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Foreword

by
Paul E. Green

[ am honored and pleased to respond to authors request to write a Foreword for
this excellent collection of essays on conjoint analysis and related topics. While a
number of survey articles and sporadic book chapters have appeared on the sub-
ject, to the best of my knowledge this book represents the first volume of contrib-
uted essays on conjoint analysis. The book reflects not only the geographical di-
versity of its contributors but also the variety and depth of their topics.

The development of conjoint analysis and its application to marketing and
business research is noteworthy, both in its eclectic roots (psychometrics,
statistics, operations research, economics) and the fact that its development
reflects the efforts of a large variety of professionals - academics, marketing
research consultants, industry practitioners, and software developers.

Reasons for the early success and diffusion of conjoint analysis are not hard to
find. First, by the early sixties, precursory psychometric techniques (e.g.,
multidimensional scaling and correspondence analysis, cluster analysis, and
general multivariate techniques) had already shown their value in practical
business research and application. Second, conjoint analysis provided a new and
powerful array of methods for tackling the important problem of representing and
predicting buyer preference judgments and choice behavior - clearly a major
problem area in marketing.

In addition, the fortuitous confluence of academic research, practictioner
application, and easy-to-use software (distributed by Sawtooth Software and
Bretton-Clark) provided the necessary mix for conjoint’s rapid acceptance by both
the private and public sectors. The rest (as they say) is history.

Recent Trends

Conjoint analysis continues to expand in terms of models, techniques, and applica-

tions. Examples include:

Prescriptive modeling: the development of normative models for finding the

product/service or line of products/services that maximize the firm’s return.

* Dynamic modeling: the development of normative conjoint models for
representing competitive actions and reactions, based on game theoretic concepts.

» Extension of earlier models to choice-based conjoint situations, incorporating
multinomial logit and probit modeling.

e Latent class, hierarchical Bayes modeling, and constrained choice modeling.

e Other new models, such as individual-level hybrid modeling, Sawtooth’s 1CE
model, and empirical Bayes applications.

e Applications in diverse areas, including the design of lottery games, employee
benefits packages, public works (such as the New Jersey E-Z Pass toll road
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system), hotel and time share amenities, gasoline station layouts, and legal issues
dealing with misleading advertising, antitrust violations, etc.

» New choice simulators that include sensitivity analysis, composing and evaluating
selected segments, computation of monetary equivalents of part worths,
share/return optimization, including Pareto frontier analysis.

e New developments in full-profile experimental designs, including d-optimal
designs, randomized balance designs, and Plackett-Burman design extensions.

e The coupling of conjoint analysis with virtual-reality electronic displays that
simulate product arrays, store interiors, house, and furniture layouts, etc.

e The coupling of conjoint analysis with the perceptual and preference mapping of
choice simulator results.

The preceding points are only illustrative of the diversity and ingenuity of
conjoint researchers/practitioners. And, clearly, more is yet to come.

The Validation Problem

Researchers and practitioners should have (and generally do have) a healthy skep-
ticism about the "latest developments™ in conjoint modeling. Fortunately, this
book of essays contains a number of model comparisons and cross validation
studies. New models and application areas have proliferated over the past 30
years; it is still highly important to evaluate the host of new “whizzbangs™ that
invariably accompany a rapidly growing research area.

Our Indebtedness

This new book of essays, Conjoint Measurement - Methods and Applications, is a
welcome addition to the conjoint literature. Its publication attests to the interna-
tional character associated with the growth and diffusion of interest and research
in conjoint analysis. While conjoint has reached a level of popularity and maturity
that few of us in its early stages would have imagined, the methodology is still far
from becoming moribund. This book is a fitting testimonial to the sustained inter-
est in conjoint methods and the vigor and acuity of this international gathering of
researchers.

In closing, it seems to me that we should all express our gratitude to those
early scholars -- Thurstone, Luce, Tukey, McFadden, Addelman, Kempthorne,
Lazarsfeld, to name only a few -- who planted the seeds that have led to such a
bountiful harvest for marketing researchers. And to go back even further, let’s not
forget the good reverend, Thomas Bayes. Were he here today, I'm confident that
this book would merit his blessings.

Paul E. Green
Wharton School
University of Pennsylvania



1 Conjoint Analysis as an Instrument of Market
Research Practice

Anders Gustafsson, Andreas Herrmann and Frank Huber

11 Introduction

The essay by the psychologist Luce and the statistician Tukey (1964) can be

viewed as the origin of conjoint analysis (Green and Srinivasan 1978; Carroll and

Green 1995). Since its introduction into marketing literature by Green and Rao

(1971) as well as by Johnson (1974) in the beginning of the 1970s, conjoint analy-

sis has developed into a method of preference studies that receives much attention

from both theoreticians and those who carry out field studies. For example, Cattin
and Wittink (1982) report 698 conjoint projects that were carried out by 17 com-

panies in their survey of the period from 1971 to 1980. For the period from 1981

to 1985, Wittink and Cattin (1989) found 66 companies in the United States that

were in charge of a total of 1062 conjoint projects. Wittink, Vriens, and Burhenne
counted a total of 956 projects in Europe carried out by 59 companies in the pe-
riod from 1986 to 1991 (Wittink, Vriens, and Burhenne 1994; Baier and Gaul

1999). Based on a 2004 Sawtooth Software customer survey, the leading company

in Conjoint Software, between 5,000 and 8,000 conjoint analysis projects were

conducted by Sawtooth Software users during 2003. The validation of the conjoint
method can be measured not only by the companies today that utilize conjoint
methods for decision-making, but also by the 989,000 hits on www.google.com.

The increasing acceptance of conjoint applications in market research relates to

the many possible uses of this method in various fields of application such as the

following:

e new product planning for determining the preference effect of innovations (for
example Bauer, Huber, and Keller 1997; DeSarbo, Huff, Rolandelli, and Choi
1994; Green and Krieger 1987; 1992; 1993; Herrmann, Huber, and Braunstein
1997; Johnson, Herrmann, and Huber 1998; Kohli and Sukumar 1990; Page and
Rosenbaum 1987; Sands and Warwick 1981; Yoo and Ohta 1995; Zufryden
1988) or to

* improve existing achievements (Green and Wind 1975; Green and Srinivasan
1978; Dellaert et al., 1995), the method can also be applied in the field of

e pricing policies (Bauer, Huber, and Adam 1998; Currim, Weinberg, and Wittink
1981; DeSarbo, Ramaswamy, and Cohen 1995; Goldberg, Green, and Wind
1984; Green and Krieger 1990; Kohli and Mahajan 1991; Mahajan, Green, and
Goldberg 1982; Moore, Gray-Lee, and Louviere 1994; Pinnell 1994; Simon 1992;
Wuebker and Mahajan 1998; Wyner, Benedetti, and Trapp 1984),
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e advertising (Bekmeier 1989; Levy, Webster, and Kerin 1983; Darmon 1979;
Louviere 1984; Perreault and Russ 1977; Stanton and Reese 1983; Neale and
Bath 1997; Tscheulin and Helmig 1998; Huber and Fischer 1999), and

o distribution (Green and Savitz 1994; Herrmann and Huber 1997; Oppewal and
Timmermans 1991; Oppewal 1995; Verhallen and DeNooij 1982).

In addition, this method is increasingly used as an instrument of
o controlling (Green and Srinivasan 1978; Herrmann et al., 1999).

Another field of application using basic strategic decisions such as

e Market segmentation (Hagerty 1985; Akaah 1988; De Soete and Winsberg 1994;
DeSarbo, Olivier, and Rangaswamy 1989; DeSarbo, Ramaswamy, and Chaterjee
1992; DeSarbo, Wedel, Vriens, and Ramaswamy 1992; Diamantopoulos,
Schlegelmilch, and DePreez 1995; Gaul and Aust 1994; Gaul, Lutz, and Aust
1994; Green and Helsen 1989; Green and Krieger 1991; Kamakura 1988; Ogawa
1987; Steenkamp and Wedel 1991; Steenkamp and Wedel 1993; Wedel and
Kistemaker 1989; Wedel and Steenkamp 1989; Wedel and Steenkamp 1991). A
good overview for the different segmentation approaches provides Vriens (1995)
and Vriens, Wedel, and Wilms (1996). Conjoint analysis can be of great use here.

» The method is further applied to simulate purchasing decisions with a focus on
competitors' responses (Mohn 1991),

This brief overview may give the impression that the success of this method
comes from the application to new areas, in the sense of a broadening of the con-
cept. But this is only one side of the coin. Simultaneously, research has been initi-
ated to deepen the knowledge in certain areas. We have particularly seen many
contributions for finding the optimal price for a certain product. In this context, an
important distinction in analyzing the price attribute is made by Rao and Sattler in
Chapter 2. They differentiate between two functions of the price. Consumers use
the price of a product both as a signal of product quality (informational role) and
as a monetary constraint in choosing it (allocative role). In their paper, Rao and
Sattler implement a conjoint based research approach to separately estimate these
two effects of price. While in practice only the net effect of the two roles of price
are usually estimated in any conjoint measurement approach or brand choice
model, our methodology is able to separate the two price effects.

It is the goal of conjoint analysis to explain and predict preferences that result
in an assessment of achievements. Various achievement profiles are created (both
real as well as hypothetical ones) by varying specific attributes, and these profiles
are to be evaluated by the test persons. The contributions (partial benefits) that the
various attributes make to overall preference (overall benefit) are estimated on the
basis of overall preference judgments as expressed by the test persons. Accord-
ingly each product concept is assigned with a specific overall benefit value. Thus
no attribute-specific single judgments are summarized to yield an overall judg-
ment (compositional approach) but vice versa; the contributions of the various
attributes or their manifestations are filtered out of the overall judgments (decom-
positional approach).
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Although many people speak of ‘the conjoint analysis’, the number of methods
understood by this term and their variants is considerable. What all these ap-
proaches have in common, however, is a flow diagram developed by Green and
Srinivasan (1978) which is shown in an updated form in Figure I; the order of
typical variants has been approximately selected based on their decreasing impor-
tance for practical applications (Cattin and Wittink 1982; Wittink and Cattin 1989;
Wittink, Vriens, and Burhenne 1994).

Selection of the preference
function

The following models can be used depending on attribute scaling:
«Partial benefit value model

+ldeal vector model

«Ideal point model

Selection of data collection
method

+Profiles method
*Two-factor method
«Adaptive conjoint analysis (ACA)

Selection of data collection
design

«Full profile design
*Reduced design

Selection of the way the
stimuli are presented

*Verbal description
*Visual representation

Selection of data collection
procedure

*Person-to-person interview
*Mail survey
Computer interview

Selection of the method for
evaluation of the stimuli

Metric scales Vs, non-metric procedures:
*Rating Ranking
*Dollar metrics paired profiles comparison

«Constant sum scale

Estimation of benefit
values

Estimation method for metric Vs, non-metric scale level:
«Least square MONANOVA
*Multiple regression LINMAP

PREFMAP

Figure 1:  Flow diagram of conjoint analysis
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1.2 Research areas and future development trends of
conjoint analysis

1.2.1 A flow diagram of conjoint analysis

The various options regarding the flow diagram (see figure 1) of the process of
analysis should be determined before carrying out a practical conjoint analysis
(Green and Srinivasan 1978; Green and Srinivasan 1990; Vriens 1995). Although
each step is suitable to reveal findings and future developments of the research
areas, the individual steps are not carried out one after the other and decisions are
not made independently. Furthermore, good conjoint research most likely occurs if
the process is hypothesis driven. Each stage of the process should be used to ap-
prove or reject potential solutions to decision problems.

1.2.2 Data collection

Selection of the preference function

The first step is the selection of the preference function based on which influence
the defined attributes have on the respondents' preferences (other authors accentu-
ate the relevance of the selection of the attributes and their levels in the first step,
see Vriens 1995). This preference function therefore is the basis for determining
partial benefit values for the respective attributes that reflect the preferences of the
persons interviewed (Green and Srinivasan 1978; Schweikl 1985). The models that
are most frequently used are the ideal vector model, the ideal point model, and the
partial benefit model (See also Green and Srinivasan 1978; Vriens 1995).

When using the ideal vector model (see Figure 2) a proportional relationship is
assumed between a partial benefit value and the manifestation of an attribute. This
means that benefit increases (w,; > 0) or decreases (w,; < 0) with an increasing or
decreasing manifestation of the attribute (Vriens 1995; Srinivasan, Jain and Mal-
hotra 1983; Kamakura and Srivastava 1986; Allenby, Arora, and Ginter 1995).

If the ideal point model (see Figure 3) is used, the researcher assumes the exis-
tence of an ideal manifestation. The benefit value of a manifestation drops as soon
as it falls below or exceeds the ideal point (Green and Tull 1982).

The partial benefit model (see Figure 4) is the most flexible of all three models
and includes the ideal vector and the ideal point models as special cases (Green
and Srinivasan 1978; Cattin and Wittink 1982; Louviere 1984; Wittink and Cattin
1989; Krishnamurthi and Wittink 1991; Green and Srinivasan 1990). This model
does not assume a specific functional process and manifestations of attributes can
only be interpolated if the scale level is metric.
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Ideal Vector Model
A
Part
worth
utility
Wy >0
W, <0

P Attribute
level

Wxj: individual weighting of attribute x by respondent j

Figure 2. Preference value for various manifestations of attribute x while keep-
ing the values of the other attributes constant

APart Ideal Point Model
worth
utility
I
I
I
I
I
I
I
I
I
I
: » Attribute
Ideal level
Point

Figure 3. Preference value for various manifestations of attribute x while keep-
ing the values of the other attributes constant
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A Part Worth Utility
Part Model
worth
utility
Wy >0
PR AN
e~ . . ij <0
.
' T ™ Single, selected
L manifestations
Gaps not defined of attribute x

Wxj: individual weighting of attribute x by respondent j

Figure 4:  Preference value for various manifestations of attribute x while keep-
ing the values of the other attributes constant

The partial benefit model is mainly used as a preference model for conjoint analy-
sis (Green and Srinivasan 1978; Wittink and Cattin 1989; Cattin and Wittink 1982).
A linking rule is required to distinguish between the overall benefit of the product
alternative and the partial benefit values obtained using the preference function. In
principle, two types of combinations can be distinguished. Unlike non-
compensatory models, compensatory models evaluate all existing attributes in
such a way that the low partial benefit of one attribute is compensated by an ac-
cordingly greater contribution to the overall benefit made by another attribute.

If the various manifestations of attributes are interpreted as independent
(dummy) variables, the partial benefit model is formally identical to the ideal
vector model (Acito and Hustad 1981; Mahajan, Green, and Goldberg 1982;
Srinivasan 1979). The partial benefit model, however, provides greater flexibility
for designing the attribute evaluation function. But this greater flexibility has a
major setback that is not always properly taken into account in practical studies:
the number of parameters to be estimated increases for a given number of test
values. In contrast, the ideal vector model yields the smallest number of parame-
ters to be estimated. The ideal point model ranges somewhere in between.

The studies by Cattin and Punj (1984), Srinivasan, Jain, and Malhorta (1983),
Green and Srinivasan (1990), Krishnamurthi and Wittink (1991), and Hagerty
(1986), for example, focus on the preference function to be able to make
statements about the benefits of each model. Cattin and Punj state in their Monte
Carlo study that a limited, special model (such as the ideal vector model) yields
better predictions of preference values than a more general and flexible model
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(such as the partial benefit model). Here they agree in general with the
recommendations given by Srinivasan, Jain, and Malhorta (1983). Krishnamurthi
and Wittink (1991) compare the partial benefit model with three other model
specifications. As a result of their study in the automobile sector, they advocate
the assignment of a ‘continuous function’ (such as the ideal vector model) to
attributes for which continuous progress is expected. In this context, it appears
useful to pay increased attention to the ideal vector model (viewed critically
Pekelman and Sen 1979). Baier and Gaul address this in their studies presented in
Chapter 3. Their essay is based on the well-known probabilistic ideal vector model
(De Soete and Carroll 1983; Gaul 1989; Baier and Gaul 1996). Deterministic
points for alternatives and random ideal vectors for consumer segments are used
for explaining and predicting individual choice behavior in a low-dimensional
attribute space where the same model formulation is employed for parameter
estimation and for market simulation. Moreover, it can be used to analyze data
collected via the wide-spread ACA system. To compare the new approach with
traditional counterparts they conducted a Monte Carlo study. Additionally, an
application for the German mobile phone market is used to illustrate further
advantages.

Selection of the data collection method

After a preference model has been selected, the next step is to determine the way
in which the incentives are presented to the respondents for evaluation. Among the
classic data collection methods of conjoint analysis are the profile (Green and Rao
1971) and the two-factor methods (Johnson 1974; for the paired comparison ap-
proach see Srinivasan, Shocker, and Weinstein 1973), which both have repeatedly
been compared to the one-factor evaluation (for some critical comments about the
one-factor-method, see Vriens 1995). Although the one-factor evaluation of the
self-explicated approach (Huber 1974; Srinivasan and Wyer 1989) basically con-
flicts with the principle of conjoint analysis to trade-off factors of combinations of
factors, conjoint researchers have dedicated numerous studies to this data collec-
tion strategy. One reason for this research is that one-factor evaluation has become
an integral part of the frequently used adaptive conjoint analysis. Moreover, Huber
points out that one-factor evaluation is superior to data collection methods tradi-
tionally used in conjoint analysis whenever multiple attributes influence the deci-
sion, when the demanders' expectations regarding attributes and manifestations of
attributes of the objects selected are stable, and when alternative choices do not
exert a major influence on the decision (Huber 1997). These statements were
corroborated by the study of Srinivasan and Park (1997). Another proof that the
self-explication approach should be considered in conjoint analysis is provided by
Sattler and Hensel-Bérner in Chapter 4. In their article they give a comprehensive
overview of studies comparing the self-explicated approach and conjoint meas-
urement. On the basis of a valuable comparison of several advantages as well as
disadvantages of conjoint measurement and self-explication approaches, they
discuss these two approaches in great detail. After this, a broad overview of em-
pirical studies comparing the two approaches under consideration in terms of
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reliability as well as predictive validity shows the reader the state-of-the-art in that
research area. Finally, they draw useful conclusions from their findings.

If the researcher decides in favor of the conjoint measurement and not the self-
explicated approach he may choose between two methods of data collection. The
profile method (synonyms are “full profile approach” or “multiple factor evalua-
tion” (MFE), Green and Srinivasan 1978; Green and Tull 1982) describes the incen-
tives to be evaluated by all K attributes considered. A full-profile description thus
comes closer to a real buying situation (Green and Srinivasan 1978). Charts have
proved their worth for representing incentives. The critical remarks by Wittink
(1989) that this method was limited to approximately eight attributes requires
qualification (e.g., Page and Rosenbaum 1989) as innovative forms of presenting
incentives make it much easier for the individuals interviewed to carry out a pref-
erence evaluation.

The two-factor method (or “trade-off-analysis” or “two factor evaluation”

(TFE) see Green and Tull 1982) reveals preferences for incentives only that are
partially described by 2<K attributes (Mohn 1989). A typical feature of two-factor
evaluations are trade-off matrices in which preferences have to be indicated in the
associated matrix elements for all combinations of vertically or horizontally laid
off manifestations of the two attributes considered. This approach has been criti-
cized for being limited to ranking data (Wittink, Vriens, and Bruhenne 1994). This
criticism must be qualified as well. Tt is true that Johnson (1974) introduced the
two-factor evaluation explicitly for ranking data. However, it can easily be gener-
alized for nearly any other evaluation scale that is common in conjoint analysis. It
is a serious restriction of use, at least when using a polynomial linking function,
that higher-order interaction effects cannot be taken into account (see Figure 5;
Johnson 1974; Green and Tull 1982).
Two improvements of the traditional data collection methods have been used from
the mid-1980s. An improvement of the profile method is called hybrid conjoint
analysis (Green, Goldberg, and Montemayor 1981; Green 1984). It combines a
direct (compositional) part of the survey in which the respondents have to give
direct judgments about the importance of individual attributes, and an indirect
(decompositional) part of the survey that represents the actual conjoint interview
with selected combinations of attributes.

Adaptive conjoint analysis (ACA) is viewed as a modern form of the two-
factor method (Johnson 1987). This method can provide a detailed analysis of the
individual benefit structure of each respondent because the questions asked are
adapted to previous answers in a computer-aided data collection process (Green
and Srinivasan 1990).

Johnson (1974) initiated busy research activities focused on data collection
methods (for a comparison of the approaches see Akaah and Korgaonkar 1983;
Vriens and Wittink 1992). For example, Alpert, Betak, and Golden (1978; quoted
from Green and Srinivasan 1978) and Montgomery, Witting, and Glaze (1977,
quoted from Green and Srinivasan 1978) found that the two-factor evaluation had
greater prediction validity. Segal (1982), however, agrees with Oppedijk van vee
and Beazley (1977), Jain et al., (1979) and Rosko and McKenna (1983) that two-
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The two attributes 'price’ and 'warranty' are given. Please look at the manifestations of these properties
and enter the number | into the combination you prefer most. Enter the number 2 for your second
choice into one of the remaining fields. Enter the number 3 etc. for your next choices until all figures
froml to 9 have been used.

Evaluate all other pairs of attributes in this way.

Warranty

6 months 12 months 18 months

high

Price medium

Tow

Figure 5:  Example of a two-factor matrix

and multiple-factor evaluations are equal while profile evaluation had a slight
advantage

According to a study by Safizadeh, the increasing popularity of the profile
approach is due to the fact that multiple-factor evaluations have less problems
resulting from overvaluation of single major attributes taken out of context than
the other two approaches (Safizadeh 1989; Slovic, Fleissner, and Bauman 1972).
Wittink, Vriens, and Burhenne (1994), however, have shown that since Adaptive
Conjoint Analysis is gaining ground, a comparison of multiple-factor and ACA
approaches would be of great interest. Finkbeiner and Platz (1986) as well as
Agarwal (1988) found that the results in terms of precision of prediction are alike
in these two approaches. This conflicts with the findings of studies by Huber et al.,
(1993).

As the number of attributes that could be integrated into a conjoint design in-
creases with the development of the ACA or hybrid procedure, it makes sense to
notice studies where these attributes are the object of interest (Pullman, Dodson,
and Moore 1999). The studies recently initiated by Orme, Alpert, and Chistensen
(1997) and Huber, Ariely, and Fischer (1997) that focus on semantic peculiarities
of the attributes used in the profile method should particularly be noted here. Their
findings indicate that an affirmative or negative presentation of items may influ-
ence the evaluation of alternatives. The loss aversion effect as known from de-
scriptive decision theory could be proved (Kahneman and Tversky 1979; Tversky
and Kahneman 1991).
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Selection of the data collection design

In addition to the way in which the respondents are supposed to evaluate incen-
tives, the number of incentives is of relevance. If the objective is to have all theo-
retically conceivable incentives evaluated, i.e., all combinations of attribute mani-
festations included in the study, this will be a complete (factorial) design. In view
of data collection expenses (Pearson and Boruch 1986) and the risk of wearing out
the respondents, it is important to keep the number of incentives to be evaluated to
a minimum, though the number of incentives, i.e., the number of observations,
should at least equal the number of parameters to be estimated. From an empirical
point of view, S=30 incentives seem to represent an upper limit (Green and Srini-
vasan 1978).

It is also desirable to have the validation of preference models supported by
significance tests for the parameters and ways of cross-validation. This, however,
can result in technical data collection problems. Therefore, a reduced design is
often preferred which attempts to represent the complete design based on a smaller
number of incentives (Addelman 1962a; Addelmann 1962b; Green 1974; Green
and Srinivasan 1978). There are basically two ways in conjoint analysis to reduce
the number of incentives, which means to fractionate the complete factorial de-
sign. The easiest way called ‘random sampling’ consists of taking as many incen-
tives out of the design by random selection as is required to reach the desired
scope (Green and Srinivasan 1978). This approach, however, is not used in mar-
keting research and practice. It is common to reduce the design systematically in
such a way that orthogonality, i.e., the independence of the factors (attributes) is
retained (Green, Helsen, and Shandler 1988; 1989; Moore and Holbrook 1990;
and Steckel, DeSarbo, and Mahjan 1990 discuss the relative advantages of the
orthogonal and non-orthogonalen Design). Depending on whether the manifesta-
tions of attributes are all equal in number or whether the number of manifestations
varies between attributes, we distinguish symmetrical and asymmetrical types of
fractionated factorial designs (for a brief introduction see Kuhnfeld 1997). The 7
base plans provided by Addelmann (1962a) have proved to be particularly helpful
for constructing asymmetrical and symmetrical main effect designs.

As there is no independence of attributes in many applications of conjoint
analysis, greater attention has been recently paid to data collection design that
takes into account interaction effects. Hints regarding the construction of fraction-
ated factorial orthogonal designs with as small a number of incentives as possible
were given by Cochran and Cox (1957), Winer (1973), Shah and Sinha (1989),
and Assmus and Key (1992). A further contribution in this research area is made
by Blomkvist, Ekdahl, and Gustafsson in Chapter 5. In their paper they use a non-
geometric design to generate the concepts. Non-geometric designs represent a
class of orthogonal designs that when the assumption of effect scarcity is valid,
i.e., that only a few of the attributes actually influence the respondents' prefer-
ences, provide an opportunity to analyze interactions between attributes as well as
the attributes themselves. In this article the use of non-geometric Plackett-Burman
designs for conjoint analysis is advocated. Also, a procedure based on restricted
all subsets regression for taking advantage of the special characteristics of the non-
geometric designs is proposed and demonstrated using data from a conjoint study
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performed on cellular telephone antennas in Sweden. Blomkvist, Ekdahl, and
Gustafsson also conducted a Monte Carlo simulation to further illustrate the prop-
erties of the proposed procedure and the use of non-geometric Plackett-Burman
designs for conjoint analysis.

Selection of the way in which incentives are presented
There are two ways to present the incentives defined in the previous steps (Vriens
1995; Green and Srinivasan 1978). When the presentation is verbal, the incentives
can be presented on product information sheets using key words, descriptive sen-
tences, or a combination of key words and explanatory sentences.

When the presentation is visual, graphic representation using drawings or pho-
tographs has to be distinguished from physical presentation (Wedel and Steenk-
amp 1991; Steenkamp and Wedel 1993) where real products or prototypes are
used (Aust and Gaul 1995; Vriens et al., 1998; Page and Rosenbaum 1987; 1989).
Each of these three ways has its advantages and disadvantages which Green and
Srinivasan (1978 and 1990) describe in some detail (Vriens 1995). The extent to
which the presentation of incentives determines the responses of the test persons is
the focus of a study by Holbrook and Moore (1981). The object of study of these
two authors is pullovers. Pullovers most certainly are products that must be visu-
ally experienced. They are appreciated for aesthetic elements rather than objective,
rational ones. The verbal description caused the respondents to attach greater
importance to the interaction of attributes. When they were presented as images,
the main effect was dominant. Louviere et al. 1987, however, found no differences
between the two ways of presenting incentives. A survey of other studies dealing
with this highly interesting, though so far virtually unexamined, area can be found
in Vriens (1995).

Selection of the data collection procedure

Respondents who take part in a survey make their statements depending on the
way in which the incentives are presented - either in person-to-person interviews,
in writing by mail, or using a computer (Vriens 1995). According to Wittink and
Cattin (1989), surveys by telephone or mail are mainly used to ensure geographic
representativeness. The telephone may even be helpful in improving the usually
low return rates found with written polls in market research.

Levy, Webster, and Kerin (1983) combined both ways. They first contacted
the respondents by telephone. If respondents were willing to take part in the sur-
vey, they would receive the survey documents by mail. Stahl (1988) reports a
commercial use of conjoint analysis via ‘phone-mail-phone’ and proceeds like the
two authors previously mentioned. After contacting the respondents by phone, the
documents would be sent to them. Eventually, the interview and data collection
would again be carried out by telephone. The results of this study are encouraging
and indicate that conjoint analysis by telephone is an appropriate procedure for
collecting preference judgments. Still, what the respondents are asked to do should
not be too straining or take too long (Stahl 1988). Based on his years of experience
with conjoint analyses, Cerro (1988) lists a number of items that determine the
success of a written non-personal survey used for conjoint measurement. It in-
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cludes elements such as a high training level of the respondents (Tscheulin and
Blaimont 1993), a call in advance to ask for their cooperation, prompt delivery of
the documents, giving a telephone number where to call for advice at any time,
and one to three reminder calls.

In terms of computer-aided procedures Zandan and Frost (1989), report that
the respondents have a distorted perception of the duration of the interview. When
asked how much time they needed to answer the questions, the participants in the
survey stated clearly shorter times than would be required.

Conjoint analyses, with the help of computers, require greater attention with a
view to the growing popularity of the Internet. Not only financial reasons but also
new ways of designing surveys, call for a more extensive use of this survey
method. Although first results of conjoint analyses carried out on the Internet are
now available, this field has been sparsely examined according to Witt (1997).

Selection of the preference rating scale

The scales to be used by respondents for evaluating the existing incentives can be
divided into metric (Green and Krieger 1993; for the constant-sum-rating see Mah-
jan, Green, and Goldberg 1982; DeSarbo et al., 1982; DeSarbo, Ramaswamy, and
Chaterjee 1992) and non-metric variants. Thus a metric scale level is assumed for
rating scales, a non-metric scale level for rankings, and paired profiles comparisons.

When using a rating scale (the so-called rating method), respondents are sup-
posed to grade the (subjectively) perceived benefit on a numbered scale. This scale, in
principle, just allows the collection of ordinal, i.e., non-metric, data. It is assumed,
however, that the respondents will perceive scale spacings as being similar given
appropriate graphic representation, so that preference statements are used as metric
data. It is considered a benefit, compared to ranking scales (the so-called ranking
method), that the rating scale expresses the intensity of the preference (Stegmiiller
1995). This cannot be determined using the ranking method; here as well, respon-
dents are to evaluate the incentives based on their (subjectively) perceived benefit but
the outcome is just an order of preferences. Such order may express the preference-
worthiness of an incentive but does not result in metric (ordinal) preference data
(Green and Srinivasan 1990).

In a paired profiles comparison, the interviewer confronts the respondent with
two incentives (product profiles) at the same time, and the respondent has to decide
which of the two (s)he prefers. 1t is a benefit of ordinal paired comparisons that in-
transitiveness in the preferences collected from the respondents can be detected. For
example, a respondent who knows his or her preferences and is willing and capable to
express them without making mistakes would say in a graded paired comparison
using a rating scale of 11 that he or she prefers incentive A to incentive B by seven
units, and incentive B to incentive C by eight units. Furthermore, incentive A is supe-
rior to incentive C by 15 units but this number of units is not available to the respon-
dent on the scale. This difficulty of a limited scale is circumvented by so-called dollar
metrics. The respondent would be asked after making his or her choice in a graded
paired comparison: “How much more would you be willing to pay for this product
compared to the one you did not choose?*
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Many researchers have dealt with selecting a scale for recording preferences since
conjoint research began. What was of major interest in this context was the question
of which one of the various methods was most beneficial. Cattin and Bliemel (1978)
compared rating and ranking surveys in a simulation analysis. But as they processed
rating data using a metric estimation method (OLS) and ranking data using a non-
metric method (MONANOVA), it is impossible to tell whether the results were influ-
enced by the way in which the data was collected or by the estimation method.

The design by Carmone, Green, and Jain (1978) is more transparent. The authors
found in their studies that rating scales will provide more accurate results than rank-
ing scales if a great error variance can be expected. Scott and Keiser (1984) state the
opposite after evaluating their own data from the field of capital investment goods.
When the respondents evaluated the profiles based on a ranking, the predictive valid-
ity was greater compared to rating.

In Chapter 6, Huber, Herrmann, and Gustafsson also deal with a scale for re-
cording preferences. As a result of studies carried out so far, they found that results
obtained using the rating method do not significantly deviate from those obtained
using ranking. The test designs chosen by the various authors do not allow a clear
statement as to whether or not the two measuring approaches yield different con-
joint results. Avoiding the mistakes in the research design that some of the studies
made in this area, they analyzed a potential connection between the rating and
ranking methods, as well as a new hybrid approach (consisting of rating and rank-
ing).

An interesting aspect in recording preferences comes from Teichert and Shehu
in Chapter 7. They have generated the evolutionary conjoint analysis.
Evolutionary conjoint develops individualized, flexible designs with an especially
high degree of consumer integration. Consumer evaluations directly influence the
experimental design. They continuously influence the levels of each attribute in
each of the successive generations. This is in contrast to adaptive design
techniques, where the design input of respondents is restricted to the first step of
the self-explicated tasks. The new model-free method of Teichert and Shehu is
based on interactive evolutionary algorithms. Algorithms are based on the
principle of “survival of the fittest” and provide robust solutions for large
dimensioned optimization problems.

In Chapter 8, Elrod and Chrzan also focused their research efforts on the
question of the best way for respondents to evaluate the profiles. Their method is
to avoid the lack of information in choice data by supplementing these data with
information about the extent to which the chosen alternative is preferred.
Following this idea, Elrod and Chrzan consider two types of choice-based conjoint
designs for two alternatives: one using ordinary full profiles and the other using
partial profiles. Having indicated which of two alternatives they prefer, consumers
then also indicate the extent of their preference for their chosen alternative. The
authors provide answers to five research questions, where they focus on the
question only if the extent-of-preference information increases the efficiency of
choice designs.
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1.2.3 Data analysis

Estimation of partial benefit values

To analyze the preference data collected in the previous steps, the partial benefit
values will have to be estimated for all manifestations of attributes. The methods
that are available for analysis will depend on decisions made to date in conjoint
analysis (Vriens 1995). The type of preference model and the scale level of the
preference data collected, in particular, provide the framework within which the
market researcher can analyze data.

Conjoint analysis was originally limited to an ordinal scale level. Estimation
algorithms had to take this standard into account. In recent years, however, the
metric approach has increasingly replaced the traditional ordinal data level both in
marketing research and practice. Therefore, the importance of non-metric algo-
rithms declined. Non-metric algorithms include (Mazanec, Porzer, and Wiegele
1976) PREFMAP as developed by Carroll (1972), LINMAP as programmed by
Srinivasan and Shocker (1973; 1977), and POLYCON by Young (1972). In con-
trast to these algorithms taken from multidimensional scaling, Kruskal (1965)
developed a non-metric MONANOVA approach especially for conjoint analysis.
Johnson (1975) designed his program with calculating partial benefit values in
mind. With a metric scale level, however, the method used most frequently is a
regular dummy regression analysis (Kruskal 1964a; Kruskal 1964b). The most
important estimation techniques are MONANOVA, LINMAP, and OLS. In Europe,
over 80% of all conjoint-studies used these estimators (see Wittink, Vriens, and
Burhenne 1994).

The most important studies on the use of the various estimation algorithms
were carried out by Cattin and Wittink (1976), Cattin and Bliemel (1978), Colberg
(1977), Jain et al. (1979), Carmone, Green, and Jain (1978), Wittink and Cattin
(1981), and Mishra, Umesh, and Stem (1989). Cattin and Wittink (1976) com-
pared metric and non-metric procedures. As a result they found that metric ap-
proaches can be superior to non-metric ones. These results by Cattin and Wittink
are confirmed in the study by Cattin and Bliemel (1978). More precisely, the two
researchers prove the superiority of MONANOVA over OLS estimation for de-
terminist data. The opposite, however, applies to stochastic data. Carmone, Green,
and Jain (1978) varied five environmental conditions for each respondent that
could influence the outcome of conjoint analysis. One such factor that varies is the
estimation algorithm. The Kendall’s tau measure of quality is nearly identical for a
MONANOVA and a modified (metric) variance analysis. The study by Wittink
and Catin (1981) yields a similar result. Mishra, Umesh, and Stem (1989) ana-
lyzed precision and the dispersion of parameter estimates in a simulation study
with more than 2000 respondents. They compared the algorithms LINMAP,
MONANOVA, and OLS while changing the preference function, the error vari-
ance of simulated respondents, and the research design. Their conclusion is as
follows: if precision and parameter dispersion are equivalent for a researcher, the
LINMAP method should be preferred. If precision is decisive and the variance of
estimates is of lesser interest, however, the OLS method should be used. Jain et
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al., (1979) compared the algorithms MONANOVA, JOHNSON, LINMAP, and
OLS based on empirical data. The authors found nearly similar results for all esti-
mation procedures.

If partial benefit values are available, the immediate question is about the qual-
ity of the results. One measurement here is reliability and the other is validity.
Reliability, for example, is in focus in studies by Acito, (1977; 1979) Cattin, and
Weinberger (1980) Jain, Malhtra, and Pinson (1980) McCullough, and Best
(1979) Parker and Srinivasan (1976), and Segal (1982) (further studies can be
found in Vriens 1995). The external validity of the conjoint results was proved, for
example, by Bateson, Reibstein, and Boulding (1987), and Green and Srinivasan
(1990). The studies by Robinson (1980), Benbenisty (1983), and Srinivasan et al.,
(1981) should be noted as well. While Robinson identified the factors that are
relevant for passengers when choosing an airline, Srinivasan et al., were interested
in the selection of the means of transport for getting to work. In both cases the
behavior predicted by the researchers is largely congruent with real behavior.
Wittink and Montgomery (1979), and Montgomery and Wittink (1980) correctly
predicted the selection of a university or high school, or the career decision of a
university graduate, at a predictive probability of 63%. Srinivasan (1988) even
arrived at a value of 69% while Krishnamurthi (1988) correctly predicted selec-
tions at 56-61% for various preference models based on the study by Montgomery
and Wittink (1980). Wright and Kriewall (1980), however, only achieved 14% and
21% of correct predictions as to which university would be chosen.

Validity is also in the center of interest for Kamakura and Ozer (Chapter 9).
The way Kamakura and Ozer generate knowledge in this field of research is to
compare various conjoint models across their part-worth estimates based on actual
behavior. Because they are comparing those methods across their part-worth esti-
mates, they use a Multitrait-Multimehod (MTMM) framework to assess the rela-
tionships among the methods and the part-worth estimates. To test the relation-
ships, the authors use both the traditional MTMM analysis and a direct product
methodology.

Also highly valuable in this context is the work conducted by Louviere, Hen-
sher, and Swait presented in Chapter 10. In their article they expand the domain of
conjoint analysis techniques by placing them within the more general framework
of random utility theory (RUT). Based on this theoretical playground, the analyst
is now able to compare and test the models and model results more rigorously.
The authors illustrated these ideas in three case studies that show that even simple
RUT-based stated preferences (SP) experiments can yield quite complex models;
complex SP experiments can also provide new and different insights into the be-
havior of the random component of utility.

Different approaches to analyzing such complex models are presented by
Haaijer and Wedel in Chapter 11. In a brief but detailed way they first describe the
general elements in conjoint analysis and the “classic” conjoint analysis ap-
proaches. Then the conjoint choice approach is discussed more extensively and an
overview is given of recent conjoint choice applications in the marketing litera-
ture. Finally they suggest approaches that can be used to estimate a conjoint
choice experiment, including the MNL, the Latent Class MNL, and MNP models.
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These various models will be illustrated using an application to a conjoint choice
experiment on coffee makers.

To minimize remaining uncertainty in parameter estimation, new methods for
conjoint designs have been proposed (Arora and Huber 2001). The most
spectacular are the polyhedral and the machine-learning approaches. They are
presented in Chapter 12 and 13 by Toubia, Evgeniou, and Hauser and Giesen and
Schuberth. Fast polyhedral methods use a special “fast” algorithm that constructs
profiles / choice sets depending on a-priori information of previous judgment
tasks. Polyhedral methods can be used for both metric-paired comparison
questions in ACA and CBC. Machine-learning and fast polyhedral algorithms
have made it feasible to adapt both metric paired-comparison and choice-based
conjoint questions to each respondent. Such questions promise to be more accurate
and customized to focus precision where it is most needed. The basic concept is
that each conjoint question constrains the set of feasible part-worths. A
researcher’s goal is to find the questions that impose the most efficient constraints
where efficiency is defined as maximally decreasing the uncertainty in the
estimated part-worths.

In Chapter 14 Dellaert, Borger, Louviere, and Timmermans present a new kind
of estimating model. In their paper the four authors develop an experimental
design heuristic to permit the estimation and testing of a proposed heteroscedastic
extreme value model of modularized and traditional consumer choices. With this
new way to design conjoint choice experiments the marketing researcher will be
able to give an answer to the question of how consumer choices to package or
bundle separate components differ (if at all) from choices among traditional fixed
product options. To calculate the model parameters, separate MNL models were
estimated from the choices in three experimental sub-designs. After this a
heteroscedastic extreme value model was estimated by pooling data across all
three sub-designs, and allowing for different random components in each. With
this approach, differences in random components among the three conditions can
be estimated independently.

Aggregation of utilities and market simulation

The estimation of the partial benefit values which takes place within the frame-
work of the conjoint analysis serves to determine the individual attributes that
contribute towards a preference. Usually, however, the attention of theoreticians
and those who carry out field studies is focused on gaining an insight into the
typical reactive behavior of a large group of consumers, rather than the specific
behavior of individuals.

The hierarchical cluster methods (Green and Srinivasan 1978; Green and
Krieger 1991) are used most frequently to classify respondents on the basis of
normalized, individual, and partial benefits. The sequential use of a hierarchical
and a partitioning technique is proposed by Punj and Stewart (1983) (for an appli-
cation of overlapping partitioning methods see Hruschka 1986 and for an over-
view of different approaches see Vriens 1995). Problems are often encountered,
however, when this technique is used. In our opinion, the fact that the different
methods for determining the partial benefit values produce divergent results makes
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it more difficult to classify demanders. The objective function of the widespread
OLS method, for example, minimizes the squared deviations of the estimated,
metric stimulus benefits from the observed stimulus ranks. Conversely, LINMAP,
another technique for measuring the partial benefits, minimizes the degree to
which the observed and estimated rank orders are violated by means of linear
programming. This objective criterion does not measure the benefit differences
between pairs of ranks, providing the estimated benefit values coincide with the
observed order. The calculated estimate, and thus also the clusters that are formed,
is consequently dependent on the applied solution method.

The estimated partial benefits are moreover characterized by their relative un-
reliability. This characteristic can be attributed to the reduced factorial design that
is normally applied for conjoint analyses. The limited number of degrees of free-
dom that are available for calculating the parameters on the level of individuals in
turn affects the reliability of the estimates. Poor data reliability may lead to classi-
fication errors (Vriens, Wedel, and Wilms 1996).

Another disadvantage is the possibility of “linking™, i.e., if the variables that
are taken into account in the study fail to differentiate clearly among the classes,
the outcome is one large cluster containing the complete set of study objects
(Everitt 1980). The large number of cluster methods that must be applied also
proves problematic when it comes to forming classes. Hierarchical cluster tech-
niques, such as single linkage, complete linkage, centroid cluster analysis, Ward's
method, McQuitty's method, and the approach developed by Lance and William,
tend to produce different results (Hartigan 1975). In addition, there are various
ways of standardizing the data prior to the actual respondent classification proce-
dure. The classification result is also influenced by the choice of method.

A further argument against the use of two-step classification methods is that
two different objective criteria are optimized during the course of the calculations
they entail. For example, whereas the objective of the first step is to minimize the
squared deviations of the estimated metric stimulus benefits from the observed
stimulus ranks by means of an OLS regression, Ward's algorithm maximizes the
ratio between the inter-group variances and the intra-group variances of the indi-
vidual coefficients.

In recent conjoint analysis applications designed to facilitate benefit segmenta-
tion, the segment-specific partial benefit values and the segmentation are esti-
mated simultaneously rather than sequentially (DeSarbo et al., 1989; De Soete and
DeSarbo 1991; Ogawa 1987; Wedel and Kistemaker 1989; Wedel and Steenkamp
1989). Baier and Gaul (1995) propose a modified best-approximation method for
estimating the model parameters - the segmentation and the segment-specific
partial benefit values.

Ramaswamy and Cohen in their article (see Chapter 15) reviewed and pre-
sented applications of the basic framework of latent class conjoint analysis, for
both metric conjoint and choice-based conjoint situations. They noticed that given
the problems with the tandem approach to segmentation in traditional metric con-
joint and the difficulty of obtaining individual-level coefficients in the choice-
based conjoint context, LSMs have proved to be a boon to market researchers. To
show the strength of LSM, the authors have focused in their applications on simul-
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taneous segmentation and prediction. Their outlook on further research areas is
also remarkable.

A substantial improvement in clustering is the flexible approach to the
segmentation of markets involving conjoint analysis called NORMCLUS
employing various methods in combinatorial optimization, developed by
DeSarbo/DeSarbo (Chapter 16). Their general approach accommodates multi-
criterion objective functions, alternative types of clustering respondents, model or
profile based segmentation schemes, constraints on coefficients, and constraints
on segment memberships, etc. to adapt to the specific needs of the particular
segmentation application being addressed. A variety of combinatorial algorithms
are accommodated including genetic algorithms, simulated annealing, and various
heuristics which are selected according to their efficiency in dealing with the
structure and goals of the application at hand. The authors demonstrate the
flexibility and practicability of their approach to develop a new industrial cleaner.

Knowledge of the benefit segments, however, is not the only important aspect
in management decision-making processes. The extent to which changes in market
shares can be brought about by modifying products or by altering the added val-
ues, for example, is also relevant. Depending on the object of the study various
models could be used such as the first choice model, the Bradley-Terry-Luce
model, the logit model, or the simulated probit model to transform the acquired
partial benefits into choice decisions and thus to determine market shares (Vriens
1995). As the study conducted by Finkbeiner (1988) demonstrated, the first choice
approach is the most suitable of all the previously mentioned choice models for
predicting market share estimates. The findings obtained were refined on the basis
of the study by Elrod and Krishnakumar (1989), and Davey and Elrod (1991). The
studies revealed the advantages of first choice modeling when high-involvement
products are the object of an investigation.

In Chapter 17, Huber, Orme, and Miller focus on choice simulators. They pro-
pose that effective choice simulators need three properties to effectively mirror
market behavior. First, they need to display differential impact so that a marketing
action at the individual or homogeneous segment level has maximal impact near a
threshold but has minimal impact otherwise. Second, simulators need to reflect
differential substitution, assuring that alternatives take proportionately more share
from similar than dissimilar competitors. Finally, they need to exhibit differential
enhancement, a property whereby a small value difference has a large impact on
highly similar competitors but almost no impact on dissimilar ones. A new method
that Huber, Orme, and Miller call Randomized First Choice enables simulators to
closely match these properties in market behavior.

In the last Chapter (18), Whitlark and Smith focus on simulating and
forecasting data on the basis of part-worth utilities. To be accurate, sales forecasts
based on conjoint data should take into account possible competitive reactions,
changes in product awareness and availability, and other marketplace realities
such as varying usage rates and repurchase rates that unfold over time. The
purpose of the article is to outline how sequential game theory and the macro-flow
model can be applied to more accurately fit these assumptions when estimating
market share and forecasting product sales.
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1.3 Further Research

Despite many developments which have already taken place in conjoint analysis,
many issues and new approaches to data collection or data analysis could be in-
vestigated. It is beyond the scope of this introduction to summarize all of them. In
brief, we would only like to highlight some avenues which seem underdeveloped.

With regard to the process of data collection, one research topic is the further
investigation of the use of photo-realistic pictorial representations for certain
product categories. This field is becoming more relevant because new media,
computer technology, and software packages in the meantime allow the use of
visual stimuli. Furthermore, another fundamental message is that context still
matters. The context within which judgments are made affects the utility structure
that results from the analysis of those judgments, regardless of the conjoint
method being used. Developing this area in more detail has the advantage that
with the results, one should be able to match the context with the method used to
estimate outcomes for the real world. In conjunction with the context, there is
another interesting field of research. The area of conjoint analysis would benefit
from research that can identify if and when bias actually occurs in model parame-
ters, as well as if and when error variability is sufficiently large enough to offset
gains from additional information per person. That is, in the absence of bias, more
observations per person lead to higher statistical efficiency. In the case of choice
experiments, evidence suggests that humans interact with experiments in such a
way that more observations per person decreases choice consistency, which in turn
decreases statistical efficiency.

In terms of the process of data analysis, more research is needed to investigate
the relative capability of the various conjoint segmentation methods to recover the
true segment structure (Vriens 1995). Research in this area is important, because
on the one hand one-to-one marketing is too expansive and on the other hand the
demand side is becoming more heterogeneous.

Little has been published in the way of formal tests to determine whether or
not conjoint works in predicting significant real-world actions (Orme, Alpert, and
Christensen 1997). As ancillary cases, there are interesting questions of whether or
not one method works better than another, and under what circumstances each
method should be preferred. Pioneering work in that area comes from Joel Huber
(1997), but more meta-analysis is required.
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2 Measurement of Price Effects with Conjoint
Analysis: Separating Informational and
Allocative Effects of Price

Vithala R. Rao and Henrik Sattler

21 Introduction

One of the most frequent purpose of conjoint analysis is the measurement of price
effects (Wittink and Cattin 1989; Wittink, Vriens, and Burhenne 1994). Usually
this is be done by describing a number of product alternatives on a small number
of attributes, including price, and collecting some kind of preference data for these
product alternatives. From the estimated part-worth function for price one can
infer price effects (Srinivasan 1979).

A particular problem of this approach is that the role of price often is restricted
to its function as a monetary constraint in brand choice. However, it is well known
that prospective buyers use price of a brand both as a signal of quality as well as a
monetary constraint in the brand choice (Erickson and Johansson 1985). These
two distinct roles of price in the consumers' evaluation of alternative offerings in
the marketplace can be labeled as the informational (signal) role of price and the
allocative (constraint) role of price. While these roles are conceptually distinct,
their measurement using conjoint analysis becomes confounded owing to the
difficulties of distinctly modeling the two effects of price. In practice, only the net
effect of price is estimated.

In a meta-analysis study of price elasticity covering 367 products Tellis (1988)
uncovered about 50 products where the estimated price elasticity is greater than
zero; given the fact that effect of price on sales (or aggregation of individual
choices) is the net result of both informational and allocative effects, it is conceiv-
able that for these 50 products, the informational effect may have dominated the
allocative effect. Further, the price elasticity was between 0 and —1 for an addi-
tional 40 products possibly indicating that the magnitude of the allocative effect
exceeded that of the informational effect.

The lack of a distinction between these two price effects can be seen in the dif-
ferent views of price in the literature. The economic theory of consumer behavior
(Nagle 1984) and the research on hedonic prices (Rosen 1974) focuses on the
allocative role of price, whereas the stream of marketing research investigating the
relationship between price and quality (Olsen 1977; Monroe and Dodds 1988;
Dodds, Monroe, and Grewal 1991) largely focus on the informational effects of
price.

The fact that price may convey some information on quality had been already
acknowledged by Scitovsky (1945). Since then, more than 90 studies examined
the relationship between price and perceived quality (see Gardner 1977; Rao 1984
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and 1993; Monroe and Dodds 1988; Gijsbrechts 1993 for reviews). In general, no
uniform price-quality relationship could be observed. Several explanations have
been offered for the mixed results. Besides methodological differences, contextual
and situational factors and demand artifacts (Olson 1977; Monroe and Krishnan
1985; Rao and Monroe 1989), we argue that the studies could have measured the
net effect of the allocative and informational role of price instead of the pure in-
formational effect. In other words, we argue that the studies could have measured
the net effect of the allocative and informational role of price instead of the pure
informational effect. Depending on whether or not the informational effect is
stronger than the allocative effect, a positive or negative net price effect on quality
will be observed.

Gautschi and Rao (1990) proposed a methodology to estimate separate effects
of price in the conjoint setting. It requires collecting data on two preference order-
ings on the set of choice alternatives - called unconstrained and constrained pref-
erences - respectively obtained under no budget constraint and obtained under the
budget constraint. Denoting the unconstrained and constrained preferences by
U(b*) and U(b), they estimate two relationships between U(b*) and the product
attributes and price as well as between the difference, U(b) - U(b*) and attributes
and price. They theoretically show that the coefficient (or part-worth function) of
price in the U(b*) function measures the informational effect and that in the U(b)
— U(b*) as the allocative effect.

This approach was illustrated in a pretest by Gautschi and Rao (1990) using a
small-scale conjoint study on laptop computers, each described on three attributes
at two levels. So far there has been no systematic empirical test of the approach.
The main objective of this paper is to test the model of Gautschi and Rao (1990) in
an empirical setting in a large sample under various conditions; three questions are
taken under consideration:

1. Do the signs of the estimated parameters for the informational and allocative
effects of price behave in the expected direction for different kinds of product
categories and different kinds of information about product characteristics
available for the consumer?

2. How do the informational and allocative effects of price vary with respect to
the budget available to consumers while choosing/evaluating brand alterna-
tives?

3. How do the informational and allocative effects vary when brand name and/or
other information are included as an additional cue in the alternative descrip-
tions?

The rest of this paper is organized as follows. First, we develop hypotheses
with respect to the three questions and describe the method used in our study.
Next, we present our results and, finally, we discuss the results and provide future
research directions.
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2.2 Hypotheses on Roles of Price

Our discussion thus far makes it clear that price plays two distinct roles - informa-
tional and allocative - in product evaluation by consumers. The literature reviewed
earlier and the general meaning of the two price effects suggest that the informa-
tional price effect is positive and the allocative price effect is negative. Further,
based on a meta-analysis of over 30 years of research, Rao and Monroe (1989)
found that price effects on perceived product quality will vary with product char-
acteristics such as the price level and whether or not the products are durables. 1f
we interpret the perceived quality judgments as equivalent to informational effects
of price, it can be expected that the magnitude of this price effect will vary with
product characteristics. Thus:

Hypothesis 1: The informational effect of price is positive and the allocative ef-
fect of price is negative for all types of products and different kinds of product
characteristics.

The allocative price effect treats price as a monetary constraint in the brand
choice; it limits how much is available for spending on other products (Erickson
and Johansson 1985). The classical model derived from economic theory of con-
sumer behavior postulates that a consumer maximizes utility by allocating a lim-
ited budget over alternative products (Lancaster 1971; Nagle 1984). Price be-
comes the sacrifice one makes to obtain the stream of benefits generated by the
bundle of attributes that constitutes the product. The magnitude of the sacrifice is
measured by the allocative price effect and should be inversely related to the
amount of budget that remains after purchase of the product. However, the infor-
mational price effect is not related to the budget available for a consumer after
purchase. For instance, depending on whether a product is free (e.g., because a
person gets a product as a present or wins it in a lottery or gets a free sample as a
part of a sales promotion) or one has to pay a certain price the allocative effect
will change. But, the informational price effect will be the same independent of
whether the product is free or not, because the signaling function of price informa-
tion is the same - assuming one knows the market price of the free product (which
is the same as for the non-free product). Several theories and conceptual models
dealing with the informational effect of price emphasize that the price information
depends upon the objective and perceived level of price, but is not related to the
monetary budget constraint. For example, the signaling theory states that price can
be used as a signal of quality when consumers are imperfectly informed which is
independent on the strength of the allocative price effect (Milgrom and Roberts
1986) Similarly, several conceptual models of the effect of price on product
evaluation state that higher prices lead to higher perceived quality and conse-
quently to a greater willingness to buy; this relationship is deemed to be independ-
ent of the monetary sacrifice required for purchase of goods with higher prices
(Dodds, Monroe and Grewal 1991; Monroe and Krishnan 1985; Zeithaml 1988)
Thus:
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Hypothesis 2: The magnitude of the allocative effect of price is inversely related
to the amount of budget that remains after the purchase of the product while there
will be no effect of the remaining budget on the informational price effect.

It is well known that brand name connotes information to prospective buyers
(Aaker 1991; Keller 1993). Thus, one could expect the effect of price to be mod-
erated when choices of known brands are made. Analyzing the relationship be-
tween price as a quality indicator, several authors suggest that the role of price
may have been overestimated, and that other extrinsic cues such as brand name are
equally or more important, especially for package goods (Zeithaml 1988;
Gijsbrechts 1993). In this context, Olsen and Jacoby (1972) argued that consumers
use extrinsic cues that are not related directly to product performance (e.g., price,
brand name and store name) as well as intrinsic cues that are derived directly from
the physical product (e.g., amount of sugar in food or RAM of a computer) to
evaluate a product. If price is either the only information available (,,single cue®)
or it is in addition to a few intrinsic cues, the informational effect of price in the
evaluation of a product should be higher than if brand name is used in addition
(Olsen 1977). This can be expected because brand names often have a strong
information or knowledge function (Keller 1993) and therefore will take at least
partly the role of the price as an informational cue. However, if a brand has no or
nearly no reputation (which can be typically assumed for a totally new brand) its
informational effect should be (nearly) zero. Therefore, an unknown brand name
should have no influence on the informational price effect. Thus:

Hypothesis 3: The informational effect of price will vary systematically with the
reputation of the brand.

2.3 Method

This study was conducted among 216 , MBA* and doctoral students at the Univer-
sity of Kiel, Germany during the months of May to July 1991. Each subject evalu-
ated various product descriptions in an experimental setting. Two products - mar-
malade and alarm clocks—were used in the study. The incentive for participation
was the opportunity to receive one of several prizes in a lottery; the lottery was
conducted at the end of the study and prizes were distributed to winners. The
subjects took about forty minutes on the average to complete the data collection
task.

The design of the study is the same for marmalade and alarm clocks and is
shown in Table 1. We employed five subsamples, each subsample consisting of 38
to 46 subjects. About one-half of the subjects in each subsample evaluated prod-
ucts in each of the two product categories. Further, there were three information
conditions. Under condition A, information about price (3 levels, i.e. 1.99/2.49 /
2.99 DM for marmalade and 29.- / 39.- / 49.- DM for alarm clocks) and brand
name (3 levels, i.e. market leader / third in the market / fictitious for both product
categories) was given; under condition B, information about price and 3 attributes
(fruit content / sugar content / artificial coloring and preservatives for marmalade
and format / snooze / switch off for alarm clocks, each having 2 levels); and con-
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dition C, information about price, brand name and the same 3 attributes. The cho-
sen attributes and attribute levels were based on a pretest with salespeople and
consumers. The attributes were the most important ones for the product evaluation
by the consumers and were also seen as to be able to distinguish between products
(Alpert 1971). The levels of the attributes were chosen according to real market
conditions.

Each subsample evaluated different numbers of product profiles; for example,
in the price and brand information condition, the subjects evaluated a set of nine
profiles under an unconstrained and constrained budget conditions. According to
Table 1, each subject in each subsample evaluated four or five stimuli sets and one
additional set to evaluate the reliability of their responses.

For the evaluation task, the full profile method was used (Green and Srinivasan
1990). Initially the subjects ranked the profiles in terms of preference to buy one
item in the product category and then rated each profile on a 100 point rating scale
with the extreme values ,,I would least prefer to buy* and ,,I would most prefer to
buy*. This procedure resulted in an interval scale with values between 1 and 100
where the points indicate the relative preference to buy one item of the described
products.

Table 1:  Experimental Design

Information Condition
A: Price & B: Price & Attrib- | C: Price, Brand &
Sub- #of | Brand utes Attributes
sample | Subjects | 9 Profiles, 10 Profiles, 16 Profiles,
4 Parameters 5 Parameters 7 Parameters
1 45 Uncon., Con. 1 | Uncon., Con. 1,R | —
2 46 Uncon., Con. 2 | Uncon., Con. 2, R | —
3 46 Con.1,Con.2 |Con.1.,Con.,2,R [—
4 41 Uncon., Con. 1 |— Uncon., Con. 1, R
5 38 — Con.1,Con.2,R | Con.1,Con.2
Total 216

Uncon. = Respondents had no budget constraint (unconstraind).

Con. 1 = Respondents got a 50% price discount (partially constrained).
Con.2 = Respondents had to pay the full price (fully constrained).

R = Additional alternate form test of reliability.
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The evaluation data were collected under three budget conditions: Unconstrained
budget (free: ,,Assume you don't have to pay for the product at all. Somebody else
(a big company where you are employed) is paying. So, you don't have to worry
about who is paying.”), partially constrained (50% discount: ,,Assume you don't
have to pay the full price. You will get the product with a 50% discount.”) and
fully constrained (full Price: ,,Assume you have to pay the full price shown.”). The
partially constrained condition can be seen as an extreme case of price promotion
which is not uncommon (but at a high level) in Germany.

When representing choice alternatives parsimoniously as bundles of character-
istics Z, it is inevitable that the researcher will omit some elements of Z in a con-
joint setting. Therefore, one can partition Z as (Z, , Z, ), where Z, is a vector of
observed (or included) characteristics of product descriptions and Z, is a vector of
unobserved (or excluded) characteristics. Denoting U as the utility from consum-
ing a good, V as a utility component corresponding to a representative consumer
and e as a idiosyncratic deviation of the individual’s utility from V in modeling
utility, one can express U as:

(M U=V(Z,,Z,) +e(Zy, Zy).

If one attempts to estimate U with no knowledge of Z,, the estimates of the pa-
rameters of V are likely to be biased. As we discussed earlier, one approach to
controlling for Z, is to use price as a proxy variable for Z,. The problem with
using price as a proxy for Z, is that price also performs a conventional function of
allocating the individual’s resources. Therefore, the procedure to reduce the con-
founding of the price effects requires use of two preference orderings.

Our procedure to estimate the informational and allocative effects of price may
be illustrated for the situation with one product feature, Z1, and price, P, and linear

functions for the two preferences. Denoting the unconstrained and constrained
preference functions as:

2) U(b*) = ag + 0421 + apP+ €p+, and

3) Ub) = By + B1Z; + BoP+ &,

where o and B are parameters to be estimated and &g are random components.
The difference equation, becomes

“4) Ub) — Ub*) = (Bg — ag) + (B — ap)Zy + (B — ap)P +

(Eb - Eb*)'
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In our analysis, we need only to estimate the equations for U(b*) and for the
difference, U(b) — U(b*) constraining (3] — o) to zero." The main allocative

effect of price is then revealed by the estimate of (87 — ap). The informational or
signaling effect is reflected in the estimate of ay.

The two effects of price were estimated at the individual level using data on
unconstrained and one of the two constrained budget situations. Further, the esti-
mates of price effects were also made between the two constrained budget situa-
tions. In this process, we estimated 563 regression equations of which 535 were
statistically significant in terms of the goodness of fit (R-square). The models
were significant for both products and for all experimental conditions. Thus, we
may conclude that the proposed model works well.

24 Results

Reliability: The two sets of ranks for a particular product set (designed with the
same attributes and attribute levels, but with no duplications) were used for sepa-
rately estimating the attribute part-worth functions using the OLS method. These
estimates were correlated to provide a measure of reliability of the conjoint task.
This test takes four sources of error into account (Green and Srinivasan 1978):
inaccuracies in the input data, variability in the set of constructed stimuli, errors in
the estimation procedure, and lack of stability (variations from one time period to
another). These reliability measures were statistically significant at the 10 percent
level for 188 out of the 216 subjects. For more than 85% of all respondents, Pear-
son's product-moment correlation was higher than 0.75. Given the fact that our
reliability measure takes four sources of error into account and, therefore, has a
high power and the result, that for persons with a non-significant reliability score
the correlation coefficient is in all but two cases higher than 0.30, we decided to
exclude just two respondents from further analysis (those with a correlation coef-
ficient lower than 0.30) and to keep the other in the sample.

Internal validity: To check the internal validity of the model we tested the
goodness of fit (R-square) of each estimated equation. In total we estimated 530
regression equations of which 505 were statistically significant at the p < 0.10
level (i.e. 95%). The models were significant for both products and for all experi-
mental conditions. Thus, we may conclude that the proposed model works well.

Informational and Allocative Price Effects (Test of H1): We first analyzed the
informational and allocative price effects pooling the data across various experi-
mental conditions for the subsamples 1, 2, and 4 in Table 1. As can be seen from
Table 2, the informational price effect for the unconstrained—constraint 1 (partially

' We explicitly tested the assumption of equality of effects of attributes (excluding price)

in the unconstrained and constrained preferences and found that this assumption is
justified for over 82 percent of the respondents at 0.10 significance level. Thus, the
estimation method employed seems appropriate.
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constrained) and the unconstrained—constraint 2 (fully constrained) condition is
usually positive or non-significant. However, for 15 to 22% of the respondents the
Hinformational® effect is negative indicating that these individuals are generally
suspicious of the quality of higher priced products. This finding is consistent with
the results of the pretest found by Gautschi and Rao (1990). The allocative effect
is significant and negative or non-significant in all but very few cases; it is nega-
tive and significant in about 50% of the cases for marmalade and about 60% of the
cases for alarm clocks.

We also estimated the net effect of price in the regression of constrained pref-
erence under the full budget constraint condition. As one might expect, in only a
small number of cases - 4 out of 82 for marmalade and 7 out of 98 for alarm
clocks - the net price effect is positive. Thus, a negative price effect estimated in a
normal conjoint analysis study does not enable a researcher to infer the magnitude
of the two price effects; there is no way to determine which role of price (informa-
tional or allocative) is contributing to the estimated price effect.

Table 2:  Overall information and allocative price effects (Hypothesis 1)

Informational Effect Allocative Effect
Product
Category # Sub. Mean (s.d.) # Sub. Mean (s.d.)
MARMALADE:
Positive, Significant 50 37.09 0
(3.19)
Nonsignificant 48 0.07 62 —5.49
(1.46) (1.18)
Negative, 28 —35.93 604 —67.31
Significant (4.82) (4.92)
Total 126 6.07 12 -36.89
(1.71) 6 (2.11)
ALARM CLOCKS:
Positive, Significant 78 47.62 2 102.8
(2.70) (17.8)
Nonsignificant 40 6.94 55 —6.56
(2.54) (1.70)
Negative, Significant 21 —44.40 82 —77.52
(5.80) (4.82)
Total 139 22.01 13 —46.8
(2.00) 9 (2.61)
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Table 3:  Informational and allocative price effects for different experimental

conditions
MARMALADE

Informational Eftect | Allocative Effect
Experi- | Comparison Used Signifi- | Non- Signifi- | Sig- Non- Signifi-
mental | for Estimation cant Signifi- | cant nificant | Signifi- | cant

Posi- cant* Nega- Posi- cant* Nega-
Design tive* tive* tive* tive*
Price Unconst. #a 23 9 11 0 20 23
and Versus Mean 4423 5.93 -40.63 — -7.07 -86.80
Brand | Const. 1 (SD) (3.01) (4.63) (2.06) (2.99) (3.15)
Price Unconst. # 17 1 2 0 2 18
and Versus Mean 29.41 -13.00 -19.17 — -11.33 -70.93
Brand | Const. 2 (SD) (1.18) (10.06) (6.34) (6.94) (3.98)
Price Unconst. # 4 12 4 0 9 11
and Versus Mean 40.09 2.52 -52.92 — -1.07 -45.09
Attri- Const. 1 (SD) (2.53) (3.06) (5.63) 9D (5.04)
butes
Price Unconst. | # 2 14 4 0 12 8
and Versus Mean 44.67 1.43 -30.83 — -4.19 -50.08
Attri- Const. 2 (SD) (5.63) (2.31) .77) (4.63) (5.07)
butes
Price, Unconst. # 4 12 7 0 19 4
Brand | versus Mean 21.83 2.81 -26.54 — -6.12 -34.51
and Const. 1 (SD) (4.59) (2.08) (3.83) 2.91) (5.09)
Attri-
butes

ALARM CLOCKS
Informational Effect Allocative Effect

Experi- | Comparison Used Signifi- | Non- Signifi- | Sig- Non- Signifi-
mental for Estimation cant Signifi- | cant nificant | Signifi- | cant

Posi- cant* Nega- Posi- cant* Nega-
Design tive* tive* tive * tive*
Price Unconst. #a 31 7 5 1 13 29
and versus Mean 54.62 18.4 -43.72 120.60 [-8.94 -95.06
Brand | Const. 1 (SD) (1.65) (6.42) |(6.03) (17.8) | (3.04) (3.14)
Price Unconst. # 13 9 4 0 10 16
and Versus Mean 57.18 4.68 -50.50 — -7.22 -96.12
Brand | Const. 2 (SD) (2.09) (7.31) (3.51) (5.88) (4.55)
Price Unconst. # 13 6 4 1 13 9
and Versus Mean 34.80 4.00 -50.20 85.00 -9.80 -54.00
Attri- Const. 1 (SD) (2.83) (6.63) (5.29) | 41.18) | (5.29) (4.47)
butes
Price Unconst. # 10 11 6 0 12 15
and Versus Mean 50.40 4.36 -41.20 — -3.64 -65.36
Attri- Const. 2 (SD) (2.28) (3.58) (5.06) (4.10) (3.79)
butes
Price, Unconst. # 11 7 2 0 7 13
Brand | versus Mean 29.26 4.92 -31.90 — -4.02 -45.80
and Const. 1 (SD) (1.74) (3.16) (1.70) (3.10) (3.03)
Attri-
butes

“Number of subjects, * p<0.10
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Next, we investigated whether the signs of the two price effects behave in the
expected direction for different kinds of product characteristics , i.e. for all ex-
perimental conditions. Table 3 shows that in general this is the case. In addition, it
appears that the informational effect is stronger for the price-brand condition than
for the price-attribute and the price-attribute-brand condition. Moreover, this ten-
dency seems to be stronger for Marmalade than for Alarm Clocks. Analyzing this
tendency in more detail by applying a t-test of differences between the mean t-
values (t = price estimate divided by the standard error of the price estimate) of the
two product categories, we found in general non-significant differences for the
informational as well as the allocative price effect.

Taking all results together, Hypothesis 1 is partly supported with respect to the
informational price effect and fully supported for the allocative effect of price.

Table 4:  Price effects under different budget constraints. Mean (Standard
deviations) of t-values (t = Price estimate/Standard error of price es-

timate
Partially Fully

Product Experi- Price Constrained Constrained
Category meqtal Effect 0 Bdgetd n Budgetb A

Design
Marmal- Price and  Informtional 43  4.42 (10.75) 20 621 (5.15) 0.886
ade Brand Allocative 43 -4.24 (5.99) 20 -18.01(23.14) 2.620%*
Alarm Price and  Informtional 43  4.40 (18.24) 26 6.58 (11.45) 0.601
Clocks Brand Allocative 43 -3.06 (2.98) 26 -10.74(12.80) 2.954%*
Marmal-  Price and  Informtional 20 0.36 (4.32) 20 0.26 (3.80) 0.078
ade Attributes  Allocative 20 -1.93 (1.10) 20 -5.75(10.25) 1.657*
Alarm Price and  Informtional 23 1.99 (5.12) 27 2.33 (5.83) 0.215

Clocks Attributes  Allocative 23 -1.95 (297) 27 -3.83 (427) 1.782%

*p<0.10; **p <0.01

4Respondents got a 50% discount; the informational price effect was estimated under the uncon-
strained budget condition.

bRespondents had to pay the full price; the informational price effect was estimated under the uncon-
strained budget condition.

Ct-test of differences between partially constrained and fully constrained.

Variation Due to Budget (Test of H2): Our expectation is that the informational
effect will not change with the budget, but the allocative effect of price will be
inversely related to the amount of budget that remains after purchase. Table 4
shows the estimated price effects under different budget constraints. Statistical
tests of these effects between the two conditions indicates that the informational
price effect is independent of the budget constraint. But, the allocative price effect
increases with a decrease in the budget that remains after purchase of the product;
difference is statistically significant in all experimental conditions. The change in
the allocative effect of price seems to be stronger for the price-brand condition




Measurement of Price Effects with Conjoint Analysis 41

than for the price-attribute condition. The individuals seem to be less price sensi-
tive if they do have information about attributes. Thus, our results support H2.

Informational Price Effect vs. Brand Effect (Test of H3): Given our experi-
mental design, we could investigate two particular brand effects: (i) between es-
tablished brands describing the effect between the market leader and the third in
the market and (ii) between unknown and established brands describing the effect
between an unknown or new brand and the market leader (see Table 5). Both these
effects are estimated by the coefficients of dummy variables in the estimated pref-
erence functions. If brands do have an information function in the consumer pur-
chase decision (Keller 1993) they do directly compete with the informational price
effect.

Table 5:  Cluster centroids of significant beta values for the informational
effects of price and brand under the price/brand condition

Cluster and Between Estab- Between Market Leader
Interpretation lished Brands and Unknown Brand
Corre- Corre-
lation lation
Price Brand be- Price be-
Effect Effect tween Effect Brand tween
Mean Mean Price Mean Effect Price
n (SD) (SD) and n  (SD) Mean and
Brand (SD) Brand
Effects Effects
Product
Category:
Marmalade
Cluster 1 B.D. 9 285(.13)  .924(.12) -.366 21 230(.11) 1.041(.08 -452
)
Cluster 2 N. P. 18 275(.16)  357(17)  -192 6 A46(.16)  .645(21) 728
nor
B.D.
Cluster 3 P.D. 12 .868(.09) .136(.08) .671* 12 .868(.09) 441(.12)  -.829+
Total 39 46(.31) 42(.32) =549+ 39 46(.31) .80(.39) - 847
Product
Category:
Alarm Clocks
Cluster 1 B.D. 8 284(25)  .629(.13) -.051 18 269(.13) .983(.11) -435
Cluster 2 N.P. 18 387(.16)  .145(.09) -.085 22 715(.11)  .621(.13)  -.784x
nor
B.D.
Cluster 3 P.D. 28 826(.14)  .140(.08) 264 14 843(.18) .196(.10) -.083
Total 54 .60(.28) 21(.20) - 421 54 .60(.28) .63(.32) - 834
*p < 0.01 *p < 0.001

B. D. = Brand Dominated; N. P. = Neither Price

Using these two estimated effects at the individual level (specifically, the stan-
dardized regression coefficients as the measures), we clustered the subjects into
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three groups separately for the two experimental conditions.” The results are
shown in Table 5.

For a three-cluster solution, a uniform structure for all conditions of the
experiment can be identified: Cluster 1 represents the brand dominated cluster, for
Cluster 2, neither price nor brand are dominant , and Cluster 3 represents the price
dominated cluster. As predicted by H3, the brand dominated cluster becomes more
important when the brand reputation increases. This is true for both products. In
addition, for marmalade the ,price dominated cluster decreases when brand
reputation increases which is also consistent with H3.

We expect to find a negative correlation between the measures (significant
beta values) of the informational effect and the brand effect for each cluster as
well as the subsamples as a whole. We also conjecture that this correlation to be
lower in magnitude for the effects between established brands than for the effects
between market leader and an unknown brand; this expectation is due to the fact
that a known brand name versus an unknown name will be a good substitute for
price as an informational signal. As shown in Table 5, the correlations are in the
expected direction for the subsamples as a whole for both product categories. This
is also true for the clusters in general. These additional analyses also support the
hypothesis, Hs.

25 Discussion and Future Research Directions

This paper implemented a conjoint based methodology to separately estimate two
distinct roles of price: the informational role where price serves as a signal of
quality and the allocative role where price is a monetary constraint in the brand
choice. While, in practice, only the net effect of the two roles of price are usually
estimated in any brand choice or preference model, our methodology is able to
separate the two price effects. Based on the distinction between the two roles of
price and the literature on the economic theory of consumer behavior and several
consumer research studies on price-perceived quality relationship, we postulated
that the informational price effect is positive and the allocative effect is negative.
Applying the methodology in a large scale experimental study, we found that this
hypothesis is, in general, supported.

An important issue that arises from our results is whether or not the estimation
of part-worth function for price in conjoint analysis should be re-examined. We
recommend that researchers should collect unconstrained and constrained prefer-
ence data on at least a subset of profiles in a conjoint study. This change will en-
able them to determine the extent of confounding of the two roles of price in the
preference model. This additional data collection may require more time from the

2 The cluster algorithm used was ,nearest centroid sorting® (Anderberg 1973). For a

three-cluster solution, clusters all differ significantly for both price and brand effects (p
< 0.05). Using the elbow-criterion of the ratio of within to total sum of squares, we
found that the three cluster solutions best represent the data.
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respondent and may increase costs. If so, steps should be taken to control for the
confounding of the informational price effect; one approach is to instruct respon-
dents to assume that all other aspects among the products presented (i.e., all prod-
uct attributes not presented) are identical. But, practical experience with conjoint
analysis indicates that instructions like these do not work well.

One way to overcome this confounding problem at least partly is to include
most of the salient product attributes in the conjoint study. As can be seen from
Table 3, the magnitude of the informational price effect decreases if more product
attributes are available (compare the price, brand and attribute situation with the
price and brand or the price and attribute situations). This approach needs to con-
sider the issue of how to deal with correlated attributes. Experimentation with this
and other approaches to separate out the price effects in conjoint setting is called
for.

While we have estimated the two effects of price on preference data, there is
need to determine the allocative effect of price unconfounded by the informational
effect on actual brand choice. It is perhaps necessary to supplement the uncon-
strained preference data with data on choices among various choice sets and em-
ploy a combination of regression and logit analysis for estimating the two price
effects. Appropriate methodologies will need to be developed to tackle this prob-
lem. The methods of designing choice experiments will be suitable in this respect
(Louviere and Woodworth 1983). Further, it is unclear whether the two effects of
price can be separately estimated using only longitudinal choice data as available
from scanner panels.

Our research looked at buying products once. In practice, individuals buy a
majority of products repeatedly over time. As an individual learns about a product,
the information effect of price will change. Thus, there is a need to explore the
signaling effects of price reduction particularly for frequently purchased items in a
suitable dynamic model of choice.

More generally, once a defensible approach for estimating the allocative and
informational effects on choices is established, models can be developed to relate
them to the marketing mix decisions on price, sales promotion, distribution and
advertising. It can be expected that an optimal price for a new brand will be differ-
ent when the informational role of price is also included in the brand choice
model. The reference price effects can be included in such a model (Putler 1992).
These models can also be used for pricing new brands as well as brand extensions.
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3  Market Simulation Using a Probabilistic Ideal
Vector Model for Conjoint Data

Daniel Baier and Wolfgang Gaul

31 Introduction

In commercial applications of conjoint analysis to product design and product
pricing it has become quite popular to further evaluate the estimated individual
part-worth functions by predicting shares of choices for alternatives in hypotheti-
cal market scenarios (Wittink, Vriens and Burhenne 1994 and Baier 1999 for
surveys on commercial applications). Wide-spread software packages for conjoint
analysis (Sawtooth Software's 1994 ACA system) already include specific mod-
ules to handle this so-called market simulation situation for which, typically, a
threefold input is required: (I) The (estimated) individual part-worth functions
have to be provided. (1) A definition of a hypothetical market scenario is needed
that allows to calculate individual utility values for each available alternative. (III)
A so-called choice rule has to be selected, which relates individual utility values to
expected individual choice probabilities and, consequently, to market shares for
the alternatives. In this context, the determination of an adequate choice rule
seems to be the most cumbersome task. Well-known traditional choice rules are,
e.g., the 1ST CHOICE rule (where the individuals are assumed to always select
the choice alternative with the highest utility value), the BTL (Bradley, Terry,
Luce) rule (where individual choice probabilities are related to corresponding
shares of utility values), and the LOGIT rule (where exponentiated utility values
are used). Furthermore, in newer choice rules implemented by various software
developers, the similarity of an alternative to other alternatives is taken into ac-
count as a corrective when choice probabilities are calculated (Sawtooth Software
1994).

The application of each of the just mentioned choice rules has its specific
shortcomings: The 1ST CHOICE rule is known to overstate market shares for
alternatives with high individual utility values since even marginal utility differ-
ences cause highly unequal choice probabilities (Elrod and Kumar 1989). The
BTL and the LOGIT rule are sensitive to scale transformations of the utility values
(Green and Krieger 1988). As the part-worth functions are at best interval-scaled
in most applications, this provides a severe problem (Wittink, Vriens and Bur-
henne 1994). Furthermore, the selection of the LOGIT rule is commonly moti-
vated by the assumption that the utility values (and consequently the estimated
part-worth functions) are superimposed by an i.i.d. extreme value distributed error.
However, the unknown parameters for this distribution (and consequently the
adequate monotone transformation of the utility values) are typically not estimated
together with the part-worth functions. Finally, the BTL and the LOGIT rule suf-
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fer from the IIA (independence of irrelevant alternatives) property which shows
the tendency to overstate market shares for similar alternatives. The newer choice
rules implemented by software developers avoid the ITA problem but the chosen
ad-hoc extension of the LOGIT rule fails to be properly motivated.

In order to overcome these problems, a new approach for performing market
simulations is proposed. The methodology is based on the well-known probabilis-
tic ideal vector model (De Soecte and Carroll 1983; Bockenholt and Gaul 1986;
1988; Gaul 1989 and Baier and Gaul 1996). Deterministic points for alternatives
and random ideal vectors for consumer segments are used for explaining and pre-
dicting individual choice behavior in a low-dimensional attribute space where the
same model formulation is employed for parameter estimation and for market
simulation. Moreover, it can be used to analyze data collected via the wide-spread
ACA system. In section 4.2, we tackle issues concerning model formulation and
parameter estimation, while market simulation together with choice prediction,
advantages and methodological options of the new approach as well as related
work are discussed in section 4.3. A Monte Carlo comparison of the new approach
with traditional counterparts is described in section 4.4. Additionally, in section
4.5 an application to the German mobile phone market is used to illustrate further
advantages. The paper concludes with an outlook in section 4.6.

3.2 A Probabilistic Ideal Vector Model for Conjoint Data

3.21 Model Formulation

Let be can index for C (physical) characteristics of alternatives in a conjoint
analysis study (coded typically as dummy variables) to describe a so-called char-
acteristic space and an index for A (perceptual) attributes of the alternatives under
consideration (A < C) that build up a low-dimensional attribute space. Further, let
2, =(z;,,7;c) be the description of an alternative j in terms of (physical)
characteristics that is related via a transformation matrix B to coordinates
X; =(xj, X 4) =Bz, in the attribute space. Additionally, let t be an index for
T consumer segments which are described in the attribute space by ideal vectors
with stochastic coordinates v, =(Vy,-++, Vs )" following multivariate normal

distributions ~ with ~ mean  p =(u,,--,u,) and covariance  matrix
Et = (00 ) axa -
These probabilistic ideal vectors are used to model the fact that consumers are

not always certain with respect to their preference directions in the attribute space
but it can be assumed that respondents from the same segment t belong to a sub-

sample that behaves according to the segment-specific ideal vector v, .
Thus the random variable U, = (sz )'Vt explains the utility assigned by consumers

of segment t to alternative j.
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When consumers are exposed to a set S of alternatives, their choice behavior is
modeled in the following way: Firstly, they independently sample a realization

w, =(Wy,--,W, ) from their corresponding segment-specific ideal vector
distribution. Then, they calculate utility values (sz )’w . for each available alter-

native and, finally, they select that alternative that provides the highest utility
value to them.
We use

(1) R, :{w en?

B(z,-z,)) w20, Vse s}.

as so-called preference region that contains all ideal vector realizations that lead to
a selection of j out of the given set S of alternatives (R iis is a cone with peak in

the origin.) and get

) P s = Problv, e R ;)

as probability that consumers from segment t prefer alternative j if they are ex-
posed to set S.

T
Using A, as the relative size of segment t (ZH lt =1) we get

T
€)] Pis :Z}\‘tpjt\s
o

as the overall probability that alternative j is selected.

It should be mentioned that this model formulation provides possibilities to
explain and predict both utility values and choices among sets of presented
alternatives. The first feature will be used for parameter estimation in the
following, the second feature is further described in the section on market
simulation.

3.2.2  Parameter Estimation from Graded Paired Comparisons

For estimating unknown model parameters in applications of conjoint analysis, the
collection of graded paired comparisons has become the most popular method
(Wittink, Vriens and Burhenne 1994 and Baier 1999): Consumers are subse-
quently exposed to pairs of alternatives and asked to evaluate the utility difference
between the right and the left alternative in terms of a categorical scale. Figure 1
gives an example of such a graded paired comparison task when the interviewing
module of the ACA system is used for collecting data on mobile phones. We will
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also apply this data collection method to estimate the unknown model parameters
of our approach.

EDalecmlec!ion
WHICH WOULD YOU PREFER? B
Iype a number from the scale below to indicate vour preference.

Talk Time: & h Talk Time: 2 h

Weight: 600 g 0R Height: 300 g

Price: 600 DM Price: 1200 DM
Strongly Equally Strongly
Prefer Attractive Prefer
Left 1 - -2 - 3 - - b - - D - -6 -7 Right
Type number | ESC to back up CTRL END to quit

Figure 1:  Sample graded paired comparison task when using the interviewing
module of the ACA system for collecting data on mobile phones

To describe the data collected, we use the following notation: Let i be an index for
I respondents and e an index for the E, pairs of alternatives that respondent i has
evaluated. For each evaluation let z("*" and z(* be the respective descriptions
of the right and the left alternative in terms of characteristics and
ytsen _ ({00 4040))y  the stochastic utility difference for the pair if
respondent i belongs to segment t. k. indicates the received response category of
the utility difference with k., =1 as minimum scale value (if the left alternative is
strongly preferred) and k, =K as maximum scale value (if the right one is
strongly preferred). o = (a,...,0, ) With a, =-o and oy =« denotes the (un-

known) vector of category boundaries for the utility differences. Additionally, in
accordance with the model formulation described earlier, we assume that respon-
dents are allocated to consumer segments via an (unknown) segmentation matrix
H with values h,, =1 if respondent i belongs to segment t and h,; = 0, otherwise.
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Now, we can calculate the probability that respondent i from segment t selects
k,, as response category in the e-th evaluation task as

_ (right lefi)
piakiez - PrOb(akie -1 S Uiel < ak. )

] =
= cD(.fiekml )_ cD(fie(le):)
with @ as standard normal distribution function and fractils
!
(right lefl)
akie _(B(Zieg ) _Zfef )) “’l

14
(right) (left) (7ight) (left)
Bl ) 5, (Bt g

Estimates of the model parameters 8=(u,,--,u.,%,, -, 2., B) and the

@ v, <o), <, |

(5) f;e/c.)l =

segmentation matrix H can be obtained by optimizing the corresponding
negative log-likelihood function

m

i

(6) —InL(G,H) = _Z h, ln(piekiet)

1
t=1 1=l e

under the restriction that h ; € {O,l}, Vt,i, and ZT hy =19, holds.
t=

Note that in Eq. (6) an independent sampling across segments, respondents,
and evaluations is assumed as in other papers that derive maximum likelihood
estimates from paired comparison data (De Soete and Carroll 1983; Béckenholt
and Gaul 1986; 1988; De Soete, Carroll and DeSarbo 1986; Gaul 1989; De Soete
1990 and Baier and Gaul 1996; 1999).

The negative log-likelihood function can be minimized by starting with an ar-
bitrary adequate solution for 6 and H followed by alternatingly improving the
model parameters 0 for fixed H and improving the segmentation matrix H for
fixed ©. Improvements of 6 for fixed H can be accomplished via nonlinear
programming, improvements of H for fixed 0 are carried out by checking
whether a reallocation of respondent i to segment t with maximum value for

L :Zil ]n(piekiet) is possible. Relative sizes of the segments can be calculated

it
through 2., = iI:Ih“/I.

Model selection, i.e. the determination of adequate values for the number of at-
tributes A and the number of segments T in the representation, can be performed
in the usual way by evaluating values of AIC (Akaike Information Criterion, see
Akaike 1977)
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of the type

(7) AIC=-2InL[6, H )+ 2NEP

or of CAIC (Consistent AIC, see Bozdogan (1987)) of the type

) CAIC =21 L{6, H )+ (1+ In NO)NEP.

Here, O denotes the maximum likelihood estimate of 0, NEP the Number of
Effective Parameters and NO the Number of Observations, all with respect to
some model under consideration. Even though the underlying regularity condi-
tions for AIC and CAIC across different segmentation matrices H are not satis-
fied, these formulae have been proposed in the literature and are applied here in
the same sense (see, e.g., Bozdogan 1987; 1993 and Wedel and DeSarbo 1993).
NEP and NO are calculated in the following way:

9 NEP:TA+TM+AC+(K—1)—1—A2,

1

(10) NO=>"E,.

i=l

It should be explicitely mentioned that the above described estimation proce-
dure can also be used to analyze graded paired comparisons with partial profiles,
i.e., series of independent evaluation tasks where the descriptions of the right and
left alternatives only cover varying subsets of the available C characteristics. For
the respondent's evaluation task it is assumed that the outcomes for omitted char-
acteristics in partial profiles are unknown but identical for both alternatives.

Graded paired comparisons with partial profiles are quite popular within con-
joint applications since this kind of data collection reduces the alternatives® com-
plexity and simplifies the respondents® evaluation task (e.g., for applications of the
ACA system‘s interviewing module, it is recommended to use only partial profiles
with up to three characteristics instead of full profiles (Sawtooth Software 1994).



Market Simulation Using a Probabilistic Ideal Vector Model for Conjoint Data 53

As can be seen from Eq. (4), the estimation procedure of the new approach can
easily handle partial profiles if the outcomes of the omitted characteristics are (in
accordance to the definition of the evaluation task) assumed unknown but identi-
cal.

3.3 Market Simulation

3.3.1 Choice Predicion in Market Scenarios

Prerequisites for an engagement with market scenarios are, e.g., the determination
of the set S of underlying alternatives in terms of their characteristics and the
estimation of the needed model parameters as described in the last section. Next, a
calculation of the (segment-specific) expected shares of choices via Eq. (2) and (3)

has to be performed. However, for | S|> 2 an analytical solution of Eq. (2), i.e. of
(11) Piys = _[ft(W) dw
weRﬂS
with
1

1
—————xp| (W), (W t))
(2n)Adet(2t)exp( P v

as segment t‘s ideal vector density function, is not known, thus, we propose the
following hypercube approximation (see Baier, Gaul (1999) for a similar sugges-
tion with respect to probabilistic ideal point modeling):

(12) f (w)=

Firstly, we transform the problem of calculating the probability mass of Vv, over

R ils into an equivalent problem for

1
(13) vt ZZ?(Vt _“t)

over the preference region

(14) R = {w e

(B(z, —zs))’zt%vwv > (B(z,-2,)|p,, Vse s}.

Then, we choose L* grid points

(15) £ —[@-I(Mj,...,@-l[zu 4)]
A 2L 2L




54 Daniel Baier and Wolfgang Gaul

(1<1,.---.1, <L) which are the mass centroids of L* hypercubes that form an

,»iS0-mass* representation for the random variable v, (L is a parameter to adjust

granularity). Finally, we use the mass centroids as an (approximative) indicator
whether all points of the corresponding hypercubes are assumed to belong to

R s or not, and approximate p, ¢ = Prob(Vt eR MS) as the fraction of hyper-

cubes for which g, o, € R, s holds.
e

3.3.2 Methodological Options and Advantages of the New
Approach

The model formulation in section 4.2.1 provides quite a variety of methodological
options. The following examples are explicitly mentioned: If the transformation
matrix is restricted to the identity matrix (B=I) and only one segment is allowed
(T=1) we get a statistical generalization of adaptive conjoint analysis at the aggre-
gate level. For the situation (B=I, T>1) the new approach can be used as an alter-
native to other sequential or simultaneous procedures for benefit segmentation or
product design based on segment level part-worth functions (DeSarbo, Wedel,
Vriens and Ramaswamy 1992; Aust and Gaul 1995; Baier and Gaul 1995 and
Gaul, Aust and Baier 1995). In this context, the new approach can be viewed as a
simultaneous procedure for analyzing graded paired comparison data collected via
the ACA system. Possibilities to fix the transformation matrix B in a desired way
allow the derivation of results needed in QFD (Quality Function Deployment)
(Hauser and Clausing 1988 and Akao 1990 for reviews and sample applications of
QFD and Baier 1998 for estimation procedures).

The methodological options just mentioned are in close relationship to a series
of advantages. As already mentioned, the new approach supports market simula-
tion with the help of a choice rule that is compatible with model parameter estima-
tion. Next, the estimation of the transformation matrix B supports the exploration
of the relationship between the (physical) characteristics and the (perceptual)
attributes of alternatives as proposed, e.g., in Brunswick’s (1952) ,lens® model.
This is a feature that can be of help for the parametrization of the house of quality
in QFD (Baier 1998 for an application using the ACA system). Additionally, the
new approach doesn't suffer from the I[A property which assumes that the propor-
tion of choice probabilities is independent from the available set of alternatives.
This can be easily verified in terms of the well-known red bus/blue bus paradox
(Ben-Akiva and Lerman 1985): Here, the starting point is a commuter mode
choice situation where consumers choose between a car (alternative 1) and a red

bus (alternative 2) with probabilities py; 5, =Py = 1/2 . If, additionally, a

blue bus would be made available (alternative 3), one would expect that this new
alternative draws especially shares of choices from its similar alternative 2.
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However, models where the [IA property forces

(16) P12 /pZ\{l,Z} =Pig23) /pZ\{1,2,3}

and Py 53 = P3j23 could be expected from the description of the available
alternatives (as in the red bus/blue bus example) would lead to
P23 = Paj23 = P32z = 1/3‘

Our new approach takes the similarity of alternatives explicitly into account.

The above example can be modeled, e.g., by using T=A=C=l,
z,=(1).z, =2z, =(-1), B=(1).u, =(0), £, =(1) that results in choice probabilities

Pijpas = 1/2 and Py o3 = Psjaas = 1/4 which contradicts the TTA property

in Eq. (16) but seems to model consumers choice behavior more realistically.

3.3.3 Related Work

The proposed approach is related to other probabilistic ideal vector models for
analyzing (graded) paired comparisons (De Soete and Carroll 1983; Bockenholt
and Gaul 1986; 1988; Gaul 1989 and Baier and Gaul 1996). However, to our
knowledge this is the first time where the application of such an approach for
analyzing graded paired comparisons to partial profiles from conjoint experiments
is suggested. Moreover, it is the first time that it has explicitly been suggested and
demonstrated that such an approach can be used for the prediction of shares of
choices among ,,large” sets of alternatives.

Additionally, such a model formulation with random coefficients is related to
methodologies based on the multinomial logit model (McFadden 1973; Cooper
and Nakanishi 1983; Louviere and Woodworth 1983 and DeSarbo, Ramaswamy
and Cohen 1995) or the multinomial probit model (Hausman and Wise 1978;
Daganzo 1979 and Kamakura and Srivastava 1984). However, these approaches
don't use graded paired comparisons for estimating the model parameters.

34 Monte Carlo Experiment

In order to examine the performance of the new approach in comparison to tradi-
tional counterparts, a Monte Carlo study was designed. Adopting much from sur-
veys on the commercial use of conjoint analysis (Wittink, Vriens and Burhenne
1992 and Baier 1999) as well as from the design of former Monte Carlo studies in
the field of conjoint analysis (Vriens, Wedel and Wilms 1996) and optimal prod-
uct positioning (Baier and Gaul 1999) the following seven factors (with factor
levels in brackets) were specified for synthetic data generation: number of simu-
lated respondents (100 and 200), number of segments (2 and 4), segment hetero-
genity (homogeneous and heterogeneous), correlation (uncorrelated and correla-
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ted), number of alternatives in a hypothetical market scenario (4 and 8), similarity
of alternatives (dissimilar and similar) and error variance (5% and 35%) where —
for convenience — the abridged factor label is underlined. According to a fraction-
ated factorial design with 32 factor-level-combinations 50 replications were per-
formed for each combination, thus, a total of 1600 data sets was generated.

Each data set consisted of (1) simulated part-worth functions for each respon-
dent which were drawn from segment-specific normal distributions of part-worth
functions, (II) a hypothetical market scenario with individual utility values for
each available alternative derived from the simulated part-worth functions, and
(III) ,,true® market shares in this market scenario. The following steps were used
for data generation: (Step 1) Segment-specific mean part-worth functions for eight
characteristics each with three outcomes (dummy coded for computational con-
venience) were randomly drawn from a predefined range (the interval [0,1] was
selected). Segment-specific variances and covariances for the (dummy coded)
part-worth functions were specified according to the levels of the factors segment
heterogenity and correlation. For the factor segment heterogenity variances were
set to 0.05 for the level homogeneous, in the heterogeneous case a value of 0.1
was chosen. Additionally, for the factor correlation all covariances between part-
worth functions were set to 0 for the level uncorrelated, in the correlated case
values of 0.05 resp. 0.1 (depending on the level of the factor segment heterogen-
ity) were chosen for the part-worth functions of four characteristics. Then, for the
specified number of respondents (randomly assigned to equally sized segments)
individual part-worth functions were drawn from their corresponding segment-
specific normal distributions of part-worth functions. (Step 2) A hypothetical
market scenario with four or eight alternatives was generated through assigning
outcomes to characteristics. In the case where dissimilar was the level of the factor
similarity of alternatives the assignment of the outcomes to the eight characteris-
tics was totally random. In the other case the hypothetical market scenario was
assumed to consist of two subsets of similar alternatives (with unequal subset sizes
of one and three resp. of two and six according to the level of the number of alter-
natives). Within each subset, three characteristics were assumed to have a fixed
outcome whereas the remaining five characteristics received outcomes at random.
For each simulated respondent and each alternative in the hypothetical market
scenario utility values were calculated. Furthermore, in order to simulate estima-
tion errors, the drawn individual utility values were superimposed by an additive
normally distributed term with mean zero. According to the already mentioned
levels of the error variance, the variance of this error term was set to 5% resp. 35%
of the variance of the individual utility values (Vriens, Wedel and Wilms 1996 for
a similar approach). (Step 3) The ,,true” market shares were determined via sam-
pling a ,large™ number (5000 in the underlying situation) of realizations from the
simulated segment-specific distributions of the part-worth functions, via deriving
error-free utility values for each realization and each alternative in the hypotheti-
cal market scenario, and via calculating for each alternative the share of realiza-
tions for which maximum utility is provided.

Each generated data set was analyzed by our new approach and selected tradi-
tional counterparts for market simulation where the following notation is used for
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explanation: With u;; as utility value that respondent i has assigned to alternative

j (through adding the respective elements of the simulated part-worth function for
respondent i), dis as share of different outcomes of the characteristics of the al-

ternatives j and s (d,, =c, /C denotes the situation that ¢, of the C characteris-
tics have different outcomes), w, =1 /Zses (exp(-3d ;) —exp(-3)) as ad-hoc IIA

corrective in the ACA system’s choice rule (Sawtooth Software 1994), and B as
additional scale parameter, the individual choice rules

BTL) _ B B . B B
P = uij/;uis with B=1, B =2,
(17 p;-L\SGm = exp(B uij)/Zexp(B u,) with =1, 3 =2, and
seS
(ACA)

s wjexp(Buij)/;wsexp(B u,) with =2,
were the basis for a comparison with our new approach. The individual choice
probabilitites of Eq. (17) were aggregated across respondents in traditional manner

(ie. p™ =1/1 zl ]p(“‘]e) ) to get the ,.simulated market shares under different
ils =il
approaches for each generated data set.

Table 1:  Mean values for the performance measures MAE and RMSE under
different approaches (Statistical significant differences between two
means are denoted by superscript number(s) of the inferior ap-
proach(es) attached to the superior mean (p <.01))

MAE RMSE
BTL B=1() | 079 0933

BTL (B=2)(2) | .0604" 07231
LOGIT  (B=1)(3) | 0803 0944
LOGIT  (B=2)(4) | 0557 | .0656"*
ACA (B=2)(5) |.0506">* .0600"234
New Appr. (6) 019112345 023212345
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For the new approach, segment-specific means and covariance matrices were
directly estimated from the simulated part-worth functions for each data set and
market simulation (as described in section 4.3.1) was performed with respect to

Table 2:  Mean values for the performance measures MAE and RMSE under
different approaches by levels of factors (Statistical significant differ-
ences between two means in a cell with respect (o factor levels are
denoted by *, superscript numbers attached to the mean of the new
approach indicate significant superiority over the respective tradi-
tional approach (p < .01).

BTL  [BTL  [LOGIT [LOGIT |[ACA [New
(B=1 [(B=2) {(B=1) |(B=2) |(B=2) |Approach

MAE A (2) 3) 4 (5)

Respond. 100 0829% [.0633* [.0850% [.0584* [.0536* [.0213%127%3
200 0750  |.0575  |.0755 |.0529 |.0477 |.0169'*3*

Segments |2 0897* [.0683* [.0921* [.0629% [.0581% [.0212%"%34°
4 0681 [.0525  |.0685 |.0484 |.0432 |.0169'**°

Segment Homog. |.0863* [.0659% [.0910% [.0639* [.0590% [.0208% %34
Heterog. Heter. |.0715  |.0550 [.0696 |.0474 |.0422 |.017312343

Correl. Uncor. |.0709* | .0540* [.0692* [.0464* [.0417% [.0154%125%3

Correl. |.0870 [.0668 [.0913 [.0649 |.0595 |.02282343
Alternatives |4 0841% o614 [.0933* [.0637* [.0592* [.0206*133%

8 0737 1.0594 [.0673 |.0476 |.0420 [.0176"%%*
Similar. of |Dissim. |.0732* [.0529 [.0721% [.0474* |.0464* |.0168%">*>
Alternatives |Sim. 0846 |.0650 |.0884 |.0639 |.0549 |.0213"24°
Error 5% 0755% |.0551% [.0779 [.0504* [.0462% |.0072% 12343

Variance 35% 0824 |.0658 |.0827 |.0609 |.0551 |.0310'%%43
BTL BTL  |LOGIT |LOGIT [ACA [New
B=1 |B=2 [B=1) |(B=2) [(B=2) |Approach

RMSE A @) 3) “ &)

Respond. 100 0972% 10747 [.0986% [.0680% [.0624% [.0253% 1231
200 0904 1.0699  |.0301 |.0632 |.0576 |.0211"45

Segments |2 1073 [.0826% [.1086* [.0747* [.0695% [.0262% 2343
4 0803 |.0620 |.0801 |.0565 [.0504 [.0202"****

Segment Homog. [.1025% [.0789* [.1067* [.0753* [.0700% |.0257%'%34
Heterog. Heter. |.0852 |.0656 [.0820 ].0560 |.0500 |.020812343

Correl. Uncor. |.0843* [.0645* [.0815* [.0547% [.0496* [.0186%1%%%°

Correl. [.1033  [.0801 [.1072 |.0766 |.0704 |.0278%343
Alternatives |4 0960 [.0705  [.1059* [.0725* [.0679* [.0240%*%%°

8 0916 |.0740 |.0828 [.0587 |.0521 |.0224'2343
Similar. of |Dissim. [.0867* [.0665* [.0845* [.0559*% |[.0564* [.0203%"23%>
Alternatives |Sim. 1010 0781 [.1042  |.0753  |.0654 |.0261%%343
Error 5% 0904 [.0665% [.0920 [.0597* [.0549% |.0093% 12343

Variance 35% 0972 0781  [.0967 |.0715 |.0650 |.0371%%3%3
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the hypothetical market scenario. The resulting ,,simulated” market shares of the
new approach as well as the ,simulated” market shares of the five traditional ap-
proaches were compared to the ,true” market shares using MAE (mean absolute
error) and RMSE (root mean squared error) as performance measures.

As result of the Monte Carlo experiment, 9600 observations for each of the
two performance measures (from 1600 generated data sets analyzed by six ap-
proaches) were available in order to show differences across approaches and fac-
tors used for the generation of the hypothetical markets. For an easy indication of
superiority the approaches are, additionally, numbered from (1) to (6). Table 1
shows the mean values of the performance measures under different approaches
together with indications for statistical significant differences.

In Table 2 the mean values for the performance measures under different
approaches by levels of factors are depicted. Additionally, for the seven Monte
Carlo factors and the approaches as main effects as well as for those first-order
interaction effects in which approaches constitute one of the interacting parts, F-
test results with respect to all performance measures were checked in an ANOVA
context and are - as they are in agreement with the information contained in
Tables 1 and 2 - not reported.

Altogether, the message from the Monte Carlo experiment is pretty clear: The
new approach outperforms the traditional approaches with respect to the
performance measures MAE and RMSE. Superiority also appears with respect to
all factor levels. Among the traditional approaches ACA performed best, followed

by the LOGIT and BTL approaches with higher [3-values. We leave an
interpretation of further results contained in Tables 1 and 2 to the reader.

3.5 Application

For a demonstration how the new approach competes with the traditional ap-
proaches in a real-world application, the German market for mobile phones with-
out transmission contracts was selected. In summer 1997, major competitors in
this market offered the six product alternatives P1, P2...., P6 which are depicted in
Table 3 via 11 characteristics selected on the basis of discussions with salesper-
sons and information obtained from producers® home pages, selling brochures, and
tests in technical magazines. A further alternative P2° (similar to P2) is also de-
scribed in Table 3. The six respectively seven alternatives from Table 3 form
market scenarios A and B which will be used in our application in order to evalu-
ate the new approach.

Two outcomes for each characteristic were chosen for a conjoint experiment:
the (assumed) advantageous outcome 600 DM and the (assumed) disadvantageous
outcome 1200 DM for the characteristic price, 150 g and 300 g for weight, 180
ccm and 330 cem for size, telescope and integrated for antenna type, 240 min. and
80 min. for talk time, 80 h and 20 h for standby time, 1 h and 2 h for recharge time
as well as ++ and o for noise reduction, workmanship, branding, and automatic
dialing. Graded paired comparisons were collected from 100 respondents using
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the ACA system. First, in a so-called importance rating part, the respondents were
asked to rate the utility difference between the advantageous and the disadvanta-
geous outcomes of each characteristic. Within this part, the outcomes of the char-
acteristics weight and size were supported by illustrative material. Then, in the
paired comparison trade-off part, each respondent had to evaluate six pairs of
partial profiles covering two characteristics each and five pairs of partial profiles
consisting of three characteristics each. For both parts, a similar categorical scale
with seven categories was used. In Figure 1, we have already seen a sample screen
from the paired-comparison trade-off part. Finally, in a further part, buying prob-
abilitites for full profile alternatives were collected in order to predict ,,true® mar-
ket shares with respect to the predefined market scenarios A and B. For this pre-
diction it was assumed that each respondent would definitely buy the highest rated
alternative. The predicted ,.true” market shares for scenarios A and B under this
assumption are also shown in Table 3.

For parameter estimation using the new approach, dummy coding for the
outcomes of the characteristics was introduced with a value of 1 for the
advantageous and a value of 0 for the disadvantageous outcome. The data from the
importance rating part in the ACA interview were viewed as paired comparisons
of partial profiles covering only one characteristic which extended the observed
partial profiles paired comparisons to a total number of 2200 cases. (It should be
noted that part-worth estimation in the ACA system uses a similar step to combine
the data from the different parts of the collection procedure.)

Table 3:  Major competing alternatives in the German market (summer 1997)
for mobile phones without a transmisson contract (P1,...,P6) together
with additional alternative (P2°) forming market scenarios A and B

Pl P2 P3 P4 P5 P6 P2

Price (DM) 950 | 1399 | 640 900 600 699 | 1199
Weight (g) 215 155 305 180 195 255 155
Size (ccm) 296 190 240 194 197 244 190
Antenna Type telesc. | integr. | integr. | integr. | telesc. | integr. | integr.
Talk Time (min.) 269 97 93 146 93 128 97
Standby Time (h) 40 62 41 30 17 20 40
Recharge Time (h) 1 1 2 1 2 2 1
Noise Reduction ++ + ++ 0 + + +
Workmanship 0 + 0 + + ++ +
Branding 0 ++ 0 - 0 + ++
Automatic Dialing 0 0 0 0 0 0 0

”True” Market Shares in Scenario A:

16% 29% 11% 13% 4% 27%
”True” Market Shares in Scenario B:

16% 27% 11% 13% 4% 27% 2%
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Additionally, in order to easily compare the estimated model parameters with the
results from the traditional approaches, the covariance matrices Zt were re-

stricted to diagonal matrices, the transformation matrix B to the identity matrix,
and the vector O to (-,-2.5,-1.5,-0.5,0.5,1.5,2.5,00) assuming symmetrically

and — except for o, and o, - equidistantly distributed category boundaries

around the origin.

This point should be stressed because the mentioned restrictions reduce the
ability of the new approach in favor of the traditional counterparts. Table 4 shows
the results of the corresponding analyses for the new approach in terms of NEP, -
In L, AIC and CAIC for the 1-, 2-,..., 8-segment solutions. We see that the CAIC
values indicate that the 2-segment solution should be preferred.

Table 5 provides for this 2-segment solution (together with the corresponding
results for the 1- and 3-segment solutions) the mean ideal vectors p,  and the

corresponding diagonal elements of the covariance matrices X, (in brackets). It

can be easily seen that the respondents provide a rather homogeneous group of
potential buyers for which the characteristics price, standby time, size and noise
reduction are most important. (Note, that the variances provide additional
interesting insights with respect to the segment-specific assessment of
characteristics).

Table 4: Summary of selected analyses using the new approach (Underline
denotes best performance)

NEP [-InL AIC CAIC

22 3369.4365 6782.8730 6930.1897
44 3234.2543 6556.5086 6851.1420
66 3152.2879 6436.5758 6878.5258
8§ 3082.5782 6341.1564 6930.4231
110 3032.9684 6285.9368 7022.5202
132 2992.4640 6248.9280 7132.8281
154 2984.2547 6276.5094 7307.7261
176 2913.3841 6178.7682 7357.3016

S aaS ==

I
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For market simulation via the new approach, the descriptions of the alternatives in
market scenario A and market scenario B from Table 3 were converted into
dummy coded characteristics using linear transformations from the [disadvanta-
geous outcome,...,advantageous outcome]-range into the [0,1]-interval. Then,
,.Simulated” market shares were calculated for each market scenario using the 1-,
2-,..., 8-segment solutions referred to in Table 4.

The ACA system was applied for estimating the individual part-worth
functions. Again, data from the importance rating part and the paired comparison
trade-off part were used together. The individual part-worth functions were
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standardized in the usual way (the disadvantageous outcomes get a part-worth
value of 0 and the part-worth values of the advantageous outcomes sum up to 1)
and used to calculate utility values for the alternatives in each market scenario.
Finally, the choice rules from Eq. (17) were applied to estimate the individual
choice probabilities and to predict ,,simulated” market shares for each scenario
and each choice rule.

Table 5:  Estimated segment-specific mean ideal vector coordinates (variances)
of selected analyses using the new approach

T=1 T=2 T=3

Segm. 1 |Segm. 1 | Segm.?2 |Segm. 1 |Segm.2 | Segm. 3
(100%) [(47%) [(53%) |(17%) |(38%) |(45%)
Price 23650 |2.5126 |2.3051 |[1.4967 |2.7609 |2.4223
(0.9979) [ (1.3068) | (0.7083) | (1.1187) | (1.0913) | (0.6973)
Weight 1.2049 [1.0207 |1.4172 |0.7547 |1.0915 |1.5351
(1.1544) [ (0.5596) | (1.5779) | (0.6800) | (0.5774) | (1.4513)
Size 1.8051 [1.5984 [2.0634 |1.6037 |1.6104 |2.1806
(0.8670) [ (0.7719) | (0.8853) | (1.0590) | (0.8917) | (0.8371)
Antenna 07608 0.8992 |0.6700 |0.8794 |0.9253 |0.6409
Type (1.0391) [ (1.3968) | (0.8357) | (0.8028) | (1.4465) |(0.9348)
Talk Time |1.3255 |1.1399 |1.5616 |1.2256 |1.1908 |1.5797
(1.2685) [(0.9948) | (1.2772) | (1.0932) | (0.9666) | (1.3096)
Standby 2.1050 |1.3586 |2.7776 |2.0508 |1.2707 |2.8511

Time (1.3074) | 0.7818) | (0.7441) | (0.2776) | (0.9888) | (0.8775)
Recharge |0.4075 |0.4377 |0.3833 |1.0338 |02725 |0.3126
Time (0.6369) | (0.7880) | (0.5548) | (0.5110) | (0.6629) | (0.4930)

Noise Re- |1.7891 [2.0177 |1.6522 |[1.0103 22181 |1.7508
duction | (0.6361) | (0.6884) | (0.4312) | (0.8580) | (0.3816) | (0.3771)
Workman- | 14353 [1.7155 [1.2215 |1.5009 |1.7796 |1.2082
ship (0.6309) | (0.6884) | (0.5093) | (0.5753) | (0.6955) | (0.4234)
Branding |0.3115 |0.6166 |0.1193 |0.5972 |0.5924 |0.1260
(0.6071) | (0.9450) | (0.1028) | (0.3667) | (1.0547) | (0.0967)
Automatic |0.9527 |1.0123 |0.8570 |2.0164 |0.7806 |0.6310
Dialing  [(0.9403) | (1.4188) | (0.6708) | (0.1506) | (1.2310) | (0.4926)

Again, the performance measures MAE and RMSE with respect to the ,,true” and
,simulated™ market shares were used for comparisons. Table 6 shows the results.
Both, in market scenario A and market scenario B the new approach outperforms
the traditional approaches. The superiority is especially striking in the case of
market scenario B where products P2 and P2° are quite similar. This is not surpris-
ing since we already know about the problems of some traditional approaches to
take similarity structures within alternatives into account. Even if the discussion is
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restricted to the 2-segment solution (suggested by the CAIC-values for model
selection, see Table 4), the new approach competes well in this environment.

Table 6:  Performance measures MAE and RMSE under different approaches
for market scenarios A and B (Underline denotes best performance.)

Market Scenario A | Market Scenario B
MAE |RMSE MAE RMSE
BTL B=1) |.0826 |.0705 .0762 .0897
BTL B=2) |.0774 |.0673 .0744 .0873
LOGIT (B=1) |.0637 |.0563 .0670 .0798
LOGIT B=2) |.0441 .0382 .0529 .0662
ACA (B=2) [.0468 |.0389 .0525 .0658
New Appr. (T=1) |.0520 |.0489 .0450 .0498
New Appr. (T=2) |.0492 |.0443 .0406 .0464
New Appr. (T=3) |.0437 |.0388 L0331 .0404
New Appr. (T=4) |.0442 |.0388 .0364 .0427
New Appr. (T=35) |.0432 |.0381 .0361 .0416
New Appr. (T=6) |.0478 |.0391 .0389 .0478
New Appr. (T=7) |.0501 .0443 .0416 .0483
New Appr.  (T=8) |.0483 .0465 .0432 .0462

3.6 Conclusion and Outlook

A new approach has been presented that supports product design issues, distin-
guishes between (physical) characteristics and (perceptual) attributes, allows an
estimation of the transformation matrix between characteristics and attributes
(needed, e.g., in QFD), takes the segmentation of the underlying market into ac-
count, models consumer behavior with the help of multivariate normal distributed
ideal vectors, and allows an analysis of standard data obtained in conjoint applica-
tions (i.e. data collected via the ACA system). Additionally, it performs market
simulation with the help of a choice rule that is compatible with the underlying
model formulation and takes similarities of alternatives into account within the
prediction process. Of course, further data sets need to be analyzed to demonstrate
the superiority of the new approach, but already this paper provides a promising
way to deal with some of the known major problems within applications of con-
joint analysis.

Acknowledgements: The authors wish to thank Dipl.-Wi.Ing. Christopher
Pauli and Dipl.-Wi.Ing. Andreas Schénemann for their valuable support in data
collection and analysis.
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4 A Comparison of Conjoint Measurement with
Self-Explicated Approaches

Henrik Sattler and Susanne Hensel-Borner

41 Introduction

Over the past two decades conjoint measurement has been a popular method for
measuring customers’ preference structures. Wittink and Cattin (1989) estimate
that about 400 commercial applications were carried out per year during the early
1980s. In the 1990s this number probably exceeds 1000. The popularity of con-
joint measurement appears to derive, at least in part, from its presumed superiority
in validity over simpler, less expensive techniques such as self-explication ap-
proaches (Leigh, MacKay and Summers 1984). However, when considered in
empirical studies, this superiority frequently has not been found (e.g. Green and
Srinivasan 1990; Srinivasan and Park 1997). This issue is of major practical rele-
vance. If, at least in certain situations, conjoint measurement is not clearly supe-
rior in validity to self-explicated approaches, it becomes highly questionable
whether future applications for measuring customers’ preferences should be done
by conjoint measurement, as self-explicated approaches are clear advantageous in
terms of time and money effort.

When comparing the validity of conjoint measurement with self-explicated ap-
proaches, one has to distinguish between different types of conjoint measurement
methods which can lead to varying results in terms of validity. Most of the tradi-
tional conjoint approaches use full profile descriptions and ordinary least squares
(OLS) regression to estimate partworths (Green and Srinivasan 1978; Wittink and
Cattin 1989). Other types of conjoint measurement like Green’s hybrid conjoint
analysis (Green, Goldberg and Montemayor 1981), adaptive conjoint analysis
(ACA; Johnson 1987) and customized conjoint analysis (CCA; Srinivasan and
Park 1997; Hensel-Bérner and Sattler 1999) combine the self-explicated task with
aspects of the full profile conjoint analysis. We call all of these types "hybrid
conjoint measurement”. Because most of the research during the last 15 years has
been focused on these hybrid conjoint methods (Green and Srinivasan 1990;
Srinivasan and Park 1997), we shall include them in our analysis.

Similarly to conjoint measurement, there are different types of self-explicated
approaches. However, because very simple types of self-explicated approaches
like desirability ratings only have obvious limitations (Nitzsch and Weber1993),
we shall include in our analysis just one type of self-explicated approach which
has been applied in a number of studies (Green and Srinivasan 1990). Basically,
this approach works in the following way (with some minor modifications be-
tween different applications, e.g. Srinivasan 1988). First, respondents evaluate the
levels of each attribute on a (say) 0-10 desirability scale (with other attributes held
constant) where the most preferred level on the attribute may be assigned the
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value 10 and the least preferred level assigned the value 0. Respondents then are
asked to allocate (say) 100 points across the attributes so as to reflect their relative
importance. Partworths are obtained by multiplying the importance weights with
the attribute-level desirability ratings (Green and Srinivasan 1990).

The aim of this article is to give a comprehensive overview of studies compar-
ing the self-explicated approach and conjoint measurement. In the following sec-
tion, we shall first consider the “theoretical” perspective by comparing several
advantages as well as disadvantages of conjoint measurement and self-explication
approaches respectively. After this, we shall give a broad overview of empirical
studies comparing the two approaches under consideration in terms of reliability
as well as predictive validity. Reliability and predictive validity are taken because
almost all past empirical studies used at least one of these measures. Finally, con-
clusions are drawn from our findings.

42 Theoretical Considerations

The motivation for the development of (traditional) conjoint measurement stems
basically from several theoretical advantages over traditional methods of measur-
ing customer’s preference structure, especially over self-explicated approaches
(Green and Srinivasan 1990). Advantages over self-explicated approaches are
summarized in the upper part of Table 1 and will be discussed in more detail now.
Our comparison focuses on purely decompositional methods of conjoint meas-
urement (e.g. ranking or rating a set of stimuli), i.e. traditional conjoint measure-
ment. Hybrid methods are not included because they combine advantages as well
as disadvantages of decompositional (traditional conjoint) and compositional (self-
explicated approaches) methods.

First, in contrast to self-explicated approaches (i.e. compositional approaches),
conjoint measurement does not directly ask for partworths of attribute levels.
Instead, conjoint methodology is based on a decompositional approach in which
respondents react to a set of total profile descriptions. Profile descriptions are a
(more or less) realistic representation of a real product and therefore the task for
the respondents (e.g. ranking of profiles) resembles a real choice situation to a
greater extent than the self-explicated approach (Green, Goldberg and
Montemayor 1981). This similarity to real choice situations is a key distinction
from self-explication approaches and may result in higher predictive validity, e.g.
when predicting real product choices.

Second, the decompositional approach to identifying attribute partworths or
importance weights is more likely to detect real importance weights than self-
explicated approaches. When asking directly a question like "How important is
attribute X?”, it is not clear what the importance rating is supposed to mean, and
different respondents are likely to interpret the question differently (Srinivasan
1988).
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Table 1:  Advantages of conjoint measurement and self-explicated approaches

Advantages of traditional conjoint measurement over self-explicated approaches
1. Greater similarity to real choice situations

2. Greater chance of detecting real importance weights

3. Less chance of receiving only socially accepted responses

4. Greater range sensitivity

5. Better chance of detecting potential nonlinearity in the partworth function

6. Less likelihood of double-counting

Advantages of self-explicated approaches over traditional conjoint measurement
1. Less cognitive strain on the data-supplying capabilities of respondents

2. Less chance of simplifying-effects

3. Greater ease in data collection (e.g. telephone sampling)

4. Greater ease in data analysis and research design

5. Greater ability to handle a large number of attributes

6. Greater speed in data collection

7. Lower costs in data collection and data analysis

A third advantage of the decompositional conjoint measurement method over self-
explicated approaches is that partworths and/or importance weights of attributes
are obtained in an indirect manner. It is the job of the analyst to find a set of part-
worths for the attributes that, given some type of composition rule (e.g. an additive
one), are most consistent with the respondent’s overall preferences. For this indi-
rect approach, only socially acceptable responses are less likely to occur than for
self-explicated approaches (Hensel-Borner and Sattler 1999). For example, when
respondents are asked directly for the importance of price, they might tend to
underreport the importance because they possibly want to show that money does
not matter much (even if it is a very important issue for them). This tendency
might be weaker if respondents are asked indirectly.

Fourth, several empirical studies have shown that conjoint measurement is sig-
nificantly more sensitive with respect to different ranges of attribute levels com-
pared to self-explicated approaches, i.e. range sensitivity effects are less of a prob-
lem for conjoint measurement than for self-explicated approaches (Gedenk,
Hensel-Bérner, Sattler 1999). Sometimes, self-explicated approaches have been
found to be fotally insensitive to changes in attribute level ranges, which results in
considerable validity problems (Nitzsch and Weber 1993).

Fifth, compared to self-explicated approaches, conjoint measurement has a bet-
ter chance of detecting potential nonlinearity in the partworth function for quanti-
tative attributes. For instance, suppose the capacity of refrigerators is varied at
three levels, say 100, 125 and 150 liter. Given a 0-10 desirability scale with 0 for
100 liter and 10 for 150 liters, respondents may rate 5 for the intermediate level,
making the partworth function linear. A full profile task has a better chance of
detecting potential nonlinearity in the partworth function (Green and Srinivasan
1990).
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Sixth, a problem with the self-explication approach is that any redundancy in
the attributes can lead to double counting. For example, if energy costs and econ-
omy are two attributes of a refrigerator, there is an obvious risk of double counting
because each attribute is questioned separately in the self-explicated approach.
However, in a conjoint full profile approach respondents could recognize the re-
dundancy between the attributes so that overall preference ratings would not be
affected as much by double counting (Green and Srinivasan 1990).

On the other hand, there are also several advantages of self-explicated ap-
proaches over traditional conjoint measurement (lower part of Table 1). First, for
self-explicated approaches there is less cognitive strain on the data-supplying
capabilities of respondents, because the approach is substantially easier to handle
and task complexity is much lower (Akaah and Korgaonkar 1983).

Second, there is a lower chance of simplifying-effects (Wright 1975). Espe-
cially when a larger number of attributes is used in a full profile conjoint analysis,
respondents tend to focus on just a subset of attributes while neglecting the other
ones. If subjects behave in this manner, severe biases in estimating partworths can
occur for the conjoint analysis approach.

Third, data collection can be done much more easily for self-explicated ap-
proaches than for conjoint measurement (Srinivasan 1988). This is particularly
relevant for postal and telephone surveys where complex descriptions of total
profiles of conjoint measurement are hard to undertake (Srinivasan and Wyner
1989).

Fourth, there is a higher ease in analyzing the data for self-explicated ap-
proaches. Despite the fact that easy to handle software for data analysis of conjoint
measurement is available, at least basic statistical knowledge is highly recom-
mendable in conducting a conjoint analysis. In contrast, neither specialized sofi-
ware nor advanced statistical knowledge is necessary in analyzing the data of self-
explicated approaches. The same is true for setting up an experimental design.
While just basic ability is necessary for self-explicated approaches, the construc-
tion of an experimental design for conjoint measurement — e.g. in terms of stimuli
construction — is rather complex.

Fifth, particularly due to advantage 1 and 2, there is a greater ability to handle
a large number of attributes for self-explicated approaches compared to traditional
conjoint methods (Srinivasan and Park 1997).

Sixth, also due to advantage 1, data collection can be done much faster than for
conjoint measurement, especially for tasks with a large number of attributes. For
this reason as well as due to advantages 3 and 4, finally, there are lower costs in
data collection and data analysis for self-explicated approaches than for conjoint
measurement (Green and Srinivasan 1990).

All factors taken into account, our discussion so far can be summarized as fol-
lows. Most of the reasons discussed favor conjoint measurement especially in
terms of (predictive) validity, at least as long as there is a small number of attrib-
utes (six of fewer, Green and Srinivasan 1978). If, however, many attributes have
to be handled, advantages 1 and 2 of self-explicated approaches (Table 1) may
become crucial. Even for a small number of attributes, self-explicated approaches
have considerable advantages over conjoint measurement in terms of ease of data
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collection, data analysis and research design as well as with respect to savings of
time and costs in data collection and data analysis.

Despite the theoretical advantages of conjoint measurement in terms of (pre-
dictive) validity (for a small number of attributes), empirical research to date has
produced rather mixed results. In case the advantages over self-explicated ap-
proaches can not be shown empirically, future applications of conjoint measure-
ment seem to be at least questionable because of the advantages of self-explicated
approaches in terms of ease, speed and costs. In the next section, a comprehensive
overview of empirical studies which compare conjoint measurement with self-
explicated approaches is given in order to determine this issue.

4.3 Empirical Comparisons

Our survey covers empirical studies comparing several types of conjoint meas-
urement (including hybrid models) with self-explicated approaches in terms of
reliability or predictive validity. In order to give a comprehensive overview, we
selected all studies of this kind which have appeared in the International Journal of
Research in Marketing, Journal of Marketing, Journal of Marketing Research,
Marketing Letters, and Marketing Science since 1980. In addition to this, we have
included available articles of the described kind which were frequently cited in
these journals as well as recent available working papers.

The results of our survey are summarized in Table 2. The studies are ordered
in terms of the types of methods compared, the measures investigated (i.e. reliabil-
ity or predictive validity), and the results found. Unless otherwise indicated, all
results are significant at the p < 0.10 level. Table 2 also shows the type of product
investigated, the number of attributes, the sample size and the experimental design
(i.e. "within” vs. "between subject design™) for each study.

Out of the 23 results reported in Table 2, only 5 (22%, highlighted in Table 2)
show significantly better results in terms of reliability or predictive validity for
conjoint measurement compared to self-explicated approaches. The other 18 re-
sults (78%) show either non significant differences or significantly better results
for self-explicated approaches. Given the theoretical advantages of conjoint meas-
urement discussed in the previous section, these findings are surprising.

Looking exclusively at reliability, no study shows superior results for conjoint
measurement. Instead, two out of four studies dealing with reliability found sig-
nificantly better outcomes for self-explicated approaches. This result might be
explained by the lower cognitive strain on the data-supplying capabilities of re-
spondents for the self-explicated approach.
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Empirical studies comparing conjoint measurement with self-

explicated approaches
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non significant differences for non experienced respondents d) Exception: ACA better than the Self-

a) Significant differences between methods b) Significance not tested c) For experienced respondents;
explicated part of ACA (Green, Krieger and Agarwal 1991) ) Respondents were students



74 Henrik Sattler and Susanne Hensel-Borner

In terms of predictive validity, comparisons between traditional conjoint
measurement and self-explicated approaches show in two cases significantly
superior results for self-explicated approaches and in another two cases
significantly superior results for traditional conjoint measurement, while the
remaining 5 studies found no significant differences or mixed results. Comparing
hybrid conjoint methods (Huber hybrid, Green hybrid, ACA, and customized
conjoint analysis) with self-explicated approaches there are no apparent
advantages of hybrid conjoint approaches.

These results can be explained only partly by the type of measure, experimen-
tal design, sample size, sampling procedure, product category and the number of
attributes (see Table 2). Interestingly, findings in favor of conjoint measurement
can be observed for hypothetical choices (usually holdout stimuli) only, but not
for actual choices. Moreover, all studies observing superior results for conjoint
measurement used a within subject design. This kind of design— as opposed to
between subject designs — may cause problems because of learning effects
(Campbell and Stanley 1966; Huber, Wittink, Fiedler and Miller 1993; Agarwal
and Green 1991). Compared with studies which found non significant differences
or results in favor of self-explicated approaches, self-explicated approaches used
at least partly between subject designs or actual choices as a measure of predictive
validity, thus putting more emphasis on the findings of these studies, i.e. results in
favor of self-explicated approaches seem to be more trustworthy with respect to
these two issues. On the other hand, studies in favor of conjoint measurement used
on average a larger sample size and non-students as respondents in all cases. With
respect to the product category and the number of attributes, no systematic differ-
ences between studies in favor and against conjoint measurement can be found.
For instance, the same kind of product and (approximately) the same number of
attributes were used by the studies of Heeler, Okechuku and Reid (1979) and
Green, Goldberg and Wiley (1982), but with opposite results.

44 Conclusions

Comparing conjoint measurement with self-explicated approaches from a theoreti-
cal perspective, conjoint measurement possesses obvious advantages in terms of
(predictive) validity. However, our comprehensive analysis of empirical studies
comparing these two approaches fails to confirm the superiority of conjoint meas-
urement. Instead, the majority of empirical comparisons (18 out of 23, i.e. 78%)
found either non significant differences between methods or even higher predic-
tive validity or reliability for self-explicated approaches. Attempts to explain these
results by factors such as the type of measure, experimental design, sample size,
sampling procedure, product category and the number of attributes are not promis-
ing because of mixed results.

Given the clear majority of empirical findings not in favor of conjoint meas-
urement, future applications of conjoint measurement for measuring customers’
preference structure seem to be at least questionable because of the advantages of
self-explicated approaches in terms of ease, time effort and costs.
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5 Non-geometric Plackett-Burman Designs
in Conjoint Analysis

Ola Blomkvist, Fredrik Ekdahl and Anders Gustafsson

51 Introduction

Design of experiments is an established technique for product and process im-
provement that has its origin in the 1920s and the work of Sir Ronald Fisher. Con-
joint analysis shares the same theoretical basis as traditional design of experi-
ments, but was originally used within the field of psychology and it was not until
the early 1970s that the methodology was introduced into marketing research to
form what is called conjoint analysis (Luce and Tukey 1964; Green and Rao 1971,
Johnson 1974). Today, conjoint analysis is an established technique for investigat-
ing customer preferences.

In design of experiments, selected system parameters, sometimes referred to as
experimental factors, are varied according to a carefully selected experimental
design. The structure of the design then allows estimation of the influence of the
experimental factors as well as interactions between them on some system output
of interest. In this paper, the influence of a single experimental factor will be
termed its main effect and the influence of an interaction between two or more
factors will be referred to as an interaction effect.

Similar to design of experiments, the full profile approach in conjoint analysis
involves presenting respondents with a set of product concepts for which a number
of attributes corresponding to the experimental factors have been varied between
different levels according to an experimental design. The respondents are then
asked to evaluate the different product concepts, typically using some sort of rat-
ing scale. In the subsequent analysis it is possible to estimate the influence of
individual product attributes and interactions between them on the preferences of
the respondents. One concern when using conjoint analysis is to avoid overloading
the respondents with information, i.e. too many concepts, too many attributes and
too many levels. The average commercial study uses 16 concepts with eight dif-
ferent attributes on three levels each (Wittink and Cattin 1989). This means that
there are too few degrees of freedom to estimate comprehensive models. Interac-
tions between attributes are most often neglected in conjoint analysis. Studies
show that only 10% of the commercial applications take interactions into account
(Wittink et al. 1994).

In design of experiments, the identification and estimation of interactions be-
tween experimental factors is generally regarded as very important (Box 1990;
Kackar and Tsui 1990; Bisgaard 1992). Within the field of conjoint analysis, on
the other hand, there seems to be some confusion about whether or not conjoint
analysis studies benefit from considering interactions. Certain empirical evidence
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indicates that including interactions often leads to lower predictive validity, i.e.
that the increased model realism achieved by including interactions is small com-
pared to the deterioration in predictive accuracy caused by including additional
model parameters (Green 1984; Hagerty 1986). Nevertheless, if data is aggre-
gated, models that include interactions tend to be superior (Hagerty 1986). Also,
interactions, particularly two-factor interactions, may be of vital importance in
areas where personal sensory opinions are important, e.g. for creating food prod-
ucts or for styling and aesthetic aspects (Green and Srinivasan 1990).

Whichever is the case, it is obvious that experimental designs allowing inves-
tigation of many attributes and at the same time enabling estimation of interaction
terms without overloading the respondents would be of great value. Recent re-
search has also indicated that by using the properties of a certain class of designs,
termed non-geometric Plackett-Burman designs (PB designs) it is possible, despite
the inclusion of many attributes, to identify and estimate interactions (Box and
Meyer 1993; Hamada and Wu 1992).

The purpose of this paper is to illustrate how the use of non-geometric PB de-
signs facilitates identification of models including interactions in conjoint analysis
studies. Also, a procedure based on restricted all subsets regression that takes
advantage of the special properties of the non-geometric PB designs is proposed
and demonstrated using data from a conjoint analysis study on cellular phone
antennas. The paper will provide strong indications that the estimated models that
include interactions are better at explaining customer preferences than the models
with only main effects. The properties of the proposed procedure are also illus-
trated using a Monte Carlo simulation.

5.2 Non-geometric Plackett-Burman Designs

Much work has been put into developing two-level and three-level experimental
designs (see e.g., Fisher 1935; Finney 1945; Plackett and Burman 1946; Box and
Behnken 1960; Box and Behnken 1961). Starting with a two-level or three-level
orthogonal design, it is a straightforward process to develop more sophisticated
designs, i.e. with four or more levels for each attribute. For reasons of brevity, the
discussion will be limited to two-level orthogonal designs, i.e. designs in which
the attributes are only tested at two levels.

Two-level orthogonal designs can be divided into geometric designs for which
the number of concepts is a power of 2 (4, 8, 16, 32 etc.) and non-geometric de-
signs. The PB designs are designs for which the number of concepts is a multiple
of4 (4, 8, 12, 16, 20 etc.). When the number of concepts in a PB design is also a
power of 2, it is identical to the corresponding geometric design. It is, however,
the non-geometric PB designs for which the number of concepts equals 12, 20, 24,
28 etc. that are of special interest for this paper, since they show a number of valu-
able properties.

The 12-run PB design is given in Table 1 following the geometric notation
(Box, Hunter and Hunter 1978) in which a ,.-“-sign represents the low level of the
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attribute and a ,,+"-sign represents the high level. Table 1 also shows the column
corresponding to the interaction between columns 2 and 3.

Table 1. The 12-run PB design matrix

12-run PB design matrix Interaction
Concept M 1 2 3 4 5 6 7 8 9 10 11 23
1 + + - + - - - + + + - + -
2 + 4+ + -+ - - -+ o+ - -
3 + - + + - + - - - + + + +
4 + 4+ - + 4+ - 4+ - - -+ 4+ -
5 + + + - + + - 4+ - - - + -
6 + + £+ + - + + - + - - - +
7 + - 4+ 4+ + - 4+ + - + - - +
8 + - - + + + - + + - + - -
9 + - - - 4+ + 4+ - + + - 4+ +
10 + + - - - + + + - 4+ + - +
11 + - + - - - 4+ + + - + + -
12 + - - - - - - - - - - - +

The geometric designs have traditionally been preferred by experimenters, since
they have relatively simple alias patterns. The alias pattern follows directly from
the selected experimental design and reflects the dependencies between estimates
of the effects. For the geometric designs, any two effects are either independent or
completely aliased, in which case separate estimation of these effects is not possi-
ble. The alias pattern of a non-geometric PB design is considerably more complex.
A specific two-factor interaction effect, for example, is partially aliased with all
main effects except those comprising the interaction, which means that separate
estimation of these effects is still possible, although the estimates will be corre-
lated with each other.

The complex alias pattern has traditionally ruled out the use of the non-
geometric PB designs unless the interactions could be considered of negligible
importance. The alias pattern has simply been considered too complex. It turns
out, however, that the complex alias pattern is also the real strength of the non-
geometric PB designs.

First of all, the alias pattern allows estimation of more parameters than there
are actually degrees of freedom. This is sometimes referred to as supersaturation
(Wu 1993) and in principle makes it possible to estimate the impact of all two-
factor interactions even though the estimates will be correlated. The 12 run PB
design, for example, has 11/(2!-91) =55 two-factor interaction columns along

with the eleven main effect columns that can all be distinguished from one an-
other. To allow estimation of eleven main effects along with all two-factor interac-
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tions using a geometric design would require the use of 128 concepts, which is
impossible in a normal conjoint analysis context.

Second, the alias pattern gives the non-geometric PB designs superior projec-
tivity properties. The projectivity of a design is equal to the maximum number of
arbitrary columns that can be chosen from the design matrix while maintaining a
complete design between these columns; a two-level design is complete if it in-
cludes all 2° combinations of the & attributes at two levels. See Figure 1 for an
illustration. Box and Tyssedal (1996) have shown that all non-geometric PB-
designs up to n = 84 are of projectivity 3 while the geometric designs are only of

projectivity 2.
..4’_ T
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Figure 1:  Projections of an 8-run geometric design (a and b) and the 12-run
PB-design (c and d) into two and three dimensions

Figure 1 shows how the individual runs in an 8-run geometric design and the 12-
run PB design shown in Table 1 are distributed when projected into two and three
dimensions. Both designs are complete when projected into two dimensions, but
only the PB design remains complete in three dimensions. The projectivity prop-
erty of a design is especially interesting when factor sparsity can be assumed.
Under factor sparsity, it is expected that only a subset of the investigated attributes
will actually be of interest and consequently it should be possible to find a satis-
factory preference model from within that subset. If there is a subset of two or
three attributes that are of importance for modeling the preferences of a respon-
dent, the non-geometric PB designs will always, regardless of the subset, allow
investigation of those attributes along with the corresponding interactions. For
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geometric designs, on the other hand, the subsets that can be investigated are al-
ready decided when choosing the actual design.
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Figure 2. Normal plots of estimated effects for two individuals from a conjoint

analysis survey using a non-geometric PB design

When including many attributes in a geometric design, it is often impossible to
demonstrate that including interactions in the preference models would improve
the predictions, since the interactions will then be completely confounded with the
main effects. Therefore, a third advantage of the non-geometric PB designs is that
they make it possible to detect the presence of interactions without actually esti-
mating them, as an influential interaction will cause the estimates of the main
effects to group according to the structure of the alias pattern. This grouping is
especially apparent when using the normal probability plotting technique, devel-
oped by Daniel (1959, 1976) and frequently applied when analyzing designed
experiments. Estimates of the effects are plotted on a normal probability paper and
those corresponding to influential attributes will stand out from the others. Figure
2 shows normal probability plots for two individuals in a conjoint analysis study,
see section 7.4, based on the 12-run PB design.

The normal probability plot in Figure 2a displays an expected appearance, i.e.
most of the effects fall along a straight line and only one or two stand out. This
usually indicates that a model with main effects alone is sufficient. The normal
probability plot in Figure 2b, however, shows gaps between groups of estimated
effects falling along parallel lines. One possible explanation would be the presence
of outliers among the observations (Box and Draper 1987), but since a rating scale
was used when collecting data this is not a likely explanation. Instead, a more
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likely explanation would be the presence of influential interactions (Box and
Meyer 1993) and further investigation in order to identify models, possibly includ-
ing interactions, might be fruitful.

53 Proposed Procedure

Several different procedures for identifying models from experimental data have
been developed over the years. Among these, the procedures due to Hamada and
Wu (1992) and Box and Meyer (1986) have been advocated as especially suitable
for analyzing designs with complex alias patterns. Hamada and Wu (1992) suggest
a method based upon stepwise regression taking effect heredity into account when
identifying the model and estimating its parameters. Effect heredity suggests that a
two-factor interaction is not likely to significantly influence the response unless at
least one of the two attributes that comprise the interaction also significantly influ-
ences the response. Box and Meyer (1986) propose a Bayesian approach, which
identifies the important factors even if it does not include any detailed model
identification. In addition, Hynén (1996) proposes a projectivity approach that
investigates all possible models consisting of three main effects and the three
corresponding two-factor interactions, and selects the model showing the least
unexplained variation.

Hynén (1996) compares the different approaches from an ..important factors
perspective” using simulations on a 12-run PB design. He finds that for moder-
ately large models, three main effects and one two-factor interaction, the projec-
tive approach identifies the correct influential factors and interactions, even with
as many as 11 attributes in the design, whereas Hamada and Wu’s method starts to
fail at about 7 or 8 attributes. For larger models, three main effects and three inter-
actions, both methods start to fail as the number of attributes increases. The pro-
jective approach seems to be reliable up to 5 attributes, while Hamada and Wu’s
approach frequently fails even with only 4 attributes. Hynén (1996) also concludes
that if the method due to Box and Meyer (1993) is to be used to identify important
attributes, it needs to be combined with normal probability plots. This more or less
disqualifies the technique for analyzing data from conjoint analysis surveys, since
a plot must then be made for each respondent, making it difficult to implement on
a large-scale basis.

The approach proposed by Hynén (1996) considers only models with six pa-
rameters, i.e. three main effects and the three corresponding two-factor interac-
tions. A natural extension of this approach would be to evaluate also all models
consisting of possible subsets of these six parameters for all factor triplets. How-
ever, the number of candidate models grows very rapidly with the number of at-
tributes and soon becomes unmanageable. Instead of investigating all possible
models for all factor triplets, an effective way of reducing the number of candidate
models would be t make a wise choice of an initial set of the attributes and then
restrict the subsequent analysis to that subset.
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This paper proposes a two step procedure, where the purpose of the first step is
to select the most promising projection among the original attributes, relying on
factor sparsity and exploiting the projective properties of the non-geometric PB
designs. The purpose of the second step is then to identify the best model within
the selected projection.

The first step is conducted as a restricted all subsets regression, i.e. only mod-
els including all possible two-factor interactions for all projections into one, two
and three dimensions are evaluated. The projections achieving the largest Rzadj for
each dimension are then selected for use in the second step. The adjusted coeffi-
cient of multiple determination, R, is defined as:

(D Rjd.:1—(”_1j(1—R2)=1—(”_'j(1_&],
! n-p n—p S,

where 7 is the number of available degrees of freedom, p is the number of parame-
ters in the selected model including the mean, SS, is the sum of squares due to

that model and S,, represents the total sum of squares. RZMI. was suggested as a

measure of explained variance that compensates for model complexity by for
example Draper and Smith (1981). A few words of caution are in place regarding
the use of R’,;. If additional parameters are included in the model, degrees of
freedom are traded against explanation of variation. For Rzadj to increase, it is
necessary for each added parameter to explain at least as much variation as the
average of those already in the model. However, this does not necessarily mean
that the added parameter is significant from a statistical point of view.

The second step is also performed as a restricted all subsets regression, this
time considering only models that satisfy effect heredity within the chosen projec-
tions. Note that for the proposed procedure, effect heredity has been given a more
strict interpretation than that given by Hamada and Wu (1992) in that for a two-
factor interaction to be considered influential both attributes comprising the inter-
action must also be considered influential. Finally, the model with the highest Rzad,»
is chosen to represent the preferences of the individual respondent.

54 A Comparative Study

To evaluate the performance of the proposed approach and to investigate whether
or not conjoint analysis studies would benefit from including interactions, models
identified using the proposed procedure were compared against a number of dif-
ferent models with only main effects. The comparison is made in terms of Rzad,»,
which makes it fair in the sense that Rzad,, compensates to some extent for the
increased model complexity.

The comparison includes three different strategies for identifying models with
only main effects; (1) a full main effect model, (2) an all subsets regression with
main effects only and (3) an ANOVA restricted to include only main effects. The
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full main effect model represents perhaps the simplest strategy for selecting mod-
els. Since some of the included attributes will most probably lack explanatory
power, the Rzadj may, however, decrease. Instead, a more elaborate strategy is to
perform an all subsets regression on the main effects and choose the model with
the highest Rgad,». Finally, ANOVA was included in the comparison as a well-
established technique for identifying models. ANOVA uses an estimate of the
experimental error and F-tests to identify the influential attributes and is the only
strategy in the comparison that includes an objective test of significance.

Data from a conjoint analysis study of the characteristics of a cellular phone
antenna was used for the comparison. The survey was carried out in Sweden and
the respondents were recruited from the customers in two stores. The total number
of respondents was 142, Each respondent was interviewed and the responses, i.e.
ratings on a scale from 1 to 10 for each concept, were given verbally. The stimuli
consisted of separate lines of text and all concepts were presented on one large
sheet of paper. The study included five product attributes (A, B, C, D and E) such
as the price and a few technical parameters. The experimental design used in the
study was the 12-run non-geometric PB design illustrated in Table 1 and the levels
of the five attributes were varied according to columns 1 through 5.

5.5 Results of the Comparison

The analysis of the case study aimed at determining whether better explanatory
abilities are gained by introducing interactions in the estimated models and
whether the proposed procedure is well suited for identifying these interactions.
Following the proposed procedure, the first step in the analysis is to find the most
promising projection, i.e. that corresponding to the highest R2ad,- for each individ-
ual respondent. Table 2 lists the most frequently chosen projections.

It is interesting to see that they are all of size 3, which could indicate that the
proposed procedure favors large models. Among the chosen projections, {B, C,D}

stands out as considerably more frequent than the others. If the choice of
projection is considered to be binomially distributed, the probability that as many
as 40 of the respondents would fall within the same projection is less than one in a
billion.

Following the second step of the proposed procedure, the model with the
highest Rz,,d, is then identified within the restrictions of the chosen projection.
Table 3 lists the models most frequently identified using the proposed procedure
and the various main effect strategies in the comparison. As can be expected, the
top ranking models identified using the proposed procedure fall within the
{B,C,D} projection.
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Table 2:  The projections with the highest Rzadjfor the individual respondents in
the case data
Attributes
in the No. of
Projection Cases
B C D 40
A B D 17
B C E 17
C D E 17
A B C 10
A C E 10
A D E 9
A C D 8
B D E 6
A B E 5
Table 3:  The models identified using the proposed procedure and the main
effect strategies in the comparison (The full main effect model is omit-
ted)
Proposed Projective Procedure No.of | All Subsets No. Anova No.
Cases Regression of of
Cases Cases
B C D BC BD CD 16 A B C D 18 36
B C D BD CD 11 B C D E 14 C 17
A B D AB AD BD 9 A B C D 14 B 12
A D E AD AE DE 7 B D E 9 B C 11
B C E BC BE CE 7 B C 7 E 8
A B C AB AC BC 5 A B C 7 A 7
A C D AC AD CD 5 B C D 7 D 7
A C E AC AE CE 5 C D E 7 B D 6
A B D AB AD 4 A C D E 7 C D 4
C D E CE DE 4 A C D 6 A C 3

These attributes are also well represented in the top ranking main effect models.
Perhaps more interesting is that the models identified using ANOVA, i.e. those
representing significance in the statistical sense, are very small compared to the
models identified using Rzadj as reference. For the proposed procedure, the average
number of model parameters excluding the mean is 5.18 (of which an average of
2.96 are main effects). The models identified using the all subsets regression strat-
egy use 3.21 parameters on average, compared to 1.32 parameters for the

ANOVA.
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Table 4:  The average Rzad,- for the proposed procedure and the main effect
strategies in the comparison

Technique | Proposed Projective | All Subsets Regression Full Main Effect ANOVA
Procedure
Rug 081 0.64 0.58 0.49

Table 4 shows the average R{M, for the proposed approach and the three main
effect strategies in the comparison. The results clearly indicate that the models
including interactions outperform the main effect models in terms of Rzad,-.ln view
of the larger models identified by the proposed procedure, this result is perhaps
not surprising. Note, however, that on average the models identified by the pro-
posed procedure use fewer main effects and that the higher Rzad, achieved for these
models therefore can be attributed to the inclusion of interactions. This is a strong
indication that the inclusion of interactions contributes to superior model proper-
ties.

The proposed approach identifies interaction effects in 139 out of the 142
models, which of course indicates that the inclusion of interactions is beneficial
for the analyst. However, the frequency of interactions may also seem somewhat
suspicious, which leads to the question of whether or not they actually represent
the preferences of the respondents or if their origin should be sought elsewhere.
One possible explanation for the high frequency of interactions in the models is
the use of a rating scale as the response. When using ordinary least square regres-
sion to estimate a model it is quite possible that the estimated model will predict
outside of the rating scale for the preferred attribute settings. This way, the rating
scale might induce pseudo interactions, which could lead to serious misinterpreta-
tions. For about 30% of the respondents in the antenna case study, the identified
models predict outside the 1 to 10 rating scale. While these pseudo interactions do
not have a straightforward interpretation in themselves, they instead indicate a
scale deficiency that perhaps must be addressed before making inferences from
the study. The issues accompanying the use of rating scales are not of primary
interest here and will therefore not be discussed further in this paper.

To further illustrate the results from the comparison, Figure 3 displays scatter
plots of the R{M, for each individual model identified using the proposed approach
and the three competing main effect strategies. If one approach is superior to an-
other, the observations will lie above the diagonal in the corresponding scatter
plot. Figure 3 also contains frequency charts showing the distribution of Rzad,. Due
to the distribution of Rz,,d, for the full main effect approach, which is occasionally
negative, the scale in Figure 3 is between -0.5 and 1, except of course for the ver-
tical axes in the frequency charts. As can be seen from Figure 3, there are very few
cases in which the proposed approach does not produce a model with higher Rzadj
than the competing strategies. It is also apparent that the variation in Rzad,- is con-
siderably smaller for the proposed procedure.
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5.6

To further illustrate the properties of the proposed procedure, a simulation study
was conducted. Using the 12-run PB design, 2500 individual responses on a 1 to
10 rating scale were generated for each of the five different underlying models
shown in Table 5. The aim when choosing the five underlying models was to
illustrate a few interesting situations rather than trying to be complete. The first
two cases represent two main effect extremes, i.e. an empty model and a complete
main effect model. The last three represent models that include interactions in
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Table 5:  The five underlying models used in the simulation study

Model Parameters

1 No active factors

2 | ABCDE

3 | A,B,AB

4 | A,B,C,AB

5 | A,B,C, AB, AC, BC

When generating the responses, each of the model parameters was given a regres-
sion coefficient of 0.5 and noise was generated from a discontinuous distribution
created from N(0,0.5) by concentrating the probability mass to the closest integers.
In this way, the risk of predictions outside the 1 to 10 rating scale was kept very
low. The results from the simulation study are shown in Table 6.

Table 6. Results from the simulation study. For each approach, the number of
the models falling within the correct projection, the number of cor-
rectly identified models and the average Rzadi is given

Proposed Projective All Subsets ANOVA
Procedure Regression
Attributes Proj. Mo- R%g | Proj. Mo- R% | Proj. Mo- | Ry
del del del

1 8 327 2016
2 AB,C,D,E n/a n/a 0.77 1496 | 0.71 316 0.54
3 A,B, AB 51 51 0.76 | 497 n/a 047 | 240 n/a 0.24
4 ABCAB 1340 382 0.75 | 465 n/a 049 | 99 n/a 025
5 AB,C, AB, 1992 1543 0.71 153 n/a 0.20 2 n/a 0.03

AC, BC

For the first underlying model, it is of course discouraging to find that when using
the proposed procedure the correct model is identified in only 8 of the 2500 cases,
whereas when using ANOVA the correct model is selected in about 2000 of the
cases. However, a closer look at the results from the simulation reveals that the
models identified with the proposed procedure are well distributed between all
possible models, with a distinct preference for large models. None of the identified
models represents more than 104 of the 2500 cases and there are more than twenty
different models that have been identified in at least 50 cases. This result is in
itself an indication of the absence of a distinct structure in the data.

For the second underlying model, i.e. the full main effect model, the correct
model is identified in about 1500 of the cases when using the all subsets
regression strategy, which is quite impressive considering the model complexity.
Using ANOVA now only identifies the correct model in approximately 250 of the
cases. In the case of the empty model, the proposed procedure identifies models
that are well distributed between the possible models, although with a slightly
lesser preference for large models. None of the models represents more than 192
of the cases and there are twelve different models that represent at least 70 cases.
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Finally, it is interesting to note that even though the correct model cannot be
identified when using the proposed procedure, since it only allows three main
effects at a time, the average R{M, is still higher for the proposed procedure than
for any of the main effect strategies. This result can be explained by the
dependencies between estimates of the main effects and the interaction effects.

Moving on to the models that include interactions, the main effect strategies
can of course no longer be used to identify the correct models and in addition the
result from the simulation also indicates that they are relatively ineffective in
identifying even the correct main effects. The models identified using the pro-
posed procedure show considerably higher R2ad,- than the models with main effects
only and it is therefore somewhat discouraging at first that for the third underlying
model, i.e. two main effects and one interaction, only about 2% of the identified
models are correct. Once again, the proposed procedure seems to favor large mod-
els. However, closer examination of the results shown in Table 7 reveals a more
encouraging situation.

First of all, the projections that include factors A and B together represent al-
most 2000 of the responses. Further, attributes A, B and the AB interaction, even
though complemented by other attributes and interactions, are consistently present
in all top ranking models, which together represent over 1800 cases. The fact that
attributes A and B along with the AB interaction consistently appear in the top
ranking models is a strong indication that they together represent the correct
model. In this way, a certain amount of craftsmanship, even though quite ques-
tionable from a statistical viewpoint, helps in interpreting the results.

For the second and somewhat more complex underlying model, the results are
quite similar. Although the correct projection is chosen in about half of the cases
only about 375 of the identified models are correct. Again, the proposed procedure
seems to favor large models and the rest of the models from the correct projection
are distributed between the models where one or two of the other possible
interactions are also included. As before, using craftsmanship makes it possible to
detect that it is actually the AB interaction that is influential. Of course, the ease of
coming up with the right interpretation when actually knowing the correct answer
is recognized. For the last of the underlying models, the correct projection is
chosen in about 2000 of the cases and the correct model is chosen in roughly 1500
of the 2500 cases. This result, although expected in view of the fact that the
underlying model closely agrees with the construct of the proposed procedure, is
of course encouraging in view of the relative complexity of the underlying model.
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Table 7:  Simulation results for the third underlying model, i.e. A, B and AB

Attributes No. of No. of
in the Cases No. Selected Model Cases
Projection

A B C 754 1 A B C AB AC BC 237
A B D 651 2 A B D AB AD BD 213
A B E 566 3 A B C AB AC 190
A C E 100 4 A B E AB AE BE 188
A D E 79 5 A B C AB BC 186
A C D 78 6 A B D AB AD 167
B C D 67 7 A B D AB BD 159
C D E 66 8 A B E AB AE 152
A B 51 9 A B E AB BE 139
B C E 45 10 A B C AB 88
B D E 41 11 A B D AB 73
B 1 12 A B E AB 56
C D 1 13 A B AB 51

14 C D E CD CE DE 42

27 A B C AC BC 16

32 A B D AD BD 12

33 A B E AE BE 12

5.7 Conclusions

This paper illustrates the use of non-geometric PB designs for conjoint analysis
and it is suggested that these designs are in many senses superior to those more
commonly used in conjoint analysis studies. It is foremost the projectivity charac-
teristics of the non-geometric PB designs and the fact that they allow supersatura-
tion that have been argued to be in their favor. The reason is that these properties
make the non-geometric PB designs well suited for estimating models that include
interactions, even when including many attributes.

Whether or not including interactions actually improves inference has been the
subject of much discussion. Using Rzadj as reference, the results in this paper
clearly indicate that by including interactions a large increase in explained vari-
ance can be achieved. This result should be compared to other studies that have
come to the opposite conclusion or at least produced mixed results when including
interactions (Green 1984; Hagerty 1986).

The paper also introduces a procedure that makes use of the advantages of the
non-geometric PB designs and identifies models that include interactions. It is
found that the proposed procedure has a tendency to favor large models, which
may be a result of the structure in the data resulting from the use of rating scales,
and some craftsmanship is necessary in order to interpret the results correctly. The
proposed procedure should therefore primarily be seen as a complement to tradi-
tional analysis rather than a substitute. By comparing findings from different
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analysis procedures, it should be possible to achieve better and more reliable re-
sults.

The non-geometric PB design used in this study is fairly simple. Generally, it
is not common to use only two levels for the attributes in a conjoint survey. Fur-
thermore, only five attributes were tested compared to the average conjoint analy-
sis application that includes six or seven attributes. The data analyzed in the simu-
lation study was also completely homogeneous, i.e. it only contained one market
segment with similar preferences. Future research regarding the use of non-
geometric PB in conjoint analysis should be focused on the issues of including
more attributes and to explore how interactions should be dealt with effectively
when the attributes have more than two levels. The special problems that arise
when the respondents represent different market segments are of course also of
interest.

There is also more work to be done on the proposed procedure regarding the
tendency to favor large models. Both the selection of the initial projection and the
subsequent model selection need more work. Convenient means for verification of
the selected model are also of interest. Finally, the issues accompanying the use of
rating scales need to be analyzed further, especially in view of the extensive use of
rating scales in commercial applications of conjoint analysis.
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6 On the Influence of the Evaluation Methods in
Conjoint Design - Some Empirical Results

Frank Huber, Andreas Herrmann and Anders Gustafsson

6.1 The Problem

It is the goal of conjoint analysis to explain and predict preferences of customers
(Schweikl 1985). Variants of predefined manifestations of attributes of various
product concepts (both real and hypothetical) are created, and these are presented
to test persons for evaluation. The contributions (partial benefits) the various attrib-
utes make to overall preference (overall benefit) are estimated on the basis of overall
preference judgments (Green and Srinivasan 1978).

Market researchers have several options when designing a conjoint analysis for
determining overall or partial benefit values. Although this freedom enhances an
adequate research design for achieving the goal of the study in question, it should
be noted that the sequence of steps taken in a conjoint analysis may influence the
estimated results (Green and Srinivasan 1990; Schweikl 1985; Schubert 1991;
Vriens 1995).

It is the subject of this paper to give a survey of those factors of a research
design that may determine the behavior of respondents when carrying out a
conjoint analysis. The estimation algorithm was not taken into consideration
although Cattin and Wittink (1977), Cattin and Bliemel (1978), Colberg (1977),
Carmone, Green and Jain (1978), Jain et al. (1979), Wittink and Cattin (1981) and
Mishra, Umesh and Stem (1989) have proved the dependence of conjoint results
on the calculation procedure used. The influence of incentive evaluation (rating
vs. ranking vs. hybrid form, i. e. a combination of rating and ranking) on the
results of a conjoint analyses will be analyzed in some detail in an empirical study
of our own.

6.2 The Influence of Survey Design on the Results of
Conjoint Analysis as Reflected in the Relevant
Literature

6.2.1  The Schedule of Conjoint Analysis

If a conjoint analysis is used for collecting preferential judgments, several alterna-
tives have to be determined regarding the sequence of the survey method (Haus-
ruckinger and Herker 1992). The steps are shown in Table 1.
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Table 1:

The schedule of conjoint analysis and a survey of selected studies to

determine the connection between the influence of survey design and
the result of conjoint measurement

Process step

Options

1. Determining attributes and
manifestations of attributes

can be influenced

no k.o. criteria
compensatory relation
independence

Studies

Number of attributes:

Acito (1979)
Cattin/Weinberger (1980)
Mishra/Umesh/Stern (1989)
Weisenfeld (1989)

limitedness
feasibility
relevance

Number of manifestation stages:
Currim/Weinberg/Wittink (1981)
Wittink/Krishnamurthi/Nutter (1982)
Creyer/Ross (1988)
Wittink/Krishnamurthi/Reibstein (1989)
Wittink/Huber/Zandan/Johnson (1992)

Range of
manifestation stages:
Helson (1964)
Parducci (1965)
Hutchinson (1983)
Mellers (1982)

Steenkamp/Wittink (1994)
Perrey (1996)

Chakravarti/Lynch (1983)
Creyer/Ross (1988)

2. Selection of the preference
function

Studies

Krishnamurthi/Wittink (1991)
Green/Srinivasan (1990)

Ideal point model
Ideal vector model
Partial benefit model

3. Selection of the
data collection method

Studies

Survey method:

Oppedijk van Veen/Beazley (1977)
Jain/Acito/Malhotra/Mahajan (1979)
Segal (1982; 1984)
Reibstein/Bateson/Boulding (1988)

Agarwal (1988)

Profile method
Two-factor method
Hybrid/adaptive method

Miiller-Hagedorn/Sewing/Toporowski (1993)

Huber/Wittink/Fiedler/Miller (1993; 1991)

Positional effect:

Acito (1977)
Hong/Wyer (1989)
Johnson (1982; 1989)
Chapman/Bolton (1985)
Kumar/Gaeth (1991)
Tharp/Marks (1990)
Chrzan (1994)

Perry (1996)

4. Selection of the
data collection design

Studies

Number of incentives:
Carmone/Green/Jain (1978)
Cattin/Weinberger (1980)
Acito (1979)

Complete design
Reduced design

Leigh/MacKay/Summers (1981)
Weisenfeld (1989)
Mishra/Umesh/Stern (1989)




On the Influence of the Evaluation Methods in Conjoint Design

Process step

Options

5. Selection of incentive
presentation

Verbal description
Visual representation

95

Studies

MacKay /Ellis/Zinnes (1986)
Holbrook /Moore (1981)
Domzal /Unger (1985)

Smead /Wilcox/Wilkes (1981) Vriens (1995)
Anderson (1987) Sattler (1994)
Louviere /Schroeder /Louviere /Woodworth (1987) Weisenfeld (1989)

Person-to-person
interview

Mail survey
Computer
interview

Metric

8. Selection of the
data collection procedure

7. Selection of the vs. non-metric methods

method for rating scales Ranking
evaluating incentives Dollar metrics Paired profiles
Constant sum scale comparison

The table also gives a survey of authors who have dealt in their studies in some
with the influence of individual elements of the research design on the results of
conjoint analysis. There are some obvious focuses. Research efforts were concen-
trated on determining the connection between the number of attributes or manifes-
tations of attributes, the data collection method, dependence of the findings on
survey design as well as the presentation of incentives and estimation of benefit
values.

As the analyses of some studies show, the number of attributes and the number
of manifestation stages can influence the results of a conjoint analysis. In particu-
lar, the effect of ,,information overload and decreasing reliability with an increas-
ing number of properties were found (Acito 1979).

To minimize a potential information overload for the respondents, Thomas
suggests that no more than 5 attributes should be included in a survey in the field
of consumer goods marketing. In addition, he thinks it is not very realistic to use
more than 20 incentives (Thomas 1979). Malhotra, however, thinks after
analyzing his study that respondents are capable of processing 10 attributes
without excessive strain (Malhotra 1982). Green and Srinivasan recommend on
the basis of the experience they gained using their profile method that no more
than 6 attributes be used simultaneously in a study (Green and Srinivasan 1978).

The authors who examined the influence of the data collection method on the
results of conjoint analysis in their empirical studies cannot make any definite
statements based on their findings (Segal 1982; Oppedijk van vee and Beazley
1977 and Jain et al.1979). If a connection was found, it is rather weak and/or not
significant (Vriens 1995). In view of these findings, experts recommend to apply
an adaptive interviewing method or profile method rather than the two-factor
method (Gutsche 1995). Investigators say that the increased interest of the respon-
dents due to the interactive conduct of the interview was a positive effect. Fur-
thermore, focusing on attributes that are important to the respective person enables
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processing of a greater number of attributes and their manifestations (Green and
Srinivasan 1990).

Selection of a particular data collection design, however, can influence the re-
sults of a conjoint analysis (Kuhlfeld et al. 1994). If a complete design is used, this
can be done in smaller studies only involving not too many attributes and manifes-
tations of attributes (Vriens 1995). If a reduced design is used, the number of
incentives has to be determined independently based on desired main factorial and
interactive effects.

Moreover, an interdependence could be shown between verbal or visual repre-
sentation and the results of conjoint analysis. Especially with design attributes,
i. e. attributes that are not easily described in words, the order of purchasing-
relevant attributes was frequently changed depending on the form of presentation
(Vriens 1995). Maybe this effect can be explained by the fact that respondents
were biased in favor of visual incentives as these are more easily processed than
verbal descriptions. What is important, however, is that the respondents are pri-
marily evaluating the styling and design of incentives presented visually while
neglecting other objective attributes. Therefore, Aust recommends the use of
highly abstract forms of visual representation rather than photo-realistic images
(Aust 1996). More studies are to follow to investigate the influence of various
forms of presentation in some greater detail.

6.2.2 Effects Depending on the Selection of the Method of
Preference Measurement

Selection of the scale used for recording preference is the last planning step of a
survey design. As Wittink, Vriens and Burhenne reported, a rating scale compris-
ing a metric scale level and a ranking that produces non-metric data are used in
more than 90% of all cases'. Although the respondents thus express their prefer-
ences in rather different ways, the potential influence of these various approaches
on the results of conjoint analysis to date has rarely been in the center of interest.
Only five studies deal with this topic. The rather low research activity in this field
is surprising because Green and Srinivasan emphasized the influence of the
method of measurement on the quality of the result as early as in 1978. They hold
the view that data collected by ranking are more reliable than those preference
judgments obtained using a metric scale (Green and Srinivasan 1978). This as-
sumption was not tested in a study, however, but just based on the fact that re-
spondents are usually much more capable of stating what they prefer rather than
additionally judging the strength of their preferences. The authors did not answer
the question whether a conjoint analysis really yields different results depending
on using a rating or ranking method.

The rating scale (including its use in adaptive conjoint analysis) was used in Europe in
the period from 1986 to 1991 in 70%, and ranking in 22% of all analyses carried out. Cf.
Wittink, Vriens and Burhenne 1994; see also Wittink and Cattin 1989.
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Leigh, MacKay and Summers, however, have proved empirically that reliabil-
ity is increased when ranking is used instead of rating. In their study, 52 students
had to evaluate 13 incentives by either ranking them or evaluating them on a rat-
ing scale of 11. One month later, these 52 students were asked again to express
their preferences. The authors found that ranking was more reliable (Leigh, Mac-
Kay and Summers 1981). So their study focused on determining test-retest reli-
ability and validity. The two authors, however, do not make a statement regarding
the influence of the survey method on the result of conjoint analysis as the same
respondents were asked twice using the same method each time. To detect poten-
tial influences, it would have been required to have the respondents make their
statements using the two methods alternately.

Carmone, Green and Jain also dealt with the effect of the survey method on the
results of conjoint measurement. The authors carried out a simulation study in
which they compared a rating scale of 6 with ranking (using 18, 27, 54, and 243
incentives to be ranked), and they found little or no differences between the partial
benefit values obtained (Carmone, Green and Jain 1978). They could make this
statement after comparing the partial benefit values with a simulated design (using
the rating as well as the ranking methods). The Kendall's tau correlation coeffi-
cient was used to determine the degree of agreement. This value is 0.795 for rank-
ing and 0.782 for the rating method. While this study provides a clear result, it has
the disadvantage that it is just a simulation. Compared to a real empirical study,
situational influences (such as advertising) or respondents' influences (such as lack
of interest and low motivation on the part of respondents) can be excluded. An
,,optimized™ situation is created that leaves it open to what extent such a result has
general validity as regards the influence of the respective survey methods on the
result of the analysis.

Kalish and Nelson (1991) confronted 255 students with 12 hypothetical prod-
ucts whose preferential evaluation was carried out based on the ,reservation
price®, ranking and the rating method (they used a scale ranging from 0 to 100
points divided into 5-point intervals). The study focused on comparing the rating
and ranking methods based on prediction validity. As the results show, a signifi-
cant difference between rating and ranking cannot be proved but was detected
between rating and ranking on the one hand and the ,.reservation price method on
the other. As the survey design shows, a simulation is used again to predict the
respective product ranks or preferences. The authors said they did not want to ask
the students twice using different methods because various studies have signifi-
cantly proved that learning effects occur.

As a result of studies carried out so far we can state that results obtained using
the rating method do not significantly deviate from those obtained using ranking.
The test designs chosen by the various authors do not allow a clear statement as to
whether the two measuring approaches yield different conjoint results or not. The
deficits shown here require an empirical study that analyzes a potential connection
between the rating, ranking, and hybrid methods (consisting of rating and ranking)
and the results of a conjoint analysis.
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6.3 An Empirical Study of the Influence of Various
Interviewing Designs

6.3.1 Propose of the Study

To determine a potential influence of the survey method on the results of a con-
joint analysis, the following three methods shall be compared:

o the rating method,
* ranking, and
* ahybrid form (consisting of rating and ranking)

When using the rating method, respondents are asked to express preference,
that is, liking or desire to purchase on a scale that allows to judge the intensity of
the preference (Gutsche 1995). We used a rating scale of 10 in our study. Ranking,
i. e. determining the preferential order of all incentives, just indicates the prefer-
ence-worthiness of the incentives and does not allow a statement of their intensity
(Green and Srinivasan 1990; Schweikl 1985). The hybrid method has the respon-
dent compare because (s)he has to evaluate the product profiles generated in rela-
tion to a reference object. The respondents can express their opinion on a scale
ranging from -10 I like the TV set shown on this card ... much less than the refer-
ence TV set” to +10 ,,I like the TV set shown on the card ... much better than the
reference TV set.”

6.3.2 Experimental Design

Experimental . after Experimental —

' ol Experimental
group v 14 weeks group v 14 weeks ol
 —— | ——
_ Rating “Ranking Hoid
1" interview 2" interview 3" interview
Control after Goniol o P
group . 14 weeks group : 14 weeks group
Rating ; Ranking ybid

Figure 1: The experimental design of the empirical study
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The design used in this study can be characterized as follows (Figure 1).

1. Two groups shall be formed, i. e. an experimental group and a control group,
to determine any potential influence of the survey method.

2. All participants should state their preferences three times (at an interval of at

least 14 weeks) on the same object of study, each time using a different

method of measurement.

The respondents shall be grouped in the two groups by random selection.

4. Each group should consist of at least 50 respondents to ensure an adequate
informative value of the results.

(%)

Unlike the studies carried out so far that dealt with using different survey
methods, this approach allows to draw conclusions about potential influences of
the survey design on the results of conjoint analysis, as the same respondents
express their changing preferences several times using different measuring
techniques. In addition, the interviews were carried out 14 weeks apart. This
should rule out any learning effects among the respondents.

6.3.3 The Course of the Study

Pilot Study

The object of study was a TV set. This consumer good was selected based on the
assumption that all respondents have had experience with this product, and that it
is a specialty good where low cost is not necessarily a major factor. It is assumed
with such specialty goods that those consumers have a very precise idea of the
product who strive for maximum product benefit. Brochures and interviews of
experts proved valuable for determining the attributes that contribute to the pur-
chasing decision. We identified a total of 31 attributes.

® Price

The price is DM 1200
The price is DM 1500
The price is DM 1800

e Warranty
Warranty is granted for a period of 6 months
Warranty is granted for a period of 12 months

Warranty is granted for a period of 18 months
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e User friendliness

User-friendliness of the TV set is high, i. e.
channels are tuned and sorted automatically, even at first startup; it has a
remote control unit and a convenient screen menu system that guides and
instructs the user

User-friendliness of the TV set is average, i. e.
it has a remote control unit and a convenient screen menu system that
guides and instructs the user

User-friendliness of the TV set is low, i. e.
it just has a remote control unit

e CRT design

CRT design is advanced, i. e.
the TV set has 16:9 format, 100 Hz technology to prevent flickering and
line jitter, a PAL comb filter for improved definition and an advanced
type of CRT as compared to conventional tube technology

CRT design is conventional, i. e.
the TV set has the conventional 4:3 format and a black matrix CRT as
used in most conventional TV sets

e Videotex
Videotex is available

Videotex is not available

To determine the purchase-relevant attributes from the point of view of the
consumers, we asked 49 respondents that were selected at random to indicate the
importance of all 31 attributes for a purchasing decision on a scale ranging from 1
to 9. Then we generated 12 independent factors using factor analysis. These had to
be evaluated again by the respondents. As the results of the evaluation process
show, the following product attributes influence the purchasing decision most:
price, warranty, videotex, user friendliness and CRT design.

The research design of the main investigation was based on the five most im-
portant attributes for each of which 2 or 3 manifestations were defined to prevent
respondents from having to deal with too much information (Green and Srinivasan
1978).

Main Study

The reduced profile method was used to keep interview time endurable for the
respondents (Vriens 1995; Green and Srinivasan 1990). Two holdout cards were
used to determine internal validity. The respondents had to evaluate a total of 18
incentives (including the 2 holdout cards). The data was collected in the period
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from January to November, 1998. 154 took part in the study and were assigned at
random to either the experimental or the control group. Answers provided by 10
respondents were not included in the analysis because they could not take part in
all three interviews. While only three respondents had to be excluded from the
control group, the remaining 7 respondents to be excluded were members of the
experimental group which thus included 70 respondents.

The two groups were to grade all 18 product cards on a monopolar scale inter-
preted as metric and ranging from 1 (,,1 like it very much™) to 10 (,,I don't like it at
all”). After 14 weeks, preferences were given by means of ranking. This time the
respondents were to pile all product cards in such a way that the topmost card
indicates the TV set that is most preferred while the card at the bottom of the pile
shows the least preferred TV set. Preference was to decrease continually from the
top to the bottom. After another 14 weeks, the respondents were asked once again
to give their product preferences on a scale. This time we used a hybrid form con-
sisting of a rating and a ranking task. Scaling was to be done in relation to a refer-
ence product. We therefore used a bipolar scale ranging from -10 (,,1 like the TV
set on the card ... much less than the reference TV set™) to +10 (,,1 like the TV set
on the card ... much better than the reference TV set”), and the reference TV set
represented the zero point of the scale. We selected a model of which experts
thought it represented attributes in average manifestation. Moreover, this TV set
differed in at least two manifestations from the 18 alternative products to be
evaluated.

When checking correlation coefficients we found that the preference data from
15 respondents showed a correlation <0.5. The data from these people were there-
fore not included in the study (Table 3). The correlation values of the holdout
cards showed high correlations (Kendall’s tau 0.9) for all survey methods in both
groups.

Table 2:  Composition of the respondents in the experimental and control
groups after data analysis

Experimental group Control group

(group 1) (group 2)
Sex male 31 37
female 30 31
(total) (61) (68)
Age 16-25 5 7
26-40 23 26
41-55 27 22
> 55 6 13

While the number of respondents decreased by 9 to 61 people in the experimental
group, the control group was reduced to 68 respondents.
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6.3.4  Analysis of the Conjoint Results

Effects of Survey Design on Attribute Importance and Partial Benefit
Values

As reflected in Table 3, there are some great differences in attribute importance
depending on the survey method. Most striking here are the importances in the
hybrid form which differ markedly from the two other methods. The rating and the
ranking methods provide very similar results that deviate in the comparatively
small range of 2.06% (see Table 4). The hybrid survey shows a significant differ-
ence for the videotex attribute: its difference from ranking is 5.96%, from rating
even 7.21%.

Table 3.  Attribute importances for the experimental group and their order as a
function of the data collection method

Price Warranty User-friendly CRT design Videotex
im- rank im- rank im- rank im- rank im- rank
port. port. port. port. port.
Rating 19.66 2 19.3 3 27.58 1 15.73 S 17.73 4
Ranking 19.64 2 1724 4 2741 1 16.7 5 18.98 3

Hybrid  17.04 4 1833 3 25.01 1 14.68 5 24.94 2

While user-friendliness is the decisive attribute for purchasing a TV set using the
rating, ranking, and hybrid methods (27.58%, 27.41%, and 25.01%, respectively;
rank 1) and CRT design (15.73%, 16.7%, and 14.68%, respectively; rank 5) is the
least important attribute, there is a difference in the order of the remaining attrib-
utes. According to both the rating and the ranking methods, the price comes sec-
ond in importance after user-friendliness (19.66% and 19.64%). Both methods
show it at rank 2. Furthermore, the warranty attribute holds rank 3 (19.3%), and
videotex holds rank 4 (17.73%) using the rating method. This order is reversed
according to the ranking method: videotex (18.98%) takes rank 3, and warranty
(17.24%) takes rank 4. The results of the hybrid form are different, however. After
rank 1 for user friendliness (25,01%), videotex had an importance 24.94% and
rank 2, followed by warranty and price 18.33% and 17.04%, respectively) on
ranks 3 and 4.

An influence of the survey method on the results of a conjoint analysis can
also be stated for the control group. However, Table 4 indicates that the control
group shows greater differences in importance percentages of the attributes. The
greatest differences as compared to the experimental group can be found with the
attributes price and user friendliness. Thus the price attribute deviates 7.34% be-
tween rating and ranking, and 5.66% between rating and hybrid. The differences
in user friendliness percentage when comparing rating and hybrid are even 7.69%.

These great deviations result in greater differences in the order of attribute im-
portances as compared to the experimental group across all surveying methods.
For example, user friendliness is the most important attribute (28.88%) according
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to the rating method while CRT design is least important for forming preferences
(16.65%). The medium ranks are taken by videotex, price, and warranty and show
only minor variation (18.75%, 17.87%, and 17.85%).

Table 4:  Attribute importances for the control group and their order as a func-
tion of the data collection method

Price Warranty User-friendly ~ CRT design Videotex
im- rank  im- rank  im- rank  im- rank  im- rank
port. port. port. port. port.

Rating  17.87 3 17.85 4 28.88 1 16.65 5 18.75 2
Ranking 25.21 2 13.26 5 26.86 1 14.21 4 20.46 3
Hybrid  23.53 1 16.65 5 21.19 2 17.09 4 21.14 2

According to the ranking method, user friendliness also has special importance for
taking the purchasing decision (26.86%). The two approaches differ, however, in
the remaining attributes. For example, the price was identified here as second in
importance for forming preferences (25.21%). Videotex receives much more at-
tention (20.46%) here than CRT design (14.21%) and the warranty period
(13.26%) of a TV set.

According to the hybrid method, the price was most important (23.53%).
Videotex (21.14%) and user friendliness - the most important attribute with rating
and ranking - were of medium importance only. The warranty period of a TV set
(16.65%) has the least influence on forming preferences according to the hybrid
method.

Marked differences were found in viewing the percentages of attribute impor-
tance and the resulting order of attributes for all three surveying methods within
both groups. The control group shows greater deviation between data collection
methods than the experimental group, which can only be explained by the compo-
sition of the groups.

To be able to make further statements about the influence of the method of
measurement on the estimates obtained using a conjoint analysis, various sample
tests were applied to check the null hypothesis according to which the partial
benefit values of the interview rounds should not differ. As the interview dates for
rating and ranking as well as for ranking and the hybrid method were 14 weeks
apart, it is assumed that the evaluating tasks using the various methods were car-
ried out with little or no interference. This implies that the results derived from
them are also practically free of interferences and therefore independent.

Check Using a T-test

The T-test checks whether there are significant differences in the mean values of
two groups or not. As it is assumed that the various surveying methods are inde-
pendent of each other, the T-test can be applied to test mean value comparisons
with regard to these three methods. While the respective surveying methods were
defined as group variables for the mean value comparison, the manifestations of
attributes are the test variables. It thus becomes possible to examine each attribute
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manifestation for each surveying method for statistically significant differences in
mean values. The so-called null hypothesis is tested here according to which there
is no difference between the mean values of a pair of surveying methods. Table 5
shows the results for the experimental group of applying the T-test for comparing
the rating and ranking, rating and hybrid, and ranking and hybrid methods.

Table 5:  T-test results of the experimental group

Comparison of rating  Comparison of rating  Comparison of

and ranking and hybrid ranking and hybrid
t-value  signifi- t-value  signifi- t-value  signifi-
cance cance cance

DM 1200 -1.714 0.089 -1.567 0.120 0.225 0.822
Price DM 1500 0.048 0962 -1370 0.173  -1.451 0.149
DM 1800 1.360 0.176 4.562 0.000 3.474 0.001
6 months 3.340 0.007 2.408 0.018 -1277 0.205
Warranty 12 months 0.350 0.727 1.031 0.305 0.699 0.486
18 months -0.169 0.866 -0.461 0.646 -0222 0.824
User high -0.409 0.684 0.127 0.899 0.520 0.604
friendli- average 2.030 0.045 1.245 0215 -1.028 0.306
ness low - 1.681 0.096 -0.801 0.425 1.026 0.307
CRT advanced 1.156 0.250 0.420 0.675 -0.702 0.484
design conventnl -3.195 0.002 -0.368 0.713 2.980 0.004
Videotext equipped -0.703 0.483 -2.298 0.024 -1.608 0.109
unequipped 0.560 0576 -0.166 0.868 -0.771 0.442

With the selected level of significance of 5% (10%), there was a total of 8§ (11)
significance values (of 39, i. e. approx. 20% or 28%) for all three method com-
parisons that were below this level, and for which the null hypothesis had to be
rejected. A detailed analysis of these values for the respective method compari-
sons does not provide a uniform picture, however. For example, significant differ-
ences in the rating-ranking comparison could only be detected for the manifesta-
tions ,,6 months warranty period®, ,,average user-friendliness®, and ,,conventional
CRT design.” The rating-hybrid comparison however shows significant differ-
ences for the manifestations months warranty period®, ,,price DM 1800, and
,.videotex equipped.* In the ranking-hybrid comparison, significant differences are
detected for two mean value comparisons (,,price DM 1800 and ,,conventional
CRT design®).

If we look at the 39 partial benefit values of the control group in Table 6, it be-
comes apparent that a total of 8 (14) significance values was detected for all three
method comparisons at the selected level of significance of 5% (10%) (of 39, i. e.
approx. 20% or 36%) that fell below this level. It can further be stated that the
mean value comparison of the ranking and hybrid methods shows a significant
difference for the attribute ,,18 months warranty period” only. The rating-ranking
comparison, however, results in two significant differences for the attributes
,price DM 1200 and ,,18 months warranty period.” Other significant differences
in the mean values of the manifestations of attributes could not be detected.
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Table 6:  T-test results of the control group

Comparison of Comparison of rating  Comparison of ranking
rating and ranking  and hybrid and hybrid
t-value  signifi- t-value  signifi- t-value signifi-
cance cance cance
DM 1200 -2.669 0.009 -3272 0.001 -0.257 0.797
Price DM 1500 - 1.669 0.098 -1.910 0.058 -0.177 0.86
DM 1800 -0.35 0.727 1.831 0.069 1.68 0.096
6 months -0.425 0.672 -1.464 0.146 -1.11 0.269
Warranty 12 months 1.411 0.161 2202 0.029 0.796 0428
18 months 2.283 0.024 0.268 0.789 -2.154 0.033
User high 0.871 0.385 3.431 0.001 1.958 0.053
friendli- average 1.136 0.258 1.926 0.056 0.667 0.506
ness low -1.08 0282 -2.168 0.032 -124 0.217
CRT advanced 1.317 0.19 0.115 0.908 - 1.096 0.275
design conventnl -0.459 0.647 -1.003 0.318 -0.626 0.532
Videotext equipped -0.410 0.682 -0.45 0.654 -0.24 0.981
unequipped - 1.185 0.239  -2.087 0.04 -1.027 0.306

The T-test result of the rating-hybrid comparison is particularly interesting. This
comparison yielded a total of 5 (8) manifestations of attributes that showed sig-
nificant differences. This outcome gives rise to the assumption that there may be a
dependence of conjoint results from the surveying methods used (rating or hy-
brid).

Even if we look at the results from the experimental group we cannot derive a
definite proof that the application of the rating or the hybrid method to conjoint
analyses will invariably yield different results. It seems reasonable to assume that
this result of the rating-hybrid comparison occurs due to the group only. It was
found when looking at the average relative importance values that the control
group showed greater differences in all importance percentages than the experi-
mental group.

The question comes up in this context why this group-related influence is re-
stricted to the rating-hybrid comparison and has a clearly weaker effect on the
other two method comparisons. The answer could be found in the experimental
sequence of the study. The rating method was the first, the hybrid the last survey
carried out. As has been assumed, it cannot be excluded that the participants in the
study have learned in the meantime and have memorized various manifestations of
attributes and their composition. Still, the rating-hybrid comparison will be
watched especially closely below.

The results of the rating-ranking and ranking-hybrid comparisons do not allow
any conclusions to be drawn for the results of the experimental and control groups
to the extent that these results of a conjoint analysis could be influenced by the
selection of a specific surveying method (ranking rather than rating or hybrid
method). Only a small number of attribute manifestations show significant differ-
ences in their mean values when using the T-test on both groups. These do not let
it seem reasonable to assume an influence of the surveying methods on the result.
Thus, a general influence of surveying methods on the results of conjoint analyses
could not be detected.
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Check Using the Mann-Whitney Test

The Mann-Whitney test is from the group of non-parametric tests. Most non-
parametric tests are characterized in that it is sufficient if the variables to be tested
comprise ordinal scale levels; an interval scale level is not required. Like the T-
test, the Mann-Whitney-Test checks whether there are differences between attrib-
utes between a pair of surveying methods. While the T-test checks the mean val-
ues of attribute manifestations, the Mann-Whitney-Test compares the average
ranks of attribute manifestations while comparing the methods. A rank is assigned
to average normalized partial benefit values which orients towards the position of
values in joint ascending order for the respective comparative methods. 1f we
assume that using different surveying methods will not produce different results,
these values should be about equal in their order, which would result in approxi-
mately equal ranks of attribute manifestations. So the Mann-Whitney test checks
the null hypothesis, that the distribution of partial benefit values is similar when
comparing surveying methods, and that the average ranks are nearly of equal size.
Table 8 shows the results determined in the experimental group for all method
comparisons.

The result is analyzed using the Z-value and the significance. Like with the t-
value, the null hypothesis H, is tested using the Z-value. This value will only be 0
when the rank distributions of the average normalized partial benefit values are
exactly equal. When the Z-value becomes greater than |1,95), significance assumes

a level (=0,05) at which the assumption of equal rank distributions for the two
methods compared is rejected. In our study, 5 (14) out of 39 Z-values exceeded
the selected level of 5% (10%).

Only two significance values that are this low were found for the rating-

ranking comparison. The attributes ,,average user friendliness” and ,,conventional
CRT design® show significant rank distribution differences (0.013 and 0.004,
respectively). No significant differences were detected for the other attributes. The
rating-hybrid comparison has even only one attribute manifestation (,,Price DM
1,800%) that is significantly different. Two significant differences in attributes
were detected for the ranking-hybrid comparison. The manifestations ,,Price DM
1,800 and ,,conventional CRT design® have significance values of 0.006 and
0.028.
When we look at all three comparisons of methods, we have to conclude after
applying the Mann-Whitney test that the respective surveying method does not
have an influence on the result of the analysis. Only few manifestations of attrib-
utes showed significant differences. There are no hints at a more general influence
that surveying methods could exert on the results of conjoint analyses as the num-
ber of significantly differing manifestations of attributes was low.
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Table 7:  Mann-Whitney test results for the experimental group

Comparison of rating  Comparison of rating  Comparison of

and ranking and hybrid ranking and hybrid
Z-value  signifi- Z-value  signifi- Z-value  signifi-
cance cance cance

DM 1200 -1.627 0.104 -1.702 0.089  -0.097 0.923
Price DM 1500 -0.182 0855 -1.740 0.082 -1.801 0.072
DM 1800 -1.01 0313 -3.829 0.000  -2.743 0.006
6 months -1.913 0.056 -1.467 0.142  -0.610 0.542
Warranty 12 months -0.072 0.943 -0956 0339  -0.844 0.399
18 months -0.117 0.907 -0.561 0.575  -0.921 0.357
User high -0.029 0977 -0.021 0.983 -0.094 0.925
friendli- average -2.489 0.013 -0.803 0422 -1.782 0.075
ness low -1.927 0.054 -0.829 0407 -1.122 0.262
CRT advanced - 1.907 0.057 -0.859 0.39 -1.11 0.267
design conventnl -2.862 0.004 -0.792 0428 -2.193 0.028
Videotext equipped -0.622 0.534 -1.775 0.076 -0.971 0.332
unequipped -1.442 0.149  -0.447 0.655 -0.932 0.351

Approximately in agreement with the results of the rating-hybrid comparison
using the T-test, the Mann-Whitney test proves a significant influence of the sur-
veying method for the user friendliness attribute. But the Mann-Whitney test can-
not provide more indications for assuming that the significant influences of the
control group are group-specific. So the significantly different manifestation of
attributes of the rating-ranking and the ranking-hybrid comparisons do hardly
correspond to the five significant values of the rating-hybrid comparison.

Taking into account the results of the experimental group, however, we can state
that the use of the rating rather than the hybrid method will yield different results.
As could be proved unambiguously, the other comparisons of methods, i. e. rating-
ranking and ranking-hybrid, in both the experimental and the control group do not
suggest that there are influences on the results of conjoint analyses due to the
selection of the surveying method. To summarize, it may therefore be assumed
that the selection of the surveying method has little or no influence on the results
of conjoint analyses.

Like in the T-test, the results of the control group presented in Table § are
rather disparate. While the rating-ranking and ranking-hybrid comparisons to-
gether comprise just four significantly differing manifestations of attributes
(,,price DM 1,200, ,,18 months warranty period,” and ,,advanced CRT design® for
the rating-ranking comparison as well as ,,18 months warranty period” for the
ranking-hybrid comparison), the comparison of rating and hybrid methods com-
prises five significance values that are smaller or equal 0.05.
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Table 8:  Mann-Whitney test results for the control group

Comparison of rating  Comparison of rating  Comparison of

and ranking and hybrid ranking and hybrid
Z-value  signifi- Z-value  signifi- Z-value  signifi-
cance cance cance

DM 1200 -2279 0.023  -3.207 0.001 -0.591 0.555
Price DM 1500 -1.447 0.148 -1.73 0.084 -0.174 0.862
DM 1800 -0.293 0.77 -19 0.057 -1.499 0.134
6 months -1.334 0.182 -1.558 0.119 -0419 0.675
Warranty 12 months -1.396 0.163  -2.074 0.038 -0.891 0.373
18 months -2.505 0.012 -0.015 0988 -2.648 0.008
User high - 1.307 0.191 -3437 0.001  -1.445 0.149
friendli- average - 1.401 0.161  -1.957 0.05 -0488 0.626
ness low -1.893 0.058 -2.568 0.0l -0.788 0.430
CRT advanced -2.146 0.032 -0.775 0438 -1458 0.145
design conventnl -0.071 0943  -0.404 0.686 -0.325 0.745
Videotext  equipped -0.198 0.843  -0.013 0989  -0.029 0.977
unequipped -0.12 0.904  -1.466 0.143  -1.281 0.2

6.4 Summary and Outlook

The first part of this paper discussed factors that may influence the results of con-
joint analyses. These variables were discussed based on findings reported in sev-
eral references. These did not only present the influencing factors and their effect
on results, but suggested potential solutions for preventing or reducing such influ-
ences. The empirical study we carried out subsequently focused on a potential
connection between the selection of a surveying method and the result of a con-
joint analysis. Results from using three surveying methods were compared. Con-
cludingly, we could state that there hardly are any significant influences on results
depending on the selection of a specific surveying method. Based on these find-
ings, we can even say it is unimportant which of these three methods is used for a
conjoint analysis.

Still, some aspects were discovered in the course of our study which could not
be presented in greater detail here but could be interesting for future research
activities:

1. 154 people were included in the study that were consciously selected for
reasons of time, money, and organization. Although these people were as-
signed to the two groups at random we found that there were some marked
differences in group results. This gives rise to the question whether the com-
position of the groups, i. e. their age structure, may have influenced our re-
sults.

2. The research design was based on three rounds of evaluating 18 product cards
at intervals of at least 14 weeks. The results suggest that, despite the long time
in between, respondents apparently changed their evaluation of product at-
tributes, which may be due to a change in their knowledge about the object of
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study (in particular its technological parameters) caused by the respective in-
terviews.

3. Tt would also be interesting to study the influence that may result from
applying the problem of this study to other objects of study.
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7 Evolutionary Conjoint

Thorsten Teichert and Edlira Shehu

71 Introduction

Preference analysis and utility measurement remain central topics in consumer
research. Although the concept of utility and its measurement was investigated in
a large number of studies, it still remains ambiguous due to its unobservability and
lack of an absolute scale unit (Teichert 2001a: 26): Whereas utility is praised as a
quantitative indicator of consumer behavior, only preference judgments can be
observed. These judgments contain error terms stemming from different sources
which cannot be separated. This inherent methodological problem of utility meas-
urement has not been handled consistently over years of empirical application.

A large number of compositional and decompositional methodological
approaches have been developed and applied over years. Conjoint analysis (CA) is
the most prominent method for utility measurement (Green & Srinivasan 1978). It
enjoys large popularity among marketing researchers, as it combines easy-to-
handle data collection with sophisticated evaluation methods (Hartmann and
Sattler 2006). Dating back to the 70™, conjoint analysis is based on the theoretical
frame of axiomatic conjoint measurement (Green and Rao 1971). Despite major
advances in modeling and designing, an increasing number of studies show that
there are some inherent limitations concerning the accuracy of part-worth
estimates. While part of the shortcomings is attributable to respondent behavior,
the major reason for these shortcomings lies in unfulfilled model axioms of the
conjoint analysis (Louviere 2006, Louviere et al. 2002).

We propose evolutionary conjoint as a new model-free method based on
interactive evolutionary algorithms. Evolutionary algorithms transfer principles of
Darwin’s evolution theory (1859) to optimization problems of other disciplines.
Algorithms are based on the principle of “survival of the fittest” and provide
robust solutions for large dimensioned optimization problems. By combining
evolutionary algorithms with conjoint analysis we overcome some limitations of
traditional conjoint analysis.

This contribution is structured as follows: We first discuss the state of the art
of conjoint analytical developments. Interactive evolutionary algorithms are
presented and their potential to improve conjoint analysis is discussed. We
conduct an exemplary empirical application of evolutionary conjoint and compare
findings with choice-based-conjoint analysis. Robust statistical tests are used to
validate the feasibility of this new approach. A comparison of the quality of
estimation outcomes indicates superiority of the evolutionary conjoint approach.
Implications and outlook for further research are discussed and presented.
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7.2 State of the art and limitations of conjoint analysis

While it is not the purpose of our study to deliver a complete review on all aspects
of the method of conjoint analysis (see e.g. Hauser and Rao 2004), we will focus
our discussion on three dimensions: data modeling, experimental design and ap-
plication fields of conjoint analysis. The first two aspects are highly relevant
themes of the actual discourse. In addition we use the application field as an indi-
cator for the practical relevance of the method for real world problems. In the
following we will discuss unresolved issues of this method and deduce requests
for future research which are based on these limitations.

7.21 Data modeling

The methodological roots of conjoint analysis refer back to the axiomatic conjoint
measurement, which has psychometric origins (Green and Rao 1971). It was ini-
tially developed to decompose an ordinal scale of holistic judgment into interval
scales for each component attribute. A major limitation of the axiomatic conjoint
measurement is that it lacks an error term model. This implies the very restrictive
and unrealistic assumption that conjoint analysis estimators are only efficient in
case of error-free rank order data (Barron 1977). Fischer (1976) shows that even
minor error terms may lead to substantial violation of the additivity axiom, even in
case of true additive utility functions. Emery et al. (1982) prove these confounding
effects mathematically and show that a separation of the two effects in conjoint
measurement is impossible. Confounding effects between error term distribution
and model misspecifications lead to inherently ambiguous estimators (Louviere
2006).

Green and Rao (1971) adapt the conjoint measurement theory to the solution
of marketing and product-development problems. Green and Srinivasan (1978)
were the first to propose the term CA for marketing problems to distinguish it
from the use of “conjoint measurement” in mathematical psychology. The primary
objective of CA is to improve the predictive fit of models which are presupposed
to be valid. To this end, complex statistical models (e.g., random coefficient
models, latent class or Hierarchical Bayes methods) improve the forecasting
power by taking preference heterogeneity at a segment or individual level into
account (Allenby et al. 2005, Teichert 2001b). Heterogeneity is modeled as
discrete or continuous distribution of estimated partworth values. However, most
of these models ignore heterogeneity of error variances of parameters across
individuals and evaluation tasks. This may lead to confounding of effects and thus
to biased estimators (Louviere and Eagle 2006, Louviere et al. 2002).

To overcome problems of traditional conjoint analysis, the method of choice
based conjoint (CBC) is based on discrete choice models. It leads to improved
predicted accuracy, especially in market simulations (Chakraborti et al. 2002).
Despite the suggested higher internal and external validity of CBC it is not always
given that the results are consistent to random utility models (Louviere and Eagle
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2006). Generalizability remains unexplored, since many models are only
evaluated on fit and predictive ability. Furthermore, cross-validations or out-of-
sample validations provide little information about the scientific validity of
models. An additional problem of CBC is the potential confounding stemming
from estimating aggregate parameters, since individuals may have different
random components causing different scale effects. Aggregated estimates are
inherently erroneous, unless all individuals are rescaled individually to take scale
differences into account. According to Louviere (2006) there are two possible
solutions to this problem: individual level analysis and development and
application of model-free approaches.

To sum up, fitting statistical models on data sets does not automatically lead to
efficient results. Models require valid assumptions from a behavior-theoretical
perspective. The issues of insufficiently validated model propositions, problems of
ambiguous and biased parameters due to specification of error terms in complex
statistical models remain unresolved (Teichert 2001a:38).

Request: Model-free approaches should be developed to avoid possible mis-
specifications of utility functions and resulting estimation biases.

7.2.2 Experimental design

Generating efficient designs is fundamental to the performance of CA. The major-
ity of empirical applications assume model axioms, such as a polynomial additive
function form and preferential independence of investigated features to be true
(Keeney and Raiffa 1976). Whenever preferential independence is not satisfied,
the conjoint function is more difficult to estimate and interaction among features
must be specifically estimated (Hauser and Rao 2004). Modeling interaction ef-
fects requires especially in CBC-experiments larger designs, since the design
dimensions rise exponentially (Hauser and Rao 2004, Street et al. 2005). Thus,
many empirical applications use fractional-design based approaches without test-
ing for preferential independence. While traditional approaches mainly rely on
fractional factorial designs (Addelman 1962), the recent discourse proposes new
methods to improve design efficiency. Two research streams can be identified:
adaptive designs for traditional CA and special designs for CBC.

Traditional CA is improved by combining different survey elements, such as
self-explicated tasks and orthogonal designs. There are various approaches for
this, such as the adaptive or so-called polyhedral methods. Adaptive conjoint
analysis (ACA) aims to generate flexible designs by adapting questionnaire design
within one respondent, using the respondent’s own answers to previous questions.
It is a two-step approach in which respondents first eliminate unacceptable
products, unacceptable attributes, or use prior sorting tasks to simplify the holistic
evaluation task (e.g. Hauser and Toubia 2005, Green et al. 1991). ACA uses
metric paired-comparisons and relies on balancing utility between the pairs subject
to orthogonality and feature balance. Recently, new methods for adaptive designs
have been proposed, which iteratively adapt evaluation tasks to minimize
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remaining uncertainty in parameter estimation. Fast polyhedral methods use a
special “fast” algorithm that constructs profiles / choice sets depending on a-priori
information of previous judgment tasks. Polyhedral methods can be used for both
metric-paired comparison questions in ACA and CBC (Toubia et al. 2004). All
adaptive designs bear the potential of endogeneity bias, that is, the profiles of the
n™ question and hence of the respective set of independent variables depend upon
the answers and hence the errors of the first n-1 questions (Hauser and Rao 2004).
This major shortcoming leads to limited validity and generalizability of ACA
results (Sattler 2006).

The second stream of research investigates how to improve the efficiency of
CBC designs (e.g. Sandor and Wedel 2005; Street et al. 2005). CBC has become
the most frequently applied conjoint approach (Hauser and Rao 2004). Generation
of efficient CBC designs has shown to be more complex than traditional conjoint
designs, as two steps of design creation are needed. Many studies have focused on
efficient CBC design strategies (for a review see Louviere et al. 2004). Most
designs considered in these studies are fixed, insofar as each respondent is
confronted with the same set of choice tasks. An exception is the study of Sandor
and Wedel (2005), in which individualized designs based on Bayesian priors are
generated.

Overall, design generation is part of the sequential process of CA: In any type
of conjoint analysis scientists typically formulate hypotheses, generate the
experimental design, collect data and then test the deducted hypotheses by
estimating the data set. This course of action implies that inefficiencies in design
generation can mainly be noticed after estimation. At this point of time the
empirical study can not be revised, but an improved survey-process must be
replicated. This would cause time and cost intense successive data collections.

Relatively new forms of web CA make use of the internet as a data source and
exploit the advantages of technological progress. Web-based surveys allow for
time-efficient data collection and preparation processes. They allow conducting
large scaled surveys within short periods of time. The interactivity and the
multimodal presentation of stimuli open new possibilities for developing new
experimental designs. Several studies, mainly from the context of new product
development, apply web based conjoint surveys (Dahan and Hauser 2002). These
methods make use of the internet as data collection modus, but use traditional
conjoint approaches without basic improvements in experimental design.

To conclude, design remains one of the most relevant research topics in CA.
Despite advances in experimental design research in recent years, there are still
limitations, such as the lack of consumer interaction, lack of flexibility as well as
limitations in integrating interaction effects.

Request: Adaptive-recursive flexible designs should be developed which fur-
ther exploit the possibilities of the internet as a new data source.
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7.2.3  Areas of application

Conjoint approaches have been applied in different fields, comprising environ-
mental economics, transportation research, scanner data analysis, health-care,
telecommunication etc. CA is undoubtedly a well-established method in social and
economical sciences and especially in consumer research. Reviews of application
fields can be found e.g. in Hauser and Rao (2004). Despite its flexibility, CA can
only investigate a finite (small) number of discrete attributes.

A careful selection of attributes and attribute levels is crucial for the success of
any conjoint experiment. Attributes are commonly assumed to be independent,
because if they were not, the problem of modeling interaction effects would arise.
The modeling of interaction effects requires larger experimental designs, since
there are many decompositional forms and related independence conditions
(Hauser and Rao 2004; Street et al. 2005). As a consequence, traditional CA as
well as CBC are ill suited for high dimensioned problems. ACA and other hybrid
methods overcome this shortcoming by integrating self-explicated tasks.

Continuous attributes are approximated by specifying a small subset of
discrete attribute levels. Typically, a worst and a best case as well as an
intermediary level is chosen. An optimization of the underlying continuous
variable is achieved by interpolating gained estimates. This assumes a linear
function in between the chosen attribute levels which need not be the case (e.g.
sugar content in a coffee mug). Presenting extreme points of the solution range
endangers the face validity of provided answers: Respondents are confronted with
abstract as well as irrelevant evaluation tasks, if the given levels depart
significantly from their optimum level. This may be well the case for attributes
with “feel and see” features. As an example, the optimal taste of coffee is hardly
to be anticipated based on positive and negative extreme points of sugar content.

To sum up, although CA is a well established method of consumer research, it
still shows some limitations in applications. Major shortcomings are to be
diagnosed for continuous as well as “feel and see” features. Experimental designs
which approximate these variables with discrete attribute levels are likely to fail
short in estimation accuracy.

Request: New conjoint analytical approaches should be developed for con-
tinuous as well as “feel and see” features.

7.24  Summary of state of the art

In spite of the high relevance of CA for survey research and its large number of
applications there still are unresolved issues in data analysis and modeling, design
and application areas. New approaches should be developed which fulfill requests
that need to be clarified (Table 1). In the following we test the new method of
evolutionary conjoint, which connects aspects of evolutionary algorithms and
conjoint analysis.
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Table 1: Unresolved issues of conjoint analytical approaches

i, Estimation

(compositiona 1&
decompositional)

Low external
validity/Endogeneity bias

(decompositional )

Confounding effects/
Individual scale

Feature [ ACA [ CBC Requests
I Modeling
i. Model premises | Based on axioms Based on axioms Model-free

approaches should
be developed to avoid
possible
misspecifications of

effects utility functions and
iii. Error term Risk of confounding Risk of confounding resulting estimation
modeling effects effects biases.
I Design
i. Flexibility Endogeneity bias No learning effects

ii. Consumer Adaptive designs None
interaction

iii. Interaction

Adaptive-recursive
Sexible designs
should be developed

Generally not considered | Need explicit

effects modeling/ which further exploit
Exponential design the possibilities of
growth the internet as a new

iv. Time & cost Sequential surveys (=>>) | Sequential surveys data source.

intensity (=>>)

111, Application arcas
i. Suitability for

Yes <<(exponential design

high dimensioned growth) New conjoint
problems analytical
ii. Continuous Coarse-grained Coarse-grained approaches should
attributes S be developed for
iii. “Feel and see™ | Unrealistic self- Potentially unrealistic | continuous as well as
features explicated part evaluation tasks due “feel and see”

to fixed end-point Seatures.

design

7.3 Evolutionary algorithms

Charles Darwin (1809-1882) can be considered father of the biological model of
evolution. The core message of his theory is embodied in the principle of “survival
of the fittest”. This describes the adaptation of organisms to their environment.
Evolutionary pressure typically forces systems to become highly optimized and
efficient. Accordingly, methods and systems found in nature are applied to the
optimization of problems in other disciplines. First applications of EA go back to
the 60s (Holland 1962, Rechenberg 1973). In the 70s and 80s different schools of
thought were formed with a strong focus on optimization. The four main streams,
genetic algorithms, evolutionary strategies, evolutionary programming and genetic
programming are comprehensively known as evolutionary computation. Recently
hybrid forms connecting aspects of different streams are becoming more and more
relevant and the boarders between the separate classes are becoming smoother
(Figure 1).
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Figure 1. Historical development of evolutionary algorithms

In contrast to traditional marketing research methods, evolutionary algorithms
(EA) are model-free in content but model-driven in the algorithm of solution
search. While randomized, EA are no simple random walk. They efficiently ex-
ploit past information to speculate on new search points with expected improved
fitness. At the end, EA identifies promising product concepts directly, whereas CA
deducts those solutions by first estimating partworth values.

Rechenberg (1973) sets up the basic assumption of the EA “...that the quality
of an engineering system can be compared with the fitness of a living
organism...”. Still the argument “nature does it better” is not the only argument
for the efficiency of EA. Both theory and practice show that EA provide robust
search results in complex spaces (Goldberg, 1989: 2). A large number of
methodological developments and empirical applications in different fields
indicate the validity of the technique in optimization problems (Herdy 2000,
Nissen 1997). Algorithms are not inherently limited by restrictive assumptions
about search space, such as continuity, existence of derivatives, unimodality of
optimization problems etc. All algorithms make use of biological operators of
selection, recombination and mutation in order to solve complex optimization
problems (Weicker 2002):

e Selection is the process of choosing those alternatives which operate as parents of
the next generation. According to the biological principle of survival of the fittest,
better individuals have higher selection probabilities. The selection process drives
the total population and the experimental design towards better alternatives in
solution space.

e Recombination is an operator which generates offspring by combining the genetic
material of the parents.
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e Mutations are randomized changes which make sure that new genetic material is
used in the following generation thus avoiding the risk of local minima.

Despite the large number of empirical applications, EA have been used in
marketing only recently. According to a meta-analysis (Wong & Bondovich 1999)
on management applications of genetic algorithms, the first marketing study was
published in 1988. Since then, EA were used in new product development for
optimization of separate products as well as product lines. Earlier heuristics-based
studies (Kohli and Krishnamurthi 1987) used elements of EA for optimizing
product design under the restriction of maximizing market shares (the so-called
share of choice problem). The major limitation of these first applications is their
sensitivity to sequencing effects (Balakrishnan and Jacob 1996). Balakrishnan
and Jacob (1996) propose the application of genetic algorithms for product design
optimization, which simultaneously optimize all attributes. This work was later
extended for optimizing product line decisions (e.g. Camm et al. 2006,
Balakrishnan et al. 2006).

All studies use EA in a second evaluation phase without any customer
interactivity. Customer partworths are generated a-priori by means of traditional
CA. These partworths are used as input to the multimodal optimization problem of
the share of choices. Thus, customer evaluation judgments are not an active part of
the optimization problem. The CA is not improved in this two-step approach, so
that traditional fractional experimental designs are not improved and potential
biases of CA-estimators remain. Thus we conclude that EA are not fully
established in survey research despite their potential: The model-free approach of
EA could be an alternative for avoiding biases due to misspecifications of utility
models. The possibility of adaptive-recursive designs could lead to improved
designs.

7.4 Evolutionary Conjoint

7.41 Basic scheme of interactive evolutionary algorithms

Evolutionary conjoint is strongly aligned with the technique of interactive evolu-
tionary algorithms (IEA). IEA use customer evaluations as selection criterion in
the course of the optimization process (Figure 2) on the Darwinian principle of
natural selection, IEA consist of the following basic pattern (Béck 1996: 8):

1. Solution representation: 1EA consider a product as a bundle of features.
Accordingly, the first step is the selection of a structure for representing
product alternatives. This leads to a set of parameters known as genes or
chromosomes.

2. Initialization: The initial population is generated by combining different
levels of features in order to create product alternatives. The initial population
can be generated randomly or by using a priori information.
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3.  Evaluation of the current population: All alternatives are evaluated by the
respondents according to their preferences. This serves as a fitness function
by which a measure of quality is assigned to each product alternative in the
current population.

4, Selection of parents. Alternatives with highest fitness values are chosen as
parents for following offspring generations.

5. Recombination: New product alternatives are generated by applying the
operators of recombination and mutation. The mutation radius can be varied
in each generation. Generally it is advisable to use high radiuses in the early
generations in order to avoid local minima. Smaller radiuses can be used in
latter generations in order to finely specify the optimal solution point in the
area of “survivors”.

6. Steps 3 and 4 are repeated until convergence is achieved. Convergence
criteria (e.g. similarity of best alternatives of following populations etc.) can
be determined a priori.

. Iﬂi-—“
i ]
Ewvaluation by Respondents ] g=g+1
T
Bul Fitness Values : p Mutation
L3
* » 1 |
Sabkection of ,Parents” | Adapbion of Mutabon Radius |
! i
T v
f " gEm—— .
| Optmal Aternabve fp—<T__ Comergencs? _ —=—p< Recombination

Figure 2:  The IEA Approach

The parameterization of IEA is complex and contains numerous elements such as
the number of parents and children, the fitness function, mutation rate and radius,
type of recombination, convergence criterion. It is to be adapted to the specific
problem type (Rechenberg 1994: 91-105). Pretests are required for optimizing the
parameterization before each empirical application.

7.4.2 Data modeling

Evolutionary conjoint uses the basic principles of IEA. By this means, it is a tech-
nique that embeds consumer preferences directly into the target optimization proc-
ess. As in CA, each product is represented by its features, which are reinterpreted
as “genes.” A respondent is shown a representative set of concepts, each of which
is a set of genes. Respondents evaluate the products by rating, ranking or choosing
the most preferred alternative. This evaluation determines the likelihood that the
product concept will “reproduce” into the next generation. Then, following an
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evolutionary algorithm, offspring is generated based on the genes of their parents.
This process continues until the population stabilizes on a small set of product
concepts.

The application of evolutionary conjoint has the great advantages of not
needing restrictive assumptions concerning functional form and continuity. It also
should benefit from a good fit for optimization problems in high dimensioned
solution spaces. This however must be investigated because the factor of human
fatigue should diminish this possibility. Due to the model-free optimization
approach and the model-driven search process no statistical analysis is necessary
for determining optimal solutions. The suitability of the alternative optimization
approach of IEA for utility measurement has to be investigated. Analogous to the
EA approach there is no explicit error term modeling up to now. Error term
modeling and modeling preference heterogeneity are important issue which have
to be explored in future research.

7.4.3 Experimental design

Evolutionary conjoint develop individualized flexible designs with an especially
high degree of consumer integration. Consumer evaluations directly influence the
experimental design. They continuously influence the levels of each attribute in
each of the successive generations. This stays in contrast to adaptive design tech-
niques, where the design input of respondents is restricted to the first step of the
self-explicated tasks.

Because of the interactive nature the search space is narrowed sequentially, so
that individual optima are identified. The risk of local optima is reduced by a
mutation operator, which injects variance in the solution space. At the same time,
it acts recursively on design evolution as a bumper for unconscious response
effects, such as inconsistencies due to emotional trade-offs, context and framing
effects etc. This may well be an advantage of evolutionary conjoint compared to
traditional CA surveys.

Evolutionary conjoint has the advantage of high design flexibility by being
able to integrate continuous attributes in the optimization processes.
Consequently, there is no need for pre-selecting attribute levels, which helps to
avoid problems such as threshold values or other non-linearities of utility
functions. There is no need for explicitly modeling interaction effects between
independent variables: Interaction effects are rather implicitly taken into account
in course of the model-driven search in solution space.

Owing to the model-driven search design, data collection and model
specification in evolutionary conjoint are inseparably intertwined.

The recursive pattern of evolutionary conjoint designs leads to improvements
within the course of the investigation. Thus, design inefficiencies which in CA
surveys are irreversible after the data is collected, have milder consequences in
case of evolutionary conjoint. This indicates potential cost and time saving effects.

In short, evolutionary conjoint is based on different principles than traditional
CA designs. Its dynamic design may be different for each individual. Interaction
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effects need not be modeled. Furthermore the adaptive-recursive nature should
lead to time and cost saving advantages. These expected advantages are to be
explored empirically.

7.4.4 Areas of application

Despite its potential evolutionary conjoint has not yet been established in market-
ing. There are numerous methodical publications on the improvement of conver-
gence capability of IEA (e.g. Saez et al. 2005). However, there is no scientific
application of these algorithms in preference modeling and no direct comparison
to other conjoint methods. Sporadic applications are to be observed in special
areas of prototype testing, such as hearing devices (Ohsaki and Tagaki 2000),
shape of eyeglasses (Yanagisawa & Fukuda 2004), 3-D lighting systems (Aoki
and Tagaki 1997), and coffee mixtures (Herdy 1998). These initial applications
rely on very small samples and lack a theoretical frame.

Table 2: Potential of evolutionary conjoint
Requests [ Feature | Evolutionary CA | Potential
I Modeling
Model-free i. Model premises Quasi model free ++
approaches should ii. Estimation Not applicable ?
be developed to iii. Error term modeling | To be explored ?
avoid possible
misspecifications of
utility functions and
resulting estimation
biases.
IT Design
Adaptive-recursive i. Flexibility Adaptive design & ++
Mexible designs mutation radius
should be developed | ii. Consumer interaction | Iterative-recursive ++
which further iii. Interaction effects Automatically ++
exploit the integrated
possibilities of the iv. Time & cost Online surveys (1=<<) ++
internet as a new intensity
data source. )
I11. Application areas
New conjoint i. Suitability for high To be explored ?
analytical dimensioned problems
approaches should ii. Continuous attributes | >>(continuous ++
be developed for features)
continuous as well iii. “Feel and see™ Yes ++
as “feel and see” features
Sfeatures.
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7.45 Outlook

Rechenberg (1994: 18), one of the fathers of evolutionary computing, praises the
human element in interactive EA:

“Conscious interference with an evolution strategic optimization process should not be
a taboo. I am all in favor of Interactive Evolutionary Computation (IEC) Just slightly
change the mutation radius, raise the number of offspring, make the parents immortal ...
The layman gets a feeling for the effects of evolutionary parameters, and the EA expert
whounderstands the art of IEC may be able to work wonders.” (Author’s translation).

We argue that the model-free optimization and the dynamic design promise
important contributions and help to avoid potential limitations of traditional CA
(Table 2)

75 Empirical application

The potential evolutionary conjoint is empirically tested in a simple experiment.
We apply the new method in a new product development setting and test its ade-
quacy for identifying utility maximizing products. Results are compared with
those of CBC. Findings should indicate the adequacy of evolutionary conjoint for
preference analysis and for the generation of utility optimizing product alterna-
tives.

7.51 Objectives

The primary goal of our empirical research is to explore the adequacy of the new
method of evolutionary conjoint. Since there is no comparable study in this field,
we streamline our explorative approach along the basic scheme of the research
paradigm in three steps: existence, contingency and success analysis.

1. First of all we investigate the adequacy of evolutionary conjoint for
identifying optimal product alternatives according to customer preferences.
For this, we analyze the feasibility of “survival of the fittest” as the basic
principle of EA. This principle implies that product alternatives which belong
to more recent populations should be preferred over alternatives stemming
from former populations. In order to test for this hypothesis we use paired
comparisons of alternatives from different generations of individual
optimization tracks.

2. 1In a second step, we search for potential differences between solutions
derived with evolutionary conjoint and CBC. Due to their fundamental
methodical differences, we expect differences in estimated optimal product
alternatives. To test this hypothesis, we present respondents with solutions
derived with evolutionary conjoint and CBC and ask them about the
perceived similarity of both alternatives.
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3. Finally, we expect evolutionary conjoint solutions to better fit customers’
preferences than those generated with CA because it directly integrates
customers’ preferences in the optimization process. This leads us to our third
hypothesis that evolutionary conjoint solutions are closer to customers’
preference optima. In order to test for this hypothesis we use ex-post choice
decisions between the optima derived from both methods.

Table 3:  Hypotheses for the empirical study

Steps of Research Hypothesis

Existence Analysis H1: The basic principles of evolutionary conjoint are suited for prejf-

erence elicitation.

Contingency Analysis | H2: Evolutionary conjoint generaies different optimal products than

traditional CA.

Success Analysis H3: Evolutionary conjoint solutions are closer to customers optimum

than CA.

7.5.2 Experimental design

Our empirical application comprises three consecutives interviews (Figure 3): two
computer-based surveys with CBC and evolutionary conjoint and one in-depth
personal interview. The sample consists of 50 respondents, most of them students
with homogeneous sociodemographic features. The design of a bottle is chosen as
application object. This enables to explore the potential of evolutionary conjoint
for continuous as well as “feel-and-see-me” attributes. Three attributes were var-
ied: the color intensity of the bottle, the color intensity of the bottle label and the
position of the label. The color intensity of both bottle and label was varied be-
tween transparent and brown. The vertical position of the label was varied from
bottom to top.

Discrete attribute levels were generated for the CBC design as follows: A
prestudy was conducted to determine values with high discriminant power. The
interviews indicated that color brightness can be represented by each four levels:
transparent, beige, light brown and dark brown. Label position was represented by
three levels: above, central and down. A 96% efficient orthogonal design was
generated which consists of 16 choice sets with 4 alternatives each (Street et al.
2005). Two hold-out choice sets were added for validation purposes.

A Java based software prototype was programmed for the evolutionary
conjoint tasks. The parameterization was specified as closely as possible to the
CBC design. Generations consisted of four different product alternatives each. The
two most preferred alternatives served as parents for the next generation. The
evolutionary process was repeated until the respondent was fully satisfied with the
product layout and stopped the interview.
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Figure 3: Experimental setup

A week later, an in-depth interview was conducted for cross-validating both meth-
ods. The in-depth interview consists of two main question blocks (Figure). The
first block concerns the internal validation of [EA (H1). Respondents had to
choose between alternatives from different generations of evolutionary conjoint.
The second question block investigated the differences between evolutionary
conjoint and CBC: The derived optimal solutions from both methods were pre-
sented to the respondents. Respondents evaluated their similarity to test for the
discriminative power of both methods (H2). To finally test the superiority of esti-
mation outcomes, respondents had to choose the most preferred alternative and
state their overall satisfaction with the outcome (H3).

7.5.3 Data collection and estimation

The CBC data was analyzed with a hierarchical Bayes model using the statistical
software GAUSS. The model consists of three hierarchical levels with partworths
assumed to be normally distributed with normally distributed means and Wishart
distributed standard deviations (Train 2003, 285:302). The model was estimated
under the assumption of correlated model parameters.

In-sample and out-of-sample validity are used to assess model performance.
Fits are calculated by the prediction success index (McFadden 1979). The in-
sample validity of 80% indicates a good fit of the model. The external validity of
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68% is calculated by using the hold-out choice tasks. This indicates a significantly
better forecasting power of the model compared to a random model (¢:=0.01).
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Figure 4:  Optimization with evolutionary conjoint

The evolutionary conjoint interviews were conducted by using a software pro-
grammed for this purpose (Figure 4). The software saved the entire searching
track and the optimal alternatives for each individual. In average 13 generations
were needed to reach convergence. This indicates that the search process was
neither trivial nor suffering under consumer fatigue.

7.5.4 Results

In-depth interviews were conducted for cross-validating both methods, as de-

scribed above. The results support our hypotheses (Table 4).

1. Respondents prefer in 90% of all cases alternatives from more recent
generations against those from earlier ones. This indicates a good face
validity of the optimization process and shows, that the basic principle of
evolutionary conjoint (“survival of the fittest™) can be applied to preference
based optimization. These results are supported by a non-parametric sign test
(0=0.01).

2. Respondents consider the optimal solutions derived by either evolutionary
conjoint or CBC to be significantly different («=0.01). The perceived
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differences are significantly larger for respondents who prefer the
evolutionary conjoint solutions. This result is supported by a non-parametric
Man-Whitney U-test. To further assess the extent of the revealed differences,
a difference score is calculated at the attribute level and normalized between 0
and 100. The average differences amount A=27 for bottle color, A=25 for
etiquette color and A=30 for etiquette position. All three values are
significantly different from 0 (a=0.01), so that our second hypothesis is
supported.

Comparing the derived optimal products, 34 respondents out of 50 prefer the
solution of evolutionary conjoint against the CBC solution. The quotient of
respondents who prefer IEA over CA (68%) is significantly different from a
randomized model (0=0.01). The results confirm our hypothesis that
evolutionary conjoint solutions reflect better consumers’ preferences and
wishes. Customers who chose evolutionary conjoint alternatives are in
average significantly more satisfied with their choice as those who prefer
CBC solutions (a=0.01). An in-depth investigation revealed that respondents
appraise the ability of IEA to derive finely specified colors. This shows the
potential of evolutionary conjoint for continuous attributes. All these results
support our third hypothesis that evolutionary conjoint may generate product
optima that are more superior to CBC solutions.

Table 4:

Results

Steps of

Research

Results

Hypothesis

Existence

Analysis

90% of all tasks consumer prefer
alternatives from more recent genera-
tions

(non-parametric sign test a=0.01)

Hl: The basic principles of evolu-
tionary conjoint are suited for prefer-

ence elicitation.

\/

Contingency

32 respondents out of 50 consider the

H2: Evolutionary conjoint generates

(t-test =0.01; Man-Whitney U-test
0=0.05)

Analvsis CBC and IEA solutions to be dissimi- | different optimal  products  than
lar traditional CA.
(t-test a=0.01) \/
Success 34 respondents out of 50 prefer the | H3: Evolutionary conjoint solutions
Analysis IEA-solutions are closer to customers’ optimum

than CA.

\/
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7.6 Discussion and outlook

We propose evolutionary conjoint as a new model-free method, which combines
aspects of evolutionary algorithms with those of conjoint analysis. By transferring
the principles of Darwin’s evolution theory of “survival of the fittest” to utility
optimization problems, these algorithms can help avoiding some limitations of
conjoint analysis. Requests concerning the modeling, design and application can
be fulfilled by evolutionary conjoint.

We conduct an initial empirical comparison of evolutionary conjoint with
CBC. This basic empirical application indicates the potential of evolutionary
conjoint as a new method for consumer integration in new product development.
Since this study is the first of its kind, we firstly explore the adequacy of
evolutionary conjoint for deriving new products according to customers’
preferences. Our results clearly support this thesis. Furthermore, we find that
evolutionary conjoint and CBC lead to significantly different optima. Evolutionary
conjoint generates solutions which are more fine tuned and thus significantly
superior to CBC solutions.

This study investigates evolutionary conjoint as a new method for consumer
research. It is a first contribution in an interesting and highly promising research
field. Both conceptual foundations as well as empirical effects need to be further
investigated. Conceptual work is needed for modeling error terms and taking
consumer heterogeneity into account. Cross-validations with state-of-the-art
methods should be conducted and the potential of evolutionary conjoint for
improving forecasts should be further quantified.
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8 The Value of Extent-of-Preference Information
in Choice-Based Conjoint Analysis

Terry Elrod and Keith Chrzan

8.1 Introduction

It is clear that conjoint analysis has had a substantial impact upon research prac-
tice (Wittink and Cattin 1989; Wittink, Vriens and Burhenne 1994). Conjoint
analysis has evolved, and along with that evolution has been a gradual shift in the
types of responses collected, from rankings to ratings to choices.

A brief contrast of ratings and choice data for conjoint purposes is as follows
(cf. Elrod, Louviere and Davey 1992; Vriens, Oppewal and Wedel 1998). The first
advantage of choice data is greater face validity. Making choices is what consum-
ers do and it is the type of behavior that marketers usually seek to predict. An
important benefit of collecting choice data has been that the models commonly
used to analyze such data—multinomial choice models—readily generate pre-
dicted shares for any combination of brands provided only that all brands may be
fully described in terms of the attributes and attribute levels included in the study.

As traditionally applied, choice-based conjoint studies, often also referred to as
discrete choice experiments, have some drawbacks. First, although multinomial
choice models may allow part worths to vary systematically with observed con-
sumer characteristics, consumers typically differ in terms of their part worths more
than can be accounted for by consumer demographics. Explicitly allowing for
unexplained consumer hetero-geneity in multinomial logit models is computation-
ally intensive and fussier to estimate, although recent advances have helped to
reduce this difficulty (Vriens, Oppewal and Wedel 1998).

A second problem is that choice data contain minimal information about con-
sumer preferences. A choice simply indicates which alternative is most preferred;
it does not provide an estimate of the utility of any of the alternatives, not even of
the one chosen.

A final difficulty is that choices implicitly entail consideration of more than
one alternative. Including just two alternatives in each choice question entails a
doubling of the amount of information about brands that is presented to respon-
dents relative to a ratings-based conjoint study. It is not uncommon for choice-
based conjoint studies to include three or more alternatives, each described on all
attributes, for each choice question.

We employ here two choice designs for paired alternatives: one design uses
ordinary full profiles and the other uses partial profiles (Chrzan and Elrod 1994;
1995). The partial profile design requires that the two alternatives in each question
differ on only a researcher-specified number of attributes which may be as few as
three. Respondents are told that the alternatives are identical on the remaining
attributes and, under fairly general conditions, the values imputed to these attrib-
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utes are irrelevant to choice. Since far less attribute information needs to be pre-
sented to respondents per choice question, greater precision of model estimates
can be obtained for a given number of respondents by being able to ask more
choice questions using a questionnaire of given length.

This article investigates another possible advantage that can accrue to studies
that collect choice on paired alternatives. Having indicated which of two alterna-
tives is preferred, consumers then also indicate the extent of their preference for
their chosen alternative. We use a single data set to answer five questions pertain-
ing to use of this extent-of-preference information:

1. Is there any evidence that including extent-of-preference information in an
ordinal logistic model leads to coefficient estimates that are any different
from those obtained by simply analyzing the binary choice information? That
is, does including the extent-of-preference information bias the estimates of
the part worths that drive choice?

2. To what extent does analyzing the extent-of-preference information along
with the choice information improve the efficiency of the estimates of the part
worths?

3. Is there evidence of biased use of the scale? That is, do consumers favor ei-
ther the first or the second alternative after controlling for the attributes of
these alternatives?

4. Ts there evidence of asymmetric use of the scale? That is, are the intervals
between adjacent cutoff values symmetric about the central cutoff that sepa-
rates choice between the two alternatives?

5. Do the answers to the four questions above differ for full profile and partial
profile designs?

8.2 The Data

A total of 52 consumers each filled out two of four versions of a conjoint study of
over-the-counter analgesics that were defined in terms of seven binary attributes.
A total of 22 conjoint questions were asked. For fourteen of the questions the two
alternatives in each choice set differed on only three attributes; for the other eight
choice questions the two alternatives differed on all seven attributes. The 15 miss-
ing responses (out of 1144 possible) were excluded from the analysis.

8.3 The Model

We adopt what is known as the proportional odds ordinal logistic model (McCul-
lagh 1980), of which the logit model is a special case. Underlying all model vari-
ants considered herein is the random utility model of consumer evaluation of
brands. Let U; be the utility of the i-th alternative in a choice set. It may be repre-
sented as:
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Ui=vite,

where v; is a constant specific to the alternative, and ¢; is a random error term that
is independently and identically distributed over all alternatives, questions and
subjects according to a double exponential distribution. Often, as here, the deter-
ministic component of utility, v;, is a linear-in-parameters function of stimulus
characteristics contained in a row vector x:

v; = x[3.

We consider only the case of paired alternatives; i.e., i € {1, 2}.

8.3.1 Explaining Choice

The probability that the first alternative is chosen in favor of the second is equal to
the probability that the utility of the first is greater than the utility of the second, or
Prob[U, > U, + a], where o is a bias term reflecting a possible tendency to choose
the first or second alternative in each pair. This can be simplified to:

Prob[Y = +1] = Prob[e > a — V],

where Y € {+1, -1} indicates whether the first (+1) or the second (—1) alternative
is chosen, v = vi — v, (= [x; — x3] B) = xB), and € = &, — &,, which then has the
logistic distribution, yielding the simple formula:

0 Prob[Y > +1]=1/[1 + exp(c. — xB)].

Consumers have a tendency to choose the first/second alternative, even after
controlling for the attributes of the alternatives, according to whether o is
negative/positive. One might hope that no such tendency exists (i.e., & = 0), which
is testable. The parameter o. may be interpreted as a cutoff value that U must
exceed if the first alternative is to be chosen instead of the second.

8.3.2 Incorporating Extent-of-Preference Information

For the ordinal logistic regression model, Y may take on more than two values.
For our study, respondents indicated not only the brand chosen but also the extent
of their preference using a three-point scale. These two types of information can
be represented as a single ordinal response Y from the set {-5, -3, -1, +1, +3,
+5}. This particular representation for Y communicates an expectation of symme-
try and unbiasedness in scale usage, but this expectation is not imposed untested
upon the data. The scale must possess only one property in addition to ordinality:
the lower/upper half of the scale must correspond to choice of the second/first
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alternative, as indicated by the sign of Y. This property is assured by collecting
information about choice and extent-of-preference using two separate questions,
as in:

Which brand would you choose?
__Brand 1
~ Brand 2
By how much do you prefer your chosen brand?
__Alot
__Quite a bit

~ Slightly

No information is lost vis-a-vis the paired choice model. The essential question
is whether the extent-of-preference information contains appreciable and unbiased
information about the part worths that explain choice.

For K categories of the response (K even), we define K + 1 threshold values
designated — = 0y < oy < ... < ag 1 < ag = +oo. Furthermore the possible values
of Y may be indicated as y; < ... <yg. Then:

@ ProblY 2yl = {1/[1+exp(os W)} — {1/[1+exp(os— V3.

When there are only two categories, this equation simplifies to the case of
binary choice.

With K possible values for Y, let m = K/2. Then the cutoff value o, represents
the bias towards choice of the second alternative. As with binary choice, the hy-
pothesis o, = 0 is testable. We may also test whether the intervals between adja-
cent cutoffs are symmetric about o, as explained in the next section.

8.4 Results

For a given number of ordinal levels K, the logit choice model is not a special case
of the ordinal extent-of-preference model. That is, for K > 2 there are no estimates
of the cutoffs a, ..., ok that reduce equation 2 to equation 1. The binary model of
choice assumes that an ordinal response contains no information beyond its sign,
which reveals the brand chosen. Thus a response scale of {-5, -3, —1, +1, +3, +5}
may be recoded as {1, 1}. This recoding of the response is not a strictly mono-
tonically increasing function, so the Jacobian of the transformation, necessary to
allow comparisons of likelihood-based measures of model fit, does not exist. Rig-
orous statistical tests of the first two research questions (Q1 and Q2) would re-
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quire a general model that subsumes both the binary and ordinal logistic models.
Fortunately, simpler analyses yield clear answers to these two questions. Statisti-
cal tests for questions Q3 and Q4 are available.

Binary and ordinal logistic models were fit to both the partial and full profile
data. The fits of these four models are shown in Table 1. The estimates were ob-
tained using the S function Irm written by Frank E. Harrell and included in his
design library available from Statlib.' The top half of the table shows the estimates
for the partial profile choice sets, the bottom half for the full profile choice sets,
the left half for the ordinal model, and the right half for the binary model.

Table 1:  Estimates for the Four Models

Partial profiles

Extent of Preference Choice

Coef S.E. Z P Coef S.E. Z P
y>=-3 -1.80 0.11 -16.62 0
y>=-1 -0.85 0.09 -9.73 0
y>=1 0.03 0.08 040 0.69 0 0.09 0.04 097
y>=3 0.80 0.09 926 0
y>=5 1.56 0.10 15.81 0
Fast 048 0.11 425 0 064 0.14 4.67 0
Caplets -0.16 0.12 -141 0.16 0.11 0.14 075 045
Coated 0.02 0.11 022 0.82 0.16 0.14 1.14 0.26
Strong 047 0.11 4.17 0 059 0.13 443 0
SA 0.52 0.12 450 0 0.60 0.15 4.10 0
Gentle 1.58 0.12 12.82 0 1.87 0.17 1094 0
notPM 042 0.11 3.73 0 046 0.14 322 0

S programs for Windows operating systems are available from Statlib at
http:/lib.stat.cmu.edu/DOS/S/  (http://stat.cmu.edw/S/ for Unix). The design library is
available under the listing Harrell/design. The design library requires the hmisc library,
available under the listing Harrell/hmisc. (Accessed 7 April 1999.) The function Irm
defines the a values differently—they are preceded by minus signs in equations 1 and 2,
which is equivalent to specifying them as category-specific intercepts rather than as
cutoff values. The estimates shown in Table 1 were made consistent with the cutoff
interpretation used here by reversing the signs of the o estimates returned by lrm.
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Full profiles
Extent of Preference Choice
Coef S.E. Z P Coef S.E. Z P
y>=-3 -2.10 0.15 -13.77 0
y>=-1 -1.22 0.13 -9.64 0
y>=1 -0.27 0.11 =237 0.02 =022 0.12 -1.86 0.06
y>=3 0.60 0.12 5.50 0
y>=5 1.80 0.14 12.59 0
Fast 0.37 0.09 4.08 0 046 0.13 3.6l 0
Caplets 0.04 0.09 046 064 0.02 0.13 0.19 0.85
Coated 021 0.09 232 0.02 023 0.12 185 0.06
Strong 022 009 245 0.01 0.04 0.13 030 0.76
SA 044 0.09 4.84 0 042 0.13 3.33 0
Gentle 1.10 0.10 10.93 0 120 0.13 9.38 0
notPM 0.19 0.09 216 0.03 033 0.12 268 0.01

Note: The signs of Coef and Z for the cutoff values returned by the Irm function are
the reverse of those shown in the table.

8.41  Test for Unbiasedness and Symmetry

The extent-of-preference model estimates five cutoff values that separate the 6
categories of the response. The cutoff labeled y>=1 in Table 1 separates choice of
the first alternative from choice of the second. This cutoff corresponds to the cut-
off for the binary choice model. We now consider tests of symmetry and unbi-
asedness.

If respondents use the six-point extent-of-preference scale in a symmetric and
unbiased manner, then the following three equalities would hold: o; + o5 = a, +
oy = 03 = 0. A chi-square test of this null hypothesis for the partial profile and full
profile data sets is shown in Table 2. This null hypothesis is accepted for the par-
tial profile data but not for the full profile data.

It is possible to test for symmetry and unbiasedness separately. Symmetry may
be claimed if the following two equalities hold: (a1 — o) + (a5 — 0y) = (02 — 03) +
(aq — o3) = 0. Table 2 shows that this hypothesis is rejected for neither data set.
The joint test for unbiasedness and symmetry is obtained by adding to the test for
symmetry the test that a; = 0. This test, which is equivalent to the test for this
cutoff differing from zero in Table 1, is also shown for completeness in Table 2.
We see that symmetry can be accepted for both data sets but there is evidence of a
tendency to choose the first alternative in each pair for the full profile choice sets
but not for the partial profile. The bias estimate for the ordinal partial profile data
of 0.27 is close to the bias estimate for the choice partial profile (0.22), the latter
being marginally significant (p = .06). Thus it appears that bias in favor of choice
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of the first alternative is a property of the full profile design and is not due to utili-
zation of extent-of-preference information.” Tt may be that the full profile choices,
which present respondents with more attribute information per choice question,
tend to induce a choice heuristic that includes a tendency to choose the first alter-
native irrespective of the attribute values of the two alternatives. Such a tendency
is of course a departure from the multiattribute utility model.

Table 2: Tests of Unbiasedness and Symmetry for the Ordinal Models

Unbiased Symmetric Unbiased
and Symmet-
ric
Partial 4.43* 3.87 0.16
Profile 3 2 1
22° .14 .69
Full 10.39 3.63 5.61
Profile 3 2 1
.02 .16 .02

“chi-square value. *degrees of freedom. °p value.

It would appear that the assumption of symmetric use of the extent-of-preference
scale may be imposed for both data sets. Imposition of this assumption would
allow fitting of the ordinal logistic model by estimating 10 parameters rather than
12. Imposing unbiasedness on the partial profile data is also justifiable, saving
estimation of an additional parameter. Imposing statistically justified constraints
on a model increases the precision with which the parameters are estimated. We
do not exploit this possibility here because it is not an option in the ordinal logistic
program used for estimation and would require programming to be implemented,
something many practitioners (and academics) would rather avoid. However this
does mean that our calculation of the increase in efficiency that results from using
extent-of-preference information will be conservative relative to what is obtain-
able when assumptions of unbiasedness and/or symmetry are warranted and util-
ized.

8.4.2 Estimates of Part Worths

The information of greatest interest has to do with the part worth estimates for the
seven attributes. If the extent-of-preference information is to be of value, the coef-

2 Tt is not clear that biasedness could arise due to utilization of extent-of-preference

information since the cutoff value that is used to test for bias (o3) divides the responses
identically in the two analyses.
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ficient estimates should be proportional to those for the binary choice estimates,
and the z-values should be greater (Swait and Louviere 1993). Since the standard
errors are all very similar for the part worths within model, the z values are almost
exactly proportional to the coefficients and can therefore be used to answer both
questions.

Ordinal
partial profile
o
10
8__
6 Choice
4-] c;% partial profile
ol °°
o o)
10
8_
6 Ordinal
4 S % full profile
2 (o] & 0o o0©
04 ° ©
10 o o o
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4 % ) 0o full profile
o o o
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Figure 1 Scatterplot Matrix for Z Values for the Four Sets of Part Worth Esti-
mates

Figure 1 shows a scatter plot matrix of the z values for the four models. Careful
examination of the figure reveals that a linear relationship through the origin ap-
pears to be appropriate, although somewhat less so for the left two figures of the
bottom row, which show the relationship between the estimates based on choices
for the full profiles with the estimates for the partial profiles. Table 3 bears this
out. It shows the correlations, about zero rather than about the coefficient means,
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for all pairs of estimates.” The correlations are all at least 0.95, the lowest being
between choice full profile and the two partial profile estimates. Examination of
Figure 1 shows an outlying observation (for the attribute Strong) in the two left-
most figures for the bottom row. The choice full profile model provides a z value
for Strong that is only 0.30, whereas the z values for Strong for the two partial
profile models are 4.43 and 4.17 for ordinal and choice, respectively (Table 1).

Table 3:  Correlations (About the Origin) for the Z Values

Ordinal Choice Ordinal Choice

Partial Partial Full Full
Profile Profile Profile Profile

Ordinal

Partial 1.00

Profile

Choice

Partial 0.98 1.00

Profile

Ordinal

Full 0.97 0.98 1.00

Profile

Choice

Full 0.95 0.95 0.98 1.00

Profile

Given the apparent appropriateness of the perspective that the estimates from the
four models are proportional to each other, a good assessment of the coefficients
of proportionality can be obtained by a principal components analysis, again
through the origin.* The first principal component explains 98% of the total vari-
ance about the origin in the z values. Assuming that the remaining 2% of the vari-
ance is estimation error, this analysis confirms our belief that no model provides a
biased estimate of the part worths, although some may provide more efficient
estimates than others.

The loadings of the four model estimates onto the first component are, from
highest to lowest: Ordinal partial profile: .571, Choice partial profile: .514,
Ordinal full profile: .494, Choice full profile: .407. The lowest loading for the
choice full profile model reflects the somewhat poorer correlation of its estimates

3

The correlations are based upon a matrix £ of variances and covariances calculated
about the origin. That is, if the z values for the four different models are placed in the
four columns of a matrix Z with n rows, then £ =Z'Z/n.

The analysis is performed on the variance-covariance matrix calculated as described in
the preceding footnote.

4
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with those of the other models. These loadings provide our best estimate of the
relative efficiency of estimates from the four models because the first principal
component is proportional to a best estimate of the part worths and the loadings
for this component provide for each model that multiplier which most closely
reproduces its estimates.’

Thus the z values for the ordinal partial profile data are .571 / .514 = 1.112
times as large as for the choice partial profile data. This means that a study utiliz-
ing only choice information would have to sample 1.112"2 — 1 = 24% more re-
spondents to obtain equal precision in the part worth estimates.’® For the more
common full profile design the difference is greater: utilizing only choice informa-
tion would require that data be collected for (.494 / .407)"2 — 1 = 48% more re-
spondents than if extent-of-preference information is also collected. Given that the
respondents must process full profile information before determining each choice,
the extra work of having them rate their degree of preference for the chosen alter-
native would seem to be warranted.

8.5 Conclusion

The analysis in this paper provides answers, albeit based on a single data set, to
several questions of interest to those who wonder whether paired choice data
ought to be supplemented with extent-of-preference information.

e Consumers use extent-of-preference scales in a symmetric manner with respect to
the two alternatives. It appears that an assumption of symmetry may be imposed
in order to improve precision of part worth estimates, although perhaps not by
enough to warrant the extra effort involved in estimation.

e There is some evidence that respondents favor choice of the first alternative in
each pair when using full profile, but not partial profile, choice questions. This is
consistent with a belief that full profile choice tasks are more likely to overburden
respondents with information, inducing them to utilize a choice heuristic that
departs from the assumption of multiattribute utility maximization that underlies
choice based conjoint studies.

» [t does not appear that utilizing extent-of-preference information introduces a bias
into the part worth estimates relative to those estimates obtained from choice
information alone. No formal statistical test of the hypothesis of bias is presented,

Let V be the matrix of eigenvectors (,,loadings™) that yields the principal components Y
through the equation Y = ZV. Then Z = YV’ (because VV' = I). Hence the first principal
component (column) of Y, denoted y, provides a best (least squares) approximation to
the matrix Z by yv', where v is the first eigenvector (column) of V.

The elements of the vector v (footnote one) are proportional to the error standard
deviations,or scale parameters (Ben-Akiva and Lerman 1985; Swat and Louviere 1993),
and the relative efficiencies of estimates are given by their squares. Taking sample sizes
proportional to the inverses of relative efficiencies yields estimates of equal precision.
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but the evidence of the adequacy of the notion that part worth estimates obtained
from the four models analyzed are all proportional is nonetheless quite strong.

o Part worth estimates obtained by utilizing extent-of-preference information are
more efficient. The gain in efficiency is greatest for full profile designs. There it is
estimated that analyses utilizing choice information only must be based upon 48%
more respondents than those that also collect and utilize extent-of-preference
information. The difference is less striking for partial profile designs. There,
choice-only analyses would require 24% more respondents to provide the same
precision.

We can only conclude that supplementing paired choice conjoint data with
extent-of-preference information warrants consideration. It is most attractive when
many attributes are being studied simultaneously because in such settings choice
sets of size two greatly reduce the burden placed upon respondents. Other work
has shown, using three different data sets, that paired choice designs can lead to
efficient part worth estimates (Chrzan and Elrod 1994). We find here that extent-
of-preference information further increases the efficiency of these designs. The
ability to analyze extent-of-preference information using available ordinal logistic
regression software is also a plus. We show how simple analyses can determine
whether the extent-of-preference information is providing valid information about
the determinants of choice. Although the indication here is that it does, utilizing
only the choice information from a study that also collects extent-of-preference
information always remains an option. Finally, it must be remembered that all the
advantages of choice-based conjoint studies cited at the beginning of this article
are retained. In particular, the same formula is used to obtain choice share
predictions for choice sets containing any number of alternatives.
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9 A Multi-trait Multi-method Validity Test of
Partworth Estimates

Wagner Kamakura and Muammer Ozer

9.1 Introduction

Conjoint analysis has already been widely accepted by marketing researchers as a
popular instrument for the measurement of consumer preferences. Typical applica-
tions of conjoint analysis include new product design based on the relationship
between product features and predicted choice behavior, benefit segmentation
based on attribute preferences, etc. The popularity of conjoint analysis among
marketing researchers hinges on the belief that it produces valid measurements of
consumer preferences for the features of a product or service, and that it provides
accurate predictions of choice behavior.

Given this importance, a vast literature has already emerged on the validity of
conjoint analysis for the measurement of preferences. However, as we will discuss
it in more details in our literature review section, these tests usually involve col-
lecting data from two separate conjoint tasks (usually in the same interview),
estimating partworths based on the first task, using the estimates to make predic-
tions about the second task, and measuring predictive fit. We argue that these tests
are more akin to test-retest reliability assessments than validation tests. Our litera-
ture review also indicates that comparative conjoint studies have yielded inconclu-
sive results partly due to the different validity measures used as a basis for valida-
tion.

The purpose of this chapter is to compare various conjoint models across their
partworth estimates based on actual behavior. Because we are comparing those
methods across their partworth estimates, we use a Multitrait-Multimehod
(MTMM) framework to assess the relationships among the methods and the part-
worth estimates. We test the relationships by using both the traditional MTMM
analysis and a direct product methodology. The following section presents our
literature review. After that, we provide a summary of the MTMM and direct
product methodologies. Then, we present details about our research design and the
conjoint models that we used to generate partworth estimates. Finally, we discuss
our results and conclude the chapter with managerial and research implications.

9.2 Literature Review

Previous studies have proposed a number of methods to improve the validity and
reliability of conjoint analysis. For example, Hagerty (1985) used a Q-type factor
analysis to determine optimum weights that optimize the expected mean squared
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error of prediction in a validation sample. He tested his methodology by using
both synthetic and real data. He manipulated the amount of overlaps in the clusters
of partworth estimates in two Monte Carlo simulations. He also asked student
subjects to rank-order eighteen job descriptions based on five attributes. Two of
the eighteen job descriptions were used as a holdout sample. He compared his
results with those of non-overlapping clustering and individual-level clustering.
Based on Mean Squared Error (MSE) and the first choice prediction criteria, he
showed that his methodology yielded higher predictive accuracy.

In another study, Kamakura (1988) used an agglomerative hierarchical method
for simultaneous segmentation and estimation of conjoint models. He used a least
squares procedure to identify segments that maximize the predictive validity of the
segment-level partworth estimates. He compared his results with those of the two-
stage segmentation procedure (individual-level estimation and clustering of sub-
jects based on partworth estimates) by using both synthetic and empirical data
based on holdout samples. His synthetic data included simulated preference rank-
ings whereas his real data consisted of preference ratings of twenty-seven full-
profile descriptions of checking account services. The holdout sample included
eight profiles with the same attributes. He concluded that his methodology and the
two-stage segmentation procedure yielded similar partworth estimates, but his
proposed methodology gave consistently more accurate results. Ogawa (1987)
also suggested a similar procedure, but used a logit-based estimation methodol-
ogy. By using both simulated data and a set of preference data for Japanese auto-
mobiles, he was able to show that his partworth estimates were internally valid.
Similar to earlier studies, his validity assessment was also based on a holdout
sample.

Wedel and Steenkamp (1989) proposed a fuzzy clusterwise regression algo-
rithm to allow consumers to possess partial membership in multiple segments.
Wedel and Steenkamp (1989) compared their procedure with a clusterwise regres-
sion and Hagerthy’s optimal weighting method. They first used a simulated data to
validate the computational efficiency of their method. They later used a data set
about customer satisfaction with respect to eight stock market scenarios and an-
other data set for meat products. The results of the simulation showed that the
methodology was computationally sound. In addition, judging by the percentage
of first choices accurately predicted in a holdout sample with similar tasks, they
concluded that their method and the clusterwise regression gave consistent results.
They also concluded that their results were slightly better than those of Hagerty’s
method for well-defined clusters, but were worse for diffuse clusters. Similarly,
DeSarbo et al. (1992) introduced a latent class methodology that allowed overlap-
ping clusters for simultaneous segmentation and parameter estimation by using a
mixture of multivariate conditional normal distributions. They successfully ap-
plied the methodology to a conjoint experiment on remote controls for cars, simul-
taneously identifying segments and generating partworth estimates within each
segment. When they compared their methodology with various OLS procedures,
they found that their latent class procedure outperformed them based on a likeli-
hood-ratio test and a goodness of fit index (R-square).
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As an example of incorporating exogenous variables into the segmentation
process, Kamakura, Wedel and Agrawal (1994) presented a multinomial mixture
model for the external analysis of rank-order, pick-any and conjoint choice data.
They used their model to simultaneously determine market segments based on
consumer characteristics and to generate partworth estimates for each segment.
They used synthetic data to assess the performance of their methodology in
recovering ,,true” parameters in a sample. They also used a conjoint experiment
about banking services to assess the predictive validity based on a holdout sample.
Both the estimation and the holdout samples included nine profiles that were
equivalent, but distinct. They compared their model with a naive model, an
aggregate rank order logit model with dummy variables, and a latent class rank
order logit model without concomitant variables. The results provided support for
the internal and predictive validity of the proposed methodology.

Despite the proven performance of the models, the results of the comparative
studies have been inconclusive. For instance, Hagerty (1985) and Kamakura
(1988) found that their proposed methodologies outperformed the alternative OLS
methodology. However, Green and Helsen (1989) conducted a conjoint experi-
ment about student apartments and concluded that neither Hagerty’s optimal
weighting methodology nor Kamakura’s method led to higher predictive validities
than were obtained by conventional OLS. Their validation was based on a holdout
data that was collected during the same experiment. The estimation set included
eighteen full profile descriptions whereas the holdout sample had sixteen profiles
with the same attributes. Similarly, Green, Krieger and Schaffer (1993) used three
different studies to compare the predictive accuracy of Hagerty’s optimal weight-
ing methodology with those from individual OLS estimation. Based on a holdout
validation sample, they showed that the optimal weighting methodology did not
outperform the OLS method.

In an extensive Monte Carlo study, Vriens, Wedel and Wilms (1996) manipu-
lated the number of subjects, number of profiles, number of segments, error vari-
ance, segment homogeneity, and segment similarity to compare nine methods of
metric conjoint segmentation based on parameter recovery, goodness of fit and
predictive power. The methods included the traditional two-stage approaches with
(TTSWA) and without (TTSKM) hierarchical clustering, the alternative two-stage
methods using Ward’s clustering (ATSWA) and a K-means clustering procedure
(ATSKM), the optimal weighting methods (OW), the optimal weighting method
followed by a K-means clustering procedure (OWKM), the clusterwise regression
procedure (CR), the fuzzy clusterwise regression procedure (FCR), and the latent
class normal distribution model (LCN). In terms of goodness of fit, the results
indicated that the two-stage clustering procedures (TTSWA, TTSKM, ATSWA,
and ATSKM) outperformed OWKM, FR, and LCN. However, with respect to
parameter recovery, methods that integrate segmentation and estimation aspects of
conjoint analysis (integrated conjoint segmentation methods) outperformed the
two-stage clustering procedures; most notably, the latent class methodology of
DeSarbo et al. (1992) performed best among the integrated methods. Finally, the
tested methods had similar predictive power based on an assessment with a hold-
out sample.
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9.21 Validation of Partworth Estimates

Among the important managerial applications of conjoint analysis are the design
of new products, development of advertising and marketing strategies, and the
identification of relevant market segments for product targeting and positioning.
Managers achieve these objectives by considering the partworth estimates ob-
tained from a conjoint study. Despite the importance of partworth estimates in
marketing, most research studies have investigated the ability of conjoint models
in predicting overall preferences for bundles of attributes, as opposed to investi-
gating the validity of partworth estimates. Previous researchers such as Vriens,
Wedel, and Wilms (1996) looked at parameter recovery measured by the root-
mean-squared-error between the ,true” (simulated) and estimated values of the
partworths. Our study aims to compare the partworth estimates obtained from
different conjoint models with actual consumer behavior that is directly related to
these estimates.

There are a few studies that have already looked into the validation of part-
worth estimates. However, they have primarily focused on the consistency of the
partworth estimates across estimation procedures. For example, in an earlier study
about consumer preferences for banks in which to open a checking account, Jain et
al. (1979) compared the partworth estimates obtained from different conjoint
estimation techniques such as MONANOVA, JOHNSON, LINMAP, LOGIT, and
OLS. Based on a holdout sample of conjoint profiles, they showed that the meth-
ods yielded significantly different partworth estimates across different data collec-
tion methods. In addition, they showed that the LINMAP procedure was effective
in predicting the first choice in the holdout sample whereas the OLS procedure
was more effective in predicting the least preferred choice in the sample. Leigh et
al. (1984) also compared the partworth coefficients estimated by using different
procedures such as rank-order, paired comparison, graded paired comparison, and
ranking scale with the weights elicited through a self-explicated procedure for
hand-held calculators. The results failed to provide support for the presumed
greater reliability and validity of the tested procedures over the self-explicated
procedure. The reliability was assessed by test-retest comparison whereas the
predictive validity was measured based on a simulated choice (raffle) in a separate
interview.

In a conjoint experiment involving student apartments, Akaah (1991) com-
pared the predictive performance of self-explicated, traditional conjoint and hybrid
conjoint models under alternative data collection modes including in-person inter-
views, mail questionnaires and telephone interviews. By using eighteen estimation
profiles and six holdout profiles, they showed that the self-explicated and tradi-
tional conjoint models gave fairly similar attribute importance weights across the
different data collection modes. In addition, Darmon and Rouzies (1991) con-
ducted a conjoint simulation to investigate the internal validity of part worth esti-
mates across different design (full vs. fractional) and different estimation proce-
dures (LINMAP, MONANOVA and OLS). By comparing the partworth estimates
generated by known functional forms (,,true” values) with those generated by a
conjoint analysis procedure, they showed that the partworth estimates were more
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valid with full design rather than with a fractional factorial design, and with OLS
rather than other estimation procedure when a fractional design was mandatory. In
a subsequent simulation study, Darmon and Rouzies (1994) also investigated the
role of error in the reliability and internal validity of part worth estimates. The
results indicated that when there is a low level of error in the input data less im-
portant attributes are underestimated whereas when there is a high level of error in
the input data less important attributes are overestimated.

9.2.2 Validation Measures

Researchers argued that the inconclusive results of previous comparative studies
could be due to several factors. Among the most important factors affecting the
results is the use of one or two data sets and/or the use of a small holdout sample
(Hagerty 1993; Vriens, Wedel and Wilms 1996). For example, Hagerty (1993)
stated that the type of brands included in a holdout sample could affect the validity
results and urged researchers to consider multiple holdout samples for cross vali-
dation. It can also be due to various validation measures used in the literature.

Previous studies have used different validity measures. Given the difficulties in
externally validating conjoint experiments, many studies have emphasized internal
validity which can be measured by a test/re-test reliability analysis and/or cross-
validation, i.e., the ability of a model to predict the rankings or the first choice in a
hold-out sample (Green, Krieger and Agarwal 1993). Alternatively, some studies
also used Monte Carlo simulations to validate or compare alternative conjoint
methodologies (Vriens, Wedel and Wilms 1996) on synthetic data.

In this chapter, we attempt to assess the external and convergent validity of the
preference measurements obtained from various conjoint methods. We used actual
behavior of individuals for comparison. More specifically, we compared the pref-
erences of customers of a major bank for a factorial design of account characteris-
tics with their actual banking behavior on those dimensions that were measured
immediately prior to the conjoint study and were totally independent from the
conjoint task. We believe that using actual behavior for validating and/or compar-
ing alternative conjoint methods can reduce some of the concerns associated with
holdout samples and other alternative validation measures.

There are a few studies that have already used actual behavior for validation.
For example, Krishnamurthi (1988) asked MBA students and their spouses to
rank-order 28 hypothetical job descriptions. Three months later, he asked the
couples to rank-order the job offers that they received. The predictive validity was
calculated based on the actual job choices that the models predicted. Similarly,
Srinivasan and Park (1997) conducted a conjoint study to identify how important
different factors were for MBA students in choosing among job offers. Three
months later they asked the participants about the number of job offers they had
and the one they selected. The predictive validity was assessed based on a com-
parison between the actual job choices and the predictions of the conjoint model.
Although this can also be a useful measure, the three-month time lag can involve
changes in the environment and in individuals’ preferences.
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Some researchers have also used raffles to simulate an actual choice
environment. For example, Leigh et al. (1984) first conducted a conjoint
experiment for hand-held calculators. Two weeks later, their subjects participated
in a raffle for a calculator of their choice from a predetermined set of ten
calculators. The subjects’ choice in the raffle represented actual behavior and was
a base for predictive validity. Although these measures provide a powerful way of
assessing the validity of conjoint studies, the results can be subject to a carry-over
bias. In other words, once the respondents participate in a study, they tend to
remember their answers and be consistent if they are required to participate in a
similar study (Morwitz et al. 1993). This bias can be reduced by having a longer
time period between the two studies. However, as the time gap gets larger, the
conditions and individuals’ preferences can change. Thus, we will not know
whether the difference between the estimation and actual behavior is due to the
method used or due the changes in the conditions. Furthermore, these studies
focused on predictive validity of the composite utilities, rather than on the
measurement of preferences for each attribute

9.3 The Multitrait Multimethod (MTMM) Methodology

Because we are interested in comparing the validity of various conjoint method-
ologies in measuring preferences for various attributes, we compared the methods
within an MTMM framework. The MTMM analysis was first introduced by
Campbell and Fiske (1959) for construct validation. A typical MTMM matrix
includes correlations among multiple traits (concepts) measured by multiple
methods and enables researchers to determine the extent of similarities of the
methods (convergence) and the extent of uniqueness of the traits (discrimination).

Campbell and Fiske (1959) also suggested specific criteria for convergent and
discriminant validity in analyzing an MTMM matrix. Convergent validity is
achieved when the correlations between attempts to measure the same concept
with different methods (i.e., monotrait-heteromethod correlations) are significantly
different from zero and sufficiently large. On the other hand, discriminant validity
is achieved when:

1. the correlations between attempts to measure the same concept with different
methods (i.e., the monotrait-heteromethod correlations) are larger than the
correlations between attempts to measure different concepts with different
methods (i.e., the heterotrait-hetereomethod correlations);

2. the correlations between attempts to measure the same concept with different
methods (i.e., the monotrait-heteromethod correlations) are larger than the
correlations between different concepts measured by the same method (i.e.,
the heterotrait-monomethod correlations); and finally

3. the patterns of correlations between different concepts are consistent under
the same or different methods (Bagozzi and Yi 1991).
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Despite providing these criteria, Campbell and Fiske (1959) did not specify
any objective mechanism to test them. The criteria are subjectively assessed by
researchers, thus leading to ambiguous interpretations. Researchers later
developed statistical procedure to analyze MTMM matrices, most notably
Confirmatory Factor Analysis (CFA) and direct product decomposition. CFA
decomposes the total variation into (1) the variation due to differences in
individual trait scores, (2) the variation due to differences in systematic biases
induced by methods used and (3) the variation due to random error (Bagozzi and
Yi 1991). The CFA methodology assumes that the total variation is a linear
combination (additive) of the variations due to traits, methods and error.
Researchers have questioned the validity of this assumption by showing some
level of interaction between traits and methods (Campbell and O’Connell 1967;
Lastovicka et al. 1990; Kumar and Dillon 1992).

As an alternative, Browne (1984) proposed a methodology called Direct Prod-
uct Model for analyzing MTMM matrices based on a multiplicative decomposi-
tion of the trait and method effects. Under this methodology, the observed covari-
ance matrix is expressed as

() T=ZPy®Pr+E%)Z

Where X is the population covariance matrix for the observed scores; Py and
P are nonnegative definite matrices of method and ftrait correlations,

respectively; E2 is a nonnegative definite diagonal matrix for the unique
variances; Z is a nonnegative definite diagonal matrix of scale constant; and ®
represents a right direct (Kronecker) product. Note that the elements of Py and

P represent multiplicative components of common score correlations, that is

correlations corrected for attenuation as opposed to observed score correlations. In
addition, the identification of scale factor estimates requires one equality
constraint per method. For instance, one may select a trait and set all its scale
parameters (corresponding diagonal elements of Z) equal to unity (Wothke and
Browne 1990).

An important aspect of the direct product model is that the P and P matri-

ces can be directly used to test the convergent and discriminant validity of con-
structs as suggested by Campbell and Fiske (1959). More specifically, convergent
validity is achieved when the correlations among methods in Py, are positive and

large. On the other hand, discriminant validity is achieved when (1) the correla-
tions among traits in P are low; (2) the method correlations in Ppg are greater

than the trait correlations in P; and (3) the direct product model fits the data

(Bagozzi and Yi 1991).

Previous studies have compared the additive and multiplicative approaches to
analyzing MTMM matrices (Lastovicka et al. 1990; Bagozzi and Yi 1991; Kumar
and Dillon 1992). Despite the inconclusive results, the studies suggested that the
use of a particular methodology should be based on theory. Furthermore, Kumar
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and Dillon (1992) argued that when the primary purpose is to assess the extent to
which the MTMM data satisfy the Campbell and Fiske (1959) criteria, the direct
product model should suffice. As we will discuss it further in the following section
in more details, we compare the partworth estimates of various conjoint models
for banking services. In addition, we also compare the partworth estimates with
actual behavior. Because we are using actual behavior as one of the methods the
partworth estimates interact with the traits. In other words, the partworth estimates
of the conjoint models should be different than actual behavior. Furthermore,
because our primary focus is to test the criteria set by Campbell and Fiske (1959)
we use a direct product model to conduct the MTMM analysis.

The following section briefly explains the research methodology and the vari-
ous conjoint models used in the MTMM analysis. After that, we present the results
of the MTMM analysis.

94 Description of Data and Methods

Our Multitrait Multi-Method analysis will be based on a comparison of partworth
estimates for multiple attributes obtained from four different estimation methods,
with actual behavior, directly related to the attributes preferences measured in the
conjoint task, observed from the same consumers. For this purpose, we use the
same data utilized by Kamakura et al. (1994) to illustrate their latent-class conjoint
segmentation model. This commercial study involved four attributes for checking
accounts, each manipulated in three levels:

o MINBAL: minimum balance required to exempt the customer from a monthly
service fee ($0, $500 or $1,000)

o (CHECK: cost to the customer per checked issued (Oc, 15¢ or 35¢)

e FEE:monthly service fee ($0, $3 or $6)

o ATM: availability and cost of ATM (no access, free ATM, or paid ATM @ 75¢
per transaction)

Two distinct but equivalent sets of 9 hypothetical checking accounts were gener-
ated using a fractional factorial design. A random sample of 269 customers from
the bank was asked to rank the nine accounts from the first set in order of prefer-
ence. After a series of other questions related to the same commercial study, the
respondents were asked to rank the second set of profiles. These two similar tasks
provided us the opportunity of replicating the test-retest reliability comparisons
that are commonly reported in the conjoint literature.

In addition to the two conjoint data sets, we also obtained the following infor-
mation (in disguised and anonymous format) from the bank, regarding the partici-
pants’ banking behavior in the 6 months immediately prior to the conjoint task:
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o BALANCE: average balance kept in the account (earning 5% interest)
 NCHECK: number of checks issued per month
¢ SRVFEE: number of times the customer paid a monthly service fee
» NATM: number of ATM transactions per month
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Figure 1. Least squares regressions (OLS) to the data from each of the 269

subjects
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This combination of conjoint and behavior data provides us with a rare opportu-
nity of testing for the external validity of the preference measurements obtained
from conjoint analysis using a variety of estimation methods. Preferences for the
levels of the four attributes in the conjoint task can be viewed as multiple traits.
On the other hand, measurements for each of these attributes obtained from differ-
ent estimation methods, along with the actual banking behavior associated with
these attributes represent multiple measurement methods, leading to the classic
Multitrait Multi-methods approach for assessing the validity of measurement
instruments. Given that we know the actual behavior of the respondents, we al-
ready have an idea of the inter-trait correlations. For instance, people who are
sensitive to minimum balance should be more willing to pay a monthly fee
whereas people who do not care about minimum balance (i.e., people who have
money in their accounts) do not want to pay a monthly fee. In addition, given the
inconclusive results of the previous comparative conjoint validation studies, we
are more interested in the inter-method correlations. Moreover, one of our ,,meth-
ods” is the actual banking behavior observed immediately prior to the conjoint
task, providing a benchmark for assessing predictive validity.

The following measurement methods are used in our MTMM analysis:

individual OLS estimates,

Kamakura’s (1988) agglomerative hierarchical regression(KAM),
Hagerty’s (1985) Q-factor methodology (HAG), and

Latent Class Rank Logit model (Kamakura et al. 1994),

W =

The first method (OLS) involves the estimation of a linear regression for each
respondent across all nine profiles, using the (inverted) preference ranking as the
dependent variable. The next two models (KAM and HAG) attempt to improve
the predictive validity of the partworth estimates by estimating them within
homogeneous groups of consumers (KAM), or by obtaining an optimal
partitioning of the sample via Q-factor analysis. The emphasis in these two
techniques is obtaining individual-level estimates that would maximize the ability
to predict preferences. The main purpose of the latent-class rank logit model, on
the other hand, is market segmentation, i.e., identify relatively groups of
consumers who are relatively homogeneous in their preferences for the attributes.

Application of least squares regressions (OLS) to the data from each of the 269
subjects leads to the partworth estimates displayed in Figure 1. The partworths for
MINBAL, CHECK and FEE are the regression coefficients for the (mean-centered)
attributes, while the partworths for ATM are the coefficients for the effects-coded
dummies for Free ATM and Paid ATM.
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Figure 2:  Predictive validity indices

The hierarchical clusterwise regression approach (KAM) joins consumers into
hierarchical segments to maximize a predictive validity index, which indicates the
ability of predicting individual-level preferences using cluster-level estimates of
partworths. Application of the model to our data led to the predictive validity
indices displayed in Figure 2. Based on this figure, and on the purpose of maxi-
mizing predictive accuracy, we chose the 23-cluster solution, which is not appro-
priate for segmentation purposes, but produces the highest expected predictive
accuracy. The distribution of partworth estimates across the 269 consumers are
shown in Figure 3.

The method proposed by Hagerty (1985) (HAG) amounts to a Q-factor analy-
sis of the between-subjects covariance matrix of preference ratings. The eigenval-
ues obtained from applying Hagerty’s Q-factor analysis to our data are displayed
in Figure 4. Based on these values, we decided for a 3-factor solution. The indi-
vidual-level estimates of partworths are summarized in Figure 5.

Application of the latent-class rank logit model led to 4 latent classes, chosen
on the basis of the ICOMP criterion (see Kamakura et al. 1994 for details on this
analysis). The individual-level estimates, based on this 4-class solution are sum-
marized in Figure 6. The reader should note that while the other approaches being
compared specify a linear model relating the attributes to the observed prefer-
ences, the latent-class rank logit model is applied to preference rankings. Conse-
quently, the relationship between the attributes and the observed preferences is
non-linear, and the estimated partworths are not directly comparable to the ones
obtained from the other approaches.
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Figure 4. Eigenvalues obtained from applying Hagerty’s Q-factor analysis

Aside from the estimates shown in Figures 1, 3, 5 and 6, we also obtained esti-
mates for each of the models using the second set of conjoint profiles. The correla-
tions between these two measurements for the same constructs and subjects using
the same method in two separate tasks provide us with the measures of test-retest
reliability for each construct (partworth) and method.

As mentioned earlier, we also had data on the actual banking behavior of each
of the 269 respondents on variables that are directly related to the estimated part-
worths. Consumers who are highly sensitive to minimum balance (extreme nega-
tive partworths for MINBAL) would be expected to have lower average balances
(BALANCE). Therefore, the partworths estimates for MINBAL obtained from any
method should be positively correlated to BALANCE.

Similarly, those who are highly sensitive to cost/check (extreme negative
partworths for CHECK) would be expected to issue more checks per month
(NCHECK). In order to maintain a positive correlation between partworth esti-
mates and observed behavior, we invert the sign of the partworth estimates for
CHECK, which should then be positively correlated with NCHECK.
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Table 1:  MTMM Matrix

MIN. BALANCE COST/CHECK MONTHLY FEE ATM ACCESS
ACT OLS KAM HAG LCA ACT (OLS) (KAM) (HAG) (LCA) ACT OLS KAM HAG LCA ACT OLS KAM HAG LCA

average balance in past year 100

OLS estimate for min. balance 39 87

KAM estimate for min. balance 39 94 76

HAG estimate for min. balance | 39 99 93 86

LCA estimate for min. balance 35 93 91 93 83

checks issued per month 32 6 & 7 104100

(OLS estimate for cost/check) 33 51 47 55 58 17 68

(KAM estimate for cost/check) 30 56 52 58 644 16 87 60
(HAG estimate for cost/check) 38 64 60 65 694 13 89 86 73
(LCA estimate for cost/check) 13 24 25 26 350 6 50 48 45 421

number of times paid fee -54 -38 -35 -39 -37 5 -35 -34 -42 -1§
OLS estimate for monthly fee -16 -32 -31 -30 -37 7 -30 -41 -60 -2
KAM estimate for monthly fee -24 -38 -37 -37 41 -3 -41 -50 -65 -22d 25 81 37

HAG estimate for monthly fee -37 -59 -56 -60 -66 -15 -89 -85 -99 -45Q 40 61 66 70
LCA estimate for monthly fee -10 1 1 0 -13 -8 -45 -41 -43 -81Q 15 24 24 44 4§

number of ATM transactions 0o 2 5 2 3 3 -15 -14 -16 -6 23 14 12 15 154100

OLS importance of ATM 10 26 28 19 14 10 -3 -1 9 -44 1 13 2 -7 39¢ 13 39

KAM importance of ATM 12 27 32 22 14 6 -4 -2 9 4 6 5 2 -7 390 10 83 24

HAG importance of ATM 27 54 56 55 58 12 42 43 45 16 -21 -33 -32 -48 20§ 16 11 11 61

LCA importance of ATM -10 1 1 -1-13 -8 -46 -41 -43 -82 16 24 23 44 100§ 15 39 39 19 15]

Customers who already pay monthly service fees (SRVFEE) should show less
resistance to monthly fees (FEE) than those who rarely pay monthly service fees.
Therefore, the partworth estimates for FEE should be positively correlated with
the observed behavior SRVFEE, irrespective of the estimation method.

One should also expect customers with a large number of ATM transactions
(NATM) to value this service more than those who are light users or non-users of
it. In order to measure respondents’ perceived value for ATM’s, we create a new
measure (ATMV) by subtracting the partworth for paid ATM (75¢) from the part-
worth for firee ATM. This new measure of preference for ATM’s (4TMV) should
be positively correlated with the number of ATM transactions (NATM).

Because the relationships among the partworth estimates obtained from the
various methods and the observed behaviors are not necessarily linear, we used
Spearman rank correlations to obtain the Multitrait Multi-method matrix. The
resulting MTMM matrix is shown in Table 1, organized by methods. We also
include the test-retest reliability correlations in the diagonals. These test-retest
correlations show that the OLS and HAG methods tend to produce more reliable
measurement than the other two approaches.

9.5 MTMM Analysis

Once creating the MTMM matrix in Table 1, we conducted a conventional
MTMM analysis as suggested by Campbell and Fiske (1959) and a direct product
model. A visual inspection of the MTMM matrix indicates some evidence of con-
vergent and discriminant validity among the estimation methods. Convergent
validity among the four estimations is clearly evident for MINBAL and CHECK,
for which the monotrait-heteromethod correlations are very strong. Convergent
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validity for FEE is not as strong, but still statistically significant at 0.01. Conver-
gent validity for ATMV is only evident for OLS, KAM and LCA.

Discriminant validity is also generally established in Table 1 among the four
estimation methods, for MINBAL, CHECK and FEE. Monotrait-heteromethod
correlations are larger than the heterotrait-heteromethod and heterotrait-
monomethods correlations. However, discriminant validity (especially for the
third criterion discussed earlier in this chapter, regarding the patterns of heterotrait
correlations) is more easily verified with the direct product model, as discussed
below.

In order to establish a stronger comparison of the different conjoint models, we
applied a direct product decomposition to the MTMM matrix. We used
MUTMUM (Browne 1992) to test the convergent and discriminant validity of the
MTMM matrix. Table 2 presents the matrices of correlations among methods, Py,

and traits, PT. As can be seen from the Pyq matrix, the correlations among the

different conjoint methods are very large. More specifically, as can be seen from
the matrix, the correlations are significantly different from zero and sufficiently
large, indicating strong convergent validity among the estimation methods. How-
ever, when it comes to explaining actual behavior, the partworth estimates of the
conjoint models have relatively low correlations with the actual banking behavior.
This implies that even though the conjoint models are consistent in their predic-
tions, they have a relatively lower explanatory power with respect to actual behav-
ior. This can be due to many external factors affecting actual behavior that were
not included in the conjoint models. Among the four methods, OLS and HAG
produce slightly better correlations with actual behavior, while LCA produces the
lowest correlation, which is understandable, because the latter method constrains
the individual-level estimates to the convex hull of the latent-class estimates.

Table 2:  PM and PT matrices

a. Ppp: Method Correlations

ACT OLS KAM HAG LCA
ACT 1.000
OLS 0.468 1.000
KAM 0.441 1.000 1.000
HAG 0.484 0.972 0.913 1.000
LCA 0.371 0.875 0.843 0.858 1.000

ACT: Actual behavior,

OLS: OLS estimation,

KAM: Kamakura’s methodology,
HAG: Hagerthy’s methodology, and
LCA: Latent Class Analysis.
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b. Pp: Trait Correlations

MBAL CHE FEE ATM
MBAL 1.000
CHE 0.651 1.000
FEE -0.579 -0.912 1.000
ATM 0.343 -0.111 0.168 1.000

MBAL: Minimum Balance,

CHE: Number of checks issued per month,

FEE: Number of times that the individuals paid a monthly fee, and
ATM: The number of ATM transactions.

On the other hand, a visual inspection of the PT matrix indicates that the correla-

tions among the different traits vary. For instance, consistent with our expecta-
tions, the amount of balance in the account is negatively correlated with the
monthly fee paid (i.e., the less an individual has in his/her bank account, the more
monthly fee he/she pays.) Similarly, the number of checks issued has a negative
correlation with the number of monthly fee paid.

One advantage of the direct product model is that we can directly test the con-
vergent and discriminant validity criteria established by Campbell and Fiske
(1959). Convergent validity is achieved when the correlations among the methods
in the Py matrix are positive and large. From the Ppq matrix, it is evident that the

correlations are positive and sufficiently large. Thus, the conjoint methods are in
agreement with each other. Discriminant validity is achieved when (1) the correla-
tions among traits in P are low; (2) the method correlations in Py are greater

than the trait correlations in P; and (3) the direct product model fits the data
(Bagozzi and Yi 1991). As can be seen from the P matrix, the first two condi-

tions for discriminant are only partially met. The trait correlation between CHECK
(with inverted sign) and FEE is strong and negative, indicating that customers
who are sensitive to charges per check are also sensitive to monthly fees. In order
to assess the last condition for the discriminant validity, we looked at the fit indi-
ces for the direct product model. Based on the OLS estimation procedure of
MUTMUM, the model’s discrepancy function value was 6.438 with correspond-

ing xz = 1884.31, d.f. = 159 and p = 0.00. In addition, the model’s Root Mean
Square Error of Approximation (RMSEA) was 0.201. All these indices suggest
that the model does not fit the data. Overall, when we take into account all these
three conditions we can conclude that the traits are not distinct. This is consistent
with our initial expectations that the traits in this study should be correlated.
Therefore, the lack of discriminant validity is a reflection of the traits being meas-
ured, rather than the measurement instruments.

Although we have theoretical and empirical reasons for using the direct prod-
uct model for conducting the MTMM analysis, we also wanted to use the CFA to
see whether we could get similar results. Like the models of many other research-
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ers (Kalleberg and Kluegel 1975; Lee 1980; Marsh and Hocevar 1983; and
Lastovicka et al. 1990), our model, after more than a dozen attempts, also yielded
uninterpretable results, such as correlations outside the —1 and +1 range, negative
unique variances, and nonconverging solutions. As suggested by Bagozzi and Yi
(1991), these types of solutions can also be considered as an indication of why an
additive model (CFA) is not appropriate to analyze MTMM matrices such as ours.

9.6 Conclusions and Directions of Future Research

Conjoint analysis has been a popular methodology for both researchers and practi-
tioners. One important aspect of conjoint analysis is the validity of the results. As
we discussed earlier, previous studies provide quite a large number of ways of
improving the validity of conjoint analysis. Previous literature also presents a
number of comparative studies investigating the extent to which those methods
improve the validity of conjoint analysis. The results of these comparative studies
have been inconclusive. The inconclusive results might be due to various reasons.
One of the important reasons is the validity measure used for comparison. Our
literature review indicates that previous studies have primarily used holdout sam-
ples and simulations. Only a few rare studies validated conjoint analysis with
actual behavior, observed after a certain time period such as three months.

We used actual banking behavior of individuals immediately prior to a con-
joint experiment as a benchmark for comparison, eliminating the concerns about
the validity measures. By using an MTMM framework, we compared the actual
banking behavior on four dimensions with the part worth estimates generated by
the OLS procedure, Kamakura’s and Hagerthy’s methodologies, and the latent
class analysis. The results were consistent with the findings of Vriens et al. (1996),
indicating that the methods had more or less similar predictive performance. How-
ever, one interesting result was that despite the strong consistency among the
methods, the correlations between the estimates and the actual behavior were
relatively low, which is understandable due to the multitude of factors affecting
actual behavior, but are not considered in the conjoint design.

Another aspect of the partworth estimates rarely considered in conjoint valida-
tion studies is their logical consistency. For example, in our study one should
expect customers to prefer to keep a lower minimum balance, pay less per check,
pay lower monthly fees, and have free access to ATM’s. Table 3 reports the per-
centage of the 269 respondents with logically consistent estimates for each of
these attributes for the four methods we tested. One can see that all methods pro-
duced a high percentage of logically consistent estimates, but the segment-level
models (KAM and LCA) performed slightly better.
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Table 3:  The percentage of the 269 respondents with logically consistent esti-
mates for each of these attributes for the four methods tested.

Proportion of cases with logically consistent estimates

OLS KAM HAG LCA
Minimum Balance 92.6% 96.7% 90.3% 100.0%
Cost/check 91.8% 95.2% 93.7% 100.0%
Monthly Fee 94.4% 97.4% 98.5% 100.0%

Free-Paid ATM  95.2% 92.9% 100.0% 100.0%

Overall 93.5% 95.5% 95.6% 100.0%

This is certainly just one attempt to cross-validate preference measurements ob-
tained through various conjoint models. Replication of the Multitrait Multi-
method analysis for other applications of conjoint analysis, using real behavior as
a criterion for external validity, are needed before generalizable conclusions can
be drawn about the validity of preference measurements via conjoint analysis. In
addition, future research can extend this study by investigating other conjoint
models and other data collection modes.
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10 Conjoint Preference Elicitation Methods in the
Broader Context of Random Utility Theory
Preference Elicitation Methods

Jordan Louviere, David Hensher and Joffre Swait

10.1 Introduction

The purpose of this chapter is to place conjoint analysis techniques within the
broader framework of preference elicitation techniques that are consistent with the
Random Utility Theory (RUT) paradigm. This allows us to accomplish the follow-
ing objectives: explain how random utility theory provides a level playing field on
which to compare preference elicitation methods, and why virtually all conjoint
methods can be treated as a special case of a much broader theoretical framework.
We achieve this by:

e discussing wider issues in modelling preferences in the RUT paradigm, the
implications for understanding consumer decision processes and practical
prediction, and how conjoint analysis methods fit into the bigger picture.

o discussing how a level playing field allows meaningful comparisons of a variety
of preference elicitation methods and sources of preference data (conjoint
methods are only one of many types), which in turn allows us to unify many
disparate research streams;

o discussing how a level playing field allows sources of preference data from
various elicitation methods to be combined, including the important case of
relating sources of preference elicitation data to actual market behaviour;

o discussing the pros and cons of relaxing the simple error assumptions in basic
choice models, and how these allow one to capture individual differences without
needing individual-level effects;

o using three cases studies to illustrate the themes of the chapter.

Random Utility Theory is not new; Thurstone (1927) proposed it as a way to
understand and model choices between pairs of stimuli. RUT languished until
McFadden (1974) provided key theoretical and econometric insights necessary to
extend the paradigm to the general case of multiple choices and comparisons
(Rushton, 1969 independently developed a similar but less far-reaching approach
to modelling revealed choices). Since then, RUT has been applied to a wide range
of cases of human judgment, decision-making and choice behaviour, and now
represents a general framework for understanding and modelling many types of
human behaviour.

Thus, we adopt the view that almost all conjoint analysis techniques can be
viewed as a special case of the more general RUT paradigm. Historically conjoint
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techniques have played an important role in understanding preference formation in
marketing and other social sciences, so a contribution can be made by introducing
and discussing a more general framework and the role of conjoint analysis meth-
ods within it. In fact, it could be argued that the term ,,conjoint analysis” has
passed its ,,use-by” date, and should be replaced with more specific terms like
,»Random Utility Choice Modelling” to describe various ways to model preference
and choices. This could help to counter the misconception that there is one unique
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Figure 1: A General Framework For Understanding Decision Sequences
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technique called ,,conjoint,” when, in fact, there are many forms and flavours of
,conjoint analysis,” each of which requires different assumptions and analytical
techniques. For example, some conjoint theory and methods are consistent with
economic theory but some are not, some methods permit one to combine experi-
mental with actual marketplace choice data but many do not, etc.

Indeed, there are many ways to understand and model preferences and choices,
some of which bear scant relation to one another and others that are incompatible,
both theoretically and analytically. RUT offers a way to unify many seemingly
disparate approaches to understand and model preference formation and choice.
Figure 1 represents an overview of the general problems covered by RUT, which
can assist our understanding of the role of conjoint analysis methods within RUT.
Figure 1 should be regarded as a pedagogical vehicle to help explain why a more
general view is required; it is not a theory per se.

Figure 1 suggests that many consumers make a series of sequential decisions
en route to choosing products/services and brands. That is, a consumer first
becomes aware that particular product or service categories are available and can
satisfy needs/solve problems; if she is unaware of a category, the probability of
purchasing brands in it is zero. Once aware, she evaluates benefits or problem
solutions offered by category brands to determine her level of interest vis-a-vis
purchase costs. If she is not interested in, does not value or cannot use the benefits
(eg, she’s allergic to certain ingredients) or perceives low value relative to cost,
her category brand purchase probabilities will be zero. If she is interested in or
perceives value, she then decides if she can purchase. For example, she may need
a car, be interested in a luxury car but not be able to afford one or be put off by
what her friends will say if she buys one. Thus, if not capable, her category choice
probabilities may not be zero, but her brand choice probabilities in the luxury
category will be zero. Finally, if aware, interested and capable, she must decide
whether to buy now or wait. If she decides to wait, her current period brand
purchase probabilities in the category will be zero. If she decides to buy now, she
must decide which brand; and in many categories, she can buy more than one
brand and more than one quantity of each brand. Thus, in general volume choices
depend on brand choices, and inter-purchase times depend not only on brand and
volume choices but also on a consumer’s personal/household circumstances (eg,
income, lifestyle, storage space, etc.).

Although simplistic, the framework allows some interesting and important in-
sights into choice processes and the role of conjoint methods. In particular, many
applications of traditional conjoint techniques deal with the evaluation of brands
or ,brand descriptions” (profiles), while others deal with generic category descrip-
tions, or ,,concepts” (ie, benefits, problem solutions and costs that profile a cate-
gory rather than a brand in that category). In the brand case, traditional conjoint
methods model consumer evaluations of brand profiles near the end of the deci-
sion process sequence, which provides few insights about causally prior processes.
Causally prior decision processes can play major roles in market choices, hence
are of considerable strategic interest in their own right. In contrast, applications
that involve category profile (concept) evaluations are causally prior to brand
evaluations, so offer few insights into specific brand, volume or inter-purchase
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time choices. In general, therefore, they should have relatively low predictive
accuracy forecasting trial and repeat choices, except possibly in quite mature cate-
gories,

To properly understand and characterise markets, one needs a comprehensive
framework to explain and model the types of hierarchical (and temporal) se-
quences depicted by Figure 1. RUT is such a framework because it recognises that
decisions at any stages in a sequence (or any other sequences, including simulta-
neous decisions not involving sequences) are random utility processes; hence
decisions at advanced stages are conditional on decisions at prior stages. Figure 1
suggests why few researchers in marketing report significant individual differ-
ences associated with social, demographic, psychographic or similar factors, de-
spite considerable evidence elsewhere that such differences often are significant,
particularly in transport applications (Ben-Akiva and Lerman 1985; McFadden
1986; Ben-Akiva and Morikawa 1990). That is, individual differences, such as
social and demographic factors, probably play key roles in early stages of deci-
sion-making, and explain fewer differences in choices in later stages.

For example, category and brand awareness may be influenced significantly by
lifestyle, location of residence, media access and overall social and economic
status (inter alia). As well, interest in and capability of purchasing in categories
and decisions to delay purchases are likely also to be influenced by such factors.
Failure to take such decision sequences and conditioning into account may lead to
a wide variety of incorrect inferences and conclusions about decision and choice
processes. For example, overall levels of price in categories may play causally
prior roles in choices at earlier stages, such that those who choose brands are a
,selected” sample of the market. Thus, it is unclear how to interpret price effects
in many traditional conjoint or scanner data choice models because such effects
are biased if one does not account for decisions not to purchase or delay purchase
because of overall category price levels. Consumer income and other social and
demographic factors may play roles in such causally prior processes, but are typi-
cally ignored, or at least under-represented, in many conjoint and choice model-
ling applications in marketing. Thus, it is hard to predict market behaviour and
future outcomes well if one fails to take causally prior decisions into account
when they matter. That is, RUT is not to blame for less than expected prediction
accuracy; rather it is the application itself.

A more pragmatic assessment would suggest that decision processes in many
markets are relatively stable because these markets are mature; hence, one can
ignore prior processes if one’s primary objective is short-run prediction. Although
the latter observation often may be true, it begs the more general question, which
is the object of this chapter: How can we advance understanding of decision
processes and develop better and more accurate approximations to them that
will permit us to forecast market behaviour more accurately in both short and
long terms?
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10.2 The Random Utility Theory Paradigm

The introduction provided insights into deficiencies in academic and applied re-
search in decision and choice processes, including conjoint analysis methods. The
purpose of this section is to introduce RUT and explain how it can enhance our
understanding of decision processes, compare and contrast models from different
sources of preference information, and relate models estimated from sources of
stated preference data (eg, conjoint data) to market choices (revealed preferences).
Preference, choice, or more generally, dominance data, come in many forms, such
as:

e cross-sections of past, present or future preferences or choices (eg, consumer’s
last or next brand choices);

o preferences or choices expressed in controlled experiments that manipulate
attribute levels and/or construct choice sets (eg, conjoint experiments);

o panels that supply temporal observations of preferences or choices (eg, scanner
panels);

e cross-sectional or panel observations of consumer judgments (more generally,
,evaluations”) of products on latent dimensions like ,.attractiveness,” ,.intent to
purchase,” etc. (eg, consumer brand evaluations on magnitude estimation or pro-
duction scales, rating scales or rank orderings, or ,,forced” discrete choices involv-
ing selection of one or perhaps none of the products);

o direct observations of choices made by single persons or groups of people (eg,
direct observation of purchases made from supermarket shelves);

e and many, many more.

This abbreviated list suggests that there are very many possible combinations
of preference data types and decision contexts. To identify relationships among
such preference data sources and test for regularity and order, one needs a unified
way to compare as many types of preference ,,revelations” as possible on a level
playing field. There has been little progress made in the comparison of such data
sources, much less development of mechanisms that can explain differences in
them. Indeed, there may be substantial regularities in preference and choice
processes, but the lack of a unified framework with which to study and compare
them has given rise to a veritable cottage industry of different techniques,
measurement methods, experimental paradigms and ,.stories” used to study and
explain decision processes (Louviere et al. 1999). As Louviere et al. (1999)
explain, there has been limited substantive progress in understanding the processes
themselves or regularities that may exist.

As in most scientific endeavours, little progress can be expected without fun-
damental theory, and empirical comparisons often are not meaningful without it.
RUT provides a unified theoretical framework and a theoretically sound and rela-
tively simple way to compare and contrast models estimated from many sources of
preference data and develop models to account for real market choices (McFadden
1974; 1981;1986; Ben-Akiva and Lerman 1985; Louviere, Hensher and Swait
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1999). In particular, RUT posits that the ,, utility” (or attractiveness) of prod-
uct/service options can be decomposed into systematic (ie, observed) and random
(ie, unobserved) components:

(1) Ui = Vi + g,

where U; is a latent measure of the attractiveness of option i, V; is an observable,
systematic or ,,explainable” component of the attractiveness of option i, and g;, is a
random or ,,unexplainable” component of option i.

Randomness arises because researchers, scientists or analysts cannot ,,Jook”
into consumers’ heads and observe the true attractiveness of each alternative.
Instead, they can indirectly observe indicators of the true attractiveness by design-
ing elicitation procedures (,,preference elicitation procedures” or PEPs) to give
insights into consumer preferences. Regardless of the time and effort one devotes
to understanding preferences, some aspects of consumer preferences cannot be
unexplained because all factors that drive preferences cannot be identified, unreli-
ability is inherent in the measurement procedures one uses and preferences may
vary at different times or situations for the same or different consumers.

Thus, viewed from the perspective of a scientist trying to explain consumers’
decision-making processes and/or preferences, consumer preferences must be
stochastic even if consumers themselves are perfectly deterministic. Consequently,
we seek to model the probability that a randomly chosen consumer will do some-
thing like choose a brand, tick a box, report a choice frequency, etc. That is,

@) PGIA) = P[ (Vi + &) >...>(V; + &)>..> (V, + &)], for all j in A,

where all terms are as previously defined, except for P(i|A), which is the probabil-
ity that a consumer chooses action i from the set of all possible actions {A}, from
which she might choose. RUT-based choice models are derived by making as-
sumptions about distributions of the random component (g) and deducing the
consequences for equation 2. The effects of interest in the deduced model form are
captured by specifying V; to be a function of a set of observables. These observ-
ables can be attributes/levels systematically manipulated in conjoint or conjoint-
like experiments and/or measures of quantities one hypothesises to explain or
drive preferences in particular situations. Regardless of whether the effects are
controlled, uncontrolled or some combination of both, V; typically is expressed as
a linear-in-the-parameters function of the observables:

3) Vi = 2k BiXis

where P is a K-element vector of parameters and X is an i by k vector (matrix) of
observables that describe the actions that were available to be chosen and the
consumers who make the choices (other relevant factors also can be included, like
different situations, conditions, time periods, environments, cultures, etc.). RUT
assumes that consumers try to choose those actions (options) that are the most
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attractive, subject to constraints like time, money, and peer pressure. We are un-
aware of other widely applied, scientifically accepted and empirically verified
choice rules except the maximum utility rule, although others have been proposed
from time-to-time (Simon 1983).

The foregoing discussion is well-known to many social scientists, and has been
the basis for a vast amount of previous research in the RUT paradigm. However,
what is less well-known and less-well appreciated is the fact that the random com-
ponent itself plays a fundamental role in the behavioural outcomes in many
sources of preference data. That is, random components play key roles in the sta-
tistical inferences made about model estimates (J’s, or so-called ,,partworths™)
within data sources, as well as in comparisons of model estimates across data
sources (Morikawa 1989; Swait and Louviere 1993; Louviere, Hensher and Swait
1998, 1999).

In particular, the random component (specifically, the variability in the ran-
dom component) is inherently linked to estimates of the partworths, and cannot be
separately identified in any one source of preference data (Ben-Akiva and Lerman
1985; Swait and Louviere 1993; Louviere, Hensher and Swait 1998, 1999). As
explained by Ben-Akiva and Morikawa (1990) and Swait and Louviere (1993), the
variance of the random component is inversely proportional to a constant that
,scales” the B parameters in all RUT choice models. In fact, the systematic com-
ponent is actually ABXy;, where A is a multiplicative constant that is inversely
proportional to the variability of the random component. A scalar A is embedded
in all choice models, regardless of the distributional assumption made about the
g’s to derive any particular choice model specification. Thus, A cannot be sepa-
rately identified (estimated) in any one source of preference data. However, as
explained by Ben-Akiva and Morikawa (1990) and Swait and Louviere (1993),
ratios of A’s can be identified from two or more sources of preference data if one
source of data is used as a constant reference. We note now, but leave for subse-
quent discussion, that identification of A within a single data set is possible if
exogenous information is introduced to allow for individual or alternative-specific
differences or if variances can be freed up to identification limits (HEV models).
We note that the present discussion assumes that the random components (ie, error
terms) are independent and identically distributed.

These ,,variance-scale ratios” play crucial roles in comparing models estimated
from different sources of preference data and testing hypotheses about how and
why they might differ. That is, one must account for differences in random com-
ponent variability to compare different sources of preference and choice data and
rule out the possibility that data sources differ only in levels of error variability
(ie, size of random components) before concluding that differences in model pa-
rameters are real. Swait and Louviere (1993) show how to test model and process
hypotheses by controlling for and taking into account differences in random com-
ponents.

The relevance of the preceding discussion to the objectives of this chapter is
that RUT provides the basis for level playing field comparisons of many sources
of preference and choice data. As Louviere (1994) noted, data from any conjoint
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experiment can be couched in a RUT framework, and modelled as a nested sub-
model within the RUT family of choice models. This allows one to test if utility
model parameters differ after accounting for differences in levels of error variabil-
ity between tasks, task conditions, time periods, situations, etc., regardless of
whether the observed data were generated from rating, ranking, binary, multiple
choice or other types of judgment and choice tasks. The basis for this conclusion
is the Luce and Suppes (1965) Ranking Theorem, which proves that any form of
dominance data can be expressed as some type of weak or strong order, which are
consistent with RUT and can be used to estimate RUT-based choice models.
However, different sources of preference data generally will have different levels
of random error variability, and hence different values of A. As earlier noted, dif-
ferences in A must be taken into account to compare models estimated from dif-
ferent sources of preference data, and failure to do so can lead to misleading con-
clusions about differences in data sources, decision processes, etc.

The foregoing is now well-known in econometrics, transport and environ-
mental and resource economics, but has been largely ignored in academic and
applied marketing research. For example, Ben-Akiva, et al. (1994) discuss and
Louviere, Fox and Moore (1993) show how to extend Louviere’s (1994) argument
to many forms of preference data, which in turn allows preference (utility) pa-
rameters to be compared and tested for different sources of preference data, types
of decision tasks, task manipulations (eg, attribute or profile orderings), groups of
people, time periods, etc. Louviere, et al. (1999) review a number of papers in this
paradigm, such as Hensher and Bradley (1993); Swait and Louviere (1993); Swait,
Louviere and Williams (1994); Adamowicz, et al. (1994, 1996); Swait, Ada-
mowicz and Louviere (1998); Louviere, Hensher and Swait (1998) (to name only
a few). As well, many of the basic issues are discussed in Carson, et al (1994);
Keane (1997); and Louviere, Hensher and Swait (1998, 1999). Thus, the theory is
well-established, there have been numerous empirical tests of the basic ideas dis-
cussed above and there is considerable empirical support for the general approach.

Moreover, comparisons of utility model parameters from different preference
data sources have been the subject of considerable research attention for many
years. A few examples include Meyer (1977), who examined profile order on
attribute weights; Meyer and Eagle (1982), who studied the effect of attribute
range on model parameters; Johnson (1989) who investigated attribute order ef-
fects; Olsen and Swait (1995) and Olsen, et al. (1995), who studied the effects on
model parameters of differences in response mode, sequential vs simultaneous
presentation, prior practice, etc; Oliphant, et al. (1992), who compared model
parameter differences due to ratings and choices and profile or choice set order
within tasks; Elrod, et al. (1993), who investigated the effects of Pareto Optimal
sets on ratings and choices; Chrzan (1994), who studied order effects in choice
tasks; and Ben-Akiva, et al. (1991) and Bradley and Daly (1994), who compared
MNL model parameters estimated from different depths of preference ranking
data (to name only a few papers). These references demonstrate that RUT now
makes it possible to study these effects in a unified and systematic way.

Insights afforded by RUT as a unified framework for comparing sources of
preference data extend to many other sources of preference data and types of re-
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search applications. For example, there have been a number of comparisons of
models estimated from revealed (RP) and stated preference (SP) data sources,
such as Ben-Akiva and Morikawa (1990) and Hensher and Bradley (1993), who
compared RP and SP transport mode choice data; Louviere, Fox and Moore
(1993) who compared several different RP and SP data sources for vacation trips;
Swait, Louviere and Williams (1994), who compared RP and SP data sources for
freight shipper choices in three cities; Adamowicz, et al. (1994, 1996), who com-
pared RP and SP sources for water-based recreation and moose-hunting destina-
tion choices; and Louviere, Hensher and Swait (1998), who compared several RP
and SP data sources (again, to name a few). The hypothesis of preference invari-
ance across data sources generally was supported in these comparisons, although
some minor discrepancies were found in some studies.

The preceding represent only a few of many new insights into consumer deci-
sion making and choice processes now possible from the RUT paradigm. Fur-
thermore, our discussion suggests that many previously published results might
bear re-examination. For example, Louviere, Hensher and Swait (1999, Chapter
13) reviewed a large number of published studies in marketing, transportation and
environmental and resource economics that reported differences in model parame-
ters or decision processes due to differences in product categories, context effects,
latent segments, etc. They showed that in many cases the reported empirical dif-
ferences most likely were due to differences in error variability (ie, sizes of ran-
dom components), not real differences in model parameters or statistical effects.
Hence, failure to recognise and understand the role of the random component may
explain many published results. For example, Ainslie and Rossi (1998) recently
reported a number of empirical regularities in choice model parameters estimated
from different sources of scanner panel data for different product categories, but
did not recognise that they were consistent with and could be explained by the
error variability mechanism of RUT (they also did not reference the large litera-
ture on the role of the scale parameter).

10.3 A Theory of Preference Regularities/Invariance
Based on RUT

The preceding discussion provides a conceptual basis to address the general prob-
lem of comparing and possibly combining sources of preference data, whether
from conjoint analysis or other sources. That is, suppose a sample of consumers
respond to a survey that (among other things) asks them to make choices from a
designed set of paired-alternative scenarios that describe a product/service. We
call this preference elicitation procedure one (PEP1), and it has an associated
design matrix X;. Suppose we also have data from a second sample of consumers
for the same product/service consisting of self-reports about which product/service
they last purchased (ie, PEP2). Associated with these self-reported choices is
design matrix X, representing consumer’s perceptions of attribute levels of each
product/service. In general, X; and X, have some common attributes (say, X, and
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X.2), plus others that are data source-specific (eg, Z, and Z,, respectively). Thus,
X=(Xc1,Z1)" and Xy=~(X2,Z5)’

We now specify the utility function for each data source in terms of common
and data source-specific attributes. For pedagogical simplicity, let the utility ex-
pressions be strictly additive in all effects, let the common and data-source-
specific attributes have separate error terms and let both data sources have differ-
ent error components to account for typical statistical issues of measurement er-
rors, omitted variables, wrong functional forms, etc. Denote these error compo-
nents i, Gy, Co1» Geas €1, and &, respectively, so that we can write the utility expres-
sions as follows:

“) U=01H Vo (Xer. BT [HIWi(Zy,y )+ ]+

%) Up=0,H Vo Xeo, BT H [ WA Zo, v )+ G| e

where quantities V., and V., are the utility components of the common attributes
with associated parameters (By, B.); W) and W, are the utility components of the
data source-specific attributes with associated parameters (y; and v,); 0, 0, are
intercepts that measure average preference levels in each data source; and the error
components are as previously defined.

Rearranging we have:

(6) Ui=01+VoXer, BOAWi(Z Ly )+ (CertCiter)
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The dimensionality of each data source is defined by its PEP. That is, U; has
two rows per choice set because it is a paired choice task, but the number of rows
of U, may vary from consumer-to-consumer because the number of brands that
each reports were in their choice sets when they made their last purchase can vary
between consumers.

A key issue suggested by the above discussion is whether responses obtained
from different PEPs, contexts, etc., reflect the same underlying preference proc-
esses. That is, are the common utilities V4 (X.Bi) the same, despite being esti-
mated from different PEPs, contexts, etc? In order to address this issue, a formal
definition of preference regularity or invariance is needed. As discussed by Lou-
viere, Hensher and Swait (1999), two or more PEPs exhibit preference regularity
or invariance if the marginal common utilities for any (k,k’) pair of data sources
are proportional. That is, By o« Py, and the constant of proportionality should be
MM

Strictly speaking, this definition holds only if the common attribute parameters
are specified as linear-in-the-parameters. More generally, the marginal rates of
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substitution (OVy(Xu.Pr)@ X&) must be proportional. The linear-in-the-
parameters case is more restrictive, but may be more applicable because most
utility functions used in choice model applications are linear-in-the-parameters. A
simple way to view preference regularity or invariance in RUT choice models is to
graph one vector of estimated common utility parameters against a second. If
invariance holds, the graphed points should lie on a straight line that intersects the
origin. More generally, if there are two or more vectors of common model pa-
rameters, one must serve as a (reference) vector graphed on the X-Axis, with the
other vectors on the Y-Axis. In this case, the vectors should plot as a fan of
straight lines that intersect at the origin of the graph. The slope of each line is the
constant of proportionality relative to the reference vector (ie, A/Ay).

Put another way, if the parameter vectors plot as a fan of straight lines inter-
secting the origin (ie, preference invariance holds), they will be linear combina-
tions of one another because they are proportional. Thus, a factor analysis of the
vectors of model parameters (rows = parameters, columns = models) should yield
a single factor (See Krijnen 1997 for a proof). Confirmatory factor analytic proce-
dures could be used to test this hypothesis, but often there are few parameters and
power is lost in aggregation (parameters are means).

Each common attribute utility parameter estimates 0V (Xck.Bk)/0 Xe; hence,
graphs and factor analyses are not statistical tests, but instead are diagnostic aids.
That is, one must take errors of sampling and estimation into account to properly
test a preference invariance hypothesis that retains full statistical power. For ex-
ample, one can generalise the test proposed by Swait and Louviere (1993) by
treating parameter proportionality as a restriction tested by a Full Information
Maximum Likelihood (FIML) procedure. In fact, model parameter proportionality
is a very strong requirement, and its stringency increases with the number of at-
tributes. For example, in the two data source case one first estimates separate
models from each source, then pools both sources to estimate a single common
vector of attribute parameters with the restriction that B’s in data source 1 are
proportional to B’s in source 2. The pooled model will have K-1 fewer parameters
if there are K total common [ parameters. and twice the difference in the sum of
the separate model likelihoods minus the pooled model likelihood is distributed as
chi-square with K-1 degrees of freedom.

The null hypothesis in this test is that both 3 vectors are the same up to re-
scaling by a constant of proportionality. This hypothesis should be rejected if there
are differences in utility functions, choice sets (of alternatives) and/or decision
(choice) rules used to select alternatives from choice sets, which might be due to
differences in contexts, frames, orders, or any of a large number of other possibili-
ties. Thus, it is both surprising and significant that there have been more than a
dozen empirical tests of this hypothesis involving different sources of data col-
lected under different conditions in different places at different times, etc., but few
serious rejections. Thus, preference invariance or parameter proportionality (or its
inverse, error variance proportionality) seems to account for a very wide range of
differences in data sources. In fact, the success of this simple mechanism in ex-
plaining differences in empirical results in many published and unpublished cases
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now places the onus on consumer behaviour, judgment and decision making and
behavioural decision theory researchers to demonstrate that it cannot explain their
findings. Similarly, the onus is on conjoint analysis researchers and practitioners
to demonstrate that there is a compelling reason not to estimate and test RUT-
based choice models instead of traditional non-RUT flavours of conjoint given the
consistent empirical success of the RUT paradigm.

It also is important to recognise that preference regularity or invariance does
not require the alternative-specific constants (ASCs) of choice models from differ-
ent PEPs to be comparable. That is, apart from the obvious fact that preference
invariance is defined in terms of common attributes, ASCs are location parameters
of the random utility component, hence not associated with attributes. ASCs cap-
ture average effects of omitted variables, which can vary between data sources.
For example, in the case of the MNL choice model, including all ASCs in a model
guarantees that aggregate predicted marginal choice distributions will exactly
equal observed distributions (Ben-Akiva and Lerman 1985). Although other
choice models may not have this property, ASCs still will be specific to data
sources; hence should not be included in tests of preference regularity.

104  Generality of the Luce and Suppes Ranking Theorem

The preceding discussion provides a basis for understanding why and how many
sources of preference data can be compared on a level playing field. Thus, we now
briefly discuss how some common preference measures can be transformed to be
consistent with RUT, such as the following:

L. Discrete choices of one option from a set of options. Discrete choices are
observed in so-called ,.choice-based conjoint” experiments, more general
choice experiments, self-reports of last brand purchased, self-reports of most
preferred brand from a list of brands, and many other possibilities.

2. ,Pick-any” choices that indicate preference orderings, such as ,,considered”
or ,liked” brands, and/or questions where more than one listed item can meet
an implied threshold. These include responses to lists of brands or conjoint
and/or tasks in which than one option meets some threshold preference value,
etc.

3. Complete or incomplete preference rankings from ranking a list of brands in
order of preference, ranking conjoint profiles, ranking options in choice ex-
periments, etc. A ranking is ,,complete” if all options are ranked, and ,,incom-
plete” if only a subset are ranked (eg, .,top four,” ,best and worst,” ,,those that
actually would be purchased,” etc).

4. Preferences expressed on (equal interval) category rating scales or other
scales assumed to yield cardinal measures (eg, magnitude estimation or ratio
production scales). Examples include ubiquitous brand evaluations, responses
to traditional conjoint analysis tasks and many more possibilities.
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Each of the above PEPs provides data that can be transformed to be consistent
with RUT. Comparisons of such data sources are important in their own right.
That is, if a particular utility specification and/or choice process is hypothesised to
underlie a particular response task, this hypothesis also must hold for any arbitrary
monotone transformation of the response data into implied discrete choices, as we
now explain. Suppose one posits that a utility function is additive and/or an
attribute has a certain marginal rate of substitution (or other germane process
hypotheses), and tests this by estimating a model from responses that are assumed
to be ordinal or higher in measurement level (eg, interval or ratio measures). To
generalise, the hypothesis also must hold for any arbitrary monotone
transformation of the response data, and if not satisfied it cannot be generalised
and results will be unique to certain measurement types and/or response modes.

For example, suppose one estimates a utility specification and associated mar-
ginal rates of substitution (MRS’s) from a conjoint ratings task. If the ratings from
that task are transformed to be consistent with discrete categorical, RUT-based
choice models, one must obtain the same inferences about specification and
MRS’s from an analysis of the latter data for the former hypothesis to be general-
ised. If analytical results differ significantly, inferences from analyses requiring
stronger metric assumptions (eg, ratings require equal interval, or at least ordinal,
as opposed to categorical, discrete choice assumptions) would be rejected in fa-
vour of results based on weaker assumptions. We now demonstrate how to trans-
form each data type previously discussed to be consistent with RUT (See Luce
and Suppes 1965; Ben-Akiva and Lerman 1985):

1. Subjects in discrete choice tasks indicate one preferred or chosen option from
a set of N total options. Choice sets are constructed such that chosen options
are coded 1 and the N-1 unchosen options are coded 0. There may be only one
choice set per subject (eg, consumers self-report their last purchased brand or
most preferred brand in a list of N); or there may be several choice sets (eg,
subjects in discrete choice experiments indicate one choice from N options in
each of several choice sets).

2. Subjects in ,,pick-any” tasks indicate that 0, 1 or more of N total options meet
a criterion. For example, ,.consideration” task subjects indicate all brands that
they would ,,consider” from a list of N; or in choice experiments, indicate all
options they would ,.consider” in each choice set of N options (ie, ¢ options
are ,,considered” and N-c are ,,not”). This implies that the ¢ ,,considered” op-
tions are preferred to the remaining N-c¢ options, which allows one to con-
struct 0 (if ¢=0), 1 (if c=1), 2 (if ¢c=2) or more (if ¢ > 1) choice sets such that
each of the ¢ options is preferred to the remaining N-c¢ options. In this way
one can construct c total choice sets (if c=N no sets can be constructed).

3. Subjects in ranking tasks rank all or some subset, r, of N options. Here the
first ranked option is preferred to the remaining N-1 options; the second
ranked is preferred to the other N-2 options; and so forth (see also Chapman
and Staelin 1982). This ,rank-order explosion” procedure can be used to con-
struct up to N-1 choice sets from a set of N rankings, or r-1 choice sets from a
subset of r rankings of N options. Such data include lists of N brands ranked
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in surveys, ranking of N conjoint-type profiles, ranking of N options in ex-
perimental choice sets, and many other possibilities.

4. The above procedure (3) can be used to construct choice sets from responses
assumed to be cardinal measures, such as rating or magnitude estimation
tasks, except that ties may arise if options receive equal numerical responses.
If t items are tied, t choice sets should be constructed that include only one of
the tied options per set.

In addition to the above transformation(s) of rating and ranking data, RUT
models can be derived from ratings or similar preference responses by treating
them as ordinal indicators of latent, underlying continua. That is, let the observed
response be Y, (eg, a 1 to 7 category rating response), and let the latent scale be
USP~

Then we can write:

) Usp=BspXc.spt(Ee sptesp),

with vsp=(C.sptesp) logistically distributed (location parameter 0 and standard

deviation ogp). The cumulative density function for Ugp is (Johnson, Kotz and
Balakrishnan, 1995)

(9) Gsp(u):{ 1+eXp[}\.sp(Bstc’sp-U)] }_1, -00<U<00, and }\.SP:TC\/3/GSP.

We have to relate the latent scale to the observed responses (Y,,) to specify a
RUT model. This is achieved by noting that if Ugp is less than or equal to some
value 1), the subject answers Y,=1, which event probability (Eqn. 9) =
Gsp(BspXcspt11)- If Ugp lies between t; and t,, the probability = [Gsp(BspX. spt12)
- Ggp(BspXcspT1)], and the subject responds Y,=2, and so forth. Thus, parameters
t=(ty, ..., Tg)’ are cutpoints or response category boundaries, such that 1, < 1, < ...
<16. In this example, only five cutpoints can be identified, so one (eg, t,) must be
set to 0. Like all RUT models, the variance (or scale Agp) of the latent variable Ugp
cannot be identified and is confounded with parameter vectors Bsp and t (equation
9). The same test procedures discussed above can be used to compare models
estimated from such responses with other preference data sources. Thus, conjoint
ratings data can be transformed to be consistent with RUT, models estimated from
each source of preference data can be compared and rigorous tests of preference
invariance or regularity can be performed.

For example, Morikawa (1994) combined and compared RP choice data with
preference ratings from a traditional conjoint task. RP data were choices between
rail and car for intercity travel in the Netherlands, and SP data were graded paired
comparisons for the same context. Morikawa tested parameter invariance between
data sources and found that the model parameters were proportional (95% confi-
dence level). The estimated constant of proportionality (ie, Agp/Arp) was 0.27,
which implies an SP error variance approximately 4 times larger than the RP vari-
ance.
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Now we use three case studies to illustrate the generality of RUT and how it
can be applied to research problems involving conjoint and choice experiment
data.

10.5 Case 1: Complex Models from Simple Conjoint
Choice Experiments

This case study examines differences in marginal rates of substitution derived
from simple and complex choice models, the results of which suggest caution in
relying on simple choice models like MNL. Indeed, much progress has been made
in relaxing the 11D error assumptions that underlie simple models like MNL and
Identity Probit, although some complex models are little more than mere statistical
descriptions devoid of behavioural theory. Moreover, few complex models can
forecast future behaviour because they include factors that cannot be forecast
easily (if at all) and/or they are merely reduced form approximations of dynamic
processes (Erdem and Keane 1996).

Worse yet, few advanced statistical choice specifications can be or have been
used to model the full behavioural system of trial and repeat choices, volume
decisions conditional on choice and/or inter-purchase time choices, etc. Thus,
statistical and mathematical complexity is not a substitute for sound theory and
rigorous thinking about process. Indeed, this case illustrates that a rush to com-
plexity may be ill-conceived because recent Monte Carlo work by David Bunch
(reported in Louviere et al. 1999) suggests that numbers of observations needed to
satisfy asymptotic theory for complex models (eg, MNP) may be many times
greater than simple models like MNL (eg, in some cases required sample sizes
may exceed available human populations!).

The more complex the unobserved effects, such as variation and co-variation
due to contemporaneous or temporal patterns between alternatives, the more likely
it will be that one must simplify complex and often ‘deep’ parameters associated
with covariance matrices to estimate models. Science seeks parsimonious and
behaviourally meaningful models rather than complex statistical descriptions,
which is why one must understand and appreciate model assumptions. For exam-
ple, most discrete choice models estimated in conjoint analysis and other para-
digms can be described by the following assumptions:

e A single cross-section (no lagged structure);

Non-separation of attribute utilities from other component effects capturing the
role of explanatory variables in utility expressions (due to confounds with scale);
Constant scale parameters across alternatives (constant variance assumption);
Random components that are not serially correlated (See Morikawa 1994)

Fixed utility weights; and

No unobserved heterogeneity.
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A hierarchy of models has evolved that relax some of the above assumptions
(Figure 2), and Case 1 focuses on refining the behavioural structure of choice
models that treat variance-scale ratio parameters (ie, inverse of random component
variances) as real behavioural processes. Specifically, we concentrate on three
models: 1) random and fixed effects Heteroskedastic Extreme Value (HEV), 2)
Random Parameter or Mixed Logit (RP/ML) and 3) Multi-Period Multinomial
Probit (MPMNP).
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Figure 2:  Taxonomy of Behaviourally Progressive Models

10.5.1 Heteroskedastic Extreme Value (HEV) Models -
Random Effects

If random component variances differ across alternatives, constant variance mod-
els will over- or under-estimate the indirect utility effects. HEV allows variance
differences but retains zero inter-alternative correlations, hence variance scale
ratios (hereafter A°s) can vary across alternatives (probit analogs involve normal
distributions). HEV relaxes the IID property of MNL by allowing different vari-
ance scale-ratios (A’s) for alternatives, which in turn allows differential substitu-
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tion among all pairs of alternatives. That is, changes in alternative I’s utility affect
utility differences in i and /, but the utility changes are affected by /’s A value.
Specifically, the smaller /s A value, the less effect utility difference changes have,
and the smaller the effects on the probability of choosing i. Bhat (1995, 1997a),
Allenby and Glinter (1995) and Hensher (1997, 1998a) discuss HEV.

10.5.2 Random Parameter Logit (RPL) or Mixed Logit models

Unlike MNL, RPL treats one or more utility parameters and/or alternative-specific
constants as random parameters, the variance(s) and mean (s) of which are esti-
mated. RPL will produce non-1ID choice outcomes if random variation of individ-
ual parameters induces correlations among the utilities of alternatives (Bhat 1997,
McFadden and Train 1996). RPL, or ‘mixed logit,” is a mixture of a Gumbel dis-
tribution for the error component and a normal distribution for the utility parame-
ters (Train, 1997) and can account for cross-correlation among alternatives. Revelt
and Train (1996), Bhat (1996), McFadden and Train (1996) and Brownstone et al
(1997) discuss RPL/Mixed logit models. More recently, Bhat (1997) extended
RPL/Mixed Logit by including parameterised covariates (Zq) in the utility func-
tion.

10.5.3 Multi-Period Multinomial Probit

MultiPeriod-MultiNomial Probit (MPMNP) is the most general way to specify the
variances and covariances of the random effects; hence HEV and RPL are special
cases. MPMNP can relax most random component assumptions; eg, autoregres-
sive structures, correlations of unobserved effects of alternatives and time periods,
unobserved heterogeneity, variance differences in random components, etc. Pa-
rameter estimation is more complex for MNP models, and requires Simulated
Maximum Likelihood (SML) methods that take pseudo-random draws from the
underlying error process (Geweke et al 1994, McFadden and Ruud 1994; Boersch-
Supan and Hajivassiliou 1990; Stern 1997) or some form of Bayesian estimation
(eg, Wedel et al. 1999). The pros and cons of Bayesian estimation versus SML are
not yet clear, but both have many similarities.

We now illustrate the behavioural implications of the three models by using
them to analyse the results of a conjoint choice experiment used to forecast de-
mand for a new high-speed rail system in Australia. The experiment was used to
create high-speed rail profiles described by fare class (first, full economy, discount
economy and off-peak), frequency of service (every 30, 60, 120 minutes) and
parking cost ($2 - $20 per day). The choice task focused on each subject’s most
recent trip, offering a choice of four high-speed rail options or auto if that trip was
made again. Subjects evaluated two or four profiles (355 evaluated two, and 81
other subjects did four scenarios). The number of scenarios is not germane to the
case, hence is not discussed further.
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Table 1:  Alternative error processes in models and values of travel time sav-
ings
Model Error Processes RAN ARl MNP VTTS* LoglL
1 iid across periods, iid across alternatives 0 0 0 4.63 -1067.9
2 iid across periods, correlated across alternatives 0 0 1 6.46 -1050.71
3 random effects, iid across alternatives 1 0 0 5.22 -765.01
4 random effects, correlated across alternatives 1 0 1 6.88 759.57
5  ARI errors, iid across alternatives 0 1 0 498 -811.46
6  ARI errors, correlated across alternatives 0 1 1 7.87 770,38
7  random effects + AR1 errors, iid across alt's 1 1 0 540 -775.68
8  free variance, random effects, iid across alts 1 0 1 8.37 -759.71
9  free variance and iid across periods 0 0 1 7.64 -1040.25
10 free variance, iid across periods, correlated across 0 0 1 8.06 -10443
alts
11 free variance, random effects, AR1 errors, correlated 1 1 1 7.09 -759.04
across alt's

* Dollars per adult person hour, - = not able to identify an appropriate model

We estimated the mean values of non-business travel time savings (VI'TS) from
each model (Table 1). All models except Model 1 (MNL) were estimated using
SML (100 replications). Table 1 reveals substantial and significant differences in
VTTS, ranging from a low of $4.63/adult person hours for MNL to $8.37/adult
person hour for a more complex model. Such large difference in VTTS can have
major implications for go/no-go investment decisions in transport or marketing
(which might estimate willingness-to-pay instead). Accounting for cross-
alternative correlations and relaxing constant variance assumptions (Table 1)
significantly reduce the evident downward bias in MNL mean VTTS estimates. In
contrast, unobserved heterogeneity (random effects) and serial correlation have
less effect on downward bias. This is consistent with McFadden’s (1986) point
that individual-level utility estimates rarely should be necessary to capture hetero-
geneity. As well, these results suggest that heterogeneity may result in less model
bias than previously thought in conjoint and choice model applications in market-
ing.

10.6 Case 2: Extension to Multiple Conditional Choices
and Combining Data Sources

Many behaviours of interest involve conditional decisions and/or what can be
described as ,,coping strategies” to minimise hassles or losses. For example, com-
muters can cope with congestion by changing departure times and/or modes;
travel mode choice models that ignore departure time choices will overestimate
peak hour queuing and delays, increasing the implied value of new road invest-
ments. Billions of dollars are at stake in such investments; hence businesses and
society have vested interests in development and application of accurate models of
such choices. Similarly, investments in new products and services, product en-
hancements and extensions, etc, may risk many millions of dollars. Thus, firms
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also should seek more accurate models of choice processes, which often will in-
volve more than the simple choice of a particular brand. Instead, they may involve
conditional choices of brands, purchase quantities, inter-purchase timings and the
like.

RP-DA RP-RS, RP-B RP-TN

SP-CAR\ SP-BS SP-TI

DT1 DT2 DT3 DT1 DT2 DT3DT1 DT2 DT3DT1 DT2 DT3
DA RS Bs Bwy TN LR

Figure 3.  The Nested Structure Used in Model Estimation

Case 2 illustrates the development and estimation of models of joint choice of
departure time and travel mode. The case also illustrates how one can combine a
choice (or stated preference, SP) experiment with real choice (or revealed prefer-
ence, RP) data. The SP task has six travel options: Drive alone, Ride share, Bus,
Busway, Train and Light rail (Figure 3). The Bus, Busway, Train and Light rail
options are described by five attributes (total in vehicle time, service frequency,
closest stop to home, closest stop to destination, and fare). Drive alone and Ride
share options are described by five or six attributes (travel time, fuel cost, parking
cost, travel time variability + departure time and toll charge for toll roads).

All attributes were assigned three levels, and a choice experiment was
designed by treating all attributes as a collective factorial and selecting an
orthogonal fraction from it (Louviere and Woodworth 1983). The selected fraction
permits estimation of all main effects within alternatives, plus two-way bilinear
interactions for both car options and generic two-way bilinear interactions for
public transit options; and produces 81 choice sets, which were blocked into 27
versions of three choice sets due to task complexity. It is worth noting that the
nature and number of attributes differ between options, posing design and
implementation issues for traditional conjoint (Louviere 1988).

Nested Logit was used to model the departure time and mode choices to allow
differential error variances and correlations between subsets of alternatives. RP
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options included Drive alone, Ride share, Train and Bus (toll and no toll options
were combined); and SP options added two 'mew' modes (buses on dedicated
roads, or ,,busways”, and light rail), and three departure times based on local data
(before 7am, 7.01-8.30 am and after 8.30 am). The tree structure in Figure 3 was
one of several investigated based on equivalent variances within partitions, which
allows scale (variance) differences between partitions.

The model estimation results in Table 2 not only provide new insights into
joint choices of departure time and mode, but also allow evaluation of a wide
range of policy options to impact these choices. For example, Ride share and Bus
unexplained utility components are significantly larger than the other modes that
have about equal error variances. This suggests that variability in choice of Ride
share and Bus is much greater than for other modes, or the model explains far less
in choice. For example, preference heterogeneity is one source of the variability,
and these results suggest that it is significantly larger for Ride share and Bus
choices.

All attributes have the expected signs in both RP and SP data sources, and sev-
eral individual difference effects also are significant (Table 1), which while com-
mon in transport applications of SP methods, is less so in marketing applications
(but see Guadagni and Little 1983). The model in Table 3 is a very significant
improvement over MNL, suggesting that accounting for variance and individual
differences greatly improves MNL and offers other strategic insights. The parame-
ter estimates associated with inclusive values are scale parameters for each parti-
tion of the tree. For example, scale parameters for RP-Ride share and RP-Bus
(respectively, .278 and .256) imply less random component variance than RP-
drive alone and RP-train (respectively, 1.075 and 1.00). We also note that in our
experience scale parameters for subsets of RP and SP options often are more simi-
lar to one another than scale parameters within RP or SP choice sets.

STATISTICS:

o Groups (sets) =4113

o (Cases =24678

e Free Parameters = 93

e LogLL(B)=-6961.90; Log LL(0) =-7369.51; -2[LL(0)-LL(B)] = 815.221
e Rho-Squared = 0.0553; AIC Rho-Squared = 0.0427

MNL models cannot account for these types of behavioural differences,
suggesting many potential applications for models that can implement the
framework in Figure 1: eg, joint brand and quantity choices, joint brand, quantity
and inter-purchase time choices, brand and quantity choices conditional on
category choice, etc. Thus, Case 2 may seem simple, but it serves to introduce and
illustrate more complex tasks and model possibilities.
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Table 2:  Joint departure time and mode choice model for commuters
Variable Alts Units Estimated t-
Parameter value
Fuel cost (one-way trip) All $ 5745 -3.80
Door-to-door time (one-way rpda,rprs,spda,sprs Mins -.04224 -2.67
trip)
Parking cost rpda,rprs,spda,sprs $ per day -.08978 -3.21
Car availability rpda,spda 3789 447
Personal income rpda,spda $7000 .00485 1.74
Drive alone constant rpda 2.0433 1.84
Age <25 years rprs dt3 years 3234 1.64
Age 25-34 years rprs, dt2 years 1391 1.46
Age 35-54 years rprs, dt2 years 0734 1.53
Ride share constant Tprs 1.5412 0.79
Linehaul time Rpbs,rptn,spbs,sptn, mins -.05409 -5.92
spbwy,splr
Access and egress time Rpbs,rptn,spbs,sptn, mins -.03505 -3.47
spbwy,splr
Managers & Administrators rpbs,dt1 1,0 8.743 1.83
Clerk rpbs, dt2 & dt3 1,0 5.785 1.69
Full time employee rpbs,dt3 & rptn 1,0 .5309 1.57
Age 35-54 years rptn,dtl years -.02754 -1.94
Age 35-54 years rptn,dt3 years 01877 1.80
Professionals rptn,dt2 1.0 -1.724 -3.25
Train specific constant Rptn 3.088 3.57
Toll cost spda,sprs $ -.1466 -2.65
Travel time variability spda,sprs mins -.1269 -2.89
Drive alone constant Spda 1289 29
Ride share constant Sprs 1863 A1
Transit frequency Spbs,sptn,spbwy,splr mins -.0267 -3.24
Train specific constant Sptn -3777 -1.22
Light rail specific constant Splr -.2633 -.89
Busway specific constant Spbwy -.0722 -.67
DT1 specific constant Rp all dtl's -.1816 -1.01
DT3 specific constant Rp all dt3's .0958 36
Inclusive Values:
RP - Drive alone Rpda 1.075 2.30
RP - Ride Share Rprs 278 2.00
RP - Bus Rpbs 256 2.01
RP - Train Rptn 1.00 fixed
SP- Car (Drive alone & ride Spda & Sprs 1.14 3.32
share)
SP — Bus (Bus and Busway) Spbs & Spbwy 1.07 3.85
SP — Train (Train and Light Sptn & Splr 925 391
Rail)
Log-likelihood at convergence -2500.82
Pseudo-r* 659
Sample 2688

Note: rp=revealed preference, sp=stated preference, da=drive alone (for all departure times), rs=ride
share (for all departure times), bs=bus (for all departure times), tn=train (for all departure times),
bwy=busway, lr=light rail, dtl=departure time up to 7am, dt2=7.01-8.30am), dt3= after 8.30am. The
sample was choice- based sample with RP choice set weights, respectively =.120, .064, .041, .023,
257, 181, .053, .060, .106, .047, .014, .034; all SP weights = 1.0. Estimation by the method of Simu-

lated Maximum Likelihood.
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Table 3: Baseline MNL model results for weekend recreation

Parameter Asymptotic Parameter Asymptot
Estimate t-Ratio Estimate ic
t-Ratio
Campground 0 — FishingC 0.0524 12
Rustic Cabin -0.2142 -4.2 BoatingC 0.1723 38
Rustic Lodge | -0.6636 -10.7 HikingC 0.1825 4.0
Hotel/Motel 0.0665 1.5 PlayGrdC 0.252 5.5
SEMiss 0.0135 03 PicnicC 0.0717 1.6
SWMiss 0.185 37 TwoWeeksC 0.0886 2
SCMiss -0.0145 -0.3 NumCabC 0.024 0.1
Vicinity -0.0001 0.0 EntryFeeLC 0.0112 0.2
Rugged -0.0289 -1 CampFeelL.C 0.0229 0.5
Lake 0.1633 55 SEMissL -0.2539 -5.5
RegXLake -0.0354 -1.2 SWMissL -0.1893 -2.0
VisSep 0.032 1.1 SCMissL 0.1765 2.0
Quiet 0.1564 52 VicinityL 0.1502 1.7
VisXQui 0.0377 13 RuggedL 0.0103 02
TownL -0.0276 -2.1 LakeL -0.0271 -0.5
TownQ -0.041 -1.4 RegXLakeL 0.3169 5.9
Tents -0.0844 2.9 TownLL -0.0053 -0.1
ShoNear 0.215 4.4 TownQL -0.0201 -0.8
ShoCent 0.174 35 BBQL -0.0925 -1.7
NoSho -0.1637 -3.1 FishingL -0.0129 -0.2
ElecHkUp 0.0695 2.3 Boatingl 0.2889 54
WaterHkUp 0.0245 0.8 HikinglL 0.2352 44
BBQ 0.0622 2.1 PlayGrdL 0.2673 5.0
Fishing 0.2258 7.5 PicnicL 0.1005 19
Boating 0.1414 4.8 TwoWeeksL 0.0714 14
Hiking 0.0614 2.1 NumRoomL 0.0057 0.1
PlayGrd 0.0321 1.1 EntryFeeLL -0.0272 -0.5
Picnic 0.0179 0.6 CampFeelLL 0.0596 1.1
Friday -0.0034 -0.1 SEMissH -0.371 -6.7
Anytime -0.0839 2.2 SWMissH -0.0471 -0.7
TwoCG 0.0184 0.6 SCMissH 0.1713 2.5
Sites75 0.0021 0.1 VicinityH 0.0026 0.0
TwoX75 -0.02 -0.7 RuggedH 0.0716 1.7
NoFee -0.0076 -0.4 LakeH -0.0608 -1.5
EntryFeel. -0.0547 -1.3 RegXLakeH 0.1481 3.6
EntryFeeQ -0.0142 -0.6 FishingH 0.0158 0.4
CampFeel -0.0458 -3.5 BoatingH 0.0953 2.3
SEMissC -0.0228 -0.8 HikingH 0.108 2.6
SWMissC 0.0417 0.5 PlayGrdH 0.0475 1.2
SCMissC 0.1021 1.4 TwoWeeksH 0.0383 0.9
VicinityC 0.0088 0.1 NumHotelH -0.0151 -0.4
RuggedC -0.0242 -0.5 CampFeeLH -0.055 -1.3
LakeC 0.0514 1.1 CampxTowns -0.093 2.3
RegXLakeC 0.2105 4.7 CampxRustic -0.1098 -3.5
TownLC 0.0781 1.7 CampxWith -0.015 -0.4
Roads
TownQC -0.0553 2.7 CampxNoRoads | 0.5489 1.6
BBQC -0.0439 -1.0 Campx 0.6725 2.7
Wildrness
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10.7 Case 3: Parameterising The Error Component In
Choice Experiments

Case 3 illustrates the design and analysis of a fairly complex SP task. The research
objective was to develop a model of weekend recreation accommodation choices
in and near National Forests in two US states (Missouri and Arkansas) and esti-
mate the likely effects of a wide range of policy changes on campgrounds man-
aged by the US Forest Service. The study was funded by the USDA Forest Service
(North Central Forest Experiment Station, Urban Forestry Project, Chicago), who
wanted to consider policy changes not previously implemented or investigated
systematically. A very large number of actual choice options and resource con-
straints precluded parallel RP data collection; hence, we discuss only the SP ex-
periment and associated choice models.

Accommodation choices included four National/State Forest options (two
campgrounds, rustic cabins and rustic lodges), hotels/motels in nearby
towns/villages or staying home and/or doing something else. Each option was
described by different attributes, with some attributes common to all options (at-
tributes listed in model estimation results in Tables 3 and 4).

The SP task was designed by treating all attributes of all accommodation
choice options (two campgrounds, rustic cabins, rustic lodges and hotel/motel/bed
& breakfasts) as a common factorial (2'' x 4%) x 2" x 4% x 2" x 4) x 2" x 4%)
x 2° x 4) = 2°7 x 47 (x 8)), from which we selected an orthogonal fraction to
make 128 choice sets (Louviere and Woodworth, 1983; Louviere, Hensher and
Swait, 1999). Choice sets were blocked into 16 versions of 8 choice sets using the
additional 8-level factor. A university survey research center pre-recruited a ran-
dom sample of Missouri residents by phone, and mailed the survey to those agree-
ing to participate (no incentive provided), randomly assigning each to one version
of the experiment. This design approach was used to permit estimation and com-
parison of a variety of complex model forms (eg, Nested Logit, HEV, Mother
Logit, MNP, etc.).

The survey contained questions additional to the choice experiment (eg, recent
outdoor recreation behaviour, types of activities preferred, visits to National
Forests and selected socio-demographics) not discussed for space reasons. The
analysis and model comparison described below is based on approximately 520
subjects (some subjects omitted 1-2 choice sets; hence the approximation). Data
were weighted to equalise sample sizes in the 16 versions (eg, let sample size
average 32, with version 1 =20 and version 2 = 45 subjects; then versions 1 and 2
data are weighted by 1.6 and 0.71, respectively), which avoids over- or under-
emphasis of design matrices associated with particular versions that can lead to
biased parameters.
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Table 4:  HEV Model Results [Scale=f{Recreation Opportunity Scale)] for
weekend recreation
Attribute/Model Parameter Asymptotic | Attribute/Model Parameter Asymp
Effect Estimate t-Ratio Effect Estimate totic
t-Ratio

ASC-Campground | 0.000 — FishingC 0.025 1.1
ASC-Rustic Cabin | -0.277 -4.3 BoatingC 0.079 35
ASC-Rust. Lodge | -0.661 -4.8 HikingC 0.076 34
ASC-Hotel/Motel | -0.759 -14.7 Play GroundC 0.137 52
SE. Missouri -0.002 -0.1 Picnic areasC 0.014 0.6
SW. Missouri 0.079 44 Reserve 2 WksC 0.037 1.7
SC. Missouri -0.008 -0.5 No. CabinsC -0.007 -0.3
NF in vicinity -0.005 -0.5 Entry FeeL.C 0.012 0.6
Rugged -0.009 -0.9 Camping FeeLC 0.002 0.1
Lake 0.060 5.8 SE. MissourilL -0.120 -4.8
Rugged x Lake -0.013 -1.4 SW. MissourilL -0.075 -1.3
Visually Separate 0.016 1.6 SC. Missouril. 0.053 1.0
Quiet 0.066 6.2 NF in vicinityL 0.095 1.8
VisSep x Quiet 0.016 1.7 RuggedL 0.032 1.0
Distance TownL -0.006 -1.3 LakeL -0.019 -0.6
Distance TownQ -0.013 -1.3 Rugged x LakeL 0.164 44
Tents -0.023 -2.3 Distance TownLL 0.006 0.2
Shower Near 0.092 5.1 Distance TownQL | -0.004 -0.3
Shower Cent 0.060 3.5 BBQsL -0.057 -1.8
No Shower -0.070 -3.8 FishinglL 0.021 0.7
ElecHkUp 0.019 19 BoatinglL 0.165 43
WaterHkUp 0.012 1.2 HikingL 0.126 3.7
BBQs 0.023 22 Play GroundL 0.138 39
Fishing 0.085 7.4 Picnic areasL 0.065 1.9
Boating 0.051 4.8 Reserve 2 WksL 0.050 1.6
Hiking 0.032 3.1 No. RoomsL -0.010 -0.3
Play Ground 0.012 1.1 Entry Feel.LL -0.026 -0.8
Picnic Area 0.001 0.1 Camping FeelLL 0.010 0.3
Arrive Friday -0.008 -0.5 SE. MissouriH -0.214 -4.9
Arrive Anytime 0.006 0.5 SW. MissouriH -0.007 -0.1
2 camp grounds 0.001 0.1 SC. MissouriH 0.099 1.6
75 Sites -0.001 -0.1 In vicinityH -0.018 -0.3
2 campg x 75 sites | -0.010 -1.0 RuggedH 0.041 1.1
No Fee -0.004 -0.7 LakeH -0.039 -1.0
Entry FeelL -0.031 22 Rugged x LakeH 0.110 29
Entry FeeQ -0.003 -0.3 FishingH -0.024 -0.6
Camping Feel. -0.014 -33 BoatingH 0.079 2.1
SE. MissouriC -0.008 -0.8 HikingH 0.077 2.0
SW. MissouriC 0.033 09 Play GroundH 0.052 1.4
SC. MissouriC 0.048 1.3 Reserve 2 WksH 0.027 0.7
NF in vicinityC -0.017 -0.4 No. HotelsH -0.042 -1.1
RuggedC -0.007 -0.3 Camping FeeLH -0.026 -0.7
LakeC 0.021 1.0 Camping x Towns | -0.095 2.5
Rugged x LakeC 0.081 3.6 Camping x Rustic | -0.143 -4.2
Distance TownL.C | 0.035 1.6 Camping x Roads 0.198 5.8
Distance TownQC | -0.018 -1.8 Camp’g x ORoads 0.091 2.8
BBQsC -0.016 -0.7 Camp’g x Wilds 0.081 33
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SCALE FUNCTION PARAMETERS

Main effects (variables) in error | Parameter Asymptotic
variance function Estimate t-Ratio
Campground 0.0607 34
Rustic Cabin 1.0997 18.1
Rustic Lodge 0.5296 6.0
Hotel/Motel 0.4168 3.7
Prefer Towns 0.0000 —
Prefer Rustic -0.1062 -4.7
Prefer WithRoads 0.0834 3.8
Prefer NoRoads -0.0042 -0.2
Prefer Wilderness 0.0640 2.6

Again, due to space, we discuss only a baseline MNL model and a parameterised
HEV model that allows different random component variances for individuals and
choice alternatives. Individual variance differences are a function of preferences
for types of recreation environments (from primitive wilderness to developed,
modern urban areas; an environment is coded 1 if subjects consider it and -1 oth-
erwise). This variance component model is justified by the fact that many market-
ing activities and/or policies can impact not only mean utilities or preferences but
also their variances (Swait and Louviere 1993; Louviere, Hensher and Swait 1999;
Meyer, et al. 1999). Thus, the HEV model in Table 4 allows random component
variance differences in both choice options and individuals.

STATISTICS:

o Groups (sets) = 4113

o (Cases =24678

e Free Parameters = 101

e Log LL(B)=-6748.85; Log LL(0) =-7369.51; -2[LL(0)-LL(B)] = 1241.32
e Rho-Squared = 0.0842; AIC Rho-Squared = 0.0705

The estimation results clearly favour the HEV model over MNL, even though
MNL allowed individual differences in choices to be a function of recreation
environment preferences (213 LL point difference for relatively few additional
effects). Both models contain alternative-specific attribute effects: the first set of
effects without capital letters behind them are generic effects for the two
campgrounds, additional effects have capital letters (,,C” for cabins, ,,L.” for
lodges and ,,H” for hotels/motels/B&Bs). Recreation environments for which
respondents expressed preferences are:

Developed urban and modern (cities and towns)

Rural, small towns, resorts, some development

Rustic, rural, limited development like cabins, lodges, farms, ranches
Natural, roads, trails, limited development like isolated cabins & homes

bl
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5. Natural, no roads, no established development & marked foot & horseback
trails
6. Wilderness, undeveloped, foot and horseback access only, primitive trails

In the interests of brevity, we concentrate on the HEV scaling function results,
and ignore most attribute results, except to note that each accommodation option
has unique (ie, alternative-specific) attribute effects. For example, subjects who
chose campgrounds preferred quiet SW Missouri locations on lakes with fishing
and boating; but those who chose cabins, lodges and hotels/motels/B&Bs prefered
rugged NW Arkansas locations on lakes with playgrounds, boating and hiking.

The scale (inversely proportional to variance) results reveal that rustic cabins
have the least average error variance, ,,stay at home” and campground have the
most average variance, and rustic lodges and hotels/motels/B&Bs have intermedi-
ate variances. Those preferring natural environments with roads (#4 above) or
undeveloped wilderness (#6 above) exhibit more choice variability than those
preferring rustic, rural areas with limited development (# 3 above), followed by
those preferring developed modern areas (#1) or natural areas with no roads (#5).
These results suggest that it will be harder for policies aimed at managing rustic
cabins to produce consistent results for this sample, but campground management
policies should yield more consistent results, particularly for those who prefer the
rustic, rural environments that characterise Missouri National Forests. For exam-
ple, those who chose campgrounds tended to prefer SW Missouri National Forest
areas on lakes with visually separated and quiet camp sites, fishing, boating and
hiking, RV sites, electrical hookups, conveniently located shower facilities and
barbecues. They also seem fairly sensitive to both entry and camping fees, which
suggests that the costs of providing such facilities should be considered carefully
against likely revenues before deciding which strategy to pursue in each National
Forest Division.

10.8 Conclusions

This chapter sought to expand the domain of conjoint analysis techniques by plac-
ing them within the more general framework of random utility theory (RUT)
based stated preference methods. Thus, we explained that RUT provides a general
theoretical framework to design and analyse simple and complex SP experiments
to capture a wide array of interrelated behavioural phenomena of interest to mar-
keters, transport planners, environmental economists and many other fields. Fur-
thermore, we noted that RUT also provides a key theoretical link to real behaviour
that allows one to pool SP and RP data sources, or more generally any data
sources consistent with RUT. Furthermore, RUT provides a level playing field by
which models and model results can be compared and rigorously tested.

We illustrated these ideas in three case studies that show that even simple
RUT-based SP experiments can yield quite complex models; and complex SP
experiments can provide new and different insights into the behaviour of the ran-
dom component of utility. In fact, the latter case suggests that researchers should
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consider if the factors they vary in experiments and/or context or experimental
differences impact only mean utilities (the traditional object of research interest),
but instead also impact the variance in utilities and preferences, a heretofore ne-
glected area of inquiry.

That is, individuals® mean preferences not only differ, but the variability with
which they make choices or express preferences also can differ; and differences in
variability can matter strategically and substantively (ie, empirically). For exam-
ple, the more variable an organisation’s implementation of a policy (eg, service
variability), the more uncertainty individuals have about its true mean, and hence
the more variable their response may be to the policy itself. Similarly, the harder
for consumers to determine a policy outcome, the more uncertain they will be
about what to expect; hence the more likely they will be to stay with what they
know. Thus, new phone services, bank accounts, etc., that confuse consumers
about fees are likely to struggle against competitors who make it easier for con-
sumers to evaluate fees or established, ,,safe” competitors.

Likewise, some consumers are inherently (for reasons not yet understood)
more variable in their choices and preferences than others. The more consistent a
consumer’s preferences, the more likely that a policy targeted at her will yield the
effects suggested by research. Thus, opportunities exist to develop fundamental
knowledge about variability in preferences and choices by developing theory
and/or establishing empirical regularities that allow us to understand what drives
differences in variability within and between choice options and individuals.

As McFadden (1986) noted, there are few instances in which one needs indi-
vidual-level utility results to develop useful models of choice behaviour. More
complex and behaviourally meaningful RUT-based choice models now provide
powerful insights and ways to model and predict choice behaviour. RUT provides
a rich and comprehensive theoretical framework with which to develop models,
combine sources of preference and choice data, obtain behavioural insights and
make more accurate forecasts. This chapter introduced these topics and used case
examples to illustrate their potential to broadening our knowledge and ability to
model and forecast complex behavioural systems.
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11 Conjoint Choice Experiments:
General Characteristics and Alternative
Model Specifications

Rinus Haaijer and Michel Wedel

111 Introduction

Conjoint choice experimentation involves the design of product profiles on the
basis of product attributes specified at certain levels, and requires respondents to
repeatedly choose one alternative from different sets of profiles offered to them,
instead of ranking or rating all profiles, as is usually done in various forms of
classic metric conjoint studies. The Multinomial Logit (MNL) model has been the
most frequently used model to analyze the 0/1 choice data arising from such con-
joint choice experiments (e.g., Louviere and Woodworth 1983; Elrod, Louviere
and Davey 1992). One of the first articles describing the potential advantages of a
choice approach for conjoint analysis was by Madanski (1980). His conclusion
was that conjoint analysts could adopt the random utility model approach to ex-
plain gross trends or predilections in decisions instead of each person’s specific
decision in each choice presented. The real breakthrough for conjoint choice came
with the Louviere and Woodworth (1983) article in which they integrated the
conjoint and discrete choice approaches.

The MNL model is the standard model for analyzing discrete choices, and can
be derived from utility maximization (McFadden 1976). However, the MNL
model does not accommodate heterogeneity of consumer choice behavior and
potentially suffers from the Independence of Irrelevant Alternatives (ITA) prop-
erty, which may be too restrictive in many practical situations. Latent class or
mixture MNL models have been developed to accommodate heterogeneity (Ka-
makura, Wedel and Agrawal 1994). The Multinomial Probit (MNP) model does
not suffer from 11A and deals with heterogeneity, but this model has some practi-
cal limitations related to identification, prediction and obtaining the choice prob-
abilities. Haaijer et al. (1998) were the first to use a special specification of the
MNP model for conjoint choice experiments.

In this chapter we review the alternative approaches to analyze conjoint choice
experiments. But before doing that, we briefly describe in section 13.2 the general
elements in conjoint analysis and the ,,classic” conjoint analysis approaches. Next,
in section 13.3, the conjoint choice approach is discussed more extensively and an
overview is given of recent conjoint choice applications in the marketing litera-
ture. Section 13.4 gives several approaches that can be used to estimate a conjoint
choice experiment, including the MNL, the Latent Class MNL, and MNP models.
These various models will be illustrated using an application to a conjoint choice
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experiment on coffee makers. Finally, section 13.5 compares the results of the
various models and gives further discussion and conclusions.

11.2  General Concepts and Classic Conjoint Analysis

In marketing one wants to know which characteristics of products or services are
important to consumers, for reasons of product optimization, new product design,
price setting, market segmentation and competitive positioning amongst others. A
technique, originally developed in the early 60's by Luce and Tukey (1964), that
could eventually be applied to answer that question, is conjoint analysis. In con-
joint analysis products or services are defined on a limited number of relevant
attributes or characteristics each with a limited number of levels. These products,
called profiles, have to be evaluated by respondents, who rank or rate them (as
described in this section) or choose their most preferred ones from smaller choice
sets (see section 13.3). As an introduction to conjoint choice experiments, in this
section we describe briefly the general characteristics of conjoint analysis and the
,»classic” conjoint approaches, including ranking and rating conjoint. For a more
extensive review see, e.g., Green and Srinivasan (1978, 1990), Louviere (1988) or
Carroll and Green (1995).

The conjoint methodology is a decompositional approach to analyze consumer
preferences. Product profiles are constructed from the product attributes, each
defined at a certain number of levels, using factorial or fractional factorial designs
(the latter to reduce the number of profiles and respondent burden in evaluating
them). Respondents give an overall ,,score” to each product profile and the analyst
has to find out what the preference contributions are for each separate attribute
and level. Here it is commonly assumed that the overall utility of a profile is con-
structed by adding the preferences for the attribute-levels. This implies a compen-
satory preference model, in which a ,,Jow” score on a certain attribute can be com-
pensated by a ,high” score on another attribute. In conjoint experiments the con-
tribution of an attribute (level) to the total utility is called a ,,part-worth”, and the
total utility of a profile in a compensatory, additive preference model is equal to
the sum of the part-worths: 7 = ¥ x, g, where U is the utility of the profile,

X s the value of attribute-level s and £ is the weight parameter of attribute-level
5. The part-worths can be computed from x g . More complex constructions are

possible, such as a multiplicative model for the overall utility or interaction effects
in the utility function.

Based on the analysis of the observed data several marketing questions can be
answered (e.g., Vriens 1994) such as: 1) What is the (relative) importance of at-
tributes and levels?, 2) What is the overall utility of specific profiles?, and 3) Are
their individual differences?. Cattin and Wittink (1982) identified five different
purposes for conjoint analysis in commercial applications: new product or concept
identification, pricing, market segmentation, advertising and distribution. Later,
competitive analysis and repositioning were added to this list (Wittink and Cattin
1989). Because conjoint analysis can be used for so many purposes, it has become
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a very popular marketing technique, with many applications in (commercial) mar-
keting research (Cattin and Wittink 1982; Wittink and Cattin 1989; Wittink,
Vriens and Burhenne 1994).

In a conjoint study several steps have to be taken. First of all, the attributes and
the levels for each attribute have to be selected. Based on these attributes and
levels the set of possible profiles can be constructed. However, it is easy to see
that the total number of possible profiles can be very large even for a relative
small number of attributes and levels. When there are for instance 3 attributes with
4 levels and 2 with 3 levels 576 (4. 3°) different profiles can be constructed,

which is clearly a too large number for respondents to rank or rate. Therefore,
fractional factorial designs can be used to limit the total number of profiles in the
analysis, while the main effects and first order interaction effects can still be
estimated independently in many of these designs. The design one uses, and
therefore the total number of profiles in the analysis, depends on how many
interaction terms one wants to be able to estimate. In principle all kind of
attributes, including price and brand, can be used in a conjoint study. However,
the inclusion of brand as an attribute may lead to complications since it may
represent implicit attributes such as quality (e.g., Oliphant et al. 1992; Struhl
1994). Having price as a separate attribute, orthogonal to the other attributes, may
lead to unrealistic profiles, and care must be taken that no unrealistic price-brand,
or price-attribute, combinations appear in the design. The selection of the number
of levels of the attributes may also have some important implications. When all
attributes have the same number of levels, the (absolute) values of the estimated
part-worths give an indication of the (relative) importance of the attributes.
However, it is not always possible to have the same number of levels for all
attributes, since some attributes may be binary (e.g., a Yes/No or Present/Absent
attribute) while others may have (many) more levels (e.g., ,,Brand”). Furthermore,
Wittink et al. (1991) showed that when an attribute has more levels it becomes
more important. They called this the ,,Number of Levels Effect”, an effect that has
led to a substantial stream of research in its own.

Second, the evaluation task has to be selected. Above we mentioned ranking
and rating tasks, but many more data collecting methods are available that all fall
within the class of (,,classic”) conjoint analysis (see, e.g., Vriens (1995) for a
detailed description of these methods), such as the full profile method (Green and
Rao 1971), the tradeoff matrix method (Johnson 1974), the paired comparison
method, Adaptive Conjoint Analysis (ACA) (Johnson 1985), or Hybrid Conjoint
(Green, Goldberg and Montemayor 1981; Green 1984). All of these approaches
can be used to obtain individual (segment or aggregate) level part-worths. Individ-
ual-level results are obtained using the observed ,.scores” of a respondent on the
profiles and the characteristics of these profiles, and are often derived with regres-
sion-type procedures applied to each subject’s data. Subject characteristics or
classification procedures may be used, however, for segmentation purposes, where
respondents that perform similar on the conjoint task are put together in segments,
which may be described using the subject characteristics.

Third, one has to choose the way the profiles are presented to the respondent
and the way the data are collected (cf., e.g., Vriens 1995). The presentation of
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profiles can be done verbally, as a (printed) list of attributes and levels, with the
use of pictorials, computer aided designs or actual products. Data collection can be
done with a personal interview, a mailed questionnaire, over the telephone, or with
a computer assisted procedure. Of course, some combinations of profile presenta-
tion and data collection are more suitable than others and some are not (always)
possible. For instance, the construction of actual products is only possible for a
very limited number of product categories because of the costs involved to actu-
ally produce all profiles in the experiment. See Vriens (1995) for a more extensive
discussion on these issues.

Green and Srinivasan (1978) classified estimation methods for conjoint analy-
sis in three categories. First, they described methods that assume that the depend-
ent variable is, at most, ordinally scaled. In that case estimation methods like
MONANOVA (Kruskal 1965), PREFMAP (Carroll 1972), or LINMAP (Sriniva-
san and Shocker 1973a/b; Pekelman and Sen 1974) can be used. Second, when it
is assumed that the dependent variable is interval scaled, OLS regression tech-
niques can be used. Third, for the paired comparison data in a choice context, the
binary Logit or Probit model can be used. Tho se models arise as special cases of
the models that we discuss more extensively later in this chapter.

In order to test the predictive ability of conjoint analysis, respondents most of-
ten have to evaluate a so-called holdout task after the main task. This task is usu-
ally similar to the main task, but the set of profiles differs. The responses on these
holdout tasks are not used for estimation purposes but for prediction. The idea is
of course that the estimated model should predict the holdout results as well as
possible. Especially when no ,real-life” data are available, the holdout task is
simple way to test the predictive validity of a conjoint model. When no separate
holdout task is obtained, predictive power can be tested by using the results of part
of the respondents for estimation purposes to predict the results of the remaining
respondents. However, this latter approach is only viable at the aggregate level.

The results of classic conjoint analyses are often used to predict choice or mar-
ket share (Cattin and Wittink 1982). For instance, one may be interested to know
what the predicted market shares of a specific product modification would be, or
how the introduction of a new or modified product may affect the market shares of
existing products in the market. To answer these kind of questions, market simula-
tions have to be performed. In order to do this the individual level estimates have
to be converted to choices to predict actual market behavior of the respondents.
Many choice rules are possible, but one often-used method to achieve this em-
ploys the first-choice rule, where it is simply assumed that respondents choose the
product with the highest utility. However, this approach may be inadequate be-
cause a deterministic rule is used to predict a probabilistic phenomenon (e.g.,
Louviere and Timmermans 1990). With the first-choice rule, the situation that an
alternative has a probability of being selected over another alternative of 51% is
treated the same as the situation that an alternative has a probability of 99% of
being selected, which clearly present very different sets of preferences.

DeSarbo and Green (1984) listed five reasons why choice predictions con-
structed from the results of ranking or rating conjoint may not be accurate. They
stated that (classic) conjoint studies are subject to incompleteness with respect to
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profiles, because the profile is never equal to the product, incompleteness with
respect to model specification, because most often only main effects and some
two-way interactions are estimated, and incompleteness with respect to situation,
because conjoint assumes equal effects for marketing control variables across
suppliers. Furthermore, they mentioned the artificiality of the conjoint analysis,
caused by the fact that the amount of information in reality may be different from
that in a conjoint experiment, and the instability of tastes and beliefs of consum-
ers, because they may change over time. All of the above may be reasons that
choice predictions are not accurate. However, DeSarbo and Green (1984) mention
that aggregate market predictions from conjoint analysis can be quite good.

11.3  Conjoint Choice Experiments

11.3.1 Conceptual

Conjoint choice analysis has some advantages as compared to conventional con-
joint analysis. There are no differences in response scales between individuals,
choice tasks are more realistic than ranking or rating tasks, respondents can evalu-
ate a larger number of profiles, choice probabilities can be directly estimated, and
ad hoc and potentially incorrect assumptions to design choice simulators are
avoided (Carroll and Green 1995). Several other authors point out similar (as well
as some additional) advantages of the choice approach relative to the conventional
approach (e.g., Louviere 1988; Elrod, Louviere and Davey 1992; Sawtooth Soft-
ware Inc. 1995; DeSarbo, Ramaswamy and Cohen 1995; Cohen 1997; Vriens,
Oppewal and Wedel 1998).

In the classic conjoint approaches described in the previous section, all profiles
are presented to the respondent, while in the choice approach the total set of pro-
files is divided into several choice sets and respondents have to choose their most
preferred alternative from each choice set. To set the scale of utilities between
choice sets a base alternative often is added to each choice set. An advantage of
the choice approach is that this base alternative not only can be one particular
product profile, but it can also be a so-called ,,no-choice” option (see Haaijer,
Kamakura and Wedel 2001 for a detailed discussion on the base alternative in
conjoint choice experiments). In this case the choice probabilities can possibly be
interpreted as market shares of the various profiles. The probability for the ,,no-
choice” then might be interpreted as an indicator for the overall preference for the
product category under research (e.g., Louviere and Woodworth 1983; Oppewal
and Timmermans 1993). A disadvantage of including a no-choice alternative in
the design is that respondents choosing that alternative provide no information on
the alternatives and attributes and hence some information is lost (Elrod, Louviere
and Davey 1992). Another potential problem with the no-choice option is the
reason why respondents choose it. A reason could be that their preferred brand or
price level is not in the choice set (or in general because of the presence -or ab-
sence- of a specific level of any attribute). Furthermore, a reason to choose the no-
choice could be that respondents are not interested at all to do the task. Finally,
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they may find the choice too difficult and choose the no-choice if they decide not
to spend more time on the choice task and avoid the difficult choice. In those cases
one needs to be careful how to interpret the estimated no-choice probability. John-
son and Orme (1996) claim, after analyzing several conjoint choice experiments,
that there is no evidence that the latter explanations may be true.

11.3.2 Design

The approach Louviere and Woodworth (1983) developed involved constructing
conjoint choice experiments with the use of 2’ designs when there are .J possible

alternatives, obtained by generating all possible combinations of attribute levels. 1f
there are, for instance, two attributes each with two levels, four alternatives can be

constructed. The 2’ design used then contains all combinations of the four alter-

natives present or absent in the choice set. From the full 2’ design an orthogonal
main effects experimental design is selected such that a relatively small number of
choice sets remain for estimation purposes. A disadvantage of 2/ fractional facto-

rial designs is that when there are many alternatives (), this approach will result
in large tasks for respondents where choice sets can contain (too) many alterna-

tives. A more general version of the 2’ fractional factorial design can be used
when each choice set contains a fixed number of alternatives (M) and each alterna-
tive has S attributes with each L levels. In that situation a [ main effects,
orthogonal, fractional factorial experimental design can be used to create joint

combinations of attribute levels (e.g., Louviere and Woodworth 1983; Steenkamp
1985; Louviere and Timmermans 1990). In case the number of levels is not equal
for all attributes a 7™ design still can be used, where L now represents the
maximum number of levels present in the study. Columns in the design represent-
ing attributes with fewer levels can be constructed by converting the columns with
L levels to columns representing attributes with fewer levels.

The actual coding of levels in the choice designs can be done in several ways.
For numerical attributes (e.g., price) actual values can be used in the design, which
leads to so-called linear attributes. However, most of the time some dummy speci-
fication is used. This specification can involve ,regular” dummy coding (e.g., ,,1”
if a level is present and ,,0” if it is not present) or so-called effects-type coding. In
the situation of 3 levels of an alternative, with effects-type coding, the first level is
coded, e.g., as [10], the second as [0 1] and the third as [-7-1] . For attrib-

utes with 2 levels the codes are +1 and -1 respectively. This way of coding has as
advantage, when all attributes are coded this way and each level appears with
equal frequency in the design, that the sum of the part-worths for each level is
equal to zero, so that the total model is centered around zero. Combinations of
different ways of coding are possible.

A specific characteristic of conjoint choice experiments is that one needs two
designs, instead of one design in the classic conjoint approach, to set up the ex-
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periment. One design is needed to construct the profiles, like in the classic con-
joint approach, but an additional design is needed to put these profiles in various
choice sets. It is beyond the scope of this chapter to discuss extensively how effi-
cient designs for conjoint (choice) experiments should be constructed, but the key
elements are described briefly. For much more detail the interested reader is re-
ferred to, e.g., Addelman (1962), Louviere and Woodworth (1983), Steenkamp
(1985, in Dutch), Kuhfeld, Tobias and Garratt (1994) or Huber and Zwerina
(1996). In principle one wants the main effects and interaction effects to be or-
thogonal in the design, however, Kuhfeld, Tobias and Garratt (1994) show that
orthogonal designs are not always more efficient than non-orthogonal designs,
hence a trade off has to be made between these two concepts. Furthermore, they
show that the efficiency of a given design is affected by the coding of quantitative
factors, even though the relative efficiency of competing designs is unaffected by
coding (Kuhfeld, Tobias and Garratt 1994, p. 549).

The range of levels for quantitative factors should be as large as possible to
maximize efficiency. However, the levels should of course not be implausible.
Huber and Zwerina (1996) describe four properties that characterize efficient
choice designs. They mention level balance, orthogonality, minimal overlap and
utility balance. Level balance means that each level of an attribute appears with
equal frequency. However, level balance and orthogonality are often conflicting.
Choice sets should have minimal overlap since alternatives that have the same
level of an alternative provide no information on the preference for that attribute.
Hence, the probability that an attribute level repeats itself in each choice set
should be as low as possible. Level balance, orthogonality and minimal overlap
are used to construct optimal utility-neutral designs. The efficiency of such design
can be improved by balancing the utilities of the alternatives in each choice set.
This is important since choice sets that generate extreme probabilities are less
effective at constraining the parameters of the choice model than are moderate
ones (Huber and Zwerina 1996, p. 308), although they do have a big positive
impact on the log-likelihood of a choice model. So, a high likelihood may go
together with imprecise parameter estimates for choice sets with more extreme
probabilities. One possible way to achieve more utility balanced designs is simply
by re-labeling the levels of the attributes, which has as advantage that it does not
affect orthogonality, in contrast to swapping techniques. One problem not solved
yet is how efficient designs can be obtained when a base alternative (such as a no-
choice) is present in the experiment (Huber and Zwerina 1996), another is that
efficient designs for the MNP model have not been developed yet, although re-
cently design procedures for the related mixed logit model have been proposed
(Sandor and Wedel 1999).

Another issue that plays a role is the type of design to use in the analysis: a de-
sign with fixed, randomized or individualized choice sets. With a fixed choice set
approach each respondent (or each group of respondents, in a slightly more gen-
eral fixed approach) receives exactly the same choice sets at exactly the same
stage of the choice task. In a randomized experiment each respondent (or group of
respondents) also receives the same choice sets but in a different order to compen-
sate for learning and fatigue effects that are expected to average out in this way. In
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an individualized experiment each respondent receives his own choice sets. An
advantage of individualized choice sets is that it can be tested whether prefer-
ences, or attribute importance, change in later stages of the choice experiment
(Johnson and Orme 1996), since for each choice set (i.e., the Ist, 2nd, ..., last for
each respondent) estimates can be obtained in this situation. A study by Johnson
and Orme (1996) showed, when comparing several conjoint choice experiments,
that the importance of brand decreases throughout a conjoint choice experiment,
while that of price increases. A disadvantage of using individualized choice sets is
that no choice frequencies can be computed for alternatives in each choice set,
since each set is only evaluated by one respondent. Another disadvantage of indi-
vidualized choice sets is that comparison and clustering becomes more difficult
(Oliphant et al. 1992), which would be possible when all (groups of) respondents
receive the same choice sets. In that latter case, respondents that show similar
choice patterns can be grouped together in segments. This problem is however
alleviated by mixture model approaches to conjoint choice experiments, as de-
tailed below. Depending on what type of analysis, the fixed, randomized or indi-
vidualized approach can be the preferred choice.

11.3.3 Applications

In this section an overview is given of recent applications of conjoint choice ex-
periments in the marketing literature. Some of the studies listed here have been
already discussed briefly in the previous section. This overview is not intended to
be complete, but the aim is to give an impression of possible applications of con-
joint choice. In particular, we will show for each study several characteristics of
the conjoint experiment. Table 1 lists the studies we present in this overview (it
was not possible to retrieve all information for all studies) .

Table 1 shows that the range of products investigated in conjoint choice ex-
periments is rather wide. The products range from fast-moving consumer goods,
like toothpaste, to durable products, like houses and cars. The same holds for the
number of choice sets presented to the respondents and the number of alternatives
in the choice sets. In the various applications, respondents had to choose from 3 to
32 choice sets containing 2 to § alternatives. The profiles in these choice sets were
defined on 2-12 attributes. In the Oppewal, Louviere and Timmermans (1994)
study 33 attributes where used, but their aim was to reduce this number using
Hierarchical Information Integration.

The number of respondents used in the various studies also shows a wide range
from 64 up to almost 1000 respondents. There seems to be more agreement about
the type of base alternatives to use in a conjoint choice study. Most of the studies
listed in Table 1 used ,,none”, ,,own™ or ,,other” base alternatives and only a few
used a fixed profile as base. Most of the studies that did use a fixed base alterna-
tive assume a specific situation (for instance like ,,given that you are going on a
holiday, what would be your most preferred trip”) and are less interested in obtain-
ing market shares, which is the major advantage of including some sort of ,,no-
choice” base alternative. This may be the main reason to include such a base alter-
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native in the other applications. Note that for the studies with only two alternatives
no base alternative was used. The number of levels of the attributes used in the
studies also shows a rather consistent pattern. Most studies use attributes with 2-4
levels. In situations that more levels are used for an attribute, this most often is a
brand-attribute.

Table 1:  Conjoint Choice Applications

Product/ Attri- Choice Alter- Respon- Levels /
Authors Product category  butes sets natives”  dents Base  Design
Elrod, Louviere and  Rental apartments 4 27 3 115 Own 2'3*
Davey (1992)
Oliphant et al. (1992) Insurance 9 20 5 149 None 4%2%
Oppewal and Shopping centers 4 8/16 3/4 ? Other 4%
Timmermans (1992)
Chrzan (1994) Mail orders S 8 3 605 None 2°
Fashion access. ? 16 6 300 Other  84%3*
Consumer fashion 10 16 3 876 Other 432}
Oppewal, Louviere  Shopping centers 33 3 3/4 396 None  4°2%+4%2°
and Timmermans
(1994) Batteries 3 1224 2 65 - 33
Allenby, Arora and
Ginter (1995) Credit cards 7 13-17 2 946 - 423322
Allenby and Ginter
(1995)
Activity packages 4 5/6 3 221 Fixed 3*
Dellaert, Borgers and
Timmermans (1995) Food 2 16 8 600 Fixed ?
DeSarbo, Ramas-
wamy and Cohen Houses 4 16 3 278 None 4% (4%)
(1995)
Timmermans and Flower exhibits 3 ? 3 64 Fixed 327
Van Noortwijk
(1995) Tourist Portfolio 12 12 3 +660 Fixed 3"
Dellaert, Borgers and
Timmermans (1996) Toothpaste 5 32 5 184 None 7
Dellaert, Borgers and
Timmermans (1997) Coffee makers 5 4/8 5/3 185 Fixed 327
Moore, Gray-Lee and
Louviere (1998) Cars 6 9 4 200 None 83%2?

Vriens, Oppewal and
Wedel (1998)

Wedel et al. (1998)
*: Base included

The information in Table 1 shows that conjoint choice experiments can be and
have been used for a wide range of possible applications. In almost any situation
in which consumers have to choose between several options the conjoint approach
can be used to determine which attributes of the product are important for the
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respondent. In this case ,,product” can be some fast moving product like tooth-
paste, a durable like a car or a house, a service such as tourist attractions, and even
products that are not actually bought by respondents, like ,,shopping centers”. In
most of the recent applications the number of attributes, levels and choice alterna-
tives used in the design is rather low (attributes and alternatives around 4, levels
around 3), although there are some exceptions. The number of choice sets that can
be presented to respondents showed a wide range. A recent study by Sawtooth
Software (Johnson and Orme 1996) showed that given the rather short response
times in conjoint choice experiments, many choice sets can be offered to respon-
dents even without reducing the quality of the choices. With modern computer
assisted data collecting methods for conjoint choice the response times can be
obtained very easily, and can actually be used to improve estimation of part-
worths, see Haaijer, Kamakura and Wedel (2000).

11.4  Conjoint Choice Models

11.4.1 Introduction

In this section we discuss several approaches to analyze conjoint choice experi-
ments. First of all, the standard MNL approach is discussed in section 13.4.3.
Second, section 13.4.4 describes the Latent Class MNL model. Section 13.4.5
provides two MNP models, one in which choice sets are assumed independent,
and one where the choices from one individual are treated as correlated. But first
we specify the general structure of conjoint choice models in this section and
describe the data we will use as application in section 13.4.2.

In a conjoint choice model each respondent has to choose one alternative from
each of several choice sets. These choice sets are constructed by dividing the set
of profiles over K choice sets. In this chapter we assume that each choice set con-
tains the same number of alternatives, without losing generality. In order to formu-
late models for conjoint choice experiments, we start from random utility maximi-
zation (McFadden 1976). The utility of alternative m in choice set & for individual
J is defined as:

(]) Ujkn1:anlﬂ+ejkm:

where X, is a (IxS) vector of variables representing characteristics of the mth
choice alternative in choice set £, B is a (Sx1) vector of unknown parameters, and
e un 18 the error term. Note that we assume that the X-matrix in (1) does not de-
pend on j, because in conjoint choice experiments no individual characteristics

appear in the analysis in general. Note, however, that when an individualized
design is used X does depend on j, but we omit this index here for convenience.
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For each individual j, it is assumed that the alternative with the highest utility
is chosen and a variable Y i is observed which is for each choice set £ defined

as:

)

IwhenU j,> U ju V0% m

OwhenIn=m:U 3,> U jim

As mentioned in section 13.3.1, in conjoint choice experiments a base
alternative is often used in each choice set & to scale the utility over choice sets.
This base alternative cannot only be a regular profile, it also can be specified as a
no-choice alternative (,,None of the above™) or an ,,own-choice” alternative (.,
keep my own product”). This kind of base alternative, however, presents the
problems of how to include it in the design of the choice experiment, and in what
way to accommodate it in the choice model. Regular choice alternatives are most
often coded in the design matrix with effect-type or dummy coding. Since the no-
choice alternative does not possess any of the attributes in the design, it is often
coded simply as a series of zero’s, which makes the fixed part of its utility zero in
each choice set. However, the utility level of the no-choice alternative still has to
be specified when effect-type coding is used, since the zeros of the no-choice act
as real levels in that case and this potentially leads to biased estimates. The no-
choice alternative can be specified in two ways. The first specification is to
include a no-choice constant in the design matrix X in (1). This introduces one
additional parameter in the model to estimate. Note that when brand dummies (or
other attribute specific dummies) are used for each level of the attribute, no
additional parameter is needed since in that case the utility level of the no-choice
is already set by those dummies. However, the total number of parameters to
estimate is equal in both cases. The second specification is to formulate a nested
MNL model, in which it is assumed that subjects first choose between the no-
choice and the other choice alternatives in the choice set, and in a second stage
make their choice among the alternatives when they decide to make a ,real”
choice. This also introduces one additional parameter in the model, the
dissimilarity coefficient of the Nested MNL model. Which of these representations
for the no-choice option is preferable is discussed in Haaijer, Kamakura and
Wedel (2001).

11.4.2 The Data

The various models that will be introduced in the next sections to analyze the
above conjoint choice structure will be illustrated with an application, which is a
replication of part of an application reported by Haaijer et al. (1998), with coffee-
makers as the product category. The five attributes, and their levels, for the coffee-
makers are listed in Table 2. Using a factorial design, sixteen profiles were con-
structed. Data were collected from 185 respondents, divided into two groups that
received different choice sets based on the same sixteen profiles. Respondents had
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to choose from eight sets of three alternatives. Each choice set included the same
base alternative, which is a fixed regular alternative in this experiment. Further-
more, eight holdout profiles were constructed, which were divided into four hold-
out sets with three alternatives, where the same base alternative was used as in the
estimation data. These holdout sets were offered to all respondents. The estimation
and holdout designs were coded using effects-type coding.

For all models in subsequent sections we will obtain parameter estimates. Fur-
thermore, to compare model performance, we report the log-likelihood value, AIC
and BIC statistics, and Pseudo R’ value (e.g., McFadden 1976) relative to a null-
model in which the probabilities in a choice set are equal for all alternatives. The
AIC criterium (Akaike 1973) is defined as: AIC = -2 InL + 2n and the BIC
criterium (Schwarz 1978) is defined as: BIC = -2 InL + n In(0O), where InL

is the log-likelihood in the optimum, # the total number of estimated parameters in
the model, and O the number of independent observations in the experiment.

Table 2:  Attributes and Levels of Coffee-Makers

Attribute Price  Special =~ Thermos-
Level Brand Capacity  (Dfl) Filter flask

1 Philips 6 cups 39.- Yes Yes

2 Braun 10 cups 69,- No No

3 Moulinex 15 cups 99.-

11.4.3 Multinomial Logit

The most popular discrete choice model is the Multinomial Logit (MNL) model. Tt
follows when the assumption is made that the error term in (1), e j,, , is independ-

ently and identically distributed with a Weibull density function. A Weibull den-
sity function for a random variable ¥ is defined as (see, e.g., McFadden 1976):

3) P(Y<y)=exp™ .

This distribution belongs to the class of double negative exponential
distributions as are, e.g., the Type 1 extreme value distribution and the Gumbell
distribution, which are sometimes also used to specify the MNL model. The MNL
model treats observations coming from different choice sets for the same
respondent as independent observations. Therefore, in estimating the MNL model,
100 respondents choosing from 10 choice sets yields the same computational
burden as 1000 respondents choosing from 1 choice set. In the standard MNL
model, with one choice observation for each individual, the choice probabilities
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have a simple closed form. The choice probabilities in the conjoint MNL approach
can be obtained through a straightforward generalization of this standard model.
The probability p, = that alternative m is chosen from set & is in this case

simply equal to (cf., e.g., Maddala 1983, p. 60-61; Ben-Akiva and Lerman 1985;
Swait and Louviere 1993):

(4) P = Mexp( XwnB)
D exXp( X1 B

The standard log-Likelihood for discrete choice models is in the conjoint
context for the MNL model extended by adding a summation over choice sets:
J
&) Lmr =

Z Z Y jom In (p,).

K M
k=1 m—1

=

The simple and easy to calculate form of the choice probabilities (4) in the
MNL model has much contributed to its popularity in conjoint choice
experiments. However, there is a serious limitation to the use of this model that is
related to the Independence of Irrelevant Alternatives (IIA) property. This
property arises from the assumption of independent random errors and equal
variances for the choice alternatives, and implies that the odds of choosing one
alternative over another alternative must be constant regardless of whatever other
alternatives are present (e.g., Louviere and Woodworth 1983; Ben-Akiva and
Lerman 1985), which may often be too restrictive in practical situations. If it is
assumed that the TTA property holds and the MNL model is used, predicting the
choice probabilities of new alternatives can simply be done by inserting the
attribute values of these new alternatives in the closed form expressions for the
choice probabilities (4). Green and Srinivasan (1978) stated that in consumer
behavior contexts the IIA property might not be a realistic assumption, especially
when some of the alternatives are close substitutes (cf. McFadden 1976). When
covariances across alternatives are incorrectly assumed to be zero, the estimates
for the effects of explanatory variables are inconsistent (Hausman and Wise 1978;
Chintagunta 1992). When the ITA property does not hold, other models that avoid
ITA, should be used instead of the standard MNL model, however, at the cost of
computational complexity. One of the most general of these models is the
Multinomial Probit (MNP) model, which is discussed in section 13.4.4.

When the IIA assumption is true, the parameters of the Logit model can be es-
timated when the sufficient condition is satisfied that the alternatives are inde-
pendent across choice sets (Louviere and Woodworth 1983). So, choices between
alternatives must be pairwise independent across choice sets. The alternatives in a
conjoint choice experiment are obtained by using an orthogonal, fractional facto-
rial main effects design (Louviere and Woodworth 1983; Louviere and Timmer-
mans 1990). A constant base alternative is useful, because it preserves the design
orthogonality of the attribute vectors of conjoint alternatives (Louviere 1988;
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Elrod, Louviere and Davey 1992). However, in the case of the Logit model, de-
sign orthogonality does not imply information orthogonality, for which the pa-
rameters would be uncorrelated. When similarities across alternatives are incor-
rectly assumed to be zero, the estimates for the effects of marketing variables are
incorrect (e.g., Chintagunta 1992).

The expression for the choice probabilities (4) may be expanded to accommo-
date ranking data, which is particularly useful in conjoint analysis (McFadden
1986; Kamakura, Wedel and Agrawal 1994). However, the assumptions needed to
translate rankings into choices may not hold, especially when individuals use
elimination and nesting strategies the 1LIA property does not hold (Louviere 1988).
Also, the use of brand names in the conjoint design may result in correlations
between the utilities of the alternatives, violating the TTA property. In order to be
able to test for ITA, design plans that allow as many relevant two-way interactions
as possible to be tested can be used (Louviere and Woodworth 1983).

Table 3: MNL Estimation Results

Attribute (level) Fst. S.e.

B, Brand (1) 0.040° 013
B, Brand (2) -0.329" 013
B; Capacity (1) -1.015° 014
B4 Capacity (2) 0.494" 010
Bs Price (1) 0313° 018
B Price (2) 0372° 013
B- Filter (1) 0.340° 070
Bs Thermos (1) 0312°  .010
Statistics
Ln-likelihood -1298.706
AIC 2613.412
BIC 2655.810
Pseudo R? 0.201
*p<0.05.

The MNL specification was used to analyze the data set described in section
13.4.2. In Table 3 the parameter estimates and fit statistics are listed. With the
effects-type coding used, the part-worth for the last level of each attribute can be
constructed by taking the sum of the estimates of the other levels of that attribute
and change the sign. The results show that respondents prefer a high capacity to a
low capacity, a low price level over a high price level, and that they prefer the
presence of a special filter and thermos flask to the absence of those attributes.
Finally, the third brand is the most attractive brand and the second the least. The
pseudo R? has a value of 0.201, which for this kind of choice data is a reasonable
value. The estimates in Table 3 were used to predict the holdout sets. This resulted
in a predicted log-likelihood of -754.860 (Pseudo R* =0.072). This shows that the
MNL model does not a very good job in predicting the holdout sets in this applica-
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tion, since the obtained Pseudo R* has a value much lower as those resulting from
the estimation sample.

The standard MNL model described in this section assumes that all respon-
dents act similar in their choice behavior. However, several groups of respondents
may exist that show different choice behavior. The next section describes the
Latent Class MNL model that can be used to obtain segments of respondents.

11.4.4 Latent Class MNL

Next to its disadvantages related to the ITA assumption, the MNL model also suf-
fers from the problem that it treats all subjects in the sample as homogeneous, and
does not deal with heterogeneity. The MNL model cannot be estimated at the
individual level, and thus subject-specific part-worths cannot be obtained (e.g.,
Elrod, Louviere and Davey 1992). The issue of subject heterogeneity has received
a lot of attention in the marketing literature and has become a topic of much re-
search (cf. Wedel et al. 1999). Basically, there are two ways to accommodate
heterogeneity. In this section we deal with one, where one specifies a discrete
distribution of the response coefficients ﬂj across the population, that is, one

postulates that groups of respondents exist with different part-worths. This leads to
latent class or finite mixture discrete choice models, which have been applied to
conjoint choice experiments by Kamakura, Wedel and Agrawal (1994), and De-
Sarbo, Ramaswamy and Cohen (1995). In the subsequent sections we deal with
Multinomial Probit models that specify a continuous distribution of heterogeneity.
Finite mixture models connect very well to marketing theories of market segmen-
tation (Wedel and Kamakura 1997) and have enjoyed considerable success. Man-
agers seem comfortable with the idea of market segments, and the models appear
to do a good job of identifying segments from conjoint choice data.

Kamakura, Wedel and Agrawal (1994) developed a unifying mixture regres-
sion model for segmentation of choice data. Their approach assumes that choices

are based on random utility maximization. The observed choice variables Y k>

are assumed to be independent multinomial, and to arise from a population that is
a mixture of O unobserved segments, in proportions 7z, ..., 7. We do not

know in advance from which segment a particular subject arises. The probabilities
74 are subject to the following constraints.

Y
(6) z 7zq=1 7z'q20 q=1,...,Q
qg=1

Given segment ¢, the choice probability for profile m for choice set £ is:

(7) Pkm\q:Pr'Ob[UkmqZUkn\q n:]w--;M”?&m];
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where J,,,, is the random utility derived from alternative m at £ in segment s.

Consumers are assumed to maximize their utility over the entire choice set,
Utng = Max{ Uy, n=1, ... M }. As before, the random utility for segment ¢ is

assumed to be a function of the attributes:

) Uing™ Xim ﬂq+8kmq~

If the random components, gy, , are assumed to be independent and

identically Weibull distributed, the choice probabilities for segment ¢ are:

9) exXp[/ Uyl .

kmlg — "pp

2. X[ U]
n=1

The idea behind the mixture model is that if the probability conditional upon
knowing the segments have been formulated, the unconditional probability of
observing the K choices is obtained as:

Y K M
(10) Py=2 7y IT TT Pty

q 1 k=1 m=1/

As additional features of the model, the prior probabilities of segment mem-
bership can be reparameterized according to a concomitant variables model and
the model can deal with rank-ordered data (Kamakura, Wedel and Agrawal 1994).
Wedel et al. (1998) extended this mixture model for conjoint choice experiments
by assuming that the brand can be decomposed into latent dimensions and seg-
ment-specific ideal points along those dimensions. The utility function further
contains a linear combination of the attribute-level dummies. This model inte-
grates conjoint analysis and multidimensional scaling, which makes it especially
suited for product positioning.

The mixture regression model for conjoint choice experiments was applied to
the coffee-maker data for Q=17 up to 6 segments; the BIC statistic indicated

O =4 segments as optimal. The four- segment solution was run ten times from

different starts to overcome problems of local optima. Table 4 gives the estimated
parameters for all 4 segments.

Table 4 shows that the four segments differ in their preferences for the attrib-
utes. The first segment (49,7% of the sample) wants a coffee-machine that con-
tains as many features as possible, for a as low price as possible, but it does not
matter what brand it is, since the brand parameters are not significant different
from zero for this segment. So, this seems to be a price-sensitive segment. The
second segment (17,4%) does not want a low capacity machine and prefers one
with a thermos-flask, but this segment seems more quality seeking, since its partial
utility for the lowest price level is negative, while that for the highest price level
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has the highest partial utility. This segment also has no preference for a particular
brand. The third segment (13,5%) also likes only one feature (a special filter in
this case), but does not want to pay a high price for it. This segment in addition
has a preference for one of the brands (brand 2). Finally, the fourth segment
(19,4%) finds the brand of the coffee-machine most important. It has a high pref-
erence for the first and third brand, and in addition for the presence of a special
filter. So, this segment seems to be a real brand-seeking segment.

Table 4:  LCMNL Estimation Results

Attribute Segm. 1 Segm. 2 Segm. 3 Segm. 4
(level)

Est. Se. Est. Se. Est. Se. Est. Se.
B: Brand (1)  0.005 179 0.289 188 -0.051 316 0.9207 202
B, Brand (2)  -0.224 163 -0.321 179 0.683° 295 -1.673" 346
B; Capacity (1) -2.681" 289 -0.956 247 -1.191° 481 -0.001 165
B; Capacity (2) 1.302 152 0.627" 175 0578 266 0355 203
Bs Price (1) 1.263" 284 -0.934" 346 14317 359 0322 271
B Price (2) 0.698" 213 0.150 193 0.605 312 -0.064 218
B- Filter (1) 0.630" 132 0.134 133 17537 340 03907 133
Bs Thermos (1) 0.461" 139 0.876 167 0.289 159 -0.053 167
Segment Size  0.497 0.174 0.135 0.194
Statistics
Ln-likelihood  -1040.271
AIC 2115.542
BIC 2336.058
Pseudo R’ 0.360
*p<0.05.

From the results of an Latent Class analysis different marketing strategies can be
developed for the various segments, provided that these are big enough to make it
profitable to develop a specific strategy. Table 4 shows that the smallest segment
(segment 3) still contains 13.5% of the respondents, which may be big enough to
target. The estimates in Table 4 were used to predict the likelihood of the holdout
choice sets. This gives a predicted log-likelihood for the LCMNL model of -
708.832 (Pseudo R* =0.128). Comparing this to the predictive fit of the MNL
model (Pseudo R? =0.072) we see a substantial improvement. Thus the LCMNL
model improves upon the MNL model by accommodating heterogeneity, by pro-
viding actionable information on market segments, and by providing better hold-
out predictive performance.

Although the LCMNL model accounts for consumer heterogeneity, it still
treats choices made by the same respondent as independent. In the next section
two versions of the MNP model will be developed. One in which it is still as-
sumed that choice sets are independent, but choice alternatives within a choice set
may be correlated, and one that in addition relaxes the independence of choice
sets.
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11.4.5 Multinomial Probit

Introduction

In the previous section we saw how latent class MNL model can be used to ac-
count for heterogeneity. The MNP model also presents a way to deal with con-
tinuous heterogeneity distributions of the part-worths across consumers. Specifi-
cally, the parameters are specified to follow a normal distribution, which by some
has been argued to be a better representation of heterogeneity than a discrete mix-
ing distribution (Allenby and Rossi 1999). The continuous heterogeneity distribu-
tion has several advantages: It has been argued to characterize the tails of hetero-
geneity distributions better and may predict individual choice behavior more accu-
rately than finite mixture models, since the tails may have a substantial impact on
the predictive performance of the models. It provides a parsimonious representa-
tion of heterogeneity and flexibility with regard to the appropriate choice of the
distribution of heterogeneity (see, e.g., Arora, Allenby and Ginter 1998).

In the conjoint choice context, the Multinomial Probit model (MNP) offers the
major advantage of allowing correlations among the repeated choices that con-
sumers make from the multiple choice sets next to allowing correlation of random
utilities of alternatives within choice sets. This follows since the MNP model
relaxes the assumption of independence of the error terms in random utility mod-
els (e.g., Daganzo 1979; Kamakura 1989), and thereby alleviates ITA. Factors such
as learning, boredom, or anchoring to earlier choice tasks may distort the meas-
urement of preferences when these are assumed independent, like in the MNL
model, and these effects should be tested and/or accounted for (McFadden 1986).
Several studies showed that subjects’ utilities for alternatives may indeed depend
on the choice context (e.g., Huber, Payne and Puto 1992, Simonson and Tversky
1992; Nowlis and Simonson 1997), where ,,context” is defined as the particular set
of alternatives evaluated. Since the design of conjoint choice analysis involves
only a subset of all possible profiles (constructed by fractional factorial designs)
and choice sets that vary in composition (constructed by blocking designs), con-
text effects are likely to occur in those experiments. Simonson and Tversky (1992)
distinguished local contrast effects and background contrast effects. Local contrast
effects are caused by the alternatives in the offered set only, while background
contrast effects are due to the influence of alternatives previously considered. In a
conjoint choice experiment, local contrast effects may occur due to the composi-
tion of a particular choice set in terms of the attribute levels of the profiles, affect-
ing attribute importance, inducing correlations among the utilities of profiles in the
choice set and leading to a violation of [IA (Simonson and Tversky 1992). On the
other hand, background contrast effects may occur in conjoint choice experiments
if the attribute importance of profiles in a particular choice set are influenced by
tradeoffs among profiles in previous choice sets. In this case covariance among
the random utilities of alternatives in different choice sets may occur. This violates
the assumption of independence of choices among alternatives in different sets, as
assumed in the MNL model. For a more extensive discussion on context effects
see, e.g., Tversky (1972), Huber, Payne and Puto (1982), Huber and Puto (1983),
Simonson (1989), or Simonson and Tversky (1992).
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Timmermans and Van Noortwijk (1995) explicitly modeled context effects in
conjoint choice experiments by including cross effects in the design matrix such
that the utility of an alternative depends on its own and other alternatives’ attrib-
utes. However, they only model context effect within choice sets (i.e., the local
context effects) and not between choice sets (i.e., the background context effects).
Haaijer et al. (1998) applied the MNP model to conjoint choice experiments, ac-
counting for both the local and the background context effects described above
through a specific covariance structure. They showed that it is important to ac-
count for both types of context effects. Two sections below give a MNP model
that deals with heterogeneity, IIA and local context effects, and a MNP model that
in addition accounts for background context effects, respectively.

First we specify the MNP model in general, starting again from the utility
function. Assume again that there are J respondents, each receiving the same H
profiles which are divided into K smaller sets with M alternatives each. A base
alternative that is common to all sets is added to the profiles and scales the utility
levels between choice sets. This base alternative can be a no-choice alternative or
a regular profile. The other profiles are unique to their particular choice set, so that
H = K(MI)+ I. The utilities of the alternatives for individual j are contained in

the latent unobservable vector 3 ; , which satisfies:

(]1) u,:X,B‘,JFe‘,-,

where X is a (HxS)-matrix containing the attributes of the alternatives, [ ; is a
(Sx1) vector of random weights, and ¢; is the vector containing the random com-

ponent of the utilities.
In the MNP model is it assumed that ¢ is distributed as:

(12) e;~Nu (0,3.),

independent between individuals; ¥, is a (HxH) positive definite covariance

matrix. In the MNP model not only the -parameters in (11) have to be estimated
but also the parameters in the covariance matrix Y, .

A potential problem of the MNP model is that of identification. A model is
identified when there is only one set of estimates that maximizes the likelihood.
When different parameter estimates give the same results, interpretation of the
estimates becomes difficult. Bunch and Kitamura (1989) demonstrated that nearly
half of the published applications of MNP are based on non-identified models. It is
easy to see that when the covariance matrix in (12) of the MNP model is multi-

plied with a factor p and all -estimates in (11) with a factor \/E , that this leads to

the same results. So, at least one parameter in the MNP model must be fixed to
scale the model and to identify the other parameters. Often, one of the variance
parameters is used for this purpose, but this is not sufficient, however. In the stan-
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dard MNP model with one choice set (K=1), only M(M -1)/2-1 of the
M(M +1)/2 covariance parameters in Q are identified (Dansie 1985; Bunch

1991; Keane 1992). So, M + [ restrictions must be imposed on the Q-matrix in
this situation.

Furthermore, in conjoint choice experiments, (holdout) predictions are often
required. Another problem, besides identification, of the general MNP formulation
is that these predictions for new profiles, not included in the conjoint design, can-
not be made with the covariance matrix in (12) because in predicting choice prob-
abilities for alternatives not included in the design of the experiment, estimates of
the covariances of these new profiles are required and those are not available (cf.,
e.g., Pudney 1989 p.115; Elrod and Keane 1995; Haaijer et al. 1998).

In order to arrive at an MNP model for conjoint choice experiments that is
both identified and that allows for predictions of new profiles, restrictions have to
be imposed on the covariance matrix. We allow for heterogeneity in the attribute

level coefficients by specifying ﬂ/, in equation (11) as (cf., e.g., Hausman and
Wise 1978; Daganzo 1979; Ben-Akiva and Lerman 1985):

(13) B=F+v,

with i, ~ Ng (0,%, ), independent of ¢ ;. Then

(14) u;~Nu XB.Q),
with:
(15) Q=3 +X 3, X"

The specification that enables the prediction of new alternatives that we use
assumes Y, = [ , and for reasons of parsimony and identification we parameter-

ize ¥, as a matrix of rank one: ¥, =0 o', with an S-vector of parameters,
where S is the number of columns in the X-matrix. The number of parameters in Q
now is equal to the number of B-parameters. Especially when the number of col-
umns () in X or the number of profiles (H) is large, this specification for €2 is
very parsimonious compared to a full random coefficients model or general Probit
model. A more general specification for €2 results in an increase in the number of
covariance parameters so that identification often becomes a problem. So, we now
have:

(16) Q=7,+X oo X
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This random coefficients model may account for heterogeneity, violations of
ITA, and local and background context effects potentially caused by all attributes
in the conjoint design. See Haaijer et al. (1998) and Haaijer (1999) for a more
extensive discussion of this specification and its characteristics. Rossi, McCulloch
and Allenby (1996) developed a related random coefficients Bayesian MNL
model.

Like for the MNL and LCMNL model, estimates for the parameters are ob-
tained for the MNP model by maximization of the likelihood (see below) over
and the parameters in the covariance matrix. However, when there are more than
three alternatives in a choice set the choice probabilities cannot be evaluated nu-
merically in the MNP model (cf., e.g., McFadden 1976, Maddala 1983; Kamakura
1989; Keane 1992). Simulation techniques have been developed that solve this
problem of the MNP model. To obtain the estimates in the MNP models in the
next two subsections, the Simulated Maximum Likelihood (SML) method is ap-
plied using the SRC simulator. A discussion of simulation techniques is beyond
the scope of this chapter, for an extensive discussion see, e.g., Hajivassiliou
(1993).

Multinomial Probit with independent choice sets

A straightforward way to apply the MNP model is to use it in the similar way as
the MNL model. In this case we take an individual's utilities to be independent
between the choice sets, and thus account for local, but not for background context
effects. We then have JK independent observations, and the log-likelihood is again
a straightforward generalization of the standard likelihood of choice models,
where a summation over choice sets is introduced, similar as in the MNL model of

section 13.4.3 Letting p, ~ denote the fraction of individuals choosing alternative

m in set k, the log-likelihood is (in a slightly different notation as the log-
likelihood (5) of the MNL model) equal to:

M
Z pkm ln (”km):

1 m1

K
(17) Liwre, =

k
where 7., is the probability that alternative m is chosen in set k. Note again that

in conjoint choice models consumer characteristics or other individual specific
variables are usually not included, hence s, does not depend on j and each

individual has the same probability of choosing any specific alternative, since we
assumed that they all receive the same choice sets. This model is called the
choice-set-independent MNP model (MNP,;). For this MNP model, the assump-

tion of utility maximization results in an expression for ,, that involves an
(M-1)-dimensional integral:

0
(lg)ﬂ'km = P( Ukn ~ Uk < 0 v h#me Ak ) = P( Zikm < 0 ) = .[dkm([) d[

—0
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where A, is the set of profiles in choice set k and ¢, (.) is the density of 77}, .

This specification accounts for local contrast effects only, since it allows utilities
within choice sets to be correlated.

Table 5: MNP, Estimation Results

Attribute B c

(level) Est. S.e. Est. See.
1 Brand (1) -0.106  .203 0.717 386
2 Brand (2) -0.179 222 0.107 665

3 Capacity (1) -1.166" .123  0.585" 270
4 Capacity 2)  0.587°  .090  -0.001 224

5 Price (1) 0.326 497 -0.084 .599
6 Price (2) 0.378 269 0.482 473
7 Filter (1) 0.354" 098 0298 372
8 Thermos (1) 0.269 152 0.173 259
Statistics
Ln-likelihood -1279.100
AIC 2590.201
BIC 2674.997
Pseudo R’ 0213

*p<0.05.

In Table 5 the coffee-maker data results are listed for the structural parameters
and the covariance parameters o, as well as the fit-statistics. It shows that the
results of the MNP model are a somewhat disappointing. Although it produces a
better log-likelihood than the MNL model, due to the high standard errors only a
few parameters are significantly different from zero with a p-value of 5%. The
results indicate that the capacity and presence of a special filter are the only rele-
vant attributes. Furthermore, the one significant covariance parameter (belonging
to the first capacity level) is responsible for the increased fit of the MNP.; model
with respect to the MNL model, but no clear conclusions can be drawn from these
results. In addition, the AIC and BIC statistics indicate that the LCMNL has better
fit than the MNP,; model. The estimates of Table 5 were use to predict the hold-
out sets. The predicted log-likelihood is equal to -784.677 (Pseudo R’ = 0.035),
which is worse from the LCMNL model and even worse than those of the MNL
model.

The results of the MNP ; model indicate that allowing for heterogeneity and
correlation of utilities within choice sets may help to improve model fit in terms of
the log-likelihood value. However, this application also showed that the discrete
(LCMNL) representation of heterogeneity seems to do better than the continuous
(MNP) one. In the next subsection the MNP model that in addition allows for
correlations between choice sets is developed.
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Multinomial Probit with dependent choice sets

The MNP specification in the previous subsection only allowed for correlations
within choice sets and not between. In this section we assume that utilities of the
same individual are not independent over choice sets, but rather that utilities of
alternatives in different choice sets are correlated. In this case a total probability
has to be obtained for the complete choice observation of an individual. A simple
example illustrates this. Assume we have two choice sets with each three alterna-
tives (so, H=5). For each individual we observe two choices, one from each set.
Consider an individual j choosing the second alternative from the first set and the
base alternative from the second choice set. The resulting joint probability for this
example is equal to (b represents the base alternative):

(19) TTop — P ( Uji2 > Ui >Uji2 > Ujip > Uj2b > U1 > Uj2p > Uj22 ) .

This probability can be expressed involving a four-dimensional integral. In the
general case, a K-vector of choices is observed for each individual, and we have to
consider A" arrays containing the multiple choices from different choice sets.
Each array corresponds to a joint probability, involving an (H-1)-dimensional
integral that describes the probability of observing the array of choices from all
choice sets (cf. Hausman and Wise 1978; Papatla 1996). In this case, the form of
the probabilities for the MNP model becomes somewhat complicated, and we omit
the formal presentation of these probabilities since the notation provides no addi-
tional insight.

The log-likelihood for this MNP approach is equal to:

MK
(20) Limr = Z p, In(7,),
1

where / indexes the K-dimensional choice arrays, p, denotes the observed frac-

tions of the choice arrays, and 7, denotes the choice probabilities expressed as

functions of the model parameters. This specification accounts for both the local
and background contrast effect, because the choice probabilities, as in (19), de-
pend on all profiles in the design or, alternatively, with heterogeneity of the pa-
rameters across choice sets. This is not the case with models that treat the choice
sets as independent, such as the MNL model, LCMNL model and the MNP model
of the previous subsection.

Table 6 lists the parameter estimates and fit statistics. After estimation, all ei-
genvalues of the final Hessian were positive, indicating that the model is identified
(Bekker, Merckens and Wansbeek 1994).

Table 6 shows the same pattern of 3-estimates as in the MNL model. However,
the fit of the MNP model is much better than that of the MNL model. This is
caused by the estimated covariance parameters. The log-likelihood of the MNP
model is somewhat lower than that of the LCMNL model, and consequently also
the Pseudo R? is lower. The AIC statistic would favor the LCMNL model over the
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MNP model, but the BIC statistic, which penalties the likelihood more severely,
indicates the MNP model as best. Table 6 shows that most attribute levels are
potentially responsible for correlations between and within choice sets. Note,
however, that because of the effects-type coding some effects may cancel out (see
Haaijer (1999), chapter 5.2.4 for a discussion), so one has to investigate not only
the estimated parameters but in addition the estimated covariance matrix (16).

Table 6: MNP Estimation Results

Attribute s o
(level) Est. S.e. Est.  Se.
1 Brand (1) 0.029 .101 04177  .096
2 Brand (2) -0240° 078  -0.387" .099
3 Capacity (1) -1.075° 092 0.850°  .094
4 Capacity (2) 0.565" 060  -0.348" .083
5 Price (1) 0432° 116 -0.562° .139
6 Price (2) 0244" 082  -0.145 .100
7 Filter (1) 0355 038  0.023  .058
8 Thermos (1) 0393"  .054  -0206" .071
Statistics
Ln-likelihood -1086.622
AIC 2205.245
BIC 2256.770
Pseudo R’ 0.332

*p<0.05.

Interestingly, the covariance matrix of the MNP model reveals alternatives with
near zero covariances with all other alternatives. This indicates that these are (al-
most) independent of the other alternatives. After constructing the £ matrix the o-
estimates reveal what attribute (levels) are responsible for correlations within and
between choice sets.

The estimates of the MNP model were again used to predict the holdout sets.
For the MNP model the predicted log-likelihood is equal to -679.075 (Pseudo R’
=0.165). This shows that it is very important to account for both kind of correla-
tions, or context effects, which not only results in an improved model fit, with
relatively few covariance parameters, but also in an improved holdout predictive
fit, which is better than that of the MNL, MNP,,;, and LCMNL models.

115 Discussion and Conclusion

In the above sections we showed several models that can be used to analyze con-
joint choice experiments. We discussed the standard MNL model, the Latent Class
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MNL model and two versions of an MNP model with a specific covariance struc-
ture. The performance of the models was illustrated with an application. It is inter-
esting to compare the results of the various models, although we realize that this
comparison is based on only this one application, so some care must be taken with
respect to drawing conclusions.

When we compare the estimated log-likelihood values, the LCMNL model
gives the best result, followed by the MNP model. At some distance the MNP
model and MNL model follow. However, since the number of parameters in the
LCMNL model is much larger than that in the MNP model (35 and 16 respec-
tively), the BIC-statistic, that compensates for the number of parameters and ob-
servations in the model, ranks the MNP model as best. The AIC-statistic, that only
puts a penalty on the number of parameters, still lists the LCMNL model as best.
If we compare the predictive power of the models the MNP model comes out as
best, followed by the LCMNL, MNL and MNP_; models. Based on these results
one could conclude that the using the MNL model for (conjoint) choice experi-
ments may not be a good choice. It does not account for heterogeneity and corre-
lated choice alternatives within and between choice sets. This results in an inferior
model fit and predictive fit compared to models that do account for these ele-
ments. On the positive side, however, we saw that the estimates for the structural
parameters do not differ much between the models. This is in line with findings by
Borsch-Supan et al. (1990), who also found that differences in model fit, with
respect to the log-likelihood value, is often caused by the error structure while the
structural parameters are relatively left unaffected, although a misspecified covari-
ance matrix not only affects the standard errors of the covariance parameters but
also of the structural parameters. This is exactly what may have happened in the
MNP, model. So, in terms of finding the ,,right” structural parameters the MNL
model may do a reasonable job, but when these results are used to predict the
performance of new alternatives, or holdout choice sets, the MNL model falls
short to the LCMNL and MNP model. Of course, further research should be done
to test the generalizability of these findings. Haaijer et al. (1998) tested three data
sets, including the one in this chapter, and found in all three cases that the MNP
model outperforms the Independent Probit model (which has similar characteris-
tics as the MNL model) on estimation fit and holdout predictive power. Haaijer,
Kamakura and Wedel (2000) support these findings for two other data sets.

Several authors have compared continuous and discrete specifications of het-
erogeneity (e.g., Lenk, DeSarbo, Green and Young 1996; Vriens, Wedel and
Wilms 1996; Allenby, Arora and Ginter 1998; Allenby and Rossi 1999). These
comparisons were made on scanner panel data rather than on conjoint choice data.
Nevertheless, the conclusion from these studies is that for predictive purposes
continuous (MNP) specifications may be preferable over discrete (LCMNL) speci-
fications. From a substantive angle, the MNP-type of specification, particularly
when applied in conjunction with the Gibbs sampler, that allows for individual
level parameters to be estimated, seems preferable in direct marketing applica-
tions, where such individual level estimates are of great use in targeting individu-
als. However, advantages of the discrete model specification accrue in situations
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where managers are interested in targeting market segments (see Wedel and Ka-
makura 1997 for an extensive discussion).

Several other issues need to be further investigated. The findings of this chap-
ter that local and background context play a role in respondents’ choices should be
studied more closely. The importance of these effects in relation to the number of
attributes, choice sets, levels of attributes and alternatives could be given addi-
tional attention. The attribute level effect found in the literature could be particu-
larly related to context effects. Furthermore, the involvement of respondents and
their knowledge on the product category, as well as the product category itself,
could also influence the importance of these context effects. The influence of all
these factors on the choice, and hence ultimately on the parameters of interest,
should be minimized or at least be accounted for. Research should be done on the
optimal design for conjoint choice experiments analyzed with Probit models, since
optimal designs are not yet available. The results obtained from such an optimal
conjoint experiments should lead to managerial more insightful and precise infor-
mation on the product in question. In addition, one needs research on many prod-
uct categories, designs, etcetera to investigate how generalizable findings are.

Furthermore, the performance of the Simulated Maximum Likelihood method
explored in this chapter as optimization methods for the MNP models should be
compared with Bayesian estimation using the Gibbs sampler. An interesting ave-
nue for further research is in combining the Latent Class and MNP approaches,
thus having the advantages of the predictive performance of the continuous and of
the managerial appeal of segments of the discrete heterogeneity representation. It
would be interesting to test the performance of such a Latent Class MNP model.
In this chapter we already saw that the MNP model leads to better prediction re-
sults as compared to the LCMNL model. In addition accounting for different seg-
ments in an MNP context could further improve predictive performance and en-
hance managerial appeal, although the number of parameters to estimate may
become a limiting factor, with respect to estimation time as well as their identifi-
cation.

In any case, we may conclude that the MNL (or IP) model is no longer the pre-
ferred choice for analyzing conjoint choice experiments.
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12 Optimization-Based and Machine-Learning
Methods for Conjoint Analysis: Estimation and
Question Design

Olivier Toubia, Theodoros Evgeniou and John Hauser

121 Introduction to optimization and machine-learning
conjoint analysis

Soon after the introduction of conjoint analysis into marketing by Green and Rao
(1972), Srinivasan and Shocker (1973a, 1973b) introduced a conjoint analysis
estimation method, Linmap, based on linear programming. Linmap has been ap-
plied successfully in many situations and has proven to be a viable alternative to
statistical estimation (Jain, et. al. 1979, Wittink and Cattin 1981). Recent modifi-
cation to deal with “strict pairs” has improved the estimation accuracy with the
result that, on occasion, the modified Linmap predicts holdout data better than
statistical estimation based on hierarchical Bayes methods (Srinivasan 1998,
Hauser, et. al. 2006).

The last few years have seen a Renaissance of mathematical programming

approaches to the design of questions for conjoint analysis and to the estimation of
conjoint partworths. These methods have been made possible due to faster
computers, web-based questionnaires, and new tools in both mathematical
programming and machine learning. Empirical applications and Monte Carlo
simulations with these methods show promise. While the development and
philosophy of such approaches is nascent, the approaches show tremendous
promise for predictive accuracy, efficient question design, and ease of
computation.
This chapter provides a unified exposition for the reader interested in exploring
these new methods. We focus on six papers: Toubia, Simester, Hauser and Dahan
(TSHD), 2003; Toubia, Simester and Hauser (TSH), 2004; Evgeniou, Boussios
and Zacharia (EBZ), 2005; Toubia, Hauser and Garcia (THG), 2006; Abernethy,
Evgeniou, Toubia and Vert (AETV), 2006; Evgeniou, Pontil and Toubia (EPT),
2006. To avoid redundancy, we refer to each of the six reviewed papers by the
initials of their authors after the first mention in each section.

We use a framework that clarifies the strengths and limitations of these
methods as applied in today’s online environment. Online conjoint analysis is
often characterized by a lower number of observations per respondent, noisier
data, and impatient respondents who have the power to terminate the questionnaire
at any time. Such an environment favors methods that allow adaptive and
interactive questionnaires, and that produce partworth estimates that are robust to
response error even with few observations per respondent.
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The framework is that of statistical machine learning (e.g., Vapnik 1998).
Within this framework, we interpret recent attempts to improve robustness to
response error and to decrease the number of observations required for estimation
as an application of “complexity control.” We complement this framework to
review recent adaptive question design methods, by including experimental design
principles which select questions to minimize the expected uncertainty in the
estimates.

In the interest of brevity we focus on the conceptual aspects of the methods,
and refer the reader to the published papers for implementation details.

12.1.1 Notation and Definitions

We assume / consumers indexed by i (i=1,,.. /) answering J; conjoint questions
each, indexed by j (j=1,..,J;). Let w; denote a p-dimensional partworths vector for
each consumer i. For ease of exposition, we assume binary features and a main
effects specification. Neither of these assumptions are critical to the theory — the
reviewed papers address multi-level features and interactions among features.
Indeed, an important benefit of complexity control is that feature interactions of
any degree may be estimated in an accurate and computationally efficient manner
(EBZ; EPT).

The methods we review can be used for most conjoint data-collection formats.
For simplicity we focus on the three most common: full-profile analysis, metric
paired comparisons, and stated-choice questions.

For full profile rating conjoint data, we assume that the /™ question to
respondent i consists in rating a profile, x;. The respondent’s answer by y,. The
underlying model is Yy =X, W E where ¢; is a response error term.

For metric paired-comparison conjoint data, we assume that the /™ question
asks respondent i to compare two profiles, x;; and x;;. We denote the
respondent’s answer by y;;. The sign of y; determines which profile the respondent
prefers; the magnitude of y; determines the strength of the preference. The

underlying model is hence y, = (x,, — x,,).w, + &, where ¢; is a response error

term.

For stated-preference (choice-based) conjoint data, each respondent is asked to
choose among a set of profiles. For ease of exposition, we assume that the ;™
question asked the respondent to choose among two profiles, x;;; and x;,. Without
loss of generality, we code the data such that profile 1 is the chosen profile.
(Binary choice simplifies exposition. Empirical applications and simulations use

choices among more than two profiles.). The underlying model is that relative true
utility, uy, is given by u, =(x,, —x,,).w, + &, where &; is a response error

term. The respondent chooses profile 1 if u; 20. The distribution of &; implies

alternative probabilistic models.
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122 Using complexity control in conjoint analysis

In statistical estimation of partworths, researchers often worry about over-fitting
the data. For example, if one were to use regression to estimate almost as many
partworths as there are data points, then the conjoint model would fit the (calibra-
tion) data well, but we might expect that the partworths would be based, in part,
on measurement error and would not be able to predict holdout data. Classical
statistics address over-fitting by accounting for degrees of freedom and Bayesian
statistics address over-fitting with hyper-parameters and the implied shrinkage
toward the population mean. In statistical learning methods, over-fitting is ad-
dressed with the concept of complexity control. The conceptual idea is that if the
model is too complex, it is too susceptible to over-fitting. To avoid this unwanted
effect, we limit the complexity of the model by defining a measure of fit, a meas-
ure of complexity, and a method for determining the trade off between fit and
complexity. Because the concept is important to understanding the philosophy of
the new methods, we begin with a brief review of complexity control.

12.21 Ridge regression is an example of complexity control

There is a long history in models of consumer behavior that, in the presence of
measurement error, unit partworths often predict well (e.g., Einhorn 1971, Dawes
and Corrigan 1974.). One way to incorporate this concept in conjoint analysis is
with ridge regression (e.g., Wahba 1990; Vapnik 1998; Hastie et al., 2003). Con-
sider a simple ordinary least square regression resulting from a full-profile con-
joint questionnaire. Such estimation involves minimizing the following loss func-
tion with respect to wi:

J
(1 L(W/):Z(yg/_xij'wi)2

=
Minimizing loss function (1) results in the OLS estimate:

@ WO = (X X)X,

where X; and ¥, are obtained by stacking all J observations for consumer i. If the
number of profiles J is relatively small compared to the number of parameters to
estimate p, this simple approach may suffer from over-fitting and the estimates
may be very sensitive to small variations in the dependent variable. Mathemati-
cally, this instability comes from the poor conditioning of the matrix (X;"X).
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Ridge regression addresses instability and over-fitting by replacing v?/f S \vith:

(3) Wi = (XX, vy DT XY,

where 1 is the identity matrix and the parameter y may be selected using various
methods, such as cross-validation (which we will review later). Note that the ma-
trix (M.X+ v.D) is better conditioned than (XiTX: all its eigenvalues are
greater than or equal to y. It is easy to show that (3) is the solution to the following
modification of the OLS problem (1), where the minimization is done over wi,
given y:

1 J
(4) Lw | py==> (v, = x,w) +| w,|’

J=1

where | w) * is the Euclidean norm of the vector w;.

One interpretation of the term, | w)| 2, is as a means to control the complexity of
the estimate w;. Complexity control may be viewed as an exogenous constraint
imposed on w; to effectively limit the set of possible estimates. The parameter y in
(4) dictates the relative weight on complexity versus fit. As y = 0, Equation 4
becomes equivalent to OLS regression; as y = +oo, Equation 4 simply minimizes
complexity. If we had an additional constraint that the w,’s sum to a constant, the
solution would be equal weights. Typically we observe a U-curve relationship
between the parameter y and holdout accuracy (e.g., Evgeniou, Pontil, Toubia
[EPT] 2006). Accuracy is poor when y is too small because of over-fitting.
Similarly, accuracy is often poor when v is too large because the data are virtually
ignored. Bootstrapping methods like cross-validation (reviewed in a later section),
for example, offer a practical and effective way of searching for this optimal value
of y, which is an issue extensively studied within statistical learning theory.

12.2.2 A Bayesian Interpretation of complexity control

We can use Bayes Theorem to provide another interpretation of complexity con-
trol. We augment the data likelihood with a Bayesian prior as follows:

Vi =Xy Wi t &y

(5) Likelihood:
g, ~N(0,0%)

Prior: w, ~ N, .I)
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We compute the posterior distribution on wi conditioned on the data and a specific
value of the parameters B and o:

(6)
Pw, [{y,1.0.B)c Py, | w0, f).P(w, | 0. B)

J (y__x_‘w)Z |w|2
o ex -4 V7 |expl ——
p(z} 207 ] p( e

J

] p[ 7w {#Z” A 'D

The posterior likelihood in Equation 6 is now in the same form as the loss

function in Equation 4 if y= C’_z . Equation 6 provides a useful interpretation of
B
the trade off parameter y as the ratio of the uncertainty in the data (c°) relative to
the uncertainty in the prior (%). We place more weight on the data when they are
less noisy (small 6%). We shrink our estimates more toward the prior when the
data are noisy (large 6°) or when we have a stronger belief in the prior (small ).
While there is a mathematical equivalence, the two approaches differ in
philosophy and, in particular, in how v is selected. In the Bayesian interpretation, y
is set by the prior beliefs — exogenously. In statistical machine learning y is
estimated endogenously from the calibration data. This also makes any
interpretation of the methods as “maximum likelihood or a posteriori estimation”
(i.e., estimation of the mode in Equation 6) not straight forward. This difference is
a fundamental philosophical interpretation that leads to differences in estimation
accuracy between statistical machine learning and Bayesian methods, as shown by
EPT and discussed below.

12.2.3 General framework

Equations 4 and 6 are illustrative. The loss function in its general form, for a given
v, may be written as:

J
7 Lw, | y)= l,z V(w,,data) + J(w,)

J=1

The first term, V(w, data), measures the fit between a candidate partworth
estimate, w;, and the observed data. The second term, J(w;), measures the
complexity of w;. The quadratic complexity function, | w; *, is common, but any
function may be used. In general the choice of J(w,;) in Equation 7 may also
depend on the data.
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12.2.4 Minimization of the loss function

A potential (but not necessary) restriction is that both functions V and J in (7)
should be convex. In that case, the large literature on convex optimization pro-
vides efficient methods to minimize the loss function given y. Otherwise, non-
convex (even combinatorial, for discrete decision variables) optimization methods
can be used, leading to solutions that may be only locally optimal. Most of the
reviewed papers use some variation of Newton’s method and achieve convergence
after few (e.g., 20) iterations. In some cases (Abernethy, Evgeniou, Toubia and
Vert (AETV), 2006; EPT) the loss function is minimized using closed-form ex-
pressions. Computation time is rarely a limitation, and often an advantage com-
pared to other methods such as hierarchical Bayes.

12.2.5 Trade of between fit and complexity

The tradeoff, y, between maximizing fit and minimizing complexity can be set
exogenously by the modeler or the Bayesian prior or endogenously, for example
by means of cross-validation. For example, the polyhedral methods of Toubia,
Simester, Hauser and Dahan (TSHD, 2003) and Toubia, Hauser and Simester
(THS, 2004) implicitly assume an infinite weight on fit by maximizing fit first and
then minimizing complexity among the set of estimates that maximize fit. The
probabilistic polyhedral methods of Toubia, Hauser and Garcia (THG, 2006) use
pretest information to select the tradeoff between fit and complexity, captured by a
response error parameter a’. AETV set y to the inverse of the number of questions,
to ensure that the weight on fit increases as the amount of data increases (Vapnik
1998).

Of the conjoint analysis papers reviewed in this chapter, EBZ and EPT select y
using cross-validation — a typical approach in statistical machine learning. (See for
example Wahba 1990; Efron and Tibshirani 1993; Shao 1993; Vapnik 1998;
Hastie et al., 2003, and references therein). It is important to stress that cross-
validation does not require any data beyond the calibration data.

The parameter y is set to the value that minimizes the cross-validation error,
typically estimated as follows:
¢ Set Cross-Validation(y)= 0.

o Fork=1toJ:
- Consider the subset of the calibration data that consists of all questions except
the K™ one for each of the 7 respondents.'
- Using only this subset of the calibration data, estimate the individual
partworths {w,*} for the given 7.

' Variations exist. For example one can remove only one question in total from all 7

respondents and iterate / x J times instead of J times.
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- Using the estimated partworths {w;*}, predict the responses to the /
questions (one per respondent) left out from the calibration data and let
CW(k) be the predictive performance achieved on these questions (e.g.,
root mean square error between observed and predicted responses for
metric questions, logistic error for choice questions).

- Set Cross-Validation(y) = Cross-Validation(y) + CV(k).

The parameter 7 is set to the value that minimizes the cross-validation error,
and is typically identified by using a line search. The cross-validation error is,
effectively, a “simulation” of the out-of-sample error without using any out-of-
sample data.

12.3 Recent optimization-based and machine-learning
estimation methods

Five of the reviewed papers propose and test new estimation methods (Abernethy,
Evgeniou, Toubia and Vert [AETV], 2006 is the only reviewed paper that focuses
exclusively on questionnaire design and not on estimation). We examine these
methods in light of the general framework outlined above. Each method may be
viewed as a combination of a specific fit function, a specific complexity function,
and a method for selecting the amount of trade off between fit and complexity.

12.3.1 Support vector machine estimation for choice-based
conjoint analysis

Evgeniou, Boussios, and Zacharia (EBZ, 2005) focus on choice-based conjoint
analysis and use a standard formulation known as the Support Vector Machine
(SVM, Vapnik 1998). This has been arguably the most popular statistical machine
learning method over the past 10 years, with numerous applications in various
fields outside of marketing such as text mining, computational biology, speech
recognition, or computer vision. An SVM uses the following loss function:

1 ‘/ 2
®) L(Wi | 7/) = ;Z@(l - (xijl - xg/2)~wi )[1 - (xijl - xg/‘z)-wi]+ | W, |
J=1

where the function 4 is chosen such that &(a) = 1 if @ > 0 and 0 otherwise. Equa-
tion 8 combines quadratic complexity control with a fit function that is slightly
different from that normally used in conjoint analysis.

Recall that we assume, without loss of generality, that x;; is chosen over x;.

Hence a partworth vector w; is consistent with choice ; if (x;; —Xx;0)w, 20.
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If @l 11-(x, —x,,)w, then &a) = 0 if (x,

product O(1—(x;; —x,,).w)[1=(x, —x,,)w,] equals 0 whenever

= X)W, 21, hence, the

=X w > 1 . .
(x” 1Yy 2 . This will happen whenever the observed choice j is predicted

by wi with a margin of at least 1. If choice j is not predicted by a margin of at least
1, the loss function introduces a penalty equal to the distance between

(X = %y0)-W, and 1. Fit is measured by the sum of these penalties across
choices. Setting the margin to 1 plays the role of scaling the magnitudes of the
partworths; any other scaling number could be used. EBZ select the parameter vy
using cross-validation.

This loss function may be related to the analytic center criterion reviewed
below. In particular, if each choice is interpreted as a constraint
(X1 = Xy2)w; 2 1 , then the set of points wi that satisfy all the constraints forms
a polyhedron, and for each point wi in this polyhedron, the complexity term |wiP
becomes the inverse of the radius of the largest sphere centered at wi inscribed in
this polyhedron (Vapnik 1998). As a result, the value of wi that minimizes
complexity is the center of the largest sphere inscribed in the polyhedron.

12.3.2 Analytic center estimation for metric paired-comparison
conjoint analysis

Polyhedral methods introduced by Toubia, Dahan, Simester and Hauser (TDSH,
2003) and Toubia, Hauser and Simester (THS, 2004), and extended by Toubia,
Hauser and Garcia (THG, 2006) were developed explicitly to improve adaptive
question design. The primary application of these methods is to web-based con-
joint analysis where respondents are free to leave the questionnaire at any time.
Polyhedral methods provide means to gather the most efficient information from
each question.

However, each of the three polyhedral methods provides an estimation method
as a byproduct of question design. This estimation method is based on the
analytic center of the set of feasible partworths — possibly probabilistic. We
provide here an interpretation of analytic-center estimation within the framework
of statistical machine learning.

We begin with TDSH, who assume a metric paired-comparison conjoint
format. TDSH first consider the case in which there is no response error (¢,=0),
and observe that the answer to each question may be interpreted as a constraint on

wi ¥, =(x; —X,,).w,. The set of “feasible” estimates that satisfy all the

constraints associated with all the questions is a polyhedron, defined as:

)] Dy ={w, 0< w; < 100, (xy; - x0)w; =y for j=1,...J}
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where the constraint, 0 <w; < 100, is chosen without loss of generality to establish
the scale of the partworths. Out of all feasible estimates defined by this polyhe-
dron, TDSH select the analytic center of the polyhedron as their working estimate,
defined as:

) )
(10) W' =argmax E log(w,, ) + log(100 —w,, )
Vi =l

subject to: (x;; - x;2).w; = yy for j=1,...J

where wy, is the & element of w,. The analytic center is the point that maximizes
the geometric mean of the slack variables associated with the inequality con-
straints. The logarithmic function is called a “barrier function” in interior point
programming. It prevents the expression inside the logarithm from being non-
positive.

For small number of questions the feasible polyhedron will be non-empty,
however, as the number of questions grows in the presence of response error, it
will no longer be possible to find partworths that are consistent with all of the
questions and the feasible polyhedron @, 5 will become empty. Toubia et al.
(2003) follow a two-step estimation procedure: (1) find the minimum amount of
response error 6% necessary for the polyhedron to become non-empty, (2) find the
analytic center of the resulting polyhedron. In particular, they first find the
minimum J* such that the polyhedron defined as:

@{1,...(/‘,:{”}/& 0= w; < 100, Yij - o* < (xijl 'XUQ).W; < Yij + 0% fij = 1,.]}

is non empty, and then estimate the partworths using the analytic center of this
new polyhedron:

(1D

- i
W< = arg max Zlog(w,k) +10g(100—w, ) +
Ww; =

i

J
Zlog(y[/ +0* _(x[/] - xuz )'Wi) + log((xm - xuz )'Wi - y(,‘ + 5*)

J=1

We now reformulate Equation 7 within the general framework. We begin by
rewriting the polyhedron @y, in standard form:

W, =(w,.a,b,,¢ )W, 20w, +a, =10Q(x, —x,,) W, —b, =y, —F*(x

0 —x,jz).w, +e, =y, +0%}
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TDSH’s fit measure becomes ¥V ““ (W, ,data)=6* and their complexity
control becomes:

(12) JAC (W}I) = i - lOg(W,k ) - log(aik ) + i - IOg(b”) - lOg(CU)

k=1 j=1

Their two-step procedure becomes the limiting case (when y—0) of the
following loss function:

(13) LW, |y)= Ly (W, data) +J * (,)
4

If one wishes, one can generalize TDSH’s analytic-center estimation by
choosing a non-limiting parameter y to balance fit and complexity.

12.3.3 Analytic center estimation for choice-based conjoint
analysis

THS developed a choice-based polyhedral conjoint method. Each stated-choice
question is interpreted as an inequality constraint of the form (x;; - x;2).w; = - 0%,
where J* is a non-negative parameter that captures response error. The polyhedron
of feasible partworths becomes:

(14) lD“,mJ}:{w,», w; = 0, I.W,' = 100, (XU'/ - XUQ).W,' > - oF fij = 1,.]}

where 0 < w; and 1.w; = 100 are scaling constraints chosen without loss of gener-
ality. (1 is a vector of one’s, such that 1.w; is equal to the sum of the elements of
W,‘).

Like the metric version, the primary goal of polyhedral choice-based conjoint
analysis is to select questions efficiently. Using the proposed method, THS select
questions such that each choice by a respondent selects a subset of the feasible
polyhedron of partworths. With this method, the feasible polyhedron never
becomes empty. Ideally, with no measurement error the polyhedron will shrink
toward the true value of a respondent’s partworths. Intermediate estimates are the
analytic center of the feasible polyhedron.

When choice-based polyhedral methods are not used to select questions, it is
possible that the feasible polyhedron will become empty.
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In this case, THS again follow a two-step estimation procedure: (1) find the
minimum value of ¢* such that the polyhedron @, 5 is non-empty, (2) find the
analytic center of the resulting polyhedron, defined as:

P J
(15) W/ = arg max Z log(w,,) +z log((x;; —x,,)w, +5%)
L *

J=1

subject to: 1.w~=100
The polyhedron may again be written in standard form as:

@y p={w, =(w,,a,)w, 2 0:Lw, =1005(x,, —x,,)w, —a, =—0%}.
The two-step estimation procedure becomes the limiting case (y—0) of the follow-
ing loss function:

(16) L(w,.|;/):l.5*+JA"(7v,.)
4

subject to: 1.w,=100

where:

. P J
17 JY@#,) =) ~log(w, )+ —log(a,)
k=1 =1

12.3.4 Probabilistic analytic center estimation

THG offer a Bayesian interpretation of the method proposed by THS, which en-
ables a richer treatment of response error and which allows capturing informative
priors on the partworths. They consider prior distributions represented by mixtures
of uniform distributions supported by polyhedra. (In one dimension, a uniform
distribution supported by a polyhedron simply becomes a uniform distribution on
an interval; in two dimensions, it is a uniform distribution on a rectangle, etc.)
Mixtures of such distributions may be used to approximate any prior distribution.
THG also provide a method by which prior beliefs are not directly captured by
probability distributions, but rather by probabilistic constraints on some combina-
tions of the parameters (e.g., the importance of feature A is greater than m with
probability q). The general expression for this class of distributions is as follows:

AM
P(Wz) = Zm:l a)m P‘Pm (WI)
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where M is any positive integer, {@,,...,®,,}is a set of positive weights such
that Zmzla)m =1, {¥,....\¥,, }is a set of polyhedra, and Py (w,)is the uni-

form probability distribution with support ¥,,. The previous methods of TDSH
and THS implicitly assume a uniform prior on the polyhedron defined by the
scaling constraints.

THG combine this class of prior distributions with a conjugate class of
likelihood function such that in each question, the profile with the highest
deterministic utility is chosen with probability o’, and the (J-1) other profiles are
chosen with probability (1- @”)/(J-1) each. Such likelihood functions are step
functions with two values, one taken by all points that are consistent with the
choice, and the other taken by all points that are inconsistent with the choice. The
specific values are driven by the parameter o’. This class of likelihood functions is
attractive because the posterior distribution on the partworths is also equal to a
mixture of uniform distributions supported by polyhedra. After J questions, the
posterior distribution on w; may be written as follows:

P(w,) = Z za)m_g-memwm ()

m=1 seS,

where S is the set of all subsets of the questions {1, 2,,.. J}, and for a subset s of
S, @ is the polyhedron corresponding to the questions in s. The parameter @, is
the mixture weight on the polyhedron defined by the intersection between @, and
the prior polyhedron ¥, (see THG for a method to approximate these weights).

Although other techniques could be used as well, THG select the parameter
from a pretest sample of respondents, following the tradition of aggregate
customization (Arora and Huber 2001, Huber and Zwerina 1996).

Given the posterior distribution written as a mixture of uniform distributions
supported by polyhedra, several methods could be used to produce point estimates
of the partworths. For example, an algorithm could be developed that allows
sampling from this posterior distribution and estimating the partworths as the
mean of this distribution. For simplicity, THG estimate the partworths as the
mixture of the analytic centers of the polyhedra involved in the mixture.

THG essentially shift the focus from the minimization of a loss function to the
exploration of a posterior distribution. However their approach may be still be
framed within statistical machine learning. In particular, complexity control is
achieved by the prior distribution. The parameter o’ effectively controls the trade
off between fit and complexity. For example, o’=1 implies no response error and
the estimates fit the data perfectly; o’=1// implies non-informative choices and all
inference will be based only on the prior.
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12.3.56 Using complexity control to model heterogeneity

Hierarchical Bayes has been one of the most successful developments in the esti-
mation of conjoint-analysis partworths (Lenk et al., 1996; Allenby and Rossi
1999; Rossi and Allenby 2003; Rossi, Allenby and McCulloch., 2005).> Liu, Ot-
ter, and Allenby (2006) suggest that one reason for this accuracy is the likelihood
principle which states that the likelihood best summarizes the information in the
data. Another, less formal hypothesis is that Bayesian methods are accurate be-
cause they robustly shrink individual-level estimates toward the mean of the popu-
lation. As motivated by the analogy of ridge regression and Bayesian priors, the
shrinkage in hierarchical Bayes can be seen as analogous to complexity control.

EPT explore this interpretation for both metric and choice data. In the metric
case, the loss function can be formulated as follows:

(18)

L({w,},w,.D| 7) =122(yi, —x, W)’ + D (w, —w) D (w, —w,)

i=1 j=1 i=1

subject to D being a positive semi-definite matrix scaled to have a trace of 1.

We note that this formulation is not identical to hierarchical Bayes methods. It
differs in both philosophy and computation. Nonetheless, it is an interesting
analogy.

There are a number of interesting characteristics associated with this loss
function: (1) estimates are obtained simultaneously for all respondents, (2)
estimates are shrunk toward a common partworth vector that may differ from the
unit vector, and (3) the parameter y dictates the trade off between fit and
shrinkage.

Although the population vector wj is not defined to be the population means,
EPT show that the value of w, that minimizes the loss function must equal the
population mean. The matrix D is analogous to the covariance matrix of the
partworths; the shrinkage penalty is greater for partworths that are distant from the
mean wy along directions in which there is less variation across respondents. By
scaling D with its trace, the authors assure that the optimization problem is
convex. Although the actual minimization is beyond the scope of this chapter, we
note that, for a given y, the optimal solution is in closed form and hence
computationally efficient (see paper for more details).

2 Technically, Bayesian methods sample from the posterior distribution of the parameters

rather than provide estimates in the classical sense. For simplicity, we refer to the mean
of the posterior distribution as the partworth estimates.
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For choice data, EPT substitute the logit log-likelihood as the fit measure. The
loss function becomes:

(19)

1 L J exp(xi’ 'W;‘)
L({Wi}aWO:DM/):_ Z —lOg -
VA a1 eXp(x[jl W)+ exp(x{./z W;)

J=

1 e
+Z(Wi _Wo)j Dil(wi _Wo)
i=l

Because closed-form expressions are not available with this formulation,
Newton’s method is used (any other convex optimization method could be used)
to minimize the loss function for a given 7.

To assess the impact of the differing philosophies, EPT compare their
approach to hierarchical Bayes. In particular, they consider the following two HB
models for metric and choice data respectively (in both cases a diffuse prior is
assumed on wy):

Metric data:

Likelihood: yixwitey eN(0, o)
First-stage prior: wN( wy,D)
Second-stage priors: o 4G( r¢/2,54/2)

D_]W( Hos 770.A0)

Choice data:

eXp(xg/‘l Wi )

Likelihood: Prob(x;; chosen)=

exp(x,,.w, )+ exp(x,,.w,)
First-stage prior: wN( wy,D)

Second-stage prior: D'W( 3o, 50.40),

where /G denotes the inverse gamma distribution and W the Wishart distribution.

Both the machine learning and hierarchical Bayes approaches shrink estimates
toward the population mean. Moreover, in the case of metric data, EPT are able to
show that the individual-level estimates conditional on D and w, are given by the
exact same mathematical expressions.

However they identify two major and fundamental differences between their
approach and HB. First, while the former involves the minimization of a loss
function, the latter involves sampling from a posterior distribution. Hence in HB
point estimates are only one of the many ways to summarize and describe the
posterior distribution. Other important statistics include the standard deviation of
this distribution. EPT illustrate that standard deviations and confidence intervals
may also be obtained in their framework, using for example bootstrapping (Efron
and Tibshirani, 1993).
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Second, the two methods differ on how they select the amount of shrinkage.
In HB the amount of shrinkage is selected, in part, by prior judgment embodied in
the second-stage prior parameters (#,, 4y, ¥y, and s, in the metric case; 7, and 4, in
the choice case); in machine-learning it is determined from the calibration data (y).
By selecting y through cross-validation, it may not be surprising that the machine-
learning approach can outperform HB unless, of course, the second-stage priors
are chosen with prescience. See EPT for detailed results.

12.3.6 Summary of optimization and machine-learning
estimation

Table 1 describes and contrasts the estimation methods reviewed in this section.

Table 1. Characteristics of the reviewed estimation methods
. Complexity Trade off fit /
Paper(s) Fit measured by measured by complexity
Evgeniou,Boussios, Support vector (hdratic norm Determined by
Zacharia (2005) machine on the cross-validation
partworths
. . Response error Maximize fit first,
Toubia, Simester, . . .
; to obtain feasble Analytic center then minimize
Hauser, Dahan (2003) .
polyhedron complexity
o Response error to Maximize fit
Toubia, Simester, . . . - e .
obtain feasible Analytic center first,then minimize
Hauser (2004) .
polyhedron complexity
Toubia, Hauser, Polyhedral . .
Garcia (2006) mixture Informative prior  Based on pretest
Evgeniou, Pontil, Sum of squ.arf:d leferer}ce from Determined by
. errors / logistic population s
Toubia (2006) P cross-validation
likelihood means

124 Recent optimization-based and machine-learning
adaptive questionnaire design methods

One of the breakthroughs in the 1980s was the ability to adapt conjoint analysis
questions to the observed responses of consumers. Algorithms developed by John-
son (1987, 1991) for Adaptive Conjoint Analysis (ACA) enabled researchers
using computer-aided interviews to ask more efficient questions. For almost 20
years ACA was one of the most commonly applied methods, only recently sur-
passed by choice-based conjoint analysis. It is only in the past few years that we
have seen a resurgence in adaptive questionnaire design. This resurgence has been
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made possible by the development of new efficient computational algorithms and
the continued growth in computing power. It is now feasible to adapt questions in
an on-line environment using sophisticated background computations that run in
the time it takes to download the code for the next page display — the respondent
notices little or no delay due to this computation. While the methods are still being
perfected, the results to date suggest that in many applications these adaptive
questioning methods enable researchers to design methods that ask fewer ques-
tions yet still provide estimates that are sufficiently accurate for important mana-
gerial decisions. The methods work for a variety of conjoint analysis formats,
including both metric paired-comparison data and choice-based data.

In this chapter we review four newly proposed methods that enable researchers
to adapt questions at the level of the individual respondent.

12.4.1 Experimental design principles

Non-adaptive questionnaire design builds primarily on the field of experimental
design (Chaloner and Verdinelli 1995; Ford, Kitsos and Titterington 1989;
Kuhfeld, Tobias and Garratt 1994; Pukelsheim 1993; Steinberg 1984). The ap-
proach can be summarized as minimizing a norm of the asymptotic covariance

matrix of the parameter estimate v?/l.. Under mild assumptions (Newey and

McFadden 1994), it can be shown that the maximum likelihood estimate of w; is
asymptotically normal with covariance matrix equal to the inverse of the informa-
tion matrix Q, given by the Hessian (second-derivative matrix) of the loss function
minimized in estimation.

Non-adaptive efficient designs maximize a norm of the information matrix Q,
the inverse of the covariance matrix. The most widely used norm is the
determinant, giving rise to so-called D-efficient designs (Arora and Huber 2001;
Huber and Zwerina 1996; Kuhfeld, Tobias and Garratt 1994; Kuhfeld 2005). D-
efficiency minimizes the volume of the confidence ellipsoid around the maximum

likelihood estimate W, , defined by {w:(w—w,)" Q(w—w,) <1}, and makes

this ellipsoid as spherical as possible (Greene 2000). For example, the well-known
orthogonal and balanced designs (Addelman 1962, Kuhfeld, Tobias and Garratt
1994), when they exist, maximize efficiency.

For stated-choice data, the information matrix depends on the true partworths
w;. In most cases, efficiency can be improved by attempting to achieve utility (or
choice) balance such that the alternatives in each choice set are close in utility
(close in probability of choice) where utility is often calculated based on prior
beliefs about the partworths. There are many algorithms to increase efficiency:
Arora and Huber (2001), Huber and Zwerina (1996), Kanninen (2002), Sandor
and Wedel (2001), and Hauser and Toubia (2005). Abernethy, Evgeniou, Toubia
and Vert (AETV, 2006) note that similar principles have been used in other fields
such as active learning (Tong and Koller 2000).

The adaptive question design methods use similar fundamental principles. For
example, Toubia, Dahan, Simester and Hauser (TDSH, 2004), Toubia, Hauser and
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Garcia (THG, 2006), and AETV select the next questions to achieve utility
balance based on estimates from the answers to previous questions. These
methods attempt to minimize the amount of “uncertainty” around the estimate and
to make uncertainty similar in all directions. @stions are chosen to reduce the
uncertainty along the most uncertain dimension.

In polyhedral methods, uncertainty is characterized by the polyhedron of
feasible estimates (which may conceptually be related to the confidence ellipsoid
in maximum likelihood estimation), and questions are selected to maximally
reduce the volume of this polyhedron and minimize the length of its longest axis
(making it more spherical). In a similar vein, AETV characterize uncertainty by
the inverse of the Hessian of the loss function (equal to the information matrix),
and select questions to maximally increase the smallest positive eigenvalue of the
Hessian. We now review these methods in greater detail.

12.4.2 Polyhedral question design

For ease of exposition, we describe the intuition for polyhedral methods when the
feasible polyhedron is non-empty. The same intuition applies to the expanded
polyhedron.

In polyhedral question design, the constraints imposed by the answers to
previous questions form a polyhedron. All points in the polyhedron are consistent
with prior answers. A smaller polyhedron implies a smaller set of feasible
estimates and, hence, less uncertainty about the partworths. For example, the gray
region in Figure 1 is the feasible polyhedron after a set of questions and all points
(partworths) in that gray area are consistent with the answers to prior questions.
Our goal is to select the next question such that when the question is answered, the
resulting polyhedron is as small as possible.

Formally, let ®{1,J}. denote the po lyhedron defined by the answers to the
first J questions asked of a given respondent. Let ®{1,J+1} denote the new
polyhedron formed when the J + Ist answer constrains ®{1,J}.. Consider first
metric paired-comparison questions. The new constraint will be of the form
xi(J+D1xi(J+1)2).wi = yi(J+1). The set of points, wi that satisfy this new
constraint is a hyperplane perpendicular to the vector (xi(J+1)1-xi(J+1)2). This is
shown as the green surface in Figure 1. The new polyhedron, ®{1,J:x1}, is the
intersection between the current polyhedron, ®{1,J}, and this hyperplane.

We must now select a question that, when answered, minimizes the volume of
the new polyhedron, ®{1,J+1}. In addition we want to make it more spherical.
Intuitively, we satisfy these criteria if we select the hyperplane to be orthogonal to
the longest axis of the current polyhedron. Mathematically, this means that we
select the two profiles in the next question such that the line, (xi(J+1)1-xi(J+1)2),
is as close as possible to the longest axis of the polyhedron. (At minimum, by
intersecting the current polyhedron with a hyperplane perpendicular to the current
longest axis will ensures that the longest axis of the next polyhedron will be
strictly smaller than the longest axis of the current polyhedron.)
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The mathematics are complex, but the basic idea is to find the analytic center
of the polyhedron and choose the smallest ellipsoid such that the polyhedron is
surrounded by the ellipsoid with its center at the polyhedron’s analytical center.
Then, by solving an eigenvalues problem, TDSH select the longest axis of the
ellipsoid as representing the longest axis of the polyhedron.

2-dimensional hyperplane
(perpendicular to the longest
axis of the ellipsoid)

Figure 1:  Cut perpendicular to the longest axis — metric data case
(From Toubia, Simester, Hauser, and Dahan 2003)

The methods and philosophy for choice-based data follow the same intuition, with
a few modifications (THS, THG). For binary stated-choice data, new constraints
are inequality constraints of the form (xi(J+1)1-xi(J+1)2).wi > 0 (The method is
extended easily to multiple alternatives in the choice set.). The set of points that
satisfy the constraint implied by the J+1st answer is a half-space. If the boundary
of his half-space intersects the feasible polyhedron, ®{1,]}, it will divide the
polyhedron into two sub-polyhedra. One sub-polyhedron corresponds to the
choice of xi(J+1)1 and the other to the choice of xi(J+1)2. In other words, the
respondent’s choice in the J+1Ist question identifies one or the other sub-
polyhedron. All points in the chosen sub-polyhedron are consistent with the an-
swers to all J+1 questions.

THS again seek to choose questions such that the resulting sub-polyhedron
will be as small and spherical as feasible. THS show that the expected volume of
@{1,J+1} is reduced efficien tly if the separating hyperplane is chosen so that it
goes through the center of the feasible polyhedron, such that each choice
alternative is as equally likely as possible. Such choice balance assures that the
resulting polyhedra are of approximately equal volume. This is illustrated in
Figure 2a.

Of the many hyperplanes that split the feasible polyhedron, the hyperplane that
will make the resulting sub-polyhedra as spherical as possible is the hyperplane
that is perpendicular to the longest axis of the polyhedron. This is illustrated in
Figure 2b.

The two points at which the longest axis intersects the boundary of the
polyhedron provide two target partworth vectors. The final step is to construct one
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profile associated with each of them. Each profile is obtained by simply solving a
budget constraint problem. That is, for each target partworth vector, THS
construct a choice alternative that maximizes utility subject to a budget constraint.

A strength of adaptive polyhedral question design is that questions are chosen
such that the resulting polyhedra are always feasible and non-empty. However,
this strength is also a weakness. When there is response error, early errors
propagate. A choice made in error forever assures that the true partworths are not
in any subsequent polyhedra. As a result, early tests indicated that adaptive
choice-based questions improved accuracy and efficiency when response error
was small, but not when it was large.

THG address response error with a probabilistic generalization of polyhedral
methods. They model potential response error by assuming that each constraint
applies with probability o, where o is based on pretest data. They then show that
polyhedral methods can be given a Bayesian interpretation such that the posterior
distribution of the partworths is a mixture of polyhedra, each defined by a subset
of the constraints imposed by the respondent’s answers to the chosen questions
(see details above). With this interpretation, it is simple conceptually to extend
adaptive polyhedral choice-based question design. New questions are chosen
based on the longest axis of the appropriate mixture of polyhedra.

uy u;

e

My u,

Figure 2: Utility balance cuts and cuts perpendicular to the longest axis—
choice data case (from Toubia, Hauser, Simester 2004)
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12.4.3 Hessian-based adaptive question design for choice-
based conjoint analysis

Statistical learning methods also provide a means to adapt conjoint questions.
AETYV define loss functions that are convex and twice differentiable. For such loss
functions, uncertainty with respect to the partworths is captured by the inverse of
the Hessian of the loss function. Their goal is then to design a question by select-
ing a direction in parameter space that maximally decreases this matrix subject to
enforcing utility balance.

In particular, AETV propose solving the following quadratic optimization
problem in order to find a direction of maximal uncertainty:

(20)
min zV2L(W, | )z"

subject to: zw, =0, 20 =1

where 1, is the value of the partworths that minimize the loss function, L,

V2L(W, | y)is the Hessian of the loss function atW,, and z.z” =1is a scaling

constraint. The optimal solution to Equation 20 is the eigenvector associated with

A AT

the smallest positive eigenvalue of the matrix: g — (; - 2%y g2/ (55 | ,) where
i ATA i
W,

i

[ is the identity matrix.

The question-design algorithm is implemented as follows:

1. Find "' suchthat "' minimizes the loss function L(w; | y). Because L is convex,
there are many convex optimization methods that are efficient.

2. Find the (normalized) eigenvector z associated with the smallest positive

A AT
w,. W

=) VILOW, | 1)
w, W,

i

eigenvalue of the matrix p — (7 -

3. Find a pair of profiles such that (x;;;;-x;7:52) is as close as possible to being
proportional to z and such that utility balance is preserved: (e -

A3
x,(/u)g) W, = 0.

* AETYV use the Knapsack approach of THS.
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AETYV illustrate the Hessian approach with a Ridge Regression loss function —
similar to that used in support vector machines (where the constant, 1, scales the
partworths):

21 L(Wi |7)=li(1_(xg;‘1 _xijz)‘wi)2+| w; | :

J=1

With this loss function, the minimum *7and the Hessian are given in closed
form. To avoid the computational delays of cross-validation, y is set equal to the
inverse of the number of questions so that the data are weighed more heavily as
more data become available. This specification is motivated by Vapnik (1998).

12.4.4 Summary of adaptive question design

Machine-learning and fast polyhedral algorithms have made it feasible to adapt
both metric paired-comparison and choice-based conjoint questions to each re-
spondent. Such questions promise to be more accurate and customized to focus
precision where it is most needed. The basic concept is that each conjoint question
constrains the set of feasible partworths. A researcher’s goal is to find the ques-
tions that impose the most efficient constraints, where efficiency is defined as
maximally decreasing the uncertainty in the estimated partworths.

To date, all question-design algorithms use information from a single
respondent to select questions for that respondent. However, one of the lessons of
both hierarchical Bayes and the machine learning approaches of EPT is that
population-level information can improve accuracy at the individual level. We
predict that such pooling methods will be feasible in the near future and make
promising areas for research. For example one could adapt the Hessian method of
AETYV to a loss function like the ones in Equations 18 or 19 used by EPT.

125 Applications, simulations, and empirical tests

Conjoint analysis has a long history of validation and application. See, for exam-
ple, Green (2004). Methods such as ACA, logit analysis of choice-based conjoint
analysis, and hierarchical Bayes estimation have been improved through hundreds
of applications. Such use and its related research have led to incremental im-
provement of these standard methods. By contrast, the methods reviewed in this
paper are relatively new, each with only a few applications. On one hand, such
tests usually involve only one or a few applications and, thus, must be considered
experimental. On the other hand, we expect the performance on these tests to be
lower bounds on eventual performance which is likely to improve with experi-
ence.

Despite the nascent nature of these methods, they have performed remarkably
well in both Monte Carlo simulations and empirical applications. We review here
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applications, comparisons of estimation methods, and comparisons of question
design methods.

12.5.1 Applications

Metric paired-comparison polyhedral methods. Toubia, Dahan, Simester and
Hauser (TDSH, 2003) study preferences for the features of laptop computer bags.
In their experiments, respondents were given the choice of real laptop bags worth
approximately $00. Predictions were qu ite accurate. In addition, the models
appear to have described market shares when the laptop bags were introduced to a
real market.

Adaptive choice-based polyhedral conjoint methods. Toubia, Hauser, and
Simester (THS, 2004) studied the preferences for the features of executive
educational programs. The data were used to design MIT’s 12-month executive
program, which has since been implemented successfully. Toubia, Hauser and
Garcia (THG, 2006) study the diffusion of non-traditional closures, “Stelvin”
screw-tops, for premium wines by interviewing over 2,200 leading-edge wine
consumers in the US, Australia and New-Zealand. They were able to identify the
marketing actions that would be necessary to achieve market penetration in the US
to match that in Australia and New Zealand.

Hessian-based adaptive choice-based conjoint analysis. Abernethy, Evgeniou,
Toubia and Vert (AETV, 2006) study consumer preferences for digital cameras.
They explore how respondents value different levels of price, resolution, battery
life, optical zoom, and camera size.

Heterogeneous partworth estimation with complexity control. Evgeniou, Pontil
and Toubia (EPT, 2006) test their method with a full-profile ratings study of
personal computers collected by Lenk et al. (1996) and apply their method using
data from a choice-based conjoint study of carbonated soft drinks collected by a
professional market research company.

12.5.2 Comparisons of estimation methods

The basic results from the papers reviewed in this chapter are three-fold. (1) Indi-
vidual-level optimization methods tend to outperform traditional individual-level
methods that use neither complexity control nor shrinkage. (2) Individual-level
methods often under-perform methods that use population-based shrinkage (either
Bayesian or complexity-control shrinkage). (3) Complexity-control shrinkage
often outperforms Bayesian shrinkage.

Metric paired-comparison analytic-center estimation. TDSH test metric
analytic-center estimations with both Monte Carlo simulations and an empirical
application. In the simulations they find that, for homogeneous populations, HB
consistently performs better than analytic center estimation, likely because HB
uses population-level data to moderate individual estimates. For heterogeneous
populations, analytic-center estimation performs better, especially when paired
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with polyhedral question design. They also find that HB is relatively more
accurate when response errors are high, but analytic center estimation is more
accurate when response errors are low. For external validity tests, they found that
HB outperforms analytic-center estimation for fixed, orthogonal questions, but
that analytic-center estimation does better when matched with polyhedral
questions.”

Adaptive choice-based analytic-center estimation. THS compare choice-based
analytic-center estimation to HB on four metrics — root mean square error, hit rate,
correlation among partworths, and the percent of respondents for whom a method
predicts best. Analytic-center estimation performs well when matched with
polyhedral question design in domains were there is high heterogeneity.
Otherwise, HB does well in all domains. However, if one takes a convex
combination of the population mean and the individual-level analytic center
estimates, the resulting “shrinkage” estimates outperform HB.?

THG test the probabilistic interpretation of adaptive choice-based analytic-
center estimation. Based on Evgeniou, Boussios and Zacharia (EBZ, 2005), their
HB benchmark includes constraints that all partworths be positive. Such
constraints improve predictive ability and are easily implemented with rejection
sampling. To distinguish this method from standard HB, we label it HBP (P for
positivity). THG find that taking response errors into account and using
informative priors improve analytic-center estimation. At least one of the two
improvements outperforms deterministic analytic-center estimation in all tests.
Informative priors appear to provide the greater improvement. HBP is
significantly better in most cases. We suspect that had HBP been applied in the
earlier tests, it would have been best in most comparisons.

As a summary, analytic-center estimation is better than HB in some domains,
but not as good as HBP. On the other hand, shrinkage-based analytic-center
estimation shows considerable promise. We hypothesize that the dominant effect
is the ability to use population-level information to improve individual-level
estimates. If population-level information is used, analytic-center estimation may
ultimately improve to be as accurate or more accurate than HBP.

Support vector machines. EBZ show that their method based on Support
Vector Machines is more robust to response error compared to other individual-
level methods. While their method does not perform as well as HBP in situations
in which there is no interaction between attributes, it consistently outperforms
HBP when interactions are present.

Heterogeneous partworth estimation with complexity control (HPECC). EPT
show that their methods perform consistently better than HB (with relatively
diffuse second-stage priors), both with choice and metric data, and both on

We caution the reader that the HB method used as a benchmark in this paper was such
that no external constraints were imposed. Subsequent research suggests that HB does
much better if the partworths are constrained to be positive (Evgeniou, Boussios and
Zacharia 2005). This caveat also applies to the simulation tests in THS.

5 THS do not estimate a y through cross-validation but rather choose a y based on out-of-
sample performance. Their results are, thus, only suggestive.
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simulated as well as field data.® In the case of metric data, they report simulations
in which they vary heterogeneity, response error, and the number of questions per
respondent. They find that their method significantly outperforms standard HB in
7 out of their 8 experimental conditions (2 levels per experimental factor). They
further compare these two metric estimation methods using a metric-full-profile
data set on the features of computers (from Lenk et al. 1996). Heterogeneous
partworth estimation with complexity control (HPECC) significantly outperforms
HB on holdout prediction, using both all 16 questions as well as a random subset
of 8 questions per respondent (14 parameters are estimated per respondent). For
choice data, they find that HPECC outperforms HB in 6 out of 8 experimental
conditions. Empirically, HPECC outperforms HB with 16 questions per
respondent for data on carbonated soft drinks, and does not perform significantly
differently when 8 questions are used per respondent (17 parameters are estimated
per respondent).

EPT’s simulation and empirical validity tests reinforce the dominating effect
of shrinkage/complexity-control. Population means clearly improve predictive
performance by making the partworth estimates more robust. Their results also
suggest that prediction is improved when v is chosen endogenously rather than
based on prior beliefs. Finally, EPT show that their approach allows modeling and
estimating models with large numbers of attribute interactions. Estimates remain
robust and significantly better than that of HB even if the total number of
parameters becomes substantially larger than the number of observations per
respondent. This result confirms earlier findings reported by EBZ for individual-
level partworth estimation.

12.5.3 Comparisons of question desigh methods

The overall summary of the comparisons of adaptive question design methods is
that adapting questionnaires at the individual level can improve performance.

Adaptive metric paired-comparison polyhedral question design. TDSH
compare polyhedral question design to ACA as well as fixed designs and random
designs. Monte Carlo simulations suggest that, when there are a small number of
questions, polyhedral question design method outperforms the other three
benchmarks. However, the performance may be due, in part, to endogeneity bias
in ACA — prior, self-explicated questions are used in question design but standard
HB estimation uses these only as constraints in estimation (Hauser and Toubia
2005; Liu, Otter, and Allenby 2006). When more questions are asked such that the
questions cover the range of features more completely, fixed designs emerge as
viable alternatives for some domains. In empirical tests, adaptive polyhedral
questions outperform both fixed and ACA benchmarks.

® EPT do not consider positivity constraints on the partworths, neither for their methods

nor for HB.
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Adaptive choice-based polyhedral question design. THS simulations suggest
that, when response error is low, choice-based polyhedral questions outperform
random questions, fixed orthogonal questions, and questions chosen by aggregate
customization (Arora and Huber 2001, Huber and Zwerina 1996). Furthermore,
high heterogeneity tends to favor individual-level adaptation. When response error
is high, the best method depends on the tradeoffs between response error and
heterogeneity. THS apply their method empirically, but were not able to obtain
validation data. However, they do show that the method achieves choice balance
throughout the questioning sequence.

THG attempt to improve adaptive choice-based polyhedral methods so that
they might handle high-response error domains. Their simulations suggest that
taking response errors into account and using informative priors improve
polyhedral question design. Compared to the THS’s deterministic algorithm,
random questions, fixed questions, and aggregate customization, at least one of the
two probabilistic modifications is best or tied for best in all experimental cells.
Their empirical tests (wine consumers) suggest that probabilistic polyhedral
question design performs better than aggregate customization question design in
three of the four panels and never significantly worse.

Hessian-based adaptive choice-based conjoint analysis. The Monte Carlo
simulations and the field test reported by AETV confirm that individual-level
adaptation outperforms random and non-adaptive benchmarks when response
error is low and/or when respondent heterogeneity is high. Moreover, the use of
complexity control in the loss function improves robustness to response error,
hence largely overcoming possible endogeneity biases inherent to adaptive
questionnaires (Hauser and Toubia 2005).

In summary, optimization-based adaptive question design for conjoint analysis
shows considerable promise. In many cases, the tested methods outperform non-
adaptive methods. Adaptation shows the most promise when response errors are
low, when heterogeneity is high, and/or when relatively few questions are to be
asked. However, the potential of individual-level adaptation is not limited to these
domains. With application and incremental improvements we expect that the
performance of these methods will improve further.

12.6 Conclusions and opportunities for future research

This chapter reviews some recent developments in the application of optimization
methods and machine learning in conjoint estimation and question design. Al-
though the many methods are disparate, they can be linked through a statistical
learning framework and philosophy. This framework suggests that specific meth-
ods may be described by the choice of a measure of fit, a measure of complexity,
and an approach for determining the trade off between fit and complexity. Adap-
tive questionnaire design is achieved by combining optimization and machine
learning with principles of experimental design to select questions that minimize
the uncertainty around the estimates.
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We hope that this chapter will motivate future applications and research in this
area. In particular, we hope that researchers will build upon the many successful
methods in conjoint analysis that have been developed either to estimate
partworths or to design questions. Complexity control, shrinkage, and adaptive
optimization of questions all show considerable potential to improve extant
methods and to develop new methods.
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13 The Combinatorial Structure of Polyhedral
Choice Based Conjoint Analysis

Joachim Giesen and Eva Schuberth

13.1 Introduction

In abstract terms conjoint analysis can be seen as fitting a model to preference
information elicited from a group of respondents. That is, conjoint analysis com-
prises two tasks,

M preference data elicitation, and

2) model fitting to the elicited data.

The model fitting phase is necessary since in general the elicited data tends to
be very sparse and can be interpreted meaningfully only in the context of some
model, which already encodes general assumptions on the structure of the prefer-
ences.

13.1.1 Conjoint structure and data elicitation

In conjoint analysis we are interested in preference information on a class of prod-
ucts that possesses a conjoint structure, i.e., that can be described in terms of at-
tributes A; and attribute levels a;; € A; That is, we consider sets of products
whose profile is given as an element in a subset P C A; x ... x A,, where the
attribute set A; has the levels A; = '{aﬂ, RN ;aim}- A product profile p € P is
just a vector (ay;,, ..., @,;, ) of attribute levels g;;, € A; Preference information
can be elicited in many different ways. The most direct approach is to ask a re-
spondent to state his valuation of a given product profile in terms of money. In
choice based conjoint analysis we assume a more indirect elicitation procedure,
namely, discrete choice tasks. A choice task consists of a small number of product
profiles - typically between two and four - presented to a respondent, who has to
state which one he is most likely to buy (often also a none choice option is in-
cluded). Preference elicitation in the form of discrete choice tasks has two advan-
tages, the cognitive burden on the respondent in each task is comparatively low,
and choice tasks also simulate to a certain extent real buying situations. One
drawback of preference elicitation with choice tasks is, that in order to be exhaus-
tive, i.e., in order to derive a full product ranking from the choices of a respondent
many choice tasks are necessary even if we assume that the respondent's choices
are transitive, i.e., if he chooses 1, over P9 and P9 over ps, he should also choose
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Py over Pa. Adaptive elicitation methods in conjoint analysis deal with this prob-
lem by trying to choose the next choice task dependent on the choices in previous
tasks such that the information gained in the worst case outcome of the choice task
is approximately maximized. Information gain maximization in the worst case
means that the minimum of the information gain among all possible outcomes of
the choice task is maximized. Polyhedral choice based conjoint analysis invented
by Hauser, Toubia and Simester [1] is an intricate but elegant method to fit a lin-
ear model to discrete choice data elicited from one respondent, while at the same
time providing information on a good next choice task, i.e., a choice task that
provides a lot of information in the worst case.

13.1.2 Model and model fitting

In a linear model the preference information is encoded into a linear value func-
tion v, which assigns a value (partworth) A;; to every attribute level a;;, i.e., for a

given respondent his value for a product profile p = {ay;,,.. ., @n;, ) is given as

'U(p) = Z )‘iji'

The model fitting task now is to compute the partworths A;; from the choice
data elicited from the respondent. Note that a linear model really makes an as-
sumption on the structure of the respondent's preferences. In case that the attrib-
utes A; are continuous sets, i.e., real intervals, this assumption can be made more
explicit, namely, the linearity of a value function is equivalent to mutual preferen-
tially independence of all attributes, see Keeney and Raiffa [2] for details.

13.1.3 Product sets without structure

As simple as it may seem a conjoint structure is quite intricate once one has a
closer look. To make this more explicit we want to compare polyhedral choice
based conjoint analysis with choice based preference analysis on product sets
without any structure. In the latter case the product set P is just a finite set
{ Plyeees pk} of product (profiles) that does not possess any additional structure. A
choice task in the structureless case is as in conjoint analysis a small subset of
products that is presented to a respondent who has to indicate which of the prod-
ucts he is most likely to buy. Fitting a linear model to the elicited data now be-
comes assigning values ; to the products p;.
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13.2 Choice based polyhedral conjoint analysis

The insight that finally led to choice based polyhedral conjoint analysis is that the
two tasks,

M coming up with a next informative choice task, and

2) fitting the partworths in a linear model to the stated choices,

can be formulated as purely geometric problems. To this end one can assume
(without loss of generality) that every partworth is a real number in the interval
[—1.1]} A valid fit of the partworths is a point in the cube [-1, 1], where 7 is the
number of attributes and we assume (to keep the exposition simple) that every
attribute has 1 levels. Of course a valid fit needs not to be a good fit. A good fit
would allow to predict correctly the outcome of a choice task not encountered so
far with high probability. If a respondent prefers product p = (a1 Jiyeres a,,j")
over product ¢ = (aul, - ,a,,,;“) in a choice task, then the parameters of the
linear model---the partworths---have to satisfy the following constraint

i Aij = i Ay, & i Ajji — i Ay; > 0.
i=1 i=1 i=1 i=1

This constraint can be rewritten by using the inner product (-, ) on R™™ a5

(h, A} 2 0,

where A is the partworth vector and h is a vector in {—1,0,1}™" whose entries
are 1 at positions 47; and —1 at positions #{; for all { = 1, ..., n. All other entries
in b are 0. This inequality defines a halfspace H C R*™,

H = {xeR™|(h, ) > 0},

whose boundary, a hyperplane, contains the origin and has the inward pointing
normal vector h. That is, all partworth vectors that are compliant with the com-
parison between p and g are contained in the intersection of [—1, 1] with the
halfspace H. Every possible product comparison - there are only finitely many -
leads to a hyperplane (bounding the corresponding halfspace). The arrangement of
all these hyperplanes subdivides the cube [—1,1]™™" into polyhedral cells. All
points in the same cell of the arrangement encode exactly the same ranking of all
products with profile in 4; x ... X A,, i.e., any such point is a perfect fit for the
ranking. In other words using any point in such a cell as partworth vector gives the
same ranking. Note however, that not all rankings of 4; x ... X A,, can be ex-
pressed by a partworth vector, i.e. in the linear model. But once we assume that a
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respondent's preference structure can be faithfully represented by a partworth
vector, the goal in choice based conjoint analysis becomes to set up the choice
tasks such that one can identify a perfect (good) partworth vector from the respon-
dent's choices in as few choice tasks as possible. The task to identify a perfect
partworth vector from choice tasks is equivalent to identifying a cell in the hyper-
plane arrangement. Any vector in this cell can serve as a perfect fit for the linear
model. The information provided in a sequence of choice tasks is in geometric
terms a nested sequence of polyhedra: the first polyhedron is just the cube
[—1,1]"™. Each choice task provides one or more halfspaces (a one out of k
choice task provides & — 1 halfspaces). The common intersection of [—1,1]*™
with all the halfspaces provided up to a given choice task represents the informa-
tion gathered up to that task. Two questions arise naturally:

I. How can one find the the cell that encodes the preference ranking
efficiently, i.e., using as few choice tasks as possible.
2. How to choose a 'good' representative point out of the unique cell once it

has been identified.

In [1] the answers to these questions are intertwined: a deep point inside the
cell, the so called analytic center of the polyhedral cell, is considered a good rep-
resentative point and a comparison whose corresponding hyperplane is close to the
analytic center and cuts the cell into two polyhedra of almost equal volume is
considered to be a good next comparison.

13.3 The structureless case

We also have a purely geometric interpretation in the unstructured case. If we
again assume the the values g; are contained in the interval [—1, 1], then any point
in the cube [—1, 1]"' is a valid fit as long as we do not have any information about
the ranking of the k different products. Information is gathered by product com-
parisons. A comparison of the #'th and the j'th product tells us which one of g; and
1t is larger. In geometric terms this means, the comparison tells us on which side
of the hyperplane passing through the origin and with normal € {—1,0,1}* the
vector j& = (i, . .., jiz) has to lie. The normal h has entry 1 at the @'th position,

—1 at the 7'th position and is Q at all other positions. There are (;

and thus (;‘) hyperplanes. The arrangement of all these hyperplanes subdivides the

) comparisons

cube [—1, 1]* into cells. Each cell of this arrangement corresponds to one of the k!
rankings of the f4; Hence determining the ranking of the k products from product
comparisons is equivalent to determining a cell in the hyperplane arrangement. In
Figure 1 we show two views on the subdivision of [—1,1]3 by the comparison
hyperplanes for the case & = 3.
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Figure 1. Subdivision of [— 1, 1]3 into the six cells that correspond to the six
possible rankings of three products

13.3.1 Information theoretic lower bound

We assume that we assess a respondent's preference ranking of 7t products from
pairwise comparisons, i.e., from a sequence of choice tasks that each involves only
two products. From the respondent's answers we compute values t1,..., ix.
These values are a perfect fit if they reproduce the respondent's preference ranking
on the set of products. Therefore, if any query strategy to find the product ranking
needs at least I comparisons, then also any strategy to find perfectly fitting values
U1, ..., Mg needs at least ] comparisons.

Information theory provides an answer to the question of how many product
comparisons are needed in the worst case in order to infer a product ranking. In
the information theoretic argument the notion of decision tree plays a central role.
A decision tree for ranking & products represents a query strategy by describing all
possible sequences of comparisons between products. In the end, each of these
sequences leads to a different ranking of the products. Assume that we want to
rank three products Py, P2, D3 according to their values fi1, tta, fi3. In Figure 2
we show one possible decision tree, i.e., query strategy for that problem.

Every inner node - oval in Figure 2 - represents a product comparison.
Depending on the outcome of the comparison the subsequent comparison is
determined. After a sequence of comparisons one ends up in a leaf of the tree,
rectangular node in Figure 2. This leaf corresponds to the product ranking
compliant with the sequence of comparison outcomes. For a particular product
ranking the number of inner nodes on the path from the root (i.e. the top most
node) to the corresponding leaf is just the number of comparisons that is needed
for that particular query strategy. The height of a tree is the maximum number of
inner nodes that are visited when traversing the tree from the root to its leaves.
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Figure 2: A decision tree for ranking three products

In the example of Figure 2 the height is 3. It is obvious that the height of a deci-
sion tree is just the number of comparisons that the query strategy needs in the
worst case. We know that every decision tree for the sorting problem has k! leaves
corresponding to the k! possible rankings. The height of any binary tree on k!
leaves is at least log,(k!) which can be lower bounded by %logQ(%‘} Therefore
any query strategy for determining a ranking of k products needs at least % log, (%)
comparisons. This is called the information theoretic lower bound in ranking. In
the following section we will show that the information theoretic lower bound can
be reached, i.e., there is a query strategy which can determine any ranking of k
products with no more than ¢k log, (k) comparisons, where € is a constant inde-
pendent of k. Later we will see that the same does not hold for the case that the
product profiles are described by a conjoint structure. In that case there is no algo-
rithm that can reach the information theoretic lower bound.

13.3.2 Volume cuts

There are many query strategies known that reach the information theoretic lower
bound up to a constant, i.e., query strategies that always infer the ranking of k
products with at most ck log, k comparisons for some constant ¢. Here we de-
scribe such a strategy which is based on the geometric interpretation of the prob-
lem and the following two observations. .

Observation 1 Assume a respondent has performed already * comparisons.
Let i be the ser of rankings of the products that are compatible with his answers.
Any queltfsy strategy that always reduces the set P, Jor all * by at least a constant
fraction © reaches the information theoretic lower bound. Ideally S would be 1/ 2
but it can be shown that this is not always possible.



The Combinatorial Structure of Polyhedral Choice Based Conjoint Analysis 265

Observation 2 Every cell in the subdivision of [—1, l]k by the hyperplanes
corresponding to paired product comparisons is a simplex with volume 2™ fnl

In geometric terms a sequence of comparisons provides us with a nested
sequence of polyhedra. The polyhedron at the beginning when no comparison was
performed is just[—1, 1]*. See Figure 3 for an example of such a nested sequence
in the casek = 3.

Figure 3:  Nested sequence of polvhedra compliant with a sequence of compari-
sons

The volume of each polyhedron multiplied with n!/2" gives us exactly the number
of rankings that are compatible with the comparisons performed so far. More
importantly, any comparison whose corresponding hyperplane in the worse of the
two outcomes of the comparison cuts a d-fraction of the volume of the polyhedron
also cuts a é-fraction of the rankings compatible with the comparisons so far. An
application of the famous Brunn-Minkowski inequality shows that any compari-
son of two products whose average rank in the rankings compatible with the com-
parisons so far differs by only 1 cuts of at least a 1/2e ~ 0.184 fraction of the
volume (and thus also of the compatible rankings). Here the rank of a product in a
ranking is the number of products that are ranked below the product plus 1. Tt can
be shown that such a comparison always exists as long as there are at least two
compatible rankings. Of course we are done once there is only one compatible
ranking left. See Matousek [3] for details and a proof. At this moment we know
that a good next comparison exists, but can we also find one efficiently?A heuris-
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tic to search for a good next comparison can be derived from the following obser-
vation: for any convex body in R4 any hyperplane that passes through the center
of gravity cuts the body into two bodies whose volume is at least a (ﬁ)n—
fraction of the volume of the original body. Of course this leaves us with the prob-
lem to find the center of gravity of a polyhedron, which is not an easy task. The

analytic center as used in [1] can be seen as an approximation to the center of
gravity, but no guarantees are known for the latter.

13.4  The conjoint structure case

13.4.1 Information theoretic lower bound

n
i=1

According to the linear model each product p has a value v(p) = Aij; Where
Aij. Is the respondent's partworth for the j-th level of attribute 2. These values
induce a ranking of the products in 4, x ... x A,. Like in the unstructured case we
want to determine how many product comparisons are needed to infer this rank-
ing. Fredman [4] has studied this question for the case when there are only two
attributes. In the following we will generalize his results to the case with n > 2
attributes. But at first we want to determine the information theoretic lower bound.
As in the unstructured case any query strategy can be represented by a decision
tree. Every leaf of the tree corresponds to a ranking of the products in
A; x ... x A, To determine the information theoretic lower bound one needs to
determine the number of possible leaves of any decision tree, i.e., the number of
possible product rankings. Let us call this number L. The height of a decision tree
is lower bounded by log, (), which means that any query strategy to determine a
ranking of Ay x ... x A, needs at least log, (/) product comparisons in the worst
case. The total number of products in A, x ... X A, is m™, but the number of
possible rankings is substantially less than m"!-- as we would have in the unstruc-
tured case. To determine the number I of possible product rankings in the conjoint
structure case we have a closer look at the hyperplane arrangement that corre-
sponds to all comparisons of two products. This hyperplane arrangement gives us
a subdivision of the cube [—1, 1]*™ into cells and any cell corresponds to exactly
one ranking of 4; x ... x A, Hence, if we can count the number of cells we
know the number of rankings and can therefore determine the information theo-
retic lower bound. Let us first count the number of hyperplanes: we have as many
hyperplanes as we have possibilities to choose two products p and ¢. We can
choose two products by choosing for every attribute A; two levels a;; and Qg

There are (1;') possibilities to do so for one attribute and therefore (,;)n possibili-

ties to choose two products. It is known that A hyperplanes partition the d-
dimensional space into at most (%) + (,* ) + ... + (%) many regions and thus the

. . 2n 2
number of cells in the hyperplane arrangement is at most nm(’:m) < pm#ml
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Having found an upper bound for the number of cells we now can upper bound the
information theoretic lower bound of the problem as the logarithm of this number.
The information theoretic lower bound for ranking in the conjoint structure case is
at most (2n®m + 1) log,(m) + log, (n). A query strategy that matches the informa-
tion theoretic lower bound needs only polynomially many (in the problem parame-
ters 7 and M) comparisons to find a ranking on 4; X ... X A,. In the unstruc-
tured case such a query strategy exists. Unfortunately, in the conjoint structure
case such a query strategy does not exist as we will show in the next section.

13.4.2 Volume cuts

Here want to use a different technique than employed for information theoretic
lower bounds to show a lower bound on the number of necessary comparisons that
is dramatically larger than the latter bound, more precisely: any query strategy to
determine a ranking obeying the linear model of the products in Ay X ... X A,,
needs at least (m — 1)™ comparisons in the worst case. Note, that this number
grows exponentially in the number of attributes 7. From a practical point of view
it is infeasible to ask a respondent that many questions even for moderately large
n and M. The exponential lower bound (m — 1) was first shown by Fredman [4]
for the case of two attributes. We are able to generalize his proof to 12 > 2 attrib-
utes, but since the generalization is very technical and hardly gives any new in-
sights here we only restate Fredman's proof to give an impression of the type of
argument.

Suppose we have the two atiributes A = {al, ag, ... ,am} and
B ={b1,bs,...,bn} We say that product ¢ € A x B is a successor of a
product p € A x B in the ranking if the rank of q is one higher than the rank of p.
An outline of the lower bound construction is as follows: we start with a product
ranking ¢t induced by carefully chosen partworths. For every product
(ar by € Ax Bwithl<r<m-—1and 2 <3s < m we modify the part-
worths a little bit to get another ranking wy., which differs from tw only in the
ranking of (@,., &, ) and its successor in w; in Wy the product (@, by ) is preferred
over this successor. This means that w and w,., differ only in one transposition.
To distinguish & from . one definitely needs to compare (@, b,) and its succes-
sor in w. Since there are (m — 1)? possible rankings wy.s that differ from w by only
one transposition one needs at least (m — 1}* comparisons to distinguish w from
them. So far we have not specified the ranking tw. Its defining property is that the
product (ajl ) bjz) is preferred over the product (a,rl \ big) if and only if
fv+i < f+Jaor iy +4 =75+ and 4, < j. A ranking that satisfies the
defining property can be derived from partworths if we choose for the a; and b;
both the partworths to be % and break ties lexicographically (A before B) between
products where the sum of partworths gives the same value. The lexicographic tie
breaker can be encoded into the partworths as follows: choose € such that
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0 < € < 1 and modify the partworths of the @; to be ¢ + %€ and keep the part-
worths of the b; as 2. The ranking induced from this partworth is w. In Figure 4 we
illustrate the ranking « for the case that A4 and B have five levels each.

bs

11 \16 \ 0 N 3 5*
ba \ \ \ \

ri 12 1ird 21
b3 \

*
=
yd
=
/

-LIRR

il 3 i 10 15
a [+ 53 asz [+ 7] as

O

Figure 4:  Ranking w

In the figure every product is represented by a square in a rectangular diagram.
Altogether there are m? = 25 products/squares. One can read off the levels that
describe a particular product from the column and line labelling. The lower left
square represents the product described by the levels @ and by. This product is the
lowest ranking product. The products are connected in increasing order by an
oriented path through the diagram that represents the ranking v, i.e., (@, by) is the
second least preferred product. One can easily verify that the illustrated ranking
indeed satisfies the defining property.

Now let us describe how to derive the ranking (., from the partworths that in-
ducew. For1 < » < m — 1and 2 < s < mn let the partworths of the a; be

i+ i€ fl<i<r
itie—2¢ ifr+1<i<m
and the partworths of the b; be
i f1<i<s—1
i+§e fs<i<m

The ranking induced by these partworths is exactly W, In Figure 5 we illus-
trate the ranking twyg for r = 2 and s = 3. Observe that in (g the product
(@, b3) is now preferred over (as, by).
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2t

Figure 5. Ranking Wy

The specification of partworths for tw and all possible w5 concludes the proof for
the case of two attributes. That is, in the case of two attributes we now know that
any query strategy to determine a ranking on A x B needs at least (mn — 1) com-
parisons in the worst case. The generalization of this result to the case of more
than two attributes implies that any query strategy to determine a ranking on
Ar X Ap X ... x A,needs at least (m — 1) comparisons in the worst case.

Finally, we want to discuss what the combinatorial insights mean for volume
cut based query strategies like choice based polyhedral conjoint analysis. We have
the following two observations. The first observation immediately follows from
the exponential lower bound that we derived above.

Observation 3 There does not exist a volume cut strategy that identifies a
unique cell in the comparison hyperplane arrangement with only polynomially
many (in 7 and ™) comparisons in the worst case. Even stronger, in the worst
case any volume cut query strategy needs at least (m — 1)* cuts (comparisons).

The second observation is important if one wants to validate conjoint analysis
methods on randomly generated partworth vectors. This observation has to be seen
in contrast to Observation 2 for the structureless case.

Observation 4 The cells in the subdivision of [—1,1]* by the hyperplanes
corresponding to paired product comparisons have different combinatorial and
thus also different geometric structures.

An important consequence of this observation is that choosing partworth vec-
tors uniformly at random from the cube [—1, 1]*™ does not uniformly sample the
space of rankings compliant with a linear structure. That is, a uniform geometric
sampling strategy induces a combinatorial bias. Let us demonstrate the latter point
by looking again at the case of two attributes A and B with m levels each. We
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consider the two purely lexicographic rankings on A x B and compare them to
the ranking w. The two lexicographic rankings are illustrated in Figure 6.
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Figure 6.  The two lexicographic rankings. In the left figure A is preferre-
doverB and in the right figure B is preferred over A

It is easy to see that both lexicographic rankings are linearly realizable. For exam-
ple if A is preferred over B, then one can choose the partworths of the @; to be ¢m
and the partworths of the b; to be 2. Observe that there are only n — 1 rankings
that differ from the lexicographic rankings by one transposition - only the products
at the turning points of the paths in Figure 6 can be exchanged to get another line-
arly representable ranking. Hence the cells in the subdivision of [—1, 1]*™ by the
comparison hyperplanes have only n — 1 facets, whereas the cell that corresponds
to the ranking w has (m — 1)? facets.

13.5 Conclusion

We shed some light on the geometric and combinatorial structure of polyhedral
conjoint analysis. Our analysis shows that one has to be careful when transferring
insights and ideas from the structureless case to the case with conjoint structure. In
particular, we do not have a mathematical explanation of the impressive power of
polyhedral conjoint analysis, whereas the structureless case is well understood by
now. On the practical side we want to highlight that geometric random sampling
strategies are probably not the best way to validate conjoint analysis methods.
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14 Using Conjoint Choice Experiments to Model
Consumer Choices of Product Component
Packages

Benedict G.C. Dellaert, Aloys W.J. Borgers,
Jordan J. Louviere and Harry J.P. Timmermans

141 Introduction

Recent advances in flexibility and automation allow a growing number of manu-
facturers and service providers to ‘mass-customize’ their products and offer mod-
ules from which consumers can create their own individualized products (e.g.,
Gilmore and Pine 1997). Traditional production processes limit consumer choices
to fixed products defined by suppliers, but new mass-customization processes
allow consumers to create their own optimal combination of product components.
Although mass-customization offers consumers increased flexibility and con-
sumption utility, little is known about how consumer choices to package or bundle
separate components differ (if at all) from choices among traditional fixed product
options, much less what the impact of packaging product components will be on
the market shares of such products or a producer’s overall share in the category.

The purpose of this paper is to resolve some of these issues by proposing a
way to use conjoint choice experiments to model the impact of mass-customized
product on consumer choices. Choice experiments have proved to be useful ways
for researchers and managers to explore the potential impact of product
modularization on consumer choice before implementation (e.g., see Louviere,
Hensher and Swait 2000). We develop a formal way to model and predict how
market shares are likely to shift when existing products are unbundled into
different modules and/or new products are developed by adding new components.

To anticipate our approach, we hypothesize that module-level choices should
result in smaller random component variances in choice models than choices of
traditional products, and hat random component variances can differ for choices of
different types of modules (c.f. Swait and Adamowicz 2001; Louviere et al. 2000,
chapters 8 and 13). If this hypothesis is approximately true, it implies that impacts
of changes in attribute levels will be greater for module-level choices than
product-level choices and that impacts can differ among module types. We test
this hypothesis empirically with consumer travel package choices. Our results
show that consumer choices among modules exhibit less random component
variation than choices among packages; however in our study the differences are
significant only for one of two types of packages tested.

The rest of the paper is structured as follows: 1) we define terms and discuss
the expected effects; 2) we propose and develop a model to capture fully and
partly modularized choices; 3) we propose and develop a way to design choice
experiments that allows us to test the proposed model; 4) we apply the approach to



274 Benedict G. C. Dellaert et al.

an empirical problem and present the results; 5) we use a series of simulations to
illustrate the potential market share implications of our research for several
marketing scenarios; 6) finally, we summarize our results, discuss the limitations
of our empirical application and make some suggestions for potentially useful
future research directions.

14.2  Conceptual framework

The following definitions and assumptions serve to formalize our analysis and the
modeling of packaged product choices. First, let each product g, consist of func-
tions n, that the product provides to consumers. For each function, modules j,, are
available from which consumers can choose. We define full modularization to be
the situation in which a consumer can choose from the complete range of possible
modules or from the packages that can be obtained by combining all modules.
Partial modularization also is possible, in which consumers can choose modules
for some functions, but not all. Examples of partial modularization might include
the following: automobiles for which only engine, heating system and display
functions can be combined, clothing for which only design, fabric and fit functions
can be combined, and travel packages for which only destination, transportation
and tour functions can be combined. The number of functions typically will be
smaller than the number of attributes because many functions are comprised of
multiple attributes (e.g., price, color, and durability). Thus, modules differ from
products and attributes because they are chosen independently (attributes are not)
but not used independently (products may be).

Two aspects of modularized product choices differ from traditional ‘fixed’
product choices:

I. Consumers make separate module choices for each function (‘fully
modularized choice’), in which case we assume no restrictions with respect to
the combinations that consumers can choose (i.e., the modules or packages
they can organize and/or assemble).

2. Consumers choose separate modules for some but not all functions (‘partly
modularized choice’), in which case suppliers allow for some flexibility in
product composition, but not for all functions.

We use random utility theory (RUT) to model consumer choice of modularized
products. RUT-based choice models are based on the assumption that researchers
cannot measure and model consumer preferences perfectly; hence, a random com-
ponent must be included in consumer utility functions to capture unobserved ef-
fects. The latter effects include unobserved situational differences, omitted influ-
ences and consumer inability to express preferences perfectly and consistently
(e.g., Ben-Akiva and Lerman 1985).
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14.21 Hypotheses

Recently, Swait and Adamowicz (2001) showed that the complexity of choice sets
measured by numbers of attributes that differ between options can affect the vari-
ance of the random component of consumer utility. Similarly, Dellaert et al.
(1999) found that the absence or presence of price-level comparisons between
products affected random component variance in consumer choices. Severin
(2000) proposed that there was a tradeoff between experimental efficiency and
respondent efficiency in choice experiments, and demonstrated that random com-
ponent variability (or choice variability) increased with increasing numbers of
attribute differences required to optimize efficiency in choice experiments (Street
et al. 2000). Thus, it seems reasonable to hypothesize that module-level choices
may be associated with less random component variance than traditional product-
level choices. Furthermore, in the case of partly modularized choices, we expect
that the number of modules present/absent in product comparisons should affect
the size of the random component variance of consumer utility functions.

We also anticipate that differences in random component variances also may
be associated with module choices for different functions. For example, options
that involve more complex modules may represent more difficult choices than
those with relatively simple modules and therefore may exhibit larger random
component variances. We formalize these ideas below.

14.2.2 Model formulation

Fully modularized choices
We can specify a formal model as follows (omitting individual and product spe-
cific subscripts for notational simplicity): let U, be the utility of module j for
function n, with j,, € {1,,..., J,}, the set of all modules that provide function », and
ne {1, ..., N}, the set of all functions. Let V}, be the structural component of util-
ity Uy, with Vi, = By’ Xja, where B, and x;, are function-specific vectors of utility
parameters and product characteristics respectively.

First, we address the case of full modularization in which modules for all
functions are sold separately. We make the following assumptions to develop the
model:

1. Consumers select the module that constitutes their most preferred option for
each function.

2. Random utility components of modules for each function are 1TD Gumbel
(independently and identically distributed) and independent across functions.

3. Consumers choose no more than one module per function (e.g., they do not
buy several types of heating systems for one car), but may not purchase any
module for certain functions.

Based on these assumptions, consumer choices of packages of modularized func-
tions can be expressed as a product of the choice probabilities P(jn) for each func-
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tion n; hence the following utility and purchase probability functions apply for a
module choice jn:

(l) an = j’nﬁnlxjn + gjn

eXp(Z’nﬁn vXjn )
J

Z exp(/lnﬁn ' Xj'n )
J'=l

) P(j,)=

where, g, is the error component in the utility of module j, A, is a function-
specific scale parameter inversely related to the standard deviation of the Gumbel
error distribution of the MNL model (Ben-Akiva and Lerman 1985, p.105). The
choice probability function equals the product of the choice probabilities of each
module contained in the product for products that consist of modules {/,...,/x}:

N N ﬂv 'x.
® P({j]""’jN}):HP(jn):H ./exp( o XJn)

i i Z eXp(/Ian ’ Xj'n )
7=l

where all components were previously defined.

Ben-Akiva and Lerman (1985, p.105) show that the formal relationship
between A and the variance of the Gumbel distribution is var(e) = /6% 1t is
important to note that if the 1ID error assumption is satisfied in a given data set,
the value of A cannot be identified uniquely; only the combined effect of 1 and B
can be estimated (Swait and Louviere 1993), so A typically is set (arbitrarily) to
unity in empirical applications. However, random component variance may vary
across functions; hence A may differ between functions in at least some situations,
which can be tested by allowing 4, to be function specific.

Partly modularized choice

In order to test the expected effect on random component variance for the case of
partly modularized choices, we need to allow the variance of the random compo-
nent of utility for each product comparison to depend on the number and type of
modules that differ between products. This is accomplished by making A a func-
tion of the number and type of trade-offs that need to be made between products,
which allows us to test whether the variance of the random component of utility is
affected by the number of modules involved in comparing two products.

We formalize these ideas by using a variant of the heteroscedastic logit model
(e.g., Allenby and Ginter 1995; Bhat 1995; Greene 1997; Louviere et al. 2000).
Heteroscedastic logit (or HEV — heteroscedastic extreme value) relaxes the 11D
error assumption of the MNL model by allowing the random component variances
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of choice options to differ. In particular, HEV assumes that the random
components of products are independently but not identically distributed. In the
variant of the model that we propose, we specify A to be a function of the number
and type of modules that differ between pairs of products in choice sets. This
approach is a restriction on HEV, such that the random component variances for
particular product comparisons are a function of the number and type of modules
that the products share (c.f. Dellaert et al. 1999).

We introduce one scale correction parameter for each module shared between
products, and we assume [ID holds for each binary comparison, while the variance
of the random component can vary across comparisons between different
products, depending on the number and functions of modules that differ between
choice options. Our variant of HEV requires a total of N, additional parameters
(one for each function) compared to simple MNL. Our approach can be viewed as
a way to estimate models jointly from different conditions (e.g., each product
comparison is a condition), such that structural parameters are identical in each
comparison but the variance of the random components of the conditions differ.
Hensher and Bradley (1993) used a similar approach to combine revealed and
stated preference data by including a random error scale correction between the
two data conditions.

We need additional definitions to develop a model: let g be a product
consisting of modules {j .../ng}, With g € {1, ...G} the total set of products. Let
xg and &, respectively, be a vector of characteristics of product g and associated
random components; let A, be the scale of the comparison of products g and g,
and %, be a scale function parameter to capture the effect of a difference in the 1"
function; let §,(p,, py’) be an indicator variable that takes equals zero if the module
in function » differs between products g and g’ and equals 1 if it does not differ;
finally, let £ be the standard cdf of the extreme value distribution and f'the pdf.

Now, we can specify the following utility function, scale function A and
accompanying probability structure:

€) Ug=Px, + &

P(g)=P(Ug>Ug") forall g’ <> ¢

P(g)= IF (A, (Bx, —Bx, +&,))xF (4, (Bx, —Px, +¢,))

X..x F(4;  (Bx, —Bxq +&,)) f(g,)de,

©)
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(6) A ¢ = f{module difference between products)
=1+2 7 5 (¢.8)
neN

The choice of these values of zero (for different modules) and 1 (for equal
modules) for the indicator variable J,(g’, g), fixes the scale equal to 1 for choices
between products that differ on all modules (all indicator variables = 0). Scale
should increase (i.e. random component variance should decrease) as the number
of module differences becomes smaller; hence we can use the traditional choice
condition as the control and estimate the effect of modularization on random
component variance relative to it. Our model reduces to a joint MNL model with
equal error variances if all parameters 3, = 0. In the extreme, the model can also
describe choices of single modules in which case the scaling in eq. 2 and eq. 5 is
identical.

In some situations modularization is introduced only in part, such as when
some functions can be purchased only separately (e.g., {jz....jugl), but other
functions are packaged ({jvg -...Jnet). For example, this occurs when optional
accessories are identical across brands but there are key differences between the
main features of different brands. Choice probabilities for these situations are
modeled as a combination of the choice rules in equations (2) and (5):

% P(2) = P({jigseeos Jrsg e g D) = [ T PU g P(24)
n=l1

where there are M functions (M < N) for which modules are sold separately. Mod-
ule choices are modeled separately for each function, while the choice of functions
{ise - Jng! 18 modeled as a partly modularized product choice in which simulta-
neous trade offs are made between the packages of functions [y, ....jng/, sUmma-
rized by (gu).

The likelihood function of this model is:

C K

I1

c=1

&

) L 17"

k=1 geG,,

where C is the total number of consumers, K. is the total number of choice sets &,
faced by consumer ¢, and g € {1, ...,G}.} the set of products in choice set k., and
Veie 18 @ dummy variable that equals 1 if product g. is chosen by consumer ¢ in
choice set &, and equals 0 otherwise.

14.3  Choice experiments for modularized choices

Choice experiments typically apply orthogonal, or nearly orthogonal, fractional
factorial designs to create choice alternatives and choice sets simultaneously (e.g.,
Louviere and Woodworth 1983; Kuhfeld et al. 1994; Lazari and Anderson 1994,
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Bunch et al. 1996; Huber and Zwierina 1996), which allow efficient estimation of
effects of product variations on consumer choices. In this section we develop an
experimental design heuristic to permit one to estimate and test the proposed HEV
models of modularized and traditional consumer choices.

14.3.1 Proposed experimental design

The design strategy that we propose is simple, flexible and generally applicable
but is not necessarily optimal for all design problems. We combine interrelated
sub-designs for consumer choices in different random component variance condi-
tions for modularized and traditional choices. That is, we construct sub-designs in
such a way that the number of modules varying between products is fixed in any
one sub-design but varies between sub-designs, which allows us to estimate dif-
ferences in random component variances between sub-designs. For example, in
the empirical application discussed later, respondents chose among modules and
products separately, which allowed us to estimate differences in random compo-
nent variances in these conditions. It is worth noting that this approach allows tests
of random component variance differences as well as differences in structural
preference parameters (response means) in modularized and traditional choices
because the design allows one to estimate separate models for each condition as
well as a combined model for all conditions.

We hypothesized that choices among products differing only in a single
module should have lower levels of random component variance than complete
products (i.e. products differing in all modules). Furthermore, choices of different
functions should exhibit different levels of random component variance (e.g.,
variances for car heating system choices can differ from engine choices). The
following design strategy is used to deal with these differences (Table 1):

1. Consumers first make choices in a ‘control’ sub-design describing choices
among (traditional) products that differ on all modules. This design is similar
to traditional choice designs, and can include relevant interactions between
modules. It should be noted that comparisons should not include dominated
options and/or options that share one or more modules. We expect choices in
this sub-design to exhibit the highest levels of random component variance as
all modules are present simultaneously. Random component variation in
traditional product choice is expressed by the ‘control” error term &, and set
to an arbitrary fixed value to scale the model (e.g., 1.0).

2. Consumers then make choices in N additional sub-designs describing product
options that differ only in one particular module. The objective of this stage is
to estimate the effect of different levels of module variation on random
component variance in consumer choices. The random component variance of
each sub-design can vary depending on the functions that differentiate
modules. In this way, if estimates differ for the ‘traditional product’ sub-
design and each ‘modularized’ sub-design due to differences in levels of
random component variance, one can estimate the variance contribution of
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each module. Ways to estimate and test structural and random component
variance differences in traditional and module-level product choices are
described in section 4.

Table 1. Summary of experimental design strategy
Strategy Measurement objective Number of subdesigns
Use one sub-design for Estimate structural 1 (across all functions)
traditional product choices parameters

that differ on all modules

use N sub-designs to capture Estimate error variance N (one for each
module choices between correction for module function)
products that differ in only choices for each function

one function

An attractive feature of the proposed design strategy is that each sub-design can be
constructed using the same basic approach originally proposed by Louviere and
Woodworth (1983) and subsequently extended by others (e.g., Bunch et al. 1996;
Huber and Zwerina 1996). That is, each sub-design relies on traditional design
theory because sub-designs are defined such that [ID assumptions should be satis-
fied in each. This strategy allows one to test if choice set composition affects both
random component variances and structural preferences of package choices, which
may be important if structural preferences shift when alternatives are added to
choice sets (e.g., Huber et al. 1982; Simonson and Tversky 1992). It is worth
noting, however, that there is growing controversy as to whether the latter phe-
nomenon can perhaps be explained by failure to take a variety of random compo-
nent variance effects into account (see, e.g., Louviere et al. 1999; Louviere and
Hensher 2001; Louviere 2001).

14.3.2 Model estimation

Separate module-level choice models (equation (2)) can be estimated using basic
MNL estimation software. The traditional product choice HEV model (equation
(6)) can be estimated with special purpose software or in the LIMDEP statistical
package (Econometric Software 1998). Bhat (1995) discusses FIML estimation
(full information maximum likelihood) of the HEV model by maximizing the log-
likelihood of the model simultaneously with respect to the structural parameters 4
and the scale function A. Allenby and Ginter (1995) develop and apply a Bayesian
estimation procedure, while Swait and Louviere (1993) discuss a method that can
be used if consumer choices are observed in each of the random error conditions
that may occur. A detailed discussion of the HEV model and its estimation can be
found in Louviere, et al (2000, pp.189-198).
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In this paper we use the Swait and Louviere (1993) approach to estimate the
model and make statistical comparisons. They note that if two data sources share
common structural parameters, but different random component variances, the
parameters will differ by a constant scale factor that is inversely proportional to
the magnitude of the random component variance in each source. Hence, scale
corrections (or more properly, variance-scale ratios) can be estimated for S-1 of §
total conditions to capture differences in error variances between choice
conditions.

One can estimate the ratios 7,, of the scales 4, and 4, of the parameter estimates
for the control choice condition (i.e., traditional product choices {) relative to other
choice conditions (i.e., module choices for function #). Scale ratios are expressed
in terms of standard deviations of the random components of each choice
condition; that is, if the scale of the random component in the control condition is
set to one (i.e. 4=1, with all 9,(ps.p,) taking on values of zero), the difference in
scale between the control condition and the other conditions provides information
about the random component variance for each module choice (4,). This measure
is expressed as follows:

A

On
) Fin= =

Model estimates (/) are obtained from choice observations in all sub-designs,
and y, is estimated from differences in scale between conditions (4, and 4,).

The variance of the Gumbel distributed random components in the control
condition equals 77/6 if the scale J, is set to 1 (Ben-Akiva and Lerman, 1985);
hence the variance in comparison 7 can be expressed as:

(10) o*zzazr,2 =

It should be noted that we adopt the so-called “average individual” approach
and estimate models from the aggregated responses of all experimental subjects.
Thus, error terms jointly capture unobserved differences in respondents and
module-based random variations, and estimates of structural parameters represent
average respondent utilities. This does not pose problems because respondents are
randomly assigned to choice situations and presence/absence of different module
options is balanced over subjects by design. Thus, if the model is correctly
specified, unobserved heterogeneity represents only an efficiency issue, such that
the structural estimates will be smaller than need be, but this effect applies
systematically and equally to all conditions. That is, heterogeneity effects are
orthogonal to estimates of module-based random component variance differences
between conditions; hence they cannot affect tests of variance differences due to
module-level differences (but they can affect inference quality due to less
statistical efficiency). However, to the extent that unobserved heterogeneity is a
problem, discrete or continuous preference parameter distribution methods can be
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used to capture these effects in conjunction with our proposed approach (e.g.,
Kamakura et al. 1996; Swait 1994; McFadden and Train 2000).

14.3.3 Hypothesis tests

The proposed HEV model can be tested by comparing the fit of a model that in-
cludes scale corrections to the fit of models with fewer or no scale corrections.
The latter models are nested in the HEV model, which can be observed by setting
relevant scale ratios to 1. If all scale ratios equal 1, our model reduces to simple
MNL (cf. Ben-Akiva and Lerman 1985, p. 205). Therefore, we can use a likeli-
hood ratio test to compare an HEV model with separate MNL models for each
function (e.g., Theil 1971; Bhat 1995, uses this test in a similar context) by com-

paring the quantity 2*[L'(modell)-L (model2)] which is asymptotically
Chi-square distributed to the critical value of Chi-square for degrees of freedom
equal to the difference in model parameters, where [ (modell) and

L' (model2) are the adjusted log-likelihoods of models with and without vari-

ance corrections, respectively.

Tests of structural parameter differences between conditions can be conducted
in a similar way: if modell is the model with different structural parameters for
each choice condition (i.e., parameters differ for traditional product choices and all
N module choices), it can be tested against a model with identical structural
preference parameters but unequal scale corrections (cf. Swait and Louviere
1993). For example, Ben-Akiva and Lerman (1985, p. 195) used this approach to
test for structural parameter differences between market segments that could differ
in terms of preferences.

144  Empirical application

We apply the proposed approach and test the hypothesized random component
variance effects in a study of consumer choices of short-break city vacations con-
sisting of transportation and destination modules.

14.41 Data

The study was conducted in a medium-sized European city. Surveys were admin-
istered door-to-door to 2040 randomly selected households and collected later in
the same manner. The survey data were combined with data from a sample of 480
respondents contacted via travel organizations, who received the survey with their
travel tickets. Respondent selection was based on making a short city break trip in
the past three years. Response rates were 30.5% and 10.9%, respectively.
Respondents were told to imagine that they were planning to take a short city
break in the near future, and were asked to allocate one hundred points to three
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options in every choice set to indicate their preferences; the point allocations were
rescaled later to the unit interval for estimation purposes. Each respondent
received 12 choice sets from a larger experimental design based on a independent,
uniform probability of equal expected assignment to each choice set, which
produced an average of 27.9 observations per choice set (min. 16, max. 36).
Responses were aggregated across respondents for purposes of analysis in this
illustration.

The choice experiment was developed by identifying attributes that drive city
break choices using consumer and expert interviews and previous research. Eight
attributes described modules for the “city destination’ function (country, distance,
restaurants and bars, shopping, special sights, hotel price, hotel quality and hotel
location). Modules for ‘transportation mode’ functions were described by mode
(bus, train) and two attributes (price and travel time). The respondent’s own car
was used as a base option for transportation choices in each choice set, and a
relatively unattractive combination of attributes was used to define a base
destination option. These considerations lead to the following experimental
design:

1. One sub-design (‘Traditional package choice’) was used to estimate model
parameters for choices among different vacation packages. Each choice set in
this sub-design represents a choice between a bus-destination package and a
train-destination package and the base option. A 3'® fractional factorial design
was used to generate 81 alternatives (or profiles) per transportation mode.
Two of the 10 three-level attributes were transportation attributes and eight
were destination attributes; all main effects were independent of interaction
effects. Interactions between country and special sights as well as between
distance and travel time were estimated but were not significant at the 95%
confidence level. Options were randomly combined into choice sets.

2. A second sub-design (‘ Transportation choice’) described destination choices
conditional on transportation mode, such that destinations were varied: a)
within bus mode, and b) within train mode. This sub-design was treated as an
2*3'% fractional factorial design where the two level attribute defined
transportation mode, two three-level attributes defined transportation price
and travel times (specific for mode) and eight three-level attributes defined
destination characteristics. 64 profiles were selected based on a 4'°
orthogonal main effects design (one level of each three level attribute
appeared twice as often as the other two). The profiles in this design
described transportation-destination packages. Choice sets were developed by
combining profiles from this design with those of an identical second design
in such a way that transportation attributes did not vary within choice sets
while destinations differed on all attributes.

3. A third sub-design (‘Destination choice’) described transportation options
conditional on destination; destinations were constant in each choice set and
combined with one bus and one train alternative. The design problem was
treated as a 3' factorial design, and 64 profiles were selected based on a 4'%*
orthogonal main effects design (one level of each attribute appeared twice as
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often as the other two). The ecight destination attributes were varied
systematically across choice sets, but were always present in the choice sets.

Thus, the total design comprised 209 (i.e., 81 + 2*32 + 64) paired option
choice sets, to which a base option was added, which was not in the design. For
the conditional choices in the design (second and third sub-design), destination
and transportation attributes in the base option were changed to the same condition
as the fixed component of the travel packages (e.g., if trips were conditional on a
certain bus option, the base was changed to this option). Separate intercepts
(alternative-specific constants, or ASC’s) were estimated for each sub-design.
Table 2 summarizes the design structure graphically.

Table 2:  Summary of Experimental Design in Empirical Analysis”

Sub-design Number  First choice Second choice Base alternative
of alternative alternative
choice
sets
1. 81 D1 T2 D2 T2 D(base) T(base)
Traditional
package
choice
2. 64 D(cond) TI D(cond) T2 D(cond) T(base)
Transportation
choice
3. 64 D1 Tcond D2 Tcond D(base) T(con)
Destination
choice

14.4.2 Model estimation and testing

Model parameter estimation was conducted in two stages: a) separate MNL mod-
els were estimated from the choices in each experimental sub-design (3); b) the
HEYV model was estimated by pooling data across all three sub-designs, and

D(cond) and T(cond) denote that destination and transportation modules respectively are
conditional to the choice of the other function in each choice set while varying over
choice sets. D(base) and T(base) are the base destination and transportation modules.
D1, D2, T1 and T2 denote that destination and transportation modules vary within and
between choice sets.
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Table 3. Parameter estimates heteroscedastic logit model”

Attribute Parameter t-value
estimate

Intercept traditional package choice 0.78 13.6
Intercept destination choice 0.68 7.7
(train transportation)
Intercept destination choice 0.79 8.9
(bus transportation)
Intercept transportation choice -0.27 -15.9
Destination
Country 1 (Holland vs. Belgium) -0.01 -0.2
Country 2 (Germany vs. Belgium) -0.03 -1.9
Distance (km) -0.01 -0.5
Restaurants and bars (few - very many) 0.09 33
Shopping facilities (few - very many) 0.14 5.3
Special sights (few - very many) 0.25 9.2
Hotel price per night (NLG 50 - 100) -0.10 -3.7
Hotel quality rating (2 star - 4 star) 0.10 3.5
Hotel location (city center - city border) -0.07 -2.7
Transportation
Difference between bus and train -0.02 -0.9
Price (bus) (NLG 30-60) -0.05 -2.1
Travel time (bus) (1.5-2.5 hrs) -0.04 -1.8
Price (train) (NLG 45-75) -0.04 -19
Travel time (train) (1.5-2.5 hrs) -0.03 -15

Random error difference
Vdes 0.08

(error variance destination choice = 1.39)
%rzm.\‘ 0'43

(error variance transportation choice = 0.53

McFadden's RhoSq: 0.400 ¥ parameters are estimated relative to a fixed scale of 1 for package
choice (i.e., 4;= 1 and error variance package choice = 1.64).
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allowing for different random components in each. Because separate designs were
used to create choice sets in each condition, differences in random components
between the three conditions can be estimated independently.

14.4.3 Model results

Table 3 contains the HEV model parameter estimates and estimates of between-
module random component variance differences. Only linear effects are reported
because quadratic effects were not significant. The fit of the estimated model was
satisfactory by traditional standards (McFadden’s rho-squared = 0.40), and signs
of all parameters were as expected.

We tested whether the random component variance corrections of the HEV
model were needed by comparing HEV with simpler models with fewer variance
corrections for the three conditions. These other models were: 1) an HEV model
with a variance correction for transportation module choices only, 2) an HEV
model with a variance correction for destination module choices only, and (iii) a
joint MNL model with no variance corrections.

These results revealed that differences in model fits were fairly small, but
differences in model structures were significant. Log-likelihood (LL) differences
for each model are reported in Table 4. In particular, the LL for the HEV model
was -757.28; LL’s for simpler HEV forms were -759.29 (if only destination
choices had a smaller random error) and -757.83 (if only transportation choices
had a smaller random error). A Chi-square test (df = 1, for one omitted scale
parameter) revealed a significant difference in random component variance
between choice sets in which packages differed in both transportation and
destination components (‘traditional package choice’) and choice sets in which
packages differed only in transportation (‘transportation choice’). This provides
support for the hypothesis of differences in random error between traditional
product choices and module-level choices. Random component variances did not
differ significantly for choices that differed in both transportation and destination
modules (‘traditional package choice’) and choices that differed only in
destination modules (‘destination choice’), but did differ for choices that differed
only in transportation modules. The latter results provides partial support for the
hypothesis that random component variance can differ between functions, and also
suggests that destination module choice may be more important in travel package
choices than transportation module choices. This result suggests that the
appropriate model contain only a variance correction for transportation choices.

We next compared the cross-validity of the model with the variance correction
for transportation module choices with a simpler MNL model without variance
corrections using holdout choice set responses from a sample of 613 respondents.
In this cross-validity exercise subjects were asked to choose between three options
in which two options shared the same destination and a second two options shared
the same transportation module. The results in Table 5 suggest that the HEV
model with variance corrections only for transportation module choices
outperforms an MNL model without variance corrections as well as models with
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variance corrections for both functions and for destination module choices only. A
Chi-square test on the difference between observed and predicted choice
frequencies was not significant for the HEV model with variance corrections for
transportation module choices only; however, differences in observed and
predicted frequencies were significant for all other models.

Table 4:  Log-likelihood improvements for the various models
No of Model with Model with  Model
parameters  transportation  destination  without
variance only  variance variance
only cotrections
Model with variance 31 1.10 4.02 * 5.12°%
correction for both
functions
Model with variance 30 292 % 4.02 *
correction only for
transportation
Model with variance 30 1.10
correction only for
destination
Model without variance 29 -

corrections
* significant at the 0.05 level

Table 5:  Observed and predicted choices for hold out choice task

Observed  Model with Model with Model with ~ Model
variance transportation destination without
correction for  variance variance variance
both correction only  correction corrections*
functions* only*

alt 139 189 145 203 183
DT,

alt 333 323 318 231 242
D2T2

alt 141 101 150 179 188
D1T2

Total 613

* Significantly different from observed shares in a Chi-square test at 95% confidence interval.

14.4.4 Using simulation to explore market share implications

The HEV model does not have a closed-form solution like MNL, hence, predic-
tions have to be made using micro-simulation and the method of sample enumera-
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tion (Ben-Akiva and Lerman 1985). Thus, to illustrate how our results affect mar-
ket share if modularization implemented, we ran several simulations to predict
market shares in scenarios varying levels of modularization, function-specific
random components and positions of competing brands. Each scenario described
two brands (4, B) that offered one module for each of two functions (47, A2 and
B, B2). Let the structural utility of a generic module or combination of modules
‘x” be denoted as V.. Then, the following variants summarize the structure of the
simulations:

1. Competitive position. Two basic scenarios were constructed:

a) A ‘superior player’ scenario in which one brand provided a superior
product for both functions (V;>Vy,; and V;,>Vy,), and

b) A ‘specialists’ scenario in which each brand specializes in a different
function, but with equal structural utilities (V;>Vs;, Vi<V, and
V41477 Vp182).

2. Level of modularization - Brands in each competitive scenario may wish to
modularize different functions. The following options were explored:

a) Traditional product choice — there is no modularization and product
functions are sold only in fixed brand-specific combinations;

b) Fully modularized choice - all functions can be purchased separately; and

c) Partly modularized choice - a brand offers only one function as a sepa-
rate module, so consumers can buy some, but not all, combinations of
modules.

3. Random error structure. The empirical example reveals that random
component differences can occur between functions and between module-
level and product-level choices. The size of random component variances
together with the specific utility structure of a brand may affect the success of
a brand’s modularization strategy. Hence, different random component
structures were included in the simulations:

a) Equal random components in all comparisons;

b) Random component differences based only on one function (as observed
in the empirical example); and

¢) Random component differences based on both functions (as hypothe-
sized).

The simulation results are in Table 6, which reports market shares and the
‘sales’ percentage or the number of modules sold by brand 4.

The simulated market shares were calculated as follows: shares for traditional
and fully modularized choice scenarios were based on simple MNL models;
results for partly modularized choice scenarios were based on 10,000 draws from
Gumbel distributions with appropriate random component variance differences
between products in each scenario. Specifically, model scales (4) were varied for
all combinations of 1 and 1.25 for choice sets in which these two scale differences
were observed; a scale of 1 represents a traditional MNL model, while the value of
1.25 represents an intermediate value between the 1.08 and 1.43 observed in the
module level choices.
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Table 6:  Simulations for modularization scenarios

Scenario

Brands A, B
Module 1 Vir Vi
Module 2 Vi Ve

Traditional choice

Scale var(errorl-2)
1.00 1.64
1.25 1.05

Fully modularized choice
Scalel Scale2

1.00 1.00
1.00 1.25
1.25 1.00
1.25 1.25

Partly modularized choice
Scalel Scale2  Scale

all
1.00 1.00 1.00
1.00 1.25 1.00
1.25 1.00 1.00
1.25 1.25 1.00

Partly modularized choice
Scalel Scale2  Scale

all
1.00 1.00 1.00
1.00 1.25 1.00
1.25 1.00 1.00
1.25 1.25 1.00

‘superior player’

Var=Ver and Vs> Vi,

1.50 1.00

1.50 1.00

P(4142)  P(BIBY)

0.73 027

0.78 022

P(Al). P(BL). P(Al). P(BI).
P(A2) P(B2) P(B2) P(42)
038 0.14 0.24 0.24
0.40 0.13 022 025
0.40 0.13 0.25 022
042 0.12 023 023
P(4142)  P(BIBY)  P(A1B2)

052 0.18 0.30 -
057 0.15 028 -
0.50 024 0.26 -
058 021 021 -
P(4142)  P(BIB2) P(BIA2)
052 0.18 - 030
0.50 024 - 026
057 0.15 - 0.28
058 021 - 021

Sales(4)

62%
64%
64%
65%

Sales(4)

67%
71%
63%
69%

Sales(4)
67%
63%

71%
69%




290

Benedict G. C. Dellaert et al.

‘specialists’

Var>Ve and Vix<Vs:

1.50 1.00

1.00 1.50

P(A142) P(BIB2)

0.50 0.50

0.50 0.50

P(AL). P(BI). P(AL. P(BL). Sales(4)
P(42) P(B2) P(B2) P(A2)

0.24 024 038 0.14 50%
022 025 0.40 0.13 19%
025 022 0.40 0.13 51%
023 023 042 0.12 50%
P(A142) P(BIB2) P(41B2) Sales(A)
028 027 045 - 50%
033 023 044 - 55%
023 033 044 - 45%
0.30 0.30 0.40 - 50%
P(A142) P(BIB2) P(BIA2) Sales(A)
0.39 0.39 - 022 50%
037 045 - 0.18 46%
044 037 - 0.19 54%
0.44 043 - 0.13 50%

The following conclusions can be drawn from the simulations:

1.

Producers of products with higher structural utilities may lose market share in
markets where modularization occurs (note differences between traditional
choice scenarios and modularized and partly modularized choice scenarios for
the ‘superior player’ scenarios).
Producers of products with higher structural utility who choose to modularize
anyway are better off offering only one module as a separate option, and it
should be the module that has the most random component variance. That is,
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they should offer their ‘weakest’ module separately (see differences in market
shares for cases in which scale differences exist for modules 1 or 2 only).

3. If there are no structural utility differences between products (‘specialists’
scenario), one should modularize only if one’s strength is in a module with
more random component variance.

14.5 Discussion and conclusions

We proposed and applied a way to study and model consumer choices of modular-
ized products. Our approach offers ways to study consumer choices among prod-
ucts with several functions that may or may not require separate trade-offs. An
empirical application in the area of consumer travel package choice supported the
hypothesis that random component differences can exist between traditional and
module-level product choices, such that module-level choices had smaller random
component variances than traditional product choices. We also hypothesized that
there should be random component variance differences between choices of mod-
ules for different functions, and obtained partial support for that hypothesis.

We used our empirical results to conduct a series of micro-simulation to
illustrate the potential market share implications of non-constant random
components. One interesting result of this simulation exercise was the finding that
products that offer significant structural utility benefits can lose market share if
they offer modularization; consequently, if they must adopt modularization, they
should only offer their weakest modules as separate options.

The proposed approach can assist marketing researchers wanting to use
designed choice experiments to study modularized choices by allowing them to
investigate a wider and richer array of possible consumer choice processes using
choice experiments. For marketing managers, our approach provides the
opportunity to gain insights into complex consumer responses to marketing
actions before implementing them. Experiments that support estimation of
modularized choice models are especially relevant to address marketing
management questions in areas such as branding, product innovation, bundling
and packaging decisions and competitive analysis, because modularized choice
structures are most likely to manifest themselves in areas characterized by
comparisons of multiple functions between and/or within brands.

More generally, our analysis provides a modest step towards understanding
and modeling the likely impacts of highly flexible and individualized marketing
and production methods on consumer choices. Future research should investigate
different degrees of modularization (e.g., the impact of limited availability of
certain functions for certain brands or models), and conditions under which
different degrees of modularization are most efficient from a social welfare point
of view (i.e. the potential shifts in returns to producer and consumer due to
modularization). Finally, choices of modularized products are one aspect of
bundled choices, and we used a fairly restricted experiment in the sense that we
deliberately limited the scope and combinations of products that we offered
consumers. Future research could benefit from more work into higher dimensional



292 Benedict G. C. Dellaert et al.

choice options that would allow much larger bundles to be examined, and would
provide greater scope for taking covariances among random components into
account.
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15 Latent Class Models for Conjoint Analysis

Venkatram Ramaswamy and Steven H. Cohen

15.1 Introduction

Conjoint analysis was introduced to market researchers in the early 1970s as a
means to understand the importance of product and service attributes and price as
predictors of consumer preference (e.g., Green and Rao 1971; Green and Wind
1973). Since then it has received considerable attention in academic research (see
Green and Srinivasan 1978, 1990 for exhaustive reviews; and Louviere 1994 for a
review of the behavioral foundations of conjoint analysis). By systematically
manipulating the product or service descriptions shown to a respondent with an
experimental design, conjoint analysis allows decision-makers to understand con-
sumer preferences in an enormous range of potential market situations (see Cattin
and Wittink 1982; Wittink and Cattin 1989; and Wittink, Vriens, and Burhenne
1994 for surveys of industry usage of conjoint analysis).

15.2  Market Segmentation with Conjoint Analysis

As market segmentation is a cornerstone concept in strategic market planning, one
of the major uses of conjoint analysis is for market segmentation (e.g., Green and
Krieger 1991; Wedel and Kamakura 1997). The benefits that consumers derive
from a product or service has been long recognized as one of the most powerful
bases of market segmentation (Aaker 1998; Haley 1985; Wind 1978). It is not
surprising then that with the growth in the use of conjoint analysis to understand
consumer preferences, market researchers have employed it as a method to seg-
ment markets.

A more formal definition of the segmentation in conjoint analysis follows.
Consider the following general formulation in metric conjoint analysis. Let:

, ... | consumers (respondents);

, ... J conjoint profiles;

, .- M conjoint design dummy variables;

, --- S segments;

the metric response rating to conjoint profile j elicited by consumer i;

= ((Y;)), a (J x I) matrix containing the responses of the I consumers to the J
profiles;

im= the value of the m-th conjoint design variable in the j-th profile;

1
1
=1
1

_<;:<m B;. —_
I

e
[
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X = ((Yim), a(J x M) matrix containing the M conjoint design dummy vari-
ables for the profiles;

B = a(M x I) matrix of regression coefficients

P = a(IxS)matrix representing a general segmentation scheme for assigning-
consumers to segments;

E = a(JxI)matrix of random errors;

The general conjoint segmentation model is formulated as (Hagerty 1985;
Vriens, Wedel, and Wilms 1996):

(D) YP(P’P)'P’=XB +E

Note that if S=I, we obtain an individual-level model, and if S=1, we obtain an
aggregate-level model. The conjoint analysis literature has documented the poten-
tial instability of part-worth estimates derived at the individual level, especially in
highly fractionated designs (cf. Wedel and Kistemaker 1989). This has led to
segmentation procedures that weight ,,similar” consumers together (through P) to
reduce the variance of the estimates. However, to the extent that the within-
segment consumers are not identical in their true part-worths, bias is introduced
into the parameter estimates. Hence, there is a tradeoff between variance reduction
and increased bias in all conjoint segmentation methods.

Traditionally, segmentation in conjoint analysis has been accomplished in one
of two ways. In an a priori segmentation analysis, individual-level preference
judgments are combined at the segment level and the parameters are estimated.
However, problems typically arise in practice since demographic or psychographic
background information rarely adequately describe heterogeneous utility functions
(Moore 1980). In post hoc segmentation - sometimes called the tandem approach
(Green and Krieger 1991) - the analysis proceeds in two stages. In the first stage, a
conjoint model is estimated for each respondent and utilities for each level of each
feature are generated for each person. The individual-level utilities are then input
into a cluster analysis program to derive benefit segments. Thus, the estimation of
the conjoint analysis occurs first at the individual-level, and in the subsequent
step, the resulting individual-level part-worths are clustered to form market seg-
ments. The tandem approach, however, has problems: different clustering methods
will produce different results, and the initial utility estimation method (usually
regression) and the subsequent cluster analysis seek to optimize very different and
quite unrelated objective functions or aspects of the data (DeSarbo, Wedel, Vriens
and Ramaswamy 1992).

In response to the limitations of the tandem segmentation methods, several in-
tegrated conjoint segmentation methods have been proposed wherein the conjoint
estimation stage and the segmentation stage are simultaneously estimated, so that
a single criterion of interest is optimized under a set of restrictions (e.g., DeSarbo
et al. 1992; DeSarbo, Oliver and Rangaswamy 1989; Hagerty 1985; Kamakura
1988; Ogawa 1987; Wedel and Kistemaker 1989; Wedel and Steenkamp 1989). In
an excellent review and Monte Carlo comparison of traditional two-stage and
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integrated metric conjoint segmentation methods, Vriens, Wedel and Wilms
(1996) examine the relative performance of several such conjoint segmentation
methods. These methods differ with respect to the segmentation scheme imposed,
the algorithms and estimation procedures used to obtain P and B, and the criterion
that is optimized. The authors conclude that most of the integrated segmentation
methods outperform the tandem clustering procedures. Further, of the integrated
segmentation methods, they found that latent class metric conjoint analysis (De-
Sarbo et al. 1992) entailing a fuzzy segmentation scheme (P) and likelihood opti-
mization using the EM algorithm (Dempster, Laird, and Rubin 1977) performed
best, in terms of parameter recovery, segment membership recovery, and predic-
tive accuracy.

15.3 Latent Segmentation Models

Latent class metric conjoint analysis is one of a broader class of models called
latent segmentation models (see Cohen and Ramaswamy 1998, for illustrative
applications). Strictly speaking, latent segmentation models (LSMs) are part of a
more general class of statistical models called finite mixture models or unmixing
models (e.g., Dillon and Kumar 1994; Wedel and DeSarbo 1994). These models
assume that the observed data are really comprised of several homogeneous
groups or segments which have been mixed together in unknown proportions.
Because we don’t know beforehand who belongs to which segment nor how many
segments there really are - the segments are latent or unobserved, after all - we
must unmix the data to discover their true number and definition. A brief compari-
son between LSMs and tandem approaches is given in Table 1.

LSMs have a great deal in common with traditional cluster analysis, namely
the extraction of several relatively homogeneous groups of respondents from a
heterogeneous set of data. What sets LSMs apart from cluster analysis is their
ability to accommodate both categorical and continuous data, as well as
descriptive or predictive models, all in a common framework. Unlike cluster
analysis, which is relatively more data-driven, LSMs are model-based and true to
the measurement level of the data. Perhaps the biggest difference between cluster
analysis and LSMs is the types of problems they can be applied to. Cluster
analysis is solely a descriptive methodology: there is no independent-dependent,
or predictor-outcome relationship assumed in the analysis. While LSMs can also
be used for descriptive segmentation, their big advantage over cluster analysis lies
in simultaneous segmentation and prediction. An LSM prediction equation can be
estimated - as in metric conjoint regression analysis - af the same time that the
segments are uncovered. In the case of LSM regression, the segments consist of
people whose regression coefficients or conjoint part-worths are relatively similar.
So rather than having one aggregate regression equation describing the entire
sample, a few equations capture several different predictor-outcome relationships -
one equation for each latent segment.
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Table 1:  Comparison of Latent Segmentation Models with Traditional Tandem

Approaches
Latent Segmentation Models Tandem Approaches
(e.g., latent class (e.g., metric conjoint —
metric conjoint analysis) cluster analysis)
Creates segments Yes Yes
Statistical objectives One: Two:
Fit model to original data using Explain responses in original-
maximum likelihood data and then group entities in
transformed space
Data used Appropriate level of measure- Proximity between entities
ment based on original data detined in space other than
original variables
Delineation of Segments Penalty for overfitting tied to Often ad hoc with no penalty
likelihood tunction; information | for overfitting; goodness-of-
heuristics guide number of fit typically assessed in
segments to retain transformed space, rather than
based on original data

154 Latent Class Metric Conjoint Analysis

We now discuss the formulation of a LSM in the context of metric conjoint analy-
sis. Returning to the model in (1), assume that the vector Y; of dimension J has a
probability density function that can be modeled as a finite mixture of the follow-
ing conditional distributions (DeSarbo et al. 1992):

S
@ F(Yiou X, B.2) =3 o g (V] X, B, Z),

s=1
where a = (o, o, ..., 0s.1) are S-1 mdependent mixing proportions of the finite

mixture such that 0 < o, <1 with ag=1 - Z a,s s = the vector of conjoint part-
s=1
worths for segment s, B = (( Pus ), and £ = (T, Z,, ..., Zg) are the covariance
matrices of the error terms estimated for each segment. Note that the specification
of the error matrix E can accommodate correlations in errors across the J profiles.
Each of the conditional distributions, g, is specified as a conditional multi-
variate normal distribution:

©) UXL.E)=2ry 12,7 expl—1/ 2Y - XB)OE (Y - XB,) ]
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Given a sample of T independent consumers, the likelihood function can be ex-
pressed as:

b S
@ Lo = et/ 20— X AR (- X))
=l s~
or
1 S
(5) InL= Zln(Za,ygw(Kl)ﬁﬂy,Es))

Maximum likelihood estimation can be carried out via standard numerical op-
timization procedures or alternatively using the EM algorithm (Dempster, Laird,
and Rubin 1977). EM is more popular because of its computational elegance,
particularly for several finite mixture models (Titterington 1990). We outline the
essential aspects of the EM algorithm below and refer the interested reader to
Wedel and Kamakura (1997) who provide an excellent discussion of the applica-
bility of the EM algorithm to a wide variety of mixture models.

15.4.1 Estimation of Latent Class Models

Put simply, the EM algorithm iteratively allocates respondents to segments and
then estimates the segment-specific parameters of the model being estimated.
Iterations continue so as to maximize the overall ,,fit” of both the segment sizes
and the within-segment coefficients to the data at hand. The essential idea behind
the EM algorithm in the context of latent class models is to augment the observed
data (Y) with unobserved data (Z) representing the membership of consumers in
the segments (equivalent to P in expression (1)), which simplifies the maximiza-
tion of the log likelihood function in expression (5).

Let Z = ((z;;)) where z;, = 1 if consumer i belongs to latent segment s, and z;; =
0 otherwise. Assuming that z; is independently multinomially distributed with
probabilities o (s = 1, ..., S), the log likelihood function for the complete data Y
and Z is given by:

IS
(6) ln L((e) = Z Z[Zi,\' lngis(Yi|X9ﬂs7 Zs) + Zis lna,\']’

i=l s=1

where 0 denotes the parameter set (o , Bs, 25). In the E-step, the expectation of In
Lc(0) is computed with respect to the unobserved data Z, given the observed data
and provisional estimates of 0. This expectation is obtained by replacing z; by its
current expected value E(z|y, 8) which is identical to the posterior probability P;
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that consumer i belongs to segment s as follows:
&.s‘g/s()/i|X9ﬂs9 zg)
S N
> a8, (X B.2)
s=1

(7 r=

In the M-step, the expectation of In L(B) is maximized with respect to the
segment sizes o, (under the constraints of these parameters), yielding:

>

M-~

P/l

®) § =

13

1l
—

Similarly, maximization of the expectation of In Lc(8) with respect to ¢= ([,
%) leads to independently solving each of the S expressions:

p g (M X2 _
is a ¢S

In the case of the latent class metric conjoint model, the above equations have
a closed form facilitating easy computation.

Once final estimates of (o, Bs, ;) have been obtained, expression (7) is used
to compute each consumer’s posterior probability of consumer belonging to each
of the S segments. Partitions may be formed by assigning each consumer to the
market segment whose posterior probability Py is largest. To examine centroid
separation between the segments, one can compute the following entropy-based
measure as suggested by Ramaswamy et al. (1993):

0.

9)

/
i=1

/I8
10y E, =1+(ZZP,S InP,)/InS
=l s=1

Eq is a relative measure bounded between 0 and 1. A value close to 0 indicates
that the centroids of these conditional parametric distributions are not sufficiently
separated for the number of segments specified.

To determine the number of segments to retain, an information criterion, C, is
utilized which imposes a penalty on the likelihood for estimating an increased
number of parameters:

(11) C=-2InL + Qk,

where Q is the number of parameters estimated and k is a penalty constant. For
instance the well known Akaike (1974) information criterion (AIC) arises when
k=2, the modified AIC (MAIC) when k=3, the Bayesian information criterion
(BIC) when k = In I, and the consistent Akaike information criterion when
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k=In(1+1). The larger the penalty, the fewer the number of segments that the crite-
rion will recommend keeping. Wedel and Kamakura (1997) provide a discussion
of these various criteria for determining the number of segments to retain in mix-
ture models (see also Bockenholt et al. 1994). In practice, the final choice of the
number of segments using these information criteria must be balanced against
managerial interpretability and actionability of the results.

15.4.2 An lllustrative Application

A major automobile manufacturer was interested in investigating consumer pref-
erences to determine which specific features to include in an automotive remote
entry system (DeSarbo, Wedel, Vriens, and Ramaswamy 1992). A remote entry
system allows the consumer to lock or unlock his vehicle remotely by activating a
small transmitter, which is typically carried on a key chain. Based upon discus-
sions with consumers, product engineers, and marketing managers, the following
seven features were included in a metric conjoint study:

1. Type of Transmitter: This feature describes either a multi-button or single-
button transmitter. The multi-button transmitter hangs from the key chain;
each button activates a different feature of the system. The single-button is
placed on the vehicle ignition key and can activate all the features of the sys-
tem.

2.  Range of Operation: The range of operation defines the maximum distance
from the vehicle that the transmitter can be used to make the system active.
The options tested are either 10 or 30 feet.

3. Feedback: A remote entry system may or may not provide feedback to the
operator. A system with feedback sounds the horn every time a button on the
transmitter is depressed.

4.  Panic Alarm: A remote entry system may or may not include a panic alarm
feature. When activated, this feature sounds the horn and flashes the lights to
indicate danger.

5. Keypad: A remote entry system may or may not include a keypad on the
vehicle below the door handle. This keypad offers an alternate means of lock-
ing or unlocking the vehicle by punching into the keypad a unique five-digit
code.

6. Memory: A remote entry system may or may not include memory features
that automatically set the driver’s seat and the power mirrors when the doors
are unlocked with the transmitter. Multiple transmitters for a given vehicle
contain unique predefined settings for that driver.

7. Trunk Release: A remote entry system may or may not include a trunk release
feature that unlocks the trunk .

Table 2 presents the levels of the seven attributes with their respective codings
and the 27 fractional factorial design (Addelman 1962) used in the experiment for
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main effects estimation. During a pretest, conducted with 48 consumers, pictures
were provided to describe each feature. In addition, to make the task more
realistic, each feature level was assigned a price. Each full product profile shown
to consumers displayed the total price that would be charged, so as to avoid the
problem of the consumers uniformly preferring the profile containing the most
features. These total prices and attribute level costs are also displayed in Table 2.
Note that since the total price is a linear combination of each of the attributes, this
variable was not explicitly included in the model estimation. The consumer was
asked to rate each profile using a 10-point (metric) preference rating scale.

Table 3a presents the results from latent class metric conjoint analysis describ-

2
ing four segments with = ((st)) (log likelihood = -1586.7, AIC = 3371.32, Ej
= (.98), along with the aggregate conjoint results (S=1). The first latent class or
segment representing 12% finds feedback, panic alarm, keypad, and memory all
important, yet given that all these coefficients are negative, prefers a low price
remote entry device with few features. This segment essentially prefers a basic,
,.no frills” product for $90. The second segment, consisting of 31% of the sample,
values the memory and trunk release features as most important, and also prefers
the ,,no memory” feature (perhaps due to its high price) and a trunk release option.
The coefficients for feedback, panic alarm, and keypad are positive but not sig-
nificant. The third segment, constituting 19% of the sample, shows a strong pref-
erence for the panic alarm, the keypad, and the trunk release options.

The fourth segment, representing a sizable 38% of the sample, finds the trans-
mitter range, panic alarm, memory, and trunk release features most important,
where higher utility is derived for the single button transmitter, 30 foot range,
panic alarm, memory, and trunk release features at a relatively higher price of
$230. This segment seemingly constitutes ,.feature creatures,.” consumers who
desire many features and also exhibit a willingness to pay for them. In summary,
the latent class metric conjoint analysis results point to a market for three types of
products: a low-end (no frills) product at $90, a mid-end product in the $120-$170
range (with the trunk release option included), and a high-end product for $230.
Contrast these findings with the aggregate results which suggest that the optimal
design would include the multi-button transmitter, a 30-foot range, a panic alarm,
no memory features, and a trunk release for $130. These results account for just
10% of the variance in the preference ratings. In contrast, the four group latent
class metric conjoint model accounts for about 41% of the variance. Moreover,
although not shown, the estimated variance matrix exhibits considerable het-
eroskedasticity in response, especially in segment 1 for profiles 5, 9, and 13,
which offer a step up from the basic product of $90 to $110. The inequality in
variance estimates both between and within latent classes attests to potential mis-
specification difficulties in applying other metric conjoint analysis techniques that
assume homoskedasticity. Despite the differences in preferences, segment mem-
bership does not significantly relate to gender, previous ownership, and average
yearly miles driven.
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Table 2:  Remote Entry Design: Conjoint Attributes and Orthogonal Array

Attribute Attribute levels
Transmitter 0 = Multi-Button ($90)

1 = Single-Button ($90)
Range 0 =10 Feet

1 =30 Feet (+$10)
Feedback 0=No

1=Yes (+510)
Panic Alarm 0=No

1 =Yes (+520)
Keypad 0=No

1 = Yes (+$50)
Memory Features 0=No

1 = Yes (+$100)
Trunk Release 0=No

1=Yes (+510)

27 Orthogonal Array
X- Range Feed- Panic Key- Mem  Trunk Price
mit back pad ory *

Card 1 0 0 0 0 0 0 0 90
Card 2 0 0 0 0 1 1 0 240
Card 3 0 0 0 1 0 1 1 220
Card 4 0 0 0 1 1 0 1 170
Card 5 0 1 1 0 0 0 0 110
Card 6 0 1 1 0 1 1 0 260
Card 7 0 1 1 1 0 1 1 240
Card 8 0 1 1 1 1 0 1 190
Card 9 1 0 1 0 0 0 1 110
Card10 1 0 1 0 1 1 1 260
Card11 1 0 1 1 0 1 0 220
Card12 1 0 1 1 1 0 0 170
Card13 1 1 0 0 0 0 1 110
Card14 1 1 0 0 1 1 1 260
Cardl15 1 1 0 1 0 1 0 220
Card16 1 1 0 1 1 0 0 170

* Total price was not included in the analyses; consumers only viewed total price and not individual,

attribute level costs/prices (shown below).

Table 3b presents the within-cluster means from the four-group solution using a
tandem approach,, in this case individual-level metric conjoint followed by cluster
analysis of the individual-level coefficients using Ward’s method (Punj and Stew-
art 1983). Table 3c crosstabulates the classifications from the cluster analysis with
the latent class analysis after permuting label assignments to optimal congruence.
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Only about 60% of consumers were assigned to the same group using both proce-
dures. The coefficients from the cluster analysis indicate that Clusters 1 and 2
appear somewhat similar to latent segments 1 and 2 although their sizes are differ-
ent. Clusters 3 and 4 do not exhibit much distinctiveness when compared to latent
segments 3 and 4. When the means of the conjoint part-worths are substituted for
B, the log likelihood was -2417.5 with o and P redefined accordingly, and assum-
ing homoscedasticity in the error terms. This is much lower than the -1586.7 ob-
tained from the latent class method (the variance accounted for was 33% which is
also lower).

In addition to the results just described, DeSarbo et al. (1992) compared six
other clustering methods to the latent class metric conjoint analysis. The clustering
methods (and their associated congruence rates) were KMEANS (58.3%), Single
Linkage (41.7%), Median Method (45.8%), Complete Linkage (54.2%), Centroid
Method (43.8%), and Average Linkage (66.7%). In each case, the tandem ap-
proach performed less well than the latent class method, a finding later corrobo-
rated by Vriens, Wedel, and Wilms (1996) in their Monte Carlo study. These
authors found that, for increasing numbers of parameters (e.g. regression coeffi-
cients and segment memberships), higher levels of error variance, and less well-
separated segments, the overall performance of the tandem approach deteriorates
much faster than does an integrated segmentation method like the latent class
model.

Table 3a:  Results of Latent Class Metric Conjoint Analysis

Latent
Class
Aggregate k=1 k=2 k=3 k=4

a 1.00 0.12 0.31 0.19 0.38
Transmitter -0.51%* -0.22 0.35 -0.28 -1.35%*
Range 0.41* -0.32 -0.08 0.58 0.91**
Feedback -0.10 -1.54%* 0.07 0.20 -0.04
Panic Alarm 0.62%* =2.24%* (.14 1.09%* 1.46%*
Keypad 0.04 -3.28** 0.33 0.79%* 0.38
Memory -0.90%** =2.99%%  _2.40%* -1.24%* 1.00**
Trunk Release 1.04%** -0.04 0.92%* 1.26%* 1.26%*
Intercept 4.14 9.28 5.73 1.76 2.83

#p<0.05; ** p<0.01
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Table 3b:  Results of Tandem Method (Conjoint-Ward'’s Cluster Analysis)

Cluster
Aggregate k=1 k=2 k=3 k=4
o 1.00 0.25 0.19 0.33 023
Transmitter -0.51%* -0.15 0.20 -0.22 -1.94
Range 0.41* -0.63 0.45 0.66 1.03
Feedback -0.10 -0.90 0.20 0.13 0.10
Panic Alarm 0.62%* -0.97 0.38 1.47 1.17
Keypad 0.04 -1.58 0.48 1.09 -0.28
Memory -0.90** -2.40 -2.80 0.22 0.72
Trunk Release  1.04** 0.00 1.28 1.75 0.78
Intercept 4.14 7.75 4.84 1.39 3.90

Table 3c:  Cross Classification Frequencies: Latent Class (Rows) by Ward

(Columns)
s=1 s=2 s=3 s=4 Total
S=1 0 0 6
S=2 0 6 2 7 15 Congru-
encece:
S=3 1 0 6 2 9 60.4%
S=4 10 0 8 0 18
Total 11 12 16 9 48

In addition, unstable estimates at the individual-level compound misclassification
during clustering (Kamakura 1988) and can negatively affect the goodness-of-fit
and the power of significance tests. Fractionated designs, which are often used in
individual-level conjoint models, generally leave few degrees of freedom for esti-
mation of error at the individual-level (Cattin and Wittink 1982). Moreover, tan-
dem methods are unable to estimate conjoint models that are overparameterized at
the individual-level, and cannot deal with blocking designs. Fundamentally, even
if there is enough data to obtain reliable individual-level estimates, the tandem
approach uses two unrelated steps in which the procedures optimize different
criteria. Thus, an emerging conclusion is that latent class metric conjoint analysis
is superior to traditional tandem methods for market segmentation. Individual-
level analysis may still be preferred if prediction is the primary purpose of the
analysis (e.g., in market simulations with a first choice rule), since a limitation of
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latent class metric conjoint analysis is the assumption of homogeneous segments
(with respect to the coefficients). In the concluding section of this chapter, we
provide a brief discussion of a newer approach that delivers the benefits of latent
class metric conjoint analysis while still retaining heterogeneity at the individual
level.

15.56 Choice-based Conjoint Analysis

Choice-based conjoint analysis (CBCA) uses the basic ideas and designs of metric
conjoint analysis, but instead asks the respondent to choose one option from sev-
eral competing product or service alternatives (Cohen 1997). CBCA overcomes
several issues encountered in traditional metric conjoint analysis. First, as re-
searchers, we believe that research tasks which closely mimic what people do in
the real world will produce more valid and reliable results than tasks which do not.
So while metric conjoint analysis asks people to provide rankings or ratings, we
know that people do something very different when selecting or purchasing prod-
ucts or services: they make choices.

Second, traditional metric conjoint analysis generates values for each product
or service attribute which explain people’s preferences. To obtain estimates of
market share - which are just the sum of individual choices - the preference results
from Conjoint Analysis must be used in a share simulator. Simulators are built on
rules that translate the preference values into a predicted choice. Unfortunately
there are many different share simulator rules and they do not yield the same an-
swer. The analyst must select which set of rules he or she likes best for the situa-
tion at hand. Thus the traditional two-step traditional metric conjoint analysis
procedure of predicting shares - which entails estimating preferences and then
simulating shares - can yield different results, depending upon which simulator
rule is used.

Third, performing the analysis for each individual assumes that we have meas-
ured the drivers of each consumer’s preferences with certainty. Our earlier discus-
sion of the potential instability of individual level models points out the dangers in
this assumption. Fourth, interaction effects are typically ignored in most tradi-
tional metric conjoint analysis studies because including interactions will increase
the number of profiles that each consumer must evaluate. Without interaction
effects, we must make assumptions that may not make marketing sense. For ex-
ample, without a term to estimate a brand-price interaction, consumers are as-
sumed to be equally price-sensitive to every brand in the category.

Sixth, what if specific product features, or levels of specific product features,
are unique to a brand or unique to products at a price point? For example, what if
an 8X zoom lens can only appear on a camera which costs over $250, but you
want consumers to evaluate cameras costing from $75 to $400? Traditional con-
joint analysis cannot accommodate these restrictions without eliminating unac-
ceptable profiles.

Finally, how does low purchase intent or a low ranking translate into non-
purchase? Metric conjoint analysis simulations assume a share model where eve-
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ryone will buy something. But what if some people do not wish to purchase, espe-
cially in those situations where the product is not fully featured or costs too much?
Incorporating demand into a traditional metric conjoint model requires ad hoc
assumptions about how a low purchase intent rating or ranking will translate into
inaction (Bretton-Clark 1992; Oliphant et al. 1992).

Which Checking Account Would You Choose?

Services included ¢ ATM Card with free unlimited use of your bank’s ATM machines
with all four ¢ Unlimited free check writing with no per-check charges
accounts e Unlimited free access to automated account information over the tele-
phone
ACCOUNT #1 ACCOUNT #2 Account #3 ACCOUNT #4
Monthly fee and No minimum Maintain a Maintain a Maintain a
minimum balance | balance required | $500 minimum $1,500 minimum | combined
required checking balance | checking balance | balance at
Pay a monthly to avoid a $10 to avoid a $10 least $15,000
fee of $10 if monthly fee monthly fee in your
your account checking and
balance drops savings
below $0 accounts to
avoid a $25
monthly fee
Competitive No No Yes Yes
interest paid on
checking accounts
Use of other $1.50 for each $1.00 for each $1.00 for each Free
banks” ATM ATM visit ATM visit ATM visit
machines
Priority access No No No Yes
telephone number
Choose the one
account you prefer 9 9 9 9
9 None of these

Figure I:

Simple Discrete Choice Task

Much of the credit for popularizing choice-based conjoint analysis must be given
to Jordan Louviere and his colleagues (1983, 1988, 1994) who developed the idea
of choice experiments by combining the seminal work on discrete choice models
(e.g., logit and probit models) for behavioral data, originally developed in the
econometric and transportation choice literature (Ben-Akiva and Lerman 1985;
Ben-Akiva et al. 1997; McFadden 1986), with traditional conjoint analysis.
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Figure 1 shows an example of a CBCA task that might be used to investigate
the design of retail checking accounts. In this example, the consumer has five
choices available. Account #1 on the far left is a no minimum, no fee account.
Interest is not paid on the account and a fee is always charged for the use of an-
other bank’s automated teller machine (ATM). Account #4 on the far right is what
bankers call a ‘relationship’ account. By keeping at least $15,000 in the account,
interest is paid and the use of other banks” ATMs is free. A priority access tele-
phone number is available to holders of this account.

In between these two are checking accounts that require intermediate amounts
on deposit. Interest is included with one account and not with the other. The use of
another bank’s ATM machines is free for the first four transactions and is fee-
based thereafter. No priority access number is available, however.

The fifth and final choice to the consumer illustrates a unique feature of
CBCA: the consumer can choose ,,none of these,” indicating that they would
rather not have one of the described accounts. In a study using CBCA - just as in a
traditional metric conjoint study - each respondent will perform several tasks. In
this case, the consumer will evaluate several choice situations with the five
alternatives, with the fees, account minimums and other benefits varying across
them.

15.5.1 Advantages of Choice-based Conjoint Analysis

CBCA has several advantages over traditional conjoint models. First of all, in
traditional conjoint analysis, each product or service profile is either rated one at a
time, ranked in order of preference, or, at best, shown two at a time in a paired
comparison. With CBCA, choice is made from a set of competing product or
service alternatives. Second, a consumer performing a traditional conjoint analysis
task will evaluate a few (12-16) product profiles. In a CBCA task, even though the
consumer will make few (12-16) choices, since each choice situation contains
several different alternatives, the total number of profiles seen is much greater. For
example, if the consumer were to evaluate ten choice situations like the one shown
in Figure 1, they would see and provide choices, or non-choices, for forty product
descriptions, since each situation contains four different checking accounts.

Another limitation of traditional conjoint addressed by CBCA is that, in tradi-
tional conjoint analysis, every product or service being evaluated must share fea-
tures and the levels of those features. By using CBCA, features can be unique to
one alternative or the levels of a feature can be unique to each alternative.

A distinctive feature of CBCA is that the consumer can reject all alternatives
and choose ,.,none of the above” should none be appealing. In contrast, a tradi-
tional conjoint analysis requires that every product must be ranked or rated.

In traditional conjoint analysis, all features are assumed to have the same effect
for each brand under study. With CBCA, price and feature sensitivity can be dif-
ferent for each alternative. In traditional conjoint analysis, only one product or
service from each company is evaluated at a time. In CBCA, we can study how
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product features, prices, and availability affect the composition and market share
of a vendor’s entire product line in a single task.

Traditional conjoint analysis cannot explicitly test for different types of deci-
sion structures. Using CBCA, the nested logit model can be utilized to test for
complex decisions. When traditional conjoint analysis is used to generate a utility
equation for each person, characteristics of the individual are not typically used as
predictors in the statistical model. Finally, only when traditional conjoint is esti-
mated at an aggregate or segment level can individual characteristics be explicitly
included in the analysis. With CBCA, we can explicitly test for differences in the
impact of features or prices across a priori groups.

The major disadvantage of CBCA is that individual-level coefficients are
rarely estimated (Elrod, Louviere, and Davey 1992; Struhl 1994). Since CBCA
uses aggregate-level estimation, post hoc segmentation is impossible unless an
LSM is applied to the data.

15.6 Latent Class CBCA

The absence of individual-level coefficients in CBCA of the type obtained from
traditional individual-level conjoint analysis may actually be a blessing in dis-
guise, considering the shortcomings of the tandem approach discussed above.
While one can still perform a priori segmentation on choice data using ancillary
variables such as demographics or based on the observed choice frequencies, there
is no guarantee that the derived segments will exhibit different feature preferences
or price sensitivity.

Recognizing the need to conduct post hoc market segmentation with CBCA,
DeSarbo, Ramaswamy and Cohen (1995) combined LSMs with CBCA to intro-
duce Latent Class CBCA, which permits the estimation of choice-based benefit
segments with CBCA. A version of the CBCA approach has also been imple-
mented in a commercial software package from Sawtooth Software (Johnson

1994).

Let:

i = 1,...1consumers (respondents);

j = 1,... Jconjoint profiles of alternatives (e.g., brands);

m = 1,... M conjoint attributes and dummy variables;

n = 1,...Nchoice sets;

S 1, ... S segments;

C, = the specific brands in the n-th choice set;

Xim=  the value of the m-th conjoint design variable in the j-th profile;

Yiw= 1 ifrespondent i chooses brand j in the n-th choice set among C,,; 0
otherwise;

Bms=  the impact coefficient (or part-worth) for the m-th attribute for segments;
51

o; =  the size of segment s such that 0 < o, < 1 withag=1 - Z a.,
s=1
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Louviere and Woodworth (1983) and Kuhfeld, Tobias, and Garratt (1994)
discuss different approaches to the design and generation of the choice sets. Based
on random utility theory (Ben-Akiva and Lerman 1985; McFadden 1986), a
consumer’s probability of choosing alternative j in the n-th choice set among Cn,
conditional upon belonging to segment s, can be expressed as:

exp(ﬂ,,v,-s + fX,im'H m“)

eXp (ﬂoas Zx;ﬂiﬂhﬂ

aé(

12 R(jC,) =

where B is the intrinsic utility of alternative j to segment s. As in latent class
metric conjoint analysis, segment composition is latent or unknown. The uncondi-
tional choice probability that a respondent chooses alternative j can be computed
as:

(13) PUEC) =Y a, P(C)

where a, the size of segment s, may be construed as the initial probability of
finding a respondent in segment s. The modeling framework thus entails a finite
mixture of conditional logit models (Kamakura and Russell 1989; Ramaswamy
and DeSarbo 1990) to estimate the latent segments with the observed choice data.

Given a sample of T independent consumers, the likelihood function can be ex-
pressed as:

//n

T S N exp(ﬁ 0js + ZA/[: m \)
(14) L= H oIl H - )
s=1 n=l  jeC, exp (ﬂua\ z

as(, m=1

The goal of the estimation is to maximize the likelihood with respect to the
segment-specific parameters, subject to the constraints on the segment sizes. As
before, maximum likelihood estimation can be carried out using the EM algo-
rithm, except that a numerical optimization routine is required for the M-step (see
Wedel and Kamakura 1997 for a general discussion of estimation of logit mixture
models).
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Upon obtaining the parameter estimates, we can again compute the posterior

probability of membership for each respondent i, R, :

NN
(15) fgﬂ — nel JjeC,

AN IO

§ n=1 jeC,

Thus, the method described in DeSarbo, Ramaswamy and Cohen (1995) will
simultaneously estimate the within-segment conjoint part-worths and the market
segment sizes. As in latent class metric conjoint, consumers may be partitioned
into discrete segments by assigning each respondent i to the group for which the
value of Ri is largest. As always, information heuristics and managerial interpre-
tation must guide the determination of the appropriate number of segments to
retain.

15.6.1 An lllustrative Application

We briefly discuss a commercial application of a CBCA study conducted for a
major packaged goods company as part of a new concept test (DeSarbo, Ramas-
wamy and Cohen 1995). This study concerned itself with the pricing of a new
food product that was introduced into an existing market. We disguise the product
category as diet and regular potato chips and assume that there are only three
brands in the market: Wise, Lay’s, and Ruffles.

Previous market research by the client had found that diet potato chips mostly
appealed to the health conscious consumer and did not appeal to regular potato
chip buyers because of its perceived poor taste. The study tested a new diet potato
chip from Wise that promised ,,all the flavor of regular potato chips with one-
quarter of the calories.” This positioning was designed to attract both regular and
diet chip buyers. 600 females who regularly purchased potato chips were inter-
viewed in shopping malls around the country. Half the sample was recruited to
reflect families with a concern about diet and health. All were presented with the
new product concept and then asked various purchase intent and appeal questions.

Following this, each shopper engaged in a brand-and-price tradeoff exercise
designed as a CBCA exercise. Everyone evaluated the same sixteen competitive
buying situations, where the prices of the eight products were systematically ro-
tated. While both linear and quadratic price effects were estimated, only the linear
effects were statistically significant and retained in the final model.

As noted, CBCA typically uses a multinomial logit model, which is an ,,aggre-
gate” data analysis technique. Estimating an individual-level multinomial logit
model is not possible with as few as 16 profile, except in exceptional circum-
stances. Hence the traditional tandem approach of estimating individual conjoint
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utilities and then clustering them to form benefit segments cannot be done in prac-
tice with CBCA - or so it was until LSMs and Latent Class CBCA came along.
Table 4 shows the aggregate CBCA results and those that describe four latent
segments.

First examine the brand coefficients under the column marked Total Sample.
Larger positive numbers indicate the brands, net of price, that are more appealing
(the brand coefficient for the store-brand generic regular product is fixed at zero).
The new product from Wise is the most appealing, followed by the existing Wise
diet product and the Ruffles diet product. The overall price sensitivity is -1.32.

Using the sixteen choices from each respondent, four latent choice-based seg-
ments are uncovered. The first group exhibits high positive brand coefficients for
all Wise products, either regular or diet. This group’s price elasticity is the least
steep of the four latent classes, giving further evidence of their high brand prefer-
ence and loyalty. Members of the second segment are diet product buyers. The
diet brand coefficients are more positive than the respective regular brand coeffi-
cients and their price sensitivity is near the aggregate average. The third segment
consists of regular potato chip buyers. All the regular potato chip brand coeffi-
cients are more positive than the diet brand coefficients, with the exception of the
new product. The new product’s positioning statement seems to have had the
desired effect of attracting regular chip buyers to a diet product. But the price
elasticity for this group is much steeper than for either of the first two groups,
indicative of the larger set of potential market choices available to regular chip
buyers. The final segment contains those who prefer generic potato chips. The
generic brand’s coefficient is higher than the coefficient for any of the major
brands, either diet or regular. Accompanying this preference for the generic brand
is a very steep price sensitivity.

Additional data was collected in this study, including the respondents’
evaluation of the new concept, past chip purchasing behavior, attitudes towards
fitness and health, and demographics. Assigning respondents to the latent segment
for which they had the highest probability of membership allowed detailed
profiling. As might be expected, the Wise loyal and diet segments had higher top-
box scores for purchase intent and uniqueness of the new concept. In contrast,
members of the regular and generic segments were less favorable to the new
product concept, with the generic segment having very low incidence of prior
purchases of Wise products. Respondents belonging to the Wise and diet segments
also appeared to have a strong orientation toward health and fitness and a basic
commitment to watching their intake of calories and fat. This was in direct
contrast to respondents in the regular and generic segments, who appeared to be
less concerned about such issues.

However, there is weak differences between segments on demographics, which
is not surprising given the nature of the product. The regular segment had
relatively lower income and somewhat larger households, while the generic brand
segment appeared to consist of ,,empty nesters” with higher-than-average incomes.
In summary, the choice-based segments evaluate the new concept differently, hold
different attitudes towards fitness and nutrition, and have different patterns of past
category and brand purchase behavior. These results appear wholly consistent
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with the latent class CBCA results, thereby lending face validity to the choice-
based segments.

Table 4:  Latent Class Choice-based Conjoint Analysis Results

Latent Purchasing Classes
Brand Type Total Wise Diet Regular Generic
Sample | Loyal Buyers | Buyers Buyers
(600) (24%) (35%) (35%) (7%)
Brand Wise Diet 2.13% 3.79 347 1.73 -0.94
Coefficients (New)
Wise Regular | 0.43 1.40 -0.12 1.42 -3.62
Wise Diet 115 3.03 2.26 0.62 -2.94
Lay’s Regular 0.48 -1.64 -1.09 1.63 -2.06
Lay’s Diet 0.78 0.55 2.58 0.75 -2.20
Ruffles Regular | 0.37 -1.45 -0.21 1.53 -2.15
Ruffles Diet 1.00 -0.19 2.99 0.79 -2.95
Generic Regular 0.00 0.00 0.00 0.00 0.00
Price sensitivity: -1.32 -0.63 -1.33 -1.79 -2.83

*  Cell entries are multinomial logit coefficients.

15.7 Discussion and Future Directions

We have reviewed and presented applications of the basic framework of latent
class conjoint analysis, for both metric conjoint and choice-based conjoint situa-
tions. As noted, these developments have enabled market researchers to conduct
market segmentation using both traditional and newer conjoint analysis tools.
Given the problems with the tandem approach to segmentation in traditional met-
ric conjoint and the difficulty of obtaining individual-level coefficients in the
choice-based conjoint context, LSMs have proved to be a boon to market re-
searchers.

While we have focused on simultaneous segmentation and prediction, LSMs
can also be used for descriptive segmentation (Cohen 1997; Dillon and Kumar
1994; Ramaswamy, Chatterjee and Cohen 1996). LSMs can easily and appropri-
ately handle segmentation analyses with mixed levels of measurement. Instead of
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arbitrary rules of thumb about grouping algorithms, distances between respon-
dents, or how many segments to retain, LSMs fit a statistical model based on a
hypothesized number of segments. Tests of the goodness-of-fit of the model are
generated.

Although LSMs used with metric conjoint or with CBCA offer substantial ad-
vantages, they are not without limitations. First, as an iterative procedure the esti-
mation of large models can be very time-consuming, even on a fast computer.
Rational starting values for the iterations are required to make sure a globally
optimal solution is located. We have made good use of the traditional clustering
procedures as a means to generate such rational starts. Second, while latent class
metric conjoint or latent class CBCA provides guidance as to whether a particular
solution fits the data better than one with more (or less) segments, selecting the
best model still requires combining the statistical results with good judgement and
category understanding. Third, as is true of any post hoc segmentation method,
there is no guarantee that the derived segments will correlate with background
descriptors or key behaviors of interest. Fourth, until very recently, widespread
use of latent class metric conjoint and latent class CBCA by practicing researchers
was hampered by the lack of readily available, easy-to-use software. This has been
somewhat ameliorated, as witnessed by the excellent software review in Wedel
and Kamakura (1997). Finally, some have criticized CBCA for not capturing
heterogeneity adequately and for not delivering results at the individual level.
Louviere, Hensher, and Swait (1999) discuss more complex model specifications
which relax traditional logit assumptions and thereby provide a more comprehen-
sive representation of consumer heterogeneity. While these model specifications
move beyond simpler aggregate models, nothing less than individual-level results
will suffice for some.

Two developments have attempted to address this last issue. Recently,
Sawtooth Software has introduced a heuristic procedure called Individual Choice
Estimation (ICE), which modifies the latent CBCA segmentation model described
in equation (12) to deliver coefficients at the individual level (Johnson 1997).
More experience with this procedure is needed before its usefulness is firmly
established. The second development is the use of Bayesian methods to study
consumer heterogeneity (see Allenby and Rossi 1999). In the context of choice-
based conjoint analysis, these methods allow for the incorporation of prior knowl-
edge (Allenby, Aurora, and Ginter 1995), estimation of the distribution of hetero-
geneity in part-worths, as well as the generation of individual-level estimates
(Allenby and Ginter 1995).

Bayesian inference combines information contained in the data with prior
knowledge to arrive at the posterior distribution of the model parameters. Typi-
cally, the posterior distributions of the parameters do not have a tractable closed
form. Recent advances in Bayesian computation using Markov Chain Monte Carlo
(MCMC) simulation (Gilks, Richardson and Spiegelhalter 1996) allow draws to
be simulated from non-standard posterior distributions, given the knowledge of
the full conditional distributions. In particular, implementation of the Gibbs sam-
pler (e.g., Smith and Roberts 1993) requires knowledge of only the full condition-
als, up to proportionality. Allenby, Aurora and Ginter (1998) discuss a mixture
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model specification that provides a flexible characterization of heterogeneity in
part-worths, thereby simultaneously delivering market segment and individual-
level information.

As progress in Bayesian methods enable increasingly flexible representations
of heterogeneity in demand, there is considerable potential for marketers to not
only obtain a detailed understanding of consumer diversity, but also to engage in
more targeted marketing (e.g., Rossi, McCulloch and Allenby 1996). Advances in
Bayesian estimation using more efficient computational methods such as the Slice
sampler (Damien, Wakefield and Walker 1999; see Krishnan, Ramaswamy,
Meyer, and Damien 1998 for an illustrative application), and reversible jump
MCMC methods for finite mixture models (Damien, Dellaportas, and Ramas-
wamy 1998) hold much promise. More work is needed, we believe, to systemati-
cally compare the performance of Bayesian estimation methods with classic latent
class models for conjoint analysis in terms of interpretability and managerial ac-
tionability. Work is also under way using Bayesian analysis (Liechty, Ramas-
wamy and Cohen 1999) to extend the capabilities of newer conjoint methods such
as menu-based conjoint models (Ben-Akiva and Gershenfeld 1998).

We believe that the future holds much promise for using conjoint analysis for
segmentation in marketing. Increased flexibility in experimental design, better
representation of consumer heterogeneity, and more efficient statistical model
estimation and computation will provide major benefits. In conjunction with rapid
advances in information technology and the ability of marketers to engage in one-
to-one marketing and mass customization, the new millenium will offer major
opportunities for researchers and managers to segment markets in new ways, and
thus to better understand and predict consumer behavior.
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16 A Generalized Normative Segmentation
Methodology Employing Conjoint Analysis

Wayne S. DeSarbo and Christian F. DeSarbo

16.1 Introduction

Since the pioneering research of Wendell Smith (1956), the concept of market
segmentation has been one of the most pervasive activities in both the marketing
academic literature and practice. In addition to being one of the major ways of
operationalizing the marketing concept, marketing segmentation provides guide-
lines for a firm’s marketing strategy and resource allocation among markets and
products. Facing heterogeneous markets, a firm employing a market segmentation
strategy can typically increase expected profitability as suggested by the classic
price discrimination model which provides the major theoretical rationale for
market segmentation (cf. Frank, Massey and Wind 1972).

Market segmentation can be defined as the subdividing of a market into
distinct, but possibly overlapping subsets, where any subset may be selected as a
market target to be reached with a distinct marketing mix (Kotler 1995). It is one
of the initial phases in marketing strategy for both consumer and industrial
markets. However, prior to implementing such a strategy, the derived market
segment scheme must satisfy a number of criteria (cf. DeSarbo and Grisaffee
1998; Wedel and Kamakura 2001):

1. Differential Behavior - the members of different market segments should
behave differently either towards the brand or product class, or towards the
marketing mix activity oriented towards them. For example, different
segments typically purchase more or less of different brands/services;

2. Membership Identification - the marketer should be able to classify each
customer in the market place into one or more segments on the basis of
obtainable information;

3. Reachability - the marketer should be able to reach the members of target
market segment(s) by a distinct marketing mix strategy (e.g., media vehicles,
promotional strategy, advertising copy, etc.);

4. [Feasibility - market segmentation should be a feasible endeavor. Feasibility
here refers to the formation of market segments that obey or satisfy
application-specific technological, environmental, and managerial constraints.
For example, it may not be feasible to group customers in vastly different
geographical locations in the same market segment due to the difficulty and
costs of marketing to them.

5. Profitability - there are additional administrative and marketing costs
associated with implementing market segmentation, as well as incremental




322 Wayne S. DeSarbo and Christian F. DeSarbo

expected revenues. Profitability refers to the fact that the revenues must
exceed the costs associated with the implementation of such a segmentation
strategy.

6. Substantiality - the derived segments must be of different size and magnitude
to be taken seriously from a marketing perspective. Segments with less than
5-10% of the population are typically artifacts of the particular methodology
employed to derive segments.

7. Responsiveness - the derived market segments should respond uniquely to
the marketing efforts targeted at them.

8. Stability - market segments should be stable over time at least during the
period for identification of members and implementation of associated
strategies.

9. Actionability - the formation of market segments should lead to the
specification of associated marketing strategies towards segment targets.

10. Projectability - the results of a market segmentation study should be
projectable to the entire marketplace at hand.

To date, few market segmentation studies or techniques are able to insure and
verify these criteria in the actual operationalization of market segmentation. Frank,
Massey, and Wind (1972) were among the first to acknowledge some of these
criteria in what they called “normative segmentation”, or the “development of
normative models for the application of segmentation research findings to
marketing decisions (p. 20)”. These authors consider the basis, formation, and
associated decision making concerning market segments all simultaneous as a
conceptual entity. Mahajan and Jain (1978) and Winter (1979) later proposed
conceptual and mathematical frameworks for operationalizing normative
segmentation in terms of allowing for constraints, budgets, differential costs and
revenues, etc. DeSarbo and Mahajan (1984) were the first to provide a constrained
classification procedure, CONCLUS, to implement some of these aspects of
normative market segmentation. More recently, DeSarbo and Grisaffee (1998)
proposed a general, but flexible, methodological framework (NORMCLUS) for
constrained market segmentation for either consumer or industrial markets. Given
the nuances of each and every type of market segmentation application,
NORMCLUS is completely flexible in terms of accommodating user-specified
objective function(s) (including expected profit as in normative segmentation),
single or multi-criterion objective functions, a variety of user-specified
constraints, different forms or types of segments, multiple sets of data collected on
the same consumers, and alternative models of market segmentation. This book
chapter modifies the NORMCLUS approach by accommodating conjoint analysis
in a market segmentation context.

The next section reviews the general NORMCLUS model, constraints, and
optimization methodology employing various combinatorial optimization
algorithms. Section 11l discusses the role of conjoint analysis in benefit
segmentation schemes and describes many recent developments. Section IV
presents an industrial marketing application including the specific concerns and
needs of this manufacturing firm and how these were translated into an
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appropriate mathematical model (that was utilized for the specific application
presented in this manuscript). Finally, the conclusion section lists several areas for
future research.

16.2 Methodology

16.2.1 The NORMCLUS Framework

As mentioned in DeSarbo and Grisaffee (1998), NORMCLUS can accommodate
any user specified objective function(s), including expected profit. In the more
general case of multi-objective optimization, NORMCLUS can be formulated to
utilize either utility function, global criterion methods, etc. to derive Pareto opti-
mal solutions. Suppose there are m = 1, ..., M objective functions that are compa-
rably scaled as to range and distribution, and that a particular segmentation prob-
lem implies their joint minimization (or maximization). In the utility function
method, a utility function U(f,,) is defined for each objective, f,, depending on
the importance of f,, compared to the other objective functions. Then, one can
define a total utility function U as:

0 U=Y0,(/)

m=1

A solution vector 0° is then found by optimizing U subject to user given
constraints:

(2) hf (Q):O .] = ]9"'9 J:

3) 20 <0 s=1,..,8.

A specific form for (1) above can be given by:

M M
@) u=>U,=> a,f, ©.
m=1

m=1

where «,, is a scalar weighting factor associated with the m-th objective function,
fin (8), with 2 a, =1, and h; (8) and g,(8) are linear or non-linear equality and
inequality constraints respectively. Rao (1996) calls this the “weighting function
method” for solving multi-criteria optimization problems which typically generate
Pareto optimal solutions. Rao (1996) describes a number of alternative multi-
criteria optimization frameworks such as the inverted utility method, the global
criterion method, the bounded objective function method, lexicographic method,
etc. which can all be accommodated in NORMCLUS.
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16.2.2 Constraint Implementation

The parameter vector 8 can include segment membership information, as well as
other parameters (e.g., segment level regression coefficients as in a cluster-wise
regression framework). As mentioned, NORMCLUS can accommodate ordinary
cluster analysis where, for example, f; (8) can be specified as a ratio of between to
within cluster sum-of-squares to be maximized with respect to binary 8 indicating
cluster membership. Alternatively, 8 can include both cluster membership and
segment level regression parameters as in a cluster-wise regression market seg-
mentation approach (cf. DeSarbo, Oliver and Rangaswamy 1989; DeSarbo and
Grisaffee 1998), where f;(8) can be specified as a residual sum-of-squares to be
minimized. Or, in normative segmentation applications where costs and revenues
are readily available, f;(8) can be an expected profit function to be maximized.
Again, a variety of optimization frameworks are accommodated in NORMCLUS
depending upon the nature of the segmentation application at hand.

The remaining flexibility in NORMCLUS can be best illustrated in terms of
the user-specified constraints that can be accommodated in (2) and (3) above. Let:

i =1,...,1 consumers

k =1,...,K variables

r =1,..., R segments (R is user specified);

X; =the value of the £-th variable or characteristic for consumer i;

m;, = the degree of membership of consumer 7 in segment (0 <m;, < 1);
S, = the set of consumers in segment 7;

1, = the number of consumers (cardinality) in segment 7;

X" = the mean of variable k in segment r.

Then, for several types of cluster analysis applications, the following section
discusses several types of possible constraints representing prior information
specified by the user or institutional constraints which can be addressed (cf.
Mabhajan and Jain 1978; DeSarbo and Mahajan 1984; DeSarbo and Grisaffee
1998).

Type of Segments

&) a mr(l-mr)=0 VvVi=1.I, Vr=1.R

This set of constraints restricts m;, to be either 0 or 1.

R
©6) b DXom, =1 Vi=l..I
r=1

This set of constraints, together with (a) above, provides for a non-overlapping
segmentation analysis where each consumer can belong to one and only one
segment. Note, without this set of constraints (i.e., only with this (b) set), one can
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allow for overlapping segments-that is, allow for cases where consumers can
belong to more than one cluster.

7) . 0<mp<1 Vi=1.I VYr=1.R

This set of constraints, together with those in (b) above, allow for “fuzzy-set”
segments, where objects can be fractional members of all segments.

R
8) d D m,
r=1

This constraint, together with constraints in (a), restrict the number of
segments (c;) consumer i can belong to in an overlapping scheme.

VoA

¢

Constraints Concerning Segment Membership
We assume that the constraints in equation (5) hold in the following discussion.

(9) a. m,x'r* + mnr* =2
Here, one wants consumer s and  to belong to the same segment 7.
(10) b. Y.m,. =c,.
IS/

This is a generalization of constraint (a) above in that one wants the consumers
. . . . . *
in some set 7+, whose cardinality is ¢,- , in the same cluster # .

(1 ¢c. my +m,<1 Vr=1,.,R

This constraint forbids consumers s and # to be in the same segment.

I I
(12) d (). Xom, > Min,  @2).>.m, < Max,
i=1

i=1

These constraints allow one to restrict the number of consumers that get
allocated to cluster ». Constraint (d.1) states that the number of members in
segment r is to be greater than or equal to some minimum number Min,.
Conversely, constraint (d.2) restricts membership to be equal or less than some
maximum number Max, This constraint may be used to insure minimum
profitability.

7 7
(13) e. 2om.=>m, ¥ rer—I.R
i=1

i=1
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This set of constraints restricts the number of consumers in any segments r and
r to be equal (e.g., for sales territory/segment definition).

(14) f. |<g Vrzr=1L.R

i=1 i=1

These constraints restrict the range or distribution of acceptable differences
(g1) in the number of consumers in segments » and ». This set of constraints is
basically equivalent to specifying both sets of constraints in (d.1) and (d.2) above
where all the ceiling values (Max;) and all floor values (Min,) are identical for all
segments.

Characteristics of Segments

(15) a X,m, >V vies,

These constraints guarantee that all members of segment 7 possess at least

V:jn of characteristic or variable k. Similarly, one could generalize constraint to:

IV
Z Xikmir
(16) ieS, > V:lm i
I

where the average segment value on variable £ must be greater than some mini-
mum value. Similar constraints can be constructed to insure that each member or

max

segment average be less than some maximum value |/ = by substituting “<”and

“P T for <27 and <]/ respectively above. These constraints can insure a
kr kr

stable amount of homogeneity amongst the segments.

[r [r' <
(17) b. ZX,km,,l - ZXU.m”, =6
ieS, ieSr, -

This constraint establishes a range or distribution of acceptable differences
(g,) of characteristic £ in segments r # r . Similarly, one can generalize this to:
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1, L
Z X,‘k m, Z X!/ mir'
ies, ies,
18 + _ ¥
(18) I 1.

r r

vl A
N}
-

where the range of differences in mean values of characteristic & in segments r # »
is constrained. For example, this constraint can be gainfully utilized for insuring
segments will differ as to price sensitivity.

max

(19) c. | mjrmir(Xjk - Xik) | < £,

Vjies,
This set of constraints restricts the maximum deviation allowed ( l‘]::lx) on

characteristic k¥ for any two members of the same segment r. Accordingly one
could also constrain the maximum distance or dissimilarity allowed (D,) between
any two objects in segment 7 via;

K %
(20) |:z (mjrmlr (Xjk =Xy ))2} <D,.
k=1

@1 b. ‘mﬂ(Xjk - )?,5”)’ <y, Vies,

This set of constraints restricts the maximum deviation (}/Zax) on

characteristic £ between any object in segment » and segment »’s mean value on
variable k. Similarly, one could generalize this to all variables via:

‘ %
(22) Dm (X, -XP)| <, Vjesr
k=1

where there is a restriction placed on the maximum distance or dissimilarity al-
lowed between any consumer j in segment 7 and the centroid of segment ». The

constraints in sets (a) through (d) impose restrictions that affect the “compactness”
of a segment-or the within sum-of-squares of a segment.

Such constraints can be used in a geographical based segmentation scheme.

Y _ e min
(23) c [ X;"-X"128B,
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This constraint restricts the “separability” (affecting the between sum-of-
squares) between the mean of variable £ in segment » and »’. This can be
generalized to the case involving all variables via:

K
24) DX =Xy zCm,
k=1

where restrictions are made on the between sums of squares between segments r
andr.

Application Specific Constraints

Additional constraints are indeed possible given the particular application in mind.
For example, one may possess geographical distances, costs, or travel times (&;)
between all prospective clients and a salesman’s home. As such, the sales manager
may wish to restrict the average travel time/distance/cost for salesman t to visit
customers in segment r via:

IT
Z mir 511
ieS, max

<
I '

P

>

(25)

where 5;” ® is an upper limit to the amount of time, fare, or miles for salesman 1.

Also, in a cluster-wise regression context, one often wishes to place constraints on
the regression coefficients such as:

(26) b,>0 Vr=1,.R
or
7) hb,=0 Yr=1,.R

where £k, is a linear contrast vector, given the specific context of the market seg-
mentation framework (e.g., in a benefit segmentation framework, increasing per-
formance on desired attributes/benefits should increase customer utility).

16.2.3 Estimation Algorithms

A variety of optimization procedures are available in NORMCLUS for parameter
estimation including ordinary least-squares, constrained least-squares, and a host
of combinatorial optimization procedures employing genetic algorithms (c.f. Rao
1996, for a survey), simulated annealing (c.f. DeSarbo, Oliver and Rangaswamy
1989), lambda-opt procedures (c.f. Lin and Kernighan 1973), as well as a variety
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of heuristics such as greedy algorithms and taboo search. The particular selection
of which combinatorial optimization procedure to use depends very much on the
structure of the segmentation problem at hand. We will illustrate the NORMCLUS
procedure concerning an actual benefit market segmentation study in a business-
to-business context shortly.

16.3  Conjoint Analysis and Benefit Market Segmentation

For the estimation of market segments, both the segmentation basis and method
that are specified are quite important. According to Vriens, Wedel, and Wilms
(1996), of all the segmentation bases, the benefits that consumers derive from the
attributes of a product or service have proved to be the most powerful variables
(Haley 1968; Wind 1978). Perhaps the most popular approaches for assessing
these benefits is through the use of conjoint analysis (Green and Srinivasan 1978,
1990). It is therefore not surprising that market segmentation in commercial appli-
cations is one of the primary purposes for conducting conjoint analysis (Wittink
and Cattin 1989; Wittink, Vriends and Burhenne 1994). In commercial and aca-
demic applications (cf. Green and Krieger 1991), the segmentation of markets
with conjoint analysis traditionally involves a two-stage approach, in which the
identification of segments and the estimation of conjoint models are performed
separately.

Traditionally, this has been typically accomplished in one of two ways. In an a
priori segmentation scheme (Green 1977) where segments are known or defined
prior to the research, an aggregation of individual level preference judgments
occurs (by segment) and subsequent estimation of the conjoint model is performed
at the segment level (cf. Green and Srinivasan 1978, 1990). In post hoc
segmentation schemes (Green 1977), estimation of the conjoint analysis occurs at
the individual level, and subsequent level part-worths are then clustered to form
market segments. Here, problems typically arise since traditional demographic or
psychographic background information that typically characterizes market
segments rarely adequately describes heterogeneous utility functions at the
individual or market segment level (Moore 1980). In addition, the traditional two-
stage methodology described will often influence the results obtained. In
particular, the multiple regression and subsequent cluster analysis procedures
typically optimize different and unrelated objective functions/aspects of the
structure of the data. Another major problem well documented in the psychometric
and classification literature (cf. Hartigan 1975; Punj and Stewart 1983) is that
different clustering methods often produce different cluster (segment) results
when applied to the same data. Finally, the marketing literature on conjoint
analysis has documented the potential instability of part-worth estimates derived at
the individual level, especially in highly fractioned designs (cf. Wedel and
Kistemaker 1989).

A nmumber of procedures for performing post hoc market segmentation with
conjoint analysis have been proposed. Hagerty (1985) developed a Q-factor
analytic procedure that maximizes the predictive power of the derived segment
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level utility functions. His procedure models each customer as, in part, belonging
to every market segment and shows that the degree of membership of each
consumer in each of the segments is determined by the first eigenvector of the
correlation matrix calculated across the observed preference ratings among
consumers. However, as noted by Kamakura (1988), such factor analytic
procedures lead to overlapping clusters that are rarely identifiable. In addition,
Stewart (1981) has noted that the number of factors obtained in such Q-factor
analyses of individual characteristics (here, preferences) is not truly indicative of
the true number of clusters. Kamakura (1988) stated that one may have more or
less clusters than factors and the identification of the homogeneous clusters is
subjective and complex, especially when there are more than two factors present.
Finally, as mentioned in Vriens, Wedel, and Wilms (1996), such factor analytic
solutions identify prototypes and the correlations of individuals with these
prototypes. These loadings are not equivalent to segment/prototype membership or
probabilities of membership as they do not necessarily satisfy the row sum (to
unity) constraints.

Kamakura (1988) later developed a least-squares procedure for performing
segmentation in conjoint analysis, which attempts to group customers into
homogenous segments such that their stated preferences are explained maximally
by their group level performance functions. He developed a two-step procedure,
conceptually similar to that of Spath (1985), where given a fixed number of
segments and a binary indicator matrix designating membership of each individual
in each market segment, part-worths are estimated in a least-squares fashion for
each segment. Further, given these segment level part-worths, Kamakura (1988)
develops an agglomerative hierarchical clustering procedure, which attempts to
optimize the same error sums-of-squares of objective function. As noted by
Vriens, Wedel, and Wilms (1996), two problems can be identified with this
innovative approach. One, as noted by Kamakura (1988) himself, combining two
individuals or clusters to form a new cluster early in this agglomerative scheme
forces them to be in the same cluster in the latter stages of his algorithm. Thus,
any misclassification in the earlier stages of the algorithm will be carried on to
higher aggregation levels. Two, the hierarchical procedure imposes rather severe
constraints on the aggregations: a hierarchy and the inability to allow overlapping
or fuzzy cluster memberships. It is indeed interesting to point out that Green and
Helsen (1989) have shown that neither the Hagerty nor Kamakura approaches lead
to higher predictive validity than are obtained by conventional conjoint analysis
applied to individual response data.

There are also a number of related approaches are relevant to mention here.
Ogawa (1987) has developed a stochastic, nonmetric approach for simultaneously
estimating part-worths and aggregating individuals into segments. First, using a
logit choice model framework, Ogawa (1987) developed a ridge-like procedure
for estimating individual part-worths for rank ordered preferences. Then, an
information-theoretic criterion or index is posited as a means to aggregate
individuals. DeSarbo, Oliver, and Rangaswamy (1989) present a simulated
appealing based methodology to perform clusterwise regression. As stated to
earlier, these authors demonstrate the flexibility of their approach in
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accommodating multivariate measures, constraints on the resulting classification,
etc. Wedel and Kistemaker (1989) and Wedel and Steenkmap (1989, 1991)
provide alternative clusterwise regression formulations for benefit segmentation
that could also be adapted to perform such simultanecous estimation and
segmentation in conjoint analysis.

Finally, a number of latent structure or finite mixture regression models have
been applied to both traditional and choice-based conjoint data. DeSarbo, Wedel,
Ramaswamy, and Vriens (1992) developed a conjoint segmentation model for
metric data. The preference values of a customer were assumed to follow a
multivariate normal distribution, allowing for possible covariances among
preference judgments for the profiles. The authors applied their model to a
conjoint experiment on remote entry controls for cars, simultaneously identified
segments, estimated the part-worths, and provided covariance structures within
those segments. Similar applications of a mixture regression model to conjoint
experiments are provided by Wedel and DeSarbo (1994,1995) who analyzed
conjoint data on the measurement of service quality and on customer satisfaction.
A multinomial mixture model for both conjoint choice and rank-order experiments
was developed by Kamakura, Wedel and Agrawal (1994). As an additional
feature, those authors provided a simultaneous profiling of the segments with
consumer descriptor variables (using a concomitant mixture model). The model
was applied to the analysis of a conjoint experiment on banking services. A finite
mixture model for conjoint choice experiments was proposed by DeSoete and
DeSarbo (1991) and DeSarbo, Ramaswamy, and Cohen (1995). DeSarbo,
Ramaswamy and Chatterjee (1995) proposed a model for constant-sum data
collected in conjoint analysis, where consumers are asked to allocate a fixed
number of points across the alternative profiles. They used a mixture of Dirichlet
distributions to describe the constant sum data. Their model, like the preceding
ones, simultaneously estimates segments and identifies the part-worth of the
conjoint attributes within the segments. It was applied to a conjoint study on
industrial purchasing, where profiles were constructed on the basis of supplier
selection criteria.

Note, none of the above listed techniques for simultaneous conjoint and market
segmentation analysis can explicitly guarantee any of the ten criteria listed earlier
for effective market segmentation. The primary objective of this book chapter is to
explore how many of the criteria can be effectively dealt with through the
formation of an appropriate objective function, as well as through the inclusion of
appropriate variable batteries and classification constraints using a modified
version of the NORMCLUS methodology first described in DeSarbo and
Grisaffee (1998).
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16.4  Application: Industrial Cleaners

16.4.1 Study Background

Hair, Anderson, Tatham and Black (1995) discuss a segmentation study performed
for a hypothetical industrial supplier called HATCO. In developing a new indus-
trial cleaner, HATCO conducted a conjoint study of some 100 business customers
to aid in the understanding of the needs of its industrial customers. Previous mar-
keting research and consultation with the product development group identified
five factors as the key determinant attributes in the industrial cleaner market. Ta-
ble 1 depicts these five attributes as well as the levels tested in the conjoint analy-
sis. HATCO utilized a full profile method of collecting metric respondent evalua-
tions. The conjoint task was administered during a personal interview. The re-
spondents were handed a set of 18 cards, each containing one of the full-profile
stimulus descriptions. They were also given a foldout response form that had
seven response categories, ranging from “Not at All Likely to Buy” to ”Certain to
Buy”. Respondents were instructed to place each card in the response category
best describing their purchase intentions. After initially placing the cards, they
were asked to review their elected purchase intentions and rearrange any cards if
necessary. Finally, some six purchaser characteristics were measured as described
in Table 1.

Table 1. Attributes and Levels for the HATCO Conjoint Analysis Experiment

Attribute Description Level
MIXTURE Form of the product Premixed liquid
Concentrated liquid
Powder
NUMAPP Number of applications per 50
container 100
200
GERMFREE Addition of disinfectant to Yes
cleaner No
BIOPROT Price per typical application No
Yes
PRICE Price per typical application 35 cents
49 cents

79 cents
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Z,

Purchaser Characteristics

Size of firm-size of the firm relative to others in this market. This

variable has two categories: 1 = large, and 0 = small

7,

Usage level- how much of the firm's total product is purchased from

HATCO, measured on a 100-point percentage scale, ranging from 0 to
100 percent

Z;

Satisfaction level-how satisfied the purchaser is with past purchases

from HATCO, measured on a graphic rating scale

Structure of procurement-method of procuring/purchasing products

within a particular company. This variable has two categories: 1 =
centralized procurement, and 0 = decentralized procurement

Type of industry-industry classification in which a product purchaser

belongs. This variable has two categories: 1 = industry A classification,
and 0 = other industries

Zg

Type of buying situation-type of situation facing the purchaser. This

variable has three categories: 1 = new task, 2 = modified rebuy, and 3
= straight rebuy converted to dummy variables in the analysis

16.4.2 Aggregate Conjoint Results

Table 2 presents the regression results for the entire sample of N = 100 respon-
dents, while Figures 1 and 2 display the resulting part-worth utility charts and
factor importances graphically.

Table 2:  The Aggregate Conjoint Solution
intercept 3.77%*
powder -0.05
premix -0.52%*
100 apps 0.44%*
200 apps 0.81%*
germfree 0.97**
biodegradable 0.15
49¢ -0.89%*
79¢ -1.99%*
S.E. 1.72
R’ 0.26
adj R? 0.25
F 79.27
*p <.05

% p < 01
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Figure 2:  Factor importance

As shown, price is the most important factor as is the case in most business-to-
business studies. The disinfectant attribute appears next most important, followed
by number of applications. While there is a notable aversion associated with a pre-
mixed form of the product, the biodegradable feature effect is marginally signifi-

cant.
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16.4.3 Segment Level NORMCLUS Implementation

The primary objective for this illustrative market segmentation was to derive
benefit market segments that satisfied many of the criteria discussed in Section [
of this book chapter. More specifically, the client wants market segments whose
benefit structures are different, whose purchase characteristics are different and
identifiable, whose sizes are substantial (especially given the small sample size of
100 customers), and whose results can be easily projected to the entire customer
base. Given these objectives, and the multidimensional nature of the problem, a
multi-criteria objective function is defined as earlier described in the weighted
utility function method. We use X to denote the design matrix converted to
dummy variables, Y as the collected preference scores, and Z as the matrix of
purchase characteristics. Here, we define two separate parts of the combined util-
ity function that is to be maximized:

R
(28) f]= ZWrErZ
r=1
and
(29) no M _ (Z- EZ,)(z-EZ)
m (z-2)(z- 2)
where:
1,
W, = —.
I

Ez = the adjusted R* for segment r;

M = the between segment sum-of-squares and cross-products for Z;
T = the total sum-of-squares and cross-products for Z.

Thus, f] is the mean R-squares across each of the component segment level
regressions, weighted by the fraction of the size of the sample in each segment. £

is an eta square measure which measures separation in the component segment
purchaser characteristic variables. Note that Krieger and Green (1996) propose a
bounded objective function approach to market segmentation using a K-means
type of algorithm to maximize an R-square measure subject to a user specified
maximum acceptable tolerance in eta square. While of interest, this EXCLU
methodology cannot readily accommodate the previous constraints discussed, nor
any other objective function (e.g., profit). Note that both f1 and f> range between
0 and 1, and so does the combined function U in equation (1). Here, based on the
available information about this manufacturing firm, we set o = .5 to weigh each
component of U equally given the nature of this specific application.



336 Wayne S. DeSarbo and Christian F. DeSarbo

In addition, we imposed a number of other constraints on the final solutions.
One, a mutually exclusive partitioning of the sample was desired into separate,
non-overlapping segments. Two, no single segment should contain less than 10%
of the sample in it due to financial considerations of administering to it. Finally,
constraints on the segment level regression coefficients were forced in order to
preserve the face validity of the study. The Appendix describes the modified
lambda-opt constrained algorithm specially formulated for this particular
application.

16.4.4 NORMCLUS Analysis

Table 3 depicts the combined goodness-of-fit statistic calculated for 1-4 segments.
As shown, a dramatic increase occurs in moving from the aggregate (R=1) solu-
tion to two (R=2) segments. Very slight improvement is seen in moving from 3 to
4 segments. As such, we choose the R=3 segment solution to present.

Table 4 presents the regression coefficient for this three-segment solution, and
Figures 3 and 4 display the contrasting part-worth utility charts and factor
importances. Note the interesting pattern of part-worth heterogeneity that is
captured by the methodology. The optimal product design is identical across all
three segments. The regression coefficients in Table 4 look monotone increasing
as one moves from segment one to two to three, with a few exceptions. All three
segments find price as the most important attribute, although that importance
increases near linearly across the three segments. Segment two finds the
disinfectant attribute most highly relevant as compared across segments, while
segment three appears to have the most sharpest preference structure of the three
derived segments. This is especially pronounced with respect to price, which is
over three times as important in that market segment.

Table 3:  Segment Level Goodness-of-Fit Statistics

R D,
1 0.13
2 0.63
3 0.68

4 0.70
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Table 4:  The R=3 Conjoint Solution

r=1 r=2 r=3
intercept 3.85%* 3.67%* 3.76**
powder -0.06 -0.11 0.04
premix -0.40%* -0.51%* -0.78%*
100 apps 0.21 0.56** 0.69%*
200 apps 0.63** 0.91** 1.01**
germfree 0.95%* 1.20%* 0.68**
biodegradable 0.18 0.20 0.03
49¢ -0.43%* -0.72%* -2.01%#
79¢ -1.28%* -2.06%* -3.22%*
S.E. 1.56 1.76 1.46
R? 0.20 0.28 0.50
adj R? 0.19 0.28 0.50
F 23.37%* 30.76** 53.55%%
Size 43% 34% 23%
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Figure 3.

Part-worth utility charts by segment
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35 4

PRODUCT FORM APPLICATIONS DISINFECTANT BIODEGRADABLE PRICE

Figure 4:  Factor importance by segment

Table 5:  Segment Purchaser Characteristics

r=1 r=2 r=3
Large Size 0.26 0.71 0.22
Usage Level 51.44 36.91 49.70
Satisfaction 5.20 3.93 5.25
Centralized 0.40 0.77 0.30
Industry A 0.47 0.41 0.61
New Task 0.00 1.00 0.00
Straight Rebuy 0.56 0.00 0.44

Table 5 renders same insight as to whom these segments are (identifiability).
Segment one contains smaller firms, with the largest percent usage of HATCO as
a supplier, who find HATCO as a very satisfactory supplier, and are typically in a
straight rebuy mode. Segment two members are the largest firms, who have the
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lowest usage and satisfaction levels with HATCO, utilize very centralized pur-
chase modes in a new task purchase scenario, and are least likely to belong to
Industry A. Finally, segment three members are your smallest firms with high
HATCO usage and satisfaction levels, utilizing non-centralized procurement, most
likely to be in Industry A, and never buy in a new task role.

16.4.5 Comparative Fits

We utilize KMEANS cluster analysis as a basis of comparison with the existing
methodology in three segments. The first analysis took the dependent variable
responses above and clustered those into three segments. The resulting goodness-
of-fit value was @ = 0.129. In the second cluster analysis, the background pur-
chaser characteristics alone were clustered into three segments producing @ =
0.539. Finally, both dependant variables and purchase characteristics were jointly
clustered into three segments producing @ = 0.529. In all cases, these naive ap-
proaches fail to out-perform the proposed combinational optimization approach on
objective mathematical criteria.

16.5 Conclusion

We have proposed a general approach to the segmentation of markets involving
conjoint analysis called NORMCLUS employing various methods in combinato-
rial optimization. The general approach accommodates multi-criterion objective
functions, alternative types of clustering respondents, model or profile based seg-
mentation schemes, constraints on coefficients, constraints on segment member-
ships, etc. to adapt to the specific needs of the particular segmentation application
being dealt with. A variety of combinatorial algorithms are accommodated includ-
ing genetic algorithms, simulated annealing, and various heuristics which are
selected according to their efficiency in dealing with the structure and goals of the
application at hand. We presented an industrial marketing application involving
benefit market segment and the development of a new industrial cleaner. A two
component utility function was formulated as a maximand and with equal weights
given the requirements in this application. In addition, a set of application specific
constraints was identified as important. The NORMCLUS three-segment solution
was presented and interpreted, with a favorable comparison made with another
traditional approach (KMEANS). We show that by trading off a small amount of
variance accounted for in the clusterwise regression portion of the multi-criterion
objective function, one can obtain describable, actionable segments that the cli-
ent’s management could verify/validate (based on their past experience) and gain-
fully utilize for marketing strategy.

Note that we have only provided one specialized application of NORMCLUS
to illustrate some of its features. In other contexts where costs and revenues are
known or reliably estimated, a more formal normative market segmentation
approach could be specified where expected profit would be a key objective to be
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optimized. Future research involving such different market segmentation contexts
is needed to examine NORMCLUS performance with comparisons to more
traditional approaches.

16.6 Appendix

For the benefit market segmentation application discussed in Section TV, we at-
tempt to estimate the segment membership indicators M = ((m;,)) and the cluster-
wise regression coefficients b,> 0 in order to maximize:

(A-1) O =qf +(1—a1)f2,

where f; and f; are defined in (28) and (29) respectively, 0<a<1 is user specified
(as is R - the number of segments), and constraints (5), (6), and (12) are enforced.
For this particular application, a modified lambda-opt combinatorial optimization
procedure (cf. Lin and Kernighan, 1973) is devised, together with a constrained
least-squares solver.

The general steps are as follows:

A Set J = 0; select n from (1,2,.....,I); Set the maximum number of iterations
(MAXIT); generate random map of the sequence 1.....I, indicating the
order in which customer segment memberships are altered. Evaluate ®, and
let ©"=;

B For these n customers, change their segment memberships randomly (i.e.,
alter n row vectors in M = ((m;,)) and check for feasibility of all
constraints. Tterate until feasibility is maintained;

C For these n customers, change their segment memberships randomly (i.e.,
alter n Estimate segment level regression coefficients (subject to positivity
or monotonicity constraints if desired).

As an illustration, to enforce positivity constraints, a constrained optimizer
must be utilized in each of the R least-squares problems implied by maximizing f
in (A-1), since b, does not appear in (A-2). Here, we utilize a modification of the
Lawson and Hansen (1972) procedure which follows directly from the Kuhn-
Tucker conditions for constrained minimization. For a givenr = 1,....., R, define:

(A-2) hr=(hri)= M) .y,

an e ((E)= M2 x,
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We can then reformulate this estimation problem in terms of r non-negative
least-squares problems: Minimize ||E;b, - h,|| subject to b, > 0, for r = 1,...,R,
(excluding such constraints on intercepts), which trivially can be shown to
conditionally (holding M fixed) optimize (A-1). The algorithm, briefly outlined
below follows directly from the Kuhn-Tucker conditions for constrained
minimization. For a given r, we form the [ x K matrix of “independent variables”,
E,, and the 1 x 1 vector (acting as the dependent variable) h,. In the description
below, the K x 1 vectors w; and z, provide working spaces. Index sets P, and Z,
will be defined and modified in the course of execution of the algorithm.
Parameters indexed in the set Zwill be held at the value zero. Parameters indexed
in the set P, will be free to take values greater than zero. If a parameter takes a
non-positive value, the algorithm will either move the parameter to a positive
value or else set the parameter to zero and move its index from set P, to set Z,. On
termination, b, will be the solution vector and w, will be the dual vector.

1. SetP:=Null,Z:={1,....K},and b,: = 0.

2. Compute the vector w,: = E, (h, - Eb)

3. [Ifthe set Z,is empty or if w,; <0 for all k € Z,, go to Step 12.
4. Find an index a € Z, such that w,, = max {wy: k € Z,}.

5. Move the index a from set Z, to set P,

6. Let E(; )+ = denote the 1 x K matrix defined by

column k of E, ifk € P,
Column k of E(]f) :
0ifk e Z,

Compute the vector z, as a solution of the least-squares problem E(]f) z = hr.

Note that only the components z,, k € P,, are determined by this problem. Define
z4=0fork e Z.

7. 1Ifzy >0 forallk € P, set b,: =z, and go to Step 2.

8. Find an index v € P, such that b,,/(b,, - z,) = min {by /by- 74 ): 75 <0,k e
P.}.

9. Set Q. =b./(by- 7).

10. Set b;: =b; + Q(z- b,).

11. Move from set P, to set Z, all indices k € P, for which ¢,= 0. Go to Step 6.
12. Nextr.
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On termination, the solution vector b, satisfies:

(A-4) by >0,k € P
and
(A-5) by=0,k € Z,

and is a solution vector to the constrained least-squares problem:
(A-6) E br= hr

The dual vector w, satisfies:

(A'7) Wik = 0, ke Pr;

and

(A-8) wrk <0,k e Zr,
where:

(A-9) wr = E, (hr - Erbr).

Equations (A-4), (A-5), (A-7), (A-8), and (A-9) constitute the Kuhn-Tucker
conditions characterizing a solution vector b, for this constrained least-squares
problem. Equation (A-6) is a consequence of (A-5), (A-7), and (A-9). These
twelve steps are then repeated for the next value ofr=1,...R.

D Setl=J+1;

E Evaluate ® in trying to improve. If there is improvement, set & = &, store the
M

F and B that resulted in that solution, and go to step B. If no improvement, return
to previous M, B, and ®" values and return to step B, unless J > MAXIT in
which case, output best solution.
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17 Dealing with Product Similarity in Conjoint
Simulations’

Joel Huber, Bryan Orme and Richard Miller

171 The Value of Choice Simulators

One of the reasons conjoint analysis has been so popular as a management deci-
sion tool has been the availability of a choice simulator. These simulators often
arrive in the form of a software or spreadsheet program accompanying the output
of a conjoint study. These simulators enable managers to perform ‘what if” ques-
tions about their market - estimating market shares under various assumptions
about competition and their own offerings. As examples, simulators can predict
the market share of a new offering; they can estimate the direct and cross elasticity
of price changes within a market, or they can form the logical guide to strategic
simulations that anticipate short- and long-term competitive responses (Green and
Krieger 1988).

Choice simulators have four stages. The first stage estimates a preference
model for each individual or homogeneous segment in the survey. The second
stage defines the characteristics of the competitors whose shares need to be esti-
mated. The third stage applies the preference model to the competitive set to arrive
at choice probabilities for each alternative and each segment or respondent. The
final stage aggregates these probabilities across segments or individuals to predict
choice shares for the market.

We pay the most attention to the third stage-estimating choice probabilities for
each individual or segment. We explore the value of adjusting individual choice
probabilities with two kinds of variability, each of which has a simple intuitive
meaning. The first kind, product variability, occurs when a consumer simply
chooses a different alternative on different choice occasions, typically through
inconsistency in evaluating the alternatives. The second kind, attribute variability,
occurs when a consumer is inconsistent in the relative weights or part worths
applied to the attributes. As an example of this second kind of variability, consider
a consumer who notices the nutrition label on breads in one shopping trip but is
price sensitive in other trips. While most simulators do not distinguish between
these two forms of variability, we will show that they differ strongly in their
treatment of similarity. Attribute variability preserves appropriate similarity rela-
tionships among alternatives while product variability clouds them. However,
attribute variability by itself allows for no residual error in choice once the part

' Originally presented at the Sawtooth Software Conference, February 2, 1999 and

updated for this volume in 2006.
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worth values have been simulated. Thus, to appropriately model individual choice
it is necessary to include both sources of variability.

We present Randomized First Choice as a general way to ,.tune” conjoint
simulators to market behavior. Conceptually, Randomized First Choice begins
with the assumption of no variability - the highest utility alternative in the set is
chosen all the time. Then it adds back levels of attribute and alternative variablity
that best match choice shares in the environment. This process allows sufficient
flexibility to approximate quite complex market behavior.

Mathematically, Randomized First Choice adds variation in the attribute val-
ues in addition to variation in the final product valuation. It begins with a random
utility model with variability components on both the coefficients and the residual
error:

(D Ui=X; (B +Ex) +Ep

where:

U; =Utility of product i for an individual or homogeneous segment at a moment in
time

X; =Row vector of attribute scores for alternative i

B =Vector of part worths

E, = Variability added to the part worths (same for all alternatives)

Ep = Variability added to product / (unique for each alternative)

In the simulator, the probability of choosing alternative / in choice set S is the
probability that its randomized utility is the greatest in the set, or:

@) Pr(ilS) = Pr(U; > Ujall j  S).

Equation 2 is estimated by using a simulator to draw U;’s from equation 1 and
then simply enumerating the probabilities. To stabilize shares, group or individual
choices are simulated numerous times.

Those familiar with logit will recognize that E; is simply the error level in the
logit model. The typical adjustment for scale in the logit model is mathematically
equivalent to adjusting the variance of a Gumbel-distributed Ep in RFC simula-
tions. The E, term then reflects taste variation as has been found in models by
Hausman and Wise (1978) and in work in mixed logit by Revelt and Train (1998).

The purpose of this paper is to provide an understanding of why including at-
tribute variability is superior to just including product variability. The quick an-
swer is that attribute variability is needed to account for expected similarity rela-
tionships whereas adding product variability clouds those relationships. The next
section begins by detailing the desirable properties of any choice simulator. Then
follows an experiment that demonstrates the effectiveness of adding attribute and
product variability, particularly when applied to aggregate and latent class seg-
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ments, but also for individual choice models generated by hierarchical Bayes and
Sawtooth Software’s ICE (Individual Choice Estimation).

17.2  Three Critical Properties of Market Simulators

Market simulators need three properties if they are to reflect the complexity of
market behavior. First, the individual- or segment-level model must display differ-
ential impact - where the impact of a marketing action occurs as an alternative in a
competitive set reaches the threshold for choice. Second, the model needs to ex-
hibit differential substitution, a property where new alternatives take dispropor-
tionate share from similar competitors. Finally, the simulator must display differ-
ential enhancement, the idea that very similar pairs can produce disproportionately
severe choice probabilities. Each of these is detailed below.

Differential Impact is a central requirement of an effective choice simulator. It
reflects the property that the impact of a marketing action depends on the extent
that the alternative is near the purchase threshold. This point of maximum sensi-
tivity occurs when the value of an alternative is close to that of the most valued
alternatives in the set - when the customer is on the cusp with respect to choosing
the company’s offering. At that time, an incremental feature or benefit is most
likely to win the business.

The differential impact implicit in a threshold model can best be understood by
examining three cases reflecting different kinds of thresholds. First we present the
linear probability model which importantly defines the case of no threshold. Then
we examine the other extreme, that of a first choice model, which has the most
extreme step-like threshold. Finally we consider the standard choice models (logit,
probit) whose threshold has been softened by the addition of variability.

If probability is a linear function of utility, then improving an attribute has the
same effect on choice share regardless of how well it is liked. There are many
problems with this linear probability model, the worst of which is a lack of differ-
ential impact. Under a linear probability model adding, say, an internal fax modem
has the same share impact regardless of whether it is added to a high- or low-end
computer. By contrast, a threshold choice model specifies that the benefit from
adding the modem mainly affects those consumers who are likely to change their
behavior. This makes good sense - adding the feature does not affect a person who
would have bought the brand anyway, nor does it affect customers who would
never consider it. Managerially, the differential impact brought about by a thresh-
old model has the benefit of focusing managerial attention on the critical marginal
customer, and thereby avoids expensive actions that are unlikely to alter market
behavior.

The first-choice model offers an extreme contrast to the linear model. The first
choice model is mathematically equivalent to Equation 1 with no variability
(var(Ep) = var(Es) = 0). In the first choice simulation, share of an alternative is
zero until its value is greater than others in the set. Once its value exceeds that
threshold, however, it receives 100%. The problem with the first choice model is
that it is patently false. We know that people do not make choices without vari-
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ability. In studies of experimental choices, given the same choice set (3-4 alterna-
tives, 4-5 attributes) respondents choose a different alternative about 20% of the
time. In our study, respondents chose a different alternative in the repeated task
19% of the time. One of the paradoxes we hope to resolve in this paper is why the
first choice model operating on individual-level part worths works so well despite
its counter-factual premise.

Standard logit and probit models reflect a compromise between the first-choice
and linear model. Instead of the severe step function characteristic of the first
choice model, the variablity implicit in these models moderates the step into a
smooth s-shape or sigmoid function. As shown in Equations 1 and 2, these models
are identical to first-choice models with variability added. For logit, Ep has a
Gumbel, while for Probit, it has a Normal distribution. It is important to note,
however, that these models are, to use a technical phrase, linear-in-the-parameters.
Thus the utility of an item generally increases the same amount with a given im-
provement, however, the probability of purchase follows a threshold model.

A little-understood benefit of a threshold model is that it can reflect complex
patterns of interactions between, say, a feature and a particular brand simply
through the simulation process. An interaction term specifies that a particular
feature has a differential impact on particular brands. While these interaction
terms can be reflected in the utility function, we propose that many interactions
can be better represented as arising from the aggregation of heterogeneous cus-
tomers each following a threshold model. For example, consider a warranty x
price interaction indicating that a warranty is more valuable for low- over high-
priced appliances. The same effect could also emerge in a simulation of respon-
dents under a threshold rule. Suppose there are two segments, one valuing low
price and the other desiring high quality. Adding a warranty to the low-priced
brand might not be sufficient to raise it past the purchase threshold of those desir-
ing high quality. By contrast, the warranty pushes the alternative past the threshold
of those desiring low prices. When these two segments are aggregated it appears
that the warranty mainly helps the low priced brand and thus appears to justify an
interaction term in the utility function. However, the same behavior can be re-
flected in a simulator with a threshold model. The heterogeneity account has the
further advantage of being more managerial actionable than the curve-fitting exer-
cise of the cross term.

The greatest difficulty with interaction terms is that their numbers can grow
uncontrollably large. Above we illustrated an example of price tiers, but there can
be many others. Consider combinations of brand tiers where customers are simply
not interested in certain brands; size tiers where a large size never passes the
threshold for certain segments, and feature tiers, where certain groups are only
interested in certain features. Modeling these with interaction terms in the utility
function is both complicated and can lead to problems with overfitting or mis-
specification. The beauty of a simulator operating on segmented or individual
models is that it can approximate this behavior in the context of a simple main-
effects additive model (e.g., see as Orme and Heft).

To summarize, differential impact is critical if we believe that impact on
choice of, say, a new feature of a brand depends on values of the brands against



Dealing with Product Similarity in Conjoint Simulation 351

which it competes. The threshold model within a random utility formulation fo-
cuses managerial attention on those alternatives that are on the cusp, and in that
way places less emphasis on alternatives that are already chosen, or would never
be. Further, applying the threshold model at the level of the individual or homoge-
neous segment confers the additional benefit of isolating the differential impact
appropriately within each.

Differential Substitution is the second property critical to an effective choice
simulator. Its intuition follows from the idea that a new offering takes share dis-
proportionately from similar ones. Differential substitution is particularly impor-
tant because the dominant choice model, aggregate logit displays no differential
substitution. The logit assumption of proportionality implies that a new offering
that gets, say, 20% of a market will take from each competitor in proportion to its
initial share. Thus a brand with an initial 40% share loses 8 percentage points
(40% x .2) and one with 10% share loses 2 percentage points (10% x .2). Propor-
tionality provides a naive estimate of substitution effects and can result in manage-
rially distorted projections where there are large differences in the degree of simi-
larity among brands in the market. For example, a product line extension can be
expected to take proportionately most share from its sibling brands. Managers
recognize this problem. Successful companies manage their portfolios with new
brands that are strategically designed to maximize share taken from competitors
and minimize internal share losses. By contrast, proportionality glosses over such
strategically important distinctions. Ignoring differential substitution could lead to
the managerial nightmare of numerous line extensions whose cost to current
brands is regularly underestimated.

An extreme, if instructive, example of differential substitution is the presence
of a duplicate offering in the choice set. Economic theory often posits that a dupli-
cate offering should take half the share of its twin, but none from its competitor.
However, in practice this expectation is rarely met. If some consumers randomly
pick a brand without deleting duplicates, then having a duplicate could increase
total choice share. Indeed, the fight for shelf space is directed at capturing that
random choice in the marketplace. To the extent that a duplicate brand increases
the total share for that brand, we label the increase in total share from a duplicate
share inflation. Clearly some share inflation is needed, but it is unclear how much.
In the empirical test we measure the extent to which simulators reflect differential
enhancement by how well they correctly predict the combined share of near sub-
stitutes in the holdout choice sets.

Differential enhancement is the third property needed by choice simulators. Tt
specifies a second, but less commonly recognized way product similarity affects
choices. Under differential enhancement, pairs of highly similar alternatives dis-
play more severe choice differences. Psychologically, this phenomenon derives
from the idea that similar alternatives are often easier to compare than dissimilar
ones. Consider the choice between French Roast coffee, Jamaican Blend coffee
and English Breakfast tea. A change in the relative freshness of the coffees can be
expected to enhance the relative share of the fresher coffee, while having rela-
tively little impact on the proportion choosing tea.
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In its extreme form, differential enhancement arises where one offering domi-
nates another in the choice set. Rational economic theory typically posits that the
dominated alternative receives no share, while the shares of the other brands are
unaffected. Market behavior is rarely as neat. There are few purely dominated
alternatives in the market. Even finding two otherwise identical cans of peas in the
supermarket can lead to suspicion that the lower priced one is older. Determining
dominance requires work that consumers may be unwilling or unable to perform.
For that reason, manufacturers intentionally create differences between offerings
(new line, different price, channel), so that dominance, or near dominance is less
apparent. From a modeling perspective, the important point is that any choice
simulator needs to allow both for dominance to produce cases of extreme prob-
ability differences and to allow consumers to be fallible in their ability to recog-
nize that dominance.

The modeling implications of differential enhancement parallel those for dif-
ferential substitution. The standard logit or probit models assume that the relative
shares of any pair of alternatives only depend on their values, not on their relative
similarity. Referring to a classic example, if trips to Paris and to London are
equally valued, then a logit model predicts that adding a second trip to Paris with a
one-dollar discount will result in one-third shares for the three alternatives. There
are numerous ways researchers have attempted to solve this problem, from nested
logit to correlated error terms within probit. Within the Sawtooth Software family
Model 3 penalizes items that share attribute levels with other alternatives in the
choice set. We will show that a simple first choice simulation with suitable vari-
ability added to both attributes and alternatives provides a robust way to mirror
these complex market realities.

17.3 A Market Study to Validate Choice Simulators

As we approached the task of comparing the ability of different choice simulators
to deal with varying degrees of alternative similarity, it became apparent that
choice sets typically used for choice experiments would not work discriminate
between models. For the sake of efficiency, most choice experiments feature al-
ternatives where the numbers of levels differing among pairs of alternatives are
relatively constant. For example, it would not typically make sense to include a
near alternative twice since its inclusion adds so little additional information. In
this study we deliberately add alternatives which are duplicates or near duplicates
to be able to test the ability of various simulators to appropriately handle these
difficult choices.

Three hundred ninety-eight respondents completed computerized surveys in a
mall intercept conducted by Consumer Pulse, Inc. The survey involved preference
for mid-sized televisions and was programmed using Sawtooth Software’s Ci3 and
CBC systems. Respondents over 18 who owned a television or were considering
purchasing a mid-sized television set in the next 12 months qualified for the sur-
vey. The first part of the interview focused on attribute definitions (described in
terms of benefits) for the six attributes included in the design. The main part of the
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survey involved 27 choices among televisions they might purchase. Each choice
involved five televisions described with six attributes: brand name (3 levels),
screen size (3 levels), picture-in-picture (available, not), channel blockout (avail-
able, not) and price (4 levels). Table 1 gives an example of a choice set that illus-
trates the levels. We gave respondents a $4.00 incentive to complete the survey,
and urged them to respond carefully.

Table 1:  Example of a Holdout Choice Set

25” JVC, 26” RCA, Surround 257 IVC,
Stereo, Sound, Monaural,
Picture in Picture, Picture in Picture, No Picture in Picture,
No Blockout, Blockout, No Blockout
$350 $400 $300
277 Sony, Surround 257 JVC,
Sound, Stereo,
No Picture in Picture, Picture in Picture,
No Blockout No Blockout,
$450 $350

Preliminary data from a small pre-test suggested that respondents were not giving
sufficient effort to answer consistently. In an attempt to improve the quality of the
data, we revised the survey. We told them that the computer would ,,learn” from
their previous answers and know if they were answering carefully or not. The
computer” would reward them with an extra $1.00 at the end of the survey if they
had ,taken their time and done their task well.” (We displayed a password for
them to tell the attendant.) In terms of programming the survey logic, we rewarded
them based on a combination of elapsed time for a particular section of the survey
and test-retest reliability for a repeated holdout task. Though it is difficult to prove
(given the small sample size of the pretest), we believe the revision resulted in
cleaner data. Nearly two-thirds of the 398 respondents received the extra dollar.
We discarded 46 respondents based on response times to choice tasks that were
unusually low, leaving 352 for analysis.

The first 18 choice tasks were CBC randomized choice sets that did not in-
clude a ,,None” option. After completing the CBC tasks, respondents were shown
an additional nine holdout choice tasks, again including five alternatives. The
holdout tasks were different in two respects. First, to test the market share predic-
tions of the different simulators, it was critical to have target sets for which market
shares could be estimated. Respondents were randomly divided into four groups
with approximately 90 in each group that would receive the same nine holdout
choice tasks. Additionally, we designed the holdout choices to have some ex-
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tremely similar alternatives. Four of the five alternatives in the holdout tasks were
carefully designed to have approximate utility and level balance (Huber and
Zwerina 1996). However, the fifth alternative duplicated another alternative in the
set, or duplicated all attributes except the two judged least important in a pretest.
To provide an estimate of test-retest reliability, each respondent evaluated two
choice sets that were perfect replicates. Across respondents, the computer random-
ized both choice set and product concept order.

17.4 The Contenders

We analyzed the CBC data using four base methods for estimating respondent part
worth utilities: Aggregate Logit, Latent Class, Sawtooth Software’s ICE (Individ-
ual Choice Estimation) and Hierarchical Bayes (courtesy of Neeraj Arora, Vir-
ginia Tech). There is logic behind picking these four methods. Aggregate logit is
important in that it reflects what happens when all respondents are pooled into one
choice model. By contrast, latent class analysis seeks sets of latent segments (we
used an eight-group solution) whose part worths best reflect the heterogeneity
underlying the choices (Kamakura and Russell 1989; Chintagunta, Jain and Vil-
cassim 1991; DeSarbo, Ramaswamy and Cohen 1995). ICE then takes these seg-
ments and builds a logit model that predicts each individual’s choices as a func-
tion of these segments (Johnson 1997). It thereby is able to estimate a utility func-
tion for each person. Hierarchical Bayes assumes respondents are random draws
from a distribution of part worth utilities with a specific mean and variance. It
produces a posterior estimate of each individual’s part worths reflecting the het-
erogeneous prior conditioned by the particular choices each individual makes
(Lenk, DeSarbo, Green and Young 1996; Arora, Allenby and Ginter 1998). Both
ICE and hierarchical Bayes reflect current attempts to generate each individual’s
utility functions from choice data, while latent class and aggregate logit typify
popular ways to deal with markets as groups.

For each of these base models we examine the impact of adding three levels of
variability within the Randomized First Choice framework. The initial condition is
the first choice rule that assumes respondents choose the highest valued alternative
in a choice set with certainty. The second condition adds the level of product vari-
ability that best predicts holdout choice shares. This latter condition is identical to
adjusting the scale under the logit rule to best predict these shares. The third con-
dition tunes both product and attribute variability to best predict the holdout
choice shares. The mechanism of the tuning process is simple but tedious: we use
a grid search of different levels of each type of variability until we find those that
minimize the mean absolute error in predicting holdout choice shares.

17.5 Results

We examine the ability of different simulators to handle product similarity from
different perspectives. First, we measure deviations from predicted and actual
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share for the duplicates and near-duplicates that were included in the holdout
choice sets. This focus enables us to uncover ways the various models appropri-
ately account for differential substitution and differential enhancement. Then we
broaden our perspective to consider the overall fit of the models - how well the
models predict choice shares for all items in the choice set.

Differential substitution requires that similar items take disproportionate share
from each other. Thus, our near and perfect substitutes should cannibalize share
from each other. For example, if an alternative would receive 20% share individu-
ally, the joint share of the two alternatives should be only marginally more than
20%, since the new one takes most of its share from its twin. A first choice simu-
lator, with its assumption of zero variability puts the joint share at exactly 20%,
but in the marketplace this combined share is likely to be somewhat higher. Put
differently, due to fundamental noise in the consumer choice processes we can
expect some share inflation.

Table 2 gives predicted combined share of the near and perfect substitutes di-
vided by the actual share. Thus, a value of 100% means that the degree of differ-
ential substitution reflected in the holdout choices was estimated perfectly. Notice
that the first choice rule underestimates the joint share of the near substitutes by
about 10%, indicating that the first choice rule of no variability is too severe. The
next column shows the result of adding the level of product variability that best
predicts the holdouts. In this case, adding that variability seriously overestimates
the share inflation for the near substitutes, in effect, assuming too much variabil-
ity. The third column then adjusts both product and attribute variability to opti-
mally predict choice shares. By allowing some attribute variability to substitute for
product variability, we are able to more closely track actual differential substitu-
tion in this data set for all models except ICE.

It is also instructive to compare the rows representing the four core models.
The two aggregate models, logit and latent class, suffer most from overestimation
of share inflation under product variability. However, when both forms of
variability are combined, they do remarkably well. The two individual models
appear both less sensitive to the addition of variation and less in need of it. We
will discuss the implications of this phenomenon after the other results from the
study are presented.

Differential enhancement occurs when a given quality difference results in a

greater share difference between highly similar pairs. We examine the share dif-
ference between the alternative with higher expected share and its near duplicate.
Table 3 gives the model’s prediction of this difference as a percent of the actual
difference. Once again a score of 100% indicates perfect level of differential en-
hancement relative to the actual choices.
The two aggregate models with product variability only are the least effective in
representing the differential enhancement reflected in the holdout choices. In
contrast, the first choice rule applied to the individual level models performs very
well in this case. In all cases, adding the optimal level of product variability tends
to understate desired levels of differential enhancement. Optimizing both kinds of
variability has a small incremental benefit but results in predictions that still un-
derestimate the appropriate level of differential enhancement.
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Table 2:  Differential Substitution: Predicted Combined Share of Near Substi-
tutes As Percent of Actual Share

First Choice Rule :lg(i)lciltl;(:t Vari- ;Qirit:}i]bute Vari-
Aggregate Logit N/A 139% 108%
Latent Class N/A 119% 105%
Hierarchical Bayes 91% 117% 104%
ICE 89% 101% 94%

Table 3:  Differential Enhancement: Predicted Difference between Similar
Alternatives As Percent of Actual Differences

First Choice Rule :lg(i)lciltl;(:t Vari- ;Qirit:}i]bute Vari-
Aggregate Logit N/A 63% 73%
Latent Class N/A 71% 74%
Hierarchical Bayes 100% 73% 7%
ICE 90% 77% 79%

It needs to be emphasized that these measures of differential substitution and en-
hancement only relate to the shares of near substitutes. By contrast, the optimiza-
tion to choice shares counts all five alternatives, not just the two most similar
ones. The overestimation of differential substitution shown in the last column of
Table 2 and the underestimation of differential enhancement in the last column of
Table 3 could have been improved by decreasing the level of product variability,
but overall fit would have suffered. An interesting implication of this result is that
the actual variability around judgments relating to the share sums and share differ-
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ences of these near substitutes may be smaller than for alternatives generally. An
interesting path for future research involves allowing variability to change as a
function of similarity of an alternative within each set.

Table 4:  Relative Error: Mean Absolute Error Predicting Market Share As
Percent of Test-Retest

First Choice Rule i;oduct Variabil- ;rékiirit:}i/bute Vari-
Aggregate Logit N/A 151% 112%
Latent Class N/A 117% 105%
Hierarchical Bayes 125% 110% 107%
ICE 112% 106% 106%

Relative error measures the degree that the different simulators predict the market
shares across all alternatives in the holdout tasks for the study. Table 4 shows
mean absolute error (MAE) predicting holdout stimuli as a percent of the test-
retest MAE for repeated choice sets. For example, the 151% for aggregate logit
indicates that adding product variability only results in an error that is about one
and one-half times as great as for the choice replication. Adding attribute variabil-
ity helps all models, but the greatest gains occur for the aggregate models.

Table 4 offers several surprises. The first surprise is that Randomized First
Choice applied to latent class does as well as any of the models. The positive
impact of both kinds of variability on latent class makes sense because the original
latent class model assumes that there is no heterogeneity within each latent class.
By optimizing both product and attribute variability we are able to transform latent
class from an elegant but counterfactual model into one that tracks choice shares
remarkably well.

The second surprise is that the addition of attribute variability has very little
impact on either of the individual level models. For both hierarchical Bayes and
ICE the addition of product variability is the major benefit. We believe there is a
simple reason for this result. The individual level models are not estimated with
perfect accuracy, but have significant variation due to the noise in individual
choices and the fact that many parameters are being estimated from relatively few
observations. Thus, when estimates from these models are put in a simulator they
act as if variability has already been added to the part worths. However, in this
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case instead of attribute variability coming from the RFC process, it comes from
the inherent variability in the estimation model. This insight then leads to an im-
portant conclusion: where variability in the estimation technique is greater than in
the market, then the optimal variability to add to the first choice model will be
zero (see also Elrod and Kumar 1989).

The final surprise is that Randomized First Choice predictions are quite good
regardless of the core estimation method used (except aggregate logit). That is,
using RFC produces accuracy that is within 10% of what one would get asking the
same question again. Clearly few techniques are going to do much better than that.
There simply is not much room for further improvement.

Before concluding, it is important to briefly mention Sawtooth Software’s
Model 3, a long-available method that accounts for item similarity in a simulation.
Model 3 operates by penalizing alternatives that have high numbers of levels in
common with other attributes in a choice set. It does so in such a way that adding
a perfect duplicate perfectly splits share with its twin when these duplicates share
no levels in common with the other alternatives. Model 3 acts like the first choice
model in assuming that there is zero share inflation from adding an identical alter-
native, thereby underestimating the joint share of the two identical alternatives for
the holdout choices in our study. Further, Model 3 reflects a relatively simple (and
inflexible) rule regarding differential substitution and does not address differential
enhancement at all. Since Model 3 is not a theoretically complete model of simi-
larity effects, it did not surprise us that for our study Model 3 was consistently
outperformed by RFC. In our view, Sawtooth Software users should replace
Model 3 with RFC.

17.6  Summary and Conclusions

The purpose of this paper has been to examine ways to build choice simulators
that correctly reflect similarity effects. We began with the introduction of three
principles needed for sound conjoint simulations, and in the light of those princi-
ples developed Randomized First Choice. RFC provides better choice share pre-
dictions by determining the optimal levels of attribute and product variability
when generating simulated choices.

The first requirement of effective simulators is that they reflect differential im-
pact. This property permits the simulator to focus managerial attention on those
actions that are most likely to impact their customers. In addition, a little-known
implication of the threshold model at the level of a segmented (e.g. latent class) or
individual model is that it automatically allows for various kinds of price and
offering tiers without the necessity of interaction terms. The cost of losing that
benefit is best illustrated by the poor performance of the aggregate logit simula-
tion, even with variability added. In simple, main-effects aggregate logit, there is
no way the threshold effect can display the action of different segments. Either the
homogeneous segments from latent class or individual models are necessary for
that benefit.



Dealing with Product Similarity in Conjoint Simulation 359

Effective simulators also need to reflect differential substitution. Our analysis
of the combined share of near and perfect substitutes indicates that the first choice
model underestimates, while adding product variablity overestimates their com-
bined share. The joint optimizations of both product and attribute variability then
permit the estimates of combined share to closely approximate the actual choices.
One can tune the appropriate balance of differential substitution/share inflation.

The third requirement of effective simulators is that they demonstrate differen-
tial enhancement. We illustrated this requirement by examining the share differ-
ence of nearly identical alternatives. The first choice rule overestimates differen-
tial enhancement in aggregate models by giving all share to the preferred alterna-
tive. By contrast, adding product variability underestimates the predicted share
differences. Adjusting both kinds of variability improved this underestimation but
did not solve it completely. Since differential enhancement comes in part from a
psychological mechanism whereby decisions between similar alternatives are
easier, a full solution to this problem may await models that adjust item variability
to the difficulty in making the choice.

We demonstrated the benefits of RFC on a study in which the holdout choices
included ,difficult” alternatives that included near and true duplicates. However, a
greater benefit for Sawtooth Software users may come in contexts where it is
possible to project to actual market shares. Most markets will have far more com-
plicated similarity structures than our simple problem, resulting from competition
among family brands, different sizes, price tiers and subbrands. We believe that
RFC with its two kinds of variability will be very useful in tuning the simulator to
successfully account for market behavior in such cases.
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Addendum 2006

For this latest edition of Conjoint Measurement, the authors asked us to revisit this
article and provide new insights and an update.

After publishing this article here and in the 7999 Sawtooth Sofiware
Proceedings we later re-analyzed the data and published the results in Marketing
Research, winter 2000. After writing the earlier articles, we had recognized that in
tuning the two types of error in Randomized First Choice (RFC) to best predict
holdouts, we were risking the possibility of overfitting and potentially overstating
the benefit of RFC. We addressed this possibility in the 2000 Marketing Research
article by splitting the sample into two matched replicates. We re-estimated the
models within each of the replicates (this time using Sawtooth Software’s
commercial CBC/HB routine, which had not been available for the earlier work).
We tuned the product and attribute errors for RFC on the first half of the sample
and applied those error amounts to new respondents in the other half. Only the
second group of respondents was used for predicting holdouts. The new overall
error (relative to test-retest reliability) is given below, with the previous error rates
as published in this article shown in parentheses:

First Product +Attribute

Choice Rule Variability Variability
Aggregate Logit N/A 155% (151%) 121% (112%)
Latent Class N/A 122% (117%) 113% (105%)
Hierarchical Bayes 116% (125%) 111% (110%) 107% (107%)
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We were pleased to see that the essential findings held: RFC offered an improve-
ment over tuning only for scale (product variability only). As before, the benefit
was greatest for the aggregate models.

We have now had about eight years experience working with Randomized
First Choice simulation models. Sawtooth Software added the capability to its
commercial market simulator, even making it the default simulation method. In
general, it has worked well. It should not surprise the reader that we have learned
a few things: both how to improve RFC and also regarding weaknesses.

Eight years ago, the majority of Sawtooth Software customers were using
aggregate models: logit or latent class. RFC clearly provided a benefit in these
cases. Lately, the majority of Sawtooth Software customers are using part worths
estimated under HB. For these customers, RFC provides modest improvements.
Thus, the popularity and effectiveness of HB has in turn reduced the impact that
RFC has in our industry.

Some HB users (especially academics) prefer to use the draws within choice
simulators rather than the point estimates, as we applied in this research. It could
be argued that HB provides more empirically correct draws of random error
around point estimates (parameter-specific estimated variances) rather than RFC’s
simple assumption of uniform error variance across the parameters. In 2000, Orme
and Baker compared the use of RFC to HB draws, again in terms of fitting holdout
choices. They tuned both HB draws (product error only) and RFC operating on the
HB point estimates (both product and attribute error) to best predict holdouts. The
relative error rates were 107% and 109% for RFC and HB draws, respectively.
The authors concluded that using the huge HB draws file was unnecessary, and
RFC’s simpler model performed equally well or better.

In the 2004 Sawtooth Software Conference, Allenby ef al. pointed out that
standard HB models can face what they termed “IIA Meltdown” when very many
alternatives (such as 84 alternatives in a beverage category or even more
alternatives in the automobile category) are in the choice design. Although they
proposed a different model from RFC, their findings that the standard HB
simulators face greater IIA troubles as the number of alternatives increased
suggests that RFC may be even more useful in these cases.

We have also noted a weakness with RFC simulations. The simple RFC model
assumes that all attributes involve a correction for product similarity. However, it
is not clear that this should be the case. For instance, price represents an attribute
for which it isn’t clear that product similarity should apply. Some analysts like to
derive demand curves via sensitivity analysis within choice simulators. Under
RFC, if all products are first aligned on the average price (and the “test” product
systematically varied across all price levels), an unwanted “kink” will occur in the
demand curves around the point that was artificially chosen as the average price.
When the test product is changed from the average to the next higher price point
(and all others remain at the average price), it sometimes receives a boost in share
due to its becoming less similar that nearly counteracts the penalty from becoming
more expensive. One solution to this problem is to apply independent error to the
price part worths for all alternatives in the simulation. This gives rise to a more
sophisticated RFC simulator, where some attributes involve correlated error (when
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product alternatives share the same levels of these attributes) and other attributes
involve uncorrelated errors (when product alternatives receive independent
random error draws for these attributes, irrespective of shared levels).

There is another opportunity for analysts to improve RFC modeling. Some
conjoint/choice designs involve many alternatives. Beverages and automobiles are
good examples. Suppose we had conducted a choice study with 200 automobile
makes, including trucks, minivans, sedans, and coupes. Further suppose that we
had treated the makes (for part worth estimation) as independent levels of a 200-
level attribute. However, we know that these 200 makes fall into four clear
categories that should reflect increased competition within each category. One
could assume a new attribute with four levels (truck, minivan, sedan, and coupe)
for which we apply attribute-type error under RFC in choice simulations.

We should also note that as the number of alternatives in the simulated choice
scenario increases, the number of draws used in RFC should also be increased.
Otherwise, the random error involved with RFC may be uncomfortably large
relative to the signal associated with some relatively tiny product shares.

Finally, given the strong performance of ICE (Individual Choice Estimation)
for this data set, the reader might wonder why Sawtooth Software’s ICE program
is not used much any more and essentially has been abandoned by Sawtooth
Software. Although it worked quite well for this dataset (and many others), it
hasn’t been as generally robust as HB. ICE can be problematic with sparse
datasets (many parameters to estimate relative to the number of choice tasks at the
individual level). HB has been widely embraced by the industry and is more
theoretically appealing. Given the speed of computers today, it is also very
manageable for most every practical data set, with run times seldom exceeding a
few hours.
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18 Sales Forecasting with Conjoint Analysis by
Addressing Its Key Assumptions with Sequen-
tial Game Theory and Macro-Flow Modeling

David B. Whitlark and Scott M. Smith

18.1 Introduction

Conjoint analysis is a research tool for assessing market potential, predicting mar-
ket share and forecasting sales of new or improved products and services. In
general, conjoint analysis follows a two-step process, i.e., (1) estimating utilities
for varying levels of product features and (2) simulating marketplace preferences
for established, improved, and/or new products. Conjoint analysis was introduced
in the 1970s (Green and Rao 1971) and by 1980 had logged more than 1000
commercial applications (Cattin and Wittink 1982). During the 1980s usage in-
creased tenfold (Wittink and Cattin 1989). Today it may be the most widely used
quantitative product development tool in the U.S. and Europe (Wittink, Vriens,
and Burhenne 1994).

Much of the research about conjoint analysis as a method has focused on
different approaches for estimating utilities. The four most popular methods for
collecting conjoint data and estimating utilities are the full-profile method (Green
and Wind 1975), the self-explicated method (Srinivasan 1988; Srinivasan and
Park 1997) the adaptive method (Johnson 1987) and the choice method (Louviere
1988). Each method has its strengths, weaknesses and optimal applications (Huber
1997).

Compared to the effort focused on utility estimation methods, over the past
thirty years, preference simulation and its underlying dynamics such as
competitive action-reaction sequences have been widely overlooked (Green,
Krieger, and Wind 2001). Once moving past utility estimation, the conjoint
analysis model actually has many key assumptions. In our experience, addressing
these assumptions has a profound influence on estimates of market share and
product sales.

Market share estimates and sales forecasts obtained from conjoint analysis
simulations are often built upon broad, inaccurate assumptions, including; (1) no
competitive reaction, (2) 100 percent product awareness, (3) 100 percent
saturation of the distribution channels, i.e., 100 percent product availability, (4)
uniform usage rates across all customers, and (5) 100 percent product repurchase
rate To be accurate, sales forecasts based on conjoint data should take into account
possible competitive reactions, changes in product awareness and availability,, and
other marketplace realities such as varying usage rates and repurchase rates that
unfold over time. The purpose of the article is to outline how sequential game
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theory and the macro-flow model can be applied to more accurately fit these
assumptions when estimating market share and forecasting product sales.

18.2  The Impact of Competitive Reaction on Marketing
Mix Decisions

Thinking one move ahead can make the difference between success and failure
when managing the marketing mix. Business managers all have stories about how
plans to gain competitive advantage have turned into a financial disaster because
their “big marketing tactic” was matched by their competitors, or their marketing
plan did not perform to plan.

A leading manufacturer of agricultural pesticides offers a sobering cautionary
tale for managers that ignore competitive actions and reactions. To gain a
marketing advantage, the pesticide manufacturer decided to add a performance
assurance program to their marketing mix. The guarantee promised to re-spray
agricultural crops for which their pesticide did not meet certain efficacy criteria.
Managers felt confident the company would gain many new customers and retain
old customers because of the assurance program. Unfortunately managers did not
consider the potential impact of competitive reaction. Within a week of
announcing their performance assurance program, the major competitors all
announced similar assurance programs. The competitive advantage lasted less than
a week. Incidentally, pesticide efficacy is heavily influenced by weather
conditions. For the next two years unfavorable weather prevailed and pesticide
manufacturers spent millions of dollars re-spraying crops. None of the
manufacturers wanted to be the first to withdraw their guarantee. But in the end,
the company that first offered the program became the first to end the program.
The company lost profits, customers, and brand equity because they did not
consider the potential impact of competitive reaction.

Conjoint analysis simulations do not automatically address the possibility of
competitive reaction. Fortunately, once simulations are supplemented with
sequential game theory and game trees, conjoint analysis can become a powerful
tool for making managerial decisions in the context of competitive reaction.

18.3  Incorporating Competitive Reaction into Market
Share Estimates

As a point for discussion of how to integrate competitive reaction into market
share estimates, consider a leading packaged goods company, “Softy,” that sells a
premium line as well as a cost-conscious line of disposable diapers. The manufac-
turer believes their premium line of diapers is losing sales to competitors that have
matched their premium features, but at a lower price point. The manufacturer does
not want to reduce their own prices and risk losing sales on their cost-conscious
line. Instead, they decide to re-engineer their premium diaper by adding new high-
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value features. Using conjoint analysis they identify two product alternatives, i.e.,
Diaper A and Diaper B. For each alternative, managers can anticipate a different
market share, a different set of competitive reactions, and a different set of payoffs
for the company and its main competitor. The situation fits the definition of a
sequential game, that is, a situation for which opponents take turns, know what has
happened in the past, and can look forward and then reason back (Osborne 2003).
Sequential games are represented using a game tree and solved using backward
induction. Predictions using sequential game theory are managerially conservative
in that they normatively assume that competitors will respond with a solution that
is best for them.

Figure 1 Softy Diaper Game Tree

Softy
Diaper A Diaper B
Comply Comply
NOthV &p Price Notwemure
Softy: $350 mm $200 mm  $325 mm $225 mm
Comply: $50 mm $200 mm $75 mm $175 mm

Figure 1 shows a game tree for the decisions facing the diaper manufacturer and
their main competitor, “Comply”. For each branch of the game tree, the conjoint
analysis preference simulation generates a unique market share estimate for the
diaper alternatives and, depending on the blend of price and features, it shows how
the main competitor may respond and be affected by the product introduction.
Each diaper generates a different payoff for Softy and Comply. The payoffs
can be calculated in terms of revenue or, better, in terms of contribution to profit
over and above manufacturing costs. This is a simple example. More than one
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competitor can be included in a game tree as well as more than one action-reaction
sequence.

We solve the game tree by working backwards from the payoffs. Again
referring to the simple situation shown in Figure 1, if Softy introduces Diaper A,
then Comply may do nothing resulting in a payoff of $50mm or could drop the
price of their premium diaper resulting in a payoff of $200 mm. Based on
“backwards induction,” one can conclude that if Softy introduces Diaper A, then
Comply will react with a price drop resulting in a $200 mm payoff for Softy. On
the other hand, if Softy introduces Diaper B, then Comply may do nothing
resulting in a payoff of $75 mm or could add a new feature to their premium
diaper resulting in a payoff of $175mm. One can conclude that if Softy introduces
Diaper B, then Comply will react by adding a new feature resulting in a $225 mm
payoff for Softy. In this case, Softy should plan on introducing Diaper B. Diaper
B is the optimal choice because the competitor’s best reaction to Diaper B earns
$225 mm for Softy which is $25 mm better than Softy could do from introducing
Diaper A assuming the competitor acts in their own best interest.

18.4 Incorporating Time Dependent Market Changes

Game trees are a good place to start when anticipating competitive reaction.
However, game trees are static. History shows the effectiveness of competitive
reactions increase with time. When building sales forecasts we should try to ac-
count for the increasing effectiveness of competitive reactions.

Product awareness and availability, like competitive reactions, are also not
static, they develop over time. It takes time for people to learn about a new
product and for the product to appear in retail stores. The growth of awareness and
availability of products is affected by the product category, marketing budget,
media selection, advertising effectiveness, product uniqueness, product
acceptance, promotional tactics, trade relationships, and choice of sales channels.
Estimating how fast awareness and availability grows, like estimating competitive
reaction, requires a mixture of practical experience and managerial judgment.

As an example, an advertising expenditure of approximately $50 million on a
national media campaign for an environmental issue increased public awareness
from 35 percent to 70 percent over a four year period. That this particular
campaign won national awards for advertising efficiency, gives rise to
expectations that different awareness growth rates may result depending on the
efficiency and effectiveness of the campaign executions. Advertising agencies can
help make these judgments. Account executives have access to historical records
that relate growth in awareness to spending rates by product category. When
combined with the company’s own experience, advertising agency data can yield
good estimates of awareness growth.
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18.5 Incorporating Product Availability and Distribution
Efficiency Effects

Product availability depends on the company’s ability to manufacture inventory,
their relationship with the trade, promotional budgets, choice of marketing channel
and early sales results. Large, well-funded, and well-known companies such as
Procter & Gamble, Kimberly-Clark, and Kraft Foods can expand product avail-
ability rapidly, particularly if initial product sales figures are favorable. Other
companies with smaller budgets and limited market presence often expand avail-
ability very slowly. On the other hand, for the right type of products, e-tailing can
quickly provide nearly universal availability to anyone with a credit card and
access to the Internet. In any event, product availability will have a dramatic im-
pact on sales and must be included along with estimates of customer preference
when using conjoint analysis as a forecasting tool.

18.6 The Macro-Flow Model

The Macro-Flow model (Urban and Star 1991) is a simple sales forecasting ap-
proach that allows managers to incorporate market potential, customer preference,
changes in awareness and availability, repurchase rates and usage rates into the
same model. The macro-flow model has been used to forecast sales at companies
such as General Motors and is more typically called the Funnel Model. As the
name implies, it expresses product sales as an ever-narrowing funnel. At the top of
the funnel is the total number of households, consumers or potential customers
that could have any possible interest in buying the product, i.e., total potential
buyers. When forecasting first-year sales, the number of potential buyers traveling
down the funnel is reduced by (1) the percentage of people that become aware in
the first year, (2) the percentage of people who have access to the product in the
first year, and (3) the percentage of people that will choose to buy the product
given the competitive situation modeled in the conjoint analysis simulation.

The number flowing out of the bottom of the funnel represents first-time
buyers. If the product will be purchased several times during the year, we will
multiply the number of first-time buyers by an estimate of the percentage of repeat
buyers and the average number of product units we expect repeat buyers to
purchase during the year based on usage tests and/or historical data. We add
together the units sold to first-time buyers with the units sold to repeat buyers to
estimate total units sold for the first year. The process can be repeated for several
yvears to complete a sales forecast for whatever time horizon is necessary for
business planning. For each additional year we update the number of potential
buyers, awareness percentage, availability percentage, and choice probability.
The choice probability, that is the market share estimate output derived from the
conjoint analysis model, may change slowly or rapidly depending on how quickly
we feel that competitors will react to our product introduction.
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US Population

Percentage in the market for an
energy drink

Percentage aware of Energy Cola in
First Year

Percentage having Energy Cola
available in First Year

Percentage choosing Energy Cola in
First Year

Total first-time buyers in First Year
for Energy Cola

Percentage of repeat buyers for
Energy Cola in First Year

Average annual usage rate for
repeat buyers

Total First Year purchases for
Energy Cola

300 Million

10 %

50 %

50 %

15%

1 Million

65%

52 Servings

34.8 million

Figure 2:  Macro-Flow Sales Forecasting Model for Energy Cola

The macro-flow model allows managers to integrate choice probabilities estimated
using conjoint analysis data with many other elements necessary for forecasting
sales. It allows us to integrate the effects of competitive reaction, development of
the marketing mix, and rates of repeat purchase. Such integration is necessary if
the quality of market share estimates and sales forecasts are to continue to in-
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crease. Figure 2 illustrates the components of a macro-flow model for a fictitious
energy drink we call Energy Cola.

The macro-flow model shown in Figure 2 estimates that 34.8 million servings
of Energy Cola will be sold in its first year based on 15 percent “market share”
derived from a conjoint analysis simulation. Because the current value of the
energy drink market in the US exceeds $1.6 billion, managers ignoring or unaware
of the underlying assumptions of conjoint analysis simulations may be tempted to
estimate first year sales of Energy Cola at $240 million (15% of $1.6 billion)
which translates to 240 million servings assuming the cost of an average serving is
one dollar. That sales forecast would be off by a factor of almost seven, and
disastrous for everyone involved. It would seem that such poor forecasts are never
seen among sophisticated businesses. Yet it happens. First year sales for the Buick
Reatta were forecast to be 20,000 cars. However, only about 20,000 total cars
were sold over a four year period between 1988 and 1991 before production was
halted.

18.7  Choice Probabilities Necessary but Not Sufficient

Conjoint analysis is a powerful tool for estimating utilities and choice probabili-
ties, but choice probabilities are only one piece of the sales forecasting puzzle.
These probabilities can change dramatically in the face of competitive reaction.
Moreover, the speed and nature of competitive reaction can change based on the
configuration of product we select. Different product configurations affect the
sales of different competitors. Some competitors simply have more will and
greater resources to react than others. Managers criticizing the accuracy of sales
forecasts based on conjoint analysis data may want to consider incorporating
competitive reaction into their models. Aside from competitive reaction, product
awareness and availability also profoundly influence sales as will repurchase rates
and usage rates. Accurate choice probabilities will not compensate for exaggerated
levels of marketing support or misjudging growth in product awareness and ac-
cess.
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