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Abstract. The work described in this paper tackles the problem of data
mining and classification of large amounts of data using the K nearest
neighbours classifier (KNN) [1]. The large computing demand of this
process is solved with a parallel computing implementation specially de-
signed to work in Grid environments of multiprocessor computer farms.
The different parallel computing approaches (intra-node, inter-node and
inter-organisations) are not sufficient by themselves to face the compu-
ting demand of such a big problem. Instead of using parallel techniques
separately, we propose to combine the three of them considering the par-
allelism grain of the different parts of the problem. The main purpose is
to complete a 1 month-CPU job in a few hours. The technologies that
are being used are the EGEE Grid Computing Infrastructure running the
Large Hadron Collider Computing Grid (LCG 2.6) middleware [3], MPI
[4] [5] and POSIX [6] threads. Finally, we compare the results obtained
with the most popular and used tools to understand the importance of
this strategy.

Topics: Grid, Parallel Computing, Threads and Data Mining.

1 Introduction

Data Mining is a recently created concept that groups different techniques of
data analysis and model extraction. The main purpose of Data Mining is the
extraction of hidden predictive information from large databases. In this way,
Data Mining is a helpful technology to get profit of the great amount of poorly
exploited data. The interest of this work is focused on the classification of new
registers (automatic selection of the category in which a piece of information
will more likely fall into). The target of this work is the development of a set of
tools to assist large-scale epidemiology studies. Thus the initial hypothesis is a
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large database with registers in which most of them are labelled and in which
the process will predict the label for a few of them. Considering this situation,
we select the K nearest neighbours method [1] as the most suitable classification
method to obtain the needed results, i.e., the predicted labels. The work will
concentrate on speeding up the performance. The analysis of the accuracy and
goodness of the predictions are not in the scope of this work.

Along this paper we will first make a review, in Section 2, of the specific
problem to work with (the KNN method). After that, in Section 3, we will
propose an architecture to the application (the Three-layer Parallelism Archi-
tecture) using the three technologies proposed. Once we have presented the prob-
lem and the architecture, then will be review the implementation in Section 4,
starting with brief comments on the three technologies used and the selected
interface. Finally we will see the results obtained with the solution proposed
and a set of conclusions about the work made will be presented in the last two
sections.

2 K Nearest Neighbours

One of the most popular instance-based classification techniques is the K Near-
est Neighbours method [1]. This method is a generalisation of the one nearest
neighbour rule. It is appropriate when dealing with a large set of labelled regis-
ters or instances and a small group of non-labelled registers to be classified with
the most probable label. Our hypothesis is that we are dealing with data with
an strong relationship among the multidimensional distance of each entry with
the rest. In this way, the 1-NN (one nearest neighbour [1]) consists on assigning
to the non-labelled registers, the label of the nearest labelled register. Based
on that, Cover & Hart [1] implemented a variant known as K-NN (K Nearest
Neighbours) that applies the same philosophy that 1-NN but considering the
most frequent label in the K Nearest Neighbours instead. The K parameter is
very important and the optimal value will depend on many factors, such as the
data nature, and it has to be chosen experimentally.

The cross validation test is the most popular test technique used for the
analysis of the error of the classification. Starting from a set of labelled registers,
those are divided into B blocks. One block will be used as the test set and the
rest as the training set. This operation is performed with the B blocks. The K-
NN classifier is applied to any register in the test block and compares the label
assigned with the one previously defined. If the labels differ, an error is recorded,
and the consolidation of all the errors obtained for the whole test block is the
validation error. Repeating this process by changing the test set to the rest of
blocks, the sum of all the errors will be an approximation to the real error of the
K-NN classifier with the chosen K parameter

err =
b=B∑

b=1

(errb) where b is the chosen block.
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3 Three-Layer Parallelism Architecture

The decision of using the three layer parallelism lies on the difficulty of man-
aging a large amount of data (especially when dealing epidemiology databases
containing several millions of registers) and the poor results of traditional se-
quential approaches. Our purpose is based on performing a set of experiments
with different values of K in the K-NN method to determine the optimal value
for this K according to the lowest error in a cross validation test. Once the
optimal value for K is determined, we will be able to classify the non-labelled
registers with the K-NN method. The main aim of the work will be on reducing
computing time especially for epidemiology analysis and support.

The evaluation of the error for each value of K takes around 18 CPU hours
using a state-of-the-art computer and a database of 1 million records and 20
fields per record. Thus, a complete optimisation process of 10 different values
of K would take more than 7 CPU days, which would be unmanageable in a
production environment. However, the process is intrinsically parallel, present-
ing two clear levels of parallelism. In a first level, each evaluation of the error
using different values of K is totally independent, since it consists on computing
the whole classification and cross-validation process for each value of K, using
the same input database. This process consists on computing the K minimal
distances to all registers and selecting a block to act as the test set. This block
will be re-labelled using the rest of the database as the training set. Labels are
assigned considering the labels of the K Nearest Neighbours. This process will
be repeated selecting different blocks of the database as training sets in order to
cover the whole database. Each validation using a different block is independent.
However, the computational cost of this process is on the order of cN2, being c
the number of flops for computing a single distance between two registers and N
the number of registers in the database (directly affecting communication cost).
Thus, a trade-off solution must be applied to obtain the maximum performance
considering the best granularity.

In the frame of this scenario, three parallelism approaches can be considered.
The conditions of each one concerning the problem of this article are the following:

– Grid Computing [2]. This technique implies the coarsest granularity. Grid
Computing deals with the concurrent usage of different computing resources
in different administrative domains in a similar approach as a large-scale
batch queue. Inter-resource communication is not usually available due to the
long latencies, the internal configuration of nodes in resource providers and
the overhead of the security policies. Data access thus is mainly performed
through the job submission process and shared repositories, using ftp-like
protocols. In this paradigm, the minimal running entity is the job, interacting
with the rest of the jobs through input and output files.

– Message-Passing Parallel Computing. This technique is proven to be very
efficient in most medium-grain problems in which communication costs are
on an order of magnitude lower than computing cost. Typically, jobs are
fairly symmetrical and run on homogeneous nodes connected through a fast
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network. Security policies are not applied in communication and data ex-
change is performed through message passing.

– Shared-Memory Parallel Computing. This constitutes the finest-grain paral-
lelism. Applicable in very coupled and homogeneous environments, different
threads concurrently execute a common program on different fragments of
data. Data is exchanged through shared regions and contention mechanisms.
Generally the scaling factor of those systems is low, due to hardware con-
straints and speed-ups are good.

Our proposal is to combine the three levels to achieve the maximum perfor-
mance. Using shared-memory approaches only would lead to small speed-ups
(limited by the number of available processors) and the need of shared-memory
supercomputers. The combination of distributed-memory and shared-memory
approaches would increase notably the speed-up, since computing farms can
reach without performance losses many tens of bi-processor nodes. However,
and considering that our problem is massively parallel, more powerful configu-
rations could be efficiently used. Thus, the coordinated use of several compu-
ting farms is a reasonable choice considering the availability of those systems.
In this case, grid computing constitutes an efficient way to organise and man-
age different computing resources in different administrative domains. So, in
order to achieve the maximum performance, we have decided to combine three
different techniques of parallel computing: Grid technology, MPI programming
and POSIX threads. Considering the different characteristics of each approach,
the problem of classification must be structured to obtain the maximum effi-
ciency from each one. According to this, we have chosen the EGEE infrastructure
currently running the LCG 2.7 Grid Middleware [3]. Command Line Interface
(CLI) will be used to implement the scripts and the programmes for submitting
several experiments with different values for K each. Each experiment is per-
formed concurrently by several MPI processes to divide the cross validation into a

k=1:K

b=1:B b=1:B

s=1:S s=1:S s=1:S s=1:S

LC
G

-2
M

P
I

T
hr

ea
ds

THREE-LAYER PARALLELISM SCHEME

Fig. 1. Three-layer parallelism scheme
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simple test-training partition validation. Finally different sub-blocks of each MPI
process testing partition are computed on the different POSIX threads created
in a MPI process and executed within the processors of a node.

An example of a tree diagram of our approach is printed in figure 1. In this
figure we can see the evolution of the work. It begins at the root of the tree
with the submission of K different LCG Grid jobs (where the value of K will
determine for each LCG job the number of neighbours to which the distances are
computed). In a second phase, MPI parallel process are executed. We choose the
same number of MPI processes as cross validation blocks, although other factors
of parallelism grain could be analysed in the future. In the third phase, MPI
processes are split into threads, according to the features of the target hardware
resources and the experimental results.

4 Implementation

The implementation of the three-layer model mainly considers three components:

– Parallel KNN module. This component implements the KNN classification
and cross-validation algorithm using MPI and POSIX Threads. It is an au-
tonomous executable that takes as input the reference to the labelled regis-
ters file name, the reference to the file that contains the registers we want
to label and the value of K to be used. It produces a different output file
depending on our demands, being possible to show the labels assigned to the
target registers or to obtain a statistical summarized file.

– Grid scripts. They implement the selection of the rightmost computing re-
sources, the job description file, the start-up script for the parallel executable,
the job submission and monitoring and the job output retrieval. All these
tasks are implemented through scripts that make use of the CLI.

– Java Interface. It implements a user-friendly interface to select the data and
the parameters for the Grid jobs and to retrieve their output.

The parallel KNN module comprises the MPI and POSIX Threads Computing
levels. The synchronised execution of different instances of this processing module
is performed through the Grid scripts.

The figure 2 shows us the global process, according to a chronological view. In
the upper part of the diagram we can see subprocesses classified by functionality
and in the lower part they are classified by technology.

4.1 Grid Computing Level

One typical application of Grid technology is multi-parametrical runs. The dif-
ficulty in establishing efficient communications among independent submitted
jobs in a Grid environment has been traditionally an important barrier. In our
case, different experiments with different values of K in the K-NN method, con-
stitute clearly a multi-parametrical task which can be achieved by different LCG
Grid jobs.
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Fig. 2. Global process scheme

The Grid infrastructure selected is EGEE (Enabling Grids in E-sciencE). This
is the largest production infrastructure available for research world-wide, inte-
grating, in October 2006, more than 29000 computers and more than 40 Petabytes
of storage in 177 sites. This infrastructure runs currently the gLite 3.0. gLite 3.0
and LCG 2.7 share a major part of components, so migration is feasible. Both
LCG 2.7 and gLite 3.0 are batch-oriented Grid middlewares and consider the same
computing structure, which comprises the following components:

– Computing Resources. The computing resources are organised in the form
of Computing Elements (CEs), and Working Nodes (WNs). CEs are the
front-ends and visible entry-points to computational farms of WNs. CEs
implement the necessary batch queues to manage the jobs in the WNs and
keep track of the status of both jobs and resources.

– Storage Resources. The files in the EGEE infrastructure are stored in a
distributed way in many Storage Elements (SEs).

– Workload Management. The destination of a job (a queue in a CE) can be
directly selected by the user, although the more effective way is to rely on
the Workload Management System.

– Storage Catalogue. Data stored on the SEs is organised through Storage
Catalogues. Storage Catalogues keep track of the files stored.

– User Management. Users are organised in Virtual Organisations (VOs). Typ-
ically, users in a VO have the same authorisation rights to access the re-
sources. This reduces the burden of managing individual security policies.

– System Information. The information of the system (status of the jobs and
resources mainly) is published in a hierarchical model by the sites and the
monitoring system.

In order to execute a job in the LCG environment, a Job Description File must
be written according to the Job Description Language (JDL). This file defines



A Parallel Implementation of the KNN Classifier in Three Levels 231

the input and output files, the executable file and the running parameters and
the program requirements. The executable is typically a shell script that copies
all necessary data locally on the resource and performs other preliminary steps
(such as re-compiling, executable permissions, etc.). Job is submitted through
the specific commands or API calls and enters in a cycle of states (submitted -
waiting - ready - scheduled - running - done - outputready - cleared).

Once the LCG job is assigned to a Computing Element, a shell-script is ex-
ecuted. The shell-script initial instructions will fetch the databases stored in
the Grid, including both training registers and labelling registers, since not only
training but also classification is performed in the last phase of the job. This
approach will reduce the Grid waiting time. When all the necessary data are
downloaded on the computing nodes, the classification process can begin. This
is achieved using an MPI process that will be the responsible of making a test
with an assigned block. The sum of all the block test errors will be the cross
validation error, i.e., the information we are requesting to decide the optimal K
value and then use it to classify the non-labelled registers.

The tasks that must be implemented for delivering the above functionality
are:

– Selection of the rightmost Computing Resource. Resources in the EGEE
Grid are accessed through Workload Management Systems. Those resources
are selected according to the job features and the VO policies. The resources
were ranked considering their proximity to Storage Resources where replicas
of the database are stored and other performance criteria (mainly the number
of free CPUs, historical average length of the submission queue).

– Submission and Resubmission. Once the resources are identified, input data
for each job is packed and jobs are submitted along with all the needed
information (including references to the stored databases). The status of the
job is periodically monitored and jobs are resubmitted to a new computing
resource if scheduling time exceeds a predefined threshold.

– Monitoring and Output Retrieval. Jobs being executed are monitored thr-
ough the corresponding scripts. Once finished, output data are retrieved and
user is notified via e-mail (obtained automatically from the Distinguished
Name of the certificate or given as a parameter).

Final result of all the process is the cross-validation error for the execution of
KNN for a specific value of K. Results are presented as available and sorted by
the magnitude of the error.

4.2 MPI and POSIX Threads Computing Level

The MPI executable is an autonomous programme that computes the distance
evaluation, cross-validation and labelling of the registers of a database.

MPI process 0 will be the responsible to load and broadcast databases to the
rest of MPI processes that run in other nodes of the cluster selected in the Grid
Infrastructure for each job. Databases are replicated among all the processors.
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The computation of the distance requires considering all the registers each time.
Other distributions could be considered if memory is insufficient, although they
will require additional communication cost, since they must involve intermediate
data exchange among processes. The distribution of large amounts of data does
not imply an important penalisation since the communication is performed inside
the cluster farm and not through the Grid.

MPI process 0 also normalises the database to ensure that all fields of each
register are considered with the same weight. Registers are evenly distributed
among the processors and within each processor evenly among the threads. A
list of the K nearest registers is updated during the process. This process is
run for the block of registers selected as the test set in each computer. The
errors are computed as the number of wrongly assigned labels. Finally, labels
are assigned at the end of the process to reduce the overhead of redistributing
the data again.

Each block of test-set registers considered in a processor is processed by dif-
ferent threads. POSIX threads are created in each MPI process dealing with the
distance computation and labelling of a portion of the testing set. The use of
POSIX threads permits exploiting efficiently the multiprocessor capability that
modern clusters have. Moreover, the process do not imply conflicts neither on
write access to common variables nor on synchronisation. Experiments also prove
that the consideration of the hyper-threading capabilities of current processors
provide an additional gain factor in the speed-up, being able to run more threads
than physical processors are available.

The moderated cost of this process (in the quadratic order) and the large
amount of data to be exchanged makes this problem suitable for parallel com-
puting rather than Grid computing. Complexity can be increased by considering
more costly computations of the distances (currently a homogeneous Euclidean
distance) considering different weights or distance metrics for different fields, or
considering more complex error metrics, such as distances to the right label.

The development of MPI applications across different Grid nodes is an issue
currently tackled by Grid-MPI projects. Grid-MPI is a Grid approach of the
Message Passing Interface. Although GRID-MPI enables the development of
large-scale MPI parallel applications, current infrastructures are not supporting
it. The main reason is that WNs typically can communicate within the cluster
and although inbound connections are allowed, direct communication within
WNs of different resources is not possible. From the users’ point of view, the
resource is the CE. Moreover, geographically distributed resources on the Grid
make communications fairly inefficient for a fine-grain application, so coarse-
grain parallelism is clearly the current aim.

4.3 User Interface

In order to ease the process of creating experiments, submitting the jobs and
monitoring the results, a java-based interface has been implemented. This in-
terface co-ordinately execute the necessary scripts to deal with the Grid job
submission, monitoring and output retrieval.
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The interface enables an authenticated and authorised user to log in the sys-
tem and to upload the test and training sets on a specific SE. Target CEs will
be selected according to the availability of computing resources, the support of
MPI and the proximity to a SE publishing a replica of the databases.

Then, jobs are automatically constructed considering the range of values of
K that will be sweeped. Jobs are submitted through the interface and their
status is monitored either at global level (percentage of jobs in each state) or
individually by jobs. Jobs are automatically submitted if an error is produced
(although a maximum retry count is reached) or if they keep on waiting on
a queue for an excessive time, choosing in both cases a different computing
resource.

Finally, the result of the jobs can be dynamically consulted. The user is notified
when a job has finished through e-mail.

Figure 3 shows a couple of snapshots of the application interface.

Fig. 3. Snapshots of the user interface application

5 Results

We have done different experiments in three scenarios. First, using the command-
line WEKA [7] java K-NN class (3.4.5 release, a very well-known and widely
used classification tool); second, using a sequential tool we have implemented in
”C”; and, third, by using the three-layer parallel K-NN tool. We have used two
different training databases, one with one hundred thousand labelled registers
and another one with one million labelled registers. The number of fields of the
two databases was 20, plus the label field.

The performance of the version implemented in ”C” language was very effi-
cient comparing to the results with WEKA, mainly due to the fact that WEKA
is implemented in Java. A linear speed-up is obtained using grid technology
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since the experiments are independent. The gain in the MPI parallelisation ap-
proach has been above a factor of 9.5 with 10 biprocessors nodes (PIII Xeon
3GHz. on an SCI 3D torus network) and the gain using four threads in each
node is above an additional 1.5 factor. We selected four threads considering
that each node has two hyper-threading processors. This gain is not as lin-
ear as in the other cases since not all the process has been implemented using
threads. Thus, the gain of using the MPI and threads parallel technologies is
above 15, and the total advantage from WEKA multiplies by 6. Moreover, as
it was mentioned before, Grid scales linearly. Figure 4 summarizes the results
obtained.

This figure reflects the Speed Up comparing to WEKA to the sequential pro-
cess, the MPI parallel process and the three-layer parallelism process.

SPEED UP IN ODIN.DSIC.UPV.ES

0 10 20 30 40 50 60 70 80 90 100
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3-LAYER

Fig. 4. Speed Up results

6 Conclusion

The results of our work have been very encouraging. The approach based on
a three-layer parallelism is a very effective way to get the best performances
and give us a hopeful vision of data mining in the Grid. The classification of the
registers, including the identification of the optimal K value in the K-NN method
on a database of one million registers took less than 6 hours, i.e., a single nightly
run. For a comparison, this results implies an speed-up larger than 90 compared
to the equivalent WEKA K-NN sequential execution, i.e., more than a month
waiting time. Considering that our efforts are routed to biomedical prediction,
this advantage would enable, for example, classifying the information recorded
in Primary Care each day (in the order of millions of records) and its automatic
classification.
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