru
ct

o
r

ro
o
te

d
o
r

a
va

ri
a
b
le

w
it
h

Γ
[v

]
=

v
se

le
ct

:
p

i
=

c(
x

n
)

a
n
d

ρ
=

{x
n

�→
y

n
}

fu
n:

f
(y

n
)

=
e

∈
P

a
n
d

ρ
=

{y
n

�→
x

n
}

gu
es

s:
i
∈

{1
,.

..
k
},

p
i
=

c(
x

n
),

ρ
=

{x
n

�→
y

n
},

a
n
d

y
n

fr
es

h

164 B. Brassel, S. Fischer, and F. Huch

– Often, we write r
p�→
q

e to denote that node r is labeled with expression e,

node p is the parent of r, and node q is the successor of r. Similarly, we also
write r

p�→ e when the successor node is yet unknown (e.g., in rule case) or if
there is no successor (e.g., in rule select).

– Argument arrows are denoted by x � r which means that variable x points
to node r. This is safe in our context since only variables can appear as
arguments of function and constructor calls. These arrows are also called
variable pointers.

In general, given a configuration 〈Γ, e, S, G, r, p〉, G denotes the graph built so
far (not yet including the current expression e), r represents a fresh reference to
store the current expression e in the control (with some exceptions, see below),
and p denotes the parent of r. The basic idea of the graph construction is to
record the actual control at the actual reference in every step. A brief explanation
for each rule of the semantics follows:

(varcons and varexp) These rules are used to perform a variable lookup in the
heap. If one of these rules is applied, it means that the evaluation of variable
x is needed in the computation and a variable pointer for x should be added
to the current graph G if it does not yet contain such a pointer. For this
purpose, we introduce function �� which is defined as follows:

G �� (x � r) =
{

G[x � r] if � ∃r′. (x � r′) ∈ G
G otherwise

Intuitively, function �� is used to take care of sharing: if the value of a given
variable has already been demanded in the computation, no new variable
pointer is added to the graph.

(val) updates a computed value in the heap. The current graph is not modified.
(fun) performs a simple function unfolding. When this rule is applied, node r

(the value in column Ref.) is added to the graph. The node is labeled with the
function call f(xn) and has parent p (the value in column Par.) and successor
q (a fresh reference). In the new configuration, r becomes the parent reference
(Par.) and the fresh reference q represents the current reference (Ref.).

(let) adds the bindings to the heap (with renamed variables) and proceeds with
the evaluation of the main argument of let. The graph is not modified.

(or) non-deterministically evaluates either the first or the second argument of
an or expression. A node representing the disjunction is added to the graph.

(case) initiates the evaluation of a case expression by evaluating the case ar-
gument and pushing the alternatives on the stack. It adds a node r to the
graph which is labeled with the case expression. We set p as the parent of r
but include no successor since it will not be known until the case argument is
evaluated to head normal form. For this reason, reference r is also stored in
the stack (together with the case alternatives) so that rules select and guess
may eventually set the right successor for r.

(select) If we reach a constructor-rooted term and the top of the stack contains
alternatives of a (f)case expression, rule select is applied to select the appro-
priate branch and continue with the evaluation of this branch. Furthermore,

A Program Transformation for Tracing Functional Logic Computations 165

a node r is added to the graph which is labeled with the computed value
c(yn). It sets p as the parent of r but includes no successor since values are
fully evaluated. Reference r′ (stored in the stack) is used to set the right suc-
cessor for the case expression that initiated the subcomputation: the fresh
reference q. Note that, in the derived configuration, we have r′ as a parent
reference—the case expression—rather than r.

(guess) If we reach a free variable and the case expression on the stack is flexible
(i.e., of the form f{pk->ek}), then rule guess is used to non-deterministically
choose one alternative and continue with the evaluation of this branch; more-
over, the heap is updated with the binding of the free variable to the cor-
responding pattern. This rule modifies the graph in a similar way as the
previous one. The main difference is that the computed value is a free vari-
able. Here, we add node r to the graph which is labeled with a special symbol,
Free, and whose successor is a new node q which is labeled with the selected
binding for the free variable.

Finally, the operational semantics provides some rules for copying the result
of a computation into the graph, from which we only present the case for a
constructor rooted term:

Rule Heap ControlStack Graph Ref. Par.
success-c Γ c(xn) [] G r p

=⇒ Γ � [] G[r
p�→ c(xn)] � r

Similar rules are defined for failing computations and free variables as results
(see [4]).

We illustrate the tracing semantics with a simple example. For the following
program the computed trail is depicted in Figure 2.

mother x = fcase x of { John -> Christine; Peter -> Monica }
father x = fcase x of { Peter -> John }
main = let x = x, y = father x in mother y

Similarly to the original small-step semantics [1], our tracing semantics is
non-deterministic, i.e., it computes a different trail—a graph—for each non-
deterministic computation from the initial configuration. In practice, however,
it is more convenient to build a single graph that comprises all possible non-
deterministic paths (see Section 3.1).

3 Program Transformation

We have implemented a program transformation which converts an arbitrary flat
program into an instrumented flat program. This instrumented program writes
the trace graph as a side effect at runtime. The basic idea is to wrap all sub-
expressions of the program with additional function calls. Semantically, these
wrapper functions are identities but evaluating them initiates the side effects
needed to write the execution trace to a file.

166 B. Brassel, S. Fischer, and F. Huch

0:main 2:mother 3:fcase

4:father

9:Christine

5:fcase

6:Free

8:John

7:Peter

Fig. 2. Trail of a computation

3.1 Path Information

Instead of writing distinct trace graphs for every non-deterministic computation,
we generate a unified graph that represents all non-deterministic computations
at once. The trace corresponding to one non-deterministic computation can be
extracted from the unified graph using path information that is associated with
every trace node.

Initially, the computation starts with the empty path. Whenever a branching
is performed, the subsequent computations are distinguished by extended paths.
As an example reconsider the example from above with the call

main = let x = x in mother x

The unified graph for this example is presented in Figure 3. At each node the
path (a list of numbers) is added to the label. This unified graph represents two
computations, one with path [1] and the other with path [2]. The two graphs
can be computed from the unified graph by considering only nodes with a corre-
sponding path prefix. For instance, the node labeled with 1:[]:mother belongs
to both graphs while the node labeled with 6:[1]:Christine only belongs to
the graph with path [1].

Generating a unified graph instead of a separate graph for each computation
has two advantages. Firstly, large parts of the different graphs are identical (e.g.,
all nodes labeled with the empty path belong to all graphs). Secondly, in the
viewer tool, it is not sufficient to present only a single graph to detect errors
related to non-determinism. Rather, different results of a computation have to
be presented to the programmer. Furthermore, the information about structures
that are identical for two non-deterministic branches can be of great help for
debugging, too. It is much easier to obtain these results in the unified graph.

Unfortunately, it is not possible to statically determine the order in which non-
determinism occurs in the computation, as the following function definition shows:

f x y z = fcase x of { 0 -> fcase y of { 0 -> z };
1 -> fcase z of { 1 -> 42 }}

A Program Transformation for Tracing Functional Logic Computations 167

0:[]:main 1:[]:mother 2:[]:fcase

3:[]:Free6:[1]:Christine 7:[2]:Monica

4:[1]:John 5:[2]:Peter

Fig. 3. Unified trace graph

The function branches depending on its first argument x: for 0 the function re-
quires the evaluation of y to 0 and returns z; for 1 the function requires the
evaluation of its third argument z and yields 42 without initiating the evalu-
ation of y at all. If the evaluation of the arguments y and z introduces non-
determinism, then the order in which this non-determinism is introduced into
the concrete computation depends on the value for x. The non-determinism
in y may not even be introduced at all if x is bound to 1. Hence, the cur-
rent path has to be propagated at runtime, independently of the evaluation
order.

In our program transformation, we employ the logic features of Curry to
compute the path of a non-deterministic computation. To be able to extend the
current path when we perform a non-deterministic branching in or or fcase,
we pass the current path as an additional parameter to every function. Initially,
this argument is a free variable representing the empty path. Non-empty paths
are represented by lists that are terminated by a free variable instead of the
empty list (cf. message queues in [8]). Hence, a path is represented as a partially
instantiated list of numbers. In contrast to other approaches using advanced
list implementations like difference lists in PROLOG or functional lists [10], our
lists are not supposed to improve efficiency. They are a means to globally extend
paths within non-deterministic computations independently of the evaluation
order.

The program transformation employs a function extend to extend the path
of the current computation. This function is implemented as:

extend :: Path -> Int -> a -> a
extend p n x | end p =:= (n:ns) = x where ns free

end :: Path -> Path
end p = if isVar p then p else end (tail p)

168 B. Brassel, S. Fischer, and F. Huch

We use the auxiliary function end to return the terminating free variable of a
path. The function isVar indicates whether the head-normal-form of its argu-
ment is a free variable. In order to write a path to a file, we need to replace the
free variable that terminates the path with the empty list:

path :: Path -> Path
path p = if isVar p then [] else head p : path (tail p)

3.2 Labeling Expressions

When writing trace nodes, we need to refer to other nodes in the graph that
have not yet been written. For example, to write the node for a function call
we need to refer to the function’s arguments. However, these may not have been
written into the trace graph yet because of lazy evaluation. In the instrumented
semantics we use fresh variable names to refer to unevaluated expressions and
use a special operation (x � r) to map these variables to node references when
the corresponding expression is evaluated.

At runtime such variables are not available. Instead, we have to generate
similar references and use globally unique labels to represent sub-expressions.
New labels are constructed by means of a global state which is accessed by side
effects whenever the evaluation of sub-expressions is requested.

As a first approach we can think of references as integer values attached
to every expression. Every function is transformed accordingly, i.e., it expects
labeled values as arguments instead of the original argument values and re-
turns a labeled result. For example, a function of type Bool -> Bool -> Bool
would be transformed into a function of type (Int,Bool) -> (Int,Bool) ->
(Int,Bool) according to this first approach.

Unfortunately, this approach is not sufficient to model compound values. If a
component of such a value is selected and passed as argument to some function,
we need to be able to determine the label of this sub-term from the original
value. In principle, there are two possibilities to store labels for every sub-term
of compound values: The first is to provide labeled versions of every datatype
and compute with values of this variants instead of the original data-terms. For
example, the definition of natural numbers as successor terms

data Nat = Z | S Nat

can be altered to store labels for each sub-term as follows:

data LabeledNat = LZ Int | LS Int LabeledNat

Each constructor has an additional argument for the label of the corresponding
sub-term. For example, the value (S Z) could be labeled as (LS 1 (LZ 2)).
Although this approach is quite intuitive, it also has a severe drawback: It is
not possible to write a Curry function that computes the original value from a
labeled value of arbitrary type. We need to compute unlabeled values for two
reasons: First, the result of the top-level computation should be presented to the

A Program Transformation for Tracing Functional Logic Computations 169

user without labels and, second, external functions must be applied to unlabeled
values. Although we can define such un-labeling functions for each particular
datatype, this is not sufficient for calls to polymorphic external functions where
the current argument-types are unknown.

As a solution, we take a different approach: instead of a label, we attach a
tree of labels to each expression that represents the labels of all sub-terms of the
expression. We define the data-types

data Labeled a = Labeled Labels a
data Labels = Labels Int [Labels]

to model labeled values. The label tree has the same structure as the wrapped
data structure.

The boolean function mentioned above is transformed into a function of type
Labeled Bool -> Labeled Bool -> Labeled Bool and we provide wrapper
functions for every defined constructor that operates on labeled values. For ex-
ample, the wrapper functions for the construction of labeled natural numbers
have the following types:

z :: Labeled Nat -- Z :: Nat
s :: Labeled Nat -> Labeled Nat -- S :: Nat -> Nat

Now the value (S Z) is represented as Labeled (Labels 1 [Labels 2 []])
(S Z). With this representation of labeled values it is no problem to define
a function value :: Labeled a -> a. Hence, we prefer this solution over the
more intuitive approach to label compound values by extending all data types.

3.3 Global State

We provide a library that is imported by every transformed program. This library
has two main purposes: a) implement the side effects that write the trace nodes
during the computation and b) provide a global state which manages references
and labels.

At the beginning of each execution trace, the global state must be initialized,
i.e. global counters are set to zero, old trace files are deleted and some header
information is written to the new trace file. All this is done by initState ::
IO (). It is necessary to use a global state instead of passing values through
the program, e.g. by a state monad, since tracing must not modify the evalua-
tion order. As already discussed in Section 3.1 the evaluation order is statically
unknown. The state cannot be passed and has to be modified by side effects.

There are two global counters, one to provide the references, which corre-
sponds to the Ref. column of the tracing semantics, cf. Section 2. The other
counter provides labels for arguments which correspond to the variables in the
semantics. The counters are accessed by the according IO actions:

currentRefFromState, currentLabelFromState :: IO Int
incrementRefCounter, incrementLabelCounter :: IO ()

170 B. Brassel, S. Fischer, and F. Huch

In most cases the access to the current counter is directly followed by increment-
ing the counter. Hence, we provide nextRefFromState, nextLabelFromState
:: IO Int which perform those two actions.

In addition to the two counters, there is one more global integer value: the
current parent reference. This corresponds to the Par. column of the seman-
tics and is accessed by the functions setParentInState :: Int -> IO () and
getParentFromState :: IO Int.

Since all tracing has to be done by side effects, all calls to the library functions
are wrapped by a call to the function unsafe :: IO a -> a. Therefore, the
functions actually called by the transformed programs look like this:

nextRef, nextLabel :: Int
nextRef = unsafe nextRefFromState
nextLabel = unsafe nextLabelFromState

As an example for how the global state is used we present the wrapper function
for tracing function calls:

traceFunc :: Path -> Name -> [Int] -> Labeled a -> Labeled a
traceFunc p name args body = unsafe (do
l <- nextLabelFromState
return (Labeled (Labels l (argLabels body))

(redirect p l (writeFunc p name args (value body)))))

writeFunc :: Path -> Name -> [Int] -> a -> a
writeFunc p name args x = unsafe (do
ref <- nextRefFromState
parent <- getParentFromState
printTrace (showApp ref (path p) parent name args)
succ <- getRefFromState
printTrace (showSucc ref succ)
setParentInState ref
return x)

The function traceFunc introduces a new label l for the function application,
which is redirected to the reference of the application when it is evaluated (dis-
cussed in more detail in the next section). writeFunc takes this reference from
the global state, asks for the current parent and writes a corresponding trace
node into the trace file. Since an application is always followed by its result in
the trace graph, we then ask for the next reference without incrementing it and
write an appropriate successor relation into the trace graph. Similarly, construc-
tor applications are traced with the function traceCons but without writing a
successor relation.

3.4 Redirecting Arguments

One of the key concepts of the instrumented semantics is redirecting variables
to references representing their evaluation by means of �. Function applications

A Program Transformation for Tracing Functional Logic Computations 171

can directly be written to the trace without considering which arguments are
already evaluated. To write a redirection into the trace, we provide the following
function:

redirect :: Path -> Int -> a -> a
redirect p l x = unsafe (do
ref <- getRefFromState
printTrace (showRedir l (path p) ref)
return x)

The label l (representing a variable) is redirected to the current reference (ref)
to which the next evaluation will be written. The function printTrace writes
data into the trace file and showRedir converts a redirection with respect to the
current path into a string.

In the semantics the � relation is written in the rules varcons, varexp, and
guess. In the program transformation these rules are not directly available. How-
ever, every expression is labeled as explained in Section 3.2 and can itself write its
redirection to the graph when its evaluation is initiated. Hence, every constructed
value of type Labeled calls redirect. Additionally, the program transformation
will introduce a call to redirect to implement the guess rule.

3.5 Transforming Expressions

The key idea of the program transformation is that every expression writes
itself when it is evaluated. Each expression is transformed in a way that a cor-
responding trace node is written as a side effect when the evaluation of the
expression is demanded by the computation. In this section, we explain in de-
tail, how arbitrary flat expressions are transformed to generate the instrumented
program. The transformed expressions will use functions of the trace library, like
traceFunc, cf. Section 3.3.

We present the transformation on flat programs and expressions as a function
τ and successively discuss τ for the different kinds of expressions. As a first step,
we introduce wrapper functions for all defined functions and constructors:

τ(f x1 . . . xn = e) =
f p x1 . . . xn = traceFunc p ′f ′ [label x1,. . . ,label xn] τ(e′)

First, an argument for the path (p) is added to every function definition. Every
call to a function in e will also be extended by this path argument such that the
current path is available everywhere. In the right-hand side we introduce a call to
traceFunc which writes a node corresponding to the function call with respect
to the current path into the trace graph. The name of the original function is
supplied as second argument and a list of argument labels as third. The function
label returns the label at the root of a labeled value, cf. Section 3.2. After
storing the trace information the function traceFunc returns its last argument,
which is the transformed body of the original function. We wrote e′ instead of
e for the body because we have to do some additional work, if the function is a
projection on one of its arguments. We will consider projections in Section 3.6.

172 B. Brassel, S. Fischer, and F. Huch

Similarly, for each defined constructor c of arity n we introduce a wrapper
function:

c̃ p x1 . . . xn = traceCons p ′c ′ [label x1,. . . ,label xn]
(c (value x1) . . . (value xn))

Now we consider the different cases of flat expressions for our translation τ .
Variables do not need to be transformed at all:

τ(x) = x, if x ∈ V ar

For the transformation of function and constructor applications, we use the
wrapper functions defined above:

τ(f e1 . . . en) = f p τ(e1) . . . τ(en)
τ(c e1 . . . en) = c̃ p τ(e1) . . . τ(en)

Note, that since the path p is an argument of every function, it is always in scope.
To trace or-expressions (rule or), we need to compute a globally unique reference
for the or-node in the graph and supply this reference to the non-deterministic
sub-computations.

τ(e1 or e2) = let r = nextRef
in traceOr p r ((extend p 1 (traceBranch r τ(e1))) or

(extend p 2 (traceBranch r τ(e2))))

The function traceBranch employs this reference to write successor and par-
ent edges accordingly. The current path is extended by means of extend, cf.
Section 3.1.

In our flat language free variables are introduced as cyclic bindings (let x=x
in ..., cf. [4]). Free variables have to be introduced as labeled values, which
can be realized by introducing the function traceFree:

τ(let xn = en in e) = let xn = τxn(en) in τ(e)

τx(x) = traceFree p
τx(e) = τ(e), if e �= x

The transformation of case-expressions is a bit more involved. We will explain
the transformation of rigid and flexible case-expressions separately although the
latter is an extension of the former.

When tracing case expressions, different information has to be recorded in
the trace. First the case itself has to be stored in the current reference (cf.
rule case). Hence, we introduce an application of the function traceCase. Then
the branching has to be performed on the original value. In each branch we
supplement the successor of the case node as in rule select by introducing the
function traceBranch to each case branch. It is not necessary to introduce a
stack in our program transformation since both states of the execution (before
and after evaluating the case expression) are available at transformation time.
The reference stored in the stack in the instrumented semantics can easily be
passed into the branches.

A Program Transformation for Tracing Functional Logic Computations 173

τ(case e of branches) =
let r = nextRef, x = τ(e), ls = argLabels x
in traceCase p r (label x) (τselect r x ls branches)

τselect r x ls {cn xmn -> en} =
case value x of {

. . .
ci y1 . . . ymi-> let [l1, . . . , lmi] = ls ,

x1 = Labeled l1 y1,
. . .
xmi = Labeled lmi ymi

in traceBranch r τ(ei);
. . .}

To reflect pattern matching on the level of the label information as well, we apply
the function argLabels to the matched expression. It selects all sub-label-trees
of the root-label. These label trees are attached to the corresponding sub-terms
of the matched value (y1, . . . , ymi). Note the renaming of the pattern variables:
xk is renamed to yk and redefined as the corresponding labeled value in each
branch of the case-expression.

The transformation of flexible case expressions is a bit more complicated but
can be implemented with similar techniques. If the case argument evaluates to a
constructor rooted term, then the flexible case behaves as a rigid case (select). If
the case argument of a flexible case evaluates to a free variable, then this variable
is non-deterministically instantiated with the patterns of all branches and the
evaluation continues with the right-hand side of the corresponding branches
(guess). Both cases can only be distinguished at runtime and have to be reflected
in the program transformation. We treat this porblem within the application of
traceFCase, which branches in dependence of x reducing to a constructor rooted
term (τselect) or a free variable (τguess).

τ(fcase e of branches) =
let v = nextRef,

r = nextRef,
x = τ(e),
ls = argLabels x

in traceFCase p r v x (τselect r x ls branches)
(τguess v r x ls branches)

τguess v r x ls { cn xmn -> en } =
fcase value x of {
. . .
ci y1 . . . ymi -> extend p i

(let l1 = nextLabel, . . . , lmi = nextLabel,
x1 = Labeled l1 (redirect p l1 y1),
. . .

174 B. Brassel, S. Fischer, and F. Huch

0:main 1:(||) 5:False2:fcase

3:False

Fig. 4. Trail of a Projection - Tracing Semantics

xmi = Labeled lmi (redirect p lmi ymi)
in traceBind p ′c′i v [l1, . . . , lmi] ls (traceBranch r τ(ei)));

. . .}

In contrast to the select case, we have to record three additional kinds of in-
formation in the trace: the non-deterministic branching (similar to or), the free
variable and its bindings.

The function traceBind writes trace nodes for the bindings of the free vari-
able, where the free variable is represented by a trace node with reference v and
written by the function traceFCase. It also unifies the labels l1, . . . , lmi with the
original argument labels ls of the free variable, which are initially uninstantiated.

3.6 Transforming Projections

The transformation presented so far reflects the behavior of the tracing semantics
with one notable exception: projections. Projections are functions that reduce
to one of their arguments, as the following example shows:

main = let x = False in x || x

(||) :: Bool -> Bool -> Bool
x || y = fcase x of { True -> True; False -> y }

Tracing the execution of main using the semantics of Section 2 yields the graph
shown in Figure 4. When tracing the same program with the transformation
introduced so far, the result of the boolean disjunction (||) is not traced. The
reason is that if its first argument is False the function (||) is a projection.
The tracing semantics adds constructor values to the graph each time they are
demanded. The same is not possible with the approach presented so far; values
can only be traced when they are demanded for the first time. If a projection is
called with a value as argument which has already been evaluated before, then
the successor of the projection needs to refer to an already written node.

To solve this problem, we introduce a new kind of trace nodes: projection
nodes. Our transformation analyzes the right-hand sides of all defined functions
of a program and introduces the special function traceProj that writes a pro-
jection node as a side effect. This analysis only checks whether there are defining
rules with an argument variable as right-hand side and wraps such variables with
a call to traceProj. For example, the transformation of the identity function is:

A Program Transformation for Tracing Functional Logic Computations 175

0:main 1:(||)
5:Proj 2:fcase

3:False

Fig. 5. Trail of a Projection - Transformed Program

id :: Path -> Labeled a -> Labeled a
id p x = traceFunc p "id" [label x] (traceProj p x)

With this modification, the above example yields the trace shown in Figure 5.
Note, that the resulting graph contains indeed more information than the

one of Figure 4: the fact that the value False is also shared in the result of
(||). Taking into account the order in which the nodes of the trace graph were
written, there exists a simple mapping from the graphs generated by transformed
programs to the ones produced by the semantics.

4 Conclusion

We presented a program transformation implementing a tracer for functional
logic programs. The transformation exactly reflects a formal tracing semantics
defined in previous work except for projections which have to be recorded explic-
itly. A copying as done in the formal semantics is not possible in the transformed
program. However, in the final trace graph projection nodes can be eliminated
by copying nodes and we obtain the original, formally defined trace graph. Al-
though our transformation is closely related to the formal semantics it remains
to formally prove its equivalence.

Our program transformation is implemented for a (slightly different) flat
Curry representation used as intermediate language in the Curry implementation
PAKCS. Constructing the trace graph by means of the program transformation
performs several times faster than our first implementation within a flat Curry
interpreter. However, this is not the only advantage of the new approach. Now
the trace generation is integrated into the real environment in which systems are
developed and arbitrary Curry programs can be traced, independently of new
features possibly not available for the interpreter. In contrast our interpreter
only supports the core flat Curry language (with only a small set of external
functions), but is a good platform for prototypical implementations of semantic
based tools.

At the moment we are working on tracing external functions and want to
implement a module-wise transformation with a trusting mechanism for selected
modules. Furthermore, we are optimizing our viewing tools to cope with non-
determinism and the large size of applications that can now be traced.

176 B. Brassel, S. Fischer, and F. Huch

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

2. S. Antoy and S. Johnson. TeaBag: A functional logic language debugger. In
Herbert Kuchen, editor, Proc. of the 13th International Workshop on Functional
and (constraint) Logic Programming (WFLP’04), pages 4–18, Aachen, Germany,
June 2004.

3. B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic com-
putations. In Proc. of the Sixth International Symposium on Practical Aspects of
Declarative Languages (PADL’04), pages 193–208. Springer LNCS 3057, 2004.

4. B. Braßel, M. Hanus, F. Huch, and G. Vidal. A semantics for tracing declarative
multi-paradigm programs. In Proceedings of the 6th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP’04),
pages 179–190. ACM Press, 2004.

5. R. Caballero and M. Rodŕıguez-Artalejo. DDT: a declarative debugging tool for
functional-logic languages. In Proceedings of the 7th International Symposium on
Functional and Logic Programming (FLOPS 2004), pages 70–84. Springer LNCS
2998, 2004.

6. O. Chitil, C. Runciman, and M. Wallace. Freja, hat and hood – a comparative
evaluation of three systems for tracing and debugging lazy functional programs. In
Proc. of the 12th International Workshop on Implementation of Functional Lan-
guages (IFL 2000), pages 176–193. Springer LNCS 2011, 2001.

7. Andy Gill. Debugging Haskell by observing intermediate datastructures. Electronic
Notes in Theoretical Computer Science, 41(1), 2001.

8. M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language.
In Proc. of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99), pages 376–395. Springer LNCS 1702, 1999.

9. M. Hanus (ed.). Curry: An integrated functional logic language. Available at
http://www-i2.informatik.rwth-aachen.de/~hanus/curry, 1997.

10. John Hughes. A novel representation of lists and its application to the function
”reverse”. Inf. Process. Lett., 22(3):141–144, 1986.

11. F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative
system. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

12. H. Nilsson and J. Sparud. The Evaluation Dependence Tree as a Basis for Lazy
Functional Debugging. Automated Software Engineering, 4(2):121–150, 1997.

13. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

14. E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, Massachusetts,
1983.

15. J. Sparud and C. Runciman. Tracing Lazy Functional Computations Using Redex
Trails. In Proc. of the 9th Int’l Symp. on Programming Languages, Implemen-
tations, Logics and Programs (PLILP’97), pages 291–308. Springer LNCS 1292,
1997.

Automated Termination Analysis for

Logic Programs by Term Rewriting�

Peter Schneider-Kamp1, Jürgen Giesl1, Alexander Serebrenik2,
and René Thiemann1

1 LuFG Informatik 2, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{psk,giesl,thiemann}@informatik.rwth-aachen.de

2 Dept. of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

a.serebrenik@tue.nl

Abstract. There are two kinds of approaches for termination analysis of
logic programs: “transformational” and “direct” ones. Direct approaches
prove termination directly on the basis of the logic program. Transforma-
tional approaches transform a logic program into a term rewrite system
(TRS) and then analyze termination of the resulting TRS instead. Thus,
transformational approaches make all methods previously developed for
TRSs available for logic programs as well. However, the applicability of
most existing transformations is quite restricted, as they can only be used
for certain subclasses of logic programs. (Most of them are restricted to
well-moded programs.) In this paper we improve these transformations
such that they become applicable for any definite logic program. To si-
mulate the behavior of logic programs by TRSs, we slightly modify the
notion of rewriting by permitting infinite terms. We show that our trans-
formation results in TRSs which are indeed suitable for automated ter-
mination analysis. In contrast to most other methods for termination of
logic programs, our technique is also sound for logic programming with-
out occur check, which is typically used in practice. We implemented our
approach in the termination prover AProVE and successfully evaluated
it on a large collection of examples.

1 Introduction

Termination of logic programs is widely studied (see, e.g., [12] for an overview
and [9,13,20,26,33] for more recent work on “direct” approaches). “Transforma-
tional” approaches have been developed in [1,5,8,15,19,23,24,30] and a compar-
ison of these approaches is given in [28]. Transformational methods

(I) should be applicable for a class of logic programs as large as possible and
(II) should produce TRSs whose termination is easy to analyze automatically.

Concerning (I), the above transformations can only be used for certain subclasses
of logic programs. More precisely, all approaches except [23,24] are restricted to
well-moded programs. [23,24] also consider the classes of simply well-typed and
� Supported by the Deutsche Forschungsgsmeinschaft DFG under grant GI 274/5-1.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 177–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

178 P. Schneider-Kamp et al.

safely typed programs. We present a new transformation which, in contrast to
all previous transformations, is applicable for any (definite1) logic program.

Concerning (II), one needs an implementation and an empirical evaluation
to find out whether termination of the transformed TRSs can indeed be veri-
fied automatically for a large class of examples. Unfortunately, to our knowledge
there is only a single other termination tool available which implements a trans-
formational approach. This tool TALP [29] is based on the transformations of
[5,8,15] which are shown to be equally powerful in [28]. So these transforma-
tions are indeed suitable for automated termination analysis, but consequently,
TALP only accepts well-moded logic programs. This is in contrast to our ap-
proach which we implemented in our termination prover AProVE. Our experi-
ments on large collections of examples in Sect. 5 show that our transformation
indeed produces TRSs that are suitable for automated termination analysis and
that AProVE is currently among the most powerful termination provers for logic
programs.

Our transformation is inspired by the transformation of [5,8,15,28]. In this
classical transformation, each argument position of each predicate is either la-
belled as input or output. As mentioned, the labelling must be such that the
labelled program is well moded [3]. Well-modedness guarantees that each atom
is “sufficiently” instantiated during any derivation with a query that is ground
on all input positions. More precisely, a program is well moded iff for any of its
clauses H :– B1, . . . , Bk with k ≥ 0, we have

(a) Vout(H) ⊆ Vin(H) ∪ Vout(B1) ∪ . . . ∪ Vout(Bk) and
(b) Vin(Bi) ⊆ Vin(H) ∪ Vout(B1) ∪ . . . ∪ Vout(Bi−1) for all 1 ≤ i ≤ k

Vin(B) and Vout(B) are the variables in terms on B’s input and output positions.

Example 1. We illustrate our concepts with a variant of a small example from
[28]. Let p’s first argument position be input and the second be output.

p(X, X)
p(f(X), g(Y)) :– p(f(X), f(Z)), p(Z, g(Y))

The program is well moded: This is obvious for the first clause. For the second
clause, (a) holds since the output variable Y of the head is also an output variable
of the second body atom. Similarly, (b) holds since the input variable X of the
first body atom is also an input variable of the head, and the input variable Z of
the second body atom is also an output variable of the first body atom.

In the classical transformation from logic programs to TRSs [28], two new func-
tion symbols pin and pout are introduced for each predicate p. We write “p(s, t)”
to denote that s and t are the sequences of terms on p’s in- and output positions.
1 Like most approaches for termination of logic programs, we restrict ourselves to pro-

grams without cut and negation. While there are transformational approaches which
go beyond definite programs [24], it is not clear how to transform non-definite logic
programs into TRSs that are suitable for automated termination analysis, cf. (II).

Automated Termination Analysis for Logic Programs by Term Rewriting 179

• For each fact p(s, t), the TRS contains the rule pin(s) → pout(t).
• For each clause c of the form p(s, t) :– p1(s1, t1), . . . , pk(sk, tk), the resulting

TRS contains the following rules:

pin(s) → uc,1(p1in(s1), V(s))
uc,1(p1out(t1), V(s)) → uc,2(p2in(s2), V(s) ∪ V(t1))

. . .

uc,k(pkout(tk), V(s) ∪ V(t1) ∪ . . . ∪ V(tk−1)) → pout(t)

Here, V(s) are the variables occurring in s. Moreover, if V(s) = {x1, ..., xn},
then “uc,1(p1in(s1), V(s))” abbreviates the term uc,1(p1in(s1), x1, ..., xn), etc.

If the resulting TRS is terminating, then the original logic program terminates
for any query with ground terms on all input positions of the predicates, cf. [28].

Example 2. For Ex. 1, the transformation results in the following TRS R.

pin(X) → pout(X) u1(pout(f(Z)), X) → u2(pin(Z), X, Z)
pin(f(X)) → u1(pin(f(X)), X) u2(pout(g(Y)), X, Z) → pout(g(Y))

The original logic program is terminating for any query p(t1, t2) where t1 is a
ground term. However, the above TRS is not terminating:

pin(f(X)) →R u1(pin(f(X)), X) →R u1(u1(pin(f(X)), X), X) →R . . .

In the logic program, after resolving with the second clause, one obtains a query
starting with p(f(. . .), f(. . .)). Since p’s output argument f(. . .) is already partly
instantiated, the second clause cannot be applied again for this atom. However,
this information is neglected in the translated TRS. Here, one only regards the
input argument of p in order to determine whether a rule can be applied. Note
that current tools for termination proofs of logic programs like cTI [25], Hasta-
La-Vista [32], TALP [29], TermiLog [22], and TerminWeb [10] fail on Ex. 1.2

So this example already illustrates a drawback of the classical transformation of
[28]: there are several terminating well-moded logic programs which are trans-
formed into non-terminating TRSs. In such cases, one fails in proving the ter-
mination of the logic program. Even worse, most of the existing transformations
are not applicable for logic programs that are not well moded.3

2 They can handle Ex. 1 if one performs a program specialization step before [31].
Our example collection at http://aprove.informatik.rwth-aachen.de/eval/LP/
illustrates the advantages of different tools and also includes several examples where
“direct” tools fail because the termination proof requires complex ranking functions.

3 Ex. 3 is neither well moded nor simply well typed nor safely typed (using the types
“Any” and “Ground”) as required by the transformations [1,5,8,15,19,23,24,30].

180 P. Schneider-Kamp et al.

Example 3. We modify Ex. 1 by replacing g(Y) with g(W) in the body:

p(X, X)
p(f(X), g(Y)) :– p(f(X), f(Z)), p(Z, g(W))

Still, all queries p(t1, t2) terminate if t1 is ground. But this program is not well
moded, as the second clause violates Condition (a): Vout(p(f(X), g(Y)))={Y } �⊆
Vin(p(f(X), g(Y)))∪Vout(p(f(X), f(Z)))∪Vout(p(Z, g(W)))={X, Z, W}. Trans-
forming the program as before yields a TRS with the rule u2(pout(g(W)), X, Z)→
pout(g(Y)). So non-well-moded programs result in rules with variables like Y in
the right- but not in the left-hand side. Such rules are usually forbidden in term
rewriting and they do not terminate, since Y may be instantiated arbitrarily.

A natural non-well-moded example is the append-program with the clauses
append([],XS ,XS) and append([X |XS],YS , [X |ZS]) :– append(XS ,YS ,ZS). If
one only considers append’s first argument as input, then this program is not
well moded although all queries append(t1, t2, t3) are terminating if t1 is ground.

Recently, several authors tackled the problem of applying termination tech-
niques from term rewriting for (possibly non-well-moded) logic programs. A
framework for integrating orders from term rewriting into direct termination
approaches for logic programs is discussed in [13].4 However, the automation of
this framework is non-trivial in general. As an instance of this framework, the
automatic application of polynomial interpretations (well-known in rewriting)
to termination analysis of logic programs is investigated in [27].

Instead of integrating each termination technique from term rewriting sepa-
rately, we want to make all these techniques available at once. Therefore, un-
like [13,27], we choose a transformational approach. Our goal is a method which

(A) handles programs like Ex. 1 where classical transformations like [28] fail,
(B) handles non-well-moded programs like Ex. 3 where most current transfor-

mational techniques are not even applicable,
(C) allows the successful automated application of powerful techniques from re

writing for logic programs like Ex. 1 and 3 where current tools based on
direct approaches fail. For larger and more realistic examples we refer to
Sect. 5.

After presenting required preliminaries in Sect. 2, in Sect. 3 we modify the
transformation from logic programs to TRSs to achieve (A) and (B). So re-
strictions like well-modedness, simple well-typedness, or safe typedness are no
longer required. Our new transformation results in TRSs where the notion of
“rewriting” has to be slightly modified: we regard a restricted form of infinitary
rewriting, called infinitary constructor rewriting. The reason is that logic pro-
grams use unification, whereas TRSs use matching. For that reason, the logic
program p(s(X)) :– p(X) does not terminate for the query p(X) whereas the TRS

4 But in contrast to [13], we also apply more recent powerful termination techniques
from rewriting (e.g., dependency pairs [4,16]) for termination of logic programs.

Automated Termination Analysis for Logic Programs by Term Rewriting 181

p(s(X)) → p(X) terminates for all finite terms. However, the infinite derivation
of the logic program corresponds to an infinite reduction of the TRS with the
infinite term p(s(s(. . .))) containing infinitely many nested s-symbols. So to sim-
ulate unification by matching, we have to regard TRSs where the variables in
rewrite rules may be instantiated by infinite constructor terms. It turns out that
this form of rewriting also analyzes the termination behavior of logic programs
with infinite terms, i.e., of logic programming without occur check.

Sect. 4 shows that the existing termination techniques for TRSs can easily
be adapted in order to prove termination of infinitary constructor rewriting. We
conclude with an experimental evaluation of our results in Sect. 5 which shows
that Goal (C) is achieved as well. In other words, the implementation of our
approach can indeed compete with modern tools for direct termination analysis
of logic programs and it succeeds for many programs where these tools fail.

2 Preliminaries on Logic Programming and Rewriting

A signature is a pair (Σ, Δ) where Σ and Δ are finite sets of function and
predicate symbols. Each f ∈ Σ ∪ Δ has an arity n ≥ 0 and we often write f/n
instead of f . We always assume that Σ contains at least one constant f/0.

Definition 4 (Infinite Terms and Atoms). A term over Σ is a tree where
every node is labelled with a function symbol from Σ or with a variable from V =
{X, Y, . . .}. Every node labelled with f/n has n children and leaves are labelled
with variables or with f/0 ∈ Σ. We write f(t1, . . . , tn) for the term with root f
and direct subtrees t1, . . . , tn. A term t is called finite if all paths in the tree t are
finite, otherwise it is infinite. A term is rational if it only contains finitely many
subterms. The sets of all finite terms, all rational terms, and all (possibly infinite)
terms over Σ are denoted by T (Σ, V), T rat(Σ, V), and T ∞(Σ, V), respectively.
If t is the sequence t1, . . . , tn, then t ∈ T ∞(Σ, V) means that ti ∈ T ∞(Σ, V) for
all i. T (Σ, V) is defined analogously. A position p in a (possibly infinite) term t
addresses a subtree t|p of t where the path from root(t) to root(t|p) is finite. The
term t[s]p results from replacing the subterm t|p at position p in t by the term s.

An atom over (Σ, Δ) is a tree p(t1, . . . , tn), where p/n ∈ Δ and t1, . . . , tn ∈
T ∞(Σ, V). A∞(Σ, Δ, V) is the set of atoms and Arat(Σ, Δ, V) (and A(Σ, Δ, V),
resp.) are the atoms p(t1, . . . , tn) where ti ∈ T rat(Σ, V) (and ti ∈ T (Σ, V), resp.)
for all i. We write A(Σ, Δ) and T (Σ) instead of A(Σ, Δ, ∅) and T (Σ, ∅).

A clause c is a formula H :– B1, . . . , Bk with k ≥ 0 and H, Bi ∈ A(Σ, Δ, V). H
is c’s head and B1, . . . , Bk is c’s body. A finite set of clauses P is a (logic) pro-
gram. A clause with empty body is a fact and a clause with empty head is a query.
We usually omit “ :– ” in queries and just write “B1, . . . , Bk”. The empty query is
denoted �. In queries, we also admit rational instead of finite atoms B1, . . . , Bk.

Since we are also interested in logic programming without occur check we
consider infinite substitutions θ : V → T ∞(Σ, V). Here, we allow θ(X) �= X
for infinitely many X ∈ V . Instead of θ(X) we often write Xθ. If θ is a variable
renaming (i.e., a one-to-one correspondence on V), then tθ is a variant of t, where

182 P. Schneider-Kamp et al.

t can be any expression (e.g., a term, atom, clause, etc.). We write θσ to denote
that the application of θ is followed by the application of σ.5

We briefly present the procedural semantics of logic programs based on SLD-
resolution using the left-to-right selection rule implemented by most Prolog sys-
tems. More details on logic programming can be found in [2], for example.

Definition 5 (Derivation, Termination). Let Q be a query A1, . . . , Am, let c
be a clause H :– B1, . . . , Bk. Then Q′ is a resolvent of Q and c using θ (denoted
Q 	c,θ Q′) if θ is the mgu6 of A1 and H, and Q′ = (B1, . . . , Bk, A2, . . . , Am)θ.

A derivation of a program P and Q is a possibly infinite sequence Q0, Q1, ... of
queries with Q0 = Q where for all i, we have Qi 	ci+1,θi+1 Qi+1 for some substitu-
tion θi+1 and some fresh variant ci+1 of a clause of P. For a derivation Q0, ..., Qn

as above, we also write Q0 	n
P,θ1...θn

Qn or Q0 	n
P Qn, and we also write Q0 	P Q1.

The query Q terminates for P if all derivations of P and Q are finite.

Ournotion of derivation coincideswith logic programmingwithout occur check [11]
as implemented in recent Prolog systems such as SICStus or SWI. Since we consider
onlydefinite logic programs, anyprogramwhich is terminatingwithoutoccur check
is also terminating with occur check, but not vice versa. So if our approach detects
“termination”, then theprogram is indeed terminating, nomatterwhether oneuses
logic programming with or without occur check. In other words, our approach is
sound for both kinds of programs, whereas most other approaches only consider
logic programming with occur check.

Example 6. Regard a program P with the clauses p(X) :– equal(X, s(X)), p(X)
and equal(X, X). We obtain p(X) 	2

P p(s(s(. . .))) 	2
P p(s(s(. . .))) 	2

P . . ., where
s(s(. . .)) is the term containing infinitely many nested s-symbols. So the finite
query p(X) leads to a derivation with infinite (rational) queries. While p(X) is
not terminating according to Def. 5, it would be terminating if one uses logic
programming with occur check. Indeed, tools like cTI [25] and TerminWeb [10]
report that such queries are “terminating”. So in contrast to our technique,
such tools are in general not sound for logic programming without occur check,
although this form of logic programming is typically used in practice.

5 One can even define the composition of infinitely many substitutions σ0, σ1, . . . such
that tσ0σ1 . . . is an instance of tσ0 . . . σn for all terms (or atoms) t and all n ≥ 0: It
suffices to define the symbols at the positions of tσ0σ1... for any term t. Obviously, p
is a position of tσ0σ1... iff p is a position of tσ0...σn for some n ≥ 0. We define that the
symbol of tσ0σ1... at such a position p is f ∈ Σ iff f is at position p in tσ0...σm for
some m ≥ 0. Otherwise, (tσ0...σn)|p = X0 ∈ V. Let n = i0 < i1 < ... be the maximal
(finite or infinite) sequence with σij+1(Xj) = ... = σij+1−1(Xj) = Xj and σij+1(Xj)
= Xj+1 for all j. We require Xj �= Xj+1, but permit Xj = Xj′ otherwise. If this se-
quence is finite (i.e., it has the form n = i0 < . . . < im), then we define (tσ0σ1 . . .)|p =
Xm. Otherwise, the substitutions perform infinitely many variable renamings. In this
case, we use one special variable Z∞ and define (tσ0σ1 . . .)|p = Z∞. So if σ0(X) = Y ,
σ1(Y) = X, σ2(X) = Y , σ3(Y) = X, etc., we define Xσ0σ1 . . . = Y σ0σ1 . . . = Z∞.

6 Note that for finite sets of rational atoms or terms, unification is decidable, the mgu
is unique modulo renaming, and it is a substitution with rational terms [18].

Automated Termination Analysis for Logic Programs by Term Rewriting 183

Now we define TRSs and introduce the notion of infinitary constructor rewriting.
For further details on term rewriting we refer to [6].

Definition 7 (Infinitary Constructor Rewriting). A TRS R is a finite set
of rules l→r with l, r∈T (Σ, V) and l /∈V.We divide the signature in defined sym-
bols ΣD ={f | l→r∈R, root(l)=f} and constructors ΣC =Σ\ΣD. R’s infinita-
ry constructor rewrite relation is denoted →R: for s, t ∈ T ∞(Σ, V) we have
s →R t if there is a rule l→r, a position p and a substitution σ : V → T ∞(ΣC , V)
with s|p = lσ and t = s[rσ]p. Let →n

R, →≥n
R , →∗

R denote rewrite sequences of n
steps, of at least n steps, and of arbitrary many steps, respectively (where n ≥ 0).
A term t is terminating for R if there is no infinite sequence of the form t →R
t1 →R t2 →R . . . A TRS R is terminating if all terms are terminating for R.

The above definition of →R differs from the usual rewrite relation in two aspects:
(i) We only permit instantiations of rule variables by constructor terms and (ii)
we use substitutions with possibly non-rational infinite terms. In Ex. 9 and 10 in
the next section, we will motivate these modifications and show that there are
TRSs which terminate w.r.t. the usual rewrite relation, but are non-terminating
w.r.t. infinitary constructor rewriting and vice versa.

3 Transforming Logic Programs into TRSs

Now we modify the transformation of logic programs into TRSs from Sect. 1 to
make it applicable for arbitrary (possibly non-well-moded) programs as well.
Instead of separating between input and output positions of a predicate p/n, now
we keep all arguments both for pin and pout (i.e., pin and pout have arity n).

Definition 8 (Transformation). A logic program P over (Σ, Δ) is trans-
formed into the following TRS RP over ΣP = Σ ∪ {pin/n, pout/n | p/n ∈ Δ}
∪ {uc,i | c ∈ P , 1 ≤ i ≤ k, where k is the number of atoms in the body of c }.

• For each fact p(s) in P, the TRS RP contains the rule pin(s) → pout(s).
• For each clause c of the form p(s) :– p1(s1), . . . , pk(sk) in P, RP contains:

pin(s) → uc,1(p1in(s1), V(s))
uc,1(p1out(s1), V(s)) → uc,2(p2in(s2), V(s) ∪ V(s1))

. . .

uc,k(pkout(sk), V(s) ∪ V(s1) ∪ . . . ∪ V(sk−1)) → pout(s)

The following two examples motivate the need for infinitary constructor rewriting
in Def. 8, i.e., they motivate Modifications (i) and (ii).

Example 9. For the logic program of Ex. 1, we obtain the following TRS.

pin(X, X) → pout(X, X)
pin(f(X), g(Y)) → u1(pin(f(X), f(Z)), X, Y)

u1(pout(f(X), f(Z)), X, Y) → u2(pin(Z, g(Y)), X, Y, Z)
u2(pout(Z, g(Y)), X, Y, Z) → pout(f(X), g(Y))

184 P. Schneider-Kamp et al.

This example shows why rules of TRSs may only be instantiated with constructor
terms (Modification (i)). The reason is that local variables like Z (i.e., variables
occurring in the body but not in the head of a clause) give rise to rules l → r
where V(r) �⊆ V(l) (cf. the second rule). Such rules are never terminating in
standard term rewriting. However, in our setting one may only instantiate Z with
constructor terms. So in contrast to the old transformation in Ex. 2, now all terms
pin(t1, t2) terminate for the TRS if t1 is finite, since now the second argument
of pin prevents an infinite application of the second rule. Indeed, constructor
rewriting correctly simulates the behavior of logic programs, since the variables
in a logic program are only instantiated by “constructor terms”.

For the non-well-moded program of Ex. 3, one obtains a similar TRS where
g(Y) is replaced by g(W) in the right-hand side of the third and the left-hand
side of the last rule. Thus, we can now handle programs where the classical
transformation of [5,8,15,28] failed, cf. Goals (A) and (B).

Derivations in logic programming use unification, while rewriting is defined by
matching. Ex. 10 shows that to simulate unification by matching, we have to con-
sider substitutions with infinite and even non-rational terms (Modification (ii)).

Example 10. Let P be ordered(cons(X, cons(s(X),XS))) :– ordered(cons(s(X),XS)).
If one only considers rewriting with finite or rational terms, then the transformed
TRS RP is terminating. However, the query ordered(YS) is not terminating for
P . Thus, to obtain a sound approach, RP must also be non-terminating. Indeed,
orderedin(cons(X, cons(s(X), cons(s2(X), . . .)))) is non-terminating with RP ’s
rule orderedin(cons(X, cons(s(X),XS))) → u(orderedin(cons(s(X),XS)), X,XS).
This non-rational term corresponds to the infinite derivation with ordered(YS).

Lemma 11 is needed to prove the soundness of the transformation. It relates
derivations with the logic program P to rewrite sequences with the TRS RP .

Lemma 11 (Connecting P and RP). Let P be a program, let t be terms from
T rat(Σ, V), let p(t) 	n

P,σ Q. If Q = �, then pin(t)σ →≥n
RP

pout(t)σ. Otherwise, if
Q is “q(v), . . .”, then pin(t)σ →≥n

RP
r for a term r containing the subterm qin(v).

Proof. Let p(t) = Q0 	c1,θ1 . . . 	cn,θn Qn = Q with σ = θ1 . . . θn. We use induc-
tion on n. The base case n = 0 is trivial, since Q = p(t) and pin(t) →0

RP
pin(t).

Now let n ≥ 1. We first regard the case Q1 = � and n = 1. Then, c1 is a fact
p(s) and θ1 is the mgu of p(t) and p(s). Note that such mgu’s instantiate all
variables with constructor terms (as symbols of Σ are constructors of RP). We
obtain pin(t)θ1 = pin(s)θ1 →RP pout(s)θ1 = pout(t)θ1 where σ = θ1.

Finally, let Q1 �= �. Thus, c1 is p(s) :– p1(s1), . . . , pk(sk), Q1 is p1(s1)θ1, . . . ,
pk(sk)θ1, and θ1 is the mgu of p(t) and p(s). There is an i with 1 ≤ i ≤ k such
that for all j with 1 ≤ j ≤ i − 1 we have pj(sj)σ0 . . . σj−1 	nj

P,σj
�. Moreover,

if Q = � then i = k and pi(si)σ0 . . . σi−1 	ni

P,σi
� and if Q is “q(v), . . .”,

then pi(si)σ0 . . . σi−1 	ni

P,σi
q(v), . . . Here, n = n1 + . . . + ni + 1, σ0 = θ1,

σ1 = θ2 . . . θn1+1, . . . , and σi = θn1+...+ni−1+2 . . . θn1+...+ni+1. So σ = σ0 . . . σi.

Automated Termination Analysis for Logic Programs by Term Rewriting 185

By the induction hypothesis we have pjin(sj)σ0 . . . σj →≥nj

RP
pjout(sj)σ0 . . . σj

and thus also pjin(sj)σ →≥nj

RP
pjout(sj)σ. Moreover, if Q = � then we also have

piin(si)σ →≥ni

RP
piout(si)σ where i = k. Otherwise, if Q is “q(v), . . .”, then the

induction hypothesis implies piin(si)σ →≥ni

RP
r′, where r′ contains qin(v). Thus

pin(t)σ = pin(s)σ →RP uc1,1(p1in(s1), V(s))σ
→≥n1

RP
uc1,1(p1out(s1), V(s))σ

→RP uc1,2(p2in(s2), V(s) ∪ V(s1))σ
→≥n2

RP
uc1,2(p2out(s2), V(s) ∪ V(s1))σ

→≥n3+...+ni−1
RP

uc1,i(piin(si), V(s) ∪ V(s1) ∪ ... ∪ V(si−1))σ

Moreover, if Q = �, then i = k and the rewrite sequence yields pout(t)σ, since

uc1,i(piin(si), V(s) ∪ ... ∪ V(si−1))σ →≥ni

RP
uc1,i(piout(si), V(s) ∪ ... ∪ V(si−1))σ

→RP pout(s)σ = pout(t)σ.

Otherwise, if Q is “q(v), . . .”, then rewriting yields a term containing qin(v):

uc1,i(piin(si), V(s) ∪ . . . ∪ V(si−1))σ →≥ni

RP
uc1,i(r′, V(s)σ ∪ . . . ∪ V(si−1)σ).
�

For the soundness proof, we need another lemma which states that we can restrict
ourselves to non-terminating queries which only consist of a single atom.

Lemma 12 (Form of Non-Terminating Queries). Let P be a logic program.
Then for every infinite derivation Q0 	P Q1 	P . . ., there is a Qi of the form
“q(v), . . .” with i > 0 such that the query q(v) is also non-terminating.

Proof. Assume that for all i > 0, the first atom in Qi is successfully proved in ni

steps during the derivation Q0 	P Q1 	P . . . (Otherwise, the derivation would
not be infinite.) Let m be the number of atoms in Q1. But then Q1+n1+...+nm is
the empty query � which contradicts the infiniteness of the derivation.
�

To characterize the classes of queries whose termination we want to analyze, we
use argument filterings. Related definitions can be found in, e.g., [4,21].

Definition 13 (Argument Filtering). An argument filtering π over a signa-
ture (Σ, Δ) is a function π : Σ ∪ Δ → 2N where π(f/n) ⊆ {1, . . . , n} for every
f/n ∈ Σ ∪ Δ. We extend π to terms and atoms by defining π(x) = x if x is a
variable and π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tik

)) if π(f) = {i1, . . . , ik} with
i1 < . . . < ik. For any TRS R, we define π(R) = {π(l) → π(r) | l → r ∈ R}.

Argument filterings specify those positions which have to be instantiated with
finite ground terms. Then, we analyze termination of all queries Q where π(Q) is
a (finite) ground atom. In Ex. 1, we wanted to prove termination for all queries
p(t1, t2) where t1 is finite and ground. These queries are described by the filtering
π(h) = {1} for all h ∈ {p, f, g}. Thus, we have π(p(t1, t2)) = p(π(t1)).

Note that argument filterings also operate on function instead of just predi-
cate symbols. Therefore, they can describe more sophisticated classes of queries

186 P. Schneider-Kamp et al.

than the classical approach of [28] which only distinguishes between input and
output positions of predicates. For example, if one wants to analyze all queries
append(t1, t2, t3) where t1 is a finite list, one would use the filtering π(append) =
{1} and π(.) = {2}, where “.” is the list constructor (i.e., .(X, L) = [X |L]). Of
course, our method can easily prove that all these queries are terminating.

Now we show the soundness theorem: to prove termination of all queries Q
where π(Q) is a finite ground atom, it suffices to show termination of all those
terms pin(t) for the TRS RP where π(pin(t)) is a finite ground term and where
t only contains function symbols from the logic program P . Here, π has to be
extended to the new function symbols pin by defining π(pin) = π(p).

Theorem 14 (Soundness of the Transformation). Let P be a logic program
and let π be an argument filtering over (Σ, Δ). We extend π such that π(pin) =
π(p) for all p ∈ Δ. Let S = {pin(t) | p ∈ Δ, t ∈ T ∞(Σ, V), π(pin(t)) ∈ T (Σ) }.
If all terms s ∈ S are terminating for RP , then all queries Q ∈ Arat(Σ, Δ, V)
with π(Q) ∈ A(Σ, Δ) are terminating for P.

Proof. Assume that there is a non-terminating query p(t) as above with p(t) 	P
Q1 	P Q2 	P . . . By Lemma 12 there is an i1 > 0 with Qi1 = q1(v1), . . . and an
infinite derivation q1(v1) 	P Q′

1 	P Q′
2 	P . . . From p(t) 	i1

σ0,P q1(v1), . . . and
Lemma 11 we get pin(t)σ0 →≥i1

RP
r1, where r1 contains the subterm q1in(v1).

By Lemma 12 again, there is an i2 > 0 with Q′
i2

= q2(v2), . . . and an infinite
derivation q2(v2) 	P Q′′

1 	P . . . From q1(v1) 	i2
σ1,P q2(v2), . . . and Lemma 11

we get pin(t)σ0σ1 →≥i1
RP

r1σ1 →≥i2
RP

r2, where r2 contains the subterm q2in(v2).
Continuing this reasoning we obtain an infinite sequence σ0, σ1, . . . of substi-

tutions. For each j ≥ 0, let μj = σj σj+1 . . . result from the infinite composition
of these substitutions. Since rjμj is an instance of rjσj . . . σn for all n ≥ j (cf.
Footnote 5), we obtain that pin(t)μ0 is non-terminating for RP :

pin(t)μ0 →≥i1
RP

r1μ1 →≥i2
RP

r2μ2 →≥i3
RP

. . .

As π(p(t)) ∈ A(Σ, Δ) and thus π(pin(t)μ0) ∈ T (Σ), this is a contradiction.
�

4 Termination of Infinitary Constructor Rewriting

One of the most powerful methods for automated termination analysis of rewrit-
ing is the dependency pair (DP) method [4] which is implemented in most current
termination tools for TRSs. However, since the DP method only proves termina-
tion of term rewriting with finite terms, its use is not sound in our setting. Nev-
ertheless, we now show that only very slight modifications are required to adapt
dependency pairs from ordinary rewriting to infinitary constructor rewriting. So
any rewriting tool implementing dependency pairs can easily be modified in or-
der to prove termination of infinitary constructor rewriting as well. Then, it can
also analyze termination of logic programs using the transformation of Def. 8.

Moreover, dependency pairs are a general framework that permits the inte-
gration of any termination technique for TRSs [16, Thm. 36]. Therefore, in-
stead of adapting each technique separately, it is sufficient only to adapt the DP

Automated Termination Analysis for Logic Programs by Term Rewriting 187

framework to infinitary constructor rewriting. Then, any termination technique
canbe directly used for infinitary constructor rewritingwithout adapting it aswell.

For a TRS R over Σ, for each f/n ∈ ΣD let f �/n be a fresh tuple symbol. We
often write F instead of f �. For t = g(t) with g ∈ ΣD, let t� denote g�(t).

Definition 15 (Dependency Pair [4]). The set of dependency pairs for a
TRS R is DP (R) = {l� → t� | l → r ∈ R, t is a subterm of r, root(t) ∈ ΣD}.

Example 16. In the TRS R of Ex. 9, we have ΣD ={pin, u1, u2} and DP (R) is

Pin(f(X), g(Y)) → Pin(f(X), f(Z)) (1)
Pin(f(X), g(Y)) → U1(pin(f(X), f(Z)), X, Y) (2)

U1(pout(f(X), f(Z)), X, Y) → Pin(Z, g(Y)) (3)
U1(pout(f(X), f(Z)), X, Y) → U2(pin(Z, g(Y)), X, Y, Z) (4)

While Def. 15 is from [4], all following definitions and theorems are new. They
extend existing concepts from ordinary to infinitary constructor rewriting.

For termination, one tries to prove that there are no infinite chains of depen-
dency pairs. Intuitively, a dependency pair corresponds to a function call and
a chain represents a possible sequence of calls that can occur during rewriting.
Def. 17 extends the notion of chains to infinitary constructor rewriting. To this
end, we use an argument filtering π that describes which arguments of function
symbols have to be finite terms. So if π does not delete arguments (i.e., if π(f) =
{1, . . . , n} for all f/n), then this corresponds to ordinary (finitary) rewriting and
if π deletes all arguments (i.e., if π(f) = ∅ for all f), then this corresponds to full
infinitary rewriting. In Def. 17, the TRS D usually stands for a set of dependency
pairs. (Note that if R is a TRS, then DP (R) is also a TRS.)

Definition 17 (Chain). Let D, R be TRSs and π be a filtering over Σ. A (pos-
sibly infinite) sequence of pairs s1 →t1, s2 →t2, ... from D is a (D, R, π)-chain iff

• there are substitutions σi : V → T ∞(ΣC , V) such that tiσi →∗
R si+1σi+1.

Here, ΣC are the constructors of the TRS R.
• π(siσi), π(tiσi) ∈ T (Σ) and for all terms q in the rewrite sequence from tiσi

to si+1σi+1 we have π(q) ∈ T (Σ) as well. So all terms in the sequence have
finite ground terms on those positions which are not filtered away by π.

In Ex. 16, “(2), (3)” is a chain for any argument filtering π: if one instantiates X
and Z with the same finite ground term, then (2)’s instantiated right-hand side
rewrites to an instance of (3)’s left-hand side. Note that if one uses an argument
filtering π which permits an instantiation of X and Z with the infinite term
f(f(. . .)), then there is also an infinite chain “(2), (3), (2), (3), . . . ”

For termination of a program P , by Thm. 14 we have to show that if π(pin(t))
is a finite ground term and t only contains function symbols from the logic
program (i.e., t contains no defined symbols of the TRS RP), then pin(t) is
terminating for RP . Thm. 18 states that one can prove absence of infinite
(DP (RP), RP , π′)-chains instead. Here, π′ is a filtering which filters away “at
least as much” as π. However, π′ has to be chosen in such a way that the

188 P. Schneider-Kamp et al.

filtered TRSs π′(DP (RP)) and π′(RP) satisfy the “variable condition”, i.e.,
V(π′(r)) ⊆ V(π′(l)) for all l → r ∈ DP (RP) ∪ RP . Then the filtering π′ detects
all potentially infinite subterms in rewrite sequences (i.e., all subterms which
correspond to “non-unification-free parts” of P).
Theorem 18 (Proving Infinitary Termination). Let R be a TRS over Σ
and let π be an argument filtering over Σ. Let π′ be an argument filtering with
π′(f) ⊆ π(f) for all f ∈ Σ. Moreover, π′ should also be defined on tuple symbols
such that π′(F) ⊆ π′(f) for all f ∈ ΣD. Assume that π′(DP (R)) and π′(R)
satisfy the variable condition.7 If there is no infinite (DP (R), R, π′)-chain, then
all terms f(t) with t ∈ T ∞(ΣC , V) and π(f(t)) ∈ T (Σ) are terminating for R.

Proof. Assume there is a non-terminating term f(t) as above. Since t does not
contain defined symbols, the first rewrite step in the infinite sequence is on the
root position with a rule l = f(l) → r where lσ1 = f(t). Since σ1 does not
introduce defined symbols, all defined symbols of rσ1 occur on positions of r.
So there is a subterm r′ of r with defined root such that r′σ1 is also non-termi-
nating. Let r′ denote the smallest such subterm (i.e., for all proper subterms r′′ of
r′, the term r′′σ1 is terminating). Then l� → r′� is the first dependency pair of the
infinite chain that we construct. Note that π(lσ1) and thus, π′(l�σ1) = π′(F (t))
is a finite ground term by assumption. Moreover, as l� → r′� ∈ DP (R) and as
π′(DP (R)) satisfies the variable condition, π′(r′�σ1) is finite and ground as well.

The infinite sequence continues by rewriting r′σ1’s proper subterms repeatedly.
As π′(R) satisfies the variable condition, the terms remain finite and ground
when applying the filtering π′. Finally, a root rewrite step is performed again.
Repeating this construction infinitely many times results in an infinite chain.

Example 19. We want to prove termination of Ex. 1 for all queries Q where π(Q)
is finite and ground for the filtering π(h) = {1} for all h ∈ {p, f, g}. By Thm. 14
and 18, it suffices to show absence of infinite (DP (R), R, π′)-chains. Here, R is
the TRS from Ex. 9 and DP (R) are Rules (1) – (4) from Ex. 16. The filtering
π′ has to satisfy π′(pin) ⊆ π(pin) = π(p) = {1}, π′(h) ⊆ π(h) = {1} for h ∈
{f, g}, and π′(H) ⊆ π′(h) for all defined symbols h. Moreover, we have to choose
π′ such that the variable condition is fulfilled. So while π is always given, π′ has to
be determined automatically. This can indeed be automated, since there are only
finitely many possibilities for π′. In particular, defining π′(h) = ∅ for all symbols
h is always possible. But to obtain a successful termination proof afterwards, in
our implementation we generate filterings where the sets π′(h) are as large as pos-
sible, since such filterings provide more information about the finiteness of argu-
ments. So in our example, we use π′(pin)=π′(Pin)=π′(f)=π′(g)={1}, π′(pout)
= π′(u1) = π′(U1) = {1, 2}, and π′(u2) = π′(U2) = {1, 2, 4}. For the non-
well-moded Ex. 3 we choose π′(g) = ∅ instead to satisfy the variable condition.
7 To see why the variable condition is needed in Thm. 18, let R = {g(X) → f(X),

f(s(X)) → f(X)} and π = π′ where π′(g) = ∅, π′(f) = π′(F) = π′(s) = {1}. R’s first
rule violates the variable condition: V(π′(f(X))) = {X} �⊆ V(π′(g(X))) = ∅. There is
no infinite chain, since π′ does not allow us to instantiate the variable X in the depen-
dency pair F(s(X)) → F(X) by an infinite term. Nevertheless, there is a non-termi-
nating term g(s(s(. . .))) which is filtered to a finite ground term π′(g(s(s(. . .)))) = g.

Automated Termination Analysis for Logic Programs by Term Rewriting 189

Finally, we show how to prove absence of infinite (DP (R), R, π)-chains automat-
ically. To this end, we adapt the DP framework of [16] to infinitary rewriting. In
this framework, we now consider arbitrary DP problems (D, R, π) where D and
R are TRSs and π is an argument filtering. Our goal is to show that there is no in-
finite (D, R, π)-chain. In this case, we call the problem finite. Termination tech-
niques should now be formulated as DP processors which operate on DP prob-
lems instead of TRSs. A DP processor Proc takes a DP problem as input and
returns a new set of DP problems which then have to be solved instead. Proc is
sound if for all DP problems d, d is finite whenever all DP problems in Proc(d) are
finite. So termination proofs start with the initial DP problem (DP (R), R, π).
Then this problem is transformed repeatedly by sound DP processors. If the
final processors return empty sets of DP problems, then termination is proved.

In Thm. 22, 24, and 26 we will recapitulate three of the most important
existing DP processors [16] and describe how they must be modified for infinitary
constructor rewriting.8 To this end, they now also have to take the argument
filtering π into account. The first processor uses an estimated dependency graph
to estimate which dependency pairs can follow each other in chains.

Definition 20 (Estimated Dependency Graph). Let (D, R, π) be a DP
problem. The nodes of the estimated (D, R, π)-dependency graph are the pairs
of D and there is an arc from s → t to u → v iff CAP(t) and a variant u′ of u
unify with an mgu μ where π(CAP (t)μ) = π(u′μ) is a finite term. Here, CAP(t)
replaces all subterms of t with defined root symbol by different fresh variables.

Example 21. For the DP problem (DP (R), R, π′) from Ex. 19 we obtain:

(1) �� (3)
��
(2) ��

��
(4)

For example, there is an arc (2) → (3), as CAP(U1(pin(f(X), f(Z)), X, Y)) =
U1(V, X, Y) unifies with U1(pout(f(X ′), f(Z ′)), X ′, Y ′) by instantiating the argu-
ments of U1 with finite terms. But there are no arcs (1) → (1) or (1) → (2),
since Pin(f(X), f(Z)) and Pin(f(X ′), g(Y ′)) do not unify, even if one instantiates
Z and Y ′ by infinite terms (as permitted by the filtering π′(Pin) = {1}).

Note that filterings are used to detect potentially infinite arguments, but they
are not removed, since they can still be useful in the termination proof. In Ex. 21,
these arguments are needed to determine that there are no arcs from (1).

If s→ t, u→v is a (D, R, π)-chain then there is an arc from s→ t to u→v in
the estimated dependency graph. Thus, absence of infinite chains can be proved
separately for each maximal strongly connected component (SCC) of the graph.
This observation is used by the following processor to modularize termination
proofs by decomposing a DP problem into sub-problems.

Theorem 22 (Dependency Graph Processor). For a DP problem (D,R,π),
let Proc return {(D1, R, π), . . . , (Dn, R, π)} where D1, . . . , Dn are the nodes of
the SCCs in the estimated dependency graph. Then Proc is sound.
8 Their soundness proofs can be found in http://aprove.informatik.rwth-aachen.
de/eval/LP/SGST06.ps

190 P. Schneider-Kamp et al.

Example 23. In Ex. 21, the only SCC consists of (2) and (3). Thus, the depen-
dency graph processor transforms the initial DP problem (DP (R), R, π′) into
({(2), (3)}, R, π′), i.e., it deletes the dependency pairs (1) and (4).

The next processor is based on reduction pairs (�, �) where � and � are rela-
tions on finite terms. Here, � is reflexive, transitive, monotonic (i.e., s � t implies
f(. . . s . . .) � f(. . . t . . .) for all function symbols f), and stable (i.e., s � t implies
sσ � tσ for all substitutions σ) and � is a stable well-founded order compatible
with � (i.e., � ◦ � ⊆ � or � ◦ � ⊆ �). There are many techniques to search
for such relations automatically (LPO, polynomial interpretations, etc. [14]).

For a DP problem (D, R, π), we now try to find a reduction pair (�, �) such
that all filtered R-rules are weakly decreasing (w.r.t. �) and all filtered D-depen-
dency pairs are weakly or strictly decreasing (w.r.t. � or �).9 Requiring π(l) �
π(r) for all l → r ∈ R ensures that in chains s1 → t1, s2 → t2, . . . with tiσi →∗

R
si+1σi+1 as in Def. 17, we have π(tiσi) � π(si+1σi+1). Hence, if a reduction
pair satisfies the above conditions, then the strictly decreasing dependency pairs
(i.e., those s → t ∈ D where π(s) � π(t)) cannot occur infinitely often in chains.
So the following processor deletes these pairs from D. For any TRS D and any
relation �, let D�π = {s → t ∈ D | π(s) � π(t)}.

Theorem 24 (Reduction Pair Processor). Let (�, �) be a reduction pair.
Then the following DP processor Proc is sound. For (D, R, π), Proc returns

• {(D \ D�π , R, π)}, if D�π ∪ D�π
= D and R�π

= R
• {(D, R, π)}, otherwise

Example 25. For the DP problem ({(2), (3)}, R, π′) in Ex. 23, one can easily
find a reduction pair10 where the dependency pair (3) is strictly decreasing and
where (2) and all rules are weakly decreasing after applying the filtering π′:

Pin(f(X)) � U1(pin(f(X)), X) pin(X) � pout(X, X)
U1(pout(f(X), f(Z)), X) � Pin(Z) pin(f(X)) � u1(pin(f(X)), X)

u1(pout(f(X), f(Z)), X) � u2(pin(Z), X, Z)
u2(pout(Z, g(Y)), X, Z) � pout(f(X), g(Y))

Thus, the reduction pair processor can remove (3) from the DP problem which
results in ({(2)}, R, π′). By applying the dependency graph processor again, one
obtains the empty set of DP problems, since now the estimated dependency
graph only has the node (2) and no arcs. This proves that the initial DP prob-
lem (DP (R), R, π′) from Ex. 19 is finite and thus, the logic program from Ex.
1 terminates for all queries Q where π(Q) is finite and ground. Note that ter-
mination of the non-well-moded program from Ex. 3 can be shown analogously
since finiteness of the initial DP problem can be proved in the same way. The
only difference is that we obtain g instead of g(Y) in the last inequality above.
9 We only consider filtered rules and dependency pairs. Thus, � and � are only used

to compare those parts of terms which remain finite for all instantiations in chains.
10 One can use the polynomial interpretation |Pin(t1, t2)| = |pin(t1, t2)| = |U1(t1, t2)| =

|u1(t1, t2)|= |u2(t1, t2, t3)|= |t1|, |pout(t1, t2)|= |t2|, |f(t1)|= |t1| + 1, and |g(t1)|=0.

Automated Termination Analysis for Logic Programs by Term Rewriting 191

As in Thm. 22 and 24, many other existing DP processors [16] can easily be
adapted to infinitary constructor rewriting as well. Finally, one can also use the
following processor to transform a DP problem (D, R, π) for infinitary construc-
tor rewriting into a DP problem (π(D), π(R), id) for ordinary rewriting. After-
wards, any existing DP processor for ordinary rewriting becomes applicable.11

Since any termination technique for TRSs can immediately be formulated as a
DP processor [16, Thm. 36], now any termination technique for ordinary rewrit-
ing can be directly used for infinitary constructor rewriting as well.

Theorem 26 (Argument Filtering Processor). Let Proc((D, R, π)) =
{(π(D), π(R), id)} where id(f) = {1, . . . , n} for all f/n. Then Proc is sound.

5 Experiments and Conclusion

In this paper, we developed a new transformation from logic programs P to TRSs
RP . To prove the termination of a class of queries for P , it is now sufficient
to analyze the termination behavior of RP when using infinitary constructor
rewriting. This approach is even sound for logic programming without occur
check. We showed how to adapt the DP framework of [4,16] from ordinary term
rewriting to infinitary constructor rewriting. Then the DP framework can be
used for termination proofs of RP and thus, for automated termination analysis
of P . Since any termination technique for TRSs can be formulated as a DP
processor [16], now any such technique can also be used for logic programs.

We integrated our approach in the termination tool AProVE [17] which im-
plements the DP framework. To evaluate our results, we tested AProVE against
three other representative termination tools for logic programming: TALP [29]
is the only other available tool based on transformational methods (it uses the
classical transformation [28] described in Sect. 1), whereas cTI [25] and Ter-
minWeb [10] are based on direct approaches. We ran the tools on a set of 296
examples in fully automatic mode.12 This set includes all logic programming
examples from the Termination Problem Data Base which is used in the annual
International Termination Competition13 and which contains several collections
provided by the developers of other tools. Moreover, we also included all exam-
ples from the experimental evaluation of [7]. However, to eliminate the influence
of the translation from Prolog to logic programs, we removed all examples that
use non-trivial built-in predicates or that are not definite logic programs after
ignoring the cut operator. Here, TALP succeeds on 163 examples, cTI proves ter-
mination of 167 examples, TerminWeb succeeds on 178 examples, and AProVE
verifies termination of 208 examples (including all where TALP is successful).

11 If (D, R, π) results from the transformation of a logic program, then for (π(D),
π(R), id) it is even sound to apply the existing DP processors for innermost rewriting
[16]. These processors are usually more powerful than those for ordinary rewriting.

12 We combined termsize and list-length norm for TerminWeb and allowed 5 iterations
before widening for cTI. Apart from that, we used the default settings of the tools.

13 For details, see http://www.lri.fr/~marche/termination-competition/

192 P. Schneider-Kamp et al.

The comparison of AProVE and TALP shows that our approach improves
significantly upon the previous transformational method that TALP is based on,
cf. Goals (A) and (B). In particular, TALP fails for all non-well-moded programs.

The comparison with cTI and TerminWeb demonstrates that our new trans-
formational approach is comparable in power to direct approaches. But there is
a substantial set of programs where AProVE succeeds and direct tools fail (cf.
Goal (C)) and there is also a substantial set of examples where direct tools suc-
ceed and AProVE fails. More precisely, AProVE succeeds on 57 examples where
cTI fails and on 46 examples where TerminWeb fails. On the other hand, there
are 16 examples where cTI succeeds whereas AProVE cannot prove termination
and there are also 16 examples where TerminWeb succeeds and AProVE fails.

Thus, transformational and direct approaches both have their advantages and
the most powerful solution would be to combine direct tools like cTI or Termin-
Web with a transformational prover like AProVE which is based on the con-
tributions of this paper. This also indicates that it is indeed beneficial to use
termination techniques from TRSs for logic programs as well. To run AProVE,
for details on our experiments, to access our collection of examples, and for a
discussion on the limitations14 of our approach and its implementation, we refer
to http://aprove.informatik.rwth-aachen.de/eval/LP/

Acknowledgements. We thank M. Codish, D. De Schreye, and F. Mesnard for
helpful comments and R. Bagnara and S. Genaim for help with the experiments.

References

1. G. Aguzzi and U. Modigliani. Proving termination of logic programs by transform-
ing them into equivalent term rewriting systems. In Proc. 13th FST & TCS, LNCS
761, pages 114–124, 1993.

2. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.
3. K. R. Apt and S. Etalle. On the unification free Prolog programs. In Proc. 18th

MFCS, LNCS 711, pages 1–19, 1993.

4. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

5. T. Arts and H. Zantema. Termination of logic programs using semantic unification.
In Proc. 5th LOPSTR, LNCS 1048, pages 219–233, 1995.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.

7. M. Bruynooghe, M. Codish, J. Gallagher, S. Genaim, and W. Vanhoof. Termina-
tion analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems, 2006. To appear.

14 Our approach could fail for 3 reasons: (1) The transformation of Thm. 14 could fail,
i.e., there could be a logic program which is terminating for the set of queries, but not
all corresponding terms are terminating in the transformed TRS. We do not know
such examples and it could be that this step is indeed complete. (2) The approach via
dependency pairs (Thm. 18) can fail to prove termination of the transformed TRS.
(3) Our implementation can fail to prove finiteness of the resulting DP problem from
Thm. 18. On the website, we give examples for Failures (2) and (3).

Automated Termination Analysis for Logic Programs by Term Rewriting 193

8. M. Chtourou and M. Rusinowitch. Méthode transformationelle pour la preuve de
terminaison des programmes logiques. Unpublished manuscript, 1993.

9. M. Codish, V. Lagoon, and P. Stuckey. Testing for termination with monotonicity
constraints. In Proc. 21st ICLP, LNCS 3668, pages 326–340, 2005.

10. M. Codish and C. Taboch. A semantic basis for termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

11. A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S. Tärnlund, editors,
Logic Programming. Academic Press, 1982.

12. D. De Schreye and S. Decorte. Termination of logic programs: The never-ending
story. Journal of Logic Programming, 19&20:199–260, 1994.

13. D. De Schreye and A. Serebrenik. Acceptability with general orderings. In Com-
putational Logic. Logic Prog. and Beyond., LNCS 2407, pages 187–210, 2002.

14. N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3:69–116, 1987.
15. H. Ganzinger and U. Waldmann. Termination proofs of well-moded logic programs

via conditional rewrite systems. Proc. 3rd CTRS, LNCS 656, pages 216–222, 1993.
16. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:

Combining techniques for automated termination proofs. In Proc. 11th LPAR,
LNAI 3452, pages 301–331, 2005.

17. J. Giesl, P. Schneider-Kamp, R. Thiemann. AProVE 1.2: Automatic termination
proofs in the DP framework. In Proc. 3rd IJCAR, LNAI 4130, pp. 281–286, 2006.

18. G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. PhD, 1976.
19. M. Krishna Rao, D. Kapur, and R. Shyamasundar. Transformational methodology

for proving termination of logic programs. J. Log. Prog., 34(1):1–42, 1998.
20. V. Lagoon, F. Mesnard, and P. J. Stuckey. Termination analysis with types is more

accurate. In Proc. 19th ICLP, LNCS 2916, pages 254–268, 2003.
21. M. Leuschel and M. H. Sørensen. Redundant argument filtering of logic programs.

In Proc. 6th LOPSTR, LNCS 1207, pages 83–103, 1996.
22. N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. TermiLog: A system for checking ter-

mination of queries to logic programs. Proc. 9th CAV, LNCS 1254, p. 444-447, 1997.
23. M. Marchiori. Logic programs as term rewriting systems. In Proc. 4th ALP, LNCS

850, pages 223–241, 1994.
24. M. Marchiori. Proving existential termination of normal logic programs. In Proc.

5th AMAST, LNCS 1101, pages 375–390, 1996.
25. F. Mesnard and R. Bagnara. cTI: A constraint-based termination inference tool

for ISO-Prolog. Theory and Practice of Logic Programming, 5(1&2):243–257, 2005.
26. F. Mesnard and S. Ruggieri. On proving left termination of constraint logic pro-

grams. ACM Transaction on Computational Logic, 4(2):207–259, 2003.
27. M. T. Nguyen and D. De Schreye. Polynomial interpretations as a basis for termi-

nation analysis of logic programs. Proc. 21. ICLP, LNCS 3668, p.311-325, 2005.
28. E. Ohlebusch. Termination of logic programs: Transformational methods revisited.

Appl. Algebra in Engineering, Communication and Computing, 12:73–116, 2001.
29. E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination analysis

of logic programs. In Proc. 11th RTA, LNCS 1833, pages 270–273, 2000.
30. F. van Raamsdonk. Translating logic programs into conditional rewriting systems.

In Proc. 14th ICLP, pages 168–182. MIT Press, 1997.
31. A. Serebrenik and D. De Schreye. Proving termination with adornments. In Proc.

13th LOPSTR, LNCS 3018, pages 108–109, 2003.
32. A. Serebrenik and D. De Schreye. Inference of termination conditions for numerical

loops in Prolog. Theory and Practice of Logic Programming, 4:719–751, 2004.
33. J.-G. Smaus. Termination of logic programs using various dynamic selection rules.

In Proc. 20th ICLP, LNCS 3132, pages 43–57, 2004.

Detecting Non-termination of Term Rewriting

Systems Using an Unfolding Operator

Étienne Payet

IREMIA - Université de la Réunion, France
epayet@univ-reunion.fr

Abstract. In this paper, we present an approach to non-termination
of term rewriting systems inspired by a technique that was designed in
the context of logic programming. Our method is based on a classical
unfolding operation together with semi-unification and is independent of
a particular reduction strategy. We also describe a technique to reduce
the explosion of rules caused by the unfolding process. The analyser
that we have implemented is able to solve most of the non-terminating
examples in the Termination Problem Data Base.

1 Introduction

Proving termination of a term rewriting system (TRS) R consists in proving that
every term only has finite rewritings with respect to R (a particular reduction
strategy may be used). Termination of TRS’s has been subject to an intensive
research (see e.g. [10,23] for surveys) that has given rise to several automatic
proof methods. One of the most powerful is the dependency pair approach [5],
recently extended to the dependency pair framework [14,15], implemented in
the termination prover AProVE [16]. In comparison, the dual problem, i.e. non-
termination, has hardly been studied. It consists in proving that there exists a
term that loops, i.e. that leads to an infinite rewriting. Notice that designing
non-termination provers is an important issue as this kind of tools can be used
to disprove termination, i.e. to complement any termination prover. In [15], the
authors use the dependency pair framework to combine termination and non-
termination analyses. In order to detect non-terminating TRS’s, they apply for-
ward or backward narrowing to dependency pairs until they find two terms that
semi-unify. Some heuristics are used to select forward or backward narrowing
and to get a finite search space.

Termination has also been widely studied in the context of logic programming.
One of the approaches that have been introduced so far consists in inferring
terminating classes of queries, i.e. classes where every element only has finite
left-derivations with respect to a given logic program. Several automatic tools
performing termination inference have been designed, e.g. TerminWeb [13] or
cTI [19]. But as for term rewriting, there are only a few papers about the dual
problem, i.e. inference of non-terminating classes of queries (classes where there

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 194–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Detecting Non-termination of Term Rewriting Systems 195

exists an element that loops, i.e. that has an infinite left-derivation). In [21,20],
the authors introduce the unfold & infer approach to infer non-terminating
classes of queries. First, they unfold the logic program P of interest to a binary
logic program BP using the unfolding operator of [12]. By the results in [9], a
query loops with respect to BP if and only if it loops with respect to P . Then,
to infer looping queries, they consider every rule A← B in BP ; if the body B is
more general (up to some computed neutral argument positions) than the head
A, they conclude that A loops with respect to BP , hence with respect to P .

On the theoretical level, it can be noticed that the unfold & infer approach also
works with TRS’s. Indeed, there exists some techniques to unfold a TRS R to a
TRS U such that if a term loops with respect to U then it also loops with respect
to R (see for instance [7,22,3]). Moreover, semi-unification is a powerful tool for
detecting looping terms: if there is a rule l → r in U where lθ1θ2 = r′θ1 for some
substitutions θ1 and θ2 and some subterm r′ of r, then we can deduce that lθ1
loops with respect to U , hence with respect to R. Notice that the subsumption
order is different from that used in logic programming, where the body has to
be more general than the head, while here, lθ1 has to be more general than r′θ1.
This is due to definition of the operational semantics of both paradigms.

On the practical level, however, it is not known how the unfold & infer ap-
proach behaves in the context of term rewriting. In this paper, we present our
experiments on using the narrowing-based unfolding operation described in [3]
together with semi-unification to prove non-termination of TRS’s. The first anal-
ysis that we describe is very simple but leads to an explosion of the number of
generated rules. Hence, we refine it into a second one by providing a mechanism
that allows us to eliminate some useless rules produced by the unfolding process.
The simple and refined analyses are powerful enough to solve most of the non-
terminating examples in the Termination Problem Data Base (TPDB) [25], but
the refined one runs much faster. We insist that the results we present herein
are independent of any particular reduction strategy. This does not mean that
our method is parametric in a reduction strategy but that we always consider
the whole rewrite relation and not subsets of it.

Our motivations are the following. We want to design a simple formalism for
proving non-termination of TRS’s (the unfold & infer theory is very simple and
clear, as presented above). We do not want any heutistics as in [15]. Moreover, we
want another illustration of the unfold & infer technique which was introduced
in the context of logic programming. Such an illustration would provide a con-
nection between the paradigm of logic programming and that of term rewriting,
by a transfer of a logic programming technique to term rewriting.

The paper is organized as follows. First, in Sect. 2, we give the basic definitions
and fix the notations. Then, in Sect. 3 and Sect. 4, we present a non-termination
analysis based on an existing unfolding operation together with semi-unification.
In Sect. 5, we refine this analysis and in Sect. 6, we present an implementation
and some experiments using TRS’s from the TPDB. Finally, Sect. 7 discusses
related works and concludes the paper.

196 É. Payet

2 Preliminaries

We briefly present the basic concepts of term rewriting (details can be found e.g.
in [6]) and the notations that we use in the paper.

We let N denote the set of non-negative integers and, for any n ∈ N, [1, n]
denotes the set of all the integers i such that 1 ≤ i ≤ n (if n = 0, then [1, n] = ∅).

From now on, we fix a finite signature F , i.e. a finite set of function symbols
where every f ∈ F has a unique arity, which is the number of its arguments. We
write f/n ∈ F to denote that f is an element of F whose arity is n ≥ 0. We also
fix an infinite countable set V of variables with F ∩ V = ∅. The set of terms
T (F , V) is defined as the smallest set such that:

– V ⊆ T (F , V),
– if f/n ∈ F and t1, . . . , tn ∈ T (F , V) then f(t1, . . . , tn) ∈ T (F , V) .

For t ∈ T (F , V), root(t) denotes the root symbol of t and is defined by:

root(t) =
{

⊥ if t ∈ V ,
f if t = f(t1, . . . , tn)

where ⊥ is a special symbol not occurring in F ∪ V . We let Var(t) denote the
set of variables occurring in t. The set of positions in t, denoted by Pos(t), is
defined as:

Pos(t) =
{

{ε} if t ∈ V ,
{ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)} if t = f(t1, . . . , tn) .

When p ∈ Pos(t), we write t|p to denote the subterm of t at position p, with
t|ε = t. We write t[p ← s] to denote the term obtained from t by replacing t|p
with a term s. We say that p is a non-variable position of t if t|p is not a variable.
The set of non-variable positions of t is denoted by NPos(t).

We write substitutions as sets of the form {x1/t1, . . . , xn/tn} denoting that
for each i ∈ [1, n], variable xi is mapped to term ti (note that xi may occur in
ti). Applying a substitution θ to an object O is denoted by Oθ. The composition
of substitutions θ and η is denoted by θη and is the substitution that maps
any variable x to (xθ)η. A term t is more general than a term t′ when there
exists a substitution θ such that t′ = tθ. A substitution θ is more general than a
substitution η when η = θτ for some substitution τ . A renaming is a substitution
that is a 1-1 and onto mapping from its domain to itself. We say that a term t
is a variant of a term t′ if there exists a renaming γ such that t′ = tγ.

Two terms t and t′ unify when there exists a substitution θ such that tθ = t′θ.
Then we say that θ is a unifier of t and t′. A most general unifier of t and t′ is a
unifier of t and t′ that is more general than all unifiers of t and t′. We let mgu(t, t′)
denote the set of most general unifiers of t and t′. We say that t semi-unifies
with t′ if there exists some substitutions θ and θ′ such that tθθ′ = t′θ.

A term rewriting system (TRS) over F is a set R ⊆ T (F , V) × T (F , V) of
rewrite rules, every element l → r of which is such that l �∈ V and Var(r) ⊆
Var(l). For every s and t in T (F , V), we write s →

R
t if there is a rewrite rule

Detecting Non-termination of Term Rewriting Systems 197

l → r in R, a substitution θ and a position p in Pos(s) such that s|p = lθ and
t = s[p ← rθ]. We let +→

R
(resp. ∗→

R
) denote the transitive (resp. reflexive and

transitive) closure of →
R

. In this paper, we only consider finite TRS’s. We say

that a term t loops with respect to (w.r.t.) R when there exists infinitely many
terms t1, t2, . . . such that t →

R
t1 →

R
t2 →

R
· · · . We say that R is non-terminating

when there exists a term that loops with respect to R.

3 Unfolding a TRS

Usually, unfolding a rule of a term rewriting system consists in performing two
elementary transformations: instantiation and unfolding (see e.g. [7,22]). These
transformations can be combined into a single one using narrowing:

Definition 1 (Unfolding [3]). Let R be a TRS and l → r ∈ R. If for some
l′ → r′ ∈ R renamed with fresh variables and for some non-variable position p of
r we have θ ∈ mgu(r|p, l′), then (l → r[p ← r′])θ is an unfolding of l → r.

The non-termination analysis presented in this paper proceeds by iteratively
unfolding sets of rules using a fixed TRS. This is why we rephrase Definition 1
above in the form of an unfolding operator that takes two sets of rules as input:
the rules X to be unfolded and the rules R that are used to unfold:

Definition 2 (Unfolding operator). For every TRS R, the unfolding oper-
ator TR is defined as: for any set X of rewrite rules,

TR(X) =

⎧
⎪⎪⎨
⎪⎪⎩

(l → r[p ← r′])θ

l → r ∈ X
p ∈ NPos(r)
l′ → r′ ∈ R renamed with fresh variables
θ ∈ mgu(r|p, l′)

⎫
⎪⎪⎬
⎪⎪⎭

.

Notice that this operator is not monotone. As in [2], the unfolding sequence
starting from R is

TR ↑ 0 = R
TR ↑ (n + 1) = TR(TR ↑ n) ∀n ∈ N .

Example 1 (Giesl, Thiemann and Schneider-Kamp [15], Example 28). Consider

R =
{
f(x, y, z)→ g(x, y, z), g(s(x), y, z)→ f(z, s(y), z)

}
.

We have:

– TR ↑ 0 = R.
– TR ↑ 1 = TR(TR ↑ 0). If we take f(x, y, z)→ g(x, y, z) in TR ↑ 0, p = ε,

l′ → r′ as g(s(x1), y1, z1)→ f(z1, s(y1), z1) in R, θ = {x/s(x1), y/y1, z/z1}, we
get the rule

f(s(x1), y1, z1)→ f(z1, s(y1), z1)

as an element of TR ↑ 1. ��

198 É. Payet

Example 2 (Toyama [24]). Consider:

R =
{
f(0, 1, x)→ f(x, x, x), g(x, y)→ x, g(x, y)→ y

}
.

We have:

– TR ↑ 0 = R.
– TR ↑ 1 = TR(TR ↑ 0). Notice that the rules g(x, y)→ x and g(x, y)→ y

in TR ↑ 0 cannot be unfolded because there are no non-variable positions
in the right-hand side. The rule f(0, 1, x)→ f(x, x, x) cannot be unfolded
too because f(x, x, x), the only non-variable subterm in the right-hand side,
cannot be unified with any variant of a left-hand side. So, TR ↑ 1 = ∅. ��

In Sect. 4 below, in order to prove non-termination, we consider the rules l → r
in the unfolding sequence. If l semi-unifies with a subterm of r, then we deduce
that R is non-terminating. Notice that using this mechanism directly, one gets
a very limited tool that is unable to solve the smallest examples.

Example 3 (Example 2 continued). R is known to be non-terminating (for in-
stance, f(0, 1, g(0, 1)) loops). Note that TR ↑ 0 = R and for each n ∈ N \ {0},
TR ↑ n = ∅. As no left-hand side in R semi-unifies with a subterm of the corre-
sponding right-hand side, we cannot conclude. ��
In order to get a practical analyser, a solution consists in pre-processing the TRS
R of interest by replacing every variable with the left-hand side of each rule of
R. The intuition is that as a variable represents any term, it stands in particular
for a term that can be rewritten.

Definition 3 (Augmented TRS). Let R be a TRS. The augmented TRS R+

is defined modulo renaming as follows: R+ consists of all the rules (l → r)θ where
l → r is an element of R and θ is a substitution of the form {x1/t1, . . . , xn/tn}
(with n ∈ N) such that {x1, . . . , xn} ⊆ Var(l) and for each i ∈ [1, n], ti is a
variant of a left-hand side in R and is variable disjoint from l → r and from
every tj, j ∈ [1, n] \ {i}. Note that θ can be empty (take n = 0).

Example 4 (Example 2 continued). The rule f(0, 1, x)→ f(x, x, x) only contains
variable x. Hence, we consider the substitutions

θ0 = ∅, θ1 = {x/f(0, 1, x1)} and θ2 = {x/g(x1, y1)}

and apply them to f(0, 1, x)→ f(x, x, x). This leads, respectively, to:

f(0, 1, x) → f(x, x, x)
f(0, 1, f(0, 1, x1)) → f(f(0, 1, x1), f(0, 1, x1), f(0, 1, x1))
f(0, 1, g(x1, y1)) → f(g(x1, y1), g(x1, y1), g(x1, y1)) .

The variables in rules g(x, y)→ x and g(x, y)→ y are x and y. So, we consider
the above substitutions θ0, θ1, θ2 together with

θ3 = {y/f(0, 1, x1)} θ4 = {y/g(x1, y1)}
θ5 = {x/f(0, 1, x1), y/f(0, 1, x2)} θ6 = {x/f(0, 1, x1), y/g(x2, y2)}
θ7 = {x/g(x1, y1), y/f(0, 1, x2)} θ8 = {x/g(x1, y1), y/g(x2, y2)}

Detecting Non-termination of Term Rewriting Systems 199

that lead to (the rules on the left are obtained from g(x, y)→ x and those on the
right from g(x, y)→ y):

θ0 : g(x, y) → x g(x, y) → y
θ1 : g(f(0, 1, x1), y) → f(0, 1, x1) g(f(0, 1, x1), y) → y
θ2 : g(g(x1, y1), y) → g(x1, y1) g(g(x1, y1), y) → y
...

...
...

Now, we can compute the unfolding sequence starting from R+ instead of R.
From the rule

f(0, 1, g(x1, y1))→ f(g(x1, y1), g(x1, y1), g(x1, y1))

computed above, using position 1 of the right-hand side and g(x2, y2)→ x2 in
R, we get f(0, 1, g(x1, y1))→ f(x1, g(x1, y1), g(x1, y1)) as an element of TR ↑ 1.
Then, from this new rule, using position 2 of the right-hand side together with
g(x3, y3)→ y3 in R, we get f(0, 1, g(x1, y1))→ f(x1, y1, g(x1, y1)) as an element
of TR ↑ 2. As f(0, 1, g(x1, y1))θ1θ2 = f(x1, y1, g(x1, y1))θ1 for θ1 = {x1/0, y1/1}
and θ2 = ∅, we conclude that R is non-terminating. ��
Following the intuitions of the preceding example, we give these new definitions:

Definition 4 (Unfolding semantics). The augmented unfolding sequence of
R is

TR ↑ 0 = R+

TR ↑ (n + 1) = TR(TR ↑ n) ∀n ∈ N .

The unfolding semantics unf (R) of R is the limit of the unfolding process de-
scribed in Definition 2, starting from R+:

unf (R) =
⋃
n∈N

TR ↑ n .

Notice that the least fixpoint of TR is the empty set. Moreover, unf (R) is not
a fixpoint of TR. This is because R+ ⊆ unf (R) (because TR ↑ 0 = R+) but we
do not necessarily have R+ ⊆ TR(unf (R)) because

TR(unf (R)) = TR(
⋃
n∈N

TR ↑ n) =
⋃
n∈N

TR(TR ↑ n) =
⋃

n∈N\{0}
TR ↑ n .

In the logic programming framework, every clause H ←B of the binary un-
foldings specifies that a call to H necessarily leads to a call to B. In the context
of term rewriting, we get the following counterpart:

Proposition 1. Let R be a TRS. If l → r ∈ unf (R) then l
+→
R

r.

This result allows us to prove that the unfoldings exhibit the termination prop-
erties of a term rewriting system:

Theorem 1. Let R be a TRS and t be a term. Then, t loops w.r.t. R if and
only if t loops w.r.t. unf (R).

200 É. Payet

4 Inferring Looping Terms

The unfoldings of a TRS can be used to infer terms that loop, hence to prove non-
termination. It suffices to add semi-unification [18] to Proposition 1. Notice that
semi-unification encompasses both matching and unification. A polynomial-time
algorithm for semi-unification can be found in [17].

Theorem 2. Let R be a TRS. Suppose that for l → r ∈ unf (R) there is a sub-
term r′ of r such that lθ1θ2 = r′θ1 for some substitutions θ1 and θ2. Then, lθ1
loops w.r.t. R.

In order to use Theorem 2 as a practical tool, one can for instance fix a maximum
number of iterations of the unfolding operator.

Example 5 (Example 4 continued). f(0, 1, g(x1, y1))→ f(x1, y1, g(x1, y1)) is an
element of TR ↑ 2 with f(0, 1, g(x1, y1))θ1θ2 = f(x1, y1, g(x1, y1))θ1 for θ1 =
{x1/0, y1/1} and θ2 = ∅. Hence, f(0, 1, g(x1, y1))θ1 = f(0, 1, g(0, 1)) loops with
respect to R. ��

Example 6 (Example 1 continued). f(s(x1), y1, z1)→ f(z1, s(y1), z1) is an element
of TR ↑ 1 with f(s(x1), y1, z1)θ1θ2 = f(z1, s(y1), z1)θ1 for θ1 = {z1/s(x1)} and
θ2 = {y1/s(y1)}. Hence, f(s(x1), y1, z1)θ1 = f(s(x1), y1, s(x1)) loops with respect
to R. ��

Example 7 (file Rubio-inn/test76.trs in the TPDB). Consider

R =
{

f(0, s(0), x)→ f(x, +(x, x), x), +(x, s(y))→ s(+(x, y)),
+(x, 0)→x, g(x, y)→ x, g(x, y)→ y

}
.

The augmented TRS R+ contains the rule

R0 = f(0, s(0), g(x0, y0))→ f(g(x0, y0), +(g(x0, y0), g(x0, y0)), g(x0, y0))

obtained from f(0, s(0), x)→ f(x, +(x, x), x) and substitution {x/g(x0, y0)}.

– If we take position p = 2.2 in the right-hand side of R0, g(x1, y1)→ x1 in R
and θ = {x1/x0, y1/y0}, we get the rule

R1 = f(0, s(0), g(x0, y0))→ f(g(x0, y0), +(g(x0, y0), x0), g(x0, y0))

as an element of TR ↑ 1.
– If we take position p = 2 in the right-hand side of R1, +(x2, 0)→x2 in R

and θ = {x0/0, x2/g(0, y0)}, we get the rule

R2 = f(0, s(0), g(0, y0))→ f(g(0, y0), g(0, y0), g(0, y0))

as an element of TR ↑ 2.
– If we take position p = 1 in the right-hand side of R2, g(x3, y3)→ x3 in R

and θ = {x3/0, y3/y0}, we get the rule

R3 = f(0, s(0), g(0, y0))→ f(0, g(0, y0), g(0, y0))

as an element of TR ↑ 3.

Detecting Non-termination of Term Rewriting Systems 201

– If we take position p = 2 in the right-hand side of R3, g(x4, y4)→ y4 in R
and θ = {x4/0, y4/y0}, we get the rule

R4 = f(0, s(0), g(0, y0))→ f(0, y0, g(0, y0))

as an element of TR ↑ 4.

Notice that the left-hand side f(0, s(0), g(0, y0)) of R4 semi-unifies with the
right-hand side f(0, y0, g(0, y0)) for θ1 = {y0/s(0)} and θ2 = ∅. Consequently,
f(0, s(0), g(0, y0))θ1 = f(0, s(0), g(0, s(0))) loops with respect to R. ��

5 Eliminating Useless Rules

The operator of Definition 2 produces many useless rules, i.e. rules that cannot
be unfolded to l → r where l semi-unifies with a subterm of r.

Example 8 (Example 4 continued). The augmented TRS R+ contains the rule

f(0, 1, f(0, 1, x1))→ f(f(0, 1, x1), f(0, 1, x1), f(0, 1, x1)) .

The left-hand side does not semi-unify with any subterm of the right-hand side.
Applying TR to this rule, one gets:

f(0, 1, f(0, 1, x1)) → f(f(x1, x1, x1), f(0, 1, x1), f(0, 1, x1))
f(0, 1, f(0, 1, x1)) → f(f(0, 1, x1), f(x1, x1, x1), f(0, 1, x1))
f(0, 1, f(0, 1, x1)) → f(f(0, 1, x1), f(0, 1, x1), f(x1, x1, x1)) .

None of these new rules satisfies the semi-unification criterion. Applying TR
again, one gets:

f(0, 1, f(0, 1, x1)) → f(f(x1, x1, x1), f(x1, x1, x1), f(0, 1, x1))
f(0, 1, f(0, 1, x1)) → f(f(x1, x1, x1), f(0, 1, x1), f(x1, x1, x1))
f(0, 1, f(0, 1, x1)) → f(f(0, 1, x1), f(x1, x1, x1), f(x1, x1, x1))
f(0, 1, f(0, 1, x1)) → f(f(x1, x1, x1), f(0, 1, x1), f(x1, x1, x1)) .

None of these rules satisfies the semi-unification criterion. Finally, unfolding one
more time leads to:

f(0, 1, f(0, 1, x1))→ f(f(x1, x1, x1), f(x1, x1, x1), f(x1, x1, x1)),

a rule that does not satisfy the semi-unification criterion and cannot be unfolded.
��

5.1 Abstraction

The analysis described in the preceding sections leads to an explosion of the
number of generated rules (this is illustrated by the results of Sect. 6). A solution
to reduce this explosion consists in designing a mechanism that detects, as soon
as possible, rules that are useless for proving non-termination. We can also notice
that the semi-unification criterion we introduced before consists in checking, for
each subterm of a right-hand side, that the corresponding left-hand side semi-
unifies. One disadvantage of this technique is that a same semi-unification test
may be performed several times.

202 É. Payet

Example 9 (Example 8 continued). The left-hand side of each rule computed
in Example 8 is f(0, 1, f(0, 1, x1)). Moreover, each rule, except the last one, has
f(0, 1, x1) as a subterm of the right-hand side. Consequently, semi-unification of
f(0, 1, f(0, 1, x1)) with f(0, 1, x1) is checked several times. ��

In order to avoid any repetition of the same semi-unification test, one solution
consists in making those tests explicit by “flattening” each rule l → r into pairs
of terms (l, r′) where r′ is a subterm of r. Then, semi-unification test on a pair
(l, r′) is only performed at the root position of r′.

Following these intuitions, we introduce a new domain.

Definition 5 (Abstract domain). An abstract TRS is a finite set, each el-
ement of which is either a pair of terms or true or false. The abstract domain
P# is the set of all abstract TRS’s.

The special element true denotes any pair of terms (l, r) such that l semi-unifies
with r. The special element false corresponds to any non-useful pair of terms:

Definition 6 (Useful pair). Let R be a TRS. A pair (l, r) of terms is useful
for R when it can be unfolded, using the rules of R, to a pair (l1, r1) where l1
semi-unifies with r1.

The set P# is a sort of abstract domain, the corresponding concrete domain of
which is the set P � of TRS’s as defined in Sect. 2. The abstraction function that
transforms a concrete TRS to an abstract one is defined as follows.

Definition 7 (Abstraction function). The abstraction function α maps ev-
ery element R of P � to an element of P# as follows:

α(R) =
⋃

l→ r∈R

{
αR(l, r|p)

∣∣ p ∈ Pos(r)
}

where, for any pair (l, r) of terms,

αR(l, r) =

⎧
⎨
⎩

if l semi-unifies with r then true
else if (l, r) is useful for R then (l, r)
else false

The operator that we use to unfold abstract TRS’s is defined as follows.

Definition 8 (Abstract unfolding operator). Let R be a concrete TRS. For
any abstract TRS X#, if true ∈ X# then T #

R (X#) = {true}, otherwise

T #
R (X#) =

⎧
⎪⎪⎨
⎪⎪⎩

αR(lθ, r[p ← r′]θ)

(l, r) ∈ X#

p ∈ NPos(r)
l′ → r′ ∈ R renamed with fresh variables
θ ∈ mgu(r|p, l′)

⎫
⎪⎪⎬
⎪⎪⎭

This operator allows us to define an abstract semantics.

Detecting Non-termination of Term Rewriting Systems 203

Definition 9 (Abstract unfolding semantics). Let R be a concrete TRS.
The abstract unfolding sequence of R is

T #
R ↑ 0 = α(R+)

T #
R ↑ (n + 1) = T #

R (T #
R ↑ n) ∀n ∈ N .

The abstract unfolding semantics unf #(R) of R is the limit of the unfolding
process described in Definition 8:

unf #(R) =
⋃
n∈N

T #
R ↑ n .

The relevance of a non-termination analysis based on these notions is clarified
by the following correctness result.

Proposition 2 (Correctness). Let R be a concrete TRS. If true ∈ unf #(R),
then R is non-terminating.

5.2 Detecting Useful Pairs

The intuitions and results of this section rely on the following observation.

Lemma 1. If (l, r) is a useful pair of terms where l is not a variable, then (l, r)
can be unfolded to a pair (l1, r1) such that root(l1) = root(l) and root(r1) ∈
{root(l), ⊥}.

Consider a useful pair of terms (l, r). Then, l semi-unifies with r or (l, r) can
be unfolded, in at least one step, to (l1, r1) such that l1 semi-unifies with r1.
By Definition 2, the latter case corresponds to narrowing r to r1 in at least one
step and then in applying to l the computed substitution θ to get l1. As there
is at least one step of narrowing, r cannot be a variable. Hence, r has the form
f(t1, . . . , tn). Let us consider the possible forms of the narrowing from r to r1.

1. There does not exist a step of the narrowing that is performed at the root
position, i.e. r1 has the form f(t′1, . . . , t′n) and, roughly, each ti is narrowed
to t′i, in 0 or more steps.

2. There exists a step of the narrowing that is performed at the root position,
i.e. (roughly) first each ti is narrowed (in 0 or more steps) to a term t′i
then f(t′1, . . . , t

′
n) is narrowed at root position using a rule f(s1, . . . , sn)→ · · ·

whose right-hand side further leads to r1.

Consider the first case above when l is not a variable. As root(r1) �= ⊥, by
Lemma 1 root(r1) = root(l) so l has the form f(s1, . . . , sn). Hence, by Lemma 1
again, l1 has the form f(s′1, . . . , s′n). Notice that for each i ∈ [1, n], ti is narrowed
to t′i and s′i semi-unifies with t′i. Consequently, (si, ti) is a useful pair.

Now, consider the second case above, again when l is not a variable. We note
that the following result holds.

204 É. Payet

Lemma 2. Let f(t1, . . . , tn) be a term where each ti can be narrowed to t′i, in 0
or more steps. Suppose that for a term f(s1, . . . , sn), we have

mgu(f(t′1, . . . , t
′
n), f(s1, . . . , sn) renamed with fresh variables) �= ∅ .

Then, each ti unifies with any variable disjoint variant of si or can be narrowed
in at least one step to a term whose root symbol is that of si or ⊥.

Moreover, the right-hand side of the rule f(s1, . . . , sn)→ · · · has to lead to r1,
i.e., by Lemma 1, to a term whose root symbol is that of l or ⊥. This corresponds
to a path in the graph of functional dependencies that we define as follows, in
the style of [4,1].

Definition 10 (Graph of functional dependencies). The graph of func-
tional dependencies induced by a concrete TRS R is denoted by GR. The follow-
ing transformation rules define the edges E and the initial vertices I of GR:

l → r ∈ R
〈R, E, I〉 �→ 〈R \ {l → r}, E ∪ {l → root(r)}, I ∪ {l}〉

l → f ∈ E ∧ l′ → g ∈ E ∧ l ∈ I ∧ l′ ∈ I ∧ f �∈ I ∧ g �∈ I ∧ (root(l′) = f ∨ f = ⊥)
〈R, E, I〉 �→ 〈R, E ∪ {f → l′}, I〉

To build GR, the algorithm starts with 〈R, ∅, ∅〉 and applies the transformation
rules as long as they add new arrows.

Example 10. Consider Toyama’s example again:

R =
{
f(0, 1, x)→ f(x, x, x), g(x, y)→ x, g(x, y)→ y

}
.

The graph GR can be depicted as follows:

g(x, y) ←→ ⊥ −→ f(0, 1, x) ←→ f

where the boxes correspond to the initial vertices. ��

Notice that the initial vertices of GR are the left-hand sides of the rules of R.
Hence, a path in GR from an initial vertex s to a symbol f indicates that any
term s′ such that mgu(s, s′ renamed with fresh variables) �= ∅ may be narrowed
(using the rules of R) to a term t with root(t) = f. The first step of such a
narrowing is performed at the root position of s′. We synthesize case 2 above by
the following definition.

Definition 11 (The transition relation +→
GR

). Let GR be the graph of func-

tional dependencies of a concrete TRS R, f(t1, . . . , tn) be a term and g be a
function symbol or ⊥. We write f(t1, . . . , tn) +→

GR
g if there exists a non-empty

path in GR from an initial vertex of the form f(s1, . . . , sn) to g and, for each
i ∈ [1, n], one of these conditions holds:

Detecting Non-termination of Term Rewriting Systems 205

– mgu(ti, si renamed with fresh variables) �= ∅,
– ti

+→
GR

root(si) or ti
+→
GR

⊥.

Example 11 (Example 10 continued). g(g(0, 0), 1) +→
GR

⊥ holds as there is a non-

empty path from g(x, y) to ⊥ and g(0, 0) +→
GR

⊥ (because there is a non-empty

path from g(x, y) to ⊥ and g(0, 0) unifies with g(x, y)) and 1 unifies with y. ��
Finally, we synthesize both cases 1 and 2 above as follows:

Definition 12 (The relation usefulR). For any concrete TRS R and any
terms l and r, we write usefulR(l, r) if one of these conditions holds:

– l semi-unifies with r,
– l = f(s1, . . . , sn), r = f(t1, . . . , tn) and, for each i ∈ [1, n], usefulR(si, ti),
– l = g(s1, . . . , sm), r = f(t1, . . . , tn) and r

+→
GR

g or r
+→
GR

⊥.

Note that in the third condition, we may have g/m = f/n.

This definition allows us to compute a superset of the set of useful pairs:

Proposition 3 (Completeness). Let R be a concrete TRS and (l, r) be a pair
of terms. If (l, r) is useful for R, then usefulR(l, r) holds.

In order to get a practical tool from the theory of Sect. 5.1, we use the relation
usefulR in function αR of Definition 7.

Example 12. Consider Toyama’s example. In R+, one can find the rule:

f(0, 1, f(0, 1, x1))→ f(f(0, 1, x1), f(0, 1, x1), f(0, 1, x1))

(see Example 4). Let l and r be the left and right-hand side of this rule, re-
spectively. Notice that l does not semi-unify with r, so the first condition of
Definition 12 is not satisfied. Let us try the second one. As the root symbols
of l and r are identical, we check if each argument of l is in relation with the
corresponding argument of r. This test fails for the first argument: we do not
have usefulR(0, f(0, 1, x1)) because 0 does not semi-unify with f(0, 1, x1) and in
GR there is no path from a vertex of the form f(. . .) to 0 or to ⊥. Finally, the
third condition of Definition 12 is not satisfied as well because neither r

+→
GR

f nor

r
+→
GR

⊥ holds. Hence, we do not have usefulR(l, r), so (l, r) is not useful for R
and we get αR(l, r) = false. Consequently, this pair will be eliminated. ��

6 Experimental Results

We have implemented two analysers, one performing concrete analyses as de-
scribed in Sect. 4 and the other performing abstract analyses as described in
Sect. 5. Both are written in C++ and are available at

www.univ-reunion.fr/~epayet/Research/TRS/TRSanalyses.html

206 É. Payet

Our analysers compute the concrete or abstract unfolding sequence until a user-
fixed maximum number of iterations is reached or a looping term is found.

Despite its name, the nontermin directory of the TPDB [25] contains subdi-
rectories with terminating TRS’s:

– in AG01, only #4.2.trs, #4.3.trs, #4.4.trs, #4.5.trs, #4.7.trs and
#4.12a.trs, #4.13.trs, #4.14.trs, #4.15.trs, #4.16.trs, #4.17.trs,
#4.18.trs, #4.19.trs are non-terminating;

– in cariboo, all the TRS’s are non-terminating except tricky1.trs;
– in CSR, all the TRS’s are non-terminating except Ex49 GM04.trs;
– in Rubio-inn, all the TRS’s are non-terminating except test830.trs.

We have run our analysers together with AProVE 1.2 on all the non-terminating
TRS’s in the nontermin directory. We have also run these programs on Exam-
ple 26, Example 26-2, Example 29, Example 34 and Example 40 of [5] and on
Example 28 and footnote 8 of [15]. We fixed a 2 minutes time limit. Using a Pow-
erPC G4, 1.25 GHz, 512 Mo DDR SDRAM, MacOS 10.4.6, we get the results in
Table 1. Timings are average over 5 runs. In column “gen” we have reported the
number of rules generated by the unfolding process. The abstract analyser runs

Table 1.

concrete analysis abstract analysis AProVE 1.2
directory

solved gen min:sec solved gen min:sec solved min:sec

AG01 12/13 31218 0:56 12/13 9471 0:41 11/13 3:00

cariboo 6/6 833 0:00 6/6 234 0:00 6/6 0:06

CSR 36/36 39937 2:03 36/36 128 0:00 36/36 1:26

HM 1/1 8 0:00 1/1 6 0:00 1/1 0:00

Rubio-inn 8/9 33436 2:04 8/9 19283 2:01 7/9 2:29

TRCSR 1/1 13 0:00 1/1 2 0:00 1/1 0:04

[5] 5/5 397 0:00 5/5 73 0:00 5/5 0:01

[15] 2/2 932 0:00 2/2 292 0:00 2/2 0:00

total 71/73 106774 5:03 71/73 29489 2:42 69/73 7:06

much faster than its counterparts. The best total score in column “solved” is
achieved by both the concrete and abstract analysers. As expected, the abstract
analyser produces much fewer rules than the concrete one.

The TRS #4.13.trs in subdirectory AG01 was given by Drosten [11]:

R =
{

f(0, 1, x)→ f(x, x, x), f(x, y, z)→ 2, 0 → 2, 1 → 2,
g(x, x, y)→ y, g(x, y, y)→ x

}
.

AProVE answers “maybe” within the time limit when run on this TRS. Both
unf (R) and unf #(R) are finite (for each n ≥ 11, TR ↑ n = ∅ and for each
n ≥ 5, T #

R ↑ n = ∅). These sets are computed by our analysers before the time

Detecting Non-termination of Term Rewriting Systems 207

limit is reached. No rule in unf (R) satisfies the semi-unification criterion and
true �∈ unf #(R). So, this TRS is an example of failure of our method that is not
caused by the explosion of the unfolding process.

7 Conclusion

We have presented an automatic technique for proving non-termination of TRS’s
independently of a particular reduction strategy. It is based on the “unfold &
infer” mechanism that was designed in the context of logic programming, thus
establishing a connection between both paradigms. We have also described a
method for eliminating useless rules to reduce the search space. Notice that we
did not implement such a method in our logic programming non-termination
tool as unfolding in this context is less explosive than with TRS’s (because the
particular left-to-right selection rule is classically considered). We have also run
our analyser on TRS’s from the TPDB; the results are very encouraging as our
tool is able to solve 71 over 73 non-terminating examples.

In comparison, the AProVE system solves 69 examples and is slower. The
technique implemented in AProVE consists in narrowing dependency pairs until
two terms that semi-unify are found. Narrowing operations are performed either
directly with the rules of the TRS of interest (forward narrowing) or with the
reversed rules (backward narrowing). To select forward or backward narrowing,
heuristics are introduced: if the TRS is right and not left-linear, then forward
narrowing is performed, otherwise backward narrowing is used. To obtain a finite
search space, an upper bound is used on the number of times that a rule can
be applied for narrowing. An approximation of the graph of dependency pairs is
also constructed and AProVE processes the strongly connected components of
this graph separately.

Our approach directly works with the rules (not the dependency pairs) and
forward narrowing is sufficient as we pre-process the TRS’s. We also do not need
heuristics and in order to get a finite search space, we introduce a user-fixed max-
imum number of iterations. The graph that we use is not a graph of dependency
pairs and is closely related to that of [4,1]. In these papers, the authors define
a framework for the static analysis of the unsatisfiability of equation sets. This
framework uses a loop-checking technique based on a graph of functional depen-
dencies. Notice that in order to eliminate useless rules within our approach, an
idea would consist in using the results of [4,1] as we are also interested in a form
of satisfiability: is a pair of terms (l, r) unfoldable to (l′, r′) such that l′ semi-
unifies with r′? However, [4,1] consider unification instead of semi-unification
and both sides of the pairs can be rewritten (whereas the unfolding operation
only rewrites the right-hand side). We are also aware of the work described
in [8] where the authors consider a graph of terms to detect loops in the search
tree. The graph of terms is used within a dynamic approach whereas our paper
and [4,1] consider a static approach. Another future work consists in designing
a bottom-up technique for proving non-termination of TRS’s. What we describe
in this paper is a top-down mechanism, as the unfolding process starts from the

208 É. Payet

rules of the TRS R of interest and then rewrites the right-hand sides down as
much as possible. In [21,20], the authors use the unfolding operator T β

P of [12]
that leads to a bottom-up computation of the unfoldings of P starting from
the emptyset, instead of P . Given a set of rules X , T β

P (X) unfolds P using the
elements of X whereas TR(X) unfolds X using the rules of R.

Acknowledgements. We greatly thank an anonymous reviewer for many con-
structive comments. We also thank Fred Mesnard, Germán Puebla and Fausto
Spoto for encouraging us to submit the paper.

References

1. M. Alpuente, M. Falaschi, and F. Manzo. Analyses of unsatisfiability for equational
logic programming. Journal of Logic Programming, 311(1–3):479–525, 1995.

2. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe folding/unfolding with
conditional narrowing. In Proc. of ALP/HOA 97, pages 1–15, 1997.

3. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Rules + strategies for
transforming lazy functional logic programs. Theoretical Computer Science, 311
(1–3):479–525, 2004.

4. M. Alpuente, M. Falaschi, M. J. Ramis, and G. Vidal. Narrowing approximations
as an optimization for equational logic programs. In Proc. of PLILP 1993, pages
391–409, 1993.

5. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

6. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge, 1998.

7. R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, 1977.

8. J. Chabin and P. Réty. Narrowing directed by a graph of terms. In G. Goos
and J. Hartmanis, editors, Proc. of RTA’91, volume 488 of LNCS, pages 112–123.
Springer-Verlag, Berlin, 1991.

9. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

10. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3
(1 & 2):69–116, 1987.

11. K. Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung alge-
braischer Spezifikationen. Springer Verlag, Berlin, 1989.

12. M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the
analysis of logic programs. In Proc. of SAC’94, pages 394–399. ACM Press, 1994.

13. S. Genaim and M. Codish. Inferring termination conditions for logic programs
using backwards analysis. In R. Nieuwenhuis and A. Voronkov, editors, Proc. of
LPAR’01, volume 2250 of LNCS, pages 685–694. Springer-Verlag, Berlin, 2001.

14. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair frame-
work: combining techniques for automated termination proofs. In F. Baader and
A. Voronkov, editors, Proc. of LPAR’04, volume 3452 of LNAI, pages 210–220.
Springer-Verlag, 2004.

15. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In B. Gramlich, editor, Proc. of FroCoS’05, volume
3717 of LNAI, pages 216–231. Springer-Verlag, 2005.

Detecting Non-termination of Term Rewriting Systems 209

16. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In V. van Oostrom, editor, Proc. of RTA’04, volume 3091 of
LNCS, pages 210–220. Springer-Verlag, 2004.

17. D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. Theoretical
Computer Science, 81:169–187, 1991.

18. D.S. Lankford and D.R. Musser. A finite termination criterion. Unpublished Draft,
USC Information Sciences Institute, Marina Del Rey, CA, 1978.

19. F. Mesnard and R. Bagnara. cTI: a constraint-based termination inference tool for
iso-prolog. Theory and Practice of Logic Programming, 5(1–2):243–257, 2005.

20. E. Payet and F. Mesnard. Non-termination inference for constraint logic programs.
In R. Giacobazzi, editor, Proc. of SAS’04, volume 3148 of LNCS, pages 377–392.
Springer-Verlag, 2004.

21. E. Payet and F. Mesnard. Non-termination inference of logic programs. ACM
Transactions on Programming Languages and Systems, 28, Issue 2:256–289, 2006.

22. A. Pettorossi and M. Proietti. Rules and strategies for transforming functional and
logic programs. ACM Comput. Surv., 28(2):360–414, 1996.

23. J. Steinbach. Simplification orderings: history of results. Fundamenta Informaticae,
24:47–87, 1995.

24. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-
ing systems. Information Processing Letters, 25(3):141–143, 1987.

25. Termination Problem Data Base. http://www.lri.fr/~marche/termination-com
petition/

Polytool: Proving Termination Automatically

Based on Polynomial Interpretations

Manh Thang Nguyen� and Danny De Schreye

Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001, Heverlee, Belgium

{ManhThang.Nguyen, Danny.DeSchreye}@cs.kuleuven.be

1 Introduction

In this system description, we present Polytool, a fully automated system for
proving left-termination of definite logic programs (LPs). The aim of Polytool
is to extend the power of existing termination analysers by using well-founded
orders based on polynomial interpretations. This is a direct extension of the
well-founded orders based on (semi-)linear level mappings and norms that are
used in most of the existing LP termination analysis systems.

Polytool is based on a termination condition that is rooted on acceptability
[2]. More precisely, the system implements the constraint-based approach to
termination analysis, presented in [6], but extended to non-linear, polynomial
level mappings and norms.

The theoretical foundations of Polytool are formulated and proved in [9].
Space restrictions do not allow us to give a formal account of this theory. We
will only present the main intuitions in order to make the paper reasonably
self-contained.

In the next section we describe the approach, comment on the various com-
ponents and illustrate them with fragments of a termination proof. In Section 3,
we report on extensive experimentation with the system and comparison with
several other systems. We conclude in Section 4.

2 The Polytool System

The main novelty of Polytool is that it uses polynomial interpretations. Instead
of ordering atoms and terms by means of associated natural numbers, obtained as
function-values under (semi-)linear level mappings and norms, it maps atoms and
terms to polynomials. The polynomials are considered as functions P : N→N,
and coefficients are also in N. We use the natural well-founded order over such
polynomials: P≥NQ iff P(a1 , ..., an)≥Q(a1 , ..., am), for all a1 , ..., amax(n,m)∈N.

Acceptability-style termination proofs require 3 types of conditions (for a
formal presentation, see [9]):

� Manh Thang Nguyen is partly supported by GOA Inductive Knowledge Bases and
partly by FWO Termination Analysis: Crossing Paradigm Borders.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 210–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Proving Termination Automatically Based on Polynomial Interpretations 211

1. For clauses that have intermediate body-atoms between the head and the
recursive body-atom, a valid relation between the interpretations of the ar-
guments of the successful instances of these atoms needs to be inferred (valid
interargument relations). These can then be used as pre-conditions to prove
the decreases in point 2 (to deal with existentially quantified variables).

2. For every clause, the interpretation of the head should be larger than the
interpretation of each (mutually) recursive body-atom, given the valid inter-
argument relations of the intermediate body-atoms as pre-conditions.

3. For every non-ground query of interest, we must impose conditions on the
interpretation, such that the interpretation of the query cannot grow un-
boundedly w.r.t. the polynomial order due to instantiations caused by res-
olutions steps. In Polytool we use rigidity [3] constraints to impose this.
Rigidity means that the interpretation of an atom/term should be invariant
for any instance of the atom/term.

In the philosophy of the constraint-based approach in [6], we do not choose a
particular interpretation for the atoms or terms. We introduce a general sym-
bolic form for such interpretations and interargument relations. As an example
and assuming that polynomials of degree 2 are selected for the interpretation,
instead of assigning an interpretation: I (p(x , y)) = x2 + 3xy , we would assign
I (p(x , y)) = p1 x2 + p2 xy + p3y2 , where p1 , p2 and p3 are symbolic coefficients
ranging over N. The strategy of the analysis is to:

– introduce symbolic versions of the interpretations (the polynomials associ-
ated with each function and predicate symbol),

– introduce symbolic versions of the valid interargument relations,
– express all conditions resulting from steps 1, 2 and 3 above as constraints on

the coefficients (e.g. p1 , p2 , p3 , . . .),
– solve the resulting system of constraints to obtain values for the coefficients.

Each solution for this constraint system gives rise to a concrete polynomial inter-
pretation for all atoms and terms and a concrete valid interargument relation for
all intermediate body-atoms that respect the termination condition. Therefore,
each solution gives a termination proof.

In Polytool, we implement these ideas as follows. On the level of the poly-
nomial interpretations, we need to restrict to fixed types of polynomials, since
there does not exist a finite symbolic representation for all possible polynomi-
als. Specifically, we will associate linear polynomials to predicates symbols and
simple-mixed polynomials to function symbols. For more details on these classes
of polynomials we refer to [13].
Example 1 (permute).

perm([], []). perm(L, [H |T]) : −del(H,L, L1), perm(L1, T).

del(H, [H |T], T). del(X, [H |T], [H |T1]) : −del(X, T, T1).

We use an interpretation in which:

I (perm(x , y)) = p10 x + p01y + p00 I (del(x , y , z)) = d100 x + d010y + d001 z + d000

I (.(x , y)) = .11 xy + .10 x + .01y + .00 P[] = c[]

�

212 M.T. Nguyen and D. De Schreye

The first component of Polytool (see Fig. 1) does a combined mode and type
analysis of the given program. For the given description of the set of (atomic)
queries of interest - in terms of modes and types - we need to infer similar
descriptions for all calls that may occur during a derivation. We use the rigid
types of [8] to represent mode/type-information of the queries and use the type-
inference system of [8] to collect the descriptions of all other calls.

Example 2 (permute-continued). Let the query set Q1 be {perm(t1 , t2)|t1 is a nil-
terminated list, t2 is a free variable}. The call set corresponding to Q1, computed
by the type-inference engine, is S = Q1∪Q2 , where Q2 = {del(t1 , t2 , t3)|t2 is a
nil-terminated list, t1 and t3 are free variables}. �

In the next component of Polytool, we use the computed call patterns to derive
the rigidity constraints on the interpretation. The rigidity constraint generator
(Fig. 1) derives this set of Diophantine constraints.

Example 3 (permute-continued). Based on the polynomial interpretation in Ex-
ample 1 and computed call set S in Example 2, the rigidity constraint generator
derives the following Diophantine constraints with coefficients as variables:

p10 ∗ (.11 + .10) = 0 p01 = 0
d100 = 0 d010 ∗ (.11 + .10) = 0 d001 = 0

�

In the following component, the polynomial constraint generator translates the
other termination conditions, consisting of the valid interargument relations and
the head-body decreases, into polynomial constraints.

Example 4 (permute-continued). With the polynomial interpretation of Example
1, for the clause

del(X , [H |T], [H |T1]) : −del(X ,T ,T1)

the polynomial constraint generator produces the inequation:

∀X, H,T, T1 ∈ N : (1)

d100X + d010(.10H + .01T + .11HT + .00) + d001(.10H + .01T1 + .11HT1 + .00) + d000

>d100X + d010T + d001T1 + d000

�

In the next phase of the system, the generated polynomial constraints are trans-
formed into Diophantine constraints. The point is to eliminate the variables (e.g.
X ,H ,T ,T1 in the example) and to obtain constraints on the coefficients (e.g.
d100 , d010 , .10 , . . .) only. This component was by far the hardest one to develop.
In general, the generated polynomial constraints are considerably more complex
than (1) in Example 4. They most often take the form of implications: a de-
crease between the polynomial interpretation of a head-atom versus a recursive
body-atom holds if the valid interargument relations for the intermediate body-
atoms hold. As far as we know, no complete solver for such systems of constraint

Proving Termination Automatically Based on Polynomial Interpretations 213

 Original
Program

Polynomial

Constraint

Generator

Constraints

Diophantine

Constraints

 Polynomial

Diophantine

Generator

Constraint

Input Query

Pattern

Type Inference

Engine

Call

Patterns

Constraint
Generator

Rigidity

Rigidity

Constraints

Terminates?

Diophantine

Solver

Constraint

Fig. 1. Overall Structure

exists. A main effort in our work was to provide a set of transformation rules
that generate a sufficient system of Diophantine constraints on the coefficients
in the polynomial constraints. Here sufficient means that any solution of the
Diophantine constraints is a solution to the given polynomial constraints (but
not conversely). In this component of Polytool, we apply a number of techniques,
including the substitution and evaluation rules of [6] but extended to polynomial
interpretations, and the technique for testing positiveness of polynomials of [7].

Example 5 (permute-continued). We continue with Example 4 by deriving a set
of Diophantine constraints from the constraint (1). Because there is no impli-
cation in this constraint, only the technique in [7] is applied. First we need to
transform the constraint into the normal form:

(d100 − d100)X + (d010 + d001).10H + d010(.01 − 1)T + d010.11HT

+ d001(.01 − 1)T1 + d001.11HT1 + (d001.00 + d010.00 − 1)≥N0

Applying the technique for testing positiveness of polynomials (a polynomial
P(x , y, . . . , z)≥N0 iff all its coefficients are not negative), the above constraint
holds iff the following Diophantine constraints hold:

d100 − d100≥0 (d010 + d001).10≥0

d010(.01 − 1)≥0 d010.11≥0

d001(.01 − 1)≥0 d001.11≥0 d001.00 + d010.00 − 1≥0

�

In the final component, the rigidity and the above generated Diophantine con-
straints become the input for the CiME 2.02, a Diophantine solver implemented
by Contejean, Marché, Tomás and Urbain [4]. A solution for the constraint set
implies the existence of a polynomial interpretation, valid interargument rela-
tions and a termination proof.

214 M.T. Nguyen and D. De Schreye

3 Experimental Evaluation

We have implemented a system (Polytool)1 for automated termination proof
based on the approach. It is integrated in the system implementing the cons-
traint-based approach of [6] and consists of four parts. The first part is the type
inference engine of Janssens and Bruynooghe [8], coded in MasterProlog (IT
Masters 2000). Based on this system, given a program and a set of queries, the
call set is computed and the rigid type graph for each call pattern of the call set
is generated. The second part, the core of the system, which generates the set
of all polynomial conditions, has been done in SICS 3.12.2. Also the third part,
which normalises the polynomial conditions and transforms them to Diophan-
tine constraints, is implemented in SICS 3.12.2. The final part is the Diophantine
constraint solver (CiME 2.02) of Contejean, Marché, Tomás and Urbain [4]. This
part is written in Objective CAML (CAML 3.0.9). We have tested the perfor-
mance of the system on a number of examples, including benchmarks for LP in
Termination Problems Database [1] (Tables 1(b), 2(a), 2(b), 3(a) and 3(b)), and
examples collected from other sources (Table 1(a))2. The domain of all variables
in the generated Diophantine constraints is fixed to the set D = {0 , 1 , 2}. The
experiments have been performed using SICS 3.12.2, running on Intel Pentium
IV 2.80 MHz, 1Gb RAM. We have also performed an experimental evaluation on
these examples with other systems, namely: Hasta La Vista [12], TALP [10], and
TerminWeb [15]. We do not provide the running times of TALP and TerminWeb
on the benchmarks because the tests have been done via the HTTP protocol
and there is no information about the configuration of the servers on which
these systems are installed. Only the success or failure of these systems w.r.t.
the examples is provided. For TALP, polynomial interpretations are chosen. For
TerminWeb, all provided semi-linear norms, i.e., node-size, edge-size and list-
length norms, are selected. The other options for TALP and TerminWeb remain
the same as in their web interfaces. In the tables, the following abbreviations are
used:

- Prog and Query refer to the tested program and the query pattern. For the
query pattern, ‘g’ and ‘f ’ denote a ground term and a free variable respectively.
- T1, T2 refer to the running time of Polytool and Hasta La Vista.
- R1, R2, R3 and R4 refer to the results given by the Polytool, Hasta La Vista,
TALP and TerminWeb. It contains the symbol ‘+’ if the system reports termi-
nation, or the symbol ‘-’ if the system fails to do so.

From the tables, Polytool seems to be quite powerful since it can prove termi-
nation of 66 out of 83 terminating cases, in comparison with the performance of
Hasta La Vista (53/83), TALP (59/83) and TerminWeb (50/83). For the running
times, Polytool is slower than Hasta La Vista in a number of cases.
1 For the source code, please refer to: http://www.cs.kuleuven.be/∼manh/polytool
2 In the table, examples dist, der were collected from [11], example taussky was in-

troduced in [14]. The source of all examples in the tables can be found in http://
www.cs.kuleuven.be/∼manh/polytool/new examples.zip

Proving Termination Automatically Based on Polynomial Interpretations 215

3.1 Comparison Between Hasta La Vista and Polytool

Let us first compare the precision and efficiency between Polytool and Hasta La
Vista since these systems have a similar framework of the constraint-based approa-
ch. Fromthe theoretical point of view, for the benchmarkswithoutmeta-predicates
or arithmetic expressions in them, termination analysis of Polytool is at least as
preciseas theanalysis ofHastaLaVista.Theclaimcouldcome fromthe fact that the
approachbasedonpolynomial interpretationsused inPolytool canbe consideredas
ageneralizationof the semi-linearnormbasedapproachused inHastaLaVista.The
results in Table 1(a) show that there is a class of examples (e.g., dist, der, SK90 1,
taussky), which can not be solvedby Hasta La Vista, but can be solvedby Polytool.
For those examples, non-linear polynomial interpretations are required.

Observe that independently of whether we choose (semi-)linear norms and
level mappings or polynomial interpretations, it still gives rise to nonlinear Dio-
phantine constraints in the final step. Therefore, the requirement for a fast and
effective nonlinear Diophantine constraint solver is necessary and CiME 2.02
seems to be a good selection. The only problem is, when the maximum degrees
of variables or the domain of each variable in the constraints increases, the per-
formance of the solver decreases considerably. A possible solution is to first apply
the INCLP(R) 3 implemented by De Koninck, Schrijvers and Demoen [5] to
narrow the domain of each variable in the constraint set and then use CiME
2.02 to solve it over the narrowed domains in the following step.

Example 6. Consider the program normal with the query pattern norm(g,f) in
Table 1(b):

norm(F, N) : −rewrite(F,F1), norm(F1, N).

norm(a, a). rewrite(op(op(A,B), C), op(A, op(B,C))).

rewrite(op(A, op(B,C)), op(A,L)) : −rewrite(op(B,C), L).

Table 1. Results on Termination Benchmarks

(a) Variously collected examples
Prog Query T1 R1 T2 R2 R3 R4
dist dist(g,f) 0.47 + 0.26 - + -
der d(g,f) 20.02 + 0.25 - - -
boolexp cequiv(g) 43.54 - 0.27 - - -
car 1 div(g,g,f) 0.18 - 0.06 - - -
car 13 in(g,g,f) 0.06 - 0.04 - + -
fac TRS fac(g,f) 0.12 - 0.05 - - +
fward ins f(f,f,f) 0.03 - 0.01 - - -
SK90 1 p(g,f) 0.22 + 0.16 - - -
SK90 2 p(g,f) 0.68 - 0.35 - - -
SK90 3 sum(g,f) 0.13 + 0.44 + + -
SK90 4 p(g,f) 0.48 - 0.44 - + -
taussky p(g,f) 0.16 + 0.07 - + -
addmul p(g,f) 0.11 + 0.07 + - -
fibo p(g,f) 0.76 - 0.22 - + -
lamdacal g(g,g,f) 0.17 + 0.16 + - -
log-1 log(g,f) 1.33 - 0.16 - + -
average1 av(g,g,f) 0.31 + 0.04 - + -
average2 av(g,f,g) 0.11 + 0.04 - + +
flat flat(g,f) 0.5 + 0.05 - + -

queens queens(f) 7.21 + 0.65 + - +

(b) TALP examples
Prog Query T1 R1 T2 R2 R3 R4
ex1 p(f,g) 0.03 + 0.02 + + -
ex4 p1(g) 0.02 + 0.01 + + +
nat isNat(g) 0.02 + 0.04 + + +
nat nEq(g,g) 0.03 + 0.03 + + +
nat gt(f,g) 0.02 + 0.04 + - +
nat odd(g) 0.03 + 0.03 + + +
nat fac(g,f) 0.06 + 0.07 + + +
normal norm(g,f) 0.15 + 0.09 - + -
perm perm(g,f) 0.25 + 0.13 + + +
permute perm1(g,f) 0.08 + 0.08 + + +
permute perm2(f,g) 0.09 + 0.1 + + +
qsort qs(g,f) 2.37 + 0.14 + + -
t closure tc(g,f) 0.03 - 0.02 - + -
simple p(f,g) 0.02 + 0.03 + - -
gcd gcd(g,g,f) 0.03 - 0.03 - - +
palind palind(g) 0.05 + 0.05 + + +
slowsort sort(g,f) 0.1 + 0.08 + + +
flat flat(g,f) 0.73 + 0.08 - + -
div div(g,g,f) 0.09 + 0.09 + + +
remind rem(g,g,f) 11.35 - 0.08 - - +

3 Interval-based Nonlinear Constraint Logic Programming over the Reals.

216 M.T. Nguyen and D. De Schreye

Table 2. Examples from Apt and Plumer

(a) Apt

Prog Query T1 R1 T2 R2 R3 R4
list list(g) 0.01 + 0.01 + + +
fold fold(f,g,f) 0.03 + 0.01 + + +
lte goal 0.04 + 0.04 + + +
map map(g,f) 0.03 + 0.01 + + +
member mem(f,g) 0.03 + 0.01 + + +
merg merg(g,f) 1.01 + 0.37 + - -
merg ap merg(g,f,g) 300 - 0.82 - + -
naiv rev reverse(g,f) 0.04 + 0.03 + + +
ordered ordered(g) 0.05 + 0.05 + + +
overlap o lap(g,g) 0.03 + 0.03 + + +
perm perm(g,f) 0.45 + 0.11 + + +
qsort qs(g,f) 0.07 + 0.13 + + +
select select(f,g,f) 0.01 + 0.02 + + +
subset subset(g,g) 0.06 + 0.05 + + +
sum sum(f,f,g) 0.01 + 0.02 + + +

(b) Plumer

Prog Query T1 R1 T2 R2 R3 R4
merge t merge(g,f) 0.36 + 0.42 + - -
pl1.1 append(g,f,f) 0.03 + 0.02 + - +
pl1.1 append(f,f,g) 0.03 + 0.03 + + +
pl2.3.1 p(g,f) 0.02 + 0.01 - + -
pl2.3.1 p(f,f) 0.01 - 0.01 - - -
pl3.5.6a p(f) 0.02 + 0.03 + - +
pl4.4.3 merge(g,g,f) 0.08 + 0.02 + + +
pl4.4.6a perm(g,f) 0.04 + 0.03 + + +
pl6.1.1 qsort(g,f) 1.12 + 0.19 + + -
pl7.2.9 mult(g,g,f) 0.03 + 0.03 + + +
pl7.6.2c reach(g,g,g,g) 4.87 - 0.22 - + +
pl8.2.1a merge(g,f) 0.43 + 0.26 - + -
pl8.3.1 minsort(g,f) 0.06 + 0.05 + - -
pl8.3.1a minsort(g,f) 0.05 + 0.07 + - +
pl8.4.2 e(g,f) 0.1 + 0.09 + + +

Table 3. Examples from TerminWeb and Taboch

(a) TerminWeb

Prog Query T1 R1 T2 R2 R3 R4
som som(g,g,f) 0.04 + 0.03 + + +
NJ1 rev(g,f) 0.04 + 0.05 + + +
NJ2 f(g,g,f) 0.07 + 0.06 - + +
NJ3 ack(g,g,f) 0.16 - 0.1 - - +
NJ4 p(g,g,g,f) 0.05 + 0.03 + + +
NJ5 f(g,g,f) 0.04 + 0.05 - + +
NJ6 f(g,g,f) 0.1 + 0.07 + + +

(b) Taboch

Prog Query T1 R1 T2 R2 R3 R4
bad list sublist(g,g) 0.04 - 0.04 - - -
quicksort qs(g,f) 112.7 + 0.35 + + -
queens queens(g,f) 0.25 + 0.5 + - +
rotate rotate(g,f) 0.05 + 0.05 + + +
sameleaves s leaves(g,g) 0.09 + 0.13 + + -
sublist sublist(g,g) 0.05 + 0.06 + + +
sublist1 sublist(g,g) 0.04 + 0.03 + + +

For this example, both Polytool and Hasta La Vista produce nonlinear Diophan-
tine constraints, but only Polytool succeeds. If we take the constraints generated
by Hasta La Vista as an input for CiME 2.02, it also gives a positive result. This
shows that the constraint solver used in Hasta La Vista, CLPFD 4, is not pow-
erful enough to solve such constraint sets. �

In Hasta La Vista, all constant symbols in the input program are mapped to
a same value (zero). Polytool, in contrast, maps different constant symbols to
different constants in N. This property allows it to solve examples where constant
symbols play an important role in termination behavior of the program. E.g.
termination of the example pl2.3.1 in Table 2(b):

p(X, Z) : −q(X, Y), p(Y, Z). p(X, X). q(a, b).

with the query pattern Q = p(g, f) can be verified by Polytool, but not by Hasta
La Vista.

Another issue is the efficiency. Overall, Hasta La Vista is faster than Poly-
tool on a number of benchmarks. A reason could be that termination analysis
based on polynomial interpretations increases the number of coefficients of the
4 Constraint Logic Programming over Finite Domain.

Proving Termination Automatically Based on Polynomial Interpretations 217

polynomials associated with predicates and functors which are variables in the
generated Diophantine constraints. This leads to less efficiency of Polytool.

3.2 Comparison Between TALP and Polytool

A point of similarity between Polytool and TALP is that both systems use poly-
nomial interpretations as a basis for the termination proof. However, it is applied
indirectly in TALP: given a logic program and a query set, it first transforms
them to a TRS. This transformation is termination preserving. Then, a poly-
nomial interpretation technique is applied to the target TRS. A limitation of
TALP is that only well-moded logic programs are considered [10]. The results in
the tables show that there are a number of examples, which are not well-moded
for a specific query pattern, solvable by Polytool, not solvable by TALP (e.g.,
pl1.1 with query set append(g,f,f) in Table 2(b)).

4 Conclusions

We have presented the development of an automated tool for termination proof
of LP based on polynomial interpretations. It is a further extension of the pre-
vious work in [9] as we aim at the implementation phase. It has required an
intensive work in coding, especially the construction for the symbolic form of
the polynomial constraints from the acceptability conditions w.r.t. polynomial
interpretations and the transformation from the polynomial constraints to the
Diophantine constraints.

Our main contribution is the integration of a number of techniques including
the termination framework in [9], the type inference engine in [8], the constraint-
based approach in [6] and the Diophantine constraint solver in [4] to provide a
completely automated termination analyser.

We have also done an intensive experimental evaluation of Polytool and other
termination analysers such as Hasta La Vista, TerminWeb and TALP. It is shown
from the evaluation that Polytool is powerful enough to solve a number of ter-
minating benchmarks. It can verify termination of a class of examples in which
nonlinear norms are required. In comparison with other tools, the result shows
that Polytool has a higher success rate.

References

1. The termination problems database, http://www.lri.fr/∼marche/wst2004-
competition/tpdb.html, viewed march 2006

2. K. R. Apt and D. Pedreschi. Studies in pure prolog: Termination. In J. W. Lloyd,
editor, Proceedings Symposium in Computational Logic, pages 150–176. Springe
Verlag, Berlin, Heidelberg, 1990.

3. A. Bossi, N. Cocco, and M. Fabris. Proving termination of logic programs by
exploiting term properties. In S. A. T. Maibaum, editor, Proceedings TAPSOFT,
volume 494 of Lecture Notes in Computer Science, pages 153–180. Springer Verlag,
1991.

218 M.T. Nguyen and D. De Schreye

4. E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving
termination using polynomial interpretations. Journal of Automated Reasoning,
2005.

5. L. De Koninck, T. Schrijvers, and B. Demoen. INCLP(R) - Interval-based non-
linear constraint logic programming over the reals. In M. Fink, H. Tompits, and
S. Woltran, editors, Workshop on Logic Programming, pages 91–100, 2006.

6. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint based automatic
termination analysis of logic programs. ACM Transactions on Programming Lan-
guages and Systems, 21(6):1137–1195, 1999.

7. H. Hong and D. Jakus. Testing positiveness of polynomials. Journal of Automated
Reasoning, 21(1):23–38, 1998.

8. G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of pro-
gram variables by means of abstract interpretation. Journal of Logic Programming,
13(2&3):205–258, 1992.

9. M. T. Nguyen and D. De Schreye. Polynomial interpretations as a basis for ter-
mination analysis of logic programs. In G. G. M. Gabbrielli, editor, Proceedings of
the 21st International Conference on Logic Programming (ICLP’05), volume 3668
of LNCS, pages 311–325. Springer Verlag, 2005.

10. E. Ohlebusch, C. Claves, and C. Marché. Talp: A tool for the termination analysis
of logic programs. In Proceedings of the 11th International Conference on Rewrit-
ing Techniques and Applications, volume 1833 of LNCS, pages 270–273. Springer
Verlag, 2000.

11. A. Serebrenik. Termination Analysis of Logic Programs. PhD thesis, Department
of Computer Science, K.U.Leuven, Belgium, 2003.

12. A. Serebrenik and D. De Schreye. Hasta-La-Vista: Termination analyser for logic
programs. In F. Mesnard and A. Serebrenik, editors, 6th International Workshop
on Termination (WLPE’03), pages 60–74, 2003.

13. J. Steinbach. Proving polynomials positive. In R. Shyamasundar, editor, Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS’92),
volume 652 of LNCS, pages 18–20, 1992.

14. J. Steinbach. On the complexity of simplification orderings. Technical Report
SR-93-18 (SFB), SEKI University of Kaiserslautern, 1993.

15. C. Taboch, S. Genaim, and M. Codish. Terminweb: Semantic based termination
analyser for logic programs, http://www.cs.bgu.ac.il/∼mcodish/terminweb, 2002

Grids: A Domain for Analyzing the Distribution

of Numerical Values�

Roberto Bagnara1, Katy Dobson2, Patricia M. Hill2, Matthew Mundell2,
and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
{katyd,hill,mattm}@comp.leeds.ac.uk

Abstract. This paper explores the abstract domain of grids, a domain
that is able to represent sets of equally spaced points and hyperplanes
over an n-dimensional vector space. Such a domain is useful for the static
analysis of the patterns of distribution of the values program variables
can take. We present the domain, its representation and the basic oper-
ations on grids necessary to define the abstract semantics. We show how
the definition of the domain and its operations exploit well-known tech-
niques from linear algebra as well as a dual representation that allows,
among other things, for a concise and efficient implementation.

1 Introduction

We distinguish between two kinds of numerical information about the values
program variables can take: outer limits (or bounds within which the values must
lie) and the pattern of distribution of these values. Both kinds of information
have important applications: in the field of automatic program verification, limit
information is crucial to ensure that array accesses are within bounds, while
distribution information is what is required to ensure that external memory
accesses obey the alignment restriction imposed by the host architecture. In
the field of program optimization, limit information can be used to compile
out various kinds of run-time tests, whereas distribution information enables
several transformations for efficient parallel execution as well as optimizations
that enhance cache behavior.

Both limit and distribution information often come in a relational form; for
instance, the outer limits or the pattern of possible values of one variable may de-
pend on the values of one or more other variables. Domains that can capture re-
lational information are generally much more complex than domains that do not
have this capability; in exchange they usually offer significantly more precision, of-
ten important for the overall performance of the client application. Relational limit
� This work has been partly supported by EPSRC project EP/C520726/1 “Numerical

Domains for Software Analysis,” by MIUR project “AIDA — Abstract Interpreta-
tion: Design and Applications,” and by a Royal Society (ESEP) award.

G. Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 219–235, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

220 R. Bagnara et al.

-4

-2

4

2

-2-4 642

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

� �

�

(a) The grid L

-4

-2

4

2

-2-4 642
���

(b) The grid L′

Fig. 1. Congruence and generator systems representing two grids in R
2

information can be captured, among other possibilities, by means of polyhedral do-
mains, that is, domains that represent regions of some n-dimensional vector space
bounded by a finite set of hyperplanes [10]. Although polyhedral domains such as
the domain of convex polyhedra have been thoroughly researched and are widely
used, relational domains for representing the (linear) distribution of numerical val-
ues have been less well researched. Moreover, as far as we know and at the time
of writing, there is no available implementation providing all the basic operations
needed by a relational abstract domain for distribution information. This is in spite
of the fact that previous research has shown that a knowledge about the (discrete)
distribution of numerical information, especially when combined with that of the
limit information, can significantly improve the quality of the analysis results [1].

This paper closes this gap by providing a complete account of the relational
domain of grids ; a domain for capturing numerical distribution information. It
includes a detailed survey of previous work in this area; gives two representations
for the domain; outlines how these can be reduced and also how to convert
between them; and shows how this double description directly supports methods
for comparing, joining and intersecting elements of this domain. The paper also
outlines affine image and preimage operations and two new widenings for grids.

Grids in a Nutshell. Figure 1 illustrates two ways of describing a grid; either
by means of a finite set of congruence relations that all grid points must satisfy
(given by dashed lines) or by means of a finite set of generating vectors used for
constructing the grid points and lines (given by filled squares and thick lines).

The squares in Figure 1(a) illustrate a grid L indicating possible values of
integer variables x and y resulting from executing the program fragment in
Figure 2 for any value of m. The congruence relations x = 0 (mod 2) and
x+2y = 2 (mod 4) are represented by the vertical dashed lines and sloping lines,
respectively. The set of congruence relations C =

{
x = 0 (mod 2), x + 2y = 2

(mod 4)
}
, called a congruence system, is said to describe L. The filled squares

mark the points p1 = (2
0) , p2 = (6

0) and p3 = (4
1) while all the squares

Grids: A Domain for Analyzing the Distribution of Numerical Values 221

(both filled and unfilled) mark points v = π1p1 +π2p2 +π3p3, where π1, π2, π3 ∈
Z and π1 + π2 + π3 = 1. The set of points P = {p1, p2, p3} is said to generate
L. Some of these generating points can be replaced by parameters that give the
gradient and distance between neighboring points. Specifically, by subtracting
the point p1 from each of the other two generating points p2 and p3, we obtain
the parameters q2 = (4

0) and q3 = (2
1) for L that are marked by the thick lines

between points p1 and p2 and points p1 and p3, respectively. It follows that each
point v ∈ L can be written as v = p1 + π2q2 + π3q3 for some π2, π3 ∈ Z.

The dashed line in Figure 1(b) illustrates
x := 2; y := 0; (P1)
for i := 1 to m (P2)
if ... then
x := x + 4 (P3)

else
x := x + 2;
y := y + 1 (P4)

endif (P5)
endfor

Fig. 2. Fragment based on an ex-
ample in [10]

the grid L′ defining the line x = y + 1 and
marks the vectors of values of the real vari-
ables x and y after an assignment x := y + 1,
assuming that nothing is known about the
value of y. As equalities are congruences mod-
ulo 0, the set C′ = {x− y = 1} is also called a
congruence system and describes L′. Observe
that the grid L′ consists of all points that can
be obtained as λ� + p′, for any λ ∈ R, where
� = (1

1) and p′ = (1
0) ; the vector �, called

a line, defines a gradient and the vector p′ is
a generating point marking a position for the
line (illustrated in Figure 1(b) by the thick
line and the filled square, respectively).

From what we have just seen, any grid can be represented both by a congru-
ence system and by a generator system. The latter may consist of three compo-
nents: a set of lines, a set of parameters and a set of points. For instance, the
triples G1 =

(
∅, ∅, P

)
and G2 =

(
∅, {q2, q3}, {p1}

)
are both generator systems

for L while the triple G′ =
(
{�}, ∅, {p′}

)
is a generator system for L′.

Contributions. The paper provides an account of the relational domain of
grids, fully implemented within the Parma Polyhedra Library [2,4]. In this sec-
tion we provide the first comprehensive survey of the main research threads
concerning these and similar domains. The other contributions are given below.

Minimizing representations. Assuming the grid is represented by a congruence
and generator system in an n-dimensional vector space consisting of m congru-
ences or generators, then we outline algorithms for minimizing the representation
(based on the Hermite normal form algorithm [29]) that have worst-case com-
plexity O

(
n2m

)
. Note that previous proposals for minimization such as those

in [14,23] have worse complexity bounds (see below).

Converting representations. The congruence and generator representations de-
scribed informally above form the two components of a double description method
for the grid domain very similar to that for convex polyhedra [20]. For a double de-
scription method, conversion algorithms between the two systems are needed; we
show how conversion can be implemented using any matrix inversion algorithm,
inheriting the corresponding worst-case complexity. For instance, the complexity

222 R. Bagnara et al.

is O
(
n3

)
when adopting the standard Gaussian elimination method; since matrix

inversion has the same worst-case complexity as matrix multiplication, better the-
oretical complexity bounds apply [5]. Previous proposals for congruence to gener-
ator conversion have complexity no better than O

(
n4

)
[15].

Grid operations. For static analysis, it is useful to provide all the set-theoretic
lattice operations for grids (assuming the usual subset ordering) such as compar-
ison, join and meet. We show that these operations are straightforward given the
availability of the appropriate representation(s) in minimal form; and hence show
that some have complexities strictly better than that of previous proposals [14].
We also describe a grid difference operator which is new to this paper.

Affine transformation operators. Affine image and preimage operators can be
used to capture the effect of assignment statements in a program when the ex-
pression is linear although, as noted by Müller-Olm and Seidl in [21], analyses
that use affine spaces for approximating the semantics of procedures are not suf-
ficiently precise to detect all valid affine relations for programs with procedures.
Here we specify, for the domain of grids, the affine image and preimage operators
for a single update where only one dimension is modified.

Widenings. It was observed by Granger [15], that, if the grid generators can
be in the rationals, then the grid domain does not satisfy the ascending chain
condition; so, to guarantee termination of the analysis, a widening operation
is required. In [15, Proposition 10], a widening is given for non-relational grids
that returns a line parallel to an axis whenever the modulus for that dimension
changes. It is then proposed that a generalized form of this could be used as a
widening for relational grids; however, exactly how this is to be done is unclear.
In this paper, we define two possible generalizations which come with simple
syntactic checks that have efficient implementations.

Related Work. In [12], Granger shows how a static analysis can usefully em-
ploy a simple non-relational grid domain (that is a grid described by congruences
of the form x = c (mod f) where c and f are integers) and that this domain
can obtain more precise information for applications such as automatic vector-
ization. Larsen et al. [17] also developed a static analyzer over a non-relational
grid domain specifically designed to detect when dynamic memory addresses are
congruent with respect to a given modulus; they show that, this information
helps in the construction of a comprehensive set of program transformations for
saving energy on low-power architectures and improving performance on multi-
media processors. We note that these applications should carry over to the more
complex domain considered here. In addition, Miné has shown how to construct,
from the non-relational congruence domain in [12], a zone-congruence domain
(that is, a domain that only allows weakly relational congruences that have the
form x − y = a (mod b) where a and b are rationals) [19].

Concerning fully relational domains, note that the use of a domain of linear
equality relations for program analysis had already been studied by Karr [16].
In [14], Granger generalized this to provide a domain of linear congruence re-
lations on an integral domain, i.e., a domain generated by integral vectors in

Grids: A Domain for Analyzing the Distribution of Numerical Values 223

n-dimensions; and then, in [13,15], generalizes the results to the full grid do-
main. In [13,14,15], domain elements are represented by congruence and gener-
ator systems similar to the ones defined here. Standard algorithms for solving
linear equations are used in converting from generator to congruence systems;
however, a more complex O

(
n4

)
algorithm is provided for converting from con-

gruence to generator systems. Assuming the number of generators is n + 1, the
algorithm for minimizing the generator system has complexity O

(
n3 log2 n

)
. Op-

erators for comparing grids and computing the greatest lower and least upper
bounds are also described. In particular, the join operation defined in [14] has
complexity O

(
n4 log2 n

)
, since the generators of one grid are added, one at a

time, to the generators of the other; after each addition the minimization al-
gorithm is applied to compute a new linearly independent set. The grid meet
operation which also minimizes the addition of one congruence at a time has
complexity O

(
n4

)
.

The problem of how best to apply the grid domain in a program analyzer,
has been studied by Müller-Olm and Seidl in [23] also building on the work of
Karr [16]. Here, the prime focus is for the design of an interprocedural analysis
for programs containing assignment statements and procedure calls. The algo-
rithm has three stages: first, for each program point, a matrix M containing a
(minimized) set of generators (i.e., vectors of values that hold at that point) is
found; secondly, the determinant f of M is computed; thirdly, a congruence sys-
tem with modulo f that satisfies all the vectors in M is determined. Stage one
is similar to that proposed by Granger [14] for minimizing a set of generators.
Stages two and three differ from the conversion in [14] in that the modulus f is
computed separately and used to reduce the sizes of the coordinates. Note that
the framework described in [23] subsumes previous works by the same authors.

Following an independent stream of research, Ancourt [1] considered the do-
main of Z-polyhedra; that is a domain of integral lattices intersected with the
domain of convex polyhedra (see also [24,25,26]). We are primarily interested
here in the “integral lattices” component which may be seen as a subdomain of
the domain of grids where the grid is full dimensional and all the grid points
are integral vectors. The representation of these integral lattices is a special case
of our generator representation where, for n dimensions, there must be exactly
one point and n linearly independent parameters, all of which must be integral.
There is no support for a congruence representation.

All the operations on Z-polyhedra (and therefore the lattices) require canonic
representations; hence Quinton et al. [25,26] define a canonical form for these
lattices with a method for its computation. We note that the algorithm for
computing the canonic form has complexity O

(
n4

)
, where n is the number of

dimensions of the vector space. Other operations provided are those of lattice
intersection, affine image and affine preimage. As there is no congruence repre-
sentation, the intersection of two lattices is computed directly from the generator
representations [1]; a refined version of this method is provided in [25] which we
note that, as for computing the canonic form, has complexity O

(
n4

)
. The opera-

tions of grid join and grid difference (as defined here) are not considered; instead

224 R. Bagnara et al.

the union operator takes two lattices L1 and L2 and returns the set {L1, L2}
unless one (say L1) is contained in the other, in which case they return the larger,
L2. Similarly the difference operation returns a set of lattices representing the
set difference L1 \ L2. The domain of integral lattices has been implemented in
PolyLib [18] following the approach in [25,26]. This means that only the genera-
tor representation is supported and some operations return sets of lattices while
others manipulate and simplify these sets.

The homogeneous form of a representation given in Section 4, is required by
the conversion algorithm. This form is not new to this paper; in fact several
researchers have observed this. For instance, Granger [14] describes a map from
a linear congruence system in n variables to a homogeneous one in n+1 variables;
Nookala and Risset [24] explain that the PolyLib [18] adds a dimension to make
the (generator) representation homogeneous; while Müller-Olm and Seidl [23]
consider extended states where vectors have an extra 0’th component.

Plan of the Paper. Preliminary concepts and notation are given in Section 2.
Section 3 introduces a grid together with its congruence and generator repre-
sentations while Section 4 provides the main algorithms needed to support the
double description. Section 5 introduces grid widening and the paper concludes
in Section 6. A long version of the paper containing all proofs is available at
http://www.comp.leeds.ac.uk/hill/Papers/papers.html

2 Preliminaries

The cardinality of a set S is denoted by # S. The set of integers is denoted by
Z, rationals by Q and reals by R. The complexities will assume a unit cost for
every arithmetic operation.

Matrices and Vectors. If H is a matrix in R
n×m, the transposition of H is

denoted by HT ∈ R
m×n. A vector v = (v1, . . . , vn) ∈ R

n is also regarded as a
matrix in R

n×1. The scalar product of vectors v and w ∈ R
n, denoted by 〈v, w〉,

is the real number vTw =
∑n

i=1 viwi. The vector ei ∈ R
n has 1 in the i-th

position and 0 in every other position. We let

piv<(v) :=

{
0 if v = 0
max{i | 1 ≤ i ≤ n, vi �= 0} if v �= 0

piv>(v) :=

{
n + 1 if v = 0
min{i | 1 ≤ i ≤ n, vi �= 0} if v �= 0.

We write v ⇑ v′, if piv<(v) = piv<(v′) = k and either k = 0 or vk = v′k and
v ⇓ v′, if piv>(v) = piv>(v′) = k and either k = n + 1 or vk = v′k.

Integer Combinations. The set S = {v1, . . . , vk} ⊆ R
n is affinely independent

if, for all λ ∈ R
k, λ = 0 is the only solution of

{∑k
i=1 λivi = 0,

∑k
i=1 λi = 0

}
.

For all λ ∈ R
k, the vector v =

∑k
j=1 λjvj is said to be a linear combination of S.

http://www.comp.leeds.ac.uk/hill/Papers/papers.html

Grids: A Domain for Analyzing the Distribution of Numerical Values 225

This combination is affine, if
∑k

j=1 λj = 1; and integral, if λ ∈ Z
k. The set of all

linear (resp., affine, integral, integral and affine) combinations of S is denoted
by linear.hull (resp., affine.hull(S), int.hull(S), int.affine.hull(S)).

Congruences and Congruence Relations. For any a, b, f ∈ R, a ≡f b
denotes the congruence ∃μ ∈ Z . a − b = μf . Let S ∈ {Q, R}. For each vector
a ∈ S

n and scalars b, f ∈ S, the notation 〈a, x〉 ≡f b stands for the linear
congruence relation in S

n defined by the set
{

v ∈ R
n

∣∣ ∃μ ∈ Z . 〈a, v〉 = b+μf
}
;

when f �= 0, the relation is said to be proper ; 〈a, x〉 ≡0 b denotes the equality
〈a, x〉 = b. Thus, provided a �= 0, the relation 〈a, x〉 ≡f b defines the set of affine
hyperplanes

{ (
〈a, x〉 = b + μf

) ∣∣ μ ∈ Z

}
; when a = 0, we assume that b �= 0;

if b ≡f 0, 〈0, x〉 ≡f b defines the universe R
n and the empty set, otherwise.

Any vector that satisfies 〈a, x〉 = b + μf for some μ ∈ Z is said to satisfy
the relation 〈a, x〉 ≡f b. Congruence relations in S

n, such as 〈a, x〉 ≡1 b and
〈2a, x〉 ≡2 2b, defining the same hyperplanes are considered equivalent.

The pivot notation for vectors is extended to congruences: if β =
(
〈a, x〉 ≡f

a0
)

then piv<(β) := piv<(a); if γ =
(
〈c, x〉 ≡g c0

)
and ga ⇑ fc, then we write

β ⇑ γ; so that β and γ are either both equalities or both proper congruences.

3 The Grid Domain

Here we introduce grids and their representation. Note that the use of the word
‘grid’ here is to avoid confusion with the meaning of ‘lattice’ (used previously
for elements similar to a grid) in its set-theoretic context (particularly relevant
when working in abstract interpretation).

Grids and the Congruence Representation. A congruence system in Q
n

is a finite set of congruence relations C in Q
n. As we do not distinguish be-

tween syntactically different congruences defining the same set of vectors, we
can assume that all proper congruences in C have modulus 1.

Definition 1. Let C be a congruence system in R
n. If L is the set of vectors in

R
n that satisfy all the congruences in C, we say that L is a grid described by

a congruence system C in Q
n. We also say that C is a congruence system for L

and write L = gcon(C). If gcon(C) = ∅, then we say that C is inconsistent.
The grid domain Gn is the set of all grids in R

n ordered by the set inclusion
relation, so that ∅ and R

n are the bottom and top elements of Gn respectively.

The vector space R
n is called the universe grid. In set theoretical terms, Gn

is a lattice under set inclusion. Many algorithms given here will require the
congruence systems not only to have minimal cardinality but also such that the
coefficients of (a permutation of) the congruences can form a triangular matrix.

Definition 2. Suppose C is a congruence system in Q
n. Then we say that C is

in minimal form if either C = {〈0, x〉 ≡0 1} or C is consistent and, for each
congruence β =

(
〈a, x〉 ≡f b

)
∈ C, the following hold:

226 R. Bagnara et al.

1. if piv<(β) = k, then k > 0 and ak > 0;
2. for all β′ ∈ C \ {β}, piv<(β′) �= piv<(β).

Proposition 1. Let C be a congruence system in Q
n and m = # C. Then there

exists an algorithm for finding a congruence system C′ in minimal form with
worst-case complexity O

(
n2m

)
such that gcon(C) = gcon(C′).

Note that the algorithm mentioned in Proposition 1, is based on the Hermite
normal form algorithm; details about the actual algorithm are given in the proof.
Note also, that when m < n, the complexity of this algorithm is just O

(
m2n

)
.

The Generator Representation. Let L be a grid in Gn. Then

– a vector p ∈ L is called a point of L;
– a vector q ∈ R

n \ {0} is called a parameter of L if L �= ∅ and p + μq ∈ L,
for all points p ∈ L and all μ ∈ Z;

– a vector � ∈ R
n \ {0} is called a line of L if L �= ∅ and p + λ� ∈ L, for all

points p ∈ L and all λ ∈ R.

If L, Q and P are finite sets of vecors in R
n and

L := linear.hull(L) + int.hull(Q) + int.affine.hull(P)

where the symbol ‘+’ denotes the Minkowski’s sum,1 then L ∈ Gn is a grid
(see [29, Section 4.4] and also Proposition 7). The 3-tuple (L, Q, P), where L,
Q and P denote sets of lines, parameters and points, respectively, is said to
be a generator system in Q

n for L and we write L = ggen
(
(L, Q, P)

)
. Note

that, for any grid L in Gn, there is a generator system (L, Q, P) in Q
n for L

(see again [29, Section 4.4] and also Proposition 6). Note also that the grid
L = ggen

(
(L, Q, P)

)
= ∅ if and only if the set of points P = ∅. If P �= ∅, then

L = ggen
(
(L, ∅, Qp ∪ P)

)
where, for some p ∈ P , Qp = { p + q ∈ R

n | q ∈ Q }.
As for congruence systems, for many procedures in the implementation, it is

useful if the generator systems have a minimal number of elements.

Definition 3. Suppose G = (L, Q, P) is a generator system in Q
n. Then we say

that G is in minimal form if either L = Q = P = ∅ or # P = 1 and, for each
generator v ∈ L ∪ Q, the following hold:

1. if piv>(v) = k, then vk > 0;
2. for all v′ ∈ (L ∪ Q) \ {v}, piv>(v′) �= piv>(v).

Proposition 2. Let G = (L, Q, P) be a generator system in Q
n and m = # L+

Q + # P . Then there exists an algorithm for finding a generator system G′ in
minimal form with worst-case complexity O

(
n2m

)
such that ggen(G′) = ggen(G).

As for Proposition 1, the algorithm mentioned in Proposition 2 is based on the
Hermite normal form algorithm. Note also that, when m < n, the complexity of
this algorithm is again just O

(
m2n

)
.

1 This is defined, for each S, T ⊆ R
n, by S + T := { s + t ∈ R

n | s ∈ S, t ∈ T }.

Grids: A Domain for Analyzing the Distribution of Numerical Values 227

Double Description. We have shown that any grid L can be described by
using a congruence system C and also generated by a generator system G. For
the same reasons as for the polyhedral domain, it is useful to represent the grid
L by the double description (C, G). Just as for the double description method
for convex polyhedra, in order to maintain and exploit such a view of a grid, an
implementation must include algorithms for converting a representation of one
kind into a representation of the other kind and for minimizing both represen-
tations. Note that having easy access to both representations is assumed in the
implementation of many grid operators including those described here.

Suppose we have a double description
(
C, G

)
of a grid L ∈ Gn, where both C

and G are in minimal form. Then, it follows from the definition of minimal form
that # C ≤ n + 1 and #L + # Q ≤ n. In fact, we have a stronger result.

Proposition 3. Let (C, G) be a double description where both C and G are in
minimal form. Letting C = E∪F , where E and F are sets of equalities and proper
congruences, respectively, and G = (L, Q, P), then # F = # Q = n −# L −# E.

Example 1. Consider the grids L and L′ in Figure 1. The congruence systems
C and C′ are in minimal form and the generator systems G2 and G′ are also in
minimal form; however, G1 is not in minimal form as it contains more than one
point. Furthermore, for i = 1, 2, the pairs (C, Gi) are double descriptions for L
while (C′, G′) is a double description for L′.

Comparing Grids. For any pair of grids L1 = ggen
(
(L, Q, P)

)
, L2 = gcon(C)

in Gn, we can decide whether L1 ⊆ L2 by checking if every generator in (L, Q, P)
satisfies every congruence in C. Note that a parameter or line v satisfies a con-
gruence 〈a, x〉 ≡f b if 〈a, v〉 ≡f 0. Therefore, assuming the systems C and G are
already in minimal form, the complexity of comparison is O

(
n3

)
.

Given that it is known that one grid is a subset of another, there are quicker
tests for checking equality - the following definition is used in their specification.

Definition 4. Let C1, C2 be congruence systems in minimal form. Then C1, C2
are said to be pivot equivalent if, for each i, j ∈ {1, 2} where i �= j, for each
β ∈ Ci, there exists γ ∈ Cj such that β ⇑ γ.

Let G1 =
(
L1, Q1, {p1}

)
and G2 =

(
L2, Q2, {p2}

)
be generator systems in

minimal form. Then G1, G2 are said to be pivot equivalent if, for each i, j ∈ {1, 2}
where i �= j: for each qi ∈ Qi, there exists qj ∈ Qj such that qi ⇓ qj; and, for
each �i ∈ Li, there exists �j ∈ Lj such that piv>(�i) = piv>(�j).

Proposition 4. Let L1 = gcon(C1) = ggen(G1) and L2 = gcon(C2) = ggen(G2)
be non-empty grids in Gn such that L1 ⊆ L2. If C1 and C2 are pivot equivalent
congruence systems in minimal form or G1 and G2 are pivot equivalent generator
systems in minimal form, then L1 = L2.

It follows from Proposition 4, that provided L1 ⊆ L2 and L1 and L2 have
both their generator or congruence systems already in minimal form, then the
complexity of checking if L1 = L2 is just O

(
n
)
. Moreover, if it is found that

228 R. Bagnara et al.

one pair of corresponding pivot elements of the congruence or generator systems
differ, then we can immediately deduce that the grids they describe also differ.

Intersection and Grid Join. For grids L1, L2 ∈ Gn, the intersection of L1 and
L2, defined as the set intersection L1 ∩L2, is the largest grid included in both L1
and L2; similarly, the grid join of L1 and L2, denoted by L1 ⊕ L2, is the smallest
grid that includes both L1 and L2. In theoretical terms, the intersection and grid
join operators are the binary meet and join operators on the lattice Gn. They can
easily be computed; if L1 = gcon(C1) = ggen(G1) and L2 = gcon(C2) = ggen(G2),
then L1 ∩ L2 = gcon(C1 ∪ C2) and L1 ⊕ L2 = ggen(G1 ∪ G2).

In practice, the cost of computing the grid intersection and join depends on a
number of factors: if generator systems G1 and G2 for L1 and L2 are known, then
the complexity of computing L1 ⊕ L2 is linear in either #G1 or # G2; if, however,
only congruence systems C1 and C2 for L1 and L2 (not necessarily in minimal
form) are known, then the complexity is that of minimizing and converting
them which is, at worst, O

(
n2 max(# C1, # C2, n)

)
. A similar argument applies

to the complexities of the meet operation. However, the above operations are
not directly comparable with the meet and join operations given in [14]. For
such a comparison, for instance for the join operation, we assume that generator
systems for L1 and L2 in minimal form are available (i.e., each with at most
n+1 generators) and the operation returns a generator system in minimal form
for L1 ⊕ L2. Then the complexity is O

(
n3

)
, the complexity of minimizing a

generator system with at most 2n + 2 generators, which is strictly better than
O

(
n4 log2 n

)
, the complexity of the equivalent operation in [14].

Example 2. Consider the grids L1 = gcon(C1) and L2 = gcon(C2) in G2 where
C1 := {x ≡2 0, −x + y ≡3 0} and C2 := {x ≡4 0, −x + 2y ≡6 0}. Then the
grid intersection is L1 ∩ L2 = gcon(C1 ∪ C2); thus, as C = {x ≡12 0, y ≡3 0} is a
reduced form of C1 ∪ C2, we have L1 ∩ L2 = gcon(C).

Consider L1 = ggen
(
(∅, ∅, P1)

)
and L2 = ggen

(
(∅, ∅, P2)

)
in G2, where

P1 := (2 0 0
2 3 0) and P2 := (4 0 0

2 3 0) . Then the grid join L1 ⊕ L2 is generated by
(∅, ∅, P1∪P2); thus, the generator system G :=

(
∅, (2 0

0 1) , (0
0)

)
is a minimal form

of (∅, ∅, P1 ∪ P2) and L1 ⊕ L2 = ggen(G). Note that here L1 ⊕ L2 �= L1 ∪ L2.

Grid Difference. For grids L1, L2 ∈ Gn, the grid difference L1 � L2 of L1 and
L2 is the smallest grid containing the set-theoretic difference of L1 and L2.

Proposition 5. The grid L1 � L2 is returned by the algorithm in Figure 3.

Assuming C1 and C2 are available and in minimal form, it follows from the
complexities of minimization, conversion and comparison operations that the
grid difference algorithm in Figure 3 has worst-case complexity O

(
n4

)
.

Affine Images and Preimages. Affine transformations for the vector space
R

n will map hyperplanes to hyperplanes and preserve intersection properties
between hyperplanes; such transformations can be represented by matrices in

Grids: A Domain for Analyzing the Distribution of Numerical Values 229

Input: Nonempty grids L1 = gcon(C1) and L2 = gcon(C2) in Gn.
Output: A grid in Gn.
(1) L′ := ∅

(2) while ∃β = (e ≡f 0) ∈ C2

(3) C2 := C2 \ {β}
(4) if L1 � gcon

(
{β}

)
(5) if L1 ⊆ gcon

(
{2e ≡f 0}

)
(6) Lβ := gcon

(
C1 ∪ {2e − f ≡2f 0}

)
(7) L′ := L′ ⊕ Lβ

(8) else
(9) return L1

(10) return L′

Fig. 3. The grid difference algorithm

R
n×n. It follows that the set Gn is closed under the set of all affine transfor-

mations for R
n. Simple and useful linear affine transformations for numerical

domains, including the grids, are provided by the ‘single update’ affine image
and affine preimage operators.

Given a grid L ∈ Gn, a variable xk and linear expression e = 〈a, x〉 + b with
coefficients in Q, the affine image operator φ(L, xk, e) maps the grid L to

{(
p1, . . . , pk−1, 〈a, p〉 + b, pk+1, . . . , pn

)T ∈ R
n

∣∣∣ p ∈ L
}

.

Conversely, the affine preimage operator φ−1(L, xk, e) maps the grid L to
{

p ∈ R
n

∣∣∣ (
p1, . . . , pk−1, 〈a, p〉 + b, pk+1, . . . , pn

)T ∈ L
}

.

Observe that the affine image φ(L, xk , e) and preimage φ−1(L, xk, e) are invert-
ible if and only if the coefficient ak in the vector a is non-zero.

Program Analysis Using Grids. We show how the grid domain can be used
to find properties of the program variables not found using the polyhedra do-
main [10], constraint-based analysis [28] or polynomial invariants [27].

Example 3. The program fragment in Figure 2 is annotated with program points
Pj, for j = 1, . . . , 5. Let Li

j ∈ G2 denote the grid computed at the i-th iteration
executed by the point Pj. Initially, L0

j = ∅ = gcon
(
{1 = 0}

)
, for j = 1, . . . , 5.

After one and two iterations of the loop we have:

L1
1 = gcon

(
{x = 2, y = 0}

)
, L1

2 = gcon
(
{x = 2, y = 0}

)
,

L1
3 = gcon

(
{x = 6, y = 0}

)
, L1

4 = gcon
(
{x = 4, y = 1}

)
,

L1
5 = gcon

(
{x = 4, y = 1}

)
⊕ gcon

(
{x = 6, y = 0}

)

= gcon
(
{x + 2y = 6, x ≡2 0}

)
,

L2
2 = gcon

(
{x = 2, y = 0}

)
⊕ gcon

(
{x + 2y = 6, x ≡2 0}

)

= gcon
(
{x + 2y ≡4 2, x ≡2 0}

)
.

230 R. Bagnara et al.

Subsequent computation steps show that an invariant for P2 has already been
computed since L2

3 = L1
3, L2

4 = L1
4, L2

5 = L1
5 so that L3

2 = L2
2. Thus at the end

of the program, the congruences x + 2y ≡4 2 and x ≡2 0 hold.
Observe that, using convex polyhedra, a similar analysis will find instead that

the inequalities x − 2y ≥ 2, x + 2y ≥ 6 and y ≥ 0 hold [10].

4 Implementation

In this section, we describe convenient internal representations of the congruence
and generator systems in terms of arrays (i.e., matrices) and show how matrix
inversion provides a basis for converting between these representations.

Homogeneous Representations. A congruence system C is homogeneous if,
for all

(
〈a, x〉 ≡f b

)
∈ C, we have b = 0. Similarly, a generator system (L, Q, P)

is homogeneous if 0 ∈ P . For the implementation, it is convenient to work with a
homogeneous system. Thus we first convert any congruence or generator system
in Q

n to a homogeneous system in Q
n+1. The extra dimension is denoted with

a 0 subscript; the vector x̂ = (x0, . . . , xn)T; and e0 denotes the vector (1,0T)T.
Consider the congruence system C = E ∪F in Q

n, where E is a set of equalities
and F is a set of proper congruences. Then the homogeneous form for C is the
congruence system Ĉ = Ê ∪ F̂ in Q

n+1 defined by:

Ê :=
{〈

(−b, aT)T, x̂
〉

= 0
∣∣∣ (

〈a, x〉 = b
)

∈ E
}
,

F̂ :=
{〈

f−1(−b, aT)T, x̂
〉

≡1 0
∣∣∣ (

〈a, x〉 ≡f b
)

∈ F
}

∪
{
〈e0, x̂〉 ≡1 0

}
.

The congruence 〈e0, x̂〉 ≡1 0 expresses the fact that 1 ≡1 0. By writing Ê =
(ETx = 0) and F̂ = (FTx ≡1 0), where E, F ⊆ Q

n+1, it can be seen that the
pair (F, E), called the matrix form of Ĉ, is sufficient to determine C.

Consider next a generator system G = (L, Q, P) in Q
n. Then the homogeneous

form for G is the generator system Ĝ :=
(
L̂, Q̂ ∪ P̂ , {0}

)
in Q

n+1 where

L̂ :=
{
(0, �T)T

∣∣ � ∈ L
}
, Q̂ :=

{
(0, qT)T

∣∣ q ∈ Q
}
, P̂ :=

{
(1, pT)T

∣∣ p ∈ P
}
.

The original grid L = gcon(C) (resp., L = ggen(G)) can be recovered from
the grid L̂ = gcon(Ĉ) (resp., L̂ = ggen(Ĝ)) since L =

{
v ∈ R

n
∣∣ (1, vT)T ∈ L̂)

}
.

Note that, if (C, G) is a double description for a grid and Ĉ and Ĝ are homogeneous
forms for C and G, then (Ĉ, Ĝ) is also a double description.

Converting Representations. By considering the matrix forms of the (homo-
geneous forms of the) representations, we can build the conversion algorithms on
top of those for matrix inversion. For an informal explanation why this is appro-
priate, suppose that the generator system G =

(
∅, Q, {0}

)
in Q

n is in minimal
form and Q is a non-singular square matrix. Letting L = ggen(G) = { Qπ |
π ∈ Z

n }, then we also have L = { v ∈ R
n | Q−1v ≡1 0 }, so that (Q−1, ∅) is

the matrix form of a congruence system for the same grid L. Similarly we can

Grids: A Domain for Analyzing the Distribution of Numerical Values 231

use matrix inversion to convert the matrix form of a homogeneous congruence
system in minimal form consisting of n proper congruences for a grid L to a gen-
erator system for L. When the matrices to be inverted have less than n linearly
independent columns, the algorithms first add vectors ei where 1 ≤ i ≤ n, as
necessary, so as to make the matrices non-singular and hence invertible.

Proposition 6. Let C be a congruence system in Q
n in minimal form; (F, E)

the matrix form of the homogeneous form for C; N a matrix in Z
n+1 whose

vectors are of the form ei, i ∈ {0, . . . , n}, and such that (N, F̂ , Ê) is square and
nonsingular; and (L̂, Q̂, M) :=

(
(N, F̂ , Ê)−1

)T where # L̂ = # N , # Q̂ = # F̂

and # M = # Ê. Then Ĝ =
(
L̂, Q̂, {0}

)
is the homogeneous form for a generator

system G in minimal form and ggen(G) = gcon(C).

Proposition 7. Let G be a generator system in Q
n in minimal form; Ĝ =(

L̂, Q̂, {0}
)

the homogeneous form for G; M a matrix in Z
n+1 whose vectors

are of the form ei, i ∈ {0, . . . , n}, and such that (L̂, Q̂, M) is square and non-
singular; and (N, F̂ , Ê) :=

(
(L̂, Q̂, M)−1

)T where # N = # L̂, # F̂ = # Q̂ and
Ê = # M . Then (F̂ , Ê) is the matrix form of the homogeneous form for a
congruence system C in minimal form and gcon(C) = ggen(G).

Both algorithms just perform matrix inversion; so their complexity depends on
the inversion algorithm adopted in the implementation. As far as we know, the
current best theoretical worst-case complexity is O

(
n2.376

)
[5]. Note that, in the

current implementation in the PPL, the conversion algorithm is based on the
Gaussian elimination method, which has complexity O

(
n3

)
.

5 Grid Widening

A simple and general characterization of a widening for enforcing and accelerat-
ing convergence of an upward iteration sequence is given in [6,7,8,9]. We assume
here a minor variation of this classical definition (see footnote 6 in [9, p. 275]).

Definition 5 (Widening). Let 〈D, �,0, ⊕〉 be a join-semilattice. The partial
operator ∇ : D × D � D is a widening if

1. for each d1, d2 ∈ D, d1 � d2 implies that d1 ∇ d2 is defined and d2 � d1 ∇ d2;
2. for each increasing chain d0 � d1 � · · · , the increasing chain defined by

d′0 := d0 and d′i+1 := d′i ∇ (d′i ⊕ di+1), for i ∈ N, is not strictly increasing.

In addition to the formal requirements in Definition 5, it is also important to have
a widening that has an efficient implementation, preferably, one that depends
on a simple syntactic mapping of the representations. At the same time, so that
the widening is well-defined, the result of this operation should be independent
of the actual representation used. For this reason, the two widenings we propose
assume specific minimal forms for the congruence and generator systems.

232 R. Bagnara et al.

Definition 6. A congruence system C is in strong minimal form if, for each pair
of distinct proper congruences, 〈a, x〉 ≡1 b and 〈c, x〉 ≡1 d in C, if piv<(c) =
k > 0, then −ck < 2ak ≤ ck. A generator system G =

(
(L, Q, P)

)
in Q

n is
in strong minimal form if G is in minimal form and, for each pair of distinct
parameters u, v ∈ Q, if piv>(v) = k ≤ n, then −vk < 2uk ≤ vk.

Proposition 8. There exists an algorithm with complexity O
(
n3

)
for convert-

ing a congruence system C (resp., generator system G) in minimal form to a
congruence system C′ (resp., generator system G′) in strong minimal form such
that gcon(C) = gcon(C′) (resp., ggen(G) = ggen(G′)).

The widenings defined below use either the congruence or the generator systems.

Definition 7. Let L1 = gcon(C1) and L2 = gcon(C2) be two grids in Gn such
that L1 ⊆ L2, C1 is in minimal form and C2 is in strong minimal form. Then
the grid widening L1 ∇C L2 is defined by

L1 ∇C L2 :=

{
L2, if L1 = ∅ or dim(L1) < dim(L2),
gcon(CS), otherwise,

where CS := { γ ∈ C2 | ∃β ∈ C1 . β ⇑ γ }.

Definition 8. Let L1 = ggen(G1) and L2 = ggen(G2) be two grids in Gn such
that L1 ⊆ L2, G1 = (L1, Q1, P1) is in minimal form and G2 = (L2, Q2, P2) is in
strong minimal form. Then the grid widening L1 ∇G L2 is defined by

L1 ∇G L2 :=

{
L2, if L1 = ∅ or dim(L1) < dim(L2);
ggen(GS), otherwise,

where GS :=
(
L2 ∪ (Q2 \ QS), QS, P2

)
and QS := { v ∈ Q2 | ∃u ∈ Q1 . u ⇓ v }.

Proposition 9. The operators ‘∇C’ and ‘∇G’ are both widenings on Gn.

In Definition 7, it is required that C2 is in strong minimal form. The following
example shows that this is necessary for the operator ‘∇C’ to be well-defined.

Example 4. Let L1 := gcon(C1), L2 := gcon(C2) and L′
2 := gcon(C′

2) where
C1 = {x ≡2 0, y ≡2 0}, C2 = {x ≡1 0, x + y ≡2 0}, C′

2 = {x ≡1 0, 3x + y ≡2 0};
then L2 = L′

2. Note that only C1 and C2 are in strong minimal form. Therefore,
assuming CS (resp., CS

′) is defined as in Definition 7 using C1 and C2 (resp.,
C1 and C′

2), we have CS = {x + y ≡2 0} and CS
′ = {3x + y ≡2 0}. Thus

L1 ∇C L2 = gcon(CS) �= gcon(CS
′).

Example 5. To see that the widenings depend on the variable ordering, consider
the grids L1 = gcon(C1) = gcon(C′

1) and L2 = gcon(C2) = gcon(C′
2) in G2, where

C1 := {5x + y ≡1 0, 22x ≡1 0}, C2 := {5x + y ≡1 0, 44x ≡1 0},

C′
1 := {9y + x ≡1 0, 22y ≡1 0}, C′

2 := {9y + x ≡1 0, 44y ≡1 0}.

Grids: A Domain for Analyzing the Distribution of Numerical Values 233

Assume for C1 and C2 that the variables are ordered so that x precedes y, as in
the vector (x, y)T; then, C1 and C2 are in strong minimal form and, according
to Definition 7, we obtain L1 ∇C L2 = gcon

(
{5x + y ≡1 0}

)
. On the other hand,

C′
1 and C′

2 are in strong minimal form when taking the variable order where y
precedes x. In this case, by Definition 7, L1 ∇C L2 = gcon

(
{9y + x ≡1 0}

)
.

6 Conclusion

We have defined a domain of grids and shown that any element may be repre-
sented either by a congruence system which is a finite set of congruences (either
equalities or proper congruences); or a generator system which is a triple of fi-
nite sets of vectors (denoting sets of lines, parameters and points). Assuming
such a system in Q

n has m congruences or generators, then the minimization
algorithms have worst-case complexity O

(
n2m

)
. It is shown that any matrix

inversion algorithms such as Gaussian elimination which has complexity O
(
n3

)
,

can be used for converting between generator and congruence systems in mini-
mal form. Thus, the complexity of converting any system with m elements is no
worse than O

(
n2m

)
if m > n and O

(
n3

)
, otherwise.

The minimization and conversion algorithms, form the basis for a double
description method for grids so that any generator or congruence systems, pos-
sibly in minimal form, can be provided on demand; the complexity of such a
provision being as stated above. Assuming this method, we have shown that
operations for comparison, intersection and grid join are straightforward. The
complexity of comparing two grids is O

(
n3

)
but, for just checking equality when

it is already known that one of the grids is a subset of the other, we have de-
scribed simpler procedures with complexity O

(
n
)
. The intersection and grid

join just take the union of the congruence or generator systems, respectively,
so that, from a theoretical perspective, these have complexity O

(
n
)
. However,

in the implementation, we assume a common divisor for all the coordinates
or coefficients in the system; hence, combining the systems requires changing
the denominators of both components to their least common multiple with a
consequential need to scale all the numerators in the representation; giving a
worst-case complexity of O

(
n2

)
. We have also described an algorithm for com-

puting the grid difference with complexity O
(
n4

)
. Observe that this operator is

useful in the specification of the certificate-based widening for the grid powerset
domain [3].

The grid domain is implemented in the PPL [2,4] following the approach
described in this paper. Among the tests available in the PPL are the examples
in this paper and implementations of the running examples in [22,23]. The PPL
provides full support for lifting any domain to the powerset of that domain, so
that a user of the PPL can experiment with powersets of grids and the extra
precision this provides. An interesting line of research is the combination of the
grids domain with the polyhedral domains provided by the PPL: not only the
Z-polyhedra domain, but also many variations such as the grid-polyhedra, grid-
octagon, grid-bounded-difference, grid-interval domains and their powersets.

234 R. Bagnara et al.

References

1. C. Ancourt. Génération Automatique de Codes de Transfert pour Multiprocesseurs
à Mémoires Locales. PhD thesis, Université de Paris VI, March 1991.

2. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library User’s
Manual. Department of Mathematics, University of Parma, Parma, Italy, release
0.9 edition, March 2006. Available at http://www.cs.unipr.it/ppl/ .

3. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. Software Tools for Technology Transfer, 2006. To appear.

4. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla,
editors, Static Analysis: Proceedings of the 9th International Symposium, volume
2477 of Lecture Notes in Computer Science, pages 213–229, Madrid, Spain, 2002.
Springer-Verlag, Berlin.

5. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9(3):251–280, 1990.

6. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In B. Robinet, editor, Proceedings of the Second International Symposium on Pro-
gramming, pages 106–130, Paris, France, 1976. Dunod, Paris, France.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, New York, 1977. ACM Press.

8. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

9. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the 4th International Symposium on Program-
ming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 269–295, Leuven, Belgium, 1992. Springer-
Verlag, Berlin.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, pages 84–96, Tucson, Arizona, 1978.
ACM Press.

11. R. Giacobazzi, editor. Static Analysis: Proceedings of the 11th International Sym-
posium, volume 3148 of Lecture Notes in Computer Science, Verona, Italy, 2004.
Springer-Verlag, Berlin.

12. P. Granger. Static analysis of arithmetical congruences. International Journal of
Computer Mathematics, 30:165–190, 1989.

13. P. Granger. Analyses Sémantiques de Congruence. PhD thesis, École Polytech-
nique, 921128 Palaiseau, France, July 1991.

14. P. Granger. Static analysis of linear congruence equalities among variables of a
program. In Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91:
Proceedings of the International Joint Conference on Theory and Practice of Soft-
ware Development, Volume 1: Colloquium on Trees in Algebra and Programming
(CAAP’91), volume 493 of Lecture Notes in Computer Science, pages 169–192,
Brighton, UK, 1991. Springer-Verlag, Berlin.

http://www.cs.unipr.it/ppl/

Grids: A Domain for Analyzing the Distribution of Numerical Values 235

15. P. Granger. Static analyses of congruence properties on rational numbers (ex-
tended abstract). In P. Van Hentenryck, editor, Static Analysis: Proceedings of the
4th International Symposium, volume 1302 of Lecture Notes in Computer Science,
pages 278–292, Paris, France, 1997. Springer-Verlag, Berlin.

16. M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133–151, 1976.

17. S. Larsen, E. Witchel, and S. P. Amarasinghe. Increasing and detecting mem-
ory address congruence. In Proceedings of the 2002 International Conference on
Parallel Architectures and Compilation Techniques (PACT’02), pages 18–29, Char-
lottesville, VA, USA, 2002. IEEE Computer Society Press.

18. V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Avail-
able at http://icps.u-strasbg.fr/∼loechner/polylib/, March 1999. Declares
itself to be a continuation of [30].

19. A. Miné. A few graph-based relational numerical abstract domains. In M. V.
Hermenegildo and G. Puebla, editors, Static Analysis: Proceedings of the 9th In-
ternational Symposium, volume 2477 of Lecture Notes in Computer Science, pages
117–132, Madrid, Spain, 2002. Springer-Verlag, Berlin.

20. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double de-
scription method. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the
Theory of Games – Volume II, number 28 in Annals of Mathematics Studies, pages
51–73. Princeton University Press, Princeton, New Jersey, 1953.

21. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear
algebra. In N. D. Jones and X. Leroy, editors, Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2004), pages 330–341, Venice, Italy, 2004. ACM Press.

22. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In M. Sagiv, editor,
Programming Languages and Systems, Proceedings of the 14th European Sympo-
sium on Programming, volume 3444 of Lecture Notes in Computer Science, pages
46–60, Edinburgh, UK, 2005. Springer-Verlag, Berlin.

23. M. Müller-Olm and H. Seidl. A generic framework for interprocedural analysis
of numerical properties. In C. Hankin and I. Siveroni, editors, Static Analysis:
Proceedings of the 12th International Symposium, volume 3672 of Lecture Notes in
Computer Science, pages 235–250, London, UK, 2005. Springer-Verlag, Berlin.

24. S. P. K. Nookala and T. Risset. A library for Z-polyhedral operations. Publication
interne 1330, IRISA, Campus de Beaulieu, Rennes, France, 2000.

25. P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra. Technical
Report 1016, IRISA, Campus Universitaire de Bealieu, Rennes, France, July 1996.

26. P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra using a
canonic representation. Parallel Processing Letters, 7(2):181–194, 1997.

27. E. Rodŕıguez-Carbonell and D. Kapur. An abstract interpretation approach for
automatic generation of polynomial invariants. In Giacobazzi [11], pages 280–295.

28. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-relations
analysis. In Giacobazzi [11], pages 53–68.

29. A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons, 1999.

30. D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon
State University, Corvallis, Oregon, December 1993. Also published as IRISA
Publication interne 785, Rennes, France, 1993.

http://icps.u-strasbg.fr/~loechner/polylib/

Author Index

Abdennadher, Slim 17
Arroyo, Gustavo 60

Bagnara, Roberto 219
Brassel, Bernd 160

Carro, Manuel 77
Chakravarty, Manuel M.T. 111
Craig, Stephen-John 43

De Schreye, Danny 210
Dobson, Katy 219

Elphick, Dan 43

Finkbeiner, Bernd 127
Fischer, Sebastian 160

Giesl, Jürgen 177

Hermenegildo, Manuel 77
Hill, Patricia M. 219
Huch, Frank 160

Inoue, Katsumi 26

Klein, Gerwin 111
Kraußer, Tina 94

Leuschel, Michael 43

Mantel, Heiko 94
Marchiori, Massimo 1

Morales, José F. 77
Mundell, Matthew 219
Musuvathi, Madan 15

Nguyen, Manh Thang 210

Olama, Abdellatif 17

Payet, Étienne 194

Qadeer, Shaz 15

Ramos, J. Guadalupe 60

Sakama, Chiaki 26
Salem, Noha 17
Schewe, Sven 127
Schneider-Kamp, Peter 177
Serebrenik, Alexander 177
Silva, Josep 60, 143
Sudbrock, Henning 94

Thabet, Amira 17
Thiemann, René 177

Vidal, Germán 60

Winwood, Simon 111

Zaffanella, Enea 219

	Title page
	Preface
	Conference Organization
	Table of Contents
	How to Talk to a Human: The Semantic Web and the Clash of the Titans
	The Semantic Web and XML: The Eternal Quest
	The Semantic Web to the Rescue: Closed vs. Open Worlds
	Just Aggregation?
	The Benefits
	The Costs
	The C/B Ratio
	The Cost of URIs
	Another Perspective: Lost in Navigation
	Technologies Examples: The Good and the Bad
	Talk to a Human: Blogs and the Grillo Case

	The Web and the Information Flows
	Towards a Web Algebra
	Infoshares and Infostructures
	Info-extensions

	The Future: From Towers to Trees?

	CHESS: Systematic Stress Testing of Concurrent Software
	Introduction
	Algorithm
	Application
	Firewall Design
	Generation of Constraint Solvers

	Arm Features
	How to Run ARM
	Implementation of ARM

	Conclusion

	Constructing Consensus Logic Programs
	Introduction
	Preliminaries
	Consensus Logic Programs
	Computing Consensus Programs
	Application to Multi-agent Consensus
	Related Work
	Conclusion

	Supervising Offline Partial Evaluation of Logic Programs Using Online Techniques
	Introduction
	Offline Partial Evaluation
	Watchdog Mode
	Experiments
	The Web Interface and Semi-automatic Correction
	Related Work and Conclusion

	Improving Offline Narrowing-Driven Partial Evaluation Using Size-Change Graphs
	Introduction
	Preliminaries
	A Simple Offline NPE Scheme
	Ensuring Quasi-termination with Size-Change Graphs
	Annotation Procedure
	Experimental Evaluation
	Conclusions and Future Work

	Towards Description and Optimization of Abstract Machines in an Extension of Prolog
	Introduction
	A Prolog Variant to Describe Virtual Machines
	New Features in the Language
	Conditions to Ensure Efficient Code Generation
	Analysis
	Code Generation

	Generating Emulators with $ImProlog$
	Defining WAM Instructions in $ImProlog$
	Assembling the Emulator

	Automatic Generation of Abstract Machine Variations
	Instruction Set Transformations
	Transformations of Instruction Code

	Experimental Evaluation
	Conclusions

	Combining Different Proof Techniques forVerifying Information Flow Security
	Introduction
	Information Flow Security in an Imperative Language
	Security Policy, Labelings, and Security Condition

	Combining Calculus
	Compositionality Results and Basic Calculus Rules
	Plugin: Strong Security
	Plugin: Low-Deterministic Security
	Soundness and Examples

	Information Flow Security of a PDA Application
	Plugins for Type-Based Analysis Techniques
	Plugin : Boudol and Castellani's Security Type System
	Plugin : Sabelfeld and Sand's Security Type System
	Exemplary Type-Based Security Analysis

	Conclusion

	On the Automated Synthesis of Proof-Carrying Temporal Reference Monitors
	Introduction
	Our Approach
	The Monitor Environment
	The Prototype

	Policy Logic
	A Language and Logic for Reference Monitors
	The Programming Language
	The Program Logic

	Synthesis
	Checking P3TL Satisfaction
	Monitor Synthesis
	Proof Synthesis
	Discussion

	Related Work
	Conclusions and Future Work

	Synthesis of Asynchronous Systems
	Introduction
	The Synthesis Problem
	Single-Process Synthesis Under Full Scheduling
	Preliminaries: Tree Automata
	Overview
	From Formulas to Automata
	From Computation Trees to Strategy Trees
	Nondeterminization
	Strategy Construction
	Complexity

	Synthesis of Scheduler-Independent Implementations
	Overview
	Considering a Scheduler
	Quantification over All Schedulers
	Complexity
	Synthesis with Explicit Assumptions on the Scheduler

	Multi-process Synthesis
	Conclusions

	A Comparative Study of Algorithmic Debugging Strategies
	Introduction
	Algorithmic Debugging
	Algorithmic Debugging Strategies
	Single Stepping $(Shapiro, 1982)$
	Top-Down Search $(Av-Ron, 1984)$
	Divide and Query $(Shapiro, 1982)$
	Hat-Delta $(Davie and Chitil, 2005)$
	Subterm Dependency Tracking $(MacLarty et al., 2005)$
	Dynamic Weighting Search $(Silva, 2006)$

	Comparing Strategies
	Conclusions

	A Program Transformation for Tracing Functional Logic Computations
	Introduction
	Instrumented Semantics
	Program Transformation
	Path Information
	Labeling Expressions
	Global State
	Redirecting Arguments
	Transforming Expressions
	Transforming Projections

	Conclusion

	Automated Termination Analysis for Logic Programs by Term Rewriting
	Introduction
	Preliminaries on Logic Programming and Rewriting
	Transforming Logic Programs into TRSs
	Termination of Infinitary Constructor Rewriting
	Experiments and Conclusion

	Detecting Non-termination of Term RewritingSystems Using an Unfolding Operator
	Introduction
	Preliminaries
	Unfolding a TRS
	Inferring Looping Terms
	Eliminating Useless Rules
	Abstraction
	Detecting Useful Pairs

	Experimental Results
	Conclusion

	Polytool: Proving Termination Automatically Based on Polynomial Interpretations
	Introduction
	The Polytool System
	Experimental Evaluation
	Comparison Between Hasta La Vista and Polytool
	Comparison Between TALP and Polytool

	Conclusions

	Grids: A Domain for Analyzing the Distribution of Numerical Values
	Introduction
	Preliminaries
	The Grid Domain
	Implementation
	Grid Widening
	Conclusion

	Author Index

