

Lecture Notes in Computer Science 4395
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Michel Daydé José M. L. M. Palma
Álvaro L. G. A. Coutinho Esther Pacitti
João Correia Lopes (Eds.)

High Performance
Computing for
Computational Science -
VECPAR 2006

7th International Conference
Rio de Janeiro, Brazil, June 10-13, 2006
Revised Selected and Invited Papers

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Volume Editors

Michel Daydé
Institut de Recherche en Informatique de Toulouse, France
E-mail: Michel.Dayde@enseeiht.fr

José M. L. M. Palma
Faculdade de Engenharia da Universidade do Porto, Portugal
E-mail: jpalma@fe.up.pt

Álvaro L. G. A. Coutinho
Federal University of Rio de Janeiro
Center for Parallel Computations and Dep. of Civil Engineering, Brazil
E-mail: alvaro@nacad.ufrj.br

Esther Pacitti
LINA-Laboratoire d’Informatique de Nantes-Atlantique, France
E-mail: Esther.Pacitti@univ-nantes.fr

João Correia Lopes
Universidade do Porto/INESC-Porto, Portugal
E-mail: jlopes@fe.up.pt

Library of Congress Control Number: 2007922600

CR Subject Classification (1998): D, F, C.2, G, J.2, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71350-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71350-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12033621 06/3142 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

Following the practice of all previous editions of the VECPAR series of confer-
ences, the most significant contributions have been organized and made avail-
able in a book, edited after the conference, and after a second review of all
orally presented papers at VECPAR 2006, the seventh International Meeting on
High-Performance Computing for Computational Science, held in Rio de Janeiro
(Brazil), June 10–13, 2006.

After the conference is finished this is what is left, a document that, we hope,
can be a reference to a wide range of researchers in computational science. For
the first time, and reflecting the conference programme of the seventh edition
of the VECPAR series, this book includes some of the presentations at the two
workshops, namely:

WCGC 2006 — Workshop on Computational Grids and Clusters: Models,
Middlewares, Testbeds, Architectures, User Feedback

HPDGrid 2006 — International Workshop on High-Performance Data Man-
agement in Grid Environments

Both the workshops and the conference programme evidence the current trends
in computer and computational science, with an increasing importance of the
Grid technologies.

The book contains 57 papers, organized in seven chapters, with the two last
chapters entirely devoted to the workshops. Chapter 1 opens with six papers
dealing on current issues such as the scheduling of workflows on grids, their use
in structural analysis or peer-to-peer models in large-scale grids. Chapter 2, with
a total of 14 papers, is concerned with aspects closer to computer science, which
includes computation on volatile nodes, the evaluation of decentralized parallel
I/O scheduling strategies for parallel file systems. Chapter 3 is devoted to nu-
merical techniques; it opens with the invited lecture by Bruce Hendrickson on
combinatorial scientific computing, followed by 15 papers mostly in the field of
linear algebra; application of BlockCGSI algorithm, parallel processing of matrix
multiplication in a CPU and GPU heterogeneous environment or construction
of a unit triangular matrix with prescribed singular values are examples of sub-
jects that can be found in this chapter that represents a major mainstream in all
VECPAR conferences. Chapter 4 contains a set of five papers more concerned
with applications in physics, ranging from cosmological simulations to simula-
tions of laser propagations. Chapter 5 is made of three papers on bioinformatics,
a topic of greater importance over the last few years that announces the impact
of computational methods in life sciences.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VI Preface

Best Student Paper

The best Student Paper Award initiated in the third edition of VECPAR, in
1998, has always been the opportunity to reward high-quality research studies
by newcomers and highly promising students. This year, and after a difficult
selection among the 11 candidates, the prize was awarded to Jacques Bahi for
his work, entitled:

– JaceV: a Programming and Execution Environment for Asynchronous Iter-
ative Computations on Volatile Nodes

Acknowledgements

The seventh edition of VECPAR was the second organized outside Portugal, and
the first outside Europe. This time and after the interest shown by our colleagues
in Brazil, who volunteered to organize the conference, VECPAR took place in
the beautiful city of Rio de Janeiro, at IMPA (Applied Mathematics Institute),
located over the Botanic Garden and overlooking the beautiful Rodrigo de Freitas
lagoon.

This was a true multi-continent organization, made possible by current com-
puter technologies, where the organizational aspects were dealt with by col-
leagues in Brazil, a joint collaboration between IMPA and the Institute Alberto
Luiz Coimbra of Research and Post-Graduate Studies of the Federal University of
Rio de Janeiro (COPPE/UFRJ). Paper submission and selection were managed
via the conference database, held and managed by the Faculty of Engineering of
the University of Porto. Vı́tor Carvalho created and maintained the conference
Web site.

The success of the VECPAR conferences and its long life are a result of the
collaboration of many. This time, given the widespread organization, a larger
number of collaborators were involved. We mention only some, and through them
we thank many others who offered most of their time and commitment to the
success of the conference and workshops: Mara Prata (COPPE/UFRJ, Brazil)
Conference Secretary, Marta Mattoso (COPPE/UFRJ, Brazil) and Patrick Val-
duriez (INRIA and LINA, France).

For their contribution to the present book, we must thank all the authors for
meeting the deadlines and all members of the Scientific Committee who helped
us so much in selecting the papers.

December 2006 Michel Daydé
José M. L. M. Palma

Álvaro L.G.A. Coutinho
Esther Pacitti

João Correia Lopes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

VECPAR is a series of conferences organized by the Faculty of Engineering of
Porto (FEUP) since 1993.

Organizing Committee

A. Coutinho COPPE/UFRJ, Brazil (Chair)
N. Ebecken COPPE/UFRJ, Brazil
J. Alves COPPE/UFRJ, Brazil
R. Silva LNCC, Brazil
M. Sarkis IMPA, Brazil
E. Toledo LNCC, Brazil
M. Mattoso COPPE, Brazil
J. Correia Lopes FEUP, Portugal (Web Chair)

Steering Committee

Michel Daydé ENSEEIHT-IRIT, France (Chair)
Jack Dongarra University of Tennessee, USA
José Fortes University of Florida, USA
Vicente Hernandez Universidad Politécnica Valencia, Spain
André Nachbin Instituto Matemática Pura e Aplicada, Brazil
Lionel Ni Hong Kong University of Science and Technology,

Hong Kong

Scientific Committee

J. Palma Portugal (Chair)
A. Bhaya Brazil
Vincent Breton France
F. Capello France
M. Christon USA
Olivier Coulaud France
J. C. Cunha Portugal
Michel J. Daydé France
F. Desprez France
P. Devloo Brazil
Peter Dinda USA
I. Duff UK
Renato Figueiredo USA
Fabrizio Gagliardi Switzerland
W. Gentzsch USA

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VIII Organization

A. George USA
L. Giraud France
Abdelkader Hameurlain France
Michael T. Heath USA
J. P. Jessel France
D. Knight USA
J. Koster Norway
Dieter Kranzmueller Austria
V. Kumar USA
Stéphane Lanteri France
Kuan-Ching Li Taiwan
Thomas Ludwig Germany
O. Marques USA
A. Padilha Portugal
D. Parsons USA
B. Plateau France
P. Primet France
Thierry Priol France
R. Ralha Portugal
H. Ruskin Ireland
Tetsuya Sato Japan
Mitsuhisa Sato Japan
Satoshi Sekiguchi Japan
A. Sousa Portugal
M. A. Stadtherr USA
D. Talia Italy
F. Tirado Spain
Patrick Valduriez France
M. Valero Spain
Roland Wismuller Germany

Invited Speakers

Álvaro Maia da Costa CENPES/Petrobras, Brazil
Marcos Donato CENPES/Petrobras, Brazil
Omar Ghattas University of Texas, USA
Bruce Hendrickson Sandia National Laboratory, USA
Christopher R. Johnson University of Utah, USA
Kenichi Miura National Institute of Informatics, NAREGI, Japan

Additional Reviewers

Carmelo Acosta
Carlos de Alfonso

Jose Miguel Alonso
Carlos Alvarez

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization IX

Jorge Gomes Barbosa
Ignacio Blanquer
Rob Bisseling
Aurelien Bouteiller
Jacques Briat
Jan Christian Bryne
Miguel Caballer
Eddy Caron
Carmela Comito
Antonio Congiusta
Myrian Costa
Álvaro Coutinho
Holly Dail
Frank Dopatka
Alexandre Evsukoff
Juan Carlos Fabero
Agust́ın Fernández
Tiago Luis Duarte Forti
Pierre Fortin
Carlos González
James Greco
Eric Grobelny
Ashish Gupta
Rohit Gupta
Bjørn-Ove Heimsund
P. Henon
Andreas Hoffmann
Mathieu Jan
Yvon Jégou
Adrian Kacso
Jean-Yves L’Excellent
Bin Lin

Paulo Lopes
Daniel Lorenz
Hervé Luga
Vania Marangozova
Carlo Mastroianni
Pedro Medeiros
German Moltó
Victor Moya
Aziz Mzoughi
Kyu Park
Gaurav Pandey
Alberto Pascual
Christian Perez
Stéphane Pralet
Andrea Pugliese
Chiara Puglisi
P̊al Puntervoll
Yi Qiao
Bolze Raphaël
Jean Roman
Edimar Cesar Rylo
Esther Salamı́
Oliverio J. Santana
Damià Segrelles
Michael Steinbach
Cedric Tedeschi
Christian Tenllado
Ian Troxel
Paolo Trunfio
Pierangelo Veltri
Jian Zhang
Ming Zhao

Gold Sponsors

Petrobras Petróleo Brasileiro S/A, Brazil
IBM Brazil International Business Machines Corporation

Sponsoring Organizations

Furthermore, the Organizing Committee is very grateful to the following orga-
nizations for their support:

ABMEC Associação Brasileira de Métodos Computacionais em
Engenharia, Brazil

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

X Organization

CNPq Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico, Brazil

FAPERJ Fundação de Amparo e Pesquisa do Estado do Rio de
Janeiro, Brazil

FEUP Faculdade de Engenharia da Universidade do Porto,
Portugal

INRIA Institut National de Recherche en Informatique et
Automatique, France

SGI Sillicon Graphics
UP Universidade do Porto, Portugal

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Workshop on Computational Grids and Clusters

The WCGC2006 Workshop followed the VECPAR 2006 Conference and focused
on cluster and grid environments and tools for efficient management of compu-
tations.

The objectives of the workshop were to bring together researchers, practi-
tioners and people with less experience in grid and clusters, to report on recent
advances, and to share user feedback.

The topics of the workshop included (but were not restricted to):

– Hardware issues for clusters and grids
– Middlewares, distributed systems, runtime systems
– Interoperability issues
– Programming environments
– Communication protocols
– User experience in deploying grids and testbeds
– Grid and cluster management
– Performance evaluation
– Scheduling, load balancing, scalability, fault-tolerance issues
– Web applications, peer-to-peer
– Design of high performance clusters

The program of the workshop consisted of two invited talks and nine papers.
One invited talk and six papers are included in the present book. A wide range
of important topics in grid computing are covered (management of clusters,
management of services, and deploying applications on computational grids).

December 2006 Cristina Boeres
Rajkumar Buyya

Walfredo Cirne
Myrian Costa
Michel Daydé

Frédéric Desprez
Bruno Schulze

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

Organizing Committee

Michel Daydé IRIT, ENSEEIHT

Workshop Committee

Cristina Boeres Instituto de Computação, Universidade
Federal Fluminense

Rajkumar Buyya Melbourne University
Walfredo Cirne Universidade Federal de Campina Grande
Myrian Costa NACAD, COPPE/UFRJ
Michel Daydé IRIT, ENSEEIHT
Frédéric Desprez LIP, ENS-Lyon INRIA
Bruno Schulze ComCiDis/LNCC

Additional Reviewers

Alexandre Nóbrega Duarte
Alexandre Sena
Aline de Paula Nascimento
Eliane Araújo
Evandro Barros Costa
Jacques da Silva
Lauro Beltrão Costa
Marcelo Costa Oliveira
Marcos André Duarte Martins
William Voorsluys

Sponsoring Organizations

The Organizing Committee is very grateful to the following organizations for
their support:

IBM Brazil International Business Machines Corporation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

International Workshop on High-Performance

Data Management in Grid Environments

Initially developed for the scientific community as a generalization of cluster
computing using the Web, grid computing is now gaining much interest in other
important areas such as enterprise information systems. This makes data man-
agement more critical than ever. Compared with cluster computing which deals
with homogeneous parallel systems, grids are characterized by high heterogene-
ity, high autonomy and large-scale distribution of computing and data resources.
Managing and transparently accessing large numbers of autonomous, heteroge-
neous data resources efficiently is an open problem. Furthermore, different grids
may have different requirements with respect to autonomy, query expressiveness,
efficiency, quality of service, fault-tolerance, security, etc. Thus, different solu-
tions need be investigated, ranging from extensions of distributed and parallel
computing techniques to more decentralized, self-adaptive techniques such as
peer-to-peer (P2P).

The objective of this one-day workshop was to bring together researchers
and practitioners from the high-performance computing, distributed systems and
database communities to discuss the challenges and propose novel solutions in
the design and implementation of high-performance data management in grid
environments.

The Program Committee received 19 paper submissions. Each paper was re-
viewed by three PC members. The following program is the result of the paper
selection, with nine papers presented in three sessions: (1) data grid applications,
(2) replication and consistency in data grids, (3) design and implementation of
data grids. In addition, we had one keynote session on “Enterprise Grids: Chal-
lenges Ahead” by Ricardo Jiménez-Peris, Marta Patiño-Martinez and Bettina
Kemme. The authors of the papers are from five different countries (Brazil,
Canada, France, Spain and USA), thus reflecting the true international nature
of the workshop.

December 2006 Esther Pacitti
Marta Mattoso

Patrick Valduriez

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

Organizing Committee

Vanessa Braganholo COPPE/UFRJ, Brazil (Chair)
Fernanda Baião Unirio, Brazil
Alexandre Lima UNIGRANRIO, Brazil
Luiz A V C Meyer COPPE, Brazil
Gabriela Ruberg COPPE, Brazil

Workshop Co-chairs

Marta Mattoso COPPE/UFRJ, Brazil
Patrick Valduriez INRIA and LINA, France

Program Chair

Esther Pacitti INRIA and LINA, France

Program Committee

Henrique Andrade IBM Research, USA
Claudio Luiz de Amorim UFRJ, Brazil
Gabriel Antoniu INRIA et IRISA, France
Stefano Ceri Politecnico di Milano, Italy
Christine Collet Institut Polytechnique Grenoble, France
Ricardo Jimenez-Peris Universidad Politecnica de Madrid, Spain
Sergio Lifschitz PUC Rio, Brazil
Alexandre Lima UNIGRANRIO, Brazil
Ioana Manolescu INRIA Futurs, France
Hubert Naacke University Paris 6, France
Rui Oliveira University of Minho, Portugal
Vincent Oria New Jersey Institute of Technology, USA
M. Tamer Özsu University of Waterloo, Canada
Cesare Pautasso ETH, Switzerland
Alexandre Plastino UFF, Brazil
Fabio Porto EPFL, Switzerland
Guillaume Raschia INRIA and LINA, France
Marc Shapiro INRIA and LIP6, France
Mohamed Zait Oracle Corporation, USA

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XVIII Organization

Additional Reviewers

Andre Ormastroni Victor
Bioern Bioernstad
Cedric Tedeschi
Genoveva Vargas-Solar
Khalid Belhajjame
Lauro Whately
Lei Chen
Luiz Monnerat
Marcelo Lobosco
Mathieu Jan
Simone de Lima Martins

Sponsoring Organizations

The Organizing Committee is very grateful to the following organizations for
their support:

CAPES Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior,Brazil

CNPq Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico,Brazil

INRIA France Institut National de Recherche en Informatique
et Automatique, France

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

Chapter 1: Grid Computing

An Opportunistic Algorithm for Scheduling Workflows on Grids 1
Luiz Meyer, Doug Scheftner, Jens Vöckler, Marta Mattoso,
Mike Wilde, and Ian Foster

A Service Oriented System for on Demand Dynamic Structural
Analysis over Computational Grids . 13

J.M. Alonso, V. Hernández, R. López, and G. Moltó

Scalable Desktop Grid System . 27
Péter Kacsuk, Norbert Podhorszki, and Tamás Kiss

Analyzing Overheads and Scalability Characteristics of OpenMP
Applications . 39

Karl Fürlinger and Michael Gerndt

Parallel Fuzzy c-Means Cluster Analysis . 52
Marta V. Modenesi, Myrian C.A. Costa,
Alexandre G. Evsukoff, and Nelson F.F. Ebecken

Peer-to-Peer Models for Resource Discovery in Large-Scale Grids:
A Scalable Architecture . 66

Domenico Talia, Paolo Trunfio, and Jingdi Zeng

Chapter 2: Cluster Computing

JaceV: A Programming and Execution Environment for Asynchronous
Iterative Computations on Volatile Nodes . 79

Jacques M. Bahi, Raphaël Couturier, and Philippe Vuillemin

Aspect Oriented Pluggable Support for Parallel Computing 93
João L. Sobral, Carlos A. Cunha, and Miguel P. Monteiro

Model for Simulation of Heterogeneous High-Performance Computing
Environments . 107

Rodrigo Fernandes de Mello and Luciano José Senger

On Evaluating Decentralized Parallel I/O Scheduling Strategies for
Parallel File Systems . 120

Florin Isailă, David Singh, Jesús Carretero, and Félix Garcia

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XX Table of Contents

Distributed Security Constrained Optimal Power Flow Integrated to a
DSM Based Energy Management System for Real Time Power Systems
Security Control . 131

Juliana M.T. Alves, Carmen L.T. Borges, and Ayru L. Oliveira Filho

Metaserver Locality and Scalability in a Distributed NFS 145
Everton Hermann, Rafael Ávila, Philippe Navaux, and
Yves Denneulin

Top-k Query Processing in the APPA P2P System 158
Reza Akbarinia, Vidal Martins, Esther Pacitti, and Patrick Valduriez

Posterior Task Scheduling Algorithms for Heterogeneous Computing
Systems . 172

Linshan Shen and Tae-Young Choe

Design and Implementation of an Environment for Component-Based
Parallel Programming . 184

Francisco Heron de Carvalho Junior, Rafael Dueire Lins,
Ricardo Cordeiro Corrêa, Gisele Araújo, and
Chanderlie Freire de Santiago

Anahy: A Programming Environment for Cluster Computing 198
Gerson Geraldo H. Cavalheiro, Luciano Paschoal Gaspary,
Marcelo Augusto Cardozo, and Otávio Corrêa Cordeiro

DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data
Warehouses . 212

Bruno Kinder Almentero, Alexandre Gonçalves Evsukoff, and
Marta Mattoso

A Parallel Implementation of the K Nearest Neighbours Classifier in
Three Levels: Threads, MPI Processes and the Grid 225

G. Apaŕıcio, I. Blanquer and V. Hernández

On the Use of the MMC Language to Utilize SIMD Instruction Set 236
Patricio Bulić and Veselko Guštin

A Versatile Pipelined Hardware Implementation for Encryption and
Decryption Using Advanced Encryption Standard . 249

Nadia Nedjah and Luiza de Macedo Mourelle

Chapter 3: Numerical Methods

Combinatorial Scientific Computing: The Enabling Power of Discrete
Algorithms in Computational Science . 260

Bruce Hendrickson and Alex Pothen

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XXI

Improving the Numerical Simulation of an Airflow Problem with the
BlockCGSI Algorithm . 281

C. Balsa, M. Braza, M. Daydé, J. Palma, and D. Ruiz

EdgePack: A Parallel Vertex and Node Reordering Package for
Optimizing Edge-Based Computations in Unstructured Grids 292

Marcos Martins, Renato Elias, and Alvaro Coutinho

Parallel Processing of Matrix Multiplication in a CPU and GPU
Heterogeneous Environment . 305

Satoshi Ohshima, Kenji Kise, Takahiro Katagiri, and
Toshitsugu Yuba

Robust Two-Level Lower-Order Preconditioners for a Higher-Order
Stokes Discretization with Highly Discontinuous Viscosities 319

Duilio Conceição, Paulo Goldfeld, and Marcus Sarkis

The Impact of Parallel Programming Models on the Performance of
Iterative Linear Solvers for Finite Element Applications 334

Kengo Nakajima

Efficient Parallel Algorithm for Constructing a Unit Triangular Matrix
with Prescribed Singular Values . 349

Georgina Flores-Becerra, Victor M. Garcia, and Antonio M. Vidal

A Rewriting System for the Vectorization of Signal Transforms 363
Franz Franchetti, Yevgen Voronenko, and Markus Püschel

High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations 378
Moshe Israeli and Alexander Sherman

Multiresolution Simulations Using Particles . 391
Michael Bergdorf and Petros Koumoutsakos

Evaluation of Several Variants of Explicitly Restarted Lanczos
Eigensolvers and Their Parallel Implementations . 403

V. Hernandez, J.E. Roman, and A. Tomas

PyACTS: A High-Level Framework for Fast Development of High
Performance Applications . 417

L.A. Drummond, V. Galiano, O. Marques, V. Migallón, and
J. Penadés

Sequential and Parallel Resolution of the Two-Group Transient Neutron
Diffusion Equation Using Second-Degree Iterative Methods 426

Omar Flores-Sánchez, Vicente E. Vidal, Victor M. Garćıa, and
Pedro Flores-Sánchez

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XXII Table of Contents

Enhancing the Performance of Multigrid Smoothers in Simultaneous
Multithreading Architectures . 439

Carlos Garćıa, Manuel Prieto, Javier Setoain, and Francisco Tirado

Block Iterative Algorithms for the Solution of Parabolic Optimal
Control Problems . 452

Christian E. Schaerer, Tarek Mathew, and Marcus Sarkis

Evaluation of Linear Solvers for Astrophysics Transfer Problems 466
Osni Marques and Paulo B. Vasconcelos

Chapter 4: Large Scale Simulations in Physics

Scalable Cosmological Simulations on Parallel Machines 476
Filippo Gioachin, Amit Sharma, Sayantan Chakravorty,
Celso L. Mendes, Laxmikant V. Kalé, and Thomas Quinn

Performance Evaluation of Scientific Applications on Modern Parallel
Vector Systems . 490

Jonathan Carter, Leonid Oliker, and John Shalf

Numerical Simulation of Three-Phase Flow in Heterogeneous Porous
Media . 504

Eduardo Abreu, Frederico Furtado, and Felipe Pereira

Simulation of Laser Propagation in a Plasma with a Frequency Wave
Equation . 518

R. Sentis, S. Desroziers, and F. Nataf

A Particle Gradient Evolutionary Algorithm Based on Statistical
Mechanics and Convergence Analysis . 530

Kangshun Li, Wei Li, Zhangxin Chen, and Feng Wang

Chapter 5: Computing in Biosciences

A Computational Framework for Cardiac Modeling Based on
Distributed Computing and Web Applications . 544

D.M.S. Martins, F.O. Campos, L.N. Ciuffo, R.S. Oliveira,
R.M. Amorim, V.F. Vieira, N.F.F. Ebecken, C.B. Barbosa, and
R. Weber dos Santos

Triangular Clique Based Multilevel Approaches to Identify Protein
Functional Modules . 556

S. Oliveira and S.C. Seok

BioPortal: A Portal for Deployment of Bioinformatics Applications on
Cluster and Grid Environments . 566

Kuan-Ching Li, Chiou-Nan Chen, Tsung-Ying Wu,
Chia-Hsien Wen, and Chuan Yi Tang

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents XXIII

Workshop 1: Computational Grids and Clusters

Adaptive Distributed Metamodeling . 579
Dirk Gorissen, Karel Crombecq, Wouter Hendrickx, and Tom Dhaene

Distributed General Logging Architecture for Grid Environments 589
Carlos de Alfonso, Miguel Caballer, José V. Carrión, and
Vicente Hernández

Interoperability Between UNICORE and ITBL . 601
Yoshio Suzuki, Takahiro Minami, Masayuki Tani,
Norihiro Nakajima, Rainer Keller, and Thomas Beisel

Using Failure Injection Mechanisms to Experiment and Evaluate a
Grid Failure Detector . 610

Sébastien Monnet and Marin Bertier

Semantic-Based Service Trading: Application to Linear Algebra 622
Michel Daydé, Aurélie Hurault, and Marc Pantel

Management of Services Based on a Semantic Description Within the
GRID-TLSE Project . 634

Patrick Amestoy, Michel Daydé, Christophe Hamerling,
Marc Pantel, and Chiara Puglisi

Extending the Services and Sites of Production Grids by the Support
of Advanced Portals . 644

Péter Kacsuk

Workshop 2: High-Performance Data Management
in Grid Environments

PSO-Grid Data Replication Service . 656
Vı́ctor Méndez Muñoz and Felix Garćıa Carballeira

Execution Management of Scientific Models on Computational
Grids . 670

Alexandre Vassallo, Cristiane Oliveira, Carla Osthoff,
Halisson Brito, Julia Strauch, and Jano Souza

Replica Refresh Strategies in a Database Cluster . 679
Cécile Le Pape and Stéphane Gançarski

A Practical Evaluation of a Data Consistency Protocol for Efficient
Visualization in Grid Applications . 692

Gabriel Antoniu, Löıc Cudennec, and Sébastien Monnet

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XXIV Table of Contents

Experiencing Data Grids . 707
Nicolaas Ruberg, Nelson Kotowski, Amanda Mattos, Luciana Matos,
Melissa Machado, Daniel Oliveira, Rafael Monclar, Cláudio Ferraz,
Talitta Sanchotene, and Vanessa Braganholo

Author Index . 719

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 1 – 12, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Opportunistic Algorithm
for Scheduling Workflows on Grids

Luiz Meyer1, Doug Scheftner2, Jens Vöckler2,
Marta Mattoso1, Mike Wilde3, and Ian Foster2,3

1 Federal University of Rio de Janeiro - COPPE, Department of Computer Science
2 University of Chicago - Department of Computer Science

3 Argonne National Laboratory - Mathematics and Computer Science Division

Abstract. The execution of scientific workflows in Grid environments imposes
many challenges due to the dynamic nature of such environments and the
characteristics of scientific applications. This work presents an algorithm that
dynamically schedules tasks of workflows to Grid sites based on the
performance of these sites when running previous jobs from the same
workflow. The algorithm captures the dynamic characteristics of Grid
environments without the need to probe the remote sites. We evaluated the
algorithm running a workflow in the Open Science Grid using twelve sites. The
results showed improvements up to 150% relative to other four usual
scheduling strategies.

1 Introduction

Grids [9] are emerging as virtual platforms for high performance and integration of
networked resources. In these environments, distributed and heterogeneous resources
owned by independent organizations can be shared and aggregated to form a virtual
computer. Scientific applications usually consist of numerous jobs that process and
generate large datasets. Frequently, these components are combined generating
complex scientific workflows. Therefore, scientific communities like physicists,
biologists, astronomers are using Grid computing to solve their complex large-scale
problems.

Processing scientific workflows in a Grid imposes many challenges due to the
large number of jobs, file transfers and the storage needed to process them. The
scheduling of a workflow focuses on mapping and managing the execution of tasks on
shared resources that are not directly under the control of the workflow systems [23].
Thus, choosing the best strategy for a workflow execution in a Grid is a challenging
research area.

Often, a scientific workflow can be represented as a Directed Acyclic Graph
(DAG) where the vertices represent tasks and the edges represent data dependencies.
One alternative to process this kind of workflow is to statically pre-assign tasks to
resources based on the information of the entire workflow. This strategy can be used
by a planner to optimize the execution plan for the DAG [6]. However, since a Grid
execution environment can be very dynamic, this alternative may produce poor
schedules because by the time the task is ready to run the resource may perform

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2 L. Meyer et al.

poorly or even be unavailable. Besides, it is not easy to accurately predict the
execution time of all tasks. Another scheduling approach is to perform the assignment
of tasks to resources dynamically as soon as the task is ready to be executed. In this
case, if a resource is not available, it will not be selected to process the task. However,
many sites can be available to run the task, and selecting the best one can be done
according to many alternatives, like the number of processors in the site, load balance
or data availability.

This work presents an algorithm, which we name Opportunistic, which
dynamically assigns jobs to Grid sites. The algorithm adopts an observational
approach and exploits the idea of scheduling a job to a site that will probably run it
faster. The opportunistic algorithm takes into account the dynamic characteristics of
Grid environments without the need to probe the remote sites. We compared the
performance of the Opportunistic algorithm with different scheduling algorithms in a
context of a workflow execution running in a real Grid environment. We conducted
our experiments using the Virtual Data System (VDS) [10], which presents an
architecture to integrate data, programs, and the computations performed to produce
data. VDS combines a virtual data catalog for representing data derivation procedures
and derived data with a virtual data language that enables the definition of workflows.
VDS also provides users with two planners that schedule jobs onto the Grid and
manage their execution. Scheduling in VDS can be done according to a family of site
selectors available for user needs. This work extends the library of site selectors with
a new Opportunistic site selector algorithm. Our results with experiments in a real
Grid environment suggest that the Opportunistic algorithm can increase performance
up to 150% when compared to the scheduling algorithms currently adopted in most
systems, particularly in VDS.

The rest of this paper is organized as follows. Section 2 discusses the related work
to Grid scheduling. Section 3 describes the Virtual Data System architecture where
the opportunistic strategy was implemented while in section 4, we detail the
Opportunistic algorithm. In section 5 we describe the experiments performed and in
section 6 the experimental results are analyzed. Finally, section 7 concludes this work
and points to future directions.

2 Related Work

Finding a single best solution for mapping workflows onto Grid resources for all
workflow applications is difficult since applications and Grid environments can have
different characteristics [23]. In general, scheduling workflow applications in
distributed environments is done by the adoption of heuristics. There are many works
in the literature addressing the benefits of scheduling based on data locality in
scenarios of data Grids. Casanova et al. [2] propose an adaptive scheduling algorithm
for parameter sweep applications where shared files are pre-staged strategically to
improve reuse. Ranganathan and Foster [17, 18] evaluate a set of scheduling and
replication algorithms and the impact of network bandwidth, user access patterns and
data placement in the performance of job executions. The evaluation was done in a
simulation environment and the results showed that scheduling jobs to locations
where the input data already exists, and asynchronously replicating popular data files

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Opportunistic Algorithm for Scheduling Workflows on Grids 3

across the Grid provides good results. Cameron et al. [4, 5] also measure the effects of
various job scheduling and data replication strategies in a simulation environment.
Their results show benefits of scheduling taking into account also the workload in the
computing resources. Mohamed and Epema [14] propose an algorithm to place jobs
on clusters close to the site where the input files reside. The algorithm assumes
knowledge about the number of idle processors and the size of the input file for
scheduling a job.

The workloads studied in these works consist of a set of independent jobs
submitted from different users spread over different sites. Our work differs by
focusing on scheduling jobs belonging to a single application, which is a workflow
with job dependencies and synchronism, submitted from a single user at a single site.

Many researchers have studied scheduling strategies for mapping workflows onto
the Grid. Ammar et al. [1] developed a framework to schedule a DAG in a Grid
environment that makes use of advance reservation of resources and also considers
previous knowledge about task execution time, transfer rates, and available
processors to generate a schedule. Their simulation results show advantages of
unified scheduling of tasks rather than scheduling each task separately. Mandal et al.
[13] apply in-advance static scheduling to ensure that the key computational steps
are executed on the right resources and large scale data movement is minimized.
They use performance estimators to schedule workflow applications. Wieczoreket et
al. [22] compare full graph scheduling and just-in-time strategies for scheduling a
scientific workflow in a Grid environment with high availability rate and good
control over the resources by the scheduler. Their results show best performance for
full graph scheduling. Deelman et al. [6, 7] can map the entire workflow to resources
at once or portions of it. This mapping can be done before or during the workflow
execution. Their algorithm aims to schedule computation where data already exist.
Additionally, users are able to specify their own scheduling algorithm or to choose
between a random and a round robin schedule technique. Dumitrescu et al. [8]
studied the performance execution of Blast jobs in Grid3 [11] according to several
scheduling algorithms. In their experiments they used a framework that considered
resource usage policies for scheduling the jobs. Their results showed that random
and round-robin algorithms achieved the best performance for medium and large
workloads.

Triana [12] allows scientists to specify their workflows which can be scheduled
directly by the user or by the GriLab Resource Management System. In this case, the
scheduling is done according to requirements specified for each task. Taverna [15]
provides a set of tools to define bioinformatics workflows based on a composition of
web services, but not much detail is given about the scheduling of tasks.

In our work, we also deal with the problem of scheduling jobs belonging to a single
application, which is a workflow expressed as a DAG. Like in the previous workflow
scheduling works, the goal of the scheduling is to minimize the overall job
completion. In our algorithm, the planning scheme is completely dynamic and based
on an observational approach. We do not consider performance estimation of Grid
resources, use of advance reservations or requirements specifications. The
performance evaluation was conducted in a real Grid environment without any control
or reservation of the resources.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

4 L. Meyer et al.

3 VDS Planning Architecture

In VDS, users specify their workflows through the use of VDL [10]. The VDC
(Virtual Data Catalog) stores the user’s workflow definition and provides the planner
with the logical file names of the files and the name of the transformations
(executable programs). The Replica Catalog provides the physical name for the input
files given their logical file names. The transformation catalog (TC) specifies how to
invoke (executable name, location, arguments) each program. Finally, the Pool
Configuration catalog is responsible to provide the information about the desirable
Grid sites to run the workflow. Figure 1 illustrates the VDS planner architecture.

Site
Catalog

Logical
File Name

Transformation

Sites

Physical
File Name

Transformation
Location

Planner

Transformation
Catalog

Virtual Data
Catalog

Replica
Catalog

Fig. 1. VDS Planner architecture

DAG

DagMan

TC

Site 1

Site 2

Site 3

Site n

Grid

Pre PosSite
Selector

Planner

candidates

solution SC RC

Condor
Queue

Fig. 2. VDS Planning mechanism

The planner makes use of a site selector mechanism in order to schedule each job
of the workflow. The goal of the site selector is to choose a Grid site capable to
execute a given job. In the VDS planner, the pre-script dynamically builds a list of the
available sites for executing each job based on the information of the Transformation
Catalog and Pool Configuration. The Pre-script then calls the site selector mechanism
and waits for the solution, that is, the site selected for the job execution. The solution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Opportunistic Algorithm for Scheduling Workflows on Grids 5

returned by the site selector is passed to DagMan [3], which is responsible for
scheduling the job into the Grid.

Figure 2 details the planner’s functionality and its interaction with a site selector.
After receiving the identification of the site to run the job, the VDS-Planner executes
the replica selection by querying the Replica Location Service to locate all replicas for
each file. If there is a replica located in the selected site then this replica will be
chosen. Otherwise, the planner will perform a third party transfer of the input files
from the sites where they are located to the site where the job is supposed to run.
Whenever a job ends, all input files dynamically transferred for the job execution site
are erased in the post-processing step.

4 The Opportunistic Algorithm

Scheduling workflow tasks in Grid environments is difficult because resource
availability often changes during workflow execution. The main idea of the
Opportunistic algorithm is to take advantage of this environment changes without
needing to probe the remote sites. In order to implement our Opportunistic algorithm
using VDS, a few extensions were promoted in the system: we created a control
database for logging the location and the status of the workflow jobs, and coded a
new site selector routine responsible for choosing the execution site for a job. Since
the control database is updated by the postscript of each job, the VDS postscript code
also had to be modified.

Opportunistic
Site Selector

Control

Candidates

Solution

Job
Site
Status

Ratio

Job, Site, Status

MonitQueue
Job, Status, Duration

Kill

Planner

Pos

Pre

Condor
Queue

Fig. 3. The opportunistic site selector architecture

The goal of the Opportunistic site selector is to select a site to run a job based on
the performance of each site when running previously jobs of the same workflow. In
other words, the site selector assigns more jobs to sites that are performing better,
according to the architecture in Figure 3. The performance is measured by the ratio
(number of ended jobs / number of submitted jobs) at each site, as shown in the
algorithm from Figure 4. As long as no jobs have completed, the site selector
performs a round robin distribution between the sites. In order to keep track of the
submissions and completions of the workflow jobs, the site selector makes use of a
control database.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

6 L. Meyer et al.

Fig. 4. The opportunistic algorithm

Whenever the site selector chooses a site to run a job, one record is inserted in the
control database with the identifications of the job, the identification of the selected
site and a status set to “submitted.” Whenever a job ends, another record with job
identifier, site, and status set to "ended" is also added. This last insertion is done by
the postscript of every job.

The second component of the opportunistic approach is a queue monitor for the
submitted jobs of the workflow. The main motivation to develop this MonitQueue
component is that often submitted jobs remain waiting for execution in remote
queues. The goal of MonitQueue is to keep track of the jobs submitted by

Algorithm: Opportunistic
Input: Job J to be submitted.
Set Se {si} of available sites informed by the planner.
Set So {si} of sites informed by the Control Database
ƒ1(S) → Number of jobs scheduled to site S
ƒ2(S) → Number of jobs ended at site S
ƒ3(max) → Site;
ƒ4(min) → Site;
ƒ5 → {ji} ; Set of submitted jobs
Output: Solution - Identification of the Site selected to run the job.
Initialization:

 flag ← 0
 min ← high value
 max ← low value
 Steps:

1. For each site si Є So do
 1.1 if si Є Se then
 1.1.1 Ti,s ← ƒ1(si)
 1.1.2 if Ti,s < min then
 1.1.2.1 min ← Ti,s
 1.1.3 Ti,c ← ƒ2(si)
 1.2 if Ti,c > 0 then
 1.2.1 Ri ← (Ti,c / Ti,s)
 1.2.2 flag ← 1
 1.2.3 if Ri > max then
 1.2.3.1 max ← Ri

2. if flag = 1 then
 2.1 Solution ← ƒ3(max)

 2.2 else Solution ← ƒ4(min)
 3. To ← ƒ5
 4. if T Є To then
 4.1 update siteid for job T
 4.2 else insert tuple (T, solution)
 5. Return Solution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Opportunistic Algorithm for Scheduling Workflows on Grids 7

DagMan/Condor in order to remove those jobs that are not presenting a desired
performance. In the actual implementation, the user must inform the maximum time a
job can wait in a queue in an idle status. When a job reaches this time it is killed and
automatically re-planned by Euryale. In this case, the Opportunistic site selector will
have the chance to choose another site to run the job.

5 Experiments

Many scientific applications can be characterized as having sets of input and derived
data that have to be processed in several steps by a set of programs. These batch-
pipelined workloads [21] are composed of several independent pipelines and each
pipeline contains sequential processes that communicate with the preceding and
succeeding processes via data files.

D1

P1 P2 P3

D4

D3

D2

D5 D6

Fig. 5. The pipelined workflow

We defined a pipelined workflow to evaluate a set of scheduling strategies in this
experiment. The design of the workflow is shown in figure 5 while figure 6 depicts
the corresponding DAG. There is an input dataset D1 with only one file that is input
for the first and second programs in the pipeline. The first program also has, as input
file, a file belonging to dataset D2. Program P2 processes the output generated by P1
and also has two more files as input for its processing: the file from D1 dataset and a
file from dataset D4. The third and last program of the pipeline processes the output
file produced by P2 and outputs a file for the dataset D6. The width of the pipeline
was set to 100 nodes in each level, totalizing 300 jobs in the workflow.

Currently, the VDS system provides three choices for the planners: Round-Robin,
Random and Weighted-Linear-Random. We evaluated the Opportunistic algorithm
against the Weighted-Linear-Random, Round-Robin, Last-Recent-Used and Data-
Present algorithms. The last two strategies were coded within VDS for our
experiments. The overall ideas of these algorithms are:

1. Weighted-Linear-Random (WLR) - The execution site is selected randomly
but sites with more processors receive more jobs to process.

2. Round-Robin - Jobs are sent to sites in a round-robin way. Thus, the number
of jobs assigned to each site tends to be the same.

3. Last-Recent-Used (LRU) - The execution site corresponds to the site where
the last job ended.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

8 L. Meyer et al.

4. Data-Present - A job is sent to a site with most of the files that it needs. If
more than one site qualifies then a random one is chosen.

5. Opportunistic - The execution site is selected according to the performance
of each site. This performance is measured by dividing the number of
concluded jobs by the number of submitted jobs at each site. While there are
no jobs concluded, a round-robin scheduling is performed.

D3

D5

P2

P3

D2

P1

D6

D4

D3

D5

P2

P3

D2

P1

D6

D4

D3

D5

P2

P3

D2

P1

D6

D4

D3

D5

P2

P3

D2

P1

D6

D4

D3

D5

P2

P3

D2

P1

D6

D4

…

D1

Fig. 6. The DAG shape for the pipelined workflow

Table 1. Resources available in OSG sites

Site Processors
UIOWA_OSG_PROD 6

HAMPTONU 8
PURDUE_PHYSICS 63
UFLORIDA_IHEPA 70

UWMADISON 83
UC_ATLAS 110
UTA_DPCC 148

UERJ_HEPGRID 160
CIT_T2 224

UWMILWAUKEE 304
OSG_LIGO_PSU 314
USCMS_FNAL 989

We conducted the experiments using twelve sites from the Open Science Grid [16].
Table 1 shows a snapshot of the total resources available at each site. To avoid
interfering with the production, we defined all workflow jobs as sleep jobs. We used
two different machines at University of Chicago for running DagMan and the replica
catalog respectively. A third machine at the same site was used to store all input files of
the workflow. Table 2 shows the average execution time and transfer time for each type
of job and file of the workflow. The size of all input and output files is one megabyte.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Opportunistic Algorithm for Scheduling Workflows on Grids 9

Table 2. Average time in seconds for data transfer and execution according to the type of the
workflow level

 P1 P2 P3
Number of jobs 100 100 100
Transfer time 17 27 13

Execution time 300 120 60

6 Results

We executed the workflow twenty times for each scheduling strategy, totalizing
30,000 job executions. Figure 7 presents the performance results for all algorithms.
The performance of the five algorithms is almost the same during the execution of the
first hundred jobs of the workflow. Opportunistic, Last-Recent-Used and Round-
Robin algorithms adopt the same scheduling strategy when no jobs have finished. The
Data-Present algorithm uses a strategy similar to Weighted-Linear-Random while
there is no site with the needed input files for the job. Since there is no dependency
among the jobs in the first level of the workflow, Condor/DagMan can submit them as
soon as the pre-script of each job is finished. The time to transfer the input files is
very low and consequently the pre-processing for each job is very fast causing most
jobs in this level to be scheduled before any job has finished. As soon as the jobs in
the first and second levels begin to finish, Opportunistic, Last-Recent-Used and Data-
Present start to schedule according to different approaches. Opportunistic and Last-
Recent-Used use their observational characteristics while Data-Present takes
advantage of data locality. In the first case, the scheduling becomes based on the ratio
(jobs concluded/jobs submitted) while Last-Recent-Used aims to schedule jobs to the
site that has finished processing the last job.

The Opportunistic algorithm benefits from the dynamic aspects of the Grid
environment. If a site happens to perform poorly, then the number of jobs assigned to
that site decreases. Similarly, if a site begins to process jobs quickly, then more jobs
are scheduled to that site.

The Last-Recent-Used algorithm may not present a good performance when a job
is scheduled to a site and has to wait a long period of time in the remote queue. When
this happens, the next job in the workflow will probably show the same performance
problem because it must be scheduled to run in the same site. The Opportunistic
algorithm avoids this kind of problem because Moniqueue can cancel a job if it has
not started after a determined period of time.

Since the size of the files generated during the execution is small, the time to
transfer these files does not impact the performance and does not bring benefits to
Data-Present algorithm.

Round-Robin provides a good load balance among the sites but since the
performance varies among sites, scheduling the same number of jobs to each site is
not beneficial. Weighted-Linear-Random does not show a good performance because
scheduling more jobs to sites with more resources does not guarantee better results
since jobs may have to wait in the remote queues. It seems that this kind of strategy is
more indicated to Grid environments where resources can be reserved for the entire
execution of the workflow.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

10 L. Meyer et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

tim
e

(m
in

ut
es

)

Jobs

Execution Time

Opportunistic
LRU

WLR
Data Present
Round Robin

Fig. 7. Execution time of the five algorithm

Basic Statistics

0

100

200

300

400

500

OPP LRU WLR DPT RR

Algorithms

T
im

e
 (

m
in

u
te

s)

Avg Med Max Min

Fig. 8. Basic execution statistics

Speedup

0

5

10

15

20

25

30

OPP LRU WLR DPT RR

Algorithms

Fig. 9. Speedup of the five algorithms

Figure 8 shows a set of few basic statistics about the workflow execution. The
minimum execution time is almost the same for all algorithms. This occurs because
occasionally all sites may be presenting a good performance due to having processing
resources available by the time of the execution. However, the most expected
behavior is to have sites presenting different performances as the workflow is being
processed. Consequently, the median, average and maximum execution times differ
according to the execution strategy.

Figure 9 shows the speedup of the five algorithms. The execution of the workflow
with the opportunistic algorithm was approximately twenty five times faster than
running in a single machine. The speedup achieved by the Opportunistic algorithm
was more than 150% higher than the other strategies.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 An Opportunistic Algorithm for Scheduling Workflows on Grids 11

7 Conclusions and Future Work

We have proposed a new “opportunistic” algorithm for scheduling jobs in Grid
environments, and compared its performance with other algorithms. In particular, we
analyzed the performance with a very common workflow pattern, a pipeline of
programs in a real Grid. The results showed that the Opportunistic algorithm provided
superior performance when compared to other four known algorithms for scheduling
workflow jobs. The performance improvement is achieved as a consequence of the
observational approach implemented by the algorithm. This approach exploits the
idea of scheduling jobs for sites that are presenting good response times and to cancel
jobs that are not being executed after a period of time. The algorithm is not aware of
sites capabilities and does not need to collect data from remote sites being easy to
implement and can be used by other workflow engines.

We intend to perform more comparative experiments with other scheduling
algorithms to confirm the efficiency of the Opportunistic algorithm. We also intend to
study the performance of the algorithm when dealing with other workflow patterns
and sizes, and to promote extensions in order to analyze the impact of dealing with
different sizes of historical data to compute a site's value.

Acknowledgements

This work is supported in part by the National Science Foundation GriPhyN project
under contract ITR-086044, U.S. Department of Energy under contract W-31-109-
ENG-38 and CAPES and CNPq Brazilian funding agencies.

References

1. Ammar H. Alhusaini, Viktor K. Prasanna, C.S. Raghavendra. "A Unified Resource
Scheduling Framework for Heterogeneous Computing Environments," hcw, p. 156, Eighth
Heterogeneous Computing Workshop, 1999.

2. Casanova, H., Obertelli, G., Berman, F., Wolski. R., The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid, in SuperComputing 2000, Denver, USA,
2000.

3. DagMan, http://www.cs.wisc.edu/condor/dagman/.
4. D.G. Cameron, R. Carvajal-Schiaffino, A.P.Millar, Nicholson C., Stockinger K., Zini, F.,

Evaluating Scheduling and Replica Optimisation Strategies in OptorSim, in Proc. of 4th
International Workshop on Grid Computing (Grid2003). Phoenix, USA, November 2003.

5. D.G. Cameron, R. Carvajal-Schiaffino, A.P.Millar, Nicholson C., Stockinger K., Zini, F.,
Evaluation of an Economic-Based File Replication Strategy for a Data Grid, in Int.
Workshop on Agent Based Cluster and Grid Computing at Int. Symposium on Cluster
Computing and the Grid (CCGrid2003), Tokyo, Japan, May 2003.

6. Deelman,E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K.,
Livny, M., Across Grids Conference 2004, Nicosia, Cyprus

7. Deelman, E., Blythe, J., Gil, Y., Kesselman,C., Workflow Management in GriPhyn, The
Grid Resource Management, Netherlands 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

12 L. Meyer et al.

8. Dumitrescu, C, Foster, I., Experiences in Running Workloads over Grid3, GCC 2005,
LNCS 3795, pp.274-286, 2005.

9. Foster, I., Kesselman, C., 1999, Chapter 4 of "The Grid 2: Blueprint for a New Computing
Infrastructure", Morgan-Kaufman, 2004.

10. Foster, I., Voeckler,J., Wilde,M., Zhao, Y., Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation, in 14th International
Conference on Scientific and Statistical Database Management (SSDBM 2002),
Edinburgh, July 2002.

11. Foster, I. et al.,The Grid2003 Production Grid: Principles and Practice, in 13th
International Symposium on High Performance Distributed Computing, 2004.

12. GOODALE, T., TAYLOR, I., WANG, I., "Integrating Cactus Simulations within Triana
Workflows", In: Proceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid
Applications and Technologies, Louisiana State University, pp. 47-53, February, 2005.

13. Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Crummey, J., Liu, B., Johnsson, L.,
Scheduling Strategies for Mapping Application Workflows onto the Grid, The 14th IEEE
International Symposium on High-Performance Distributed Computing (HPDC-14),
Research Triangle Park, NC, USA, July 2005.

14. Mohamed, H.H., Epema, D.H.J., An Evaluation of the Close-to-Files Processor and Data
Co-Allocation Policy in Multiclusters, IEEE International Conference on Cluster
Computing, San Diego, USA, September 2004.

15. Oinn, T., ADDIS, M., FERRIS, J. et al, 2004, "Taverna: a Tool for the Composition and
Enactment of Bioinformatis Workflow", In: BIOINFORMATICS, vol. 20, no 17 2004, pp.
3045-3054, Oxford University Press.

16. Open Science Grid, http://www.opensciencegrid.org
17. Ranganathan,K., Foster,I., Simulation Studies of Computation and Data Scheduling

Algorithms for Data Grids, in Journal of Grid Computing, V1(1) 2003.
18. Ranganathan,K., Foster,I., Computation Scheduling and Data Replication Algorithms for

Data Grids, 'Grid Resource Management: State of the Art and Future Trends', J.
Nabrzyski, J. Schopf, and J. Weglarz, eds. Kluwer Academic Publishers, 2003.

19. Shan,H., Oliker, L., Smith, W., Biswas, R., Scheduling in Heterogeneous Grid
Environments: The Effects of Data Migration, International Conference on Advanced
Computing and Communication, Gujarat, India, 2004.

20. Singh, G., Kesselman, C., Deelman, E., Optimizing Grid-Based Workflow Execution,
work submitted to 14th IEEE International Symposium on High Performance Distributing
Computing, July 2005.

21. Thain,D., Bent,J., Arpaci-Dusseau, A., Arpaci-Dusseau,R., Livny, M., Pipeline and Batch
Sharing in Grid Workloads, 12th Symposium on High Performance Distributing
Computing, Seattle, June 2003.

22. Wieczorek, M., Prodan, R.,Fahringer,T., Scheduling of Scientific Workflows in the
ASKALON Grid Environment, SIGMOD Record, Vol. 34, No.3, September 2005.

23. Yu,J., Buyya, R., A Taxonomy of Scientific Workflow Systems for Grid Computing,
SIGMOD Record, Vol.34, No.3, September 2005.

24. Zhang, X., Schopf, J., Performance Analysis of the Globus Toolkit Monitoring and
Discovery Service, Proceedings of the International Workshop on Middleware
Performance (MP 2004), part of the 23rd International Performance Computing and
Communications Conference (IPCCC), April 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Service Oriented System for on Demand

Dynamic Structural Analysis over
Computational Grids�

J.M. Alonso, V. Hernández, R. López, and G. Moltó

Departamento de Sistemas Informáticos y Computación.
Universidad Politécnica de Valencia. Camino de Vera s/n 46022 Valencia, Spain

{jmalonso,vhernand,rolopez,gmolto}@dsic.upv.es
Tel.: +34963877356; Fax: +34963877359

Abstract. In this paper we describe the implementation of a service ori-
ented environment that enables to couple a parallel application, which
performs the 3D linear dynamic structural analysis of high-rise build-
ings, to a Grid Computing infrastructure. The Grid service, developed
under Globus Toolkit 4, exposes the dynamic simulation as a service to
the structural scientific community. It employs the GMarte middleware,
a metascheduler that enables to perform the computationally intensive
simulations on the distributed resources of a Grid-based infrastructure.

Topics: Parallel and Distributed Computing, Cluster and Grid Compu-
ting, Large Scale Simulations in All Areas of Engineering and Science.

1 Introduction

Traditionally, the dynamic analysis of large scale buildings has been limited to
simplifications with the purpose of reducing the computational and memory
requirements of the problem. Although these simplifications have been proved
to be valid for simple and symmetric structures, they have demonstrated to be
inappropriate for more complex buildings.

Nowadays, many buildings are asymmetric and the effects of torsion have been
identified as one of the main reasons that make a building collapse when an
earthquake occurs. Considering the dramatic effects of earthquakes, it is crucial
to investigate their impact before a building gets constructed. However, the
required memory and the computation involved in a 3D realistic analysis of
a large dimension building can be too intensive for a traditional PC.

This way, the authors have developed an MPI-based application that performs
the 3D linear dynamic analysis of structures using three different direct time inte-
gration schemes. Typically, a structural designer works with different preliminary
� The authors wish to thank the financial support received from the Spanish Min-

istry of Science and Technology to develop the GRID-IT project (TIC2003-01318)
and the Conselleria de Empresa, Universidad y Ciencia - Generalitat Valenciana for
the GRID4BUILD project (GV04B-424). We wish also to thank Anshul Gupta for
providing us with a trial license of WSMP library for 16 CPUs.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 13–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

14 J.M. Alonso et al.

alternatives when designing a building, considering distinct layouts or applying
multiple sections or dimensions to its members, requiring their simulation under
the influence of several dynamic loads. For example, the Spanish Earthquake-
Resistant Construction Standards (NCSE-02) demands a building to be analysed
with at least five different representative earthquakes. Obviously, this situation
largely increases the computational cost of the problem. However, although the
parallel application offers quite good parallel performance and carries out a 3D
realistic analysis, studios for engineering rarely own parallel platforms to execute
this software.

Therefore, we have implemented a service oriented system, based on Grid ser-
vices, that enables to perform on demand dynamic analysis over computational
Grids in a collaborative environment. It implies a two-fold strategy. Firstly, the
main objective of Grid technology is to share and use different resources available
in the network. Thus, it is possible to create a scientific and technical virtual
organisation where most of the members do not need to invest in computational
machines and software, and to be worried about licenses and new updates. It
would be enough to establish agreements for their usage. Secondly, the service
exploits, in a transparent way for the user, the computational capabilities of a
distributed Grid infrastructure which delivers enough power to satisfy the com-
putational requirements of the resource-starved dynamic structural simulations
of high-rise buildings.

The reminder of this paper is structured as follows: First, section 2 describes
the motion equation and the parallel application developed to simulate the
behaviour of structures. One building has been also simulated to analyse the
performance of this HPC application. Next, section 3 shows the Grid service
implemented and the metascheduling approach to enable high-throughput when
multiple user requests are concurrently received. Section 4 presents the struc-
tural case study that has been executed to test the performance of the Grid ser-
vice, the computational resources employed and the task allocation performed.
Finally, section 5 concludes the paper.

2 Parallel 3D Linear Dynamic Analysis of Buildings

The second order differential equations in time that governs the motion of struc-
tural dynamic problems can be written as follows [1]:

Ma(t) + Cv(t) + Kd(t) = f(t) (1)

where M , C and K are the mass, damping and stiffness matrices respectively,
f(t) is the applied dynamic load vector, and d(t), v(t) and a(t) represent the
unknown displacement, velocity and acceleration vectors at the joints of the
structure. The initial conditions at t = 0 are given by d(0) = d0 and v(0) = v0.

Because of their inherent advantages, direct time integration algorithms have
been widely employed for the numerical solution of this computationally demand-
ing equation [2]. In this way, an MPI-based parallel application for the 3D lin-
ear dynamic analysis of high-rise buildings has been implemented, where all the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Service Oriented System for on Demand Dynamic Structural Analysis 15

nodes of the structure are taking into account and six degrees of freedom per joint
are considered. Node condensation techniques have not been assumed. All these
resultant computational burden implies the need of using HPC strategies able
to tackle large dimension problems and reduce the time spent on the analysis. In
the application, the following three well-known time integration methods have
been parallelised, providing comprehensive results in very reasonable response
times: Newmark [3], Generalized-α [4] and SDIRK [5]. Consistent-mass matrix
has been assumed, and Rayleigh damping has been employed, what means that
C = αM +βK. Besides, the standard implementation of MPI-2 I/O by ROMIO
has been used to guarantee good performance on secondary storage device ac-
cesses. The application is highly portable and it can be easily migrated to a wide
variety of parallel platforms.

Regarding the parallelisation of the problem, each processor is assigned firstly
a group of N/p consecutive nodes and another one of B/p consecutive structural
elements, being N and B the total number of nodes and beams in the building,
respectively, and p the number of processors employed. Then, each processor gen-
erates and assembles in parallel its local part of the stiffness, mass and damping
matrices, according to their nodes assigned. In this way, all the matrices of the
problem, together with the different resulting vectors, will be partitioned among
the processors following a row-wise block stripped distribution. Consistent-mass
matrices have been considered, a more realistic alternative than lumped (diag-
onal) mass matrix. However, the dynamic analysis of a consistent-mass system
requires considerably more computational effort and memory requirements than
a lumped-mass system does.

Next, the effective stiffness matrix K̂, or coefficient matrix of the problem,
is obtained in parallel by means of a linear combination of K, M and C ma-
trices. Different functions for summing sparse matrices in parallel have been
implemented in order to generate these C and K̂ matrices. Finally, the initial
conditions are imposed in the system. Displacements and velocities at t = 0 will
be usually known, and initial accelerations will be computed by solving the re-
sulting system of linear equations when the Equation (1) is evaluated at t = 0,
where M matrix constitutes the coefficient matrix.

Then, for each time step (t = Δt, 2Δt, 3Δt, . . . , nΔt) different numerical
phases must be also carried out. Firstly, the movement, velocity and acceler-
ation vectors at the joints of the structure are computed in parallel by means
of the chosen time integration method. More in detail, movements are worked
out by solving a system of linear equations where the K̂ coefficient matrix is
large, sparse, symmetric and positive definite. Fortunately, the K, M and C ma-
trices are constant, along the time, in a linear analysis. Thus, the K̂ coefficient
matrix does not change during the simulation process, and it just need to be
factorised once if a direct method is employed to compute the linear systems. In
this way, one forward-backward substitution will be carried out, for each time
step, for computing the nodal movements. Parallel direct and iterative methods
implemented in WSMP [6], MUMPS [7] and PETSc [8] public domain numerical
libraries have been used for solving these linear systems. These three libraries

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

16 J.M. Alonso et al.

have been chosen due to its availability, good performance and state-of-the-art
capabilities. WSMP and MUMPS are MPI-based numerical libraries for solv-
ing large sparse symmetric and non-symmetric systems of linear equations. The
parallel symmetric numerical factorisation implemented in WSMP is based on
Cholesky Multifrontal algorithm. MUMPS uses a Multifrontal technique which
is a direct method based on LU or LDLT factorisation of the matrix. On the
other hand, PETSc provides parallel matrix and vector assembly routines, basic
linear algebra operations and parallel linear, nonlinear equation solvers and time
integrators. The combination of a Krylov subspace method and a preconditioner
is the heart of the parallel iterative methods implemented in PETSc. Besides,
PETSc provides and efficient access to different external numerical libraries that
implement direct methods, such as MUMPS, or preconditioners.

Before solving the linear system, the effective dynamic load vector, i.e. the
right hand-size vector, must be evaluated in parallel. Again, each processor just
computes and assembles the load vector corresponding to its group of nodes
assigned. Sparse matrix-vector products, a constant times a vector and sums
of vectors are the basic lineal algebra operations than take place in this phase.
Therefore, different functions that carry out these mentioned linear algebra oper-
ations in parallel have been programmed and they will be used when employing
WSMP, but not when using PETSc or MUMPS, since PETSc already provides
routines for these functionalities.

Notice that parallel sparse matrix-vector product has a crucial importance for
each time step, where the performance achieved could be severely degraded if
an efficient implementation is not developed. Having in mind this consideration,
communications have been tried to be minimised. For that, the processor i just
sends the processor j those elements of its local vector that the processor j needs
to carry out the matrix-vector product. Remember two things: (1) the vector is
initially partitioned into the processors by means of a row-wise block-striped
distribution and (2) the matrix is sparse and so not all the vector elements
belonging to other processors will be needed. Considering the non-zero structure
of problem matrices, each processor computes just once, at the beginning of the
simulation and in a very fast way, which elements belonging to itself must be sent
for each time step to every other processor. As a consequence, each processor
just receives from the others the vector elements that it strictly needs during the
simulation.

Once joint displacements have been computed, velocity and acceleration values
are updated by taking advantage of the implemented routines of sum of vectors.
Unlike Newmark and Generalized-α methods, SDIRK procedure requires to solve
two linear systems for each time step. The first one, for K̂ coefficient matrix, is
composed of s right hand-size vectors, being s the number of stages employed
in the method. Solution vectors of this system will be employed for updating
displacement and velocity vectors. In the second one, M represents the coefficient
matrix and the acceleration vector is computed. Obviously, both matrices will
be factorised once if a direct method is used, and multiple forward-backwards
substitutions will be required for each time step.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Service Oriented System for on Demand Dynamic Structural Analysis 17

Finally, each processor evaluates in parallel, for its structural elements
initially assigned, the member end forces and the reactions at the points attached
to the rigid foundation. Bending moments and deformations at the predefined
division points of the members will be evaluated in parallel, with the same data
distribution, to check that they do not exceed the established design limits.

A building composes of 68,800 nodes (412,800 degrees of freedom) and 137,390
structural elements has been chosen to show the performance achieved in the
parallel application. The behaviour of the building was dynamically analysed
under the influence of an earthquake applied during 6 seconds, with time steps
equals to 0.01 seconds.

Tables 1, 2 and 3 show the time (in minutes) and the efficiencies spent on the
whole structural analysis, for the different integration methods parallelised, em-
ploying up to 16 processors, for WSMP, MUMPS and PETSc numerical libraries.
MUMPS was employed thanks to the interface provided by PETSc. This time
does not include the initial one corresponding to the generation of the stiffness,
mass, damping and effective stiffness matrices, or the imposition of initial con-
ditions or the factorisation of effective stiffness matrices. The simulations have
been run on a cluster of 20 dual Pentium Xeon@2GHz, with 1 GByte of RAM
and interconnected by a SCI network.

Table 1. Simulation time (in minutes) and efficiencies (%) for Newmark method

Proc. WSMP MUMPS (QAMD) MUMPS (MND) PETSc

1 - - 53.94 100.00% - - 2087.06 100.00%
2 32.16 100.00% 27.33 98.28% 26.72 100.00% 1119.20 93.23%
4 17.91 89.80% 16.04 84.07% 14.82 90.15% 581.91 89.66%
8 11.32 71.00% 10.33 65.27% 9.24 72.29% 305.64 85.36%
16 7.97 50.41% 7.52 44.83% 6.45 51.78% 165.84 78.65%

Table 2. Simulation time (in minutes) and efficiencies (%) for Generalized α-method

Proc. WSMP MUMPS (QAMD) MUMPS (MND) PETSc

1 - - 54.99 100.00% - - 2205.38 100.00%
2 32.85 100.00% 27.73 99.15% 27.17 100.00% 1182.03 93.29%
4 18.12 90.55% 16.31 84.29% 15.03 90.39% 618.89 89.09%
8 11.42 71.84% 10.76 63.88% 9.56 71.05% 324.98 84.83%
16 8.01 51.21% 7.63 45.04% 6.71 50.61% 173.17 79.60%

The shortest response times were achieved with MUMPS library, together with
these ordering algorithms: MND (Multilevel Nested Dissection), implemented in
METIS package [9], and QAMD (Approximate Minimum Degree Ordering with
Automatic Quasi Dense Row Detection) [10]. WSMP achieved excellent results
as well, with similar efficiencies than MUMPS with MND. WSMP ordering is
also based on MND. Simulations with 1 processor overcame the RAM mem-
ory available in the approaches employing WSMP and MUMPS with MND.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

18 J.M. Alonso et al.

Table 3. Simulation time (in minutes) and efficiencies (%) for SDIRK method

Proc. WSMP MUMPS (QAMD) MUMPS (MND) PETSc

1 - - - - - - 7201.76 100.00%
2 - - 49.90 100.00% - - 3903.79 92.24%
4 42.29 100.00% 33.56 74.34% 30.01 100.00% 2127.92 84.61%
8 28.3 74.19% 23.08 54.05% 20.53 73.31% 1158.86 77.68%
16 22.11 47.81% 18.43 33.84% 16.25 46.31% 594.80 75.69%

Clearly, the number of non-zero elements of the coefficient matrix, after numeri-
cal factorisation, in MND is superior to QAMD. Therefore, the efficiency values
appearing in Tables 1 and 2 for WSMP, and MUMPS with MND, are obtained
with respect to 2 processors, or with respect to 4 processors at Table 3.

Regarding PETSc libraries, best results have been achieved by means of the
combination of Conjugate Gradient as iterative method with block Jacobi pre-
conditioning, where Incomplete Cholesky factorisation is also applied as subblock
preconditioner. Structural coefficient matrices are usually ill-conditioning, what
explains that iterative methods have been much slower than direct methods. It
should be noticed that the main drawback of Block Jacobi preconditioner is that
the number of iterations can rise when the number of processors is increased,
what obviously has influence on the simulation times and efficiencies obtained.
Anyway, direct methods just need to carry out a forward-backward substitution
for each time step, what is much more efficient than solving the whole linear
system as the iterative methods do.

While Newmark and Generalized-α methods offer second-order accuracy on
the results, stage parameter was set to four in the SDIRK method, trying to
achieve third-order accuracy. As expected, it increased dramatically the simula-
tion times, since two linear systems (the first one composed of four right-hand
size vectors) must be solved. In spite of acceleration values were not calculated
in this case, with the aim to avoid the factorisation of the mass matrix, memory
requirements of WSMP and MUMPS with MND ordering exceeded the available
RAM even with two processors.

3 Service Oriented Dynamic Structural Analysis

Web services have emerged as the standard framework in distributed system
development. They provide flexible and extensible mechanisms for describing,
discovering, and invoking public network services by means of XML-based pro-
tocols. Globus Toolkit 4 (GT4)[11], the latest version of the current standard
in Grid middleware systems, has performed a natural evolution to Web services
technology, adopting them to define its architecture and interfaces. The result is
the so-called Grid services, i.e. enhanced Web services that extend their conven-
tional functionality into the Grid domain.

In this work, we have developed and deployed under GT4 middleware a Struc-
tural Dynamic Analysis Grid Service (SDAGS) for the 3D dynamic simulation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Service Oriented System for on Demand Dynamic Structural Analysis 19

Gets the Simulation
Input Files

Client GUI

Calculates
the Structure

Stores the Structural
 Simulation Data

Structural
Repository

Creates the
Simulation Task

Gets the
Simulation

Results

Saves the
Result Files

Gets the
Simulation

Results

Notifies the Task
State Changes

Deletes Data

Data
Collector
Daemon

Cleans
the Data

Computational Grid

Structural Dynamic
Analysis Grid Service

S
er

vi
ce

 In
te

rfa
ce

Service
Manager

Request

Scheduler

Executes the
Simulation

Retrieves
the Results

Parallel
Structural
Simulator

Employs
Response

Task
Notifier
Daemon

Gets the
Task State

Sends the New
Task State

Fig. 1. Diagram of the implemented Grid service architecture

of large-scale buildings. Figure 1 exposes the Grid service architecture proposed.
The diagram shows some of the principal parts involved, such as the GUI client,
the SDAGS itself and the Globus-based computational infrastructure.

3.1 The GUI Client

The structural engineers can simulate the structures in the SDAGS thanks to
an advanced graphical user interface (GUI) program. This software enables the
user to perform the pre-processing phase, where the different properties are as-
signed to the structural members of the building (i.e. initial conditions, sections,
external loads, etc.) in a user-friendly way. Using the Java 3D libraries, this
highly portable application shows a 3D scene in which the user can interact with
the building by means of different functionalities such as rotations, translations,
zooming, selections, etc., employing the wired or solid modes of visualisation.

The GUI client interacts with the SDAGS, via its public interface, to analyse
the structures. For this, the client sends, via a SOAP (Simple Object Access
Protocol) request [12], an XML file with the properties of the building to be
simulated, together with different parameters related to the dynamic analysis.
Then, the status of the simulation task is periodically received, and once the
structure has been remotely analysed, the output data are retrieved in a SOAP
message, and then deleted in the machine that runs the Grid service. Finally,
the post-processing phase takes place and the results obtained are automatically
mapped onto the graphical display and easily interpreted.

This GUI client incorporates a fault-tolerant procedure with the SDAGS for
the data retrieval. In case of client failure, thanks to a unique simulation iden-
tifier, the results would be retrieved later. Failures in the client do not affect
the simulation executions as both the client and the service are decoupled.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

20 J.M. Alonso et al.

In a dynamic analysis, all the result data successfully received by the client
will not be sent again by the SDAGS.

3.2 Structural Dynamic Analysis Grid Service

The SDAGS is a flexible and extensible Grid service implementation that enables
to remotely employ the previously mentioned HPC-based dynamic structural
simulator. This service publishes a set of methods, by means of standard XML-
based protocols, that are invoked via SOAP requests. On the one hand, this
enables to implement heterogeneous clients, developed in different programming
languages and over a wide variety of platforms, to interact with the service. To
include all the input and output binary simulation data in the XML messages, an
hexadecimal encode schema has been employed. The SDAGS is composed of the
following main components: the Service Manager, the Scheduler, the Data Col-
lector Daemon, the Parallel Structural Simulator and the Task Notifier Daemon.

The Service Manager represents the core of the SDAGS and it is in charge
of satisfying the requests from the clients. It acts as the front end, receiving the
client requests as well as interconnecting all the system components. The Task
Notifier Daemon is responsible of performing the notification process of the state
changes of the tasks, thus enabling the users to instantly know the state of their
simulations. The structures are analysed on the Grid resources by the Parallel
Structural Simulator, which is able to perform efficiently and in a realistic way
static and dynamic analyses.

The Scheduler agent executes the structural simulations in the available Grid
infrastructure. Currently, we are employing several cost-effective cluster of PCs
located at our research center. Firstly, the Scheduler involves the resource dis-
covery to obtain a list of candidate execution machines. After that, a resource
selection phase is carried out in order to select the best available computational
machine for each structural simulation. Finally, the different phases related to
achieve remote task execution, such as data stage and job monitor to detect
failures, will be also performed by this component.

Input and output simulation data will be stored in a Structural Repository,
implementing a data persistence schema and enabling the use of the system also
as a Storage Service. Finally, the Data Collector Daemon component inspects
periodically the Structural Repository and cleans the old simulation files.

3.3 The Structural Analysis Process

The implementation details of the Grid Service developed are exposed in the
next paragraphs, by means of the sequence of steps to be followed to simulate
a building. First, the client submits the request, sending the corresponding files
that define the structure, such as its structural and geometric properties, the
different external load hypotheses to be evaluated and the needed parameters to
define the type of analysis.

This request is received in the SDAGS by the Service Manager, which pro-
cesses all the input data, storing them in the Structural Repository, returns to the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Service Oriented System for on Demand Dynamic Structural Analysis 21

client a simulation identifier, which will be used in later invocations to identify
the simulation, and generates the appropriate binary input file for the parallel
simulator. Then, the Service Manager creates an execution task that contains all
the required properties to execute it in the computational Grid. Next, this task
is added to the Scheduler module, which, in a transparent way, performs the re-
source selection and the simulation execution management. A resource selection
policy has been defined addressed to optimise the throughput and reduce the
execution time of the each analysis. The simulation type, static or dynamic, the
dimension of the structure and the user privileges will be values used to decide
the number of processors involved in each execution.

For each simulation request, the SDAGS creates and publishes a notification
item that is in charge of informing the client about its evolution. After subscrib-
ing to this item, the Task Notifier Daemon notifies the user any change that
takes place in the analysis process. In this way, the client is perfectly aware of
the status of the simulations: waiting, in execution, failed, finalised, etc. This
approach dramatically reduces the overhead that would appear in the system if
the clients periodically queried the service about the status of every simulation.

In a static analysis, and once the task execution has finished, the output
results are automatically saved into the Structural Repository by the Scheduler,
and the user is informed about their availability thanks to the Task Notifier.
However, a dynamic analysis is performed by means of an iterative process that
implies the generation of output data for each simulation time step. With the
purpose of reducing the waiting time, the client is informed by the Task Notifier
when there are enough results to be sent, thus submitting it different retrieval
requests. In this way, the simulation and data retrieval phases are overlapped,
what implies a clear benefit for the user who can begin to process the results
before the analysis is completed.

The result retrieval procedure is performed by the Service Manager, which
processes and analyses all the output files in order to generate an XML file
that is sent to the client in a SOAP message. One of the main problems related
to the use of this type of messages, being based on XML, is their size, thus
introducing a communication overhead between the client and the Grid service
[13]. In our case, the solution adopted has lied in the use of an hexadecimal
codification schema for including binary data, instead of inserting all of them
in a text-based format. This approximation enables to reduce substantially the
message dimension, which has a direct impact on the data transfer times.

An erase method that deletes all the simulation data is also available. Notwith-
standing, the client is not required to invoke it, thus taking advantage of a Data
Storage Service that can be employed during a certain period of time. Neverthe-
less, due to the fact that there are users with different privileges in the system,
a component called Data Collector Daemon will be in charge of periodically
erasing the simulation results of those lowest level clients.

Several fault tolerance levels have been implemented in the system, including
the service itself, the task scheduling and execution, and the client, what guar-
antees that all the simulations submitted will be successfully attended. On the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

22 J.M. Alonso et al.

one hand, the SDAGS implements a persistence schema that stores a description
of all the tasks in course or waiting for execution, and those finalised simulations
that still have results to be recovered by the client. Therefore, in case of service
failure, all the non-finished tasks would be launched later, and the identifiers of
those having pending results would be registered again. On the other hand, the
fault tolerance level included in the Scheduler ensures that a failed execution
will be transparently migrated to another Grid resource. Failures in the data
communication (including network outages) between the service and the client,
or the service and the computational resources, are also handled. Several tests
have been performed (injecting failures in the client, the network, the service and
the remote resources) to ensure the robustness of the fault-tolerant mechanisms.

A robust security system has been integrated in the service, including user
authorisation and authentication, and privacy and integrity of results. On the
one hand, the user authorisation and authentication capability establishes an
access control to the published services, enabling to register all the actions per-
formed by the clients. The authorisation system employs a configuration file that
contains all the users authorised to interact with the service. All the requests
from users not registered will be directly rejected. The authentication process is
implemented by means of a X.509 certificate that identifies the user. This cer-
tificate is sent to the service when the communication begins. The data privacy
and integrity has been achieved using a private-public key approach. It employs
the same certificate X.509 to perform the encryption and signature of all the
data exchanged between the service and the client.

3.4 Interacting with the Computational Grid Via GMarte

The SDAGS execute the Parallel Structural Simulator over a computational Grid
by using the functionality of the GMarte middleware [14]. GMarte is a software
abstraction layer, developed on top of the Java CoG Kit 1.2 [15], which provides
an object-oriented API for the description of generic batch computational tasks
from any scientific area. It provides all the required software infrastructure to
perform the fault-tolerant allocation of tasks to machines based on the Globus
Toolkit.

In order to achieve remote task execution, GMarte enables the user to focus on
what should be executed, instead of messing around with all the implementation
details of the underlying Grid middleware. For that, GMarte first introduces an
abstraction layer over the information provided by the computational resources
of a Grid infrastructure. This enables the user to access computational informa-
tion of the resources, such as the number of available processors or RAM, in the
same manner, regardless the underlying differences of the Grid middleware.

Figure 2 describes how GMarte fits in the service proposed. The Service Man-
ager, in Figure 1, uses the GMarte API to provide the description of the com-
putational tasks, which are assigned to a daemon Scheduler that waits for new
tasks to be executed.

The implemented GMarte-based Scheduler is in charge of performing a
sequence of steps in order to achieve successful execution of the tasks. This

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Service Oriented System for on Demand Dynamic Structural Analysis 23

GMarte API

File Stage Out

Resource
Discovery

Resource
Filtering

Resource
Selection

Remote Machine

File Stage In

Execution

Selects

Structural Dynamic
Analysis Grid Service

Scheduler

Uses

Computational Grid

Service
Manager

Uses

GMarte Task

Fig. 2. Usage of GMarte within the Grid service

procedure involves, when the Grid service starts, the Resource Discovery and
the Resource Filtering phases to obtain a list of currently available machines to
host executions. Then, for each structural analysis request, the Resource Selec-
tion phase selects the current best computational resource to execute it. Later,
all the needed input files are automatically transferred to the remote machine,
before the remote parallel execution is started. When the simulation has finished,
all the generated output files are moved to the machine hosting the SDAGS.

GMarte implements a multi-threaded metascheduler that enables to concur-
rently carry out the resource selection phase for the different simulations that
have to be executed. This notably reduces the start-up time of the metaschedul-
ing procedure, when compared with other traditional single-threaded metasched-
ulers, what enables to notably increase the service productivity when it is concur-
rently used by multiple users. The metascheduling policy implemented in GMarte
considers the application requirements specified by SDAGS, as well as the dy-
namic state of computational resources to select the most appropriate resource.

A multilevel fault-tolerance scheme is enforced to cope with the errors arising
both during data transfers and remote execution. This ensures that executions
will proceed as long as there are living resources in the Grid Computing infras-
tructure. The use of this proposed SDAGS, that uses a computational Grid for
executions, enables to increase the productivity when the service is concurrently
used by multiple users.

4 Multiuser Structural Case Study

In order to test the performance of the SDAGS in a multiuser environment, a
structural case study composed of several simulations has been simulated on a
Grid infrastructure.

The case study proposed, addressed to reproduce the Grid service availability
with different clients, is composed of 30 user simulations, which must be concur-
rently managed. Each simulation represents the dynamic analysis of a building
whose structural features (68,800 nodes and 137,390 beams) were described in
section 2.

Different representative earthquakes, according to the geographical location
of the building, have been applied. The accelerograms employed had an duration
between 5 and 10 seconds and they include an equally-spaced ground acceleration

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

24 J.M. Alonso et al.

every 0.01 seconds. Due to the accelerograms duration variability and in order to
employ an homogeneous case study, the simulation time was fixed to 5 seconds
using a time step of 0.01 seconds. The Newmark method was the chosen direct
time integration procedure, and the Parallel Structural Simulator was config-
ured to use the WSMP library. The output data contains information about the
stresses and deformations at multiple predefined intermediate points of all the
structural elements that compose the building. This was configured to be stored
every 0.5 seconds. This resulted in an output data of 646 MBytes for simulation
resulting in a total of 19 GBytes.

The execution of the case study was performed in a Grid infrastructure com-
posed of computational resourceswhich belong to our research group, since we had
not access to a global Grid. It consists of 2 clusters of PCs, whose principal char-
acteristics are detailed in Table 4. Both machines are interconnected via a local
area network delivering 100 Mbits/sec. with the service host. The Globus Toolkit
version 2.4 was previously installed on each machine of the Grid deployment.

Following the policy of selecting the number of processors according to the fea-
tures of the structure, the service estimated a number of two processors involved
in each parallel execution. This decision enabled to efficiently share the lim-
ited available computational resources, as many executions could be proceeded
simultaneously.

4.1 Execution Results

Table 4 shows that a similar number of simulations were allocated to each com-
putational resource. In fact, the GMarte resource selection component imple-
ments a policy that distributes the workload on the different resources of a Grid,
trying to minimise the impact in case of failure in a determined host. Clearly,
resource selection is a fundamental key in the whole task allocation procedure.
Fine-tuning this phase, by allocating more executions to Odin, could probably
have obtained better results.

The execution of the structural case study on the proposed infrastructure
required a total of 38 minutes, since the scheduling procedure started until the
output data of the last simulation was retrieved to the Grid service machine.
On the one hand, executing all the simulations using a sequential platform, one
execution after another and employing 1 PC of Odin, the faster cluster, required
566 minutes. On the other hand, using a High Performance Computing approach,
assuming a typical cluster of 8 CPUs, and performing 2-processor executions on
cluster Odin (4 simultaneous simulations) required a total of 105 minutes.

Therefore, the Grid Computing approach delivered an speedup of 14.89 with
respect to the sequential execution and 2.76 compared to the HPC approach.
Obviously, this improvement in speed depends on the amount of computational
resources employed in the Grid deployment. Anyway, it is important to point
out that the Grid approach introduces an overhead, both at the scheduling level
(for the resource selection) and the data transfers involved in the stage in and
the stage out phases.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Service Oriented System for on Demand Dynamic Structural Analysis 25

Table 4. Detailed machine characteristics of the Grid infrastructure

Machine Processors Memory Tasks Allocated
Kefren 20 dual Intel Pentium Xeon@2.0 Ghz 1 GByte 16

Odin 55 dual Intel Pentium Xeon@2.8 Ghz 2 GBytes 14

5 Conclusions

In this paper, we have developed a Grid service oriented system, based on GT4,
that enables to perform high performance and realistic 3D dynamic structural
simulations of large dimension buildings on a Grid infrastructure. For that, an
MPI-based structural application has been previously implemented, where 3 dif-
ferent direct time integration methods have been parallelised. Underlying linear
systems of equations have been solved by means of WSMP, MUMPS and PETSc
numerical libraries. The parallelisation strategy of the different stages that com-
pose the parallel structural simulator has been discussed, as well as the parallel
performance, in terms of speed-up and efficiency, in the dynamic analysis of a
building, considering the time integration algorithms and the distinct numerical
libraries employed.

Besides, the architecture of the Grid service has been described, emphasizing
its design and implementation. GMarte framework has been presented as an
appropriate metascheduler to carry out the remote task simulation in a Grid
infrastructure. Finally, the behaviour of the Grid service has been tested when
multiple clients try to analyse, at the same time, different structures, with the
purpose of evaluating the needed high-throughput of the system. Simulation
times corresponding to the analysis of all these buildings have been provided,
comparing them with different computational approaches. From our point of
view, the system presents an acceptable development level to begin to be tested
by end-users.

References

1. Clough, R., Penzien, J.: Dynamics of Structures. Second edn. McGraw-Hill, Inc
(1993)

2. Fung, T.: Numerical Dissipation in Time-Step Integration Algorithms for Struc-
tural Dynamic Analysis. Progress in Structural Engineering and Materials 5 (2003)
167–180

3. Wilson, E.L.: A Computer Program for the Dynamic Stress Analysis of Under-
ground Structures. Technical Report SESM Report 68-1, Division of Structural
Engineering and Structural Mechanics, University of California, Berkeley (1968)

4. Chung, J., Hulbert, G.: A Time Integration Algorithm for Structural Dynam-
ics with Improved Numerical Dissipation: the Generalized α-Method. Journal of
Applied Mechanics 60 (1993) 371–376

5. Owren, B., Simonsen, H.: Alternative Integration Methods for Problems in
Structural Dynamics. Computer Methods in Applied Mechanics and Engineering
122(1-2) (1995) 1–10

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

26 J.M. Alonso et al.

6. Gupta, A.: WSMP: Watson Sparse Matrix Package Part I - Direct Solution of
Symmetric Sparse Systems. Technical Report Technical Report IBM Research
Report RC 21886(98462), IBM (2000)

7. Amestoy, P., Duff, I., L’Excellent, J., Koster, J.: MUltifrontal Massively Parallel
Solver (MUMPS Version 4.6.1) Users Guide. Technical report, IBM (2006)

8. Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., Curfman-
McInnes, L., Smith, B., Zhang, H.: PETSc Users Manual. Technical Report Tech-
nical Report ANL-95/11 - Revision 2.3.1, Argonne National Laboratory (2006)

9. Karypis, G., Kumar, V.: METIS: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices. Technical Report Version 4.0, University of Minnesota, Department of
Computer Science /Army HPC Research Center (1998)

10. Amestoy, P.: Recent Progress in Parallel Multifrontal Solvers for Unsymmetric
Sparse Matrices. In: Proceedings of the 15th World Congress on Scientific Com-
putation, Modelling and Applied Mathematics, IMACS 97. (1997)

11. Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In:
IFIP International Conference on Network and Parallel Computing, Springer-
Verlag LNCS. Volume 3779. (2005) 2–13

12. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Frystyk, H.: SOAP Version
1.2 Part 1: Messaging Framework. W3C Recommendation (2003)

13. Lu, W., Chiu, K., Gannon, D.: Building a Generic SOAP Framework over Binary
XML. HPDC-15: The 15th IEEE International Symposium on High Performance
Distributed Computing (Paris, France, June 2006)

14. Alonso, J., Hernández, V., Moltó, G.: An Object-Oriented View of Grid Com-
puting Technologies to Abstract Remote Task Execution. In: Proceedings of the
Euromicro 2005 International Conference. (2005) 235–242

15. von Laszewski, G., Foster, I., Gawor, J., Lane, P.: A Java Commodity Grid Kit.
Concurrency and Computation-Practice & Experience 13(8-9) (2001) 645–662

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Desktop Grid System�

Péter Kacsuk1, Norbert Podhorszki1, and Tamás Kiss2

1 MTA SZTAKI
Computer and Automation Research Institute of the

Hungarian Academy of Sciences
H-1528 Budapest, P.O. Box 63, Hungary
{kacsuk,pnorbert}@sztaki.hu

2 University of Westminster, Cavendish School of Computer Science
115 New Cavendish Street, London W1W 6UW, UK

T.Kiss@westminster.ac.uk

Abstract. Desktop grids are easy to install on large number of personal com-
puters, which is a prerequisite for the spread of grid technology. Current desktop
grids connect all PCs into a flat hierarchy, that is, all computers to a central server.
SZTAKI Desktop Grid starts from a standalone desktop grid, as a building block.
It is extended to include clusters displaying as single powerful PCs, while using
their local resource management system. Such building blocks support overtak-
ing additional tasks from other desktop grids, enabling the set-up of a hierarchy.
Desktop grids with different owners thus can share resources, although only in a
hierarchical structure. This brings desktop grids closer to other grid technologies
where sharing resources by several users is the most important feature.

1 Introduction

Originally, the aim of the researchers in the field of Grid was that anyone could offer
resources for a Grid system, and anyone can claim resources dynamically, according to
the actual needs, in order to solve a computationally intensive task. This twofold aim
has been, however, not fully achieved. Currently, we can observe two different trends
in the development of Grid systems, according to these aims.

Researchers and developers in the first trend are creating a Grid service, which can
be accessed by lots of users. A resource can become part of the Grid by installing a
predefined software set (middleware). The middleware is, however, so complex that
it needs a lot of effort to maintain. Therefore it is natural, that single persons do not
offer their resources but all resources are maintained by institutions, where professional
system administrators take care of the hardware/middleware/software environment and
ensure the high-availability of the Grid. Examples of such Grid infrastructures are the
EGEE infrastructure (Enabling Grids for E-SciencE) and its Hungarian affiliate virtual
organisation, the HunGrid, or the NGS (National Grid Service) in the UK. The original
aim of enabling anyone to join the Grid with one’s resources has not been fulfilled.

� This research work is carried out under the FP6 Network of Excellence CoreGRID funded by
the European Commission (Contract IST-2002-004265) and by the Hungarian Jedlik Anyos
HAGrid project (Grant No.: NKFP2-00007/2005).

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 27–38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

28 P. Kacsuk, N. Podhorszki, and T. Kiss

Nevertheless, anyone who is registered at the Certificate Authority of such a Grid and
has a valid certificate can access the Grid and use the resources.

A complementary trend can also be observed for the other part of the original aim.
Here, anyone can bring resources into the Grid system, offering them for the common
goal of that Grid. Nonetheless, only some people can use those resources for compu-
tation. The most well-know example, or better to say, the original distributed comput-
ing facility example of such Grids is the underlying infrastructure of the SETI@home
project [1]. In Grids, similar to the concepts of SETI@home, personal computers owned
by individuals are connected to some servers to form a large computing infrastructure.
Such systems are called with the terms: Internet-based distributed computing, public
Internet computing or desktop grid; we use the term desktop grid (DG) from now on. A
PC owner should just install one program package, register herself on the web page of
the Grid system and configure the program by simply giving the address of the central
server. Afterwards, the local software runs in background (e.g. as a screensaver) and
the owner does not need to take care of the Grid activity of her computer. In a desktop
grid, applications can be performed in the well-known master-worker paradigm. The
application is split up into many small subtasks (e.g. splitting input data into smaller,
independent data units) that can be processed independently. Subtasks are processed
by the individual PCs, running the same executable but processing different input data.
The central server of the Grid runs the master program, which creates the subtasks
and processes the incoming sub-results. The main advantage of a desktop grid is its
simplicity thus, allowing anyone to join. The main disadvantage is that currently only
problems computable by the master-worker paradigm can be implemented on such a
system. Desktop grids have already been used at world-wide scales to solve very large
computational tasks in cancer research [2], in search for the sign of extraterrestrial in-
telligence [1], climate predictions [3] and so on.

Desktop grids can be used efficiently and conveniently in smaller scales as well. We
believe that small scale desktop grids can be the building blocks of a larger Grid. This is
a new concept that can bring closer the two directions of Grid developments. It is easy
to deploy desktop grids in small scale organisations and to connect individual PCs into
it therefore we get a grid system that can spread much faster then heavy-weight grid
implementations. On the other hand, if such desktop grids can share the resources and
their owners can use others’ desktop grid resources, the support of the many users of the
other trend is also realised. The realisation steps towards such collaboration of desktop
grids consist of the support of clusters (so they are easy to include as a resource), the
hierarchy of desktop grids within a large organisation with several levels of hierarchy,
and the resource sharing among independent desktop grids in different organisations.

SZTAKI Desktop Grid realizes these steps, starting from an established standalone
desktop grid infrastructure as building block. It is extended to include clusters as single
powerful PCs into the desktop grid computational resource set, while using their local
resource management system. Then, such building blocks support overtaking additional
tasks from other desktop grids, enabling the set-up of a hierarchy of DGs. The final goal
of creating a large-scale Grid from DGs as building blocks will be investigated in the
recently submitted EU project called as COCIDE. In this paper, the SZTAKI Desktop

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Desktop Grid System 29

Grid is described, from the basic single desktop grid to the support of clusters and to
the hierarchy of desktop grids.

1.1 Related Work

Condor. Condor’s approach is radically different from the DG concept. Condor [14]
represents a push model by which jobs can be submitted into a local Grid (Cluster) or
global Grid (friendly condor pools or Globus Grid [11]). The DG concept applies the
pull model whereby free resources can call for task units. The advantage of the DG
concept is that it is highly scalable (even millions of desktops can be handled by a DG
server) and extremely easy to install at the desktop level. The scalability of Condor
is not proven yet. Largest experiments are at the level of 10000 jobs in EGEE but it
requires an extremely complicated Grid middleware infrastructure that is difficult to
install and maintain at the desktop level.

BOINC. BOINC (Berkeley Open Infrastructure for Network Computing, see [4], [5])
is developed by the SETI@home group in order to create an open infrastructure that
could be the base for all large-scale scientific projects that are attractive for public in-
terest and that can use millions of personal computers for processing their data. This
concept enables millions of PC owners to install single software (the BOINC client)
and then, each of them can decide what project they support with the empty cycles of
their computers. There is no need to delete, reinstall and maintain software packages
to change among the projects. As of October 2006, there are over two dozens BOINC-
based projects overall in the world using more than a 1.4 million hosts providing 476
TeraFLOPS computational power.

The properties of BOINC can be used for smaller scale, combining the power of the
computers at institutional level, or even at department level. The SZTAKI Desktop Grid
is based on BOINC since this is a well-established open source project that already
proved its feasibility and scalability. The basic infrastructure of SZTAKI Desktop Grid
is provided by a BOINC server installation and the connected PCs at a given organisa-
tional level. The support of clusters and the organization of such BOINC-based desktop
Grids are the new features that SZTAKI Desktop Grid provides over BOINC.

XtremWeb. XtremWeb [6] is a research project, which, similarly to BOINC, aims
to serve as a substrate for Global Computing experiments. Basically, it supports the
centralised set-up of servers and PCs as workers. In addition, it can also be used to build
a peer-to-peer system with centralised control, where any worker node can become a
client that submits jobs. It does not allow storing data, it allows only job submission.

Commercial Desktop Grids. There are several companies providing a Desktop Grid
solution for enterprises [7] [8] [9] [10]. The most well-known examples are the En-
tropia Inc, and the United Devices. Those systems support the desktops, clusters and
database servers available at an enterprise. However, their cluster connection solution is
not known for the research community and it is very likely that their model is based on
the push model. Our goal is to develop a pull model solution since it is consistent with
the current BOINC concept.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

30 P. Kacsuk, N. Podhorszki, and T. Kiss

2 SZTAKI Desktop Grid

The basic idea of SZTAKI Desktop Grid is first, to provide a basic DG infrastructure
that is easy to install, to maintain and to use at an organisational level. This basic infras-
tructure enables us to connect PCs within a department and to run (small) distributed
projects on it. Second, clusters are supported as they are increasingly available at many
departments of institutions and companies as well. Third, the hierarchical structure of
an organisation needs the possibility of connecting such departmental desktop grids into
an infrastructure where larger projects can use more resources than available within one
department. Fourth, more generally, to make possible the resource sharing among desk-
top grids that are not related in a hierarchical way. In this way, small-scale desktop
grids, which are easy to install, can be the building blocks of a large grid infrastructure.

2.1 Single Organisation’s Desktop Grid

SZTAKI Desktop Grid is based on the BOINC infrastructure, as we believe that it pro-
vides everything that is needed for a basic desktop grid with one (running on a single
machine or on multiple machines) server and many workers. The infrastructure for ex-
ecuting computational tasks and for storing data sets is used only. Its support for user
credits, teams and the web-based discussion forums are not relevant for an organisa-
tion but, of course, all these features are available if needed. Note that while BOINC
had been designed for large public projects originally, here it is used within different
circumstances. A typical BOINC project is about only one application and individual
people (at home) select between such BOINC projects (identified by their (only) appli-
cation) that they want to support. In an organisation, there are several applications in the
only BOINC “project” and the only individual is the administrator with all the machines
within the organisation. Thus, many different applications use the shared resources.

The BOINC-based desktop grid within an organisation (institution, or just a depart-
ment) enables

– to connect PCs in the organisation into the desktop grid,
– to install several distributed computing projects on the desktop grid,
– and to use the connected PCs to compute subtasks of those projects.

As Figure 1 shows, there is a Scheduler Server and a Data Server in the BOINC
infrastructure, however, they can be simply installed on one computer but also they
can exist in multiple instances as well, depending on the central processing needs of
a project. Scheduler Server stores all information about available platforms, applica-
tion programs, subtasks, connected machines (and users) and results for subtasks. Data
Server stores all executables, input and output files. On each PC, a core client is running
that downloads application client executables, subtasks (describing actual work) and in-
put files to perform the subtasks. The main application on the top level has to generate
the sequential subtasks and to process subresults. BOINC gives tools and support for
generic distributed projects to do that, however, SZTAKI provides a much simpler and
easier-to-use API, called DC-API. The use of this API enables scientist just concentrate
on task generation and processing results without knowing even what grid infrastruc-
ture is serving the processing needs. Of course, the use of the API is not obligatory, one
can use BOINC’s tools as well.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Desktop Grid System 31

Fig. 1. BOINC-based Desktop Grid infrastructure

2.2 Supporting Clusters Within SZTAKI Desktop Grid

BOINC in itself does not provide any support for clusters. It has a server that generates
work and there are clients that do the work (actually several ones on an SMP node, one
subtask per CPU). The need for cluster support is clear. No one would like to develop a
sophisticated distributed application that uses partly the desktop grid and partly a clus-
ter, all with different concepts, APIs and syntaxes. Cluster’s job management concept
is more general than the execution of work units (subtasks) within a desktop grid there-
fore, the latter one can be mapped onto the previous one. There are five possibilities in
extending the BOINC infrastructure for cluster support.

1. A desktop grid client is installed on all machines of the cluster and connected to the
server of the desktop grid of the given organisation, i.e. all machines of the cluster
participate individually, as a normal PC in the desktop grid.

2. A complete desktop grid is installed on the cluster, with the server on the front-end
node, and all machines connected to it. This way, the cluster can participate in a
larger desktop grid as one leaf element in a hierarchy, see section 2.3.

3. An independent, higher-level broker distributes work among clusters and desktop
grids.

4. The server of the desktop grid should be aware of the presence of a cluster and
submit jobs instead of work units,

5. An extended version of a single desktop grid client is installed onto the cluster’s
front-end, which converts desktop grid work units into traditional jobs and submits
them to the cluster’s job management.

The first possibility is easy to achieve, only the desktop grid client should be in-
stalled on the machines, see Figure 2. The configuration of BOINC core client consist

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

32 P. Kacsuk, N. Podhorszki, and T. Kiss

of defining a registered user’s ID and the project server URL. Settings for the user’s
preferences are defined on the project web server, and settings are propagated to all
clients with the same user ID. BOINC provides easy install on multiple machines based
on one installation therefore, the whole procedure is very easy.

However, if the cluster is not a brand new one or the owners do not want to use
it exclusively for the desktop grid, a job manager is surely installed and used on that
cluster. This means, that the job manager and the desktop grid clients are competing for
the spare cycles of the computers. The job manager’s role is to coordinate the resources
within a cluster and to balance the load on it. Desktop grid clients and subtasks coming
from the desktop grid server are out of the view for the job manager therefore, it is not
able to function properly.

Fig. 2. Clusters 1. All machines are clients Fig. 3. Clusters 2: stand-alone desktop grid

The second possibility (see Figure 3) by-passes the job manager as well, having
the same drawback and therefore, it is not recommended. However, if the hierarchy of
desktop grids are a reality, this option can be considered as a free solution for connecting
a cluster into an existing desktop grid.

Usually, we may think at first that if different things are to be connected and to work
together, there is a need for a higher-level actor that distributes work among those things
and takes care of the good balance, as in the third possibility. That is, in our case, an
appropriate broker is needed that is able to gather information about the status of the
different entities (desktop grids and clusters), to decide where to send the next piece of
work and to convert subtasks into work units or jobs according to the target system, see
Figure 4. Such an approach is followed in the Lattice project [12], which is developing a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Desktop Grid System 33

community-based Grid system that integrates Grid middleware technologies and widely
used life science applications. This system deals with traditional jobs, i.e. executables,
input data and definition of requirements and preferences. Jobs are submitted to a mod-
ified version of the Condor-G broker [13] that sends a job either to a Globus-based grid
or to a BOINC-based desktop grid.

In this case, a desktop grid is just one element among others. Different grid imple-
mentations can be connected together this way if appropriate conversion between the
different concepts, representations and syntaxes can be managed.

Fig. 4. Cluster 3: High-level brokering of jobs

The fourth possibility keeps the heading role of the desktop grid server, see Figure
5. In this scenario, there is a desktop grid as “the grid”, in which clusters are connected
from “below”. The server should be configured in a way that it knows about the cluster,
its static status information (size, benchmark information) and its dynamic status infor-
mation (number of available machines) - the same way, as the broker of the third option
should do. As in the basic desktop grid, work is distributed by the server; however,
it can decide to send some work to the cluster. In this case, the work unit representa-
tion should be converted to the job representation, which can be submitted to the job
manager of the cluster.

This solution needs lot of development of the server’s implementation. A monitoring
system should be used to get status information about the cluster, such information
should be stored and handled somehow, decision logic should be altered - all these
tasks are also part of the third option. Besides that, the internal work unit should be
converted into a traditional job and the server should be able to contact the job manager
of the cluster remotely and submit jobs. As we mentioned, work unit representations
can be mapped onto job representations therefore, this is quite a simple task.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

34 P. Kacsuk, N. Podhorszki, and T. Kiss

The fifth possibility is the most elegant way of including clusters into the desktop
grid, see Figure 6. In a desktop grid, client machines are connecting to the server and
ask for work; this is called pull-mode. In contrast, job managers and grids of the first
trend mentioned in the introduction submit work (jobs) to selected resources (push-
mode). In this option, clusters can participate in the pull-mode execution of the desktop
grid. A desktop grid client originally asks for a given amount of work to be processed
on the given machine. However, with some modification, it can ask for many work
units, transform them into jobs and submit them into a cluster. The desktop grid server
can see it as a normal, but somewhat very powerful client. In this solution, only the
client should be modified, and since it is running on the front-end node of the cluster,
information gathering and job submission are easy to perform.

Fig. 5. Clusters 4: Submit jobs from server Fig. 6. Clusters 5: Special DG client on the
front-end

We have chosen the fifth possibility for SZTAKI Desktop Grid, because this way
clusters are seamlessly integrated into it, it keeps the role of the job manager of the
cluster and it requires less modifications than the others.

2.3 Hierarchical Desktop Grid

Departments can be satisfied by using the basic SZTAKI Desktop Grid with cluster sup-
port. All PCs and clusters of a department can be connected into one local (department
level) DG system and distributed projects can use all these resources. It is natural to ask,
what if there are several departments using their own resources independently but there
is an important project at a higher organisational level (e.g. at a school or campus level

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Desktop Grid System 35

of a university or at university level). Having the previous set-up in the departments,
only one of the departments can be selected to run the project. Of course, the ideal
would be to use all departments’ resources for that project. Besides again developing
something new component (e.g. a broker) to control over the different desktop grids,
there is the possibility to build a hierarchy of desktop grids - if the building blocks can
enable it as shown in Figure 7. In such a hierarchy, desktop grids on the lower level can
ask for work from higher level (pull mode), or vice versa, desktop grids on the higher
level can send work to the lower levels (push mode).

SZTAKI Desktop Grid supports the pull mode, as this is the original way how desk-
top grids work. The control of important work on the higher level can be realised with
priority handling on the lower level. A basic SZTAKI Desktop Grid can be configured
to participate in a hierarchy, that is, to connect to a higher-level instance of SZTAKI
Desktop Grid (parent node in the tree of the hierarchy). When the child node (a stand-
alone desktop grid) has less work than resources available, it asks for work from the
parent. The parent node can see the child as one powerful client, exactly as in the case
of a cluster, which asks for work units.

Fig. 7. Hierarchy of desktop grids

Of course, the BOINC-based server has to be extended to ask for work from some-
where else (i.e., behave similarly as a client) when there is not enough work locally.
Fortunately, this can be done separately in the case of BOINC. Work units are gener-
ated by the running applications and they are put into a database of the BOINC server.
Whether a work unit arrives from outside or from a local application, it does not matter.
Therefore, it is enough to create a new daemon on the server machine that observes
the status of the desktop grid. When client machines’ requests for work are rejected -
or when the daemon predicts that this will happen soon - the daemon can turn to the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

36 P. Kacsuk, N. Podhorszki, and T. Kiss

parent desktop grid and ask for work units. The daemon behaves towards the parent as
a BOINC client, asking for work and reporting results. However, it puts all those work
units into the database of the local server thus, client machines will process them and
give the results. The daemon should also wait and look for the incoming results and
send them back to the parent.

However, there is the issue of applications when we want to connect two BOINC-
based desktop grids. In the BOINC infrastructure, application executables should be
registered in the server and signed with a private key (of the project). Clients always
check if the downloaded executable is registered and valid thus, avoiding the possibility
of spreading arbitrary code by hackers. A parent desktop grid is an alien to the child in
this sense; executables registered in the parent desktop grid should be registered before
work units using that executables can be processed.

In BOINC, for security reasons, the private key of a project should be stored on a
machine that is separated from the network. Application client executables should be
signed by the administrator of the projects and only the signature should be copied from
that separated machine. The signature is checked by using the public key at the client
level. If a client machine receives work units from projects belonging to different levels
of the DG hierarchy, the client should know the public keys of all the servers placed
above it in the DG hierarchy. When a work unit arrives it should contain the source
level’s identifier based on which the desktop will know which public key to use for
checking the signature of the code.

2.4 The SZTAKI Desktop Grid Service

One of our goal is to connect several organisation level Desktop Grids in Hungary
using the SZTAKI Desktop Grid (similarly as HunGrid tries to gather institutional clus-
ters into a virtual organization of the EGEE Grid infrastructure). To achiveve this, first
we need to establish several such standalone Desktop Grids that will allow then each
other share the resources. In order to demonstrate the strength and usage of the DG
concept for Hungarian institutes SZTAKI has created a new BOINC-like DG service
called as SZDG [15], named simply after SZTAKI Desktop Grid, not after its single
application as usually BOINC projects do. The task to be solved by SZDG is a math
problem of generating 11-dimension binary number systems. These can contribute to
develop new encryption algorithms for safer security systems. SZDG has been run-
ning since July 2005 and shortly after that extracted more than 3500 participants and
more than 5500 machines from all over the world. The performance of SZDG varies
between 100 GigaFLOPS and 1.5 TeraFLOPS depending on how much resources are
actively computing SZDG tasks (people share their resources among many BOINC
based projects).

Though SZDG works the same way as the other global DG systems and is basi-
cally yet another BOINC project with one application, its basic role is to provide an
experimental system for Hungarian institutes and companies to learn the technology
and its possible usage as local DG system. We have found that institutes are very cau-
tious with the usage of Grid technology and hence in order to convince them about
the usefulness and safety of the DG systems they can test the DG technology in three
phases:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Desktop Grid System 37

1. Phase 1: Test the client side. Staff members of institutes can connect their PCs to
the demo project thus, participating in one large-scale computing project; similarly,
as people all over the world participate in BOINC, XtremWeb and Grid.org based
projects. In this way they can be convinced that the client components of SZTAKI
Desktop Grid are safe enough and do not cause any harm to their desktop machines.

2. Phase 2: Test the server side with their own application. If an institute has a problem
that needs large computing power to solve, SZTAKI helps to create a new project on
SZDG and provides the central server for that project. The institute should provide
the PCs and clusters for SZDG to work on that project. In this way the desktops
of the institute will work on the institute’s project separated from other projects
running on SZDG.

3. Finally, if the institute is convinced on the usefulness of the SZTAKI Desktop Grid
concept SZTAKI can help them to set-up and maintain their own local DG system
based on the SZTAKI Desktop Grid concept.

3 Conclusion

In this paper the structure of SZTAKI Desktop Grid is presented, discussing the pos-
sibilities of the support of clusters within a desktop grid. SZTAKI Desktop Grid uses
the BOINC infrastructure as a basic building block for connecting PCs to solve large
scale distributed programs. It is extended by the support of clusters by installing a mod-
ified version of the PC client that converts incoming subtasks into traditional jobs and
submits them to the cluster’s job manager. Such a desktop grid, as a building block, is
then used to build a hierarchy of DGs in an institute or company to provide individual
desktop grids to the lower level organisational units but also to provide a larger infras-
tructure to solve problems on the higher level. The ability to propagate work from one
desktop grid to the other (but only in a hierarchy) is a step towards a grid infrastructure
that is easy to install and has several users that share resources. This means that in the
future DG based grid systems these two features will not exclude each others as they
currently do in today’s grid systems.

References

1. D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer: SETI@home: An Experi-
ment in Public-Resource Computing. Communications of the ACM, Vol. 45 No. 11, Novem-
ber 2002, pp. 56-61

2. United Devices Cancer Research Project: http://www.grid.org/projects/
cancer

3. D. A. Stainforth et al.: Uncertainty in the predictions of the climate response to rising levels
of greenhouse gases. Nature, 27 January 2005, vol 433.

4. D. P. Anderson: BOINC: A System for Public-Resource Computing and Storage. 5th
IEEE/ACM International Workshop on Grid Computing, November 8, 2004, Pittsburgh,
USA. http://boinc.berkeley.edu/grid paper 04.pdf

5. BOINC Home Page: http://boinc.berkeley.edu
6. G. Fedak, C. Germain, V. Néri and F. Cappello: XtremWeb: A Generic Global Computing

System. CCGRID2001 Workshop on Global Computing on Personal Devices, May 2001,
IEEE Press.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.grid.org/projects/cancer
http://www.grid.org/projects/cancer
http://boinc.berkeley.edu/grid_paper_04.pdf
http://boinc.berkeley.edu

38 P. Kacsuk, N. Podhorszki, and T. Kiss

7. Grid MP, United Devices Inc. http://www.ud.com
8. Platform LSF, Platform Computing. http://www.platform.com
9. A. A. Chien: Architecture of a commercial enterprise desktop Grid: the Entropia system.

Grid Computing - Making the Global Infrastructure a Reality. Ed. F. Berman, A. Hey and G.
Fox. John-Wiley & Sons, Ltd. Chapter 12. 2003

10. DeskGrid, Info Design Inc. http://www.deskgrid.com
11. I. Foster, C. Kesselman: Globus: A Metacomputing Infrastructure Toolkit. Intl J. Supercom-

puter Applications, 11(2):115-128, 1997.
12. Myers, D. S., and M. P. Cummings: Necessity is the mother of invention: a simple grid

computing system using commodity tools. Journal of Parallel and Distributed Computing,
Volume 63, Issue 5, May 2003, pp. 578-589.

13. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke: Condor-G:
A Computation Management Agent for Multi-Institutional Grids. Proceedings of the Tenth
IEEE Symposium on High Performance Distributed Computing (HPDC10) San Francisco,
California, August 7-9, 2001.

14. D. Thain, T. Tannenbaum and M. Livny: Condor and the Grid. Grid Computing - Making the
Global Infrastructure a Reality. Ed. F. Berman, A. Hey and G. Fox. John-Wiley & Sons, Ltd.
Chapter 11. 2003

15. SZTAKI Desktop Grid: http://szdg.lpds.sztaki.hu/szdg/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.ud.com
http://www.platform.com
http://www.deskgrid.com
http://szdg.lpds.sztaki.hu/szdg/

Analyzing Overheads and Scalability

Characteristics of OpenMP Applications�

Karl Fürlinger and Michael Gerndt

Technische Universität München
Institut für Informatik

Lehrstuhl für Rechnertechnik und Rechnerorganisation
{Karl.Fuerlinger, Michael.Gerndt}@in.tum.de

Abstract. Analyzing the scalability behavior and the overheads of
OpenMP applications is an important step in the development process
of scientific software. Unfortunately, few tools are available that allow an
exact quantification of OpenMP related overheads and scalability char-
acteristics. We present a methodology in which we define four overhead
categories that we can quantify exactly and describe a tool that imple-
ments this methodology. We evaluate our tool on the OpenMP version
of the NAS parallel benchmarks.

1 Introduction

OpenMP has emerged as the standard for shared-memory parallel programming.
While OpenMP allows for a relatively simple and straightforward approach to
parallelizing an application, it is usually less simple to ensure efficient execution
on large processor counts.

With the widespread adoption of multi-core CPU designs, however, scalability
is likely to become increasingly important in the future. The availability of 2-core
CPUs effectively doubles the number of processor cores found in commodity SMP
systems based for example on the AMD Opteron or Intel Xeon processors. This
trend is likely to continue, as the road-maps of all major CPU manufacturers
already include mulit-core CPU designs. In essence, performance improvement is
increasingly going to be based on parallelism instead of improvements in single-
core performance in the future [13].

Analyzing and understanding the scalability behavior of applications is there-
fore an important step in the development process of scientific software. Ineffi-
ciencies that are not significant at low processor counts may play a larger role
when more processors are used and may limit the application’s scalability. While
it is straightforward to study how execution times scale with increasing proces-
sor numbers, it is more difficult to identify the possible reasons for imperfect
scaling.

� This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG)
under contract GE1635/1-1.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 39–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

40 K. Fürlinger and M. Gerndt

Here we present a methodology and a tool to evaluate the runtime character-
istics of OpenMP applications and to analyze the overheads that limit scalability
at the level of individual parallel regions and for the whole program. We apply
our methodology to determine the scalability characteristics of several bench-
mark applications.

2 Methodology

To analyze the scalability of OpenMP applications we have extended our Open-
MP profiler ompP [6] with overhead classification capability. ompP is a profiler for
OpenMP programs based on the POMP interface [9] that relies on source code
instrumentation by Opari [10]. ompP determines execution counts and times for
all OpenMP constructs (parallel regions, work-sharing regions, critical sections,
locks, . . .) in the target application. Depending on the type of the region different
timing and count categories are reported.

ompP consists of a monitoring library that is linked to an OpenMP application.
Upon termination of the target application, ompP writes a profiling report to a
file. An example output of ompP for a critical section region is shown in Fig. 1.
A table that lists the timing categories reported by ompP for the different region
types is shown in Fig. 2, a particular timing is reported if a “•” is present, the
counts reported by ompP are not shown in Fig. 2.

R00002 CRITICAL cpp_qsomp1.cpp (156-177)
TID execT execC enterT bodyT exitT
0 1.61 251780 0.87 0.43 0.31
1 2.79 404056 1.54 0.71 0.54
2 2.57 388107 1.38 0.68 0.51
3 2.56 362630 1.39 0.68 0.49
* 9.53 1406573 5.17 2.52 1.84

Fig. 1. Example ompP output for an OpenMP CRITICAL region. R00002 is the region
identifier, cpp qsomp1.cpp is the source code file and 156-177 denotes the extent of
the construct in the file. Execution times and counts are reported for each thread
individually, and summed over all threads in the last line.

The timing categories reported by ompP shown in Fig. 2 have the following
meaning:

– seqT is the sequential execution time for a construct, i.e., the time between
forking and joining threads for PARALLEL regions and for combined work-
sharing parallel regions as seen by the master thread. For a MASTER region it
similarly represents the execution time of the master thread only (the other
threads do not execute the MASTER construct).

– execT gives the total execution time for constructs that are executed by
all threads. The time for thread n is available as execT [n]. execT always
contains bodyT, exitBarT, enterT and exitT.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analyzing Overheads and Scalability Characteristics 41

seqT execT bodyT exitBarT enterT exitT

MASTER •
ATOMIC • (S)
BARRIER • (S)
USER REGION •
LOOP • • (I)
CRITICAL • • • (S) • (M)
LOCK • • • (S) • (M)
SECTIONS • • • (I/L)
SINGLE • • • (L)
PARALLEL • • • (I) • (M) • (M)
PARALLEL LOOP • • • (I) • (M) • (M)
PARALLEL SECTIONS • • • • (I/L) • (M) • (M)

Fig. 2. The timing categories reported by ompP for the different OpenMP constructs
and their categorization as overheads by ompP’s overhead analysis. (S) corresponds to
synchronization overhead, (I) represents overhead due to imbalance, (L) denotes limited
parallelism overhead, and (M) signals thread management overhead.

– bodyT is the time spent in the “body” of the construct. This time is reported
as singleBodyT for SINGLE regions and as sectionT for SECTIONS regions.

– exitBarT is the time spent in “implicit exit barriers”. I.e., in worksharing
and parallel regions OpenMP assumes an implicit barrier at the end of the
construct, unless a nowait clause is present. Opari adds an explicit barrier
to measure the time in the implicit barrier.

– enterT and exitT are the times for entering and exiting critical sections
and locks. For parallel regions enterT is reported as startupT and corre-
sponds to the time required to spawn threads. Similarly, exitT is reported
as shutdownT and represents thread teardown overhead.

2.1 Overhead Analysis

From the per-region timing data reported by ompP we are able to analyze the
overhead for each parallel region separately, and for the program as a whole. We
have defined four overhead categories that can be exactly quantified with the
profiling data provided by ompP:

Synchronization: Overheads that arise because threads need to coordinate
their activity. An example is the waiting time to enter a critical section or
to acquire a lock.

Imbalance: Overhead due to different amounts of work performed by threads
and subsequent idle waiting time, for example in work-sharing regions.

Limited Parallelism: This category represents overhead that results from un-
parallelized or only partly parallelized regions of code. An example is the
idle waiting time threads experience while one thread executes a single
construct.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

42 K. Fürlinger and M. Gerndt

Thread Management: Time spent by the runtime system for managing the
application’s threads. That is, time for creation and destruction of threads
in parallel regions and overhead incurred in critical sections and locks for
signaling the lock or critical section as available (see below for a more detailed
discussion).

The table in Fig. 2 details how timings are attributed to synchronization (S),
imbalance (I), limited parallelism (L), thread management overhead (M), and
work (i.e., no overhead). This attribution is motivated as follows:

– exitBarT in work-sharing or parallel regions is considered imbalance over-
head, except for single regions, where the reason for the time spent in the
exit barrier is assumed to be limited parallelism. The time in the exit barrier
of a sections construct is either imbalance or limited parallelism, depend-
ing on the number of section constructs inside the sections construct,
compared to the number of threads. If there are fewer sections than threads
available, the waiting time is considered limited parallelism overhead and
load imbalance otherwise.

– The time spent in barrier and atomic constructs is treated as synchroniza-
tion overhead.

– The time spent waiting to enter a critical section or to acquire a lock is
considered synchronization overhead. Opari also adds instrumentation to
measure the time spent for leaving a critical section and releasing a lock.
These times reflect the overhead of the OpenMP runtime system to signal
the lock or critical section being available to waiting threads. Hence, these
overheads do not relate to the synchronization requirement of the threads
but rather represent an overhead related to the implementation of the run-
time system. Consequently, the resulting waiting times are treated as thread
management overhead.

– The same considerations as above hold true for startupT and shutdownT
reported for parallel regions. This is the overhead for thread creation and
destruction, which is usually insignificant, except in cases where a team of
threads is created and destroyed repeatedly (if, for example, a small para-
llel region is placed inside a loop). Again, this overhead is captured by in
the thread management category.

The overheads for each category are accumulated for each parallel region in the
program separately. That is, if a parallel region P contains a critical section C,
C’s enter time will appear as synchronization overhead in P ’s overhead statistics.
Note that, while ompP reports inclusive timing data in its profiling reports, the
timing categories related to overheads are never nested and never overlap. Hence,
a summation of each sub-region’s individual overhead time gives the correct total
overhead for each parallel region.

An example of ompP’s overhead analysis report is shown in Fig. 3 (the columns
corresponding to the thread management overhead category are omitted due to
space limitations). The first part of the report, denoted by a©, gives general

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analyzing Overheads and Scalability Characteristics 43

information about the program run. It lists the total number of parallel regions
(OpenMP parallel constructs and combined parallel work-sharing constructs),
the total wallclock runtime and the parallel coverage (or parallel fraction). The
parallel coverage is defined as the fraction of wallclock execution time spent inside
parallel regions. This parameter is useful for estimating the optimal execution
time according to Amdahl’s law on p processors as

Tp =
T1α1

p
+ T1(1 − α1),

where Ti is the execution time on i processors and α1 is the parallel coverage of
an execution with one thread.

Section b© lists all parallel regions of the program with their region identifiers
and location in the source code files, sorted by their wallclock execution time.

Part c© shows the parallel regions in the same order as in part b© and details
the identified overheads for each category as well as the total overhead (Ovhds
column). The total runtime is given here accumulated over all threads (i.e., Total
= wallclock runtime × number of threads) and the percentages for the overhead
times shown in parenthesis refer to this runtime.

The final part in the overhead analysis report (d©) lists the same overhead
times but the percentages are computed according to the total runtime of the
program. The regions are also sorted with respect to their overhead in this
section. Hence, the first lines in section d© show the regions that cause the most
significant overall overhead as well as the type of the overhead. In the example
shown in Fig. 3, the most severe inefficiency is imbalance overhead in region
R00035 (a parallel loop in y solve.f, lines 27-292) with a severity of 3.44%.

2.2 Scalability Analysis

The overhead analysis report of ompP gives valuable insight into the behavior of
the application. From analyzing overhead reports for increasing processor counts,
the scalability behavior of individual parallel regions and the whole program can
be inferred. We have implemented the scalability analysis as a set of scripts that
take several ompP profiling reports as input and generate data to visualize the
program’s scalability as presented in Sect. 3.

The graphs show the change of the distribution of overall time for increasing
processor counts. That is, the total execution time as well as each overhead
category is summed over all threads and the resulting accumulated times are
plotted for increasing processor numbers.

3 Evaluation

To evaluate the usability of the scalability analysis as outlined in this paper, we
test the approach on the OpenMP version of the NAS parallel benchmarks [8]
(version 3.2, class “C”). Most programs in the NAS benchmark suite are derived
from CFD applications, it consists of five kernels (EP, MG, CG, FT, IS) and three

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

44 K. Fürlinger and M. Gerndt

--
----- ompP Overhead Analysis Report ----------------------
--

a© Total runtime (wallclock) : 736.82 sec [4 threads]
Number of parallel regions : 14
Parallel coverage : 736.70 sec (99.98%)

b© Parallel regions sorted by wallclock time:
Type Location Wallclock (%)

R00018 parall rhs.f (16-430) 312.48 (42.41)
R00037 ploop z_solve.f (31-326) 140.00 (19.00)
R00035 ploop y_solve.f (27-292) 88.68 (12.04)
R00033 ploop x_solve.f (27-296) 77.03 (10.45)
...

* * * 736.70 (99.98)

c© Overheads wrt. each individual parallel region:
Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%)

R00018 1249.91 0.44 (0.04) 0.00 (0.00) 0.35 (0.03) 0.00 (0.00)
R00037 560.00 100.81 (18.00) 0.00 (0.00) 100.72 (17.99) 0.00 (0.00)
R00035 354.73 101.33 (28.56) 0.00 (0.00) 101.24 (28.54) 0.00 (0.00)
R00033 308.12 94.62 (30.71) 0.00 (0.00) 94.53 (30.68) 0.00 (0.00)
...

d© Overheads wrt. whole program:
Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%)

R00035 354.73 101.33 (3.44) 0.00 (0.00) 101.24 (3.44) 0.00 (0.00)
R00037 560.00 100.81 (3.42) 0.00 (0.00) 100.72 (3.42) 0.00 (0.00)
R00033 308.12 94.62 (3.21) 0.00 (0.00) 94.53 (3.21) 0.00 (0.00)
...

* 2946.79 308.52 (10.47) 0.00 (0.00) 307.78 (10.44) 0.00 (0.00)

Fig. 3. Example overhead analysis report generated by ompP, the columns related to
the thread management category (Mgmt) are omitted due to space limitations

BT CG EP FT IS LU MG SP

MASTER 4 13 2 4
ATOMIC 2 1 2 1
BARRIER 1 3
LOOP 25 13 1 1 30 5 25
CRITICAL 1
LOCK
SECTIONS
SINGLE 6
PARALLEL 6 9 1 2 8 2 6
PARALLEL LOOP 4 5 1 8 2 1 8 8
PARALLEL SECTIONS

Fig. 4. The OpenMP constructs found in the NAS parallel benchmarks version 3.2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analyzing Overheads and Scalability Characteristics 45

simulated CFD applications (LU, BT, SP). Fig. 4 shows the characteristics of
the benchmark applications with respect to the OpenMP constructs used for
parallelization.

Fig. 6 presents the result of the scalability analysis performed on a 32 CPU
SGI Altix machine, based on Itanium-2 processors with 1.6 GHz and 6 MB L3
cache, used in batch mode. The number of threads was increased from 2 to 32.
The graphs in Fig. 6 show the accumulated runtime over all threads. Hence, a
horizontal line corresponds to a perfectly scaling code with ideal speedup. For
convenience, a more familiar speedup graph (with respect to the 2-processor run)
computed from the same data is shown in Fig. 5.

� � � �� �� �� �� �� ��

�

�

�

�

�

��

��

��

��

��

��

	
��

��

��

��

��

	�

�

��

��

�
�

�
�

�

�

������ �� �����
�

Fig. 5. Speedup achieved by the NAS benchmark programs relative to the 2-processor
execution

In Fig. 6, the total runtime is divided into work and the four overhead cate-
gories, and the following conclusions can be derived:

– Overall, the most significant overhead visible in the NAS benchmarks is
imbalance, only two applications show significant synchronization overhead,
namely IS and LU.

– Some applications show a surprisingly large amount of overhead, as much
as 20 percent of the total accumulated runtime is wasted due to imbalance
overhead in SP.

– Limited parallelism does not play a significant role in the NAS benchmarks.
While not visibly discernable in the graphs in Fig. 6 at all, the overhead is
actually present for some parallel regions albeit with very low severity.

– Thread management overhead is present in the applications, mainly in CG,
IS and MG, although it is generally of little importance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

46 K. Fürlinger and M. Gerndt

(a) BT. (b) CG.

(c) EP. (d) FT.

(e) IS. (f) LU.

Fig. 6. Scaling of total runtime and the separation into work and overhead categories
for the NAS OpenMP parallel benchmarks (BT, CG, EP, FT, IS, LU, MG, and SP)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analyzing Overheads and Scalability Characteristics 47

(g) MG. (h) SP.

Fig. 6. (continued)

(a) Work performed in the four most im-
portant parallel regions of BT.

(b) Total overhead incurred in the four
most important parallel regions of BT.

Fig. 7. Detailed scalability analysis at the level of individual parallel regions of the BT
application. The four most important parallel regions are analyzed with respect to the
work performed and the overheads incurred for each region individually.

– EP scales perfectly, it has almost no noticeable overhead.
– The “work” category increases for most applications and does not stay con-

stant, even though the actual amount of work performed is independent of
the number of threads used. This can be explained with overhead categories
that are currently not accounted for by ompP, for example increasing mem-
ory access times at larger processor configurations. Additional factors that
influence the work category are the increasing overall cache size (which can
lead to super-linear speedups) and an increased rate of cache conflicts at
larger systems. This issue is discussed further in Sect. 5.

– For some applications, the summed runtime increases linearly, for others it
increases faster than linearly (e.g., IS scales very poorly).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

48 K. Fürlinger and M. Gerndt

– For LU, the performance increases super-linearly at first, then at six proces-
sors the performance starts to deteriorate. The reason for the super-linear
speedup is most likely the increased overall cache size.

ompP also allows for a scalability analysis of individual parallel regions. An
example for a detailed analysis of the BT benchmark is shown in Fig. 7. The
left part shows the scalability of the work category (without overheads), while
the right part shows the total overhead (all categories summed) for the four
most time consuming parallel regions. It is apparent that for powers of two, the
overhead (which is mainly imbalance) is significantly less than it is for other
configurations. A more detailed analysis of ompP’s profiling report and the appli-
cation’s source code reveals the cause: most overhead is incurred in loops with
an iteration count of 160, which is evenly divisible by 2, 4, 8, 16, and 32.

4 Related Work

Mark Bull describes a hierarchical classification scheme for temporal and spatial
overheads in parallel programs in [3]. The scheme is general (not dependant on
a particular programming model) and strives to classify overheads in categories
that are complete, meaningful, and orthogonal. Overhead is defined as the differ-
ence between the observed performance on p processors and the “best possible”
performance on p processors. Since the best possible performance is unknown
(it can at best be estimated by simulation), T ideal

p = T1
p is often used as an

approximation for the ideal performance on p processors. Thus

Tp = T ideal
p +

∑

i

Oi
p (1)

where Oi
p represent the overhead in category i. This is similar to our scheme with

the difference that ompP does not report overheads with respect to the wallclock
execution time but aggregated over all threads.

Bull’s hierarchical classification scheme has four categories at the top level:

– Information Movement
– Critical Path
– Control of Parallelism
– Additional Computation

While this scheme allows for a well defined conceptual breakdown of where an
application spends its time, ompP’s classification scheme is based on what can be
actually automatically be measured. For example, it is not possible to account
for additional computation automatically.

Bane and Riley developed a tool called Ovaltine [1,2] that performs overhead
analysis for OpenMP code. The overhead scheme of Ovaltine is based on the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analyzing Overheads and Scalability Characteristics 49

classification scheme by Bull. Ovaltine performs code instrumentation based on
the Polaris compiler. Not all overheads in Ovaltine’s scheme can be computed
automatically. For example the cost of acquiring a lock has to be determined em-
pirically. Practically, only the “load imbalance” and “unparallelized” overheads
are computed automatically in Ovaltine as described in [1].

Scal-Tool [11] is a tool for quantifying the scalability bottlenecks of shared
memory codes. The covered bottlenecks include insufficient cache, load imbal-
ance and synchronization. Scal-Tool is based on an empirical model using cycles-
per-instruction (CPI) breakdown equations. From a number of measurement
(fixed data-set, varying number of processors and varying the size of the dataset
on a single processor, the parameters in the CPI equations can be estimated.
The result of the analysis is a set of graphs that augment the observed scala-
bility graph of the application with estimated scalability, if one or more of the
scalability bottlenecks (cache, load imbalance, synchronization) are removed.

Scalea [14] is a tool for performance analysis of Fortran OpenMP, MPI and
HPF codes. Scalea computes metrics based on a classification scheme derived
from Bull’s work. Scalea is able to perform overhead-to-region analysis and
region-to-overhead analysis. I.e., show a particular overhead category for all re-
gions or show all overhead categories for a specific region.

Fredrickson et al. [5] have evaluated the performance characteristics of the
class B of the NAS OpenMP benchmarks version 3.0 on a 72 processor Sun Fire
15K. The speedup of the NAS benchmarks is determined for up to 70 threads. In
their evaluation, CG shows super-linear speedup, LU shows perfect scalability,
FT scales very poorly and BT SP and MG show good performance (EP and IS
are not evaluated). In contrast, in our study CG shows relatively poor speedup
while LU shows super-linear speedup. Our results for FT, BT, SP, and MG are
more or less in-line with theirs.

Fredrickson et al. also evaluate “OpenMP overhead” by counting the number
of parallel regions and multiplying this number with an empirically determined
overhead for creating a parallel region derived from an execution of the EPCC
micro-benchmarks [4]. The OpenMP overhead is low for most programs, ranging
from less than one percent to five percent of the total execution time, for CG
the estimated overhead is 12%. Compared to our approach this methodology of
estimating the OpenMP overhead is less flexible and accurate, as for example it
does not account for load-imbalance situations and requires an empirical study
to determine the “cost of a parallel region”. Note that in ompP all OpenMP-
related overheads are accounted for, i.e., the work category does not contain any
OpenMP related overhead.

Finally, vendor-specific tools such as Intel Thread Profiler [7] and Sun Stu-
dio [12] often implement overhead classification schemes similar to ompP. How-
ever, these tools are limited to a particular platform, while ompP is compiler and
platform-independent and can thus be used for cross-platform overhead compar-
isons, for example.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

50 K. Fürlinger and M. Gerndt

5 Summary and Future Work

We presented a methodology for overheads- and scalability analysis of OpenMP
applications that we integrated in our OpenMP profiler ompP. We have defined
four overhead categories (synchronization, load imbalance, limited parallelism
and thread management) that are well defined and can explicitly be measured.
The overheads are reported per parallel region and for the whole program. ompP
allows for an exact quantification of all OpenMP related overheads.

From the overhead reports for increasing processor counts we can see how
programs scale and how the overheads increase in importance. We have tested
the approach on the NAS parallel benchmarks and were ably to identify some
key scalability characteristics.

Future work remains to be done to cover further overhead categories. What
is labeled Work in Fig. 5 actually contains overheads that are currently un-
accounted for. Most notably it would be important to account for overheads
related to memory access. Issues like accessing a remote processors memory
on a ccNUMA architecture like the SGI Altix and coherence cache misses im-
pact performance negatively while increased overall caches size helps perfor-
mance and can actually lead to negative overhead. For the quantification of
these factors we plan to include support for hardware performance counters
in ompP.

References

1. Michael K. Bane and Graham Riley. Automatic overheads profiler for OpenMP
codes. In Proceedings of the Second Workshop on OpenMP (EWOMP 2000),
September 2000.

2. Michael K. Bane and Graham Riley. Extended overhead analysis for OpenMP
(research note). In Proceedings of the 8th International Euro-Par Conference on
Parallel Processing (Euro-Par ’02), pages 162–166. Springer-Verlag, 2002.

3. J. Mark Bull. A hierarchical classification of overheads in parallel programs. In
Proceedings of the First IFIP TC10 International Workshop on Software Engi-
neering for Parallel and Distributed Systems, pages 208–219, London, UK, 1996.
Chapman & Hall, Ltd.

4. J. Mark Bull and Darragh O’Neill. A microbenchmark suite for OpenMP 2.0. In
Proceedings of the Third Workshop on OpenMP (EWOMP’01), September 2001.

5. Nathan R. Fredrickson, Ahmad Afsahi, and Ying Qian. Performance character-
istics of OpenMP constructs, and application benchmarks on a large symmetric
multiprocessor. In Proceedings of the 17th ACM International Conference on Su-
percomputing (ICS 2003), pages 140–149. ACM Press, 2003.

6. Karl Fürlinger and Michael Gerndt. ompP: A profiling tool for OpenMP. In
Proceedings of the First International Workshop on OpenMP (IWOMP 2005), May
2005. Accepted for publication.

7. Intel Thread Profiler http://www.intel.com/software/products/threading/tp/ .
8. H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of NAS parallel

benchmarks and its performance. Technical Report NAS-99-011, 1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.intel.com/software/products/threading/tp/

Analyzing Overheads and Scalability Characteristics 51

9. Bernd Mohr, Allen D. Malony, Hans-Christian Hoppe, Frank Schlimbach, Grant
Haab, Jay Hoeflinger, and Sanjiv Shah. A performance monitoring interface for
OpenMP. In Proceedings of the Fourth Workshop on OpenMP (EWOMP 2002),
September 2002.

10. Bernd Mohr, Allen D. Malony, Sameer S. Shende, and Felix Wolf. Towards a
performance tool interface for OpenMP: An approach based on directive rewriting.
In Proceedings of the Third Workshop on OpenMP (EWOMP’01), September 2001.

11. Yan Solihin, Vinh Lam, and Josep Torrellas. Scal-Tool: Pinpointing and quantify-
ing scalability bottlenecks in DSM multiprocessors. In Proceedings of the 1999 Con-
ference on Supercomputing (SC 1999), Portland, Oregon, USA, November 1999.

12. Sun Studio http://developers.sun.com/prodtech/cc/hptc index.html.
13. Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s Journal, 30(3), March 2005.
14. Hong-Linh Truong and Thomas Fahringer. SCALEA: A performance analysis tool

for parallel programs. Concurrency and Computation: Practice and Experience,
(15):1001–1025, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://developers.sun.com/prodtech/cc/hptc_index.html

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 52 – 65, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parallel Fuzzy c-Means Cluster Analysis

Marta V. Modenesi, Myrian C.A. Costa, Alexandre G. Evsukoff,
and Nelson F.F. Ebecken

COPPE/Federal University of Rio de Janeiro,
P.O. Box 68506, 21945-970 Rio de Janeiro RJ, Brazil

Tel.: (+55) 21 25627388; Fax: (+55) 21 25627392
modenesi@lamce.ufrj.br, myrian@nacad.ufrj.br,

alexandre.evsukoff@coc.ufrj.br, nelson@ntt.ufrj.br

Abstract. This work presents an implementation of a parallel Fuzzy c-means
cluster analysis tool, which implements both aspects of cluster investigation: the
calculation of clusters’ centers with the degrees of membership of records to
clusters, and the determination of the optimal number of clusters for the data, by
using the PBM validity index to evaluate the quality of the partition.

The work’s main contributions are the implementation of the entire cluster’s
analysis process, which is a new approach in literature, integrating to clusters
calculation the finding of the best natural pattern present in data, and also, the
parallel processing implementation of this tool, which enables this approach to
be used with vary large volumes of data, a increasing need for data analysis in
nowadays industries and business databases, making the cluster analysis a fea-
sible tool to support specialist’s decision in all fields of knowledge.

The results presented in the paper show that this approach is scalable and
brings processing time reduction as an benefit that parallel processing can bring
to the matter of cluster analysis.

Topics of Interest: Unsupervised Classification, Fuzzy c-Means, Cluster and
Grid Computing.

1 Introduction

The huge amount of data generated by data intensive industries such as Telecommu-
nications, Insurance, Oil & Gas exploration, among others, has pushed Data Mining
algorithms through parallel implementations [1, 2]. One requirement of data mining is
efficiency and scalability of mining algorithms. Therefore, parallelism can be used to
process long running tasks in a timely manner.

There are several different parallel data mining implementations being used or ex-
perimented, both in distributed and shared memory hardware [3], as so as in grid
environments [4]. All the main data mining algorithms have been investigated, such
as decision tree induction [5], fuzzy rule-based classifiers [6, 7], neural networks [8,
9], association rules’ mining [10, 11] and clustering [12, 13].

Data clustering is being used in several data intensive applications, including im-
age classification, document retrieval and customer segmentation (among others).
Clustering algorithms generally follows hierarchical or partitional approaches [14].
For the partitional approach the k-means and its variants, such as the fuzzy c-means
algorithm [13], are the most popular algorithms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Parallel Fuzzy c-Means Cluster Analysis 53

Partitional clustering algorithms require a large number of computations of dis-
tance or similarity measures among data records and clusters centers, which can be
very time consuming for very large data bases. Moreover, partitional clustering algo-
rithms generally require the number of clusters as an input parameter. However, the
number of clusters usually is not known a priori, so that the algorithm must be exe-
cuted many times, each for a different number of clusters and uses a validation index
to define the optimal number of clusters. The determination of the clusters’ numbers
and centers present on the data is generally referred to as cluster analysis.

Many cluster validity criteria have been proposed in the literature in the last years
[16, 17 and 18]. Validity indexes aim to answer two important questions in cluster
analysis: (i) how many clusters are actually present in the data and (ii) how good the
partition is. The main idea, present in most of the validity indexes, is based on the
geometric structure of the partition, so that samples within the same cluster should be
compact and different clusters should be separate. When the cluster analysis assigns
fuzzy membership functions to the clusters, “fuzziness” must be taken in account in a
way that the less fuzzy the partition is the better.

Usually, parallel implementations of clustering algorithms [12, 13] only consider
strategies to distribute the iterative process to find the clusters’ centers. In this work,
the entire cluster analysis is investigated, including the determination of the clusters’
centers and the optimal number of clusters.

The paper is organized as follows: next section the fuzzy c-means algorithm is
sketched. The cluster validation index, known as the PBM index, is presented in section
three. The parallel implementation of the cluster analysis is presented in section four.
The results obtained with this approach considering scalability and speed-up are pre-
sented in section five. Final conclusions and future works are discussed in section six.

2 The Fuzzy c-Means Algorithm

The Fuzzy c-means (FCM) algorithm proposed by Bezdek [15] is the well known
fuzzy version of the classical ISODATA clustering algorithm.

Consider the data set (){ }NttT ..1,)(== x , where each sample contains the variable

vector pRt ∈)(x . The algorithm aims to find a fuzzy partition of the domain into a

set of K clusters { }KCC …1 , where each cluster iC is represented by its center’s

coordinates’ vector p
i R∈w .

In the fuzzy cluster analysis, each sample in the training set can be assigned to
more than one cluster, according to a value))(()(ttu

iCi xμ= , that defines the mem-

bership of the sample)(tx to the cluster iC .

The FCM algorithm computes the centers’ coordinates by minimizing the objective
function J defined as:

∑ ∑
= =

=
Nt Ki

i
m

i tdtumJ
..1 ..1

2)),(()(),(wxW (1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

54 M.V. Modenesi et al.

where 1>m . The m parameter, generally referred as the “fuzziness parameter”, is a
parameter to adjust the effect of membership values and)),((itd wx is a distance

measure, generally the Euclidean distance, from the sample)(tx to the cluster’s

center iw .

The membership of all samples to all clusters defines a partition matrix as:

.

)()(

)1()1(

1

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

NuNu

uu

U

K

K

 (2)

The partition matrix is computed by the algorithm so that:

.1)(,)(
..1
∑

=
=∈∀

Ki
i tuTtx . (3)

The FCM algorithm computes interactively the clusters centers coordinates from a
previous estimate of the partition matrix as:

.
)(

)(.)(

..1

..1

∑

∑

=

==

Nt

m
i

Nt

m
i

i
tu

ttu x

w (4)

The partition matrix is updated as:

.

)),((

)),((

1
)(

..1

)1(

2

∑
=

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

Kj

m

j

i

i

td

td

tu

wx

wx

(5)

The FCM algorithm is described as follows:

0. Set 1>m , 2≥K and initialize the cluster centers’ coordinates randomly, ini-
tialize the partition matrix as (5).

1. For all clusters ()Ki ≤≤2 , update clusters’ centers coordinates as (4).

2. For all samples ()Nt ≤≤1 and all clusters ()Ki ≤≤2 , update the partition

matrix as (5).
3. Stop when the norm of the overall difference in the partition matrix between

the current and the previous iteration is smaller than a given threshold ε ; oth-
erwise go to step 1.

In fuzzy cluster analysis the FCM algorithm computes clusters centers’ coordi-
nates and the partition matrix from the specification of the number of clusters K
that must be given in advance. In practice, the FCM algorithm is executed to various
values of K , and the results are evaluated by a cluster validity function, as described
next.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Parallel Fuzzy c-Means Cluster Analysis 55

3 Cluster Validity Index

In this work, the PBM index [18] is used to evaluate the number of clusters in the data
set. The PBM index is defined as a product of three factors, of which the maximiza-
tion ensures that the partition has a small number of compact clusters with large sepa-
ration between at least two of them. Mathematically the PBM index is defined as
follows:

2
1 ..

1
)(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= K

K

D
E

E

K
KPBM (6)

where K is the number of clusters.
The factor 1E is the sum of the distances of each sample to the geometric center of

all samples 0w . This factor does not depend on the number of clusters and is com-

puted as:

.)),((
..1

01 ∑
=

=
Nt

tdE wx (7)

The factor KE is the sum of within cluster distances of K clusters, weighted by

the corresponding membership value:

∑ ∑
= =

=
Nt Ki

iiK tdtuE
..1 ..1

2)),(()(wx (8)

and KD that represents the maximum separation of each pair of clusters:

() .),(max
..1,

ji
Kji

K dD ww
=

= (9)

The greatest PBM index means the best clustering fuzzy partition. As other in-
dexes, the PBM index is an optimizing index, so that it can be used to search the best
number of clusters within a range of number of clusters. The PBM procedure can be
described as follows:

0. Select the maximum number of clusters M ;
1. Compute the PBM factor 1E (7)

2. For 2=K to MK = , do:
2.1. Run the FCM algorithm;
2.2. Compute the PBM factors KE (8) and KD (9);

2.3. Compute the)(KPBM index (6)

3. Select the best number of clusters *K that maximizes the PBM index:

())(maxarg* KPBMK = (10)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

56 M.V. Modenesi et al.

The PBM index has achieved a good performance in several data when compared
with the Xie-Beni index [16]. This index is thus used as a validity index of the meth-
odology presented in this work.

4 Parallel Cluster Analysis Implementation

The aim of the FCM cluster analysis algorithm is to determine the best partition for
the data being analyzed, by investigating different partitions, represented by the parti-
tions’ centers. Hence, the cluster analysis must integrate the FCM algorithm and the
PBM procedure as described above.

The cluster analysis is an iterative process where the FCM algorithm is computed for
a range of number of clusters and the PBM index is computed for every partition gener-
ated by the FCM algorithm. When all partitions have been computed, the partition cor-
responding to the maximum PBM index is chosen as the best partition for the data.

The most complex computation in the FCM algorithm is the distance computation
from each sample)(tx to all clusters’ centers iw , Ki ..1= . This computation is

performed every interaction, for all records in the dataset. Aggregates of the distances
are used to compute the new centers’ estimate (4), the fuzzy partition’s matrix (5) and
the PBM factors 1E (7) and KE (8). These are the steps of the FCM cluster analysis

that should be parallelized.
The parallel FCM cluster analysis procedure is sketched in Fig 1 and described by

the following sequence:

Step 1. (Master processor): Splits the data set equally among the available
processors so that each one receives pN records, where N is the number of

records and p is the number of processes
Step 2. (All processors): Compute the geometrical center of its local data and

communicate this center to all processors, so that every processor can com-
pute the geometrical center of the entire database. Compute the PBM factor

1E (7) on local data and send it to root.

Step 3. (Master processor): Sets initial centers and broadcasts them, so that all
processors have the same clusters’ centers values at the beginning of the
FCM looping.

Step 4. (All processors): Until convergence is achieved compute the distances
from each record in the local dataset to all clusters’ centers; update the parti-
tion matrix as (5), calculate new clusters’ centers as (4).

Step 5. (All processors): Compute the PBM factor KE (8) on its local data and

send it to root.
Step 6. (Master Processor): Integrates the PBM index as (6) and stores it. If the

range of number of clusters is covered, stops, otherwise returns to Step3.

The procedure described above is computed for each number of clusters in the
cluster analysis, so that the procedure is repeated as many times as the desired range
of numbers of clusters, so that the PBM index, as a function of the number of centers,
is computed. The best partition is the one corresponding to the largest value of the
PBM index.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Parallel Fuzzy c-Means Cluster Analysis 57

Step 1

. . .

Step 3

Step2Step 2Step 2

. . .

Step 6

Step 4Step 4Step 4

. . . Step 5Step 5Step 5

Error ?

Fig. 1. The parallel FCM cluster analysis

5 Results and Discussion

5.1 Environment

Two machines were used for execution and performance analysis of this work: the
PC Cluster Mercury and the SGI Altix 350, both from the High Performance Comput-
ing Center (NACAD) of COPPE/UFRJ. The PC cluster has 16 dual Pentium III, 1
GHz, processor nodes interconnected via Fast Ethernet and Gigabit networks and
8GB of total memory. The SGI Altix 350 has 14 Intel Itanium2 cpus with 28 Gbytes
of RAM (shared - NUMA) and 360 Gbytes of disk storage.

In both machines the execution is controlled by PBS (Portable Batch System) job
scheduler avoiding nodes sharing during execution and Linux Red Hat runs on proc-
essing and administrative nodes. The application was developed using C program-
ming language and Message Passing Interface (MPI).

5.2 The Cluster Mercury Results and Speed-Up Analysis

The speed up evaluation of the FCM cluster analysis algorithm was made in two
test steps. In the first one, the objective was to observe the algorithm behavior

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

58 M.V. Modenesi et al.

increasing the number of records. In the second test the objective was to observe the
behavior of the algorithm when increasing the number of variables and of the range
of partitions.

Test 1. Datasets of different line sizes were used. The datasets had 1.000, 12.500,
50.000, 65.000 and 100.000 records (lines) and size of 38Kb, 500kb, 1.88MB, 2.5MB
and 3.76MB. A fixed number of variables and a fixed range of clusters were used.
The datasets had 18 variables (columns). The evaluation was performed considering 9
partitions calculated from 2=K to 10=K clusters’ centers, used for the PBM index
calculation. The number of iterations of the FCM algorithm is limited to 500, such
that the complexity of the dataset does not affect the result. Moreover, the same initial
cluster centers were used in all evaluations. The speed-up results are shown in
Table 1.

Table 1. Speed-up results for Cluster Mercury

1 2 3 4 5 6 7 8
38Kb 1 1.84 1.97 2.24 2.01 1.94 1.95 1.91

500Kb 1 1.96 2.80 3.67 4.33 4.97 5.67 6.12
1.88MB 1 1.96 2.89 3.80 4.62 5.48 6.32 7.11
2.50MB 1 1.96 2.90 3.82 4.68 5.55 6.41 7.21
3.76MB 1 1.96 2.91 3.83 4.72 5.60 6.47 7.30

Number of ProcessorsDatasets

The algorithm’s speed up when processing the smaller dataset was clearly worse
than the others. Its highest speed up value was 2.24 when using 4 processors. The
algorithm showed higher speed up values for a larger number of processors when
processing datasets with larger number of records. When processing a small number
of records, communications are too costly compared to the advantage of parallelizing
the calculations of distances to clusters, and the benefits of parallelism do not happen.

As showed in Table 1, using 8 processors, speed up values of more than 7.0 were
achieved for databases with more than 1.88MB, which is a very good gain for the
overall parallel process. The speed up of the parallel program against the correspon-
dent sequential one has an efficiency factor that gets as much closer to 1 as the data-
base records increase, when considering a growing number of processors.

Test 2. To investigate the effect of the number of variables in the parallel process, two
datasets were used: one of 50.000 lines and 10 variables of 1.07MB and the other with
50.000 lines and 40 variables (columns) of 4.12MB. The two datasets were processed
using different ranges of clusters. The first computation of the algorithm was made
with one partition of 2 clusters. Ranges of 2 to 4 clusters, of 2 to 8 clusters, 2 to 16
clusters and of 2 to 32 clusters had been used in each other algorithm computation.
All processing were executed for 1, 2, 4, 6, and 8 processors. Results are presented in
Table 2 and Table 3.

The second test showed that the number of variables have also an impact on the
overall performance of the algorithm. The processing of datasets with small number

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Parallel Fuzzy c-Means Cluster Analysis 59

of variables gets smaller speed up values. The processing of datasets with larger
number of variables results in better speed up values when using a larger number of
processors.

The same happens when referring to the range of clusters to form the partitions.
The bigger is the range of number of clusters’ centers that have to be investigated, the
greater is the number of partitions that will have to be calculated. Also, as larger are
the clusters’ numbers, more computation is involved in distance calculations from
records to clusters. As the calculations increase in the processing, the parallel algo-
rithm benefits show up clearly. To use a higher number of processors is as much in-
teresting, in time savings and processing acceleration, as the range of number of clus-
ters increases.

Table 2. Speed up for dataset of 50.000 lines x 10 variables

1 2 4 6 8
2 clusters 1 1.79 2.82 3.44 3.79
from 2 to 4 1 1.91 3.47 4.78 5.83
from 2 to 8 1 1.94 3.71 5.26 6.66

from 2 to 16 1 1.95 3.78 5.46 7.02
from 2 to 32 1 1.96 3.81 5.51 7.19

Number of ProcessorsClusters'
Ranges

Table 3. Speed up for dataset of 50.000 lines x 40 variables

1 2 4 6 8
2 clusters 1 1.78 2.80 3.45 3.93

from 2 to 4 1 1.92 3.55 4.94 6.22
from 2 to 8 1 1.96 3.81 5.54 7.20

from 2 to 16 1 1.98 3.89 5.73 7.53
from 2 to 32 1 1.98 3.92 5.81 7.67

Clusters'
Ranges

Number of Processors

Speedup 50x10

0
1
2
3
4
5
6
7
8

1 2 4 6 8

processors

2 clusters

from 2 to 4

from 2 to 8

from 2 to 16

from 2 to 32

Speedup 50x40

0
1
2
3
4
5
6
7
8

1 2 4 6 8

processors

2 clusters

from 2 to 4

from 2 to 8

from 2 to 16

from 2 to 32

Fig. 2. Speed-up graphs for different files sizes

The tests of the parallel Fuzzy c-Means cluster analysis tool on the Mercury Clus-
ter hardware has shown that it is scalable for parallel cluster analysis processing on
these machines for databases of bigger sizes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

60 M.V. Modenesi et al.

5.3 The Altix Machine Tests

The Tests Description
There were used twelve different files to proceed with the programs test in the Altix
machine. The files’ dimensions schemas are presented in Table 4 and the files sizes
are presented in Table 5.

Table 4. Files dimensions

Records
50.000 50 100 150 200

100.000 50 100 150 200

200.000 50 100 150 200

Variables

Table 5. Files sizes

File Id
Records (in

thousands) x
Variables

Size(in MB)

1 50 x 50 5.138
2 50 x 100 10.227
3 50 x 150 15.317
4 50 x 200 20.406
5 100 x 50 10.347
6 100 x 100 20.552
7 100 x 150 30.730
8 100 x 200 40.909
9 200 x 50 20.747

10 200 x 100 41.104
11 200 x 150 61.469
12 200 x 200 81.817

There were made 288 tests using this files base to test the Parallel Fuzzy c-Means
Cluster Analysis program behavior with greater data volumes. Each file was tested
with clusters’ ranges of 2, 4, 8 and 16, and each range of clusters was tested with
processors varying from 1 to 6.

Parallel Processing Time Analysis
One of this work’s goals is to create a useful tool for data analysis in the oil and gas
field, where huge volumes of data need to be investigated in order to find out oil res-
ervoir information. So, it is necessary to investigate the programs behavior when
number of records and variables increase.

It was observed that when the number of records in the database grows, the proc-
essing time grows as well, proportionally to the increase of records (Fig.3).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Parallel Fuzzy c-Means Cluster Analysis 61

100.000 registers x 16 clusters

0

2

4

6

8

10
12

1 2 3 4 5 6
processors

bi
lio

ns
 o

f s
ec

o
nd

s 50

100

150

200.000 registers x 16 clusters

0

5

10

15

20

25

1 2 3 4 5 6
processors

bi
lli

on
s

of
 s

ec
on

d
s 50

100

150

Fig. 3. Increasing of time when increasing number of variables

The same behavior occurred when increasing the number of variables: processing
time grows at the same rate of the increasing of the variables as can be seen in Fig.4.
Nevertheless, the parallel Fuzzy c-Means Cluster Analysis program has the same
behavior for all problem sizes being investigated. The parallel approach decreases the
time processing for all files’ sizes, but the time savings is more meaningful for larges
databases because it is proportional to the problem size.

50 variables x 16 clusters

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6
processors

se
co

n
ds

 (t
ho

us
an

d
s)

50.000 records
100.000 records
200.000 records

100 variables x 16 clusters

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6

processors

se
co

n
d

s
(t

h
o

u
sa

n
d

s) 50.000 records
100.000 records
200.000 records

Fig. 4. Increasing of time when increasing number of records

Speed Up and Efficiency Analysis
In the Altix machine tests the processing for the smaller files size for only 2 clusters
did not presented a good speedup curve. This can be understood considering that the
computational effort for processing only one partition of two clusters is significantly
smaller than the communications’ cost involved in the overall process. Measurements
show it clearly as can be visualized in Figure 5 bellow.

50.000 records x 50 variables - 2 clusters

0
1
2
3
4
5
6
7

1 2 3 4 5 6
processors

S
p

ee
d

U
p

Ideal

Real

200.000 records x 50 variables - 2 clusters

0
1
2
3
4
5
6
7

1 2 3 4 5 6
processors

S
p

ee
d

U
p

Ideal

Real

Fig. 5. Speedup of processing one partition of two clusters using files of 50.000 records and 50
variables and 200.000 records and 50 variables

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

62 M.V. Modenesi et al.

Processing with bigger files improved the speed-up curve because the computa-
tional time tends to be greater than communications time involved in the process for
bigger clusters interval. Tests in the Altix machine presented in a few cases a super
linear speed-up value as an example showed in Figure 6.

This behavior could be explained because the distribution of one bigger file
through several processors produces smaller files for each processor. The architecture
of the Altix machine provides a performance improvement of an application with this
feature. If the file is so small that can be stored in the memory cache, the computa-
tional time decreases and the speed-up becomes super linear.

100.000 records x 100 variables
 8 clusters

0
0,2
0,4
0,6
0,8

1
1,2
1,4

1 2 3 4 5 6
processors

E
ff

ic
ie

nc
y

Ideal

Real

100.000 records x 200 variables
 8 clusters

0
0,2
0,4
0,6
0,8

1
1,2
1,4

1 2 3 4 5 6
processors

E
ff

ic
ie

nc
y

Ideal

Real

Fig. 6. Super linear efficiency values

This result shows that the Parallel Fuzzy c-Means Cluster Analysis tool scales well
and can be used successfully processing bigger datasets.

Files Size versus Parallelization Benefits
In order to have an indication of whether it is efficient to use parallel processing or
not, all the 288 tests results in Altix hardware were used as records in a dataset for a
decision tree induction classification algorithm.

The input variables for the decision tree induction algorithm were the number of
records, the number of variables and the number of clusters. The class output was
computed by the efficiency of the parallel processing, defined as the ratio between the
speed-up and the number of processors. For each test record, if the efficiency was
greater than 0.8 the test was set to YES, meaning that the parallel processing is effi-
cient, otherwise the class was set to NO.

For the analysis, the decision tree induction algorithm J48, was used within the
Weka open source data mining workbench [19]. The J48 algorithm is a Java imple-
mentation of the classical C4.5 algorithm, developed by Quinlan [20].

The resulting decision tree is shown in Figure 7, where the numbers in parenthesis
at each leaf are the number of positive/negative records that match the corresponding
rule. It is clearly shown that the parallel processing is not efficient for 2 clusters and is
efficient for more than 8 clusters. In the case of 4 clusters, the parallel processing
could be efficient or not depending on the number of records and/or the number of
variables.

Although it is not a definitive answer for the load optimization of the cluster analy-
sis, the decision tree shows that the number of clusters is the parameter that affects
mostly the efficiency of the parallel processing. As a current cluster analysis must

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Parallel Fuzzy c-Means Cluster Analysis 63

Fig. 7. Weka’s J48 decision tree

compute the FCM algorithm for a range of number of clusters, in order to determine
the optimal number of clusters, it is preferable to not parallelize the processing for
small number of clusters and use more processors as the number of clusters increases.

6 Conclusions

This work has presented a parallel implementation of FCM cluster analysis where
both the determination of clusters’ centers and the number of clusters are optimized
by the algorithm. The main contribution of this work is the integration of the cluster
validation index in the optimization process, allowing the optimization of the overall
parallel process.

The implementation and performance tests were made in two different hardware
architectures: the first on low cost distributed memory hardware, a PC Cluster, and
the second on a machine of bigger computational power, the Altix 350.

The parallel Fuzzy c-Means Cluster Analysis tool behaviors in a scalable manner
presenting good speedup and efficiency values in both hardware, showing that it can
be used as a valuable and efficient tool for improve processing time in knowledge
discovery in very bigger databases.

Most of existing approaches of parallel FCM implementations, such as [13], do not
include the determination of the number of clusters. It is thus difficult to discuss the
result with related work. In this work, the number of iterations is also used as stopping
criteria, such that the complexity of the dataset does not influence the performance.

Future work for this project is to apply this approach to seismic data from oil and
gas exploration in order to test the parallel FCM cluster analysis with real data and to
introduce a new approach based on the Knapsack algorithm for load balance study.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

64 M.V. Modenesi et al.

Acknowledgements

This work has been supported by the Brazilian Research Council (CNPq), by the
Brazilian Innovation Agency (FINEP) and by the National Petroleum Agency (ANP).
The authors are grateful to High Performance Computing Center (NACAD-
COPPE/UFRJ) where the experiments were performed.

References

1. M. S. R. Sousa, M. Mattoso and N. F.F. Ebecken (1999). Mining a large database with a
parallel database server. Intelligent Data Analysis 3, pp. 437-451.

2. M. Coppola, and M. Vanneschi. (2002). High-performance data mining with skeleton-
based structured parallel programming. Parallel Computing 28, pp. 783-813.

3. R. Jin, G. Yang, and G. Agrawal (2005). Shared Memory Parallelization of Data Mining
Algorithms: Techniques, Programming Interface, and Performance. IEEE Transaction on
Knowledge and Data Engineering, vol. 17, no. 1, pp. 71-89.

4. M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, P. Trunfio (2004). Distributed data
mining on grids: services, tools, and applications. IEEE Transactions on Systems, Man
and Cybernetics, Part B, vol. 34, no. 6, pp. 2451 – 2465.

5. K. Kubota, A. Nakase, H. Sakai and S. Oyanagi (2000). Parallelization of decision tree al-
gorithm and its performance evaluation. Proceedings of the Fourth International Confer-
ence on High Performance Computing in the Asia-Pacific Region, vol. 2, pp. 574 – 579.

6. M. W. Kim, J. G. Lee and C. Min (1999). Efficient fuzzy rule generation based on fuzzy
decision tree for data mining. Proceedings of the IEEE International Fuzzy Systems Con-
ference FUZZ-IEEE '99. pp1223 – 1228.

7. A. Evsukoff, M. C. A. Costa and N. F. F. Ebecken (2004). Parallel Implementation of
Fuzzy Rule Based Classifier. Proceedings of the VECPAR'2004, vol. 2, pp. 443-452.

8. P. K. H. Phua and D. Ming. (2003). Parallel nonlinear optimization techniques for training
neural networks. IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 1460 - 1468.

9. M. C. A. Costa and N. F. F. Ebecken (2001). A Neural Network Implementation for Data
Mining High Performance Computing. Proceedings of the V Brazilian Conference on
Neural Networks, pp. 139-142.

10. R. Agrawal and J. C. Shafer (1996).Parallel mining of association rules. IEEE
Transactions on Knowledge and Data Engineering, vol. 8, no. 6, pp. 962 - 969.

11. L. Shen, H. Shen and L. Cheng (1999). New algorithms for effcient mining of association
rules. Information Sciences 118, pp. 251 – 268.

12. B. Boutsinas and T. Gnardellis (2002). On distributing the clustering process. Pattern
Recognition Letters 23, pp. 999–1008.

13. S. Rahimi, M. Zargham, A. Thakre and D. Chhillar (2004) A parallel Fuzzy C-Mean
algorithm for image segmentation. Proceedings of the IEEE Annual Meeting of the Fuzzy
Information NAFIPS '04, vol. 1, pp. 234 – 237.

14. A. K. Jain, M. N. Murty and P. J. Flynn (1999). Data clustering: a review. ACM
Computing Surveys, vol. 31, no. 3. pp. 264-323.

15. J. C. Bezdek (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. New
York, Plenum.

16. X. L. Xie and G. A. Beni (1991). Validity measure for fuzzy clustering. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 3 no. 8, pp. 841–846.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Parallel Fuzzy c-Means Cluster Analysis 65

17. J. Bezdek and N.R. Pal (1998). Some new indexes of cluster validity. IEEE Trans. Systems
Man and Cybernetics B, vol. 28, pp. 301–315.

18. M. K. Pakhira, S. Bandyopadhyay and U. Maulik (2004). Validity index for crisp and
fuzzy clusters. Pattern Recognition, vol. 37, pp. 487-501.

19. I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and
Techniques, 2nd Edition, Morgan Kaufmann, San Francisco.

20. R. Quinlan (1993). C4.5 – Programs for Machine Learning. Morgan Kaufmann, San
Francisco.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Peer-to-Peer Models for Resource Discovery in

Large-Scale Grids: A Scalable Architecture

Domenico Talia1,2, Paolo Trunfio1,2, and Jingdi Zeng1,2

1 DEIS, University of Calabria
Via P. Bucci 41c, 87036 Rende (CS), Italy

2 CoreGRID NoE
{talia, trunfio}deis.unical.it,

zeng@si.deis.unical.it

Abstract. As Grids enlarge their boundaries and users, some of their
functions should be decentralized to avoid bottlenecks and guarantee
scalability. A way to provide Grid scalability is to adopt Peer-to-Peer
(P2P) models to implement non hierarchical decentralized Grid services
and systems. A core Grid functionality that can be effectively redesigned
using the P2P approach is resource discovery. This paper proposes a
P2P resource discovery architecture aiming to manage various Grid re-
sources and complex queries. Its goal is two-fold: to address discovery of
multiple resources, and to support discovery of dynamic resources and
arbitrary queries in Grids. The architecture includes a scalable technique
for locating dynamic resources in large-scale Grids. Simulation results are
provided to demonstrate the efficiency of the proposed technique.

1 Introduction

In Grid environments, applications are composed of dispersed hardware and
software resources that need to be located and remotely accessed. Efficient and
effective resource discovery is then critical. Peer-to-Peer (P2P) techniques have
been recently exploited to achieve this goal.

A large amount of work on P2P resource discovery has been done, including
both unstructured and structured systems. Early unstructured P2P systems,
such as Gnutella [1], use the flooding technique to broadcast the resource re-
quests in the network. The flooding technique does not rely on a specific network
topology and supports queries in arbitrary forms. Several approaches [2,3,4],
moreover, have been proposed to solve two intrinsic drawbacks of the flooding
technique, i.e., the potentially massive amount of messages, and the possibil-
ity that an existing resource may not be located. In structured P2P networks,
Distributed Hash Tables (DHTs) are widely used. DHT-based systems [5,6,7]
arrange < key, value > pairs in multiple locations across the network. A query
message is forwarded towards the node that is responsible for the key in a lim-
ited number of hops. The result is guaranteed, if such a key exists in the system.
As compared to unstructured systems, however, DHT-based approaches need
intensive maintenance on hash table updates.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 66–78, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Peer-to-Peer Models for Resource Discovery in Large-Scale Grids 67

Taking into account the characteristics of Grids, several P2P resource dis-
covery techniques have been adapted to such environments. For instance, DHT-
based P2P resource discovery systems have been extended to support range value
and multi-attribute queries [8,9,10,11]. Two major differences between P2P sys-
tems and Grids, however, determine their different approaches towards resource
discovery. First, P2P systems are typically designed to share files among peers.
Differently, Grids deal with a set of different resources, ranging from files to
computing resources. Second, the dynamism of P2P systems comes from both
nodes and resources. Peers join and leave at any time, and thus do the resources
shared among them. In Grid environments, nodes connect to the network in a
relatively more stable manner. The dynamism of Grids mainly comes from the
fast-changing statuses of resources. For example, the storage space and CPU
load can change continuously over time.

Highlighting the variety and dynamism of Grid resources, this paper proposes
a DHT-based resource discovery architecture for Grids. The rest of the paper is
organized as follows. Section 2 introduces existing Grid resource discovery sys-
tems that relate to our work. Section 3 discusses characteristics of Grid resources
and related query requirements. Section 4 unfolds the picture of the proposed
architecture, while Section 5 studies the performance of its dynamic resource
discovery strategy through simulations. Section 6 concludes the paper.

2 Related Work

Several systems exploiting DHT-based P2P approaches for resource discovery in
Grids have recently been proposed [8,9,10]. Two important issues investigated
by these systems are range queries and multi-attribute resource discovery.

Range queries look for resources specified by a range of attribute values (e.g.,
a CPU with speed from 1.2GHz to 3.2GHz). These queries are not supported
by standard DHT-based systems such as Chord [5], CAN [6], and Pastry [7]. To
support range queries, a typical approach is to use locality preserving hashing
functions, which retain the order of numerical values in DHTs [8,9].

Multi-attribute resource discovery refers to the problem of locating resources
that are described by a set of attributes or characteristics (e.g., OS version,
CPU speed, etc.). Several approaches have been proposed to organize resources
in order to efficiently support multi-attribute queries. Some systems focus on
weaving all attributes into one DHT [10] or one tree [12]. Some others adopt one
DHT for each attribute [9,11].

Aside from single value queries, range queries, and multi-attribute queries for
single resources, the proposed architecture aims to support queries for multiple
resources. We use multiple DHTs to manage attributes of multiple resources.
This provides a straightforward architecture, and leaves space for potential
extensions.

Gnutella-based dynamic query [13] strategy is used to reduce the number of
messages generated by flooding. Instead of all directions, this strategy forwards
the query only to a selected peer. If a response is not returned from a direction,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

68 D. Talia, P. Trunfio, and J. Zeng

another round of search is initiated in the next direction, after an estimated time.
For relatively popular contents this strategy significantly reduces the number of
messages without increasing the response time.

Broadcast in DHT-based P2P networks [14] adds broadcast service to a class
of DHT systems that have logarithmic performance bounds. In a network of N
nodes, the node that starts the broadcast reaches all other nodes with exactly
N − 1 messages (i. e., no redundant messages are generated).

The approach proposed for dynamic resource discovery in this paper is in-
spired by both the dynamic query strategy and the broadcast approach men-
tioned above. It uses a DHT for broadcasting queries to all nodes without redun-
dant messages, and adopts a similar “incremental” approach of dynamic query.
This approach reduces the number of exchanged messages and response time,
which ensures scalability in large-scale Grids.

3 Resources and Query Types

In Grids, resources belong to different resource classes. A resource class is a
“model” for representing resources of the same type. Each resource class is de-
fined by a set of attributes which specify its characteristics. A resource is an
“instance” of a resource class. Each resource has a specific value for each at-
tribute defined by the corresponding resource class. Resources are univocally
identified by URLs.

An example of resource class is “computing resource” that defines the common
characteristics of computing resources. These characteristics are described by
attributes such as “OS name”, “CPU speed”, and “Free memory”. An instance
of the “computing resource” class has a specific value for each attribute, for
example, “OS name = Linux”, “CPU speed = 1000MHz”, and “Free memory =
1024MB”. Table 1 lists some examples of Grid resource classes. A more complete
list of resource classes can be found in [15].

Resource classes can be broadly classified into intra-node and inter-node re-
sources. “Computing resource” is an example of intra-node resource class. An
example of inter-node resource class is “network connection” (see Table 1), which

Table 1. Examples of Grid resource classes

Resource class Description

Computing resource
Computing capabilities provided by computers, clusters
of computers, etc.

Storage resource Storage space such as disks, external memory, etc.

Network resource
Network connections that ensures collaboration between
Grid resources.

Device resource Specific devices such as instruments, sensors, etc.

Software resource Operating systems, software packages, Web services, etc.

Data resource Various kinds of data stored in file systems or databases.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Peer-to-Peer Models for Resource Discovery in Large-Scale Grids 69

Network Resource class a

Resource class b

Resource class c

Node A

Node CNode D

Node B

Fig. 1. Inter-node and intra-nodes resources

defines network resource characteristics. Fig. 1 shows a simple Grid includ-
ing four nodes and three resource classes. As examples of intra-node resources,
NodeA includes two instances of resource class a and one instance of resource
class b. The figure also shows two inter-node resources: one between NodeA and
NodeD, and the other between NodeB and NodeD.

The attributes of each resource class are either static or dynamic. Static at-
tributes refer to resource characteristics that do not change frequently, such
as “OS name” and “CPU speed” of a computing resource. Dynamic attributes
are associated to fast changing characteristics, such as “CPU load” and “Free
memory”.

The goal of resource discovery in Grids is to locate resources that satisfy a
given set of requirements on their attribute values. Three types of queries apply
to each attribute involved in resource discovery:

– Exact match query, where attribute values of numeric, boolean, or string
types are searched.

– Range query, where a range of numeric or string values is searched.
– Arbitrary query, where for instance partial phrase match or semantic search

is carried out.

A multi-attribute query is composed of a set of sub-queries on single attributes.
Each sub-query fits in one of the three types as listed above, and the involved
attributes are either static or dynamic.

Complex Grid applications involve multiple resources. Thus, multi-resource
queries are often needed. For instance, one can be interested in discovering two
computing resources and one storage resource; these resources may not be ge-
ographically close to each other. A multi-resource query, in fact, involves a set
of sub-queries on individual resources, where each sub-query can be a multi-
attribute query.

Taking into consideration both characteristics and query requirements of Grid
resources, the P2P search techniques exploited in our framework are listed in
Table 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

70 D. Talia, P. Trunfio, and J. Zeng

Table 2. P2P search techniques for different types of resources and queries

Static Grid resources Dynamic Grid resources

Exact queries Structured Unstructured

Range queries Structured Unstructured

Arbitrary queries Unstructured Unstructured

As shown in the table, structured search is used only for exact and range
queries on static Grid resources. This is because DHT-based structured systems
are not effective for dynamic resources and arbitrary queries. In fact, DHT-based
P2P systems were not originally designed for queries of arbitrary expression
forms. Moreover, fast-changing resources, such as CPU load, require frequent
updates on DHTs, and thus cause prohibitive maintenance costs. On the other
hand, unstructured approaches are used for both dynamic Grid resources and
arbitrary queries on static resources. This is because unstructured systems gen-
erally do not require table updates and maintenance. However, the huge amount
of messages generated by flooding-based unstructured systems requires the use
of appropriate strategies to ensure scalability in large networks.

4 System Architecture

The framework aims to provide a generic architecture that leverages existing
techniques to fulfill various resource discovery needs in Grid environments. In
order to exploit diverse resource discovery techniques, the DHT-based architec-
ture described in Fig. 2 is proposed.

The system is composed of a set of virtual planes, one for each resource class.
Within the virtual plane of resource class Ra, for example, static attributes
Ra.As1, ..., Ra.Asn are associated to their DHTs, respectively. Exact or range
queries on static attributes are carried out using the DHTs corresponding to
these attributes.

An additional “general purpose” DHT is dedicated to queries on dynamic
attributes and to arbitrary queries on static attributes. This DHT is different
from the DHTs in the virtual planes. The DHTs in the virtual plane are standard
DHTs, in which both nodes and resource identifiers are mapped to the same
ring. In general purpose DHT, only node identifiers are mapped to the ring,
while resources are not mapped to it. In other words, there are not pointers to
resources in the general purpose ring.

The general purpose DHT is used to broadcast queries to all Grid nodes
whose identifiers are mapped to the ring. All Grid nodes reached by a query are
in charge of processing it against the local resources, and sending the response
to the node that initiated the query. The mechanisms used for broadcasting a
query on this ring are described in Section 4.3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Peer-to-Peer Models for Resource Discovery in Large-Scale Grids 71

Attribute Ra.Asn

Attribute Ra.As2

......

Attribute Ra.As1

Resource class Rc

Attribute Ra.Asn

Attribute Ra.As2

......

Attribute Ra.As1

Resource class Rb

Attribute Ra.Asn

Attribute Ra.As2

......

Attribute Ra.As1

Resource class Ra

Attributes (Ad1,..., Adn)

Fig. 2. System architecture

4.1 Local Component

Fig. 3 shows the software modules inside each Grid node. With multiple vir-
tual planes defined in the system, each node participates in all DHTs of
these virtual planes. Therefore, multiple finger tables corresponding to each
DHT co-exist in each node, as illustrated in Fig. 3. For example, finger tables
FT (Ra.A1), FT (Ra.A2),..., and FT (Ra.An) correspond to DHTs of attributes
Ra.As1...Ra.Asn in Fig. 2.

The finger table of the general purpose DHT , that is,
FT (General purpose DHT), is used to reach individual nodes and locate
dynamic attributes Ad1,...,Adn. A query engine processes resource discovery
requests and associates them to different query instances and thus DHTs. The
results are then generated at the node where related queries are initiated.

FT (General purpose DHT)

Query Engine
From other nodes

To other nodes

......

FT (Ra.A 1)

FT (Ra.A 3)

FT (Ra.A 2)

......

FT (Ra.A 1)

FT (Ra.A 3)

FT (Ra.A 2)

......

FT (R a.A1)

FT (R a.A2)

FT (R a.A3)

Fig. 3. Software modules inside each Grid node. FTs are finger tables associated to
the used DHTs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

72 D. Talia, P. Trunfio, and J. Zeng

4.2 Static Attribute Discovery

A number of multi-attribute, range query approaches have emerged. They either
use one DHT [10] or one tree [11] for all attributes, or arrange attribute values
on multiple DHTs [9]. While both single-DHT and multi-DHT approaches have
proved effective, we adopt the multi-DHT strategy because of its simplicity and
extension potentials.

Assume there are p classes of resources, each of which has q types of attributes.
Although one node does not necessarily have all attributes, it is included in all
DHTs, and the values of its blank entries are left as null. The number of finger
tables that a node maintains is p × q.

While existing approaches support resource discovery on single or multiple
attributes of one resource class, the architecture proposed in this paper manages
multiple resources. One way to do this is to hash the string of “resource class +
attribute” into a DHT ID ; this ID is used to identify the corresponding finger
table inside a node.

4.3 Dynamic Attribute Discovery

As mentioned in Section 2, our approach for dynamic resource discovery exploits
both the dynamic query [13] and the broadcast over DHT [14] strategies. The
general purpose DHT and associated finger tables, as illustrated in Figs. 2 and
3, are used only to index Grid nodes, without keeping pointers to Grid resource
attributes. Queries are then processed by the local query engine of each node.

To Reach all Nodes. To reach all nodes without redundant messages, the
broadcast strategy is based on a DHT [14]. Taking a fully populated Chord
ring with N = 2M nodes and a M -bit identifier space as an example. Each
Chord node k has a finger table, with fingers pointing to nodes k + 2i−1, where
i = 1, ..., M . Each of these M nodes, in turn, has its fingers pointing to another
M nodes. Each node forwards the query to all nodes in its finger table, and in
turn, these nodes do the same with nodes in their finger tables. In this way,
all nodes are reached in M steps. Since multiple fingers may point to the same
node, a strategy is used to avoid redundant messages. Each message contains a
“limit” argument, which is used to restrict the forwarding space of a receiving
node. The “limit” argument of a message for the node pointed by finger i is
finger i + 1.

Fig. 4 gives an example of an eight-node three-bit identifier Chord ring. The
limit of broadcast is marked with a black dot. Three steps of communication be-
tween nodes are demonstrated with solid, dotted, and dashed lines. Obviously,
node 0 reaches all other nodes via N − 1 messages within M steps. The same
procedure applies to Chord ring with N < 2M (i.e., not fully populated net-
works). In this case, the number of distinct fingers of each node is logN on the
average.

Incremental Resource Discovery. The broadcast over DHT presented above
adopts a “parallel” approach. That is, the node that initiates the discovery tasks
sends the query message to all its fingers in parallel.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Peer-to-Peer Models for Resource Discovery in Large-Scale Grids 73

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 0

1
2
4

2
3
5

3
4
6

4
5
7

5
6
0

6
7
1

7
0
2

0
1
3

Fig. 4. An example of broadcast

Although no redundant messages are generated in the network, its N − 1
messages can be prohibitive in large-scale Grids. Referred to as “incremental”,
our approach uses a mixed parallel and sequential query message forwarding.

A “parallel degree” D is introduced to adjust the range of parallel message
forwarding, and thus curb the number of exchanged messages. Given a node that
initiates the query, it forwards the query message in parallel to nodes pointed by
its first distinct D fingers. If there is a positive response, the search terminates;
otherwise, this node forwards the query message to the node pointed by its
D + 1 finger. This procedure applies to nodes pointed by the rest of fingers,
sequentially, until a positive response returns.

When D = M , our incremental approach turns into the parallel one; when
D = 1, the incremental approach becomes a sequential one, where nodes pointed
by all fingers are visited one after another.

The number of generated messages by the incremental approach is obviously
less than or equal to that of the parallel one. The response time of incremental
approach, however, may be prolonged owing to its sequential query message
forwarding. We argue that this does not necessarily hold true. In large-scale
Grids, multiple query requests at one node can be prominent, which adds extra
delay to response time. Under this circumstance, the incremental approach shall
benefit from its reduced number of messages that shortens this extra delay.

5 Performance Evaluation

A discrete-event simulator has been implemented to evaluate the performance
of the incremental approach, used in our framework for the discovery of dy-
namic resources and arbitrary queries, in comparison with the original parallel
approach.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

74 D. Talia, P. Trunfio, and J. Zeng

Table 3. System parameters

Parameter Description
M Number of bits of node identifiers.

N Number of Grid nodes in the network.

R Number of nodes that concurrently submit query requests.

P Fraction of nodes in the network that possesses the desired resource.

D Number of first distinct fingers the search is conducted on in parallel.

Two performance parameters have been evaluated: the number of messages
Q and the response time T . Q is the total number of exchanged messages in the
network, and T is the time a node waited to receive the first response (i.e., the
first query hit).

The system parameters are explained in Table 3. In all simulations we used
M = 32 and D = 7. The number of nodes N ranges from 2000 to 10000, R
ranges from 10 to 1000, and P ranges from 0.005 to 0.25. The values of perfor-
mance parameters are obtained by averaging the results of 10 to 30 independent
simulation runs.

The system parameter values have been chosen to fit as much as possible with
real Grid scenarios. In particular, the wide range of values chosen for P reflects
the fact that, in real Grids, discovery tasks can search both for rare resources
(e.g., the IRIX operating system) and more popular ones (e.g., Linux).

The time to pass a message from NodeA to NodeB is calculated as the sum of
a processing time and a delivery time. The processing time is proportional to the
number of queued messages in NodeA, while the delivery time is proportional
to the number of incoming messages at NodeB. In this way, the response time
depends on both message traffic and processing load of nodes.

Table 4 shows the number of exchanged messages in both parallel and incre-
mental strategies, with R = 1. The parallel strategy always generates N − 1
messages for each submitted query, which could be prohibitive for large-scale
Grids. In the incremental approach, the number of messages is dramatically re-
duced. Moreover, when the value of P is over a certain limit, the number of
messages fluctuates around the value of 2D and it does not depend from the
number of nodes (i.e., network size). This limit is determined by the number of
Grid nodes N , the fraction of nodes with matching resources P , and the number
of first distinct fingers D.

For example, in a network with N = 10000, when P = 0.1 the number of
matching resources is N × P = 1000. The number of nodes included in the
first D = 7 fingers is 2D = 128, on the average. Obviously, this density is high
enough for the incremental strategy to locate the desired resource within the first
D fingers. With a lower value of P , nevertheless, the search needs to go beyond
the first D fingers; this introduces a fluctuation in the number of exchanged
messages, as in the case of P = 0.005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Peer-to-Peer Models for Resource Discovery in Large-Scale Grids 75

Table 4. Comparison on the number of exchanged messages (Q) in parallel and incre-
mental approaches

N P Q (Parallel) Q (Incremental)

2000
0.005 1999 279
0.10 1999 127
0.25 1999 126

4000
0.005 3999 326
0.10 3999 129
0.25 3999 124

6000
0.005 5999 291
0.10 5999 126
0.25 5999 126

8000
0.005 7999 282
0.10 7999 128
0.25 7999 128

10000
0.005 9999 389
0.10 9999 127
0.25 9999 125

Figs. 5, 6 and 7 show the response time in networks composed by 2000, 6000
and 10000 nodes, respectively, with P = 0.10 and values of R ranging from 10
to 1000. The response time is expressed in time units.

The main result shown in Figs. 5, 6 and 7 is that, for any value of N , when
the values of R are at the lower end of its range, the parallel approach has a
shorter response time. When the value of R increases, the incremental approach
outperforms the parallel one. This is because in the parallel approach the overall
number of generated messages is much higher than the one in the incremental
approach, resulting in increased message traffic and processing load that cause
a higher response time.

N=2000 P=0.10

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

13,0

10 100 250 500 1000

R

T
(t

im
e

u
n

it
s

)

Incremental

Parallel

Fig. 5. Response time of parallel and incremental approaches (N = 2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

76 D. Talia, P. Trunfio, and J. Zeng

N=6000 P=0.10

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

13,0

10 100 250 500 1000

R

T
(t

im
e

u
n

it
s

)

Incremental

Parallel

Fig. 6. Response time of parallel and incremental approaches (N = 6000)

N=10000 P=0.10

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

13,0

10 100 250 500 1000

R

T
(t

im
e

u
n

it
s

)

Incremental

Parallel

Fig. 7. Response time of parallel and incremental approaches (N = 10000)

It can also be noted that, for any value of R, the response time decreases as
N increases. This trend is similar in both parallel and incremental approaches.
This is because the probability of finding the desired resource in a given time
interval is proportional to the number of nodes that possess it, and this in turn
is proportional to the network size.

The simulation results demonstrate that with higher values of R the incre-
mental approach scales better than the parallel one. It is important to recall
that in our simulator the processing time is proportional to the number of mes-
sages to be processed, and the delivery time is proportional to the number of
messages to be delivered. Therefore, the response time increases linearly with
message traffic and load of nodes. In a more realistic scenario the processing time
and the delivery time may increase exponentially with the load of the network.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Peer-to-Peer Models for Resource Discovery in Large-Scale Grids 77

In this case, the response time in the incremental approach should result signifi-
cantly better that the parallel one. To better evaluate the effect of high loads in
large-scale Grids, we are currently studying the use of more complex processing
and delivery time functions in our simulator.

6 Conclusions

This paper discussed the characteristics of Grid resources and identified critical
problems of resource discovery in Grids. A DHT-based P2P framework has been
introduced to address the variety and dynamism of Grid resources. It exploits
multiple DHT and existing P2P techniques for multiple static resources and im-
plements an “incremental” resource discovery approach for dynamic resources.
As compared to the original strategy, the incremental approach generates re-
duced number of messages and experiences lower response time in large-scale
Grids.

With the emergence of service-oriented Grids [16], service discovery has be-
come an important topic. Grid services are today implemented complying with
the Web Services Resource Framework (WSRF) family of specifications, which
define standard mechanisms for accessing and managing Grid resources using
Web services. Web services are defined using XML-based languages, and XML
queries are used to query their features. We are currently studying how to extend
the architecture in this paper to address Grid service discovery, in particular,
dynamic service indexing and XML-based queries support.

Acknowledgements

This research work is carried out under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265). This
work has been also supported by the Italian MIUR FIRB Grid.it project
RBNE01KNFP on High Performance Grid Platforms and Tools.

References

1. Gnutella Protocol Development. http://rfc-gnutella.sourceforge.net/src/rfc-0 6-
draft.html.

2. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid Search Schemes for Unstructured
Peer-to-peer Networks. Proc. of IEEE INFOCOM’05, Miami, USA (2005).

3. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replicating in Unstruc-
tured Peer-to-peer Networks. Proc. of 16th Annual ACM Int. Conf. on Supercom-
puting (ISC’02), New York, USA (2002).

4. Crespo, A., Garcia-Molina, H.: Routing Indices for Peer-to-peer Systems. Proc. of
Int. Conf. on Distributed Computing Systems (ICDCS’02), Vienna, Austria (2002).

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan, H.: Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. Proc. of ACM SIG-
COMM’01, San Diego, USA (2001).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

78 D. Talia, P. Trunfio, and J. Zeng

6. Ratnasany, S., Francis, P., Handley, M., Karp, R. M., Shenker, S.: A Scalable
Content-Addressable Network. Proc. of ACM SIGCOMM’01, San Diego, USA
(2001).

7. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. Proc. of IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), Heidelberg, Germany (2001).

8. Andrzejak, A., Xu, Z.: Scalable, Efficient Range Queries for Grid Information
Services. Proc. of 2nd IEEE Int. Conf. on Peer-to-peer Computing (P2P’02),
Linköping, Sweden (2002).

9. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. Journal of Grid Computing, vol. 2 n. 1
(2004) 3-14.

10. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Scalable Wide-Area
Resource Discovery. UC Berkeley Technical Report, UCB/CSD-04-1334 (2004).

11. Spence, D., Harris, T.: XenoSearch: Distributed Resource Discovery in the
XenoServer Open Platform. Proc. of HPDC’03, Washington, USA (2003).

12. Basu, S., Banerjee, S., Sharma, P., Lee, S.: NodeWiz: Peer-to-peer Resource Dis-
covery for Grids. Proc. of IEEE/ACM GP2PC’05, Cardiff, UK (2005).

13. Fisk, A. A.: Gnutella Dynamic Query Protocol v0.1. http://www.the-
gdf.org/wiki/index.php?title=Dynamic Querying.

14. El-Ansary, S., Alima, L., Brand, P., Haridi, S.: Efficient Broadcast in Structured
P2P Networks. Proc. of IEEE/ACM Int. Symp. on Cluster Computing and the
Grid (CCGRID’05), Cardiff, UK (2005).

15. Andreozzi, S., Burke, S., Field, L., Fisher, S., Konya, B., Mambelli, M., Schopf, J.,
Viljoen, M., Wilson, A.: GLUE Schema Specification Version 1.2: Final Specifica-
tion - 3 Dec 05. http://infnforge.cnaf.infn.it/glueinfomodel/index.php/Spec/V12.

16. Comito, C., Talia, D., Trunfio, P.: Grid Services: Principles, Implementations and
Use. International Journal of Web and Grid Services, vol. 1 n. 1 (2005) 48-68.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

JaceV: A Programming and Execution
Environment for Asynchronous Iterative

Computations on Volatile Nodes

Jacques M. Bahi, Raphaël Couturier, and Philippe Vuillemin

LIFC, University of Franche-Comté, France�,��

{jacques.bahi,raphael.couturier,philippe.vuillemin}@iut-bm.univ-fcomte.fr
http://info.iut-bm.univ-fcomte.fr/and/

Abstract. In this paper we present JaceV, a multi-threaded Java based
library designed to build asynchronous parallel iterative applications
(with direct communications between computation nodes) and execute
them in a volatile environment. We describe the components of the sys-
tem and evaluate the performance of JaceV with the implementation and
execution of an iterative application with volatile nodes.

Keywords: Asynchronous iterative algorithms, computational science
problems, desktop grid computing, volatile nodes.

1 Introduction

Nowadays, PCs and workstations are becoming increasingly powerful and com-
munication networks are more and more stable and efficient. This leads scientists
to compute large scientific problems on virtual parallel machines (a set of net-
worked computers to simulate a supercomputer) rather than on expensive super-
computers. However, as the node count increases, the reliability of the parallel
system decreases. As a consequence, failures in the computing framework make
it more difficult to complete long-running jobs. Thus, several environments have
been proposed to compute scientific applications on volatile nodes using cycle
stealing concepts. In this paper, we consider as volatile node any volunteer per-
sonal computer connected to a network (WAN or LAN1) that can be used as
a computational resource during its idle times. The aim of this work is to run
scientific computations in such a volatile framework.

In this paper, we are interested in iterative algorithms. Those algorithms are
usually employed for sparse systems (like some linear systems) or when direct
methods cannot be applied to solve scientific problems (e.g. for polynomial root
finders). In the parallel execution of iterative algorithms, communications must
be performed between computation nodes after each iteration in order to satisfy

� Candidate to the Best Student Paper Award.
�� This work was supported by the “Conseil Régional de Franche-Comté”.

1 World Area Network or Local Area Network.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 79–92, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

80 J.M. Bahi, R. Couturier, and P. Vuillemin

all the computing dependencies. For that reason, the reliability of the system
is a very important feature in such a context and can become a limiting fac-
tor for scalability. Hence, it is necessary to study this reliability according to
the different classes of architecture. We consider three concepts (or classes) of
architecture with different characteristics.

1. Grid computing environments enable the sharing and aggregation of a wide
variety of geographically distributed computational resources (such as su-
percomputers, computing clusters...). In such architectures, communications
are very fast and efficient and the topology of the system is considered stable.

2. Desktop grid computing environments (also called Global Computing) ex-
ploit unused resources in the Intranet environments and across the Internet
(e.g. the SETI@home project [2]). In this class of parallelism, the archi-
tecture is fully centralized (client-server-based communications), tasks are
independent and the topology of the system is completely dynamic (nodes
appear and disappear during the computation).

3. Peer-To-Peer (P2P) environments are networks in which each workstation
has equivalent capabilities and responsibilities. The architecture is com-
pletely decentralized (peers directly communicate between each other) and
the topology of the system is completely dynamic.

As reliability is generally ensured in a Grid computing context, we do not
consider this class; furthermore, several frameworks are already available to im-
plement and run parallel iterative applications in such environments. Concerning
Desktop grid, although this class can provide much more resources than the first
one, it is generally not directly suitable for parallel iterative computations as
long as communication is restricted to the master-slave model of parallelism.

For that reason we would like to gather functionalities and characteristics of
the latter two cases: 1) a centralized architecture to manage all the nodes of
the system akin to a Desktop grid environment with volatile nodes and 2) direct
communications between computation nodes like in P2P environments. The pur-
pose of this paper is to describe a programming environment allowing users to
implement and run parallel asynchronous iterative algorithms on volatile nodes.
Asynchronous algorithms can be used in a significant set of applications. Indeed,
scientific applications are often described by systems of differential equations
which lead, after discretization, to linear systems Ax = b where A is a M-matrix
(i.e. Aii > 0 and Aij ≤ 0 and A is nonsingular with A−1 ≥ 0). A convergent
weak regular splitting can be derived from any M-matrix and any iterative al-
gorithm based on this multiplitting converges asynchronousely (see [1,4,10] and
the references therein).

As idle times and synchronizations are suppressed in the asynchronous iter-
ation model (i.e. a computing node can continue to execute its task without
waiting for its neighbor results), we do believe this solution is the most suitable
in an environment with volatile nodes. Furthermore, computations formulated in
parallel asynchronous iterative algorithms are much less sensitive to heterogene-
ity of communication and computational power than conventional synchronous
parallel iterative algorithms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

JaceV: A Programming and Execution Environment 81

We do not consider the synchronous iteration model because it is neither
convenient for this volatile framework, nor for the heterogeneity and scalability.

In this paper, we describe JaceV, a multi-threaded Java based library designed
to build asynchronous parallel iterative applications (with direct communications
between computation nodes) and execute them in a desktop grid environment
with volatile nodes. To the best of our knowledge, this work is the first one
presenting a volatile execution environment with direct communications between
computing nodes and allowing the development of actual scientific applications
with interdependent tasks.

The following section presents a survey of desktop grid and volatility tolerant
environments. Section 3 presents the architecture of JaceV and an overview of
all its components. Section 4 describes the scientific application implemented
with JaceV (the Poisson problem) in order to perform experiments. Section 5
evaluates the performance of JaceV by executing the application in different
contexts with volatile nodes. In section 6, we conclude and some perspectives
are given.

2 Related Work

Cycle stealing in a LAN environment has already been studied in the Condor [9]
and Atlas [3] projects. However, the context of LAN and the Internet are dras-
tically different. In particular, scheduling techniques [7,8] need to be adapted
for a Global Computing environment due to: 1) the very different communica-
tion and computing performance of the targeted hosts, 2) the sporadic Internet
connection and 3) the high frequency of faulty machines.

MPICH-V and MPICH-V2 [11,13] (message passing APIs2 for automatic
Volatility tolerant MPI environment) have been proposed for volatile nodes.
However, MPI is not a multi-threaded environment. As a consequence, it is not
suitable for asynchronous iterations in which it is convenient to separate com-
munications and computation.

XtremWeb [16] is a Desktop Grid and Global Computing middleware which
allows users to build their own parallel applications and uses cycle stealing.
However, this environment does not provide direct communications between the
different computing nodes of the system. As a consequence, it is not suitable for
implementing and running parallel iterative applications.

Ninflet [6] is a Java-based global computing system. It is designed to overcome
the limitations of Ninf [5] that currently lacks security features as well as task
migration. The goal of Ninflet is to become a new generation of concurrent
object-oriented system which harnesses abundant idle computing powers, and
also integrates global as well as local network parallel computing. Unfortunately,
as with the XtremWeb environment, Ninflet only applies Master-Worker pattern
and does not provide direct communications between computation nodes.

In [15], no environment is proposed but the authors define the requirements
for an effective execution of iterative computations requiring communication on
2 Application Programming Interfaces.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

82 J.M. Bahi, R. Couturier, and P. Vuillemin

a desktop grid context. They propose a combination of a P2P communication
model, an algorithmic approach (asynchronous iterations) and a programming
model. Finally, they give some very preliminary results from application of the
extended desktop grid for computation of Google pagerank and solution of a
small linear system.

Jace [14] is a multi-threaded Java based library designed to build asynchronous
iterative algorithms and execute them in a Grid environment. In Jace, commu-
nications are directly performed between computation nodes (in a synchronous
or an asynchronous way) using the message passing paradigm implemented with
Java RMI3. However, this environment is not designed to run applications on
volatile nodes.

3 The JaceV System

3.1 The Goal of JaceV

As described in the previous section, Jace is fully suitable for running paral-
lel iterative applications (in a synchronous or asynchronous mode) in a Grid
computing context where nodes do not disappear during computations. Then,
it was essential to completely redesign the Jace environment in order to make it
tolerant to volatility. To do this, it is necessary to develop a strategy to period-
ically save the results computed by each node during the execution in order to
restart computations from a consistent global state [12] when faults occur (but
the messages are not logged and are lost if the destination node has failed).

We propose JaceV, the volatility tolerant implementation of Jace (JaceV for
Jace Volatile). JaceV allows users to implement iterative applications and run
them over several volatile nodes using the asynchronous iteration model and
direct communications between processors.

Hence, when a computer is not used during a defined finite time, it should au-
tomatically contribute to compute data of a parallel iterative application already
running (or to be started) on the system. A contrario, when a user needs to work
on this workstation, the resource must instantaneously be freed and this node
must automatically be removed from the system. In this way, a volatility tolerant
system must both tolerate appearance and disappearance of computation nodes
without disturbing the final results of the applications running on it. In fact,
JaceV tolerates N simultaneous faults (N being the number of computational
resources involved in an application) without disturbing the results at all.

3.2 Architecture of the System

A JaceV application is a set of Task objects running on several computation
nodes. Like in Jace, the different Task objects of an application cooperate by
exchanging messages and data to solve a single problem. The JaceV architecture

3 Remote Method Invocation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

JaceV: A Programming and Execution Environment 83

consists of three entities which are JVMs 4 communicating with each others:
1) the Daemons, 2) the Spawner and 3) the Dispatcher. Since JaceV is based
on Jace, all the communications performed between the different entities of the
system are based on Java RMI and threads are used to overlap communications
by computations during each iteration.

The user of the JaceV system could play two types of roles, one being the
resource provider (during idle times of his computer) and the other being appli-
cation programmer (the user who wants to run his own specific parallel iterative
application on several volatile nodes). The resource provider will have a Dae-
mon running on his host. The Daemon is the entity responsible for executing a
Task and we consider it is busy and not available when a Task is executed on it
(thereafter, we use the term Daemon and node indifferently). On the other side,
the application programmer implements an application (using the Java language
and the JaceV API) and actually runs it using the Spawner: this entity actually
starts the application on several available Daemons.

Finally, the Dispatcher is the component in charge of 1) registering all the
Daemons connected to the system and managing them (i.e. detect the eventual
disconnections and replace the nodes) 2) distributing the Task objects of an ap-
plication over the different available nodes, 3) detecting the global convergence of
a running application, and 4) storing the backups of all the Tasks being executed.

Three-tier architectures are commonly used in fault tolerant platforms, like
in Ninflet, XtremWeb, etc. However, JaceV has the advantage to enable both
direct communications between computing nodes and multi-threaded program-
ming, which is impossible with other existing environments. Furthermore, JaceV
is the only one to implicitly provide an asynchronous iteration model by us-
ing primitives of its API in a volatile context. Therefore, JaceV is an original
architecture.

3.3 The Dispatcher

The Dispatcher is the first entity to be launched for the environment. We consider
it is running on a powerful and stable server. Therefore, all the data stored in
this entity are considered as persistent. The Dispatcher is composed of three
main components, 1) the JaceVDispatchServer, 2) the GlobalRegister and 3) the
ApplicationManager.

The JaceVDispatcher is the RMI server that contains all the methods remotely
invoked by the Daemons and the Spawner. It is launched when the Dispatcher
starts and is continuously waiting for remote invocations.

The GlobalRegister registers all the Daemons connected to the JaceV system
and also stores their current state (the ’alive’ and the ’busy’ states, this will be
described in section 3.4).

Finally the ApplicationManager indexes all the RunningApplication objects of
the system. A RunningApplication is a JaceV object that models an application
being currently executed on the system: it contains for example attributes such
4 Java Virtual Machines.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

84 J.M. Bahi, R. Couturier, and P. Vuillemin

as the URL where are available the corresponding class files of the application,
the number of Tasks, the optional arguments, etc.

Each RunningApplication contains a single Register object, which is a sub-
set of the GlobalRegister. During the execution, the Register is automatically
updated in case of fault (due to a crash or a user disconnection) of one of the
computation node (it models the current configuration of the nodes running a
given application and the mapping of the Tasks over the Daemons).

The Dispatcher is also in charge of storing the Task objects saved (called
Backups) during the computation in order to restart the application from a
consistent global state in case of fault. A list stored in the RunningApplication
object (the BackupList) indexes each Task composing an application. Hence,
when a faulty node is replaced, the last Backup of the Task it was computing
is sent to the new Daemon in order to restart computations. As iterations are
desynchronized in the asynchronous model, the other nodes keep computing
without stopping.

Finally, the RunningApplication object is responsible for detecting the global
convergence and halting the application when convergence is reached. To do this,
each RunningApplication object manages an array containing the local states of
the nodes involved in the computation. This array is affected each time a local
convergence message is received from the Daemons. When a node is in a local
stable state (i.e. the relative error between the last two iterations on this node
is greater than a given threshold) after a given number of iterations, it sends
1 to the Dispatcher, or else, it sends 0. The global state is computed on the
Dispatcher by testing all the cells of the array, if they are all in stable state then
the convergence is detected and the Daemons can stop computing.

To summarize the architecture of the Dispatcher, Figure 1 describes the main
objects with the GlobalRegister on the left, the JaceVDispatcher (the RMI
server) on the right and the ApplicationManager in the center.

In this example, nine Daemons are currently registered to the Dispatcher
(nodes N1 up to N9 in the GlobalRegister). Only seven nodes are actually busy
(i.e. computing an application). They appear in grey in the GlobalRegister (in
the figure, we represent the nodes in different grey levels in order to differentiate

ApplicationManager

Dispatcher

Register
Global

Server
RMI

RunningApplication 2

RunningApplication 1

Reg1

BackupList1

ConvTab1

nbTasks = 4

Reg2

BackupList2

ConvTab2

nbTasks = 3

N1

T3 T4T2

T3T2T1

N2
N3
N4

N5
N6
N7
N8
N9

N1 N3 N4 N6

N2 N5 N7

0 0 1 0

0 1 1

T1

Fig. 1. Description of the Dispatcher elements

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

JaceV: A Programming and Execution Environment 85

the application being executed on the corresponding Daemon). In the Applica-
tionManager, we can see that two applications are currently running, the first
one (RunningApplication1) is distributed over four nodes (which are the nodes
N1, N3, N4 and N6 in the corresponding Register called Reg1) and the second
one (RunningApplication2) over three nodes (which are the nodes N2, N5 and
N7 in the corresponding Register called Reg2). This figure also shows the Back-
ups stored on the Dispatcher for each application being executed (BackupList1
for the first application and BackupList2 for the second one). Every BackupList
contains a single Backup object for each Task running on a Daemon. The last
elements appearing in the figure are the convergence arrays (ConvTab1 for the
first application and ConvTab2 for the second one): with the values of Con-
vTab1, we can deduce that only Task T3 (executed on node N4) is in a local
convergence state for the first application. Concerning the second application,
we can see that Tasks T2 and T3 (respectively running on nodes N5 and N7)
have locally converged to the solution.

3.4 The Daemon

When the Daemon is started, an RMI server is launched on it and is continuously
waiting for remote invocations. Then, the Daemon 1) contacts the Dispatcher
in order to obtain its remote RMI reference 2) remotely registers itself on the
GlobalRegister of the Dispatcher (where this Daemon is then labeled as avail-
able because it has not been attributed an application yet), and 3) starts locally
the heartbeatThread : this thread periodically invokes the beating remote method
on the Dispatcher RMI server to signal its activity. The Dispatcher continu-
ously monitors these calls to implement a timeout protocol: when a Daemon has
not called for a sufficient long time, it is considered down in the GlobalRegis-
ter (i.e. it is labeled as notAlive). In case this node was executing an applica-
tion, the Task initially running on it should be rescheduled to a new available
Daemon by reloading the last Backup stored on the Dispatcher for the faulty
node.

Once all those features are performed, the Daemon is initialized and ready to
be invoked by the Spawner in order to actually run computation Tasks. The main
objects composing the Daemon are mostly the same as in the Jace environment
(interested readers can see [14] to have more details about the components of
the Jace Daemon and their interaction). However, several objects have been
deeply modified or added to the JaceV environment in order to ensure volatility
tolerance. Those components are described in the following.

The Daemon contains the Register of the application it is running and this
Register is automatically updated by the Dispatcher when faults occur during
the execution. As the Register also contains the complete list of the nodes run-
ning a given application and the mapping of the Tasks over them, the Daemon is
always aware of the topology of the system. This ensures direct communications
are carried out between nodes because the Register contains the remote refer-
ence RMI for each Daemon. As a consequence, a given node can invoke remote
methods on every Daemon running the same application. Furthermore, when a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

86 J.M. Bahi, R. Couturier, and P. Vuillemin

node receives a new Register, the recipient of all the Message objects to be sent
is automatically updated (if it has changed).

Concerning the Messages to send to other Daemons, as the asynchronism
model is message loss tolerant, the Message is simply lost if the destination node
is not reachable.

3.5 The Spawner

The Spawner is the entity that actually starts a user application. For this reason,
when launching the Spawner, it is necessary to give some parameters to define
this application: 1) the number of nodes required for the parallel execution, 2)
the URL where the class files are available and finally 3) the optional arguments
of the specific application.

Then, the Spawner sends this information to the Dispatcher that creates a
new RunningApplication with the given parameters and a new Register com-
posed of the required number of available nodes appearing in the GlobalRegister
(which are then labeled as notAvailable). This Register is then attributed to the
RunningApplication and sent to the Spawner.

Finally, when the Spawner receives the Register object, it broadcasts it to the
whole nodes of the topology and then actually starts the computation on each
of the Daemons.

The whole interaction between the JaceV entities is described in Figure 2. In
this example, we can see the Daemon N1 (fig.2(a)) and then a set of Daemons
(N2, N3 and N4, fig.2(b)) registering themselves to the Dispatcher. Those Dae-
mons are then added to the GlobalRegister (Reg) and are labeled as available
because no application has been spawned on the system yet.

In fig.2(c), the Spawner S1 launches application appli1 which requires two
nodes. The Dispatcher creates then a RunningApplication object for this appli-
cation and attributes it a Register object (Reg1) containing two available nodes
of the GlobalRegister (N1 and N2 which are then labeled as notAvailable and
appear in grey level in the GlobalRegister). The Register is sent to N1 and
N2 (in order to permit direct communications between the two nodes) and the
application is actually run by the Spawner on those two Daemons.

In fig.2(d), the Daemon N2 crashes (or is disconnected by its user). However,
as the asynchronous iteration model is used in JaceV, N1 keeps computing and
does not stop its job (the eventual messages to send to the Task running on N2
will be lost until the node is replaced). The Dispatcher detects this disconnection
and labels N2 as notAlive in the GlobalRegister. Reg1 is then updated in the
RunningApplication object (N2 is replaced by N3 which is available) and this
new Register is sent to the corresponding Daemons (N1 and N3, the new one).
Since then, N1 is aware of the new topology of the system and updates the list
of its neighbors (i.e it will no longer try to send messages to N2 but will directly
send them to N3). Finally, the Dispatcher sends the appropriate Backup to the
new node of the topology and computations can restart on this Daemon.

After several minutes, the Daemon is launched again on node N2 (fig.2(e)).
It is then labeled as alive and available in the GlobalRegister.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

JaceV: A Programming and Execution Environment 87

comm.

comm.

comm.

comm.

Reg

Dispatcher

Appli1

N1

N2

N3

N4

N1 N2Reg1

N1 N2Reg1

N1 N2Reg1

N1

N2

N3

N4

comm.

S1

Dispatcher

Appli1

N1

N2

N3

N4

N1 N3Reg1

N2 N4Reg2

Appli2

N1 N3Reg1

N2 N4Reg2

N1 N3Reg1

N2 N4Reg2

Reg

N4

N3

N2

N1

S2

Dispatcher

workerRegister()

Reg

N1

N3

N4

N2

N1

N2

N3

N4

Reg

Dispatcher

N1

N1

Dispatcher

Appli1 N1 N3Reg1

N1 N3Reg1

N1 N3Reg1

workerRegister()

Reg

N1

N2

N3

N4

N4

N3

N2

N1

(java jaceV.JaceV
Spawner 1

−Spawner 2 appli1)
(java jaceV.JaceV
Spawner 2

−Spawner 2 appli2)

update()

update()

workerRegister()

workerRegister()

update()

update()Reg

Dispatcher

Appli1

N1

N2

N3

N4

N1 N3Reg1

N1 N3Reg1

N1 N3Reg1

N3

N2

N1

(a) A Daemon (node N1) registers itself

(c) The application ’appli1’ is spawned for

(e) Node N2 registers itself again to the Dispatcher

(f) The application ’appli2’ is spawned for two nodes

update()

update()

N4

CRASH !

(b) Three Daemons (nodes N2 up to N4)

backup()

Daemon

Daemon

Daemon

Daemon

workerRegister()

(d) Node N3 replaces N2 that crashed for ’appli1’

two nodes

register themselves to the Dispatcher

to the Dispatcher

Fig. 2. The registering and spawning processes in JaceV

Finally, in fig.2(f), the Spawner S2 launches application appli2 that requires
two nodes. The Dispatcher creates the RunningApplication object for this appli-
cation, attributes it a new Register (Reg2) which contains the last two available
nodes of the GlobalRegister (N2 and N4) and sends them Reg2 in order to
enable direct communication between these Daemons. At the end, S2 actually
starts computations on N2 and N4.

4 Problem Description

In this section, we describe the problem used for the experiments with JaceV. It
consists of the Poisson equation discretized in two dimensions. This is a common
problem in physics that models for instance heat problems. This linear elliptic
partial differential equations system is defined as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

88 J.M. Bahi, R. Couturier, and P. Vuillemin

−Δu = f. (1)

This equation is discretized using a finite difference scheme on a square domain
using a uniform Cartesian grid consisting of grid points (xi, yi) where xi = iΔx
and yj = jΔy. Let ui,j represent an approximation to u(xi, yi). In order to dis-
cretize (1) we replace the x− and y−derivatives with centered finite differences,
which gives

ui−1,j − 2ui,j + ui+1,j

(Δx)2
+

ui,j−1 − 2ui,j + ui,j+1

(Δy)2
= −fi,j (2)

Assuming that Δx = Δy = h are discretized using the same discretization
step h, (2) can be rewritten in

−4 ∗ ui,j + ui−1,j + ui+1,j + ui,j−1 + ui,j+1

h2 = −fi,j . (3)

For this problem we have used Dirichlet boundary conditions.
So, (1) is solved by finding the solution of the following linear system of the

type A × x = b where A is a 5-diagonal matrix and b represents the function f .
To solve this linear system we use a block-Jacobi method that allows us to

decompose the matrix into block matrices and solve each block using an iterative
method. In our experiments, we have chosen the sparse Conjugate Gradient
algorithm. Besides, this method allows to use overlapping techniques that may
dramatically reduce the number of iterations required to reach the convergence
by letting some components to be computed by two processors.

From a practical point of view, if we consider a discretization grid of size n×n,
A is a matrix of size (n2, n2).

It should be noticed that, in the following, the number of components by
processor is important and is a multiple of n, the number of components of a
discretized line, and that the overlapped components is less important than this
number of components. The solution of this problem using parallelism involves
that each processor exchanges, at each Jacobi iteration, its first n components
with its predecessor neighbor node and its last n ones with its successor neighbor
node. The number of components exchanged with each neighbor is equal to n. In
fact, we have only studied the case where the totality of overlapped components
are not used by a neighbor processor, only the first or last n components are
used because the other case entails more data exchanged without decreasing the
number of iterations. So, whatever the size of the overlapped components, the
exchanged data are constant.

Moreover we recall that the block-Jacobi method has the advantage to be
solvable using the asynchronous iteration model if the spectral radius of the
absolute value of the iteration matrix is less than 1, which is the case for this
problem.

Finally, the Poisson problem implemented using the JaceV API has the skele-
ton described in Algorithm 1:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

JaceV: A Programming and Execution Environment 89

Algorithm 1. The Poisson problem skeleton using the JaceV API
Build the local Poisson submatrix
Initialize dependencies
repeat

Solve local Block-Jacobi subsystem
Asynchronous exchange of nonlocal data //with jaceSend() and jaceReceive()
jaceLobalConvergence() //Local convergence detection
jaceSave() //Primitive used to save the Task object on the Dispatcher
jaceIteration++ //Increment the iteration number of the Backup to store

until jaceGlobalConvergence()

5 Experiments

For our experiments, we study the execution times of the application over 16
nodes according to n (with n varying from 500 up to 1800, which respectively
corresponds to matrices of size 250,000×250,000 up to 3,240,000×3,240,000 be-
cause the problem size is n2). An optimal overlapping value is used for each
n. These experiments are performed with different configurations of processors
and networks. For each configuration, we first run the application over 16 stable
nodes, and then, for the execution in a volatile context, we launch 19 Daemons
and run the application over 16 of them. In the last case, our strategy for volatil-
ity is to randomly disconnect each Daemon on average slightly less than two
times during the whole execution of the application and reconnect it a few sec-
onds later (i.e. there are approximatively about 30 disconnections/reconnections
for each execution).

We choose to perform those series of tests with different configurations of
processors and networks. According to processors, we use both homogeneous and
heterogeneous processors. The first context consists of a 19-workstation cluster
of Intel(R) Pentium(R) 4 CPU 3.00GHz processors with 1024MB of RAM. For
the heterogeneous case, we use 19 workstations from Intel(R) Pentium(R) III
CPU 1266MHz processors with 256MB of RAM up to Intel(R) Pentium(R) 4
CPU 3.00GHz with 1024MB of RAM. Then, we perform our tests with different
network bandwidths.

Finally our series of tests are performed using four configurations of processors
and network, which are described as follows.

1. A configuration with homogeneous processors and an Ethernet 1Gbps net-
work,

2. a configuration with homogeneous processors and a 10,000Kbps upload and
download bandwidth,

3. a configuration with homogeneous processors and a 1,000Kbps upload and
download bandwidth,

4. a configuration with heterogeneous processors and an Ethernet 100Mbps
network.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

90 J.M. Bahi, R. Couturier, and P. Vuillemin

For the second and the third configurations, each workstation of the cluster
runs a Qos5 script in order to limit the network bandwidth to 10,000Kbps (for
configuration 2) and 1,000Kbps (for configuration 3).

Whatever the configuration used, the Dispatcher is running on an Intel(R)
Pentium(R) 4 CPU 3.00GHz processor with 1024MB of RAM.

The results of the experiments are represented in figure 3 and each execution
time is the average of a series of ten executions.

 0

 500

 1000

 1500

 2000

 2500

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(a) Homogeneous configuration.

 0

 500

 1000

 1500

 2000

 2500

 3000

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(b) 10,000Kbps configuration.

 0

 500

 1000

 1500

 2000

 2500

 3000

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(c) 1,000Kbps configuration.

 0

 500

 1000

 1500

 2000

 2500

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(d) Heterogeneous configuration.

Fig. 3. Execution times of volatile and non volatile contexts for the different
configurations

Analyzing the four figures, we deduce that JaceV supports rather well the
volatile context. Indeed, although there are approximatively 30 disconnections
during the whole execution, the ratio volatile context execution time/stable
context execution time is always less than 2.5. Furthermore, at some point
during the execution, less than 16 nodes are actually computing because more
than 3 nodes are currently disconnected (they have not reconnected to the
system yet). In this case, the alive nodes keep computing and are not wait-
ing for the other Daemons to reconnect as it would occur in a synchronous
execution.
5 Quality of Service.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

JaceV: A Programming and Execution Environment 91

We can also deduce that the lower the network bandwidth is, the greater the
ratio according to the problem size is (this is particularly obvious in fig.3(c)).
This is due to the fault detection and the restarting of the application. Indeed,
when the Dispatcher detects the disconnection of a node (and eventually replaces
it), it broadcasts the new Register object to all the alive nodes involved in the
execution of the application. If the bandwidth is low, this action takes a certain
time to be performed (because the size of the Register is not negligible). Hence,
some Daemons would continue to send messages to the disappeared node during
this period until the Register is actually updated on the Daemons. Furthermore,
when the new Daemon replaces a faulty node, it must completely reload the
Backup object from the Dispatcher. This object is rather important in terms of
size, and it can take some time to deliver it on a low bandwidth network and to
actually update it on the new Daemon. All those actions make the application
much slower to converge to the solution.

Finally, comparing the execution times on homogeneous and heterogeneous
workstations (respectively fig.3(a) and fig.3(d)) we can see that the curves are
rather similar. As a consequence, we can deduce that JaceV does not seem to
be that sensitive to the heterogeneity of processors for this typical application
and perhaps for other similar coarse grained applications. This is undoubtedly
due to the asynchronism which allows the fastest processors to perform more
iterations.

6 Conclusion and Future Works

In this paper, we describe JaceV, a multi-threaded Java based library designed
to build asynchronous parallel iterative applications and run them over volatile
nodes. A goal of JaceV is to provide an environment with communications be-
tween computation nodes after each iteration, as it is necessary to run parallel
iterative applications. JaceV uses the asynchronous iteration model in order to
avoid synchronizations. Indeed, synchronous iterations would dramatically slow
down the execution in a volatile context where nodes appear and disappear
during computation.

The performance of the Poisson problem resolution show that JaceV is fully
suitable for running asynchronous iterative applications with volatile nodes. We
also remark that performances of JaceV are degraded if the network band-
width gets very low. Experiments have been conducted with matrices of size
250,000×250,000 up to 3,240,000×3,240,000.

In future works, we plan to decentralize the architecture of JaceV in order to
avoid bottlenecks on the Dispatcher. Some solutions to carry out those modifi-
cations lie in using for example a decentralized convergence detection algorithm,
or storing Backups on computation nodes, and so, to reach a really P2P like
environment. It could also be interesting to enable the environment to modify
the number N of computing nodes (and as a consequence to redistribute the
data among the processors) during the execution. In addition we plan to test
JaceV with a large scale platform with more nodes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

92 J.M. Bahi, R. Couturier, and P. Vuillemin

References

1. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical
Methods. Prentice Hall, Englewood Cliffs NJ (1989)

2. SETI@home: http://setiathome.ssl.berkeley.edu
3. Baldeschwieler, J., Blumofe, R., Brewer, E.: Atlas: An infrastructure for global

computing. 7th ACM SIGOPS European Workshop on System Support for World-
wide Application (1996)

4. Bahi, J., Miellou, J. -C., Rhofir, K.: Asynchronous multisplitting methods for non-
linear fixed point problems Numerical Algorithms, 15(3, 4) (1997) 315–345

5. Sato, M., Nakada, H., Sekiguchi, S., Matsuoka, S., Nagashima, U., Takagi, H.:
Ninflet: A Network based information Library for a global world-wide computing
infrastructure. HPCN’97 (LNCS-1225) (1997) 491–502

6. Takagi, H., Matsuoka, S., Nakada, H., Sekiguchi, S., Sato, M., Nagashima, U.: a
Migratable Parallel Object Framework using Java. In Proceedings of the ACM
1998 Workshop on Java for High-Performance Network Computing (1998)

7. Aida, K., Nagashima, U., Nakada, H., Matsuoka, S., Takefusa, A.: Performance
evaluation model for job scheduling in a global computing system. 7th IEEE In-
ternational Symp on High Performance Distributed Computing. (1998) 352–353

8. Rosenberg A. L.: Guidelines for data-parallel cycle-stealing in networks of work-
station. Journal of Parallel and Distributed Computing. 59 (1999) 31–53

9. Basney, J., Levy, M.: Deploying a High Throughput Computing Cluster. Volume
1, Chapter 5, Prentice Hall (1999)

10. Frommer, A. and Szyld, D.: On asynchronous iterations Journal of computational
and applied mathematics. 23 (2000) 201–216

11. Bosilca, G., Bouteiller, A., Capello, F., Djilali, S., Fedak, G., Germain, C., Her-
ault, T., Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.:
MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes. ACM/IEEE
International Conference on SuperComputing, SC 2002, Baltimore, USA (2002)

12. Elnozahy, E.N., Alvisi, L., Wang, Y.M., and Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3) (2002)
375–408

13. Bouteiller, A., Capello, Herault, T., Lemarinier, P., Magniette, F.: MPICH-V2:
a Fault Tolerant MPI for Volatile Nodes based on Pessimistic Sender Based Mes-
sage Logging. ACM/IEEE International Conference on SuperComputing, SC 2003,
Phoenix, USA (2003)

14. Bahi, J., Domas, S. and Mazouzi, K.: Combination of java and asynchronism for
the grid: a comparative study based on a parallel power method. 6th International
Workshop on Java for Parallel and Distributed Computing, JAVAPDC workshop
of IPDPS 2004, IEEE computer society press (2004) 158a, 8 pages

15. Browne, J. C., Yalamanchi, M., Kane, K., Sankaralingam, K.: General Parallel
Computations on Desktop Grid and P2P Systems. 7th Workshop on Languages,
Compilers and Runtime Support for Scalable Systems. LCR 2004, Houston,Texas
(2004)

16. Cappello, F., Djilali, S., Fedak, G., Hérault, T., Magniette, F., Néri, V. and Lody-
gensky, O.: Computing on large-scale distributed systems: Xtremweb architecture,
programming models, security, tests and convergence with grid. Future Generation
Comp. Syst., 21(3) (2005) 417–437

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 93 – 106, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Aspect Oriented Pluggable Support for Parallel
Computing*

João L. Sobral1, Carlos A. Cunha2, and Miguel P. Monteiro3

1 Departamento de Informática, Universidade do Minho, Braga, Portugal
2 Escola Superior de Tecnologia, Instituto Politécnico de Viseu, Portugal

3 Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

Abstract. In this paper, we present an approach to develop parallel applications
based on aspect oriented programming. We propose a collection of aspects to
implement group communication mechanisms on parallel applications. In our
approach, parallelisation code is developed by composing the collection into the
application core functionality. The approach requires fewer changes to sequential
applications to parallelise the core functionality than current alternatives and
yields more modular code. The paper presents the collection and shows how the
aspects can be used to develop efficient parallel applications.

1 Introduction

The widespread use of multithreaded and multi-core architectures requires adequate
tools to refactor current applications to take advantage of this kind of platforms.
Unfortunately, parallelising compilers do not yet produce acceptable results, forcing
programmers to rewrite their applications to take advantage of this kind of systems.
When they do this, parallelisation concerns become intertwined with application core
functionality, increasing complexity and decreasing maintainability and evolvability.

Tangling concurrency and parallelisation concerns with core functionality was
identified as one of the main problems in parallel applications, increasing development
complexity and decreasing code reuse [1, 2]. Similar negative phenomena of code
scattering and tangling were identified as symptoms of the presence of crosscutting
concerns in traditional object oriented applications [3]. Aspect Oriented Programming
(AOP) was proposed to deal with such concerns, enabling programmers to localise
within a single module code related to a crosscutting concern.

The use of AOP to implement parallelisation concerns provides the same benefits
of modularisation as in other fields, namely improved code readability and an
increased potential for reusability and (un)pluggability, for both parallelisation
concerns and sequential code. AOP techniques were successful in modularising
distribution code [4, 5, 6], middleware features [7], and, to a lesser extent, in
isolating parallel code in loop based parallel applications [2].

* This work is supported by PPC-VM (Portable Parallel Computing based on Virtual

Machines) project POSI/CHS/47158/2002, funded by Portuguese FCT (POSI) and by
European funds (FEDER). Miguel P. Monteiro is partially supported by FCT under project
SOFTAS (POSI/EIA/60189/2004).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

94 J.L. Sobral, C.A. Cunha, and M.P. Monteiro

This paper presents a collection of aspect oriented abstractions for parallel
computing that replace traditional parallel computing constructs and presents several
case studies that illustrate how this collection supports the develop parallel
applications. Section 2 presents related work. Section 3 presents a brief overview of
AspectJ, an AOP extension to Java that was used to implement the collection. Section
4 presents the collection. Section 5 presents several case studies and section 6
presents a performance evaluation. Section 7 concludes the paper.

2 Related Work

We classify related work in two main areas: concurrent object oriented languages
(COOL) and approaches to separate parallel code from core functionality.

COOLs received a lot of attention in the beginning of the 1990s. ABCL [8] provides
active objects to model concurrent activities. Each active object is implemented by a
process and inter-object communication can be performed by asynchronous or
synchronous method invocation. Concurrent Aggregates [9] is a similar approach but
supports groups of active objects than can work in a coordinated way and includes
mechanisms to identify an object within a group. Recent COOLs are based on
extensions to sequential object oriented languages [10, 11, 12]. These extensions
introduce new language constructs to specify active objects and/or asynchronous
method calls. ProActive [13] is an exception, as it relies on an implicit wait by necessity
mechanism, however, when a more fine grain control is required, an object body should
be provided (to replace the default active object body). Object groups, similar to
concurrent aggregates, were recently introduced [14, 15]. With these approaches, the
introduction of concurrency primitives and/ or object groups entails major modifications
to source code. Parallelisation concerns are intertwined with core functionality, yielding
the aforementioned negative phenomena of code scattering and tangling.

One approach to separate core functionality from parallel code is based on
skeletons where the parallelism structure is expressed through the implementation of
off-the-shelf designs [16, 17, 18, 19]. In generative patterns [20], the skeletons are
generated and the programmer must fill the provided hooks with core functionality.

AspectJ was used in [4, 5, 6] to compose distribution concerns into sequential
applications. In [2], an attempt is made to move all parallelism related issues into a
single aspect and [21] proposes a more fine-grained decomposition. In [22], a
collection of reusable implementations of concurrency concerns is presented.

OpenMP [23] introduces concurrency concerns by means of programming
annotations that can be ignored by the compiler in a sequential execution.

Our approach differs from the aforementioned efforts in that we propose a
collection of reusable aspects that achieve the same goals, by supporting object group
relationships. We use concurrency constructs equivalent to traditional COOLs but we
deploy all code related to parallelism within (un)pluggable aspects. Our approach
differs from skeleton approaches as it uses a different way to compose core
functionality and parallel code. Our approach requires less intrusive modifications to
the core functionality to achieve a parallel application, yields code with greater
potential for reuse and supports (un)plugability of parallelisation concerns.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Aspect Oriented Pluggable Support for Parallel Computing 95

3 Overview of AspectJ

AspectJ [24, 25] is a backwards compatible extension to Java that includes
mechanisms for AOP. It supports two kinds of crosscutting composition: static and
dynamic. Static crosscutting allows type-safe modifications to the application static
structure that include member introduction and type-hierarchy modification.
AspectJ’s mechanism of inter-type declarations enables the introduction of additional
members (i.e. fields, methods and constructors). AspectJ’s type-hierarchy
modifications add super-types and interfaces to target classes. Fig. 1 presents a point
class and Fig. 2 presents an Aspect that changes class Point, to implement interface
Serializable, and to include an additional method, called migrate.

public class Point {
 private int x=0;
 private int y=0;

 public void moveX(int delta) { x+=delta; }
 public void moveY(int delta) { y+=delta; }

 public static void main(String[] args) {
 Point p = new Point();
 p.moveX(10);
 p.moveY(5);
 }
}

Fig. 1. Sample point class

public aspect StaticIntroduction {
 declare parents: Point implements Serializable;
 public void Point.migrate(String node) { System.out.println("Migrate to node" + node); }
}

Fig. 2. Example of a static crosscutting aspect

Dynamic crosscutting enables the capture of various kinds of execution events,
dubbed join points, including object creation, method calls or accesses to instance
fields. The construct specifying a set of interesting join points is a pointcut. A
pointcut specifies a set of join points and collects context information from the
captured join points. The general form of a named pointcut is:

<visibility-modifier> pointcut <name>(ParameterList): <pointcut_expression>;

The pointcut_expression is composed by pointcut designators (PCDs), through
operators &&, ||, and !. AspectJ PCDs identify sets of join points, by filtering a subset
of all join points in the program. Join point matching can be based on the kind of join
point, on scope and on join point context. For more information on PCDs, see [24].

Dynamic crosscutting also enables composing behaviour before, after or instead of
each of the captured join points using the advice construct. Advices have the
following syntax:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

96 J.L. Sobral, C.A. Cunha, and M.P. Monteiro

 [before | after | <Type> around] (<ParameterList>): <pointcut_expression>
 {… // added behaviour }

The before advice adds the specified behaviour before the execution point
associated to the join points quantified by the pointcut_expression. around advices
replace the original join point with new behaviour and is also capable of executing the
original join point through the proceed construct. after advice adds new behaviour
immediately after the original execution point. The pointcut_expression is an
expression comprising one or several PCDs that can also reuse previous pointcut
definitions. Objects and primitive values specific to the context of the captured join
point are obtained through PCDs this, target and args. Fig. 3 shows the example of a
logging aspect, applied to class Point. In this example, a message is printed on the
screen on every call to methods moveX or moveY. The wildcard in the poincut
expression is used to specify a pattern for the call’s signature to intercept.

public aspect Logging {
 void around(Point obj, int disp) : call(void Point.move*(int)) && target(obj) && args(disp) {
 System.out.println("Move called: target object = " + obj + " Displacement " + disp);
 proceed(obj,disp); // proceed the original call
 }
}

Fig. 3. Example of a dynamic crosscutting aspect

Modularisation of crosscutting concerns is an achievement that contributes to code
reusability. Though it is a necessary condition, it is not a sufficient one, as only the
non case-specific code is reusable. Essential parts of the aspect’s behaviour are the
same in different join points, whereby other parts vary from join point to join point.
Reuse of crosscutting concerns requires the localisation of reusable code within
abstract base aspects that can be reused by concrete sub-aspects. Concrete aspects
contain the variable parts tailored to a specific code base, specifying the case-specific
join points to be captured in the logic declared by the abstract aspect. Abstract aspects
rely on abstract pointcuts and/or marker interfaces. In both cases, the abstract aspect
only refers to abstract pointcut(s) or to the interface(s) and is therefore potentially
reusable. Each concrete implementation entails the creation of one or several concrete
sub-aspects that concretise inherited pointcuts by specifying the set of join points
specific to the system at hand, and by making case-specific types implement the
marker interfaces. In addition, aspects can hold their own state and behaviour.

An aspect is supposed to localise code related to a concern that otherwise would be
crosscutting. A composition phase called weaving enables the placement of aspect
code in multiple non-contiguous points in the system. As an example, the behaviour
specified by the around advice in Fig. 3 is composed in all base classes that call
moveX or moveY methods.

4 Aspect Oriented Collection for Parallel Computing

The aspect oriented collection (Table 1) presented in this paper is based on three
programming abstractions: separable/migrable objects, asynchronous method calls

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Aspect Oriented Pluggable Support for Parallel Computing 97

and object aggregates. By implementing the abstractions through aspects, it becomes
possible to turn a given sequential application (i.e., sequential, domain-specific, object
oriented code) into a parallel application. However, the base code should be amenable
for parallelisation, i.e., the amount of parallelism that can be introduced by the aspect
collection is subject to dependencies in application tasks and data. The composition of
the collection with core functionality requires a set of suitable join points. If these are
not available, the source code must be refactored to expose the necessary join points.

Table 1. Aspect oriented collection of abstractions for parallel computing

Abstraction Scope Description
Separate Class Separate object - can be placed in any node
Migrable Class Migrable object - can migrate among nodes
Grid1D, Grid2D Class Object aggregate in a 1 or 2d GRID
OneWay Method Spawns a new thread to execute the method
Future Method Spawns a new thread and returns a future
Synchronised Method Implements object-based mutual exclusion
Broadcast/scatter Aggregate Broadcast/scatter method among members
Reduction/gather Aggregate Reduce/gather method among members
Redirection Aggregate Redirect method call to one member (round-robin)
DRedirection Aggregate Redirect call to one member (demand-driven)
Barrier Aggregate Barrier among aggregate members

Separable objects are objects that can be placed in remote nodes, selected by the
run-time system. Migrable objects are similar but they can migrate to a different node
after their creation. These two abstractions are specified through the separable and
migrable interfaces using the declare parents AspectJ construct (see section 2).

Asynchronous method calls introduce parallel processing between a client and a
server. The client can proceed while the server executes the requested method.
Asynchronous calls can be OneWay and Future. One-way calls are used when no
return value is required. Fig. 4 shows the synopsis for the use of one-way calls.

public aspect aspectName extends OnewayProtocol {
 protected pointcut onewayMethodExecution(Object servant) : <pointcut definition>;
 protected pointcut join() : <pointcut definition>;
}

Fig. 4. One-way introduction

Pointcut onewayMethodExecution specifies the join points associated to invocation
of methods that run into a new parallel task. Pointcut join can optionally be used to
specify join points where the main thread blocks, waiting for the termination of the
spawned tasks.

Future calls are used for asynchronous calls that require a return value. In typical
situations, a variable stores the result of a given method call, which is used in a later
phase. Instead of blocking in the method call, the client blocks when the variable that
stores the result (i.e., the value returned by the method) is actually accessed. Fig. 5
shows the synopsis for the implementation of futures.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

98 J.L. Sobral, C.A. Cunha, and M.P. Monteiro

public aspect aspectName extends FutureProtocol {
 protected pointcut futureMethodExecution(Object servant): <pointcut definition>;
 protected pointcut useOfFuture(Object servant): <pointcut definition>;
}

Fig. 5. Future introduction

Pointcut futureMethodExecution indicates the asynchronous method calls and
pointcut useOfFuture defines the join points where the result of the call is needed.
The client blocks on join points captured by useOfFuture, in case the methods defined
in futureMethodExecution have not completed execution.

A richer set of primitives for synchronisation is also available [22], namely Java’s
synchronised methods, barriers and waiting guards, but their description is out of
scope of this paper.

Object aggregates are used to transparently represent a set of object instances in the
core functionality. An object aggregate deploys one or several object instances in each
node (usually one per physical processor/core) and provides additional constructs to
access the members of the aggregate. There are two main interfaces to support
aggregates: Grid1D and Grid2D; they differ only in the way the internal members of
the aggregate are referenced. For instance, a Grid1D aggregate provides two calls:
getAggregateElems() and getAggregateElemId(). Grid1D and Grid2D aggregates are
specified in a way similar to separate objects (i.e., using declare parents).

Calls to the original object instance (i.e., calls in the core functionality) are
replaced by calls to the first object in the aggregate (called the aggregate
representative). These calls can also be broadcasted, scattered and reduced among
members of the aggregate. Broadcasted calls are executed in parallel by all aggregate
members, using the same parameters of the core functionality call. Such call returns
when all broadcasted calls complete. Fig. 6 shows the synopsis for the use of
broadcasted calls. Pointcut broadcastMethodExecution specifies method calls
broadcasted to all aggregate members.

 protected pointcut broadcastMethodExecution(Object servant) : <pointcut definition>;

Fig. 6. Broadcasted calls introduction

Scattered calls (Fig. 7) are similar to broadcasted calls but they provide a
mechanism to specify a different parameter for each call into aggregates member.
This is specified by implementing the abstract method scatter which returns a vector
whose elements correspond to the parameters sent to aggregate members.

 protected Vector scatter(Object callParameter) {
 …
 }
 protected pointcut scatterMethodExecution(Object serv, Object arg) : <pointcut definition>;

Fig. 7. Scattered calls introduction

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Aspect Oriented Pluggable Support for Parallel Computing 99

Reduced calls are also similar to broadcasted calls, but they provide a mechanism
to combine return values of each aggregate member call. This type of calls should be
used instead of a broadcasted call, when the call returns a value. In this case a
reduction function specifies how to combine the returned values of each aggregate
member call (Fig. 8).

 protected Object reduce(Vector returnValues) {
 …
 }
 protected pointcut reduceMethodExecution(Object serv, Object arg) : <pointcut definition>;

Fig. 8. Reduced calls introduction

An additional function (scatter/reduce) performs a combination of scatter and
reduce calls. Other aggregate functions can redirect a call to one aggregate member in
a round-robin fashion (redirectCall) or in a demand driven scheme (dredirectCall).

Broadcasted, scattered and reduced calls are valid just for object aggregates (e.g.,
method calls on objects that implement interfaces Grid1D or Grid2D).

Fig. 9 shows a simple application that illustrates the use of this collection of
aspects. The object Filter in the core functionality (left column of Fig. 9) is replaced
by an aggregate in the parallelisation code (right column, declare parents statement)
and calls to method filter are broadcasted, in parallel, to all aggregate members
(pointcuts broadcastMethodExecution and onewayMethodExecution). Before filter
method execution (advice before() execution(* Filter.filter)), each aggregate member
displays its identification within the aggregate.

Core functionality Parallelisation code

public class Filter {
 void filter() {
 …
 }
…
Filter f = new Filter();

f.filter();

declare parents: Filter implements Grid1D;

before() : execution(* Filter.filter(..)) && … {
 System.out.println(“Called on ” + getAggregateElemId());
}

pointcut broadcastMethodExecution(..) : call(* Filter.filter(..));

pointcut onewayMethodExecution(..) : call(* Filter.filter(..));

Fig. 9. Simple application example

5 Case Studies

This section presents two case studies that illustrate the use of the aspect collection to
develop modular parallel applications. The case studies are taken from the parallel
Java Grande Forum Benchmark (JGF) [26]. This benchmark includes several
sequential scientific codes and parallel versions of the same applications, using

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

100 J.L. Sobral, C.A. Cunha, and M.P. Monteiro

mpiJava (a bind of MPI to Java). Their parallel implementations introduce
modifications to the sequential code, intermingling domain specific code with MPI
primitives to achieve a parallel execution. Tangling makes it difficult to understand
the parallelisation strategy as well as the domain specific code. Our approach entails
introducing as fewer modifications as possible to the domain scientific code by
introducing the parallelisation logic through non-invasive composition of the aspects
from the collection. We believe that this approach makes the implementation of the
parallelisation strategy more modular and explicit.

The first case study is a Successive Over-Relation method (SOR), an iterative
algorithm to solve Partial Differential Equations (PDEs). This application is
parallelised using a heartbeat scheme, where each parallel task processes part of the
original matrix. After each iteration, neighbour parallel tasks must exchange
information required for the next iteration.

The second application is a ray-tracer that renders a scene with 64 spheres. It is
parallelised using a farming strategy, where each worker renders a set of image lines.

5.1 Successive Over-Relation

The SOR method is used to iteratively solve a system of PDE equations. The method
successively calculates each new matrix element using its neighbour points. The
sequential Java program of the JGF method is outlined in Fig. 10. This code iterates a
number of pre-defined iterations, given by num_iterations, over matrix G.

In this particular case, the sequential version could limit parallelism due to
dependencies among calculations. To overcome this limitation the SORrun
implementation was changed to use the Red-Black parallel version, becoming more
amenable for parallel execution. This strategy was also followed in the JGF parallel
benchmark to derive the parallel version of the application.

 public class SOR {
 …
 public static final void SORrun(double omega, double G[][], int num_iterations) {
 …
 for (int p=0; p<num_iterations; p++) {
 … // performs one iteration
 }
 …
 }
 }

Fig. 10. JGF SOR sequential code

The sequential code from the JGF does not provide adequate join points to
compose with our collection. Our first step is to use the static crosscutting of AspectJ
to make this code suitable for composition with parallelisation code (Fig. 11). This
code introduces two new methods into the SOR class: the init method (lines 04-05)
initialises the SOR matrix and the iterate method (lines 07-08) performs one iteration.
In lines 10-17 the original SORrun call is redefined to call these methods. An

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Aspect Oriented Pluggable Support for Parallel Computing 101

01 double SOR.MyG[][],
02 static int SOR.omega;
03
04 // initialise matrix
05 public void SOR.init(double G[][]) { MyG = G; }
06
07 // performs one iteration
08 public void SOR.iterate() { SORrun(omega, MyG, 1); }
09
10 // redirects SORrun calls to use SOR instances, init call and iterate calls
11 void around(double omega, double G[][], int iterations) call(* SOR.SORrun(..)) && … {
12 SOR.omega = omega;
13 SOR so = new SOR();
14 so.init(G);
15 for(int i=0; i<iterations; i++)
16 so.iterate();
17 }

Fig. 11. SOR method core functionality

alternative would be to refactor all the JGF SOR sequential code to use SOR
instances, init and iterate calls.

SOR core functionality can be parallelised through a typical heartbeat strategy.
According to this strategy, each parallel task iterates over a subset of the matrix,
periodically exchanging boundary information with its neighbours. The parallelisation
aspect has four parts: 1) creates multiple SOR objects; 2) assigns a subset of the
matrix to each SOR object; 3) performs a call to the iterate method on all the objects
in the set and 4) exchanges matrix lines among objects after each iteration.

The first step creates an aggregate of SOR objects in place of a single object
(Fig. 12), by specifying that the SOR class implements the Grid1D interface (line 01
in Fig. 13). Our system intercepts the creation of SOR instances in the core
functionality and creates one SOR object on each node/CPU.

SS

S
S

SSS C

Client object

Server object

Server creation

C

S

Fig. 12. Transparent creation of several SOR objects

The second step distributes the G matrix among the elements of the aggregate
(Fig. 14). The code for this step intercepts the init method, splits the received matrix
into blocks, using method scatter (line 02 in Fig. 13) and calls the init method on each
object in the set, passing a different block to each element using the scatter method
(line 03 in Fig. 13). Code for the matrix partition (scatter method in line 02 in Fig. 13)
is a bit tricky to implement since there are lines from the matrix that are replicated in
several objects and the first and the last objects receive one line less than other

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

102 J.L. Sobral, C.A. Cunha, and M.P. Monteiro

13 SOR so = new SOR();

14 so.init(G);

15 for(int i=0; i<iterations; i++)
16 so.iterate();

01 declare parents: SOR implements Grid1D;

02 Vector scatter(Object arg) { … }
03 pointcut scatterMethodExecution(..) :
 call (* SOR.init(..)) && ...;

04 pointcut broadcastMethodExecution(..) :
 call(* SOR.iterate(..)) && …;

05 after() : execution(* SOR.iterate(..)) && … { … }

Fig. 13. Parallelisation of the SOR application using our AOP collection

objects. However, this code is also required in a traditional parallel application and it
is usually tangled with the algorithm core functionality.

Init (G)

Init (MyG)

Init (MyG)

Init (MyG)

Init (G)

Init (MyG)

Init (MyG)

Init (MyG)

Fig. 14. Matrix distribution among SOR objects

Third, iterate method calls are executed by all SOR aggregate objects (Fig. 15).
Code for this operation implements the broadcast pointcut (line 04 in Fig. 13).

iterate

iterate

iterate

iterate

iterate

iterate

iterate

iterate

Fig. 15. Iteration distribution among SOR objects

The last step exchanges matrix boundary lines among SOR objects, after an iterate
method execution (Fig. 16 and line 05 in Fig. 13).

Iterate
(after)
Iterate
(after)

Fig. 16. Boundary exchange among SOR objects

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Aspect Oriented Pluggable Support for Parallel Computing 103

5.2 RayTracer

The JGF RayTrace renders an image of sixty-four spheres. A simplified version of the
JGF sequential code is provided in Fig. 17. Method JGFinitialise initialises the scene
to be rendered and method JGFapplication renders the scene. The class Interval
allows the specification of a subset of the lines to be rendered.

 public class JGFRayTracerBench extends RayTracer … {
 …
 public void JGFinitialise(){
 …
 scene = createScene(); // create the objects to be rendered
 setScene(scene); // get lights, objects etc. from scene.
 …
 }

 public void JGFapplication() {
 …
 // Set interval to be rendered to the whole picture
 Interval interval = new Interval(0,width,height,0,height,1);

 render(interval); // Do the business!
 …
 }
 }

Fig. 17. JGF RayTracer sequential code

The parallelisation aspect for this benchmark (Fig. 18) declares the class
JGFRayTracerBench to implement the Grid1D interface (line 01). Calls to
JGFinitialise are broadcasted to all aggregate members (line 03) and a call to the
render method is scattered throughout aggregate elements. The scatter function builds
a vector with the arguments for each call to one aggregate member. This is the same
strategy followed in the JGF parallel version of this application.

01 declare parents: RayTracerBench implements Grid1D;
02
03 pointcut broadcastMethodExecution(Object servant) : call(* *. JGFinitialise(..)) && … ;
04
05 Vector scatter(Object arg) { // calculates the parameters of each call
06 Vector v = new Vector();
07 Interval in = (Interval) arg;
08 …
09 for(int i=0; i<workers; i++) {
10 Interval inp = new Interval(/* sub-interval range */);
11 v.add(inp); // saves the range of each worker
12 }
13 return(v);
14 }
15
16 pointcut scatterMethodExecution(Object serv, Object arg) : call (* *.render(..)) && … ;
17

Fig. 18. JGF RayTracer parallelisation aspect

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

104 J.L. Sobral, C.A. Cunha, and M.P. Monteiro

6 Performance Results

This section presents a performance evaluation of the proposed aspect collection. The
results presented in this section were measured on an unloaded cluster of 8 dual-Xeon
3.2 GHz machines, with hyper-threading enabled, connected through a 1 Gbit
Ethernet. This cluster runs Rocks 4.0.0 and Sun Java JDK 1.5.0_3 in client mode.
Presented execution times are the median of five executions. Sequential execution
times were measured on JGF versions where our parallelisation aspects were
unplugged. Speed-up values are relative to these sequential execution times.

Fig. 19 presents the execution time for a SOR (4000x4000 matrix) and a RayTracer
(500x500 image) on a single machine. With two aggregate members the ray tracer
presents better speed-ups, due to less communication required among tasks. Both
applications can benefit from hyper-threading (i.e., using more than two aggregate
members per node). In this case, higher gains in the SOR can be due to stronger
dependencies among matrix elements calculations; leading to higher parallelism when
the user performs an explicit parallelisation (e.g., provides more independent tasks, by
means of a higher number of aggregate members).

Fig. 20 presents execution times on 8 cluster nodes. Also in this case the ray tracer
presents better speed-ups, due to less communication among tasks. Note that using
more than 16 aggregate members leads to a smaller performance improvement, since
this additional gain is achieved by using multi-threading capabilities of these
processors.

Execution times compared to equivalent Java versions (not shown), using MPP
(message passing library built on top of Java nio) and Java Threads are within 5%
execution time. This low overhead is due to static nature of AspectJ weaving, which
can inline most aspect code into the core classes. The aspect overhead results from
additional data structures and from some code that can not be in-lined in the original
and is placed in new classes. Scatter and reduce functions can also be an additional
source of overhead, since they may require additional data copies.

Fig. 19. Execution time and speed-ups for a SOR (at left) a RayTracer (at right)

0

20

40

60

80

1 2 3 4

Aggregate Members

E
xe

cu
tio

n
Ti

m
e

(s
)

0

1

2

3

4

S
pe

ed
-U

p

0

25

50

75

100

1 2 3 4

Aggregate Members

E
xe

cu
tio

n
T

im
e

(s
)

0

1

2

3

4

S
pe

ed
-U

p

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Aspect Oriented Pluggable Support for Parallel Computing 105

Fig. 20. Execution times and speed-ups for a SOR (at left) and a RayTracer (at right)

7 Conclusion

This paper presents a collection of aspects for parallel computing that requires fewer
and smaller changes to parallelise sequential applications than current alternatives. It
yields parallel object-oriented scientific applications that are more modular and easier
to reuse. The collection was successfully applied to several JGF applications.

One of the main drawbacks of the approach stems from the non object-oriented nature
of current scientific applications, as these do not provide adequate join point leverage to
compose the sequential code with our collection. However, this limitation is expected to
have less impact in the future, as scientific code becomes more object oriented. We can
partially overcome this limitation by using the static crosscutting mechanisms of AspectJ
to introduce the appropriate join points (as in the SOR application).

A second limitation is when the sequential code is not amenable for parallelisation.
One solution is to refactor the core functionality in order to obtain a more fine grained
decomposition. As an example, in the RayTracer example we could have a method
renderLine which would provide more flexibility to derive the parallel version of
RayTracer.

Current work includes the extension of this collection to support more orthogonal
compositions of broadcast, scatter and reduce pointcuts; and a more efficient
implementation of these pointcuts on distributed memory machines (e.g., using MPI
collective primitives).

References

1. S. Matsuoka, K. Taura, A. Yonezawa: Highly Efficient and Encapsulated Re-use of
Synchronisation Code in Concurrent Object-Oriented Languages, OOPSLA ‘93, Oct.
1993.

2. B. Harbulot, J. Gurd.. Using AspectJ to Separate Concerns in Parallel Scientific Java
Code, ACM AOSD’04, Lancaster, UK, March 2004.

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, J. Irwin.
Aspect Oriented Programming, ECOOP ‘97, June 1997.

0

10

20

30

40

50

60

70

80

0 4 8 12 16 20 24 28 32

Aggregate Members

E
xe

cu
tio

n
Ti

m
e

(s
)

0

4

8

12

16

20

24

28

32

S
pe

ed
-U

p

0

13

26

39

52

65

78

91

104

0 4 8 12 16 20 24 28 32

Aggregate Members

E
xe

cu
tio

n
Ti

m
e

(s
)

0

4

8

12

16

20

24

28

32

S
pe

ed
-U

p

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

106 J.L. Sobral, C.A. Cunha, and M.P. Monteiro

4. S. Soares, E. Loureiro, P. Borba. Implementing Distribution and Persistence Aspects With
AspectJ, OOPSLA ’02, November 2002.

5. M. Ceccato, P. Tonella. Adding Distribution to Existing Applications by means of Aspect
Oriented Programming, 4th IEEE SCAM, September 2004.

6. E. Tilevich, S. Urbanski, Y. Smaragdakis, M. Fleury. Aspectizing Server-Side
Distribution, IEEE ASE 2003, Montreal, Canada, October 2003.

7. C. Zhang, H. Jacobsen. Resolving Feature Convolution in Middleware Systems,
OOPSLA’04, Vancouver, Canada, October 2004.

8. A. Yonezawa, M. Tokoro, ed, Object-Oriented Concurrent Programming, MIT Press,
1987.

9. A. Chien, V. Karamcheti, J. Plevyak, X. Zhang, Concurrent Aggregates (CA) Language
Report - Version 2.0, TR, Dep. Computer Science, University of Illinois, UC, Nov., 1993

10. G. Wilson (Ed). Parallel Programming Using C++, MIT Press, 1996.
11. M. Philippsen. A Survey of Concurrent Object-Oriented Languages, Concurrency:

Practice and Experience, 10(12), August 2000.
12. M. Factor, A. Schuster, K. Shagin. A Distributed Runtime for Java: Yesterday and Today,

IEEE IPDPS’04, New Mexico, April 2004.
13. F. Baude , L. Baduel, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici,

Programming, Composing Deploying for the Grid, in GRID COMPUTING: Software
Environments and Tools, Jose C. Cunha and Omer F. Rana (Eds), Springer Verlag,
January 2006.

14. J. Maassen, T. Kielmann and H. Bal, GMI: Flexible and Efficient Group Method
Invocation for Parallel Programming, Sixth Workshop on Languages, Compilers, and Run-
time Systems for Scalable Computers (LCR-02), Washington DC, March 2002.

15. L. Baduel, F. Baude, D. Caromel, Object-Oriented SPMD, International Symposium on
Cluster Computing and the Grid (CCGrid2005), Cardiff, May, 2005.

16. J. Darlington, Y. Guo, H. To, J. Yang. Parallel Skeletons for Structured Composition,
PPoPP’95, Santa Clara, USA, 1995.

17. P. Trinder, K. Hammond, H. Loidl, S. Jones. Algorithm + Strategy = Parallelism, Journal
of Functional Programming, 8(1), January 1998.

18. F. Rabhi, S. Gorlatch (ed): Patterns and Skeletons for Parallel and Distributed Computing,
Springer, 2003.

19. J. Fernando, J. Sobral, A. Proenca. JaSkel: A Java Skeleton-Based Framework for
Structured Cluster and Grid Computing, CCGrid'2006, Singapore, May 2006

20. K. Tan, D. Szafron, J. Schaeffer, J. Anvik, S. MacDonald. Using Generative Design
Patterns to Generate Parallel Code for a Distributed Memory Environment, PPoPP'03, San
Diego, California, USA, June, 2003.

21. J. Sobral, Incrementally Developing Parallel Applications with AspectJ, IEEE IPDPS’06,
Rhodes, Greece, April 2006

22. C. Cunha, J. Sobral, M. Monteiro, M., Reusable Aspect-Oriented Implementations of
Concurrency Patterns and Mechanisms, AOSD’06, Bonn, Germany, March 2006.

23. OpenMP architecture review board, OpenMP Application Program Interface, Version 2.5,
May 2005, www.openmp.org.

24. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An Overview of
AspectJ. ECOOP 2001, Budapest, Hungary, June 2001.

25. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, Getting Started
with AspectJ. Communications of the ACM, 44(10), October 2001.

26. A. Smith, J. Bull, J. Obdrzálek: A Parallel Java Grande Benchmark Suite, Supercomputing
(SC’01), November 2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model for Simulation of Heterogeneous
High-Performance Computing Environments

Rodrigo Fernandes de Mello1 and Luciano José Senger2,�

1 Universidade de São Paulo – Departamento de Computação
Instituto de Ciências Matematicas e de Computação
Av. Trabalhador Saocarlense, 400 Caixa Postal 668

CEP 13560-970 São Carlos, SP, Brazil
mello@icmc.usp.br

2 Universidade Estadual de Ponta Grossa – Departamento de Informatica
Av. Carlos Cavalcanti, 4748

CEP 84030-900 Ponta Grossa, PR, Brazil
ljsenger@icmc.usp.br

Abstract. This paper proposes a new model to predict the process execution be-
havior on heterogeneous multicomputing environments. This model considers the
process execution costs such as processing, hard disk acessing, message transmit-
ting and memory allocation. A simulator of this model was developed which help
to predict the execution behavior of processes on distributed environments under
different scheduling techniques. Besides the simulator, it was developed a suite of
benchmark tools in order to parameterize the proposed model with data collected
from real environments. Experiments were conduced to evaluate the proposed
model which used a parallel application executing on a heterogeneous system.
The obtained results show the model ability to predict the actual system perfor-
mance, providing an useful model for developing and evaluating techniques for
scheduling and resource allocation over heterogeneous and distributed systems.

1 Introduction

The evaluation of a computing system allows the analysis of its technical and economic
feasibility, safety, performance and correct execution of processes. In order to evaluate a
system, techniques that estimate its behavior on different situations are used. Such tech-
niques provide numerical results which allow the comparison among different solutions
for the same problem [1]. The evaluation of a computing system may use elementary
or indirect techniques. The elementary ones are directly applied over the system, so
it is necessary to have it previously implemented. The indirect ones allow the system
evaluation before its implementation, what is relevant at the project phase [2, 3, 4, 5, 6].

The indirect techniques use mathematic models to represent the behavior of the main
system components. Such models should be as similar as possible to the real problems,
generating results for a good evaluation without being necessary to implement them [6].

� The authors thank to William Voorsluys for improving the source code of the benchmark memo
and the fundings from Capes and Fapesp Brazilian Foundations (under the process number
04/02411-9).

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 107–119, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

108 R.F. de Mello and L.J. Senger

Several models have been proposed for the evaluation of the execution time and the
process delay. They consider the CPU consumption, the performance slowdown due to
the use of the virtual memory [7] and the time spent with messages transmitted through
the communication network [8].

Amir et al. [7] have proposed a method for job assignment and reassignment on clus-
ter computing. This method uses a queuing network model to represent the slowdown
caused by virtual memory usage. In such model the static memory m(j) used by the
process is known. This model defines the load of each computer in accordance with the
equation 1, where: L(t, i) is the load of computer i at the instant t; lc(t, i) is the CPU
occupation; lw(t, i) is the amount of main memory used; rw(i) is maximum capacity
of the main memory; β is the slowdown factor due to the use of virtual memory. Such
factor increases the process response time, what consequently reflects in a lower final
performance. This work attempts to minimize the slowdown by means of scheduling
operations.

L(t, i) =

{
lc(t, i) if lw(t, i) ≤ rw(i)
lc(t, i) ∗ β otherwise

(1)

Mello et al. [9] have proposed improvements to the slowdown model by Amir et
al. [7]. This work includes new parameters which allow a better modelling of process
slowdown. Such parameters are the capacity of CPU and memory, throughput for read-
ing and writing on hard disk and delays generated by the use of the communication net-
work. However, this model presents similar limitations to the work by Amir et al. [7], as
it does not offer any resource to model, through equations, the delay caused by the use
of virtual memory (represented in equation 1 by the parameter β), nor consider other
delays of the process execution time generated by: message transmission, hard disk ac-
cess and other input/output operations. The modeling of message transmission delays
is covered by other works [8, 10].

Culler et al. [8] have proposed the LogP model to quantify the overhead and the net-
work communication latency among processes. The overhead and latency cause delays
among processes which communicate. This model is composed of the following pa-
rameters: L which represents the high latency limit or delay incurred in transmitting a
message containing a word (or a small number of words) from the source computer to a
destination; o represents the overhead which is the time spent by processor to prepare a
message for sending or receiving; g is the minimum time interval between consecutive
message transmittion (sending or receiving); P is the number of processors. The LogP
model assumes a finite capacity network with the maximum transmission defined by
L/g messages.

Sivasubramaniam [10] used the LogP model to propose a framework to quantify the
overhead of parallel applications. In such framework are considered aspects such as the
processing capacity and the communication system usage. This framework joins efforts
of actual experiments and simulations to refine and define analytic models. The major
limitation of this work is that it does not present a complete case study.

The LogP model can be aggregated to the model by Amir et al. [7] and Mello et
al. [9], permitting to evaluate the process execution time and slowdowns considering
the resources of CPU, memory and transmitted messages on the network. Although

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model for Simulation of Heterogeneous High-Performance Computing Environments 109

unifying the models, they are still incomplete because do not consider the spatial and
message generation probability distributions. Motivated by such limitations, some stud-
ies have been proposed [11, 12].

Chodnekar et al. [11] have presented a study to characterize the probability distri-
bution of messages on communication systems. In such work, the 1D-FFT and IS [13],
Cholesky and Nbody [14], Maxflow [15], 3D-FFT and MG [16] parallel applications
are evaluated executing on real environments. In the experiments, some informations
have been captured such as the message sending and receiving moments, size of mes-
sages and destination. These informations were analyzed through statistic tools, and
the spatial and message generation probability distributions obtained. The spatial dis-
tribution defines the frequency each process communicates with others. The message
generation distribution defines the probability that each process sends messages to
others.

They have concluded that the most usual message generation probability distribution
for parallel applications are the exponential, hyperexponential and Weibull. It has also
been concluded that the spatial distribution is not uniform and there are different traffic
patterns during the applications’ execution. In the most part of applications there is a
process which receives and sends a large number of messages to the remainder pro-
cesses (like a master for PVM – Parallel Virtual Machine – and MPI – Message Passing
Interface – applications). The work also presents some features about message volume
distribution, but there is not a precise analysis about the message size, overhead and
latency.

Vetter and Mueller [12] have studied the communication behavior of scientific ap-
plications using MPI (Message Passing Interface). This study quantifies the average
volume of transmitted messages and their size. It has been concluded that in peer-to-
peer systems 99% of the transmitted messages vary from 4 to 16384 bytes. In collec-
tive calls this number varies from 2 to 256 bytes. This was combined with the stud-
ies on spatial and message generation distributions by Chodnekar et al. in [11] and
to the LogP model [8] which allow the identification of overhead and communication
latency in computing systems. By unifying these studies to the previously described
slowdown models it is possible to evaluate the process behavior considering CPU, vir-
tual memory and message transmittion. However, it is not possible to model voluntary
delays in the execution of processes (generated by sleep calls) and accesses to hard
disks.

Motivated by the unification of the previously presented models, the aggregation of
the applications’ voluntary delays and hard disk access, this paper presents the UniMPP
(Unified Modeling for Predicting Performance) model. This model unifies the CPU
consumption considered in the models by Amir et al. [7] and Mello et al. [9], the time
spent to transmit messages modeled by Culler et al. [8] and Sivasubramaniam [13],
the message volume and the spatial and message generation probability distributions
by Chodnekar et al. [11], and Vetter and Mueller [12]. Experiments confirmed that
this model can be used to predict the behavior of process execution on heterogeneous
environments, once it generates the process response times very similar to the observed
on real executions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

110 R.F. de Mello and L.J. Senger

This model was implemented in a simulator which is parameterized with system
configurations (CPUs, main and virtual memories, hard disk thoughput and network
capacity) and receives processes for execution. Distribution functions are used to char-
acterize the process CPU, memory, hard disk and network occupations. The simulator
also generates new processes according to a probability distribution function, allowing
to evaluate different scheduling and load balancing policies without needing the real
execution.

As presented before, the simulator needs to be parameterized with the actual system
configurations. For this purpose, a suite of benchmark tools was developed to collect
informations such as the capacity of CPUs in MIPS (millions of instructions per sec-
ond), the main and virtual memory behavior under a progressive occupation (this gen-
erates delay functions), the hard disk throughput in reading and writing operations (in
MBytes per second) and the network delay (considering the overhead and latency in
seconds).

The main contribution of this work is the UniMPP model which can be used with
the simulator allied to the benchmark tools to predict the process execution time on
heterogeneous environments. The simulator is prepared to receive new scheduling and
load balancing policies and evaluate them using different workload models [17].

This paper is divided into the following sections: 2 The model; 3 Parameterization;
4 Model Validation; 5 Conclusions and References.

2 The Model

Motivated by the unification of the virtual memory slowdown models [7,9], by the mod-
els of delays in process execution caused by messages transmission [8, 10], by studies
about spatial and message generation probability distributions [11], by the slowdown
caused in main and virtual memory ccupation, by the definition of voluntary delay and
access to hard disks, the UniMPP (Unified Modeling for Predicting Performance) model
has been designed. These models are presented in the previous section. Unifying the
ideas of each model and adding voluntary delays and hard disk access, we have defined
a new model to predict the execution behavior of processes running on heterogeneous
computers. By using this model, researchers can evalutate different techniques such as
scheduling and load balancing without being necessary to run an application on an real
environment.

In this model, a process pj arrives at the system, following a probability distribution
function, at the instant aj . Such process is started by the computer ci. Each computer
maintains its queue qi,t of processes at the instant t. In this model, every computer
ci is composed of the sextuple {pci, mmi, vmi, dri, dwi, loi}, where: pci is the total
computing capacity of each computer measured in instructions per unit of time; mmi

is the total main memory; vmi is the total virtual memory capacity; dri is the hard disk
reading throughput; dwi is the hard disk writing throughput; loi is the time spend in
sending and receiving messages.

In the UniMPP, each process is represented by the sextuple {mpj, smj , pdfdmj ,
pdfdrj , pdfdwj , pdfnetj}, where: mpj represents the processing consumption; smj

is the amount of static memory allocated by the process; pdfdmj is the probability

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model for Simulation of Heterogeneous High-Performance Computing Environments 111

distribution function used to represent the dynamic memory occupation; pdfdrj is the
probability distribution function used to represent the hard disk reading; pdfdwj is
the probability distribution function used to represent the hard disk writing; pdfnetj
is the probability distribution function used to represent the sending and receiving
operations on communication system.

Having formally defined computers and processes, equations were defined to obtain
the process response time and delay. The first equation (equation 2) presents the re-
sponse time (TEpj,ci) of a process pj being executed in a computer ci, where the total
computing capacity pci of ci and the processing consumption of pj should be repre-
sented by the same metric, such as MI (millions of instructions when the capacity of
processors was obtained in Mips – Millions of instructions per second) or MF (millions
of float-point instructions when the capacity of processors was obtained in Mflops –
Millions of float-point instructions per second).

TEpj ,ci =
mpj

pci
(2)

The equation 2 presents a calculation method for the execution time of a process un-
der ideal conditions, in which there is no competition nor delays caused by the memory
and input/output usage. The work by Amir et al. [7] presents a more adequate equation
in which, from the moment that the virtual memory starts to be used, there is a delay
in the process execution. These authors use a constant delay in their equations. How-
ever, by using the benchmark tools described in section 3, it was observed that there are
limitations in their model, since the performance slowdown is linear during the main
memory usage and exponential from the moment the virtual memory starts to be used.

TEMpj,ci = TEpj ,ci ∗ (1 + α) (3)

The Amir’s performance model does not consider this linear performance slowdown
caused by the use of the main memory and considers a constant factor for the perfor-
mance slowdown caused by the use of the virtual memory when, in fact, this slowdown
is exponential. The UniMPP models the process performance slowdown generated by
the use of main and virtual memories, by the equation 3, where α represents a per-
centage obtained from a delay function and TE is presented in equation 2. This delay
function is generated by a benchmark tool (section 3) where in the x−axis is the mem-
ory occupation up to use all the virtual memory and in the y − axis is the α value (the
slowdown imposed in the process execution by the memory occupation).

A model which considers the process execution slowdown caused by the use of main
and virtual memories become more adequate, however, it does not allow the precise
quantification of the total execution time of processes which perform input and out-
put operations to the hard disk. For this reason, experiments have been conduced and
equations developed to measure the delays generated by accesses to hard disk. The
equation 4 models the process delay generated by reading operations from hard disk,
where: nr represents the number of reading accesses; bsize represents the data buffer
size; dri represents the throughput capacity for reading accesses from hard disk; and
wtdrk represents the waiting time for using the resource.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

112 R.F. de Mello and L.J. Senger

SLDRpj,ci =
nr∑

k=1

bsizek

dri
+ wtdrk (4)

The hard disk writing delay is defined by equation 5, where: nw represents the num-
ber of writing accesses; bsize represents the data buffer size to be written; dwi is the
throughput capacity for writing accesses in hard disk; wtdw is the waiting time for
using the resource.

SLDWpj ,ci =
nw∑

k=1

bsizek

dwi
+ wtdwk (5)

In addition to the delays caused by memory usage and input/output to hard disks,
there are delays generated by sending and receiving messages on communication sys-
tems. Such delays vary according to the network bandwidth, latency and overhead of
communication protocols [18, 19, 20]. The protocol latency involves the transmission
time on communication system, which vary in accordance with the message size and
control messages generated by the protocol [18, 19, 20]. The protocol overhead is the
time involved for packing and unpacking messages for transmission. This time also
varies according to the messages size [18, 19, 20]. The delay for sending and receiv-
ing messages is defined by equation 6, where: nm represents the number of sent and
received messages; θs,k, described in equation 7 is the time used for sending and re-
ceiving messages on communication system, not considering the wait for resources;
and wtnk represents the wait time, the queue time, to send or receive a message, when
the resource is busy. The components of equation 7 are: os,k overhead, which when
multiplied by two allows the quantification of packing time (by the sender) and the
unpacking time (by the receiver) of a message; and ls,k is the latency to transmit a
message.

SLNpj,ci =
nm∑

k=1

θs,k + wtnk (6)

θs,k = 2 ∗ os,k + ls,k (7)

Aiming the unification of all previously described delay models, it is proposed the
equation 8, which allows the definition of the response time (the prediction of this time
in a real enviroment) of a process pj in a computer ci, where: lz is the process voluntary
delay generated by the system calls sleep. In the case of load transference (that is, pro-
cess migration) the communication channels may modify their behaviors and perform
a higher or lower number of input/output operations (a process migrating to a computer
where there are others which it communicates, reduces the latency and overhead be-
cause does not use the communication system, although it can overload the CPU). The
equation 9 is the response time of a process pj transferred among n computers.

SLpj = SLpj,ci = TEMpj,ci + SLDRpj ,ci +
SLDWpj ,ci + SLNpj ,ci +
lz (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model for Simulation of Heterogeneous High-Performance Computing Environments 113

SLpj =
n∑

k=1

SLpj,ck
(9)

The UniMPP model unifies the concepts from models by Amir et al. [7], Mello et
al. [9] and Culler et al. [8] and extends them by adding voluntary delay equations and
the time for reading and writing accesses to hard disks. In addition, based on experi-
ments, this work proposes new equations to define the main and virtual memory slow-
down. By these equations, it was observed that the slowdown is linear when using the
main memory, and exponential using the virtual. Such experiments were carried though
using the benchmark tools from section 3. This model allows studies of scheduling,
load balancing algorithms and prediction of process response times on heterogeneous
environments.

The proposed model has been implemented in a simulator, named SchedSim1, which
allows other researchers to conduct related studies. Such simulator is implemented in
Java language and uses the object oriented concepts that simplify its extension and func-
tionality additions. The simulator is parameterized with system configurations (CPUs,
main and virtual memories, hard disk thoughput and network capacity) and receives
processes for execution. It generates new processes according to a probability distri-
bution function, allowing to evaluate different scheduling and load balancing policies
without needing the real execution.

3 Parameterization

In order to parameterize the SchedSim simulator using real environment characteris-
tics, a suite of benchmark tools2 was developed. These tools measure the capacity of
CPU, reading and writing hard disk throughput and the message transmission delays.
Such tools evaluate these characteristics until they reach a minimum sample size based
on the central limit theorem, allowing to apply statistical summary measures such as
confidence interval, standard deviation and average [21]. This suite is composed by the
following tools:

1. mips: it measures the capacity of a processor, in millions of instructions per sec-
ond. This tool uses a bench() function implemented by Kerrigan [22];

2. memo: it creates child processes until all main and virtual memories are filled up,
measuring the delays of the context switches among processes. The child processes
only allocate the memory and then sleep for some seconds, thus it does not consider
the processor usage;

3. discio: it measures the average writing throughput (buffered and unbuffered)
and the average reading throughput in local storage devices (hard disks) or remote
storage devices (via network file systems);

4. net - it is composed of two applications, a customer and a server, which allow
the evaluation of the time spent to send and receive messages over communication
networks (based on the equation 7).

1 Source code available at http://www.icmc.usp.br/˜mello/outr.html
2 Benchmark – source code available at http://www.icmc.usp.br/˜mello/outr.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

114 R.F. de Mello and L.J. Senger

4 Validation

In order to validate the proposed model, executions of a parallel application developed
in PVM (Parallel Virtual Machine) [23] in a scenario composed of two homogeneous
computers have been considered. This adopted application is composed of a master
and worker processes. The master process launches one worker on each computer and
defines three parameters: the problem size, that is, the number of mathematic operations
executed to solve an integral (eq. 10) defined between two points a and b using the
trapezium rule [24, 25], the number of bytes that will be transferred over the network
and recorded in the hard disk. These workers are composed of four stages: message
receiving, processing, writing into the hard disk and message sending. The message
exchange happens between master and worker at the beginning and at the end of the
workers’ execution. The workers are instrumented to account the time consumed in
operations. ∫ b

a

2 ∗ sin x + ex (10)

Scenario details are presented on the table 1 and they have been obtained with the
benchmark suite. A message size of 32 bytes has been considered for the benchmark
net. The table 2 presents the slowdown equations generated by using main and virtual
memories, respectively, on the computers c1 and c2. Such equations have been obtained
through the experiments with the benchmark memo. The linear format of the equations
is used when the main memory is not completely filled up, for instance, in the case
of computers c1 and c2 not exceed 1 Gbyte of its memory capacity. After exceeding
such limit, the virtual memory is used and the delay is represented by the exponential
funtion.

Table 1. System details

Resource c1 c2

CPU (Mips) 1145.86 1148.65
Main memory (Mbytes) 1Gbyte 1Gbyte
Virtual memory (Mbytes) 1Gbyte 1Gbyte
Disk writing throughput (MBytes/seg) 65.55 66.56
Disk reading throughput (MBytes/seg) 76.28 75.21
Overhead + Latency (seconds) 0.000040

The experiment results are presented in the table 3. It may be observed that the
error among the curves is low, close to zero. Ten experiments have been conduced
for different numbers of applications, each one composed of two workers executing
on two computers. Such experiment was used to saturate the capacity of all computing
resources of the environment. The figure 1 shows the experiment and simulation results.

The simulation obtained results show the model ability to reproduce the real system
behavior. It is important to notice the increasing of the prediction errors when the system
runs a number of processes between 90 and 100.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model for Simulation of Heterogeneous High-Performance Computing Environments 115

Table 2. Memory slowdown functions for computers c1 and c2

Memory Regression Equation R2

Main memory Linear y = 0.0012x − 0.0065 0.991
Main and

Virtual memory Exponential y = 0.0938 ∗ e0.0039x 0.8898

Table 3. Simulation results for computers c1 and c2

Processes Actual Average Predicted Error (%)
10 151.40 149.51 0.012
20 301.05 293.47 0.025
30 447.70 437.46 0.022
40 578.29 573.58 0.008
50 730.84 714.92 0.021
60 856.76 862.52 0.006
70 1002.10 1012.17 0.009
80 1147.44 1165.24 0.015
90 1245.40 1318.37 0.055
100 1396.80 1471.88 0.051

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Processes

Actual average response time
Predicted average response time

Fig. 1. Actual and predicted average response times for computers c1 and c2

The real executions, using 90 and 100 processes, overloaded the computers and some
processes were killed by the PVM system. The premature stopping of processes (at
about 5 processes where killed) decreases the computer’s load, justifiyng the model
prediction error. The simulator was used aiming to predict the system behavior consid-
ering a number of processes greater than the number of processes executed by PVM.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

116 R.F. de Mello and L.J. Senger

After experiments in an homogeneous system, a new environment composed of het-
erogeneous computers were parameterized using the benchmark tools. In this environ-
ment, it was executed the same application, which computes an integral function be-
tween two points using the trapezium rule. The features of the heterogeneous computers
are presented in the table 4.

Table 4. System details

Resource c3 c4

CPU (Mips) 927.55 1600.40
Main memory (Mbytes) 256 512
Virtual memory (Mbytes) 400 512
Disk write throughput (MBytes/seg) 47.64 15.99
Disk read throughput (MBytes/seg) 41.34 32.55
Overhead + Latency (seconds) 0.000056924

The tables 5 and 6 present the slowdown equations, obtained by the memo bench-
marking, considering the main and virtual memory usage.

Table 5. Memory slowdown functions for computer c3

Memory Regression Equation R2

Main memory Linear y = 0.0018x − 0.0007 0.9998
Main and

Virtual memory Exponential y = 0.7335 ∗ e0.0097x 0.8856

Table 6. Memory slowdown functions for computer c4

Memory Regression Equation R2

Main memory Linear y = 0.0018x − 0.0035 0.9821
Main and

Virtual memory Exponential y = 0.0924 ∗ e0.0095x 0.8912

The experiment results are presented in the table 7. The error values obtained com-
paring the simulated and the actual execution time values are close to 0, allowing to
confirm the model ability in predicting real executions. The figure 2 shows the experi-
ment and simulation results.

When a number at about 60 processes are running, some problems were observed,
due to PVM process management. It was observed that using some computers with less
processing power, PVM started to kill processes earlier, when running more than 60
processes. These problems explain the difference between the actual and the simulated
time values and the increasing in predicting errors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model for Simulation of Heterogeneous High-Performance Computing Environments 117

Table 7. Simulation results for computers c3 and c4

Processes Actual Average Predicted Error (%)
10 153.29 152.38 0.0059
20 306.63 304.66 0.0064
30 457.93 457.46 0.0010
40 593.66 610.78 0.0280
50 760.02 764.65 0.0060
60 892.29 918.97 0.0290
70 1040.21 1074.18 0.0316
80 1188.14 1230.75 0.0346
90 1333.70 1388.14 0.0392
100 1488.97 1572.22 0.0529

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Processes

Actual average response time
Predicted average response time

Fig. 2. Actual and predicted average response times for computers c3 and c4

The experiments presented in this section validate the model used by the simulator.
The model and the simulator is able to predict the behavior of a real and dynamic sys-
tem, modelling distinct parallel applications which solve problems from different areas,
such as: aeronautics, fluid dynamics and geoprocessing. Thus, the system behavior can
be predicted earlier, in project phase, minimizing the development costs.

5 Conclusions

Several models have been proposed to measure the response time of processes in com-
puting systems [7,9]. Such models have presented some contributions, considering that
the virtual memory occupation causes delays in process executions [7, 9], as well as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

118 R.F. de Mello and L.J. Senger

delays generated by the message transmissions on communication systems [8,10]. Nev-
ertheless, such models do not unify all possible delays of a process execution.

Motivated by such limitations, this work has presented a new unified model to pre-
dict the applications’ execution running on heterogeneous distributed envionments.
This model considers the process execution time in accordance with the processing,
accesses to hard disk, message transmissions on communication networks, main and
virtual memory slowdowns.

This work has contributed by modeling the delays in reading and writing accesses to
hard disks and presenting a new technique which uses equations to represent the delays
generated by the main and virtual memory usage. This has complemented studies by
Amir et al. [7] and Mello et al. [9], which consider a constant delay.

In addition it was developed a simulator of the proposed model which can be used to
predict the execution of applications on heterogeneous multicomputing environments.
Such simulator has been developed considering extensions such as the design of new
scheduling and load balancing policies. This simulator is licensed under GNU/GPL
which allows its broad use by the researchers interested in developing and evaluating
resource allocation techniques. In order to complement this simulator and allow its
parameterization using real environment information, a suite of benchmark tools was
developed and is also available under the GNU/GPL license.

In order to validate the simulator, a parallel application was implemented, simulated
and executed on a real environment. It was observed that the percentage error obtained
between the actual and the predicted execution times was lower than 1%, what confirms
the accuracy of the proposed model to predict the application execution on heteroge-
neous multicomputing environments.

References

1. de Mello, R.F.: Proposta e Avaliacão de Desempenho de um Algoritmo de Balanceamento de
Carga para Ambientes Distribuídos Heterogêneos Escaláveis. PhD thesis, SEL-EESC-USP
(2003)

2. et. al, E.L.: Quantitative System Performance: Computer System Analysis Using Queueing
Networks Models. Prentice Hall (1984)

3. et. al, P.B.: A Guide to Simulation. Spring-Verlag (1987)
4. Kleinrock, L.: Queueing Systems - Volume II: Computer Applications. John Wiley & Sons

(1976)
5. Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press (1983)
6. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental

Design, Measurements, Simulation and Modeling. John Wiley & Sons (1991)
7. Amir, Y.: An opportunity cost approach for job assignment in a scalable computing cluster.

IEEE Transactions on Parallel and Distributed Systems 11(7) (2000) 760–768
8. Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E., Santos, E., Subramo-

nian, R., von Eicken, T.: LogP: Towards a realistic model of parallel computation. In:
Principles Practice of Parallel Programming. (1993) 1–12

9. et. al, R.F.M.: Analysis on the significant information to update the tables on occupation
of resources by using a peer-to-peer protocol. In: 16th Annual International Symposium
on High Performance Computing Systems and Applications, Moncton, New-Brunswick,
Canada (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Model for Simulation of Heterogeneous High-Performance Computing Environments 119

10. Sivasubramaniam, A.: Execution-driven simulators for parallel systems design. In: Winter
Simulation Conference. (1997) 1021–1028

11. et. al, S.C.: Towards a communication characterization methodology for parallel applica-
tions. In: Proceedings of the 3rd IEEE Symposium on High-Performance Computer Archi-
tecture (HPCA ’97), IEEE Computer Society (1997) 310

12. Vetter, J.S., Mueller, F.: Communication characteristics of large-scale scientific applications
for contemporary cluster architectures. J. Parallel Distrib. Comput. 63(9) (2003) 853–865

13. Sivasubramaniam, A., Singla, A., Ramachandran, U., Venkateswaran, H.: An approach to
scalability study of shared memory parallel systems. In: Measurement and Modeling of
Computer Systems. (1994) 171–180

14. Singh, J.P., Weber, W., Gupta, A.: Splash: Stanford parallel applications for shared-memory.
Technical report (1991)

15. Anderson, R.J., Setubal, J.C.: On the parallel implementation of goldberg’s maximum flow
algorithm. In: Proceedings of the fourth annual ACM symposium on Parallel algorithms and
architectures, San Diego, California, United States, ACM Press (1992) 168–177

16. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: The NAS Parallel Benchmarks. The International Journal of Supercom-
puter Applications 5(3) (1991) 63–73

17. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory and Prac-
tice in Parallel Job Scheduling. In: Job Scheduling Strategies for Parallel Processing. Volume
1291. Springer (1997) 1–34 Lect. Notes Comput. Sci. vol. 1291.

18. Chiola, G., Ciaccio, G.: A performance-oriented operating system approach to fast commu-
nications in a cluster of personal computers. In: In Proc. 1998 International Conference on
Parallel and Distributed Processing, Techniques and Applications (PDPTA’98). Volume 1.,
Las Vegas, Nevada (1998) 259–266

19. Chiola, G., Ciaccio, G.: (Gamma: Architecture, programming interface and preliminary
benchmarking)

20. Chiola, G., Ciaccio, G.: Gamma: a low cost network of workstations based on active mes-
sages. In: Proc. Euromicro PDP’97, London, UK, January 1997, IEEE Computer Society
(1997)

21. W.C.Shefler: Statistics: Concepts and Applications. The Benjamin/Cummings (1988)
22. Kerrigan, T.: Tscp benchmark (2004)
23. Beguelin, A., Gueist, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM: Parallel

Virtual Machine: User’s Guide and tutorial for Networked Parallel Computing. MIT Press
(1994)

24. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann Publichers (1997)
25. Burden, R.L., Faires, J.D.: Análise Numérica. Thomson (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Evaluating Decentralized Parallel I/O Scheduling
Strategies for Parallel File Systems

Florin Isailă, David Singh, Jesús Carretero, and Félix Garcia

Department of Compute Science,
University Carlos III de Madrid, Spain

{florin,desingh,jcarrete,fgarcia}@arcos.inf.uc3m.es

Abstract. This paper evaluates the impact of the parallel I/O scheduling strat-
egy on the performance of the file access in a parallel file system for clusters
of commodity computers (Clusterfile). We argue that the parallel I/O schedul-
ing strategy should be seen as a complement to other file access optimizations
like striping over several I/O servers, non-contiguous I/O and collective I/O. Our
study is based on three simple decentralized parallel I/O heuristics implemented
inside Clusterfile. The measurements in a real environment show that the perfor-
mance of parallel file access may vary with as much as 86% for writing and 804%
for reading with the employed heuristic and with the schedule block granularity.

1 Introduction

The performance of applications accessing large data sets is often limited by the speed
of I/O subsystems. On one hand, this limitation comes from the ever increasing dis-
crepancy between processor, memory speed and magnetic disks. On the other hand, the
potential for parallelism existent in clusters of commodity computers and supercom-
puters is not always fully exploited by the I/O system software, like the parallel file
systems [1,2,3,4,5,6,7,8,9,10,11] and libraries [12,13]. These systems employ mecha-
nisms such as striping a file over several independent disks managed by I/O nodes and
allowing parallel file access from several compute nodes.

For a better utilization of network and storage resources several point-to-point non-
contiguous I/O methods have been proposed: data sieving [14], list I/O [15], view I/O
[16]. These methods greedily optimize the communication between exactly one pair
compute node - I/O node without regard at the global system performance. The collec-
tive I/O methods two-phase I/O [17] and disk-directed I/O [18] use collective buffers
in order to gather the requests from compute nodes before sending them to disks. For
disk-directed I/O the collective buffers reside at I/O nodes, whereas for two-phase I/O
at intermediary compute nodes. Both of these methods describe how the data flows
through the system between compute nodes and I/O nodes, but do not say anything
about the order in which requests are sent between parallel running compute nodes and
I/O nodes. However, an improper request ordering may cause idleness, load imbalance
or resource contention, which may have a tremendous impact on performance.

The parallel I/O scheduling strategy may be seen as a complement to the above
mentioned I/O optimizations. File striping describes a parallel spatial data placement,

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 120–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Evaluating Decentralized Parallel I/O Scheduling Strategies 121

whereas the parallel I/O strategy decides the temporal order of parallel requests. Non-
contiguous I/O methods gather small messages into larger ones, while the parallel I/O
strategy targets to schedule requests with sizes and in an order that optimize the re-
source usage. For collective I/O methods, the scheduling strategy may intervene both
in the process of gathering the data into collective buffers, as well as in the sending the
collective buffers to the I/O servers.

In previous work [19] we have developed a decentralized parallel I/O scheduling
strategy for collective I/O operations. However, this strategy is specialized for collective
I/O operations, and the impact of this strategy on the global system performance was
not evaluated.

In this paper we evaluate three simple decentralized parallel I/O scheduling strategies
for well balanced I/O loads implemented in the Clusterfile [20] parallel file system. We
show that optimizations like non-contiguous I/O and collective I/O can not achieve a
high resource utilization without a proper parallel I/O scheduling strategy. Additionally,
the choice of the proper strategy and proper schedule block size may have an important
influence on the overall file system performance.

2 Parallel I/O Scheduling Problem

The parallel I/O scheduling problem is not new. It was formulated by Jain and et al.
[21] as follows. Given np compute nodes, nIOS I/O servers and a set of requests for
transfers of the same length among compute nodes and I/O servers and assuming that
a compute node and an I/O server can perform exactly one transfer at any given time,
find a service order that minimizes the schedule length [21].

Figure 1 shows an example, in which np = 2 compute nodes simultaneously issue
in order four requests T1, T2, T3, T4 for nIOS = 2 I/O servers. For this set of requests,
several schedules are possible under the assumption that for each pair compute node
- I/O node, only one request can be serviced at a time. Two of them are shown in the
figure. In “Schedule 1”, T1 and T2 are serviced at time 0; subsequently, T3 and T4 can
not be scheduled simultaneously, because they have the same destination. The resulting
schedule has the length 3. If T4 and T1 are scheduled in the first phase, T2 and T3 can
be executed in parallel in the second phase and the schedule length is 2 (“Schedule 2”).

The general scheduling problem is shown to be NP-complete, which makes it im-
practical for the real medium size parallel systems. Consequently, all solutions pre-
sented in the related work section are based on heuristics that try to minimize the sched-
ule length, but without guaranteeing that the optimal value is used.

3 Related Work

The proposed solutions to the parallel I/O scheduling problem can be divided at least
by five criteria. First, the proposed algorithms may be centralized or distributed. The
centralized algorithms assume that there is a place in the system where all information
about requests are gathered, before the schedule is computed. In the distributed algo-
rithms the global schedule is computed in parallel by different nodes having only partial
information about the requests. Second, some algorithms solve the parallel I/O schedule

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

122 F. Isailă et al.

P1

P2

D1

D2

D3

T1

T3

T4

T2

Schedule 1

Schedule 2

0 1 2 3 time

0 1 2 3 time

T2

T1 T3 T4

T4 T2

T1 T3

Fig. 1. Parallel I/O scheduling problem

problem in the presence of replication and others consider that there is only one copy of
the data in the system. Third, the algorithms may be off-line or on-line. In the off-line
algorithms the schedule is computed based on the fact that all the request information
is available and is executed as such. In the on-line algorithms requests generated dur-
ing the execution trigger a re-computation of the schedule. Fourth, the algorithms may
differentiate between data with and with-out real-time constraints. Fifth, the evaluation
can be based on simulations or on real implementations and systems.

The strategies incorporated in Clusterfile and discussed in this paper are decentral-
ized, without replication, off-line, without real-time constraints, implemented and eval-
uated in a real environment.

Jain et al. [21] were among the first that formalized the parallel I/O scheduling prob-
lem in absence of replication and proposed three centralized off-line heuristics based on
graph coloring algorithms. In First-Come First-Serve (FCFS), in each phase, as many
as possible requests are served in parallel (colored with the same color) in the order
of their arrival. For Figure 1, if the order of request arrival is T1, T2, T3, T4, “Sched-
ule 1” is produced. Highest Degree First (HDF) considers first the graph nodes with
the higher degrees in order to schedule parallel transfers. Both schedules from Figure
1 may be produced. Highest Common Degree First (HCDF) processes first the graph
edges with the higher sum of the node degrees in order to schedule parallel transfers.
Only the optimal “Schedule 2” can be produced in the example from Figure 1. The
evaluation is based on a simulation and shows as expected a superior performance for
the “more-informed” HCDF heuristic.

Chen and Majumdar [22] evaluate five centralized parallel I/O scheduling strate-
gies for clusters in the presence of replication. On one hand they add replication sup-
port to FCFS and HCDF. On the other hand they propose Lowest Destination De-
gree First (LDDF), Shortest Job First (SJF) and Shortest Outstanding I/O Demand Job
First (SOJF). The strategies are evaluated on a real system for single job and multi-
programmed workloads. An other real evaluation of five replication-based centralized
parallel I/O scheduling strategies including those from [22] is presented in [23].

Durand et al. [24] propose distributed randomized parallel I/O scheduling algorithms
based on edge colorings. In Uniformly at Random (UAR) each client selects randomly

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Evaluating Decentralized Parallel I/O Scheduling Strategies 123

a request and sends it as a bid to an I/O server. Then each I/O server selects one received
request at random and colors it with the current color. The algorithm repeats until all
the graph is colored. Our implemented randomized strategy is a simplified version of
this algorithm. MPASSES gives several (M) opportunities to color an edge to the clients
whose proposal were rejected in the first pass of UAR. HDF is a distributed variant of
the centralized HDF from [21] in which the clients send their degree together with the
bid and the I/O servers picks up the client with the highest number of pending requests.
The evaluation is based on a simulation.

In [25], the authors propose a decentralized update-based parallel I/O algorithm (D-
SPTF) targeting load balance, efficient global cache exploitation and reducing disk po-
sitioning times for writing. The data may be replicated over several disks, which allows
for an efficient read from the client which can serve the request fastest and a slow write
due to the update of all replicas. Locality Aware Request Distribution (LARD) [26]
requires a front-end which distributes the requests among the I/O servers according to
the locality. Simulation results show that D-SPTF outperforms LARD and hash-based
request distribution in terms of throughput and response time.

Lebre et al. [27] present the implementation and real system evaluation of two cen-
tralized parallel I/O strategies targeting global performance optimization and fairness in
a multi-application environment. Their solution is a file system independent application-
level library, whereas ours is done at file system level.

4 Parallel File System Overview

Clusterfile(CLF) [20] is a parallel file system for clusters of commodity computers. The
architecture is based on the classical parallel file system model, in which the files are
declustered over several I/O nodes managed by I/O servers. The applications run on
compute nodes and access the file system through a POSIX-like proprietary interface
or a classical UNIX interface after mounting the file system. Each individual process
may declare a file view, i.e. a logical contiguous window mapped onto a non-contiguous
file region. After declaration, each view can be accessed like a regular file. Clusterfile
performs efficient non-contiguous I/O through a method called view I/O, described in
detail in [16].

Clusterfile integrates two well-known collective I/O techniques, disk-directed [18]
and two-phase I/O [17], into a common design [19]. The collective buffers are stored into
a global cache, managed in cooperation by several cache managers running a version
of the decentralized hash-distributed cooperative caching algorithm presented in [28].

5 Goals

The parallel I/O scheduling presented in this paper are implemented inside a real par-
allel file system. The parallel file system consists of four types of components: several
parallel acting clients, several I/O servers, several cache managers, one metadata man-
ager. The interaction between these components even in a relatively small cluster is
highly complex. Experience with the xFS file system [29] has shown that complex pro-
tocols may make the development of a parallel system very difficult. In fact, the initial

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

124 F. Isailă et al.

proposal of xFS was never fully implemented in part due to the exponential explosion
of protocol complexity, which made bug detection very challenging even with formal
verification tools. Consequently, when adding adding a parallel I/O scheduling strategy
to an existing complex system we have in mind simplicity.

The scheduling strategy should have a small overhead. On one hand, this overhead is
proportional with the number of messages exchanged for taking a scheduling decision.
Even though the latency of the network is low, the communication may cause side-effects
like context switches or evictions affecting data locality. On the other hand, data replica-
tion would perform poor for file writing. We have chosen not to replicate the data inside
Clusterfile. Eventual replication schemes could be implemented on top of the file system.

Some scheduling strategies presented in the related work section are centralized.
However, gathering the scheduling information at a central point may be difficult. First,
this involves communication that adds additional complexity to the existing distributed
protocols. Second, the additional communication for gathering the requests from all
nodes and distributing the decision makes the solution costly and non-scalable. There-
fore, the scheduling I/O strategies we chose are decentralized.

6 Parallel Scheduling I/O Heuristics

For all parallel scheduling heuristics, we assume that, at a certain point in time, np com-
pute nodes simultaneously issue large data requests for nIOS I/O servers. The decision
of the order of data service is taken by the compute node for writing and by the I/O
for reading in a similar way. For this reason we describe here only the write scheduling
strategy. For writing, large requests are split by each compute node into smaller requests
of size b.

In the first scheduling strategy, first-IOS (I/O server), each compute node sends the
data to the I/O nodes in the order of file offsets. This is a natural approach, but may
pose the potential risk that all the compute nodes send the data to the same I/O node
at the same instant. However, the load balance problem may be compensated by high
data locality in the case of non-contiguous interleaved access, as will be shown in the
evaluation section.

In the second write scheduling strategy, random-IOS, each compute node first builds
a list of requests targeted to each I/O node. Then the compute node chooses randomly
the I/O server to which the data will be send until all the data is sent.

The third scheduling strategy, hash-IOS, is the one employed for the collective I/O
operations of Clusterfile [19]. Conforming to the theoretical problem definition, for
which each compute node can perform exactly one transfer at any given time, at time
step tj , j = 0, 1, ..., the compute node i sends a block to the I/O server (i + j) modulo
nIOS .

Figure 1 shows an example, in which np = 2 compute nodes simultaneously issue
4 requests for nIOS = 2 I/O servers. For the first-IOS method, CN0 decides to send
the request to the IOS0 first, and then to IOS1, and a schedule of length 3 is produced
(“Schedule 1”). On the other hand, hash I/O produces a schedule of length 2 (“Schedule
2”), as the I/O servers may run in parallel. Random IOS may produce any possible
schedule, depending on the generated random numbers.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Evaluating Decentralized Parallel I/O Scheduling Strategies 125

Notice that, for all strategies, there is no central point of decision, each process acts
independently.

7 Evaluation

We performed our experiments on a cluster of 16 dual processor Pentium III 800MHz,
having 256 KBytes L2 cache and 1024 MB RAM, interconnected by Myrinet LANai
9 cards at 133 MHz, capable of sustaining a throughput of 2 GB/s in each direction.
The machines are equipped with IDE disks and were running LINUX kernels version
2.6.13 with the ext2 local file system. We used TCP/IP on top of the 2.0.24 version of the
GM [30] communication library. The ttcp benchmark delivered a TCP/IP node-to-node
throughput of 120 MB/sec.

The I/O scheduling heuristics are all implemented inside the Clusterfile parallel file
system.

In the following two subsections, we present the results for two different workloads:
a synthetic parallel benchmark accessing contiguously a file and BTIO [31], a NASA
parallel benchmark, in which several processes write non-contiguously to a file and then
read back the result.

7.1 Synthetic Benchmark

We have written a synthetic benchmark in Message Passing Interface [32], in which all
processes write and read in parallel different regions of the same file. The writes and
reads are performed contiguously, as we first want to investigate the effect of parallel
I/O heuristics on the performance, unaffected from the gather-scatter operations that are
necessary for non-contiguous I/O.

300

350

400

450

500

550

600

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Schedule block size (KBytes)

A
g

g
re

g
at

e
w

ri
te

 t
h

ro
u

g
h

p
u

t
(M

b
yt

es
/s

ec
)

HASH RANDOM FIRST

Fig. 2. Synthetic benchmark file write throughput

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

126 F. Isailă et al.

0
100
200
300
400
500
600
700
800
900

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Schedule block size (Kbytes)

A
g

g
re

g
at

e
re

ad
 t

h
ro

u
g

h
p

u
t

(M
B

yt
es

/s
ec

)
HASH RANDOM FIRST

Fig. 3. Synthetic benchmark file read throughput

Clusterfile uses 8 I/O server running on 8 I/O nodes. The file block size is 64 KBytes.
In the benchmark each of the 8 compute nodes writes 32 MBytes, resulting in a total of
256 MBytes. Each measurement was repeated 5 times and the mean value is reported.

Figures 2 and 3 show the aggregate throughput in MBytes/second obtained employ-
ing the three parallel I/O scheduling heuristics for writing and reading, respectively.
The x-axis values represent the length of schedule block b (as introduced in the previ-
ous section).

First of all, note that for diverse parameters the performance of the same application
may vary by as much as 86% for writing and 804% for reading. For writing, the highest
value is obtained for hash-IOS for b = 64KBytes (573 MBytes/second) and the lowest
for first-IOS for b = 4096KBytes (308 MBytes/second). For reading, the highest value
is obtained for hash-IOS for b = 32KBytes (817 MBytes/second) and the lowest for
first-IOS for b = 4KBytes (90 MBytes/second).

As expected, for first-IOS strategy, the aggregate write throughput decreased with
schedule block granularity. The reason is that all the I/O servers try to send the data in
the same order to all the I/O servers, which creates contention at I/O servers. The con-
tention prevents the compute nodes from advancing and employing the other available
I/O servers.

We have expected that the random-IOS write performance results lie somewhat in
the middle between the results of hash-IOS and first-IOS. Surprisingly, the random
IOS heuristic outperformed first-IOS only for the smallest four and largest two values.
We believe that the reason lies in the fact that first-IOS generates a critical bottleneck
only when accessing the first I/O server. The first compute node that “escapes” this
bottleneck continues sending the data to the second I/O server and so on, generating a
pipeline behavior. On the other hand, it appears that the randomly generated bottlenecks
cause a higher overhead, as they can appear non-deterministically throughout the whole
run of the application.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Evaluating Decentralized Parallel I/O Scheduling Strategies 127

For large schedule block sizes, hash-IOS clearly outperforms the other two methods.
For this heuristic each compute node starts by contacting a different I/O server which
provides a good initial load balance, which is then preserved throughout the whole run
by a cyclic access to the I/O servers.

The aggregate read throughput was similar for hash-IOS and first-IOS. This is due
to the fact that in the present Clusterfile implementation an I/O server that receives the
first request starts serving it. It appears that the initial potential bottleneck can not be
overcome by the hash-IOS. This is unlike the write case, where the performance does
not degrade with the the size of the schedule block.

The first-IOS and hash-IOS managed to exploit 85% of the theoretical point-to-point
bandwidth of 8x120MBytes/second (as measured by the ttcp benchmark) for reading
with b = 32KBytes and b = 64KBytes. A further performance analysis is necessary
in order to try to improve the write aggregate throughput.

7.2 BTIO Benchmark

NASA’s BTIO benchmark [31] solves the Block-Tridiagonal (BT) problem, which em-
ploys a complex domain decomposition across a square number of compute nodes. Each
compute node is responsible for multiple Cartesian subsets of the entire data set. The
execution alternates computation and I/O phases. Initially, all compute nodes collec-
tively open a file and declare views on the relevant file regions. After each five comput-
ing steps the compute nodes write the solution to a file through a collective operation.
There are three sizes of the data sets: A (419.43 MBytes), B (1697.93 MBytes) and
C (6802.44 MBytes). For these classes the benchmark performs 200 compute steps
and 40 I/O steps. We are interested only in the results for a single I/O phase writing
10.5 MBytes (A), 42.2 MBytes (B) and 170 MBytes (C). The parallel I/O scheduling
policies are relevant for large amounts of data, therefore, we report in this paper the I/O
access times of the C class data set. The access pattern of C class is nested-strided with

0.5

0.55

0.6

0.65

0.7

0.75

0.8

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Schedule block size (KBytes)

F
ile

 w
ri

te
 t

im
e

(s
ec

o
n

d
s)

HASH RANDOM FIRST

Fig. 4. BTIO file write times

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

128 F. Isailă et al.

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Schedule block size (KBytes)

F
ile

 r
ea

d
 t

im
e

(s
ec

o
n

d
s)

HASH RANDOM FIRST

Fig. 5. BTIO file read times

a nesting depth of 2 with an access granularity of 3240 bytes. We report the results for 9
compute nodes and 9 I/O nodes in Figures 4 and 5 for writing and reading, respectively.

At the beginning of the BTIO benchmark, each process opens a file and declares a
view on the file regions of interests. The individual file regions of the processes corre-
sponding to the views do not overlap. Later, during each I/O phase, each process writes
to the file through the view I/O method of Clusterfile [16]. Each process uses the view
in order to contiguously send the data from each compute node to the I/O nodes. At I/O
node, the data is scattered into the file blocks, kept in collective buffers. The reverse
process takes place for reading. In a previous paper we have [19], we have shown that
the combined view I/O and collective I/O method of Clusterfile significantly outperform
two-phase I/O method of ROMIO [14], the most popular MPI-IO implementation. In
the paper cited above the parallel scheduling strategy was fixed.

However, Figures 4 and 5 show that, depending on the parallel I/O scheduling strat-
egy employed, the time to write a file in BTIO may vary with as much as 53% for writing
(the ratio of 0.78 seconds for first-IOS with b = 4KBytes to 0.51 seconds for first-IOS
with b = 8MBytes) and 173% for reading (the ratio of 1.15 seconds for random-IOS
with b = 4KBytes to 0.42 seconds of hash-IOS with b = 8MBytes). As it can be
noticed the performance span is not as large as in the case of the contiguous access. This
is mainly due to the fact that the non-contiguous access generates a relatively constant
overhead for scattering or gathering the data at the compute and I/O nodes.

8 Conclusions and Current Work

This paper presents and contrasts three parallel I/O scheduling heuristics implemented
in Clusterfile parallel file system. The performance results show that the performance of
parallel file access strongly depends on the choice of the parallel I/O scheduling strat-
egy, as a combination of the employed heuristic and the granularity of the schedule.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On Evaluating Decentralized Parallel I/O Scheduling Strategies 129

An improper scheduling strategy may result in inefficient utilization of the parallel net-
work paths, poor load balance and high contention at I/O nodes.

The classical parallel I/O optimizations like data striping, non-contiguous I/O, col-
lective I/O should be seen as a complement to a parallel I/O scheduling strategy. Our
experiments have demonstrated that various simple parallel I/O scheduling strategies
may produce a performance difference of as much as 53% for file writing and 173% for
file reading over the above mentioned optimizations.

The decentralized strategies presented in this paper address I/O workloads of well-
balanced parallel applications. For irregular applications, some form of centralization or
communication between the application library and I/O servers would be needed. Our
current work includes the design and analysis of strategies for this type of applications.

Acknowledgments

The authors want to thank the anonymous reviewers for the very useful comments and
suggestions.

This work has been funded in part by the project Técnicas de optimización y fi-
abilidad para sistems de entrada/salida escalables de altas prestaciones (Comunidad
de Madrid-UC3M) and by the Spanish Ministry of Education and Science under the
TIN2004-02156 contract.

References

1. DeBenedictis, E., Rosario, J.D.: nCUBE Parallel I/O Software. In: Proceedings of 11th
International Phoenix Conference on Computers and Communication. (1992)

2. LoVerso, S., Isman, M., Nanopoulos, A., Nesheim, W., Milne, E., Wheeler, R.: sfs: A Parallel
File System for the CM-5. In: Proceedings of the Summer 1993 USENIX Conference. (1993)
291–305

3. Huber, J., Elford, C., Reed, D., Chien, A., Blumenthal, D.: PPFS: A High Performance
Portable File System. In: Proceedings of the 9th ACM International Conference on Super-
computing. (1995)

4. Corbett, P., Feitelson, D.: The Vesta Parallel File System. ACM Transactions on Computer
Systems (1996)

5. Carretero, J., Serez, F., Miguel, P., Garca, F., Alonso, L.: ParFiSys: A Parallel File System
for MPP. ACM SIGOPS 30(2) (1996)

6. Freedman, C., Burger, J., DeWitt, D.: SPIFFI-A Scalable Parallel File System for the Intel
Paragon. IEEE Transactions on Parallel and Distributed Systems (October 1996)

7. Nieuwejaar, N., Kotz, D.: The Galley Parallel File System. Parallel Computing (1997)
8. O’Keefe, M.: Shared file systems and fibre channel. In: In the Proceedings of the Sixth

NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technolo-
gies. (1998)

9. Ligon, W., Ross, R.: An Overview of the Parallel Virtual File System. In: Proceedings of the
Extreme Linux Workshop. (June 1999)

10. Schmuck, F., Haskin, R.: GPFS: A Shared-Disk File System for Large Computing Clusters.
In: Proceedings of FAST. (2002)

11. Garcia-Carballeira, F., Calderon, A., Carretero, J., Fernandez, J., Perez, J.M.: The Design of
the Expand Parallel File System. The International Journal of High Performance Computing
Applications 17(1) (2003) 21–38

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

130 F. Isailă et al.

12. Winslett, M., Seamons, K., Chen, Y., Cho, Y., Kuo, S., Subramaniam, M.: The Panda li-
brary for parallel I/O of large multidimensional arrays. In: Proceedings of Scalable Parallel
Libraries Conference III. (October 1996)

13. Message Passing Interface Forum: MPI2: Extensions to the Message Passing Interface.
(1997)

14. Thakur, R., Gropp, W., Lusk, E.: Data Sieving and Collective I/O in ROMIO. In: Proc.
of the 7th Symposium on the Frontiers of Massively Parallel Computation. (February 1999)
182–189

15. Thakur, R., Gropp, W., Lusk, E.: On Implementing MPI-IO Portably and with High Perfor-
mance. In: Proc. of the Sixth Workshop on I/O in Parallel and Distributed Systems. (May
1999) 23–32

16. Isaila, F., Tichy, W.: View I/O:improving the performance of non-contiguous I/O. In: Third
IEEE International Conference on Cluster Computing. (December 2003) 336–343

17. del Rosario, J., Bordawekar, R., Choudhary, A.: Improved parallel I/O via a two-phase run-
time access strategy. In: Proc. of IPPS Workshop on Input/Output in Parallel Computer
Systems. (1993)

18. Kotz, D.: Disk-directed I/O for MIMD Multiprocessors. In: Proc. of the First USENIX
Symp. on Operating Systems Design and Implementation. (1994)

19. Isaila, F., Malpohl, G., Olaru, V., Szeder, G., Tichy, W.: Integrating Collective I/O and Co-
operative Caching into the “Clusterfile” Parallel File System. In: Proceedings of ACM Inter-
national Conference on Supercomputing (ICS), ACM Press (2004) 315–324

20. Isaila, F., Tichy, W.: Clusterfile: A flexible physical layout parallel file system. Concurrency
and Computation: Practice and Experience 15(7–8) (2003) 653–679

21. Jain, R., Somalwar, K., Werth, J., Browne, J.C.: Heuristics for scheduling I/O operations.
IEEE Transactions on Parallel and Distributed Systems 8(3) (March 1997) 310–320

22. Chen, F., Majumdar, S.: Performance of parallel I/O scheduling strategies on a network of
workstations. In: Proceedings of ICPADS 2001. (April 2001) 157–164

23. Abawajy, J.H.: Performance Analysis of Parallel I/O Scheduling Approaches on Cluster
Computing Systems. In: CCGRID ’03: Proceedings of the 3st International Symposium on
Cluster Computing and the Grid, Washington, DC, USA, IEEE Computer Society (2003)
724

24. Durand, D., Jain, R., Tseytlin, D.: Parallel I/O scheduling using randomized, distributed edge
coloring algorithms. J. Parallel Distrib. Comput. 63(6) (2003) 611–618

25. Lumb, C.R., Golding, R.A., Ganger, G.R.: D-SPTF: decentralized request distribution in
brick-based storage systems. In: ASPLOS. (2004) 37–47

26. Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W., Nahum, E.:
Locality-Aware Request Distribution in Cluster-based Network Servers. In: Proceedings of
the ACM Eighth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VIII) . (October 1998)

27. Lebre, A., Denneulin, Y., Van, T.T.: Controlling and Scheduling Parallel I/O in Multi-
application Environments. Technical report, INRIA (2005)

28. Dahlin, M., Yang, R., Anderson, T., Patterson, D.: Cooperative Caching: Using Remote
Client Memory to Improve File System Performance. In: The First Symp. on Operating
Systems Design and Implementation. (November 1994)

29. Wang, R.Y., Anderson, T.E., Dahlin, M.D.: Experience with a distributed file system imple-
mentation with adaptive. Technical report (1998)

30. Myricom. GM: the low-level message-passing system for Myrinet networks:
http://www.myri.com/. (2000)

31. Wong, P., der Wijngaart, R.: NAS Parallel Benchmarks I/O Version 2.4. Technical Report
NAS-03-002, NASA Ames Research Center, Moffet Field, CA (2003)

32. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 131 – 144, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Distributed Security Constrained Optimal Power Flow
Integrated to a DSM Based Energy Management System

for Real Time Power Systems Security Control

Juliana M.T. Alves1, Carmen L.T. Borges2, and Ayru L. Oliveira Filho1

1 CEPEL – Centro de Pesquisas de Energia Elétrica, Caixa Postal 68007,
CEP 21944-970 – Rio de Janeiro RJ

Tel.: +55-21-25986419
juliana.timbo@cepel.br, ayru@cepel.br

2 COPPE/UFRJ – Programa de Engenharia Elétrica, Caixa Postal 68504,
CEP 21941-972 – Rio de Janeiro RJ

Tel.: +55-21-25628027; Fax: +55-21-25628080
carmen@dee.ufrj.br

Abstract. This paper presents the development of the distributed processing
based Security Constrained Optimal Power Flow (SCOPF) and its integration to
a Distributed Shared Memory Energy Management System (EMS) in order to
enable real time power systems security control. The optimization problem is
solved by the Interior Points Method and the security constraints are considered
by the use of Benders Decomposition techniques. The SCOPF is initially
parallelized using MPI and then integrated to the actual DSM based
SCADA/EMS system SAGE, thoroughly used in the Brazilian power system
including the National System Operation Center (CNOS). Results obtained on
both the MPI and DSM platforms are presented for actual large size Brazilian
power systems analyzed over a list of about a thousand contingencies. The
results obtained demonstrate the high efficiency and applicability of the
developed tool at Control Centers for real time security control.

Topics of Interest: Cluster Computing, Large Scale Simulations in
Engineering, Parallel and Distributed Computing.

1 Introduction

Modern Control Centers of electrical power systems are equipped with computational
tools to help the operators to provide high quality service with a minimum number of
supply interruptions and at a minimum cost. The operation is done in a way to
maintain the system in a secure mode, i.e., ensuring that the system will be operating
continually even when components of the network fail, what are called contingencies
[1]. The electric system is monitored by the Supervisory Control and Data Acquisition
(SCADA) System, which periodically acquires analog measurements and status of
switching devices from the network. The monitoring system also allows the operator
to act in the system through remote controls, changing switches status and position of
transformers tap, etc. The inherent complexity of the electric system operation makes
it necessary to have sophisticated functions of diagnosis, analysis and advising

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

132 J.M.T. Alves, C.L.T. Borges, and A.L. Oliveira Filho

available at the Energy Management System (EMS), such as Network Topology
Configurator, State Estimator, Contingency Analysis, Emergency Control, etc.

This paper deals with the integration of the Static Security Control to the functions
of an EMS, through the solution of the Security Constrained Optimal Power Flow
(SCOPF) problem. This function will give as result a set of control actions that should
be taken by the operator to maintain the system in a secure mode even if any
contingency of a predefined list occurs. However, one of the problems of SCOPF is
that for large systems, the processing time is elevated. In that sense, this paper
proposes the application of distributed processing in order to make feasible the use of
SCOPF in a real time EMS environment. The SCOPF is initially parallelized using
MPI – Message Passing Interface [2] and then integrated to an actual SCADA/EMS
system, SAGE [3], thoroughly used in the Brazilian power system including the
National System Operation Center (CNOS). The basic program used for development
of the distributed tool is the software FLUPOT [4], whose solution of SCOPF is based
on the Non-Linear Interior Points Method and in the Benders Decomposition
technique for the security constraints consideration.

Recently, some papers have been published reporting implementations of OPF
for real time application. In [5], the authors use the Unlimited Point Algorithm for
the solution of the OPF. The parallelization is made at the matrix solution level.
They use MPI for the distributed implementation. In [6], the class of genetic
algorithms is used for the solution of the OPF, also using MPI for the parallel
implementation. In [7] and [8], the concept of decentralized solution of the OPF
problem is used, where the electric network is divided into areas and each area is
optimized in a separate computer. The OPF is solved by the Non Linear Interior
Points Method and PVM – Parallel Virtual Machine is used for the distributed
implementation. In [9], the concept of decentralized solution is also used. In this
case, however, the solution of the OPF is given by linear programming techniques.
The distributed implementation is made using PVM. An implementation of SCOPF
using distributed processing is found in [10], using linear programming techniques
for the solution of SCOPF and considering only active generation rescheduling to
obtain a secure solution. However, none of these papers deals with real time
application of SCOPF with the same complexity as the present paper nor even
considers the integration to an actual, commercial and operational SCADA/EMS
system. The results obtained and reported here for an actual power system
demonstrate the applicability of the developed distributed tool at Control Centers
for real time Security Control.

2 Security Constrained Optimal Power Flow

The Security Constrained Optimal Power Flow has the objective to determine a
feasible point of operation that minimizes an objective function, guaranteeing that
even if any of the contingencies obtained from a list occurs, the post-contingency
state will also be feasible, i.e., without limits violations [11]. From a given list of N
possible contingencies, the SCOPF problem can be represented mathematically as:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Distributed SCOPF Integrated to a DSM Based Energy Management System 133

()

()
()

Nifor

bza

bza

ts

zf

iii

o

,...,2,1

..

min

000

=

≤
≤

(1)

Where:

f(.) is the objective function;
a(.) represents the non-linear balance equations of the electric network together

with the operative constraints;
z represents the variables that will be optimized in the solution of the problem

(state and control variables).

Each set of constraints ai(zi) ≤ bi, for i = 1, 2, …, N, is related with the
configuration of the network under contingency and must respect the operations
constrains in this condition.

The objective function to be minimized in the problem depends on the purpose of the
utilization of the tool. For the use in control centers as a security control tool, the
common objective functions are minimum loss, minimum deviation of the programmed
operation point and minimum deviation of the scheduled area interchange. Other
objective functions are also used in SCOPF problems, such as minimum reactive
allocation, minimum load shed, minimum generation cost, etc. The state variables are,
usually, the busbars voltages and angles. The control variables, which are modified in
order to obtain the optimal operation point, are the generators active injection, terminal
voltages and reactive injection, transformers tap position, areas interchange, etc.

The SCOPF can be interpreted as a two-stage decision process [12]:

• In the first stage, find an operation point zo for the base-case problem, ao(zo) ≤ bo;
• In the second stage, given the operating point zo, find new operating points zi that

meet the constraints ai(zi) ≤ bi, for each contingency configuration.

The solution method used in this work is based on Benders Decomposition, which
allows handling separately the base-case problem and each of the N contingency sub-
problems. To represent the possible unfeasibility of each contingency sub-problem,
penalty variables are added to the problem in order to represent the amount of
violation associated with the contingency operation point. Therefore, the
minimization of the constraints violations can be defined as a new objective function
and the contingency sub-problem can be formulated as:

()

() bza

ts

rdzw r
o

≤

=

0

..

.min
 (2)

Where r ≥ 0 is the vector of penalty variables for the group of operative constraints
and d r is the cost vector. From this formulation, it can be seen that if w(z0) = 0, the
sub-problem is feasible and if w(z0) > 0, the sub-problem is unfeasible.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

134 J.M.T. Alves, C.L.T. Borges, and A.L. Oliveira Filho

The SCOPF can, then, be re-written in terms of zo as follows, where the scalar
functions wi(zo) are the solutions of the contingency sub-problems (2) for the given
operation point zo.

()

()
()

Nifor

zw

bza

ts

zf

i

o

,...,2,1

0

..

min

0

000

=

≤
≤

(3)

The Benders Decomposition method consists in obtaining an approximation of
wi(zo) based on an iterative solution of the base-case and the N contingencies sub-
problems. The Lagrange multipliers associated with the solution of each contingency
sub-problem are used to form a linear constraint, known as Benders Cut, which are
added to the base-case problem solution. Figure 1 shows the flowchart of the SCOPF
solution algorithm based on Benders Decomposition.

NO

NO
i = i + 1

YES
Make Benders cutObjective Function > 0

Optimize contingency i
 operation subproblem

i = 1

Optimize base-case
 operation subproblem

Read input data

Start

NO Num. of
Benders cut = 0

Write output

END

YES

YES

i = nctg

Fig. 1. SCOPF Solution Flowchart

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Distributed SCOPF Integrated to a DSM Based Energy Management System 135

The SCOPF solution algorithm consists, then, in solving the base-case optimization
problem and then, from the operation point obtained in the base-case solution, to
solve each of the contingency sub-problems. For each unfeasible contingency, a
Benders Cut is generated. At the end of all contingencies solution, the generated
Benders Cuts are introduced in the new solution of the base-case. The convergence is
achieved when no contingency sub-problem generates Benders Cut. The
contingencies sub-problems correspond to conventional OPF problems representing
the configurations of the network under contingency. The base-case sub-problem is
formulated as an OPF augmented by the constraints relative to the unfeasible
contingencies (Benders Cuts). Each OPF problem is solved by the Interior Points
Method and the network equations are formulated by the non linear model.

3 Distributed SCOPF Based on Message Passing

It can be noticed that the N contingencies sub-problems can be solved independently,
once they only depend on the incoming operation point of the base-case, zo. In that
sense, the solution of the SCOPF based on Benders Decomposition can be directly
benefited from the use of distributed processing, due to the natural parallelism that
exists in the problem.

The parallelization strategy developed in this work is based on the master-slaves
computation topology. When the parallel processing begins, each processor receives
an identification number, the master being processor number zero and the slaves,
processors number 1 to (nprocs-1), where nprocs is the total number of processors
available. Figure 2 shows an example of contingencies allocation for a list of 10
contingencies distributed among 3 processors (1 master and 2 slaves).

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Master: myid = 0, nproc = 3
i = 1, 4, 7, 10 (analyzed contingencies)

Slave 1: myid = 1
i = 2, 5, 8

Slave 2: myid = 2
i = 3, 6, 9

Fig. 2. Example of Contingencies Distribution among the Processors

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

136 J.M.T. Alves, C.L.T. Borges, and A.L. Oliveira Filho

The allocation of the contingencies sub-problems to the processors is performed by
an asynchronous algorithm, based on the identification number of the processors
(myid). In this way, the list of contingencies to be analyzed is distributed evenly
among the participating processors in accordance with the value of myid, each one
being responsible for the analysis of the contingencies of numbers (myid + 1 + i.
nprocs), i = 0, 1, 2, 3,... until the end of the list. It is important to emphasize that the
master processor also participates in the contingencies analysis task, guaranteeing a
better efficiency for the whole process, once the processor is not idle while the slaves
work.

Depending on the number of contingencies in the list and the number of
processors, it can happen that some processors receive one contingency more than the
others. The processing time for each contingency can also vary, since the number of
iterations required for the OPF of the contingencies to converge varies from case to
case. However, in the contingencies distribution strategy adopted, each processor,
after finishing the analysis of a contingency, immediately begins the analysis of
another without needing the intervention of a control process. In that way, the
computational load of each processor is, on average, approximately the same for large
contingencies lists, ensuring an almost optimal load balancing.

3.1 Distributed Algorithm Based on Message Passing

The algorithm of the developed distributed application based on message passing can
be summarized in the following steps:

Step 1: All processors read the input data.
Step 2: All processors optimize the base-case sub-problem.
Step 3: Parallel contingency sub-problems optimization by all processors.
Step 4: Master processor collects from all processors the partial Benders Cuts data
structure (Synchronization Point).
Step 5: Master processor groups and reorganizes the complete Benders Cuts data
structure.
Step 6: Master processor sends the complete Benders Cuts data structure to all
processors (Synchronization Point).
Step 7: Verify if any of the N contingencies sub-problems is unfeasible. In the positive
case, return to step 2.
Step 8: Master processor generates output reports.

All processors read the input data simultaneously, since the input files can be
accessed by all via a shared file system, what eliminates the need to send the data read
by just one processor to the others. The solution of the base-case sub-problem is also
done simultaneously by all processors in order to avoid the need to send the results
calculated by just one processor to the others. The reorganization of the Benders Cut
data structure is a task introduced due to the distributed processing. After the analysis
of their lists, each slave processor has its own partial Benders Cut data structures,
which are sent to the master processor to be grouped and reorganized and later sent
back again to all slave processors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Distributed SCOPF Integrated to a DSM Based Energy Management System 137

The flowchart of the developed parallel algorithm is shown in Figure 3. The two
synchronization points of the algorithm, associated with the collection of the partial
Benders Cuts structures and the distribution of the updated complete structure to all
processors, are the only communication points of the algorithm, and for that reason, a
high efficiency is expected from the distributed implementation. However, the
efficiency will also depend on other factors, such as the communication technology
used and the number of base-contingencies interactions (base-case plus contingencies
sub-problems) necessary for convergence, since more interactions cause more
communication among processors.

Start

Processor 0
Master

Processor 1
Slave

Processor n
Slave

Read input data Read input data Read input data

Optimize base-case
subproblem

Optimize base-case
subproblem

Optimize base-case
subproblem

do i = myid+1, nctg, nprocs

Optimize contingency i
subproblem

end do

do i = myid+1, nctg, nprocs

Optimize contingency i
subproblem

end do

do i = myid+1, nctg, nprocs

Optimize contingency i
subproblem

end do

Receive Benders cuts from
 slave processors

Send Benders cut
to master processor

Send Benders cut
to master processor

Group and Reorganize
the data structure
of Benders cuts

Send complete estructure
of Benders cuts to
slave processors

Receive complete sctructure
of Benders cuts

Receive complete sctructure
of Benders cuts

Num. of cuts > 0 Num. of cuts > 0

END

Write output

Flux of data

YES YES YES

NO

Num. of cuts > 0

NO NO

Fig. 3. Distributed SCOPF based on Message Passing Flowchart

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

138 J.M.T. Alves, C.L.T. Borges, and A.L. Oliveira Filho

4 Distributed SCOPF Integrated to the DSM Real Time System

SAGE [3] is a SCADA – Supervisory Control and Data Acquisition and EMS –
Energy Management System, designed and developed by CEPEL, the Brazilian
National Utility Energy Research Center. It includes modern energy management
functions, such as State Monitoring (Network Configuration and State Estimation),
Emergency Control (OPF Solution) and Security Monitoring (Contingency Analysis).
The system is based on a distributed and expandable architecture. The use of
redundant configurations and sophisticated control software ensures high reliability
and availability for the system.

SAGE was designed to make possible the easy integration of additional modules
directly to the real time database, which is build over a Distributed Shared Memory
(DSM) support. The availability of common shared memory space and
synchronization and control functions makes it a potential platform for
distributed/parallel applications. For the implementation of applications that need
access to the real time database, an API – Application Program Interface is made
available. This API provides the interface routines for the communication and alarms
subsystems.

4.1 Distributed Algorithm Using the DSM System Resources

The integration of the distributed application to the DSM real time systems was done
exploring the resources provided by the system. The information that needs to be
accessed by all processors during the distributed SCOPF solution is written in DSM
modules instead of being exchanged via MPI, as before. After each processor has
solved its contingencies list, each one has its own Benders Cut data structure locally
stored. The master processor reads the data structures generated by each slave
processor, after each one has copied them to the DSM by the master processor
request. After reading these Benders Cut structures, the master processor reorganizes
them into a single complete structure. Soon afterwards, the master writes the new
complete Benders Cut structure in the DSM, so that all processors can access it and
continue with the solution process, in a parallelization strategy similar to the
previously described for the MPI implementation.

The algorithm of the developed distributed application using the DSM real time
system resources can be summarized in the following steps:

Step 1: All processors read the input data directly from the Real Time Database.
Step 2: All processors optimize the base-case sub-problem.
Step 3: Parallel contingency sub-problems optimization by all processors.
Step 4: Master processor asks each Slave processor to write its partial Benders Cuts
data structure on the DSM.
Step 5: Each Slave processor writes its partial data structure on the DSM.
Step 6: Master processor reads the DSM and reorganizes the complete Benders Cuts
data structure.
Step 7: Master processor writes the complete data structure on the DSM.
Step 8: Slave processors read the complete data structure from the DSM .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Distributed SCOPF Integrated to a DSM Based Energy Management System 139

Step 9: Verify if any of the N contingencies sub-problems is unfeasible. In the positive
case, return to step 2.
Step 10: Master processor generates output reports.

From steps 4 to 8 there is a synchronization process for the information exchange
among the processors, via the access to the DSM, in order for the master to read all
the partial Benders Cuts data structure generated by the slaves and to write the
complete reorganized Benders Cuts data structure on the DSM.

Figure 4 shows the EMS functions organization at the real time environment of
SAGE, already including the developed distributed tool for the Security Control
module.

Real Time Data Base

Study
Data Base

Security Monitor

Contingency Analysis

State Estimator

Topology Configurator

State Monitor

Network Applications
for

Study Environment

Violation Insecure

YES

Emergency
Control
(OPF)

YES

Security
Control

(SCOPF)

Fig. 4. SAGE EMS Functions Organization

The integration of the distributed solution of the SCOPF problem into SAGE
makes it possible to use all available features of this SCADA/EMS: process control,
high availability, cluster management, graphic interface, access to real time data,
event triggering, alarms and logs. With the distributed tool integrated to the database
of the EMS system, the SCOPF activation can be made by a request from the operator
using the graphical interface, periodically or triggered by an event, such as the result
of the Security Monitoring function. In the case it is detected that the system is
insecure, the Security Control function (distributed SCOPF) is executed automatically
afterwards. The use of SCOPF functionality in an EMS can potentially improve the
operator online decision making process. The tool can advise the operator on which
controls he should actuate to maintain the electrical system in a secure state.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

140 J.M.T. Alves, C.L.T. Borges, and A.L. Oliveira Filho

5 Message Passing Implementation Results

5.1 Computational Platform and Test System

The computational platform used for the validation tests of the distributed
implementation based on MPI was the Cluster Infoserver-Itautec [13], composed of
16 dual-processed 1.0GHz Intel Pentium III with 512MB of RAM and 256 KB of
cache per node, Linux RedHat 7.3 operating system and dedicated Fast Ethernet
network. The test system used is an equivalent of the actual Brazilian Interconnected
System for the December 2003 heavy load configuration. The studied system is
composed of 3073 busbars, 4547 branches, 314 generators and 595 shunt reactors or
capacitors. The total load of the system is 57,947 MW and 16,007 Mvar, the total
generation is 60,698 MW and 19,112 Mvar and the total losses are 2,751 MW and
3,105 Mvar.

For the security control, the objective function used was minimum losses together
with minimum number of modified controls. The controls that could be modified for
optimization of the base-case were: generated reactivate power, generator terminal
voltage and transformer tap. The number of available controls is 963 controls, where
515 are taps, 224 are reactivate power generation and 224 are terminal voltages. The
list of analyzed contingencies is formed by 700 lines or transformers disconnection.
The contingency list was formulated in a way to obtain a good condition for tests, that
is, the size of the list can be considered between medium and large, and some
contingencies generate Benders Cuts during the optimization process.

5.2 Results Analysis

The SCOPF solution process converged in 3 base-contingencies iterations. In the first
base-contingencies iteration, 12 contingencies generated Benders Cuts, in the second
iteration, only 1 contingency generated Benders Cuts and, finally, in the third
iteration, no contingency generated cut. The total losses after the optimization were
2,706 MW and 2,935 Mvar, what represents a reduction of about 2% in the active
losses of the system.

The number of controls modified to lead the system to an optimal secure operation
point was small, only 7 modifications of generator terminal voltages. That is due to
the use of the objective function of minimum number of modified controls together
with the minimum losses. This is an important issue for the use of SCOPF in the real
time system operation. If the list of control actions is very long, it becomes unfeasible
for the operator to perform them in time to turn the system secure.

The performance of the distributed implementation has been evaluated using from
1 to 12 nodes of the Cluster, obtaining exactly the same results as the sequential
program. Table 1 shows the execution time, while Table 2 shows the Speedup and the
Efficiency, for different numbers of processors.

It can be observed that the distributed implementation presents an excellent
efficiency, superior to 92% using 12 processors of the distributed platform. The
processing time is significantly reduced, changing from 8 minutes 25 seconds of the
sequential processing to 45.43 seconds in parallel using 12 processors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Distributed SCOPF Integrated to a DSM Based Energy Management System 141

Table 1. Execution Time

No. Processors Time
1 8 min 25 s
2 4 min 16 s
4 2 min 10 s
6 1 min 27 s
8 1 min 7 s

10 54.26 s
12 45.43 s

Table 2. Speedup and Efficiency

No. Processors Speedup Efficiency (%)
1 1 -
2 1.97 98.56
4 3.88 97.10
6 5.79 96.49
8 7.50 93.70

10 9.31 93.06
12 11.11 92.62

Figures 5 and 6 show the Speedup evolution and processing time reduction with
the number of nodes used for the distributed solution, respectively.

Fig. 5. Speedup Curve (MPI) Fig. 6. Processing Time (MPI)

It can be also observed that the Speedup curve is almost ideal (linear). The
Efficiency is only slightly reduced as the number of processors increases, what
indicates that the parallel algorithm is scalable. From the good performance obtained,
it can be expected that, if it is necessary to obtain a smaller response time for the real
time application, this objective can be reached using a larger number of processors.

6 DSM Real Time System Implementation Results

6.1 Computational Platform and Test System

The computational platform used for the validation tests of the DSM integrated
implementation was a Fast Ethernet network of computers at the Supervision and
Control Laboratory at CEPEL, composed of eight 3.0GHz Intel Pentium IV
microcomputers with 1GB RAM each and Enterprise Linux operational system. The
test system used was generated based on real time operation data for the CNOS
managed network of January 2006 on medium load level. This equivalent system is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

142 J.M.T. Alves, C.L.T. Borges, and A.L. Oliveira Filho

composed of 1419 busbars, 2094 branches, 388 generators and 92 shunts reactors and
capacitors. The total load of the system is 43,654 MW and 14,582 Mvar, the total
losses are 1,901 MW and 2,293 Mvar. The tests of the DSM platform were not based
on the same system used in the MPI implementation in order to explore the real time
database available on SAGE SCADA/EMS system.

For the security control, the objective function used was minimum losses together
with minimum number of modified controls. The controls that could be modified for
optimization of the base-case were: generated active and reactivate power, generator
terminal voltage and transformer tap. All the variable tap transformers and
generators were considered as control equipments in the optimization process. The
list of analyzed contingencies is formed by 1012 simple contingencies involving
lines, transformers, reactors, capacitors, load, generators and compensators
disconnection.

6.2 Results Analysis

The SCOPF solution process converged in 3 base-contingencies iterations. In the first
base-contingencies iteration, 16 contingencies generated Benders Cuts, in the second
iteration, 11 contingencies generated Benders Cuts and in the third iteration, no
contingency generated cut. The total losses after the optimization were 1,704 MW and
1,603 Mvar, what represents a reduction of about 8,5% in the active losses of the
system.

A group of 122 control variables (about 10% of the total available) were modified
to lead the system to an optimal secure operation point, 28 being active generations,
88 generators/synchronous terminal voltages and 6 transformers taps modifications.

Table 3 shows the execution time while Table 4 shows the Speedup and the
Efficiency, for different numbers of processors, obtaining exactly the same results in
parallel as in the sequential program.

Table 3. Execution Time

No. Processors Time
1 11 min 48s
2 5 min 58s
4 3 min 2 s
6 2 min 2 s
8 1 min 34s

Table 4. Speedup and Efficiency

No. Processors Speedup Efficiency (%)
1 1.00 -
2 1.98 98.89
4 3.89 97.25
6 5.80 96.72
8 7.53 94.14

The execution time reduces from 11 minutes 48 seconds of the sequential
simulation to about 1.5 minute on 8 processors of the distributed platform. The
parallel implementation presents an efficiency superior to 94% using 8 processors,
what can be considered a very good performance.

Figures 7 and 8 show the Speed up evolution and the processing time reduction
with the number of processors used for the distributed solution, respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Distributed SCOPF Integrated to a DSM Based Energy Management System 143

Fig. 7. Speedup Curve (DSM) Fig. 8. Processing Time (DSM)

It can be observed that the Speedup curve is almost ideal. The Efficiency is only
slightly reduced as the number of processors increases, what indicates that the parallel
algorithm is scalable and a good performance can be expected when using a larger
number of processors in the DSM based distributed platform.

Although the test systems are not the same in the MPI and DSM implementations,
the results obtained for the two environments show similar performance. This can be
verified comparing the characteristic of the speedup curves and the efficiency
obtained for 8 processors, which are about 94% on both platforms.

7 Conclusions

This paper presented a proposal for enabling the system static Security Control in real
time operation, based on the solution of SCOPF and in the use of distributed
processing techniques. The use of this type of tool in the real time operation increases
the security level of the system, since the operator, based on a list of control actions
supplied by the tool, can preventively act on the system, avoiding that it evolves to a
severe operative condition in the case some contingency happens.

The distributed application developed based on the MPI system is an autonomous
tool, ready to be used in control centers if it is supplied, periodically, with the real
time data. The integration of the distributed SCOPF directly to an DSM based EMS
system added to the developed tool all the computational support offered by this type
of environment, besides allowing the use of the computers already available at the
control center for the SCADA/EMS functions.

In that sense, the Security Control based on SCOPF is made possible in real time
application, using low cost and easily scalable platforms as a cluster of PCs or
workstations. Although there is no consensus about which execution time is
acceptable for the use of this type of tool in the real time operation, certainly the
execution time obtained in the two test cases of the Brazilian System are acceptable.
The smallest time obtained was about 45 seconds with 12 processors on the MPI
environment and 1.5 minute with 8 processors on the DSM environment, which is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

144 J.M.T. Alves, C.L.T. Borges, and A.L. Oliveira Filho

perfectly compatible with the real time requirements of the Brazilian CNOS
nowadays, where a time slice of two minutes is available for the security control task.

However, if a more time constrained response time is required, this objective than
the reached not only upgrading the cluster platform but also de network technology,
increasing networking speed and the overall system performance. Grid technology
may also be considered for use between the several control centers available in the
power system, in order to share the computational load with other clusters installed in
other controls centers and also to low the overall cost in upgrading the computing
platform.

References

1. Wood, A. J., Wollenberg, B.F., Power Generation, Operation, and Control. 2 ed. New
York, John Wiley & Sons, 1996.

2. Gropp, W., Lusk, E. e Skjellum, A. (1996). Using MPI – Portable Parallel Programming
with the Message Passing Interface, The MIT Press, Cambridge, UK.

3. http://www.sage.cepel.br/ – SAGE – Sistema Aberto de Gerenciamento de Energia,
CEPEL (In Portuguese).

4. CEPEL, Optimal Power Flow Program – FLUPOT: User Manual (In Portuguese), Rio de
Janeiro, RJ, Brazil, 2000.

5. Huang, Y., Kashiwagi, T., Morozumi, S., “A Parallel OPF Approach for Large Scale
Power Systems”. Fifth International Conference on Power System Management and
Control, pp. 161-166, April 2002.

6. Lo, C.H.; Chung, C.Y.; Nguyen, D.H.M.; Wong, K.P., “A Parallel Evolutionary
Programming Based Optimal Power Flow Algorithm and its Implementation”, In:
Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Vol.
4, pp. 26-29, August 2004.

7. Baldick, R., Kim, B.H., Chase, C., Luo, Y., “A Fast Distributed Implementation of
Optimal Power Flow”, IEEE Transactions on Power Systems, Vol. 14, pp. 858-864 ,
August 1999.

8. Hur, D. Park, J., Balho Kim, H., “On the Convergence Rate Improvement of Mathematical
Decomposition Technique on Distributed Optimal Power Flow”, Electric Power and
Energy Systems, No 25, pp. 31-39, 2003.

9. Biskas, P. N., Bakirtzis, A. G., Macheras, N. I., Pasialis, N. K., “A Decentralized
Implementation of DC Optimal Power Flow on a Network of Computers”, IEEE
Transactions on Power Systems, Vol. 20, pp. 25-33, February 2005.

10. Rodrigues, M., Saavedra, O. R., Monticelli, A. “Asynchronous Programming Model for
the Concurrent Solution of the Security Constrained Optimal Power Flow”, IEEE
Transactions on Power System, Vol. 9, No 4, pp. 2021-2027, November 1994.

11. Monticelli, A., Pereira, M.V. F., Granville, S. "Security-Constrained Optimal Power Flow
With Post-Contingency Corrective Rescheduling", IEEE Transactions on Power System,
Vol. PWRS-2, No 1, pp. 175-182, February 1987.

12. Granville, S., Lima, M.C. A., “Application of Decomposition Techniques to VAr
Planning: Methodological & Computational Aspects”, IEEE Transactions on Power
System, Vol. 9, No 4, pp. 1780-1787, November 1994.

13. http://www.nacad.ufrj.br/ – NACAD – Núcleo de Atendimento de Computação de Alto
Desempenho, COPPE/UFRJ, (In Portuguese).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Metaserver Locality and Scalability in a

Distributed NFS�

Everton Hermann1,��, Rafael Ávila1,� � �, Philippe Navaux1,
and Yves Denneulin2

1 Instituto de Informática/UFRGS
Caixa Postal 15064

91501-970 Porto Alegre – Brazil
Phone.: +55 (51) 3316-6165; Fax: +55 (51) 3316-7308

{ehermann,avila,navaux}@inf.ufrgs.br
2 Laboratoire ID/IMAG

51, avenue Jean Kuntzmann
38330 Montbonnot-Saint Martin – France

Phone.: +33 (4) 76 61 20 13; Fax: +33 (4) 76 61 20 99
Yves.Denneulin@imag.fr

Abstract. The leveraging of existing storage space in a cluster is a desir-
able characteristic of a parallel file system. While undoubtedly an advan-
tage from the point of view of resource management, this possibility may
face the administrator with a wide variety of alternatives for configuring
the file server, whose optimal layout is not always easy to devise. Given
the diversity of parameters such as the number of processors on each
node and the capacity and topology of the network, decisions regarding
the locality of server components like metadata servers and I/O servers
have a direct impact on performance and scalability. In this paper, we
explore the capabilities of the dNFSp file system on a large cluster instal-
lation, observing how scalable the system behaves in different scenarios
and comparing it to a dedicated parallel file system. Our obtained results
show that the design of dNFSp allows for a scalable and resource-saving
configuration for clusters with a large number of nodes.

Topics: Cluster and grid computing, parallel I/O, parallel and distribu-
ted computing.

1 Introduction

Solutions for efficient management of I/O in large clusters have long been the
focus of several research groups and industrials working on parallel computing [1].
Ranging from RAID arrays and fibre optics to virtual distributed disks, many
approaches have been proposed in the last decade that vary considerably in terms
of performance, scalability and cost.

� Candidate to the best student paper award.
�� Work partially supported by CAPES and CNPq.

� � � Work supported by HP Brazil grant.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 145–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

146 E. Hermann et al.

In previous works [2,3], we have presented the dNFSp file system, an extension
of NFSv2 that aims at improving both performance and scalability of a regular
NFS server while keeping its standard administration procedures and, mainly,
compatibility with the regular NFS clients available on every Unix system. Sim-
ilarly to other parallel file systems such as PVFS [4] and Lustre [5], dNFSp is
based on a distributed approach where the gain in performance is obtained by
executing tasks in parallel over several machines of the cluster.

One important aspect of a parallel file system is its capability of leveraging
existing resources. In the case of commodity clusters, the hard disks that are
installed on the compute nodes are frequently under-used: a typical GNU/Linux
node installation takes only a few gigabytes, and today’s PCs are hardly ever
configured with less than 40 gigabytes of storage. This leaves us with at least 75%
of the total hard disk capacity available for the storage of data, and consequently
it is important that a cluster file system have the ability to use it.

dNFSp provides such a feature, so that the storage on the compute nodes can be
used to form a single cluster file system. It is then up to the cluster administrator
to decide how to configure the system, finding a good balance between resource
utilization, performance and scalability, which might not be an obvious task.

For this reason, we have conducted a series of experiments varying the config-
uration of dNFSp on a large cluster. This allowed us to watch how scalable the
system os. Also it was possible to identify layouts best suited for one or another
situation, and whose results and conclusions are presented in this work.

In the remainder of the paper, Section 2 presents the dNFSp file system and its
main characteristics, with the purpose of providing some background knowledge;
Section 3 describes in more details the experiments we have conducted and
introduces the evaluation criteria; in Section 4 we present the results obtained
in the experiments and provide the discussion which is the focus of this work;
Section 5 brings a comparison of our work to systems with related objectives,
and finally Section 6 draws some conclusions on the obtained results and analysis
and reveals future directions.

2 dNFSp – A Distributed NFS Server

The NFSp project [6] has been established in 2000 at the Laboratoire Informa-
tique et Distribution of Grenoble, France, with the goal of improving performance
and scalability in a regular NFS installation. The main idea of the project is to
provide a cluster file system that benefits from the standard administration pro-
cedures and behavior of a well-known protocol such as NFS. As a result, NFSp
— for parallel NFS — presents some simple extensions to the NFS server im-
plementation that distributes its funcionalities over a set of nodes in the cluster,
thus gaining performance. On the other hand, the client machines do not have
to be modified at all, favoring portability.

As a subproject within the NFSp group, dNFSp has been proposed as a fur-
ther extension to the model, aiming at an improvement on concurrent write
operations by client machines.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Metaserver Locality and Scalability in a Distributed NFS 147

Figure 1 depicts the distribution model proposed by dNFSp. The top of the
figure shows the two main server components: the I/O daemons, or IODs, and
the metaservers. The metaservers are daemons that play the role of the NFS
server, serving clients’ requests and cooperating with each other to form the
notion of a single file server. The IODs work as backends for the metaservers,
being responsible solely for data storage and retrieval. On the lower part of the
figure, client machines connect to the metaservers in the same way that clients
connect to a regular NFS server.

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

IO
D

s
m

et
a−

se
rv

er
s

cl
ie

nt
s

Fig. 1. Distributed metaserver architecture of dNFSp

Each client is connected to one metaserver, which is responsible for han-
dling its requests. Operations involving only metadata are replied directly by
the metaserver, which in some cases can contact other metaservers to obtain the
needed metadata. I/O operations are forwarded by the metaserver to the IODs,
which will perform the operation and reply directly to the client. In the case of
read operations, the file contents are transferred directly from the IODs to the
clients, allowing parallel reads up to the number of available IODs. In the case
of write operations, the data are transferred from the client to the metaserver,
and then forwarded to the IODs. Therefore, global write performance depends
both on the number of IODs and the number of metaservers.

The metaservers exchange information to keep metadata coherence across all
metaservers. The information is retrieved only when needed by a client, avoiding
unnecessary network traffic. However, there are situations when all metaservers
must be contacted (e.g. lookup() upon file creation), and this communication
becomes more visible as we increase the number of metaservers.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

148 E. Hermann et al.

The extensions introduced by dNFSp have been implemented on an exist-
ing NFSp prototype, and a performance evaluation has been carried out pre-
viously [3] with the execution of some micro benchmarks. As an illustration of
dNFSp raw performance, Figure 2 shows the results obtained for concurrent
read and write operations (each client reads/writes one independent 1 GB file)
in comparison to the performance of a regular NFS server using Fast Ethernet
network (∼11 MB/s). As expected, one obtains an increased throughput when
more than one client read/write at the same time.

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

B
/s

)

No. clients

Concurrent Reads

regular NFS
dNFSp

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 2 4 6 8 10 12 14 16 18 20

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

B
/s

)

No. clients

Concurrent Writes

regular NFS
dNFSp

Fig. 2. dNFSp performance for concurrent read and write operations using 12 IODs
and 7 metaservers

3 Benchmark and Cluster Environment

The measurements we carried out have the objective of evaluating the scalability
of dNFSp in a large number of nodes using a real application-based benchmark.
The benchmark we used is the NAS/BTIO, and the machine used to run the
applications is the INRIA i-cluster2 1. Both the application and the cluster are
detailed in the following sections.

3.1 The NAS/BTIO Benchmark

The BTIO Benchmark is a part of the NAS Parallel Benchmarks (NPB) [7]. It is
commonly used for evaluating the storage performance of parallel and distributed
computer systems. The application used by BTIO is an extension of the BT
benchmark [8]. The BT benchmark is based on a Computational Fluid Dynamics
(CFD) code that uses an implicit algorithm to solve the 3D compressible Navier-
Stokes equations. BTIO uses the same computational method employed by BT.
The I/O operations have been added by forcing the writing of results to disk. In
BTIO, the results must be written to disk at every fifth step of BT.

The number of process running one execution of BTIO must be a perfect
square (1, 4, 9, 16, etc.). The problem size is chosen by specifying a class. Each

1 http://ita.imag.fr

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Metaserver Locality and Scalability in a Distributed NFS 149

class corresponds to the dimensions of a cubic matrix to be solved by the appli-
cation: class A (643), class B (1023), class C (1623). We have chosen class A since
it was enough to have a good mixing of computation and file system operations.
Moreover, using a larger class has not changed the profile of the results.

Another customization of BTIO is the way the I/O operations are requested
to the file system. There are four flavors that can be chosen at compilation time:

– BTIO-full-mpiio: This version uses MPI-IO file operations with collective
buffering, which means that data blocks are potentially re-ordered previously
to being written to disk, resulting in coarser write granularity

– BTIO-simple-mpiio: Also uses MPI-IO operations, but no data re-ordering
is performed, resulting in a high number of seeks when storing information
on the file system

– BTIO-fortran-direct: This version is similar to simple-mpiio, but uses the
Fortran direct access method instead of MPI-IO

– BTIO-epio: In this version, each node writes in a separate file. This test
gives the optimal write performance that can be obtained, because the file
is not shared by all the processes, so there is no lock restriction. In order to
compare with other versions, the time to merge the files must be computed,
as required by the Application I/O benchmark specification.

In order to perform MPI-IO operations using an NFS-based file system, it
would be necessary to have an implementation of the NFSv3 protocol, due to the
need of controlling file access by means of locks. Since dNFSp was implemented
based on the NFSv2 protocol, it has no lock manager; hence, we decided to use
the BTIO-epio version of the benchmark. Furthermore, using epio allows one
to achieve optimal performance results, since the data are written to individual
files by each node.

With the goal of having a more write-intensive benchmark, we have made
a small change in the BTIO benchmark code, modifying the frequency of file
writes. The original code performes writes on every five iterations, resulting in a
total amount of writes of 400 megabytes; with the modification, BTIO performs
writes on every iteration, resulting in 2 gigabytes of written data. The results of
each computing step are appended to the end of the file used by the process. The
granularity of writes changes with the number of nodes used on the computation.
Changing the frequency of writings allowed us to make the differences between
the file systems more visible.

3.2 The i-Cluster2

The i-cluster2 [9] is installed in Montbonnot Saint Martin, France, in the IN-
RIA Rhône-Alpes facility. The cluster is composed by 100 nodes. Each node is
equipped with a dual Itanium2 900 MHz with 3 gigabytes of memory and a disk
storage with 72 gigabytes, 10000 rpm, SCSI. All the nodes are interconnected us-
ing a 1 Gigabit Ethernet network, Fast Ethernet network and Myrinet Network.
The experiments were performed using the 1 Gigabit Ethernet network.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

150 E. Hermann et al.

The software installed on i-cluster2 is based on Red Hat Enterprise Linux AS
release 3 distribution, with a Linux kernel version 2.4.21. The MPI implementa-
tion used with the BTIO benchmark is mpich version 1.2.6.

4 Performance, Scalability and Locality Evaluation

In this section we present the results obtained with our experiments. The re-
ported execution times are those informed by BTIO at the end of the execution,
together with a confirmation of correct computation. Each value reported is the
arithmetic mean of at least 5 runs of BTIO with the same configuration, so as
to obtain a stable value. Standard deviations lie within a maximum value of
3 seconds.

4.1 Performance Analysis

The first step in our analysis of dNFSp has been an evaluation of the perfor-
mance of the system on the i-cluster2. We have run BTIO on a large subset
of the available nodes, and compared the performance of dNFSp with that of
a dedicated parallel file system. We have chosen PVFS [4] for this task, as it
is a representative parallel file system in the Beowulf cluster context in which
our work is inserted. It wasn’t possible to perform tests using Lustre because it
needs a kernel patch to the system to run, and we didn’t have the permission
needed to do this task.

For both systems, we have varied the number of IODs in the file server from
4 up to 12 IODs, in steps of 2. In the case of dNFSp, we always use a number of
metaservers equal to that of IODs. PVFS uses only one extra node in all cases,
for the manager. The experiments have been executed from 4 up to 49 clients,
respecting the feature of BTIO that the number of clients must be a perfect
square.

We show, in Figure 3, the results obtained using the minimum and the max-
imum number of IODs, respectively 4 and 12. Intermediate configurations have
shown proportional variation.

When the file system is accessed by a small number of clients, a shorter number
of metaservers has shown better performance results, because a higher number
of metaservers results in more management communication. In this case, the
application does not have enough nodes to benefit from all the parallelism offered
by the file system.

As expected, execution times drop as the number of clients increase. For
dNFSp, the reduction in execution time is progressive on the whole range of
clients, except for the case of 49 clients using 4 IODs, where it slightly starts
to rise again. For PVFS, one observes a lower limit at around 100 seconds. We
conclude that the main cause for the limitation in both systems is that, as the
number of clients increase, the amount of data written by each one decreases,
and reaches a point where parallelism does not pay off anymore due to the man-
agement cost of the striping mechanism. dNFSp seems to handle the situation
better than PVFS, reaching around 47 seconds in the case of 12 IODs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Metaserver Locality and Scalability in a Distributed NFS 151

Fig. 3. Performance comparison for dNFSp vs. PVFS using 4 and 12 IODs on the file
server

It is important to remark that such experiments were run using PVFS v1
(more precisely, version 1.6.3), while PVFS2 is already available and should pre-
sumably yield more performance than its predecessor. PVFS2 was effectively
our initial choice for comparison, not only because of its performance, but also
because it features a distributed metadata model which is closer to that of
dNFSp. However, early experiments with that version on the i-cluster2 resulted
in strangely poor performance (results are shown in Table 1 for information).
One reason to this poor result is the writing profile of BTIO, which appends
contents to the end of the files, changing metadata information on each write.
The relaxed model used by dNFSp does not require updating metadata on all the
metaservers so there is no extra communication when an append is performed.
While we are still investigating further causes for that behavior, we chose to
report results for PVFS v1, which nevertheless represents no loss in significance
since it is still fully supported by the developers as a production system.

4.2 Scalability Evaluation

As a subsequent analysis of our experiments we have compared how both file
systems react to the addition of more nodes to the file system. The number of
IODs, metaservers and clients is the same as described in the previous section.

In Figure 4 we have three samples from our experiment. In the first chart
we have kept the number of BTIO clients on 4 and varied the number of IODs
and metaservers. We can see that both file systems sustain an almost constant
performance due to the fact that the application doesn’t have enough clients to
stress the capability of storage offered by the file systems. In this case, dNFSp
even shows a small decrease in performance as we add more nodes. This loss of
performance comes from the metaserver communication, which is more signifi-
cant when we have more of them. The better performance of PVFS lies on the
size of messages. As we have only four BTIO clients, the amount of computation
designated to each node is large resulting in larger writes on the file system.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

152 E. Hermann et al.

Table 1. Sample execution times (in seconds) obtained for dNFSp and PVFS v1 in
comparison to PVFS2

No. of clients dNFSp PVFS v1 PVFS2
4 464.416 319.273 363.395
9 272.728 170.663 263.655
16 135.164 103.247 253.88
25 76.712 95.35 252.505
36 53.745 96.313 293.44
49 43.776 105.44 353.64

The second chart shows the transition case where both file systems have a
similar behavior. Using 25 clients BTIO seems to have a block size that results
in similar performance to both file systems. They have an improvement of per-
formance as we add more nodes to the file system, reaching a limit where adding
more nodes increases the execution time instead of reducing.

In the third chart we show a more stressing case, where we have 49 clients
accessing the file system. In this situation we can see that from 4 to 10 nodes
dNFSp has an improvement of performance as we increase the file system size.
When we reach 12 IODs and 12 metaservers, the overhead added by the insertion
of more nodes is not compensated by the performance gain. The clients don’t
have enough writes to stress the file system, and the communication between
metaservers is more expressive, falling in the same situation shown by the four
clients sample. PVFS has shown a performance limitation when we have small
writes to the file system. As the number of clients is larger than the previous
case, we have smalls chunks of data being written.

4.3 Metaservers and IODs Locality Impact

As a last experiment, we have investigated the capabilities of dNFSp in saving
cluster nodes for the deployment of the file server. As usual in distributed file
systems (and distributed systems in general) like dNFSp and PVFS, each task
of the system is usually performed on a distinct machine or compute node. For
example, in the previous experiments we have always used distinct nodes for
running the IODs and the metaservers/manager.

It would be desirable, however, that one could make use of as few nodes for the
file server as possible, in order to maximize the number of nodes available for the
real computing tasks. While the decision depends mostly on the amount of storage
desired for the server, some considerations can be made regarding performance
and scalability that might allow for a shorter number of nodes than that initially
accounted. This is specially true if the compute nodes are dual-processed.

The results in Figure 5 correspond to the execution of BTIO with dNFSp
with IODs and metaservers running on the same nodes, compared to the original
execution where the two entities run on separate nodes. Again, we show results
for a small and a large number of client nodes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Metaserver Locality and Scalability in a Distributed NFS 153

Fig. 4. Scalability comparison for dNFSp vs. PVFS using 4, 25 and 49 BTIO clients
processes

Fig. 5. Results for dNFSp with and without overlapping IODs and metaservers on the
same nodes

Two different situations are presented, both favoring the overlapping of IODs
and metaservers. In the first case, with few client nodes, more information is
written by each single client, and thus there is a visible difference in performance
in favor of the overlapping configuration, since communication between the IOD
and the metaserver on the same node is done faster (by means of memory copy).
Approximately 1/N requests, where N is the number of IODs, can be processed
locally, without the need of contacting an IOD through the network. On the
second case, there are much more, smaller client writes, and consequently the
differences are not much evident. Increasing the number of IODs also contributes
to minimize the differences, as the probability of performing a request locally
decreases as the number of striping slices grows. As a conclusion, we can see that
such an overlapping configuration can be employed without loss of performance,
contributing to the amount of nodes dedicated to computation.

5 Related Work

The increasing performance gap between I/O and processor has placed the file
system performance as the most severe bottleneck to applications that massively
use the storage subsystem [1,10]. Several approaches have been proposed since

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

154 E. Hermann et al.

the deployment of the first large-scale parallel machines. Many are based on the
use of specialized technologies (e.g. RAID, fiber optics) as a means to increase
performance, such as GPFS [11] and GFS [12]. This kind of system usually relies
on the concept of a Storage Area Network (SAN), which basically defines a com-
mon storage“device”composed of several physical devices. As such, scalability is
a direct consequence of this concept. Other projects like Petal/Frangipani [13,14]
and the Shared Logical Disk [15] make use of the same concept, but the SAN is
implemented in software over a network. Good performance and scalability thus
depend heavily on the communication technology.

Research projects like PVFS [4] and Lustre [16] follow another trend. To
achieve high performance on I/O operations, these file systems distribute the
functions of a file system across a set of nodes in a cluster. To perform paral-
lel I/O operations, they stripe the data across the nodes, keeping the striping
transparent to the application.

PVFS is a parallel cluster file system composed of two types of nodes: the I/O
server and the manager, which is a metadata server. The nodes in the cluster
used by the file system can be configured as I/O servers, and one of them as a
manager. Lustre is an object-based file system designed to provide performance,
availability and scalability in distributed systems. Like PVFS, Lustre comprises
two types of server nodes: Metadata Servers (MDS) are responsible for managing
the file system’s directory layout, as well as permissions and other file attributes.
The data is stored and transferred through the Object Storage Targets (OST).
Figure 6 shows the architecture of PVFS and Lustre in comparison to that of
dNFSp.

High performance in PVFS is achieved by distributing the contents of a file
across the I/O server nodes (striping). Clients are allowed to access the contents
of the file in parallel. The way the files are striped is handled by the metadata
manager, which is also responsible for managing file properties and a name space
to applications, but has no participation in I/O operations. The I/O servers are
accessed directly by the clients to deal with the data transfers. The user can
access the file system through the PVFS library or using an OS-specific kernel
module. The latter allows the user to mount the file system using a POSIX
interface, and access files as any other file system.

In Lustre, similarly to PVFS, the client contacts the Metadata Servers to know
which OST contains a given part of a file. After obtaining this information, the
client establishes direct connections to the OST performing reads and writes. The
MDS has no intervention in the I/O process, being contacted by the OST only to
change file attributes like file size. Both types of nodes can have replicas working
in pairs and taking the place of each other when a failure occurs. Figure 6 shows
an active MDS, and its replica is represented by the failover node. Information
concerning the overall system configuration is stored in a Lightweight Directory
Access Protocol (LDAP) server. In the event of a MDS failure, the client can
access the LDAP server to ask for an available MDS.

As in dNFSp, PVFS version 2, or PVFS2 [17], has the option of running
more than one manager. The main difference lies on the way PVFS controls the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Metaserver Locality and Scalability in a Distributed NFS 155

Fig. 6. Architecture of the related cluster file systems

distribution of metadata. Each manager stores the metadata information about
a range of files, while in dNFSp each server has the metadata information about
all the files. The PVFS approach can result in a surcharged manager when all
the clients access files in the same range.

6 Conclusions and Final Considerations

The execution of the BTIO benchmark with dNFSp and PVFS on the i-cluster2
has confirmed the objectives of our system in providing good performance and
scalability while keeping compatibility with NFS. The results show very good,
scalable performance in comparison to a dedicated parallel file system. dNFSp
is able to reach the same level of performance of PVFS, and many times even
reach beyond it. We understand that this advantage comes from the fact that
dNFSp can tolerate a smaller size of writes than PVFS before reaching the point
where parallelism in no longer favorable. When configured with a large number
of clients, dNFSp has outperformed PVFS in up to 50% of its execution time.

Another positive aspect of our benchmarking is that dNFSp performs effi-
ciently when IODs and metaservers have been run together. The performance
results obtained using IODs and metaservers on the same node were up to 17%
faster than in the case where metaservers and IODs were run on distinct ma-
chines. This allows for a resource-saving configuration which maximizes the avail-
ability of compute nodes without sacrificing performance. Although the nodes
of the i-cluster2 are dual-processed, which favors this configuration, we believe
that a similar approach, at least partial, should be possible on single-processor

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

156 E. Hermann et al.

clusters, since the IODs present a typical I/O-bound profile, while the metaser-
vers do little disk activity. This evaluation was not possible on the i-cluster2, as
it would require booting with a non SMP-enabled kernel. We intend to carry it
out in the next stage of the project.

One of the future activities in dNFSp is the implementation of a dedicated com-
munication mechanism between metaservers, given some loss of performance in a
few of the experiments due to the heavy lookup mechanism that the metaservers
perform. The dedicated protocol should minimize the impact of lookup operations
by implementing some kind of prefetching and message aggregation for the ex-
change of metadata. Also, we are planning a porting of dNFSp to NFS version 3.
This will allow us to profit from the changes on the protocol, like asynchronous
I/O operations and the larger block size limit. Another aspect to be worked upon
is fault tolerance and replication, which are being studied and shall be included in
the upcoming versions.

References

1. Schikuta, E., Stockinger, H.: Parallel I/O for clusters: Methodologies and sys-
tems. In Buyya, R., ed.: High Performance Cluster Computing: Architectures and
Systems. Prentice Hall PTR, Upper Saddle River (1999) 439–462

2. Kassick, R., Machado, C., Hermann, E., Ávila, R., Navaux, P., Denneulin, Y.:
Evaluating the performance of the dNFSP file system. In: Proc. of the 5th IEEE
International Symposium on Cluster Computing and the Grid, CCGrid, Cardiff,
UK, Los Alamitos, IEEE Computer Society Press (2005)

3. Ávila, R.B., Navaux, P.O.A., Lombard, P., Lebre, A., Denneulin, Y.: Perfor-
mance evaluation of a prototype distributed NFS server. In Gaudiot, J.L., Pilla,
M.L., Navaux, P.O.A., Song, S.W., eds.: Proceedings of the 16th Symposium on
Computer Architecture and High-Performance Computing, Foz do Iguaçu, Brazil,
Washington, IEEE (2004) 100–105

4. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: a parallel file system
for Linux clusters. In: Proc. of the 4th Annual Linux Showcase and Conference,
Atlanta, GA (2000) 317–327 Best Paper Award.

5. Cluster File Systems, Inc.: Lustre: A scalable, high-performance file system (2002)
Available at http://www.lustre.org/docs/whitepaper.pdf (July 2004)

6. Nfsp: homepage (2000) Available at <http://www-id.imag.fr/Logiciels/NFSP>
Access in May 2005.

7. Wong, P., der Wijngaart, R.F.V.: NAS Parallel Benchmarks I/O Version 2.4. RNR
03-002, NASA Ames Research Center (2003)

8. Bailey, D.H., et al.: The NAS parallel benchmarks. International Journal of Su-
percomputer Applications 5(3) (1991) 63–73

9. i-Cluster 2 (2005) Available at <http://i-cluster2.inrialpes.fr> Access in May 2005.
10. Baker, M., ed.: Cluster Computing White Paper. IEEE Task Force in Cluster Com-

puting (2000) Available at http://www.dcs.port.ac.uk/∼mab/tfcc/WhitePaper/
final-paper.pdf Final Release, Version 2.0.

11. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing
clusters. In: Proc. of the Conference on File and Storage Technologies, Monterey,
CA (2002) 231–244

12. The openGFS project (2003) http://opengfs.sourceforge.net

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.dcs.port.ac.uk/$sim $mab/tfcc/WhitePaper/final-paper.pdf
http://www.dcs.port.ac.uk/$sim $mab/tfcc/WhitePaper/final-paper.pdf

Metaserver Locality and Scalability in a Distributed NFS 157

13. Lee, E.K., Thekkath, C.A.: Petal: Distributed virtual disks. In: Proc. of the 17th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, Cambridge, MA (1996) 84–92

14. Thekkath, C.A., Mann, T., Lee, E.K.: Frangipani: A scalable distributed file sys-
tem. In: Proceedings of the 16th ACM Symposium on Operating Systems Princi-
ples, Saint Malo, France, New York, ACM Press (1997) 224–237

15. Shillner, R.A., Felten, E.W.: Simplifying distributed file systems using a shared
logical disk. Technical Report TR-524-96, Dept. of Computer Science, Princeton
University, Princeton, NJ (1996)

16. Schwan, P.: Lustre: Building a file system for 1000-node clusters. In: Proceedings
of the 2003 Linux Symposium. (2003)

17. Latham, R., Miller, N., Ross, R., Carns, P.: A next-generation parallel file system
for Linux clusters. LinuxWorld Magazine (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 158 – 171, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Top-k Query Processing in the APPA P2P System*

Reza Akbarinia1,3, Vidal Martins1,2, Esther Pacitti1, and Patrick Valduriez1

1 ATLAS group, INRIA and LINA, University of Nantes, France
2 PPGIA/PUCPR – Pontifical Catholic University of Paraná, Brazil

3 Shahid Bahonar University of Kerman, Iran
FirstName.LastName@univ-nantes.fr, Patrick.Valduriez@inria.fr

Abstract. Top-k queries are attractive for users in P2P systems with very large
numbers of peers but difficult to support efficiently. In this paper, we propose a
fully distributed algorithm for executing Top-k queries in the context of the
APPA (Atlas Peer-to-Peer Architecture) data management system. APPA has a
network-independent architecture that can be implemented over various P2P
networks. Our algorithm requires no global information, does not depend on the
existence of certain peers and its bandwidth cost is low. We validated our
algorithm through implementation over a 64-node cluster and simulation using
the BRITE topology generator and SimJava. Our performance evaluation shows
that our algorithm has logarithmic scale up and improves Top-k query response
time very well using P2P parallelism in comparison with baseline algorithms.

1 Introduction

Peer-to-peer (P2P) systems adopt a completely decentralized approach to data sharing
and thus can scale to very large amounts of data and users. Popular examples of P2P
systems such as Gnutella [10] and KaZaA [13] have millions of users sharing
petabytes of data over the Internet. Initial research on P2P systems has focused on
improving the performance of query routing in unstructured systems, such as Gnutella
and KaaZa, which rely on flooding. This work led to structured solutions based on
distributed hash tables (DHT), e.g. CAN [16], or hybrid solutions with super-peers
that index subsets of peers [23]. Although these designs can give better performance
guarantees than unstructured systems, more research is needed to understand their
trade-offs between autonomy, fault-tolerance, scalability, self-organization, etc.
Meanwhile, the unstructured model which imposes no constraint on data placement
and topology remains the most used today on the Internet.

Recently, other work in P2P systems has concentrated on supporting advanced
applications which must deal with semantically rich data (e.g. XML documents,
relational tables, etc.) using a high-level SQL-like query language, e.g. ActiveXML
[2], Piazza [20], PIER [12]. High-level queries over a large-scale P2P system may
produce very large numbers of results that may overwhelm the users. To avoid such
overwhelming, a solution is to use Top-k queries whereby the user can specify a
limited number (k) of the most relevant answers. Initial work on Top-k queries has
concentrated on SQL-like language extensions [7][6] . In [6] for instance, there is a

* Work partially funded by ARA Massive Data of the French ministry of research.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Top-k Query Processing in the APPA P2P System 159

STOP AFTER k clause to express the k most relevant tuples together with a scoring
function to determine their ranking.

Efficient execution of Top-k queries in a large-scale distributed system is difficult.
To process a Top-k query, a naïve solution is that the query originator sends the query
to all nodes and merges all the results, which it gets back. This solution hurts response
time as the central node is a bottleneck and does not scale up. Efficient techniques
have been proposed for Top-k query execution in distributed systems [25][24]. They
typically use histograms, maintained at a central site, to estimate the score of
databases with respect to the query and send the query to the databases that are more
likely to involve top results. These techniques can somehow be used in super-peer
systems where super-peers maintain the histograms and perform query sending and
result merging. However, keeping histograms up-to-date with autonomous peers that
may join or leave the system at any time is difficult. Furthermore, super-peers can
also be performance bottlenecks. In unstructured or DHT systems, these techniques
which rely on central information no longer apply.

In this paper, we propose a fully distributed algorithm for executing Top-k queries
processing in the context of APPA (Atlas Peer-to-Peer Architecture), a P2P data
management system which we are building [3][4]. The main objectives of APPA are
scalability, availability and performance for advanced applications. APPA has a
network-independent architecture in terms of advanced services that can be
implemented over different P2P networks (unstructured, DHT, super-peer, etc.). This
allows us to exploit continuing progress in such systems. Our Top-k query processing
algorithm has several distinguishing features. For instance, it requires no central or
global information. Furthermore, its execution is completely distributed and does not
depend on the existence of certain peers. We validated our algorithm through a
combination of implementation and simulation and the performance evaluation shows
very good performance. We have also implemented baseline algorithms for
comparing with our algorithm. Our performance evaluation shows that our algorithm
improves Top-k query response time very well using P2P parallelism in comparison
with baseline algorithms.

The rest of this paper is organized as follows. Section 2 describes the APPA
architecture. In Section 3, we present our algorithm, then we analyzes the bandwidth
cost of our algorithm and propose techniques in order to reduce this cost. Section 4
describes a performance evaluation of the algorithm through implementation over a
64-node cluster and simulation (up to 10,000 peers) using the BRITE topology
generator [5] and SimJava [11]. Section 5 discusses related work. Section 6
concludes.

2 APPA Architecture

APPA has a layered service-based architecture. Besides the traditional advantages of
using services (encapsulation, reuse, portability, etc.), APPA is a network-
independent architecture so it can be implemented over different P2P networks
(unstructured, DHT, super-peer, etc.). The main reason for this choice is to be able to
exploit rapid and continuing progress in P2P networks. Another reason is that it is
unlikely that a single P2P network design will be able to address the specific

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

160 R. Akbarinia et al.

requirements of many different applications. Obviously, different implementations
will yield different trade-offs between performance, fault-tolerance, scalability,
quality of service, etc. For instance, fault-tolerance can be higher in unstructured P2P
systems because no peer is a single point of failure. On the other hand, through index
servers, super-peer systems enable more efficient query processing. Furthermore,
different P2P networks could be combined in order to exploit their relative
advantages, e.g. DHT for key-based search and super-peer for more complex
searching.

There are three layers of services in APPA: P2P network, basic services and
advanced services.

P2P network. This layer provides network independence with services that are
common to all P2P networks, for instance:

• Peer id assignment: assigns a unique id to a peer using a specific method, e.g. a
combination of super-peer id and counter in a super-peer network.

• Peer linking: links a peer to some other peers, e.g. by setting neighbors in an
unstructured network, by locating a zone in CAN [16], etc. It also maintains the
address and id of the peer’s neighbors.

• Peer communication: enables peers to exchange messages (i.e. service calls).

Basic services. This layer provides elementary services for the advanced services
using the P2P network layer, for instance:

• P2P data management: stores and retrieves P2P data (e.g. meta-data, index data)
in the P2P network.

• Peer management: provides support for peer joining, rejoining, and for updating
peer address (the peer ID is permanent but its address may be changed).

• Group membership management: allows peers to join an abstract group, become
members of the group and send and receive membership notifications.

Advanced services. This layer provides advanced services for semantically rich data
sharing including schema management, replication, query processing, security, etc.
using the basic services.

Fig. 1. APPA architecture over an unstructured network

Advanced
services

Local
Data

Peer1

Peer2

Unstructured
network

Basic
services

P2P network
services

P2P
Data

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Top-k Query Processing in the APPA P2P System 161

For the cases where APPA is based on a DHT or an unstructured network, the three
service layers are completely distributed over all peers, but in a super-peer network
the super-peers provide P2P network services and basic services while other peers
provide only the advanced services. Figure 1 shows an APPA architecture based on
an unstructured network.

3 Top-k Query Processing

In this section, we first make precise our assumptions and define the problem. Then,
we present a basic algorithm for Top-k query processing in APPA when it is based on
an unstructured P2P system. Finally, we analyze the bandwidth cost of our algorithm
and propose some techniques for reducing it.

3.1 Problem Definition

We first give our assumptions regarding schema management and Top-k queries.
Then we can precisely state the problem we address in this paper.

In a P2P system, peers should be able to express queries over their own schema
without relying on a centralized global schema as in data integration systems [20].
Several solutions have been proposed to support decentralized schema mapping.
However, this issue is out of the scope of this paper and we assume it is provided
using one of the existing techniques, e.g. [15] and [20]. Furthermore, also for
simplicity, we assume relational data.

Now we can define the problem as follows. Let Q be a Top-k query, i.e. the user is
interested to receive k top answers to Q. Let TTL (Time-To-Live) determine the
maximum hop distance which the user wants her query be sent. Let D be the set of all
data items (i.e. tuples) that can be accessed through ttl hops in the P2P system during
the execution of Q. Let Sc(d, Q) be a scoring function that denotes the score of
relevance of a data item d∈D to Q. Our goal is to find the set T ⊆ D, such that:

⎜T⎟ = k and ∀ d1∈ T, ∀ d2 ∈ (D – T) then Sc(d1, Q) ≥ Sc(d2, Q)

while minimizing the response time of Q and the bandwidth cost.

3.2 Algorithm

The algorithm starts at the query originator, the peer at which a user issues a Top-k
query Q. The query originator performs some initialization. First, it sets TTL with a
value which is either specified by the user or default. Second, it gives Q a unique
identifier, denoted by QID, which is made of a unique peer-ID and a query counter
managed by the query originator. Peers use QID to distinguish between new queries
and those received before. After initialization, the query originator triggers the
sequence of the following four phases: query forward, local query execution, merge-
and-backward, and data retrieval. In all of these four phases, the communication
between peers is done via APPA’s Peer Communication service.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

162 R. Akbarinia et al.

Query Forward
Q is included in a message that is broadcast to all reachable peers. Thus, like other
flooding algorithms, each peer that receives Q tries to send it to its neighbors. Each
peer p that receives the message including Q performs the following steps.

1. Check QID: if Q has been already received, then discard the message else save the
address of the sender as the parent of p.

2. Decrement TTL by one: if TTL > 0, make a new message including Q, QID, new
TTL and the query originator’s address and send the message to all neighbors
(except parent).

In order to know their neighbors, the peers use the Peer Linking service of APPA.

Local Query Execution
After the query-forward phase, each peer p executes Q locally, i.e. accesses the local
data items that match the query predicate, scores them using a scoring function,
selects the k top data items and saves them as well as their scores locally. For scoring
the data items, we can use one of the scoring functions proposed for relational data,
e.g. Euclidean function [7][6]. These functions require no global information and can
score peer’s data items only using local information. The scoring function can also be
specified explicitly by the user.

After selecting the k local top data items, p must wait to receive its neighbors’
score-lists before starting the next phase. However, since some of the neighbors may
leave the P2P system and never send a score-list to p, we must set a limit for the wait
time. We compute p’s wait time using a cost function based on TTL, network
dependent parameters and p’s local processing parameters. However, because of
space limitations, we do not give the details of the cost function here.

Merge-and-Backward
After the wait time has expired, each peer merges its local top scores with those
received from its neighbors and sends the result to its parent (the peer from which it
received Q) in the form of a score-list. In order to minimize network traffic, we do not
“bubble up” the top data items (which could be large), only their addresses. A score-
list is simply a list of k couples (p, s), such that p is the address of the peer owning the
data item and s its score. Thus, each peer performs the following steps:

1. Merge the score-lists received from the neighbors with its local top scores and
extracting the k top scores (along with the peer addresses).

2. Send the merged score-list to its parent.

Data Retrieval
After the query originator has produced the final score-list (gained by merging its
local top scores with those received from its neighbors), it directly retrieves the k top
data items from the peers in the list as follows. For each peer address p in the final
score-list:

1. Determine the number of times p appears in the final score-list, e.g. m times.
2. Ask the peer at p to return its m top scored items.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Top-k Query Processing in the APPA P2P System 163

Formally, consider the final score-list Lf which is a set of at most k couples (p, s),
in this phase for each p∈Domain(Lf), the query originator determines Tp = {s ⎜ (p, s)
∈ Lf } and asks peer p to return ⎜Tp ⎜ of its top scored items.

3.3 Analysis of Bandwidth Cost

One main concern with flooding algorithms is their bandwidth cost. In this section,
we analyze our algorithm’s bandwidth cost. As we will see, it is not very high. We
also propose strategies to reduce it more. We measure the bandwidth cost in terms of
number of messages and number of bytes which should be transferred over the
network in order to execute a query by our algorithm. The messages transferred can
be classified as: 1) forward messages, for forwarding the query to peers. 2) backward
messages, for returning the score-lists from peers to the query originator. 3) retrieve
messages, to request and retrieve the k top results. We first present a model
representing the peers that collaborate on executing our algorithm, and then analyze
the bandwidth cost of backward, retrieve and forward messages.

Model
Let P be the set of the peers in the P2P system. Given a query Q, let PQ ⊆ P be a set
containing the query originator and all peers that receive Q. We model the peers in PQ
and the links between them by a graph G(PQ, E) where PQ is the set of vertices in G
and E is the set of the edges. There is an edge p-q in E if and only if there is a link
between the peers p and q in the P2P system. Two peers are called neighbor, if and
only if there is an edge between them in G. The number of neighbors of each peer
p∈PQ is called the degree of p and is denoted by d(p). The average degree of peers in
G is called the average degree of G and is denoted by d(G). The average degree of G

can be computed as ∑
∈

=
QPp

QPpdGd /))(()(.

During the execution of our algorithm, p∈PQ may receive Q from some of its
neighbors. The first peer, say q, which p receives Q from, is the parent of p in G, and
thereby p is a child of q. A peer may have some neighbors that are neither its parent
nor its children.

Backward Messages
In the Merge-and-Backward phase, each peer in PQ, except the query originator, sends
its merged score-list to its parent. Therefore, the number of backward messages,
denoted by mbw, is mbw= ⎜PQ⎜-1.

Let L be the size of each element of a score-list in bytes (i.e. the size of a score and
an address), then the size of the score-list is k×L, where k is the number of top results
specified in Q. Since the number of score-lists transferred by backward messages is
⎜PQ⎜-1, then the total size of data transferred by backward messages, denoted by bbw,
can be computed as bbw = k× L× (⎜PQ⎜-1). If we set L=10, i.e. 4 bytes for the score
and 6 bytes for the address (4 bytes for IP address and 2 bytes for the port number),
then bbw = k× 10× (⎜PQ⎜-1).

Let us show with an example that bbw is not significant. Consider that 10,000 peers
receive Q (including the query originator), thus ⎜PQ⎜=10,000. Since users are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

164 R. Akbarinia et al.

interested in a few results and k is usually small, we set k=20. As a result, bbw is less
than 2 megabytes. Compared with the tens of megabytes of music and video files,
which are typically downloaded in P2P systems, this is small.

Retrieve Messages
By retrieve messages, we mean the messages sent by the query originator to request
the k top results and the messages sent by the peers owning the top results to return
these results. In the Data Retrieval phase, the query originator sends at most k
messages to the peers owning the top results (there may be peers owning more than
one top result) for requesting their top results and these peers return their top results
by at most k messages. Therefore, the number of retrieve messages, denoted by mrt, is
mrt ≤ 2× k.

Forward Messages
Forward messages are the messages that we use to forward Q to the peers. According
to the basic design of our algorithm, each peer in PQ sends Q to all its neighbors
except its parent. Let po denote the query originator. Consider the graph G(PQ, E)
described before, each p∈(PQ – {po}), sends Q to d(p)–1 peers, where d(p) is the
degree of p in G. The query originator sends Q to all of its neighbors, in other words
to d(po) peers. Then, the sum of all forward messages mfw can be computed as

)())1)(((
}){p(o

o
Pp

fw pdpdm
Q

+−= ∑
−∈

.

We can write mfw as follows:

1))(((1))1)(((+−=+−= ∑∑
∈∈

Q
PpPp

fw Ppdpdm
QQ

Based on the definition of d(G), mfw can be written as mfw = (d(G) -1)×⎜PQ⎜+1,
where d(G) is the average degree of G. According to the measurements in [17], the
average degree of Gnutella is 4. If we take this value as the average degree of the P2P
system, i.e. d(G)=4, we have mfw = 3×⎜PQ⎜+1. From the above discussion, we can
derive the following lemma.

Lemma 1: The number of forward messages in the basic form of our algorithm is
(d(G) -1)×⎜PQ⎜+1.

Proof: Implied by the above discussion.

To determine the minimum number of messages necessary for forwarding Q, we
prove the following lemma.

Lemma 2: The lower bound of the number of forward messages for sending Q to all
peers in PQ is ⎜PQ⎜ - 1.

Proof: For sending Q to each peer p∈PQ, we need at least one forward message. Only
one peer in PQ has Q, i.e. the query originator, thus Q should be sent to ⎜PQ⎜ - 1 peers.
Consequently, we need at least ⎜PQ⎜ - 1 forward messages to send Q to all peers in PQ.

Thus, the number of forward messages in the basic form of our algorithm is far from
the lower bound.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Top-k Query Processing in the APPA P2P System 165

3.4 Reducing the Number of Messages

We can still reduce the number of forward messages using the following strategies. 1)
sending Q across each edge only once. 2) Sending with Q a list of peers that have
received it.

Sending Q Across each Edge only once
In graph G, there may be many cases that two peers p and q are neighbors and none of
them is the parent of the other, e.g. two neighbors which are children of the same
parent. In these cases, in the basic form of our algorithm, both peers send Q to the
other, i.e. Q is sent across the edge p-q twice. We develop the following strategy to
send Q across an edge only once.

Strategy 1: When a peer p receives Q, say at time t, from its parent (which is the first
time that p receives Q from), it waits for a random, small time, say λ, and then sends
Q only to the neighbors which p has not received Q from them before t + λ.

Lemma 3: With a high probability, the number of forward messages with Strategy 1
is reduced to d(G)×⎜PQ⎜ / 2.

Proof: Since λ is a random number and different peers generate independent random
values for λ, the probability that two neighbors send Q to each other simultaneously is
very low. Ignoring the cases where two neighbors send Q to the other simultaneously,
with Strategy 1, Q is sent across an edge only once. Therefore, the number of for-
ward messages can be computed as mfw = ⎜E⎜. Since ⎜E⎜= d(G)×⎜PQ⎜/2, then
mfw= d(G)×⎜PQ⎜/2.

Considering d(G)=4 (similar to [17]), the number of forward messages is
mfw= 2×⎜PQ⎜.

With Strategy 1, mfw is closer to the lower bound than the basic form of our
algorithm. However, we are still far from the lower bound. By combining Strategy 1
and another strategy, we can reduce the number of forward messages much more.

Attaching to Forward Messages the List of Peers that have received Q
Even with Strategy 1, between two neighbors, which are children of the same parent
p, one forward message is sent although it is useless (because both of them have
received Q from p). If p attaches a list of its neighbors to Q, then its children can
avoid sending Q to each other. Thus, we propose a second strategy.

Strategy 2: Before sending Q to its neighbors, a peer p attaches to Q a list containing
its Id and the Id of its neighbors and sends this list along with Q. Each peer that
receives the Q’s message, verifies the list and does not send Q to the peers involved in
the list.

Theorem 1: By combining Strategy 1 and Strategy 2, with a high probability, the
number of forward messages is less than d(G)×⎜PQ⎜/2.

Proof: With Strategy 2, two neighbors, which have the same parent, do not send any
forward message to each other. If we use Strategy 1, with a high probability at most
one forward message is sent across each edge. Using Strategy 2, there may be some

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

166 R. Akbarinia et al.

edges such that no forward message is sent across them, e.g. edges between two
neighbors with the same parent. Therefore, by combining Strategy 1 and Strategy 2,
the number of forward messages is mfw ≤ ⎜E⎜, and thus mfw ≤ d(G)×⎜PQ⎜/2.

Considering d(G)=4, the number of forward messages is mfw ≤ 2×⎜PQ⎜.

4 Performance Evaluation

We evaluated the performance of our Fully Distributed algorithm (FD for short)
through implementation and simulation. The implementation over a 64-node cluster
was useful to validate our algorithm and calibrate our simulator. The simulation
allows us to study scale up to high numbers of peers (up to 10,000 peers).

The rest of this section is organized as follows. In Section 4.1, we describe our
experimental and simulation setup, and the algorithms used for comparison. In
Section 4.2, we evaluate the response time of our algorithm. We first present
experimental results using the implementation of our algorithm and four other
baseline algorithms on a 64-node cluster, and then we present simulation results on
the response time by increasing the number of peers up to 10,000. We also did other
experiments on the response time by varying other parameters, e.g. data item size,
connection bandwidth, latency and k, but due to space limitation we cannot present
them.

4.1 Experimental and Simulation Setup

For our implementation and simulation, we used the Java programming language, the
SimJava package and the BRITE universal topology generator.

SimJava [11] is a process based discrete event simulation package for Java. Based
on a discrete event simulation kernel, SimJava includes facilities for representing
simulation objects as animated icons on screen. A SimJava simulation is a collection
of entities each running in its own thread. These entities are connected together by
ports and can communicate with each other by sending and receiving event objects.

BRITE [5] has recently emerged as one of the most promising universal topology
generators. The objective of BRITE is to produce a general and powerful topology
generation framework. Using BRITE, we generated topologies similar to those of P2P
systems and we used them for determining the linkage between peers in our tests.

We first implemented our algorithm in Java on the largest set of machines that was
directly available to us. The cluster has 64 nodes connected by a 1-Gbps network.
Each node has an Intel Pentium 2.4 GHz processor, and runs the Linux operating
system. We make each node act as a peer in the P2P system. To have a P2P topology
close to real P2P overlay topologies, we determined the peer neighbors using the
topologies generated by the BRITE universal topology generator [5]. Thus, each node
only is allowed to communicate with the nodes that are its neighbors in the topology
generated by BRITE.

To study the scalability of our algorithm far beyond 64 peers and to play with
various performance parameters, we implemented a simulator using SimJava. To
simulate a peer, we use a SimJava entity that performs all tasks that must be done by a
peer for executing our algorithm. We assign a delay to communication ports to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Top-k Query Processing in the APPA P2P System 167

simulate the delay for sending a message between two peers in a real P2P system. For
determining the links between peers, we used the topologies generated by BRITE.

In all our tests, we use the following simple query as workload:

 SELECT R.data FROM R ORDER BY R.score
 STOP AFTER k

Each peer has a table R(score, data) in which attribute score is a random real
number in the interval [0..1] with uniform distribution, and attribute data is a random
variable with normal distribution with a mean of 1 (kilo bytes) and a variance of 64.
Attribute score represents the score of data items and attribute data represents (the
description of) the data item that will be returned back to the user as the result of
query processing. The number of tuples of R at each peer is a random number
(uniformly distributed over all peers) greater than 1000 and less than 20,000.

The simulation parameters are shown in Table 1. Unless otherwise specified, the
latency between any two peers is a normally distributed random number with a mean
of 200 (ms) and a variance of 100. The bandwidth between peers is also a random
number with normal distribution with a mean of 56 (kbps) and a variance of 32. Since
users are usually interested in a small number of top results, we set k=20.

The simulator allows us to perform tests up to 10,000 peers, after which the
simulation data no longer fit in RAM and makes our tests difficult. This is quite
sufficient for our tests. Therefore, the number of peers of P2P system is set to be
10,000, unless otherwise specified. In all tests, TTL is set as the maximum hop-
distance to other peers from the query originator, thus all peers of the P2P system can
receive Q. We observed that in the topologies with 10,000 nodes, with TTL=12 all
peers could receive Q. Our observations correspond to those based on experiments
with the Gnutella network [17]; for instance, with 50,000 nodes, the maximum hop-
distance between any two nodes is 14.

Table 1. Simulation parameters

Parameter Values
Bandwidth Normally distributed random, Mean = 56 Kbps, Variance = 32
Latency Normally distributed random, Mean = 200 ms, Variance = 100
Number of peers 10,000 peers
TTL Large enough such that all of peers can receive the query
K 20
Result items size Normally distributed random, Mean = 1 KB, Variance = 64

In our simulation, we compare our FD algorithm with four other algorithms. The
first algorithm is a Naïve algorithm that works as follows. Each peer receiving Q
sends its k top relevant items directly to the query originator. The query originator
merges the received results and extracts the k overall top scored data items from them.

The second algorithm is an adaptation of Edutella’s algorithm [21] which is
designed for super-peer. We adapt this algorithm for an unstructured system and call
it Sequential Merging (SM) as it sequentially merges top data items. The original
Edutella algorithm works as follows. The query originator sends Q to its super-peer,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

168 R. Akbarinia et al.

and it sends Q to all other super-peers. The super-peers send Q to the peers connected
to them. Each peer that has data items relevant to Q scores them and sends its
maximum scored data item to its super-peer. Each super-peer chooses the overall
maximum scored item from all received data items. For determining the second best
item, it only asks one peer, the one which returned the first top item, to return its
second top scored item. Then, the super-peer selects the overall second top item from
the previously received items and the newly received item. Then, it asks the peer
which returned the second top item and so on until all k top items will be retrieved.
Finally the super-peers send their top items to the super-peer of the query originator,
to extract overall k top items, and to send them to the query originator. In Edutella, a
very small percentage of nodes are super-peers, e.g. in [19] it is 0.64, i.e. 64 super-
peers for 10,000 peers. In our tests, we consider the same percentage, and we select
the super-peers randomly from the peers of P2P system. We consider the same
computing capacity for the super-peers as for the other peers.

We also propose the optimized versions of Naïve and SM algorithms that bubble
up only the score-lists, as in our algorithm, and we denote them Naïve* and SM*
respectively. In our tests, in addition to Naïve and SM algorithms, we compare our
algorithm with Naïve* and SM*.

4.2 Scale Up

In this section, we investigate the scalability of our algorithm. We use both our
implementation and simulator to study response time while varying the number of
peers. The response time includes local processing time and data transfers, i.e.
sending query messages, score-lists and data items.

Using our implementation over the cluster, we ran experiments to study how
response time increases with the addition of peers. Figure 2 shows excellent scale up
of our algorithm since response time logarithmically increases with the addition of
peers until 64. Using simulation, Figure 3 shows the response times of the five
algorithms with a number of peers increasing up to 10000 and the other simulation
parameters set as in Table 1.

FD always outperforms the four other algorithms and the performance difference
increases significantly in favor of FD as the number of peers increases. The main
reason for FD’s excellent scalability is its fully distributed execution. With the SM,
SM*, Naive and Naïve*, a central node is responsible for query execution, and this
creates two problems. First, the central node becomes a communication bottleneck
since it must receive a large amount of data from other peers that all compete for
bandwidth. Second, the central node becomes a processing bottleneck, as it must
merge many answers to extract the k top results.

Another advantage of FD is that it does not transfer useless data items over the
network. For determining top items, FD only bubbles up the score-lists (which are
small) while SM and Naive algorithms transfer many data items of which only a small
fraction makes the final top results. SM transfers the first top-scored item of every
peer and Naïve transfers k top-scored data items of all peers. With a large number of
peers, data transfer is a dominant factor in response time and FD reduces it to
minimum.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Top-k Query Processing in the APPA P2P System 169

Experimental Results

1

10

100

2 4 8 16 32 64
Number of peers

R
es

po
ns

e
T

im
e

(s
)

FD
SM
Naive
SM *
Naive *

Simulation Results

1

10

100

1000

10000

32 64 10
0

20
0

500
10

00
200

0
500

0

100
00

Number of peers

R
es

po
ns

e
T

im
e

(s
)

FD
S M
Na ive
S M *
Na ive *

Fig. 2. Response time vs. number of peers Fig. 3. Response time vs. number of peers

Overall, the experimental results correspond with the simulation results. However,
the response time gained from our experiments over the cluster is a little better than
that of simulation because the cluster has a high-speed network.

We also did experiments on the response time by varying data item size,
connection bandwidth, latency and k. The item size has little impact on the response
time of FD, SM* and Naïve*, but has strong impact on SM and Naïve. The response
time decreases with increasing the connection bandwidth in all five algorithms.
However, FD outperforms the other algorithms for all the tested bandwidths. FD also
outperforms the other algorithms for the tested values of latency (up to 10,000 ms).
However, high latency, e.g. more than 2000 ms, has strong impact and increases
response time much, but below 2000 ms, latency has not much effect on FD’s
response time. According to studies reported in [18], more than 80% of links between
peers have good latency, less than 280 ms, for which FD has very good performance.
k has little impact on the response time of SM, but has some impact on FD, SM*,
Naïve and Naïve*. Despite the effect of k on FD, it is by far the superior algorithm for
the tested values of k (k<200). Since users are usually interested in a small number of
top results, e.g. less than 20 results, the performance advantage for FD remains high.

5 Related Work

In the context of P2P systems, little research has concentrated on Top-k query
processing. In [21] the authors present a Top-k query processing algorithm for
Edutella which is a super-peer network. The technique which Edutella uses for
processing Top-k queries is explained in Section 4.1. Although very good for super-
peer networks, this technique cannot apply efficiently to other networks, in particular,
unstructured, since there may be no peer with higher reliability and computing power.
In contrast, our algorithm makes no assumptions about the P2P network topology and
the existence of certain peers.

A good formal framework for ranking is introduced in [1] based on a ranking
algebra. The authors show that not only one global ranking should be taken into
account, but also several in different contexts. The ranking algebra allows aggregating
the local rankings into global rankings.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

170 R. Akbarinia et al.

PlanetP [8] is a P2P system that constructs a content addressable publish/subscribe
service using gossiping to replicate global documents across P2P communities up to
ten thousand peers. In PlanetP, a Top-k query processing method is proposed that
works as follows. Given a query Q , the query originator computes a relevance
ranking of peers with respect to Q, contacts them one by one from top to bottom of
ranking and asks them to return a set of their top-scored document names together
with their scores. To compute the relevance of peers, a global fully replicated index is
used that contains term-to-peer mappings. In a large P2P system, keeping up-to-date
the replicated index is a major problem that hurts scalability. In contrast, our
algorithm does not use any replicated data.

For the cases where a data item can have multiple scores at different sites, e.g. the
amount of a customer’s purchase in several stores, the TA family of algorithms for
monotonic score aggregation [9] stands out as an efficient and highly versatile
method. There have been many algorithms in order to optimize the TA algorithm in
terms of bandwidth cost and response time, e.g. [22] and [14].

6 Conclusion

In this paper, we proposed a fully distributed algorithm for Top-k query processing in
the context of the APPA data management system. APPA has a network-independent
design that can be implemented over different P2P networks (unstructured, DHT,
super-peer, etc.), thus allowing us to exploit continuing progress in such systems. We
presented our algorithm for the case of unstructured systems, thus with minimal
assumptions. Our algorithm requires no global information, does not depend on the
existence of certain peers and its bandwidth cost is low.

For determining the k top results, we use the concept of score-list which reduces the
bandwidth consumption and also reduces the response time. We analyzed the bandwidth
cost of our algorithm and we proposed efficient techniques in order to reduce it.

We validated the performance of our algorithm through implementation over a 64-
node cluster and simulation using the BRITE topology generator and SimJava. The
experimental and simulation results showed that our algorithm can have logarithmic
scale up. The simulation also showed the excellent performance of our algorithm
compared with a naïve algorithm and an adaptation of an existing algorithm.

As future work, we plan to deal with replicated data in P2P Top-k query
processing. In this paper, we assumed that data items are not replicated. In the case of
data replication, with our algorithm, there may be replicated data items in the final
score-list. This may be fine for the user as it is an indication of the items’ usefulness
(in a P2P system, the most useful data get most replicated). But we could also identify
replicated items.

References

[1] Aberer, K., AND Wu., J. Framework for Decentralized Ranking in Web Information
Retrieval. Proc. of the 5th Asia Pacific Web Conference (APWeb), 2003.

[2] Abiteboul, S., et al. Dynamic XML documents with distribution and replication.
SIGMOD Conf., 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Top-k Query Processing in the APPA P2P System 171

[3] Akbarinia, R., Martins, V., Pacitti, E., and Valduriez, P. Design and Implementation of
Atlas P2P Architecture. Global Data Management (Eds. R. Baldoni, G. Cortese, F.
Davide), IOS Press, 2006.

[4] Akbarinia, R., Martins, V., Pacitti, E., AND Valduriez, P. Replication and Query
Processing in the APPA Data Management System. 6th Workshop on Distributed Data &
Structures (WDAS), 2004.

[5] BRITE, http://www.cs.bu.edu/brite/.
[6] Carey, M.J., AND Kossmann, D. On saying ‘Enough Already!’. SIGMOD Conf., 1997.
[7] Chaudhuri, S., et al. Evaluating Top-k Selection queries. VLDB Conf., 1999.
[8] Cuenca-Acuna, F.M., Peery, C., Martin, R.P., AND Nguyen, T.D. PlanetP: Using

Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Communities.
IEEE Int. Symp. on High Performance Distributed Computing (HPDC), 2003.

[9] Fagin, R., Lotem, J., AND Naor, M. Optimal aggregation algorithms for middleware. J.
Comput. Syst. Sci. 66(4), 2003.

[10] Gnutella. http://www.gnutelliums.com/.
[11] Howell, F., AND McNab, R. SimJava: a discrete event simulation package for Java with

applications in computer systems modeling. Int. Conf. on Web-based Modelling and
Simulation, San Diego CA, Society for Computer Simulation, 1998.

[12] Huebsch, R., et al. Querying the Internet with PIER. VLDB Conf., 2003.
[13] Kazaa. http://www.kazaa.com/.
[14] Michel, S., Triantafillou, P., AND Weikum, G. KLEE: A Framework for Distributed

Top-k Query Algorithms. VLDB Conf., 2005.
[15] Ooi, B., Shu, Y., AND Tan, K-L. Relational data sharing in peer-based data management

systems. SIGMOD Record, 32(3), 2003.
[16] Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., AND Shenker, S. A scalable

content-addressable network. Proc. of SIGCOMM, 2001.
[17] Ripeanu, M., AND Foster, I. Mapping the gnutella network: Macroscopic properties of

large-scale peer-to-peer systems. IPTPS, 2002.
[18] Saroiu, S., Gummadi, P., AND Gribble, S. A Measurement Study of Peer-to-Peer File

Sharing Systems. Proc. of Multimedia Computing and Networking (MMCN), 2002.
[19] Siberski, W., AND Thaden, U. A Simulation Framework for Schema-Based Query

Routing in P2P-Networks. EDBT Workshops, 2004.
[20] Tatarinov, I., et al. The Piazza peer data management project. SIGMOD Record 32(3),

2003.
[21] Thaden, U., Siberski, W., Balke, W.T., AND Nejdl, W. Top-k query Evaluation for

Schema-Based Peer-To-Peer Networks, Int. Semantic Web Conf. (ISWC), 2004.
[22] Theobald, M., Weikum, G., AND Schenkel, R. Top-k Query Evaluation with

Probabilistic Guarantees. VLDB Conf., 2004.
[23] Yang, B., AND Garcia-Molina, H. Designing a super-peer network. Int. Conf. on Data

Engineering, 2003.
[24] Yu, C., et al. Databases Selection for Processing k Nearest Neighbors Queries in

Distributed Environments. ACM/IEEE-CS joint Conf. on DL, 2001.
[25] Yu, C., Philip, G., AND Meng, W. Distributed Top-n Query Processing with Possibly

Uncooperative Local Systems, VLDB Conf., 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 172 – 183, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Posterior Task Scheduling Algorithms for
Heterogeneous Computing Systems

Linshan Shen and Tae-Young Choe

School of Computer Engineering, Kumoh National Institute of Technology, Yangho-dong,
730-701 Kumi city, KyungPook, Korea

smart781005@hotmail.com, choety@kumoh.ac.kr

Abstract. The task scheduling problem in heterogeneous system is known as
NP-hard. Recently, Bajaj and Agrawal proposed an algorithm TANH (Task
duplication-based scheduling Algorithm for Network of Heterogeneous systems)
with optimality conditions, which are wider than previous optimality conditions.
TANH algorithm combines the clustering technique with task duplication. We
propose two postprocessing algorithms, HPSA1 (Heterogeneous Posterior
Scheduling Algorithm) and HPSA2, to reduce the schedule length for DAGs
which don’t satisfy the optimality conditions of TANH algorithm. Our
algorithms reduce the schedule length by exchanging task clusters in which its
parent tasks reside. We compare with HCNF (Heterogeneous Critical Node First)
algorithm by illustrating an example to show how our algorithms operate.

Keywords: Heterogeneous computing system, DAG, task scheduling algorithm,
postprocessing, clustering.

1 Introduction

For high-speed computation purposes, parallel processing has been extensively
explored. Some applications like fluid flow, image processing, weather modeling, and
distributed database systems get a great deal of parallelism. A general methodology
adopted in parallel processing is to partition an application into a set of cohesive tasks
and to run them separately on different processors. The partitioned application can be
modeled as a directed acyclic graph (DAG). In DAGs, a forward edge means that the
predecessor task transmits the data to the successor task.

The task scheduling problem is to allocate tasks to processors in order to minimize
the completion time of given application which can be expressed as a DAG. The task
scheduling problem is known as NP-hard [1,2]. Therefore, heuristic task scheduling
algorithms are used to tackle the problem. The scheduling algorithms have been
extensively studied [3-19]. These heuristics are classified into a variety of categories
such as, list scheduling algorithms, clustering algorithms, duplication-based
algorithms, and guided random search methods. Most of them are designed for
homogeneous computing systems.

In the classical list scheduling algorithms [3,4,5,19], tasks are assigned priorities
statically or dynamically. The priorities are assigned based on computation and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Posterior Task Scheduling Algorithms for Heterogeneous Computing Systems 173

communication costs in the task graph. The next chosen is the highest priority task
among the ready tasks whose precedence have been met and are ready for scheduling.
The following step is to select most suitable processor to accommodate the chosen task.
Performances of list scheduling algorithms tend to suffer due to min-max problem and
deteriorate substantially for fine grain task graphs having high communication to
computation cost ratio (CCR) [18].

Clustering-based algorithms [7,8,9] try to schedule heavily communicating tasks
onto the same processor. It is also known as three phase scheduling. In the first phase,
heavily communicating tasks are grouped into a set of clusters (unbounded) using
linear or nonlinear clustering heuristics. In the second phase, clusters are mapped onto
the set of available processors using communication sensitive or insensitive heuristics.
In the third phase cluster merging is done based on the available number of processors.

Duplication-based algorithms allow tasks to be duplicated on one or more than
processors, in order to reduce the start time of its successor tasks. Now, the
duplication-based algorithms have been blended with both list and clustering-based
techniques by other researchers. List or clustering-based algorithms [5,6,10-13] with
task duplication tend to perform better than no duplication algorithms. Genetic
algorithms [14,15] are of the most widely studied guided random search techniques for
the task scheduling problem. Although they provide good quality of schedules, their
execution times are significantly higher than other alternatives.

The processors in heterogeneous systems have different processing powers, so
scheduling them is more complex. In recent years, many scheduling algorithms for the
heterogeneous system are proposed, such as Levelized Duplication Based Scheduling
(LDBS) [10], Dynamic Level Scheduling (DLS) [4], Task Duplication-based
Scheduling Algorithm for Network of Heterogeneous System (TANH) [13], Fast
Critical Path (FCP), Fast Load Balancing (FLB) [5], Task Duplication Scheduling
(TDS-1) [16], Heterogeneous Earliest Finish Time First (HEFT) [17].

In this paper, we propose two posterior algorithms, HPSA1 (Heterogeneous
Posterior Scheduling Algorithm) and HPSA2 for heterogeneous computing system.
The main motivation is to improve the quality of the scheduling length, while DAGs
don’t satisfy TANH algorithm’s optimality conditions. The algorithms run at the hind
of TANH algorithm.

In the next section, we define the parameters and data structures served for our
algorithms. In section 3, we briefly introduce TANH and HCNF algorithms. In section
4, we propose our two algorithms. In section 5, we illustrate an example to show that
our algorithms how to work. In section 6, we discuss the experimental results. In the
final part, we present conclusions.

2 Problem Definition

We consider any application that is represented as a directed acyclic graph (DAG). In

DAG, each node represents a task and each directed edge represents communication

cost between tasks. A task is assumed to be nonpreemptive. A tuple G = (V, E, P, w, c)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

174 L. Shen and T.-Y. Choe

is used to define a DAG, where V is a set of nodes, |V| is the number of nodes in V; E is

a set of edges; P is a set of processors, |P| is the number of available processors; w =

w(ni , pi) indicates the computation cost of task ni on processor pi, where ni∈V and
pi∈P; c = c(ni , nj) indicates the communication cost between task ni and nj, where ni,
nj ∈V. If both ni and nj are scheduled onto the same processor, c(ni , nj) is assumed to
be zero. In the other hand, the network bandwidth is assumed to be wide enough to

provide contention-free transmission. Given a task nj, pred(nj) is a set of predecessor
tasks which have the outgoing edge into nj; succ(nj) consists of the tasks which receives

the data from nj. And ni = fpred(nj) denotes the favorite predecessor, which means

among all the predecessor tasks of nj, ni has the highest value of the earliest finish time.
The earliest start/finish time indicates when a task could be started/finished at the

earliest possible time. Arrival time of task nj equals the sum of the earliest finish time of

the parent tasks which are not in the same processor with nj and the communication

time between the parent task and nj.
A set of tasks assigned to a processor is called a cluster. Each task in a cluster has its

start time and finish time in the corresponding processor. A task nj at processor pk has
its start time st(nj , pk) and finish time ft(nj , pk). In order to compute st(nj , pk) and
ft(nj , pk) for task nj at processor pk, we need to introduce several equations:

 j jk k kst(,) = max[ft() , rdy(,)]p p pn n (1)

j j jk k kft(,) st(,)+w(,)p p pn n n= (2)

i j i i i j

j i i jik pred()n n ,p p pn
rdy(,)= max [[ft(,)]+c(,)]p p n min n n n ∈ ∈ ≠

 (3)

where ft(pk) represents the current finish time of processor k, and rdy(pk ,nj) represents
the largest ready time from parent tasks allocated in other processors.

3 Related Works

In recent past, some algorithms combined clustering technique with duplication
have been proposed. The TANH algorithm [13] just belongs to them, its time
complexity is |V|2. The algorithm firstly generates the initial clusters. If the number
of required processors (RP) is larger than the number of available processors (AP),
then using compaction procedure selects two processors and merges them to one
processor until RP equals AP. Bajaj and Agrawal proposed TANH algorithm and
presented a set of optimal conditions for join nodes. Unfortunately, when an
application DAG doesn’t satisfy the optimal conditions, the expected result is
difficult to be gained.

HCNF [19] is list scheduling algorithm. It proceeds by identifying the critical path in
the DAG. The critical path is a path which has the largest sum of average task
computation costs and inter-task communication costs among all the paths from the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Posterior Task Scheduling Algorithms for Heterogeneous Computing Systems 175

entry task to the exit task. Task is free when its predecessor tasks have been assigned to
processors. A list of free tasks is constructed. Within the list, the highest priorities are
assigned to tasks which fall in the critical path, followed by those with the highest
computation cost. A task ni is scheduled onto processor Pi, which gives the lowest
eft(ni , Pi). Its earliest finish time eft(ni , Pi) = w(ni , Pi) + est(ni , Pi), where the earliest
start time est(ni , Pi) is the maximum of time at which processor Pi becomes available
and the time at which the last message arrives from any predecessor of ni, and w(ni , Pi)
is the execution time of ni on Pi . In order to reduce the communication time, the favorite
predecessor is considered for duplication.

4 Proposed Algorithms

The main motivation of our algorithms is to reduce the finish time of tasks which
determine the scheduling length by exchanging its parent clusters. If the finish time
of the task can be reduced, the scheduling length may be reduced. Thus, two
posterior processes, HPSA1 and HPSA2, are proposed to improve the scheduling
length.

The proposed two algorithms execute at the hind of the general scheduling
algorithms, as shown in Fig. 1.

Main()

{

 ...

 Scheduling algorithm ();

 Posterior scheduling algorithm;

}

Fig. 1. The position of the posterior algorithm

4.1 Selection of Scheduling Algorithm

In this paper, we select TANH algorithm as the scheduling algorithm instead of HCNF.
The researchers of TANH algorithm proposed a set of optimal conditions. If DAGs
satisfied the optimal conditions, TANH algorithm got the optimal schedule. When our
algorithms executed at the hind of TANH algorithm, the optimal schedule was also got.
But it was not sure to get optimal schedule when HCNF algorithm was used. If DAGs
didn’t satisfy the optimal conditions, it was not sure to get optimal schedule when
TANH was used to schedule. But combining our algorithms to TANH can make the
schedule length less than or equal to that of TANH, while NCNF could not guarantee to
generate optimal schedule. So the combination of our algorithms and TANH is used in
this paper. The comparisons are shown in Table 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

176 L. Shen and T.-Y. Choe

Table 1. The comparisons of TANH, TANH+HPSA, and HCNF

DAG (directed a-cyclic graph)
Task scheduling

algorithm It satisfies the optimal
conditions of TANH

It doesn’t satisfy the
optimal conditions of TANH

TANH Optimal schedule Not sure

TANH+HPSA Optimal schedule
The schedule length<=the

schedule length by TANH
HCNF Not sure Not sure

Our algorithms execute at the hind of TANH algorithm, only when exchanging
operation can make the schedule length reduce. When the exchange operation is
finished, if no improvement is gained, the operation will be canceled. So the
combination of our algorithms and TANH algorithm can reduce the schedule length
given by TANH algorithm. Otherwise the schedule length is preserved.

4.2 HPSA1 Algorithm

The main idea of this algorithm is to reduce the start time of target task at its processor,
and to reduce the scheduling length. Firstly, the exit node is target task, and its
predecessors are checked, which predecessor determines the start time of the target
task, and exchange the cluster including the decided task and the other parent tasks’
clusters of the target task, respectively. Selected is an exchange that mostly reduces the

Void HPSA1()

{

nt =the exit task;

 do{

 do{

 np = parent task that determines the start time

of nt;

nq = ParentTask1(nt ,np);

 exchange clusters of np and nq;

 } while (start time of nt reduces);

 nt = ParentTask2(nt);

}while(there is an improvement);

}

Fig. 2. The pseudo code of HPSA1: Function ParentTask1(nt, np) is responsible for finding
another parent task nq of nt that minimizes the start time of nt by exchanging clusters of np and nq
each other. Function ParentTask2(nt,) is responsible for finding the parent task of nt which
determines the start time of nt.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Posterior Task Scheduling Algorithms for Heterogeneous Computing Systems 177

start time of the target. For the current target, next passes are done, until no
improvement is gained. Checking the current schedule, the predecessor task that
determines the start time of the target task is selected as the next target task, repeat the
above steps, until no improvement is gained. The pseudo code for HPSA1 algorithm is

described in the Fig. 2. The time complexity of HPSA1 is
i

i
n V

2 2 max |succ(n)||V| |P|
∈

.

4.3 HPSA2 Algorithm

For ni and nj in some processor pi, an empty slot exits if the finish time of ni in pi is
smaller than the start time of nj in pi. After a schedule, it is highly probable that the
empty slots exist. If an empty slot not only has the largest size among all the empty
slots, but also affects the schedule length, then that is more improvement on the
scheduling length when we try to exchange the clusters that the predecessors
accommodate and the cluster above the slot. The biggest reduction cluster that its
exchange makes the scheduling length reduce most is selected as the right exchange.
After the operation to the slot which has biggest size, then consider the slot with the
second biggest size and affecting the scheduling length.

 Void HPSA2 ()

 {

 Assign every task as -1;

 do {

 Find all empty slots;

 Generate the path;

 nt= Findtail();
 for each predecessor np of nt

 np = FindTask(nt);
 exchange clusters of nt and np ;

 Assign nt as 0;
 } while (there is an improvement)

 }

Fig. 3. The pseudo code of HPSA2: Function FindTask(nt) is responsible for finding a task which
is neither at the same cluster with nt , nor with the exit task, and maximum reduction for the slot
is obtained by exchanging this cluster and the cluster that nt resides. Function Findtail() is
responsible for finding the tail task of an empty slot that has the biggest size and affects the
scheduling length.

Each slot has its information: head task, tail task, and slot size. In order to know
which slot affects the scheduling length, we need to check the tail task whether affects
the scheduling length. We use a queue path to save tasks that determine the scheduling
length from the exit task, and write down the slot size related to the tasks. If a task in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

178 L. Shen and T.-Y. Choe

path has only one predecessor, then also adds this predecessor task to the path, and the
slot size is zero.

The pseudo code of HPSA2 is illustrated in the Fig. 3. It marks all the tasks. If the slot

related with this task was operated, this task is unmarked. Next, it memories the current

scheduling length, which can be used to compare the scheduling length after

exchanging the clusters that make the slot reduce most. The time complexity of HPSA2

is |V|2|P|2.

5 Illustration of an Example

In this part, we illustrate an example to show combining our two posterior processes to
TANH is efficient for improving the schedule of TANH algorithm, and their
performances are better than HCNF algorithm. The example DAG is illustrated in the
Fig. 4a, and the computation cost of tasks at every processor is illustrated in the Fig. 4b.
We get the initial schedule as the Fig. 5 after TANH algorithm. We get the schedule as
the Fig. 6 after the HCNF algorithm.

(a)

tasks P1 P2 P3 P4

1 5 6 9 7

2 7 7 9 8

3 11 7 9 9

4 8 7 10 13

5 10 3 6 9

6 7 10 4 12

7 11 9 8 12

8 10 11 7 6

9 6 4 9 3

(b)

Fig. 4. (a) An example DAG G1. (b) Runtime of tasks for G1.

5.1 Using HPSA1 to Post-process

In the Fig. 5, firstly, the target is task 9, task 7 determines the start time of task 9. By
exchanging cluster {1, 4, 7} and cluster {1, 3, 6}, {1, 4, 7} and {1, 4, 8}, {1, 4, 7} and
{1, 2, 5}, we know that the exchange of cluster {1, 4, 7} and cluster {1, 3, 6} makes the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Posterior Task Scheduling Algorithms for Heterogeneous Computing Systems 179

1 1 1

1

4
2

5
4

8

9

6

7

P1 P2P3 P4

5

13

6

13

16
17

21

29

38

9

23

16

19

7

29

3

41

Fig. 5. The schedule S1 of DAG G1 by TANH algorithm

1

4

7

2

3

8

1 1

6

9

P1 P2P3 P4

5

13

6

13

19

24

39

36

19

23
24

15

7

27

5

6

Fig. 6. The schedule S2 of DAG G1 by HCNF algorithm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

180 L. Shen and T.-Y. Choe

start time of task 9 reduce most. We get a schedule of Fig. 7. When the start time of task 9
was reduced, next passes will be done, but no improvement is gained. For the current
schedule, task 6 and task 7 are considered for exchanging, because they determine the start
time of the task 9. However, neither of them as the target improves the schedule length.

5.2 Using HPSA2 to Post-process

Firstly, a path is created, in which contain the tasks determine the scheduling length of
the schedule in Fig. 5. We illustrate tasks in the path 9-7-3-1 in accordance with the size
of slots which related to them in Table 2. From the table, the empty slot related to task 9
has the biggest size and affects the schedule length. Exchanges are executed, cluster
{1, 3, 6} and cluster {1, 4, 7}, {1, 3, 6} and {1, 4, 8}, {1, 3, 6} and {1, 2, 5}, exchanging
{1, 3, 6} and {1, 4, 7} has most reduction for the slot above task 9, the schedule as the
Fig. 7. Next, only one slot for task 7, we operate an exchange: {1, 4} {1, 3}, but no
improvement is gained, HPSA2 ends.

Table 2. The Path that affects the scheduling length of S1

task 9 7 3 1

Size of slot 9 2 0 0

1 1

1

4
2

5
3

8

9

6

7

P1 P2 P3 P4

5

13

6

13

20

2323

35

9

16
18

7

4

22

38

1

Fig. 7. First exchange of S1 when HPSA1 is applied and first exchange of S1 when HPSA2 is
applied

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Posterior Task Scheduling Algorithms for Heterogeneous Computing Systems 181

6 Experimental Results

To study the performances of our algorithms in execution time, a random DAG
generator is designed by us. The generator requires the following input parameters: i)
graph level GL, ii) the number of processors NoP, iii) the maximal outdegree of task is
3. Without loss of generality, all DAGs are required a single entry node and an exit
node. The computation time is selected randomly from 3 to 7, and the communication
time is selected randomly from 2 to 6.

We did two sets of experiments: i) fork tasks in DAG have the same computation cost,
ii) fork tasks in DAG have -1~1 different computation cost. Every set of experiments use
10 random generated DAGs when GL=5, 6, 7 in accordance with NoP=6, 8, 9,
respectively. We compare the average execution times (msec) of TANH, TANH+HPSA,
and HCNF. The experimental results are shown in Fig. 8 and Fig. 9, respectively.

For the first set of experiments, the sum of schedule length of TANH+HPSA1 has
3.82%, 1.79%, and 2.98% decrements than that of TANH when GL=5, 6, 7 in
accordance with NoP=6, 8, 9. The sum of schedule length of TANH+HPSA2 has
4.36%, 1.79%, and 2.98% decrements than that of TANH when GL=5, 6, 7 in
accordance with NoP=6, 8, 9. To the same DAGs, in the case of HCNF, the sum of
schedule length of TANH+HPSA1 has 1.67%, 4.14%, and -1.68% decrements than that
of HCNF. The sum of schedule length of TANH+HPSA2 has 2.23%, 4.14%, and
-1.68% decrements than that of HCNF.

For the second set of experiments, the sum of schedule length of TANH+HPSA1 has
2.96%, 0.83%, and 1.73% decrements than that of TANH when GL=5, 6, 7 in
accordance with NoP=6, 8, 9. The sum of schedule length of TANH+HPSA2 has 3.5%,
0.66%, and 2.25% decrements than that of TANH when GL=5, 6, 7 in accordance with
NoP=6, 8, 9. To the same DAGs, in the case of HCNF, the sum of schedule length of
TANH+HPSA1 has -5.56%, 2.18%, and -6.98% decrements than that of HCNF.

0

5

10

15

20

TANH

TANH+HPSA1

TANH+HPSA2

HCNF

TANH 6.908 9.518 14.772

TANH+HPSA1 8.809 11.795 17.778

TANH+HPSA2 8.673 11.514 17.694

HCNF 7.767 11.504 16.494

5 level 6 level 7 level

Fig. 8. The execution time comparison for fork tasks with the same computation time in DAG

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

182 L. Shen and T.-Y. Choe

0

5

10

15

20

TANH

TANH+HPSA
1
TANH+HPSA
2

TANH 7.16 10.077 15.177

TANH+HPSA1 8.457 12.138 17.962

TANH+HPSA2 8.627 11.777 18.337

HCNF 7.972 11.454 16.693

5 level 6 level 7 level

Fig. 9. The execution time comparison for fork tasks with -1~1 different computation time in
DAG

The sum of schedule length of TANH+HPSA2 has -4.97%, 1.96%, and -6.42%
decrements than that of HCNF.

The execution times of TANH+HPSA1 are 11%~74% increments than those of
TANH, and 4%~40% increments than those of TANH in case of TANH+HPSA2. So
our algorithms used short execution times to improve the schedule length of the
previous algorithms.

7 Conclusions

In this paper, we present two postprocessing algorithms for previous algorithms in
heterogeneous computing systems. HPSA1 and HPSA2 are executed at the hind of
TANH algorithm. If DAG does not satisfy the optimality conditions of TANH,
TANH+HPSA can reduce the schedule length given by TANH. Otherwise it preserves
the schedule length. Our algorithms spend very short execution time. Thus they can be
efficiently added to other scheduling algorithms in heterogeneous systems.

Acknowledgements

This paper was supported by Research Fund, Kumoh National Institute of Technology.

References

[1] J.D. Ullman. NP-complete scheduling problems. Journal of Computing System Science,
10:384-393, 1975.

[2] J. Liou and M. Palis, “A Comparison of General Approaches to Multiprocessor
Scheduling,” Proc. Int’l Parallel Processing Symp., pp. 152-156, 1997.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Posterior Task Scheduling Algorithms for Heterogeneous Computing Systems 183

[3] Y. Kwok and I. Ahmed, “Dynamic Critical-Path Scheduling: An Effective Technique for
Allocating Task Graphs to Multiprocessors,” IEEE Trans. Parallel and Distributed
Systems, Vol. 7, no. 5, pp. 506-521, May 1996.

[4] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures,” IEEE Trans. Parallel and
Distributed Systems, Vol. 4, no. 2, pp. 175-186, Feb. 1993.

[5] A. Radulescu and A.J.C. Van Gemund, “Fast and Effective Task Scheduling in
Heterogeneous Systems,” Proc. of HCW, pp. 229-238, May 2000.

[6] I. Ahmad and Y. Kwok, “On exploiting Task Duplication in Parallel Program Scheduling,”
IEEE Trans. Parallel and Distributed Systems, 9(9):872-892, Sept. 1998.

[7] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an Unbounded Number of
processors,” IEEE Trans. Parallel and Distributed Systems, vol. 5, no. 9, pp. 951-967,
Sept. 1994.

[8] S.J. Kim and J.C. Browne, “A General Approach to Mapping of Parallel Computation upon
Multiprocessor Architecture.,” Proc. Int’l Conf. Parallel Proc., vol. 2, pp. 23-32, Jan.
1988.

[9] J. Liou and M.A. Palis, “An Efficient Clustering Heuristics for Scheduling DAGs on
Multiprocessors,” Proc. of Parallel and Distributed processing symposium, 1996.

[10] Atakan Dogan and Fusun Ozguner, “LDBS: A Duplication Based Scheduling Algorithm
for Heterogeneous Computing Systems,” Proc. of Int’l Parallel Processing (ICPP’02),
2002.

[11] S. Darba and D. P. Agrawal, “Optimal Scheduling Algorithm for Distributed-Memory
Machines,” IEEE Trans. Parallel and Distributed Systems, (1):87-94, Jan. 1998.

[12] G.-L. Park, B. Shirazi, and J. Marguis, “DFRN: A New Approach for Duplication Based
Scheduling for distributed memory multiprocessor systems,” Proc. Of Int’l Parallel
Processing Symposium, Geneva, Switzerland, Apr. 1997.

[13] Rashmi Bajaj and Dharma P. Agrawal, “Improving Scheduling of Tasks in a
Heterogeneous Environment,” IEEE Trans. Parallel and Distributed Systems, vol. 15, No.
2, February 2004.

[14] E.S.H. Hou, N. Ansari, and H. Ren, “A Genetic Algorithm for Multiprocessor Scheduling,”
IEEE Trans. Parallel and Distributed Systems, Vol. 5, no. 2, pp. 113-120, Feb. 1994.

[15] H. Singh and A. Youssef, “Mapping and Scheduling Heterogeneous TaskGraphs using
Genetic Algorithms,” Proc. of Heterogeneous Computing Workshop, pp. 86-97, 1996.

[16] A. Ranaweera and D.P. Agrawal, “A Task Duplication based Algorithm for Heterogeneous
Systems,” Proc. of IPDPS, pp. 445-450, May 1-5, 2000.

[17] H. Topcuoglu, S. Hariri, M-Y. Wu, “Performance-Effective and Low-complexity Task
Scheduling for heterogeneous computing,” IEEE Trans. on Parallel and Distributed
Systems, vol. 13, no. 3, March 2002.

[18] E. Ilavarasan and P. Thambidurai, “Levelized Scheduling of Directed A-cyclic Precedence
Constrained Task Graphs onto Heterogeneous Computing System,” Proceedings of the
First International Conference on Distributed Frameworks for Multimedia Applications
(DFMA’05), 2005.

[19] Sanjeev Baskiyar and Prashanth C. SaiRanga, “Scheduling Directed A-cyclic Task Graphs
on Heterogeneous Network of Workstations to Minimize Schedule length,” Proceeding of
the 2003 International Conference on Parallel Processing Workshops (ICPPW’03), 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Design and Implementation of an Environment

for Component-Based Parallel Programming

Francisco Heron de Carvalho Junior1, Rafael Dueire Lins2,
Ricardo Cordeiro Corrêa1, Gisele Araújo1, and Chanderlie Freire de Santiago1

1 Departamento de Computação, Universidade Federal do Ceará
Campus do Pici, Bloco 910, Fortaleza, Brazil

{heron,correa,gisele,cfreire}@lia.ufc.br
2 Depart. de Eletrônica e Sistemas, Universidade Federal de Pernambuco

Av. Acadêmico Hélio Ramos s/n, Recife, Brazil
rdl@ufpe.br

Abstract. Motivated by the inadequacy of current parallel program-
ming artifacts, the # component model was proposed to meet the new
complexity of high performance computing (HPC). It has solid formal
foundations, layed on category theory and Petri nets. This paper presents
some important design and implementation issues on the implementation
of programming frameworks based on the # component model.

1 Introduction

Clusters and grids have brought the processing power of high performance com-
puting (HPC) architectures to a wide number of academic and industrial users,
bringing new challenges to computer scientists. Contemporary parallel program-
ming techniques that can exploit the potential performance of distributed ar-
chitectures, such as the message passing libraries MPI and PVM, provide poor
abstraction, requiring a fair amount of knowledge on architectural details and
parallelism strategies that go far beyond the reach of users in general. On the
other hand, higher level approaches, such as parallel functional programming lan-
guages and scientific computing parallel libraries do not merge efficiency with
generality. Skeletal programming has been considered a promising alternative,
but several reasons have made difficult its dissemination [12]. In fact, the scien-
tific community still looks for parallel programming paradigms that reconciles
portability and efficiency with generality and high-level of abstraction [4].

In recent years, the HPC community has tried to adapt component technol-
ogy, now successfully applied in business applications in dealing with software
complexity and extensibility, to meet the needs of HPC applications. These ef-
forts yielded CCA and its frameworks [2], P-COM [21], Fractal [3], et cetera
[25]. Besides being a potential alternative to reconcile abstraction, portability,
generality, and efficiency in parallel programming, components leverage multi-
disciplinary, multi-physics, and multi-scale software for HPC [5], possibly tar-
geting heterogenous execution environments that are enabled for grid, cluster,
and capability computing [14].

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 184–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Design and Implementation of an Environment 185

The most important challenge to make components suitable for HPC relies on
their support for parallel programming [1,11]. Surprisingly, parallel programming
based on the current approaches for supporting peer-to-peer components inter-
action is not suitable for performance demands of HPC software that are not
embarrassingly parallel [1,11]. Unfortunately, the presence of complex process
interactions are common in modern HPC software. For this reason, HPC com-
ponents models and architectures have been extended for supporting non-trivial
forms of parallelism [18,13,23,1,3]. However, such approaches for parallelism do
not reach generality of message-passing based parallel programming. In addition,
they are influenced by the common trend of lower level parallel programming
approaches to treat processes, and not only concerns, as basic units of software
decomposition. We consider that this is one of the main reasons of the difficulty
in adapting current software engineering techniques for the development of par-
allel programs. Software engineering approaches have appeared in the context
of sequential software, where processes do not exist. We advocate orthogonality
between processes and concerns [8]. Thus, they cannot be appropriately viewed
under the same software decomposition dimension.

The # component model was primarily developed for general purpose paral-
lel programming, taking the orthogonality between processes and concerns as a
design premise. Unlike most of the recently proposed approaches for HPC com-
ponents, it is not founded on existing component models design patterns. It has
origins in the coordination model of Haskell# [7], a parallel extension to the func-
tional language Haskell. Most possibly, any component model may be interpreted
in terms of the # component model abstractions. Besides to deal with parallel
programming in a natural way, the # component model is influenced by modern
ideas regarding the notion of separation of concerns [8], one of the main driv-
ing forces for recent advances in software engineering technologies [22]. Indeed,
cross-cutting composition of concerns is supported. The # component model
tries to achieve a higher level of abstraction by employing skeletal programming
through existentially bounded quantified component types. This paper intends to
present the design of a framework based on the # component model for parallel
programming targeting HPC software on top of IBM Eclipse Platform.

In what follows, Section 2 introduces the basic principles behind the # com-
ponent model, comparing it to other HPC component approaches. Section 3
depicts the general design of # frameworks. Section 4 presents the design of a
general purpose parallel programming framework. Section 5 concludes this pa-
per, describing ongoing and lines for further works regarding the implementation
of programming environments based on the # component model.

2 The # Component Model: Principles and Intuitions

Motivated by the success of the component technology in software industry,
scientific computing community has proposed component models, architectures
and frameworks for leveraging multi-disciplinary, multi-physics, and multi-scale
HPC software, possibly targeted at HPC architectures enabled for grid, cluster,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

186 F.H. de Carvalho Junior et al.

and capability computing [25]. Unfortunately, their requirements for the support
of parallelism and high processing efficiency make usual forms of peer-to-peer
component interaction unsuitable [11,5]. For this reason, specific parallel pro-
gramming extensions have been proposed to current component technology. For
example, CCA specification includes SCMD1 extensions for supporting SPMD
style of parallel programming [1]. PARDIS[18], PADICO[13], and GridCCM[23]
have also adopted a similar concept for supporting parallel objects inside compo-
nents. Fractal proposes collective ports that may dispatch method calls to a set
of inner parallel components [3]. In general, such extensions cover requirements
of a wide range of parallel programs in certain domains of interest, but they do
not provide full generality of message-passing parallel programming. It is usual
to find papers on HPC components that include “support for richer forms of
parallelism” in the list of lines for further works. For example, CCA attempts
to move from SCMD to MCMD, a simple conceptual extension, but difficult to
reach in practice. In fact, to support general purpose parallel programming is
still a challenge for HPC component technology.

The inductive approach to augment component technology with new paral-
lel programming extensions breaks down conceptual homogeneity of component
models, making them more complex to be grasped by informal means and math-
ematically formalized. The # component model comes from the “opposite direc-
tion”, taking a deductive generalization of channel-based parallel programming
for supporting a suitable notion of component. The # component model has its
origins in Haskell# [7], a parallel extension to the functional language Haskell,
inheriting their design premisses, including Petri nets translation [9].

2.1 From Processes to Concerns

The basic principles behind the # component model come from message passing
programming, notably represented by PVM and MPI. They have successfully
exploited peak performance of parallel architectures, reconciling generality and
portability, but with hard convergence with software engineering disciplines for
supporting productive software development. The following paragraphs intro-
duce fundamental principles behind the # component model: the separation of
concerns through process slicing; and orthogonality between processes and con-
cerns as units of software decomposition. Familiarity of readers with parallel
programming is needed to understand the # component model from the intu-
ition behind their underlying basic principles. Induction from examples must be
avoided. Readers may concentrate on fundamental ideas and try to build their
own examples from their experience and interests. Figures 1 and 2 complemen-
tarily present a simple parallel program that is used to exemplify the idea of
slicing processes by concerns. Let A and B be n×n matrixes and X and Y be
vectors. The parallel program computes (A × XT)•(B × Y T).

We have searched for the fundamental reasons that make software engineer-
ing disciplines too hard to be applied for parallel programming, concluding that

1 Single Component Multiple Data.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Design and Implementation of an Environment 187

Fig. 1. Slicing a Simple Parallel Program by Concerns

they reside on the tendency to mix processes and concerns in the same dimension
of software decomposition, due to the traditional process-centric perspective of
parallel programming practice. Software engineering disciplines assume concerns
as basic units of software decomposition [22]. We advocate that processes and
concerns are orthogonal concepts. Without loss of generality, aiming at to clarify
intuitions behind the enunciated orthogonality hypothesis, let P be an arbitrary
parallel program formed by a set {p1, p2, . . . , pn} of processes that synchronize
through message-passing. By looking at each process individually, it may be split
in a set of slices, each one addressing a concern. Figure 1 shows an example of
process slicing in a simple parallel program. Examples of typical concerns are:
(a) a piece of code that represents some meaningful calculation, for example,
a local matrix-vector multiplication; (b) a collective synchronization operation,
which may be represented by a sequence of send/recv operations; (c) a set of
non-contiguous pieces of code including debugging code of the process; (d) the
identity of the processing unit where the process executes; (e) the location of
a process in a given process topology. The reader may be convinced that there
is a hierarchical dependency between process slices. For instance: (a) the slice
representing collective synchronization operation is formed by a set of slices
representing send/recv point-to-point operations; (b) a local matrix-vector mul-
tiplication slice may include a slice that represent the local calculation performed
by the process and another one representing the collective synchronization oper-
ation that follows it. If we take all the processes into consideration, it is easy to
see existence of concerns that cross-cuts processes. For example: (a) the concern
of parallel matrix-vector multiplication includes all slices, from individual pro-
cesses, related to local matrix-vector multiplication; (2) the concern of process-
to-processor allocation is formed by the set of slices that define the identities of
processors where each process executes. It is easy to see that, from the overall

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

188 F.H. de Carvalho Junior et al.

perspective of processes, most of slices inside individual processes does not make
sense when observed in isolation. Individually, they do not define concerns in
the overall parallel program. The cross-cutting nature of decompositions based
on concerns and processes strongly enforces the orthogonality hypothesis.

Fig. 2. #-Components From The Example in Figure 1

Above, some examples of #-components extracted from slicing of the parallel program
in Figure 1. Some of them are non-functional concerns: (a) debugging code and (b)
process-to-processor mapping. The #-components V = A×X and r = V •U addresses
functional concerns: parallel matrix-vector multiplication and parallel dot product,
respectively. The #-components “broadcast Y” and “redistribute V (2)” address data
distribution concerns, acting as synchronization protocols. The #-component “input
Y” is a local concern of a process (root) that is responsible to read vector Y .

The # component model moves parallel programming from the process-based
perspective to a concern-oriented one. In fact, through a Front-End, # program-
mers may build applications through composition of concerns. Then, a Back-
End may synthesize the process topology of the intended parallel program. A
#-component is a software entity that encapsulates a concern. Such definition
covers usual notions of components, because concerns are elementary units of
software decomposition. The units of a #-component correspond to the slices
(of processes) that constitutes its addressed concern. A #-component may be
inductively built from other #-components through unification of their units,
forming units of the resultant #-component. Thus, units also form a hierar-
chical structure, attempting to resemble hierarchical structure of process slices,
where units may be formed by other units (unit slices). Sharing between compo-
nents is supported through fusion of unit slices in unification. Sharing of data
structures is a fundamental feature for ensuring high performance in scientific
software. Another component model that supports sharing between components
is Fractal [6]. The protocol of a unit is specified by a labelled Petri net whose
labels are identifiers of their slices. It determines a Petri net formal language
which dictates the possible activation traces for slices. Intuitively, it defines the
order in which processes execute their functional slices. Petri nets allows for
analysis of formal properties and performance evaluation of parallel programs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Design and Implementation of an Environment 189

 Multigrid,

LSSolve[Sparse,

 e <: Environment]
 SOR,

LSSolve[Sparse,

 e <: Environment]
 GaussSeidel[Wavefront],

LSSolve[Sparse,

 e <: Environment]
 GaussSeidel[RedBlack],

LSSolve[Sparse,

 MPI[Grid]]
 Jacobi,

LSSolve[Dense,

 Globus]
 Jacobi,

LSSolve[Dense, OpenMP]
 Jacobi,

LSSolve[Dense,
 MPI[Cluster]]
 Jacobi,

LSSolve[Dense,

LSSolver[k <: MatrixType,

 m <: LSMethod,
 e <: Environment] e <: Environment]

 GaussSeidel[a <: GSApproach],

LSSolve[Sparse,

LSSolve[Dense,

 Jacobi,
 e <: Environment]

Component
Class

component type
 e <: Environment] (initial object)

Fig. 3. Component Class for LSSolver

A component class for LSSolver components, represented by the component type
inside the gray box. Lowercase identifiers are formal parameters. The notation x <: C
says that x may be replaced by any sub-type of component type C. Arrows indicate
instantiations, which replace a formal parameter by an actual component. For example,
there are four components that implement solutions for dense linear systems using the
Jacobi iterative method. They target different architectures. The component type MPI
is parameterized by the intended architecture (MPI[a <: Architecture]).

2.2 Skeletal Programming and Parameterized Component Types

The simpler form of abstraction in # programming is to hide lower level op-
erations in higher level ones encapsulated in components. For example, a pro-
grammer that makes use of a component LSSolver for solving a linear system
A.x = B does not need to be aware about synchronization operations inside the
component, resembling linear algebra parallelized libraries. Partitioning of paral-
lel programs by concerns suggests richer abstraction mechanisms, such as skele-
tal programming through existential polymorphic component types, representing
classes of components that address the same concern through distinct implemen-
tations, each one appropriate to a specific execution environment. For example,
there may exist several possible implementations for LSSolver, adapted to spe-
cific parallel architectures, process topologies, and density properties of matrix
A. Such parameters are known by programmers before execution. Figure 3 ex-
emplifies a component class for dealing with implementations of LSSolver. The
idea of a polymorphic type system for #-components comes from the formaliza-
tion of the # component model using Theory of Institutions [10], firstly intended
to study its formal properties and to formalize the notions of component types
and their recursive composition. Theory of Institutions [16] have been widely
used to capture logical independence in algebraic specification languages. Some
ideas from this context have been applied to # programming, including param-
eterized programming [15], giving rise to polymorphic component type systems
with bounded quantification.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

190 F.H. de Carvalho Junior et al.

Class

Protected Method
− Private Method

Class

Class
+ Public Method
Protected Method
− Private Method

+ Public Method

+ Public Method

Class
+ Public Method
Protected Method
− Private Method

Class

− Private Method
Protected Method

+ Public Method
Protected Method
− Private Method

Class
+ Public Method
Protected Method
− Private Method

Class
+ Public Method
Protected Method
− Private Method

Programmer’s

Component View

discovery

HLocationService

HFrameworkFrontEndPort Component Library

Back−End

Environment

Execution

Location

cataloguing
retrievingPerspective

Component Catalog
Component Model

retrieving

HFrameworkBackEndPort

interface required
interface provided

code generation
deployment
monitoring (?)

HBackEndService

Front−End Framework Core

retrieving
registration
configuration

Fig. 4. The # Framework and #-Components Life Cycle

3 An Architecture for # Programming Frameworks

Figure 4 depicts an architecture proposal for # programming frameworks. Like
CCA and Fractal, # compliant frameworks be built from instantiation of a set
of interfaces that define the # component model architecture, whose interfaces
are depicted in the UML diagram of Figure 5. Frameworks control life cycle
of components by means of the interfaces that components must provide. CCA
targets simplicity, by adopting a lightweight interface for components to interact
with the framework, including only the method setServices, where programmers
register their uses ports and provides ports for dynamic binding. Fractal com-
pliant components also support dynamic bindings, also targeting hierarchical
composition from primitive components. As already shown, the # component
model supports recursive composition, but their “bindings” are static, which, at
a first glance, appears to restrict the application domain of #-components. For
this reason, the # component model is not yet proposed for general distributed
applications, but only for applications in high performance computing domain.
In fact, most of parallel programs are static, avoiding performance overheads
of run-time control. However, #-frameworks can still deal with dynamic execu-
tion scenarios needed by HPC applications. In fact, static configuration does not
imply static execution. A #-framework could encapsulate predictable dynamic
adaptations of programs, supported by some underlying programming artifact,
as concerns of #-components.

Unlike CCA and Fractal, # programmers use an architecture description lan-
guage (ADL) for component composition. This is motivated by the requirement
to place coordination and computation concerns at separate programming layers,
and to support overlapping composition. Current usual programming artifacts
does not support to overlap implementation of modules. As depicted in Figure
4, the Front-End of a #-framework deals with component views of a compo-
nent model, managed by the Framework-Core and accessed by the Front-End
through the interface HFrameworkFrontEndPort. The Framework-Core is also
responsible to manage a library of #-components placed at registered locations.
In Fractal and CCA, programmers directly manipulates the component model.
The # component model delegates to #-frameworks to define one or more appro-
priate ADL’s, managed by distinct Front-End ’s. ADL’s may be graphical,using
visual metaphors, or textual. A textual ADL may be XML-based, making possible

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Design and Implementation of an Environment 191

interoperability at the level of component views. Indeed, general framework in-
teroperability can be achieved at the level of component models. In visual pro-
gramming, the MVC (Model-View-Controller) pattern is a good design pattern
for interpreting component views as component models.

<<interface>>

HUnit

getName() : String
getComponent() : HComponent
getInterface() : HInterface
getSlices() : List<HUnit>
isHidden() : boolean
getInterfaceSlice() :
getId() : HUNaming

<<interface>>

HInterface

getName() : String
getProtocol() : HProtocol
getSignature() :
isSubTypeOf(hInterface : HInterface) : boolean

<<interface>>

HProtocol

getInterface() : HInterface

<<interface>>

HParameter

getName() : String
getType() : HComponent
isSupplied() : boolean
getSupplyingComponent() : HComponent

<<interface>>

HReplicatable

isReplicated() : boolean
getReplicatorLinks() : Set<HReplicatorLink>

<<interface>>

HReplicator

getName() : String
getExpression() : String
getSplitters() : Set<HReplicatorSplitter>
getLinks() : Set<HReplicatorLink>

<<interface>>

HComponent

getName() : String
getUnits() : Set
getInnerComponents() : Set<HComponent>
getParameters() : Set<HParameter>
isSubTypeOf(c : HComponent) : boolean
isParameter() : Boolean

<<interface>>

HSignature

getSlices() : Set<HInterfaceSlice>
getTopSlice() :

<<interface>>

HInterfaceSlice

getName() : String
getType() : HInterface
getSons() : List<HInterfaceSlice>

<<interface>>

HReplicatorSplitter

getOwnerReplicator() : HReplicator
getSpplitingReplicators() : List<HReplicator>

<<interface>>

HReplicatorLink

getReplicator() : HReplicator
getReplicated() : HReplicatable

<<interface>>

HFrameworkFrontEndPort

openConfiguration() : HConfigurableComponent
closeConfiguration(c : HConfigurableComponent) : void
fetchCatalog() : List<HPackage>

<<interface>>

HFrameworkBackEndPort

<<interface>>

HPackage

getPath() : List<String>
fetchComponents() : List<HComponent>

<<interface>>

HConfigurableComponent

<<interface>>

HConfiguration

useComponent(c : HComponent) : void
newUnit(name : String) : void
setUnitSlice(u1 : HUnit,u2) : void
fuseUnits(u1 : HUnit,u2 : HUnit) : void
hideUnit(u : HUnit) : void
showUnit(u : HUnit) : void
newInterface(name : String,u : HUnit) : void
newParameter(c : HComponent,varName : String) : void
supplyParameter(c1 : HComponent,c2 : HComponent) : void
setInterface(u : HUnit,i : HInterface) : void
newReplicator(varName : String) : void
replicate(e : HReplicatable,r : HReplicator) : void
fuseReplicators(r1 : HReplicator,r2 : HReplicator) : void
splitReplicator(es : List<HReplicatable>) : void
setProtocol(u : HUnit,p : HProtocol) : void

<<interface>>

HLocationService

fetchPackages() : List<HPackage>
createPackage(path : List<String>) : HPackage
removePackage(p : HPackage) : void
registerComponent(p : HPackage,c : HComponent) : void
unregisterComponent(c : HComponent) : void

<<interface>>

HBackEndService

<<interface>>

HBackEndMonitoring

<<interface>>

HBackEndDeployment

run(c : HComponent) : void

Fig. 5. The Interfaces of the # Framework Architecture

The Back-End of #-frameworks synthesizes a parallel program from the com-
ponent model, targeting their supported execution environments. This is needed
due to orthogonality between #-components and processes, a fundamental dis-
tinction from CCA and Fractal, where component models are the units of pro-
gramming and deployment. For this reason, CCA and Fractal do not need a
Front-End and a Back-End (Figure 4). In fact, #-frameworks act as bridges be-
tween component views and parallel programming artifacts. The # component
model does not intend to be “yet another parallel programming technology”, but
to be a components-based layer on top of which existing ones can take advan-
tage of software engineering disciplines. It is conjectured that any programming
technology may be defined in terms of the # component model, including CCA
and Fractal frameworks. The interoperability hypothesis has been verified by ex-
perimental evaluation with #-frameworks. The Back-End of #-frameworks may
perform optimization steps for reducing synchronization costs in the resultant
parallel program. For example, if all slices of a #-process are programmed in
the same language, they can be fused (inlined) in a single procedure, avoiding
unnecessary costs of procedure calls and improving cache behavior. It is intended
that the synthesized parallel program be similar or better than programmed by
hand, since programmers have explicit control over all parallelism concerns.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

192 F.H. de Carvalho Junior et al.

A #-framework defines a set of specialized components kinds, each one con-
taining a set of component types with an intended meaning, which may imply
in different visual metaphors and model interpretations at the Front-End and
Back-End sides. In fact, component kinds are supported by the specialization of
the interfaces of the # component model architecture, presented in Figure 5. The
use of component kinds for designing of # compliant PSE’s (Problem Solving
Environments) that uses visual metaphors that are near to the knowledge of
specialists has been investigated. The # component model goes far beyond the
idea to raise connectors to first-class citizens [24], by promoting them to com-
ponents. For example, a CCA binding could be implemented as a #-component
Binding. Such approach leads to uniformity of concepts. Fractal also exercises
the idea of components as connectors, by means of composite bindings, but prim-
itive bindings are not components, breaking homogeneity. The # connectors are
exogenous [20], like in P-COM, while they are endogenous in CCA and Fractal.

4 A # Environment for Parallel Programming

Now, the design of a #-framework for general purpose parallel programming on
top of common message-passing programming technologies, called HPE (# Pro-
gramming Environment), is presented. It is an extension to the Eclipse frame-
work. GEF (Graphical Editing Framework) has been used to build an ADL
for dealing with visual configuration of #-components. GEF adopts the MVC
(Model-View-Controller) design pattern. The framework complies to the # com-
ponent model architecture, specializing it to support the component kinds of
HPE, classifying component types as qualifiers, architectures, environments, data
structures, computations, synchronizers, and applications. Some built-in compo-
nent types are supported by the framework, whose subtyping hierarchy is de-
picted in Figure 6. Each component kind is represented by a component type
(top). Programmers configure new component types by subtyping them and the
natively supported component types of the framework.

Figure 7(a) presents a screenshot of the HPE’s Front-End, showing a # pro-
gram (application component) that solves a linear system A × x = B. Inputs
(matrix A and vector B), and output (vector x), are retrieved/saved in a remote
data center defined by the component DataCenter. It will illustrate the idea of
component kinds. Input data is distributed across processes using the collective
communication component Scatter, while output is joined in the root process
using Gather. In Figure 7(b), the protocol of the unit peer is depicted, defin-
ing that scattering operations must be performed in parallel, followed by the
solution computation and gathering.

4.1 Component Kinds

Qualifier components specify non-functional, stateless, concerns of compo-
nents. In practice, they may act selectively among #-components in a com-
ponent class, allowing programmers to control choice of component instances

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Design and Implementation of an Environment 193

PVM

Globus

MPI

Environment

Cluster

Grid
Architecture

RPCModeSynchronousRPCMode

RemoteServiceInvocation[e<:Environment,
m <: RSIMode,
s <: Service

Channel[a <: Architecture, e <: Environment,
m <: ChanMode, d <: Data]Synchronization[a<:Architecture, e<:Environment]

Component

ChannelMode

Qualifier

Component Types Supported by HPE

Computation[a<:Architecture, e<:Environment]

Data[a<:Architecture, e<:Environment]

ChanReady

Subtyping Hierarchy for the

ChanAsynchronous

ChanSynchronous

Fig. 6. The # Component Kinds of the Framework

from its representant component type. For example, suppose a component class
for point-to-point communication channels, represented by the component type
∃mode.Channel[· · · , mode <: ChannelMode]. The syntax says that, among
other parameters (reticences), their component instances may vary according to
the intended communication semantics. For that, the parameter mode must be
supplied with a subtype of the qualifier component ChannelMode, which com-
prises two units, respectively intended to be slices of sender and receiver units of
a channel component. The natively supported subtypes of ChannelMode in the
framework are ChanSynchronous, ChanAsynchronous, and ChanReady.
Programmers may define other channel modes. The component type Channel

[· · · ,ChanSynchronous] represents the class of channel components with syn-
chronous semantics. In Figure 7, qualifier components are also used to describe
the solution method in a LSSolver component.

Architecture components intend to describe parallel architectures where
#-components intends to run. Their units represent processing nodes. Using sub-
typing capabilities, supported architectures must be organized in hierarchies, in
order to be classified according to their common characteristics. For example, a
Cluster architecture component type may be specialized in component types
referring to common cluster designs, possibly distinguished by the processor
type, communication network type, homogeneity/heterogeneity, and so on. At
the leaves of the hierarchy, there are component types for describing specific
clusters. Thus, a programmer may target a class of architectures by using archi-
tecture types at non-leave nodes. A specific architecture could be in more than
one intersecting classes. Similarly, grid-based architectures could be classified.
The example in Figure 7 runs in a specific cluster, named Pargo’s cluster.

Environment components define the parallelism enabling software technol-
ogy intended for a component. Typical examples are message-passing libraries,
such as MPI and PVM, for cluster and capability computing, and Globus and
OurGrid, for grid computing. Some MPI implementations also target grids. No-
tice that a pair architecture/environment defines a complete parallel run-time
execution context for a component. Hierarchies of component types may also be
used to define classes of environments of special interest, for example, software
technologies for enabling message-passing or bag-of-tasks parallelism.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

194 F.H. de Carvalho Junior et al.

(a) (b)
LEGEND: (1) Component Scatter[MPI,Matrix,Pargo’s Cluster]; (2) Unit root; (3) Component DataCenter; (4) In-
terface IRoot (of unit root); (5) Interface IPeer (of unit peer); (6) Component LSSolver[MPI, Sparse, GaussSei-

del[ParRedBlackMethod]]; (7) Component Gather[MPI, Vector, Pargo’s Cluster]; (8) Unit peer; (9) Component Scat-

ter[MPI, Vector, Pargo’s Cluster]; (10) Replicator (×1); (11) Split replicator; (12) Replicator (×n).

Fig. 7. The Visual Configuration of a Simple #-Component (Screen Shot)

Data components are formed by one unit, whose interface is attached to
a SIDL (Scientific Interface Description Language) interface. SIDL has been
supported by the Babel toolkit [19] to be a neutral language for specification
of CCA components interfaces. Subtyping is supported for data components,
resembling multiple inheritance in object-oriented programming. For that, a data
component type D must be composed from a set of data components super-
types, whose units becomes slices of the units of D. In Figure 7, there are data
component types Vector and Matrix, sub-types of the component type Data.

Synchronization components allows inter-process communication. There
are synchronization components for dealing with point-to-point message-passing
(the usual send and receive primitives), collective communication (structure par-
allel programming [17]), and remote service invocation (such as RPC, RMI, and
so on). The class of all channel components is represented by the component type
Channel[a<:Architecture, s<:Environment, d<:Data, m<:ChanMode].
A highly tuned member of the component class of Channel[· · ·] may be specific
to a given architecture, environment, data type, and channel semantics. The class
of remote service invocation components is represented by the component type
RemoteServiceInvocation[e<:Environment, m<:RSIMode, s<:Service].
They comprise two externally visible units: client and server. The activation
of a client slice is a null operation. Client slices only carries stub objects for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Design and Implementation of an Environment 195

each interface provided by the service. A server slice only implements methods
of the service interfaces. Collective communication components correspond to
that supported by MPI. All of them comprise only one replicated unit. Some of
them, such as Broadcast, Scatter, and Gather distinguish a root unit, the
first one in the replication enumeration. Qualifier components are used to define
channel communication semantics, as described above.

Computation components specify parallel computations over distributed
data structures encapsulated in data components that makes part of their con-
stitution. Their units define state transformer procedures over a set of local
data slices, units of the inner data components. Data slices may be private or
public. Private data slices become local variables in the unit procedure, where
public ones become their parameters and return values, which are visible to pro-
cedure callers. There are three kinds of public data slices: in, for input data;
out, for output data; in/out, for input and output data. Such modifiers are
supported by SIDL, covering possible parameter passing semantics. Slices that
comes from other inner computation components are called computation slices.
Computation slices also define procedures whose parameters are their public
data slices. Data slices from different unified computation slices may be fused
to refer to the same data item (data sharing mentioned in Section 2.1). The
protocol of the unit dictates a control flow for calling the procedures of com-
putation slices (denotation of slice activation for computation slices). In HPE,
behavior expressions are used for specifying protocols, with combinators from
synchronized regular expressions, a formalism that reaches expressiveness of ter-
minal labelled Petri nets. The Front-End may partially generate the code for
procedures, using the signature and protocol of the computation slice to de-
fine parameters, local variables, and control flow. In Figure 7, the root process
comprises three data slices (one input vector B, one input matrix A, and one
output vector X), two service slices, for accessing a data center (DataCenter

component) where input data is retrieved and where output data is stored for
further analysis, three synchronization slices, for data distribution across pro-
cesses (Gather and Scatter operations for collective synchronization), and
one computation slice, whose procedure computes a solution to the linear sys-
tem A × x = B. The peer process does not have a service slice for accessing the
remote data center, because only root needs to access it. Fusion of data slices,
represented by circles attached to the synchronization and computation slices in-
volved, is used to set input data (A and B) and output data (x) for the LSSolve

component.
Application components are similar to computation components, but re-

quires complete execution context information (architecture and environment).
For this reason, they cannot be parameterized, all units are hidden, and all
data slices are private. In fact, they are not components in the intuitive sense.
Application components are input to the HPE’s Back-End, containing all the
necessary information to generate MPI code to run in clusters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

196 F.H. de Carvalho Junior et al.

5 Conclusions and Lines for Further Work

This paper sketched the architecture of frameworks that complies the # com-
ponent model. The design of a #-framework for general purpose parallel pro-
gramming was presented. The # component model intends to reconcile software
engineering disciplines with efficient parallel programming, meeting the needs of
the HPC community. Besides that, it is another attempt to adapt component
technology to the demands of HPC software development. Compared to other
HPC component models, the # component model is parallel by nature, target-
ing expressiveness of message passing parallel programming. Its main principles
comes from the study of reasons that make difficult software engineering disci-
plines and parallel software development to be compatible with each other. The
implementation of # compliant frameworks intends to make possible experimen-
tal evaluation of the hypothesis underlying the # component model principles.

The authors are currently working in the design and implementation of #
compliant frameworks. Its formal semantics and analysis of the properties of the
component model are been studied under Category Theory and the Theory of
Institutions. The study the use of #-frameworks as a platform for implementa-
tion of interoperable PSE’s (Problem Solving Environments) is already planned.
For that, the use of visual metaphors for component kinds is proposed to bring
closer together programming abstractions and the needs of users of HPC.

References

1. B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt, and J. A.
Kohl. The CCA Core Specification in a Distributed Memory SPMD Framework.
Concurrency and Computation: Practice and Experience, 14(5):323–345, 2002.

2. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker,
and B. Smolinski. Towards a Common Component Architecture for High-
Performance Scientific Computing. In The Eighth IEEE International Symposium
on High Performance Distributed Computing. IEEE Computer Society, 1999.

3. F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical
Grid Components. In International Symposium on Distributed Objects and Appli-
cations. Springer-Verlag, 2003.

4. Bernholdt D. E., J. Nieplocha, and P. Sadayappan. Raising Level of Programming
Abstraction in Scalable Programming Models. In Workshop on Productivity and
Performance in High-End Computing (in HPCA’2004), pages 76–84. Madrid, 2004.

5. R. Bramley, R. Armstrong, L. McInnes, and M. Sottile. High-Performance Com-
ponent Software Systems. SIAM, 49:, 2005.

6. E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive and Dynamic Software
Composition with Sharing. In European Conference on Object Oriented Program-
ming (ECOOP’2002). Springer, 2002.

7. F. H. Carvalho Junior and R. D. Lins. Haskell#: Parallel Programming Made
Simple and Efficient. J. of Univ. Computer Science, 9(8):776–794, August 2003.

8. F. H. Carvalho Junior and R. D. Lins. Separation of Concerns for Improving
Practice of Parallel Programming. INFORMATION, An International Journal,
8(5), September 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Design and Implementation of an Environment 197

9. F. H. Carvalho Junior, R. D. Lins, and R. M. F. Lima. Translating Haskell#
Programs into Petri Nets. Lecture Notes in Computer Science (VECPAR’2002),
2565:635–649, 2002.

10. F. H. Carvalho Junior, R. D. Lins, and A. T. C. Martins An Institutional Theory
for #-Components. In Proceedings of the Brazilian Symposium on Formal Methods
(SBMF’2006), pages 137–152. September 2006.

11. K. Chiu. An Architecture for Concurrent, Peer-to-Peer Components. PhD thesis,
Department of Computer Science, Indiana University, 2001.

12. M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing, 30:389–406, 2004.

13. A. Denis, C. Pérez, and T. Priol. PadicoTM: An Open Integration Framework for
Communication Midleware and Runtimes. Future Generation Computing Systems,
19:575–585, 2004.

14. J. Dongarra. Trends in High Performance Computing. The Computer Journal,
47(4):399–403, 2004.

15. J. Goguen. Higher-Order Functions Considered Unnecessary for Higher-Order Pro-
gramming. In D. A. Turner, editor, Research Topics in Functional Programming,
pages 309–351. Addison-Welsey, Reading, MA, 1990.

16. J. Goguen and R. Burnstal. Institutions: Abstract Model Theory for Specification
and Programming. Journal of ACM, 39(1):95–146, 1992.

17. S. Gorlatch. Send-Recv Considered Harmful? Myths and Truths about Parallel
Programming. ACM Trans. in Programming Languages and Systems, (1):47–56,
January 2004.

18. K. Koahey and D. Gannon. PARDIS: A Parallel Approach to CORBA. In Proc.
of the 6th IEEE Intl. Symposium on High Performance Distributed Computing
(HPDC’97), pages 31–39. Springer, August 1997.

19. S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing Language Depen-
dencies from a Scientific Software Library. In 10th SIAM Conference on Parallel
Processing. Springer-Verlag, March 2001.

20. K. Lau, P. V. Elizondo, and Z. Wang. Exogenous Connectors for Software Com-
ponents. Lecture Notes in Computer Science (CBSE’2005), 3489:90–108, 2005.

21. N. Mahmood, G. Deng, and J. C. Browne. Compositional Development of Par-
allel Programs. In 16th International Workshop on Languages and Compilers for
Parallel Computing, October 2003.

22. H. Milli, A. Elkharraz, and H. Mcheick. Understanding Separation of Concerns.
In Workshop on Early Aspects (in AOSD’04), pages 411–428, March 2004.

23. C. Pérez, T. Priol, and A. Ribes. A Parallel Corba Component Model for Numerical
Code Coupling. In Proc. of the 3rd Intl. Workshop on Grid Computing (published
in LNCS 2536), pages 88–99. Springer, November 2002.

24. M. Shaw. Procedure Calls are the Assembly Language of Software Interconnection:
Connectors Deserve First-Class Status. In International Workshop on Studies of
Software Design, Lecture Notes in Computer Science. Springer-Verlag, 1994.

25. A. J. van der Steen. Issues in Computational Frameworks. Concurrency and
Computation: Practice and Experience, 18(2):141–150, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anahy: A Programming Environment for

Cluster Computing�

Gerson Geraldo H. Cavalheiro1, Luciano Paschoal Gaspary2,
Marcelo Augusto Cardozo3, and Otávio Corrêa Cordeiro3

1 Universidade Federal de Pelotas (UFPel)
Pelotas – Rio Grande do Sul – Brazil
gerson.cavalheiro@ufpel.edu.br

2 Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre – Rio Grande do Sul – Brazil

paschoal@inf.ufrgs.br
3 Universidade do Vale do Rio dos Sinos (UNISINOS)

São Leopoldo - Rio Grande do Sul – Brazil
{mcardozo,otaviocc}@anahy.org

Abstract. This paper presents Anahy, a programming environment for
cluster computing. Anahy is presented in terms of its programming in-
terface (API) and its scheduling mechanism. The main features of this
environment are the specification of a POSIX thread-based API and the
use of dynamic scheduling techniques based on Directed Acyclic Task
Graphs (DAG). The main advantage obtained with these features is the
dissociation between the description of the concurrency of an applica-
tion and its parallel execution. The paper examines how Anahy builds a
DAG describing the dependencies among tasks at execution time from
a multithreaded program and how this DAG is handled by the runtime
to apply dynamic scheduling techniques. The paper concludes discussing
three case studies of applications developed in the context of Anahy
environment.

1 Introduction

New runtime environments have been proposed for cluster computing to assist
the development of applications. Some of them are composed by a layered archi-
tecture, wherein at the top they propose a high level application programming
interface (API) to describe the concurrency of an application as a concurrent
program and, at the bottom, a runtime to execute this program. Therefore, an
efficient execution depends on a good strategy for scheduling the computational
cost generated by the program in execution (computation, data, and communi-
cation) over the computational resources available on the hardware (processors,

� The Anahy project is supported by CNPq/PDPG-TI (55 2196/2002-9), FAPERGS
(02/0571.4), and was developed in collaboration with UNISINOS and HP Brazil
R&D.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 198–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anahy: A Programming Environment for Cluster Computing 199

memories, and network). Such scheduling cannot be undertaken in a straightfor-
ward manner, since it must consider information related to program behavior.

Overcoming the above difficulty is a challenge that involves both program-
ming model [1] and scheduling. A common approach taken in the development
of programming tools and runtime environments (e.g. Athapascan-1 [2], Cilk [3],
Clik [4], Pyrros [5], and GrADS [6]) is building an intermediate level between
the program in execution and the scheduler describing the program structure in
terms of a Directed Acyclic task Graph (DAG). Since the literature on scheduling
strategies taking graphs as input is vast (e.g. [5,7,8,9]), the interaction between
graph and scheduling is well known (e.g. [10]). However, traditional program-
ming tools for cluster computing (such as those based on multithreading and/or
message passing) don’t offer high level programming resources for creating such
graph representation.

This paper addresses the aforementioned problem by proposing Anahy, a pro-
gramming environment for cluster computing. We present the programming in-
terface (API) proposed for this environment as well as some aspects related to its
scheduling mechanism. The main features of this environment are the specifica-
tion of a POSIX thread-based API and the use of dynamic scheduling techniques
based on DAGs. The main advantage obtained with these features is the dissocia-
tion between the description of the concurrency of an application and its parallel
execution [11]. The paper examines how Anahy builds a DAG describing the de-
pendencies among tasks at execution time from a multithreaded program and
how this DAG is handled by the runtime to apply dynamic scheduling techniques.

The remaining of the paper is organized as follows. In the next section, related
work is briefly presented. Section 3 presents the Anahy programming interface.
Section 4 covers the algorithm employed to schedule concurrent programs. Sec-
tion 5 presents three case studies, and Section 6 concludes the paper with final
remarks and perspectives for future work.

2 Related Work

A DAG is a typical abstraction to model the structure of programs in terms
of concurrent activities and data communications [12]. In this abstraction, each
concurrent activity defined by the program, named task, is represented by a ver-
tex and a communication between two tasks is represented by an arc connecting
two vertices. The use of DAG is very common in static schedulers. Dynamic tech-
niques have been proposed ([13]) in order to avoid inefficiency on blind dynamic
scheduling techniques [14] (that is, schedule techniques that don’t considering
the program structure).

Scheduling DAG is a NP-hard problem [15]. Most of the DAG schedulers are
based on list scheduling techniques (e.g. [8] and [7]). Those schedulers handle
the tasks generated by the program in priority list. This technique is based on
a two step algorithm: in the first step a priority list is built by assigning each
task generated by the program a priority; in the second step tasks are mapped
to processors respecting their execution priorities.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

200 G.G.H. Cavalheiro et al.

In 1995 Feitelson has observed in [16] that although lots of researches were
being made on DAG scheduling strategies, few efforts were observed in exploiting
their use on runtime systems. Nowadays, the research on the area is still popular
(e.g. [17,18,19,6]). Nevertheless, the number of programming and execution envi-
ronments employing DAG based scheduling is limited, particularly if we consider
those that support applications whose DAGs are created at execution time. Cilk
[3] and Athapascan-1 [2] are examples of them for SMP and cluster architectures.
Both Cilk and Athapascan-1 propose APIs that allow building graph structures
at execution time and a runtime able to apply dynamic scheduling techniques
based on list strategies.

The Cilk API provides resources for the explicit creation and synchroniza-
tion of concurrent activities, called threads, and to access a shared memory
space. These features allow the programmer to introduce synchronizations among
threads in order to control data exchange. The Athapascan-1 API offers special
data types in a shared memory space and a primitive to create concurrent ac-
tivities, called tasks. Tasks are created explicitly but, differently from Cilk, the
programmer must identify the input and the output data of each task.

The approach considered by both Cilk and Athapascan-1 takes into account
that the scheduler can exploit the structure of the graph during its construc-
tion. In such way, they can apply a heuristic to explore the program structure in
order to achieve an index of performance and avoid inefficiency of blind schedul-
ing techniques. Nevertheless, the graph built in Cilk represents only the prece-
dence among threads, not representing concurrency in a smaller unit such as a
task. As a consequence, the Cilk scheduler is able to exploit only serial parallel
graphs (nested fork and join operations). On the other hand, the graph built in
Athapascan-1 is more complete since it includes the data dependencies among
tasks. In this case the scheduler has more information about the program in
execution but the cost to build and manage the graph is higher. We propose to
mix these two approaches by offering a programming environment able to obtain
data dependencies among tasks from a graph describing execution precedence
among threads.

3 The Anahy Programming Interface

The Anahy API offers high level programming resources to handle a large number
of concurrent activities and communications in a multithreading style. This API
offers a fork/join-based model to describe the concurrency in terms of threads.
An intermediate level between this API and the runtime is responsible for iden-
tifying the concurrency in smaller units, called tasks, and creating a DAG rep-
resenting the data dependencies between tasks.

3.1 Handling Tasks with Anahy

The Anahy API provides services to explore a shared memory multiprocessor ar-
chitecture. These services allow the creation and the synchronization of threads

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anahy: A Programming Environment for Cluster Computing 201

Level 3

Ready Executing
��
��
��
��

��
��
��
��

Blocked Terminated

���
���
���
���
���

���
���
���
���
���

t
0

Level 0

tt 1.1.31.1.2t1.1.1

tt3.1.23.1.1 3.1.3t

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

3.3
t

3.2
tt

1.3
t

1.2
t

1.1
t

1
t

2
t

3
t

3.1

Level 1

Level 2

Fig. 1. Graph representing threads creation

and can be represented by the operations fork/join/exit. A fork consists in the
creation of a new execution flow responsible for executing a function F defined
in the body of the program having a set of data X as input. The fork opera-
tor returns an identifier for the newly created thread. Although the thread is
ready to be executed, the programmer cannot predict when this thread will be
triggered. The exit corresponds to the last operation performed by the thread
extinguishing the execution flow. The synchronization upon termination of a
thread is performed through a join, identifying the flow to be synchronized.
This operation allows a thread to be blocked until the termination of another
thread, so that it can gather the results Y produced by F(X).

Figure 1 shows a snapshot of threads state taken during the execution of
an Anahy program. The graph in this figure contains all threads created until
the snapshot: notice that they are in different states reflecting their life cycle
(executing, ready, blocked, and terminated). The threads are grouped in levels,
based on their depth in the program: a thread from level i creates threads on
level i + 1. For example, thread t0 creates threads t1, t2 and t3 (in this order).
Arrows in this representation identify the relation of creation; dotted arrows
were employed to identify threads on the same level created by the same thread.

3.2 A POSIX-Like Thread Interface

Considering the programming model, both fork and join operations create new
tasks. We have implemented this model in Anahy as a library for C/C++ pro-
grams offering a programming interface closer to the POSIX threads standard
in order to provide a multithreading programming style. Therefore, although
fork and join handle tasks, the API of Anahy offers primitives to create and
synchronize (join) Anahy threads.

The body of a thread. The body of a thread is defined as a conventional C
function, as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

202 G.G.H. Cavalheiro et al.

void * func(void * in) {
/* code */
return out;

}

In this example, func corresponds to the function to be executed in a new
thread and in corresponds to the memory address (in the shared memory) where
the input data for the function is located. The return instruction (return out)
corresponds to the exit operation. Notice that when a thread finishes its output
is stored in the shared memory at the address specified by out.

Synchronization of threads. The pthread_create and pthread_join ser-
vices correspond to the creation and join-synchronization of threads in POSIX
threads standard. The corresponding syntaxes in Anahy are:

int athread_create(athread_t *th, athread_attr_t *attr,
void *(*func)(void *), void *in);

int athread_join(athread_t th, void **res);

athread_create creates a new thread to execute the function defined by func;
the input data of func is stored in the address specified by in. The parameter
th will be updated to get a value to identify the new thread created. The attr
argument specifies thread attributes to be applied to the new thread (as memory
requirements or computational costs). In the operation of athread_join the
thread on which the synchronization is to be performed is identified by th and
res will be updated to point to a position in the shared memory where the
output of the function executed by the thread th can be found.

Migration of threads. Although Anahy interface provides a multithreaded
programming style, executions can be achieved on distributed memory architec-
tures. Thus, threads can be migrated between nodes. The scheduling mechanism
was developed to migrate threads transparently. Nonetheless, the programmer
must provide the execution support with information about the data required
(parameters) and produced (results) by the threads allowing the data trans-
fers. The mechanism adopted introduces the use of pack/unpack functions. The
prototypes of pack/unpack functions for a given thread are the following:

int packInFunc(void *in, char **buff);
int unpackInFunc(void *in, char **buff);
int packOutFunc(void *res, char **buff);
int unpackOutFunc(void *res, char **buff);

The first parameter of each pack/unpack function represents the data to be
sent (in) or produced (res) to/by a thread. The second parameter (buff) rep-
resents the buffer where the input data for a thread must be packed – in thread
creation – or from where data must be read to be unpacked – in thread launch-
ing –. Each function must return the size (in bytes) of data packed/unpacked.
The programmer associates specific pack/unpack functions to threads in the
thread attributes (athread attr t):

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anahy: A Programming Environment for Cluster Computing 203

int athread_attr_setpackinput(athread_attr_t *attr,
int (*func)(void *in, char **buff));

int athread_attr_setunpackinput(athread_attr_t *attr,
int (*func)(void *in, char **buff));

int athread_attr_setpackoutput(athread_attr_t *attr,
int (*func)(void *res, char **buff));

int athread_attr_setunpackoutput(athread_attr_t *attr,
int (*func)(void *res, char **buff));

The default value (NULL) allows the thread to execute only in the node where
it was created.

To illustrate the use of Anahy, the program presented in Figure 2 implements
the code able to generate the graph in Figure 1. Due to space limitations the
code not related to Anahy and the one describing pack/unpack operations are
not presented.

void *foo(void *depth) {
athread_t child[3];
int mydepth, *childdepth, *ret, *res = new int(0);
mydepth = (int *) i*depth;
if(mydepth > 3)

*res = computeSomething(mydepth);
else {

*childdepth = new int(mydepth+1);
for(int i = 0 ; i < 3 ; i++)

athread_create(&child[i], NULL, foo, childdepth);
for(int i = 0 ; i < 3 ; i++) {

athread_join(child[i], (void **)&ret);
*res += computeSomething(*ret);
delete(*ret);

}
delete(childdepth);

}
return res;

}
int main() {

int complexity, *result;
result = foo((void *) &complexity)
free(result);
return 0;

}

Fig. 2. An example of Anahy program

4 The Anahy Scheduler

While the API of Anahy provides a multithreaded abstraction to describe the
concurrency of applications, the scheduling strategy deals with tasks. The in-
terface between the API and the scheduling builds a DAG considering accesses
to the shared memory. These tasks are implicitly defined when the program
executes calls to athread_create and athread_join.

A call to a athread_create implies the creation of two tasks: the first one is
defined in the context of the new thread spawned. This task has as input data
the arguments of the thread itself. The second task is created in the original

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

204 G.G.H. Cavalheiro et al.

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

���
���
���
���
���

���
���
���
���
���

τ0 τ2

Level 0

Level 1

fork join exit
Ready Executing

��
��
��
��

��
��
��
��

Blocked Terminated ���
���
���
���
���

���
���
���
���
���

2
t

1
t

3
t

τ1 τ4τ3

0t

Fig. 3. Zoomed section of the DAG representing the tasks of thread t0 in Figure 1

thread, having as input the data present in the local memory of this thread and
the identifier of the new thread created. A call to a athread_join implies the
creation of one new task: the thread terminates the execution of the current task
and creates a new one starting in the instruction that follows (in lexicographical
order) the join. This new task has as input data the local memory of the current
thread and the output produced by the last task executed in the synchronized
thread.

The set of tasks created in the context of thread t0 (Figure 1) is represented in
Figure 3. In this figure arrows represent data dependencies among tasks. Down
arrows represent fork operations while the up arrow represents a join.

4.1 Scheduling Algorithm

The scheduling algorithm assumes shared memory architecture. A task is defined
as the unit of scheduling manipulation as well as is assumed to be executable
in a finite time. Tasks finish by executing fork, join or exit operations. The
basic algorithm generates three lists: the ready, containing the tasks with no
restrictions to be launched; the terminated list, containing the tasks that have
finished; and the blocked list containing the tasks waiting for synchronization.

First we introduce the scheduling algorithm considering a mono-processor ar-
chitecture. The processor is initially idle, then it takes the first task, τ0, from the
list of ready tasks and starts its execution. The instructions of τ0 are processed
sequentially until τ0 finishes by executing one operation involving the scheduling
process (fork/join/exit). The execution of a fork produces the creation of two
tasks τ1 and τ2. Task τ2 is the one explicitly created by the fork and task τ1 is
the one created to be the continuation of τ0 just after the fork. τ2 is stored in
the list of ready tasks while τ1 is launched. When a join is executed, for example
τ1.join(τ2), τ1 terminates and a new task τ3 is created: the code of task τ3 starts
at the instruction that follows the join; the initial state of τ3 is blocked. The
next scheduling action executes τ2: the task τ2 is taken from the ready list of
and launched. At the termination of τ2, τ3 is unblocked (becomes ready) and
started. Notice that τ3 has as input both the data produced by τ2 and τ1. This
process can be recursively applied.

In the case of a parallel architecture, there are two or more processors exe-
cuting the algorithm described above. So, when a task τi requests a join with
τj , two new situations may arise: either τj has already terminated or τj is being

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anahy: A Programming Environment for Cluster Computing 205

executed at that moment. In both cases τi finishes and a new task τi+1 is created.
In the former case (τj has terminated), the procedure consists of recovering the
data produced by τj , allowing the processor to continue with the execution of
τi+1 (τj is removed from the list of terminated tasks). In the latter case (τj is
being executed), τi+1 remains blocked and the processor looks for a new activity
on the list of ready tasks. τi+1 will become ready when τj terminates.

The Anahy scheduler was conceived to exploit list scheduling strategies. Thus,
its implementation was guided by the existence of a critical path defining the
largest sequence of tasks in the program. Considering this critical path, the
best performance can be achieved if the scheduler guarantees that during the
execution of a program, at least one of the processors is executing a task from this
path. Since Anahy focuses dynamic execution of programs, the real critical path
is unknown during the execution of the program. Therefore, considering that the
concurrent execution of a program must give the same result that a sequential
one, the scheduling assumes that the first and the last tasks of the critical path
are, respectively, the first and the last task created in the context of t0 (the first
thread launched). The algorithm was implemented in order to guarantee that
a processor will be dedicated to execute the tasks of t0 or the tasks defined in
the context of the threads synchronized by t0. The optimization obtained by the
Anahy implementation exploits the recursive nature of the scheduling: while a
processor is dedicated to execute the path starting on t0, a second processor is
dedicated to execute the path starting at t1, another to the path starting at t2
and so on.

4.2 Multilevel Scheduling

To execute an Anahy program, the user must inform a description of the real
architecture that will be explored. Like in MPI or PVM, it is necessary to inform
the number of nodes of a cluster involved in the execution as well as, for each
node, the number of virtual processors (VPs) desired ([20]). The Anahy virtual
machine is loaded as a runtime kernel when the program is launched on each
node. This runtime executes cooperatively and supports the implementation of
the scheduling algorithm. This implementation was conceived in three layers. The
lowest is handled by the operating system. In this level the VPs are scheduled
as system threads over the real processors on each node of the cluster. There is
no migration of VPs between nodes.

The second level refers to the allocation of tasks to VPs considering task status
(ready, terminated etc.). This level was implemented to consider the locality of
tasks. The list of tasks is implemented as a tree where each node represents an
Anahy thread (Figure 1) an Anahy thread is a sequence of tasks. This tree has
as root the first thread executed by the program, whereas the threads created
by the root thread compose the second level. The threads in the second level
are the roots of new sub-trees of threads and so on – as shown in figures 1 and
3. So, a VP handles only a section of the tree where there are tasks involved
in the execution of the current thread. When a VP has no more threads to be
executed in its local section, it tries to steal one from a different VP. If so, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

206 G.G.H. Cavalheiro et al.

VP will choose one thread ready to execute from the highest level of the tree.
Such thread is expected to have a larger amount of work than those in lower
levels. Another key aspect of this strategy is related to the locality of tasks inside
threads. Since each thread defines a sequence of tasks, the data transfers between
them are accomplished without accesses to the shared memory.

Finally, the third level of scheduling is demanded by the distribution of com-
putational load among the nodes of the cluster. The algorithm is an extension
of the second level, taking into account the (communication) costs involved in
thread migration between nodes. The implemented load distribution strategy
considers the depth of threads in the graph and the size of the data to be sent
between nodes. Other factors, including the computational and the physical loca-
tion of the data, can be added to this basically strategy. Notice that this scheme
doesn’t consider the migration of running threads.

5 Case Study

In this paper, we discuss the use of Anahy to support the description of ap-
plications describing DAGs. A general performance assessment of Anahy can
be found in [21] and the performance of a specific application developed in the
context of the Anahy project is presented in [22].

To illustrate the use of Anahy we present a synthetic program in Figure 4.
This program implements a recursive algorithm able to construct a binary tree
structure with a great number of concurrent activities. More details can be
found in [21]. The main input of the program is the one defining the num-
ber of recursive interactions to be accomplished. Figure 5 presents the graph
generated by running this program. In this figure, we also highlight the depen-
dencies between tasks (continuation dependency), between a task and a thread
(creation dependency), and between a thread and a task (join dependency). The
final structure of the graph (a binary tree) reflects the locality of references
of data (inputs and outputs of threads). Those dependencies are exploited at
execution time by the Anahy scheduler in order to optimize the execution of
tasks in the critical path. Notice that all threads execute the same amount of
work.

Figure 5 presents the graph generated by the program in Figure 4 and Figure
6 presents the execution trace of the same program. For the trace, the Anahy
runtime was configured with 4 VPs. In the figure, each line segment represents
a thread executed by a VP. Each different line style represents a different VP
responsible for executing the corresponding thread. Thus, it is possible to observe
that the scheduling strategy confer different priorities to threads according to
VPs – each VP is give a high priority to execute the tasks in the path . In this
figure we have highlighted the threads executed by the VP 1 to exemplify the
scheduling behavior.

In the context of the Anahy project we are working on the development of
real applications, among them we name a dynamic programming based sequence
alignment algorithm and a fluid dynamics simulation. The DAGs for these appli-
cations are represented in Figure 7 – circles represent tasks and boxes the data

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anahy: A Programming Environment for Cluster Computing 207

#include <athread.h>
int main(int argc, char **argv){

athread_t thr;
void *dta, *res;
dta = malloc(...); *dta = foo(...);
athread_create(&thr, NULL, tree, &dta);
athread_join(thr, &res);
free(dta);
doSomething(*res);
free(res);
return 0;

}

void *tree(void *argVoid){
void *arg0, *arg1, *res, *aux0, *aux1;
athread_t thr0, thr1;

if(notFinish(*argVoid)) {
arg0 = malloc(...); *arg0 = foo(*argVoid);
arg1 = malloc(...); *arg1 = bar(*argVoid);
athread_create(&thr0, NULL, tree, &arg0);
athread_create(&thr1, NULL, tree, &arg1);
*res = doSomething(arg0, arg1);
athread_join(thr0, &aux0);
athread_join(thr1, &aux1);
*res += doSomething(*aux0, *aux1);
free(aux0); free(aux1);

}
else res = NULL;

return res;
}

Fig. 4. Synthetic program executing a recursive algorithm

exchanged between them. In [22] it is presented an evaluation of the performance
obtained with the dynamic programming application.

The dynamic programming application describes a regular DAG (Figure 7.a).
In this application, a recursive algorithm fills in a matrix representing the com-
parison of two sequences. The value of each cell of the matrix corresponds to the
similarity between the elements of these sequences. The matrix is filled in from
top to bottom and from left to right, with element Mi,j requiring three values
that were previously calculated according to the concurrency relation: M(i, j) =
F(Mi−1,j−1, Mi−1,j, Mi,j−1). As shown in Figure 7.a, data locality can be pre-
dicted by the scheduler considering the regular structure of communications.

On other hand, fluid dynamics simulation is an irregular application, since
it presents an unpredictable program structure (Figure 7.b). The proposed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

208 G.G.H. Cavalheiro et al.

. .

Continuation dependency Creation dependency Join dependency

main

Level 2

Level 3

Level 1

Fig. 5. DAG generated by the Anahy runtime for the recursive program presented in
Figure 4

VP 2

Fig. 6. Trace representing the execution of the DAG presented in Figure 5

implementation divides the physical space into triangles. A thread is generated
for each triangle to compute the fluid velocity using Euler equation. Once a
thread finishes computing the equation, new threads can be generated to give
sequence to the simulation. Although the DAG is irregular, the scheduler can

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anahy: A Programming Environment for Cluster Computing 209

. . .

.

. . .

(a)
. . .

. . .
(b)

Fig. 7. Sections of DAGs generated by a regular (a) and an irregular (b) application

apply a load balancing strategy considering the depth of threads in the graph:
the closer to the top a thread is, the higher is the probability of this thread
accumulating a large amount of work.

6 Conclusion

This paper presented Anahy, an environment for exploring high performance pro-
cessing in cluster architectures. Anahy was presented in terms of its API and the
principles adopted for introducing an intermediate level responsible for building
a DAG at execution time. This DAG is exploited by the Anahy runtime to avoid
inefficacity of blind dynamic scheduling strategies in the execution of tasks. An-
other key contribution of this work is the adoption of an API based on the POSIX
threads standard allowing the development of programs to distributed memory ar-
chitectures without dealing with issues related to message exchange mechanisms.

The next steps of this work include the development of load balancing strate-
gies and the extension of the API to include all POSIX-defined synchronization
mechanisms for thread execution control (as critical sections and condition vari-
ables). Even though the use of such mechanisms is not recommended in the
Anahy programming model, due to potential performance loss, they will be in-
cluded to increase compatibility with legacy code.

References

1. Alverson, G.A., Griswold, W., Lin, C., Snyder, L.: Abstractions for portable,
scalable parallel programming. IEEE Trans. on Parallel and Distributed Systems
9(1) (1998) 71–86

2. Galilée, F.,Cavalheiro,G.G.H.,Roch, J.L.,Doreille,M.:Athapascan-1: on-line build-
ing data flow graph in a parallel language. In: Proc. of the 7th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), Paris (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

210 G.G.H. Cavalheiro et al.

3. Blumofe, R., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., K. H. Randall, Y.Z.:
Cilk: an efficient multithreaded runtime system. Journal of Parallel and Distributed
Computing 37(1) (1996) 55–69

4. Mendes, R., Whately, L., de Castro, M.C., Bentes, C., Amorim, C.L.: Runtime
system support for running applications with dynamic and asynchronous task par-
allelism in software DSM systems. In: Proc. of the 18th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD’06),
Ouro Preto (2006)

5. Yang, T., Gerasoulis, A.: DSC: Scheduling parallel tasks on an unbounded number
of processors. IEEE Transactions on Parallel and Distributed Systems 5(9) (1994)
283–297

6. Berman, F., Casanova, H., Chien, A., Cooper, K., Dail, H., Dasgupta, A., Deng,
W., Dongarra, J., Johnsson, L., Kennedy, K., Koelbel, C., Liu, B., Liu, X., Mandal,
A., Marin, G., Mazina, M., Mellor-Crummey, J., Mendes, C., Olugbile, A., Patel,
M., Reed, D., Shi, Z., Sievert, O., Xia, H., YarKhan, A.: New grid scheduling
and rescheduling methods in the grads project. International Journal of Parallel
Programming 33(2–3) (2005) 209–229

7. Coffman, E., Graham, R.: Optimal scheduling for two-processor systems. Acta
Informatica 1 (1972) 200–213

8. Hu, T.: Parallel sequencing and assembly line problems. Operations Research
19(6) (1961) 841–848

9. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph schedul-
ing algorithms. Parallel and Distributed Computing 59(3) (1999) 381–422

10. Cavalheiro, G.: A general scheduling framework for parallel execution environ-
ments. In: Proc. of the SLAB’01, Brisbane (2001)

11. Black, D.L.: Scheduling support for concurrency and parallelism in the mach
operating system. IEEE Computer 23(5) (1990) 35–43

12. Xiao, Z., Li, W., Jenq, J.: On unit task linear-nonlinear two-cluster scheduling
problem. In: Proc. of the ACM Symposium on Applied Computing, Santa Fe
(2005)

13. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. 31(4) (1999) 406–471

14. Culler, D., Arvind: Resource requirements of dataflow programs, Honolulu (1988)
15. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of

NP-Completeness. (1979)
16. Feitelson, D., Rudolph, L.: Parallel job scheduling: issues and approaches. In

Feitelson, D., Rudolph, L., eds.: Proc. of the IPPS’95. Volume 949., Springer (1995)
1–18

17. Iverson, M.A., Özgüner, F.: Dynamic, competitive scheduling of multiple DAGs in a
distributed heterogeneous environment. In: Heterogeneous Computing Workshop.
(1998)

18. Sinnen, O., Sousa, L.: List scheduling: extension for contention awareness and
evaluation of node priorities for heterogeneous cluster architectures. Parallel Com-
puting (V. 30:1. 2004)

19. Sakellariou, R., Zhao, H.: A hybrid heuristic for DAG scheduling on heterogeneous
systems. Proc. of the Heterogeneous Computing Workshop (2004)

20. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM (V. 33:8.
1990)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Anahy: A Programming Environment for Cluster Computing 211

21. Cordeiro, O., Peranconi, D., Villa Real, L., Dall’Agnol, E., Cavalheiro, G.: Ex-
ploiting multithreaded programming on cluster architectures. In: Proc. of the 19th

Annual International Symposium on High Performance Computing Systems and
Applications (HPCS), Guelph (2005)

22. Peranconi, D.S., Cavalheiro, G.G.H.: Using Active Messages to explore high per-
formance in cluster of computers. In: Proc. of the 15th International Conference
of the Chilean Computer Science Society (SCCC). (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 212 – 224, 2007.
© Springer-Verlag Berlin Heidelberg 2007

DWMiner: A Tool for Mining Frequent Item Sets
Efficiently in Data Warehouses

Bruno Kinder Almentero, Alexandre Gonçalves Evsukoff, and Marta Mattoso

COPPE/Federal University of Rio de Janeiro,
P.O. Box 68511, 21941-972 Rio de Janeiro RJ, Brazil

Tel.: (+55) 21 25627388; Fax: (+55) 21 22906626
kinder@cos.ufrj.br, evsukoff@coc.ufrj.br, marta@cos.ufrj.br

Abstract. This work presents DWMiner, an association rules efficient mining
tool to process data directly over a relational DBMS data warehouse. DWMiner
executes the Apriori algorithm as SQL queries in parallel, using a database PC
Cluster middleware developed for SQL query optimization in OLAP
applications. DWMiner combines intra- and inter-query parallelism in order to
reduce the total time needed to find frequent item sets directly from a data
warehouse. DWMiner was tested using the BMS-Web-View1 database from
KDD-Cup 2000 and obtained linear and super-linear speedups.

1 Introduction

The application of data mining tasks on huge databases requires an increasingly large
processor and memory capacity. Currently most data to be mined resides in Data Base
Management Systems (DBMS). An increasing number of organizations are installing
large data warehouses using relational database technology. There is a huge demand
for nuggets of knowledge from these data warehouses [16]. Nevertheless, most of the
mining algorithms do not operate directly over a data warehouse. The integration of
Data Mining (DM) tools with DBMS is now more than a trend, it is a reality. The
major DBMS vendors have already integrated DM solutions within their products. In
addition, the main DM suites have also provided the integration of DM models into
DBMS through modeling languages such as the Predictive Model Markup Language
(PMML). It is thus a fact that solutions on new DM tools and methods must consider
their integration with DBMS.

In this paper, we present DWMiner, an efficient mining tool to process data
directly over a relational DBMS data warehouse. Our solution takes advantage of a
cluster of PCs running a Database Cluster middleware.

DBMS query processing techniques have been optimized to take advantage of PC
Clusters without having to do a new physical database design through Database
Cluster solutions [11] [6] [5]. They preserve the application and DBMS autonomy
while providing high performance query processing in PC clusters. The database
cluster combines a low cost solution with an excellent performance. Briefly, a
database cluster is a middleware between the application and the DBMS that runs on
a set of PC servers interconnected by a dedicated high-speed network, each one
having its own processors and hard disks, and running an off-the-shelf DBMS [5].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data Warehouses 213

This work addresses the mining of association rules task, more specifically, the
search for frequent item sets. The procedure was based on the Apriori algorithm,
developed by Agrawal and Srikant [4]. The Apriori algorithm for finding frequent
item sets makes multiple passes over the data. Each pass consist of two phases. The
first is the candidate generation phase where all candidate item sets are generated.
Then, data is scanned to count, for each transaction, the occurrences of a candidate
itemset in a transaction. Our implementation simply transforms every database search
into an SQL query.

Many parallel algorithms have been proposed based on Apriori. Count
Distribution, Data Distribution and Candidate Distribution [3] are some examples.
However, these algorithms do not work with a DBMS.

The Apriori algorithm was modified in DWMiner to deal with SQL queries and a
DBMS instead. DWMiner executes SQL queries in parallel using database cluster
middleware techniques proposed by Lima et al. [9] and [10]. Such middleware is
based on parallel query processing techniques developed for SQL query optimization
in OLAP (On-Line Analytical Processing) applications. This database cluster has
become an open source solution named ParGRES [11], [13] and is publicly available
at http:// forge.objectweb.org/projects/pargres/. Each cluster node can run any non
parallel relational DBMS. In this work we use PostgreSQL [14] which is open source.
DWMiner combines intra- and inter-query parallelism in order to reduce the total time
needed to find frequent item sets directly from a data warehouse. We ran DWMiner
using the BMS-Web-View1 database from KDD-Cup 2000 [8] and obtained linear
and super-linear speedups in cases where the support threshold is small like, for
instance 0.01.

This paper is organized as follows. Section 2 describes the Apriori algorithm used
as a basis for our implementation. Section 3 describes how we changed the Apriori
algorithm to access a data warehouse and the parallel techniques used in DWMiner.
Section 4 describes our prototype implementation and experimental results and
Section 5 concludes.

2 The Apriori Algorithm

The problem of mining association rules was initially presented by Agrawal [1] and
today is one of the most popular data mining algorithms. Association rule mining,
also known as market basket analysis, finds interesting association relationships
among a large set of data items. Typically, the data is a set of records where each
record represents a transaction containing a set of items. The main goal of the
algorithm is to find associations on items that are often present in the same
transaction.

Association rules are considered interesting if they satisfy both a minimum support
threshold and a minimum confidence threshold. But before describing the procedures
that generate association rules we first need to formally define the terms item set,
confidence, support and an association rule. An association rule is an implication of
the form X => Y where X and Y are sets of items and X ∩ Y = ∅ [2]. The intuitive
meaning of this rule is that transactions of the database which contain items in the set

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

214 B.K. Almentero, A.G. Evsukoff, and M. Mattoso

X tend to contain also the items in Y. The set of items X and Y are generally referred
as itemsets. A k-itemset is an itemset that contains k items in a lexicographic order.

Association rules are generally defined based on two measures: Support and
Confidence. The Support of a rule X => Y is the percentage of the transactions that
contains X ∪ Y, i.e. both X and Y. The Support is computed as the probability
P(X ∪ Y). A frequent itemset is an itemset with a support value higher than a
minimum specified threshold. The Confidence of a rule X => Y is the percentage of
transactions that contains X and also contains Y. This is taken to be the conditional
probability, P(Y | X). These measures can be summarized as:

Support (X => Y) = P(X ∪ Y)

Confidence (X => Y) = P(Y | X)

The algorithm of mining association rules can be divided in two sub problems: (i)
find all the combinations of items having support higher than the minimum support,
called frequent item sets; and (ii) find the association rules with confidence greater
than or equal to the minimum confidence, based on frequent item sets generated
previously. We are particularly interested in the first sub problem: finding the
frequent item sets. There are many algorithms to generate frequent item sets such as
the AIS [1], the SETM [7] and the AprioriTid [4]. Among these algorithms, the
Apriori is considered one of the most important and widely used. Thus, we chose
Apriori to be the basis of our implementation. The pseudo-code for the Apriori
algorithm is as follows.

Input: Database,D, of transactions;
 minimum support threshold min_sup

Output: frequent item sets in D

Ck: Candidate itemset of size k;

Lk: frequent itemset of size k;

1. L1 = {frequent 1-itemsets};

2. for (k = 2; Lk-1 !=∅; k++) {

3. Ck = candidates generated from Lk-1;

4. for each transaction t in database do{

5. increment the count of all candidates in Ck
6. that are contained in t

7. }

8. Lk = candidates in Ck with min_sup

9. }

10. return ∪k Lk;

Step 1 of Apriori finds L1, the frequent 1-itemsets (line 1). In the next step the
frequent itemset Lk-1 is used to generate the candidate k-itemsets Ck (line 3). Then, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data Warehouses 215

dataset is scanned to find the support values for candidates (lines 4 to 7). Finally, the
frequent k-itemsets are determined (line 8). The final solution is the union of the
frequent k-itemsets (line 10).

3 Apriori Implementation in DWMiner

Discovery of association rules is an important Data Mining problem. Parallel
algorithms are required [3] to cope with the databases to be mined which are often
very large (measured in gigabytes or even in petabytes). However, most of the parallel
solutions do not deal with a DBMS. In DWMiner we combine parallel techniques
with DBMS advantages to efficiently mine frequent item sets from large databases. In
this section we present how we adapted Apriori to issue queries to run in a database
cluster.

3.1 Database Clusters

Database Cluster is a middleware that provides parallel query processing in
applications that use a sequential DBMS [15]. In a database cluster, each node of the
cluster runs its own sequential DBMS as a black-box component. Clients submit
transactions to the middleware which is responsible to distribute queries through the
cluster nodes.

Parallel query processing of database clusters is based on two techniques known as
intra-query and inter-query parallelism. In intra-query parallelism, a query is
decomposed in sub-queries that scan different subsets of the data. The sub-queries are
executed in parallel in the cluster nodes. Fig. 1 (a) shows an example of intra-query
parallelism where the query Q1 is decomposed in n sub-queries. The database is
replicated at all nodes involved with the intra-query processing. Each sub-query is
responsible to process a different range of data at each node in parallel. Finally the
sub-results are combined to produce the final query result. This technique aims to
reduce the execution time of heavy-weight queries, i.e., queries that access large
amounts of data and may perform complex operations, thus taking a long time to be
processed. In the inter-query technique, queries are executed as they are really, which
means no decomposition. Distinct queries are distributed and executed concurrently in
the cluster nodes to enhance database system throughput. Fig. 1 (b) shows an example
of inter-query parallelism where queries Q1 to Qn are distinct and distributed over the
cluster nodes to be executed in parallel.

These two techniques are not exclusive, but most database clusters provide either
inter-query [6], [15] or intra-query [5] parallelism. However, they have been
successfully combined in [10] and [11], so in DWMiner both inter and intra-query
parallelism are explored. When receiving a heavy weight query we can use intra-
query parallelism, and, in the case of simple queries, the inter-query parallelism
should be more appropriate. In addition, a query being processed by intra-query
parallelism can run concurrently with other queries through inter or intra-query
parallel processing.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

216 B.K. Almentero, A.G. Evsukoff, and M. Mattoso

Application

1

2

3

nQ1n

Q13

Q12

Q11

Application

1

2

3

nQn

Q3

Q2

Q1

 (b) – Inter-query parallelism with Q1 ... Qn (a) – Intra-query parallelism with Q1

Fig. 1. Parallel query processing techniques

3.2 Adapting Apriori to DBMS Access

Now we describe how we changed the Apriori algorithm to generate SQL queries,
instead of reading data from a flat file to main memory. First of all we name a set of
items which contains k items as a k-item set. Hence, the first step of the algorithm
(k=1) is to generate the 1-itemset and find the support for each element. Thus, we
simply have to scan all the transactions in order to count the number of occurrences of
each item. In our case, the table was called bmswebview1 with two attributes: a_item
and a_tid, where a_item is the item identification and a_tid the transaction
identification. The SQL query generated by our implementation is Q1, described as
follows. This query corresponds to the line 1 of the pseudo-code described earlier.

Q1: Select a_item, count(*) as total

 from bmswebview1

 group by a_item

 having count(*) >= minimum_support

In Figure 2, we show the architecture of the typical Apriori algorithm and
DWMiner with Apriori accessing data to be mined directly from the data warehouse
through a DBMS driver interface.

A prio ri

F lat
F ile

A prio ri w ith S Q L queries

Load in to m em ory

D B M S

D B M S JD B C D river

S Q L result

D W M iner

Fig. 2. Apriori data access and DWMiner database cluster access

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data Warehouses 217

The next step is to generate the candidate 2-item sets from which we will find the
frequent 2-itemset. In this case the SQL query Q2 generated by DWMiner is
described as follows.

Q2: Select count(a_tid)

 from bmswebview1

 where a_item = item1

 and exists (select a_tid

 from bmswebview1

 where a_item = item2)

This query Q2 corresponds to the steps 4 to 6 in the Apriori pseudo-code. So, we
are counting the transactions that contain both item1 and item2. The number of
queries generated is equal to the number of candidate 2-item sets. This process
continues until there is no more candidate item sets left. Every query generated in this
loop corresponds to the steps 4 to 6 in the Apriori pseudo-code. They will be different
depending on the value of k, from the current k-itemset being analyzed. Thus, to
generate the query to find the 3-itemset support we just need to add one more level of
nested select in Q2 generating the following query.

Q3: Select count(a_tid)

 from bmswebview1

 where a_item = item1

 and exists (select a_tid

 from bmswebview1

 where a_item = item2

 and exists (select a_tid

 from bmswebview1

 where a_item = item3)

Then, the number of nested selects is directly related to the itemset being analyzed.
If we are analyzing the k-itemset then we will have k levels of nested selects. Once a
candidate itemset is created we can build SQL queries for each element and process
them in parallel because they are independent.

3.3 Adapting Apriori to Database Clusters

The main goal of DWMiner is to reduce the total time of database searching. In order
to do that, DWMiner adopts inter and intra-query parallelism available in ParGRES
database cluster. Intra-query parallelism is obtained by using a virtual partition
technique (VP) [10]. This technique breaks one heavy weight query into sub-queries
by adding selection predicates as proposed in [5]. Each DBMS receives a sub-query
and is forced to process a different subset of data items. Each subset is called a
“virtual partition”.

The SQL Q1 query generated in the first step of the Apriori algorithm to find the
frequent 1-itemset involves a group by and a having operation. Such operations are
time consuming since a full scan on a large relation is needed. To overcome this

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

218 B.K. Almentero, A.G. Evsukoff, and M. Mattoso

problem at this point DWMiner takes advantage of intra-query parallelism involving
all of the cluster nodes. Thus, the Q1 generated for the first step would be rewritten by
the database cluster as the following Q1i sub-queries, where i varies from 1 to n being
the number of nodes involved on the intra-query processing.

Q1i: Select a_item, count(*) as total

 from bmswebview1

 and bmswebview1_key > :v1 and bmswebview1_key <= :v2

 group by a_item

The basic difference between Q1 and Q1i is the range predicate “bmswebview1_key
> :v1 and bmswebview1_key <= :v2”. However, in this case we also suppress the
minimum support clause, since it can only be checked after all intervals are done
counting. We call virtual partitioning attribute (VPA), the attribute chosen to
virtually partition the data. Usually the VPA is the primary key of the table being
selected, in this case bmswebview1_key. The values used for parameters v1 and v2
vary from node to node and are computed according to the total range of the VPA and
the number of nodes. Let us assume that the interval of values of bmswebview1_key
is [1; 6,000,000] and we have 4 nodes, then, 4 sub-queries must be generated. The
intervals covered by each sub-query are the following: Q11: v1=0 and v2=1,500,000;
Q12: v1=1,500,000 and v2=3,000,000; and so on. In spite of each node having the
same replica of bmswebview1 table, virtual partitioning forces each one to process a
different data subset of bmswebview1. Besides, full replication makes it possible to
allocate any node to process any sub-query. After sub-query execution, it is necessary
to compose the partial counting produced by each one in order to have the final result.
Consider that all Q1i partial results are stored in table Temp. The final result can be
obtained by executing the following query:

Q1result: select a_item, sum(total)

 from Temp

 group by a_item

 having sum(total) >= minimum_support

In Fig. 3, we show the architecture of the Apriori algorithm and DWMiner with
respect to accessing data to be mined through a database cluster middleware. In this
case DWMiner is issuing query Q1 to the database cluster, which decides to process it
through intra-query parallelism. Thus Q1 is decomposed as Q1i sub-queries to access n
different virtual partitions of table bmswebview1. Such middleware can be C-JDBC
or ParGRES or any other database cluster. However, if C-JDBC is used, Q1 cannot be
processed through intra-query parallelism.

For the queries of the following steps of Apriori, DWMiner tries to find a balance
between inter and intra-query parallelism. For example, once the k-itemset is
analyzed, a candidate itemset is created. Each element query can be processed
independently in parallel through inter-query. Therefore, DWMiner sends each query
to a cluster node. However, the time needed to process one such query may be
relatively large. In this case, the query is decomposed and its sub queries are
processed in parallel.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data Warehouses 219

Fig. 3. DWMiner using Apriori accessing a database cluster

4 Experimental Results

To evaluate DWMiner techniques we have used a Linux based PC cluster and
PostgreSQL 8.0 DBMS [14]. The dataset used in our experiment is the BMS-Web-
View1 which contains several months’ worth of click stream data from an e-
commerce web site. A portion of their data was used in KDD-Cup 2000 competition
[8]. This dataset has a total of 56,902 transactions and 497 distinct items, its
maximum transaction size is 267 and the average transaction size is 2.5. Our
experiments run on top of the cluster system of the Paris team at INRIA [12]. Our
tests have used up to 32 nodes of this cluster system, each node configured with dual
2.2 GHz Opteron processors with 2 GB of main memory. The cluster is
interconnected by a standard Ethernet network.

The results from our experiments are shown in Fig. 4. We plot times taken by our
implementation for values of support ranging from 0.1% to 2% using only inter-query
parallelism. We ran DWMiner varying the number of nodes from 1 to 32 for each
support value. In order to improve reading and analysis, we use logarithmic scale.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

220 B.K. Almentero, A.G. Evsukoff, and M. Mattoso

Fig. 4. Execution times for DWMiner

Although, DWMiner implements its own inter-query mechanism we also used
C-JDBC[6] to perform inter-query parallelism as an alternative successful open
source database cluster solution.

Most of the results in Fig. 4 present linear speedup as we increase the number of
nodes, since queries sent to the database cluster are independent from each other. But,
analyzing the higher support curves like 0.02 (2%) and 0.015 (1.5%) we note that the
results are worse than linear. This happens because the number of candidates
generated and, consequently, the number of queries is not enough to compensate the
time spent to distribute these queries over the cluster nodes and receive the results.
Still, DWMiner does not experience slow down factors. Table 1 gives a more accurate
view of the graphic shown in Fig. 4. In the worst case, using 32 nodes is 4 times faster
than using 1 node.

As we can see in Table 1, by using two nodes the execution time of DWMiner is
reduced by almost 50% for the support 0.02 (2%). However, when 4 nodes are
used the time reduction is linear and the execution time remains almost the same
until 32 nodes. This happens because when we use 4 nodes we get too close to the
situation where the time spent to distribute the queries and wait for the results is
the main factor in the total time of execution. However, as the support threshold
decreases, the time reduction continues to improve the performance and it is often
super-linear.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data Warehouses 221

Table 1. Query Execution times for DWMiner

 Number of Nodes

Support 1 2 4 8 16 32

0.0200 11,354 6,842 4,959 4,034 3,672 3,867

0.0150 22,581 11,991 7,618 5,328 5,274 4,648

0.0100 67,707 32,651 17,878 10,821 7,653 7,952

0.0075 132,153 60,715 31,801 17,989 11,678 8,355

0.0050 238,717 105,636 55,043 29,326 18,722 12,891

0.0033 411,360 177,668 90,894 47,575 29,724 15,564

0.0025 540,933 234,830 119,517 61,941 38,767 20,246

0.0010 1,291,949 555,865 282,049 144,623 88,928 41,662

Table 2 shows the performance improvement we obtained in each case. We can
see in Table 2 that most results are quasi-linear or super-linear. When we use 2 nodes
and the supports going from 0.01 (1.0 %) to 0.001 (0.1%) the support is lower enough
to generate a relatively large number of candidate item sets. For these support
thresholds, a large number of queries are generated and sent to the nodes. When many
queries are sent to a node the database cluster makes a wise use of the system cache
instead of reading data from disk. Thus, many queries process data from memory
reducing considerably the query execution time achieving, this way, super-linear
speedups.

Table 2. Perfomance evaluation of DWMiner

 Number of Nodes (Linear Speedup)

Support 2 (50.00%) 4 (25.00%) 8 (12.50%) 16 (6.25%) 32 (3.13%)

0.0200 60.26% 43.68% 35.53% 32.34% 34.06%

0.0150 53.10% 33.74% 23.60% 23.36% 20.58%

0.0100 48.22% 26.40% 15.98% 11.30% 11.74%

0.0075 45.94% 24.06% 13.61% 8.84% 6.32%

0.0050 44.25% 23.06% 12.28% 7.84% 5.40%

0.0033 43.19% 22.10% 11.57% 7.23% 3.78%

0.0025 43.41% 22.09% 11.45% 7.17% 3.74%

0.0010 43.03% 21.83% 11.19% 6.88% 3.22%

The graphic in Fig. 5 compares the results of inter-query only by using C-JDBC
with the results of intra-query combined with inter-query through ParGRES. We also
compared inter-query only using C-JDBC and inter-query only using ParGRES. In
both implementations queries are distributed to cluster nodes in a round robin
fashion.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

222 B.K. Almentero, A.G. Evsukoff, and M. Mattoso

Fig. 5. Inter-query versus (inter + intra) query

We obtained very similar results in both database clusters. Therefore, in Fig. 5 we
kept the legend as inter versus inter/intra rather than C-JDBC versus ParGRES. In the
combination case, intra-query was implemented using only two nodes. Queries were
decomposed in two sub-queries and executed in parallel in the cluster concurrently
with other queries. So, when running with 32 nodes, it means that 16 different queries
can be executed in parallel. However, intra-query demands an aggregation phase for
each query to compose the two partial results.

As shown in Fig. 5, the inter-query parallelism alone is better than the combination
between inter and intra-query parallelism. Since we are using a relatively small
database, individual queries could not be considered to be heavy weight queries. So,
the time needed to aggregate the partial results of the sub-queries was relevant with
respect to overall query reduction. Nevertheless, the combination of inter with intra-
query achieved linear and super-linear speedups.

5 Conclusions and Future Work

One of the best advantages in using a DBMS is that it already provides efficient
techniques to deal with large datasets. These techniques need to be re-implemented in
part if we want to work with flat files that do not fit in the available memory.

Most of the mining algorithms demand a flat file to be in a special format. These
algorithms need an extra step to extract the information they need to a flat file. Since

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data Warehouses 223

we can have data warehouses with dozens of gigabytes or even petabytes, to generate
a file from these data may require a lot of extra storage. DWMiner solution is DBMS
vendor independent, thus it can be applied directly over a data warehouse system
using techniques that take advantage of a low cost high performance scenario such as
database clusters.

In this work we showed that by using such techniques we acquire significant
improvement in the process of mining data directly from a DBMS. We can efficiently
mine frequent item sets from a data warehouse by sending queries to be processed in
parallel by the database cluster. In our experiments, we have used one representative
dataset – BMS-Web-View1 – and as future work we intend to test DWMiner against
some larger databases where we expect to explore the combination of inter and intra-
query parallelism and take more advantage of the intra-query parallelism.
Nevertheless, we achieved linear and super-linear results working with a relatively
small dataset comparing to a real data warehouse.

The techniques adopted in DWMiner are not difficult to implement and maintain
since they are based on SQL and take advantage of simple parallel techniques found
in database clusters. In addition, DWMiner solution is all based on open-source
software and commodity hardware. Such techniques can also be applied in tasks
different from mining frequent item sets inside the data mining context.

Acknowledgements

The authors are grateful to the Brazilian research agencies CNPq, CAPES and FINEP
for the financial support of the work. We are also grateful to the Paris team at INRIA
for providing the PC cluster environment.

References

1. Agrawal, R., Imielinsk, T., Swami, A. N., 1993, "Mining association rules between sets of
items in large databases". In: 1993 ACM SIGMOD International Conference on
Management of Data, pp.207-216.

2. Agrawal, R., Mannila, H., Srikant, R., et al, 1996, "Fast discovery of association rules". In
U.M.Fayyad, G.Piatetsky-Shapiro, P.Smyth, and R.Uthurusamy, Advances in Knowledge
Discovery and Data Mining, chapter 12, AAAI/MIT Press.

3. Agrawal, R.,Shafer, J., 1996, "Parallel Mining of Association Rules", IEEE
Trans.Knowledge and Data Engineering,v.8, pp.962-969.

4. Agrawal, R.,Srikant, R., 1994, "Fast algorithms for mining association rules". In: 20th
International Conference on Very Large Databases (VLDB), pp.487-499.

5. Akal F., Böhm, K., Schek, H. J., 2002, "OLAP Query Evaluation in a Database Cluster: a
Performance Study on Intra-Query Parallelism". In: East-European Conference on
Advances in Databases and Information Systems (ADBIS), Bratislava, Slovakia.

6. C-JDBC. In: http://c-jdbc.objectweb.org/, Accessed in 2005.
7. Houtsma, M.,Swami, A., 1995, "Set-oriented mining of association rules". In: 11th

Conference on Data Engineering, Taipei, Taiwan.
8. Kohavi, R., Brodley, C. E., Frasca, B., et al., 2000, "KDD Cup 2000 Organizers' Report:

Peeling the Onion", In: SIGKDD Exploration 2 (2), pp.86-98.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

224 B.K. Almentero, A.G. Evsukoff, and M. Mattoso

9. Lima, A. A. B., Mattoso, M., Valduriez, P., 2004, "OLAP Query Processing in a Database
Cluster". In: 10th Euro-Par Conference, pp. 355-362.

10. Lima, A. A. B., Mattoso, M., Valduriez, P., 2005, "Adaptive Virtual Partitioning for
OLAP Query Processing in a Database Cluster". In: 19th SBBD, pp.92-105.

11. Mattoso, M., Zimbrão, G., Lima, A. A. B., Almentero, B.K. et al., 2005, "ParGRES: a
middleware for executing OLAP queries in parallel". In: COPPE/UFRJ Technical Report
ES-690, http://pargres.nacad.ufrj.br/Documentos/ES-690.pdf.

12. Paris Project. In: http://www.irisa.fr/paris/General/cluster.htm.
13. ParGRES In: http://pargres.nacad.ufrj.br/, Accessed in 2005.
14. PostgreSQL. In: http://www.postgresql.org, Accessed in 2005.
15. Röhm, U., Böhm, K., Schek, H. J., 2002, "FAS - A Freshness-Sensitive Coordination

Middleware for a Cluster of OLAP Components". In: 28th International Conference on
Very Large Data Bases (VLDB2002), pp.754-765.

16. Sarawagi, S., Thomas, S., Agrawal, R., 1998, "Integrating Association Rule Mining with
Relational Database Systems: Alternatives and Implications". In: 1998 ACM SIGMOD
International Conference on Management of Data, pp.343-355.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Parallel Implementation of the K Nearest

Neighbours Classifier in Three Levels: Threads,
MPI Processes and the Grid�

G. Apaŕıcio, I. Blanquer, and V. Hernández

Instituto de las Aplicaciones de las Tecnoloǵıas de la Información y Comunicaciones
Avanzadas - ITACA

Universidad Politécnica de Valencia. Camino de Vera s/n 46022 Valencia, Spain
{gaparicio, iblanque, vhernand}@itaca.upv.es

Tel.: +34963877007; Fax: +34963877274

Abstract. The work described in this paper tackles the problem of data
mining and classification of large amounts of data using the K nearest
neighbours classifier (KNN) [1]. The large computing demand of this
process is solved with a parallel computing implementation specially de-
signed to work in Grid environments of multiprocessor computer farms.
The different parallel computing approaches (intra-node, inter-node and
inter-organisations) are not sufficient by themselves to face the compu-
ting demand of such a big problem. Instead of using parallel techniques
separately, we propose to combine the three of them considering the par-
allelism grain of the different parts of the problem. The main purpose is
to complete a 1 month-CPU job in a few hours. The technologies that
are being used are the EGEE Grid Computing Infrastructure running the
Large Hadron Collider Computing Grid (LCG 2.6) middleware [3], MPI
[4] [5] and POSIX [6] threads. Finally, we compare the results obtained
with the most popular and used tools to understand the importance of
this strategy.

Topics: Grid, Parallel Computing, Threads and Data Mining.

1 Introduction

Data Mining is a recently created concept that groups different techniques of
data analysis and model extraction. The main purpose of Data Mining is the
extraction of hidden predictive information from large databases. In this way,
Data Mining is a helpful technology to get profit of the great amount of poorly
exploited data. The interest of this work is focused on the classification of new
registers (automatic selection of the category in which a piece of information
will more likely fall into). The target of this work is the development of a set of
tools to assist large-scale epidemiology studies. Thus the initial hypothesis is a

� The authors wish to thank the financial support received from the Spanish Ministry
of Science and Technology to develop the GRID-IT project (TIC2003-01318).

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 225–235, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

226 G. Apaŕıcio, I. Blanquer, and V. Hernández

large database with registers in which most of them are labelled and in which
the process will predict the label for a few of them. Considering this situation,
we select the K nearest neighbours method [1] as the most suitable classification
method to obtain the needed results, i.e., the predicted labels. The work will
concentrate on speeding up the performance. The analysis of the accuracy and
goodness of the predictions are not in the scope of this work.

Along this paper we will first make a review, in Section 2, of the specific
problem to work with (the KNN method). After that, in Section 3, we will
propose an architecture to the application (the Three-layer Parallelism Archi-
tecture) using the three technologies proposed. Once we have presented the prob-
lem and the architecture, then will be review the implementation in Section 4,
starting with brief comments on the three technologies used and the selected
interface. Finally we will see the results obtained with the solution proposed
and a set of conclusions about the work made will be presented in the last two
sections.

2 K Nearest Neighbours

One of the most popular instance-based classification techniques is the K Near-
est Neighbours method [1]. This method is a generalisation of the one nearest
neighbour rule. It is appropriate when dealing with a large set of labelled regis-
ters or instances and a small group of non-labelled registers to be classified with
the most probable label. Our hypothesis is that we are dealing with data with
an strong relationship among the multidimensional distance of each entry with
the rest. In this way, the 1-NN (one nearest neighbour [1]) consists on assigning
to the non-labelled registers, the label of the nearest labelled register. Based
on that, Cover & Hart [1] implemented a variant known as K-NN (K Nearest
Neighbours) that applies the same philosophy that 1-NN but considering the
most frequent label in the K Nearest Neighbours instead. The K parameter is
very important and the optimal value will depend on many factors, such as the
data nature, and it has to be chosen experimentally.

The cross validation test is the most popular test technique used for the
analysis of the error of the classification. Starting from a set of labelled registers,
those are divided into B blocks. One block will be used as the test set and the
rest as the training set. This operation is performed with the B blocks. The K-
NN classifier is applied to any register in the test block and compares the label
assigned with the one previously defined. If the labels differ, an error is recorded,
and the consolidation of all the errors obtained for the whole test block is the
validation error. Repeating this process by changing the test set to the rest of
blocks, the sum of all the errors will be an approximation to the real error of the
K-NN classifier with the chosen K parameter

err =
b=B∑

b=1

(errb) where b is the chosen block.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Parallel Implementation of the KNN Classifier in Three Levels 227

3 Three-Layer Parallelism Architecture

The decision of using the three layer parallelism lies on the difficulty of man-
aging a large amount of data (especially when dealing epidemiology databases
containing several millions of registers) and the poor results of traditional se-
quential approaches. Our purpose is based on performing a set of experiments
with different values of K in the K-NN method to determine the optimal value
for this K according to the lowest error in a cross validation test. Once the
optimal value for K is determined, we will be able to classify the non-labelled
registers with the K-NN method. The main aim of the work will be on reducing
computing time especially for epidemiology analysis and support.

The evaluation of the error for each value of K takes around 18 CPU hours
using a state-of-the-art computer and a database of 1 million records and 20
fields per record. Thus, a complete optimisation process of 10 different values
of K would take more than 7 CPU days, which would be unmanageable in a
production environment. However, the process is intrinsically parallel, present-
ing two clear levels of parallelism. In a first level, each evaluation of the error
using different values of K is totally independent, since it consists on computing
the whole classification and cross-validation process for each value of K, using
the same input database. This process consists on computing the K minimal
distances to all registers and selecting a block to act as the test set. This block
will be re-labelled using the rest of the database as the training set. Labels are
assigned considering the labels of the K Nearest Neighbours. This process will
be repeated selecting different blocks of the database as training sets in order to
cover the whole database. Each validation using a different block is independent.
However, the computational cost of this process is on the order of cN2, being c
the number of flops for computing a single distance between two registers and N
the number of registers in the database (directly affecting communication cost).
Thus, a trade-off solution must be applied to obtain the maximum performance
considering the best granularity.

In the frame of this scenario, three parallelism approaches can be considered.
The conditions of each one concerning the problem of this article are the following:

– Grid Computing [2]. This technique implies the coarsest granularity. Grid
Computing deals with the concurrent usage of different computing resources
in different administrative domains in a similar approach as a large-scale
batch queue. Inter-resource communication is not usually available due to the
long latencies, the internal configuration of nodes in resource providers and
the overhead of the security policies. Data access thus is mainly performed
through the job submission process and shared repositories, using ftp-like
protocols. In this paradigm, the minimal running entity is the job, interacting
with the rest of the jobs through input and output files.

– Message-Passing Parallel Computing. This technique is proven to be very
efficient in most medium-grain problems in which communication costs are
on an order of magnitude lower than computing cost. Typically, jobs are
fairly symmetrical and run on homogeneous nodes connected through a fast

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

228 G. Apaŕıcio, I. Blanquer, and V. Hernández

network. Security policies are not applied in communication and data ex-
change is performed through message passing.

– Shared-Memory Parallel Computing. This constitutes the finest-grain paral-
lelism. Applicable in very coupled and homogeneous environments, different
threads concurrently execute a common program on different fragments of
data. Data is exchanged through shared regions and contention mechanisms.
Generally the scaling factor of those systems is low, due to hardware con-
straints and speed-ups are good.

Our proposal is to combine the three levels to achieve the maximum perfor-
mance. Using shared-memory approaches only would lead to small speed-ups
(limited by the number of available processors) and the need of shared-memory
supercomputers. The combination of distributed-memory and shared-memory
approaches would increase notably the speed-up, since computing farms can
reach without performance losses many tens of bi-processor nodes. However,
and considering that our problem is massively parallel, more powerful configu-
rations could be efficiently used. Thus, the coordinated use of several compu-
ting farms is a reasonable choice considering the availability of those systems.
In this case, grid computing constitutes an efficient way to organise and man-
age different computing resources in different administrative domains. So, in
order to achieve the maximum performance, we have decided to combine three
different techniques of parallel computing: Grid technology, MPI programming
and POSIX threads. Considering the different characteristics of each approach,
the problem of classification must be structured to obtain the maximum effi-
ciency from each one. According to this, we have chosen the EGEE infrastructure
currently running the LCG 2.7 Grid Middleware [3]. Command Line Interface
(CLI) will be used to implement the scripts and the programmes for submitting
several experiments with different values for K each. Each experiment is per-
formed concurrently by several MPI processes to divide the cross validation into a

k=1:K

b=1:B b=1:B

s=1:S s=1:S s=1:S s=1:S

LC
G

-2
M

P
I

T
hr

ea
ds

THREE-LAYER PARALLELISM SCHEME

Fig. 1. Three-layer parallelism scheme

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Parallel Implementation of the KNN Classifier in Three Levels 229

simple test-training partition validation. Finally different sub-blocks of each MPI
process testing partition are computed on the different POSIX threads created
in a MPI process and executed within the processors of a node.

An example of a tree diagram of our approach is printed in figure 1. In this
figure we can see the evolution of the work. It begins at the root of the tree
with the submission of K different LCG Grid jobs (where the value of K will
determine for each LCG job the number of neighbours to which the distances are
computed). In a second phase, MPI parallel process are executed. We choose the
same number of MPI processes as cross validation blocks, although other factors
of parallelism grain could be analysed in the future. In the third phase, MPI
processes are split into threads, according to the features of the target hardware
resources and the experimental results.

4 Implementation

The implementation of the three-layer model mainly considers three components:

– Parallel KNN module. This component implements the KNN classification
and cross-validation algorithm using MPI and POSIX Threads. It is an au-
tonomous executable that takes as input the reference to the labelled regis-
ters file name, the reference to the file that contains the registers we want
to label and the value of K to be used. It produces a different output file
depending on our demands, being possible to show the labels assigned to the
target registers or to obtain a statistical summarized file.

– Grid scripts. They implement the selection of the rightmost computing re-
sources, the job description file, the start-up script for the parallel executable,
the job submission and monitoring and the job output retrieval. All these
tasks are implemented through scripts that make use of the CLI.

– Java Interface. It implements a user-friendly interface to select the data and
the parameters for the Grid jobs and to retrieve their output.

The parallel KNN module comprises the MPI and POSIX Threads Computing
levels. The synchronised execution of different instances of this processing module
is performed through the Grid scripts.

The figure 2 shows us the global process, according to a chronological view. In
the upper part of the diagram we can see subprocesses classified by functionality
and in the lower part they are classified by technology.

4.1 Grid Computing Level

One typical application of Grid technology is multi-parametrical runs. The dif-
ficulty in establishing efficient communications among independent submitted
jobs in a Grid environment has been traditionally an important barrier. In our
case, different experiments with different values of K in the K-NN method, con-
stitute clearly a multi-parametrical task which can be achieved by different LCG
Grid jobs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

230 G. Apaŕıcio, I. Blanquer, and V. Hernández

FILE
DOWNLOAD

CREATING
MPI JOBS

DATA
BROADCAST

TRAINING
AND

LABELING

PROCESSING
OUTPUT

POSIX THREADS

MPI PROCESS

LCG-2 JOB

GLOBAL PROCESS SCHEME
T

A
S

K
T

E
C

H
N

O
LO

G
Y

Fig. 2. Global process scheme

The Grid infrastructure selected is EGEE (Enabling Grids in E-sciencE). This
is the largest production infrastructure available for research world-wide, inte-
grating, in October 2006, more than 29000 computers and more than 40 Petabytes
of storage in 177 sites. This infrastructure runs currently the gLite 3.0. gLite 3.0
and LCG 2.7 share a major part of components, so migration is feasible. Both
LCG 2.7 and gLite 3.0 are batch-oriented Grid middlewares and consider the same
computing structure, which comprises the following components:

– Computing Resources. The computing resources are organised in the form
of Computing Elements (CEs), and Working Nodes (WNs). CEs are the
front-ends and visible entry-points to computational farms of WNs. CEs
implement the necessary batch queues to manage the jobs in the WNs and
keep track of the status of both jobs and resources.

– Storage Resources. The files in the EGEE infrastructure are stored in a
distributed way in many Storage Elements (SEs).

– Workload Management. The destination of a job (a queue in a CE) can be
directly selected by the user, although the more effective way is to rely on
the Workload Management System.

– Storage Catalogue. Data stored on the SEs is organised through Storage
Catalogues. Storage Catalogues keep track of the files stored.

– User Management. Users are organised in Virtual Organisations (VOs). Typ-
ically, users in a VO have the same authorisation rights to access the re-
sources. This reduces the burden of managing individual security policies.

– System Information. The information of the system (status of the jobs and
resources mainly) is published in a hierarchical model by the sites and the
monitoring system.

In order to execute a job in the LCG environment, a Job Description File must
be written according to the Job Description Language (JDL). This file defines

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Parallel Implementation of the KNN Classifier in Three Levels 231

the input and output files, the executable file and the running parameters and
the program requirements. The executable is typically a shell script that copies
all necessary data locally on the resource and performs other preliminary steps
(such as re-compiling, executable permissions, etc.). Job is submitted through
the specific commands or API calls and enters in a cycle of states (submitted -
waiting - ready - scheduled - running - done - outputready - cleared).

Once the LCG job is assigned to a Computing Element, a shell-script is ex-
ecuted. The shell-script initial instructions will fetch the databases stored in
the Grid, including both training registers and labelling registers, since not only
training but also classification is performed in the last phase of the job. This
approach will reduce the Grid waiting time. When all the necessary data are
downloaded on the computing nodes, the classification process can begin. This
is achieved using an MPI process that will be the responsible of making a test
with an assigned block. The sum of all the block test errors will be the cross
validation error, i.e., the information we are requesting to decide the optimal K
value and then use it to classify the non-labelled registers.

The tasks that must be implemented for delivering the above functionality
are:

– Selection of the rightmost Computing Resource. Resources in the EGEE
Grid are accessed through Workload Management Systems. Those resources
are selected according to the job features and the VO policies. The resources
were ranked considering their proximity to Storage Resources where replicas
of the database are stored and other performance criteria (mainly the number
of free CPUs, historical average length of the submission queue).

– Submission and Resubmission. Once the resources are identified, input data
for each job is packed and jobs are submitted along with all the needed
information (including references to the stored databases). The status of the
job is periodically monitored and jobs are resubmitted to a new computing
resource if scheduling time exceeds a predefined threshold.

– Monitoring and Output Retrieval. Jobs being executed are monitored thr-
ough the corresponding scripts. Once finished, output data are retrieved and
user is notified via e-mail (obtained automatically from the Distinguished
Name of the certificate or given as a parameter).

Final result of all the process is the cross-validation error for the execution of
KNN for a specific value of K. Results are presented as available and sorted by
the magnitude of the error.

4.2 MPI and POSIX Threads Computing Level

The MPI executable is an autonomous programme that computes the distance
evaluation, cross-validation and labelling of the registers of a database.

MPI process 0 will be the responsible to load and broadcast databases to the
rest of MPI processes that run in other nodes of the cluster selected in the Grid
Infrastructure for each job. Databases are replicated among all the processors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

232 G. Apaŕıcio, I. Blanquer, and V. Hernández

The computation of the distance requires considering all the registers each time.
Other distributions could be considered if memory is insufficient, although they
will require additional communication cost, since they must involve intermediate
data exchange among processes. The distribution of large amounts of data does
not imply an important penalisation since the communication is performed inside
the cluster farm and not through the Grid.

MPI process 0 also normalises the database to ensure that all fields of each
register are considered with the same weight. Registers are evenly distributed
among the processors and within each processor evenly among the threads. A
list of the K nearest registers is updated during the process. This process is
run for the block of registers selected as the test set in each computer. The
errors are computed as the number of wrongly assigned labels. Finally, labels
are assigned at the end of the process to reduce the overhead of redistributing
the data again.

Each block of test-set registers considered in a processor is processed by dif-
ferent threads. POSIX threads are created in each MPI process dealing with the
distance computation and labelling of a portion of the testing set. The use of
POSIX threads permits exploiting efficiently the multiprocessor capability that
modern clusters have. Moreover, the process do not imply conflicts neither on
write access to common variables nor on synchronisation. Experiments also prove
that the consideration of the hyper-threading capabilities of current processors
provide an additional gain factor in the speed-up, being able to run more threads
than physical processors are available.

The moderated cost of this process (in the quadratic order) and the large
amount of data to be exchanged makes this problem suitable for parallel com-
puting rather than Grid computing. Complexity can be increased by considering
more costly computations of the distances (currently a homogeneous Euclidean
distance) considering different weights or distance metrics for different fields, or
considering more complex error metrics, such as distances to the right label.

The development of MPI applications across different Grid nodes is an issue
currently tackled by Grid-MPI projects. Grid-MPI is a Grid approach of the
Message Passing Interface. Although GRID-MPI enables the development of
large-scale MPI parallel applications, current infrastructures are not supporting
it. The main reason is that WNs typically can communicate within the cluster
and although inbound connections are allowed, direct communication within
WNs of different resources is not possible. From the users’ point of view, the
resource is the CE. Moreover, geographically distributed resources on the Grid
make communications fairly inefficient for a fine-grain application, so coarse-
grain parallelism is clearly the current aim.

4.3 User Interface

In order to ease the process of creating experiments, submitting the jobs and
monitoring the results, a java-based interface has been implemented. This in-
terface co-ordinately execute the necessary scripts to deal with the Grid job
submission, monitoring and output retrieval.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Parallel Implementation of the KNN Classifier in Three Levels 233

The interface enables an authenticated and authorised user to log in the sys-
tem and to upload the test and training sets on a specific SE. Target CEs will
be selected according to the availability of computing resources, the support of
MPI and the proximity to a SE publishing a replica of the databases.

Then, jobs are automatically constructed considering the range of values of
K that will be sweeped. Jobs are submitted through the interface and their
status is monitored either at global level (percentage of jobs in each state) or
individually by jobs. Jobs are automatically submitted if an error is produced
(although a maximum retry count is reached) or if they keep on waiting on
a queue for an excessive time, choosing in both cases a different computing
resource.

Finally, the result of the jobs can be dynamically consulted. The user is notified
when a job has finished through e-mail.

Figure 3 shows a couple of snapshots of the application interface.

Fig. 3. Snapshots of the user interface application

5 Results

We have done different experiments in three scenarios. First, using the command-
line WEKA [7] java K-NN class (3.4.5 release, a very well-known and widely
used classification tool); second, using a sequential tool we have implemented in
”C”; and, third, by using the three-layer parallel K-NN tool. We have used two
different training databases, one with one hundred thousand labelled registers
and another one with one million labelled registers. The number of fields of the
two databases was 20, plus the label field.

The performance of the version implemented in ”C” language was very effi-
cient comparing to the results with WEKA, mainly due to the fact that WEKA
is implemented in Java. A linear speed-up is obtained using grid technology

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

234 G. Apaŕıcio, I. Blanquer, and V. Hernández

since the experiments are independent. The gain in the MPI parallelisation ap-
proach has been above a factor of 9.5 with 10 biprocessors nodes (PIII Xeon
3GHz. on an SCI 3D torus network) and the gain using four threads in each
node is above an additional 1.5 factor. We selected four threads considering
that each node has two hyper-threading processors. This gain is not as lin-
ear as in the other cases since not all the process has been implemented using
threads. Thus, the gain of using the MPI and threads parallel technologies is
above 15, and the total advantage from WEKA multiplies by 6. Moreover, as
it was mentioned before, Grid scales linearly. Figure 4 summarizes the results
obtained.

This figure reflects the Speed Up comparing to WEKA to the sequential pro-
cess, the MPI parallel process and the three-layer parallelism process.

SPEED UP IN ODIN.DSIC.UPV.ES

0 10 20 30 40 50 60 70 80 90 100

WEKA

SEQUENTIAL

MPI

3-LAYER

Fig. 4. Speed Up results

6 Conclusion

The results of our work have been very encouraging. The approach based on
a three-layer parallelism is a very effective way to get the best performances
and give us a hopeful vision of data mining in the Grid. The classification of the
registers, including the identification of the optimal K value in the K-NN method
on a database of one million registers took less than 6 hours, i.e., a single nightly
run. For a comparison, this results implies an speed-up larger than 90 compared
to the equivalent WEKA K-NN sequential execution, i.e., more than a month
waiting time. Considering that our efforts are routed to biomedical prediction,
this advantage would enable, for example, classifying the information recorded
in Primary Care each day (in the order of millions of records) and its automatic
classification.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Parallel Implementation of the KNN Classifier in Three Levels 235

References

1. T.M.Cover, P.E.Hart: Nearest neighbour pattern recognition. IEEE Trans. on In-
formation Theory 13(1) (1967) 2127

2. I. Foster, C. Kesselman, S. Tuecke: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications, 15(3) (2001)
http://www.globus.org/research/papers/anatomy.pdf

3. LCG: World Wide Web Computing Grid. Distributed Production Environment of
Physics Data Processing. http://lcg.web.cern.ch/LCG

4. Message Passing Interface Forum: MPI: A message-passing interface standard.
(2003) http://www.mpi-forum.org/

5. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI: The Complete Reference, MIT Press, Cambridge, MA (1998)

6. Drepper, U and I. Molnar: The Native POSIX Thread Library for Linux. (2003)
http://people.redhat.com/drepper/nptl-design.pdf

7. E. Frank, M. Hall, L.T.: Weka 3: Data Mining Software in Java. (2005)
http://www.cs.waikato.ac.nz/ml/weka.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Use of the MMC Language to Utilize

SIMD Instruction Set

Patricio Bulić and Veselko Guštin

University of Ljubljana, Faculty of Computer and Information Science, Slovenia
patricio.bulic@fri.uni-lj.si
http://lra-1.fri.uni-lj.si

Abstract. This paper presents the use of the Multimedia C (MMC)
language to develop multimedia applications. The MMC language was
designed to support operations with multimedia extensions included in
all modern microprocessors. Although the idea to extend high program-
ming languages to support vector operations is not novel, we show that
integration of multimedia extensions into C is valuable. This is specially
true for idiomatic expressions which are difficult for a compiler to iden-
tify. The MMC language has been used to develop some of the most
frequently used multimedia kernels. The presented experiments on these
scientific and multimedia applications have yielded good performance
improvements. Although this paper discuses the use of MMC, the key
features of the MMC language and implementation of its compiler are
also presented.

1 Introduction

Today’s computer architectures are very different from those of a few years ago
in terms of complexity and the computational availabilities of the execution units
within a processor. Practically all modern processors have facilities that improve
performance without placing an additional burden on the software developers,
as well as those facilities which require support from external entities (i.e. as-
sembler language and compilers) such as multimedia (also called short vector)
processing ability (i.e. Intel MMX, Intel SSE, Intel SSE2, Motorola Altivec, SUN
VIS, ...). This was reflected in an extension of the assembly languages (extended
instruction set).

But a powerful SIMD (Single Instruction Multiple Data) multimedia instruc-
tion set is worthless without the mean to utilize it. Today, we can utilize SIMD
multimedia instruction set in three ways:

1. assembly language - this is the most effective method but it is also more
tedious and error prone than any other methods,

2. shared libraries - these libraries are often available from microprocessor man-
ufacturers, but they tend to only cover particular functions and for some
particular class of microprocessors,

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 236–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Use of the MMC Language to Utilize SIMD Instruction Set 237

3. vectorizing compilers - ideally, high level language compiler would be able to
automatically identify parallelizable sections of code and generate appropriate
SIMD instructions. There have been many proposed methods of automatic
SIMD vectorization ([1], [4], [8]) but they have only limited success ([6]).

Programming in high level languages and relying on the compiler to produce
the SIMD code is a much easier way to utilize multimedia extensions. But if we
want to use them in high-level programming languages such as C, then we have
to add these new facilities in some way to the high-level programming languages.

As a consequence of the above we decided to extend the syntax of C and
to redefine the existing semantics in such a way that we could use multimedia
processing facilities in C. The goal was to provide programmers with the most
natural way of using the multimedia processing facilities in the C language. We
named this extended C as MMC (MultiMedia C). The MMC was first intro-
duced in the paper [2]. Readers are suggested to refer to this paper for the more
extensive description of the language syntax.

This paper is organized as follows: in Section 2 we describe the MMC pro-
gramming language, in Section 3 we describe the implementation of the MMC
compiler, in Section 4 we give real examples from multimedia applications and
the performance results.

2 The MMC Language

MMC language is an upward extension of the ANSI C language with multimedia
processing facilities. It keeps all the ANSI C syntax plus the syntax rules for
vector processing.

2.1 Access to the Array Elements

To access the elements of an array or a vector we can use one of the following
expressions:
1. expression[expr1] - with this expression we can access the expr1-th ele-

ment of an array object expression. Here, the expr1 is an integral expres-
sion and expression has a type ”array of type”.

2. expression[expr1:expr2, expr3:expr4] - with this expression we can ac-
cess the bits expr4 through expr3 of the elements expr2 to expr1 of an array
object expression. Here, the expr1, expr2, expr3, expr4 are integral ex-
pressions and expression has a type ”array of type”. The expr1 denotes
the last accessed element, expr2 denotes the first accessed element, expr3
denotes the last accessed bit and expr4 denotes the first accessed bit.

3. expression[,expr1:expr2] - with this expression we can access the bits
expr1 through expr2 of all the elements of an array object expression.
Here, the expr1 and expr2 are integral expressions and expression has a
type ”array of type”. The expr1 denotes the last accessed bit and expr2
denotes the first accessed bit.

4. expression[] - with this expression we can access the whole array object
expression. Here, the expression has a type ”array of type”.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

238 P. Bulić and V. Guštin

2.2 Operators

Unary Operators. We extended the semantics of the existing ANSI C unary
operators &, *, +, -, ~ , ! in the sense that they may now have both scalar-
and vector-type operands.

We have also added new reduction unary operators [+], [-], [*], [&],
[|], [^]. These operators are overloaded existing binary operators +, -, *,
&, |, ^ and are only applicable to the vector operands. These operators perform
the given arithmetic/logic operation between the components of the given vector.
The result is always a scalar value.

We have also added one new vector operator |/, which calculates the square
root of each component in the vector.

Binary Operators. We have extended the semantics of the existing ANSI C
binary operators and the assign operators in such a way that they can now have
vector operands. Thus, one or both operands can have an array type.

We have overloaded the existing binary operators with 4 new operators:

? this operator overloads the binary operators in
such a way that the given binary operator performs
the operation with saturation,

@ this operator overloads the binary add operator in
such a way that the given binary operator first
performs addition over adjacent vector elements
and then averages (shift right one bit) the result.

˜ this operator overloads the multiply operator
in such a way that the result is the high part of
the product,
this operator overloads the multiply operator
in such a way that the result is the low part of
the product.

Besides the existing binary operators we have added one new, binary operator,
which we found to be important in multimedia applications. This operator is
applicable only on vector operands (if any operand has a scalar type then it is
expanded into an appropriate vector strip) and is as follows:

| − | absolute difference
(in the grammar denoted as VEC SUB ABS).

Example 1. As saturated arithmetic is widely used in multimedia programs
(especially in image processing) and as there should be a mechanism to effi-
ciently deal with multiple possible overflows in packed values, the operations
that support saturated arithmetic have been added to microprocessors’ instruc-
tion set. Since C semantics does not support saturated arithmetic as native op-
erators, programmers are forced to express saturated operations in native
C operations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Use of the MMC Language to Utilize SIMD Instruction Set 239

Figure 1 gives such an example (taken from Berkeley Multimedia workload
[7], [6]). The code presented in the Figure 1 could not be efficiently vectorized by
an automatic vectorizer. Thus, this portion of parallelism could not be efficiently
utilized on multimedia extended processors.

Fig. 1. C Implementation of saturated add operation from Berkeley Multimedia Work-
load/GSM

Figure 2 gives the MMC code for the same saturated add operation. The
saturation is now easily expressed in native MMC operations.

Fig. 2. Implementation of saturated arithmetic in MMC

Conditional Expression. The conditional operator from ANSI C ‘?:’ which
is used in the conditional expression can now have array-type operands.

3 Implementation of the MMC Compiler

The laboratory version of the MMC compiler was implemented for Intel Pentium
III and Intel Pentium IV processors. It was implemented as a translator to
ordinary C code that is then compiled by an ordinary C compiler (in our example
with Intel C++ Compiler for Linux [9]).

The MMC compiler parses input MMC code, performs syntax and semantics
analysis, builds its internal representation, and finally translates the internal rep-
resentation into ANSI C with macros written in a particular assembly language
instead of the MMC vector statements. The compilation process is presented in
Figure 3. After syntax and semantic analysis of the MMC source code the list

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

240 P. Bulić and V. Guštin

Fig. 3. Compilation process of the MMC source

of tree-address codes (TAC) for SIMD statements is generated. Then, the MMC
Code Emitter inserts SIMD macros for each TAC. The appropriate macro is
taken from the MMC macro library. Here we will only show the implementation
of one macro for conditional assignment:

MMC_QUEST_INT;
*(($T *)($1)) = _
MMC_QUEST_SSE2_INT (*(($T *)($2)) ,

*(($T *)($3)) ,
*(($T *)($4)));

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Use of the MMC Language to Utilize SIMD Instruction Set 241

__m128i _MMC_QUEST_SSE2_INT (__m128i ab,
__m128i c,
__m128i d)

{
__m128i rez1;
__m128i rez2;
__m128i tmp=_mm_set1_epi32(0);
tmp=_mm_cmpeq_epi32(tmp,ab);

rez1=_mm_and_si128(ab,c);
rez2=_mm_and_si128(tmp,d);

return _mm_or_si128(rez1,rez2);
}

The whole macro library, source code of the MMC compiler with Doxygen doc-
umentation can be freely downloaded from the MMC web site.

4 Developing Multimedia Kernels

In this section we present the use of MMC language to code some commonly
used multimedia kernels. At the end of this section the performance results for
the given examples are presented.

Example 2. Finite impulse response (FIR) filters are used in many aspects of
present-day technology because filtering is one of the basic tools of information
acquisition and manipulation. FIR filters can be expressed by the equation:

y(n) =
N−1∑

k=0

h(k) · x(n − k) (1)

where N represents the number of filter coefficients h(k) (or the number of delay
elements in the filter cascade), x(k) is the input sample and y(k) is the output
sample.

Structurally, FIR filters consist of just two things: a sample delay line and a
set of coefficients. To implement the filter one has to:

1. Put the input sample into the delay line.
2. Multiply each sample in the delay line by the corresponding coefficient and

accumulate the result.
3. Shift the delay line by one sample to make room for the next input sample.

The MMC implementation of the above algorithm for the FIR filter is as
follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

242 P. Bulić and V. Guštin

#define FILTER_LENGTH 1024
#define SIGNAL_LENGTH 8192
int j;
double h[FILTER_LENGTH];
double delay_line[FILTER_LENGTH];
double x[SIGNAL_LENGTH];
double y[SIGNAL_LENGTH];

for (j=0; j<SIGNAL_LENGTH; j++) {
delay_line[0] = x[j];

//calculate FIR:
y[j] = [+] (h[] * delay_line[]);

//shift delay line:
delay_line[] = delay_line[] << 1;

}

This MMC code is translated by the MMC compiler into C code with inserted
macros. So, after strip-mining and macro insertion, which is done by the MMC
compiler, we have C code like in the Figure 4. The compiled code can now be
further compiled into binary code by the use of C/C++ compiler for desired
processor family.

Example 3. An Infinite Impulse Response (IIR) filter produces an output, y(n),
that is the weighted sum of the current and the past inputs, x(n), and past
outputs. IIR filters can be expressed by the equation:

y(n) =
N−1∑

k=0

h(k) · x(n − k) +
M−1∑

p=1

h′(p) · y(n − p) (2)

where N represents the number of forward-filter coefficients h(k) (or the num-
ber of delay elements in the forward-filter cascade) and M represents number of
backward-filter coefficients h′(k) (or the number of delay elements in the backward-
filter cascade), x(k) is the input sample and y(k) is the output sample.

To implement the IIR filter one has to:

1. Put the input sample into the input delay line, and the output sample into
the output delay line.

2. Multiply each sample in the delay line(s) by the corresponding coefficient
and accumulate the result.

3. Shift the delay lines by one sample to make room for the next input or output
sample.

The MMC implementation of the above algorithm for the IIR filter is as
follows (note that for simplicity in implementation we use the h′(0) coefficient,
which is always zero):

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Use of the MMC Language to Utilize SIMD Instruction Set 243

Fig. 4. Compiled MMC source of the FIR filter

int j;
float hf[FILTER_LENGTH_F];
float hb[FILTER_LENGTH_B];
float in_delay[FILTER_LENGTH];
float out_delay[FILTER_LENGTH];
float x[SIGNAL_LENGTH];
float y[SIGNAL_LENGTH];

for (j=0; j<SIGNAL_LENGTH; j++) {
in_delay[0] = x[j];

//calculate FIR:
y[j] = [+] (hf[] * in_delay[]);

out_delay[0] = y[j];

//calculate IIR:
y[j] += ([+](hb[] * out_delay[]))

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

244 P. Bulić and V. Guštin

//shift delay lines:
in_delay[] = in_delay[] << 1;
out_delay[] = out_delay[] << 1;

}

Example 4. The MPEG audio standard uses Discrete Cosine Transformation
(DCT) to transform samples from one domain into another. DCT is defined as a
linear transformation of N input samples, s[k], and N DCT samples , x[i] where
k = 0 . . .K − 1 and i = 0 . . .K − 1 (see Equation 3).

x(i) =
N−1∑

k=0

s(k) · cos
(2k + 1) · i · π

2N
(3)

The DCT formula can also be expressed in matrix form as:

x = D · s (4)

where x is the vector of N DCT samples and s is the vector of N input samples.
D is an N by N matrix with the elements presented in Equation 5.

Di,j = cos
(2j + 1) · i · π

2N
(5)

The matrix representation is used for practical implementation. The matrix
representation of the DCT algorithm is well suited for MMC code implementa-
tion since the regular structure of matrix multiplication fits the SIMD nature.
The MMC implementation of the DCT algorithm is as follows:

int j;
float D[N*N];
float v[N];
float s[N];
float D_row[N];

for (j=0; j<N; j++) {
D_row[] = D[j*N : j*N+(N-1)];

//calculate j-th DCT sample:
v[j] = [+] (D_row[] * s[]);

}

This MMC code is translated by the MMC compiler into C code with inserted
macros. So, after strip-mining and macro insertion, which is done by the MMC
compiler, we have C code like in the Figure 5. The compiled code can now be
further compiled into binary code by the use of C/C++ compiler for desired
processor family.

Example 5. This example demonstrates how to implement saturated operations
in MMC. Saturated addition of two vectors (i.e. bitmaps) can be expressed in
MMC as: :

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Use of the MMC Language to Utilize SIMD Instruction Set 245

Fig. 5. Compiled MMC source of DCT

char bits1[SIZE];
char bits2[SIZE];
char bitsDest[SIZE];

...

bitsDest[] = bits1[] ?+ bits2[];

...

This MMC code is translated by the MMC compiler into C code with inserted
macros. The compiled code is:

int __mmc_internal_symbol_2;
for(__mmc_internal_symbol_2=0;

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

246 P. Bulić and V. Guštin

__mmc_internal_symbol_2<SIZE;
__mmc_internal_symbol_2+=8)

{
*((__m64 *)(destBits + __mmc_internal_symbol_2 + 0)) =

_mm_adds_pi8(*((__m64 *)(bits1 + __mmc_internal_symbol_2 + 0)),
*((__m64 *)(bits2 + __mmc_internal_symbol_2 + 0)));

}

Example 6. This example demonstrates how to implement averaging operations
in MMC. We can describe an average operation as:

A[]@+[] = ((A[0]+[0])>>1)|((A[0]+[0])&1),
...

((A[N-1]+[N-1])>>1)|((A[N-1]+[N-1])&1)

This is an idiomatic expression that is ussually hard to detect by compilers. The
MMC implementation of an average operation is straightforward:

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void main()
{
char x[1024];
char y[1024];
char z[1024];

z[] = x[] @+ y[];
}

This MMC code is translated by the MMC compiler into C code with inserted
macros. So, after strip-mining and macro insertion, which is done by the MMC
compiler, we have C code like in the Figure 6. The compiled code can now be
further compiled into binary code by the use of C/C++ compiler for desired
processor family.

In Figure 7 we can see the performance improvement of some typical multimedia
cores when using the MMC language instead of C. We have implemented these
cores in MMC and C. Then, the MMC code was compiled into C code with the
MMC compiler and into binary code with Intel C/C++ compiler. Sequential C
sources are compiled into binaries with Intel C/C++ compiler with vectorization
switched on.

In cases where vectorization was successful we reached slightly better perfor-
mance with the Intel vectorizing compiler. This is because the Intel vectorizing
compiler performs some additional optimizatins on the vectorized loop [1], [9].
But in cases where vectorization failed (SATURATION, AVERAGE, SUM OF
ABS. DIFF.), better performance is reached with MMC. This is because in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Use of the MMC Language to Utilize SIMD Instruction Set 247

Fig. 6. Compiled MMC source of an averaging operation

Fig. 7. Speedup on an Intel Pentium IV using MMC

these three cases idiomatic expressions where used, which were very difficult for
a compiler to identify.

5 Conclusion

We have developed a MMC programming language which is able to use hardware-
level multimedia execution capabilities. The MMC language is an upward

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

248 P. Bulić and V. Guštin

extension of ANSI C and it saves all the ANSI C syntax. In this way it is suitable
for use by programmers who want to extract SIMD parallelism in a high-level
programming language and also by programmers who do not know anything
about multimedia processing facilities and who are using the C language.

We have shown the ease with which it is possible to express some common
multimedia kernels with MMC. With MMC we can express these kernels in a
more straightforward or ’natural’ way. The presented extension to C also pre-
serves the interchangeability of arrays and pointers and adds as few as possible
new operators. All added operators have an analogue in ordinary C. The decla-
rations of arrays are left unchanged and also no new types have been added.

We obtained good performance for several application domains. Experiments
on representive scientific and multimedia applications have significant perfor-
mance improvements. We are currently rewriting Berkely Multimedia Workload
with the MMC language. In such a way we will be able to fully evaluate the
performance improvement of widely used multimedia applications. We will also
be able to evaluate how difficult is for people to use the MMC language.

References

1. Bik A.J.C., Girkar M., Grey P.M., Tian X.M. Automatic Intra-Register Vectoriza-
tion for the Intel (R) Architecture. International Journal of Parallel Programming.
Vol 30., No. 2, pp. 65-98. 2002.

2. Bulić P., Guštin V. An Extended ANSI C for Processors with a Multimedia Exten-
sion. International Journal of Parallel Programming. Vol 31., No. 2, pp. 107-136.
2003.

3. Ferretti M., Rizzo D. Multimedia Extensions and Sub-Word Parallelism in Image
Processing: Preliminary Results. Lecture Notes in Computer Science, No. 1685,
pp. 977-986, 1999.

4. Krall A., Lelait S. Compilation Techniques for Multimedia Processors. Interna-
tional Journal of Parallel Programming. Vol. 28, No. 4, pp. 347-361, 2000.

5. Lee R., Smith M.D. Media Processing: A New Design Target. IEEE Micro, Vol.
16, No. 4, pp. 6-9, 1996.

6. Ren G., Wu P., Padua D. A Preliminary Study On the Vectorization of Multi-
media Applications for Multimedia Systems. Proceedings of the 16th International
Workshop on Languages and Compilers for Parallel Computers, October 2-4, 2003,
College Station, Texas. pp. 2-16, 1987.

7. Slingerland N.T., Smith A.J.,. Multimedia extensions for General Purpose Micro-
processors: a Survey Microprocessors and Microsystems, Vol. 29, pp. 225-246, 2005.

8. Sreraman N., Govindarajan R. A Vectorizing Compiler for Multimedia Extensions.
International Journal of Parallel Programming, Vol. 28, No. 4, pp. 363-400, 2000.

9. Intel C++ Compiler for Linux 9.0.
http://www.intel.com/software/products/compilers.

10. MMX Technology Application Notes: Using MMX Instructions to Convert RGB
To YUV Color Conversion. http://cedar.intel.com.

11. DSP Guru: Finite Impulse Response FAQ
http://www.dspguru.com/info/faqs/firfaq.htm.

12. DSP Guru: Infinite Impulse Response FAQ
http://www.dspguru.com/info/faqs/iirfaq.htm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Versatile Pipelined Hardware Implementation

for Encryption and Decryption Using Advanced
Encryption Standard

Nadia Nedjah1 and Luiza de Macedo Mourelle2

1 Department of Electronics Engineering and Telecommunications,
Faculty of Engineering, State University of Rio de Janeiro, Brazil

nadia@eng.uerj.br
2 Department of Systems Engineering and Computation,

Faculty of Engineering, State University of Rio de Janeiro, Brazil
ldmm@eng.uerj.br

Abstract. The Advanced Encryption System – AES is now used in al-
most all network-based applications to ensure security. In this paper,
we propose a very efficient pipelined hardware implementation of AES-
128. The design is versatile as it allows both encryption and decryp-
tion. The core computation of AES, which is performed on data blocks
of 128 bits, is iterated for several rounds, depending on the key size.
The security strength of AES has been proven proportional to the num-
ber of rounds applied. we show that if the required number of rounds
must increase to defeat attackers, the proposed implementation stays
efficient.

1 Introduction

Cryptographic algorithms used by nowadays cryptosystems fall into two main
categories: symmetric key and asymmetric-key algorithms [8]. Symmetric-key
ciphers use the same key for encryption and decryption, or to be more precise,
the key used for decryption is computationally easy to compute given the key
used for encryption. In turn, symmetric-key ciphers, fall into two categories:
block ciphers and stream ciphers. Stream ciphers encrypt the plaintext one bit
at a time, in contrast to block ciphers, which operate on a block of bits of a
predefined length. Most popular block ciphers are DES, IDEA [7] and AES, and
most popular stream cipher is RC6 [9].

The Advanced Encryption System – AES is a block cipher, adopted as the new
encryption standard in substitution to its predecessor Data Encryption Standard
– DES [2]. AES main scrambling computation is performed on a fixed block size
of 128 bits with a key size of 128, 192 or 256 bits. This core computation is iter-
ated for many rounds. The number of rounds depends on the key size. Currently,
it is set to 10, 12 and 14 for the cited keys sizes respectively. The resistance of
AES against breaking attacks depends entirely on the number of rounds used.
So far, the best known attacks are on 7 rounds for 128-bit keys, 8 rounds for

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 249–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

250 N. Nedjah and L. de Macedo Mourelle

192-bit keys, and 9 rounds for 256-bit keys [5]. The small margin between these
round numbers and the actual ones is very worrying for the cryptographer’s
community.

In this paper, we propose a novel hardware implementation of AES-128. The
architecture allows one to perform the core computation of the algorithm is a
pipelined manner. The throughput of the cryptographic hardware is 1Gbits per
second. A unique hardware is used for encryption and decryption. The pipelined
encryption and decryption allows an increase of the number of rounds without
much loss of efficiency. Recall that increasing the number of rounds applied,
increases the resistance of the AES algorithm.

This rest of this paper is organised in 4 subsequent sections. First, in Section 2,
we give a brief description of the AES encryption and decryption algorithms as
well as the modified version of these two algorithms, which are the basis of the
proposed hardware architecture. Thereafter, in Section 3, we describe in a struc-
tured manner, the pipelined hardware architecture of AES-128 for encryption
and decryption. Subsequently, in Section 4, we present some experimental result
and compare our implementation to existing ones. Last but not least, in Sec-
tion 5, we draw some conclusions and introduce some directions for future work.

2 Advanced Encryption Standard

AES is an elegant and a so-far-secure cipher. Encryption using AES proceeds as
described in Algorithm 1, wherein functions SubBytes, ShiftRows, MixColumns
and AddroundKey are defined as follows:

– Function SubBytes yields a new state simply by substituting each of the 16
bytes of state using a substitution box. The four most significant bits of the
byte in question is used as the S-box row index while the remaining four bits
are used as the S-box column index.

– Function ShiftRows obtains a new state by cyclically shifting the state rows.
The bytes of row i are shifted i times, where 0 ≤ i ≤ 4.

– Function MixColumns operates on the states columns. The bytes of a given
column are used as coefficients of a polynomial over GF(28). The formed
polynomial is multiplied by a fixed polynomial P (x) modulo x4 + 1, wherein
P (x) = {03}x3 + {01}x2 + {01}x + {02}. The details of the multiplication
operation can be found in [3], [1].

– Function AddRoundKey computes the new state using a xor of the columns
bytes and the key schedule of the current round.

Before the cipher operation takes place, a key schedule is generated. Four
subkeys are required for each round of the cipher algorithm. The subkeys for
the first round are the private cipher key. For a given round, the first subkey is
obtained by first rotating once the last subkey form the previous round, then
substituting each of byte using the S-box used by function subBytes, thereafter
xoring the result with a given constant and finally xoring the result with first
subkey of the previous round. The subsequent subkeys of the current round are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Versatile Pipelined Hardware for AES 251

computed using a xor of the previous key in the current round and the one
inversely respective from the previous round.

Algorithm 1. AES-Cipher
input: Byte T [4 × nb], Word K[nb × (nr + 1)];
output: Byte C[4 × nb],

Byte state[4, nb];
state := T ;
AddRoundKey(state, K[0, nb − 1];
for round := 1 to nr − 1 do

SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, K[round × nb, nb(round + 1) − 1]);

SubBytes(state);
ShiftRows(state);
AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
C := state;
return C;

end

For hardware efficiency reasons, we modified the AES cipher algorithm as in
Algorithm 2. Note that Algorithm 1 and Algorithm 2 are equivalent and yield
the same output.

Algorithm 2. Modified-AES-Cipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
for round := 0 to nr − 1 do

AddRoundKey(state, K[round × nb, nb(round + 1) − 1]);
SubBytes(state);
ShiftRows(state);
if round < nr − 1 then MixColumns(state);

AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
T := state;
return T ;

end

The decryption of a text that was ciphered using AES can be performed by
Algorithm 3. Comparing Algorithm 1 and Algorithm 3, one can note that each
function was replaced by its inverse. However, the application sequence of these
functions is slightly different. In order to have a unique versatile hardware for
encryption and decryption, this algorithm was modified as in Algorithm 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

252 N. Nedjah and L. de Macedo Mourelle

Algorithm 3. AES-Decipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
AddRoundKey(state, K[round × nb, nb(nr + 1) − 1]);
for round := nr − 1 downto 1 do

InvShiftRows(state); InvSubBytes(state);
AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
InvMixColumns(state);

InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state, K[0, nb(nr + 1) − 1]);
T := state;
return T ;

end

Algorithm 3 and Algorithm 4 are equivalent as operations InvSubBytes and
InvShiftRows commute. Moreover, function InvMixColumns is linear so we have
expression InvMixColumns(x xor y) is equivalent to InvMixColumns(x) xor

InvMixColumns(y). Recall that operation AddRoundKey is a xor of its argu-
ments. Using these two facts, we can swap operations AddRoundKey and In-
vMixColumns, provided that the columns of the decryption key schedule are
modified using operation InvMixColumns. Note that functions SubBytes and In-
vSusbytes perm the same process but using distinct S-Boxes.

Algorithm 4. Modified-AES-Decipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
for round := nr − 1 to 0 do

AddRoundKey(state, K[round × nb, nb(round + 1) − 1]);
InvSubBytes(state); InvShiftRows(state);
if round < nr − 1 then InvMixColumns(state);

AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
T := state;
return T ;

end

3 Pipelined Hardware Implementation of AES

The overall architecture of the AES hardware mirrors the structure of Algo-
rithm 2 and Algorithm 4. It is a synchronous implementation of both the pro-
cesses of cipher and decipher. It uses four 128-registers. Every clock transition,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Versatile Pipelined Hardware for AES 253

Fig. 1. Overall hardware architecture for the AES cipher/decipher

these registers are loaded, except Register3, which is loaded when an input state
is completely ciphered. In the encryption/decryption process, Register0 is loaded
with the input data or the partially encrypted/decrypted plaintext/ciphertext;
Register1 with the result of the AddRoundKey component; Register2 with the
state after applying functions SubBytes (using the appropriate S-Box) and sub-
sequently ShiftRows/InvShiftRows. The block architecture of the AES cipher and
decipher hardware is shown in Fig. 1.

The component that implements function AddRoundKey is simply a net of xor

gates that adds in GF (28) the key schedule to the current state. The component
implementing function SubBytes uses 16 S-boxes (8 for ciphering and 8 for deci-
phering) stored in a Read-Only Memory (rom). The obtained state is row-shifted
before its storage in Register2. The component architecture is given in Fig. 2.

Function MixColumns is implemented by a massively parallel component that
computes all the bytes of the new state in a single clock. It uses four components
of the same architecture. This basic component produces one column os the new
state. Its architecture is described in Fig. 3, wherein component mult yields the
a special product of a given byte from the state times {01}, {02}, {03}, {09},
{0B}, {0D} or {0E} (see [3], [1] for details on the operation). The architecture
of component mult is presented in Fig. 4. Component xtime computes the xtime
operation as defined in [3] and its architecture is given in Fig. 5.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

254 N. Nedjah and L. de Macedo Mourelle

Fig. 2. The structure of Substitute/Shif component

Fig. 3. Basic component in Mix component

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Versatile Pipelined Hardware for AES 255

Fig. 4. Architecture of the mult component

For component synchronisation purposes, the architecture includes a con-
troller. Among other actions, the controller determines when to reset the ci-
pher hardware, accept input data, to register output results. As the excution of
function MixColumn/InvMixColumn is conditional (see Algorithm 2), the con-
troller decides when the result obtained by associated component can be used
or must be ignored. Recall the hardware allows both encryption and decryption.
When data is being deciphered, the key schedule generated by component Key-
Expansion must be ordered differently [3]. The AES hardware of Fig. 1 takes
advantage of component MixColumn to schedule the subkeys in the required
order. The controller also controls this operation.

The controller is structured as in Fig. 6. The included combinational logic
permits the conversion of the 5-bit count to a single bit that triggers state tran-
sition. The sate machine includes six states. As long as control signal keyExpand
is set, the current state is kept unchanged in S0. As soon as this signal is re-
set by the keyExpansion component, which means that the step of key schedule
generation is complete, the machine transits to state S1, wherein it stays for 3
clock cycles, which is the required time to complete the processing of one 128-
bit state. Also, during this period of time, the data input signal is active, which

Fig. 5. Architecture of the xtime component

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

256 N. Nedjah and L. de Macedo Mourelle

Fig. 6. Controller architecture

allows the hardware to accept the three states that will be ciphered/deciphered
in pipelined manner. Synchronously with the fourth clock transition, the ma-
chine transits to state S2 allowing to deactivate the data input signal and wait
for the three accepted states are almost processed as only the last AddRound-
Key is yet to be performed to complete the encryption/decryption process. At
the 30th. clock transition, the machine state changes to S3 to activate output
result signal, which is maintained for the two subsequent clock periods. A the
33rd. clock transition, the encryption/decryption of the three accepted states is
completed and therefore, the control is returned to state S1, where in data input
signal is reactivated to allow more date to be entered and processed. The state
machine transition diagram is shown in Fig. 7.

Fig. 7. State machine transition diagram

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Versatile Pipelined Hardware for AES 257

4 Experimental Results

The pipelined execution of the AES cipher using the architecture of Fig. 1 is illus-
trated in Fig. 8. We implemented the hardware described throughout this paper
using reconfigurable hardware. The FPGA family used is VIRTEX-II. Compo-
nent KeyExpansion introduces a delay of 78.3ns. The clock cycle is 10.44ns. Every
33 clock cycles, the hardware can yield an encrypted datastream of 3× 128 bits.
The throughput, say tp can then be calculated as in (1). The throughput is a
little more than 1Gbps.

Tp =
3 × 128

33 × clockcycle
=

128
11 × 10.44

= 1062.9Mbs (1)

As far as the authors know, the versatile hardware implementation of AES
algorithm that performs both encryption and decryption is novel. We compared
our implementation to the ones from [6] and [10]. Note that these implemen-
tations are for the cipher algorithm only while our implementation ciphers and
deciphers. One may think that the implementation proposed and those from [6]
and [10] are incomparable. They are cited here for reference only. The through-
put, expressed in Mbps, as well as the hardware area required, expressed in
number of CLBs, are given in Table 1.

Table 1. Performance comparison

Implementation Throughput Area CLB/Mbs

Our’s: cipher& decipher 1063 9937 9.35
[6]: cipher only 1911 8767 4.59
[10]: cipher only 1450 542 0.37

Recall that the resistance of AES-based encryption against cryptanalysis
attacks depends entirely on the number of rounds used. The pipelined imple-
mentation we propose throughout this paper can be easily adapted to a higher
round number. The chart of Fig. 9 shows that this can be done without much
loss in efficiency and with much gain of security strength. To be able to increase
the number of round, component KeyExpansion needs to generate more key
schedules and therefore the delay introduced by it increases with the number of
rounds. The throughput, say tp, can be expressed in terms of the round number,
say rn, is as in (2). The security strength, say st is proportional to the number
of rounds applied. So, considering the security strength provided by applying 10
rounds as a reference, st would be defined as in (3).

Tp(rn) =
128

(rn + 1) × clockcycle
(2)

St(rn) =
rn

10
(3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

258 N. Nedjah and L. de Macedo Mourelle

Fig. 8. Pipelined execution of the AES algorithm using the hardware of Fig. 1

rn

tp
/s

t

��
��

��
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

0

1

2

10 15 20 25 30

st

tp

Fig. 9. The impact of increase in the round number

5 Conclusion

In this paper, we propose a novel pipelined hardware implementation of AES-
128 that can be used for both encryption and decryption. Besides, we show
that if the required number of rounds must increase to defeat attackers, the
proposed implementation stays efficient. The hardware proposed is massively
parallel and executes the four main steps of the algorithm in a pipelined manner,
which allows a reasonable throughput fo a little more of 1Gbs. Compared to
existing implementations of the cipher algorithm, this kind of throughput may be
considered somehow low. However, considering the 2-in-1 aspect of the hardware
as it allows encryption and decryption, it comes handy for devices with restricted
hardware area with a not too bad throughput of 1Gbs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Versatile Pipelined Hardware for AES 259

In future research work, we intend to investigate further the proposed imple-
mentation, with the hope to improve the throughput without much increase in
required hardware area.

References

1. J. Daemen and V. Rijmen, The Design of Rijndael: AES – The Advanced Encryp-
tion Standard, Springer-Verlag, 2002.

2. National Institute of Standard and Technology, Data Encryption Standard, Federal
Information Processing Standards 46, November 1977.

3. National Institute of Standard and Technology, Advanced Encryption Standard,
Federal Information Processing Standards 197, November 2001.

4. Nicolas Courtois, Josef Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations, Proceedings of ASIACRYPT 2002, pp 267-287, 2002.

5. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner and D. Whiting,
Improved Cryptanalysis of Rijndael, Proceedings of FSE 2000, pp. 213-230, 2000.

6. A. Labbe, A. Perez, AES Implementation on FPGA: Time and Flexibility Tradeoff,
in Proceedings of FPL, pp. 836-844, 2002.

7. X. Lai, J. L. Massey, A Proposal for a New Block Encryption Standard, EURO-
CRYPT’90, pp. 389–404, 1990.

8. A.J. Menezes, S.A. Vanstone and P.J. Van Oorschot, Handbook of Applied Cryprog-
raphy, CRC Press, USA, 1997.

9. R. Rivest, M. Robshaw, R. Sidney, and Y.L. Yin. The RC6 block cipher, First AES
Candidate Conference, 1998.

10. F. Standaert, G. Rouvroy, J. Quisquater, J. Legat, A Methodology to Implement
Block Ciphers in Reconfigurable Hardware and its Application to Fast and Compact
AES RIJNDAEL, in Proceedings of FPGA, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing: The

Enabling Power of Discrete Algorithms in
Computational Science

Bruce Hendrickson1 and Alex Pothen2

1 Discrete Math & Algorithms Dept., Sandia National Labs, Albuquerque, NM, USA
bah@sandia.gov

http://www.cs.sandia.gov/∼bahendr
2 Computer Science Department and Center for Computational Science,

Old Dominion University, Norfolk, VA, USA
pothen@cs.odu.edu

http://www.cs.odu.edu/∼pothen

Abstract. Combinatorial algorithms have long played a crucial, albeit
under-recognized role in scientific computing. This impact ranges well
beyond the familiar applications of graph algorithms in sparse matri-
ces to include mesh generation, optimization, computational biology and
chemistry, data analysis and parallelization. Trends in science and in
computing suggest strongly that the importance of discrete algorithms
in computational science will continue to grow. This paper reviews some
of these many past successes and highlights emerging areas of promise
and opportunity.

1 Introduction

Combinatorial scientific computing (CSC) is a new name for research in an
inter-disciplinary field that spans scientific computing and algorithmic computer
science. Research in CSC comprises three key components. The first component
involves identifying a problem in scientific computing and building an appro-
priate combinatorial model of the problem, in order to make the computation
feasible or efficient. Developing the right combinatorial model is often critical
to the computation of an efficient solution, and this step could be the most
time-consuming of all. The second component involves the design, analysis, and
implementation of algorithms to solve the combinatorial subproblem. The em-
phasis in this step is on practical algorithms that are efficient for large-scale
problems; an algorithm with a time complexity quadratic in the input size could
be too slow to be useful, if the worst-case behavior is realized. The algorithm
could compute an exact, approximate, or heuristic solution to the problem, and
it should run quickly within the context of the other computational steps in
the scientific computation. The third component involves developing software,
evaluating its performance on a collection of test problems, making it pub-
licly available, and perhaps integrating with a larger software library. These

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 260–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 261

three components are illustrated in several examples of research activity in CSC
included in this paper. Work in CSC is multi-disciplinary in its orientation, and
has the twin emphases of theoretical rigor and practical impact.

While work in CSC has been ongoing for more than three decades, the myriad
roles of combinatorial algorithms are scattered in standard taxonomies of sci-
entific computing. This historical fragmentation has obscured the broad impact
of combinatorial algorithms in scientific computing. Algorithmic researchers in
one niche are often unaware of ongoing work in another, perhaps related niche.
Yet, a developer of computational geometry algorithms for mesh generation is
likely to have more in common esthetically and intellectually with a developer
of sparse matrix algorithms than with a user of the meshes he or she develops.
The CSC community was founded to address this fragmentation and to facilitate
closer interactions among researchers in this field.

The purpose of this article is to briefly highlight the role that combinatorial
algorithms have played in various fields of scientific computing, and to point
to emerging opportunities for the future. The topics discussed include the role
of CSC in parallel computing; differential equations, sparse linear algebra, and
numerical optimization; statistical physics, computational chemistry, bioinfor-
matics, and information sciences.

We are aware of two articles with somewhat similar goals as ours in the related
fields of scientific computing and theoretical computer science. The central role
of algorithms in numerical analysis (we would call it scientific computing) has
been surveyed recently by Trefethen [63]. A report on challenges for theoretical
computer science, as emerging from an NSF-funded workshop circa 2000, was
drafted by Johnson [34].

We view this document as a work in progress, and invite suggestions and
feedback from other researchers both within and outside the CSC community.

2 Parallel Computing

In recent years, parallel computing has become central to scientific and engi-
neering simulations. The efficient parallelization of scientific computations re-
quires the solution to a variety of combinatorial problems. Perhaps best known is
the need to partition the data (and attendant work) of a problem amongst the
processors of a parallel machine. For the past decade, this problem has been
commonly cast in terms of graph partitioning. Vertices of the graph represent
units of computation, and the edges describe data dependencies. The goal of
graph partitioning is to divide the vertices into sets of approximately equal car-
dinality (or weight) while cutting as few edges as possible [31]. Several widely
used serial and parallel graph partitioning tools have been developed for this
purpose [32,36,37].

Unfortunately, the number of graph edges cut by a partitioning is only an
approximation to the actual communication volume in a parallel calculation.
So minimizing the number of cut edges doesn’t actually minimize communica-
tion. More recently, alternative hypergraph partitioning models has been devised

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

262 B. Hendrickson and A. Pothen

in which the number of cut hyperedges exactly corresponds to communication
volume [8]. A hypergraph is a generalization of a graph in which a hyperedge
can connect of two or more vertices. As above, vertices represent computation.
But now a hyperedge joins all the vertices that consume a value with the vertex
that produces it. Work is divided amongst processors by partitioning the vertices
in such a way that a minimum number of hyperedges is cut. Based upon this
insight, serial and parallel hypergraph partitioning tools have been developed to
facilitate parallel computations [9,17].

Graph coloring is another important kernel for parallelizing some scientific
operations. A coloring is an assignment of a color to each vertex in such a
way that adjacent vertices have different colors. The goal is to label all the
vertices while using only a small number of colors. Coloring is a useful tool in
parallelizing applications in which an operation on a vertex has side effects on
adjacent vertices. In this case, an operation cannot be simultaneously performed
on neighboring vertices. The coloring identifies sets of vertices (those with the
same color) that can be operated on at the same time. These operations can all
be performed in parallel. Thus, a small number of colors facilitates a fast parallel
calculation. As one example of this idea, Jones and Plassmann use coloring to
identify elements that can be simultaneously refined in an adaptive meshing
application [35].

Parallel computing also requires efficient algorithms for interprocessor
communication. This challenge leads to a set of problems that can be addressed
with discrete algorithms. Consider the common situation in which each processor
needs to send information to a few other processors. This is a recurring kernel
in many scientific problems. The network of wires that carries messages in a
parallel computer is generally sparse, but regular. If the logical communication
pattern in the application can be embedded well into the physical network, then
communication will be efficient. A good embedding is one in which no physical
link is expected to transmit a disproportionate amount of data. Once a com-
putation is broken into P pieces, there is freedom in mapping the pieces to P
physical processors. This freedom can be exploited to ensure that the commu-
nication patterns in the application map well onto the physical network. This
problem can be described in terms of graph embeddings. Given two graphs G
and H , an embedding is an assignment of vertices from G to vertices of H , with a
corresponding assignment of edges of G to paths in H . In the parallel computing
setting, the vertices of G are the work partitions and we want to assign them
to processors (vertices of H). But we want to do this is a way such a way that
communication operations (edges of G) don’t overwhelm the network intercon-
nect (edges of H). Graph embedding techniques provide a way to address this
problem.

Combinatorial algorithms arise in a wide assortment of other parallel
computing scenarios. Alternative load balancing models use space-filling curves
or network flow algorithms. Graph matching is used to reduce data remapping
costs in dynamic load balancing. A new linear time approximation algorithm
for maximum weighted matching with approximation ratio 1/2 was developed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 263

by Preis [52] in the context of partitioning graphs for parallel computation. His
work has spurred work on algorithms with better approximation ratios. Graph
techniques are used to block or reorder operations to improve the utilization of
memory hierarchies. As these and many similar examples illustrate, combinato-
rial scientific computing is a thriving and critical enabler for parallel computing.

3 Mesh Generation

Many methods for solving partial differential equations require the geometric
space to be decomposed into simple shapes. In scientific or engineering simula-
tions with complex geometries, this mesh generation problem can be extremely
challenging. In many settings, more time is spent generating the mesh than in
any subsequent step of simulation and analysis.

Criteria to evaluate the quality of a mesh continue to evolve. But generally
speaking, a good mesh is one with well shaped elements, and as few of them as
possible. A well shaped element is one in which angles and lengths don’t vary
too much from being isotropic. (When the physics being modeled is dramatically
skewed, as near surfaces in fluid flow calculations, a carefully skewed element may
be desirable, and meshing routines must be adjusted appropriately.)

A rich collection of geometric algorithms are employed in mesh generation.
One common technique is the use of Delaunay triangulation to produce trian-
gular meshes in two dimensions [43,58]. Delaunay triangularization is an elegant
algorithm for joining a set of points with triangles in a such a way that unnec-
essarily badly shaped triangles are avoided. However, in the mesh generation
problem the locations of mesh points in the interior of the object are generally
unspecified. A wide variety of algorithms have been proposed to initialize and
optimize point locations. These algorithms use geometric techniques like quad-
trees (or oct-trees in three dimensions) and various point insertion algorithms.
Near geometric boundaries, constrained triangulations may be required, which
adds complexity to standard Delaunay algorithms.

Tetrahedral meshing in three dimensions is considerably more challenging.
Unlike in two dimensions, three dimensional Delaunay meshes are not guaran-
teed to consist of only well shaped elements. A variety of heuristics have been
proposed to avoid badly shaped sliver elements, and this continues to be an
active area of research.

For some applications, quadrilateral (in 2D) or hexahedral (in 3D) elements
are preferred to triangles and tetrahedra. Quad and hex meshing are quite chal-
lenging, and are considerably less mature than triangular or tetrahedral meshing.
A quad or hex mesh has considerable topological structure. For instance, consider
the path of quadrilateral elements that is constructed by entering an element on
one side and departing it on the opposite side. In three dimensions, one can work
with paths constructed in a similar manner, or sheets grown by expanding in
two of the three pairs of opposing faces of an element. The topology of these
structures greatly constrains the space of possible meshes and can be used to
facilitate the mesh generation process [61].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

264 B. Hendrickson and A. Pothen

4 Solving Sparse Linear Systems

4.1 Direct Methods

Matrix factorizations are at the core of modern numerical linear algebra. Solving
systems of linear equations, least-squares data fitting, eigenvector and singular
vector computations can all be described in terms of factoring a given matrix
into a product of ‘simpler’ matrices, such as diagonal, triangular, or orthogonal
matrices. When a matrix is sparse, i.e., there are many zero elements in it,
the factors can be computed with fewer operations and reduced storage. As an
instance, the Cholesky factorization of an n × n dense matrix requires O(n3)
operations and O(n2) space, whereas if the matrix can be represented by a
planar computational graph, the operations are bounded by O(n3/2) and space
by O(n log n). Appropriate graph models and sophisticated algorithms designed
using these models are necessary to realize these gains.

We begin by discussing combinatorial issues associated with solving symmetric
positive definite systems of equations, since this is the archetypal problem. Af-
ter that we will sketch the modifications required for unsymmetric systems of
equations.

The graph model for Cholesky factorization (Gaussian elimination of a sym-
metric positive definite matrix A) was introduced by Parter [45], and further
studied by Rose [55]. The appropriate graph here is the adjacency graph of the
symmetric matrix that has a vertex vi representing the ith row and column,
and an undirected edge (i, j) representing each nonzero aij and its symmetric
counterpart aji. During factorization, multiples of a row of the current matrix
are added to a subset of the higher-numbered rows with the goal of transforming
nonzeros below the diagonal in a column into zeros. During this process, a zero
element in a higher-numbered row could become nonzero, and such newly created
nonzero elements are called fill elements. Parter described the graph transfor-
mation that models the kth step of the factorization: add edges as needed to
make all higher-numbered neighbors of vertex vk a clique, and then mark vk and
all edges incident on it as deleted. The edges added correspond to fill elements.
Rose showed that the filled graph obtained by taking the union of all the added
edges with the edges corresponding to the original matrix is a chordal graph.
(A chord in a cycle is an edge that joins two non-consecutive vertices on the
cycle. A chordal graph has a chord joining every cycle of length greater than
or equal to four.) A fill path in a graph is a path joining two vertices vi and
vj in which every interior vertex in the path is numbered lower than both end
vertices. Rose, Tarjan, and Lueker [56] obtained a static characterization of fill
in Cholesky factorization: A fill edge (vi, vj) is created during the factorization
if and only if a fill path joins the vertices vi and vj in the adjacency graph of
the original matrix A.

Sparse matrix factorizations require the computation of data structures for
the factor matrices, i.e., identification of the nonzero elements and their row and
column indices. Once this information is available, most of the non-numerical
operations can be removed from the inner-most loop of numerical computations,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 265

so that the latter can be performed in time proportional to the number of
numerical operations. Hence one of the requirements for algorithms for com-
puting the various data structures associated with sparse factorizations is that
they run as far as is possible, in time proportional to arithmetic operations or
faster. This necessitates the development of graph models, efficient algorithms
and high-performance implementations.

The Elimination Tree. A data structure called the elimination tree [41] plays
center stage in determining the control flow during the factorization, and in
designing efficient algorithms for computing data structures for the Cholesky
factors. The elimination tree has the vertices of the adjacency graph for its
nodes, and the parent of a node v is the next vertex to be eliminated from the
clique created when v is eliminated. In other words, the parent of a node in the
etree is the lowest-numbered node among all of its higher-numbered neighbors.
The elimination tree is also the transitive reduction of the filled graph in which
every edge is directed from its lower-numbered to its higher-numbered endpoint.

The elimination tree is a minimal representation of the control dependences
in the Cholesky factorization in the following sense: if an edge (i, j) exists in the
filled graph then j is an ancestor of i in the elimination tree; and if i and j belong
to vertex-disjoint subtrees in the elimination tree then no edge joins i and j in
the filled graph. In particular this implies that the computation of a column of
the factor cannot be completed unless all of the columns corresponding to its
children nodes has been computed. Hence the elimination tree can be used to
schedule the numerical computations associated with Cholesky factorization.

The elimination tree is also useful in designing efficient algorithms for
computing the nonzero structures of the rows and columns of the Cholesky
factor. The nonzero row indices in the jth column of the Cholesky factor can be
obtained by unioning the row indices of the jth column of the matrix A and the
row indices of the columns of the Cholesky factor corresponding to the children
of node j in the elimination tree, where we consider only rows from j to n in
each column. Without the elimination tree, the union would have to be taken
over a larger set of columns. The structure of the ith row of the factor can be
obtained as a pruned subtree of the elimination tree rooted at node i.

Another important feature of modern sparse factorization algorithms is the
identification of dense submatrices within the sparse factors to obtain high per-
formance on modern multiprocessors through register and cache reuse. The dense
submatrices are obtained by grouping adjacent vertices with identical sets of
higher-numbered neighbors into supernodes. The occurrence of supernodes stems
from the fact that eliminating a vertex creates a clique of its higher-numbered
neighbors.

A survey of the several data structures employed in sparse matrix factoriza-
tions is provided in [50].

Ordering Algorithms. An important component of modern sparse matrix
solvers is an algorithm that orders columns (and rows) of the initial matrix
to reduce the work and storage needed for computing the factors. These or-
derings also influence the effectiveness of preconditioners and the convergence

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

266 B. Hendrickson and A. Pothen

of iterative solvers, and can often reduce the work needed by an order of
magnitude or more. Two major classes of ordering algorithms have emerged
thus far: algorithms based on the divide and conquer paradigm, exemplified by
nested dissection, which is a top-down algorithm that computes the ordering
from n (the number of vertices) to 1. The computational graph is recursively
separated into two or more connected components by removing a small set of
vertices called a vertex separator at each step. The separator vertices are ordered
last, and the remainder of the vertices in the graph are ordered by recursively
computing separators in the subgraphs and giving them the next lower available
numbers. The second class of ordering algorithms is a greedy, bottom-up algo-
rithm that orders vertices to locally reduce fill. This class is exemplified by the
minimum-degree algorithm, which chooses a vertex of minimum degree in the
current graph to eliminate next.

In practice, minimum degree algorithms are implemented in a space-efficient
manner such that the filled graph can be implicitly represented in the same space
as the original graph, even as fill edges are created during the elimination [24].
One way to do this is to use a clique cover, i.e., a set of cliques that includes
every edge in the current graph. Initially each edge in the original graph is a
clique, and as a vertex is eliminated, all cliques containing that vertex are merged
into a new clique. Since this union operation does not increase the size of the
clique cover, we are guaranteed that the filled graph can be represented in no
more space than the original graph. There is one difficulty associated with
the clique cover representation though: it costs O(n2) operations to compute
the degree of a vertex in the course of the ordering. Hence approximations for
the degree measure which can be computed fast, in O(n) time, have been de-
veloped, the most popular of which is the approximate minimum degree (AMD)
algorithm [1], due to Amestoy, Davis and Duff.

Nested dissection, which was discovered by Alan George [23], has spurred
much research into computing vertex separators in graphs. Important classes of
graphs that occur in various applications have separators of bounded size. Planar
graphs have O(n1/2) separators [40], and this implies that systems of equations
from finite element meshes of 2-dimensional problems can be solved in O(n3/2)
operations and O(n log n) space. This result explains why direct methods are
often the solvers of choice for 2-dimensional problems. For 3-dimensional meshes
in which each element is well shaped, the corresponding bounds are O(n2) op-
erations and O(n4/3) space. Spectral, geometric, and multilevel algorithms have
been developed for computing separators in such graphs. Currently software for
graph partitioning employs multilevel algorithms due to the good quality of the
ordering and the fast computation they offer.

Unsymmetric Problems. For unsymmetric (and symmetric indefinite) matri-
ces, algorithms for sparse Gaussian elimination cannot neatly separate
combinatorial concerns from numerical concerns as in the symmetric positive
definite case. These problems require pivoting based on the actual numerical val-
ues in the partially factored matrix for numerical stability. In these problems, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 267

combinatorial task of data structure computation has to be interleaved with
numerical computation on a group of columns.

Nevertheless, combinatorial algorithms for computing data structures for the
factors and for determining the control flow have been designed. One of the
important differences for unsymmetric problems is that instead of an elimination
tree, the control flow is determined by directed acyclic graphs (DAGs) that
minimally represent the directed graphs corresponding to the factors [25]. These
DAGs could be used to speed up the computation of the data structures for the
factors.

Another combinatorial task that arises in these problems is matchings in
graphs. An unsymmetric matrix can be represented by a bipartite graph with
vertices corresponding to rows and columns, and each nonzero represented by an
edge joining a row vertex and a column vertex. The magnitude of a nonzero can
be represented by an edge weight, and then a matching of maximum cardinality
with the maximum weight can be used to permute rows and columns so as to
place large elements on the diagonal [18]. This reduces the need for numerical
pivoting in direct solvers, and improves the quality of incomplete factorization
preconditioners.

A maximum cardinality matching in a bipartite graph can also be used to
compute a canonical decomposition of bipartite graphs called the Dulmage-
Mendelsohn decomposition (the ear decomposition for bipartite graphs), which
corresponds to a block triangular form for reducible matrices [49]. Only the diag-
onal blocks in a block triangular form need to be factored, potentially leading to
significant savings in work and storage for reducible matrices that arise in appli-
cations such as circuit simulations. The diagonal blocks are also called strong Hall
components, since they have the property that every set of k columns has nonze-
ros in at least k + 1 rows. The strong Hall property is useful in many structure
prediction algorithms for unsymmetric Gaussian elimination and orthogonal-
triangular factorization [26].

4.2 Iterative Methods

For solving large systems of equations, iterative methods are often preferred to
sparse direct solvers since iterative solvers require less memory and are easier
to parallelize. The runtime of an iterative method depends upon the cost of
each iteration and the number of iterations required to achieve convergence.
Combinatorial algorithms contribute to both of these considerations.

Consider the product c = Ab where A is sparse. This operation typically
involves a doubly-nested loop in which the outer loop is over rows and the in-
ner loop is over nonzero entries in a row of A. If the nonzeros in a row are
not consecutive, then non-consecutive entries of c will need to be accessed.
The needed elements of c will often not be in cache, and so will be compar-
atively expensive to access. But if nonzeros in a row happen to be adjacent, then
this will not only improve access to c, but can also be exploited to reduce the
number of memory indirections required to access the elements of A.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

268 B. Hendrickson and A. Pothen

One way to improve the performance of this operation is to reorder the
columns of the matrix to increase the number of consecutive nonzeros in the
rows. Pınar and Heath show that this problem can be recast as a graph problem
in which the objective is to order the vertices to maximize the sum of weights
connecting adjacent vertices [47]. They propose a heuristic approach to this
NP-Hard problem that borrows techniques from literature on the the Traveling
Salesman problem. They report that this reordering improves the performance
of sparse matrix-vector multiplication by more than 20%.

The second factor in the cost of an iterative solver is the speed with which
the method converges. The number of iterations can be dramatically reduced by
effective preconditioning. Preconditioning is a transformation of a linear system
so that Ax = b is replaced by M−1Ax = M−1b, where the operator M−1A has
better numerical properties than A alone. Generally speaking, this modification
should reduce the condition number or increase the degree of clustering of the
eigenvalues. For a preconditioner M to be effective, it must be easy to solve
systems of the form My = z, and the construction of M must be efficient in
both time and space.

A number of preconditioning strategies have been proposed, and several
classes of preconditioners have combinatorial aspects. Incomplete factorization
preconditioners follow the steps of a sparse direct solver, but discard many of the
fill elements. Their construction involves many of the same operations as sparse
direct solvers including graph-based reordering and fill monitoring [57].

Algebraic multigrid preconditioners approximate a matrix by a sequence of
smaller and smaller matrices. The construction of smaller matrices can involve
graph matching [38] or independent set computations [15].

Support theory preconditioners exploit an equivalence between the numerical
properties of diagonally dominant matrices and graph embedding concepts of
congestion and dilation [7]. The (symmetric positive-definite) matrix A is repre-
sented as a graph, and the preconditioner is constructed via graph operations to
create an approximation to A that is easy to factor [27]. Spielman and Teng have
used this approach to propose preconditioners that are provably near optimal
for all diagonally dominant matrices, no matter how irregularly structured or
poorly conditioned [59].

5 Optimization, Derivatives, and Coloring

5.1 Overview

Many algorithms that solve nonlinear optimization problems and differential
equations require the computation of derivative matrices of vector functions.
When the derivative matrices are large and sparse, sparsity and matrix symme-
try can be exploited to compute their nonzero entries efficiently. The problem
of minimizing the number of function evaluations needed to compute a sparse
derivative matrix can be formulated as a matrix partitioning problem.

Graph coloring is an abstraction for partitioning a set of objects into groups
according to certain rules. Hence it is natural that the matrix partitioning

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 269

problems in derivative matrix computations can be modeled as specialized graph
coloring problems. Remarkably, the techniques for exploiting sparsity here are
essentially the same whether derivatives are computed using the older method
of finite differences or the comparatively recent method of automatic differen-
tiation. In formulating, analyzing, and designing algorithms for these matrix
partitioning problems, graph coloring has proven to be a powerful tool. Indeed,
modern software for computing large, sparse Jacobians and Hessians rely on
graph coloring algorithms to make the computations feasible.

5.2 A Jacobian Computation Problem

Let F (x) denote a vector function of a vector variable x, and let J denote the
derivative matrix of F with respect to x (the Jacobian). We assume that the
nonzero structure of J is known or can be computed. From the approximation
1
ε [F (x+εek)−F (x)] ≈ J(x)ek, by differencing the function along the co-ordinate
vector ek, we can estimate the kth column of J through function evaluations at
F (x) and F (x+εek), where ε is a small step size. Thus, if sparsity is not exploited,
the estimation of a Jacobian matrix with n columns would require n additional
function evaluations.

Now consider a subset of the columns of the Jacobian such that no two
columns have a nonzero in a common row; such a subset of columns is struc-
turally orthogonal. In a group of structurally orthogonal columns, the columns
are pairwise orthogonal to each other independent of the numerical values of
the nonzeros. Choose a column vector d with 1’s in components corresponding
to the indices of columns in a structurally orthogonal group of columns, and
zeros in all other components. By differencing the function F along the vec-
tor d, one can simultaneously determine the nonzero elements in all of these
columns through the function evaluations at F (x) and F (x + εd). Further, by
partitioning the columns of the Jacobian into the fewest groups, each consisting
of structurally orthogonal columns, the number of (vector) function evaluations
needed to estimate the Jacobian matrix is minimized.

Curtis, Powell, and Reid [14] observed in 1974 that sparsity can be employed
in this way to reduce the number of function evaluations needed to estimate
the Jacobian. In 1983 Coleman and Moré [11] modeled this matrix partition-
ing problem as a distance-1 graph coloring problem. The model uses the column
intersection graph of a matrix where columns correspond to vertices and two ver-
tices are joined by an edge whenever the corresponding columns have nonzeros in
a common row (i.e., the columns are structurally non-orthogonal). A distance-1
coloring of a column intersection graph, partitions the columns into groups of
structurally orthogonal columns. Since the distance-1 graph coloring problem is
known to be NP-hard, the work of Coleman and Moré showed that it is unlikely
that there is a polynomial time algorithm for partitioning the columns of a ma-
trix into the fewest groups of structurally orthogonal columns. Meanwhile, they
developed several practically effective heuristics for the problem. More recently,
Gebremedhin et al. [21] have used a different graph coloring model for the same
matrix partitioning problem. This coloring formulation uses a bipartite graph to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

270 B. Hendrickson and A. Pothen

represent a Jacobian matrix. The vertex set V1 in the bipartite graph corresponds
to the rows of the matrix and the vertex set V2 corresponds to the columns. An
edge joins a row vertex rk to a column vertex c� if the matrix element jk� of the
Jacobian is nonzero.

Two columns in the Jacobian matrix are structurally orthogonal if and only
if they are at a distance greater than two from each other in the correspond-
ing bipartite graph. Thus, a distance-2 coloring of the set of column vertices
V2 is equivalent to a partitioning of the columns of the matrix into groups of
structurally orthogonal columns. A distance-2 coloring of the vertex set V2 is an
assignment of colors to these vertices such that every pair of column vertices at
a distance of exactly two edges from each other receives distinct colors. More
precisely, this coloring is a partial distance-2 coloring of the bipartite graph since
the row vertex set V1 is left uncolored.

5.3 Variations on Matrix Computation

Depending on the type of derivative matrix being computed and the specifics of
the method being applied, there exist several variant matrix partitioning prob-
lems. Specifically, the nature of a particular problem in our context depends on:
whether the matrix to be computed is nonsymmetric, a Jacobian; or symmetric,
a Hessian; whether the evaluation scheme employed is direct or substitution-
based (a direct method requires solving a diagonal system and a substitution
method relies on solving a triangular system of equations); whether a unidirec-
tional (1d) partition or a bidirectional (2d) partition is used (a unidirectional
partition involves only columns or rows whereas a bidirectional one involves both
columns and rows); and whether all of the nonzero entries of the matrix or only
a subset need to be determined; we refer to these as full and partial matrix
computation. Each of these matrix partitioning problems can be modeled as a
specialized graph coloring problem.

Hessians. In 1979 Powell and Toint [51] extended the approach of Curtis, Pow-
ell, and Reid to compute sparse Hessians. McCormick [42] introduced a distance-
2 graph coloring model for the computation of Hessians in 1983. Independently,
in 1984, Coleman and Moré [12] gave a more precise coloring model that exploits
symmetry. Their model satisfies the two conditions: (1) every pair of adjacent
vertices receives distinct colors (a distance-1 coloring), and (2) every path on
four vertices uses at least three colors. This variant of coloring is called star
coloring, since in such a coloring every subgraph induced by vertices assigned
any two colors is a collection of stars.

Substitution-Based Evaluation. In a substitution-based evaluation scheme,
the unknown matrix elements are determined by solving a triangular system of
equations. A substitution-based evaluation is often effectively combined with the
exploitation of symmetry, and hence is used in computing the Hessian. Based on
the work of Powell and Toint [51], Coleman and Moré [12] found a coloring model
for a restricted substitution method for evaluating a Hessian called triangular

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 271

coloring. Triangular coloring exploits symmetry only to a limited extent. A more
accurate model for a substitution method to compute a Hessian leads to an
acyclic coloring problem in which the requirements are that (1) the coloring
corresponds to a distance-1 coloring, and (2) vertices in every cycle of the graph
are assigned at least three distinct colors. This variant of coloring is called acyclic
since every subgraph induced by vertices assigned any two colors is a forest, and
is due to Coleman and Cai [10]. Recently Gebremedhin et al [22] have developed
the first practical heuristic algorithm for acyclic coloring and a new efficient
algorithm for star coloring; they have shown that a substitution method based
on acyclic coloring leads to faster Hessian computations than a direct method
based on star coloring.

Bidirectional Partition. If the matrix contains a few dense columns and rows,
it may be advantageous to consider partitioning subsets of both columns and
rows. A partition that involves both columns and rows is called bidirectional.
Due to symmetry, there is no advantage in considering a bidirectional partition
of the Hessian, i.e., a symmetry-exploiting unidirectional partition suffices. In
the context of automatic differentiation, bidirectional partitions arise when the
Jacobian is computed by using the forward and reverse modes simultaneously.

Bidirectional partitioning of the Jacobian leads to specialized bicoloring prob-
lems in the bipartite graph, i.e., a coloring of subsets of both the row vertices and
the column vertices with disjoint sets of colors. When bidirectional partitioning
is used within a direct evaluation scheme for Jacobians, the coloring problem
is that of star bicoloring; the corresponding model within a substitution-based
scheme is the acyclic bicoloring problem. Bidirectional partitioning problems
and their graph coloring formulations were studied by Hossain and Steihaug [33]
and Coleman and Verma [13].

Partial Computation. The final variation within the classification scheme is
whether all elements of the Jacobian and the Hessian are required, or only a
subset that would be needed for preconditioning purposes. We refer to these
variations as full and partial matrix computation. The latter would be use-
ful in ‘matrix-free’ methods for large-scale problems, where the Jacobian is
too large to be explicitly estimated, but a coarser representation of the Ja-
cobian is used as a preconditioner. Partial matrix computation problems lead
to restricted coloring problems where only a specified subset of the vertices
need to be colored; however, one still needs to pay attention to the remaining
vertices, since they could interfere with the estimation of the required matrix
elements.

All of these variations lead to a rich collection of graph coloring problems.
Table 1 shows the collection of five coloring problems that arise when we consider
the computation of all nonzero entries of Jacobians and Hessians. Partial matrix
computation problems lead to another set of five coloring problems, of which
graph models have been formulated for direct methods by Gebremedhin et al.
These authors provide a recent survey of graph coloring for computing derivatives
in [21].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

272 B. Hendrickson and A. Pothen

Table 1. Graph coloring formulations for computing all nonzero entries of derivative
matrices. The Jacobian is represented by its bipartite graph, and the Hessian by its
adjacency graph. NA stands for not applicable.

1d partition 2d partition

Jacobian distance-2 coloring star bicoloring Direct
Hessian star coloring NA Direct
Jacobian NA acyclic bicoloring Substitution
Hessian acyclic coloring NA Substitution

Graph and hypergraph coloring have been used in a wide collection of applica-
tion areas in addition to optimization: register allocation in compilers, radio and
wireless networks, scientific computing, data movement in distributed and paral-
lel computing, facility location problems, cache-efficient algorithms, etc. Parallel
computers make it feasible to solve large-scale problems in many of these ap-
plication areas, especially optimization, and hence there is currently increased
interest in efficient algorithms and software for coloring graphs with millions of
vertices.

6 Statistical Physics

The inherent complexity of the physical world has led physicists to investigate
simplified, idealized models. The hope is that these idealized models capture
some of the most interesting features of reality, but their simplification allows
for more detailed analysis and simulation. In many cases, these models have rich
and exploitable combinatorial structure.

The best known example of this approach is the Ising model for magnetic
materials. Bulk magnetism is caused by the alignment of atomic spins. The spin
of each atom influences the spin of its near neighbors, leading to very complex
dynamics. In real magnets, the complex, three-dimensional geometry of atomic
locations and the subtlety of the interactions makes analysis quite difficult. In
the 1930s, long before computational simulation was even an option, the Ising
model was proposed as a simple tool for studying magnetism.

In the Ising model atoms are placed on the lattice points of a regular 1-,
2- or 3-dimensional grid. Each atom only interacts with its nearest neighbors.
Various initial and boundary conditions can be applied to the problem, and
many questions can be asked about its statistical dynamics or energetics. Some
of these questions can be addressed via combinatorial optimization techniques
involving matchings and counting of subgraphs [5].

The success of the Ising model has led to a vast array of variants and gener-
alizations, many of which have combinatorial features of their own. It has also
led to philosophically related models of very different phenomena.

One of these alternatives was proposed by Thorpe to model mechanical prop-
erties of materials [62]. Instead of trying to explicitly model the detailed bond
structure of a complex composite, Thorpe’s model places atoms in space and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 273

then connects them to near neighbors randomly. The number of connections is
chosen to reflect the statistical properties of a specific composite material. These
bonds are then treated as rigid bars, and the mechanical rigidity of the resulting
structure can be analyzed. Fast algorithms for analyzing these structures have
been developed which build upon concepts in graph matching and graph rigid-
ity [3]. The application of combinatorial optimization techniques to simplified
physical models continues to be a a very active area of research.

A very different class of idealized models of physical reality are provided by
cellular automata, of which Conway’s Game of Life is a prototypical example. In
cellular automata, a set of entities interact via very simple rules, but in some cir-
cumstances complex collective behavior can be observed. The analysis of cellular
automata is richly combinatorial [64].

7 Computational Chemistry

There is a natural correspondence between the structure of molecules consisting
of atoms and bonds, and the vertices and edges of a graph. This relationship
has led to a wide range of graph theoretic techniques in chemistry. In fact, the
term “graph” as used here was first coined by J. J. Sylvester in his studies of
molecular structure [60].

The graphs that describe molecules have special properties that sometimes
allow for more efficient algorithms. Since an atom can be bonded to at most a
few other atoms (typically four), the corresponding graph has a small maximum
degree. Also, each atom is of a particular type (carbon, oxygen, etc.), so each
vertex in the graph can be assigned a corresponding type value.

If a drug company discovers a molecule that exhibits an interesting biological
effect, they will want to test similar molecules. But in a very large universe of
molecules, how does one determine which ones are similar? A common tech-
nique is to use a set of graph properties or invariants to characterize molecules.
Molecules of interest are then those that have similar graphical properties. This
seemingly simplistic approach actually works quite well, and a vast collection of
graphical invariants have been proposed to characterize molecules [54].

Another way to search for drug candidates is to identify a piece of a molecule,
perhaps a small portion of a large protein, that displays the desired activity, and
then to search for other molecules that possess the same molecular fragment.
This problem can phrased in terms of subgraph isomorphism. Given graph G
and a smaller target graph T , the subgraph isomorphism problem is a search
for a subset of vertices and edges in G that comprise an exact match for T .
Although subgraph isomorphism is known to be NP-complete, several aspects of
this application make it solvable in practice. First, the vertex types (i.e., chemical
species) constrain the search space. And the goal here is not to look in a single
large graph G, but rather to scan a large library of smaller graphs, each of which
corresponds to a molecule.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

274 B. Hendrickson and A. Pothen

8 Bioinformatics

Bioinformatics has seen spectacular growth since the 1990’s, and combinatorial
problems abound in biological applications, so that a section of this length has to
be necessarily incomplete. A few books discussing algorithms in bioinformatics
include: Gusfield [28], Durbin et al. [19], Pevzner [46], and Eidhammer et al. [20].
All that we hope to do here is to highlight a few select areas of current research
interest.

Algorithms on strings are used in local and multiple alignment of DNA and
protein sequences. Dynamic programming is used to compute optimal pairwise
alignments of sequences, but due to its quadratic time complexity, it is imprac-
tical for searching a large database of sequences against a query sequence to find
the best local or global alignment. Faster heuristic algorithms such as BLAST
and FASTA have been developed for this problem, and BLAST represents one of
the most widely used bioinformatics tools. Optimal multiple sequence alignments
are NP-hard to compute, and various approximation algorithms have been de-
veloped for this problem. Hidden Markov models are used to build probabilistic
models of protein families and to answer queries about whether a specific protein
belongs to the family or not [19]. Sequence data of specific proteins have been
used to construct phylogenetic trees, and have provided an alternative to classi-
fying organisms based on phenotypes. Constructing an optimal phylogenetic tree
that represents given sequence data for multiple organisms is computationally
intensive due to the super-exponential growth in the number of trees that must
be examined as a function of the number of species.

Aligning RNA sequences is a computationally more intensive task since sec-
ondary structure needs to be taken into account to compute alignments. A re-
cent approach to this problem involves a graph-theoretic formulation that uses
weighted matchings in graphs and integer linear programs [4].

The Gene Ontology (GO) project (URL: www.geneontology.org) addresses
the need to provide consistent descriptions of the proteins in multiple databases.
Structured and controlled vocabularies are being developed for proteins in terms
of the biological processes they are associated with, the cellular components they
belong to, and their molecular functions, independent of the species. The data
structure underlying GO may be viewed as partially ordered set (poset), and
answering queries efficiently in GO leads to several combinatorial problems on
posets. Efficient algorithms for computational problems on posets remain to be
developed.

Proteomic experiments such as the yeast 2-hybrid system yield protein-protein
interaction graphs at the organism-scale, and such graphs are now available for
many model organisms as well as humans. Because these in-vitro experiments
have high error rates, Bayesian networks have been used to integrate this data
with other proteomic and genomic data to improve the reliability of the inter-
action graph. A functional module is a group of proteins involved in a common
biological process [29]. A key computational task is to decompose a protein-
protein interaction graph into functional modules, to annotate the biological
process that each module is involved in, and to identify “cross-talk” between the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 275

modules, i.e., the proteins that are involved in linking different biological pro-
cesses. This task can be modeled as a clustering of the graph in which the clusters
can overlap; computing a clustering in these networks is challenging since these
graphs are small-world networks (the average distance between any two vertices
in the network is O(log n), where n is the number of vertices); hence the distance
between two clusters is quite small. The degree distributions of vertices in these
networks obey a power-law, and there are a few vertices of high degree that tend
to confound the clustering.

Early work on clustering these networks has involved searching for cliques
of small size, or local clustering approaches that grow clusters from seed ver-
tices [2]. Spectral and multi-level clustering algorithms, similar to their analogues
in graph partitioning algorithms, have been developed to compute such cluster-
ings [53]. The emerging field of computational systems biology is rich in combi-
natorial problems that arise from the characterization of biological networks and
knowledge discovery in such networks. Effective methods to text-mine the liter-
ature to build proteomic and genomic networks are essential as the number of
publications in these emerging fields continues to grow.

9 Information Processing

Like many aspects of society, science is being transformed by the explosive
growth of available information and the rapidly evolving tools for search and
analysis. There are many ways to represent information, but several of them
have rich combinatorial underpinnings.

Perhaps the most familiar graph in informatics is the graph in which web pages
are vertices and hyperlinks become (directed) edges. The structure of this graph
is a critical aspect of Google’s PageRank algorithm for ranking web pages [44],
and of Kleinberg’s related HITS algorithm [39] which is used by other search
engines. Both of these algorithms construct a matrix from the web graph and
then compute rankings with eigenvectors or singular vectors of this matrix.

The ideas in PageRank were actually proposed several decades earlier in
citation analysis [48]. In this field, scientific papers are vertices and their citation
links are edges. A calculation analogous to PageRank is used to determine which
papers (or journals) are most significant.

Many types of information can be naturally represented as graphs, includ-
ing social or communication networks of all sorts. The study of these complex
networks has recently grown to become a very active area of research amongst
sociologists, statistical physicists and computer scientists. Needless to say, graph
algorithms are central to this field.

Text analysis is another area of informatics in which graph models are impor-
tant. Consider a set of documents and the union of all their keywords. A matrix
can be used to encode the set of documents that use a particular keyword. Equiv-
alently, this relationship can be encoded by a bipartite graph in which documents
are one set of vertices and keywords are another. An edge connects a docu-
ment to a keyword that the document contains. This structure can be used to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

276 B. Hendrickson and A. Pothen

analyze and organize the information contained in the corpus of documents us-
ing a variety of graph and linear algebra techniques. For instance, this structure
can be used in a query processing system to identify the documents that best
match a user’s query [6,16,30].

10 The Future

This paper has tried to introduce some of the many ways in which abstractions
and algorithmic advances in computer science have played a role in scientific
computing. The critical enabling role that these algorithms play is often over-
looked. One important reason for this is that the combinatorial kernel is often
just one piece of a larger tool or body of work (e.g., an ordering code within
a linear solver, or a Delaunay triangulation within a mesh generator). But we
believe there are other, cultural factors involved as well.

Computational science is usually marketed with an emphasis on the scientific
impact of the work – e.g., the insight into global warming or the design of a
more efficient chemical plant. The vast collection of enabling technologies un-
derpinning these applications often get short shrift. When these algorithms are
emphasized, those that are most accessible to computational scientists are the
ones that are most likely to be lauded. The training of a computational scien-
tist often involves exposure to numerical methods or to finite elements, so these
technologies are likely to be appreciated and acknowledged. But few computa-
tional scientists have taken courses in graph algorithms, and so the importance
of discrete algorithms is less likely to be recognized.

As we have tried to argue in this paper, discrete algorithms have long played
a crucial enabling role in science and engineering. We expect their importance to
continue to grow for several reasons. Fundamentally, as the data sets we analyze
and the computations we perform continue to grow in size and complexity, opti-
mal algorithmic efficiency becomes of paramount concern. This driving force will
continue to create opportunities for new research into advanced algorithms (and
approximation algorithms). In addition, as the recognition of the value of CSC
becomes more widespread in the scientific and engineering communities, we are
already witnessing a growing receptiveness and interest in discrete algorithms.
We are also seeing a growth in educational programs that expose students to a
range of topics necessary to contribute to CSC. Finally, we foresee rapid growth
in several areas of science that are particularly rich in combinatorial problems.
Among these are biology and informatics. And the broad transition to parallel
computing for scientific and engineering computations also increases the impor-
tance of combinatorial algorithms.

As with any interdisciplinary subject, the growth of CSC raises challenges on
several fronts. Education is a key issue. Computational science requires train-
ing in a scientific discipline combined with training in numerical methods and
software engineering. We feel strongly that it should also include exposure to ba-
sic algorithms and data structures, with a particular focus on graph algorithms.
Publication venues are a challenge in CSC since its work often falls into the cracks

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 277

between theory and applications. CSC sits on the periphery of several scientific
communities, but is central to none of them. Visibility and recognition is partic-
ularly important for young researchers. The tenure process can be difficult for
academics whose work spans traditional communities. Professional societies and
funding agencies can play an important role in nurturing and supporting this
field.

Many scientific breakthroughs occur at the boundaries between fields where
ideas and techniques can fruitfully cross-fertilize each other. We believe that
combinatorial scientific computing lies on one of these fruitful boundaries. For
researchers trained in computer science algorithms, scientific applications offer
a rich assortment of interesting problems with high impact. For computational
scientists trained in numerical methods or in an application discipline, combina-
torial techniques offer the potential for dramatic advances in simulation capa-
bility. This mutual benefit will continue to motivate and inspire important work
for long into the future.

Acknowledgments

We are indebted to many of our colleagues who have contributed to our un-
derstanding of the diverse areas touched upon in this paper. We also thank
Assefaw Gebremedhin and Florin Dobrian for comments on an earlier draft of
this manuscript. Sandia National Laboratories is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE
under contract number DE-AC-94AL85000.

References

1. P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–
905, 1996.

2. G. D. Bader and C. W. Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics, 4(2):27 pp.,
2003.

3. S. Bastea, A. Burkov, C. Moukarzel, and P. M. Duxbury. Combinatorial opti-
mization methods in disordered systems. Computer Phys. Comm., 121:199–205,
1999.

4. M. Bauer, G. W. Klau, and K. Reinert. Fast and accurate structural RNA align-
ment by progressive Langrangian optimization. In M. R. Berthold et al, editor,
Computational Life Sciences, Lecture Notes in Bioinformatics, volume 3695, pages
217–228. Springer Verlag, 2005.

5. R. J. Baxter. Exactly solved models in statistical mechanics. Academic Press, 1982.

6. M. Berry and M. Browne. Understanding Search Engines: Mathematical Modeling
and Text Retrieval. SIAM, Philadelphia, 1999.

7. E. G. Boman and B. Hendrickson. Support theory for preconditioning. SIAM J.
Matrix Anal. Appl., 25(3):694–717, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

278 B. Hendrickson and A. Pothen

8. Ü. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst.,
10(7):673–693, 1999.

9. Ü. Çatalyürek and C. Aykanat. PaToH: a multilevel hypergraph partitioning tool
for decomposing sparse matrices and partitioning VLSI circuits. Technical Report
BU–CEIS–9902, Dept. Computer Engineering and Information Science, Bilkent
Univ., Turkey, 1999.

10. T. F. Coleman and J. Cai. The cyclic coloring problem and estimation of sparse
Hessian matrices. SIAM J. Alg. Disc. Meth., 7(2):221–235, 1986.

11. T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph
coloring problems. SIAM J. Numer. Anal., 20(1):187–209, February 1983.

12. T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices and graph
coloring problems. Math. Program., 28:243–270, 1984.

13. T. F. Coleman and A. Verma. The efficient computation of sparse Jacobian ma-
trices using automatic differentiation. SIAM J. Sci. Comput., 19(4):1210–1233,
1998.

14. A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian
matrices. J. Inst. Math. Appl., 13:117–119, 1974.

15. H. De Sterck, U. M. Yang, and J. J. Heys. Reducing complexity in parallel algebraic
multigrid preconditioners. SIAM J. Matrix Anal. Appl., 27:1019–1039, 2006.

16. S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing
by latent semantic analysis. J. Amer. Soc. Information Sci., 41(6):391–407, 1990.

17. K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek. Parallel hy-
pergraph partitioning for scientific computing. In Proc. IPDPS’06. IEEE, 2006.

18. I. S. Duff and J. K. Koster. The design and use of algorithms for permuting large
entries to the diagonal of sparse matrices. SIAM Journal on Matrix Analysis and
Applications, 20(4):889–901, July 1999.

19. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambdridge University Press, 1998.

20. I. Eidhammer, I. Jonassen, and W. R. Taylor. Protein Bioinformatics: An algo-
rithmic approach to sequence and structure analysis. Wiley, 2004.

21. A. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Review, 47(4):629–705, Dec. 2005.

22. A. Gebremedhin, F. Manne, A. Pothen, and A. Tarafdar. New acyclic and star
coloring algorithms with application to Hessian computations. Technical report,
Old Dominion University, Norfolk, VA, March 2005.

23. A. George. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis, 10:345–363, 1973.

24. A. George and J. W. H. Liu. The evolution of the minimum-degree ordering
algorithm. SIAM Review, 31:1–19, 1989.

25. J. R. Gilbert and J. W. H. Liu. Elimination structures for unsymmetric sparse LU
factors. SIAM Journal on Matrix Analysis and Applications, 14:334–352, 1993.

26. J. R. Gilbert and E. G. Ng. Predicting structure in nonsymmetric sparse matrix
factorizations. In A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory
and Sparse Matrix Computation, pages 107–139. Springer-Verlag, 1993.

27. K. Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally
Dominant Linear Systems. PhD thesis, School of Computer Science, Carnegie-
Mellon University, 1996. Available as Tech. Report CMU-CS-96-123.

28. D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambdridge University
Press, 1997.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Combinatorial Scientific Computing 279

29. L. H. Hartwell, J. J. Hopfeld, and A. W. Murray. From molecular to modular cell
biology. Nature, 402:C47–C52, 1999.

30. B. Hendrickson. Latent semantic analysis and Fiedler retrieval. Submitted for
publication to Lin. Alg. Appl. Earlier version in Proc. SIAM Workshop on Text
Mining’06, 2006.

31. B. Hendrickson and T. Kolda. Graph partitioning models for parallel computing.
Parallel Comput., 26:1519–1534, 2000.

32. B. Hendrickson and R. Leland. The Chaco user’s guide: Version 2.0. Technical
Report SAND94–2692, Sandia National Labs, Albuquerque, NM, June 1995.

33. S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by rows and
columns. Optimization Methods and Software, 10:33–48, 1998.

34. D. S. Johnson. Challenges for theoretical computer science: Draft. URL:
www.research.att.com/~dsj/nsflist.html, 2000.

35. M. T. Jones and P. E. Plassmann. Parallel algorithms for adaptive mesh refinement.
SIAM J. Scientific Computing, 18:686–708, 1997.

36. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partition-
ing irregular graphs. Technical Report CORR 95–035, University of Minnesota,
Dept. Computer Science, Minneapolis, MN, June 1995.

37. G. Karypis and V. Kumar. Parmetis: Parallel graph partitioning and sparse ma-
trix ordering library. Technical Report 97-060, Department of Computer Science,
University of Minnesota, 1997.

38. H. Kim, J. Zu, and L. Zikatanov. A multigrid method based on graph matching
for convection-diffusion equations. Numerical Lin. Alg. Appl., 10:181–195, 2002.

39. J. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

40. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36:177–189, 1979.

41. J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal
on Matrix Analysis and Applications, 11:134–172, 1990.

42. S. T. McCormick. Optimal approximation of sparse Hessians and its equivalence
to a graph coloring problem. Math. Program., 26:153–171, 1983.

43. S. J. Owen. A survey of unstructured mesh generation technology. In Proc. 7th
Intl. Meshing Roundtable, 1998.

44. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

45. S. V. Parter. The use of linear graphs in Gaussian elimination. SIAM Review,
3:119–130, 1961.

46. P. A. Pevzner. Computational Molecular Biology: An algorithmic approach. MIT
Press, 2000.

47. A. Pınar and M. T. Heath. Improving performance of sparse matrix–vector mul-
tiplication. In Proc. ACM and IEEE International Conference on Supercomputing
(SC99), 1999.

48. G. Pinski and F. Narin. Citation influence for journal aggregates of scientific
publications: Theory, with applications to the literature of physics. Inf. Proc. and
Management, 12:297–312, 1957.

49. A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix.
ACM Transactions on Mathematical Software, 16:303–324, Dec. 1990.

50. A. Pothen and S. Toledo. Elimination structures in scientific computing. In
D. Mehta and S. Sahni, editors, Handbook on Data Structures and Applications,
pages 59.1–59.29. CRC Press, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

280 B. Hendrickson and A. Pothen

51. M. J. D. Powell and P. L. Toint. On the estimation of sparse Hessian matrices.
SIAM J. Numer. Anal., 16(6):1060–1074, 1979.

52. R. Preis. Linear-time 1/2- approximation algorithm for maximum weighted match-
ing in general graphs. In C. Meinel and S. Tison, editors, Symposium on Theoreti-
cal Aspects of Computer Science (STACS), volume 1563 of LNCS, pages 259–269.
Springer Verlag, 1999.

53. E. Ramadan, C. Osgood, and A. Pothen. The architecture of a proteomic network
in the yeast. In M. R. Berthold et al, editor, Computational Life Sciences, Lecture
Notes in Bioinformatics, volume 3695, pages 265–276. Springer Verlag, 2005.

54. M. Randic and J. Zupan. On interpretation of well-known topological indices. J.
Chem. Inf. Comput. Sci., 41(3):550–560, 2001.

55. D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In R. C. Read, editor, Graph Theory and
Computing, pages 183–217. Academic Press, New York, 1972.

56. D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM Journal on Computing, 5:266–283, 1976.

57. Y. Saad. Iterative methods for sparse linear systems (2nd edition). SIAM, Philadel-
phia, 2003.

58. J. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator. In M. C. Lin and D. Manocha, editors, Applied Computational Geom-
etry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer
Science, pages 203–222. Springer-Verlag, Berlin, 1996.

59. D. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proc. 36th ACM Symp. Theory
of Comput. ACM, 2004.

60. J. J. Sylvester. On an application of the new atomic theory to the graphical
representation of the invariants and covariants of binary quantics: With three ap-
pendices. Amer. J. Mathematics, 1:64–128, 1878.

61. T. G. Tautges, T. Blacker, and S. A. Mitchell. The whisker weaving algorithm: A
connectivity-based method for constructing all-hexahedral finite element meshes.
Intl. J. Numerical Methods Engng., 39:3327–3349, 1996.

62. M. F. Thorpe. Continuous deformations in random networks. J. Non-Cryst. Solids,
57:355–370, 1983.

63. L. N. Trefethen. Numerical analysis. In Timothy Gowers with June Barrow-Green,
editor, Princeton Companion to Mathematics. Princeton University Press, 2006. To
appear.

64. S. Wolfram. A new kind of science. Wolfram Media, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Numerical Simulation of an

Airflow Problem with the BlockCGSI Algorithm

C. Balsa1, M. Braza2, M. Daydé3, J. Palma1, and D. Ruiz3

1 FEUP, Porto, Portugal
{cbalsa, jpalma}@fe.up.pt

2 IMFT–CNRS, Toulouse, France
braza@imft.fr

3 ENSEEIHT–IRIT, Toulouse, France
{dayde, ruiz}@enseeiht.fr

Abstract. Partial spectral information associated with the smallest ei-
genvalues can be used to improve the solution of successive linear sys-
tems of equations, namely in the simulation of time-dependent partial
differential equations, where at each time step there are several systems
with the same spectral properties to be solved. We propose to perform
a partial spectral decomposition with the BlockCGSI algorithm in the
first time step, and exploit this information to improve the convergence
of the Conjugate Gradient algorithm in the solution of the following lin-
ear systems. We describe in summary the BlockCGSI algorithm, that is
a combination of the block Conjugate Gradient (blockCG) with the In-
verse Subspace Iteration. Then, we validate the accelerating strategy in
the simulation of the flow around an airplane wing, where the Conjugate
Gradient is accelerated through the deflation of the starting residual.

1 Introduction

Partial spectral information associated with the smallest eigenvalues can be used
to improve the solution of successive linear systems of equations, namely in
the simulation of time-dependent partial differential equations, where at each
global iteration there are several systems with the same spectral properties to
be solved. We propose a two-phase acceleration technique, where in the first
phase we perform a partial spectral decomposition of the system solved in the
first global iteration, with the BlockCGSI algorithm. In a second phase we exploit
this information to improve the convergence of the Conjugate Gradient algorithm
in the solution of the following linear systems.

The two-phase acceleration strategy has been initially proposed in the exper-
imental work in Ref. [1]. In the first phase, the BlockCGSI algorithm computes
a near -invariant subspace associated with the smallest eigenvalues, and in the
second phase this spectral information is used to deflate the eigencomponents
associated with the smallest eigenvalues with an appropriate starting guess. We
concluded [2] that this strategy has a good potential to reduce the computing
time of a fluid flow simulation algorithm, and the success of this approach de-
pends on the appropriate monitoring of the BlockCGSI algorithm that combines

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 281–291, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

282 C. Balsa et al.

the blockCG iterative solver with the Subspace Iteration. In [3], we analyzed
the convergence of the BlockCGSI algorithm from an inner-outer iteration point
of view. We establish how the eigenvalue error of the Subspace Iteration varies
along the inner iteration, when the system is solved with the blockCG algorithm.
In agreement with these results, we proposed an appropriate stopping criterion
for each level of iteration, that enables to reduce the computational costs.

In the present work we validate the two phase accelerating strategy in the
simulation of a flow around an airplane wing (see [4]). Firstly, in section 2,
we describe in short, the BlockCGSI algorithm, that is a combination of the
block Conjugate Gradient (blockCG) [5,1] with the Subspace Iteration [6]. We
analyze the computational costs involved in the two phases, as a function of
the dimension of the computed near -invariant subspace, and compute the a
posteriori optimal dimension (section 3.1). Based on these results, we propose
a strategy for choosing dynamically the dimension of the basis, that does not
need a priori informations about the spectrum of the coefficient matrix. We
conclude (section 3.2), showing the benefits resulting from the application of the
two-phase approach to present airflow problem.

2 The BlockCGSI Algorithm

The BlockCGSI algorithm is used to compute an M-orthonormal basis W of a
near -invariant subspace associated with the smallest eigenvalues in the precondi-
tioned matrix M−1A. If this basis incorporates, for instance, all the eigenvalues
of M−1A in the range [0, μ], we can expect, when using it later as a second level
of preconditioning, that the condition number of the coefficient matrix will be
reduced to about κ = λmax/μ, where λmax is the largest eigenvalue in M−1A.
In Algorithm 1, λmax and μ are considered as input parameters (a rough upper
bound on λmax is usually enough). Another input concerns the choice of the
block size s that defines the dimension of the working subspace at each inverse
iteration; it also gives the number of right-hand sides and solutions vectors of
the multiple linear systems solved by the blockCG algorithm, and consequently
the amount of memory required as working space.

As a starting point, the algorithm requires the generation of an M-orthonormal
basis of size s. The closer are these vectors to the targeted near -invariant sub-
space, the faster will be the convergence of the inverse iteration. The scope of
steps 1 to 4 in Algorithm 1, is to generate an initial M-orthonormal set V (0)

of s vectors with eigencomponents corresponding to eigenvalues in the range
[μf , λmax] below some predetermined value ξ � 1 (denoted as the “filtering
level”). This filtering technique is based on Chebyshev polynomials (step 3) and
details about it can be found in [3]. The idea behind the use of these Cheby-
shev filters at the starting point is to put the inverse subspace iteration in the
situation of working in the orthogonal complement of a large number of eigen-
vectors, e.g. all those associated with the eigenvalues in the range [μf , λmax].
We can also expect that the resulting filtered right-hand sides will present more
favorable spectral properties that can improve the convergence behavior of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Numerical Simulation of an Airflow Problem 283

Algorithm 1. BlockCGSI algorithm

Inputs: A, M = RT R ∈ IRn×n, μ, λmax ∈ IR, s ∈ IN
Output: a near -invariant subspace W associated with all

eigenvalues in the range]0, μ]

Begin
Generate the initial subspace (with filtering)

1. Z(0) =RANDOM(n, s)
2. Y (0) = R−1Z(0)Ψ such that Y (0)T

MY (0) = Is×s

3. Q(0)=Chebyshev-Filter(Y (0), ξ, [μf , λmax], A, R)
4. V (0) = Q(0)Γ such that V (0)T

MV (0) = Is×s

5. W (0) = empty
6. For k = 1, ..., until convergence Do:

Orthogonal iteration
i. Solve M−1AZ(k) = V (k−1) with blockCG
ii. P (k) = Z(k) − W (k−1)W (k−1)T

MZ(k)

iii. Q(k)Γk = P (k) such that Q(k)T
MQ(k) = Is×s

iv. Q(k) = [W (k−1) Q(k)]

Ritz acceleration
v. βk = Q(k)T

AQ(k)

vi. Diagonalize βk = UkΔkUT
k

where UT
k = U−1

k

and Δk =Diag(δ1, ..., δp+s) (Ritz Values)
vii. V (k) = Q(k)Uk (Ritz Vectors)

Update the computational window
viii. W (k) = converged columns of V (k)

ix. V (k) = non-converged columns of V (k)

x. (n, p) = size(W (k))
xi. Incorporate new vectors in (V (k))

7. EndDo
End

blockCG. Obviously, there is some compromise to achieve, in the sense that very
small values of μf and ξ will minimize the number of inverse and blockCG iter-
ations, but will also increase the computational efforts in the Chebyshev initial
filtering step.

The essence of the inverse subspace iteration is the orthogonal iteration. It con-
sists in multiplying a set of vectors by A−1M and M-ortonormalizing it in turn. In
step i, the multiplication by A−1M is performed implicitly through the iterative

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

284 C. Balsa et al.

solution of the system M−1AZ(k) = V (k−1) via the blockCG. In order to reduce
the computational costs, this system is solved with an accuracy determined by an
appropriate residual threshold ε (for details see [3]). In step ii, the approximate
solution vectors Z(k) are then projected onto the orthogonal complement of the
converged vectors W (k−1), in order to remove the influence of eigencomponents
associated with the converged eigenvalues. The set of projected vectors P (k) is
then M-orthonormalized (step iii), and gathered together with W (k−1).

To improve the rate of convergence of the subspace iteration, the orthogonal
iteration is followed by the Ritz acceleration (steps v to vii), as suggested by [6].
The spectral information contained in Q(k) is thus redistributed in the column
vectors of V (k), that will contain each better approximations of individual eigen-
vectors. Steps v, vi, and vii, yield the Ritz values, diag(Δ) = δ1, ..., δp+s, ranged
in increasing order, and the associated Ritz vectors, [v1, v2, ..., vp, ..., vp+s], where
p is the dimension of W (k−1) and s is the current block size.

The end of the BlockCGSI algorithm consists in testing the convergence and
updating the computational window. In step viii, all the Ritz vectors that are
considered as near -invariant (with respect to the given accuracy) are assigned to
W (k) (more details are given in [3]). Step xi consists in incorporating new vectors
in the current set of vectors V (k). The operation that consists in introducing a
set of � new vectors, after some of the Ritz vectors have converged, is detailed
in Algorithm 2. We denote this algorithmic issue in the BlockCGSI algorithm
as “sliding window”. Its purpose is to enable the approximation of a number
of eigenvectors greater than the block size s. Basically, we generate randomly a
linear combination of the filtered vectors V (0), generated in the starting steps
(1 and 2) of the BlockCGSI algorithm. Then, these vectors are projected in
the M-orthogonal complement of the converged ones, in order to remove the
corresponding eigencomponents. Note that we can also opt to reduce or enlarge
the block size s at this stage, when setting the value of � (i.e. the number of
newly incorporated vectors).

Algorithm 2: Incorporate New Vectors

Inputs: �∈ IN, M =RT R∈ IRn×n, V (0) ∈ IRn×s, W (k) ∈ IRn×p, V (k) ∈ IRn×(s−�)

Begin
a) Y =RANDOM(s, �)
b) P = V (0)Y
c) P = QΓ such that QT MQ = I�×�

d) P = Q − W (k)W (k)T
MQ

e) V (k) = [V (k)P]
End

3 Some Numerical Experiments in an Airflow Problem

We present some numerical results concerning the exploitation of a
near -invariant subspace W , with dimension q, associated with the eigenvalues of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Numerical Simulation of an Airflow Problem 285

M−1A in the range]0, μ[. The spectral information, computed with BlockCGSI
algorithm, is used to improve an airflow simulation code of the flow around a
wing (see details in [7,4,8]). The Navier-Stokes equations are solved by finite
elements in a 2D field, through a prediction-correction algorithm and a semi-
implicit time discretization scheme. To obtain all the physical structures of the
flow, long periods of simulation (T = 10 or T = 20) are required. In each time
step (typically 0.01 s) iteration, we need to solve a system of linear equation
(Poisson type), with the same coefficient matrix and changing right-hand sides,
of size n = 27283 and nz = 187487 non-zero elements.

3.1 Optimal Dimension of the Basis

After preconditioning, by means of the classical Incomplete Cholesky (M =
RT R = IC(0)), the spectrum is distributed from λmin = 6.5e − 05 to λmax =
1.7e+00, which corresponds to a spectral condition number κ of order 2.6e+04.
After the preconditioning, there are still few eigenvalues on the left of the spec-
trum that are responsible for the non-linear convergence of the Conjugate Gra-
dient. To remove these problems we propose to deflate this part of the spectrum
through an initial projection on the CG algorithm. The spectral projector is built
with the basis W of the near -invariant subspace computed with the BlockCGSI
algorithm. We denote the technique that combines the Conjugate Gradient with
the initial deflation as the Init-CG algorithm (see details in [3]). One open ques-
tion is how many eigenvalues we must compute to improve the convergence of
the Init-CG algorithm. For instance, if we want to reduce the condition number
to 100, we need to cancel the effect of the 48 smallest eigenvalues (μ ≈ 1.7e−02).
The desirable choice is that μ falls between two clusters.

The optimal dimension of the basis W will be the one that minimizes the
total cost when solving all the systems during the simulation, with our two-
phase approach. This cost is given by

Total cost = CBCGSI + CInitCG × NGits, (1)

where NGits is the number of global iteration (or time steps), i.e. the total num-
ber of systems to be solved. The cost of pre-computing the spectral information
with the BlockCGSI algorithm is given by CBCGSI and the cost of solving one
system with Init-CG is given by CInitCG.

3.1.1 Pre-computational Cost
The cost of pre-computing the spectral information depends on the dimension q
of the basis W and on working parameters in the BlockCGSI algorithm, as for
instance the block size s, the filtering level ξ, and the cut-off value μf for the
filtering. In our experiments with the current test problem, the value of μf was
automatically set as μf = μ, and ξ was fixed to 1e − 10. As we have seen in [3],
the filtering level is important but does not need to be very small to reduce sub-
stancialy the costs in the BlockCGSI algorithm. In an efficient implementation
of the BlockCGSI algorithm, Level 3 BLAS kernels can be incorporated in order

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

286 C. Balsa et al.

0 10 20 30 40 50 60
0

1

2

3

4

5

6
x 10

4

Basis dimension q

M
eg

af
lo

ps

s = 5
s = 10
s = 15
s = 20

Fig. 1. Costs of pre-computing the near-invariant subspace (CBCGSI) for different block
sizes s

to maximize the Megaflops rate, and the value of s can also be determined only
on the bais of such computer aspects, keeping in mind that the sliding window
technique adjusts the dimension of the basis W automaticaly.

Figure 1 displays the values of CBCGSI for a block size s equal to 5, 10, 15 and
20. We can see that lower pre-computational costs are obtained with larger block
sizes, specially for high dimensions of q. The principal reasons for that are the
guard vector effect [3] and the costs of incorporating new vectors by Algorithm 2.
As indicated in step b of Algorithm 2, we inject a random linear combination
of the filtered starting vectors V (0) generated in step 4 of Algorithm 1. With
this practical simplification we call the Chebyshev filtering routine only once
and do not need to filter the newly incorporated vectors. The idea behind that,
is that the starting vectors include already some information concerning all the
eigenvalues in the range]0, μ[, and to recover it we just need to redistribute this
information over each of the newly incorporated vectors. In some cases, specially
if we want an accurate spectral information, a breakdown can occur due to the
near -collinearity of these new vectors relatively to the converged ones in W (k),
which can be avoided if we force the blockCG to do a minimum number of
iterations (for instance imin = 4).

3.1.2 Solution Cost
If we analyze now the behavior of the solution costs CInitCG, as shown in fig-
ure 2. At the beginning a large decrease of the costs until q reaches approximately
the dimension 20, above which the improvements are minimal (qsol ≈ 20). This
occurs because until q is lower than 20 we are interpolating the extremal eigen-
values of the cluster and after that we are in the middle of the cluster. As the
basis is enlarged from q = 20 to q = 30 the value of μ is shifted from 6.63e − 3
to 1.02e − 2, which corresponds to a small reduction of the condition number
from κ = 2.54e + 02 to κ = 1.68e + 02. Additionally, the costs of the initial

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Numerical Simulation of an Airflow Problem 287

and restarted oblique projection in the Init-CG algorithm also contribute to
a constant level of solution costs CInitCG when q is larger than approximately
20. This does not mean that we could not use the proposed two-phase approach
with dimension larger than q = 20. As we will show, the large number of times
that the system, with the same coefficient matrix, is solved enables the compu-
tation of larger dimension basis W . In the right of figure 2, we plot the costs of
pre-computing the spectral information in terms of number of right-hand side
computed through the formula

Amor. rhs =
⌊ CBCGSI

CInitCG − CCG

⌋
+ 1,

where CCG is the cost of classical CG algorithm, and CBCGSI is the cost of pre-
computing the spectral information with the BlockCGSI algorithm using a block
size s = 10 (see figure 1). In the case of 100 systems to be solved (NGits = 100)
the pre-computational costs are amortized until the basis reaches a critical value
of q = 50. Under these conditions, if a larger number of times-steps is needed
(for instance NGits = 1000) larger will be the critical value of q.

3.1.3 Minimizing the Total Cost Function
Much more important than the critical values of q is the optimal value of q that
minimizes the total cost function given by (1). As we have seen, the parame-
ter Total cost is the addition of two other cost functions that are inversely
proportional, namely CBCGSI and CInitCG × NGits. We have seen that the cost
of pre-computing the spectral information CBCGSI increases with q, while the
solution costs CInitCG × NGits decrease as q increases. In figure 3, we plot all
these two costs as well as the sum of two (the Total cost). The cost CBCGSI

was computed with block size s = 10, and the plot on the left corresponds to a
simulation time of T = 1 where NGits = T/Δt = 100, and the plot on the right
to T = 10 with NGits = T/Δt = 1000. The minimal value of Total cost oc-
curs before CBCGSI ≈ CInitCG×NGits because the solution cost CInitCG ×NGits
decrease very slightly when q is greater than 20 and the cost CBCGSI grows in
a larger scale. The optimal value of q (qopt) is near 20 when NGits = 100, and
near 30 when NGits = 1000.

The optimal value of q confirms that we must stop the BlockCGSI algorithm
when the Ritz values are very close to each other. There is no benefit in approx-
imating all the 48 eigenvalues corresponding to the targeted condition number
κ = 100. The cost of solving all the systems given by CBCGSI increases if we con-
tinue the subspace iteration when q is larger than 20. Even if the total number
of systems to be solved NGits is large, as for instance 1000, there is no effective
reduction of the total costs when we compute a basis of higher dimension. As
shown in figure 3b, the Total cost corresponding to q = 20 is nearly 1.5e + 05
Mflops and the value corresponding to q = 30 is nearly 1.3e + 05 Mflops. We
confirm the idea that if the spectrum is very clustered (as in the present case)
the two-phase accelerating strategy is more effective if we compute only the
near -invariant subspace associated with the extremal eigenvalues.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

288 C. Balsa et al.

(a) Solution costs

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Basis dimension q

M
eg

af
lo

ps

Solution costs

(b) Amortization Right-hand sides

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Basis dimension q

N
um

be
r

of
 R

ig
ht

−
ha

nd
 s

id
es

s = 10, t = 1

Fig. 2. Solution costs and amortization right-hand sides with Init-CG (b)

3.2 Costs-Benefits of the Two-Phase Approach

Table 1 shows the cost-benefits of accelerating strategy. We consider that the
Init-CG algorithm has converged when the backward error is below 10−8. In
this case the classical Conjugate Gradient (Init-CG with q = 0) performs
423 Mflops. As before, we indicate the number of floating-point operations in
Megaflops (Mflops) and the number of amortization right-hand sides by Amor.
rhs. The pre-computational costs CBCGSI are obtained with a block size of
s = 15.

Firstly we can observe that when NGits = 100 the minimum value of Total
cost, obtained with q = 25, is 15925 Mflops. The optimal value of q is greater
than in the previous section (q = 20) because we run the BlockCGSI with
s = 15 instead of s = 10. The same occurs when NGits = 1000 where the
optimal value of q is equal to 40 instead of 30. This indicates that, if there were
no computational restrictions, the BlockCGSI algorithm would run with a block
size s as large as possible.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Numerical Simulation of an Airflow Problem 289

(a) Total costs, NGits = 100

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Basis dimension q

M
eg

af
lo

ps

Pre−computational costs
Solution costs
Total costs

(b) Total costs, NGits = 1000

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Dimension q

M
eg

af
lo

ps

Pre−computational costs
Solution costs
Total costs

Fig. 3. Total costs of the two-phase approach

If we apply our accelerating technique to the current problem, and compute
a basis W with optimal dimension (q = 25), 3225 Mflops are needed for the
spectral pre-computation, out of which the Init-CG achieves convergence in
127 Mflops, i.e. a reduction of 70% compared with the work needed to solve
one system with the classical Conjugate Gradient (423 Mflops). Therefore, the
3225 extra Mflops are paid back after 11 consecutive global iterations of the
simulation code. And, in the case of NGits = 100, the value of Total cost
is reduced from 42300 to 15925 Mflops, which corresponds to a reduction of
62% of the total amount of work required to solve 100 consecutive linear sys-
tems. In the case of NGits = 1000, if a basis of size q = 30 is used, the value
of Total cost is reduced from 423000 to 125242 Mflops, which is a reduc-
tion of order 70% over all the computational work needed to solve the 1000
systems.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

290 C. Balsa et al.

Table 1. Cost-benefits of the two-phase accelerating technique

Spectral fact. Init-CG Amor. rhs Total cost
q CBCGSI Mflops NGIts = 100 NGIts = 1000

0 – 423 – 42300 423000
5 2041 261 13 28141 263041
10 2377 189 11 21277 191377
15 2767 162 11 18967 164767
20 2767 145 10 17267 147767
25 3225 127 11 15925 130225
30 4242 121 15 16342 125242
35 4242 122 15 16442 126242
40 7473 116 25 19073 123473
45 11015 117 36 22715 128015
50 14972 118 50 26772 132972
55 24950 114 81 36350 138950

4 Conclusions

A two-phase approach was suggested to improve the numerical simulation of
an airflow problem. In the first phase we have computed with the BlockCGSI
algorithm a near-invariant subspace linked to the smallest eigenvalues. In the
second phase, the basis of this subspace is used in each run of the Conjugate
Gradient to deflate the starting residual (Init-CG) and improve the consecutive
solutions of the linear systems with the same coefficient matrix and changing
right-hand sides.

The key question of this strategy is the dimension q of the near-invariant sub-
space to be computed. The optimal dimension depends on a compromise between
the pre-computational (first phase) costs and the solution (second phase) costs.
The cost of pre-computing the spectral information, which increases with the
dimension of the basis, depends also on the block size s used on the BlockCGSI
algorithm. The results show that larger block sizes reduce the pre-computational
costs. On the other hand, the solution costs decrease with the increasing dimen-
sion of the near-invariant subspace q, until a q value (qsol) is reached, above
which the solution costs stagnates. The optimal dimension (qopt) is thus, the one
that minimizes the sum of the two costs (pre-computing and solution) over all the
systems to be solved. The results showed that qopt and qsol are close to each other.

The stagnation of the solution costs occur because the convergence rate of
CG is not sufficiently improved, since the effect of all the extremal eigenvalues,
separated from the main cluster, was removed. As the remaining eigenvalues
are very close to each other, their deflation yields only a low reduction on the
condition number that governs the convergence rate of the CG.

As a consequence of the previous results, we suggest a dynamical strategy to
set up the dimension q of the near-invariant subspace associated with the small-
est eigenvalues without a priori knowledge of the spectrum. At the beginning,
after setting a reduced condition number κ = λmax/μ in agreement with the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Numerical Simulation of an Airflow Problem 291

convergence rate of the CG, we request to approximate all the eigenvectors cor-
responding to the eigenvalues smaller that μ. At each iteration of the BlockCGSI
algorithm, if the request is not satisfied, we compute the gaps between the ap-
proximated eigenvalues (Ritz values). As soon as the larger gap is below a given
preset tolerance (which means that we are in the middle of a cluster), we stop
the BlockCGSI algorithm and switch to the CG improved with precomputed
basis (Init-CG), to compute the remaining system solutions of the simulation
problem.

References

1. Arioli, M., Ruiz, D.: Block conjugate gradient with subspace iteration for solving
linear systems. In: Iterative Methods in Linear Algebra, Second IMACS Symposium
on Iterative Metohds in Linear Algebra, Blagoevgrad, Bulgaria, S. Margenov and
P. Vassilevski (eds.) (June, 1995) pp. 64–79

2. Balsa, C., Palma, J., Ruiz, D.: Partial spectral information from linear systems
to speed-up numerical simulations in computational fluid dynamics. In Daydé, M.,
Dongarra, J., Hernandez, V., Palma, J., eds.: High Performance Computing for Com-
putational Science, 6th Int. Meeting, VECPAR’04. LNCS 3402, Berlin, Springer-
Verlag (2005) pp. 699–715

3. Balsa, C., Daydé, M., Palma, J., Ruiz, D.: Inexact subspace iteration to exploit
partial spectral information. Technical Report TR/TLSE/05/09, Institut National
Polytechnique de Toulouse, LIMA-IRIT (2005)

4. Bergmann, M.: Analyse physique de la Transition Laminaire-Turbulent 2D dans
des écoulements Cisaillés a l’Aide d’un Code de Navier-Stokes en éléments Finis.
Rapport de stage de DEA, Toulouse (2001)

5. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear
Algebra and its Applications (1980) 293–322

6. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)
7. Braza, M.: Analyse Physique du Comportement Dynamique d’un Écoulement

Externe, Décollé, Instationnaire en Transition Laminaire-Turbulent. Application:
Cylindre Circulaire. Thse d’état, INPT, Toulouse (1986)

8. Martinat, G.: Analyse physique de la Transition Laminaire-Turbulent sous l’Effect
de la Rotation par un Code en Élement Finis. Rapport de stage de DEA, Toulouse
(2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 292 – 304, 2007.
© Springer-Verlag Berlin Heidelberg 2007

EdgePack: A Parallel Vertex and Node Reordering
Package for Optimizing Edge-Based Computations in

Unstructured Grids

Marcos Martins, Renato Elias, and Alvaro Coutinho

Center for Parallel Computations and Department of Civil Engineering
Federal University of Rio de Janeiro, P. O. Box 68506,

RJ 21945-970 – Rio de Janeiro, Brazil
{marcos, renato, alvaro}@nacad.ufrj.br

http://www.nacad.ufrj.br

Abstract. A new and simple method is proposed to choose the best data
configuration in terms of processing phase time according to previous probing
of edge-based matrix-vector products for codes using iterative solvers in
unstructured grid problems. This method is realized as a suite of routines named
EdgePack, acting during both pre-solution and solution phase, based on data
locality optimization techniques and variations of matrix-vector product
algorithm. Results have been demonstrating the great flexibility and simplicity
of this method, which is suitable for distributed memory platforms in which
different data configurations can coexist.

1 Introduction

The performance optimization of codes based on iterative solvers for unstructured
grids based problems has the matrix-vector product algorithm as a key issue. It is well
known that data reordering techniques comprise an effective solution for good
performance results during matrix-vector product computations due to data locality
optimization [1]-[12]. Despite these techniques, the overall performance can be
further increased by the migration from element based to edge based data structure,
verified in the last decade [11], [13]-[18]. This data structure is quite suitable for
reordering manipulations, strengthening even more the overall performance [19].

The combination of data reordering techniques with edge-based data structures
generates lots of possibilities which can be or not the best performance solution for
one or another hardware and software platform [19]. The code performance depends
on many factors namely, computational architecture, compiler options, data
configuration, number of degrees of freedom per node (algorithm complexity) and
algorithm structure itself. According to previous results [19], there is no an ultimate
data combination known prior to processing phase unless a probe is performed, since
the many combinations possible may produce unexpected results.

This work presents a method to determine which data combination for a given
computer platform is the best one in terms of processing time. This method is simply
based on the choice of the best results after probing the several possibilities more
adequate to such platform. Considering a particular parallel platform, as clusters

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 EdgePack: A Parallel Vertex and Node Reordering Package 293

(heterogeneous or not), the best data configuration choice can be different from each
other and thus, different data structures can be used together for the same model.
Concerning distributed parallel processing, the standard approach is to partition data
before performing data reordering on each processor. Data partition is performed by
Metis library [20].

Based on the nodal renumbering algorithms and concepts proposed in [4], [21],
[22] and edge renumbering algorithms proposed in [17], algorithms for matrix-vector
product composed by 1, 3 and 4 degrees of freedom per node (hereafter, referred as
dof), for symmetric and non-symmetric matrices, were implemented. The techniques
employed try to define the most suitable data reordering according to the
computational system at hand, even without any prior knowledge about the processors
architecture. Among them, a sorting of edges, in increasing order by the edge first
node number (namely hereafter, reduced i/a), halves the indirect addressing
operations of the edge-based matrix-vector product algorithm [21].

Additionally, data locality algorithms were used in association with special edge
groupings, which improve the edge-based matrix-vector product algorithm. This was
implemented for tetrahedra, grouped into 3 and 6 edges, named respectively
superedge3 and superedge6 for both incompressible fluid flow and geomechanics
problems [17]. For the latter, it was implemented an edge-based interface element
with special groupings named superedge4 and superedge9, comprising groups of 4
and 9 edges respectively [23].

Related to memory dependency, lists of edges are built where no pair of edges in
the same edge list shares the same node. This arrangement is referred here as nodal
disjointing and is responsible for a significant lack of performance. A Reverse Cuthill
McKee (RCM) [24] algorithm in conjunction with edge and element sorting
according to node numbering are further employed to diminish the negative effect
provided by the nodal disjointing ordering.

The method developed is realized as a suite of routines built in Fortran90,
comprising the necessary tasks for both pre-solution and solution phases of finite
element codes based on iterative solution methods, for serial or parallel platform
(shared, distributed or hybrid), named EdgePack. The remainder of this work is
organized as follows. In the next section, we revise the edge-based data structures and
the data reordering algorithms. In Section 3 we describe EdgePack in detail. In the
following section, we show some numerical experiments exploring the main
characteristics of EdgePack. The paper ends with a summary of our conclusions and
remarks.

2 Edge-Based Structure and Data Reordering

Edge based finite element data structures have been introduced for explicit
computations of compressible flow in unstructured grid finite element and finite
volume computations [13], [14], [25]. It was observed in these works that residual
computations with edge-based data structures were faster and required less memory
than standard element-based residual evaluations. Following these ideas, Coutinho et
al [15], Catabriga and Coutinho [16], Sydenstricker et al [23], Elias et al [18] derived
edge-based finite element implementations respectively for elasto-plasticity, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

294 M. Martins, R. Elias, and A. Coutinho

SUPG finite element formulation with shock-capturing for inviscid compressible
flows, interface elements for modeling joints and faults and the SUPG/PSPG solution
of incompressible flows. Differently from the previous finite volume/finite element
implementations, all these works used the concept of algebraically disassembling the
finite element matrices to build the edge matrices introduced by Catabriga and
Coutinho [16]. This procedure makes the edge-operators construction independent of
the underlying finite element formulation. To illustrate this procedure, consider three
dimensional problems on unstructured meshes composed by tetrahedra. Thus, the

element matrice eA can be disassembled into their edge contributions as

1

m
e e

s
s=

=∑A Τ . (1)

where e
sT is the contribution of edge s to Ae and m is the number of edges per

element. The contributions of all elements sharing a given edge s is given by the
following edge matrix,

e
s s

s∈

=∑A Τ
E

 . (2)

where E is the set of all elements sharing a given edge s.
When working with iterative solvers, it is necessary to compute sparse matrix-

vector products. These matrix-vector products are responsible for a good share of the
overall computational effort. A straightforward way to implement the edge-by-edge,
similar to popular element-by-element matrix-vector product, is

1

ne
l l

l=

=∑Ap A p . (3)

where ne is the total number of local structures (edges or elements) in the mesh and pl
is the restriction of p to the edge or element degrees-of-freedom. As a prototype of
such procedure, the edge-based Laplacian loop algorithm (comprising 1 dof per node)
as proposed in [21], is:

Laplacian loop for a single edge sparse matrix-vector product

do edge = edge_begin, edge_end

eq_1 = lm(1,edge)

eq_2 = lm(2,edge)

ap = a(edge) * (u(eq_2) – u(eq_1))

p(eq_1) = p(eq_1) + ap

p(eq_2) = p(eq_2) + ap

end do

where array lm stores edge equation numbers, a stores the edge coefficient and u
stores the unknown values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 EdgePack: A Parallel Vertex and Node Reordering Package 295

In order to achieve a good balance between memory accesses and floating point
operations (flops), reordering techniques are suggested in the literature such as
superedges [17], [26] and reduced indirect addressing (i/a) edges [21]. The superedge
scheme reaches good balance of i/a and flops [15] without complex preprocessing
codes [17]. In this case, computer costs are just related to the new order of the edge
list, considering the edges agglomerated, in geometric sense, for example, in
tetrahedral shape, swept by stride of 6 edges.

An alternative to reduce i/a is to convert an edge-based loop into a vertex-based
loop [4] in which the edges are arranged in such a way that the first node always has
the lower number and increases as the edge number increases with stride one. This
loop reuses vertex-based data items in most or all of the accesses several times before
discarding it. This approach increases flops but reduces i/a operations, whereas the
edge has to be processed twice. Table 1 shows a comparison of computation
parameters for the matrix-vector multiplication algorithm for reduced i/a and
superedge schemes, considering 3 dof and symmetric operators.

Table 1. Comparison of computational parameters for matrix-vector multiplication algorithm
for reduced i/a and superedges for 3 dofs

Group/Parameter flops i/a Flops/(i/a)
Simple Edge 36 18 2.0
Superedge6 268 36 7.4
Superedge3 130 27 4.8
Superedge9 436 54 8.1
Superedge4 190 36 5.3
Reduced i/a 39 9 4.3

3 EdgePack

EdgePack is a suite of routines built in Fortran90 to optimize computations on
unstructured grids. EdgePack is divided into two sets of routines: the first set is a
preprocessing phase and aims to reorder finite element meshes composed by
tetrahedra and prisms to improve the performance of iterative solvers for any number
of degrees of freedom per node. The main concern is to optimize data locality and
data reuse for serial or parallel and shared or distributed memory computers. The
second set is composed by a series of optimized edge-based data routines for matrix-
vector products and element matrix disassembling into edges.

The main tasks performed by EdgePack during the preprocessing phase comprise
the edge connectivity assembly, based on building fast hash-tables, edge groupings
into superedges [17], [26], nodal and edge reordering into reduced indirect addressing
edge mode [4], [21], nodal reordering to minimize bandwidth based on Reverse
Cuthill McKee (RCM) algorithm [24], nodal disjointing reordering for pipelined
processing providing data with no memory dependencies, edge reordering driven by
equation map and element reordering according edge connectivity.

EdgePack runs either on serial or parallel distributed memory systems. Targeting
on parallel processing, the mesh partitioning is performed by Metis library [20], in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

296 M. Martins, R. Elias, and A. Coutinho

weighted or non-weighted mode, and for all subdomains data reordering is
accomplished locally on each processor node. This method provides the possibility of
achieving the best data structure and reordering choice for each processing node, as in
the case of heterogeneous clusters. EdgePack probes timing results for matrix-vector
products based on equation map and element matrix topology, taking into
consideration the number of degrees of freedom per node and if the matrix is
symmetric or not, and chooses the data configuration from the best matrix-vector
product timing result. Based on this probe, it is possible to determine which data
structure will suit best on a given hardware and software configuration and
automatically decide which element, edge and node data structure and order best fit
on, without neither the user intervention nor concern. However, the user can set
directly which data structure to use without probing. EdgePack can be used as either a
stand-alone program or library.

Communication among processors is another issue treated by EdgePack. The
subdomain interfaces, inherent in distributed parallel processing, can either be done by
simply indexing shared nodes among subdomains – thus preserving local data order –
or by ordering shared nodes sequentially for optimizing communications tasks.

For processing phase, EdgePack provides optimized edge-by-edge matrix-vector
product routines for 1 up to 4 dof per node, for symmetric or non-symmetric
operators, which account for i/a and flops reduction, and data reuse strategy based on
data locality and agglomeration into registers. Besides data configuration paradigm,
EdgePack probes the matrix-vector product routines based on typical vector lengths
for chunkwise and nodal disjointed loops, alternative right hand side evaluation
(RHS) [21] and loop unrolling into edges. The matrix-vector product routines are
ready to run under serial and parallel (hybrid or not) mode and are set according to
pre-compiler directives.

Table 2. Keywords for data and matrix-vector algorithm configuration

Keyword # Description Option
 1 Nodal Disjointing Yes / No
 2 Chunks Yes (List Length) / No
 2.1 List Length Starting from 64 up to 2048

and free (mandatory for
reduced 1 and 2)

 3 Node Order RCM / Reduced
 4 Edge Order Reduced (0/1/2) / Simple or

Superedge
 4.1 Prescribed Edge Yes / No (for simple and

superedge only)
 4.2 Superedge Omission -Sx (for superedge only,

x = 3, 4, 6 and 9)
 5 Shared Nodes

(for distributed processing)
Indexed / Sequential

 6 Alternative RHS Yes / No
 7 Loop Unrolling Yes (2/3/6) / No

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 EdgePack: A Parallel Vertex and Node Reordering Package 297

The various data configurations and matrix-vector product modes available can be
set by a combination of 7 keywords as presented by Table 2. The first five keywords
are related to the preprocessing phase and the remaining ones set the matrix-vector
product algorithm type.

4 Preliminary Results

This section presents some preliminary results from three models comprising
geomechanics and incompressible fluid flow. The first two ones are models of true
sedimentary basins with faults. The last model comprises the transient incompressible
fluid flow around a cylinder. The first model illustrates the main data orderings
available on EdgePack, for serial processing, through edge connectivity graphs,
characterizing data locality for each case. In the second model we show time probing
results for some data ordering available on EdgePack for serial mode, fancying the
fastest ones for each case to glance the various data configuration possibilities and
related results. The third model presents edge connectivity graphs, timing results for
the best data configuration selection after probing, besides some validation results for
parallel processing.

4.1 Sedimentary Basin – Model 1

This model represents a sedimentary basin which geometry and materials correspond
to a region at Colombia, South America. A fault is present in the model, crossing it
completely. The model surface is approximately 80 × 80 km2 and 23 km deep, and
comprising 141,766 tetrahedra, 5,133 interface elements and 28,897 nodes. Fig. 1
presents the surface of the of sedimentary basin mesh – model 1.

Fig. 1. Surface mesh of sedimentary basin – model 1

The model will be employed to illustrate the main data orderings available in
EdgePack. Fig. 2 presents the main edge and vertex ordering generated by EdgePack
for this model by a representation of its edge connectivity, where the first edge node
is in black line and the second one in gray line. The edge sequence is highlighted
through lines connecting the nodes. In this figure, the original vertex and edge
orderings are presented in letter (a); the reduced edge order is presented in letter (b) in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

298 M. Martins, R. Elias, and A. Coutinho

which the monotonic order of the first nodes can be clearly noted by the ramps. Letter
(c) presents the simpleedge order and letter (d), the superedge one. It can be noted on
these orderings the good data locality configuration. In letter (d), the five ramps
represent the superedges employed as superedge6 (S6), superedge3 (S3), superedge9
(S9), superedge4 (S4) and simpleedge respectively.

0

5

10

15

20

25

30

0 40 80 120 160 200

Edge (x1000)

N
o

d
e

i,
j (

x1
00

0)

(a)

0

5

10

15

20

25

30

0 50 100 150 200

Edge (x1000)

N
o

d
es

 i,
 j

(x
10

00
)

(b)

0

5

10

15

20

25

30

0 40 80 120 160 200

Edge (x1000)

N
o

d
e

i,
j (

x1
00

0)

(c)

0

5

10

15

20

25

30

0 40 80 120 160 200

Edge (x1000)

N
o

d
e

i,
j (

x1
00

0)

(d)

Fig. 2. Edge connectivity orders generated by EdgePack for sedimentary basin – model 1

4.2 Sedimentary Basin – Model 2

This model represents a portion of a sedimentary basin which geometry and material
corresponds to a region at northeast of Brazil, South America. The model is
constituted of four blocks separated by three geological faults. The model is 9.1 × 6
km2 and 1.5 km deep, comprising 371,244 nodes, 2,064,940 linear tetrahedral
elements and 17,317 interface elements, as shown in Fig. 3. The boundary conditions
impose compression along the major dimension, normal to faults and normal
displacements nullified over entire surface, besides overburden from upper layers and
self-weight. Analysis comprises 3 dofs per node as displacements.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 EdgePack: A Parallel Vertex and Node Reordering Package 299

Fig. 3. Surface mesh of sedimentary basin - model 2

Fig. 4 presents the most important time probing results out of 208 jobs on Itanium
2 platform, under pipelined serial mode. Fig. 4(a) presents some time probing results
where the clear benefit of simpleedge over reduced schemes for this case is
represented by 45% gain in time. The labels correspondence is presented by Table 3
in which results were obtained for non-unrolled matrix-vector loops.

Table 3. Data configuration for results presented by Fig. 4(a)

Label Nodal Order Chunk Length (min/max)
Simpleedge RCM 64/2048
Superedge RCM 64/ 512
Reduced 0 Reduced 64/ 64
Reduced 1 Reduced 64/ 64
Reduced 2 Reduced 64/ 128

Fig. 4(b) presents the percentage of occurrences of nodal order configuration for all
208 jobs. The percentage is referred for each legend individually. It is clear the
advantage of RCM nodal ordering over reduced one for this combination of model
and platform. However, only 4% of all cases with nodes ordered by RCM attain the
best results.

For the reduced edge scheme, Fig. 4(c) presents the percentage of occurrences
related to each one individually. This picture shows the slight advantage of reduced 0
and 1 scheme over reduced 2, for this case. However, the distribution tends to be
uniform for three modes.

Fig. 4(d) pictures time probing results for nodes ordered by RCM and edges
arranged as simpleedges and superedges. In the latter, all superedges available were
used. The supremacy of simpleedge over superedge is notorious since superedge only
occurs in the third time scale. However, only 7% of simpleedge data combinations
appear as best results.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

300 M. Martins, R. Elias, and A. Coutinho

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Sim
ple

ed
ge

Sup
er

ed
ge

Red
uc

ed
_0

Red
uc

ed
_1

Red
uc

ed
_2

N
o

rm
al

iz
ed

 C
P

U
 T

im
e

(a)

19

2 3
8

39

11

28

1413 13

4

46

0,2 0,3 0,4 0,5 0,5 0,6 0,7 0,8 0,9 1,0
Normalized CPU Time

RCM
Reduced

(b)

25

25

11

25

4

9

15

10

13

25

13
13

11
17

74
11

25
11

15

12

0,2 0,3 0,4 0,5 0,5 0,6 0,7 0,8 0,9 1,0

Normalized CPU Time

Reduced 2
Reduced 1
Reduced 0

(c)

79

21

93

7

0,2 0,3 0,4 0,5 0,5 0,6 0,7 0,8 0,9 1,0

Normalized CPU Time

Super Edge
Simple Edge

(d)

Fig. 4. Timing results from probing of sedimentary basin – model 2

4.3 Incompressible Fluid Flow

The problem of a fluid flowing around a circular cylinder is considered as an
application of the EdgePack’s data improvements to incompressible fluid flow codes.
Time probing for this case was performed and the data configuration comprising edge
ordering by simpleedge scheme, nodal ordering by RCM and chunk length of 4096
was chosen. For this problem an extension for transient flows of the edge-based
stabilized finite element implementation described in [18], is applied to solve the
three dimensional u-p fully coupled (4 dofs per node) problem arisen from the Navier-
Stokes discretization. The computational domain follows the dimensions described in
[27] and the mesh is formed by 446,662 linear tetrahedra elements, 1,010,367 edges,
81,991 nodes, summarizing 174,008 equations.

The results, for a Reynolds 100, are assessed and compared with those presented
by [28] and [29] showing a good agreement for the time evolution of the drag and lift
forces on the cylinder surface as depicted in Fig. 5 for lift coefficient. Baranyi [29]
reported a Strouhal number of 0.163 and drag and lift coefficients of 1.346 and 0.228
respectively for Reynolds 100 while Williamson [28], employing an experimental
correlation for the Strouhal-Reynolds pair, estimated the value of 0.1643. In this work

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 EdgePack: A Parallel Vertex and Node Reordering Package 301

we have found St = 0.16 and 1.313 and 0.225 for drag and lift coefficients
respectively, which compares well with the results presented by those authors.

A typical computation of this problem considering 10,000 fixed time steps, which
corresponds to 500 time units, spent 6.48 hours running in MPI mode with four
processors of a SGI Altix 350 system equipped with Intel Itanium-2 1.5 GHz
processors.

-0,25

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

100 200 300 400 500 600 700 800 900 1000

Time (seconds)

L
if

t C
o

ef
ic

ie
n

t

Fig. 5. Lift coefficient for flow around a cylinder problem

Fig. 6. Snapshot of cylinder surface mesh and vorticity, showing the development of the von
Karman vortex streets

Fig. 7 presents nodal edge connectivity for partition 2 out of 4 partitions. For this
figure, letter (a) presents the original node order for edges ordered in chunks for
pipeline processing and letter (b) corresponds to the combination of simpleedge order
in chunks for pipelined processing with nodes renumbered by RCM.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

302 M. Martins, R. Elias, and A. Coutinho

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Edge (x1000)

N
o

d
es

 i,
 j

(x
10

00
)

(a)

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Edge (x1000)

N
od

es
 i,

 j
(x

10
00

)

(b)

Fig. 7. Nodal edge connectivity of simpleedge for partition 2

5 Conclusions and Incoming Work

The results presented attest the versatility of EdgePack in choosing data configuration
according to best time results. This versatility can be derived from the need of
determining which data configuration produces the best time performance among
hundreds of possibilities besides computational platform effects.

The model presented in Section 0 presented the main data configuration
possibilities and its choice range. The mesh partitioning was also exploited for
distributed parallel processing. The good effect over data locality was clearly shown
by nodal edge connectivity graphs.

An example of time probing for serial run was done in 0, where performance
results were undetermined a priori and probing demonstrated that a wrong choice
could represent about 45% loss in time processing. The presented graphs glimpsed the
various possibilities and their unexpected results strengthening the EdgePack
flexibility in setting data configuration without user intervention.

Section 0 presented an example of distributed parallel processing over partitions
locally ordered by EdgePack. In this example, data was prepared to run under hybrid
mode, comprising data distribution, memory dependency and good data locality.

As next step in EdgePack development, the work goes towards distributed parallel
processing in heterogeneous clusters and grids, where in each node, EdgePack can
determine different data configurations, to set the best performance individually
providing the coexistence of different data structures during same analysis and
exploiting the most adequate data configuration for each processor.

References

1. Burgess, D. A. and Giles, M. B.: Renumbering unstructured grids to improve the
performance of codes on hierarchical memory machines, Advances in Engineering
Software 28 (1997) 189-201

2. Carey, G. F., Swift, S. and McLey, R. T.: Maximizing sparse matrix-vector product
performance on RISC based MIMD computers. Journal of Parallel and Distributed
Computing, v.37, p.146-158, 1996

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 EdgePack: A Parallel Vertex and Node Reordering Package 303

3. Douglas, C. C, Hu, J., Kowarschik, M., Rude, U. and Weiss, C.: Cache Optimization for
Structured and Unstructured Grid Multigrid. Electronic Transactions on Numerical
Analysis, v.10, p.21-40, 2000

4. Gropp, W. D., Kaushik, D. K., Keyes, D. E. and Smith, B. F.: Performance Modeling and
Tuning of an Unstructured Mesh CFD Application, Proceedings of SC 2000, IEEE
Computer Society, 2000, Dallas, Texas, United States, Article No. 34, ISBN:0-7803-9802-5

5. Löhner, R.: Renumbering Strategies for unstructured-grid solvers operating on shared-
memory, cache-based parallel machines, Computer Methods in Applied Mechanics and
Engineering 163 (1998) 95-109

6. Oliker, L., Canning, A., Carter, J., Shalf, J. and Skinner, D.: Evaluation of cache-based
superscalar and cacheless vector architectures for scientific computations, Proceedings of
the 18th Annual International Conference on Supercomputing, Malo, France, 2004,
ISBN:1-58113-839-3

7. Oliker, L., Li, X., Heber G. and Biswas, R.: Parallel Conjugate Gradient: Effects of
Ordering Strategies, Programming Paradigms, and Architectural Platforms, IEEE
Transactions on Parallel and Distributed Systems, 11(9):931-940, 2000

8. Oliker, L., Li, X., Heber, G. and Biswas, R.: Ordering Unstructured Meshes for Sparse
Matrix Computations on Leading Parallel Systems, Lecture Notes In Computer Science,
Vol. 1800, pp. 497-503, 2000

9. Oliker, L., Li, X., Husbands, P. and Biswas, R.: Effects of Ordering Strategies and
Programming Paradigms on Sparse Matrix Computations, SIAM Review, Vol. 44, No. 3,
pp 373-393

10. Pinar, A. and Heath, M. T.: Improving Performance of Sparse Matrix-Vector
Multiplication, Conference on High Performance Networking and Computing,
Proceedings of the 1999 ACM/IEEE Conference on Supercomputing (CDROM), Portland,
Oregon, United States, Article No. 30, 1999, ISBN:1-58113-091-0

11. Ribeiro, F. L. B and Coutinho, A. L. G. A.: Comparison between element, edge and
compressed storage schemes for iterative solutions in finite element analyses.
International Journal for Numerical Methods in Engineering, Volume 63(4): 569-588,
2005

12. Vuduc, R., Demmel, J. W., Yelick, K. A., Kamil, S., Nishtala, R., and Lee, B.:
Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply. Conference
on High Performance Networking and Computing, Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, Baltimore, Maryland, Pages: 1 – 35, 2002

13. Peraire J, Peiro J, Morgan K, 1993. Multigrid solution of the 3d-compressible Euler
equations on unstructured grids. Int. J. Num. Meth. Engrg.. 36(6): 1029-1044

14. Luo H, Baum JD, Löhner R, 1994. Edge-based finite element scheme for the Euler
equations, AIAA Journal, 32(6):1183-1190

15. Coutinho ALGA, Martins MAD, Alves JLD, Landau L and Moraes A, 2001. Edge-based
finite element techniques for non-linear solid mechanics problems. Int. J. for Num. Meth.
in Engrg, 50(9):2053-2068

16. Catabriga L and Coutinho ALGA. , 2002. Implicit SUPG solution of Euler equations using
edge-based data structures. Computer Methods in Applied Mechanics and Engineering,
32:3477-3490

17. Martins, M.A.D., Alves, J.L.D., Coutinho, A.L.G.A.: Parallel Edged-Based Finite
Techniques for Nonlinear Solid Mechanics. Lecture Notes on Computer Science, Vol.
1981, Springer-Verlag, Berlin Heidelberg (2001), pp 506-518

18. R. N. Elias, M. A. D. Martins, A. L. G. A. Coutinho, Parallel Edge-Based Inexact Newton
Solution of Steady Incompressible 3D Navier-Stokes Equations, J.C. Cunha and P.D.
Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1237–1245, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

304 M. Martins, R. Elias, and A. Coutinho

19. Coutinho ALGA, Martins MAD, Sydenstricker R and Elias RN. Performance comparison
of data reordering algorithms for sparse matrix-vector multiplication in edge-based
unstructured grid computations, Int. J. Num. Meth. Engng, accepted.

20. Karypis G. and Kumar V., Metis 4.0: Unstructured Graph Partitioning and Sparse Matrix
Ordering System. Technical report, Department of Computer Science, University of
Minnesota, Minneapolis, (1998). http://www.users.cs.umn.edu/~karypis/metis.

21. Löhner, R., Galle, M.: Minimization of indirect addressing for edge-based field solvers,
Communications in Numerical Methods in Engineering, 18 (2002) 335-343

22. Löhner, R.: Some useful renumbering strategies for unstructured grids, International
Journal for Numerical Methods in Engineering, Vol. 36, (1993) 3259-3270

23. Sydenstricker, R.M., Martins, M.A.D., Coutinho, A. L. G. A., Alves, J.L.D.: Edge-Based
Interface Elements for Solution of Three-Dimensional Geomechanical Problems. Lecture
Notes in Computer Science, v.2565, p.53 - 64, 2003

24. Cuthill, E. and McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In
Proc. ACM Nat. Conf., pp 157-172, 1969

25. Barth, T. J., “Numerical Aspects of Computing Viscous High Reynolds Number Flows on
Unstructured Meshes”, AIAA, 29th Aerospace Sciences Meeting, January 7-10, AIAA 91-
0721, Reno, Nevada, 1991

26. Löhner, R.: Edges, Stars, Superedges and Chains; Comp. Meth. Appl. Mech. Eng. 111,
255-263 (1994)

27. Kalro V. and Tezduyar T.E., Parallel 3D Computation of Unsteady Flows around Circular
Cylinders, Parallel Computing 23 (1997) 1235-1248

28. Williamson, CHK, Defining a Universal and Continuous Strouhal-Reynolds Number
Relationship for the Laminar Vortex Shedding of a Circular Cylinder, Phys Fluids 31
(1988) 2742-2744

29. Baranyi, L, Computation of Unsteady Momentum and Heat Transfer from a Fixed
Circular Cylinder in Laminar Flow, Journal of Computational and Applied Mechanics, vol
4, no. 1, (2003) pp. 13-25

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Parallel Processing of Matrix Multiplication

in a CPU and GPU Heterogeneous Environment

Satoshi Ohshima, Kenji Kise, Takahiro Katagiri, and Toshitsugu Yuba

Graduate School of Information Systems
The University of Electro-Communications
1-5-1, Chofugaoka, Chofu-shi, Tokyo, Japan
Tel.: +81-42-443-5644; Fax: +81-42-443-5644

ohshima@hpc.is.uec.ac.jp, {kis, katagiri, yuba}@is.uec.ac.jp

Abstract. GPUs for numerical computations are becoming an attrac-
tive alternative in research. In this paper, we propose a new parallel pro-
cessing environment for matrix multiplications by using both CPUs and
GPUs. The execution time of matrix multiplications can be decreased to
40.1% by our method, compared with using the fastest of either CPU
only case or GPU only case. Our method performs well when matrix
sizes are large.

1 Introduction

The performance of Graphics Processing Units (GPU) has been significantly
improved in recent years. Compared with the CPU, the GPU is better suited
for parallel processing and vector processing and has evolved to perform various
types of computation, in addition to graphics processing, including numerical
computations. General-purpose computations on GPUs (GPGPU) have been
examined for various applications[1,2,3].

A high-performance computing environment is necessary for numerical
computations like physics and earth environment simulations which require enor-
mous computational power. Matrix multiplication is an important operation in
numerical computation. Speeding up matrix multiplication results in a corre-
sponding speed up increase in various numerical computations.

Basic Linear Algebra Subprograms (BLAS)[4] is frequently used as a basic
numerical calculation library. Automatically Tuned Linear Algebra Software
(ATLAS)[5], is a fast implementation of BLAS in CPUs. These libraries have
succeeded in exploiting performance enhancing features of a CPU.

In BLAS, matrix multiplication is treated as a computation of C = α × A ×
B + β × C where A, B, and C are matrices, and α and β are scalars. Improving
performance of such computations will speedup of various numerical calculations.

We propose a heterogeneous computing environment for parallel process-
ing using both CPUs and GPUs for numerical computations. First we divide
the larger problem into two partial problems and assign one to the CPU and the
other to the GPU. Ideally, this results in achieving high performance of both the

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 305–318, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

306 S. Ohshima et al.

CPU and the GPU. We evaluate this method of parallel processing using the
NVIDIA GeForce7800GTX and the 6600GT as our GPUs.

Section 2, discusses the background and related work. Section 3, proposes
a parallel processing method using 1-CPU and 1-GPU. Implementation and
analysis of our method for matrix multiplication are described in Section 4.
Section 5 describes the experimental results measured on a real heterogeneous
environment and section 6 discusses about future research issues.

2 Background and Related Work

Graphics processors generate large number of polygons at a very high speed. In
generating polygons, vector and matrix computations are frequently used. Many
computations can be executed in parallel on a GPU. GPUs have evolved rapidly
with hardware suited for both vector and highly parallel computations compared
with a CPU. In addition, the programmable shader, controls processor’s behav-
ior in software level, has become popular in newer GPUs. Since floating point
arithmetic of a GPU is advanced these GPUs can efficiently execute various
computations rather than generating polygons[2,3,6].

The GPGPU aims at resolving target calculations utilizing the computational
power of a GPU. The main scope of GPGPU includes the computation of high-
level shading and lighting in creating real images[7], various simulations and
visualizations[8,9]. These are examples related to graphics computations, the
original use of GPUs. Besides these graphics computations, utilization for numer-
ical computations is a new application domain of the GPU[10,11,12]. Floating-
point computations of GPUs have a lower precision than CPUs[13]. Therefore,
further evaluation and improvement of precision are necessary because of the
very high arithmetic precision required in numerical calculations.

Matrix multiplication is a popular GPGPU application. Current research
includes: efficient utilization of GPU for matrix multiplication, decreasing ex-
ecution time by using vector computation and programmable shader and an
effective utilization of GPU inner cache[2,14,15,16,17]. However, effective per-
formance evaluation results have not yet been obtained, because of the issues
related to memory and bandwidth in inner GPU.

Task parallelization has been used to increase performance in systems having
both CPUs and GPUs. For example, in a real-time movie, the CPUs calculate the
position of numerous objects and the GPUs calculate the shades and high lights
of these objects. However, data parallelization in both the CPUs and GPUs is
rare. We propose data parallelization with the CPUs and GPUs for numerical
calculation.

The research on parallel processing in heterogeneous environments includes
multiple CPUs with different performance. The problems addressed are: schedul-
ing for effective utilization of all processors, load balancing in a dynamically
changing environment, and resolving differences in arithmetic precision[18]. We
try to overcome such issues using a new domain as CPU and GPU complex
heterogeneous system.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Parallel Processing of Matrix Multiplication in a CPU 307

3 Parallel Processing in a CPU and GPU Heterogeneous
Environment

3.1 Execution Time Analysis of Parallel Processing

Conventional approaches for execution time analysis for both CPU and GPU
include processor speedup, increased processor utilization (various proposals
and implementations have been investigated for approaching theoretical per-
formance), and parallel processing with multiple processors.

First, we formulate the execution time for CPUs. The execution time
TCPU ALL is defined in equation (1). We denote the number of operations in
the target computation as R. The execution time required for solution using
peak CPU performance is denoted as a function of R, or fCPU (R). The effective
execution time increases because the CPU cannot always attain peak perfor-
mance. We denote the increase of execution time relative to the ideal execution
time (execution time at effective performance / execution time at peak perfor-
mance) as a (a ≥ 1). Ideally, the execution time is divided by n (n ≥ 1), the
number of CPUs used in parallel processing. The execution time is increased by
the parallelization overhead when more than two CPUs are used. We neglect
this time for simplification.

TCPU ALL =
fCPU (R) × a

n
(1)

Similarly, we formulate the execution time for GPUs. The execution time
TGPU ALL is defined in equation (2). In this equation, the execution time re-
quired for a solution using the peak GPU performance is fGPU (R), the increase
of execution time relative to the ideal execution time is b (b ≥ 1), and the number
of GPUs is m (m ≥ 1).

TGPU ALL =
fGPU (R) × b

m
(2)

In previous research on numerical computations using GPGPUs, the execution
time of a GPU system was compared to that of a CPU system, as shown by (1)
and (2). However, GPGPU systems often have both CPUs and GPUs. Therefore,
we propose a parallel processing method to obtain the overall CPUs and GPUs
performance. We divide a target computation into a parts, and assign them to
CPUs and GPUs to perform.

Assume that the target computation is divided into two partial computations.
One partial computation with the assignment ratio r (0 ≤ r ≤ 1) of the com-
putation is assigned to CPUs. The other, with assignment ratio 1 − r of the
computation, is assigned to the GPUs. Then, the CPUs’ execution time TCPU

defined in equation (1) becomes equation (3). Similarly, the GPUs’ execution
time TGPU defined in equation (2) becomes equation (4).

TCPU =
fCPU (R × r) × a

n
(3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

308 S. Ohshima et al.

TGPU =
fGPU (R × (1 − r)) × b

m
(4)

The execution time for a parallel system is defined as TParallel in (5).
Because the target computation ends when both the CPUs and the GPUs finish
computations, the execution time is obtained as the maximum of either TCPU

or TGPU . The parallelization overhead. is omitted for simplification.

TParallel = max(TCPU , TGPU) (5)

To attain optimal performance, the execution time TParallel, defined by equa-
tion (5), must be minimized.

3.2 Case of One CPU and One GPU

For simplicity, we evaluate the proposed method for the case of one CPU and
one GPU. If the parameters a, n, b, and m in equations (3) and (4) are constants,
then TParallel is a function of only r as an input parameter. We propose a method
by which to achieve high performance by properly estimating the parameter r.
For one CPU and one GPU, we have n = 1and m = 1 in equation (3) and
(4). Therefore, equation (3) can be simplified to (6), and equation (4) can be
simplified to (7).

TCPU = fCPU (R × r) × a (6)

TGPU = fGPU (R × (1 − r)) × b (7)

3.3 Parallelization of Matrix Multiplication

The interface of matrix multiplication in BLAS is denoted in (8). In this equation,
A, B, and C are matrices, and α and β are scalars. This function updates the
matrix C.

C = α × A × B + β × C (8)

In this equation, matrix size is assigned the three values of M, N, and K, as
shown in Fig.1(a). When a certain element of matrix C is updated, only the
updated element of matrix C is referenced. We divide matrices A and C into
McandMg, where Mc and Mg denote the sizes of matrices allocated to CPU
and GPU respectively. Then we assign the partial matrices to the CPU and
the GPU as shown in Fig.1(b). Thus, matrix multiplication can be executed in
parallel without synchronization, and the assignment ratio r = Mc/Mc+Mg is
obtained. A matrix can be divided into any assignment ratio, and the value of r
can be changed freely. So, optimal division, i.e. static load balancing, is easy to
achieve.

Parallel processing on 1-CPU and 1-GPU uses two threads. One is a thread
handling the CPU, this thread performs the SGEMM function (single precision
floating-point GEMM function) using ATLAS. The other is a thread handling
the GPU, this thread performs data transfer between the CPU and the GPU,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Parallel Processing of Matrix Multiplication in a CPU 309

Fig. 1. Assignment of computation in Matrix Multiplication

and issues instructions to the GPU. Matrix multiplication on the GPU is imple-
mented as follows. We use DirectX as a graphics API and HLSL as a shading
language for creating programs[19]. Vector calculations are used because the
GPU can handle vector data and vector operations efficiently. Although a GPU
has both vertex and pixel processing units (fragment processing units), the im-
plementation herein uses only pixel processing units.

In the next section, we measure the performance of matrix multiplication us-
ing either only one CPU or only one GPU. Based on this measurement, we
can predict the performance of parallel execution using both 1-CPU and a
1-GPU heterogeneous environment.

4 Preliminary Performance Experiments

4.1 Performance of the 1-CPU System

The personal computer we used has a Pentium4 3.0GHz processor as the CPU
and NVIDIA GeForce7800GTX as the GPU. Specifications of these processors
are given by Table 1. First, we examine the performance of the 1-CPU system
in the execution of matrix multiplication.

As described in Section 3.3, the SGEMM function of ATLAS is executed on the
CPU in parallel processing in a 1-CPU and 1-GPU heterogeneous environment.
We execute the SGEMM function and measure the execution time. The matrix
size is 2,048, which means that r = 1.0 when M = N = K = 2, 048. We examine
the relationship between the value of r and the execution time by changing the
vertical size Mc of matrices A and C.

The results obtained are shown in Fig.2. The horizontal axis denotes r, and
the vertical axis denotes the execution time. This is a the graph of equation (6).
We observe that the execution time of the SGEMM function is proportional to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

310 S. Ohshima et al.

Table 1. Experimental Environment of Experiments

CPU Pentium4 3.0GHz

Memory 1.00GB

OS Windows XP

GPU GeForce7800GTX

Graphics Bus PCI-Express x16

VRAM 256MB

GPU’s core clock 430MHz

GPU’s memory clock 1.20GHz

amount of vertex shader unit 8

amount of pixel(fragment) shader unit 24

the computation size, and the amount of computation in matrix multiplication is
proportional to r. Measurements are obtained by changing the assignment ratio
of matrices of the size of multiples of 64.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 2048 Pentium4 3.0GHz

Fig. 2. CPU execution time for one Pentium4 3.0GHz

4.2 Performance of the 1-GPU System

Next, we examine the performance of the 1-GPU system. The matrix size is
defined as 2,048, and the relationship between the matrix size and the execution
time is examined in the same manner as the 1-CPU system. The execution time
is measured from the beginning of data transfer from the CPU to the GPU to
the end of data read back from the GPU to the CPU. We exclude the time
required to initialize DirectX and load the HLSL program from the scope of
measurement.

The results obtained are shown in Fig.3. The horizontal axis denotes the
value of 1 − r, and the vertical axis denotes the execution time. This is a graph
of equation (7). As a result, the execution time of matrix multiplication using
1-GPU is also proportional to the matrix size. This is the result of changing the
assignment ratio as we did with the 1-CPU.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Parallel Processing of Matrix Multiplication in a CPU 311

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

GPU Ratio (1 - r)

Size 2048 GeForce7800GTX

Fig. 3. GPU execution time for one NVIDIA GeForce7800GTX

4.3 Performance Prediction of the Heterogeneous Environment

We can predict the execution time on a parallel heterogeneous environment based
on 1-CPU and 1-GPU execution times using the following process: we first put
the 1-GPU graph (Fig.3) over the 1-CPU graph (Fig.2), while adjusting the
horizontal edge. We obtain Fig.4, which depicts both TCPU and TGPU for the
assignment ratio r. As mentioned above, the larger value of TCPU and TGPU is
the predicted time for parallel execution of each r, because parallel execution
finishes when both the CPU and the GPU complete the calculations. Figure 5
shows a graph of the prediction time obtained from Fig.4. This is a graph of
equation (5). Matrix multiplication is executed at the fastest speed at the lowest
point of the execution time on this graph, and its assignment ratio is optimal,
that is, the value of r is minimized equation (5).

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 2048 Pentium4 3.0GHz
Size 2048 GeForce7800GTX

Fig. 4. CPU and GPU execution time

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

312 S. Ohshima et al.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 2048 max(TCPU, TGPU)

Fig. 5. Predicted execution time for parallel processing with 1-CPU and 1-GPU

The result of the above prediction is that, in this environment, the execution
time is expected to be the minimum when the CPU assignment is 43.8% of the
computation. The execution time is expected to be reduced 44.1% compared
with the 1-CPU only case and by 59.5% compared with the 1-GPU only case.

5 Performance Evaluation of the CPU and GPU
Heterogeneous Environment

5.1 Performance Evaluation of the Heterogeneous System

In this section, we measure the execution time required in parallel execution on
a heterogeneous environment. We implemented a parallel program using both
the thread handling CPU and GPU, as described in Section 3.3. The SGEMM
function of ATLAS is executed in the CPU thread, and data transfer between
the CPU and the GPU and computations using the programmable shader are
executed in the GPU thread. These experiments were carried out by changing
the matrix size by 64 intervals.

The results obtained are shown in Fig.6. The center of the graph is lower
compared with either side. Therefore, the execution time is decreased by parallel
execution. The execution time is minimum when the CPU does 40.6% of the
computation. The execution time is decreased by 45.1% compared with the CPU
only case, and by 60.8% compared with the GPU only case. Figure 7 shows the
performance ratio when the higher performance of the 1-CPU only case and the
1-GPU only case is defined as 1.0. As a result, we got a performance improvement
for the parallel case of 1.64 times.

We compare the experimental result with our prediction result. We first
confirm that the assignment ratio minimizing the execution time. The execu-
tion time is predicted to be decreased the most when the CPU does 43.8% of
the computation. Correspondingly, the experimental result also indicated that
the execution time is minimum when the CPU does 43.8% of the computation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Parallel Processing of Matrix Multiplication in a CPU 313

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 2048 Parallel
Fastest Point of Prediction

Fig. 6. Execution time measured on the CPU and GPU heterogeneous environment

In addition, these values mean that execution time is minimum when the CPU
does 1, 152 of the total 2, 048 size.

Next, we confirm the minimal execution time by using the optimal assignment
ratio of the computation. In the prediction, the minimal execution time is 1.23
sec. Here, the ratio of the execution time to the CPU only case is 44.1%, and the
ratio of the execution time to the GPU only case is 59.6%. In the experiment, the
minimal experimental execution time is 1.26 sec. At this time, the ratio of the
execution time to the 1-CPU only case is 45.1%, and the ratio of the execution
time to the 1-GPU only case is 60.8%. The ratio of the minimal experimental
execution time to the minimal prediction time is 102.4%.

We can conclude that we obtained high performance using parallel processing
method. Moreover, we can predict with high precision both the execution time
of matrix multiplication on a heterogeneous environment and the assignment
ratio of computation for the minimal execution time.

Fig. 7. Relative performance of parallel execution. (The higher performance of the
CPU only case and the GPU only case is defined as 1.0.).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

314 S. Ohshima et al.

5.2 Performance Evaluation with Varying Matrix Sizes

We examine the performance in other matrix sizes of matrix multiplication to
confirm whether our method is affected by the size of matrix in the computation.
So, we evaluate performance by varying the matrix size of the matrix of com-
putation. The results obtained are shown in Figs.8 and 9. Figure 8 shows the
result of the 1-CPU only case and the 1-GPU only case with varying the matrix
sizes: 512, 1024, 1536 and 2560.

0.00

0.02

0.04

0.06

0.08

0.10

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 512 Pentium4 3.0GHz
Size 512 GeForce7800GTX

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 1024 Pentium4 3.0GHz
Size 1024 GeForce7800GTX

(a) Size 512 (b) Size 1024

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 1536 Pentium4 3.0GHz
Size 1536 GeForce7800GTX

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 2560 Pentium4 3.0GHz
Size 2560 GeForce7800GTX

(c) Size 1536 (d) Size 2560

Fig. 8. 1-CPU only execution time and 1-GPU only execution time (GeForce7800GTX)

Graphs for the small computation sizes were unstable, but the tendency in the
larger matrix size was the same as the figures we have already shown. Figure 9
shows the result in parallel execution. As a result, this method didn’t work well
when the computation size was small. However, when the computation size was
large enough, the execution time was decreased by parallel processing. At this
time, the assignment ratio for the minimal time in parallel execution was near
the prediction point. In this heterogeneous environment, maximum speedup was
obtained at the size of 2048. Further research is required to analyze the reason
why the best performance was obtained in this size.

5.3 Performance Evaluation on Heterogeneous Environment with
Different GPU

We tried to evaluate performance with another GPU of a different type to evalu-
ate the effectiveness of the proposed method. We use the GeForce6600GT instead

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Parallel Processing of Matrix Multiplication in a CPU 315

0.00

0.02

0.04

0.06

0.08

0.10

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 512 Parallel
Fastest Point of Prediction

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 1024 Parallel
Fastest Point of Prediction

(a) Size 512 (b) Size 1024

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 1536 Parallel
Fastest Point of Prediction

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 2560 Parallel
Fastest Point of Prediction

(c) Size 1536 (d) Size 2560

Fig. 9. Execution time measured on the implemented on parallel system with a CPU
and a GPU, and fastest point of prediction (GeForce7800GTX)

of the GeForce7800GTX. The differences for each GPU are shown in Table 2.
The results obtained are shown in Figs.10 and 11. Figure 10 is a graph for the
1-CPU only case and the 1-GPU only case with changing matrix sizes of 1024
and 2048. Figure 11 is a graph in parallel execution. The environment in this
experiment is the same as for the GeForce7800GTX.

Table 2. Comparison of GPUs

GPU GeForce7800GTX GeForce6600GT

Graphics Bus PCI-Express x16 PCI-Express x16

VRAM 256MB 128MB

GPU’s core clock 430MHz 300MHz

GPU’s memory clock 1.20GHz 1.00GHz

amount of vertex shader unit 8 3

amount of pixel(fragment) shader unit 24 8

Our method didn’t work well when the computation size was small, but the
execution time was decreased by parallel processing when the computation size
was large enough. The difference between the optimal assignment ratio of com-
putation in CPU and GPU was small. The tendencies were almost same as the
case of the GeForce7800GTX. The highest rate of speedup is shown for the size

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

316 S. Ohshima et al.

0.00

0.20

0.40

0.60

0.80

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 1024 Pentium4 3.0GHz
Size 1024 GeForce6600GT

0.00

1.00

2.00

3.00

4.00

5.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 2048 Pentium4 3.0GHz
Size 2048 GeForce6600GT

(a) Size 1024 (b) Size 2048

Fig. 10. CPU only execution time and GPU only execution time (GeForce6600GT)

0.00

0.20

0.40

0.60

0.80

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 1024 Parallel
Fastest Point of Prediction

0.00

1.00

2.00

3.00

4.00

5.00

0.00 0.25 0.50 0.75 1.00

E
xe

cu
tio

n
T

im
e

(
se

c
)

CPU Ratio (r)

Size 2048 Parallel
Fastest Point of Prediction

(a) Size 1024 (b) Size 2048

Fig. 11. Execution time measured on the implemented on parallel system with a CPU
and a GPU, and fastest point of prediction (GeForce6600GT)

2048, and the ratio of the execution time for the 1-CPU only case was 70.5%.
These results show that our method is useful when computation size is large.
and doesn’t work well when computation size is too small.

6 Conclusion and Future Work

In this paper, we proposed a method for dividing a large target computation into
partial computations and executing them in parallel using 1-CPU and 1-GPU.
In addition, we proposed a load balancing method for minimizing the execution
time. Using the method we proved by experiment that the execution time was
reduced to 44.1% for the CPU and 59.5% of that for the GPU. In addition, we
demonstrated that the proposed method could be used to predict the optimal
assignment ratio to the CPU and GPU according to each execution time.

Future research work is required in the following problem areas. First, we must
check how useful our method is in heterogeneous environments. Therefore, it is
necessary to evaluate performance in various environments. Secondly, it is neces-
sary to evaluate the arithmetic precision of the computation using our method.
In particular, we have to evaluate the differences in precision for calculated re-
sults between the CPU and GPU. Thirdly, a library of parallel programming

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Parallel Processing of Matrix Multiplication in a CPU 317

must be developed for CPU and GPU research. We have to write CPU and
GPU programs independently when we want to execute parallel programs using
CPUs and GPUs. However, it is desirable that users are not concerned about
whether they use CPUs or GPUs.

We are considering developing such an automatic performance tuning library.
Various applications are speeded up when a library automatically assigns com-
putations to CPUs and GPUs using our load balancing method in parallel pro-
cessing. For example, if we make a library with an interface of BLAS, it can
automatically assign computations to the CPU and GPU, and many applica-
tions using BLAS can be speeded up easily.

The method we proposed can be applied for more complex environments
having multiple CPUs and GPUs. Utilizing such a multiple processor environ-
ment will become a new trend in GPU technology for the benefit of many CPUs
and GPUs. In such environments, new approaches for realizing optimal load bal-
ancing are required to achieve the maximal speed up in the high-performance
computing field.

References

1. gpgpu.org: General-Purpose computation on GPUs(GPGPU), http://gpgpu.org/
2. Thompson, C.J., Hahn, S., Oskin, M.: Using Modern Graphics Architectures for

General-Purpose Computing: A Framework and Analysis. In: Proceedings of the
35th annual ACM/IEEE International Symposium on Microarchitecture. (2002)
306–317

3. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware.
In: Eurographics 2005, State of the Art Reports. (2005) 21–51

4. Higham, N.J.: Exploiting Fast Matrix Multiplication Within the Level 3 BLAS.
ACM Transactions on Mathematical Software 16 (1990) 352–368

5. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimization of
Software and the ATLAS Project. Parallel Computing 27 (2001) 3–35

6. John Montrym, H.M.: THE GEFORCE 6800. IEEE MICRO 2005, Vol.25, No.2
(2005)

7. Fernando, R.: GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics. Addison-Wesley Pub (Sd) (2004)

8. SHINOMOTO, Y., MIWA, S., SHIMADA, H., MORI, S.I., NAKASHIMA, Y.,
TOMITA, S.: Consideration for Speculative Rendering in PVR. In: IPSJ SIG
Technical Reports. 2005-ARC-164 (2005) 145–150

9. T.Amada, M.Imura, Y.Yasumuro, Y.Manabe, K.Chihara: Partivle-Based Fluid
Simulation on GPU. In: ACM Workshop on General-Purpose Computing on
Graphics Processors. (2004)

10. Ádám Moravánszky: Dense Matrix Algebra on the GPU, ShaderX2 (2003)
11. Krüger, J., Westermann, R.: Linear Algebra Operators for GPU Implementation of

Numerical Algorithms. In: Proceedings of ACM SIGGRAPH 2003. (2003) 908–916
12. Moreland, K., Angel, E.: The FFT on a GPU. In: Proc. SIGGRAPH / EURO-

GRAPHICS Workshop Graphics Hardware. (2003) 112–119
13. Hillesland, K., Lastra, A.: GPU floating-point paranoia. In: Proceedings of GP2.

(2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

318 S. Ohshima et al.

14. Larsen, E., McAllister, D.: Fast matrix multiplies using graphics hardware. In:
Proceedings of the 2001 ACM/IEEE conference on Supercomputing. (2001)

15. K.Fatahalian, J.Sugerman, P.Hanrahan: Understanding the Efficiency of GPU
Algorithms for Matrix-Matrix Multiplication. In: Graphics Hardware 2004. (2004)

16. Jesse D. Hall, Nathan A. Carr, J.C.H.: Cache and Bandwidth Aware Matrix Mul-
tiplication on the GPU . Technical report, University of Illinois Dept. of Computer
Science (2003)

17. Jiang, C., Snir, M.: Automatic Tuning Matrix Multiplication Performance on
Graphics Hardware. In: Proceedings of the 14th International Conference on Par-
allel Architectures and Compilation Techniques (PACT’05). (2005) 185–196

18. Blackford, L.S., Hammarling, S., Cleary, A., Petitet, A., Whaley, R.C., Demmel, J.,
Dhillon, I., Ren, H., Stanley, K., Dongarra, J.: Practical experience in the numerical
dangers of heterogeneous computing. ACM Transactions on Mathematical Software
(TOMS) 23 (1997) 133–147

19. Microsoft: DirectX Developer Center, http://msdn.microsoft.com/directx/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Robust Two-Level Lower-Order Preconditioners

for a Higher-Order Stokes Discretization with
Highly Discontinuous Viscosities

Duilio Conceição1,�, Paulo Goldfeld2, and Marcus Sarkis1

1 IMPA, Rio de Janeiro, Brazil
dtadeu@fluid.impa.br, msarkis@fluid.impa.br

2 UFRJ, Instituto de Matemática, Rio de Janeiro, Brazil
goldfeld@ufrj.br

Abstract. The main goal of this paper is to present new robust and
scalable preconditioned conjugate gradient algorithms for solving Stokes
equations with large viscosity jumps across subregion interfaces and dis-
cretized on non-structured meshes. The proposed algorithms do not re-
quire the construction of a coarse mesh and avoid expensive communica-
tions between coarse and fine levels. The algorithms belong to the family
of preconditioners based on non-overlapping decomposition of subregions
known as balancing domain decomposition methods. The local problems
employ two-level element-wise/subdomain-wise direct factorizations to
reduce the size and the cost of the local Dirichlet and Neumann Stokes
solvers. The Stokes coarse problem is based on subdomain constant pres-
sures and on connected subdomain interface flux functions and rigid
body motions. This guarantees scalability and solvability of the local
Neumann problems. Estimates on the condition numbers and numerical
experiments based on a parallel implementation for unstructured meshes
are also discussed.

1 Introduction

The core-flow technique is a technology in research that can highly improve
the efficiency of the production/transportation of heavy oil through a pipe. The
numerical simulators available nowadays are inefficient for solving large scale
problems with large jumps in viscosity such as the core-flow model. In order to
develop an efficient parallel code to solve such model, we develop a preconditioner
for the Stokes problem that is robust with respect to high jumps in viscosity and
are suitable for unstructured meshes.

Balancing Domain Decomposition (BDD) methods are preconditioners based
on non-overlapping decomposition of subregions. They have been tested success-
fully on several challenging large scale applications [4,7,6] and its first scalable
version was developed by Mandel [6] for the Poisson equation with the introduc-
tion of a coarse problem based on the kernel of the Laplace operator. Extensions
� This work was supported by ANP/PRH-32. The author is candidate to the best

student paper award.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 319–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

320 D. Conceição, P. Goldfeld, and M. Sarkis

of the BDD preconditioner for elliptic problems with possibly large jumps on
coefficients were treated subsequently in [2,9,10]. The extension of the BDD pre-
conditioner for the Stokes equations had its debut only recently by Pavarino and
Widlund [7]. For the Stokes problem, the local Neumann problems are singular
and the boundary values of the local Dirichlet problems should satisfy the zero
flux condition on the boundary of the subregions. Such issues are discussed in
detail in [7] and on this paper.

The goal of this paper is to introduce several improvements of the Pavarino
and Widlund method which are essential for its efficient application. We are
particularly concerned with aspects associated to unstructured mesh parallel
implementation and the high cost of the subdomain solvers when high-order
Stokes discretizations are considered. We introduce several possible choices for
unstructured coarse spaces and discuss their advantages in terms of scalability,
implementation efforts and robustness with respect to coefficient jumps. With
regards to the high cost of the subdomain solvers, we explore how the inf-sup
condition of Stokes discretization are checked in order to perform proper element-
wise static condensation and decrease the number of interior unknowns. We
show that the computational complexity of the two discretizations, the higher-
order (P2 + Bubbles)/P1 and the lower-order P2/P0, have comparable com-
putational costs. The paper is organized as follows. Sections 2 and 3 present the
Stokes equations and the variational formulation, respectively, while in Section
4 we introduce the discretizations used in the numerical experiments. Section 5
is devoted to the BDD preconditioner for the Stokes equations and the coarse
spaces. In Section 6 we present some of the implementation issues, and in Sec-
tion 7 we provide the numerical results. Section 8 closes the paper with the
conclusions.

2 The Stokes Model

Let Ω ⊂ R
2 be a domain with a polygonal boundary. We consider the Stokes

equations: ⎧
⎨

⎩

−2∇ · (νε(u)) + ∇p = f in Ω
−∇ · u = g in Ω

u = ud on ∂Ω
(1)

where ν > 0 is the kinematic viscosity and ε(u) = 1
2 [∇u + ∇uT] denotes the

symmetric stress tensor. In this paper, we assume only Dirichlet boundary con-
dition with the compatibility condition

∫
Ω −g dx =

∫
∂Ω ud ·n ds. The treatment

of natural boundary condition is similar and does not bring any extra difficulties;
see also Remark 3.

Remark 1. Since we are assuming Dirichlet boundary condition on all ∂Ω, the
velocity solution is unique and the pressure is unique up to a constant. To make
the pressure unique, we impose the additional condition of zero average pressure
on Ω, i.e.,

∫
Ω

p dx = 0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Robust Two-Level Lower-Order Preconditioners 321

3 Variational Formulation

The variational formulation is introduced as follows. Let us define the space of
velocities X = H1

0 (Ω)2 and the space of pressures M = L2
0(Ω), where L2

0(Ω)
stands for L2(Ω) functions with zero average in Ω. Given f ∈ H−1(Ω)2 and
g ∈ L2(Ω), the variational formulation of the Stokes equations is given by:

Find u ∈ X and p ∈ M such that
{

a(u, v) + b(v, p) = F (v) ∀v ∈ X,
b(u, q) = G(q) ∀q ∈ M,

(2)

where a(u, v) = 2ν(ε(u) : ε(v))Ω , b(v, p) = −(∇ · v, p)Ω, F (v) = (f , v)Ω, and
G(q) = (g, q)Ω . The solution (u, p) ∈ X × M of (2) exists and is unique; see [3].

4 Discretization

Let Th be a regular triangulation of Ω. We consider the mixed finite elements
P2/P0 and (P2 + Bubbles)/P1, where the velocity is taken continuous and the
pressure discontinuous.

The P2/P0 mixed finite elements is described as follows: the velocity space
is given by Xh = {v ∈ X; v|K ∈ P2(K)2, ∀K ∈ Th}, while the pressure
space is comprised of discontinuous piecewise constant functions Mh = {q ∈
M ; q|K ∈ P0(K), ∀K ∈ Th}. To obtain more accurate results we introduce the
(P2 + Bubbles)/P1 mixed finite element space. This space can be considered
as a stabilization of the unstable space P2/P1. We take the bubble function as
b̂(x̂, ŷ) = x̂ŷ(1 − x̂ − ŷ) defined on the element of reference K̂, and then for each
element K in Th define bK(x, y) = b̂(F −1

K (x, y)), where FK is the affine mapping
from K̂ to K. The velocity space Xh is then given as

Xh = {v ∈ X; v = vP + vB, s.t. vP |K ∈ P2(K)2, vB|K ∈ XB(K), ∀K ∈ Th},

where for each element K ∈ Th

XB(K) = {vB ∈ H1
0 (K)2; vB =

(
α1bK

α2bK

)
and α1, α2 ∈ R}.

The discrete pressure space consists of discontinuous piecewise linear functions
denoted by P1 given as Mh = {p ∈ M ; p|K ∈ P1(K), ∀K ∈ Th}.

The two discretizations above satisfy a uniform inf-sup condition [3], i.e., there
exists a constant β (independent of h) such that

sup
v∈Xh

v �=0

(∇ · v, q)
‖v‖H1

≥ β‖q‖0 ∀q ∈ Mh. (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

322 D. Conceição, P. Goldfeld, and M. Sarkis

The discrete variational formulation of the Stokes problem (1) is given by:

Find u ∈ Xh and p ∈ Mh such that
{

a(u, v) + b(v, p) = F (v) ∀v ∈ Xh,
b(u, q) = G(q) ∀q ∈ Mh.

(4)

The inf-sup stability of the mixed finite element spaces guarantees the existence
and uniqueness of the solution of (4) (see [3]). In matricial form, the discrete
linear system (4) is of the form

(
A BT

B 0

) (
u
p

)
=

(
f
g

)
. (5)

5 BDD for Stokes Problem

In this section we present the matrix form of the preconditioner. Decompose
the domain Ω into N non-overlapping connected subdomains Ωi and let Γ =
(∪N

i=1∂Ωi)\∂Ω, then we have Ω = ∪N
i=1Ωi ∪ Γ . We denote the nodes inside Ωi

by Ωh
i , the nodes on Γ by Γh and the nodes on ∂Ωi ∩ Γ by Γ (i)

h .

5.1 Schur Complement System

In order to perform a static condensation of the interior variables on Ωi we
reorder and denote the variables as follows: uI (the interior velocities), pI (pres-
sures with zero average in each subdomain Ωi), uΓ (interface velocities) and p0
(constant pressure in each Ωi and with zero average in Ω). Using this reordering,
the matrix of the discrete system (5) can be written as:

K =
(

KII KIΓ

KΓI KΓ Γ

)
=

⎛

⎜⎜⎝

AII BT
II

AIΓ BT
0I

BII 0 BIΓ 0
AIΓ BT

IΓ
AΓ Γ BT

0

B0I 0 B0 0

⎞

⎟⎟⎠ .

The submatrix B0I is null since by the divergence theorem,
∫

Ωi
∇ · uI dx = 0.

Eliminating the interior variables uI and pI by static condensation we obtain
the following Schur complement system:

S

(
uΓ

p0

)
=

(
f̃

Γ

g̃0

)
, (6)

where

S = KΓ Γ − KΓIK
−1
II

KIΓ =
(

SΓ BT
0

B0 0

)
and

(
f̃Γ

g̃0

)
=

(
fΓ

g0

)
− KΓIK

−1
II

(
f I

gI

)
.

Remark 2. Since AII is positive definite (by Korn’s inequality) and BII has full
row rank, the KII is invertible. We note also that since B0I is null, it is not
possible to eliminate p0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Robust Two-Level Lower-Order Preconditioners 323

Having solved the linear system (6), we can obtain the solutions uI and

pI by solving
(

uI

pI

)
=

(
AII BT

II

BII 0

)−1 [(
f I

gI

)
−

(
AIΓ 0
BIΓ 0

) (
uΓ

p0

)]
, where we ob-

serve that uI and pI do not depend on p0. After a reordering of the inte-
rior variables by subdomain we obtain that KII is the block-diagonal matrix
KII = diag{K(1)

II , · · · , K(N)
II }. This shows that the subdomain matrices K

(i)
II are

decoupled and then to apply K−1
II

to a vector is equivalent to solve N decou-
pled saddle point problems in parallel. Notice that the multiplication by K(i)−1

II

represents a discrete Stokes problem with Dirichlet velocity data on Γ (i)

h . This
solution exists and is unique since we consider the space of pressure and test
functions qI with zero average on Ωi. The velocity component of K(i)−1

II , denoted
by SH(i), is known as the local discrete Stokes harmonic extension operator with
velocity Dirichlet boundary condition prescribed on Γ

(i)
h .

Our goal is to solve the linear system (6) by a preconditioned conjugate gradi-
ent method. This method does not require assembling the matrix S of the linear
system, but only applying S to vectors. By definition of S, applying S to a vector
w is equivalent to applying matrices KΓΓ , KIΓ , KΓI and K−1

II to subvectors of
w. Among those applications, the K−1

II is the most expensive one. As we have
mentioned, it can be done in parallel.

5.2 BDD Preconditioning

Let us decompose the space Xh × Mh =
(
⊕N

i=1Xi,h × Mi,h

)
⊕ (VΓ,h × M0)

where Xi,h = Xh ∩ H1
0 (Ωi)2, Mi,h = Mh ∩ L2

0(Ωi), VΓ,h = {v ∈ Xh; v|Ωi =
SH(i)(v|∂Ωi), i = 1, . . . , N}, and M0 = {q ∈ Mh; q|Ωi = constant, i =
1, . . . , N}. We observe that the function v ∈ VΓ,h is uniquely defined by its
value on the interface Γh.

We now construct a parallel preconditioner M−1 for S in order to make the
linear system scalable and well conditioned.

An initial attempt would be to use an additive Schwarz like preconditioner of
the form

M−1 =
N∑

i=1

RT
i DT

i S(i)−1
DiRi, (7)

where S(i) is the Schur complement of the local stiffness matrix K(i), Ri : Γh →
Γ (i)

h is the discrete restriction operator, and Di is a diagonal matrix defining a
partition of unity on Γh, i.e.,

∑N
i=1 RT

i DiRi = I on Γh. The partition of unity
may be defined through the counting functions, which can be defined for each
subdomain as δi : Γ (i)

h → R such that δi(x) equals the number of subdomains
sharing the node x ∈ Γ (i)

h . Thus, define Di as Di = diag{δ−1
i }. When the problem

has piecewise constant viscosity νi in each subdomain, and discontinuous across
the interface Γ , then a better choice is to set

δi =

∑
j∈Nx

νγ
j (x)

νγ
i (x)

, (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

324 D. Conceição, P. Goldfeld, and M. Sarkis

where γ ∈ [1/2, ∞), and Nx is the set of indices of the subdomains that have
the node x on their boundaries (see [9,10]).

Remark 3. The local problems S(i)−1 in (7) use natural boundary conditions
νi∇u · n − pn = r on Γ

(i)
h . In this case the pressure is uniquely determined

and therefore the pressure spaces are now taken on L2(Ω).

The preconditioner (7) is not as good as it appears to be. When the boundary
of a subdomain Ωi does not intersect the boundary of the domain ∂Ω, we have
a floating subdomain Ωi. The problem

S(i)

(
u(i)

Γ

p(i)
0

)
=

(
f̃

(i)

Γ

g̃(i)
0

)
(9)

is equivalent to solving
(

K(i)
II K(i)

IΓ

K(i)
ΓI K(i)

ΓΓ

)
⎛

⎜⎜⎝

u(i)
I

p(i)
I

u(i)
Γ

p(i)
0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0
0

f̃
(i)

Γ

g̃(i)
0

⎞

⎟⎟⎠. Hence when Ωi is a float-

ing subdomain, S(i) has a kernel spanned by the rigid body motions (RBM) and
therefore the linear system (9) might not have a solution. In the two dimensional
case the kernel basis three-dimensional,spanned by two translations and one ro-
tation. To avoid the issue of existence of solution, we introduce a coarse space
V0 ⊂ VΓ,h to enforce that when solving the linear system (9) the right hand
side (RHS) is on the image of S(i), and since S(i) is symmetric, this is equivalent
to have the RHS in Ker⊥(S(i)). In addition we will require that the space V0

must be chosen so that the pairing (V0, M0) be stable, i.e., satisfies the inf-sup
condition. We discuss possible choices of coarse spaces in Subsection 5.4.

5.3 Matrix Form of Preconditioner

Let L0 : V0 → Γh be the matrix whose columns are the basis of the space

V0. Then define the restriction operator R0 =
(

LT
0 0
0 I

)
, where I is the identity

matrix whose size is the number of subdomains. To define a coarse problem

Q0, we set S0 = R0SRT
0 =

(
LT

0 SΓ L0 LT
0 BT

0

B0L0 0

)
, and Q0 = RT

0 S−1
0 R0. The BDD

preconditioner is then given by

M−1 = Q0 + (I − Q0S)
N∑

i=1

Qi(I − SQ0),

and the preconditioned operator by T = M−1S = P0 +(I −P0)
∑N

i=1 Pi(I −P0),
where P0 = Q0S, Pi = QiS and

Qi =
(

RT
i Di 0
0 0

)(
S(i)

Γ B(i)T

0

B(i)
0 0

)−1 (
DiRi 0

0 0

)
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Robust Two-Level Lower-Order Preconditioners 325

The minimal size coarse space V0 must be related to the local RBM associated
to each subdomain Ωi. Since the local problems are scaled by Di, we also scale
the local RBM basis associated to Ωi by Di to define a coarse space so that the
local problems (9) are compatible, i.e., for any w ∈ VΓ,h

〈(
DiRi 0

0 ∗

)
S(I − P0)w, vi

〉

Γi

= 0 ∀vi ∈ Ker(S(i)). (10)

A desirable property of any parallel preconditioner is the scalability. To obtain
that, the coarse space must also satisfy the following inf-sup condition

sup
vΓ ∈VΓ,h

vΓ �=0

(∇ · SH(vΓ), q0)2

a(SHvΓ , SHvΓ)
≥ β0‖q0‖2

L2 ∀q0 ∈ M0. (11)

When that is the case, as in [7], we can show that the bound for the condition
of the preconditioned operator in S-norm is

condS1/2(T) ≤ C(1 +
1
β0

)
1
β2 (1 + log(

H

h
))2 (12)

where β is the inf-sup constant of the original problem (3).

5.4 The Coarse Space

The coarse space V0 plays an important role in the BDD preconditioning. This
space must guarantee solvability for the local Neumann problems and scalability
for the preconditioner. The minimum coarse space V0 for solvability is

V(0)
0 = Rigid Body Motion of each subdomain Ωi scaled by diag{Di} on Γh,i

and zero on the remaining nodes on Γh.

Thus, in the two dimensional case V(0)
0 has dimension 3×(number of subdo-

mains). As we will see in the numerical results, the associated preconditioner T

is not going to be scalable, therefore V(0)
0 must not satisfy the uniform inf-sup

stability (11). This indicates that the coarse space should be enriched. Since our
objective is unstructured mesh discretization, we need to design coarse space
enrichments suitable for such discretizations. We enrich V(0)

0 with one coarse
function per interface Ek, i.e., connected components of an interface ∂Ωi ∩ ∂Ωj .

Let Ek be an interface ordered by a sequence of vertices (v0, . . . , vnk
) connected

by fine edges on Th(∂Ωi ∩ ∂Ωj). We define unity normal vectors nj (for j =
1, . . . , (nk − 1)), by using the coordinates of vj and its two neighboring vertices
vj−1 and vj+1 on Th(∂Ωi ∩ ∂Ωj). Let ηj−1/2 and lj−1/2 (ηj+1/2 and lj+1/2) be
the unity normal and the length of the interval [vj−1, vj] ([vj , vj+1]), respectively.
Define

nj = (lj−1/2ηj−1/2 + lj+1/2ηj+1/2)/‖lj−1/2ηj−1/2 + lj+1/2ηj+1/2‖2.

To define the different coarse space enrichments we first define the weight
functions wk on each interface Ek. We consider the following weight functions on
Ek (see Fig. 1):

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

326 D. Conceição, P. Goldfeld, and M. Sarkis

– for defining V(1)
0 let w

(1)
k ≡ 1

– for defining V(2)
0 let w

(2)
k (vj) = 0 for j even and 1 for j odd

– for defining V(3)
0 let w

(3)
k (vj) = min{d1

(j), d2
(j)}/max dist

– for defining V(4)
0 let w

(4)
k (vj) = d1

(j)d
2
(j)/(max dist)2, where d1

(j) and d2
(j) are

defined as the l2 distances to the boundary vertices v0 and vnk
, respectively,

and let max dist = maxj{d1
(j), d2

(j)}.

mesh

V(1)
0 V(2)

0 V(3)
0 V(4)

0

Fig. 1. Sketch of the edge enrichment functions

For each interface Ek, we define the coarse function as

U
(r)
k (vj) =

{
w

(r)
k (vj)nj for j = 1, . . . , (nk − 1)

0 for j = 0, nk

and then define the enriched coarse spaces V(r)
0 , r = 1, . . . , 4, as the space

spanned by V(0)
0 and the coarse functions U

(r)
k . The spaces V(1)

0 and V(2)
0 are

quite easy to implement, even for the tridimensional case, since their implemen-
tation depend only on the normal vector at the vertices. Since the enrichment
of V(1)

0 is already a basis of the RBM for structured meshes, we do not consider
V(1)

0 on the numerical tests.

6 Implementation Aspects

In this section we discuss some of the implementation details of the code. A
parallel software was developed in C using the PETSc library [1] for unstructured
meshes. The unstructured meshes are generated using the 2D mesh generator
EMC2 from INRIA [8]. The partitioning of the mesh is by elements and it is
performed using the ParMETIS library [5].

6.1 BDD Implementation

To assemble the matrix B0 and the right hand side g0, we define a vector e(i) in
order to recover the constant pressure function in the subdomain Ωi; in the case

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Robust Two-Level Lower-Order Preconditioners 327

of P0 functions, e(i) is the vector of ones. The matrix B(i)
0 is computed as B(i)T

0 =
B(i)T e(i), while the vector components of the vector g0 are computed as g

(i)
0 =

e(i)T g(i). Since the discrete local pressure spaces are subspaces of L2
0(Ωi) and the

global pressure space is a subspace of L2
0(Ω), we employ Lagrange multipliers

λ(i) to enforce zero average on each p(i)
I in Ωi and another Lagrange multiplier

μ to enforce zero average of p0 in Ω.
For applying the BDD preconditioner it remains to deal with another issue

when solving (9): the uniqueness of the Neumann solution for the floating subdo-
mains. The natural way of dealing with such difficulty is to search for a solution
u

(i)
Γ which is orthogonal to the kernel of S(i), i.e., orthogonal to the local RBM.

This is done by introducing three Lagrange multipliers per subdomain, i.e., one
for each local RBM basis function.

6.2 A Higher Order Method

Having implemented the P2/P0 discretization in PETSc we reuse all the in-
dex sets and local to global mappings defined for the P2/P0 to implement the
(P2 + Bubbles)/P1. We add the bubble velocities and the linear average zero
pressures on each element K ∈ Th, and then, through a static condensation at
the element level, we eliminate the bubble functions and the two average zero
pressures, resulting in a sort of stabilized P2/P0 finite elements. After solving the
linear system we can recover the P1 discontinuous pressure solution at element
level.

7 Numerical Results

A parallel software was developed in C using the PETSc library [1]. In order to
study the scalability of the coarse space enrichments without the influence of the
mesh partitioning, which may lead to irregular interface between subdomains, we
consider in Subsections 7.1 and 7.2 a structured mesh in the domain [0, 1]× [0, 1]
partitioned into

√
N ×

√
N square subdomains. In Subsection 7.3 we consider

an unstructured mesh example to study the parallel performance.
For the numerical experiments on Subsections 7.1 and 7.2 we impose Dirichlet

boundary condition with the exact solution
⎧
⎪⎨

⎪⎩

u1(x, y) = x(1 − x) cos(x + y) cos(x + 3y)
u2(x, y) = y(1 − y) sin(x + y) sin(x + y)
p(x, y) = xy exp(x + 2y) sin(x − y) cos(y − x),

where we point out that ∇.u is non-null. Since the preconditioned operator T in
(12) is symmetric positive definite with respect to S (see [7]), we use the precon-
ditioned conjugated gradient (PCG) with the stopping criterion ‖rk‖2/‖r0‖2 ≤
10−6, where rk is the residual at the iteration k. For solving the local prob-
lems we use the PETSc’s LU with nested dissection reordering. The minimum
eigenvalue is not presented in the tables since it is equal to one.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

328 D. Conceição, P. Goldfeld, and M. Sarkis

For the numerical experiments reported here we use a cluster of Linux PCs
composed of 8 nodes with two Opteron processors each, where each node has
8Gbytes of shared memory among it processors. Each processor is scored at
4.8Gflops.

7.1 Constant Viscosity Tests

In this section all the numerical experiments are performed with a constant vis-
cosity ν = 1 and using the discretization (P2 + Bubble)/P1. In Table 1 we fix
the mesh of the subdomains to 32× 32 and increase the number of subdomains.
In Table 2 we fix the number of subdomains to 4 × 4 and refine the mesh of the
subdomains. These tables show the number of PCG iterations and the maximum
eigenvalue (in parenthesis) for the different coarse spaces. The minimum eigen-
value is always very close to 1.0 and is not reported. We conclude from Table 1
that the coarse spaces V(0)

0 and V(2)
0 do not satisfy the uniform inf-sup stability

(11), while the coarse spaces V(3)
0 and V(4)

0 provide scalable algorithms. From
Table 2, we see that the iteration counts of all the preconditioners depend very
weakly on the size of the local problems. This result is expected due to (12).

Table 1. The PCG iteration counts and the largest eigenvalues of the preconditioned
operator T (within parenthesis) for different coarse spaces. We fix the local mesh to
32 × 32.

Subdomains V
(0)
0 V

(2)
0 V

(3)
0 V

(4)
0

3 × 3 19 (10.3) 19 (8.49) 17 (7.23) 16 (7.22)
4 × 4 23 (12.0) 22 (9.42) 20 (7.56) 20 (7.54)
5 × 5 27 (23.5) 25 (13.5) 20 (7.70) 20 (7.68)
6 × 6 28 (24.1) 24 (13.7) 20 (7.80) 20 (7.78)
7 × 7 30 (43.2) 26 (17.2) 20 (7.87) 20 (7.84)
8 × 8 35 (41.2) 27 (17.0) 21 (7.91) 20 (7.88)

Table 2. The PCG iteration counts and the largest eigenvalues of the preconditioned
operator T (within parenthesis) for different coarse spaces. We fix the number of sub-
domains to 4 × 4.

Local mesh V
(0)
0 V

(2)
0 V

(3)
0 V

(4)
0

8 × 8 17 (7.87) 16 (4.72) 15 (4.30) 14 (4.27)
16 × 16 20 (9.83) 19 (6.80) 17 (5.82) 17 (5.79)
32 × 32 23 (12.0) 22 (9.42) 20 (7.56) 20 (5.74)

In the sequel numerical experiments we consider only the space V(4)
0 since it

shows to be the most effective coarse space tested.
On Table 3 we compare the discretization errors of the (P2 + Bubbles)/P1

and the P2/P0 (in parenthesis). We see that the (P2 + Bubbles)/P1 discretiza-
tion is much more accurate than the P2/P0. The convergence error rates for the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Robust Two-Level Lower-Order Preconditioners 329

(P2 + Bubbles)/P1 are 10, 4, 4 for the velocity in the L2, H1, div norms, and
4 for the pressure in the L2 norm, respectively. For the P2/P0 discretization the
rates are 4, 2, 2 for the velocity in the L2, H1, div norms, and 2 for the pressure
in the L2 norm, respectively.

On Table 4 we compare the discretizations (P2 + Bubbles)/P1 and P2/P0
with respect to iteration counts, conditioning, execution and assembling times
(given in seconds). The table shows that the overall CPU time for the discretiza-
tion (P2 + Bubble)/P1 is not much larger than the one for P2/P0. Also we can
see that the number of PCG iterations and the condition number are approxi-
mately the same for both discretizations. The high CPU time in the case of the
local mesh 64 × 64 will be discussed in Subsection 7.3.

Table 3. The discretization errors of velocity for (P2 + Bubbles)/P1 and P2/P0

(within parenthesis). The number of subdomains is fixed to 4 × 4.

Local mesh ‖u − uh‖0 |u − uh|1 |u − uh|div ‖p − ph‖0

4 × 4 3.64e-5 (5.73e-4) 3.88e-3 (3.63e-2) 2.82e-3 (3.31e-2) 1.39e-2 (7.42e-2)
8 × 8 3.71e-6 (1.47e-4) 9.13e-4 (1.84e-2) 6.93e-3 (1.69e-2) 3.81e-3 (3.72e-2)

16 × 16 4.13e-7 (3.73e-5) 2.18e-4 (9.26e-3) 1.71e-4 (8.52e-3) 9.78e-4 (1.86e-2)
32 × 32 4.97e-8 (9.40e-6) 5.39e-5 (4.64e-3) 4.27e-5 (4.27e-3) 2.46e-4 (9.31e-3)
64 × 64 6.60e-9 (2.36e-6) 1.34e-5 (2.33e-3) 1.07e-5 (2.14e-3) 4.65e-5 (4.65e-3)

Table 4. PCG iteration counts (Its.), largest eigenvalue of the preconditioned operator
T (λmax), CPU time for assembling the matrix and CPU times for all the running
(T2) for the discretizations (P2 + Bubbles)/P1 and P2/P0 (within parenthesis). The
number of subdomains is fixed to 4 × 4.

Local mesh Its. λmax T1(s) T2(s)

4 × 4 11 (13) 2.98 (3.42) 0.08 (0.06) 2.35 (2.30)
8 × 8 14 (14) 4.27 (4.57) 0.10 (0.07) 3.12 (2.90)

16 × 16 17 (16) 5.79 (5.96) 0.16 (0.10) 8.65 (8.53)
32 × 32 20 (18) 7.53 (7.61) 0.58 (0.34) 108.6 (107.1)
64 × 64 22 (21) 9.52 (9.51) 1.80 (0.93) 5687.1 (5682.6)

7.2 Discontinuous Viscosities

In this section we assume that the viscosity is constant in each subdomain, how-
ever with a jump across the subdomains. We study the case where the viscosity
is given by two constant values ν1 and ν2, in such a way that it has a checker
board pattern.

We consider the discretization (P2 + Bubbles)/P1 and fix ν1 = 1. On Table
5 we provide the number of iterations and the maximum eigenvalue (in paren-
thesis), for different values of the exponent γ; see (8). The best result is obtained
when γ = 1, although for γ > 1 the condition numbers present similar behavior.
In addition, as predicted in [9,10], we confirm the strong deterioration of the
performance of the algorithms when γ is less than 1/2 and ν2 is large.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

330 D. Conceição, P. Goldfeld, and M. Sarkis

Table 5. PCG iteration counts and larget eigenvalue within parenthesis, for different
viscosities ν2 and exponent γ (see 8). The number of subdomains is fixed to 4 × 4.

γ local mesh ν2 = 10 ν2 = 100 ν2 = 1000

8 × 8 19 (11.2) 25 (44.5) 26 (172)
γ = 0.25 16 × 16 23 (16.0) 31 (65.3) 35 (254)

32 × 32 25 (22.0) 35 (90.5) 43 (352)

8 × 8 15 (5.72) 17 (7.71) 17 (8.70)
γ = 0.5 16 × 16 18 (7.93) 19 (10.7) 19 (12.1)

32 × 32 20 (10.6) 22 (14.3) 22 (16.1)

8 × 8 13 (4.42) 11 (4.09) 11 (4.04)
γ = 1 16 × 16 14 (5.72) 13 (5.13) 12 (5.04)

32 × 32 16 (7.08) 15 (6.17) 13 (6.03)

8 × 8 13 (5.05) 11 (4.15) 11 (4.05)
γ = 2 16 × 16 15 (6.57) 13 (5.21) 12 (5.05)

32 × 32 17 (8.17) 15 (6.26) 13 (6.04)

7.3 Parallel Performance

In order to analyze the parallel performance of the code we consider the dis-
cretization (P2 + Bubble)/P1 and the coarse space enrichment V(4)

0 in the pre-
conditioner. We also consider the domain Ω as in Figure (2) with an unstructured
mesh. We impose the following Dirichlet boundary conditions

u(x, y) =

⎧
⎪⎨

⎪⎩

y(1 − y); for x = 0 (inflow)
y(1 − y); for x = 6 (outflow)
0; otherwise (no-slip condition)

On Table 6 we run problems with a mesh of 23008 elements (116283 dofs). In
order to study the scalability we solve a problem in one processor only with LU
using nested dissection reordering. The speedup in N processors (SN) is calcu-
lated as the ratio of total execution time in 1 processor (T1) and in N processors
(TN) as SN = T1/TN. The efficiency in N processors is computed as the ratio
of the speedup in N processors and the number of processors, i.e., SN/N . The
CPU times show that the proposed preconditioner is more effective when the
size of the local problems is small. This is due to the high cost of the local LU
factorizations of the Dirichlet and Neumann matrices. These LU factorization
times leads to the high CPU time on Table 4 in the case of a local mesh 64×64.
The CPU time in assembling and in LU factorization of the coarse matrix is very
small. The decreasing of TC as the number os subdomains increases is due to the
assembling time of the coarse problem. This assembling is performed by inner
product of vectors defined on the edges and hence the time is proportional to
the size of the edges. The speedup factor grows super linearly, when we increase
the number of processors, due to the smaller size of the local factorizations. The
efficiency of the method grows due to the same reason; we point out that in
the last case of 32 subdomains there is an overload of the processors. We also

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Robust Two-Level Lower-Order Preconditioners 331

mention that a postprocessing of the mesh partition can improve a little the
iteration counts by smoothing the interface between the subdomains.

On Table 7 we fix the local mesh to 3222 elements. We point out that to
setup the preconditioner for more than one subdomain it is required two LU
factorizations, while in one subdomain we need just one. We remark that the
band of the matrix in the one subdomain case is smaller than in the cases with
more subdomains, due to the shape of the domain. Thus, the execution time for
one subdomain is more than twice faster than the 4 subdomains case, however,
from the case of 4 subdomains to 16 subdomains the increase in the execution

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 2. Domain for parallel performance test and sketch of an unstructured mesh

Table 6. This table shows the iteration counts (It.), total execution time (Ttot), the
speedup factors, the efficiency, and the CPU times to solve iteratively the linear system
(TS), to compute the LU factorizations of the local problems (TF) and to compute the
coarse matrix (this includes the LU factorization of the coarse matrix and is denoted
TC). The cases of 32 subdomains is performed by overloading some processors. The
global mesh is fixed to 23008 elements.

Subs. Its. Ttot (s) Speedup Efficiency TS(s) TF(s) TC(s)

1 (LU) – 4.91e+4 – – – – –
2 10 1.67e+4 2.94 1.47 1.06e+2 1.65e+4 1.15e+1
4 13 2.11e+3 23.3 5.82 3.85e+1 2.06e+3 5.83e+0
8 17 3.21e+2 153 19.1 2.17e+1 2.95e+2 3.49e+0
12 22 1.17e+2 420 35.0 2.56e+1 8.65e+1 2.52e+0
16 28 6.48e+1 758 47.4 2.09e+1 4.01e+1 1.84e+0
32 31 3.47e+1 1420 44.4 1.55e+1 1.13e+1 7.57e-1

Table 7. This table shows the iteration counts (It.), total execution time (Ttot) and the
CPU times to solve iteratively the linear system (TS), to compute the LU factorizations
of the local problems (TF) and to compute the coarse matrix (this includes the LU
factorization of the coarse matrix and is denoted TC). The local mesh is fixed to 3222
elements.

Subs. Its. Ttot(s) TS(s) TF(s) TC(s)

1 (LU) – 1.41e+2 – – –
4 11 4.06e+2 1.32e+1 3.88e+2 2.80e+0
16 25 4.71e+2 5.43e+1 4.06e+2 5.38e+0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

332 D. Conceição, P. Goldfeld, and M. Sarkis

time is almost all due to the iterative solver, that takes 15 more iterations than
in the 4 subdomains case. Hence, by comparing the 4 and 16 subdomain cases,
the scalability is obtained. We expect that the iteration counts will stabilize for
large number of subdomains due to the theory and Table 1.

8 Conclusions

We propose four coarse spaces suitable for BDD preconditioning on unstructured
meshes. It is verified that the coarse spaces V(0)

0 and V(2)
0 are not stable, while

the coarse spaces V(3)
0 and V(4)

0 are stable and scalable. We show that the
discretization (P2 + Bubble)/P1 is much more accurate than the P2/P0, with
no significant extra computational cost. We have numerically confirmed that the
choice γ ≥ 1 in the definition of the diagonal scaling (8) is a robust choice for
highly discontinuous viscosities.

We developed a code based on PETSc library for 2D unstructured meshes,
extensible to 3D meshes, with very good efficiency and speedup factors. In addi-
tion, as indicated by the numerical results, we can increase the performance of
the local LU factorizations with the use of better reorderings.

Acknowledgements. D. Conceição is gratefull to the PETSc team for valuable
suggestions, and to IMPA’s cluster support staff, S. Pilotto and D. Albuquerque.

References

1. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes,
L.C., Smith, B.F., Zhang, H.: PETSc Web page : http://www.mcs.anl.gov/petsc
(2001).

2. Dryja, M., Widlund, O.: Schwarz Methods of Neumann-Neumann type for three-
dimensional elliptic finite element problems. Comm. Pure Appl. Math. 48 (1995),
no.2, 121–155.

3. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equa-
tions: Theory and algorithms. Springer Series in Computational Mathematics, 5.
Springer, Berlin, (1986).

4. Goldfeld, P., Pavarino, L.F., Widlund, O.: Balancing Neumann-Neumann precon-
ditioners for mixed approximations of heterogeneous problems in linear elasticity.
Numer. Math. 95 (2003), no. 2, 283–324.

5. Karypis, G., Schloegel, K., Kumar, V.: ParMETIS – Parallel Graph Par-
titioning and Sparse Matrix Ordering Library. Version 3.1. Web page:
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

6. Mandel, J,: Balancing domain decomposition, Comm. Appl. Numer. Methods 9
(1993) 233–241.

7. Pavarino, L.F., Widlund, O.: Balancing Neumann-Neumann methods for incom-
pressible Stokes equations. Comm. Pure Appl. Math. 55 (2002), no.3, 302–335.

8. Saltel, E., Hecht, F.: EMC2 Wysiwyg 2D finite elements mesh generator. INRIA.
EMC2 web page: http://www-rocq1.inria.fr/gamma/cdrom/www/emc2/eng.htm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Robust Two-Level Lower-Order Preconditioners 333

9. Sarkis, M.: Two-level Schwarz methods for nonconforming finite elements and dis-
continuous coefficients, Proceedings of the Sixth Copper Mountain Conference on
Multigrid Methods, N.D. Melson, T.A. Manteuffel and S.F. McCormick, eds., Vol.
2, no. 3224, 543–566, NASA, Hampton VA, 1993.

10. Sarkis, M.: Nonstandard coarse spaces and Schwarz methods for elliptic problems
with discontinuous coefficients using non-conforming element, Num. Math., 77
(1997) 383–406.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 334 – 348, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Impact of Parallel Programming Models on the
Performance of Iterative Linear Solvers for Finite

Element Applications

Kengo Nakajima

Department of Earth and Planetary Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 112-0002, Japan

nakajima@eps.s.u-tokyo.ac.jp
http://www-solid.eps.s.u-tokyo.ac.jp/~nakajima

Abstract. Parallel iterative linear solvers for unstructured grids in FEM applica-
tions, originally developed for the Earth Simulator (ES), are ported to various
types of parallel computer. The performance of flat MPI and hybrid parallel
programming models is compared for the ES, Hitachi SR8000, IBM SP-3 and
IBM p5-model 595 supercomputers. The effect of coloring and of different
storage methods for coefficient matrices are evaluated in various types of appli-
cation. Performance for more than 104 processors is estimated using measured
data for up to 103 processors.

1 Introduction

1.1 Parallel Programming Models on SMP Cluster Architectures

Recently, symmetric multiprocessor (SMP)
cluster architectures have become very popular
in teraflop-scale parallel computers, such as the
DOE-ASC (Advanced Simulation & Comput-
ing, formerly ASCI) [1] machines and the Earth
Simulator (ES) [2].

In order to achieve minimal parallelization
overhead, a multi-level hybrid programming
model is often employed for these architectures
(Fig. 1). In this method, coarse-grained parallel-
ism is achieved through domain decomposition
by message passing among SMP nodes, and
fine-grained parallelism is obtained via loop-
level parallelism inside each SMP node using
compiler-based thread parallelization such as
OpenMP.

Another often-used programming model is the single-level flat MPI model
(Fig. 1), in which separate single-threaded MPI processes are executed on each proc-
essing element (PE). The efficiency of each model depends on hardware performance
(CPU speed, communication bandwidth, memory bandwidth, and the balance
between these), application features, and problem size [3].

P
E

P
E

P
E

P
E

Memory

P
E

P
E

P
E

P
E

Memory

Hybrid：Hierarchy

P
E

P
E

P
E

P
E

Memory

P
E

P
E

P
E

P
E

Memory

Hybrid：Hierarchy

P
E

P
E

P
E

P
E

Memory

P
E

P
E

P
E

P
E

Memory

Flat MPI：Each PE -> Independent

P
E

P
E

P
E

P
E

Memory

P
E

P
E

P
E

P
E

Memory

Flat MPI：Each PE -> Independent

Fig. 1. Parallel programming models
for SMP cluster architectures

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Impact of Parallel Programming Models 335

1.2 Previous Work

In previous work [4, 5], the author developed parallel iterative linear solvers for un-
structured grids in finite element applications using GeoFEM [6] on the ES, using
both the flat MPI and hybrid parallel programming models. Multicolor and reverse
Cuthill-McKee (RCM) ordering methods [7, 8] provide excellent parallel and vector
performance on the ES for iterative solvers with ILU/IC-type preconditioning. The
performances of the flat MPI and hybrid parallel programming models are similar in
most cases. The hybrid model outperforms the flat MPI model when the number of
SMP nodes is large and the problem size is not too large. This is probably due to the
effect of communication latency in MPI processes [9]. The effect of the number of
colors processed has also been investigated.

1.3 Present Work

In this paper, parallel iterative solvers for unstructured grids, developed in [4, 5], are
implemented on three more supercomputers: the Hitachi SR8000/MPP (University of
Tokyo) [10], the IBM SP-3 (NERSC/LBNL) [11], and the IBM p5-model 595 (Kyushu
University) [12]. The effect on performance of the number of colors and the storage
method for coefficient matrices is evaluated through benchmarks based on real applica-
tions. Single processing element (PE), single SMP node, and multiple nodes are used for
both the flat MPI and hybrid parallel programming models. Performance for more than
104 processors is estimated by extrapolating from measured data for up to 1,000 PEs.

Recently, several reports have been published relating to the performance of ap-
plications with unstructured grids on SMP cluster architectures (e.g. used in the finite
element method (FEM)) [13, 14]. However, these are focused mainly on the flat MPI
programming model.

2 Overview of Hardware and Software Environments

2.1 Hardware

Table 1 summarizes the architectures of the four supercomputers studied in this paper.

Table 1. Summary of architectures of Earth Simulator, Hitachi SR8000, IBM SP-3, and IBM
p5-595 platforms

 Earth
Simulator[2]

Hitachi
SR8000 [10]

IBM SP-3 [11] IBM p5-595
[12]

PE#/node 8 8 16 16
Clock rate (MHz) 500 450 375 1,900

Peak performance/PE
(GFLOPS)

8.00 1.80 1.50 7.60

Memory/node (GB) 16 16 16~64 64~128
Memory BW (GB/sec) 32 4 1 6.4

Network BW
(GB/sec/node)

12.3 1.60 1.00 4.00

MPI Latency (μsec) 5.6-7.7 [15] 6-20 [16] 16.3 [14] 3.9 [12]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

336 K. Nakajima

The Earth Simulator [2] is a parallel vector system based on the NEC SX-6, with
640 SMP nodes, 5,120 vector processors, and 10 TB memory. The total peak per-
formance is 40 TFLOPS. Each node is connected through a single-stage crossbar
network. The Hitachi SR8000/MPP (Hitachi SR8000) at the University of Tokyo,
based on the Hitachi SR8000 model G1 [10], has a very similar architecture to that of
the ES. The entire system has 128 SMP nodes, 1,024 Power3-based processors and 2
TB memory. The total peak performance is 1.84 TFLOPS. Each PE is a scalar proces-
sor, but displays excellent performance with codes for vector processors through its
pseudo-vector capability [10]. Each SMP node is connected through a three-
dimensional crossbar network. The IBM SP-3 at NERSC/LBNL (Seaborg) [11] is a
Power3-based superscalar system, with 380 SMP nodes, 6,080 processors, and 7.3 TB
memory. Its total peak performance is 9.12 TFLOPS. Each PE has a 64 KB Level 1
data cache and an 8 MB Level 2 cache. Multi-node configurations are networked via
the Colony switch. In this study, only 8 of 16 PEs on each SMP node are used for
comparison with the ES and Hitachi SR8000. The IBM p5-model 595 (IBM p5-595)
at Kyushu University [12] is a Power5-based superscalar system, with 26 SMP nodes,
416 processors, and 2.0 TB memory. The total peak performance is 3.16 TFLOPS. In
this study, only one SMP node is used, and 8 of 16 PEs on an SMP node are used.
Each PE has an 18 MB Level 3 cache.

2.2 Software

This paper contains evaluations of parallel iterative solvers with preconditioning for
various types of applications on unstructured grids, originally developed for the ES.
The following three types of preconditioning methods are considered [5, 6]:

I. Localized block ILU(0) method for 3D solid mechanics
II. Selective blocking method for 3D solid mechanics with contact conditions

[5, 17]
III. Parallel multigrid method for 3D Poisson equations derived from incompressi-

ble Navier-Stokes solvers with adaptive grids [5]

The GeoFEM local data structure is applied. A proper definition of the distributed
data structure is an important factor determining the efficiency of parallel computa-
tions with unstructured grids. The local data structures in GeoFEM are node-based
with overlapping elements, and are appropriate for the preconditioned iterative solvers
used in GeoFEM [6]. In FEM-type applications, most communication between proc-
essors occurs via information exchange at domain boundaries (Fig. 2). The ratio of
communication to computation is usually small [4, 5].

In order to achieve efficient parallel/vector computation for applications with un-
structured grids, there must be: (1) local operations and no global dependency, (2)
continuous memory access, and (3) sufficiently long innermost loops for vector com-
putation [4, 5, 8]. For unstructured grids, in which data and memory access patterns
are very irregular, reordering methods are very effective in achieving highly parallel
and vector performance, especially for factorization operations in ILU/IC precondi-
tioning. The most popular reordering methods are RCM and multicoloring (MC) [7].
RCM is a typical level set reordering method with much less fill-in than for Gaussian
elimination. MC is based on the concept that no two adjacent nodes have the same

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Impact of Parallel Programming Models 337

(a) SEND (b) RECEIVE

Fig. 2. Communication between processors in parallel FEM [4,5]

color. In both methods, elements having the same color are independent. Therefore,
parallel operation is possible for elements with the same color.

In the hybrid parallel programming model, the following three levels of parallel-
ism are considered: (1) MPI for inter-SMP node communication, (2) OpenMP for
intra-node parallelization, and (3) compiler directives for vectorization of each PE.

Coefficient matrices are stored in descending-order jagged diagonal manner
(DJDS) (Fig. 3(a)) in the original code [4, 5]. This method provides long innermost
loops, and is suitable for vector processors. In this study, descending-order com-
pressed row storage (DCRS) (Fig. 3(b)) is also tested for the Hitachi SR8000, IBM

(a) DJDS (b) DCRS

Fig. 3. Storage scheme and loop organization for matrix operations

SMP
parallel

do iv= 1, NCOLORS
!$omp parallel do private (iv0,j,iS,iE… etc.)
do ip= 1, PEsmpTOT
iv0= STACKmc(PEsmpTOT*(iv-1)+ip- 1)
do j= 1, NLhyp(iv)
iS= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip-1)
iE= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip)

!CDIR NODEP
do i= iv0+1, iv0+iE-iS
k= i+iS - iv0
kk= IAL(k)
X(i)= X(i) - A(k)*X(kk)*DINV(i) etc.

enddo
enddo

enddo
enddo

Vectorized

SMP
parallel

do iv= 1, NCOLORS
!$omp parallel do private (iv0,j,iS,iE… etc.)
do ip= 1, PEsmpTOT
iv0= STACKmc(PEsmpTOT*(iv-1)+ip- 1)
do j= 1, NLhyp(iv)
iS= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip-1)
iE= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip)

!CDIR NODEP
do i= iv0+1, iv0+iE-iS
k= i+iS - iv0
kk= IAL(k)
X(i)= X(i) - A(k)*X(kk)*DINV(i) etc.

enddo
enddo

enddo
enddo

Vectorized

Fig. 4. Forward/backward substitution procedure using OpenMP and vectorization directives
during ILU(0)/IC(0) preconditioning [4, 5]

7 1 2 3

10 9 11 12

5
68

4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3
4

8

6
9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5
68

4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3
4

8

6
9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5
68

4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3
4

8

6
9

10 12

1 2

5

11

7

PE#3
7 1 2 3

10 9 11 12

5
68

4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3
4

8

6
9

10 12

1 2

5

11

7

PE#3

do j= 1, NJmax
do i= 1, Imax(j)
k=(j-1)*N+i; kk=IA(k)
Y(i)= Y(i)+A(k)*X(kk)
…

enddo
enddo

do j= 1, NJmax
do i= 1, Imax(j)
k=(j-1)*N+i; kk=IA(k)
Y(i)= Y(i)+A(k)*X(kk)
…

enddo
enddo

do i= 1, N
do k= IND(i-1)+1, IND(i)
kk=IA(k)
Y(i)= Y(i)+A(k)*X(kk)
…

enddo
enddo

do i= 1, N
do k= IND(i-1)+1, IND(i)
kk=IA(k)
Y(i)= Y(i)+A(k)*X(kk)
…

enddo
enddo

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

338 K. Nakajima

SP-3, and IBM p5-595 machines. DCRS provides rather shorter loops than DJDS, but
the reduced innermost loops of DCRS achieve good data locality, which is advanta-
geous for cache utilization [18]. DJDS and DCRS require the same number of itera-
tions for convergence, as long as the same number of colors has been applied. Fig. 4
shows the procedure for forward/backward substitution (FBS) using OpenMP and
vectorization directives during ILU(0)/IC(0) preconditioning using DJDS/MC order-
ing (i.e. DJDS with multicoloring). In the flat MPI programming model, PEsmpTOT
is set to 1 without any OpenMP options for the compiler, while in the hybrid model
PEsmpTOT is set to the number of OpenMP threads.

3 Single PE/SMP Node Performance

Table 2 shows the single PE performance of a conjugate gradient solver with incom-
plete Cholesky preconditioning (ICCG) using DJDS with multicolor ordering, for a
simple FEM application. The application concerned 3D linear elastic solid mechanics
for a simple cubic geometry [4, 5], with homogeneous isotropic material properties
and boundary conditions. The measured performance was computed from the results
of 8 PEs for each system. The estimated performance was computed based on peak
performance and measured memory bandwidth from STREAM benchmarks [19]
using the estimation method described in [20]. The effect of the scalar processors’
caches is not considered here. The problem size was 6,291,456 (3×1283) DOF (de-
grees of freedom), and the number of colors was set to 100 for sufficiently long in-
nermost loops. For each supercomputer, the measured and estimated performances are
in close agreement.

Figure 5 shows results demonstrating the performance for a single SMP node (8
PEs). The elapsed execution time was measured for various problem sizes from 3×163
(12,288) DOF to 3×1283 (6,291,456) DOF. The number of colors was fixed at 100.
On the ES and Hitachi SR8000, the DJDS outperforms DCRS for larger problems due
to the longer innermost loops. On the ES, the DJDS performance improved from 3.81
GFLOPS to 22.7 GFLOPS with problem size (i.e. from 6.0% to 35.5% of the peak
performance). The pseudo-vector capability of the Hitachi compiler showed good
performance. For the IBM SP-3 and IBM p5-595, the difference between DJDS and
DCRS is not significant, and performance is better for a small problem size due to the
effect of the cache. The DCRS method performs better than DJDS for a small prob-
lem size because DCRS utilizes cache memory more effectively. On the ES, the flat
MPI and hybrid models are closely matched, though the flat MPI type has slightly
better performance for the DJDS method. On the Hitachi SR8000, the hybrid model
performs much better. The IBM SP-3 and IBM p5-595 machines display similar per-
formance if the problem size is large, but the flat MPI model is much better for small
problems, especially for the IBM SP-3. The cache on each processor is utilized more
efficiently in the flat MPI parallel programming model. Reasons for the difference
between the flat MPI and hybrid models on the Hitachi SR8000 with DJDS are not
clear. According to the investigation in [21], the pseudo-vector capability does not
seem to work efficiently in the flat MPI model.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Impact of Parallel Programming Models 339

Table 2. Single CPU performance for finite element type applications for each architecture

 Earth
Simulator

Hitachi
SR8000

IBM SP-3 IBM p5-595

Peak performance/PE
(GFLOPS)

8.00 1.80 1.50 7.60

Measured Memory BW
(GB/sec/PE) [19]

26.6 2.85 .623 3.65

Estimated performance
(GFLOPS (% of peak))

2.31-3.24
(28.8-40.5)

.291-.347
(16.1-19.3)

.072-.076
(4.80-5.05)

.419-.444
(5.52-5.84)

Measured performance 2.93 (36.6) .335 (18.6) .122 (8.11) .461 (6.07)

Fig. 5. Effect of coefficient matrix storage method and flat MPI/hybrid
model type for a 3D linear elastic problem with simple cubic geometry for
various problem sizes on a single SMP node (8 PEs) (100 colors)

4 Effect of the Number of Colors

The convergence of iterative solvers using a multicolor reordering method can be
improved by increasing the number of colors, because of fewer incompatible graphs
[8]. However, this reduces the number of elements of each color, which means shorter
innermost loops for vectorization [4, 5, 8]. In this section, this effect is investigated
for both the flat MPI and hybrid programming models using a single SMP node (8
PEs) for each supercomputer for various types of applications and geometries.

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+04 1.0E+05 1.0E+06 1.0E+07

DOF: Problem Size

G
F

L
O

P
S

Earth Simulator
peak=64GFLOPS

0.00

1.00

2.00

3.00

1.0E+04 1.0E+05 1.0E+06 1.0E+07

DOF: Problem Size

G
F

L
O

P
S

0.00

1.00

2.00

3.00

1.0E+04 1.0E+05 1.0E+06 1.0E+07

DOF: Problem Size

G
F

L
O

P
S

IBM SP-3
peak=12.0GFLOPS

0.0

5.0

10.0

15.0

1.E+04 1.E+05 1.E+06 1.E+07

DOF

G
F

L
O

P
S

IBM p5-595
peak=60.8GFLOPS

Hitachi SR8000
peak=14.4GFLOPS

● Flat-MPI DJDS
○ Hybrid DJDS
■ Flat-MPI DCRS
□ Hybrid DCRS

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

340 K. Nakajima

4.1 Elastic Solid Mechanics

The first example is the simple 3D linear elastic
problem for a cube in [4, 5] with 3×106 DOF
(3×1003). Figure 6 shows the effect of the number
of colors on convergence of ICCG solvers using
DJDS and DCRS with multicolor ordering. The
number of iterations for convergence decreases as
the number of colors increases in both the flat MPI
and hybrid models. The hybrid programming
model requires slightly fewer numbers of itera-
tions for convergence. Figure 7 shows the effect of
the number of colors on performance of the ES for
DJDS. For both the flat MPI and hybrid models,
the GFLOPS value decreases as the number of
colors increases. Therefore, the elapsed time for
computation is longer for 1,000 colors, even
though the number of iterations decreases, as
shown in Fig. 6. This phenomenon is much more significant in the hybrid model, as
seen in Fig. 7. The size of the vector register in the ES is 256 [2]. In this case, with
106 finite element nodes on 8 PEs, the average innermost loop length is 256 for the
case with 488 colors. However, Fig. 7 shows that the performance of the hybrid
model worsens when the number of colors is more than about 100. This is mainly due
to the synchronization overhead of OpenMP in the FBS loop in ILU/IC factorization
(Fig. 4) [4, 5].

Fig. 7. Effect of number of colors in DJDS ordering on ES with 1 SMP node (8 PEs) for 3D
linear elastic problem for cube (problem size=3×106 DOF) (3×1003), peak=64 GFLOPS

On the Hitachi SR8000, the performance of the hybrid programming model de-
creases slightly when many colors are used, as shown in Fig. 8. However this is not as
significant as on the ES. In the flat MPI model with DJDS, the performance improves
as the number of colors increases. For the IBM SP-3 and IBM p5-595 machines, the
effect of the number of colors on performance is not clear (Fig. 8). The DCRS

0.0

10.0

20.0

30.0

10 100 1000

COLORS

G
F

L
O

P
S

0

20

40

60

80

10 100 1000

COLORS

se
c.

● Flat MPI DJDS
○ Hybrid DJDS

200

250

300

350

10 100 1000

COLORS

IT
E

R
A

T
IO

N
S

Fig. 6. Effect of number of
colors in multicolor reordering:
number of iterations for conver-
gence in 3D linear elastic prob-
lem for cube (3×106 DOF)
(3×1003) using 1 SMP node

● Flat MPI，○ Hybrid

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Impact of Parallel Programming Models 341

performance is slightly better than for DJDS, and the DJDS method seems more sen-
sitive to the number of colors than DCRS. The performance of the flat MPI model
with DJDS improves as the number of colors increases. The performance of the hy-
brid model with DJDS also improves as the number of colors increases from 10 to
100, but then the performance deteriorates from 100 to 1,000 colors due to the
OpenMP overhead. On the IBM p5-595, this drop is not so significant.

(a) Hitachi SR8000 (b) IBM SP-3 (c) IBM p5-595

4.2 Selective Blocking Preconditioning for Contact Problems

Selective blocking is a special pre-
conditioning method for contact
problems with penalty constraints
developed by the author. The target
application is a simulation of proc-
esses of stress accumulation at
plate boundaries around the Japa-
nese islands (Fig.9) [4, 5, 6, 17]. In
the selective blocking method,
finite element nodes in the same
contact group coupled through
penalty constraints are placed into a
large block (the selective block or super node). For symmetric positive definite matri-
ces, incomplete block Cholesky factorization without inter-block fill-in using selec-
tive blocking (SB-BIC(0)) shows excellent performance and robustness for a wide
range of penalty parameter values [4, 5, 17]. Figure 10 shows the results for the South
West Japan model with 784,000 tril-inear hexahedral elements, 823,813 nodes, and
2,471,439 DOF on a single SMP node (8 PEs). Only DJDS ordering was evaluated.
With this geometry, the relationship between the number of colors and the perform-
ance has more marked characteristics. On the IBM SP-3 and IBM p5-595, the effect
of the number of colors on performance is small. However it improves slightly as the

0.00

1.00

2.00

3.00

10 100 1000

COLORS

G
F

L
O

P
S

0.00

0.50

1.00

1.50

10 100 1000

COLORS

G
F

L
O

P
S

0.00

2.00

4.00

6.00

10 100 1000

COLOR#

G
F

L
O

P
S

● Flat-MPI DJDS
○ Hybrid DJDS
■ Flat-MPI DCRS
□ Hybrid DCRS

Fig. 8. Effect of number of colors in DJDS and DCRS ordering on Hitachi
SR8000, IBM-SP3 and IBM p5-595 with 1 SMP node (8 PEs) for 3D linear
elastic problem for cube (problem size=3×106 DOF) (3×1003)

Eurasia

Philippine

PacificEurasia

Philippine

Pacific

Fig. 9. Description of the Southwest Japan model
with crust (dark gray) and subduction plate (light
gray) [4, 5, 6, 17]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

342 K. Nakajima

number of colors increases, especially for the flat MPI model. The performance of the
hybrid model also improves as the number of colors increases from 10 to 100, but
thereafter the performance worsens from 100 to 500 colors due to the OpenMP over-
head. On the IBM p5-595, this drop is not so significant.

4.3 Multigrid Preconditioning for Poisson Equations

The next example is a multigrid preconditioned conjugate gradient iterative method
(MGCG) for Poisson equations, as described in [5]. The target application is 3D in-
compressible thermal convection in the region between dual spherical surfaces. This
type of geometry often appears in the simulations of earth sciences for both fluid earth
(atmosphere and ocean) and solid earth (mantle and outer core). Semi-unstructured
prismatic grids generated from triangles on spherical surfaces are used. Grids start as
icosahedrons and are then globally refined recursively as shown in Fig. 11 [5]. The
grid hierarchy resulting from recursive refinement can be used to generate coarse
grids. As stated in the author’s previous work [5], the drop in performance for the
many colors case in the hybrid parallel programming model on the ES was very sig-
nificant, because of shorter loop length and greater overhead. In this study, the same
problem is applied to different hardware. Figure 12 shows the performance of MGCG
cycles on the Poisson equations with 6,144,000 DOF on a single SMP node (8 PEs).

0

10

20

30

10 100 1000

Colors

G
F

L
O

P
S

0.00

0.25

0.50

0.75

1.00

10 100 1000

COLOR#

G
F

L
O

P
S

0.00

1.00

2.00

3.00

10 100 1000

Colors

G
F

L
O

P
S

0.00

1.00

2.00

3.00

4.00

10 100 1000

COLOR#

G
F

L
O

P
S

IBM SP-3
peak=12.0GFLOPS

IBM p5-595
peak=60.8GFLOPS

Hitachi SR8000
peak=14.4GFLOPS

Earth Simulator
peak=64GFLOPS

● Flat MPI DJDS
○ Hybrid DJDS

Fig. 10. Effect of number of colors for DJDS ordering on a single SMP node
(8 PEs) for 3D contact problem in Fig. 9

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Impact of Parallel Programming Models 343

Here, only DJDS ordering was evaluated. For calculations with many colors, fewer
iterations are required for convergence, however the performance is worse due to the
smaller loop length and greater overhead. Performance of the ES is greatly affected
by loop length. Moreover, the hybrid parallel programming model is much more sen-
sitive to the number of colors and innermost vector length than the flat MPI model.
Results for the Hitachi SR8000, IBM SP-3 and IBM p5-595 show similar features. On
the IBM p5-595, the deterioration in performance for the hybrid model with many
colors is not so great.

Level 4
2,562 nodes

5,120 tri’s

Level 3
642 nodes
1,280 tri’s

Level 0
12 nodes

20 tri’s

Level 1
42 nodes

80 tri’s

Level 2
162 nodes

320 tri’s

Level 4
2,562 nodes

5,120 tri’s

Level 3
642 nodes
1,280 tri’s

Level 0
12 nodes

20 tri’s

Level 1
42 nodes

80 tri’s

Level 2
162 nodes

320 tri’s

Fig. 11. Surface triangle grids generated from an icosahedron

0.0

5.0

10.0

15.0

10 100 1000 10000

COLOR #

G
F

L
O

P
S

0.00

0.50

1.00

1.50

2.00

10 100 1000 10000

COLOR #

G
F

L
O

P
S

0.00

0.50

1.00

1.50

2.00

10 100 1000 10000

COLOR #

G
F

L
O

P
S

Earth Simulator
peak=64GFLOPS

IBM p5-595
peak=60.8GFLOPS

Hitachi SR8000
peak=14.4GFLOPS

0.00

0.50

1.00

1.50

2.00

10 100 1000 10000

COLOR #

G
F

L
O

P
S

IBM SP-3
peak=12.0GFLOPS

Fig. 12. Performance of Poisson solvers with MGCG on a single SMP node
(8 PEs) with 6,144,000 prisms

● Flat MPI DJDS
○ Hybrid DJDS

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

344 K. Nakajima

5 Multiple Nodes

Finally, a large-scale 3D simple elastic application with simple cubic geometry [4, 5]
was solved, using more than 100 SMP nodes on the ES, Hitachi SR8000 and
IBM SP-3 machines. The performance of both the flat MPI and hybrid models was
evaluated. The problem size for one SMP node was fixed, and the number of nodes
was varied between 1 and 176 (1,408 PEs) for the ES, and between 1 and 128 (1,024
PEs) for the Hitachi SR8000 and IBM SP-3. On the ES, the largest problem size was
2.21×109 DOF, for which the performance was about 3.80 TFLOPS, corresponding to
33.7 % of the total peak performance of the 176 SMP nodes (10.24 TFLOPS) with
DJDS (Fig. 13) [4, 5]. The hybrid and flat MPI programming models display similar
performance, but the hybrid outperforms the flat MPI when a large number of SMP
nodes are involved, especially if the problem size per node is small, as shown in Fig.
13. Figures 14 and 15 show results obtained using the Hitachi SR8000 with DJDS and
the IBM SP-3 with DCRS. On the Hitachi SR8000, the largest problem size was
8.05×108 DOF, for which the performance was about 335 GFLOPS, corresponding to
18.2 % of the total peak performance of the 128 SMP nodes. On the IBM SP-3, the
largest problem size was 3.84×108 DOF, yielding a performance of around 110
GFLOPS, which corresponds to 7.16 % of the total peak performance of the 128 SMP
nodes. In both cases, the deterioration in performance of the flat MPI model as seen
on the ES was not observed.

For these applications, the sustained GFLOPS rate for a single SMP node of the
ES is 20 to 30 times as large as that of the IBM SP-3, as shown in Table 2 and Fig. 5.
The network bandwidth is also 10 times faster. However, the rate of MPI latency is
very similar. According to [21], if there are 323 FEM nodes on a PE (=98,304 un-
knowns/PE), the computation time for one matrix-vector multiplication procedure
(mat-vec) for 3D solid mechanics is about 6 msec on the ES if the performance is 2.80
GFLOPS/PE (35% of peak). The MPI latency of the ES is 6-8 μsec, as shown in Ta-
ble 1, therefore the effect of MPI latency could be very significant in cases with more
than 1,000 PEs on the ES.

Figure 16 shows the communication overhead measured for the ES and IBM
SP-3 with 3×106 DOF/SMP node. The difference between the elapsed computation
time per iteration for each case and the result with a single SMP node (8 PEs) is
considered to be the communication overhead per iteration. Generally, the com-
munication overhead is smaller for the hybrid programming model. On the ES, the
communication overhead of the flat MPI model increases constantly, while for the
other cases the overhead saturates for many PEs. The relative communication
overhead compared to the elapsed computation time with a single SMP node (8
PEs) has been estimated for cases with more than 1,000 PEs according to experi-
mental data. The resulting estimated regression curves are displayed in Fig. 17.
The measured overhead ratios with 1,024 PEs are 27.7 % (ES/flat MPI), 10.8 %
(ES/hybrid), 12.7 % (IBM SP-3/flat MPI), and 10.1 % (IBM SP-3/hybrid), respec-
tively. The estimated ratios with 104 PEs are 110-280 % (ES/flat MPI), 16 %
(ES/hybrid), 18-31 % (IBM SP-3/flat MPI), and 16-21 % (IBM SP-3/hybrid),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Impact of Parallel Programming Models 345

Fig. 13. Parallel performance on the ES for the 3D linear elastic problem using between 1 and
176 SMP nodes (1,408 PEs) with DJDS/MC ordering

Fig. 14. Parallel performance on the Hitachi SR8000 for the 3D linear elastic problem using
between 1 and 128 SMP nodes (1,024 PEs) with DJDS/MC ordering

Fig. 15. Parallel performance on the IBM SP-3 for the 3D linear elastic problem using between
1 and 128 SMP nodes (1,024 PEs) with DCRS/MC ordering

respectively. Tests with multiple nodes on the IBM p5-595 have not been con-
ducted, but the results would be expected to be similar to those of the IBM SP-3,
going by the performance parameters in Table 1 and the single PE/node perform-
ance data in Table 2 and Fig. 5.

0

1000

2000

3000

4000

0 32 64 96 128 160 192

SMP NODE# (8 PE's/NODE)

G
F

L
O

P
S

0

1000

2000

3000

4000

0 32 64 96 128 160 192

SMP NODE# (8 PE's/NODE)

G
F

L
O

P
S

12.6M DOF/node.786M DOF/node

Flat MPI(ideal)
Hybrid (ideal)

● Flat MPI DJDS
○ Hybrid DJDS

Flat MPI(ideal)
Hybrid (ideal)

● Flat MPI DJDS
○ Hybrid DJDS

0

100

200

300

400

0 32 64 96 128 160 192

SMP NODE# (8 PE's/NODE)

G
F

L
O

P
S

0

100

200

300

400

0 32 64 96 128 160 192

SMP NODE# (8 PE's/NODE)

G
F

L
O

P
S

Flat MPI(ideal)
Hybrid (ideal)

● Flat MPI DJDS
○ Hybrid DJDS

Flat MPI(ideal)
Hybrid (ideal)

● Flat MPI DJDS
○ Hybrid DJDS

0

50

100

150

0 32 64 96 128 160 192

SMP NODE# (8 PE's/NODE)

G
F

L
O

P
S

0

50

100

150

0 32 64 96 128 160 192

SMP NODE# (8 PE's/NODE)

G
F

L
O

P
S

.786M DOF/node 3.00M DOF/node

Flat MPI(ideal)
Hybrid (ideal)

● Flat MPI DCRS
○ Hybrid DCRS

Flat MPI(ideal)
Hybrid (ideal)

● Flat MPI DCRS
○ Hybrid DCRS

.786M DOF/node 6.29M DOF/node

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

346 K. Nakajima

Fig. 16. Measured communication overhead per iteration of the ES and IBM SP-3 with 3×106
DOF/SMP node for the 3D linear elastic problem

Fig. 17. Relative communication overhead of ES and IBM SP-3 with 3×106 DOF/SMP node
for 3D linear elastic problem. Estimate based on extrapolation of measured results. Ratio
based on elapsed computation time with an SMP node (8 PEs).

6 Conclusions

Parallel iterative linear solvers for unstructured grids in FEM applications, originally
developed for the ES, were ported to three other SMP cluster supercomputers: the
Hitachi SR8000, the IBM SP-3 and the IBM p5-595. The performance of the flat MPI
and hybrid parallel programming models was compared using more than 100 SMP
nodes. The effects of coloring and of storage method for coefficient matrices were
also evaluated in various types of applications. The performance characteristics of the
Hitachi SR8000 are very similar to those of the ES, mainly because of its pseudo-
vector capability. Performance degradation for larger numbers of colors is not so
significant as for the ES. The IBM SP-3 exhibits better performance for small prob-
lems. The combination of the DCRS and the flat MPI model gives the best perform-
ance, because this utilizes cache memory most efficiently. In the DJDS with flat MPI
combination, increasing the number of colors gives improved performance due to data
locality. The performance characteristics of the IBM p5-595 are similar to those of the
IBM SP-3, but the performance of the hybrid parallel programming model with
OpenMP is much improved in the IBM p5-595. The flat MPI and hybrid parallel

1.0E-02

1.0E-01

1.0E+00

10 100 1000 10000

PE#

se
c.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

10 100 1000 10000

PE#

se
c.

IBM SP-3Earth Simulator

● Flat MPI，○ Hybrid

0

25

50

75

100

10 100 1000 10000

PE#

%

0

25

50

75

100

10 100 1000 10000

PE#

%

IBM SP-3Earth Simulator

Flat MPI estimation
Hybrid estimation

● Flat MPI ○ Hybrid

Flat MPI estimation
Hybrid estimation

● Flat MPI ○ Hybrid

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 The Impact of Parallel Programming Models 347

programming models show similar performance in most cases for each supercom-
puter. On the ES, the hybrid outperforms the flat MPI when the number of SMP nodes
is large and the problem size is small. This phenomenon was not observed on the
other computers. This is because of the relatively high MPI latency of the ES. Gener-
ally, communication overhead with many PE’s is higher in the flat MPI model than in
the hybrid programming model. The performance of parallel FEM on massively par-
allel computers strongly depends on the balance between single PE performance,
communication latency, and communication bandwidth.

Acknowledgements

This work is supported by the 21st Century Earth Science COE Program at the Uni-
versity of Tokyo, and CREST/Japan Science and Technology Agency. The author
would like to thank the Earth Simulator Center, the Information Technology Center at
the University of Tokyo, the National Energy Research Scientific Computing Center
at Lawrence Berkeley National Laboratory, and the Computing and Communication
Center at Kyushu University, for use of their computer resources.

References

1. ASCI: http://www.llnl.gov/asci/
2. Earth Simulator Center: http://www.es.jamstec.go.jp/
3. Rabenseifner, R. (2002), Communication Bandwidth of Parallel Programming Models on

Hybrid Architectures, Lecture Notes in Computer Science 2327, 437-448.
4. Nakajima, K. (2003), Parallel Iterative Solvers of GeoFEM with Selective Blocking Pre-

conditioning for Nonlinear Contact Problems on the Earth Simulator, ACM/IEEE Pro-
ceedings of SC2003.

5. Nakajima, K. (2004), Preconditioned Iterative Linear Solvers for Unstructured Grids on
the Earth Simulator, IEEE Proceedings of HPC Asia 2004, 150-169.

6. GeoFEM: http://geofem.tokyo.rist.or.jp/
7. Saad, Y. (2003), Iterative Methods for Sparse Linear Systems (2nd Edition), SIAM.
8. Doi, S. and Washio, T. (1999), Using Multicolor Ordering with Many Colors to Strike a

Better Balance between Parallelism and Convergence, Proceedings of RIKEN Symposium
on Linear Algebra and its Applications, 19-26.

9. Kerbyson, D.J., Hoisie, A. and Wasserman, H. (2002), A Comparison Between the Earth
Simulator and AlphaServer Systems using Predictive Application Performance Models,
LA-UR-02-5222, Los Alamos National Laboratory.

10. Information Technology Center, The University of Tokyo: http://www.cc.u-tokyo.ac.jp/
11. National Energy Research Scientific Computing Center, Lawrence Berkeley National

Laboratory: http://www.nersc.gov/
12. Computing and Communication Center, Kyushu University:

http://www.cc.kyushu-u.ac.jp/
13. Adams, M.F., Bayraktar, H.H., Keaveny, T.M. and Papadopoulos, P. (2003), Applications

of Algebraic Multigrid to Large-Scale Finite Element Analysis of Whole Bone Micro-
Mechanics on the IBM SP, ACM/IEEE Proceedings of SC2003.

14. Oliker, L., Canning, A., Carter, J., Shalf, J., and Ethier, S. (2004), Scientific Computations
on Modern Parallel Vector Systems, ACM/IEEE Proceedings of SC2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

348 K. Nakajima

15. Uehara, H., Tamura, M., Itakura, K. and Yokokawa, M. (2003), MPI Performance Evalua-
tion on the Earth Simulator (in Japanese), IPSJ Transactions on High-Performance Com-
puting System, 44 SIG 1 (HPS 6), 24-34.

16. HLRS (High Performance Computing Center Stuttgart): http://www.hlrs.de/
17. Nakajima, K. and Okuda, H. (2004), Parallel Iterative Solvers with Selective Blocking

Preconditioning for Simulations of Fault Zone Contact, Journal of Numerical Algebra with
Applications, 11, 831-852.

18. Hatazaki, T. (2004), Lessons from porting vector computer applications onto Non-
Uniform Memory Access scalar machines, IEEE Proceedings of HPC Asia 2004, 236-243.

19. STREAM (Sustainable Memory Bandwidth in High Performance Computers):
http://www.cs.virginia.edu/stream/

20. Nakajima, K. (2005), Three-Level Hybrid vs. Flat MPI on the Earth Simulator: Parallel It-
erative Solvers for Finite-Element Method, Applied Numerical Mathematics, 54, 237-255.

21. Nakajima, K. (2005), Parallel programming models for finite-element method using pre-
conditioned iterative solvers with multicolor ordering on various types of SMP cluster
supercomputers, IEEE Proceedings of HPC Asia 2005, 83-90.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Parallel Algorithm for Constructing a

Unit Triangular Matrix with Prescribed Singular
Values

Georgina Flores-Becerra1,2, Victor M. Garcia1, and Antonio M. Vidal1

1 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, España
{gflores, vmgarcia, avidal}@dsic.upv.es

2 Departamento de Sistemas y Computación. Instituto Tecnológico de Puebla
Av. Tecnológico 420, Col. Maravillas, C.P. 72220, Puebla, México

Abstract. The problem tackled in this paper is the parallel construction
of a unit triangular matrix with prescribed singular values, when these
fulfill Weyl’s conditions [9]; this is a particular case of the Inverse Singu-
lar Value Problem. A sequential algorithm for this problem was proposed
in [10] by Kosowsky and Smoktunowicz. In this paper parallel versions
of this algorithm will be described, both for shared memory and dis-
tributed memory architectures. The proposed parallel implementation is
better suited for the shared memory paradigm; this is confirmed by the
numerical experiments; the shared memory version, reaches an efficiency
over 90%, and reduces substantially the execution times compared with
the sequential algorithm.

1 Introduction

Inverse problems can be found in many branches of Science and Engineering,
such as simulation of mechanical systems, geophysics, tomography, and many
others [3,6,11,12]. A particular instance of this family of problems is the Inverse
Singular Value Problem (ISVP), which can be defined as:

Given a set of n positive real numbers S∗ = {s∗1, s
∗
2, ..., s

∗
n}, where s∗1 ≥ s∗2 ≥

... ≥ s∗n, find a matrix A ∈ �nxn, with a certain structure, whose singular values
are S∗.

There exist several algorithms to solve this problem, such as MI, MIII, EP
and FB [5], which are iterative Newton-like algorithms, with high computational
cost (O(n4) for MI, MIII and EP; and O(n6) for FB). If the desired matrix must
have a certain structure, the computational costs can be drastically reduced. As
an example, the ISVP problem for Toeplitz matrices can be solved with Newton
algorithms with cost O(n3).

The problem of the construction of a unit lower triangular matrix A ∈ Rn×n,
such that the singular values of A are s∗1 ≥ s∗2 ≥ ... ≥ s∗n, was proposed by
Kosowski and Smoktunowicz in [10]. It can be seen as a special case of the

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 349–362, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

350 G. Flores-Becerra, V.M. Garcia, and A.M. Vidal

ISVP which could be named Inverse Unit Triangular Singular Value Problem
(IUTSVP). The existence of solution was given by Horn [9], who proved that
such matrix A exists if and only if the following conditions are fulfilled (these
are called Weyl conditions):

s∗1s
∗
2s

∗
3...s

∗
i ≥ 1, (i = 2 : n) and s∗1s

∗
2s

∗
3...s

∗
n = 1.

Kosowski and Smoktunowicz proposed an O(n2) algorithm (based on Horn’s
proof) to solve the IUTSVP. It is a direct algorithm (that is, it solves the problem
in a finite number of steps), in contrast with the iterative methods needed to
solve the general ISVP.

This paper is focused on the design of a parallel version of the algorithm
proposed by Kosowski and Smoktunowicz, and its implementation for shared
memory and distributed memory computers; of course, the primary goal is the
reduction of the time needed to solve this problem. Both implementations are
compared from different points of view.

This paper is organized as follows: The theoretical background, along with
the sequential algorithm are shown in the Section 2. In Section 3 the distributed
memory parallel algorithm is introduced and discussed, and the shared memory
algorithm is discussed in Section 4. In these three sections numerical results are
given. Finally, in Section 5 the results obtained are compared and analyzed,
offering the conclusions of the study.

2 Method Based in Weyl’s Conditions(WE Method)

The method proposed by Kosowski and Smoktunowicz to solve IUTSVP is based
on the construction of a sequence of unit lower triangular matrices A(i) (i = 1 : n)
equivalent to the diagonal matrix diag(s∗1, s

∗
2, ..., s

∗
n)1. To build the matrices of

this sequence the following lemma is applied:

Lemma 1. Two real numbers s∗i , s
∗
j > 0 such that s∗i ≥ 1 ≥ s∗j or s∗j ≥ 1 ≥ s∗i ,

are the singular values of the matrix
[

1 0√
(s∗2i − 1)(1 − s∗2j) s∗i s

∗
j

]
.

This lemma leads to take submatrices 2 × 2 of A(i) (i = 1 : n) in the form
diag(di, dj) such that di, dj fulfill

di ≥ 1 ≥ dj or dj ≥ 1 ≥ di. (1)

To ensure that (1) is fulfilled, Kosowski et.al. apply the next lemma:

1 Two matrices M and N are unitarily equivalent if exist unitary matrices U , V such
that M = UNV t; under these conditions M and N shall have the same singular
values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Parallel Algorithm for Constructing a Unit Triangular Matrix 351

Lemma 2. If the real numbers s∗1 ≥ s∗2 ≥ ... ≥ s∗n > 0 satisfy Weyl’s conditions,
then there exists a permutation {d1, d2, ..., dn} of {s∗1, s

∗
2, ..., s

∗
n} such that

d1d2...di−1 ≥ 1 ≥ di or di ≥ 1 ≥ d1d2...di−1 (i = 2 : n). (2)

Given the matrix A(1) = diag(d1, d2, ..., dn), and if d1 and d2 satisfy (1), then
the following matrix exists:

L(2) =
[

1 0√
(d2

1 − 1)(1 − d2
2) d1d2

]

with singular values d1, d2. Then, we can build A(2) = diag(L(2), D
(1)
n−2×n−2),

where D
(1)
n−2×n−2 = diag(d3, d4, ..., dn). A(2) is equivalent to A(1) because there

exist 2 × 2 unitary matrices U (2), V (2) such that L(2) = U (2)diag(d1, d2)V (2)T .
Once A(2) has been built, starts an iterative process to build A(3), A(4), ...A(n).

For example, the construction of A(3) is based on the singular value decomposi-
tion (SVD) of the 2 × 2 matrix L(3):

L(3) =
[

1 0√
(d2

1d
2
2 − 1)(1 − d2

3) d1d2d3

]
= U (3) diag(d1d2, d3) V (3)T (3)

and the A(3) can be written as A(3) = Q(3)A(2)Z(3)T , where:

Q(3) = diag(I1×1, U
(3), In−3×n−3), Z(3)T = diag(I1×1, V

(3)T , In−3×n−3), (4)

A(2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 ... 0√
(d2

1 − 1)(1 − d2
2) d1d2 0 0 ... 0

0 0 d3 0 ... 0

0 0 0 d4 ... 0
...

...
...

...
. . .

...
0 0 0 0 ... dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎣
B

(2)
1×1

C
(2)
2×1 diag(d1d2, d3)

D
(2)
n−3×n−3

⎤

⎥⎦

(5)

(See eq. (8) for the definition of B) and, performing the matrix multiplications,
A(3) can be written as:

A(3) =

⎡

⎢⎣
B

(2)
1×1

U (3)C
(2)
2×1 L(3)

D
(2)
n−3×n−3

⎤

⎥⎦ . (6)

The same procedure is followed to compute A(4), A(5), ..., A(n). The final result
will be the unit lower triangular matrix A(n), whose singular values are S∗.
Therefore, if the numbers pi, zi are defined as follows:

pi = d1d2...di, (i = 1 : n); and zi =
√

(p2
i−1 − 1)(1 − d2

i), (i = 2 : n); (7)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

352 G. Flores-Becerra, V.M. Garcia, and A.M. Vidal

A(n) has the form:

A(n) =

[
B

(n−1)
n−2×n−2

U
(n)
2×2C

(n−1)
2×n−2 L

(n)
2×2

]
,

where B
(n−1)
n−2×n−2, U

(n)
2×2C

(n−1)
2×n−2 and L

(n)
2×2 are:

B
(n−1)
n−2×n−2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 ... 0
u

(3)
11 z2 1 ... 0

u
(4)
11 u

(3)
21 z2 u

(4)
11 z3 ... 0

...
...

. . .
...

u
(n−1)
11 u

(n−2)
21 ...u

(3)
21 z2 u

(n−1)
11 u

(n−2)
21 ...u

(4)
21 z3 ... 1

⎤

⎥⎥⎥⎥⎥⎥⎦
(8)

U
(n)
2×2C

(n−1)
2×n−2 =

[
u

(n)
11 u

(n−1)
21 ...u

(3)
21 z2 u

(n)
11 u

(n−1)
21 ...u

(4)
21 z3 ... u

(n)
11 zn−1

u
(n)
21 u

(n−1)
21 ...u

(3)
21 z2 u

(n)
21 u

(n−1)
21 ...u

(4)
21 z3 ... u

(n)
21 zn−1

]
(9)

L
(n)
2×2 =

[
1 0
zn pn

]
=

[
1 0
zn 1

]
. (10)

From these equations (8), (9) and (10), it becomes clear that A(n) can be built
with the entries of the U (i) (i = 3 : n) matrices and the pi (i = 1 : n), zi (i =
2 : n) and di (i = 1 : n) values. U (i) is the matrix of the left singular vectors of

L(i) =
[

1 0
zi pi

]
. (11)

The algorithm to compute A(n) (called WE), must start by computing di (i =
1 : n), since pi (i = 1 : n) and zi (i = 2 : n) depend on di; recall that these
dis are a permutation of S∗ that can be built using the Lemma 2; the algorithm
that performs this permutation is taken from [10].

The WE algorithm can be written as follows:

Algorithm Sequential WE
1: build d (as mentioned above, taken from [10])
2: compute pi (i = 1 : n) and zi (i = 2 : n), in accordance with (7)
3: build L(i) (i = 3 : n), in accordance with (11)
4: compute SVD(L(i)) to obtain U (i) (i = 3 : n), using LAPACK dgesvd
5: build A(n) as shown in (8-10), using BLAS [dgemm/dscal]

It was proved in [10] that the time complexity of the WE Algorithm is

T (n) =
{

n2 +
328n

3

}
tf ,

where tf is the execution time for a single floating point operation.
Table 1 shows the results of some numerical experiments with the WE al-

gorithm, where S denotes the singular values of the computed lower triangular
matrix. In all the cases the results are quite good.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Parallel Algorithm for Constructing a Unit Triangular Matrix 353

Table 1. Experimental Results (accuracy) with WE algorithm

n 4 5 8 30 50 100 150 300 500

‖S∗ − S‖2 4e-16 4e-16 5e-16 1e-15 1e-15 2e-14 4e-14 8e-15 1e-14
‖S∗−S‖2

‖S∗‖2
1e-16 3e-17 1e-16 1e-16 1e-16 3e-16 2e-16 3e-16 5e-16

3 Parallel Algorithm for Distributed Memory Model

The tools to implement the distributed memory version were standard linear
algebra subroutines and libraries, such as LAPACK [1], BLAS [8] and the com-
munications library BLACS [4] over MPI [7].

Recall that U (i) (i = 3 : n) depends on the SVD of L(i), and L(i) (see (11))
depends on pi and zi (defined in (7)). Each element of p can be computed inde-
pendently of the others; as zi depends on pi−1 and di, zi can also be computed
in parallel with zj (j = 2 : n, j �= i). Then, the SVD of the matrices L(i) can
also be computed in parallel and the U (i) matrices can be computed at the same
time.

On the other hand, in the former section it was proved that A ≡ A(n) can be
computed without explicitly computing A(1), A(2), ..., A(n−1). In order to avoid
unnecessary floating point operations, we can order the products of each row of
A as in the following scheme (suppose the 5-th row of a 6 × 6 matrix A):

with U (6): ⇒ A5,1:6 = u
(6)
11 1

with U (5): A5,4u
(5)
21 ⇒ A5,1:6 = u

(6)
11 u

(5)
21 u

(6)
11 1

with U (4): A5,3u
(4)
21 ⇒ A5,1:6 = u

(6)
11 u

(5)
21 u

(4)
21 u

(6)
11 u

(5)
21 u

(6)
11 1

with U (3): A5,2u
(3)
21 ⇒ A5,1:6 = u

(6)
11 u

(5)
21 u

(4)
21 u

(3)
21 u

(6)
11 u

(5)
21 u

(4)
21 u

(6)
11 u

(5)
21 u

(6)
11 1

The general expressions of this procedure are:

Ai,i−2 = u
(i−2)
21 ; Ai,j = Ai,j+1u

(j)
21 ; (i = n; j = i − 3, i − 2, ..., 1); (12)

Ai,i−1 = u
(i−1)
11 ; Ai,j = Ai,j+1u

(j)
21 ; (i = 2 : n − 1; j = i − 2, i − 3, ..., 1). (13)

To finish the construction of A, the columns of the lower triangular of A, (except
the diagonal), are multiplied with the values of z; this operation can be expresed
by:

Aij = zjAij ; (i = 2 : n; j = 1 : i − 1). (14)

Then, the rows of A can be obtained simultaneously if the values of U and z are
available.

Therefore, there are three sections of the WE algorithm amenable for paral-
lelization: the computing of the U matrices, the z components and the A rows.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

354 G. Flores-Becerra, V.M. Garcia, and A.M. Vidal

In this work, the parallelization consists in the distribution of the n − 1
components of z (z2,...,zn), (n − 2) U i matrices (U (3),...,U (n)) and n − 1 rows of
A (A2,1:1, A3,1:2, A4,1:3,...,An,1:n−1) among P processors.

To control the distribution of the work among the processors two indexes
have been used, called low and up, which give the limits of the subinterval of
components of U and z which each processor must compute.

The distribution of the work needed to obtain A is controlled through the
data structures Rows and CountRows; Rows controls which rows of A belongs
to each processor, and CountRows gives the number of rows in each processor.
The distribution of pairs of rows is made trying to equilibrate the computational
work. For example, if n = 20 and P = 7, the following pairs of rows can be
formed:

pairs (2,20) (3,19) (4,18) (5,17) (6,16) (7,15) (8,14) (9,13) (10,12) (11,-)

flops 36 38 38 38 38 38 38 38 38 19

The pairs are formed picking rows from both extremes, so that the total
number of flops is approximately the same for every processor. In the example,
each processor owns a pair, and the rest of the pairs are distributed among the
processors:

Proc 0 1 2 3 4 5 6

Rows 2, 20, 9 3, 19, 13 4, 18, 10 5, 17, 12 6, 16, 11 7, 15 8, 14
CountRows 3 3 3 3 3 2 2

To implement this idea in a distributed memory computer, all the arrays
Rows, CountRows, U and z must be available in all the processors; therefore,
the algorithm must contain at least two communication stages. The following
diagram outlines how this is scheduled for the case n = 19, P = 4:

Proc0 Proc1 Proc2 Proc3

Build d1:n d1:n d1:n d1:n

Compute z3:7 z8:11 z12:15 z16:19,2

Compute U (3)...U (7) U (8)...U (11) U (12)...U (15) U (16)...U (19)

⇐ − ⇒
All–to–All Broadcast of U and z

⇐ − ⇒
A2,1, A19,1:18 A3,1:2, A18,1:17 A4,1:3, A17,1:16 A5,1:4, A16,1:15

Compute A16,1:15, A15,1:14 A7,1:6, A14,1:13 A8,1:7, A13,1:12 A9,1:8, A12,1:11

A11,1:10 A10,1:9

⇐ −
All–to–One communication to build A in Proc0

⇐ −

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Parallel Algorithm for Constructing a Unit Triangular Matrix 355

The algorithm for the distributed computation of z, U and A is described
below.

Algorithm Parallel WE
In Parallel For Proc = 0, 1, ..., P − 1
1: build d
2: compute pi, zi (i = low : up), in accordance with (7)
3: build L(i) (i = low : up), in accordance with (11)
4: compute SVD(L(i)) to obtain U (i) (i = low : up),

using LAPACK dgesvd
5: All-to-all broadcast of z and U, using BLACS dgeb[r/s]2d
6. compute Aij (i = Rows1, RowscountRows; j = 1 : i − 2),

in accordance with (12-14)
7: All-to-One Reduction of A to Proc = 0,

using MPI [Pack/Send/Recv]
EndParallelFor

3.1 Theoretical and Experimental Costs

The code described above has been tested in a cluster of 2GHz biprocessor
Intel Xeons (Kefren2) composed of 20 nodes, each one with 1 Gbyte of RAM,
disposed in a 4 × 5 mesh with 2D torus topology and interconnected through a
SCI network.

The theoretical analysis of the Parallel WE algorithm shows that its speedup
is severely affected by the construction of A in the processor Proc0, since the
volume of data to be transferred is O

(
n2√
P

)
(assuming that the diameter of the

network is the square root of P), as can be seen in the theoretical execution
time:

TWE(n, P) =
{

n2

P
+

322n

3P
+ 2n − 656

3P

}
tf + 5

√
Ptm +

n2 + 4n√
P

tv,

where tm is the network latency and tv is the inverse of the bandwidth; therefore,
the WE speedup does not reach the theoretical optimum, according with the
following expression:

lim
n→∞ SWE(n, P) =

P

1 +
√

P tv

tf

.

Some experiments performed in the Kefren cluster confirm this behaviour.
The execution times are recorded in the Table 2, where it is quite clear that the
execution times do not decrease when the number of processors increases.

The theoretical cost of the same algorithm without the final construction of
A in the processor Proc0 is:

TWE(n, P) =
{

n2

P
+

322n

3P
+ 2n − 656

3P

}
tf + 4

√
Ptm +

6n√
P

tv,

2 http://www.grycap.upv.es/usuario/kefren.htm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

356 G. Flores-Becerra, V.M. Garcia, and A.M. Vidal

this shows that the degree of parallelism reached during the computation of U ,
z and A is theoretically good, since the speedup reaches the optimum asymp-
totically:

lim
n→∞ SWE(n, P) = P.

The experiments with the algorithm without building A can be seen in the
Table 3. In these experiments there are execution times reductions when we use
more than one processor, except in n = 500, that is a case efficiently solved by
the sequential algorithm. The efficiency of these experiments are in Figure 1. The
efficiency curve at n = {2000, 2500, 3000} represents a typical case where the use
of the processor cache influences the execution times; however, this phenomenon
tends to disappear when the problem size increases.

The reconstruction of a matrix with prescribed singular values is usually a
part of a larger problem to be solved in parallel. So, the gathering of the matrix
in a single processor or the redistribution of the matrix among processors may
be necessary or not, depending on the larger problem. Therefore, the analysis

Table 2. WE Execution Times in Kefren, building A in Proc0

P Seconds

1 0.41 5.08 12.05 22.28 35.76 66.08 191 270
2 2.61 10.27 21.92 39.31 73.79 125 294 456
4 2.59 10.29 22.02 39.66 72.60 113 258 400
6 2.66 10.60 23.26 42.15 72.71 111 244 388
8 2.81 11.63 26.67 45.55 75.08 114 240 328
10 3.00 11.82 26.90 47.61 77.52 115 237 379
12 3.22 11.90 26.74 47.28 77.27 115 232 375
14 3.51 12.13 27.69 48.67 79.58 118 230 370
16 3.69 12.60 28.51 50.44 81.27 120 230 368

n 500 1000 1500 2000 2500 3000 4000 5000

Table 3. WE Execution Times in Kefren, without building A in Proc0

P Seconds

1 0.41 5.08 12.05 22.28 35.76 66.08 191 270
2 2.20 4.68 7.85 12.51 21.30 42.13 104 136
4 1.19 2.56 4.39 7.10 12.23 23.12 53 69
6 0.69 1.89 3.27 5.29 8.96 16.08 35 47
8 0.55 1.55 2.76 4.37 7.18 12.90 27 35
10 0.48 1.39 2.43 3.87 6.21 10.52 21 28
12 0.49 1.26 2.20 3.34 5.43 8.94 18 24
14 0.45 1.18 2.00 3.08 4.92 8.02 16 20
16 0.44 1.10 1.89 2.89 4.49 7.21 14 18

n 500 1000 1500 2000 2500 3000 4000 5000

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Parallel Algorithm for Constructing a Unit Triangular Matrix 357

1000 2000 3000 4000 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

E
ff

ic
ie

nc
y

of
 W

E
, D

is
tr

ib
ut

ed
 M

em
or

y

P = 2
P = 4
P = 6
P = 8

1000 2000 3000 4000 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

E
ff

ic
ie

nc
y

of
 W

E
, D

is
tr

ib
ut

ed
 M

em
or

y

P = 10
P = 12
P = 14
P = 16

Fig. 1. Experimental WE Efficiency in Kefren, without building A in Proc0

above shows that, leaving aside the final communications needed to recover the
matrix in a single processor, the resolution of the problem has been reasonably
parallelized. The remaining pitfall will be adressed in the next section.

4 Parallel Algorithm for Shared Memory Model

The analysis of the costs of the distributed memory code shows that the
communications needed to collect the results and put it in a single processor
damage seriously the performance of the code. In a Shared Memory Machine,
this last step would be not needed, so that it is a natural way to improve the over-
all speed of the code. This implementation has been carried out using OpenMP
[2] compiler directives, such as omp parallel do (to parallelize a loop), omp par-
allel (to parallelize a section of code), omp barrier (to synchronize execution
threads) and omp do (to define shared work in a cycle).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

358 G. Flores-Becerra, V.M. Garcia, and A.M. Vidal

Using H process threads and assuming that each one is executed in one
processor (P = H), each thread shall compute a subset of components of z,
U and A; it was seen in the last section that there are no data dependency
problems.

The data distribution of z, U and A might be performed by the program-
mer as in the distributed memory code (through indexes low, up, Rows and
CountRows). However, in this case it is more efficient to let the openMP com-
piler do the job; the directives omp parallel do and omp do split the work among
processors automatically. The following diagram shows schematically how would
proceed the computation:

Thread Th0 Th1 Th2 Th3

Build d1:n − − − − − − − − − − − − − − −
Compute z3:7 z8:11 z12:15 z16:19,2

Compute U (3)...U (7) U (8)...U (11) U (12)...U (15) U (16)...U (19)

⇐ − ⇒
Synchronisation Barrier

⇐ − ⇒
A2,1, A3,1:2, A4,1:3 A6,1:5, A7,1:8 A10,1:9, A11,1:10 A14,1:13, A15,1:14

Compute A5,1:4, A18,1:17 A8,1:7, A9,1:8 A12,1:11, A13,1:12 A16,1:15, A17,1:16, A19,1:18

Comparing this diagram with the Distributed Memory diagram, it is clear
that the communication stages disappear, so that the efficiency is expected
to increase. This process is written with detail in the ParallelSh WE algo-
rithm, where we have used omp parallel in order to create a team of threads
(Th1, ..., ThH−1), to run in parallel a code segment, and in ParallelSh A and
ParallelSh zU algorithms, where the directive omp do was used to divide the
iterations (of the ”for” loop) among the the threads created with omp parallel.

Algorithm ParallelSh WE
1: build d /* executed by the main thread */
2: !$omp parallel private(Th) /* slave threads created by

3: call ParallelSh zU the main thread */
4: !$omp barrier
5: call ParallelSh A

6: !$omp end parallel /* slave threads finished by
the main thread */

Algorithm ParallelSh A
1: !$omp do /* The iterations are divided among the threads */

2: For i = 2, 3, ..., n
3: compute Ai,1:i−1, in accordance with (12-14)

4: EndFor
5: !$omp enddo

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Parallel Algorithm for Constructing a Unit Triangular Matrix 359

Algorithm ParallelSh zU
1: !$omp do /* The iterations are divided among the threads */

2: For i = 3, 4, ..., n
3: compute zi−1, pi, in accordance with (7)
4: build L(i), in accordance with (11)
5: compute SVD(L(i)) to obtain U (i), using LAPACK dgesvd

6: EndFor
7: !$omp enddo
8: If Th = ThH−1 compute z1, in accordance with (7)

4.1 Experimental Tests

The shared memory code has been tested in a multiprocessor (Aldebaran3) SGI
Altix 3700 with 48 processors Intel 1.5 GHz Itanium 2, each one with 16 Gbytes
of RAM; these are connected with a SGI NumaLink network, with hypercube
topology. Although from the programmer’s point of view it is a shared memory
multiprocessor, actually it is a distributed memory cluster as well, though with
a very fast interconnection network. The execution times in this machine are
summarized in the Table 4.

The efficiency corresponding to these experiments (Figure 2) is good even with
relatively small problem sizes. With n = 1000 and two threads the efficiency
is 81%; from n = 2000 the efficiency is very good with up to 4 threads and
acceptable for 6. For the largest case tested in this work (n = 5000) the efficiency
with 6 threads is also good.

The Scaled Speedup is computed increasing in the same proportion the size
of the problem and the number of threads; as WE is O(n2) we have taken its
Speedup with n ={1000, 1400, 2000, 2800, 3400, 4000} respectively with H ={1,
2, 4, 8, 12, 16} in Figure 3. This figure shows an acceptable scalability.

Table 4. WE execution times in Aldebaran (Shared memory)

H Seconds

1 1.3 4.9 10.1 22 26 37 68 95
2 1.0 3.1 6.1 12 14 20 35 48
3 0.64 2.1 4.3 9.0 10 14 23 31
4 0.55 1.6 3.4 7.4 7.1 10 18 23
6 0.45 1.1 2.7 5.0 6.2 9 16 18
8 0.44 1.1 2.6 4.3 5.5 8 13 17
10 0.33 1.2 2.3 3.7 4.8 7 10.3 16
12 0.35 1.0 2.6 3.7 4.6 6.1 10.2 13
14 0.32 0.9 2.2 3.3 4.2 6.0 9.8 11
16 0.25 0.8 2.1 3.2 4.1 5.4 9.6 10

n 500 1000 1500 2000 2500 3000 4000 5000

3 http://www.asic.upv.es

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

360 G. Flores-Becerra, V.M. Garcia, and A.M. Vidal

2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Threads (H)

E
ff

ic
ie

nc
y

of
 W

E
, S

ha
re

d
M

em
or

y

n = 500
n = 1000
n = 1500
n = 2000

2 4 6 8 10 12 14 16

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Threads (H)

E
ff

ic
ie

nc
y

of
 W

E
, S

ha
re

d
M

em
or

y

n = 2500
n = 3000
n = 4000
n = 5000

Fig. 2. Experimental WE Efficiency in Aldebaran (Shared memory)

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

Number of Threads (H)

Sc
al

ed
 S

pe
ed

up
 o

f W
E,

 S
ha

re
d

M
em

or
y

n=1000

n=1400

n=2000

n=2800

n=3400

n=4000

Fig. 3. WE Scaled Speedup in Aldebaran. Shared memory

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Efficient Parallel Algorithm for Constructing a Unit Triangular Matrix 361

5 Conclusions

The parallel code written for distributed memory reaches a good level of paral-
lelism, as far as the computation phase is concerned. However, once the matrix
is computed, it could be necessary to bring it back to a single processor or
redistribute it among processors, by depending of the design of the parallel algo-
rithm that uses this matrix; these communications spoil all the gains obtained
with the parallel code. This trouble can be overcome if the same algorithm is
adapted to a shared memory machine, where these final communications would
not be needed. Furthermore, some communications that would happen in the
distributed memory code (replicating U , z) would not be necessary either in the
shared memory code.

We can establish the following comparisons between both approaches:

Shared Memory Distributed Memory
* Easy Implementation * Complex Implementation
* No extra data structures * Require extra data structures
* Load Distribution through * Load Distribution by the programmer
compiler directives
* Efficiency larger than * Do not reach acceptable performance due
90% with up to 4 threads to the last communications stage

Therefore, the shared memory implementation decreases the execution times
of the sequential WE code, and gives good performances with up to 4 threads. It
reaches an efficiency > 90% (Figure 2), obtaining as well an acceptable scalability
(Figure 3). The performance is damaged when more than 4 threads are used; this
is due to the fact that the machine Aldebaran is a multiprocessor with logically
shared but physically distributed memory, so that at the end there is a large
(transparent to the programmer) traffic of messages.

It seems clear that the nature of this problem makes it more addequate to be
processed in a shared memory environment, rather than in a distributed memory
cluster.

Acknowledgement

This work has been supported by Spanish MEC and FEDER under Grant
TIC2003-08238-C02-02 and SEIT-DGEST-SUPERA-ANUIES (México).

References

1. Anderson E., Bai Z., Bishof C., Demmel J., Dongarra J.: LAPACK User Guide;
Second edition. SIAM (1995)

2. Chandra, R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R.: Parallel
Programming in OpenMP. Morgan Kaufmann Publishers (2001)

3. Chu, M.T.: Inverse Eigenvalue Problems. SIAM, Review, Vol. 40 (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

362 G. Flores-Becerra, V.M. Garcia, and A.M. Vidal

4. Dongarra J., Van de Geijn R.: Two dimensional basic linear algebra comunications
subprograms. Tecnical report st−cs−91−138, Department of Computer Science,
University of Tennessee (1991)

5. Flores-Becerra G., Garćıa V. M., Vidal A. M.: Numerical Experiments on the So-
lution of the Inverse Additive Singular Value Problem. Lecture Notes in Computer
Science, Vol. 3514, (2005) 17-24

6. Groetsch, C.W.: Inverse Problems. Activities for Undergraduates. The mathemat-
ical association of America (1999)

7. Groupp W., Lusk E., Skjellum A.: Using MPI: Portable Parallel Programming with
Message Passing Interface. MIT Press (1994)

8. Hammarling S., Dongarra J., Du Croz J., Hanson R.J.: An extended set of fortran
basic linear algebra subroutines. ACM Trans. Mathemathical Software (1988)

9. Horn A.: On the eigenvalues of a matrix with prescribed singular values. Proc.
Amer. Math. Soc., Vol. 5, (1954) 4-7

10. Kosowski P., Smoktunowicz A.: On Constructing Unit Triangular Matrices with
Prescribed Singular Values. Computing, Vol. 64, No. 3 (2000) 279-285

11. Neittaanmki, P., Rudnicki, M., Savini, A.: Inverse Problems and Optimal Design
in Electricity and Magnetism. Oxford: Clarendon Press (1996)

12. Sun, N.: Inverse Problems in Groundwater Modeling. Kluwer Academic (1994)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Rewriting System for the Vectorization of

Signal Transforms

Franz Franchetti, Yevgen Voronenko, and Markus Püschel�

Electrical and Computer Engineering,
Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213
{franzf, yvoronen, pueschel}@ece.cmu.edu

http://www.spiral.net

Abstract. We present a rewriting system that automatically vector-
izes signal transform algorithms at a high level of abstraction. The
input to the system is a transform algorithm given as a formula in the
well-known Kronecker product formalism. The output is a “vectorized”
formula, which means it consists exclusively of constructs that can be
directly mapped into short vector code. This approach obviates compiler
vectorization, which is known to be limited in this domain. We included
the formula vectorization into the Spiral program generator for signal
transforms, which enables us to generate vectorized code and further
optimize for the memory hierarchy through search over alternative al-
gorithms. Benchmarks for the discrete Fourier transform (DFT) show
that our generated floating-point code is competitive with and that our
fixed-point code clearly outperforms the best available libraries.

1 Introduction

Most recent architectures feature short vector SIMD instructions that provide
data types and instructions for the parallel execution of scalar operations in
short vectors of length ν (called ν-way). For example, Intel’s SSE family pro-
vides ν = 2 for double precision and ν = 4 for single precision floating point
arithmetic as well as ν = 8 for 16-bit and ν = 16 for 8-bit integer arithmetic.
The potential speed-up offered by these instructions makes them attractive in
domains were high performance is crucial, but they come at a price: Compilers
often cannot make optimal use of vector instructions, since the necessary pro-
gram transformations are not well understood. This moves the burden to the
programmer, who is required to leave the standard C programming model, for
example by using so-called intrinsics interfaces to the instruction set.

In [1] we have argued that for the specific domain of signal transforms such
as the discrete Fourier transform (DFT) there is an attractive solution to this

� This work was supported by NSF through awards 0234293, 0325687, and by DARPA
through the Department of Interior grant NBCH1050009. Franz Franchetti was sup-
ported by the Austrian Science Fund FWF’s Erwin Schroedinger Fellowship J2322.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 363–377, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

364 F. Franchetti, Y. Voronenko, and M. Püschel

problem, namely to perform the vectorization at a higher level of abstraction by
manipulating Kronecker product expressions through mathematical identities.
The Kronecker product formalism has been known to be useful for the repre-
sentation and derivation for DFT algorithms [2] but also in the derivation of
parallel algorithms [3].

In this paper we describe an implementation of this formal vectorization in
the form of a rewriting system [4], the common tool used in symbolic compu-
tation. We then include the rewriting system into the Spiral program generator
[5], which uses the Kronecker product formalism as internal algorithm represen-
tation. This enables additional optimization through Spiral search mechanism.
Namely, for the desired transform, Spiral will generate alternative algorithms,
each of which is vectorized using the rewriting system, and return the fastest for
the given platform. In effect this heuristic procedure optimizes for the platform’s
memory hierarchy.

We show that our approach works for the DFT (speed-up in parenthesis) on
a Pentium 4 for 2-way (1.5 times) and 4-way floating point (3 times), and 8-way
(5 times) and 16-way (6 times) integer code. Benchmarks of our generated code
against the Intel MKL and IPP libraries and FFTW [6] show that our generated
floating-point code is competitive and our generated fixed-point code is at least
a factor of 2 faster than the vendor library.

We have used the rewriting approach to the related but different problems of
parallelization for shared and distributed memory computers [7,8].

Related work. The Intel C++ compiler includes a vectorizer based on loop
vectorization and translation of complex operations into two-way vector code.
FFTW 3.0.1 combines loop vectorization and an approach based on the linear-
ity of the DFT to obtain 4-way single-precision SSE code [6]. This combines
a hardcoded vectorization approach with FFTW’s capability to automatically
tune for the memory hierarchy. An approach to designing embedded processors
with vector SIMD instructions and for designing software for these processors is
presented in [9].

Organization of the paper. In Section 2 we provide background on SIMD
vector instructions, signal transforms and their fast algorithms, and the Spiral
program generator. The rewriting system is explained in Section 3 including ex-
amples of vectorization rules and vectorized formulas. Section 4 shows a number
of runtime benchmarks for the DFT. We offer conclusions in Section 5.

2 Background

SIMD vector instructions. Recently, major vendors of general purpose mi-
croprocessors have included short vector SIMD (single instruction, multiple data)
extensions into their instruction set architecture. Examples of SIMD exten-
sions include Intel’s MMX and SSE family, AMD’s 3DNow! family, and Mo-
torola’s AltiVec extension. SIMD extensions have the potential to speed up

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Rewriting System for the Vectorization of Signal Transforms 365

implementations in areas where the relevant algorithms exhibit fine grain paral-
lelism but are a major challenge to software developers.

In this paper we denote the vector length with ν. For example, SSE2 provides
2-way (ν = 2) double and 4-way (ν = 4) single precision floating point as well
as 8-way (ν = 8) 16-bit and 16-way (ν = 16) 8-bit integer vector instructions.

Signal transforms. A (linear) signal transform is a matrix-vector multiplica-
tion x �→ y = Mx, where x is a real or complex input vector, M the transform
matrix, and y the result. Examples of transforms include the discrete Fourier
transform (DFT), multi-dimensional DFTs (MDDFT), the Walsh-Hadamard
transform (WHT), and discrete Wavelet transforms (DWT) like the Haar
wavelet. For example, for an input vector x ∈ C

n, the DFT is defined by the
matrix

DFTn = [ωk�
n]0≤k,�<n, ωn = exp(−2πi/n).

Algorithms for transforms can be written using the Kronecker product for-
malism [2,3,5] in the form of structured sparse matrix factorizations. In the
following, we use In to denote an n × n identity matrix.

A ⊗ B = [ak�B] for A = [ak�]

is the tensor product of matrices. Further we introduce the stride permutation
matrix defined, for m|n, by

Ln
m : jk + i �→ im + j, 0 ≤ i < k, 0 ≤ j < m.

Equations (1)–(6) show examples of recursive, divide-and-conquer, transform
algorithms, written in the form of rules:

DFTmn →
(
DFTm ⊗ In

)
Dm,n

(
Im ⊗ DFTn

)
Lnm

m (1)
DFTn → Xn RDFTn (2)

WHTmn → WHTm ⊗ WHTn (3)
MDDFTn1×···×nk

→ MDDFTn1×···×nr ⊗ MDDFTnr+1×···×nk
(4)

MDDFTn → DFTn (5)
Haarn → Ln

2
(
In/2 ⊗ DFT2

)
(6)

In (1), Dm,n is a complex diagonal matrix [2]. In (2), RDFT is the real version
(i.e., for real input) of the DFT and Xn is an X-shaped matrix containing only
the entries 0, ±1, ±i [2]. The WHT is a real matrix and exists only for two-
power size. WHT2 = DFT2 together with (3) defines the transform. In (4), the
transform takes as input a n1 × · · · × nk array, stored linearized in a vector.

Spiral. Recursive application of rules like (1)–(6) yields many different algo-
rithms for a given transform. Spiral [5] uses this fact to search for the fastest one
on a given platform. A user-specified transform (like DFT256) is expanded by
Spiral using rules into a formula, which is then translated into a C program by a
special formula compiler. The runtime of the program is measured and fed into

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

366 F. Franchetti, Y. Voronenko, and M. Püschel

a search module, which triggers, in a feedback loop, the generation of a modified
formula based on a search strategy. Upon termination, Spiral outputs the fastest
program found.

In this paper, we explain a crucial module in Spiral: A rewriting system that
manipulates formulas to enable their direct compilation into SIMD vector code,
which obviates the need for compiler vectorization.

Complex arithmetic. To describe complex transforms in terms of real arith-
metic, we represent complex data vectors as real vectors using the interleaved
complex format (alternating real and imaginary parts of the complex entries).
Since the complex multiplication (u + iv)(y + iz) is equivalent to the real mul-
tiplication [u −v

v u] [y
z], we can write the complex matrix-vector multiplication

Mx ∈ C
n as Mx′ ∈ R

2n, where we define M by replacing every entry u + iv as
[u −v

v u], and x′ is x in the interleaved complex format.

3 Vectorization Through Rewriting

Our goal is to take formulas obtained by the recursive application of rules like
(1)–(6) and automatically manipulate them into a form that enables a direct
mapping into SIMD vector code. Further, we also want to explore different vec-
torizations for the same formula. The solution is a suitably designed rewrit-
ing system that implements our previous ideas for formula-based vectorization
in [1,10].

We have used a very similar approach, but with different rewriting rules, for
the related but different problems of parallelization for shared and distributed
memory computers [7,8].

Formula vectorization: The basic idea. The central formula construct that
can be implemented on all ν-way short vector extensions is

A ⊗ Iν , (7)

where A is an arbitrary real matrix. Vector code is obtained by generating scalar
code for A (i.e., for x �→ Ax) and replacing all scalar operations by their respec-
tive ν-way vector operations. For example, c=a+b is replaced by c=vadd(a,b).

Of course, most formulas do not match (7). In these cases we manipulate the
formula using rewriting rules to consist of components that either match (7) or
are among a small set of base cases. It turns out that for a large class of formulas
the only base cases needed are

L2ν
2 , L2ν

ν , Lν2

ν , (In/ν ⊗ L2ν
2)Dn(In/ν ⊗ L2ν

ν), (8)

where Dn is any complex diagonal matrix. For ν = 2 we also need the additional
base case

[1, i] =
[
1 0 0 −1
0 1 1 0

]
. (9)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Rewriting System for the Vectorization of Signal Transforms 367

We assume that vectorized implementations of (8) are available. Note that
Im ⊗ L2ν

2 converts a real vector x′ ∈ R
2mν (which originates from a complex

vector x ∈ C
mν) from interleaved complex format (alternating real and imagi-

nary part) into a block-interleaved complex format with block size ν (alternating
ν real and ν imaginary parts). Analogously, Im ⊗ L2ν

ν converts back from block-
interleaved into the interleaved complex format.

Definition 1. We call a formula ν-way vectorized if it is either of the form (7)
or one of the forms in (8) and (9), or of the form

Im ⊗A or AB, (10)

where A and B are ν-way vectorized.

Formula manipulation. We vectorize formulas through formula manipulation
using well-known mathematical identities such as the following; we assume that
A is n × n and B is m × m:

Imn = Im ⊗ In, (11)
Im ⊗A = Lmn

m (A ⊗ Im) Lmn
n , (12)

Lkmn
n = (Lkn

n ⊗ Im)(Ik ⊗ Lmn
n), (13)

Lkmn
km = (Ik ⊗ Lmn

m)(Lkn
k ⊗ Im), (14)

A ⊗ (BC) = (A ⊗ B)(A ⊗ C), (15)
A ⊗ B = (A ⊗ Im)(In ⊗B) = (In ⊗B)(A ⊗ Im). (16)

As a small example, we assume A is a real n × n matrix, and vectorize

Im ⊗A (17)

for a ν-way vector instruction set.
We first apply (11) to obtain

Im/ν ⊗ Iν ⊗A

and then apply (12) to Iν ⊗A to get

Im/ν ⊗
(
Lnν

ν (A ⊗ Iν) Lnν
n

)
. (18)

Note that in this formula A⊗Iν is already vectorized, but the stride permutations
are not. To vectorize the stride permutations, we apply (13) and (14) to get

Im/ν ⊗
(
(Ln

ν ⊗ Iν)(In/ν ⊗ Lν2

ν)(A ⊗ Iν)(In/ν ⊗ Lν2

ν)(Ln
n/ν ⊗ Iν)

)
. (19)

Inspection shows that this formula is vectorized in the sense of Definition 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

368 F. Franchetti, Y. Voronenko, and M. Püschel

3.1 Rewriting System

Our goal is to automatically apply formula identities like (12)–(16) to transform
given formulas into vectorized formulas. Note that the order and actual param-
eters chosen for each of the applied identities is a nontrivial choice. Only the
correct choice will lead to vectorized formulas. Thus, automatic formula manip-
ulation requires an appropriately designed rewriting system [4]. Specifically, it
is a difficult problem to identify the right objects and rules in the system to
guarantee that it is confluent and converges to fully vectorized formulas, when
possible.

Vector tags. We introduce a set of tags to propagate vectorization information
through the formulas and to perform algebraic simplification of permutations.
Note that all objects remain matrices.

We tag a formula construct A to be translated into vector code for vector
length ν by

A︸︷︷︸
vec(ν)

= A.

Further, we write
A⊗̄ Iν = A ⊗ Iν

to stipulate that the tensor product is to be mapped into vector code as explained
in Section 3. We use a tag “base” to mark the base cases defined in (8):

L2ν
2︸︷︷︸

base

, L2ν
ν︸︷︷︸

base

, Lν2

ν︸︷︷︸
base

, Dn
ν

︸︷︷︸
base

, [1, i]︸︷︷︸
base

.

Constructs marked with ⊗̄ and “base” are final, i.e., they will not be changed
by rewriting rules.

In addition we need variants of the operator (.) to handle the vectorization of
complex formulas (A is assumed to be n × n):

←→
A

ν
= A, (20)

−→
A

ν
= (In/ν ⊗ L2ν

2)A, (21)
←−
A

ν
= A(In/ν ⊗ L2ν

ν), (22)

A
ν

= (In/ν ⊗ L2ν
2

)
A(In/ν ⊗ L2ν

ν). (23)

(20)–(23) are the four variants of A that have either interleaved or block-
interleaved input and output format. The format conversions introduce the build-
ing blocks L2ν

2 and L2ν
ν defined in (8). A key idea in our rewriting system is to

minimize these format conversions by applying the identity

L2ν
2 L2ν

ν = I2ν .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Rewriting System for the Vectorization of Signal Transforms 369

To facilitate this simplification we introduce (20)–(23) as objects into our
rewriting system. The rules (31)–(45) introduced below then operate on these
objects and encode the knowledge where to introduce L2ν

2 and L2ν
ν to minimize

format conversion overhead.

Rules. The goal is to vectorize a given formula. In our rewriting system, this
is done by tagging the formula with vec(ν) and applying rules that vectorize
the formula in the sense of Definition 1. Rules are applied by matching the left
side of a rule against a given expression, extracting the parameters defined in
the left side, and replacing it with one of the choices in the right side parame-
terized by the extracted parameters. Most of our rewriting rules are shown in
Tables 1–3.

Table 1. Stride permutation rules

Lnν
n︸︷︷︸

vec(ν)

→
(
In/ν ⊗ Lν2

ν︸︷︷︸
base

)(
Ln

n/ν ⊗̄ Iν
)

(24)

Lnν
ν︸︷︷︸

vec(ν)

→
(
Ln

ν ⊗̄ Iν

)(
In/ν ⊗ Lν2

ν︸︷︷︸
base

)
(25)

Lmn
m︸︷︷︸

vec(ν)

→
(
Lmn/ν

m ⊗̄ Iν

)(
Imn/ν2 ⊗ Lν2

ν︸︷︷︸
base

)(
(In/ν ⊗Lm

m/ν)⊗̄ Iν

)
(26)

Table 2. Tensor product rules. A is an n × n matrix.

(
A ⊗ Im︸ ︷︷ ︸
vec(ν)

)
→

(
A ⊗ Im/ν

)
⊗̄ Iν (27)

(
Im ⊗A︸ ︷︷ ︸
vec(ν)

)
→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Im/ν ⊗
(
Iν ⊗A

)
︸ ︷︷ ︸

vec(ν)

Lmn
m︸︷︷︸

vec(ν)

(
A ⊗ Im︸ ︷︷ ︸
vec(ν)

)
Lmn

n︸︷︷︸
vec(ν)

(28)

(
Im ⊗A

)
Lmn

m︸ ︷︷ ︸
vec(ν)

→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lmn
m︸︷︷︸

vec(ν)

(
A ⊗ Im︸ ︷︷ ︸
vec(ν)

)

(
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

(
A⊗̄ Iν

))(
L

mn/ν

m/ν ⊗̄ Iν
) (29)

(
Ik ⊗

(
Im ⊗An×n

)
Lmn

m

)
Lkmn

k

︸ ︷︷ ︸
vec(ν)

→
(
Lkm

k ⊗ In︸ ︷︷ ︸
vec(ν)

)(
Im ⊗

(
Ik ⊗An×n

)
Lkn

k︸ ︷︷ ︸
vec(ν)

)(
Lmn

m ⊗ Ik︸ ︷︷ ︸
vec(ν)

)
(30)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

370 F. Franchetti, Y. Voronenko, and M. Püschel

Table 3. Bar operator rules (left: recursive; right: base cases). A is an n × n matrix.

(
A

)
︸︷︷︸
vec(ν)

→
←−−−→(

A︸︷︷︸
vec(ν)

)ν

(31)

←→
AB

ν
→ ←−

A
ν−→
B

ν
(32)

←−
AB

ν
→ ←−

A
ν
B

ν
(33)

−→
AB

ν
→ A

ν−→
B

ν
(34)

AB
ν → A

ν
B

ν
(35)

←−−→
Im ⊗A

ν
→ Im ⊗←→

A
ν
(36)

←−−−−
Im ⊗A

ν
→ Im ⊗←−

A
ν

(37)

Im ⊗A
ν → Im ⊗A

ν
(38)

−−−−→
Im ⊗A

ν
→ Im ⊗−→

A
ν

(39)

←−−−
A⊗̄ Iν

ν
→ (In/ν ⊗ L2ν

ν︸︷︷︸
base

)(A⊗̄ Iν) (40)

A⊗̄ Iν
ν → A⊗̄ Iν (41)

−−−→
A⊗̄ Iν

ν
→ (A⊗̄ Iν)(In/ν ⊗ L2ν

2︸︷︷︸
base

) (42)

Lmn
m → Lmn

m ⊗ I2 (43)

(Lν2

ν︸︷︷︸
vec(ν)

)
ν

→ (L2ν
ν ⊗̄ Iν)(I2 ⊗ Lν2

ν︸︷︷︸
base

)(L2ν
2 ⊗̄ Iν) (44)

(
Dn︸︷︷︸

vec(ν)

)ν
→ Dn

ν

︸︷︷︸
base

(45)

The important difference between identities like (11)–(16) and rules like
(24)–(45) is that the rules encode the decisions how to apply the identities,
i.e., fix the choice of parameters. For instance, both identities (13) and (14) can
be applied to Lnν

n for composite n and a two-power ν; however, only (14) with
the specific choice k = m/ν, m = ν, and n = ν leads to a vectorized result:

Lnν
n = (In/ν ⊗ Lν2

ν)(Ln
n/ν ⊗ Iν).

This knowledge is encoded in rule (24) which chooses the right parameters.
Similarly, rule (27) and the first alternative of rule (28) are based on iden-

tity (11) but also encode the knowledge how to apply (11) depending on the
vector length ν.

Simple example. We return to our previous example (17) and explain how it
is handled by our rewriting system. We start with the tagged formula

Im ⊗A︸ ︷︷ ︸
vec(ν)

,

which means “Im ⊗A is to be vectorized.” The system can only apply one of the
alternatives of rule (28). Suppose it chooses the first alternative, which yields

Im/ν ⊗(Iν ⊗A︸ ︷︷ ︸
vec(ν)

)

and then applies the second alternative of (28) to (Iν ⊗A), which leads to

Im/ν ⊗
(

Lnν
ν︸︷︷︸

vec(ν)

(A⊗̄ Iν) Lnν
n︸︷︷︸

vec(ν)

)
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Rewriting System for the Vectorization of Signal Transforms 371

Next, only rules (24) and (25) match, which yields

Im/ν ⊗
(
(Ln

ν ⊗̄ Iν)(In/ν ⊗ Lν2

ν︸︷︷︸
base

)(A⊗̄ Iν)(In/ν ⊗ Lν2

ν︸︷︷︸
base

)(Ln
n/ν ⊗̄ Iν)

)
.

This is the properly tagged version of the vectorized formula (19).

Example: DFT. We now show how our rewriting system vectorizes DFTmn

with ν2 | mn. The vectorization process has to overcome three crucial problems
for an arbitrary two-power ν: 1) handle the interleaved complex format, 2) vec-
torize the stride permutation, and 3) vectorize the complex diagonal matrix. Our
example shows how these problems are solved and how to obtain the short-vector
FFT algorithm [10] as a result.

The DFT is a complex transform, but vector instructions operate on real
vectors. Thus, we have to start with DFTmn, tagged for vectorization. First the
system commutes the vector tag using (31) and the

←→
(.)

ν
operator and breaks

the product using (32)–(39):

(DFTmn)︸ ︷︷ ︸
vec(ν)

→
(
(DFTm ⊗ In)Dm,n(Im ⊗ DFTn) Lmn

m

)

︸ ︷︷ ︸
vec(ν)

→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
(DFTm ⊗ In)Dm,n(Im ⊗ DFTn) Lmn

m︸ ︷︷ ︸
vec(ν)

)ν

→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
(DFTm ⊗ In︸ ︷︷ ︸

vec(ν)

)Dm,n︸ ︷︷ ︸
vec(ν)

(Im ⊗ DFTn) Lmn
m︸ ︷︷ ︸

vec(ν)

)ν

→
←−−−−−−−−−
(DFTm ⊗ In︸ ︷︷ ︸

vec(ν)

)
ν
(Dm,n︸ ︷︷ ︸
vec(ν)

)
ν−−−−−−−−−−−−−→
(Im ⊗ DFTn) Lmn

m︸ ︷︷ ︸
vec(ν)

ν

We now continue with the three factors separately. The system applies (27) and
(40) to the first factor

←−−−−−−−−−
(DFTm ⊗ In︸ ︷︷ ︸

vec(ν)

)
ν

→
←−−−−−−−−−−−−−−
(DFTm ⊗ In/ν)⊗̄ Iν

ν

→ (Imn/ν ⊗ L2ν
ν︸︷︷︸

base

)(DFTm ⊗ In/ν⊗̄ Iν)

which is vectorized. The second factor is already vectorized. For the third factor,
suppose the system chooses the second alternative of (29) and then breaks and

propagates
−→
(.)

ν

using (32)–(39):

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

372 F. Franchetti, Y. Voronenko, and M. Püschel

−−−−−−−−−−−−−→
(Im ⊗ DFTn) Lmn

m︸ ︷︷ ︸
vec(ν)

ν
→

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

(DFTn ⊗̄ Iν)
)
(Lmn

m ⊗̄ Iν)
ν

→
(
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

(DFTn ⊗̄ Iν)
ν)−−−−−−−→

(Lmn
m ⊗̄ Iν)

ν

→
(
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

ν
(DFTn ⊗̄ Iν)

ν)−−−−−−−→
(Lmn

m ⊗̄ Iν)
ν

We now continue with the factors of the tensor product. One difficult part of the
vectorization is the interplay of (.) and the stride permutation Lnν

ν . First, rule (25)
factorsthestridepermutation,thenrules(32)–(39)handle(.)

ν
.Finally,rules(40)–(44)

encode the rather involved manipulation required to completely vectorize:

Lnν
ν︸︷︷︸

vec(ν)

ν → (Ln
ν ⊗ Iν︸ ︷︷ ︸
vec(ν)

)(In/ν ⊗ Lν2

ν︸︷︷︸
vec(ν)

)
ν

→ (Ln
ν ⊗̄ Iν)

ν
(

In/ν ⊗(Lν2

ν︸︷︷︸
vec(ν)

)
ν)

→ (Ln
ν ⊗̄ Iν)

(
In/ν ⊗(L2ν

ν ⊗̄ Iν)(I2 ⊗ Lν2

ν︸︷︷︸
base

)(L2ν
2 ⊗̄ Iν)

)

The vectorization of the remaining constructs is straightforward using rules
(40)–(44):

(DFTn ⊗̄ Iν)
ν →

(
DFTn⊗̄ Iν

)

and
−−−−−−−→
(Lmn

m ⊗̄ Iν)
ν

→ (Lmn
m ⊗̄ Iν)

(
Imn/ν ⊗ L2ν

2︸︷︷︸
base

)

→
(
(Lmn

m ⊗ I2)⊗̄ Iν
)(

Imn/ν ⊗ L2ν
2︸︷︷︸

base

)
.

Collecting the vectorized formulas and applying (45) yields a completely vector-
ized FFT:

(Imn/ν ⊗ L2ν
ν︸︷︷︸

base

)(DFTm ⊗ In/ν⊗̄ Iν)Dm,n
ν

︸ ︷︷ ︸
base(

Im/ν ⊗(Ln
ν ⊗̄ Iν)(In/ν ⊗(L2ν

ν ⊗̄ Iν)(I2 ⊗ Lν2

ν︸︷︷︸
base

)(L2ν
2 ⊗̄ Iν))(DFTn⊗̄ Iν)

)

(
(Lmn

m ⊗ I2)⊗̄ Iν
)
(Imn/ν ⊗ L2ν

2︸︷︷︸
base

).

Inspection shows that this formula is indeed vectorized in the sense of Definition 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Rewriting System for the Vectorization of Signal Transforms 373

Note that there are degrees of freedom in applying our rule set, which thus
yields different vectorizations. The search in the Spiral system will select the
best for the given platform.

4 Experimental Results

We incorporated our rewriting system into the Spiral code generator to automat-
ically generate vector code and search over alternative algorithms or formulas.
We show runtime benchmarks on a 3 GHz Intel Pentium 4 running Windows
XP and a 3.6 GHz Intel Pentium 4 running Linux kernel 2.6. We used the Intel
C++ compiler 9.0 with options “/QxKW /O3 /G7 /Qc99 /Qrestrict” for vec-
tor code and “/O3 /G7 /Qc99 /Qrestrict” for scalar x86 and x87 code. These
options turned out to produce the fastest code. DFTn performance is measured
in pseudo Mflop/s for floating-point code and in pseudo Mfpop/s for fixed-point
code, both computed as 5n log2 n/(runtime [ms]). The Haarn wavelet perfor-
mance is measured in Mfpop/s = 2N/(runtime [ms]). For all performance results
higher is better. We compare our generated code with the Intel MKL 8.0 (DFTI
functions) and IPP 5.0 library and with FFTW 3.1 [6] for both two-powers and
multiples of ν.

2-way double-precision. Figure 1 evaluates our approach for two-way vector-
ization. We compare two-power DFTs of sizes 27 ≤ n ≤ 214: 1) Spiral generated
scalar x87 code; 2) Spiral generated SSE2 code; 3) FFTW 3.1 with enabled SSE2
support; and 4) Intel IPP 5.0 using SSE2. Spiral and FFTW achieve similar per-
formance with FFTW being slightly faster, and IPP is between 5% and 15%
faster than both. For Spiral generated code, SSE2 vectorization provides around
50% speed-up over scalar code.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

128 256 512 1024 2048 4096 8192 16384

n

p
s
e
u

d
o

 M
fl

o
p

/s

Spiral 5.0 SSE2

FFTW 3.1 SSE2

IPP 5.0

Spiral 5.0 x87

Fig. 1. Performance of DFTn with n = 2k, implemented in double-precision on a
3.6 GHz Pentium 4

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

374 F. Franchetti, Y. Voronenko, and M. Püschel

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

16 32 64 128 256 512 1024 2048 4096

n

p
s

e
u

d
o

 M
fl

o
p

/s

SPIRAL 5.0 SSE

IPP 5.0 SSE

FFTW 3.1 SSE

Spiral 5.0 vect. compiler

Spiral 5.0 x87

Fig. 2. Performance of DFTn with n = 2k, implemented in single-precision on a 3 GHz
Pentium 4

4-way single-precision. Figure 2 compares DFT code for two-power sizes
24 ≤ n ≤ 212: 1) Spiral generated scalar x87 code; 2) Spiral generated scalar
x87 code vectorized by Intel’s compiler (option “/QxKW”); 3) Spiral generated
4-way SSE code; 4) FFTW 3.1 with enabled SSE support; and 5) Intel IPP 5.0
using SSE. Spiral generated SSE code is up to 3 times faster as Spiral generated
scalar x87 code. Using the Intel C++ compiler to vectorize code leads only to

0

2000

4000

6000

8000

10000

12000

14000

16000

64 128 256 512 1024 2048 4096 8192

n

p
s
e
u

d
o

 M
fp

o
p

/s

Spiral 5.0 SSE2

Intel IPP 5.0

Spiral 5.0 x86

Fig. 3. Performance of DFTn with n = 2k, implemented in 16-bit fixed-point on a
3.6 GHz Pentium 4

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Rewriting System for the Vectorization of Signal Transforms 375

0

2000

4000

6000

8000

10000

12000

14000

16000

64 128 192 256 320 512 640 768 960 1024 1152 1280 1536 2048

n

p
s
e
u

d
o

 M
fp

o
p

/s

Spiral 5.0 SSE2

Spiral 5.0 x86

Fig. 4. Performance of DFTn with n = 64×2k3�5m, implemented in 16-bit fixed-point
on a 3.6 GHz Pentium 4

around 50% speed-up. For 16 ≤ n ≤ 128, Spiral generated SSE code is clearly the
fastest. For n=256 both FFTW and IPP are slightly faster as Spiral generated
SSE code. For 512 ≤ n ≤ 2048, Spiral generated SSE code is within 10% of IPP.

8-way 16-bit fixed-point. Figure 3 compares two-power DFT fixed-point
code. It shows 1) Spiral generated SSE2 code (8-way, 16-bit), 2) scalar 16-bit

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

128 256 512 1024 2048 4096 8192 16384

n

p
s
e
u

d
o

 M
fp

o
p

/s

Spiral 5.0 SSE2

IPP 5.0

Spiral 5.0 x86

Fig. 5. Performance of the wavelet Haarn with n = 2k, implemented in 8-bit fixed-point
on a 3.6 GHz Pentium 4

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

376 F. Franchetti, Y. Voronenko, and M. Püschel

x86 code, and 3) Intel IPP 5.0 (16-bit). Spiral’s SSE2 vectorization consistently
provides speed-up of 5 times over scalar x86 code. Spiral generated SSE2 code
is 2 to 2.5 times faster as the IPP and 5 to 6 times faster than Spiral generated
scalar code. Figure 4 shows that for DFTs of size n = 64 × 2k3�5m SSE2 code
generated by Spiral maintains the speed-up of 5 times over scalar x86 code.
IPP does only provide two-power FFTs for 16-bit fixed-point. FFTW does not
provide fixed-point code.

16-way 8-bit fixed-point. Figure 5 compares implementations of the Haar
wavelet: 1) Spiral generated SSE2 code, 2) Spiral generated scalar 8-bit x86 code
(16-way, 8-bit), and 3) the Intel IPP 5.0 (8-bit). For Spiral, SSE2 vectorizationpro-
vides a speed-up of up to 6 times over scalar x86 code. Spiral generated SSE2 code
is 2 to 2.5 times faster than the IPP. FFTW does not implement Haar wavelets.

5 Conclusion

SIMD vector instructions have a huge potential to speed up performance critical
computational kernels with fine-grain parallelism. However, compiler support is
limited and typically programmers have to resort to low-level C extensions or
to assembly language programming to realize the potential of SIMD extensions.
To overcome these problems for the domain of signal transforms, we presented a
domain-specific vectorization framework for signal transform algorithms and in
particular FFTs. The basic idea is to vectorize at a high mathematical level of
abstraction, where more structural information is available as in the correspond-
ing C code. The suitable tool for implementing this technique is a rule based
rewriting system, which we included in Spiral to enable search in tandem with
vectorization. The viability of the approach in this domain is demonstrated by
both the high performance of the generated code and by the applicability of the
approach to the related and equally difficult problem of parallelization.

References

1. Franchetti, F., Püschel, M.: A SIMD vectorizing compiler for digital signal pro-
cessing algorithms. In: Proc. IEEE Int’l Parallel and Distributed Processing Sym-
posium (IPDPS). (2002) 20–26

2. Van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM
(1992)

3. Johnson, J.R., Johnson, R.W., Rodriguez, D., Tolimieri, R.: A methodology for
designing, modifying, and implementing Fourier transform algorithms on various
architectures. Circuits, Systems, and Signal Processing 9(4) (1990) 449–500

4. Dershowitz, N., Plaisted, D.A.: Rewriting. In Robinson, A., Voronkov, A., eds.:
Handbook of Automated Reasoning. Volume 1. Elsevier (2001) 535–610

5. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W.,
Xiong, J., Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R.W.,
Rizzolo, N.: SPIRAL: Code generation for DSP transforms. Proc. of the IEEE
93(2) (2005) 232–275 Special issue on Program Generation, Optimization, and
Adaptation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Rewriting System for the Vectorization of Signal Transforms 377

6. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-
ings of the IEEE 93(2) (2005) 216–231 Special issue on ”Program Generation,
Optimization, and Adaptation”.

7. Franchetti, F., Voronenko, Y., Püschel, M.: FFT program generation for shared
memory: SMP and multicore. In: Proc. Supercomputing. (2006)

8. Bonelli, A., Franchetti, F., Lorenz, J., Püschel, M., Ueberhuber, C.W.: Automatic
performance optimization of the discrete Fourier transform on distributed mem-
ory computers. In: Proc. International Symposium on Parallel and Distributed
Processing and Applications (ISPA). (2006)

9. Robelly, J., Cichon, G., Seidel, H., Fettweis, G.: A HW/SW design methodology
for embedded SIMD vector signal processors. International Journal of Embedded
Systems (2005)

10. Franchetti, F., Püschel, M.: Short vector code generation for the discrete Fourier
transform. In: Proc. IEEE Int’l Parallel and Distributed Processing Symposium
(IPDPS). (2003) 58–67

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

High Order Fourier-Spectral Solutions to

Self Adjoint Elliptic Equations

Moshe Israeli1 and Alexander Sherman2

1 Department of Computer Science, Technion, Technion City, Haifa 32000, Israel
israeli@cs.technion.ac.il

2 Department of Applied Mathematics, Technion, Technion City, Haifa 32000, Israel
asherman@tx.technion.ac.il

Abstract. We develop a High Order Fourier solver for nonseparable,
selfadjoint elliptic equations with variable (diffusion) coefficients. The
solution of an auxiliary constant coefficient equation, serves in a transfor-
mation of the dependent variable. There results a ”modified Helmholtz”
elliptic equation with almost constant coefficients. The small deviations
from constancy are treated as correction terms. We developed a highly
accurate, fast, Fourier-spectral algorithm to solve such constant coeffi-
cient equations. A small number of correction steps is required in or-
der to achieve very high accuracy. This is achieved by optimization of
the coefficients in the auxiliary equation. For given coefficients the ap-
proximation error becomes smaller as the domain decreases. A highly
parallelizable hierarchical procedure allows a decomposition into smaller
sub-domains where the solution is efficiently computed. This step is fol-
lowed by hierarchical matching to reconstruct the global solution. Nu-
merical experiments illustrate the high accuracy of the approach even at
coarse resolutions.

1 Introduction

Variable coefficient elliptic equations are ubiquitous in many scientific and en-
gineering applications the most important case being that of the self-adjoint
operator appearing for example in diffusion processes in non uniform media.
Many repeated solutions of such problems are required when solving variable
coefficient or non linear time dependent problems by implicit marching methods.

Application of high-order (pseudo) spectral methods, which are based on
global expansions into orthogonal polynomials (Chebyshev or Legendre polyno-
mials), to the solution of elliptic equations, results in full (dense) matrix prob-
lems. The spectral element method allows for some sparsity. On the other hand
the Fourier spectral method for the solution of the Poisson equation gives rise to
diagonal matrices and has an exponential rate of convergence but looses accuracy
for non-periodic boundary conditions due to the Gibbs phenomenon.

Our method to resolve the Gibbs phenomenon represents the RHS as a sum
of a smooth periodic function and another function which can be integrated
analytically. This approach is sometimes called “subtraction”.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 378–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations 379

The subtraction technique for the reduction of the Gibbs phenomenon in the
Fourier series solution of the Poisson equation goes back to Sköllermo [2] who
considered

Δu = f

in the rectangle [0, 1] × [0, 1] with non periodic boundary conditions. We note
that the subtraction algorithm in [2] was of limited applicability. We develop
in section 4 a high order generalization for the case of the modified Helmholtz
equation. The Poisson equation case is just a particular case.

The subtraction technique (in the physical space) has the following advan-
tages:

a) After subtraction, the Fast Fourier Transform can be applied to the remain-
ing part of RHS with a high convergence rate.

b) The algorithm preserves the diagonal representation of the Laplace operator.
c) The computation of the subtraction functions inexpensive.

In the framework of the present paper we solve the elliptic equation:

∇ · (a(x, y) ∇u(x, y)) − c(x, y)u(x, y) = f(x, y), (x, y) ∈ D, (1)

where D is a rectangular domain, with Dirichlet boundary conditions

u(x, y) = g(x, y), (x, y) ∈ ∂D. (2)

We assume a(x, y) > 0 for any (x, y) ∈ D.

1. We develop first a fast direct algorithm for the solution of Eq. (1) for any
function a(x, y), such that a(x, y)1/2 is equal to the solution w(x, y) of a
certain, appropriately chosen, constant coefficient equation (see below). The
algorithm is based on our improvement of the fast direct solver of [1] and a
transformation described in [3].

2. If a(x, y)1/2 is not equal to w(x, y), we substitute w(x, y)2 for a(x, y) and
transfer the difference to the right hand side. The solution is found in a short
sequence of correction steps.

3. An adaptive hierarchical domain decomposition approach allows improved
approximation for any function a(x, y) .

2 Outline of the Algorithm

Following [3] we make the following change of variable in Eq. (1):

w(x, y) = a(x, y)1/2u(x, y), (3)

then Eq. (1) takes the form

Δw(x, y) − p(x, y)w(x, y) = q(x, y), (4)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

380 M. Israeli and A. Sherman

where

p(x, y) = Δ(a(x, y)1/2) · a(x, y)−1/2 + c(x, y) · a(x, y)−1,

q(x, y) = f(x, y) · a(x, y)−1/2. (5)

If p(x, y) happens to be a constant we have achieved a reduction to a con-
stant coefficient case. As a(x, y) and c(x, y) are prescribed in the formulation
of the problem we have no control over p(x, y), nevertheless we will show that
a constant approximation to p(x, y) is achievable. We note in particular that
if c(x, y) vanishes and a(x, y)1/2 is a harmonic function, Eq. (14) becomes a
Poisson equation for w:

Δw(x, y) = q(x, y) (6)

Otherwise let

P = �(ã(x, y))1/2 · ã(x, y)−1/2 + c(x, y) · ã(x, y)−1/2 · a(x, y)−1/2 (7)

Which can be rearranged as,

�(ã(x, y))1/2 − P · ã(x, y)1/2 = −c(x, y) · a(x, y)1/2 (8)

For any constant P , the above PDE becomes a Constant Coefficients Modi-
fied Helmholtz Equation (CCMHE) for the unknown function ã(x, y))1/2 with
Dirichlet boundary conditions ã(x, y)1/2 = a(x, y)1/2 on ∂D. P serves as an
optimization parameter in order to get the best fit of ã(x, y)1/2 to a(x, y)1/2 .
We introduce

ε(x, y) = a(x, y) − ã(x, y)
ũ(x, y) = u(x, y) − u0(x, y)

where u0(x, y) is the solution of Eq. (1), where a(x, y) is replaced by ã(x, y).
Then Eq. (1) could be rewritten in the following form:

∇ · ((ã(x, y) + ε(x, y)) ∇(u0(x, y) + ũ(x, y))−
c(x, y)(u0(x, y) + ũ(x, y)) = f(x, y) (9)

One can verify that

∇ · (ã(x, y) ∇u0(x, y))+

c(x, y) (ã1/2(x, y) a−1/2(x, y)) u0(x, y) = f(x, y) (10)

can be reduced to a MH equation for u0(x, y). Thus we are left with

∇ · (ã ∇ũ) + c(ã1/2a−1/2)ũ =

−
[
∇ · ε∇ + cε(a + (aã)1/2)−1

]
(u0 + ũ) (11)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations 381

Therefore, the following iterative procedure for ũ(x, y) can be set up:

[
∇ · ã ∇ + c(ã1/2a−1/2)

]
un+1 =

−
[
∇ · ε∇ + cε(a + (aã)1/2)−1

]
un, n � 0 (12)

By defining

un � u0 + un, n � 1

we can show that ‖ε‖ � s‖a‖ in a certain Sobolev semi-norm, where s is a small
constant and it follows that the error decreases according to:

‖un+1 − u‖ � s‖un − u‖ (13)

3 The Auxiliary Equation

If p in Eq. (5) is not zero but a constant (larger then the first eigenvalue of the
Laplacian) we have an elliptic constant coefficient partial differential equation of
Helmholtz or modified Helmholtz type. Such equations can be easily solved by
the subtraction technique as illustrated in section 4. By assumption, a(x, y)1/2

is positive and does not vanish. Consider for example a region R, the values of
a(x, y)1/2 on its boundary are positive which is tantamount to positive Dirich-
let boundary conditions for our approximation which should satisfy also the
equation:

Δw(x, y) − Pw(x, y) = c(x, y)a(x, y)−1/2, (14)

where P is a constant to be chosen so that w(x, y) gives the best approximation
to a(x, y)1/2 . If a(x, y)1/2 is constant on the boundaries and dome shaped, and
c(x,y) vanishes, the harmonic approximation will be a horizontal plane. On the
other hand a negative P will give rise to a dome shaped approximation, and P can
be chosen so that the function w(x, y) will match the height of the dome. As we
take more negative P (but larger then the lowest eigenvalue of the Laplacian) we
get higher and higher domes. Conversely, if a(x, y)1/2 is bowl shaped, a positive
P will give rise to deeper and deeper bowls. For large P we will get values close
to zero in most of the interior of R.

4 Solution of Modified Helmholtz Equation in a Box

In this section, we will describe a method for the solution of Modified Helmholtz
equation with arbitrary order accuracy. We will start with an algorithm of
O(N−4) order of accuracy, then we construct the algorithm for O(N−6) and
generalize it to the arbitrary order of accuracy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

382 M. Israeli and A. Sherman

4.1 Problem Formulation

We are interested in the solution of the two-dimensional Modified Helmholtz
(MH) equation in the rectangular region Ω = [0 1]×[0 1] with Dirichlet boundary
conditions. {

�u(x, y) − k2u(x, y) = f(x, y) in Ω

u(x, y) = Φ(x, y) on ∂Ω
(15)

The boundary functions

φ1(x) � Φ(x, 0), φ3(x) � Φ(x, 1)
φ2(y) � Φ(0, y), φ4(y) � Φ(1, y)

are assumed to be smooth and continuous at the corners . In addition, f(x, y) is
supposed to be known on ∂Ω. We introduce the following notations:

f (p)(x) � ∂p f(x)
∂xp

, f (p,q)(x, y) � ∂p+q f(x, y)
∂xp ∂yq

Vandermonde(λ1, λ2, . . . , λn) �

⎛

⎜⎜⎜⎜⎜⎝

1 1 . . . 1
λ1 λ2 . . . λn

λ2
1 λ2

2 . . . λ2
n

...
...

. . .
...

λn−1
1 λn−1

2 . . . λn−1
n

⎞

⎟⎟⎟⎟⎟⎠

HM � � − k2

Let I = {1, 2, 3, 4} be an index set of corner points or edges. Denote by pj, j ∈ I
the four corner points of ∂Ω:

p1 = (0, 0), p2 = (0, 1), p3 = (1, 1), p4 = (1, 0)

and by Ej , j ∈ I the four edges of ∂Ω:

E1 = {(x, y)|y = 0}, E2 = {(x, y)|x = 0},

E3 = {(x, y)|y = 1}, E4 = {(x, y)|x = 1},

and define

∂ΩC � {pj | j ∈ I}, ∂ΩE � ∂Ω � ∂ΩC

4.2 Constructions of Auxiliary Function

In order to apply the subtraction technique, we construct a family of functions
q2r(x), r � 0 with the following property:

q2r(1) = 1, q2r(0) = 0 if r = 0
{

q
(2s)
2r (0) = 0, q

(2s)
2r (1) = 0, 0 � s � r − 1

q
(2r)
2r (0) = 1, q

(2r)
2r (1) = 0

if r � 1
(16)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations 383

We look for a function q2r(x) as the linear combination

q2r(x) =
r+1∑

i=1

α2r,i
sinh(λ2r,i (1 − x))

sinh(λ2r,i)
, where ∀i : λ2r,i > 0 (17)

Lemma 1. For any r � 0 we can find constants αi ∈ R and 0 < λi ∈ R such
that the function q2r(x) takes form of (17)

Lemma 2. Let λ, μ > 0 and define f(x, y) as follows

f(x, y) � sinh(λ (1 − x))
sinh(λ)

sinh(μ (1 − y))
sinh(μ)

(18)

If in addition λ2 + μ2 = k2, where k is defined in Eq. (15), then f(x, y) ∈
Ker(HM).

Definition 1. We say that boundary function Φ(x, y) is compatible with RHS
f(x, y) of Eq. (15) with respect to operator HM if

∀p ∈ ∂ΩC , HM

(
Φ(p)

)
= f(p) (19)

4.3 Solution of the Modified Helmholtz Equation with
Homogeneous RHS

As an intermediate stage in the solution of Eq. (15), we solve the Modified
Helmholtz equation with zero RHS. We are interested in the solution of

{
�u0(x, y) − k2u0(x, y) = 0 in Ω

u0(x, y) = Φ0(x, y) on ∂Ω
(20)

The boundary function Φ(x, y) is assumed to be smooth and compatible with
respect to HM . In order to utilize a rapidly convergent series expansions (see [1]),
the boundary functions φj , j ∈ I should vanish at the pj along with a number of
even derivatives. For each function q2r(x) in the form (17), define four functions
Q2r,j(x, y), j ∈ I as follows:

Q2r,1(x, y) =
r+1∑

i=1

α2r,i
sinh(λ2r,i (1 − x))

sinh(λ2r,i)
sinh(μi (1 − y))

sinh(μ2r,i)
,

Q2r,2(x, y) = Q2r,1(x, 1 − y),
Q2r,3(x, y) = Q2r,1(1 − x, 1 − y),
Q2r,4(x, y) = Q2r,1(1 − x, y)

(21)

where ∀i : λ2r,i, μ2r,i > 0 and λ2
2r,i + μ2

2r,i = k2.
By virtue of Lemma (2), ∀j ∈ I : Q2r,j(x, y) ∈ Ker(HM).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

384 M. Israeli and A. Sherman

We define w0(x, y) and Φ2(x, y) as follows

w0(x, y) = φ1(0)Q0,1(x, y) + φ3(0)Q0,2(x, y)
+ φ3(1)Q0,3(x, y) + φ1(1)Q0,4(x, y),

Φ2(x, y) = Φ0(x, y) − w0(x, y)|∂Ω

(22)

Φ2(x, y) has the following property: ∀p ∈ ∂ΩC , Φ2(p) = 0.
By solving a new equation

{
�u2(x, y) − k2u2(x, y) = 0 in Ω

u2(x, y) = Φ2(x, y) on ∂Ω
(23)

we obtain that u0(x, y) = u2(x, y) + w0(x, y).
The subtraction procedure can be continued. In general, for r � 1, we define

w2(r−1)(x, y) =
∑

j∈I

Φ
(2r,0)
2(r−1)(x, y)

∣∣
Pj

Q2(r−1),j(x, y)

Φ2r(x, y) = Φ2(r−1)(x, y) − w2(r−1)(x, y)|∂Ω

(24)

Lemma 3. For any r � 1 and any s, 0 � s � r − 1 the function Φ2r(x, y)
defined in (24) has the following property:

Φ
(2s,0)
2r (p) = Φ

(0,2s)
2r (p) = 0, ∀p ∈ ∂ΩC (25)

Thus, by solving
{

�u2r(x, y) − k2u2r(x, y) = 0 in Ω

u2r(x, y) = Φ2r(x, y) on ∂Ω
(26)

using rapidly convergent series (as suggested in [1]) we can achieve any prescribed
(depending on r ∈ N) order of accuracy. For r � 1, the general formula for the
sought solution of Eq. (20) is

u0(x, y) = u2r(x, y) +
r−1∑

s=0

w2s(x, y) (27)

It is worthwhile to mention that all the functions w2s(x, y), 0 � s � r − 1 are
explicitly known.

4.4 Solution of the Modified Helmholtz Equation with
Nonhomogeneous RHS

We are interested in the solution of
{

�u0(x, y) − k2u0(x, y) = f0(x, y) in Ω

u0(x, y) = Ψ(x, y) on ∂Ω
(28)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations 385

In addition to the assumptions made in (20), we assume that f0(x, y) is smooth
and Φ(x, y) is compatible with f(x, y) with respect to HM . We extend further
the technique developed in [2]. In order to solve Eq. (28) with high accuracy,
f0(x, y) should satisfy the conditions stated in the next theorem which where
obtained in ([2]).

Theorem 1. Assume f0(x, y) is smooth and p � 2. If ∀s, 0 � s � p − 2

f
(2s,2s)
0 (x, y) = 0, ∀p ∈ ∂Ω (29)

then the direct Fourier method applied to (28) with Ψ(x, y) = 0 is of order of
accuracy O(N−2p).

We look for a function f(x, y) that is an eigenfunction of the operator HM .

Lemma 4. Let λ, μ > 0 and f(x, y) defined as in (18). If in addition
λ2 + μ2 = 1 + k2, where k is defined in Eq. (15), then HM (f(x, y)) = f(x, y).

Define four functions Q̃2r,j(x, y), j ∈ I as follows:

Q̃2r,1(x, y) =
r+1∑

i=1

α2r,i
sinh(λ2r,i (1 − x))

sinh(λ2r,i)
sinh(μi (1 − y))

sinh(μ2r,i)
,

Q̃2r,2(x, y) = Q̃2r,1(x, 1 − y),

Q̃2r,3(x, y) = Q̃2r,1(1 − x, 1 − y),

Q̃2r,4(x, y) = Q̃2r,1(1 − x, y)

(30)

where ∀i : λ2r,i, μ2r,i > 0 and λ2
2r,i + μ2

2r,i = 1 + k2.
By virtue of Lemma (4), ∀j ∈ I : HM (Q̃2r,j(x, y)) = Q̃2r,j(x, y).
We split Eq. (28) to two equations one with homogeneous and one withnon-

homogeneous R.H.S. The main idea is to solve Eq. (28) with carefully constructed
boundary conditions such that we can achieve any prescribed order of accuracy.

Define h0(x, y) and f1(x, y) as follows

h0(x, y) =
∑

j∈I

f0(pj) Q̃0,j(x, y)

f1(x, y) = f0(x, y) − h0(x, y)
(31)

Obviously, HM (h0(x, y)) = h0(x, y) and f1(x, y) has the following property:
f1(p) = 0, ∀p ∈ ∂ΩC . In order to apply Theorem 1, we need that f1(x, y) will
vanish on the boundaries, that is: f1(p) = 0, ∀p ∈ ∂ΩE .

For q0(x) as defined in (17), define

q̃0,1(y) = q0(y), q̃2r,2(x) = q2r(x),
q̃0,3(y) = q0(1 − y), q̃2r,4(x) = q2r(1 − x)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

386 M. Israeli and A. Sherman

and also (where ζ ≡ y for j = 1, 3 and ζ ≡ x for j = 2, 4)

h1,j(x, y) = f1(x, y)|Ej q̃0,j(ζ), h1(x, y) =
∑

j∈I

h1,j(x, y),

f2(x, y) � f1(x, y) − h1(x, y)

We introduce the following problems:

∀j ∈ I :

{
�w0,j(x, y) − k2w0,j(x, y) = h1(x, y) in Ω

w0,j(x, y) = 0 on ∂Ω
{

�u2(x, y) − k2u2(x, y) = f2(x, y) in Ω

u2(x, y) = 0 on ∂Ω

(32)

Using the technique of [2] for the error estimates, it can be shown that each
equation in (32) can be solved with O(N−4) order of accuracy and therefore,
Eq. (28) with Ψ̃(x, y) = h0(x, y)|∂Ω can be also solved with O(N−4) accuracy.
In addition, we need to solve Eq. (20) with Φ(x, y) = Ψ(x, y) − Ψ̃(x, y). We
can proceed further and by constructing h2(x, y) and h3(x, y) obtain O(N−6)
accuracy etc.

4.5 Solution of the Modified Helmholtz Equation in the
Non-compatible Case

In the formulation of the original problem, the boundary function Φ(x, y) is not
necessary compatible with the R.H.S. with respect to HM . We utilize the idea
that by changing the boundary function Φ(x, y) along with f(x, y) in (15) we can
achieve compatibility of the boundary function and the R.H.S. For this purpose
we can use functions of the form

τ2k(x, y) = Re{c2kz2klog(z)} (33)

where c2k = a2k + ib2k and where a2k = 0 while b2k = (−1)k 2
π(2k)!

.

As an example, assume that compatibility doesn’t hold at p1, that is:

φ′′
1 (0) + φ′′

2 (0) − k2φ1(0) = f(p1) + A

Let v(x, y) = u(x, y) − Aτ2(x, y). For v(x, y) compatibility holds at p1. Also,
assume that compatibility already holds for the other corners. Thus, if we define

f̃(x, y) � f(x, y) + Ak2τ2(x, y)

Φ̃(x, y) � Φ(x, y) − Aτ2(x, y)|∂Ω

then for {
�v(x, y) − k2v(x, y) = f̃(x, y) in Ω

v(x, y) = Φ̃(x, y) on ∂Ω
(34)

compatibility of Φ̃(x, y) with f̃(x, y) holds. After solution of Eq. (34) we return
back to u(x, y).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations 387

5 Domain Decomposition

The present algorithm incorporates the following novel elements:

1. It extends our previous fast Poisson solvers [1] as it provides an essentially
direct solution for equations (1) where a(x, y)1/2 is an arbitrary harmonic
function.

2. In the case where a(x, y)1/2 is not harmonic, we approximate it by ã(x, y)1/2

(which is a superposition of harmonic functions) and apply several correction
steps to improve the accuracy.

3. In the case where a(x, y)1/2 is dome shaped or bowl shaped, we approximate
it by ã(x, y)1/2 which is now a solution of Eq. (??) and apply several correc-
tion steps to improve the accuracy. The value of P is determined to match
the average Gaussian curvature of a(x, y)1/2.

However high accuracy for the solution of (1) requires an accurate approxi-
mation of a(x, y)1/2 by the functions discussed above. Such an approximation
is not always easy to derive in the global domain, however it can be achieved
readily in smaller subdomains. In this case we suggest the following Domain
Decomposition algorithm.

1. The domain is decomposed into smaller rectangular subdomains. Where the
boundary of the subdomains coincides with full domain boundary we take
on the original boundary conditions. For other interfaces we introduce some
initial boundary conditions which do not contradict the equation at the
corners, where the left hand side of (1) can be computed. The function
a(x, y) is approximated by ã(x, y)1/2 in each subdomain such that ã(x, y)1/2

is harmonic(or subharmonic or superharmonic). An auxiliary equation (12)
is solved in each subdomain.

2. The collection of solutions obtained at Step 1 is continuous but doesn’t have
continuous derivatives at domain interfaces. To further match subdomains,
a hierarchical procedure can be applied similar to the one described in [4].
For example, if we have four subdomains 1,2,3 and 4, then 1 can be matched
with 2, 3 with 4, while at the final step the merged domain 1,2 is matched
with 3,4.

We illustrate the effectiveness of the domain decomposition approach by solv-
ing a one dimensional variable coefficient equation where the coefficient func-
tion is not harmonic namely a(x) = (2x + 3 + sin(πx))2 with exact solution
u(x) = sin(πx). We change the number of domains from 1 to 8. The correction
procedure works much better when the subdomains become smaller. With 4 do-
mains and with only 2 correction steps we reach an error of order 10−6, with 8
domains we get 10−8. Thus the present approach behaves essentially as a direct
fast method. The Domain Decomposition of course has the further advantage of
easy parallelization on massively parallel computers.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

388 M. Israeli and A. Sherman

6 Numerical Results

First let us demonstrate the rate of convergence of the improved subtraction
algorithm.Assume that u is the exact solution of Eq. (1) and u′ is the computed
solution. We will use the following measure to estimate the errors:

εMAX = max |u′
i − ui| (35)

Example 1. Consider the Modified Helmholtz equation with f(x, y)=−k2(x2−y2),
where k is defined in (15); the right hand side and the boundary conditions
correspond to the exact solution u(x, y) = x2 − y2 in the domain [0, 1] × [0, 1].
The results are presented in Table 1.

Table 1. MAX error for the fourth order subtraction methods with k = 1

f(x, y) = −k2(x2 − y2)
u(x, y) = x2 − y2

Nx × Ny εMAX(4) ratio
8 × 8 1.29e-6 -

16 × 16 1.23e-7 10.5

32 × 32 9.81e-9 12.5

64 × 64 7.04e-10 13.93

128 × 64 4.81e-11 14.66

Example 2. Consider the same equation as in the previous example but with
k = 10. The results are presented in Table 2.

Table 2. MAX error for the fourth order subtraction methods with k = 10

f(x, y) = −k2(x2 − y2)
u(x, y) = x2 − y2

Nx × Ny εMAX(4) ratio

8 × 8 3.38e-3 -

16 × 16 2.89e-4 11.7

32 × 32 2.73e-5 10.58

64 × 64 2.16e-6 12.64

128 × 64 1.54e-7 14.02

Example 3. Here we consider the elliptic equation of Eq. (1), there are four
tables where we change a parameter, b, from 1.5 to 3, 6 and 12. As b increases
both the solution and the coefficient a(x, y) become more and more oscilla-
tory. We denote the number of the iteration by j and the resolution by N .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations 389

Table 3. b = 1.5 and m = 4

u(x, y) = sin(b x) + sin(b y)

a(x, y) =
(
1.5 + sin(0.5 b x) · sin(0.5 b y)

)2

c(x, y) = ma(x, y)

j�N 7 14 28 56 112 224
0 1.12 e-3 1.13 e-1 1.13 e-3 1.13 e-3 1.13 e-3 1.13 e-3

1 3.03 e-5 2.80 e-5 2.44 e-6 2.42 e-6 2.42 e-6 2.42 e-6

2 3.00 e-5 2.60 e-6 1.95 e-7 1.35 e-8 7.61 e-9 7.51 e-9

3 3.00 e-5 2.60 e-6 1.95 e-7 1.35 e-8 9.03 e-10 6.45 e-11

Table 4. b = 3 and m = 4

u(x, y) = sin(b x) + sin(b y)

a(x, y) =
(
1.5 + sin(0.5 b x) · sin(0.5 b y)

)2

c(x, y) = ma(x, y)

j�N 7 14 28 56 112 224
0 7.87 e-3 8.42 e-3 8.41 e-3 8.42 e-3 8.43 e-3 8.43 e-3

1 1.42 e-4 1.51 e-4 1.50 e-4 1.50 e-4 1.51 e-4 1.51 e-4

2 7.79 e-5 8.44 e-6 2.58 e-6 2.76 e-6 2.77 e-6 2.77 e-6

3 7.81 e-5 8.41 e-6 7.10 e-7 6.85 e-8 6.12 e-8 6.12 e-8

4 —- —- —- —- 9.32 e-9 1.34 e-9

5 —- —- —- —- —- 1.32 e-9

Table 5. b = 6 and m = 6

u(x, y) = sin(b x) + sin(b y)

a(x, y) =
(
1.5 + sin(0.5 b x) · sin(0.5 b y)

)2

c(x, y) = ma(x, y)

j�N 7 14 28 56 112 224
0 3.13 e-1 3.14 e-2 3.21 e-2 3.22 e-2 3.22 e-2 3.22 e-2

1 9.10 e-4 1.48 e-3 1.49 e-3 1.49 e-3 1.15 e-3 1.15 e-3

2 1.58 e-4 1.63 e-4 5.79 e-5 6.47 e-5 6.51 e-5 6.51 e-5

3 1.57 e-4 1.63 e-4 1.37 e-5 3.10 e-6 3.43 e-6 3.46 e-6

4 —- —- —- 1.00 e-6 1.57 e-7 1.79 e-7

5 —- —- —- 9.98 e-7 1.04 e-7 1.29 e-8

We see that it takes 1 to 5 iterations to converge to the accuracy which is de-
termined by the resolution, we see that the accuracy behavior is like a fourth
order method as expected. For the most oscillatory case, b = 12, there is no

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

390 M. Israeli and A. Sherman

Table 6. b = 12 and m = 4

u(x, y) = sin(b x) + sin(b y)

a(x, y) =
(
1.5 + sin(0.5 b x) · sin(0.5 b y)

)2

c(x, y) = ma(x, y)

j�N 7 14 28 56 112 224
0 8.37 e-1 9.54 e-1 1.00 1.00 1.00 1.00

1 1.10 6.90 e-1 6.90 e-1 7.16 e-1 7.20 e-1 7.20 e-1

2 4.44 e-1 5.47 e-1 5.45 e-1 5.62 e-1 5.63 e-1 5.62 e-1

3 5.75 e-1 4.65 e-1 4.87 e-1 4.82 e-1 4.91 e-1 4.90 e-1

4 3.39 e-1 3.98 e-1 4.31 e-1 4.29 e-1 4.30 e-1 4.31 e-1

5 3.92 e-1 3.52 e-1 4.01 e-1 4.03 e-1 4.03 e-1 4.03 e-1

convergence. Here we must resort to domain decomposition, by dividing the
domain to four sub domains we would essentially reduce this case to that of b=6
from the point of view of convergence. The results are presented in Tables 3-6.

References

1. Averbuch, A., Vozovoi, L., Israeli, M.: On a Fast Direct Elliptic Solver by a Modified
Fourier Method, Numerical Algorithms, Vol. 15 (1997) 287–313

2. Skölermo, G.: A Fourier method for numerical solution of Poisson’s equation, Math-
ematics of Computation, Vol. 29, No. 131 (Jul., 1975) 697–711

3. Concus P., Golub G.H.: Use of fast direct methods for the efficient numerical solution
of nonseparable elliptic equations, SIAM J. Numer. Anal. 10 (1973), No. 6, 1103–
1120.

4. Israeli M., Braverman E., Averbuch A.: A hierarchical domain decomposition
method with low communication overhead, Domain decomposition methods in sci-
ence and engineering, (Lyon, 2000), 395-403, Theory Eng. Appl. Comput. Methods,
Internat. Center Numer. Methods Eng. (CIMNE), Barcelona, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multiresolution Simulations Using Particles

Michael Bergdorf and Petros Koumoutsakos

Computational Science & Engineering Laboratory
ETH Zürich

CH-8092, Switzerland
{petros,bergdorf}@inf.ethz.ch

Abstract. We present novel multiresolution particle methods with ex-
tended dynamic adaptivity in areas where increased resolution is re-
quired. In the framework of smooth particle methods we present two
adaptive approaches: one based on globally adaptive mappings and one
employing a wavelet-based multiresolution analysis to guide the alloca-
tion of computational elements. Preliminary results are presented from
the application of these methods to problems involving the development
of sharp vorticity gradients. The present particle methods are employed
in large scale parallel computer architectures demonstrating a high de-
gree of parallelization and enabling state of the art large scale simulations
of continuum systems using particles.

1 Approximations Using particles

The development of particle methods is based on the integral representation of
functions and differential operators. The integrals are discretized using particles
as quadrature points.

1.1 Function Approximation

The approximation of continuous functions by particle methods starts with the
equality

q(x) ≡
∫

q(x − y) δ(y) dy . (1)

Using N particles we discretize above equality by numerical quadrature and get
the “point-particle” approximation of q:

qh(x) =
∑

p

Qp δ(x − xp) . (2)

Point particle methods based on the approximation (2) yield exact weak solutions
of conservation laws. A drawback of point particle approximations is that the
function qh can only be reconstructed on particle locations xp.

This shortcoming is addressed by mollifying the Dirac delta function in (1)
resulting on a mollified approximation:

qε(x) =
∫

q(x − y) ζε(y) dy , (3)

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 391–402, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

392 M. Bergdorf and P. Koumoutsakos

where ζε = ε−dζ(x/ε), x ∈ Rd, and ε being a characteristic length scale of
the kernel. For consistency of the approximation the kernel ζ has to fulfill the
following moment conditons:

∫
ζ xα dx = 0α for 0 ≤ |α| < r . (4)

The kernel ζ is of order r and the following error bound holds:

‖q − qε‖ ≤ Cεr‖q‖∞ . (5)

Now again, we get a discrete but smooth function approximation by approxi-
mating the integral in (3) by a midpoint quadrature rule yielding

qε,h(x) =
∑

p

Qp ζε(x − xp) , (6)

The error of (6) can be assessed by splitting ‖q − qε,h‖ into

‖q − qε,h‖ ≤ ‖q − qε‖+ ‖qε − qε,h‖
≤ C1ε

r‖q‖∞+ C2
(

h
ε

)m ‖q‖∞ .
(7)

We conclude from this, that (h/ε) must be smaller than 1, i.e. smooth particles
must overlap1.

1.2 Differential Operator Approximation

In smooth particle methods differential operators can be approximated by dis-
crete integral operators. Degond & MasGallic developed an integral represen-
tation of the diffusion operator - isotropic and anisotropic - which was later
extended to differential operators of arbitrary degree in [6]. The integral opera-
tor for the 1D Laplacian for instance takes the form

Δεq =
1
ε2

∫
[q(y) − q(x)] ηε(x − y) dy , (8)

where the kernel η(x) has to fulfill
∫

x2 η(x) dx = 2. This integral is discretized
by particles using their locations as quadrature points:

(
Δε,hq

)
(xp′) = ε−2

∑

p

[qp − qp′] ηε(xp′ − xp) vp . (9)

2 Solving Transport Problems with Particle Methods

Particle methods discretize the Lagrangian form of the governing equation,

∂q

∂t
+ ∇ · (u q) = L(q, x, t) , (10)

1 For certain kernels, an r-th order approximation can be achieved even with ε=h [17].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multiresolution Simulations Using Particles 393

resulting in the following set of ODEs:

dxp

dt
= u(xp, t) , positions

dvp

dt
= vp (∇ · u) (xp, t) , volumes

dQp

dt
= vp Lε,h(q, xp, t) . weights

(11)

Particle positions are usually initialized as a regular lattice with spacing h, vol-
umes are thus initially set to vp = hd and Qp = qo(xp)hd. The ODES (11),
are now advanced using a standard explicit time stepper and the transported
quantity q can be reconstructed as

q(x, t) =
∑

p

Qp(t) ζε (x − xp(t)) . (12)

However, as the particles follow the flow map u(x, t) their positions eventually
become irregular and distorted, and the function approximation (12) ceases to be
well-sampled. To ascertain convergence, it is therefore necessary to periodically
regularize the particle locations; this process is called “remeshing”.

2.1 Remeshing

Remeshing involves interpolation of particle weights from irregular particle lo-
cations onto a regular lattice. New particles are then created on the lattice,
replacing the old particles. This interpolation process takes the form

Qnew
p′ =

∑

p

W (xp′ − xp)Qold
p , (13)

where Qnew
p′ are the new particle weights, and xp′ are located on a regular lattice.

The interpolation functions W (x) is commonly chosen to be a tensor product of
one-dimensional interpolation function which for accuracy have to be sufficiently
smooth and moment-conserving. The M ′

4 function [14] is commonly used in the
context of particle methods; it is in C1(R) and of third order.

The introduction of a grid clearly detracts from the meshless character of
particle methods. The use of a grid in the context of particle methods does not
restrict the adaptive character of the method and provides the basis for a new
class of “hybrid” particle methods with several computational and methodolog-
ical benefits

2.2 Hybrid Particle Methods

The introduction of a grid enables fast evaluation of differential operators using
compact PSE kernels, enables the use of fast grid-based Poisson solvers [8],
facilitates parallelization and is a key component in adaptive particle methods,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

394 M. Bergdorf and P. Koumoutsakos

which we will present in section 3. Hybrid particle methods make heavy use of
these computational advantages [19,3,11].

Recently, we have developed a generic hybrid particle method framework [16],
enabling efficient, parallel simulations of large-scale transport problems as di-
verse as the DNS of turbulent flows and diffusion processes in complex biological
organelles. Figure 1 shows visualizations of the Crow instability and the ellip-
tic instability of two counter-rotating vortex tubes employing a maximum of 33
million particles. The simulations were performed on a 16 cpu Opteron cluster.
One time step for 1 million particles took less than 30 seconds. Current imple-
mentations using the fast multipole method which retain the meshless character
of the particle method require approximately 2400 seconds per time step [20].
This clearly demonstrates the advantages of hybrid methods.

Fig. 1. Crow (left) and short-wave or elliptic instability (right)

3 Adaptive Particle Methods

The accuracy of smooth particle methods is determined by the core size ε of
the kernel ζε(x). For computational efficiency this core size needs to be spatially
variable to resolve small scales in different parts of the flow, such as the boundary
layer and the wake of bluff body flows. As particles need to overlap, varying core
sizes imply spatially varying particle spacings. This can be achieved in two ways:

– remeshing particles on a regular grid corresponding to variable size particles
in a mapped using a global (adaptive) mapping

– remeshing particles by combining several simple local mappings in a domain
decomposition frame.

In the context of vortex methods, Hou [10] first introduced spatially varying
particle sizes and proved the convergence of the method in the case of the 2D
Euler equations. This proof was extended in [15] to the viscous case and the
method was used for the simulation of wakes with stetched particle resolution.
In [2] Cottet, Koumoutsakos, and Ould-Salihi formulated a convergent variable
core size vortex method for the Navier-Stokes equations by using mappings from
a reference space Ω̂ ⊆ Rd with uniform core size ε̂ to the “physical” space
Ω ⊆ Rd with cores of varying size ε(x) in conjunction with an anisotropic
diffusion operator, i.e.

x = f(x̂) , x̂ = g(x) ,
{
Φ

}
ij

=
∂x̂i

∂xj
and |Φ| = detΦ (14)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multiresolution Simulations Using Particles 395

Like in the uniform core size method (11), we convect the particles in physical
space, but diffusion is performed in reference space, so that with N particles,
located in {xj(t)}N

j=1 = {f(x̂j)}N
j=1 we find an approximate solution to (10) by

integrating the following set of ODEs:

dxj

dt
= u(xj , t) ,

dQj

dt
=

ν

ε̂2

∑

k

ψε̂
pq(x̂j − x̂k)

(mpq(x̂j) + mpq(x̂k)
2

)
[v̂jQ̂k − v̂kQ̂j] ,

dv̂j

dt
= ∇̂ ·

(
Φu

)
(xj , t) v̂j .

(15)

In the above equation Qj and Q̂j denote the particle strength in physical and
reference space, respectively, related by

Q̂j = Qj|Φ|(xj) ,

and mpq = bpq − 1
d+2δpqδp′q′bp′q′ , with

bp′q′ =
1
Φ

∂(x̂)p′

∂(x)r

∂(x̂)q′

∂(x)r

and ψpq(x) = (x)p (x)q ρ(x), ρ(x) being a radially symmetric kernel with suit-
able moment properties [4].

In [2] analytic, invertible mappings have been employed. Albeit being a simple
and robust way to efficiently resolve the range of length scales in the flow, this
method requires prior knowledge about the flow physics. In [1] we extended
this method by introducing two different approaches to dynamical adaptivity
in particle methods; One approach makes use of a global adaptive mapping
(AGM, see section 3.1), and one employing dynamically placed patches of smaller
sized particles, reminiscent of adaptive mesh refinement in finite volume methods
(AMR).

3.1 Particle Method with Adaptive Global Mappings

We introduce a transient smooth map f : Ω̂×[0, T] → Ω represented by particles:

x(x̂, t) = f(x̂, t) =
∑

j

χj(t) ζ ε̂(x̂ − ξj) , (16)

where ξp are fixed at grid point locations. The parameters in the map that are
changed in the process of adaptation are the node values χj . As the map (16) is
not easily invertible, we require it to be smooth in both space and time. Given
this property, the governing equation (10) can be entirely cast into reference
space, again yielding a transport equation:

∂q̂′

∂t
+ ∇̂ · (q̂′ ũ) = L̂(q̂′, x̂, t) , (17)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

396 M. Bergdorf and P. Koumoutsakos

where q̂′ = (|Φ|)−1q̂ and

ũ = Φ(û − U) , and U =
∂f
∂t

=
∑

j

∂χj

∂t
ζ ε̂(x̂ − ξj) . (18)

What remains is to chose a U , such that particle core sizes in physical space
are small where small scale features are present in the flow. In [1] this was
accomplished by setting U to be the solution of a moving mesh partial differential
equation (MMPDE),

U = ∇̂ ·
(
M(x̂, t)∇̂f(x̂, t)T

)
, (19)

where M(x̂, t) is a so-called monitor function: a positive measure which takes
great values where numerical resolution should be increased, e.g.

M(x̂, t) =
√

1 + α|Bq̂|2 , (20)

B being a high-pass filter. We applied this method in [1] to the evolution of
an elliptical vortex governed by the 2D Euler equations. Figure 2 depicts the
adaptation of the underlying grid, and thus the particle core sizes ε(x).

Fig. 2. Simulation of the evolution of an inviscid elliptical vortex using the AGM
particle method: vorticity (left), particle sizes (middle, dark areas represent coarse
particle sizes) and grid (right)

3.2 Wavelet-Based Multiresolution Particle Method

We employ a wavelet-based multiresolution analysis (MRA) using L + 1 levels
of refinement to guide the creation of particles on the grid. The function q(x, t)
can be represented as

qL =
∑

k

q0
k ζ0

k +
∑

0≤l<L

∑

k

dl
k ψl

k , (21)

where q0
k are the weights, ζ0

k are the scaling functions (or kernels) on the coarsest
level, dl

k are the so-called detail coefficients and ψl
k are the wavelets. The MRA

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multiresolution Simulations Using Particles 397

here is based on an iterative interpolation scheme as introduced by Deslauriers
and Dubuc [5], thus we do not have explicit scaling functions ζ and wavelets
ψ. In this scheme the scaling coefficients of two subsequent levels are related
through

ql+1
2k = ql

k

ql+1
2k+1 = dl

k +
∑

j

wl
j−k ql

j−k , (22)

where wl
j are coefficients related to the polynomial interpolation of the scheme [5].

x

y

dl,2
k

dl,3
k

dl,1
k

ql
k

Fig. 3. Each detail coefficient dl,m
k , with m = 1, . . . , 2d − 1 corresponds to a specific

grid point on the next higher level

As illustrated in Figure 3 each detail coefficient is associated with a grid point
on the next finer grid. Let child(k, m) be the grid point associated with dl,m

k and
let ancs(k) denote the set of grid points k′ needed to interpolate the value ql

k

from values ql−1
k′ and detail coefficients dl−1

k′ of the next coarser level. Then an
adapted grid is constructed by discarding all those grid points whose |dl,m

k | are
smaller as a prescribed threshold, i.e.

K> = K0 ∪
{

k′ = child(k, m) ∪ ancs(k′)
∣∣∣ |dl,m

k | > ε , l ∈ [0, L − 1]
}

. (23)

Note that K0
> ≡ K0 and that ancs(k′) are added to maintain proper nestedness

of the grids (see for instance [18] for details). In order to be able to capture small
scales that may emerge between two subsequent MRAs we follow the conserva-
tive approach of Liandrat and Tchamitchian [13] and additionally activate all
children of the active grid points, i.e.

Kl
> ← Kl

> ∪ { child(k, m) | k ∈ Kl−1
> , m = 1, 2, 3 } for l = L, . . . , 1 . (24)

Multilevel remeshing interpolates particles created on a set of grid points Kl
>

onto a set of grid points Kl
×. This is accomplished in the following way: let M

denote the kernel used for remeshing the particles, then (i) horizontally extend
the set of source grid points Kl

> by Bl , where

Bl =
{
k′ ∣∣ min

k∈Kl
>

|k′ − k| ≤ � 1
2 supp(M) + LCFL�

}
, (25)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

398 M. Bergdorf and P. Koumoutsakos

where the “Lagrangian CFL” LCFL ≡ δt ‖∇ ⊗ u‖∞, (ii) create particles on
Kl

> ∪ Bl
1, i.e.

Ql
p = cl

k (hl)d , vl
p = (hl)d , xl

p = xl
k ,

(iii) after convection, interpolate these particles onto a new set of grid points
Kl

×. Clearly, for consistency Kl
× cannot be chosen arbitrarily. We propose the

following method: Introduce and indicator function χl defined as

χl
k =

{
1 , k ∈ Kl

>

0 , k ∈ Bl ,
(26)

and convect the particles, i.e. solve the following set of equations

dQl
p

dt
=L(q, x, t) ,

dχl
p

dt
=0 ,

dxl
p

dt
=u(xl

p, t) ,
dvl

p

dt
=vl

p (∇ · u) (xl
p, t) .

(27)

The particle weights and the indicator are then interpolated onto the grid and
grid points with χ̃l

k > 0 are selected to consitute Kl
×, where χ̃l denotes the

remeshed indicator function. Using this technique, the scale distribution {Kl
>}L

l=0
is naturally convected with the flow and we obtain and adaptation mechanism
which is independent of the CFL number.

To demonstrate the Lagrangian character of the adaptation we considered the
convection of a passive scalar in 2D, subject to a vortical velocity field [12]. The
problem involves strong deformation of a initial circular “blob” which at the end
of the simulation returns to the initial condition. The remeshing function and
particle kernel were both chosen as

W (x) = ζ(x) =
d∏

l=1

M ′′′
6

(
(x)l

)
,

where the fourth-order accurate interpolating function M ′′′
6 is of higher order

than the M ′
4 function at the expense of a larger support. The wavelets em-

ployed were also fourth-order accurate. Figure 4 illustrates the adaptation of the
grid/particles at two different times. We measure the L2 and L∞ error of the
final solution for different choices of ε and observe second order convergence,
corresponding to fourth order convergence in h, as depicted in Figure 6. The
maximum CFL measured during the course of the simulation was 40.7.

We also applied the presented method to the simulation of a propagating
interface using a level set formulation. A “narrow band” formulation is easily
accomplished with the present method by truncating the detail coefficients that
are far from the interface. We consider the well-established 2D deformation test
case which amounts to the propagation of a circle subject to the same velocity
field as above. Figure 5 depicts the grid adaptation and comparing to Figure 4,
one can clearly see the restriction of the refinement to a small neighborhood
around the interface. We measure the error of the area encompassed by the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multiresolution Simulations Using Particles 399

Fig. 4. Active grid points/particles at two
different times of the simulation of a pas-
sive scalar subject to a single vortex veloc-
ity field

Fig. 5. Active grid points/particles at two
different times of the simulation of a prop-
agating interface subject to a single vortex
velocity field

interface at the final time and compare it against a non-adaptive particle level
set method [9] and against the “hybrid particle level set method” of Enright et
al. [7]. Figure 7 displays this comparison and we find that our adaptive approach
performs favorably, which may be attributed in part to the adaptive character
and in part to the high order of the method.

10
3

10
4

10
510

-5

10
-4

10
-3

10
-2

10
-1

N

‖e
‖ ∞

,
‖e

‖ L
2

Fig. 6. ε-refinement study; the data points correspond to ε = 2−p × 10−3 for p =
0 , . . . , 10. The triangle represents 2nd-order convergence. N is the number of active
grid points/particles.

3.3 Parallelization

Recently we have developed a Parallel Particle-Mesh (PPM) software library
[16] that facilitates large-scale calculations of transport and related problems
using particles. The library provides the mechanisms necessary to achieve good
parallel efficiency and load balancing in these situations where both meshes
and particles operate as computational elements. Figure 8 and Figure 9 depict

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

400 M. Bergdorf and P. Koumoutsakos

e a
re

a

N , N

Fig. 7. Plot of relative error of the area enclosed by the interface against degrees of
freedom: Hieber & Koumoutsakos [9] (, particles at time t=0), Enright et al.[7]
(, auxiliary particles at time t=0 and , grid points) and present method (,
active grid points at time t=0, , active grid points at the final time)

1 4 16 64 256
1

10

100

1000

Nproc

t(
N

p
ro

c
)/

t(
1
)
N

p
ro

c

Fig. 8. Parallel scaling of a particle-based Navier-Stokes solver built using the PPM
library. The calculations were performed on the Cray XT3, with 524,288 particles
per CPU. Curves denote double precision (), and single-precision () results,
respectively.

the parallel performance of the library for a Navier-Stokes solver based on the
vortex method. The calculations were run on the Cray XT3 at the Swiss National
Supercomputing Centre (CSCS). Our current work aims at implementing the
adaptive techniques described herein into the parallel framework of the PPM
library.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multiresolution Simulations Using Particles 401

1 4 16 64 256
0

0.2

0.4

0.6

0.8

1

N
p
ro

c

t(1)/t(Nproc)

Fig. 9. Parallel Efficiency of a PPM-based Navier-Stokes solver. Curves denote double
precision (), and single-precision () results, respectively.

4 Conclusions

We present multiresolution particle-mesh methods for simulating transport equa-
tions. We outline two methods introducing enhanced dynamic adaptivity and
multiresolution capabilities for particle methods. The first method is based on
an adaptive global mapping from a reference space to physical space for the
particle locations; it has been successfully applied to the evolution of an ellip-
tical vortex in an inviscid incompressible fluid. The second method is based on
a wavelet multiresolution decomposition of the particle function representation.
It is equipped with a Lagrangian adaptation mechanism that enables the sim-
ulation of transport problems and interface capturing problems independent of
the CFL number. We have presented results of an interface tracking problem
where the method has shown to have superior volume conservation properties.
We are currently working on the application of this method to the Navier-Stokes
equations.

References

1. M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle
methods for convection-diffusion equations. Multiscale Modeling and Simulation,
4(1):328–357, 2005.

2. G.-H. Cottet, P. Koumoutsakos, and M. L. Ould Salihi. Vortex methods with
spatially varying cores. Journal of Computational Physics, 162:164–185, 2000.

3. G.-H. Cottet and P. Poncet. Advances in direct numerical simulations of 3d
wall-bounded flows by vortex-in-cell methods. Journal of Computational Physics,
193:136–158, 2003.

4. P. Degond and S. Mas-Gallic. The weighted particle method for convection-
diffusion equations. part 2: The anisotropic case. Mathematics of Computation,
53(188):509–525, 1989.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

402 M. Bergdorf and P. Koumoutsakos

5. G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes. Con-
structive Approximation, 5:49–68, 1989.

6. J. D. Eldredge, A. Leonard, and T. Colonius. A general deterministic treatment of
derivatives in particle methods. Journal of Computational Physics, 180:686–709,
2002.

7. D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set
method for improved interface capturing. Journal of Computational Physics,
183(1):83–116, 2002.

8. F. H. Harlow. Particle-in-cell computing method for fluid dynamics. Methods in
Computational Physics, 3:319–343, 1964.

9. S. E. Hieber and P. Koumoutsakos. A Lagrangian particle level set method. Journal
of Computational Physics, 210(1):342–367, 2005.

10. T. Y. Hou. Convergence of a variable blob vortex method for the euler and navier-
stokes equations. SIAM Journal on Numerical Analysis, 27(6):1387–1404, 1990.

11. P. Koumoutsakos. Multiscale flow simulations using particles. Annual Review of
Fluid Mechanics, 37(1):457–487, 2005.

12. R. J. Leveque. High-resolution conservative algorithms for advection in incom-
pressible flow. SIAM Journal on Numerical Analysis, 33(2):627–665, 1996.

13. J. Liandrat and P. Tchamitchian. Resolution of the 1D regularized burgers equa-
tion using a spatial wavelet approximation. ICASE Report 90-83, NASA Langley
Research Center, 1990.

14. J. J. Monaghan. Extrapolating b-splines for interpolation. Journal of Computa-
tional Physics, 60:253–262, 1985.

15. P. Ploumhans and G. S. Winckelmans. Vortex methods for high-resolution simu-
lations of viscous flow past bluff bodies of general geometry. Journal of Computa-
tional Physics, 165:354–406, 2000.

16. I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis, and
P. Koumoutsakos. PPM – a highly efficient parallel particle-mesh library. Journal
of Computational Physics, 215(2):566–588, 2006.

17. A.-K. Tornberg and B. Engquist. Numerical approximations of singular source
terms in differential equations. Journal of Computational Physics, 200:462–488,
2004.

18. O. V. Vasilyev. Solving multi-dimensional evolution problems with localized struc-
tures using second-generation wavelets. International Journal of Computational
Fluid Dynamics, 17(2):151–168, 2003.

19. J. H. Walther and P. Koumoutsakos. Three-dimensional particle methods for parti-
cle laden flows with two-way coupling. Journal of Computational Physics, 167:39–
71, 2001.

20. Q. X. Wang. Variable order revised binary treecode. Journal of Computational
Physics, 200(1):192 –210, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Several Variants of Explicitly

Restarted Lanczos Eigensolvers and Their
Parallel Implementations�

V. Hernandez, J.E. Roman, and A. Tomas

D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia,
Camino de Vera, s/n, E-46022 Valencia, Spain

Tel.: +34-963877356; Fax: +34-963877359
{vhernand,jroman,atomas}@itaca.upv.es

Abstract. It is well known that the Lanczos process suffers from loss
of orthogonality in the case of finite-precision arithmetic. Several ap-
proaches have been proposed in order to address this issue, thus
enabling the successful computation of approximate eigensolutions. How-
ever, these techniques have been studied mainly in the context of long
Lanczos runs, but not for restarted Lanczos eigensolvers. Several vari-
ants of the explicitly restarted Lanczos algorithm employing different
reorthogonalization strategies have been implemented in SLEPc, the
Scalable Library for Eigenvalue Computations. The aim of this work
is to assess the numerical robustness of the proposed implementations as
well as to study the impact of reorthogonalization in parallel efficiency.

Topics: Numerical methods, parallel and distributed computing.

1 Introduction

The Lanczos method [1] is one of the most successful methods for approximating
a few eigenvalues of a large real symmetric (or complex Hermitian) matrix, A.
It computes a sequence of Lanczos vectors, vj , and scalars αj , βj as follows

Choose a unit-norm vector v1 and set β1 = 0
For j = 1, 2, . . .

uj+1 = Avj − βjvj−1
αj = v∗j uj+1

uj+1 = uj+1 − αjvj

βj+1 = ‖uj+1‖2 (if βj+1 = 0, stop)
vj+1 = uj+1/βj+1

end

Every iteration of the loop computes the following three-term recurrence

βj+1vj+1 = Avj − αjvj − βjvj−1 . (1)
� This work was supported in part by the Valencian Regional Administration,

Directorate of Research and Technology Transfer, under grant number GV06/091.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 403–416, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

404 V. Hernandez, J.E. Roman, and A. Tomas

The first m iterations can be summarized in matrix notation as follows

AVm − VmTm = βm+1vm+1e
∗
m , (2)

where Vm = [v1, v2, . . . , vm], e∗m = [0, 0, . . . , 1], and

Tm =

⎡

⎢⎢⎢⎢⎢⎣

α1 β2
β2 α2 β3

.
βm−1 αm−1 βm

βm αm

⎤

⎥⎥⎥⎥⎥⎦
(3)

It can be shown that the Lanczos vectors are mutually orthonormal, i.e. V ∗
mVm =

Im, where Im is the m × m identity matrix. As described in section 2, the
above procedure can be used as a basis for implementing a solver for symmetric
eigenvalue problems, because eigenvalues of Tm approximate eigenvalues of A.
However, practical implementations have to deal with issues such as:

1. The loss of orthogonality of Lanczos vectors in finite-precision arithmetic.
2. The convenience of eventually restarting the recurrence.

If loss of orthogonality is not treated appropriately, then duplicate eigenvalues
appear in the spectrum of Tj as the iteration progresses. This effect is well
understood since the work by Paige [2], who showed that orthogonality is lost
as soon as an eigenvalue has converged. This helped researchers devise effective
reorthogonalization strategies for preserving (semi-) orthogonality, as described
in section 2. These techniques make use of previously computed Lanczos vectors,
thus increasing the storage needs and computational cost with respect to the
original algorithm, growing as the iteration proceeds. For this reason, practical
implementations of Lanczos must generally be restarted, especially in the case of
very large-scale sparse problems. In a restarted version, the number of Lanczos
steps is limited to a maximum allowed value, after which a new recurrence begins.
The simplest form of restart, usually called explicit restart, consists in computing
a new starting vector, v1, from the spectral information available before the
restart. Although this strategy is typically less effective than other techniques
such as implicit restart [3], it can still be competitive in some cases.

The motivation of this work is to provide a robust and efficient parallel imple-
mentation of an explicitly restarted symmetric Lanczos eigensolver in SLEPc,
the Scalable Library for Eigenvalue Problem Computations [4]. The main goal is
to analyze how different reorthogonalization techniques behave in this context,
both from the stability and efficiency viewpoints. We focus on single-vector Lanc-
zos variants, in contrast to block variants such as that proposed in [5].

The text is organized as follows. In section 2, the Lanczos method is de-
scribed in more detail, including the different strategies for coping with loss of
orthogonality. Implementation details such as how to efficiently parallelize the
orthogonalization operation are discussed as well. In section 3, the particular
implementations available in SLEPc are described. Sections 4 and 5 show the
analysis results with respect to numerical stability and parallel performance,
respectively. Finally, in section 6 some conclusions are given.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers 405

2 Description of the Method

This section provides an overview of the Lanczos method and some of its varia-
tions, including techniques for avoiding loss of orthogonality. For more detailed
background material the reader is referred to [6,7].

2.1 Basic Lanczos Algorithm

Apart from viewing the Lanczos process from the perspective of the three-term
recurrence described in the previous section, it can also be seen as the com-
putation of the orthogonal projection of matrix A onto the Krylov subspace
Km(A, v1) ≡ span{v1, Av1, . . . , A

m−1v1}. From this perspective, the Lanczos
method is equivalent to the Arnoldi method, and can be described as follows.

Algorithm 1. Basic Lanczos
Input: Matrix A, number of steps m, and initial vector v1 of norm 1
Output: (Vm, Tm, vm+1, βm+1) so that AVm − VmTm = βm+1vm+1e

∗
m

For j = 1, 2, . . . , m
uj+1 = Avj

Orthogonalize uj+1 with respect to Vj (obtaining αj)
βj+1 = ‖uj+1‖2
vj+1 = uj+1/βj+1

end

In the above algorithm, the second line in the loop performs a Gram-Schmidt
process in order to orthogonalize vector uj+1 with respect to the columns of
Vj , that is, the vectors v1, v2, . . . , vj (see subsection 2.4 for details about Gram-
Schmidt). In this operation, j Fourier coefficients are computed. In exact arith-
metic, the first j − 2 coefficients are zero, and therefore the corresponding
operations need not be carried out (orthogonality with respect to the first j − 2
vectors is automatic). The other two coefficients are βj and αj . According to
Paige [8], the βj computed in this operation should be discarded and, instead,
use the value ‖uj‖2 computed in the previous iteration. As we will see in subsec-
tion 2.2, orthogonalization will be a key aspect of robust Lanczos variants that
cope with loss of orthogonality.

Since V ∗
mvm+1 = 0 by construction, then by premultiplying Eq. 2 by V ∗

m

V ∗
mAVm = Tm, (4)

that is, matrix Tm represents the orthogonal projection of A onto the Krylov
subspace spanned by the columns of Vm, and this fact allows us to compute
Rayleigh-Ritz approximations of the eigenpairs of A. Let (λi, yi) be an eigenpair
of matrix Tm, then the Ritz value, λi, and the Ritz vector, xi = Vmyi, can be
taken as approximations of an eigenpair of A. Typically, only a small percentage
of the m approximations are good. This can be assessed by means of the residual
norm for the Ritz pair, which turns out to be very easy to compute:

‖Axi −λixi‖2 = ‖AVmyi −λiVmyi‖2 = ‖(AVm −VmTm)yi‖2 = βm+1|e∗myi|. (5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

406 V. Hernandez, J.E. Roman, and A. Tomas

2.2 Lanczos in Finite Precision Arithmetic

When implemented in finite precision arithmetic, the Lanczos algorithm does
not behave as expected. The eigenvalues of the tridiagonal matrix Tj (the Ritz
values) converge very rapidly to well-separated eigenvalues of matrix A, typ-
ically those in the extreme of the spectrum. However, if enough iterations of
the algorithm are carried out, then multiple copies of these Ritz values appear,
beyond the multiplicity of the corresponding eigenvalue in A. In addition, the
process gives wrong Ritz values as converged, which are usually called spurious
eigenvalues. It can be observed that this unwanted behavior appears at the same
time that the Lanczos vectors start to lose mutual orthogonality. Lanczos himself
was already aware of this problem and suggested to explicitly orthogonalize the
new Lanczos vector with respect to all the previous ones at each step. Although
effective, this costly operation seems to invalidate all the appealing properties of
the algorithm. Other alternatives, discussed below, have been proposed in order
to be able to deal with loss of orthogonality at less cost.

Full Orthogonalization. The simplest cure to loss of orthogonality is to orthogo-
nalize vector uj+1 explicitly with respect to all the previously computed Lanczos
vectors. That is, performing the computation for all vectors, including the first
j − 2 ones for which the Fourier coefficient is zero in exact arithmetic.

The main advantage of full orthogonalization is its robustness, since orthog-
onality is maintained to full machine precision. (Note that for this to be true it
may be necessary to resort to double orthogonalization, see subsection 2.4.) The
main drawback of this technique is that the cost of orthogonalization is high
and grows as more Lanczos steps are carried out. This recommends a restarted
version, in which the number of Lanczos vectors is bounded, see section 2.3.

Local Orthogonalization. The quest for more efficient solutions to the problem of
loss of orthogonality started with a better theoretical understanding of the Lanc-
zos process in finite precision arithmetic, unveiled by Paige’s work [8,2,9]. One
key aspect of Paige’s analysis is that Lanczos vectors start to lose orthogonality
as soon as an eigenvalue of Tj stabilizes or, in other words, when a Ritz value is
close to convergence, causing the subsequent Lanczos vectors to contain a non-
negligible component in the direction of the corresponding Ritz vector. Until
this situation occurs, the Lanczos algorithm with local orthogonalization (that
is, if vector uj+1 is orthogonalized only with respect to vj and vj−1) computes
the same quantities as the variant with full orthogonalization. This fact suggests
that an algorithm could proceed with local orthogonalization until an eigenvalue
of Tj has stabilized, then either start a new Lanczos process with a different
initial vector, or continue the Lanczos process with the introduction of some
kind of reorthogonalization. The latter approach gave way to the development
of semiorthogonal Lanczos methods, discussed below.

A completely different approach is to simply ignore loss of orthogonality and
perform only local orthogonalization at every Lanczos step. This technique is
obviously the cheapest one, but has several important drawbacks. For one thing,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers 407

convergence of new Ritz values is much slower since multiple copies of already
converged ones keep on appearing again and again. This makes it necessary to
carry out many Lanczos steps to obtain the desired eigenvalues. On the other
hand, there is the problem of determining the correct multiplicity of the com-
puted eigenvalues as well as discarding those which are spurious. A clever tech-
nique for doing this was proposed in [10]. An eigenvalue of Tj is identified as
being spurious if it is also an eigenvalue of the matrix T ′

j, which is constructed
by deleting the first row and column of Tj. Furthermore, good eigenvalues are
accepted only after they have been replicated at least once.

Semiorthogonal Techniques. As mentioned above, the idea of these techniques is
to perform explicit orthogonalization only when loss of orthogonality is detected.
Two aspects are basic in this context:

1. How to carry out the orthogonalization so that the overall cost is small.
2. How to determine when an eigenvalue has stabilized or, in other words, how

to monitor loss of orthogonality, without incurring a high cost.

With respect to the first aspect, several different approaches have been proposed:
selective [11], periodic [12], and partial [13] reorthogonalization. In brief, they
consist, respectively, in: orthogonalizing every Lanczos vectors with respect to
all nearly converged Ritz vectors; orthogonalizing uj+1 and uj+2 with respect
to all the Lanczos vectors; and orthogonalizing uj+1 and uj+2 with respect to a
subset of the Lanczos vectors. The second aspect can be addressed in two ways,
basically. One is to compute the error bounds associated to the Ritz pairs (Eq. 5)
at each iteration, and the other is to use a recurrence for estimating a bound
of the level of orthogonality, such as the one proposed by Simon in [13]. If we
define the level of orthogonality at the j-th Lanczos step as

ωj ≡ max
1≤k<j

|ωj,k| , with ωj,k ≡ v∗j vk , (6)

then the full orthogonalization technique keeps it at roundoff level in each step,
ωj ≈ εM . However, all that effort is not necessary since, as shown in [13,14],
maintaining semiorthogonality, i.e. ωj ≈ √

εM , is sufficient so that properties of
the Rayleigh-Ritz projection are still valid.

2.3 Explicit Restart

As mentioned above, restarting is intended for reducing the storage requirements
and, more importantly, reducing the computational cost of orthogonalization,
which grows as more Lanczos vectors become available. Restart can be accom-
plished in several ways. The idea of explicit restart is to iteratively compute
different m-step Lanczos factorizations (Eq. 2) with successively “better” initial
vectors. The initial vector for the next Lanczos run is computed from the in-
formation available in the most recent factorization. The simplest way to select
the new initial vector is to take the Ritz vector associated to the first wanted,
non-converged Ritz value.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

408 V. Hernandez, J.E. Roman, and A. Tomas

In order for a restarted method to be effective, it is necessary to keep track of
already converged eigenpairs and perform a deflation, by locking converged Ritz
vectors. Suppose that after a Lanczos run, the first k eigenpairs have already
converged to the desired accuracy, and write Vm as

Vm =
[
V

(l)
1:k V

(a)
k+1:m

]
, (7)

where the (l) and (a) superscripts indicate locked and active vectors, respectively.
In the next Lanczos run, only m − k Lanczos vectors must be computed, the
active ones, and in doing this the first k vectors have to be deflated. This can be
done simply by orthogonalizing every new Lanczos vector also with respect to
the locked ones. Therefore, deflation can be incorporated to Algorithm 1 simply
by explicitly including locked vectors in the orthogonalization operation. With
this change, a restarted Lanczos method can be described as in Algorithm 2.

Algorithm 2. Explicitly Restarted Lanczos
Input: Matrix A, initial vector v1 of norm 1, and dimension of the subspace m
Output: A partial eigendecomposition AVk = VkΘk, with Θk = diag(θ1, . . . , θk)

Initialize k = 0
Restart loop

Perform m − k steps of Lanczos (Algorithm 1) with initial vector vk+1
Compute eigenpairs of Tm, Tmyi = yiθi

Compute residual norm estimates, τi = βm+1|e∗myi|
Lock converged eigenpairs
Vm = VmY

end

In a restarted Lanczos method, it is also necessary to deal with loss of orthog-
onality. In the case of the simple explicit restart scheme, it is safe to use any of
the techniques described in the previous subsection, since full orthogonality of
the Lanczos vectors is not required for the restart to work correctly. Only in the
case of local orthogonalization, the following considerations should be made:

– The restart vector has to be orthogonalized with respect to locked vectors.
– Since the value of m (the largest allowable subspace dimension) is usually

very small compared to n (the matrix dimension), then the heuristics sug-
gested in [10] cannot be applied. Therefore, another technique should be used
in order to discard spurious eigenvalues as well as redundant duplicates.

2.4 Gram-Schmidt Orthogonalization

Gram-Schmidt procedures are used for orthogonalizing a vector uj+1 with re-
spect to a set of vectors Vj . In finite precision arithmetic, simple versions such
as Classical Gram-Schmidt (CGS) or Modified Gram-Schmidt (MGS) will not
be reliable enough in some cases, and may produce numerical instability. This
problem can be solved by introducing refinement, that is, to take the resulting

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers 409

vector and perform a second orthogonalization. In exact arithmetic, the Fourier
coefficients of the second orthogonalization (c1:j,j) are zero and therefore it has
no effect. However, this is not the case in finite precision arithmetic, where those
coefficients can be thought of as a correction to coefficients of the first orthogo-
nalization (h1:j,j), which is not necessarily small.

In cases where large rounding errors have not occurred in first place, refine-
ment is superfluous and could be avoided. In order to determine whether the
computed vector is good enough or requires a refinement, it is possible to use a
simple criterion such as

βj+1 < η ρ (8)

for some constant parameter η < 1 (a safe value is η = 1/
√

2). This criterion
compares the norm of uj+1 before (ρ) and after (βj+1) orthogonalization. An
orthogonalization procedure based on this scheme is illustrated in Algorithm 3.
For further details about iterative Gram-Schmidt procedures, see [15,16].

Algorithm 3. CGS with selective refinement and estimated norm
h1:j,j = V ∗

j uj+1

ρ = ‖uj+1‖2
uj+1 = uj+1 − Vjh1:j,j

βj+1 =
√

ρ2 −
∑j

i=1 h2
i,j

if βj+1 < η ρ
c1:j,j = V ∗

j uj+1

σ = ‖uj+1‖2
uj+1 = uj+1 − Vjc1:j,j
h1:j,j = h1:j,j + c1:j,j

βj+1 =
√

σ2 −
∑j

i=1 c2
i,j

end

A similar orthogonalization scheme might be considered for the MGS variant.
However, the resulting numerical quality is about the same, as pointed out in [15].
In this work, we do not consider MGS variants since they lead to poor parallel
performance.

In the context of parallel implementations, orthogonalization is usually the
operation that introduces more performance penalty. In order to reduce this ef-
fect, the number of synchronizations should be reduced whenever possible. One
possibility for this is to defer the normalization of the vector to the next Lanczos
step, as proposed in [17]. Algorithm 3 tries to optimize parallel performance by
means of estimation of the norm. The main objective of this technique is to avoid
the explicit computation of the Euclidean norm of uj+1 and, instead, use an es-
timation based on the original norm (prior to the orthogonalization), by simply
applying the Pythagorean theorem. The original norm is already available, since
it is required for the selective refinement criterion, and can be computed more
efficiently in parallel since its associated reduction is susceptible of being inte-
grated in a previous reduction (that is, with one synchronization less). More
details about these techniques can be found in [18].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

410 V. Hernandez, J.E. Roman, and A. Tomas

3 Lanczos Methods in SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations [4], is a
software library for the solution of large, sparse eigenvalue problems on parallel
computers. It can be used for the solution of problems formulated in either
standard or generalized form, both Hermitian and non-Hermitian, with either
real or complex arithmetic. SLEPc provides a collection of eigensolvers such as
Arnoldi, Lanczos, Subspace Iteration and Power/RQI. It also provides built-in
support for different types of problems and spectral transformations such as the
shift-and-invert technique.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scientific
Computation, [19]), a parallel framework for the numerical solution of partial dif-
ferential equations, whose approach is to encapsulate mathematical algorithms
using object-oriented programming techniques in order to be able to manage
the complexity of efficient numerical message-passing codes. In PETSc, the ap-
plication programmer works directly with objects such as vectors and matrices,
rather than concentrating on the underlying data structures. Built on top of
this foundation are various classes of solver objects, including linear, nonlinear
and time-stepping solvers. SLEPc extends PETSc with all the functionality nec-
essary for the solution of eigenvalue problems, and thus inherits all the good
properties of PETSc, including portability, scalability, efficiency and flexibility.
SLEPc also leverages well-established eigensolver packages such as ARPACK,
integrating them seamlessly.

As of version 2.3.0, SLEPc provides a symmetric Lanczos eigensolver, which
is based on explicit restart and allows the user to select among several types
of reorthogonalization strategies. In SLEPc, these strategies are referred to as
local, full, selective, periodic, and partial, and are related to the tech-
niques described in section 2. However, the implementations slightly differ from
the originally proposed techniques due to the implications of having a restarted
algorithm.

In the case of local orthogonalization, the post-processing technique proposed
in [10] cannot be used in the context of a restarted method, because of the
relatively small size of matrix Tm. The approach taken in SLEPc is to explicitly
compute the residual norm for every converged eigenpair, then from the correct
values accept only the first replica in each restart. Although this may seem a very
costly strategy, results show that the incurred overhead is small (see section 5).

In the case of selective orthogonalization, there are two possible approaches in
the context of a restarted method. The first one, used in [20], is to exit the Lanc-
zos loop as soon as an eigenvalue has converged. This provokes the computation
of the corresponding Ritz vector which will be used for deflation in subsequent
restarts. The other approach is to run the Lanczos process completely up to
the maximum subspace dimension, managing the loss of orthogonality with the
selective orthogonalization technique. The latter is the approach implemented
in SLEPc since, to our experience, it is faster in terms of overall convergence.

With respect to periodic and partial reorthogonalization, in both cases we use
Simon’s recurrence for monitoring loss of orthogonality [13]. The difference with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers 411

a non-restarted method is that in our implementation in all Lanczos steps the
current vector is orthogonalized explicitly with respect to locked vectors, that is,
the vectors used for deflation are not considered in the recurrence for monitoring
loss of orthogonality. A better approach would be to do this explicit deflation
only when necessary, as in [21]. This issue is proposed as future work.

All these orthogonalization strategies employ CGS with selective refinement
and estimated norm, as described in section 2. Additionally, we allow a second
refinement that may slightly improve numerical robustness in some cases and
makes it possible to detect linear dependence of the Lanczos vectors.

4 Numerical Results

In this section, we consider an empirical test with a battery of real-problem ma-
trices using the implementation referred to in section 3 with standard double
precision arithmetic. The analysis consists in measuring the level of orthogonal-
ity and the residual norm when computing the 10 largest eigenvalues of every
symmetric matrix from the Harwell-Boeing collection [22]. These 67 matrices
come from a variety of real problems and some of them are particularly chal-
lenging for eigenvalue computation. For this test, the solvers are configured with
tolerance equal to 10−7 and a maximum of 50 basis vectors.

The level of orthogonality is defined as the maximum value of ‖I − V ∗
mVm‖F

at each restart, and the residual norm is computed as the maximum of ‖Ax −
λx‖2/‖λx‖2 for every converged eigenvalue.

The results of these tests are shown in Figures 1 and 2, where each dot corre-
sponds to one matrix from the collection. As expected, the algorithm with full
orthogonalization maintains the orthogonality level close to full machine pre-
cision and the algorithm with local orthogonalization does not guarantee the
orthogonality among Lanczos vectors. The semiorthogonal methods (selective,
periodic and partial) have a good level of orthogonality, in all cases between full
and half machine precision. Another remarkable conclusion that can be drawn
from these results is that the Gram-Schmidt procedure with iterative refinement
and estimated norm described in subsection 2.4 is a well-suited orthogonalization
scheme for these algorithms.

5 Performance Analysis

In order to compare the parallel efficiency of the proposed Lanczos variants,
several test cases were analyzed in a cluster platform. This machine consists of 55
biprocessor nodes with Pentium Xeon processors at 2.8 GHz interconnected with
an SCI network in a 2-D torus configuration. Only one processor per node was
used in the tests reported in this section. The solver was requested to compute
10 eigenvalues with tolerance equal to 10−7 using a maximum of 50 basis vectors.

Two types of tests were considered. On one hand, matrices arising from real
applications were used for measuring the parallel speed-up. These matrices are
listed in Table 1 and are taken from the University of Florida Sparse Matrix

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

412 V. Hernandez, J.E. Roman, and A. Tomas

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

Fig. 1. Level of orthogonality and residual norm for Lanczos with full (top) and local
(bottom) orthogonalization. In the horizontal axis, each point represents a test case.

Collection [23]. This speed-up is calculated as the ratio of elapsed time with p
processors to the elapsed time with one processor corresponding to the fastest
algorithm. This latter time always corresponds to the local orthogonalization
variant (including the post-process) as Table 1 shows. On the other hand, a syn-
thetic test case was used for analyzing the scalability of the algorithms, measur-
ing the scaled speed-up (with variable problem size) and Mflop/s per processor.
For this analysis, a tridiagonal matrix was used, with a dimension of 10, 000×p,
where p is the number of processors.

As Figure 3 illustrates, all algorithms show overall good parallel performance.
However, the selective reorthogonalization algorithm has poorer performance
with a large number of processor than the rest. This is due to the extra synchro-
nizations needed to perform the deflation against converged Ritz vectors in each
iteration, which cannot be combined with the other orthogonalizations. Also,
because of the deflation against locked vectors needed by the explicit restart

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers 413

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

Fig. 2. Level of orthogonality and residual norm for the Lanczos algorithm with selec-
tive (top), periodic (center) and partial (bottom) reorthogonalization. In the horizontal
axis, each point represents a test case.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

414 V. Hernandez, J.E. Roman, and A. Tomas

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors

NASASRB

Ideal
Full

Local
Selective
Periodic

Partial

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50
S

pe
ed

-u
p

Number of processors

SHIPSEC8

Ideal
Full

Local
Selective
Periodic

Partial

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors

AF_SHELL1

Ideal
Full

Local
Selective
Periodic

Partial

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors

AUDIKW_1

Ideal
Full

Local
Selective
Periodic

Partial

Fig. 3. Measured speed-up for test matrices

Table 1. Properties of test matrices and elapsed time in seconds with one processor

Test matrix Elapsed time

Name Order Non-zeros Full Local Selective Periodic Partial

NASASRB 54,870 2,677,324 29.19 17.49 18.64 27.52 26.85

SHIPSEC8 114,919 3,303,553 6.79 4.28 5.49 5.63 5.58

AF SHELL1 504,855 17,562,051 126.89 76.03 82.08 117.18 116.97

AUDIKW 1 943,695 77,651,847 55.87 43.90 61.29 51.21 51.03

scheme, the partial and periodic algorithms have no practical advantage over
the full orthogonalization variant. The local orthogonalization scheme has the
best performance in these tests in spite of having a post-processing phase and
an additional reorthogonalization for the restart vector.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers 415

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
ca

le
d

sp
ee

d-
up

Number of processors

Ideal
Full

Local
Selective
Periodic

Partial

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25 30 35 40 45 50

M
flo

p/
s

pe
r

pr
oc

es
so

r
Number of processors

Full
Local

Selective
Periodic

Partial

Fig. 4. Measured scaled speed-up and Mflop/s for synthetic matrix

The results in Figure 4 show overall good speed-up in all alternatives. The
selective reorthogonalization algorithm has the lowest Mflops/s rate due to the
extra synchronizations needed. In the rest of algorithms, the Mflops/s rate im-
proves as the average number of vectors involved in the orthogonalization grows.

6 Conclusions

In this work, an explicit restarting scheme has been applied to different Lanc-
zos variants. The orthogonalization of vectors in these algorithms is done with
an optimized version of CGS with selective refinement. All the implemented
algorithms are numerically robust for the considered test cases.

The performance results presented in section 5 show that the algorithms
achieve good parallel efficiency in all the test cases analyzed, and scale well
when increasing the number of processors. The best algorithm will depend on
the application, so testing different alternatives is often useful. Thanks to the
object-oriented structure of SLEPc, the user can try different Lanczos variants
without even having to recompile the application.

References

1. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Nat. Bur. Standards 45 (1950)
255–282

2. Paige, C.C.: Error analysis of the Lanczos algorithm for tridiagonalizing a sym-
metric matrix. J. Inst. Math. Appl. 18(3) (1976) 341–349

3. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Anal. Appl. 13 (1992) 357–385

4. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Trans. Math. Software 31(3) (2005)
351–362

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

416 V. Hernandez, J.E. Roman, and A. Tomas

5. Grimes, R.G., Lewis, J.G., Simon, H.D.: A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl.
15(1) (1994) 228–272

6. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood
Cliffs, NJ (1980) Reissued with revisions by SIAM, Philadelphia, 1998.

7. Nour-Omid, B.: The Lanczos algorithm for solution of large generalized eigenprob-
lem. In Hughes, T.J.R., ed.: The Finite Element Method. Prentice-Hall, Englewood
Cliffs, USA (1987) 582–630

8. Paige, C.C.: Computational variants of the Lanczos method for the eigenproblem.
J. Inst. Math. Appl. 10 (1972) 373–381

9. Paige, C.C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric
eigenproblem. Linear Algebra Appl. 34 (1980) 235–258

10. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigen-
value Computations. Vol. 1: Theory. Birkhaüser, Boston, MA (1985) Reissued by
SIAM, Philadelphia, 2002.

11. Parlett, B.N., Scott, D.S.: The Lanczos algorithm with selective orthogonalization.
Math. Comp. 33 (1979) 217–238

12. Grcar, J.F.: Analyses of the Lanczos algorithm and of the approximation problem
in Richardson’s method. Technical Report 1074, Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, Illinois (1981)

13. Simon, H.D.: The Lanczos algorithm with partial reorthogonalization. Math.
Comp. 42(165) (1984) 115–142

14. Simon, H.D.: Analysis of the symmetric Lanczos algorithm with reorthogonaliza-
tion methods. Linear Algebra Appl. 61 (1984) 101–132

15. Hoffmann, W.: Iterative algorithms for Gram-Schmidt orthogonalization. Com-
puting 41(4) (1989) 335–348

16. Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics, Philadelphia (1996)

17. Kim, S.K., Chronopoulos, A.T.: A class of Lanczos-like algorithms implemented
on parallel computers. Parallel Comput. 17(6–7) (1991) 763–778

18. Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi eigensolvers with en-
hanced scalability via global communications rearrangement. submitted (2006)

19. Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C.,
Smith, B., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revi-
sion 2.3.1, Argonne National Laboratory (2006)

20. Szularz, M., Weston, J., Clint, M.: Explicitly restarted Lanczos algorithms in an
MPP environment. Parallel Comput. 25(5) (1999) 613–631

21. Cooper, A., Szularz, M., Weston, J.: External selective orthogonalization for the
Lanczos algorithm in distributed memory environments. Parallel Comput. 27(7)
(2001) 913–923

22. Duff, I.S., Grimes, R.G., Lewis, J.G.: Sparse matrix test problems. ACM Trans.
Math. Software 15(1) (1989) 1–14

23. Davis, T.: University of Florida Sparse Matrix Collection. NA Digest (1992)
Available at http://www.cise.ufl.edu/research/sparse/matrices.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PyACTS: A High-Level Framework for Fast

Development of High Performance Applications

L.A. Drummond1, V. Galiano2, O. Marques1, V. Migallón3, and J. Penadés3

1 Lawrence Berkeley National Laboratory
One Cyclotron Road, MS 50F-1650

Berkeley, California 94720, USA
LADrummond@lbl.gov, OAMarques@lbl.gov

2 Departamento de F́ısica y Arquitectura de Computadores
Universidad Miguel Hernández
03202 Elche, Alicante, Spain

vgaliano@umh.es
3 Departamento de Ciencia de la Computación e Inteligencia Artificial

Universidad de Alicante, 03071 Alicante, Spain
violeta@dccia.ua.es, jpenades@dccia.ua.es

Abstract. Software reusability has proven to be an effective practice
to speed-up the development of complex high-performance scientific and
engineering applications. We promote the reuse of high quality software
and general purpose libraries through the Advance CompuTational Soft-
ware (ACTS) Collection. ACTS tools have continued to provide solu-
tions to many of today’s computational problems. In addition, ACTS
tools have been successfully ported to a variety of computer platforms;
therefore tremendously facilitating the porting of applications that rely
on ACTS functionalities. In this contribution we discuss a high-level user
interface that provides a faster code prototype and user familiarization
with ACTS tools. The high-level user interfaces have been built using
Python. Here we focus on Python based interfaces to ScaLAPACK, the
PyScaLAPACK component of PyACTS. We briefly introduce their use,
functionalities, and benefits. We illustrate a few simple example of their
use, as well as exemplar utilization inside large scientific applications.
We also comment on existing Python interfaces to other ACTS tools.
We present some comparative performance results of PyACTS based
versus direct LAPACK and ScaLAPACK code implementations.

1 Introduction

The development of high performance engineering and scientific applications is
an expensive process that often requires specialized support and adequate infor-
mation about the available computational resources and software development
tools. The development effort is increased by the complexity of the phenom-
ena that can be addressed by numerical simulation, along with the increase and
evolution of computing resources. We promote high-quality and general purpose
software tools that provide a plethora of computational services to the growing
computational sciences community.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 417–425, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

418 L.A. Drummond et al.

The Advanced CompuTational Software (ACTS) Collection [1, 2, 3] is a set
of computational tools developed primarily at DOE laboratories and is aimed at
simplifying the solution of common and important computational problems. The
use of the tools reduces the development time for new codes and the tools provide
functionality that might not otherwise be available. All this potential cannot be
achieved, however, if the tools are not used effectively or not used at all. For this
reason, we look at creating didactic frameworks to help scientists and engineers
deploy the ACTS functionality. Thus, our intent with PyACTS is not to substi-
tute tool interfaces but rather provide a self-learning mechanisms for tool users
to familiarize themselves with ACTS tools, their interfaces and functionality.

In this article, we will focus on PyScaLAPACK by introducing its use in
simple ScaLAPACK calls, and also in large scientific applications. These exam-
ples are followed by some performance results. We later reference other Python
implementations that interface tools in the ACTS Collection.

2 Why Python?

Python [4] is an interpreted, interactive, object-oriented programming language.
Python combines remarkable power with very clear syntax. It has modules,
classes, exceptions, very high level dynamic data types, and dynamic typing.
There are interfaces to many system calls and libraries, as well as to various
windowing managing systems. New built-in modules are easily written in C or
C++. Early performance numbers on some components of PyACTS [5] have
demonstrated a low overhead induced by the use of the Python-based high-level
interface. However, there is a substantial gain in the simplification of tool inter-
faces because call to the PyACTS interfaces contain only high-level objects that
are familiar to the user, for instance a matrix A associated with a linear system
Ax = b, rather than the matrix A and all the computational parameters asso-
ciated with the performance of the algorithm. In fact, the PyACTS interfaces
generate all the other extra information necessary to actually call the ACTS
tool and exploit the tools high-performance capabilities. This extra information
includes data pertaining to the parallel environment, tool optimization, specific
data distributions and storage techniques, etc.

Notice that the use of Python allows not only for a user friendlier environ-
ment but also to easily implement interoperable interfaces between these tools,
and easily maintain different versions of the tools as the tools continue to evolve
independently. In summary, PyACTS aims at easing the learning curve, hide
performance and tuning parameters from beginner users while supporting inter-
operable interfaces as individual tools continue to evolve.

3 Software Tools

ACTS tools tackle a number of common computational issues found in many
applications, mainly implementation of numerical algorithms, and support for
code development, execution and optimization. The ever increasing number of
users of Python has motivated tool developers to include Python interfaces. In

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PyACTS: A High-Level Framework for Fast Development 419

PYTHON INTERPRETER: pyMPI

PyACTS

PySuperLU
Module

PyBLACS
Module

PyScaLAPACK
Module

Tools
init, read,
write, ...

PySuperLU
Wrapper

PyBLACS
Wrapper

PyScaLAPACK
Wrapper

SuperLU Libraries
(seq, shared,dist)

Numerical
Python

Python
World

ScaLAPACK
(libscalapack.a)

PyPBLAS
Module

PyPBLAS
Wrapper

BLACS

MPI

BLAS LAPACK

PyACTS.so

Fig. 1. Main components of PyACTS. The flexible infrastructure allows for easily ad-
dition of new modules or versions of the different ACTS Tools.

this article we focus on the PyACTS interface to ScaLAPACK [6]. Figure 1 illus-
trates the overall structure of the PyACTS framework which includes interfaces
to other tools in the Collection (the reader is referred to http://acts.nersc.gov
for a full list of tools in the ACTS Collection).

In its current implementation, PyACTS uses Numeric and RandomArray
from Numpy [7] to implement and handle array objects. In addition, we use
pyMPI [8] to implement and handle the parallelism.

Another relevant aspect of PyACTS is that it facilitates high-level interoper-
able interfaces between the different tools in the ACTS Collection since objects
(e.g., a given matrix in a particular storage format) from one library can be
internally converted to objects that are used by another library. Some develop-
ers of ACTS tools have also implemented their own Python interfaces, and in
the future PyACTS will interface with them. Instances of such implementations
include the Python interface to PETSc [9], PyTrilinos [10], a Python based in-
terface to selected packages in the Trilinos framework, and a Python interface
to ODE solvers in SUNDIALS [11].

3.1 Introduction to PyScaLAPACK

ScaLAPACK is a library of high-performance linear algebra routines for
distributed memory message-passing computers. It complements the LAPACK
library [12], which provides analogous software for workstations, vector super-
computers, and shared-memory parallel computers. ScaLAPACK contains

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

420 L.A. Drummond et al.

routines for solving systems of linear equations, least squares, eigenvalue prob-
lems and singular value problems. It also contains routines that handle many
computations related to those, such as matrix factorizations or estimation of
condition numbers. We refer the reader to [6] for a comprehensive list of refer-
ences, including working notes that discuss implementation details.

PyScaLAPACK is our Python based high-level interface to ScaLAPACK. In
order to implement the PyScaLAPACK interface, we have also implemented
PyBLACS and PyPBLAS [5]. Notice that PyBLACS, PyPBLAS and PyScaLA-
PACK are only interfaces to the original BLACS, PBLAS and ScaLAPACK, re-
spectively. We did not rewrite the original versions of these libraries, but instead
aggregated high-level interfaces that hides some of the complexities encountered
by users of the original libraries that are not familiar with parallel computing,
linear algebra or matrix computations. Additionally, ScaLAPACK users can call
other ACTS Tools using PyACTS.

PyScaLAPACK, PyBLACS and PyPBLAS user interfaces do not directly in-
clude arguments like the leading dimensions or manipulations to the processor
grids. These are generated automatically for the user, along with the corre-
sponding block-cyclic distributions and then passed to the ScaLAPACK library.
Therefore, it significantly simplifies the interface for the scientific or engineering
application developer.

4 Examples of PyScaLAPACK Utilization

In this section we will look at how to use the PyScaLAPACK interface through
a set of simple calls to ScaLAPACK (we assume the reader is familiar with the
ScaLAPACK library or refer to [6] for more information).

We begin with our simple example in ScaLAPACK. To show the performance,
we present in Figure 2 the results for the routines PSGESV and PDGESVD. We
have used the routine PSGESV to compute the solution of a simple precision
system of linear equations Ax = b, where A ∈ IRn×n and x, b ∈ IRn. The
routine PDGESVD has been used to compute the singular value decomposition
(SVD) of a square double precision matrix. ScaLAPACK users need to define
the different variables and descriptors that are associated with the parallel data
layout and environment used by ScaLAPACK. Then, there is a sequence of calls
to BLACS and ScaLAPACK to initialize the environment. In PyScaLAPACK
this is simplified by the use of

PyACTS.gridinit() # Initializes the process grid.
ACTS_LIB = 1 # 1 Identifies ScaLAPACK in PyACTS,

2 is SuperLU, and so on ...
A = num2PyACTS(A, ACTS_lib) # Converts a Numeric Array into

PyScaLAPACK array; A was previously
defined as 2D NumArray.

The call to PyACTS.gridinit resolves automatically to the corresponding ScaLA-
PACK and BLACS routines. Parameters are taken from the input data (e.g.,
number of processor, and command line argument) entered by the user. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PyACTS: A High-Level Framework for Fast Development 421

invocation to num2PyACTS resolves in the creation of the descriptors associ-
ated with A, and they handled internally by PyACTS, and this includes all the
data distribution. Thus the actual call to PDGESVD using ScaLAPACK and
PyScaLAPACK are as follow:

CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO)

and

x,info = PyScaLAPACK.pvgesv(A,B)

Figures 2(a) and 2(b) present an example of performance results obtained in
a Linux Cluster consisting of Pentium IV processors and connected through a
1 Gigabit network switch. In both graphs, we compared the straight Fortran
77 version of ScaLAPACK vs PyScaLAPACK. As it can be seen in the graph,
the overhead induced by the Python infrastructure is rather nominal. Thus,
PyScaLAPACK does not hinder the performance deliverance of ScaLAPACK.

We introduce a few examples of real scientific application codes that can be
easily prototyped or extend its functionality with the use of PyACTS. For each
application we present a summary of the highlights of the PyACTS implemen-
tation and performance results.

4.1 PyClimate: A Set Climate Analysis Tools

PyClimate [13] is a Python based package that provides support to common tasks
during the analysis of climate variability data. It provides functions that range
from simple IO operations and operations with COARDS-compliant netCDF
files to Empirical Orthogonal Function (EOF) analysis, Canonical Correlation

0.00

20.00

40.00

60.00

80.00

100.00

Matrix size

T
im

e
(s

ec
.)

Fortran 1x1 12.00 28.58 53.63 94.52

Python 1x1 11.76 28.31 52.81 93.34

Fortran 2x2 5.03 10.53 18.56 30.33

Python 2x2 6.05 10.27 18.48 31.61

Fortran 3x2 4.34 8.67 15.24 24.82

Python 3x2 4.33 8.73 15.56 24.77

3000 4000 5000 6000

(a) psgesv

0.00

10.00

20.00

30.00

40.00

Matrix size

T
im

e
(s

ec
.)

Fortran 1x1 9.61 15.95 24.17 37.26

Python 1x1 9.80 15.78 24.47 37.90

Fortran 2x2 5.16 7.44 10.59 14.56

Python 2x2 5.28 7.51 10.73 14.60

Fortran 3x2 4.53 6.63 9.14 12.79

Python 3x2 4.75 6.82 9.38 12.90

600 800 1000 1200

(b) pdgesvd

Fig. 2. Performance of PyScaLAPACK vs ScaLAPACK for the ScaLAPACK rou-
tines PSGESV and PDGESVD. (a) uses REAL arithmetic and (b) uses DOUBLE
PRECISION.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

422 L.A. Drummond et al.

Analysis (CCA) and Singular Value Decomposition (SVD) analysis of coupled
data sets, some linear digital filters, kernel based probability-density function es-
timation and access to DCDFLIB.C library from Python. PyClimate uses func-
tionality available in LAPACK.

There has been a growing need for PyClimate to scale-up its functionality
to support parallel and scalable algorithms. Rather than implementing these
new functions from scratch, we collaborate with the PyClimate team to provide
PyScaLAPACK. In this case, PyScaLAPACK integrates well with all the Py-
Climate development and application environment. Here we present an example
concerning a meteorological study by means of the EOF and SVD analysis.

The EOF analysis is widely used to decompose a long-term time series of
spatially observed data set into orthogonal spatial and temporal modes. EOF can
be calculated in a single step using singular value decomposition (SVD) without
constructing either version of the covariance matrix as shown by Kelly in [14].
Concretely, EOFs can be computed, via SVD, after removing the spatial (i.e.,
column) mean from the data matrix at each time step. In this case, the EOFs
decompose the variability of the spatial property gradients rather than variability
of the property itself. These spatial variance EOFs are useful when the purpose
is to investigate the variance associated with features that do not vary strongly
over time. In practical terms, EOFs are a means of reducing the size of a data
set while retaining a large fraction of the variability present in the original data.

PyClimate implements these features in the routine “svdeofs”. An example
of use of this routine can be found in www.pyclimate.org (script: example 1).
This script performs the SVD decomposition after removing the column mean
from the data matrix at each time step. Some other computations are accom-
plished after the SVD decomposition. We have parallelized the aforementioned
script by using both PyScaLAPACK (for the SVD) and PyPBLAS (for the ex-
tra computation). We would like to emphasize that the parallel PyScaLAPACK
script resembles the coding structure of the serial PyClimate one. Moreover, the
PyScaLAPACK version is semantically the parallel implementation of the serial
version, just like the relationships between ScaLAPACK and LAPACK. All this
is done in a manner that is almost-transparent to the user.

The data sets used in our experiments correspond to air temperature in a
2.5◦ latitude × 2.5◦ longitude global grid with 144 × 73 points. The first data
set measures the air temperature over 365 days (referred as air.day), and the
second one contains measures over the mean of 694 months (referred as air.mon),
obtained both from the Climate Diagnostics Center.

In Figure 3 we show the computational times obtained for the sequential ver-
sion (using PyClimate) and for the parallel version (using our proposed inter-
faces) for different number of processors. Figure 3(a) corresponds to the air.day
data set, and Figure 3(b) corresponds to the air.month. These results have been
obtained on a cluster of 28 nodes with two Intel Xeon processors (2.4 GHz,
1 GB DDR RAM, 512 KB L2 cache) per node connected via a Myrinet network
(2.0 Gigabit/s). As it can be appreciated, we obtain a substantial reduction of
time when our proposed parallel interfaces are used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PyACTS: A High-Level Framework for Fast Development 423

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Number of processors

T
im

e
(
s
e
c
o
n
d
s
)

60.75 60.99 36.37 20.41 15.45 12.74

Seq. p=1 p=2 p=4 p=8 p=16

(a) Data set: air.day

0.00

50.00

100.00

150.00

200.00

Number of processors

T
im

e
(
s
e
c
o
n
d
s
)

207.28 215.53 130.60 72.56 54.22 32.76 29.25

Seq. p=1 p=2 p=4 p=8 p=16 p=24

(b) Data set: air.mon

Fig. 3. EOF analysis using PyClimate and its parallel version

4.2 Large Inverse Problems in Geo-Physics

In this application we are interested in using singular values and singular vectors
in the solution of large inverse problems that arise in the study of physical mod-
els for the internal structure of the Earth [15, 16]. The Earth is discretized into
layers and the layers into cells, and travel times of sound waves generated by
earthquakes are used to construct the corresponding physical models. Basically,
we deal with an idealized linear equation relating arrival time deviations to per-
turbations in Earth’s structure. The underlying discretization lead to very large
sparse matrices whose singular values and singular vectors are then computed
and used in the solution of the associated inverse problems. They are also used
to estimate uncertainties. In one phase of these calculations we need to solve a
(block) symmetric tridiagonal eigenvalue problem that arises in the context of
a (block) Lanczos-based algorithm. This is done in a post processing phase us-
ing ScaLAPACK, which requires the block-cyclic distribution of the tridiagonal
matrix and the corresponding eigenvectors.

First, Table 1 presents some results of interactive runs comparing the
PyScaLAPACK version of the code against the original Fortran implementation
that uses the original ScaLAPACK. The runs were performed in an IBM SP
Power 3, 350 MHz per processors, and each node has 16 processors. In the tests
shown in Table 1, we noticed the slight influence of the Python interpreter in the
timings. In this example we have called the ScaLAPACK subroutine P

¯
SSYEV,

which computes the eigenvalues and corresponding eigenvectors of a symmetric
matrix A. In Table 1, we show the results for three different sizes of A, 1000,
5000 and 7500. The overhead introduced by Python is currently under study and
we will try to use a different MPI-Python implementation on the IBM system.
Nevertheless, if we take a look at the original calls to ScaLAPACK from the For-
tran code versus the PyScaLAPACK, we observe a significant simplification of
the user interface. As in the previous examples, there is already a simplification
at the level of declarations of variables, data distribution and initialization of
the parallel environment. The Fortran call to PSSYEV

¯
looks like this:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

424 L.A. Drummond et al.

Table 1. Performance Results Earth Science applications using ScaLAPACK (left)
and PyScaLAPACK (right)

Number of Matrix Size
Processors 1000 5000 7500

4 9.00 10.22 671.79 816.67 - -

8 6.72 9.05 339.39 428.72 - -

16 6.41 8.19 188.37 195.10 713.05 850.12

CALL PSSYEV(’V’,’L’,N,A,1,1,DESCA,S,X,1,1,DESCY,WORK,LWORK,INFO)

and the PyScaLAPACK version:

s,x,info= PyScaLAPACK.pvsyev(a_ACTS,jobz=’V’)

Further, there are two calls to P
¯
SSYEV in the original Fortran code. The first

one precomputes the size of the work array. In the PyScaLAPACK all these
details are hidden from the user and performed internally by PyScaLAPACK.

Comparing the PyClimate and the Earth Sciences application we notice that
in the case of PyClimate, not only we obtain a simplified and friendlier interface
but also a parallel version of the code. In the Earth Sciences case, the Fortran
code already calls ScaLAPACK and as shown in Table 1 the code shows some
speed ups even for the small problem sizes. The benefit in the latter application
is seen at the level of the interface.

5 Conclusions

PyACTS aims at easing the learning curve, hide performance and tuning param-
eters from beginner users while supporting interoperable interfaces as individual
tools continue to evolve. In addition, PyACTS reduces the time users spend
prototyping and deploying high-end software tools like the ones in the ACTS
Collection. The results shown in the previous graphs and examples show not
only the many advantages of using the simplified interfaces but also that there
are not major performance degradations by using the PyScaLAPACK interface.

One item of our future work will consist in replacing the MPI interface with
a more scalable version of MPI for Python. Furthermore, PyACTS will guide its
users via a scriber that produces Fortran or C language code from the PyACTS
high-level commands. Then, the user will can use the PyACTS generated Fortran
or C language code pieces for generating production codes in either language.

The Python interfaces PyACTS, as well as some examples, a user guide ref-
erence and the PyACTS prerequisites are available at www.pyacts.org.

Acknowledgements

This research was partially supported by the Spanish Ministry of Science and
Education under grant number TIN2005-093070-C02-02, and by Universidad de
Alicante under grant number VIGROB-020.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PyACTS: A High-Level Framework for Fast Development 425

References

[1] Drummond, L.A., Marques, O.A.: An overview of the Advanced CompuTational
Software (ACTS) Collection. ACM Transactions on Mathematical Software 31
(2005) 282–301

[2] Boisvert, R.F., Drummond, L.A., Marques, O.A.: Introduction to the special issue
on the Advanced CompuTational Software (ACTS) Collection. ACM Transactions
on Mathematical Software 31 (2005) 281

[3] Drummond, L.A., Marques, O.: The Advanced Computational Testing and Sim-
ulation Toolkit (ACTS): What can ACTS do for you? Technical Report LBNL-
50414, Lawrence Berkeley National Laboratory (2002)

[4] G. van Rossum, F.D.J.: An Introduction to Python. Network Theory Ltd (2003)
[5] Drummond, L.A., Galiano, V., Migallón, V., Penadés, J.: Improving ease of use

in BLACS and PBLAS with Python. In: Joubert G.R., Nagel W.E., Peters F.J.,
Plata O., Tirado P., Zapata E., editors. Parallel Computing: Current & Future Is-
sues of High-End Computing (Proceedings of the International Conference ParCo
2005), NIC Series Volume 33 ISBN 3-00-017352-8.

[6] Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.W., Dhillon, I.,
Dongarra, J.J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C.: ScaLAPACK User’s Guide. SIAM, Philadelphia, Pennsylvania
(1997)

[7] Ascher, D., Dubois, P.F., Hinsen, K., Hugunin, J., Oliphant, T.: An Open
Source Project: Numerical Python. Technical Report http://numeric.scipy.org/
numpydoc/numpy.html, Lawrence Livermore National Laboratory (2001)

[8] Miller, P.: An Open Source Project: Numerical Python. Technical Report UCRL-
WEB-150152, Lawrence Livermore National Laboratory (2002)

[9] Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., McInnes,
L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report ANL-95/11
- Revision 2.1.5, Argonne National Laboratory (2002)

[10] Sala, M.: Distributed Sparse Linear Algebra with PyTrilinos. Technical Report
SAND2005-3835, Sandia National Laboratories (2005)

[11] Gates, M., Lee, S., Miller, P.: User-friendly Python Interface to ODE Solvers.
Technical Report www.ews.uiuc.edu/∼mrgates2/python-ode-small.pdf, Univer-
sity of Illinois, Urbana-Champaign (2005)

[12] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J.W., Dongarra, J.J.,
Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.: LA-
PACK User’s Guide. third edn. SIAM, Philadelphia, Pennsylvania (1999)

[13] Saenz, J., Zubillaga, J., Fernandez, J.: Geophysical data analysis using Python.
Computers and Geosciences 28/4 (2002) 457–465

[14] Kelly, K.: Comment on “Empirical orthogonal function analysis of advanced
very high resolution radiometer surface temperature patterns in Santa Barbara
Channel” by G.S.E. Lagerloef and R.L. Bernstein. Journal of Geohysical Research
93 (1988) 15753–15754

[15] Vasco, D.W., Johnson, L.R., Marques, O.: Global Earth Structure: Inference and
Assessment. Geophysical Journal International 137 (1999) 381–407

[16] Marques, O., Drummond, L.A., Vasco, D.W.: A Computational Strategy for the
Solution of Large Linear Inverse Problems in Geophysics. In: International Parallel
and Distributed Processing Symposium (IPDPS), Nice, France (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://numeric.scipy.org/numpydoc/numpy.html
http://numeric.scipy.org/numpydoc/numpy.html

Sequential and Parallel Resolution of the

Two-Group Transient Neutron Diffusion
Equation Using Second-Degree Iterative

Methods

Omar Flores-Sánchez1,2, Vicente E. Vidal1, Victor M. Garćıa1,
and Pedro Flores-Sánchez3

1 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, España
{oflores, vvidal, vmgarcia}@dsic.upv.es
2 Departamento de Sistemas y Computación

Instituto Tecnológico de Tuxtepec
Av. Dr. Victor Bravo Ahuja, Col. 5 de Mayo, C.P. 68300, Tuxtepec, Oaxaca, México

oflores70@hotmail.com
3 Telebachillerato “El Recreo”

Tierra Blanca, Veracruz, México
pedrofs080374@hotmail.com

Abstract. We present an experimental study of two versions of a
second-degree iterative method applied to the resolution of the sparse
linear systems related to the 3D multi-group time-dependent Neutron
Diffusion Equation (TNDE), which is important for studies of stabil-
ity and security of nuclear reactors. In addition, the second-degree it-
erative methods have been combined with an adaptable technique, in
order to improve their convergence and accuracy. The authors consider
that second-degree iterative methods can be applied and extended to
the study of transient analysis with more than two energy groups and
they might represent a saving in spatial cost for nuclear core simulations.
These methods have been coded in PETSc [1][2][3].

1 Introduction

For design and safety reasons, nuclear power plants need fast and accurate plant
simulators. The centre point of concern in the simulation of a nuclear power
plant is the reactor core. Since it is the source of the energy that is produced in
the reactor, a very accurate model of the constituent processes is needed. The
neutron population into the reactor core is modeled using the Boltzmann trans-
port equation. This three-dimensional problem is modeled as a system of coupled
partial differential equations, the multigroup neutron diffusion equations[4][5],
that have been discretised using a nodal collocation method in space and one-
step Backward-Difference Method in time. The solution of these equations can
involve very intensive computing. Therefore, it is necessary to find effective

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 426–438, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sequential and Parallel Resolution of the Two-Group Transient Neutron 427

algorithms for the solution of the three-dimensional model. The progress in the
area of multiprocessor technology suggests the application of High-Performance
Computing to enable engineers to perform faster and more accurate safety anal-
ysis of Nuclear Reactors [6].

Bru et al in [7] apply two Second-Degree methods [8] to solve the linear system
of equations related to a 2D Neutron-Diffusion equation case. Thus, the main
goal of this paper is the application of those methods and some modifications
that we have proposed to decrease the computational work, but applied to a 3D
real test case.

The outline of the paper is as follows. The mathematical model of the Time-
dependent Neutron Diffusion Equation and its discretisation are described in
Section 2. The second-degree iterative methods are introduced at Section 3. Sec-
tion 4 describes hardware and software platform used. The test case is presented
in Section 5. Section 6 presents a sequential study of the second-degree iterative
methods and the modifications proposed. In Section 7 numerical parallel results
are presented. Finally, we will draw some conclusions in Section 8.

2 Problem Description

Plant simulators mainly consist of two different modules which account for the
basic physical phenomena taking place in the plant: a neutronic module which
simulates the neutron balance in the reactor core, and the evaporation and con-
densation processes. In this paper, we will focus on the neutronic module. The
balance of neutrons in the reactor core can be approximately modeled by the
time-dependent two energy group neutron diffusion equation, which is written
using standard matrix notation as follows[9]:

[v−1]φ̇+ Lφ = (1 − β)Mφ+ χ

K∑

k=1

λkCk (1)

Ċk = βk[νΣf1νΣf2]φ− λkCk, k = 1, . . . ,K (2)

where

L =
[
−∇ · (D1∇) +

∑
a1 +

∑
12 0

−
∑

12 −∇ · (D2∇) +
∑

a2

]
, [v−1] =

[1
v1

0
0 1

v2

]
,

and

M =
[
νΣf1 νΣf2

0 0

]
, φ =

[
φf

φt

]
, χ =

[
1
0

]
,

where

– φ is the neutron flux on each point of the reactor; so, it is a function of time
and position.

– Ck is the concentration of the k-th neutron precursor on each point of the
reactor (it is as well a function of time and position). λkCk is the decay rate
of the k-th neutron precursor.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

428 O. Flores-Sánchez et al.

– K is the number of neutron precursors. βk is the proportion of fission neu-
trons given by transformation of the k-th neutron precursor; β =

∑K
k=1 βk.

– L models the diffusion (−∇ · (D1∇)), absorption (
∑

a1,
∑

a2) and transfer
from fast group to thermal group (

∑
12).

– M models the generation of neutrons by fission.
– ν

∑
fg gives the amount of neutrons obtained by fission in group g.

– v−1 gives the time constants of each group.

To study rapid transients of neutronic power and other space and time phe-
nomena related to neutron flux variations, fast codes for solving these equations
are needed. The first step to obtain a numerical solution of these equations con-
sists of choosing a spatial discretization for equation (1). For this , the reactor
is divided in cells or nodes and a nodal collocation method is applied[10][11].
In this collocation method, neutron flux is expressed as a series of Legendre
Polynomials.

After a relatively standard process (setting boundary conditions, making use
of the orthonormality conditions, using continuity conditions between cells) we
obtain the following systems of ordinary differential equations:

[v−1]ψ̇ + Lψ = (1 − β)Mψ +X

K∑

k=1

λkCk, (3)

Ċk = βk[M11M12]ψ − λkCk, k = 1, . . . ,K, (4)

where unknowns ψ and Ck are vectors whose components are the Legendre
coefficients of φ and Ck in each cell, and L, M , [v−1] are matrices with the
following block structure:

L =
[
L11 0

−L21 L22

]
,M =

[
M11 M12
0 0

]
, v−1 =

[
v−1 0
0 v−1

]
, X =

[
I
0

]
.

Depending on flux continuity conditions imposed among the discretisation
cells of the nuclear reactor, the blocks L11 and L22 can be symmetric or not.
For our test case, these blocks are symmetric positive definite matrices[12], while
blocks L21, M11 and M12 are diagonal.

The next step consists of integrating the above ordinary differential equations
over a series of time interval, [tn, tn+1]. Equation (4) is integrated under the
assumption that the term [M11M12]ψ varies linearly from tn to tn+1, obtaining
the solution Ck at tn+1 expressed as

Cn+1
k = Cn

k e
λkh + βk(ak[M11M12]nψn + bk[M11M12]n+1ψn+1 (5)

where h = tn+1 − tn is a fixed time step size, and the coefficients ak and bk are
given by

ak =
(1 + λkh)(1 − eλkh)

λ2
kh

− 1
λk
, bk =

λkh− 1 + eλkh

λ2
kh

.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sequential and Parallel Resolution of the Two-Group Transient Neutron 429

To integrate (3), we must take into account that it constitutes a system of stiff
differential equations, mainly due to the elements of the diagonal matrix [v−1].
Hence, for its integration, it is convenient to use an implicit backward difference
formula (BDF). A stable one-step BDF to integrate (3) is given by

[v−1]
h

(ψn+1 − ψn) + Ln+1ψn+1 = (1 − β)Mn+1ψn+1 +X

K∑

k=1

λkC
n+1
k (6)

Taking into account equation (5) and the structure of matrices L and M , we
rewrite (6) as the system of linear equations

[
T11 T12
T21 T22

] [
ψn+1

1
ψn+1

2

]
=

[
R11 R12
0 R22

] [
ψn

1
ψn

2

]
+

K∑

k=1

λke
−λkh

[
Cn

k

0

]
, (7)

where

T11 =
1
h
v−1
1 + Ln+1

11 − (1 − β)Mn+1
11 −

K∑

k=1

λkβkbkM
n+1
11 ,

T21 = −Ln+1
21 ,

T12 = −(1 − β)Mn+1
12 −

K∑

k=1

λkβkbkM
n+1
12 ,

T22 =
1
h
v−1
2 + Ln+1

22 ,

R11 =
1
h
v−1
1 +

K∑

k=1

λkβkakM
n
11,

R12 =
K∑

k=1

λkβkakM
n
12, R22 =

1
h
v−1
2 .

Thus, for each time step it is necessary to solve a large and sparse system of
linear equations, with the following block structure:

[
T11 T12
T21 T22

] [
ψ1
ψ2

]
=

[
e1
e2

]
(8)

where the right-hand side depends on both the solution in previous time steps
and the backward difference method used. Usually, the coefficients matrix of
system (8) has similar properties as the matrices L and M in equation (3),
namely blocks T11, T22 are symmetric positive definite matrices, and blocks T12,
T21 are singular diagonal matrices. System (8) will be also denoted as

Tψ = e. (9)

3 Second-Degree Iterative Methods

We begin this section with a brief introduction to the second-degree methods
presented and applied to a 2D neutron diffusion equation case in [7].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

430 O. Flores-Sánchez et al.

3.1 Second Degree Method A

Consider the coefficient matrix T of the linear system (9) and the Jacobi splitting,
T = M −N , with matrices M and N given by

M =
[
T11 0
0 T22

]
, N =

[
0 −T12

−T21 0

]

where iteration matrix BJ is represented by

BJ = M−1N =
[

0 −T−1
11 T12

−T−1
22 T21 0

]

Now, considering the matrices G1 = ωBJ , G0 = (1 − ω)BJ , where ω is an
extrapolation factor, and the vector k = M−1e, we can write the following
second degree method based on the Jacobi Over-relaxation (JOR) splitting

ψ(n+1) = G1ψ
(n) +G0ψ

(n−1) + k = BJ (ωψ(n) + (1 − ω)ψ(n−1)) + k,

which corresponds to the following operations

T11ψ
l+1
1 = e1 − T12(ωψl

2 + (1 − ω)ψl−1
2),

T22ψ
l+1
2 = e2 − T21(ωψl

1 + (1 − ω)ψl−1
1).

(10)

Let us identify these operations as Method A.

3.2 Second Degree Method B

In the same manner, we can construct another method based on the accelerated
Gauss-Seidel splitting, whose iteration matrix BGS is given by

BGS = M−1N =
[
T11 0
T21 T22

]−1 [
0 −T12
0 0

]
,

The operations that correspond to this method are represented by

T11ψ
l+1
1 = e1 − T12(ωψl

2 + (1 − ω)ψl−1
2),

T22ψ
l+1
2 = e2 − T21(ωψl+1

1 + (1 − ω)ψl
1).

(11)

Methods A and B, can be described by the following algorithmic scheme

Second-Degree Iterative Method Algorithm

(1) Set ψ0
2; {ψ0

2 := ψ∗
2}

(2) Solve T11ψ
1
1 = e1 − T12ψ

0
2

(3) Solve T22ψ
1
2 = e2 − T21ψ

1
1

(4) Do l = 1, 2, . . .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sequential and Parallel Resolution of the Two-Group Transient Neutron 431

(4a) Solve ψl+1
1 in accordance with A or B method.

(4b) Solve ψl+1
2 in accordance with A or B method.

until ‖ψl+1
1 − ψl

1‖ < tol and ‖ψl+1
2 − ψl

2‖ < tol

where, ψ∗
2 represents the solution of a previous time step.

As we can see, the main difference between methods A and B, is that in
method B, the new solution for ψ1 is used as soon as it is available to compute
ψ2. Therefore, a faster convergence rate may be expected. In both methods, we
distinguish between outer and inner iterations. The outer iterations are identified
by the Step (4), and inner iterations are represented by Step (4a) and (4b), which
correspond to iterations needed for solving the linear systems with matrices T11
and T22 respectively. Since these blocks are symmetric positive-definite matrices
the Conjugate-Gradient method[16] was applied. General theorems about the
convergence of second-degree methods can be found in [8].

The next section presents the hardware and software tools that we have used
to carry out the numerical experiments.

4 Hardware and Software Platform

Sequential and parallel experiments have been performed on a 12-node biproces-
sor cluster with Red Hat 8.0 operating system, using only one CPU per node at
the Polytechnic University of Valencia. Each CPU is a 2 GHz Intel Xeon proces-
sor and has 1 GB of RAM memory. All nodes are connected by a SCI network
with a Torus 2D topology in a 4x5 mesh.

The Portable, Extensible Toolkit for Scientific Computation (PETSc)[1][2][3],
is a suite of data structures and routines that provide the building blocks for
the implementation of large-scale application codes on parallel (and serial) com-
puters. PETSc uses the MPI Standard for all message-passing communication.
Some of the PETSc modules deal with vectors, matrices (generally sparse), dis-
tributed arrays, Krylov subspace methods, preconditioners including multigrid
and sparse direct solvers, etc.

Figure 1 illustrates the PETSc library hierarchical organization, which enables
users to employ the level of abstraction that is most appropriate for a particular
problem.

PETSc uses the message-passing model for parallel programming and employs
MPI for all interprocessor communication. In PETSc the user is free to employ
MPI routines as needed throught an application code. However, by default the
user is shielded from many of the details of message passing within PETSc, since
these are hidden within parallel objects, such as vectors, matrices, and solvers.
In addition, PETSc provides tools such as generalized vector scatter/gathers and
distributed arrays to assist in the management of parallel data.

PETSc provides a variety of matrix implementations because no single matrix
format is appropriate for all problems. Currently PETSc supports dense storage
and compressed sparse row storage, as well as several specialized formats. There
are sequential and parallel AIJ sparse matrix format in PETSc. In the sequential
AIJ sparse matrix, the nonzero elements are stored by rows, along with an array

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

432 O. Flores-Sánchez et al.

Fig. 1. Organization of PETSc library

of corresponding column numbers and an array of pointers to the beginning of
each row. Parallel sparse matrices with the AIJ format can be created with the
command

MatCreateMPIAIJ(MPI Comm comm,int m, int n, int M,int N,
int d nz,int *d nnz,int o nz,int *o nnz, Mat *A);

A is the newly created matrix, while the arguments m, M and N, indicate the
number of local rows and the number of global rows and columns, respectively.
In the PETSc partitioning scheme, all the matrix columns are local and n is
the number of columns corresponding to local part of a parallel vector. Either
the local o global parameters can be replaced with PETSC DECIDE, so that
PETSc will determine them. The matrix is stored with a number of rows on
each process, given by m, or determined by PETSc if m is PETSC DECIDE. If
PETSC DECIDE is not used for the arguments m and n, then the user must
ensure that they are chosen to be compatible with the vectors. To do this, one
first considers the matrix-vector product y = Ax. The m that is used in the
matrix creation routine MatCreateMPIAIJ() must match the local size used
in the vector routine VecCreateMPI() for y. Likewise, the n used must match
that used as the local size in VecCreateMPI() for x. For example, the PETSc
partitioning scheme using the parallel sparse matrix AIJ format for operation
Ax, must be as follows

p0

p1

p2

Ax =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 | 0 3 0 | 0 4
0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

13 0 14 | 15 16 17 | 0 0
0 18 0 | 19 20 21 | 0 0
0 0 0 | 22 23 0 | 24 0

25 26 27 | 0 0 28 | 29 0
30 0 0 | 31 32 33 | 0 34

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
5
7
9
0

10
11

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p0

p1

p2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sequential and Parallel Resolution of the Two-Group Transient Neutron 433

where the local parts of matrix A and vector x stored in processor p0 are

Ap0 =

⎛

⎝
1 2 0 | 0 3 0 | 0 4
0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

⎞

⎠ and

⎛

⎝
1
0
5

⎞

⎠ = xp0 ,

respectively.
In PETSc, user must specify a communicator upon creation of any PETSc

object (such as a vector, matrix or solver) to indicate the processors over which
the object is to be distributed.

Among the most popular Krylov subspace iterative methods contained in
PETSc are Conjugate Gradient, Bi-Conjugate Gradient, Stabilized BCG, Trans-
pose Free Quasi-Minimal Residual, Generalized-Minimal Residual and so on[16].
PETSc offers preconditioners as Additive Schwarz, Block Jacobi, Jacobi, ILU,
ICC, etc. We do not apply preconditioning for our test case due to the good
spectral properties of T11 and T22 blocks, as we can see in the convergence
curves represented in the Figure 2.

Fig. 2. CG convergence curves for T11 and T22 blocks

Timing is obtained through the use of real-time (wall-clock time) clock func-
tion available in PETSc library. For all methods, we have verified their accu-
racy and precision with regard to the global system Tψ = e using the Matlab
software.

5 Test Case

The test case chosen is the comercial reactor of Leibstadt[13], which has been
discretised in a 3D form. The spatial discretisation has 32*32*27 cells, so that
the total number of equations and cells is quite large: 157248 equations and
796080 nonzero elements in the Jacobian matrix.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

434 O. Flores-Sánchez et al.

We have applied all methods presented here to the set of matrices belongs to
time step t = 0, which corresponds to a stability test carried out in 1990 where
the reactor oscillates out of phase, to test their robustness and efficiency.

In the next section, the sequential performance is analysed, and some varia-
tions to A and B methods are introduced.

6 Sequential Study of Methods A and B and Some
Variations

In order to identify the optimum ω for A and B methods in our test case, we have
carry out a heuristic study. Some results of this study are described in Table 1.

Table 1. Sequential execution times (secs) for method A and B with different ω values.
The symbol † indicates that convergence was not attained.

ω 0.1 0.5 0.8 0.9 1.0 1.3 1.5 1.9

A 252.46 223.97 196.75 187.39 138.08 † † †
B 211.08 175.44 143.61 130.40 116.28 63.98 290.85 †

In accordance with CPU execution times of this table, the optimum ω for
method A is 1.0 and for method B is 1.3.

The errors attained with methods A and B are represented in Table 2, where
rl+1 and ‖·‖ represent the residual e−Tψl+1 and the Euclidean norm, respectively.

From Tables 1 and 2, we can observe that method B is twice more efficient
than method A as we had expected.

In order to reduce even more the computational work of method B, we have
modified the operations as follows

T11ψ
l+1
1 = e1 − T12(ω1ψ

l
2 + (1 − ω1)ψl−1

2),

T22ψ
l+1
2 = e2 − T21(ω2ψ

l+1
1 + (1 − ω2)ψl

1).
(12)

Under this scheme, we have added two different parameters ω1 and ω2. Let us
identify (12) as method C.

From application of method C to the test case, the optimum value of ω1 is 1.0
and for ω2 is 1.9. Table 3 shows a comparison of the number of iterations and
execution times registered by method B and C, and we can see that the goal
of decrease the computational work has been reached without lost of accuracy.
From Table 3 we can observe a time reduction of 43% with regard to method B.

Since the precision of method C is good as A and B methods, we have exper-
imented with an ’adaptable’ precision technique, achieving some improvements
in the efficiency of the process. This technique solves T11 and T22 blocks with
a cheap precision (ερi) at initial stages of the method. Then, this precision is
’adapted’ or ’improved’ towards a more demanding one (ερi+1) in successive it-
erations. Application of this technique to method C give rise to the following
algorithm (method D in this work).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sequential and Parallel Resolution of the Two-Group Transient Neutron 435

Table 2. Precision of methods A and B with optimum ω value

‖rl+1‖2 ‖rl+1‖2/‖e‖2 Its.

A 8.83e-6 7.58e-5 394
B 4.91e-6 4.21e-5 183

Table 3. Performance comparison between method B and C

Its. CPU Time (secs.) ‖rl+1‖2/‖e‖2

B 183 63.98 4.21e-5
C 89 36.29 5.42e-5

Second-Degree Iterative Algorithm (Adaptable version)

(1) Set ψ0
2; {ψ0

2 := ψ∗
2}

(2) Set ερ = {ερ1 , ερ2 , . . . , ερn} where ερi > ερi+1;
(2) Solve T11ψ

1
1 = e1 − T12ψ

0
2

(3) Solve T22ψ
1
2 = e2 − T21ψ

1
1

(4) Do l = 1, 2, . . .
(4a) Solve for ψl+1

1 with tolerance ερi

(4b) Solve for ψl+1
2 with tolerance ερi

(4c) if precision of rl+1 ≤ rl
i := i+ 1

end if
until ‖ψl+1

1 − ψl
1‖ < tol and ‖ψl+1

2 − ψl
2‖ < tol

Numerical experiments have shown that Method D is 25% more efficient than
method C. Also, it is as exact as the rest of methods for the test case (See Table 4).

Table 4. Performance comparison between method C and D

Its. CPU Time (secs.) ‖rl+1‖2/‖e‖2

C 89 36.29 5.42e-5
D 90 27.31 5.42e-5

Next section presents the parallel numerical results for all methods.

7 Parallel Numerical Results

All methods have been coded using the following PETSc operations facilites:

– VecNorm Computes the vector norm.
– VecPointwiseMult Computes the componentwise multiplication w = x*y.
– VecAYPX Computes y = x + alpha y.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

436 O. Flores-Sánchez et al.

– VecCopy Copies a vector.
– KSPSolve Solves a linear system. Steps (4a) and (4b) are carry out through

the use of this operation.

Method A presents a good parallelism degree because the different linear
systems of equations in (10) can be simultaneously solved by different groups
of processors, and then interchange their solutions. For that reason, we have
implemented two different parallel versions of this method, based on two different
MPI communication routines: gather/scatter and send/recv. Also, we use the
MPI facility to manage groups of processes through the use of communicators.
For example, for the case of use p = 2 processors in method A, processor p0 is
dedicated to solve system T11 and processor p1 is dedicated to solve system T22.
For the case of use p = 4 processors, p

2 processors are dedicated to solve system
T11 and the rest dedicated to solve T22, and so on.

The timing results for different number of processors (p) are registered in
Table 5. As we can see, version based on send/recv is slightly more efficient than
version based on gather/scatter primitives.

Table 5. Parallel execution times (secs) with method A

p 1 2 4 6 8 12

gather/scatter 138.08 89.33 54.90 40.51 33.86 25.47
send/recv 138.08 88.27 53.07 38.05 31.30 22.60

We have attempted to implement an asynchronous version of method A, but
this was not possible, due to the strong dependency between T11 and T22 blocks.

We present a summary of parallel execution times with all methods in Table 6,
where we can observe that the use of High-Performance Computing has decreased
the sequential execution times for all methods. For example, for A and B methods
the sequential execution times have been reduced until 16% of the original time
value when we use p = 12 processors. For C and D methods, the execution time
was reduce to 14% for the same number of processors.

Table 6. Parallel execution times (secs) for all methods

Method p = 1 p = 2 p = 4 p = 6 p = 8 p = 12

A 138.08 88.27 53.07 38.05 31.30 22.60
B 63.98 36.83 28.78 20.26 11.94 10.41
C 36.29 21.11 12.01 8.68 6.91 5.23
D 27.31 15.83 8.90 6.51 5.17 3.90

From Table 6 we observe that method D offers the best execution time. The
speedup and efficiency[15] of method D are represented in Figure 3, where for all
values of p, parallel efficiency remains above of 50%.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sequential and Parallel Resolution of the Two-Group Transient Neutron 437

Fig. 3. Speedup and efficiency of method D

8 Conclusions

We have presented the application and parallelisation of two second-degree meth-
ods (A and B methods) to solve the sparse linear system related to a 3D Neutron-
Diffusion equation of a real nuclear reactor using the numerical parallel library
of PETSc.

In addition, we have modified A and B methods in order to reduce the compu-
tational work. For this, we have implemented two versions: the first one, based on
two different relaxation parameters for each energy group obtaining a great per-
formance which we call method C; and a second one, named method D, which is
based on an adaptable technique that improves even more the performance with
regard to the others methods.

We have carry out a heuristic study of the optimum relaxation parameter
for each one of the methods presented and for our particular test case. These
parameters have helped to accelerate the methods, specially C and D methods.

The main advantage of the second-degree methods presented in this work, is
that matrix T do not need be formed explicitly; thus, simulation with more than
2 energy groups can be feasible.

It is important to emphasize that the application of High Performance Com-
puting has reduced the sequential time of the different methods presented in this
work.

Future works will contain the integration of these methods to DDASPK and
FCVODE routines and the simulation of a full transient.

Acknowledgement

This work has been supported by Spanish MEC and FEDER under Grant
ENE2005-09219-C02-02 and SEIT-SUPERA-ANUIES (México).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

438 O. Flores-Sánchez et al.

References

1. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: PETSc home page
http://www.mcs.anl.gov/petsc (2002)

2. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: PETSc Users Manual. ANL-
95/11 - Revision 2.1.5, Argonne National Laboratory (1997)

3. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: Efficient Management of Par-
allelism in Object Oriented Numerical Software Libraries. Modern Software Tools
in Scientific Computing (1997) 163-202

4. Weston J.R., Stacey M.: SpaceTime Nuclear Reactor Kinetics. Academic Press
(1970)

5. Henry A.F.: Nuclear Reactor Analysis. The M.I.T Press (1975)
6. Garćıa V.M., Vidal V., Verdú G., Miró R.: Sequential and Parallel Resolution

of the 3D Transient Neutron Diffusion Equation. Mathematics and Computation,
Supercomputing, Reactor Physics and Nuclear and Biological Applications, on CD-
ROM, American Nuclear Society (2005)

7. Bru R., Ginestar D., Maŕın J., Verdú G., Mas J., Manteuffel T.: Iterative Schemes
for the Neutron Diffusion Equation. Computers and Mathematics with Applica-
tions, Vol.44, (2002) 1307-1323

8. D.M. Young.: Iterative Solution of Large Linear Systems. Academic Press Inc.,New
York, N.Y. (1971)

9. Stacey W.M.: Space-Time Nuclear Reactor Kinetics. Academic Press, New York
(1969)

10. Verdú G., Ginestar D., Vidal. V., Muñoz-Cobo J.L.: A Consistent Multidimensional
Nodal Method for Transient Calculation. Ann. Nucl. Energy, 22(6), (1995) 395-410

11. Ginestar D., Verdú G., Vidal V., Bru R., Maŕın J., Muñoz J.L.: High order back-
ward discretization of the neutron diffusion equation. Ann. Nucl. Energy, 25(1-3),
(1998) 47-64

12. Hébert A.: Development of the Nodal Collocation Method for Solving the Neutron
Diffusion Equation. Ann. Nucl. Energy, 14(10), (1987) 527-541

13. Blomstrand J.: The KKL Core Stability Test, conducted in September 1990. ABB
Report, BR91-245 , (1992)

14. D. Ginestar and J. Maŕın and G. Verdú.: Multilevel methods to solve the neutron
diffusion equation. Applied Mathematical Modelling, 25, (2001) 463-477

15. V. Kumar and A. Grama and A. Gupta and G. Karypis.: Introduction to parallel
computing:design and analysis of parallel algorithms. The Benjamin/Cummings
Publishing Company, Inc.,Redwood City, CA (1994)

16. Y. Saad. Iterative Methods for Sparse Linear Systems PWS Publishing Company,
Boston, MA (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enhancing the Performance of Multigrid

Smoothers in Simultaneous Multithreading
Architectures�

Carlos Garćıa, Manuel Prieto, Javier Setoain, and Francisco Tirado

Dto. Arquitectura de Computadores y Automática
Universidad Complutense de Madrid

Avd. Complutense s/n, 28040 Madrid, Spain
{garsanca,mpmatias,jsetoain,ptirado}@dacya.ucm.es

Abstract. We have addressed in this paper the implementation of
red-black multigrid smoothers on high-end microprocessors. Most of the
previous work about this topic has been focused on cache memory issues
due to its tremendous impact on performance. In this paper, we have ex-
tended these studies taking Simultaneous Multithreading (SMT) into ac-
count. With the introduction of SMT, new possibilities arise, which makes
a revision of the different alternatives highly advisable. A new strategy is
proposed that focuses on inter-thread sharing to tolerate the increasing
penalties caused by memory accesses. Performance results on an IBM’s
Power5 based system reveal that our alternative scheme can compete
with and even improve sophisticated schemes based on tailored loop fu-
sion and tiling transformations aimed at improving temporal locality.

1 Introduction

Multigrid methods are regarded as being the fastest iterative methods for the
solution of the linear systems associated with elliptic partial differential equa-
tions, and as amongst the fastest methods for other types of integral and partial
differential equations [16]. Fastest refers to the ability of Multigrid methods to
attain the solution in a computational work which is a small multiple of the op-
eration counts associated with discretizing the system. Such efficiency is known
as textbook multigrid efficiency (TME) [15] and has made multigrid one of the
most popular solvers on the niche of large-scale problems, where performance is
critical.

Nowadays, however, the number of executed operations is only one of the
factors that influences the actual performance of a given method. With the
advent of parallel computers and superscalar microprocessors, other factors such
as inherent parallelism or data locality (i.e. the memory access behavior of the
algorithm) have also become relevant. In fact, recent evolution of hardware has
exacerbated this trend since:
� This work has been supported by the Spanish research grants TIC 2002-750 and

TIN 2005-5619.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 439–451, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

440 C. Garćıa et al.

– The disparity between processor and memory speeds continues to grow de-
spite the integration of large caches.

– Parallelism is becoming the key of performance even on high-end micropro-
cessors, where multiple cores and multiple threads per core are becoming
mainstream due to clock frequency and power limitations.

In the multigrid context, these trends have prompted the the development of
specialized multigrid-like methods [1,2,10,5], and the adoption of new schemes
that try to bridge the processor/memory gap by improving locality [14,18,7,4,8].
Our focus in this paper is the extension of this cache-aware schemes to Simulta-
neous Multithreading (SMT) processors.

As its name suggests, SMT architectures allows several independent threads
to issue instructions simultaneously in a single cycle [17]. Its main goal is to yield
better use of the processor’s resources, hiding the inefficiencies caused by long
operational latencies such as memory accesses. At first glance, these processors
can be seen as a set of logical processors that share some resources. With HT, the
Intel Pentium 4 behaves as two logical processors sharing some resources (Func-
tional Units, Memory Hierarchy, etc). The exploitation of this additional level
of parallelism has been performed in this work by means of OpenMP directives,
which are directly supported by the Intel ICC compiler consequently, one may
think that optimizations targeted for Symmetric Multiprocessors (SMP) systems
are also good candidates for SMT. However, unlike SMP systems, SMT provides
and benefits from fine-grained sharing of processor and memory resources. On
the other hand, unlike conventional superscalar architectures, SMT exposes and
benefits from thread level parallelism hiding latencies. Therefore, optimizations
that are appropriate for these conventional machines may be inappropriate or
less effective for SMT [9].

Unfortunately, SMT potentials are not yet fully exploited in most applica-
tions due to the relative underdevelopment of compilers, which despite many
improvements still lag far behind. Due to this gap between compiler and pro-
cessor technology, applications cannot benefit from SMT hardware unless they
are explicitly aware of thread interactions. In this paper, we have revisited the
implementation of multigrid smoothers in this light. The popularity of multigrid
makes this study of great practical interest. In addition, it also provides certain
insights about the potential benefits of this relatively new capability and how to
take advantage of it, which could ideally helps to develop more efficient compiler
schemes.

The organization of this paper is as follows. We begin in Sections 2 and Section
3 by briefly introducing multigrid methods and describing the main character-
istics of our target computing platform respectively. In Section 4 we describe
the baseline codes used in our study for validation and assessment. They are
based on the DIME project (DIME stands for Data Local Iterative Methods For
The Efficient Solution of Partial Differential Equations) [3,14,18,7,4,8], which
is one of the most outstanding and systematic studies about the optimization
of multigrid smoothers. Afterwards, in Section 5, we discuss our SMT -aware

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enhancing the Performance of Multigrid Smoothers in SMT Architectures 441

implementation. Performance results are discussed in Section 6. Finally, the pa-
per ends with some conclusions and hints for future research.

2 Multigrid Introduction

This section provides a brief introduction to multigrid, defining basic terms and
describing the most relevant aspects of these methods so that we have a basis
on which to discuss some of the performance issues.

The fundamental idea behind Multigrid methods [16] is to capture errors by
utilizing multiple length scales (multiple grids). They consist of the following
complementary components:

– Relaxation. The relaxation procedure, also called smoother in multigrid lingo,
is basically a simple (and inexpensive) iterative method like Gauß-Seidel,
damped Jacobi or block Jacobi. Its election depends on the target prob-
lem, but if well chosen, it is able to reduce the high-frequency or oscillatory
components of the error in relatively few steps.

– Coarse-Grid Correction. Smoothers are ineffectual in attenuating low-
frequency content of the error, but since the error after relaxation should
eliminate the oscillatory components, it can be well-approximated using
a coarser grid. On that grid, errors appear more oscillatory and thus the
smoother can be applied effectively. New values are transferred afterwards
to the target grid to update the solution.

The Coarse-Grid Correction can be applied recursively in different ways, con-
structing different cycling strategies. Algorithm 1. shows the pseudo-code of one
of the most popular choices, known as V-cycle due to its pattern. This algo-
rithm telescopes down to a given coarsest grid, and then works its way back
to the target finest grid. The transfer operators I2h

h and Ih
2h connect the grids

levels: I2h
h is known as the restriction operator and transfers values from a finer

to a coarser level, whereas Ih
2h is known as the prolongation operator and maps

from a coarser to a finer level.

Algorithm 1. V-cycle(ν1,ν2,vh,bh) multigrid V-cycle applied to the system
Ahuh = bh defined on a grid Ωh.

if h == Coarsest then
Return uH ← Solve(AH ,vH ,bH)

else
vh ← Smooth(ν1,vh,bh)
b2h ← I2h

h (bh − Ahvh)
v2h ← V-cycle(ν1,ν2,02h,b2h)
vh ← vh + Ih

2h(v2h

Return un ← Smooth(ν2,vh,bh)
end if

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

442 C. Garćıa et al.

The most time-consuming part of a multigrid method is the smoother and
hence is the primary parameter in optimizing the performance. In this initial
study we have focused on point-wise smoothers. Block smoothers [12,11] are
more efficient in certain problems but are beyond the scope of this paper and
will not be addressed at this time. The discussion about the implementation of
point-wise smoothers is taken up in Section 4.

3 Experimental Platform

Our experimental platform consists in an IBM’s Power5 processor running under
Linux, the main features of which are summarized in Table 1.

Table 1. Main features of the target computing platform

Processor

IBM 2-way 1.5GHz Power5
(2 way core SMP)

L1 DataCache 32 KB 4-way associative, LRU
L2 Unified Cache 1.9MB 10-way associative, LRU
L3 Unified Cache 36MB shared per processor pair

(off-chip) 10-way associative, LRU
2048 MBytes

Memory (4x512) DIMMS
266 MHz DDR SDRAM

Operating GNU Debian
System Linux kernel 2.6.14-SMP for 64 bits

IBM XL Fortran -O5 -qarch=pwr5 -qtune=pwr5
Switches -q64 -qhot -qcache=auto

(Advance Ed. v9.1) Parallelization with OpenMP: -qsmp=omp

This processor has introduced SMT to the IBM’s Power family [6]. With this
design, each core of this dual-core processor appears to software as two logical
CPUs, usually denoted as threads, that share some resources such as functional
units or the memory hierarchy.

Apart from SMT, we should also highlight the impressive memory subsystem
of the Power5. The memory controller is moved on chip and the main memory is
directly connected to the processor via three buses: the address/command bus,
the unidirectional write data bus, and the unidirectional read data bus. The
36-MB off-chip L3 has been removed from the path between the processor to the
memory controller and operates as a victim cache for the L2. This means that
data is transferred to the L3 only when it is replaced from the L2.

Finally, it is worth mentioning that the exploitation of SMT has been per-
formed in this work by means of OpenMP directives, which are directly sup-
ported by the IBM’s FORTRAN compiler. Single thread performance has been

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enhancing the Performance of Multigrid Smoothers in SMT Architectures 443

measured using a sequential code and enabling the Power5 single-threaded mode
of the Power5, which gives all the resources of the chip to one of the logical CPUs.

4 Cache-Aware Red-Black Smoothers

Gauß-Seidel has long been the smoother of choice within multigrid on both
structured and unstructured grids [1]. Although, it is inherently sequential in
its natural form (the lexicographic ordering), it is possible to expose parallelism
by applying multi-coloring, i.e. splitting grid nodes into disjoint sets, with each
set having a different color, and updating simultaneously all nodes of the same
color.

The best known example of this approach is the red-black Gauß-Seidel for the
5-point Laplace stencil, which is schematically illustrated in Figure 1. For the
9-point Laplacian, a red-black ordering may lead to a race condition (depending
on the implementation), and at least a four color ordering of the grid space is
needed to decouple the grid nodes completely.

Fig. 1. 2D red-black Gauß-Seidel for the 5-point (on left-hand side) and 9-point (on
right-hand side) Laplace stencils

Apart from exposing parallelism, multi-coloring also impacts on the conver-
gence rate, but unlike other techniques such as block Gauß-Seidel (i.e. applying
Gauß-Seidel locally on every processor), the overall multigrid convergence rates
remain satisfactory.

Unfortunately, multi-coloring deteriorate the memory access and may lead to
poor performance. Algorithm 4 shows the pseudo-code of a red-black smoother,
denoted as rb1 by the DIME project. This näıve implementation performs a
complete sweep through the grid for updating all the red nodes, and then another
complete sweep for updating all the black nodes. Therefore, rb1 exhibits lower
spatial locality than a lexicographic ordering. Furthermore, if the target grid is
large enough, temporal locality is not fully exploited.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

444 C. Garćıa et al.

Algorithm 2. Red-Black Gauß-Seidel näıve implementation
for it=1,nIter do

// red nodes:
for i = 1; n-1 do

for j = 1+(i+1)%2; n-1; j=j+2 do
Relax point(i,j)

end for
end for
// black nodes:
for i = 1, n-1 do

for j = 1+i%2; n-1; j=j+2 do
Relax point(i,j)

end for
end for

end for

Alternatively, some authors have successfully improved cache reuse (locality)
using loop reordering and data layout transformations that were able to improve
both temporal and spatial data locality [13,18].

Following these previous studies, in this paper we have used as baseline codes
the different red-black smoothers developed within the framework of the DIME
project. To simplify matters, these codes are restricted to 5-point as well as
9-point discretization of the Laplacian operator. Figures 2-4 illustrate some of
them, which are based on the following observations:

– The black nodes of a given row i − 1 can be updated once the red nodes of
the i row has been updated. This is the idea behind the DIME’s rb2 (see
figure 2) and rb3 schemes, which improve both temporal and spatial locality
fusing the red and black sweeps.

Fig. 2. DIME’s rb2.
The update of red and
black nodes is fused
to improve temporal
locality.

Fig. 3. DIME’s rb5.
Data within a tile is
reused as much as pos-
sible before moving to
the next tile.

Fig. 4. DIME’s rb9.
Data within a tile is
reused as much as pos-
sible before moving to
the next tile.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enhancing the Performance of Multigrid Smoothers in SMT Architectures 445

– If several successive relaxation have to be performed, additional improve-
ments can be achieved transforming the iteration transversal so that the
operations are performed on small 1D or 2D tiles of the whole array. Data
within a tile is used as many times as possible before moving to the next tile.

Table 2. MFlops achieved by the different DIME’s variants of the red-black Gauß-
Seidel for a 5-point Laplace stencil. MELT denotes the number of successive iterations
of this smoother.

16 32 64
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 1220.41 1328.02 1554.55 1886.03 1846.53 2151.69
rb2 (MELT=1) 1654.44 1799.24 1590.53 2353.55 2396.09 2464.36
rb3 (MELT=1) 1655.28 1800.82 1588.90 2364.93 2387.07 2474.08
rb4 (MELT=2) 1317.74 1353.41 1418.75 1435.21 1468.09 1471.15
rb4 (MELT=3) 1375.39 1410.50 1447.29 1489.77 1368.22 1384.25
rb5 (MELT=2) 1315.34 1355.12 1418.45 1433.10 1462.85 1472.53
rb5 (MELT=3) 1371.65 1411.75 1446.33 1490.16 1364.34 1386.79
rb6 (MELT=2) 1834.07 2055.36 2139.22 2743.28 2961.18 3101.63
rb6 (MELT=3) 1851.40 2121.46 2137.32 2908.11 3138.46 3235.82
rb7 (MELT=2) 2079.85 2091.77 2406.82 2826.85 3052.28 3128.04
rb7 (MELT=3) 1728.44 1768.35 1916.17 2066.12 2030.17 2124.82
rb8 (MELT=2) 2061.58 2087.47 2511.27 2833.20 3052.79 3128.73
rb8 (MELT=3) 1726.98 1766.26 1871.81 2038.05 1998.76 2069.93
rb9 (MELT=4) 1603.72 1672.13 2075.09 2349.55 2453.04 2643.53

128 256 512
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 2637.98 2673.35 2801.20 2823.32 2139.93 2412.95
rb2 (MELT=1) 2642.36 2667.40 2794.10 2794.10 2178.04 2495.04
rb3 (MELT=1) 2661.24 2664.53 2840.70 2840.70 2150.20 2500.19
rb4 (MELT=2) 1368.15 1380.44 1370.40 1375.65 1248.74 1292.01
rb4 (MELT=3) 1386.74 1393.14 1359.37 1368.66 1377.90 1427.34
rb5 (MELT=2) 1367.39 1379.36 1371.12 1373.43 1248.87 1292.34
rb5 (MELT=3) 1388.05 1398.70 1359.08 1369.72 1386.58 1425.09
rb6 (MELT=2) 3362.78 3445.60 3453.84 3513.04 2009.28 2561.72
rb6 (MELT=3) 3677.55 3710.23 3376.07 3487.90 1372.93 2390.08
rb7 (MELT=2) 3461.82 3553.01 3597.04 3625.99 1976.21 2619.95
rb7 (MELT=3) 2190.06 2207.63 2038.09 2109.38 1332.34 1833.58
rb8 (MELT=2) 3488.76 3549.89 3553.04 3618.60 1995.86 2620.77
rb8 (MELT=3) 2124.59 2152.84 2033.73 2054.91 1355.92 1788.43
rb9 (MELT=4) 2785.56 2965.07 2262.49 2981.07 864.31 2079.22

1024 2048 4096
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 1530.51 1904.80 1012.56 1130.23 827.73 908.38
rb2 (MELT=1) 1135.85 2012.24 1108.30 1322.43 909.35 1060.96
rb3 (MELT=1) 1138.72 1995.31 1108.83 1311.42 909.32 1060.65
rb4 (MELT=2) 691.73 1366.76 645.31 1198.68 607.49 1048.54
rb4 (MELT=3) 699.54 1405.66 664.97 1283.75 625.90 1096.99
rb5 (MELT=2) 691.23 1364.57 644.51 1191.35 607.49 1047.26
rb5 (MELT=3) 700.39 1406.21 664.47 1283.65 625.21 1093.09
rb6 (MELT=2) 797.33 2405.67 424.95 1228.52 425.91 1202.53
rb6 (MELT=3) 740.90 2385.51 377.16 1046.89 359.09 985.14
rb7 (MELT=2) 769.53 2319.02 490.97 1336.46 465.97 1248.94
rb7 (MELT=3) 706.90 1658.36 598.65 1132.00 555.64 988.34
rb8 (MELT=2) 888.24 2507.34 460.97 1087.26 474.43 1193.49
rb8 (MELT=3) 713.10 1670.59 551.20 1201.43 464.93 954.55
rb9 (MELT=4) 444.54 1928.21 353.77 1248.75 348.30 1058.10

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

446 C. Garćıa et al.

DIME’s rb4-rb9 schemes perform different 1D and 2D tiling transformations.
Figures 3 and 4 illustrate the rb5 and rb9 schemes respectively.

Tables 2 and 3 show the MFlops achieved by DIME’s rb1-9 codes on our
target platform. The speedup of the best transformation ranges from 1.2 to 1.8

Table 3. MFlops achieved by the different DIME’s variants of the red-black Gauß-
Seidel for a 9-point Laplace stencil. MELT denotes the number of successive iterations
of this smoother.

16 32 64
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 846.24 845.91 1134.27 1172.41 1321.73 1348.14
rb2 (MELT=1) 950.62 1034.2 1042.20 1414.47 1126.24 1656.04
rb3 (MELT=1) 962.94 964.20 1248.63 1278.89 1371.60 1464.29
rb4 (MELT=2) 746.65 747.42 760.19 764.49 740.99 748.75
rb4 (MELT=3) 780.77 783.89 782.92 793.98 752.32 770.89
rb5 (MELT=2) 623.14 627.04 602.06 607.46 561.58 564.05
rb5 (MELT=3) 662.97 670.53 624.34 636.21 586.11 598.19
rb6 (MELT=2) 796.40 802.01 837.04 848.68 835.16 848.87
rb6 (MELT=3) 777.82 977.49 1094.88 1159.87 1125.33 1173.56
rb7 (MELT=2) 791.24 819.63 809.41 852.67 813.76 821.87
rb7 (MELT=3) 916.94 932.90 1007.62 1038.20 1029.50 1066.33
rb8 (MELT=2) 818.48 846.73 857.17 883.96 858.65 868.43
rb8 (MELT=3) 919.03 936.28 1007.72 1038.38 1047.92 1084.02
rb9 (MELT=4) 817.50 837.66 937.08 983.44 1039.88 1101.31

128 256 512
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 1667.04 1670.97 1729.36 1759.88 1562.05 1554.85
rb2 (MELT=1) 1831.58 1925.38 2018.26 2067.22 1951.36 1941.23
rb3 (MELT=1) 1727.06 1747.52 1862.76 1857.99 1742.83 1715.75
rb4 (MELT=2) 698.13 699.38 696.54 696.83 719.67 731.25
rb4 (MELT=3) 765.17 766.85 755.06 753.95 727.05 737.16
rb5 (MELT=2) 564.48 564.48 558.92 560.02 545.81 548.25
rb5 (MELT=3) 585.55 585.71 575.29 576.74 560.88 564.15
rb6 (MELT=2) 864.13 863.54 868.21 868.07 675.26 836.98
rb6 (MELT=3) 1284.45 1286.39 1280.24 1293.26 765.69 1135.30
rb7 (MELT=2) 831.41 831.08 821.43 830.45 725.22 794.60
rb7 (MELT=3) 1083.47 1083.95 1076.12 1080.96 903.37 913.06
rb8 (MELT=2) 885.39 878.57 885.83 892.54 776.17 859.16
rb8 (MELT=3) 1104.18 1105.80 1099.24 1100.55 961.44 976.59
rb9 (MELT=4) 1130.08 1146.71 871.69 1147.63 532.22 868.32

1024 2048 4096
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 1209.56 1249.72 497.73 554.38 504.74 571.47
rb2 (MELT=1) 932.55 1656.93 374.89 521.46 420.05 574.23
rb3 (MELT=1) 1295.14 1468.16 583.47 671.95 662.89 632.52
rb4 (MELT=2) 679.67 717.89 593.96 659.83 593.07 663.24
rb4 (MELT=3) 691.21 726.90 611.44 681.95 609.99 684.88
rb5 (MELT=2) 386.53 554.37 366.12 535.87 367.82 533.03
rb5 (MELT=3) 388.97 561.67 373.21 542.73 374.81 546.64
rb6 (MELT=2) 361.31 594.64 274.79 566.75 273.87 567.97
rb6 (MELT=3) 317.80 552.96 285.76 449.79 274.89 445.53
rb7 (MELT=2) 436.52 653.60 340.72 685.85 359.81 570.45
rb7 (MELT=3) 618.65 1053.75 762.01 754.74 471.25 701.31
rb8 (MELT=2) 438.12 697.92 333.05 617.26 384.65 613.42
rb8 (MELT=3) 641.91 1073.55 760.33 795.94 497.73 663.63
rb9 (MELT=4) 339.64 896.80 290.39 617.66 278.66 573.70

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enhancing the Performance of Multigrid Smoothers in SMT Architectures 447

for the 5-point stencil, and from 1.15 to 1.25 for the 9-point version. Our first
insight is that these gains are lower than on other architectures. For instance, the
improvements on a DEC PWS 500au reported on DIME’s website reach a factor
of 4 [3]. Furthermore, the sophisticated two-dimensional blocking transformation
DIME’s rb9 does not provide additional improvements, being DIME’s rb7 and
sometimes DIME’s rb2 the most effective transformations.

The main reason behind this difference in behavior is the relatively large
amount of on-chip and off-chip caches included in the IBM’s Power5, as well as
their higher degree of associativity.

5 SMT-Aware Red-Black Smoothers

The availability of SMT introduces a new scenario in which thread-level paral-
lelism can also be applied to hide memory accesses. As mentioned above, SMT
processors can be seen as a set of logical processors that share execution units,
systems buses and the memory hierarchy. This logical view suggests the appli-
cation of the general principles of data partitioning to get the multithreaded
versions of the different DIME variants of the red-black Gauß-Seidel smoother.
This strategy, which can be easily expressed with OpenMP directives, is suit-
able for shared memory multiprocessor. However, in a SMT microprocessor, the
similarities amongst the different threads (they execute the same code with just
a different input dataset) may cause contention since they have to compete for
the same resources.

Alternatively, we have employed a dynamic partitioning where computations
are broken down into different tasks with are assigned to the pool of available
threads. Intuitively, the smoothing of the different colors is interleaved by as-
signing the relaxation of each color to a different thread. This interleaving is
controlled by a scheduler, which avoids race conditions and guarantees a deter-
ministic ordering.

Algorithm 3. shows a pseudo-code of this approach for red-black smoothing.
Our actual implementation is based on the OpenMP’s parallel and critical direc-
tives. The critical sections introduce some overhead but are necessary to avoid
race-conditions. However, the interleaving prompted by the scheduling allows
the black thread to take advantage of some sort of data prefetching since it
processes grid nodes that have just been processed by the red thread, i.e. the
red thread acts as a helper thread that performs data prefetching for the black
one.

This interleaved approach can also be combined with DIME’s rb4-8 variants.
If two successive iterations have to be performed, the intuitive idea is that one
thread performs the first relaxation step whereas the other performs the second
one. The scheduler guarantees again a deterministic ordering.

In the next section we compare the performance of this novel approach over
traditional block-outer, cyclic-outer and cyclic-inner distributions of the
relaxation nested loop. For the näıve implementation, all of them are straight-
forward. However, for DIME’s rb2-8 variants, the cyclic-outer version is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

448 C. Garćıa et al.

Algorithm 3. Interleaved implementation of a red-black Gauß-Seidel
#pragma omp parallel private(task,more tasks) shared(control variables)
more tasks = true
while more tasks do

#pragma omp critical
Scheduler.next task(&task);

if (task.type == RED) then
Relax RED line(task);

end if

if (task.type == BLACK) then
Relax BLACK line(task);

end if

#pragma omp critical
more task=Scheduler.commit(task);

end while

non-deterministic, whereas the block-outer requires the processing of block
boundaries in advance.

We have omitted a parallel version of DIME’s rb9 since even in the sequential
setting, that version does not provide superior performance over DIME’s rb5-8.
We have also omitted block-outer and cyclic-outer distributions of the red-black
smoother for the 9-point stencil, since they are also non-deterministic. Note,
however, that both the cyclic-inner and our interleaved approach avoid race-
conditions.

6 Performance Results

Figure 5 shows the speedup achieved by the different parallel strategies over the
baseline code (with the best DIME’s transformation) for the the 5-point stencil.

As can be noticed, the election of the most suitable strategy depends on the
grid size:

– For small and medium grid sizes block and cyclic distributions outperform
our approach, although for the smallest sizes none of them is able to improve
performance. This is the expected behavior given that for small and medium
working sets, memory bandwidth and data cache exploitation are not a key
issue and traditional strategies beat our approach on performance due to the
overheads introduced by the dynamic task scheduling.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enhancing the Performance of Multigrid Smoothers in SMT Architectures 449

Fig. 5. Speedup achieved by different parallel implementations of a red-black Gauß-
Seidel smoother for a 5-point Laplace stencil. Sched denotes our strategy, whereas DP
and Cyclic denote the best block and a cyclic distribution of the smoother’s outer loop
respectively. MELT is the number of successive relaxations that have been applied.

Fig. 6. Speedup achieved by different parallel implementations of a red-black Gauß-
Seidel smoother for a 9-point Laplace stencil. Sched denotes our strategy, whereas
Cyclic denotes the best cyclic distribution of the smoother’s inner loop. MELT is the
number of successive relaxations that have been applied.

– For large sizes we observe the opposite behavior given that the overheads
involved in task scheduling become negligible, whereas the competition for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

450 C. Garćıa et al.

memory resources becomes a bottleneck in the other versions. In fact, we
should highlight that the block and cyclic distributions become clearly inef-
ficient for large grids.

– The break-even point between the static distributions and our interleaved
approach is a relative large grid due to the impressive L3 cache (36 MB) of
the Power5.

Figure 6 confirms some of these observations for the the 9-point stencil. Fur-
thermore, the improvements over DIME’s variants are higher in this case, since
this is a more demanding problem.

7 Conclusions

In this paper, we have introduced a new implementation of red-black Gauß-Seidel
Smoothers, which on SMT processors fits better than other traditional strategies.
From the results presented above, we can draw the following conclusions:

– Our alternative strategy, which implicitly introduces some sort of tiling
amongst threads, provides noticeable speed-ups that match or even out-
perform the results obtained with the different DIME’s rb2-9 variants for
large grid sizes. Notice that instead of improving intra-thread locality, our
strategy improves locality taking advantage of fine-grain thread sharing.

– For large grid sizes, competition amongst threads for memory bandwidth
and data cache works against traditional block distributions. Our interleaved
approach performs better in this case, but suffers important penalties for
small grids, since its scheduling overheads does not compensate its better
exploitation of the temporal locality. Given that multigrid solvers process
multiple scales, we advocate hybrid approaches.

We are encouraged by these results, and based on what we have learned in
this initial study we are proceeding with:

– Analyzing more elaborated multigrid solvers.
– Combining interleaving with grid partitioning distributions to scale beyond

two threads. The idea is to use grid partitioning to distribute data amongst a
large scale system, and interleaving to exploit thread level parallelism inside
their cores.

References

1. M. F. Adams, M. Brezina, J. J. Hu, and R. S. Tuminaro. Parallel multigrid smooth-
ing: polynomial versus Gauss-Seidel. J. Comp. Phys., 188(2):593–610, 2003.

2. Edmond Chow, Robert D. Falgout, Jonathan J. Hu, Raymond S. Tuminaro, and
Ulrike Meier Yang. A survey of parallelization techniques for multigrid solvers,.
Technical report, 2004.

3. Friedrich-Alexander University Erlangen-Nuremberg. Department of Computer
Science 10. DIME project. Available at http://www10.informatik.uni-
erlangen.de/Research/Projects/DiME-new.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Enhancing the Performance of Multigrid Smoothers in SMT Architectures 451

4. C.C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß. Cache Optimiza-
tion for Structured and Unstructured Grid Multigrid. Electronic Transactions on
Numerical Analysis (ETNA), 10:21–40, 2000.

5. F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rde. Parallel geometric multigrid.
Lecture Notes in Computer Science and Engineering, 51:165–208, 2005.

6. Ronald N. Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 chip: A
dual-core multithreaded processor. IEEE Micro, 24(2):40–47, 2004.

7. M. Kowarschik, U. Rüde, C. Weiß, and W. Karl. Cache-Aware Multigrid Methods
for Solving Poisson’s Equation in Two Dimensions. Computing, 64:381–399, 2000.

8. M. Kowarschik, C. Weiß, and U. Rüde. Data Layout Optimizations for Variable
Coefficient Multigrid. In P. Sloot, C. Tan, J. Dongarra, and A. Hoekstra, edi-
tors, Proc. of the 2002 Int. Conf. on Computational Science (ICCS 2002), Part
III, volume 2331 of Lecture Notes in Computer Science (LNCS), pages 642–651,
Amsterdam, The Netherlands, 2002. Springer.

9. Jack L. Lo, Susan J. Eggers, Henry M. Levy, Sujay S. Parekh, and Dean M. Tullsen.
Tuning compiler optimizations for simultaneous multithreading. In International
Symposium on Microarchitecture, pages 114–124, 1997.

10. W. Mitchell. Parallel adaptive multilevel methods with full domain partitions.
App. Num. Anal. and Comp. Math, 1:36–48, 2004.

11. Manuel Prieto, Rubén S. Montero, Ignacio Mart́ın Llorente, and Francisco Tirado.
A parallel multigrid solver for viscous flows on anisotropic structured grids. Parallel
Computing, 29(7):907–923, 2003.

12. Manuel Prieto, R. Santiago, David Espadas, Ignacio Mart́ın Llorente, and Francisco
Tirado. Parallel multigrid for anisotropic elliptic equations. J. Parallel Distrib.
Comput., 61(1):96–114, 2001.

13. D. Quinlan, F. Bassetti, and D. Keyes. Temporal locality optimizations for sten-
cil operations within parallel object-oriented scientific frameworks on cache-based
architectures. In Proceedings of the PDCS’98 Conference, July 1998.

14. U. Rüde. Iterative Algorithms on High Performance Architectures. In Proc. of
the EuroPar-97 Conf., Lecture Notes in Computer Science (LNCS), pages 26–29.
Springer, 1997.

15. James L. Thomas, Boris Diskin, and Achi Brandt. Textbook multigrid efficiency
for fluid simulations. Annual Review of Fluid Mechanics, 35:317–340, 2003.

16. U. Trottenberg, C. Oosterlee, and A. Schller. Multigrid. Academic Press, 2000.
17. Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multi-

threading: Maximizing on-chip parallelism. In 25 Years ISCA: Retrospectives and
Reprints, pages 533–544, 1998.

18. C. Weiß, W. Karl, M. Kowarschik, and U. Rüde. Memory Characteristics of Itera-
tive Methods. In Proc. of the ACM/IEEE Supercomputing Conf. (SC99), Portland,
Oregon, USA, 1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Block Iterative Algorithms for the Solution of

Parabolic Optimal Control Problems

Christian E. Schaerer1, Tarek Mathew1, and Marcus Sarkis1,2

1 Instituto de Matemática Pura e Aplicada-IMPA,
Estrada Dona Castorina 110, Rio de Janeiro, RJ 22460-320, Brazil

2 Department of Mathematical Sciences-WPI,
100 Institute Road, Worcester, MA 01609, USA

cschaer@fluid.impa.br, tmathew@fluid.impa.br, msarkis@impa.br

Abstract. In this paper, we describe block matrix algorithms for the
iterative solution of large scale linear-quadratic optimal control problems
arising from the control of parabolic partial differential equations over
a finite control horizon. After spatial discretization, by finite element
or finite difference methods, the original problem reduces to an optimal
control problem for n coupled ordinary differential equations, where n
can be quite large. As a result, its solution by conventional control al-
gorithms can be prohibitively expensive in terms of computational cost
and memory requirements.

We describe two iterative algorithms. The first algorithm employs a
CG method to solve a symmetric positive definite reduced linear system
for the unknown control variable. A preconditioner is described, which
we prove has a rate of convergence independent of the space and time dis-
cretization parameters, however, double iteration is required. The second
algorithm is designed to avoid double iteration by introducing an auxil-
iary variable. It yields a symmetric indefinite system, and for this system
a positive definite block preconditioner is described. We prove that the
resulting rate of convergence is independent of the space and time dis-
cretization parameters, when MINRES acceleration is used. Numerical
results are presented for test problems.

1 Introduction

Systems governed by parabolic partial differential equations arise in models of
various processes in the oil industry. An instance is the model of a produc-
tion strategy whose main objective is the displacement of a resident fluid (oil)
by the injection of another fluid (gas) [15]. The associated partial differential
equation for the pressure is parabolic. In this context, recent work has demon-
strated that control strategies based on Optimal Control Theory (OCT) can
potentially increase the production in oil and gas fields [15]. In addition, the
efficiency of the OCT model makes it suitable for application to real reservoirs
simulated using large scale models, in contrast to many existing techniques [12].

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 452–465, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Block Iterative Algorithms 453

The main bottleneck in this approach, however, is the need for a fast simulator
to test all the necessary scenarios to decide upon an adequate strategy for each
reservoir.

Our purpose in this paper, is to study iterative algorithms for the solution
of finite time linear-quadratic optimal control problems governed by a parabolic
partial differential equation. Such problems are computationally intensive and
require the minimization of some quadratic objective functional J(·) (represent-
ing some cost to be minimized over time), subject to linear constraints given
by a stiff system of n ordinary differential equations, where n is typically quite
large. An application of the Pontryagin maximum principle to determine the
optimal solution, see [9], results in a Hamiltonian system of ordinary differential
equations, with initial and final conditions. This system is traditionally solved
by reduction to a matrix Riccati equation for an unknown matrix function P (t)
of size n, on an interval [0, T], see [9,7,11]. Solving the Riccati equation, and
storing matrix P (t) of size n for each t ∈ [0, T] can become prohibitively expen-
sive for large n. Instead, motivated by the parareal algorithm (of Lions, Maday
and Turinici [6]) and iterative shooting methods in the control context [4,13], we
propose iterative algorithms for such control problems; see also [14].

The iterative algorithms we formulate for parabolic optimal control problems
are based on a saddle point formulation [11]. We consider a finite difference (or
finite element) discretization of the parabolic equation in space, and a θ-scheme
discretization in time. The cost functional is discretized in time using a trape-
zoidal or midpoint rule, and the control variable is approximated by piecewise
constant finite element functions in time and space. Lagrange multipliers (ad-
joint) variables are introduced to enforce the constraints, and a saddle point
linear system is formulated for the optimal solution. Inspired by the reduction
approach employed in [11] for elliptic control problems, we develop two algo-
rithms whose rate of convergence does not deteriorate as the mesh parameters
become small. The first algorithm uses a CG method to solve a symmetric posi-
tive definite reduced linear system for determining the unknown control variable.
We show under specific assumptions that the resulting system has a condition
number independent of the mesh parameters. For the second algorithm, we ex-
pand the reduced system consistently by introducing an auxiliary variable. We
describe a block preconditioned algorithm using a MINRES method on the aux-
iliary and control variables. We analyze the convergence rates of these two pro-
posed iterative algorithms.

Our discussion is organized as follows. In Section 2, we introduce the opti-
mal control problem for the parabolic problem. In Section 3, we describe the
finite dimensional linear-quadratic optimal control problem. We then describe
the saddle point system obtained by a stable discretization of the parabolic
control problem. In Section 4, we describe the preconditioners and theoreti-
cal results that justify the efficiency of the proposed methods. Finally, in Sec-
tion 5, numerical results are presented which show that the rate of conver-
gence of both proposed algorithms are independent of the space and time step
parameters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

454 C.E. Schaerer, T. Mathew, and M. Sarkis

2 The Optimal Control Problem

Let (t0, tf) denote a time interval and let A denote an operator from a Hilbert
space L2(to, tf ; Y) to L2(to, tf ; Y ′), where Y = H1

0 (Ω) in our applications, and
L2(to, tf ; Y) is endowed with its standard norm [7]. Given z0 ∈ Y , we consider
the following state equation on (t0, tf) with z(t) ∈ Y :

{
zt + Az = Bv, for t0 < t < tf

z(0) = zo,
(1)

where z(·) ∈ Y is referred to as a state variable and operator A is coercive. The
distributed control v(·) belongs to an admissible space U = L2(to, tf ; Ω) and B
is an operator in L(U , L2(to, tf ; Y ′)). We assume that for each v(·), this problem
is well posed, and indicate the dependence of z on v ∈ U using the notation
z(v). Given parameters q ≥ 0, r ≥ 0, s ≥ 0, we shall employ the following cost
function, which we associate with the state equation (1):

J(z(v), v) := q
2

∫ tf

t0
‖z(v)(t, .) − z∗(t, .)‖2

L2(Ω) dt + r
2

∫ tf

t0
‖v(t, .)‖2

L2(Ω) dt

+ s
2 ‖z(v)(tf , .) − z∗(tf , .)‖2

L2(Ω),

where z∗(., .) is a given target. The optimal control problem for equation (1)
consists of finding a controller u ∈ U which minimizes the cost function (2):

J(z(u), u) = min
v∈U

J(z(v), v). (2)

Since r
2

∫ tf

t0
‖v(t, .)‖2

L2(Ω) dt > 0 and q
2

∫ tf

t0
‖z(v)(t, .) − z∗(t, .)‖2

L2(Ω) ≥ 0 for
r > 0, q > 0 and v �= 0 in (2), the optimal control problem (2) will be well posed,
see [7]. Let (., .) denote the L2(Ω) inner product, then the weak formulation of (1)
will seek z ∈ L2(to, tf ; Y) with ż ∈ L2(to, tf ; Y ′) satisfying:

(ż(t), η) + (Az(t), η) = (Bu(t), η) , ∀η ∈ Y, for t0 < t < tf . (3)

The bilinear form (Az, η) will be assumed to be continuous on Y × Y and Y -
elliptic, and bilinear form (Bu, η) will be assumed to be continuous on U × Y .
To discretize the state equation (1), we apply the finite element method to its
weak formulation for each fixed t ∈ (to, tf). Let Yh ⊂ Y = H1

0 (Ω) denote a
finite element space for approximating z(t, .) and let Uh(Ω) ⊂ U denote a finite
element space for approximating u. If zho ∈ Yh is a good approximation of z(to)
(for instance, a L2(Ω)-projection), then a semi-discretization of (1) will be:

(żh(t), ηh) + (Azh(t), ηh) = (Buh(t), ηh) , ∀ηh ∈ Yh, for to < t < tf , (4)
zh(to) = zho. (5)

Let {φ1(x), ..., φn(x)} denote a basis for Yh and {ϕ1(x), ..., ϕm(x)} a basis for Uh,
so that we can represent zh(t) =

∑n
j=1 φj(x)ξj(t) and uh(t) =

∑m
j=1 ϕj(x)μj(t).

Then, for any t ∈ (to, tf), the discrete variational equality (4) is equivalent to:
n∑

j=1

(φj , φi) ξ̇j(t) +
n∑

j=1

(Aφj , φi) ξj(t) =
m∑

j=1

(Bϕj , φi)μj(t) for all i ∈ {1, .., n}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Block Iterative Algorithms 455

Define the matrices (Âh)ij := (Aφj , φi), (M̂h)ij := (φj , φi) and (B̂h)ij :=
(Bϕj, φi), and the vectors ξ := (ξj(t))j , μ := (μj(t))j and ξo := ξ(t0). Then,
the preceding equations correspond to the following system of ordinary differen-
tial equations:

M̂hξ̇ + Âhξ = B̂hμ, t ∈ (to, tf) and ξ(to) = ξo. (6)

We discretize the functional (2) as follows:

Jh(ξ, u) = q
2

∫ tf

to
(ξ − ξ∗)T (t)M̂h(ξ − ξ∗)(t) + r

2

∫ tf

to
uT (t)Rhu(t)

+ s
2 (ξ − ξ∗)T (tf)M̂h(ξ − ξ∗)(tf),

(7)

where both Rh and M̂h are mass matrices. In our applications, Yh will be piece-
wise linear finite elements and Uh will be piecewise constant finite elements.
Since matrix M̂h will be symmetric positive definite, we factorize M̂h = UT

h Uh

and introduce new variables y = Uhξ and u = μ. Then, functional (7) will be:

Jh(y, u) = q
2

∫ tf

to
(y − y∗)T (y − y∗) + r

2

∫ tf

to
uT Rhu

+ s
2 (y − y∗)T (y − y∗)(tf),

(8)

and the state equation (6) can be reduced to:
{

ẏ = Ay + B u, t ∈ (0, tf)
y(to) = y0,

(9)

where A := U−T
h ÂhU−1

h and B := U−T
h B̂h.

In summary, spatial discretization of (1) transforms the constraints into a
system of n linear ordinary differential equations (9), where y(·) ∈ R

n denotes
the discrete state space variables having initial value y0, while u(·) ∈ R

m denotes
the discrete control variables. Although, A, B can be n × n and n × m matrix
functions, respectively, we shall only consider the time-invariant case with A
being a symmetric and negative definite matrix of size n, where n is large. When
A = −Δ and the finite element space Yh is defined on a triangulation with mesh
size h, matrix A will correspond to a discrete Laplacian, and its eigenvalues will
lie in an interval [−c, −d] where c = O(h−2) and d = O(1).

A general linear-quadratic optimal control problem seeks y(·) ∈ R
n and u(·) ∈

R
m satisfying (9) and minimizing a non-negative quadratic cost functional J(., .),

more general than (8), given by:
⎧
⎪⎨

⎪⎩

J(y, u) ≡
∫ tf

to
l(y, u) dt + ψ(y(tf)), where

l(y, u) ≡ 1
2

(
e(t)T Q(t)e(t) + u(t)T R(t)u(t)

)
,

ψ(y(tf)) ≡ 1
2 (y(tf) − y∗(tf))T

C (y(tf) − y∗(tf)) ,

(10)

where e(t) := y(t) − y∗(t) and Q(.) is an n × n symmetric positive semi-definite
matrix function, y∗(·) ∈ R

n is a given tracking function, C is an n×n symmetric
positive semidefinite matrix, and R(.) is an m × m symmetric positive definite
matrix function. The linear-quadratic optimal control problem seeks the mini-
mum of J(·) in (10) subject to the constraints (9). Given the tracking function
y∗(·), the optimal control u(·) must ideally yield y(·) “close” to y∗(·).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

456 C.E. Schaerer, T. Mathew, and M. Sarkis

3 The Basic Saddle Point System

We now consider a stable discretization of the optimal control problem:

J(ŷ, û) = min
(y,u)∈K

J(y, u), (11)

where the constraint set K consists of (y, u) satisfying:
{

ẏ = Ay + B u, for to < t < tf
y(to) = y0,

(12)

where J(y, u) is defined in (10) and matrices Q, R and S are time-invariant. We
discretize the time domain t ∈ [to, tf] using (l − 1) interior grid points, so that
the time step is τ = (tf − to)/l with ti = i τ . The state variable y at the time ti
is denoted by yi := y(ti). We assume that the discrete controller u is constant on
each interval (ti, ti+1] with the value ui+1/2 = u(ti+1/2). A stable discretization
of equation (12) using the θ-scheme can be written as:

F1 yi+1 = F0 yi + τ B ui+1/2, with y0 = y(to), i = 0, 1, ..., l − 1, (13)

where matrices F1, F0 ∈
n×n are given by F0 := I+τ(1−θ)A and F1 := I−τθA.
The preceding discretization of equation (12) takes the matrix form:

E y + N u = f , (14)

where the discrete state vector y ∈
nl and control vector u ∈
ml are:

y := [y1, . . . , yl]T and u := [u1/2, . . . , ul−1/2]T , (15)

respectively, the input vector f ∈
nl is given by f := [−F0yo, 0, ..., 0]T , and the
matrices E ∈
(nl)×(nl) and N ∈
(ml)×(ml) have the following block structure:

E :=

⎡

⎢⎢⎢⎣

−F1
F0 −F1

.
F0 −F1

⎤

⎥⎥⎥⎦ and N := τ

⎡

⎢⎣
B

. . .
B

⎤

⎥⎦ . (16)

The discretization of the performance functional J(y, u) takes the form:

Jh(y, u) ≡ 1
2
(uT GuT + eT Ze + eT Ce(tf)), (17)

where the discrete error vector e := [eT
1 , . . . , eT

l]T ∈
nl is defined in terms
of the discrete errors at time ti as follows ei := y(iτ) − y∗(iτ) for i = 1, ..., l.
In the numerical experiments, we consider matrix G to be diagonal since we
approximate the controller using piecewise constant functions in time and also
in space. The finite element element functions representing the tracking error are
piecewise linear in both time and space, and hence matrix Z is block tri-diagonal

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Block Iterative Algorithms 457

where each non-zero block is matrix M̂h. The discrete Lagrangian Lh(y,u,p)
associated with the constrained minimization problem has the matrix form:

Lh(y,u,p) =
1
2
(uT GuT + eT Ke) + pT (Ey + Nu − f), (18)

where K is defined as K := Z + Γ and Γ = blockdiag(0, 0, ..., 0, C). A fully
discrete version of the optimal control problem (11) will seek the minimum of (17)
subject to the constraints (14). To obtain a saddle point formulation, we require
the first derivatives of Lh(y,u,p) with respect to y, u and p to be zero at the
saddle point. This yields the linear system:

⎡

⎣
K 0 ET

0 G NT

E N 0

⎤

⎦

⎡

⎣
y
u
p

⎤

⎦ =

⎡

⎣
Kg
0
f

⎤

⎦ (19)

where g := [gi] for gi = y∗(iτ). In the following, we shall estimate the condition
number of matrix EET , where E is the evolution matrix.

Theorem 1. Let A be a n × n symmetric negative definite matrix. Denote its
eigenvalues as λi(A) for 1 ≤ i ≤ n. Let the evolution matrix E be as defined in
(16) with matrices F0 and F1 defined for 0 ≤ θ ≤ 1 as follows:

F0 := I + τ(1 − θ)A and F1 := I − τθA (20)

Then, for θ ≥ 1
2 , scheme (13) will be stable for all τ > 0, while for θ < 1

2 ,
scheme (13) will be stable only if τ ≤ 2/ ((1 − 2θ)ρmax). The following bound:

cond(EET) ≤ 4 (1 + τθρmax)2

(τρmin)2
, (21)

will hold, where ρmax := max | λi | and ρmin := min | λi |.

Proof. Part 1. Consider the marching scheme for equation (1) given by:

yk+1 = Φyk + F−1
1 τ B u (22)

where Φ is the marching matrix given by

Φ := (I − τ θ A)−1(I + τ(1 − θ)A). (23)

The stability condition for (22) is given by

| (1 − τ θ λi)−1(1 + τ (1 − θ)λi) |≤ 1 (24)

or equivalently, {
1 + τ(1 − θ)λi ≤ 1 − τθλi

−1 − τ(1 − θ)λi ≤ 1 − τθλi.
(25)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

458 C.E. Schaerer, T. Mathew, and M. Sarkis

From (25), we obtain τλi ≤ 0 and τ | λi | (1 − 2θ) ≤ 2 since λi < 0. In the
case θ ≥ 1/2, there is no restriction on τ , consequently the marching scheme is
unconditionally stable. On other hand, if θ < 1/2 then 0 < (1− 2θ) and in order
for the scheme to be stable it is necessary that τ ≤ 2/ ((1 − 2θ)ρmax). In this
case, the marching scheme is conditionally stable.

Part 2. To estimate cond(EET), we shall diagonalize the blocks of EET :

EET =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

F1F
T
1 −F1F

T
0

−F0F
T
1 F0F

T
0 + F1F

T
1 −F1F

T
0

−F0F
T
1 F0F

T
0 + F1F

T
1 −F1F

T
0

. . .
. . .

. . .
−F0F

T
1 F0F

T
0 + F1F

T
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)
Let QT AQ = Λ = diag(λi) denote the diagonalization of A where Q=[q1, . . . , qn]
is orthogonal. Then, F0 and F1 will also be diagonalized by Q, yielding that
Λ0 = QT F0Q = QT (I − τθA)Q and Λ1 = QT F1Q = QT (I + τ(1 − θ)A)Q. If
Q := blockdiag(Q, . . . , Q), then QEET QT will have diagonal blocks:

QEET QT =

⎡

⎢⎢⎢⎢⎢⎣

Λ2
1 −Λ0Λ1

−Λ0Λ1 Λ2
0 + Λ2

1 −Λ1Λ0
−Λ0Λ1 Λ2

0 + Λ2
1 −Λ1Λ0

.
−Λ0Λ1 Λ2

0 + Λ2
1

⎤

⎥⎥⎥⎥⎥⎦
. (27)

Next, we permute the rows and columns of the block tridiagonal matrix (27)
using a permutation matrix P , so that P (QEET QT)PT = blockdiag(Θ1, . . . , Θl)
where each block submatrix Θi is a tridiagonal matrix with entries:

Θi := (PQEET QT PT)i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a2
i −aibi

−aibi a2
i + b2

i −aibi

−aibi a2
i + b2

i −aibi

.
−aibi a2

i + b2
i

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

where bi := (1+τ(1−θ)λi) and ai := (1−τθλi). Let μ(Θi) denote an eigenvalue
of submatrix Θi (and hence also of Θ). Then, Gershgorin’s Theorem [2] yields:

| μ(Θi) − a2
i |≤| aibi | or | μ(Θi) − a2

i − b2
i | ≤ 2 | aibi | (29)

Using condition (24), we guarantee stability when | bi |≤| ai | obtaining

μ(Θi) ≤ max
(
| ai | (| ai | + | bi |) , (| ai | + | bi |)2

)
≤ max 4 | ai |2 (30)

and

μ(Θi)≥min
((

| ai |2 − | ai || bi |
)
, (| ai |−| bi |)2

)
≥ min (| ai | − | bi |)2. (31)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Block Iterative Algorithms 459

To obtain an upper bound for μ(Θi) from (30), we define ρmax := max | λi |,
therefore we have μ(Θi) ≤ 4 (1 + τθρmax)2. To obtain a lower bound for μ(Θi),
from (31) we define ρmin := min | λi | obtaining μ(Θi) ≥ (τρmin)2. Therefore,
the condition number of the matrix EET will satisfy the bound:

cond(EET) ≤ 4
(

1 + τ θ ρmax

τ ρmin

)2

. (32)

This completes the proof.

Remark. For finite difference and finite element discretizations on a domain of
size O(1), the eigenvalues λi(A) of the scaled matrix A will satisfy the bounds
α1 ≤ |λi(A)| ≤ α2h

−2 Then, using (32) we obtain:

cond(EET) ≈
(

1 + τ θ α2h
−2

τ α1

)2

. (33)

Thus, matrix EET will be ill-conditioned with a condition number that can
grow as O(h−4) depending on τ and h. If system (19) is solved using Uzawa’s
method, it will be necessary to solve −(EK−1ET +NG−1NT)p = f −Eg, where
matrix S := (EK−1ET + NG−1NT) is the Schur complement of system (19)
with respect to the Lagrange multiplier p.

Next, we analyze the condition number of S. Notice that due to the positive
semi-definiteness of matrix C in (17), we obtain in the sense of quadratic forms
that K−1 = (Z + Γ)−1 ≤ Z−1 and apply it in the following estimate for the
condition number of the Schur complement S. Henceforth, we normalize q = 1.

Lemma 1. Let the upper and lower bound for the singular values of EET be
given by 4(1 + τθρmax)2 and (τρmin)2, respectively. Let us assume, using (8)
and (9), that the mass matrices Z, G, N , and Γ satisfy

c1 τ yT y ≤ yT Zy ≤ c2 τ yT y (34)
c3 r τ hduT u ≤ uT Gu ≤ c4 r τ hduT u, (35)
c5 τ2 hd pT p ≤ pT NNT p ≤ c6 τ2 hd pT p and (36)

0 ≤ yT Γy ≤ c7 syT y. (37)

Then, the condition number of matrix S will satisfy the bound:

cond(S) ≤
(

c4 r (c5 τ + c7 s)
c1 τ c3 r

) (
4 c3 r (1 + ρmax τ θ)2 + c6 τ2 c1

c4 r (τ ρmin)2 + c5 τ (c2 τ + c7 s)

)
(38)

where S := EK−1ET + NG−1NT denotes the Schur complement.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

460 C.E. Schaerer, T. Mathew, and M. Sarkis

Proof. Using the upper and lower bounds for K, EET , NNT and G we obtain:

Upper bound:

pT Sp = pT EK−1ET p + pT NG−1NT p (39)
≤ pT EZ−1ET p + pT NG−1NT p (40)

≤ 1
c1 τ

pT EET p +
1

c3 r τ hd
pT NNT p (41)

≤
(

4
c1 τ

(1 + τ θ ρmax)2 +
c6 τ2hd

c3 r τ hd

)
pT p (42)

=
(

4
c1 τ

(1 + τ θ ρmax)2 +
c6 τ

c3 r

)
pT p. (43)

Lower bound:

pT Sp ≥ 1
(c2 τ + c7)

pT EET p +
1

c4 r τ hd
pT NNT p (44)

≥
(

(τ ρmin)2

(c2 τ + c7 s)
+

c5 τ2 hd

c4 r τ hd

)
pT p (45)

=
(

(τ ρmin)2

(c2 τ + c7 s)
+

c5 τ

c4 r

)
pT p. (46)

Therefore, the condition number of matrix S can be estimated by:

cond(S) =
c4 r (c5 τ + c7 s)

c1 τ c3 r

4 c3 r (1 + ρmax τ θ)2 + c6 τ2 c1

c4 r (τ ρmin)2 + c5 τ (c2 τ + c7 s)
. (47)

Remark. The estimate given in (47) shows that matrix S is ill-conditioned.
Indeed, let all the constants ci = 1. Then the expression (47) reduces to:

cond(S) ≈
(

τ + s

τ

) (
r (1 + h−2τ θ)2 + τ2

r τ2 + τ2 + τ s

)
. (48)

Choosing θ = 1 and h ≈ τ , and using the reasonable assumption:

0 < O(h4) ≤ r ≤ O(s/τ),

yields that cond(S) ≈ O(rh−4).

4 The Reduced System for u

We shall now describe an algorithm to solve the saddle point system (19) based
on the solution of a reduced Schur complement system for the control variable
u. Assuming that G �= 0 and solving the first and third block rows in (19) yields
p = −E−T Ky + E−T Kg and y = −E−1Nu + E−1f , respectively. System (19)
can then be reduced to the following Schur complement system for u:

(G + NT E−T KE−1N)u = NT E−T KE−1f − NT E−T Kg, (49)

where matrix (G + NT E−T KE−1N) is symmetric and positive definite. In the
next Lemma, we show that (G+NT E−T KE−1N) is spectrally equivalent to G.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Block Iterative Algorithms 461

Lemma 2. Let the bounds for G, E, K, N , Γ presented in Lemma 1 hold.
Then, there exists μmim > 0 and μmax > 0, independent of h and u, such that:

μmin
(
uT Gu

)
≤ uT (NT E−T KE−1N)u ≤ μmax

(
uT Gu

)
(50)

Proof. Using the upper and lower bounds for K, EET , NNT and G we obtain:

Upper bound:

uT NT E−T KE−1Nu ≤ (c2 τ + c7 s)uT NT E−T E−1Nu (51)

≤ (c2 τ + c7 s)
(τ ρmin)2

uT NT Nu (52)

≤ (c2 τ + c7 s) c6 τ2 hd

(τ ρmin)2
uT u (53)

=
(c2 τ + c7 s)c6 hd

(ρmin)2
uT u (54)

≤ (c2 τ + c7 s) c6

(ρmin)2 c3 r τ
uT Gu (55)

= μmax uT Gu. (56)

Lower bound:

uT NT E−T KE−1Nu ≥ (c1 τ)uT NT E−T E−1Nu (57)

≥ c1 τ

4 (1 + τ ρmax θ)2
uT NT Nu (58)

≥ c1 c5 τ3 hd

4 (1 + τ ρmax θ)2
uT u (59)

≥ c1 c5 τ2 hd

4 (1 + τ ρmax θ)2 c4 r
uT Gu (60)

= μmin uT Gu. (61)

This completes the proof.

First Algorithm. The Schur complement system (49) can be solved using a
CG algorithm (conjugate gradient) using G as a preconditioner. Note that:

uT Gu ≤ uT (G + NT E−T KE−1N)u ≤ (1 + μmax)uT Gu. (62)

Since ρmin is O(1) and ρmax is O(h−4), it is easy to see that μmin = O(h4

r)
and μmax = O(1+s/τ

r). Hence, the rate of convergence of this algorithm will be
independent of h, with a condition number estimate bounded by O(1 + 1+ s

τ

r).
This algorithm is simple to implement however has two drawbacks. It has inner
and outer iterations, and requires applications of E−1 (and E−T) which are not
directly parallelizable.

Second Algorithm. Our second algorithm avoids double iteration. Define:

b̂ := −NT E−T KE−1f + NT E−T Kg and w := −E−T KE−1Nu.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

462 C.E. Schaerer, T. Mathew, and M. Sarkis

Then, the solution to system (49) can be obtained by solving the system:
[
EK−1ET N
NT −G

] [
w
u

]
=

[
0
b̂

]
, (63)

which is symmetric and indefinite. The action of E−1 is required only in a pre-
computed step to assemble the right hand side input vector b̂. Since system (63)
is symmetric indefinite, it can be solved iteratively using the MINRES algorithm
with a positive definite block diagonal preconditioner diag(EoK

−1
o ET

o , Go), where
Ko is any matrix spectrally equivalent to the mass matrix K, matrix Eo is any
matrix spectrally equivalent to (or a preconditioner for) the evolution matrix
E, see [6,13,3], and matrix Go is a preconditioner for matrix G. The following
Theorem estimates the number when E0 = E, K0 = K and G0 = G.

Theorem 2. Let the bounds for matrices G, E, K, N and Γ hold as presented
in lemma 1. Let P := blockdiag(EK−1ET , G) denote a block diagonal precondi-
tioner for the coefficient matrix H of system (63). Then, the condition number
of the preconditioned system will satisfy the bound:

κ(P−1H) ≤ O

((
1 +

1 + s/τ

r

)1/2
)

. (64)

Proof. Since the preconditioner P is positive definite, we consider the generalized
eigenvalue problem given by:

[
EK−1ET N
NT −G

] [
w
u

]
= λ

[
EK−1ET

G

] [
w
u

]
, (65)

We obtain the equations:

(λ − 1)EK−1ET w = Nu and (λ + 1)Gu = NT w. (66)

These equations yield NT E−T KE−1Nu = (λ2 − 1)Gu where (λ2 − 1) is the
generalized eigenvalue of NT E−T KE−1N with respect to G. Using Lemma 2,
we obtain bounds for λ as follows:

max|λ| ≤ (1 + μmax)1/2 = O

((
1 +

1 + s/τ

r

)1/2
)

(67)

min|λ| ≥ (1 + μmin)1/2 = O (1) . (68)

The desired result now follows, since:

κ(P−1H) ≤ max|λ|
min|λ| . (69)

This completes the proof.

Remark. Generalization of this theorem for matrices Go and EoK
−1
o ET

o (spec-
trally equivalent to G and EK−1ET respectively) follows directly from [5].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Block Iterative Algorithms 463

Table 1. Number of CG iterations for Algorithm 1. The parameters s = 0 (s = 1).

Nx \ Nt 32 64 128 256 512

32 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)
64 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)
128 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)
256 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)
512 36 (41) 38 (44) 40 (46) 40 (47) 40 (48)

Remark. Applying matrix E is highly unstable, but applying E−1 is stable.
The algorithms presented here do not require application of E or ET since:

PH =
[

I E−T KE−1N
G−1NT −I

]
. (70)

5 Numerical Experiments

In this section, we consider the numerical solution of an optimal control problem
involving the 1D-heat equation. In this case, the constraints are given by:

zt − zxx = v, 0 < x < 1, t > 0

with boundary conditions z(t, 0) = 0 and z(t, 1) = 0 for t ≥ 0, with initial data
z(0, x) = 0 for x ∈ [0, 1], and with the performance function z∗ = x(1 − x)e−x

for all t ∈ [0, 1]. Following [8], we take q = 1 and r = 0.0001. The backward
Euler discretization (θ = 1) is considered in the numerical experiments. As a
stopping criteria for the iterative solvers, we take ‖rk‖/‖r0‖ ≤ 10−9 where rk is
the residual at each iteration k.

Table 2. Condition number of the preconditioned matrix of Algorithm 1. The param-
eters are q = 1, r = 0.0001, tf = 1, h = 1/32 and τ = 1/64 .

r \ s 104 102 1 10−2 0

10−2 4.9 104 5.0 102 6.2 1.9 1.9
10−4 4.7 106 4.8 104 5.2 102 93 93
10−6 4.2 108 4.8 106 5.1 104 9.2 103 9.1 103

Algorithm 1: Reduction to u. We consider matrix G as a preconditioner
for system (49) and use the CG method to solve the resulting preconditioned
system. For the case where s = 0 and in parenthesis s = 1, Table 1 presents
the number of iterations for different time and space meshes. As predicted by
the theory in Section 4, the number of iterations remains constant as h is re-
fined. Table 1 also shows that the number of iterations deteriorates very weakly
when the time discretization τ gets finer. As expected from the analysis, this

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

464 C.E. Schaerer, T. Mathew, and M. Sarkis

Table 3. Number of CG iterations for Algorithm 1 for different values of τ and s. The
space discretization is h = 1/32.

Nt \ s 0 1 10 100

32 36 41 50 68
64 38 44 52 73
128 40 46 57 83
256 40 47 62 89
512 40 48 64 96

deterioration is more noticeable for larger s, (see Tables 1 and 3). Table 2 shows
that the condition number estimates in Section 4 are sharp for different values
of parameters r and s.

Algorithm 2. Table 4 presents the number of iterations required to solve sys-
tem (63) using MINRES acceleration when both time and space grid sizes are
refined. As predicted from the analysis, as the space grid is refined, the number
of iterations remains bounded. As before, for larger s, a slight deterioration in
the number of iterations is observed.

Table 4. Number of MINRES iterations for algorithm 2. Parameter s = 0 (s = 1).

Nx \ Nt 32 64 128 256 512

32 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)
64 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)
128 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)
256 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)
512 56 (60) 58 (62) 60 (64) 60 (66) 60 (68)

6 Concluding Remarks

In this paper we have described two approaches for iteratively solving the lin-
ear quadratic parabolic optimal control problem. The first method is based
on the CG solution of a Schur complement. This is obtained by reducing the
saddle point system to the system associated with the control variable. This
method is simple to implement but requires double iteration. The second method
avoids double iteration by introducing an auxiliary variable. The resulting sys-
tem is symmetric and indefinite, so that MINRES can be used. The structure
of this method also allows parallel block preconditioners. The precondition-
ers described yield a rate of convergence independent of the time and space
parameters.

Acknowledgments. C.E.S. acknowledges Etereldes Gonçalves Junior for a
fruitful discussion on topics of this work.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Block Iterative Algorithms 465

References

1. G. Biros and O. Gattas, Parallel Lagrange-Newton-Krylov-Schur Methods for
PDE-Constrained Optimization. Part I: The Krylov-Schur Solver, SIAM Journal
on Scientific Computing, 27(2), pp. 687–713, 2005.

2. J. W. Demmel, Applied Numerical Linear ALgebra, SIAM, Philadelphia, 1997.
3. M. J. Gander and S. Vandewalle, On the super linear and linear convergence

of the parareal algorithm, Proceedings of the 16th International Conference on
Domain Decomposition Methods, 2005.

4. M. Heinkenschloss, A time-domain decomposition iterative method for the solu-
tion of distributed linear quadratic optimal control problems, Journal of Computa-
tional and Applied Mathematics, Volume 173, Issue 1, No 1, Pages 169-198, 2005.

5. A. Klawon, Preconditioners for Indefinite Problems, Reports CS-NYU, TR1996-
716, March, 1996.

6. J. L. Lions and Y. Maday and G. Turinici, Résolution d’EDP par un schéma
en Temps Pararéel, C.R. Acad. Sci. Paris, t. 332, Série I, pp. 661–668, 2001.

7. J.L. Lions Optimal Control of Systems Governed by Partial Differential Equations
problems, Springer, Berlin, 1971.

8. A. Locatelli, Otimal Control: An Introduction, Birkhäuser, Berlin, 2001.
9. D. Luenberger, Introduction to Dynamic Systems: Theory, Models and Applica-

tions, Wiley, New York, 1979.
10. Y. Maday and G. Turinici, A parareal in time procedure for the control of partial

differential equations, C.R.Acad. Sci. Paris, t. 335, Ser. I, pp. 387–392, 2002.
11. T. Mathew and M. Sarkis and C.E. Schaerer , Block matrix preconditioners

for elliptic optimal control problems, accepted in Numerical Linear Algebra with
Applications, 2006.

12. P. Sarma, K. Aziz and L.J. Durlofsky, Implementation of adjoint solution for
optimal control of smart well, SPE reservoir Simulation Symposium, Texas-USA,
January 31- February 2, 2005.

13. C.E. Schaerer and E. Kaszkurewicz, The shooting method for the numerical
solution of ordinary differential equations: a control theoretical perspective,
International Journal of Systems Science, Vol. 32, No. 8, pp. 1047-1053, 2001.

14. C.E. Schaerer and T. Mathew and M. Sarkis, Parareal-block matrix pre-
conditioners for the control of PDEs of parabolic type, Proceedings of the 17th
International Conference on Domain Decomposition Methods. Lecture Notes in
Computational Science and Engineering, Springer Verlag, 2007. Submitted.

15. B. Sudaryanto and Y. C. Yortsos, Optimization of fluid fronts dynamics in
porous media using rate control. I. Equal mobility fluids, Physics of Fluids, Vol.
12, No 7, pp. 1656–1670, 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Linear Solvers for Astrophysics

Transfer Problems�

Osni Marques1 and Paulo B. Vasconcelos2

1 Lawrence Berkeley National Laboratory,
1 Cyclotron Road, MS 50F-1650, Berkeley, CA 94720-8139, USA

oamarques@lbl.gov
2 Faculdade de Economia da Universidade do Porto,
Rua Dr. Roberto Frias s/n, 4200-464 Porto, Portugal

pjv@fep.up.pt

Abstract. In this work we consider the numerical solution of a radiative
transfer equation for modeling the emission of photons in stellar atmo-
spheres. Mathematically, the problem is formulated in terms of a weakly
singular Fredholm integral equation defined on a Banach space. Compu-
tational approaches to solve the problem are discussed, using direct and
iterative strategies that are implemented in open source packages.

Keywords: High performance computing, Fredholm integral equation,
weakly singular kernel, projection approximation, numerical methods.

AMS subject classification: 32A55, 45B05, 65D20, 65R20, 68W10.

1 Introduction and Problem Overview

The emission of photons in stellar atmospheres can be modeled by a strongly
coupled system of nonlinear equations. In this work we consider a restriction of
the system by taking into account the temperature and pressure. We refer the
reader to [2] and [13] for details on the model. The resulting integral equation,
a radiative transfer problem, is expressed by

Tϕ − zϕ = f, ϕ ∈ L1(I), I = [0, τ�], (1)

defined on a Banach space L1 (I) , where the integral operator T is defined as

(Tϕ)(τ) =
�

2

∫ τ�

0
E1 (|τ − τ ′|)ϕ (τ ′) dτ ′. (2)

The variable τ represents the optical depth, τ� is the optical thickness of a stellar
atmosphere, z is in the resolvent set of T and � ∈]0, 1[is the albedo (assumed
� This work was partly supported by the Centro de Matemática da Universidade do

Porto, through the programs POCTI and POSI, and partly by the Director, Office
of Science, Division of Mathematical, Information, and Computational Sciences of
the U.S. Department of Energy under contract No. DE-AC02-05CH11231.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 466–475, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Linear Solvers for Astrophysics Transfer Problems 467

to be constant in the present work). The free term f is taken to be f(τ) = −1
if 0 ≤ τ ≤ τ∗/2, and f(τ) = 0 if τ∗/2 < τ ≤ τ∗. The first exponential-integral
function E1, defined by

E1(τ) =
∫ ∞

1

exp(−τμ)
μ

dμ, τ > 0, (3)

has a logarithmic behavior in the neighborhood of 0.
The numerical approach used to solve this problem is based on the projec-

tion of the integral operator into a finite dimensional subspace. By evaluating
the projected problem on a specific basis function we obtain a linear system of
equations whose coefficient matrix is banded, sparse and nonsymmetric. In order
to obtain a good accuracy for the solution it is necessary to use a large dimen-
sion for the space where the problem is projected into. One possible approach
is to compute an approximate initial solution in a subspace of moderate (small)
size and then iteratively refine it by a Newton-type method. This approach was
adopted with success in [17]. Alternatively, one can discretize the problem on a
finer grid and then solve a large banded sparse algebraic linear system. In this
case, depending on the dimension of the problem, we can employ either direct
or iterative methods.

This work aims to explore the second approach mentioned above. Due to the
large dimensional cases of interest to the astrophysicists and due to the memory
limitation of computers, one needs to have access to scalable parallel versions
of the code. Scalability is crucial either for the generation phase of the matrix
coefficients as well as for the solution phase. In [17], scalability of the solution
phase was not achieved because the (moderate size) systems were not solved in
a distributed way. The parallelization of the solution phase was limited to the
iterative refinement process. MPI was used for this purpose.

A large number of computational models and simulations that are analyzed
and solved on nowadays high end computers benefit from the use of advanced and
promptly available software tools and libraries to achieve performance, scalability
and portability. In these lines, we are interested in investigating the trade offs
and capabilities implemented in several packages, in particular the ones that are
available in the DOE Advanced CompuTational Software (ACTS) Collection [9].
In the following sections we outline the projection and matrix formulation that
we use to tackle the integral operator. Next, we give a brief description of the
ACTS Collection, and the tools that are pertinent to our application. Finally,
we present some numerical results and drawn up some conclusions.

2 Projection Phase and Matrix Formulation

Integral equations as the one described in the previous section are usually solved
by discretization mechanisms, for instance by projection into a finite dimensional
subspace. The operator T is thus approximated by Tn, with its projection into
the finite dimensional subspace given by Xn = span{en,j, j = 1, . . . , n} (spanned
by n linearly independent functions in X). In this case, we will take for Xn the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

468 O. Marques and P.B. Vasconcelos

basis en = [en,1 . . . en,n] of piecewise constant functions on each subinterval of
[0, τ∗] determined by a grid of n + 1 points 0 = τn,0 < τn,1 < . . . < τn,n = τ∗.

For x ∈ X let

〈x, e∗n,j〉 = e∗n,j(x) =
1

τn,j − τn,j−1

τn,j∫

τn,j−1

x(τ)dτ,

and define

Tnx = πnTx =
n∑

j=1

〈x, T ∗e∗n,j〉en,j, (4)

where πnx =
n∑

j=1
〈x, e∗n,j〉en,j and T ∗e∗n ∈ X∗(the adjoint space of X). The

approximate problem
(Tn − zI)ϕn = f (5)

is then solved by means of an algebraic linear system of equations

(A − zI)x = b, (6)

where A is a non singular matrix of order n, and A(i, j) = 〈en,j , T
∗e∗n,i〉, b(i) =

〈f, T ∗e∗n,i〉, x(j) = 〈ϕn, T ∗e∗n,j〉 (see [2]). The relation between x and ϕn is
given by

ϕn =
1
z

⎛

⎝
n∑

j=1

x(j)en,j − f

⎞

⎠ .

In order to achieve an approximate solution ϕn with good accuracy by this
method it may be necessary to use a very large dimensional linear system.

To obtain the elements of A we need to compute

A(i, j) =
�

2 (τn,i − τn,i−1)

∫ τn,i

τn,i−1

∫ τ∗

0
E1 (|τ − τ ′|) en,j (τ ′) dτ ′dτ

for i, j = 1, ..., n. Using the fact that E3(0) = 1/2, we obtain

A(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�
2(τn,i−τn,i−1)

[−E3 (τn,i − τn,j) + E3 (τn,i−1 − τn,j) +
+ E3 (τn,i − τn,j−1) + E3 (τn,i−1 − τn,j−1)]

if i �= j

�
[
1 + 1

τn,i−τn,i−1
(−E3 (τn,i − τn,i−1) − 1)

]
if i = j

, (7)

where

E3(τ) =
∫ ∞

1

exp(−τμ)
μ3 dμ. (8)

For computational purposes, this function is evaluated according to [1].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Linear Solvers for Astrophysics Transfer Problems 469

3 ACTS: Tools of the Trade

The ACTS Collection consists of a set of computational tools for the solution of
common and important computational problems. The tools were developed in var-
ious laboratories and universities and have allowed a wide spectrum of important
computational problems to be solved to content [10]. We refer the reader to [9] for
an overview of the project and available numerical tools, and also to the ACTS
Information Center [12] for details about all tools available in the Collection.

In this paper we are interested in solving equation (1) on a fine mesh. ACTS
incorporates the packages ScaLAPACK [6], SuperLU [7], PETSc [5] and Trili-
nos [11]. ScaLAPACK provides routines for distributed-memory message-passing
MIMD architectures, in particular routines for solving systems of linear equa-
tions, least squares, eigenvalue problems and singular value problems. SuperLU
is a library for the direct solution of large, sparse, nonsymmetric systems of linear
equations, but that can also be applied efficiently to many symmetric systems.
Working precision iterative refinement subroutines are provided for improved
backward stability. PETSc provides a number of functionalities for the numeri-
cal solution of PDEs that require solving large-scale, sparse linear and nonlinear
systems of equations. It includes nonlinear and linear equation solvers that em-
ploy a variety of Newton techniques and Krylov subspace methods. Trilinos is
one the the last additions to ACTS. It targets the development of parallel solver
algorithms and libraries within an object-oriented software framework. It pro-
vides self-contained packages, each one with its own set of requirements. One of
this packages is AztecOO, which superseded the widely used package Aztec.

In order to solve the problem for larger values of τ� we need to use high per-
formance computers as well a scalable software. Taking into account the charac-
teristics of the coefficient matrix here we will focus on SuperLU and PETSc, for
the direct and iterative solution, respectively, of a large, sparse, nonsymmetric
system of linear equations.

4 Numerical Results

The numerical results showed in this section were obtained on an SGI Altix 350,
an AMD Opteron cluster, and an IBM SP. The Altix is configured with 32 64-
bit 1.4 GHz Intel Itanium-2 processors, with 192 GBytes of shared memory. The
cluster is configured with 356 dual-processor nodes, each processor running at
a clock speed of 2.2 GHz, with 6 GB of memory per node, interconnected with
a high-speed InfiniBand network. The IBM SP is configured with 380 compute
nodes with 16 Power 3+ processors per node. Most nodes have 16 GB of mem-
ory. These three systems are located at the National Energy Research Scientific
Computing Center (NERSC), Lawrence Berkeley National Laboratory, of the US
Department of Energy. To validade our implementation, our experiments used
only a small fraction of the computer power provided by those systems. For the
physical problem we considered � = 0.75 and � = 0.90, and explored the band
and sparse characteristics of the coefficient matrix obtained for this particular
kernel as mentioned earlier.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

470 O. Marques and P.B. Vasconcelos

Table 1. Normalized times for the generation of the matrix and solution of the system
of equations with SuperLU, for various matrix sizes (m) and � = 0.75, on the SGI Altix

generation solution
m factor solve

1000 3.26E+03 6.95E+01 1.00E+00
2000 2.12E+04 1.65E+02 3.00E+00
4000 9.71E+04 3.59E+01 6.00E+00
8000 4.26E+05 7.51E+02 1.80E+01

16000 1.80E+06 1.54E+03 3.00E+01
32000 7.36E+06 3.12E+03 5.35E+01

Table 2. Normalized times for the generation of matrices of various sizes (m), with
the corresponding number of nonzeros in the matrix (nnz) for � = 0.75, and solution
with two distinct solvers, on one processor of the IBM SP

generation SuperLU GMRES
m nnz (factor+solve) (22 iterations)

1000 104918 5.79E+01 1.14E+00 1.00E+00
2000 215718 2.27E+02 2.75E+00 1.90E+00
4000 445264 8.83E+02 6.11E+00 3.36E+00
8000 880518 3.46E+03 1.26E+01 6.96E+00

In Table 1 we show normalized times required for the generation of the matrix
(and right-hand side) and for the solution of problem with SuperLU on one
processor of the SGI Altix, for � = 0.75. As can be seen in the table, the most
time consuming part of the simulation is the generation of the matrix, due to the
large number of exponential evaluations. This phase is orders of magnitude more
expensive that the other calculations and grows exponentially. The factor phase
of the solution is then the second most time consuming part. One of the main
advantages of the LU factorization is the potential gain that we can achieve if
there is a need to solve several linear systems with the same coefficient matrix.
However, this is not the case here. In addition, for higher dimensional problems
direct methods usually becomes less competitive.

Table 2 shows normalized times required for the generation of the matrix (and
right-hand side), and for the solution of problem with SuperLU and GMRES
with Jacobi preconditioner on one processor of the IBM SP. The tolerance for
the iterative method was set to 10−10. We notice that for the parameters we
have used in defining the problem an iterative method is very adequate in the
sequential case.

The numbers in Tables 1 and 2 stress the need for parallelization in order
to solve the problem for higher dimensions. It turns out that the terms in (7)
can be analytically developed such that their generation becomes embarrassing
parallel, that is, without any communication needed among the processors [17].
As a result, the data distribution can also be done accordingly to the solver
used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Linear Solvers for Astrophysics Transfer Problems 471

Table 3. Normalized times and number of iterations for various matrix sizes (m) and
for � = 0.75 on up to 64 processors (p) of the IBM SP

generation GMRES BiCGstab
m p (22 iterations) (14 iterations)

10000 2 7.70E+03 8.77E+00 9.16E+00
4 3.87E+03 6.32E+00 6.11E+00
8 1.93E+03 3.06E+00 3.24E+00

16 9.72E+02 1.90E+00 2.43E+00
32 4.87E+02 1.33E+00 1.00E+00

25000 16 6.13E+03 4.95E+00 3.62E+00
32 3.00E+03 2.47E+00 2.04E+00
64 1.49E+03 1.76E+00 1.36E+00

Table 4. Normalized times and number of iterations for various matrix sizes (m) and
for � = 0.75 on up to 32 processors (p) on the Opteron cluster

generation GMRES BiCGstab
m p (22 iterations) (14 iterations)

10000 1 5.40E+03 7.54E+00 7.95E+00
2 2.67E+03 4.02E+00 4.58E+00
4 1.39E+03 2.32E+00 2.56E+00
8 6.90E+02 1.80E+00 1.97E+00

16 3.51E+02 1.15E+00 1.25E+00
32 1.79E+02 1.15E+00 1.36E+00

25000 4 8.41E+03 5.42E+00 5.61E+00
8 4.28E+03 3.02E+00 3.15E+00

16 2.16E+03 2.05E+00 1.83E+00
32 1.07E+03 1.00E+00 1.15E+00

50000 16 8.57E+03 3.14E+00 3.20E+00
32 4.24E+03 1.53E+00 1.86E+00

In Table 3 we list (normalized) times for the generation phase and for two
preconditioned iterative methods implemented in PETSc on the IBM SP, for up
to 64 processors, for � = 0.75. We observe that there are significant gains by
using the parallel version of the code. The generation phase is still the most time
consuming part of the algorithm. The two sparse iterative solvers show similar
times, although for the parameters chosen BICGstab requires fewer iterations.

In Table 4 we list (normalized) times for the generation phase and for two
preconditioned iterative methods implemented in PETSc on the Opteron cluster,
for � = 0.75. Once more, we observe that there are significant gains by using the
parallel version of the code. The generation phase dominates the computational
costs. The two sparse iterative solvers show similar times, although, as before, for
the parameters chosen BICGstab requires fewer iterations. The achieved speedup
is not ideal but together with the generation phase the performance of the code
is almost linear, see Figure 1. The stagnation of the speedup curve for the linear

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

472 O. Marques and P.B. Vasconcelos

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

number of iterations

S
pe

ed
up

Fig. 1. Speedup for m = 104, solid line: ideal, dashed line: preconditioned GMRES

Table 5. Normalized times and number of iterations for various matrix sizes (m) and
for � = 0.90 on up to 32 processors (p) on the Opteron cluster

generation GMRES BiCGstab
m p (24 iterations) (37 iterations)

10000 1 2.83E+03 6.14E+00 6.99E+00
2 1.36E+03 3.62E+00 4.12E+00
4 7.20E+03 2.20E+00 2.31E+00
8 3.59E+02 1.67E+00 1.76E+00

16 1.80E+02 1.11E+00 1.30E+00
32 9.19E+02 1.02E+00 1.00E+00

25000 4 2.83E+03 4.96E+00 5.37E+00
8 2.22E+03 2.96E+00 3.39E+00

16 1.11E+03 1.78E+00 2.11E+00
32 5.55E+03 1.33E+00 1.46E+00

50000 16 4.36E+03 2.82E+00 3.14E+00
32 2.21E+03 2.15E+00 2.05E+00

solver in Figure 1 only indicates that for m = 10000 it is not worthy to use
more than 16 processors. In fact, the speedup gets better for larger values of m.
The time required to generate the matrix for m = 2.5 × 104 on 8 processors was
similar to the time to generate the matrix for m = 5 × 104 on 32 processors. For
the solver, the time to solve the linear system for m = 2.5 × 104 on 8 processors

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Linear Solvers for Astrophysics Transfer Problems 473

0 2 4 6 8 10 12 14 16
1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

number of processors

C
P

U
 ti

m
e

Fig. 2. CPU time in seconds for m = 5 × 104, solid line: GMRES/Jacobi,
dashed line: BiCGstab/Jacobi, dashdotted line: GMRES/blockJacobi, dotted line:
BiCGstab/blockJacobi

was similar to the time required for the solution of a linear system for m = 5×104

on 16 processors, showing a good relative speedup.
In Table 5 we list, as in Table 4, the normalized times on the Operon cluster

but now for � = 0.90. The time for the generation phase was the same but,
as expected, for higher values of the albedo the linear system becomes more
difficult to solve. In fact, for � = 0.90 GMRES performed better than BiCGstab,
requiring only a few more iterations than for � = 0.75. That was not the case of
BiCGstab, which required almost three times as many iterations and therefore
a degradation in performance for this system.

The entries of the coefficient matrices show a high decay in magnitude from
the diagonal. This property allowed us to successfully employ the highly parallel
Jacobi preconditioner for the iterative methods. As we can see in Fig. 2, both
iterative solvers performed better with the simple Jacobi preconditioner than
with the block-Jacobi.

5 Conclusions and Future Work

In this contribution we discussed the numerical solution of a radiative trans-
fer equation for modeling the emission of photons in stellar atmospheres, in
particular mechanisms that we have implemented to enable the solution of
large systems. This is necessary because the generation of the matrix associ-
ated to the model requires a significant amount of time. The parallelization of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

474 O. Marques and P.B. Vasconcelos

generation phase, as dicussed in the previous section, dramatically reduces the
time to solution. At the same time, it is also important to select an appropri-
ate solver for the resulting system of linear equations. Here we focused on tools
available in the DOE ACTS Collection, and in particular (the sequential ver-
sion of) SuperLU and iterative methods implemented in PETSc. These tools
have delivered capability and portability and thus have been very useful in the
development of a number of applications, including the one discussed here.

References

1. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover,
New York, 1960.

2. M. Ahues, F.D. d’Almeida, A. Largillier, O. Titaud and P. Vasconcelos. An L1

Refined Projection Approximate Solution of the Radiation Transfer Equation in
Stellar Atmospheres. J. Comput. Appl. Math., 140:13–26, 2002.

3. F.D. d’Almeida and P.B. Vasconcelos, A Parallel Implementation of the Atkinson
Algorithm for Solving a Fredholm Equation. Lecture Notes in Computer Science,
2565:368–376, 2003.

4. E. Anderson and Z. Bai and C. Bischof and S. Blackford and J. W. Demmel
and J. J. Dongarra and J. Du Croz and A. Greenbaum and S. Hammarling and
A. McKenney and D. C. Sorensen, LAPACK User’s Guide, SIAM, Philadelphia,
USA, 1999.

5. S. Balay and K. Buschelman and V. Eijkhout and W. D. Gropp and D. Kaushik and
M. G. Knepley and L. Curfman McInnes and B. F. Smith and H. Zhang, PETSc
Users Manual, Technical Report ANL-95/11, Revision 2.1.5, Argonne National
Laboratory, 2004.

6. L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Wha-
ley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

7. J. Demmel and J. Gilbert and X. Li. SuperLU Users’ Guide, LBNL-44289, 1999.
8. J.J. Dongarra, I.S. Duff, D.C. Sorensen and H.A. van der Vorst. Numerical Lin-

ear Algebra for High-Performance Computers. Society for Industrial and Applied
Mathematics, Philadelphia, 1998.

9. L.A. Drummond and O. Marques, An Overview of the Advanced CompuTational
Software (ACTS) Collection. ACM TOMS, 31:282–301, 2005.

10. L.A. Drummond, V. Hernandez, O. Marques, J.E. Roman, and V. Vidal, A Survey
of High-Quality Computational Libraries and their Impact in Science and Engineer-
ing Applications Collection. Lecture Notes in Computer Science, Springer Verlag,
3402:37–50, 2005.

11. M. Heroux and J. Willenbring, Trilinos Users Guide, Technical Report SAND2003-
2952, Sandia national Laboratories, 2003.

12. O.A. Marques and L.A. Drummond, The DOE ACTS Information Center.
http://acts.nersc.gov.

13. B. Rutily. Multiple Scattering Theoretical and Integral Equations. Integral Methods
in Science and Engineering: Analytic and Numerical Techniques, Birkhauser, 211-
231, 2004.

14. Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations, Technical
Report RIACS-90-20, NASA Ames Research Center, Moffett Field, CA, 1990.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evaluation of Linear Solvers for Astrophysics Transfer Problems 475

15. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company,
1996.

16. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J.J. Dongarra. MPI: The Complete
Reference. The MIT Press, 1996.

17. P.B. Vasconcelos and F.D. d’Almeida, Performance evaluation of a parallel al-
gorithm for a radiative transfer problem. Lecture Notes in Computer Science,
Springer Verlag, 3732: 864–871, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Cosmological Simulations

on Parallel Machines

Filippo Gioachin1, Amit Sharma1, Sayantan Chakravorty1, Celso L. Mendes1,
Laxmikant V. Kalé1, and Thomas Quinn2

1 Dept. of Computer Science, University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{gioachin, asharma6, schkrvrt, cmendes, kale}@uiuc.edu
2 Dept. of Astronomy, University of Washington

Seattle, WA 98105, USA
trq@astro.washington.edu

Abstract. Cosmological simulators are currently an important compo-
nent in the study of the formation of galaxies and planetary systems.
However, existing simulators do not scale effectively on more recent ma-
chines containing thousands of processors. In this paper, we introduce
a new parallel simulator called ChaNGa (Charm N-body Gravity). This
simulator is based on the Charm++ infrastructure, which provides a
powerful runtime system that automatically maps computation to phys-
ical processors. Using Charm++ features, in particular its measurement-
based load balancers, we were able to scale the gravitational force calcu-
lation of ChaNGa on up to one thousand processors, with astronomical
datasets containing millions of particles. As we pursue the completion
of a production version of the code, our current experimental results
show that ChaNGa may become a powerful resource for the astronomy
community.

1 Introduction

Cosmological simulators are currently an important component in the study of
the formation of galaxies and planetary systems. Galaxies are the most distinc-
tive objects in the universe, containing almost all the luminous material. They
are remarkable dynamical systems, formed by non-linear collapse and a drawn-
out series of mergers and encounters. Galaxy formation is indeed a challenging
computational problem, requiring high resolutions and dynamic timescales. For
example, to form a stable Milky Way-like galaxy, tens of millions of resolution
elements must be simulated to the current epoch. Locally adaptive timesteps
may reduce the CPU work by orders of magnitude, but not evenly throughout
the computational volume, thus posing a considerable challenge for parallel load
balancing. No existing N-body/Hydro solver can handle this regime efficiently.

The scientific payback from such studies can be enormous. There are a number
of outstanding fundamental questions about the origins of planetary systems
which these simulations would be able to answer.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 476–489, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Cosmological Simulations on Parallel Machines 477

To address these issues, various cosmological simulators have been created
recently. PKDGRAV [1], developed at the University of Washington, can be
considered among the state-of-the-art in that area. However, PKDGRAV does
not scale efficiently on newer machines with thousands of processors. In this
work, we present a new N-body cosmological simulator that utilizes the Barnes-
Hut tree topology to compute gravitational forces. Our new simulator, named
ChaNGa, is based on the Charm++ runtime system [2]. We leverage the ob-
ject based virtualization [3] inherent in the Charm++ runtime system to ob-
tain automatic overlapping of communication and computation time, as well as
to perform automatic runtime measurement-based load balancing. ChaNGa ad-
vances the state-of-the-art in N-Body simulations by allowing the programmer to
achieve higher levels of resource utilization with moderate programming effort.
In addition, as confirmed by our experimental results, the use of Charm++ has
enabled ChaNGa to efficiently scale on large machine configurations.

The remainder of this paper is organized as follows. Section 2 presents an
overview of previous work in the development of parallel simulators for cosmol-
ogy. Section 3 describes the major components of ChaNGa. Section 4 presents
the various optimizations that we have applied to ChaNGa, with the resulting
improvement in performance measured for each optimization. Finally, Section 5
contains our conclusions and the future directions of our work.

2 Related Work

There have been numerous studies on the N-Body problem, which involves the
evolution of interacting particles that are under the effects of Newtonian gravi-
tational forces. One of the most widely used methods was proposed by Barnes
and Hut [4]. In their scheme, the particles are associated to a hierarchical struc-
ture comprising a tree. This tree is traversed and the forces between particles
are computed exactly or by approximations, depending on the distance between
the given particles. With N particles, this approach achieves reduction in the
complexity of the problem from the original O(N2) to O(N log N).

Given the power of hierarchical methods for N-Body simulations, such meth-
ods have been adopted for quite some time by the astronomy community [5]. One
of the most popular simulators currently is PKDGRAV [1], a parallel hierarchical
tree-structured code used to conduct cosmological simulations on shared-memory
and distributed-memory systems. It is portable across different communication
substrates (e.g. MPI, PVM, etc.), and supports adaptive decomposition of work
among the processors. PKDGRAV has been used in production simulations of
systems with millions of particles, and has been shown to scale well on up to
hundreds of processors. One restriction in PKDGRAV’s current version, how-
ever, arises from its limited load-balancing capability. This effectively prevents
scaling the code efficiently on newer machines with thousands of processors.

Other cosmological simulators have been in use as well. Among these, two of
the major codes are GADGET [6], developed in Germany, and falcON [7], devel-
oped at the University of Maryland. However, despite claiming a good scalability

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

478 F. Gioachin et al.

with the number of particles, falcON is a serial simulator. Meanwhile, GADGET
originally had some of the same limitations of PKDGRAV when scaling to a large
number of processors. This has been addressed in a more recent version of their
code (GADGET-2), but there are not yet results reported with more than around
one hundred processors [8].

3 New ChaNGa Code

In order to leverage the features that the Charm++ runtime system offers,
we decided to develop a new cosmological simulator called ChaNGa (formerly
ParallelGravity). Our goal in developing this new application is to create a full
production cosmological simulator that scales to thousands of processors.

This new simulator is capable of computing gravitational forces generated
by the interaction of a very large number of particles, integrating those forces
over time to calculate the movement of each particle. Since most of the running
time of the application is devoted to force computation, our focus has been in
optimizing this aspect of the code. The integration over time is typically easier
to parallelize, and is not the focus of our analysis in this paper.

Since the gravitation field is a long range force, the total force applied to a
given particle has contributions from all the other particles in the entire space.
The algorithm we applied is based on a Barnes-Hut tree topology [4], which
enables achieving an algorithmic performance of O(N log N). The tree generated
by this algorithm is constructed globally over all the particles, and distributed
across elements that are named TreePieces. This distribution is done according
to the particles contained in each internal tree node. Figure 1 shows an example
of such distribution. In this scheme, some internal nodes are replicated in more
than one element. The particles are at the leaves of the tree, and are grouped
by spatial proximity into buckets of a user-defined size. While walking the tree
to compute forces, a single walk is performed for all the particles contained in a
given bucket. Mass moments needed for the gravity calculation are evaluated as
the tree is built. For upper parts of the tree, requests are made to neighboring
TreePieces for their contributions to the moments. The code allows the user
to choose between different available tree distributions. Currently, two types
of distributions are implemented: SFC, where a Morton-ordered Space Filling
Curve is used to impose a total ordering on the particles, with a contiguous
portion of the curve being assigned to each TreePiece; and Oct, where particles
are divided based on the nodes of an Octree covering the entire space, with each
TreePiece assigned a complete subtree rooted at an internal node.

3.1 Charm++ Infrastructure

Our new ChaNGa code is based on the Charm++ [2] infrastructure. Charm++

is a parallel C++ library that implements the concept of processor virtualiza-
tion: an application programmer decomposes her problem into a large number
of components, or objects, and the interactions among those objects. The ob-
jects, called chares in Charm++ nomenclature, are automatically mapped to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Cosmological Simulations on Parallel Machines 479

Fig. 1. Distribution of a tree across TreePieces (top levels). White nodes are owned by
one TreePiece, black nodes are placeholders for remote nodes, gray nodes are shared
among multiple TreePieces.

physical processors by the Charm++ runtime system. Typically, the number
of chares is much higher than the number of processors. By making the number
of chares independent of the number of existing processors, Charm++ enables
execution of the same code on different machine configurations. This separation
between logical and physical abstractions provides higher programmer produc-
tivity, and has allowed the creation of parallel applications that scale efficiently
to thousands of processors, such as the molecular dynamics NAMD code [9].

The Charm++ runtime system has the ability to migrate chares across pro-
cessors during execution of an application. This migration capability is used by
the powerful measurement-based load-balancing mechanism of Charm++ [10].
The runtime system can measure various parameters in the chares, such as com-
putational load or communication frequency and volume. Charm++ provides
a family of load balancers, targeting optimization of a variety of metrics. The
user simply needs to select her desired balancers at application launch. During
execution, the selected balancers will collect the measured chare values for the ap-
propriate metrics, and dynamically remap chares across the available processors
in a way that execution performance is optimized. This dynamic optimization
capability is critical for applications such as particle system simulators, where
particles can move in space and cause overloading on a given processor as the
simulation progresses, while other processors become underutilized.

3.2 Major ChaNGa Features

An early decision in the design of ChaNGa was to select where to compute
the forces applied to a particle. Historically, two methods have been used: (a)
distributing the computation of the forces on that particle across all processors,
with each processor computing the portion of the forces given by its subtrees,
or (b) gathering at the processor owning that particle all the data needed to
compute the forces on it. We opted for the second scheme, since the Charm++

capabilities could be better exploited, as explained later in this section.
In our implementation of ChaNGa, each TreePiece in Figure 1 is a Charm++

chare. Thus, TreePieces are dynamically mapped to physical processors by the
Charm++ runtime system. The overall structure of how the code works is
shown in Figure 2, and described in the next paragraphs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

480 F. Gioachin et al.

Fig. 2. Control flow of the execution of an iteration of force calculation

To perform the computation of the forces on its particles, a TreePiece pro-
cesses its buckets independently. For each bucket, the TreePiece must walk the
overall tree and compute the forces due to all other particles. During the walk,
visited nodes may be local (i.e. owned by this TreePiece) or non-local. For local
nodes, the force computation can proceed immediately. For non-local nodes, a
retrieval must be carried out, to bring the corresponding data into the TreePiece.
A non-local node may reside either at another TreePiece of the same processor,
or at a remote processor. In the first case, we use a direct data transfer between
chares. In the second case, data must be requested to the remote processor. While
waiting for remote data to arrive, the TreePiece can process other buckets.

Instead of repeating fetches of the same remote data for different bucket walks,
we can use the property that buckets close in space will require similar remote
portions of data. Thus, we can buffer the imported data and have it used by all
buckets in the TreePiece before discarding it. Because in Charm++ we may
have multiple chares in a single processor, we implemented this optimization at
the processor level using a Charm++ group, which we call CacheManager.

The purpose of the CacheManager is to serve all requests made by the
TreePieces, and provide a caching mechanism to hide the latency of interpro-
cessor data fetching. The CacheManager implements a random access to the
cached data through the use of a hash table. To reduce the overhead of table
lookup, the imported data is reconstructed into a local tree. Thus, once entering
a subtree, TreePieces can iterate over direct pointers, until another cache miss
occurs. Upon detecting a miss, the CacheManager will fetch the remote data and
use callbacks to notify the requesting TreePiece when the data arrives. More ad-
vanced features provided by the CacheManager are presented in the next section,
together with the observed experimental results.

Because Charm++ executes chare methods in a non-preemptive fashion, a
long sequence of consecutive tree walks might potentially prevent a processor
from serving incoming data requests from other processors. In order to provide
good responsiveness to incoming requests, we partitioned the processing of tree

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Cosmological Simulations on Parallel Machines 481

Table 1. Characteristics of the parallel systems used in the experiments

System Number of Processors CPU CPU Memory Type of
Name Location Processors per Node Type Clock per Node Network

Tungsten NCSA 2,560 2 Xeon 3.2 GHz 3 GB Myrinet
BlueGene/L EPCC 2,048 2 Power440 700 MHz 512 MB Torus

HPCx HPC-UK 1,536 16 Power5 1.5 GHz 32 GB Federation

walks with a fine granularity. The grainsize is a runtime option, and corresponds
to the number of buckets that will walk the tree without interruption. After that
number of walks is performed, the TreePiece will yield the processor, enabling
the handling of existing incoming data requests.

While dividing the computation into fine grains, we also distinguish between
local and global computation. Local computation is defined as the interaction
with the particles present in the same TreePiece. In contrast, global computa-
tion is defined as the interaction with the rest of the tree, i.e. the computation
that involves non-local nodes. In particular, because this global computation is
performed on the imported sections of the tree, it is on the more critical path.
To express this different criticality, we utilized the prioritization mechanism em-
bedded into Charm++. This mechanism allows establishing a total order of
priority for the different operations performed by a TreePiece: the highest pri-
ority is assigned to accepting requests arriving from other processors, followed
by sending replies to such requests, and finally the two types of computation
(local and global), with the local one having the lowest priority. The Charm++

runtime system will schedule these operations according to such priorities.

4 Optimizations and Experimental Evaluation

After having a basic version of ChaNGa in place, we studied its performance and
added a number of optimizations to the code. Some of these optimizations were
designed to exploit Charm++ aspects that enable high performance, whereas
others were aimed at specific characteristics of particle codes. In this section, we
describe the various optimizations that we have added, and present, in each case,
the performance improvement that we obtained by applying such techniques to
real cosmological datasets. Although the following subsections describe the ef-
fect of each optimization technique separately, our integrated version of ChaNGa
contains all the optimizations. It is this integrated, fully optimized version that
we use in the last subsection, to show how the current code scales with increas-
ing system size. In our experiments, we used the parallel systems described in
Table 1, and the following particle datasets:

lambs: Final state of a simulation of a 71Mpc3 volume of the Universe with 30%
dark matter and 70% dark energy. Nearly three million particles are used
(3M). This dataset is highly clustered on scales less than 5 Mpc, but becomes
uniform on scales approaching the total volume. Three subsets of this dataset

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

482 F. Gioachin et al.

are obtained by taking random subsamples of size thirty thousand (30K),
three hundred thousand (300K), and one million (1M) particles, respectively.

dwarf: Snapshot at z = .3 of a multi-resolution simulation of a dwarf galaxy
forming in a 28.5Mpc3 volume of the Universe with 30% dark matter and
70% dark energy. The mass distribution in this dataset is uniform, but the
particle distribution is very centrally concentrated and therefore highly clus-
tered. The central regions have equivalent resolution of 20483 particles in
the entire volume. The total dataset size is nearly five million particles.

4.1 Uniprocessor Performance

While developing a parallel application like ChaNGa, we are concerned not only
with scalability, but also with performance (i.e. execution time). Hence, it is
important to evaluate the single processor performance as well. To do this, we
compared the serial performances of ChaNGa and PKDGRAV, on different sub-
sets of the lambs dataset.

Table 2 shows the execution times for the gravitational force calculation phase
of the two simulators, running on one Xeon processor of Tungsten. As the table
shows, ChaNGa’s serial performance is comparable to that of PKDGRAV, even
for the larger datasets. The slightly greater times for ChaNGa (increase of less
than 6%) are caused by optimizations aimed at improving parallel performance.
As the next subsections will demonstrate, this is a very small price to pay in
view of the large gains achievable with those optimizations in the parallel case.

4.2 Software Cache Mechanism

As mentioned in Section 3.2, the CacheManager not only reduces the number of
messages exchanged to fetch remote data, but also hides the latency of fetching
data from other processors. We evaluated the effectiveness of the CacheManager

Table 2. Time, in seconds, for one step of force calculation in serial execution

Number of Particles
Simulator 30,000 300,000 1 million 3 million

PKDGRAV 0.83 12.0 48.5 170.0
ChaNGa 0.83 13.2 53.6 180.6

Table 3. CacheManager effects in terms of number of messages and iteration time

Number of Processors
4 8 16 32 64

Number of Messages No Cache 48,723 59,115 59,116 68,937 78,086
(×103) With Cache 72 115 169 265 397

Time No Cache 730.7 453.9 289.1 67.4 42.1
(seconds) With Cache 39.0 20.4 11.3 6.0 3.3

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Cosmological Simulations on Parallel Machines 483

on the 1 million lambs subset running on varying numbers of HPCx processors. Ta-
ble 3 shows that the CacheManager dramatically reduces the number of messages
exchanged. The performance improvement due to sending a much lower number
of messages, combined with the latency-hiding effects of the CacheManager, pro-
duces a sharp reduction in the execution time, as seen in Table 3. Thus, the software
cache mechanism is absolutely necessary to obtain good parallel performance.

4.3 Data Prefetching

As in PKDGRAV, we can take the principle of the software cache one step
further by fetching not only the node requested by a TreePiece, but proactively
also part of the subtree rooted at that node. The user can specify the cache depth
(analogous to the concept of cache line in hardware) as the number of levels in
the tree to recursively prefetch. The rationale for this is that if a node is visited,
most probably its children will be visited as well. This mechanism of prefetching
more data than initially requested helps to reduce the total number of messages
exchanged during the computation. Since every message has both a fixed and
a variable cost, prefetching reduces the total fixed cost of communication. On
the other hand, a cache depth of more than zero might cause some data to be
transferred but never used, thus increasing the variable part of the cost.

If a TreePiece requested data to the CacheManager only when required by the
tree-walk computation, the CacheManager might not have it. This would trigger
a fetch of the data from the remote node, but at the same time it would suspend
the computation for the requesting bucket until the moment of data arrival. Both
the interruption of the tree walk and the notification from the CacheManager
incur an overhead. To limit this effect, we developed a prefetching phase which
precedes the real tree-walk computation. During this phase, we traverse the tree
and prefetch all the data that will be later used during the computation in the
regular tree walk. This prefetching phase can work with different cache depths.

We used the lambs dataset on 64 processors of Tungsten to evaluate the
impact of cache depth and the prefetching phase. Figure 3(a) shows the execution

Fig. 3. Impact of cache depth and prefetching on (a) iteration time, and (b) relevance
and memory use

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

484 F. Gioachin et al.

time for different cache depths with and without the prefetching phase. In both
cases there is an optimal value of cache depth, at which the execution time
is minimal. The optimal point is achieved when the fixed cost associated with
every message and the variable cost of transferring data over the network are in
balance. According to our results in Figure 3(a), the optimal cache depth seems
to vary between 3 and 5.

We can also see that the prefetching phase improves performance for all con-
sidered values of cache depth. This is due to the increased hit rate of the cache.
While executions without the prefetching phase generate a cache hit rate of
about 90%, with the prefetching active the hit rate rises to 95-97% for SFC
tree decomposition, and 100% for Oct decomposition. The greater accuracy in
prefetching for Oct decomposition is due to the better prefetching algorithm we
developed, given the constraint that prefetching must be lightweight. Although
Oct decomposition provides a clear benefit in terms of cache hit rate over SFC,
the full effects on the entire execution time are more complex and will require
more detailed studies to be fully characterized.

We define the relevance as the ratio between the number of nodes fetched
and used, and the total number of nodes fetched. Ratios closer to 1.0 represent
a better relevance. In Figure 3(b), we plot the relevance on the left vertical
axis. The observed relevance decreases with increasing cache depth, leading to
unnecessarily higher memory consumption, as plotted on the right vertical axis
of the same graph. Nevertheless, this higher memory consumption due to caching
is limited to a fraction of the total memory footprint for moderate values of cache
depth. At a very low value of relevance, the cost of fetching a large amount of
extra data is not offset by the benefit of having the data already present in the
software cache when it is requested. This is why the execution time rises for large
values of cache depth in Figure 3(a). The prefetching phase does not affect the
relevance, since it does not change which data items are transferred. Prefetching
simply causes those data transfers to occur earlier.

Thus, we see that using the prefetching phase along with a small but non-zero
value of cache depth improves performance. In the following subsections, we will
assume that the prefetching phase is active, and a reasonable value of cache
depth is used.

4.4 Tree-in-Cache Effects

In Section 3 we introduced the concept of local and global computation.
We pointed that the global work is on the critical path, and that the local
work can be used to hide the latency of data transfers. From this, it is clear
that we should have as much local work as possible. One point to notice is
that in the Charm++ environment we fragment the particle dataset in more
TreePieces than the number of physical processors available. This over-
decomposition reduces the amount of local work per TreePiece. In some of our
experiments, when increasing the number of processors beyond one hundred, the
local work became insufficient to maintain the processor busy during the entire
computation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Cosmological Simulations on Parallel Machines 485

Table 4. Distribution of work between local and global computation

Local Global

Original Code 16% 84%
Code with Tree-in-cache 42% 58%

By noticing that during the force computation there is no migration of
TreePieces, we can consider collectively all the TreePieces residing on a given
processor. We can attribute to local computation not only the work related
to nodes/particles present in the same TreePiece, but also the work related to
particles and nodes present in other TreePieces in the same processor. This is
implemented by having each TreePiece registering to the CacheManager at the
beginning of the computation step. The CacheManager will then create a su-
perset tree including all the trees belonging to the registered TreePieces. Each
TreePiece will now consider as local work this entire tree. During this operation,
only the nodes closest to the root of the tree will be duplicated. According to
our tests with datasets of a few million particles, less than one hundred nodes
were duplicated.

Table 4 summarizes the percentage of local and global work for a simulation
on 64 Tungsten processors with the lambs-300K subset. The percentages changed
considerably before and after this optimization. In our tests, this new scheme
enabled scaling the computation up to hundreds of processors. However, when
reaching the limit of one thousand processors, even the extra work from co-
resident TreePieces becomes insufficient. A solution that we are investigating is
to split the global walk into multiple sub-walks.

4.5 Interaction Lists

After having preceded the computation with a prefetching phase, and verifying
that it is accurate, we explored a faster algorithm for gravitational force compu-
tation similar to the Fast Multipole Method [11]. This algorithm is centered on
the concept of interaction lists, which we describe in this subsection. The new
algorithm is based on the same principle of the CacheManager: two buckets close
in space will tend to interact similarly with a given remote node.

In the regular ChaNGa algorithm, whenever a bucket walk visits a tree node,
a fundamental test is carried out. In this test, we check the spatial position of
the bucket in respect to the particles in that node. If the bucket is sufficiently far
from the node, the forces on the bucket due to the entire subtree rooted at that
node are immediately computed, using the subtree’s center of mass. Otherwise,
ChaNGa opens the node, i.e. it recursively traverses the subtree rooted at that
node. Thus, the threshold used to decide if a node is close enough to the bucket
represents the opening criteria for deciding whether the visited node must be
opened or not.

Instead of checking the opening criteria at a given node for each bucket in-
dependently, we can modify the algorithm and do that check for various local

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

486 F. Gioachin et al.

Table 5. Number of checks for opening criteria, in millions

lambs 1M dwarf 5M

Original algorithm 120 1,108
Modified algorithm 66 440

buckets at once. We can do this collective check using the buckets’ ancestors
in the local tree. These ancestors will be local nodes containing particles which
are close in space. If an ancestor needs to open a visited node, that node will
be opened for every bucket that is a descendent of such ancestor. On the other
hand, if a node is far enough for that ancestor, this node will be far enough for
all the ancestor’s buckets too. In this second case, we can directly compute the
interaction between the node and all these local buckets.

By grouping the checking for various local buckets, we can reduce the total
number of checks for opening nodes. As an example, Table 5 shows the number of
checks that are observed with the two algorithms, executing on the HPCx system
with our two datasets. A potential problem in this modified algorithm is that it
may cause less effective usage of the hardware cache: because the computation
of interactions proceeds for various local buckets, one bucket’s data may flush
another bucket’s data from the hardware cache. We can reduce the number of
hardware-cache misses by storing all the nodes that interact with a given bucket
in a bucket’s interaction list, and perform the entire computation of forces on
that bucket at the end of the tree walk. Performance is improved even further
with interaction lists because compilers may keep a particle’s data inside CPU
registers while computing interactions with the nodes in the list.

Figure 4(a) plots the execution time for both the regular algorithm and the
new algorithm employing interaction lists, showing also cases where load bal-
ancing was employed (load balancing is the subject of our analysis in the next
subsection). The new algorithm shows a performance improvement over the en-
tire range considered. This improvement varies between 7% and 10%. We used
ChaNGa with interaction lists for the uniprocessor tests of Section 4.1.

4.6 Load Balancer Importance

After describing all the optimizations applied to the basic ChaNGa code, we
assess the importance of the Charm++ automatic load balancing framework in
improving the performance of our simulations. In particular, we emphasize the
fact that the code instrumentation and the migration of chares in the system
are totally automated, and do not require any programmer intervention.

Figure 4(a) shows the effect of load balancing on both versions of ChaNGa,
one with the regular algorithm and the other with the interaction-list implemen-
tation. The improvement from load balancing is similar in both algorithms. We
see that, before load balancing, the behavior of the algorithms is somewhat ran-
dom and determined only by the particle decomposition. This happens because
different particles in space require different amounts of computation. TreePieces

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Cosmological Simulations on Parallel Machines 487

Fig. 4. (a) Comparison between regular ChaNGa (Ver-I) and the one with interaction

lists (Ver-II) before (1st) and after load balancing (5th iter.) on BlueGene/L for dwarf
dataset. (b) Effect of Load Balancer for dwarf dataset on 64 BlueGene/L processors.

owning heavy particles will be overloaded, hence cause bad performance. After
load balancing, performance improves between 15% and 35%.

To further analyze the improvements from the load balancer, Figure 4(b) dis-
plays a view from our Projections performance analysis tool, a component of
Charm++. This view corresponds to five timesteps of a simulation on 64 Blue-
Gene/L processors. The horizontal axis represents time, while each horizontal
bar represents a processor. Darker colors represent higher utilization, with black
as full utilization and white as idleness. One can see that even starting from
a very unbalanced situation on the first timestep, after two timesteps the load
balancer improves performance quite significantly, approaching almost perfect
balance. The gray region at the beginning of each timestep, where utilization
is lower, corresponds to the communication overhead due to prefetching. The
time spent by the application in load balancing and in domain decomposition is
hardly visible in the figure. It corresponds to the period between the end of the
longest black bar in one timestep and the beginning of the gray region of the
next timestep. That time is negligible.

It is relevant to notice that the input dataset (dwarf) is highly clustered at
the center of the simulation space, and its spatial distribution of particles is very
uneven. This non-uniform particle distribution is reflected by the varying proces-
sor utilization in the first timestep of the simulation. Situations like this present
the biggest challenge to obtain load balance across processors. Nevertheless, the
Charm++ load balancers achieved very good balance.

4.7 Scalability with Number of Processors

By applying all the optimizations described in the previous subsections, and
making use of various Charm++ features, we obtain our best performing version
of ChaNGa. We used this version to conduct scaling tests on large machine
configurations, and to make scaling comparisons with PKDGRAV.

Figure 5 shows the scaling of ChaNGa on BlueGene/L, HPCx and Tungsten
for five iterations. The vertical axis is the product of the time per iteration and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

488 F. Gioachin et al.

Fig. 5. ChaNGa scaling on various systems and comparison with PKDGRAV

the number of processors in the simulation. Horizontal lines represent perfect
scalability, while the diagonal lines represent no gain in scaling.

For the lambs1M dataset, the algorithm scales well up to 128 processors on
BlueGene/L and 256 processors on HPCx. Beyond these points, there is not
adequate work available for each processor, and the gain is reduced. BlueGene/L
has the most problems, and there is almost no advantage from the increased
number of processors. The dwarf dataset, being larger with 5 million particles,
allows good scaling up to 1024 processors of HPCx.

Figure 5 also presents the scaling comparison between ChaNGa and PKD-
GRAV on Tungsten. We can see that ChaNGa scales much better than PKD-
GRAV, maintaining a good performance over the entire range considered. Due
to machine unavailability, we ran tests only up to 256 Tungsten processors.

5 Conclusions and Future Work

In this paper, we have presented a new cosmological simulator named ChaNGa.
Our design was guided by the goal of achieving good scalability on modern par-
allel machines, with thousands of processors. Our experimental results show that
ChaNGa’s serial performance is comparable to that of one of the top-level sim-
ulators existing today. Meanwhile, by employing various optimizations enabled
by the Charm++ runtime system, the gravity calculation phase in ChaNGa
was shown to scale very well up to one thousand processors with real astronom-
ical datasets. This level of scalability places ChaNGa as a potentially powerful
resource for the astronomy community.

Despite ChaNGa’s good observed scalability, we intend to study other load
balancing schemes and parallelization techniques that may provide even further

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Scalable Cosmological Simulations on Parallel Machines 489

benefits. Moreover, to become a production-level simulator, ChaNGa still needs
a few more features. We are adding support for more physics, such as fluid-
dynamics and periodic boundaries, as well as providing multiple timestepping. In
addition, as we start our tests on thousands of processors, we are also analyzing
the performance of other phases of the simulation, such as the construction of
the particle tree. Given the support for various types of trees already present in
the code, we will conduct a detailed study of their effects on the simulation.

Acknowledgments. This work was supported in part by the National Science
Foundation, under grant number NSF ITR 0205611. We are thankful for the
access to parallel systems at Edinburgh’s HPCx Consortium and EPCC Center,
and Illinois’ NCSA.

References

1. M. D. Dikaiakos and J. Stadel, “A performance study of cosmological simulations
on message-passing and shared-memory multiprocessors,” in Proceedings of the
International Conference on Supercomputing - ICS’96, (Philadelphia, PA), pp. 94–
101, December 1996.

2. L. V. Kale and S. Krishnan, “Charm++: Parallel Programming with Message-
Driven Objects,” in Parallel Programming using C++ (G. V. Wilson and P. Lu,
eds.), pp. 175–213, MIT Press, 1996.

3. L. V. Kalé, “Performance and productivity in parallel programming via processor
virtualization,” in Proc. of the First Intl. Workshop on Productivity and Perfor-
mance in High-End Computing (at HPCA 10), (Madrid, Spain), February 2004.

4. J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation algorithm,”
Nature, vol. 324, pp. 446–449, December 1986.

5. G. Lake, N. Katz, and T. Quinn, “Cosmological N-body simulation,” in Proceedings
of the Seventh SIAM Conference on Parallel Processing for Scientific Computing,
(Philadelphia, PA), pp. 307–312, February 1995.

6. V. Springel, N. Yoshida, and S. White, “GADGET: A code for collisionless and
gasdynamical simulations,” New Astronomy, vol. 6, pp. 79–117, 2001.

7. W. Dehnen, “A hierarchical O(N) force calculation algorithm,” Journal of Com-
putational Physics, vol. 179, pp. 27–42, 2002.

8. V. Springel, “The cosmological simulation code GADGET-2,” MNRAS, vol. 364,
pp. 1105–1134, 2005.

9. J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: Biomolecular simu-
lation on thousands of processors,” in Proceedings of SC 2002, (Baltimore, MD),
September 2002.

10. G. Zheng, Achieving High Performance on Extremely Large Parallel Machines:
Performance Prediction and Load Balancing. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2005.

11. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” Journal
of Computational Physics, vol. 73, pp. 325–348, 1987.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Performance Evaluation of

Scientific Applications
on Modern Parallel Vector Systems

Jonathan Carter, Leonid Oliker, and John Shalf

NERSC/CRD, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
{jtcarter,loliker,jshalf}@lbl.gov

Abstract. Despite their dominance of high-end computing (HEC)
through the 1980’s, vector systems have been gradually replaced by
microprocessor-based systems. However, while peak performance of mi-
croprocessors has grown exponentially, the gradual slide in sustained
performance delivered to scientific applications has become a growing
concern among HEC users. Recently, the Earth Simulator and Cray
X1/X1E parallel vector processor systems have spawned renewed in-
terest in vector technology for scientific applications. In this work, we
compare the performance of two Lattice-Boltzmann applications and the
Cactus astrophysics package on vector based systems including the Cray
X1/X1E, Earth Simulator, and NEC SX-8, with commodity-based pro-
cessor clusters including the IBM SP Power3, IBM Power5, Intel Ita-
nium2, and AMD Opteron processors. We examine these important sci-
entific applications to quantify the effective performance and investi-
gate if efficiency benefits are applicable to a broader array of numerical
methods.

1 Introduction

Despite their dominance of high-end computing (HEC) through the 1980’s, vec-
tor systems have been progressively replaced by microprocessor based systems
due to the lower costs afforded by mass-market commercialization and the re-
lentless pace of clock frequency improvements for microprocessor cores. How-
ever, while peak performance of superscalar systems has grown exponentially,
the gradual slide in sustained performance delivered to scientific applications
has become a growing concern among HEC users. This trend has been widely
attributed to the use of superscalar-based commodity components whose archi-
tectural designs offer a balance between memory performance, network capabil-
ity, and execution rate, that is poorly matched to the requirements of large-scale
numerical computations. Furthermore, now that power dissipation is limiting
the growth rate in clock frequency, the low sustained performance of superscalar
systems has risen to the forefront of concerns. The latest generation of custom-
built parallel vector systems have the potential to address these performance
challenges for numerical algorithms amenable to vectorization.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 490–503, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Performance Evaluation of Scientific Applications 491

The architectural complexity of superscalar cores has grown dramatically
in the past decade in order to support out-of-order execution of instructions
that feed an increasing number of concurrent functional units. However, there
is growing evidence that despite the enormously complex control structures,
typical superscalar implementations are only able to exploit a modest amount
of instruction-level parallelism. Vector technology, by contrast, is well suited
to problems with plenty of inherent data parallelism. For such problems, the
vector approach reduces control complexity because each operation defined in
the instruction stream implicitly controls numerous functional units operating
in tandem, allowing memory latencies to be masked by overlapping pipelined
vector operations with memory fetches.

However, when such operational parallelism cannot be found, the efficiency
of the vector architecture can suffer from the properties of Amdahl’s Law,
where the time taken by the portions of the code that are non-vectorizable
can easily dominate the execution time. In this regard, modern vector ma-
chines are quite unlike the Cray 1 [1] in that the scalar performance is well
below average compared to commodity systems targeted at business applica-
tions. It is difficult for vector vendors to compete on scalar processor perfor-
mance, as the enormous technology investment necessary to keep pace with
the microprocessors is too great to sustain without a large market share. Thus
today’s vector systems have been unable to produce competitive scalar pro-
cessor implementations, resulting in more significant performance penalties
for non-vectorizable code portions when compared to classic vector system
implementations.

In the context of these evolving architectural changes, it is important to con-
tinue the assessment of vector platforms in the face of increasing algorithm com-
plexity. For this reason, our study focuses on full applications to get more realistic
assessments of state-of-the-art supercomputing platforms. This work compares
performance between the vector-based Cray X1/X1E, Earth Simulator (ES) and
NEC SX-8, with commodity-based superscalar platforms: Intel Itanium2, AMD
Opteron, and the IBM Power3 and Power5 systems. We study the behavior of
three scientific codes with the potential to run at ultra-scale: Lattice-Boltzmann
(LB) simulations of magnetohydrodynamics and fluid dynamics (LBMHD3D and
ELBM3D), and astrophysics (CACTUS). Our work builds on our previous ef-
forts [2,3] and makes the contribution of adding recently acquired performance
data for the SX-8, and the latest generation of superscalar processors. Addition-
ally, we explore improved vectorization techniques Cactus boundary conditions,
and the effects of cache-bypass pragmas for the LB applications. Overall results
show that the SX-8 attains unprecedented aggregate performance across our
evaluated applications, continuing the trend set by the ES in our previous per-
formance investigations. Our study also shows that the slide in sustained perfor-
mance of microprocessor cores is not irreversible if microprocessor architectures
are willing to invest the effort to make architectural decisions that eliminate
bottlenecks for scientific applications.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

492 J. Carter, L. Oliker, and J. Shalf

2 HEC Platforms and Evaluated Applications

In this section we briefly outline the computing platforms and scientific applica-
tions examined in our study. Tables 1 and 2 present an overview of the salient
features for the eight parallel HEC architectures. Observe that the vector ma-
chines have higher peak performance. Additionally, the X1, ES, SX-8, and to
a much lessor extent the X1E, have high memory bandwidth (as measured by
HPCC EP Stream [4]) relative to peak CPU speed (bytes/flop), allowing them
to more effectively feed the arithmetic units. Note also that the NEC vector
platforms utilize very high bandwidth interconnects with full crossbar topolo-
gies that minimize network congestion. However, the lower latency networks of
the Thunder and Bassi systems will offer significant advantages for small point-
to-point messaging.

Four superscalar commodity-based platforms are examined in our study. The
IBM Power3 experiments reported were conducted on Seaborg, the 380-node
pSeries system, running AIX 5.2 (xlf compiler 8.1.1) and located at Lawrence
Berkeley National Laboratory (LBNL). Each SMP node consists of sixteen 375
MHz processors (1.5 Gflop/s peak) connected to main memory via the Colony
switch using an omega-type topology. The Power5 Bassi system, also located
at LBNL’s NERSC facility, consists of 111 eight-way Power5 nodes operating
at 1.9 GHz (7.6 Gflop/s peak) and interconnected by a dual-plane Federation
interconnect using a fat-tree/CLOS topology. Like the Power3, this system also
runs AIX 5.2, but uses the newer xlf 9.1 compiler. The AMD Opteron system,
called Jacquard, is also located at LBNL and contains 320 dual nodes, running
Linux 2.6.5 (PathScale 2.0 compiler). Each node contains two 2.2 GHz Opteron
processors (4.4 Gflop/s peak), interconnected via Infiniband fabric in a fat-tree
configuration. Finally, the Intel Itanium experiments were performed on Thun-
der, the 1024 node system located at Lawrence Livermore National Laboratory.
Each node contains four 1.4 GHz Itanium2 processors (5.6 Gflop/s peak) and
runs Linux Chaos 2.0 (Fortran version ifort 8.1). The system is interconnected
using Quadrics Elan4 in a fat-tree configuration,

Table 1. CPU overview of the Power3, Power5, Itanium2, Opteron, X1/X1E, ES, and
SX-8 platforms

Name/ CPU/ Clock Peak Stream BW Peak/Stream BW
Center

Platform
Node (MHz) (GF/s) (GB/s) (Byte/Flop)

Seaborg Power3 16 375 1.5 0.4 0.3

Bassi Power5 8 1900 7.6 6.8 0.9

Thunder Itanium2 4 1400 5.6 1.1 0.2

Jacquard Opteron 2 2200 4.4 2.3 0.5

Phoenix X1 4 800 12.8 14.9 1.2

Phoenix X1E 4 1130 18.1 9.7 0.5

ESC ES 8 1000 8.0 26.3 3.3

HLRS SX-8 8 2000 16.0 41.0 2.6

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Performance Evaluation of Scientific Applications 493

We also examine four state-of-the-art parallel vector systems. The funda-
mental compute processor of the Cray X1/X1E is the multi-streaming proces-
sor (MSP). Each MSP contains a 2-way set associative 2 MB data Ecache, a
unique feature for vector architectures that allows extremely high bandwidth
(25–51 GB/s) for computations with temporal data locality. The MSP is com-
prised of four single-streaming processors (SSP), each containing two 32-stage
vector pipes running at (800 MHz) 1130 MHz on (X1) X1E. Each X1E SSP
operates at 4.5 Gflop/s peak for 64-bit data. The SSP also contains a two-way
out-of-order superscalar processor running at 400 MHz. The X1E node consists of
eight MSPs sharing a flat memory, and large system configuration are networked
through a modified 2D torus interconnect. X1E nodes are partitioned into two
logical 4-way SMP nodes from the application developers viewpoint. All reported
X1E experiments were performed on Phoenix, the 1024-MSP system (several
reserved for system services) running UNICOS/mp 3.1 (5.5 programming envi-
ronment) and operated by Oak Ridge National Laboratory. The X1 experiments
were performed on the 512-MSP system at ORNL prior to the upgrade to X1E.

The 1000 MHz Earth Simulator processor was the precursor to the NEC
SX6, containing an 4-way replicated vector pipe with a peak performance of
8.0 Gflop/s per CPU. The system contains 640 ES nodes, 5120-processor, con-
nected through a custom single-stage IN crossbar. The ES runs Super-UX, a
64-bit Unix operating system based on System V-R3 with BSD4.2 communica-
tion features. As remote ES access is not available, the reported experiments
were performed during the authors’ visit to the Earth Simulator Center located
in Kanazawa-ku, Yokohama, Japan in 2004 and 2005.

Finally, we examine the NEC SX-8. The SX-8 architecture operates at 2 GHz,
and contains four replicated vector pipes for a peak performance of 16 Gflop/s per
processor. The SX-8 architecture has several enhancements compared with the
ES/SX6 predecessor, including improved divide performance, hardware square
root functionality, and in-memory caching for reducing bank conflict overheads.
However, the SX-8 used in our study uses commodity DDR-SDRAM; thus, we
expect higher memory overhead for irregular accesses when compared with the

Table 2. Interconnect performance of the Power3, Power5, Itanium2, Opteron, X1,
ES, and SX-8 platforms

MPI Lat MPI BW Network
Platform Network

(μsec) (GB/s/CPU) Topology

Power3 Colony 16.3 0.13 Fat-tree

Power5 Federation 4.7 0.69 Fat-tree

Itanium2 Quadrics 3.0 0.25 Fat-tree

Opteron InfiniBand 6.0 0.59 Fat-tree

X1 Custom 8.0 0.44 4D-Hypercube

X1E Custom 6.4 0.15 4D-Hypercube

ES Custom (IN) 5.6 1.5 Crossbar

SX-8 IXS 5.0 2.0 Crossbar

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

494 J. Carter, L. Oliker, and J. Shalf

specialized high-speed FPLRAM (Full Pipelined RAM) of the ES. Both the ES
and SX-8 processors contain 72 vector registers each holding 256 doubles, and
utilize scalar units operating at the half the peak of their vector counterparts.
All reported SX-8 results were run on the 72 node system located at High Per-
formance Computer Center (HLRS) in Stuttgart, Germany. This HLRS SX-8 is
interconnected with the NEC Custom IXS network and runs Super-UX (Fortran
Version 2.0 Rev.313).

2.1 Scientific Applications

Three applications from two scientific computing domains were chosen to com-
pare the performance of the vector-based and superscalar-based systems.

We examine LBMHD3D, a three-dimensional plasma physics application that
uses the Lattice-Boltzmann method to study magneto-hydrodynamics [5];
ELBM3D, a a three-dimensional fluid dynamic application that uses the Lattice-
Boltzmann method to study turbulent fluid flow [6]; and CACTUS, a modu-
lar framework supporting a wide variety of multi-physics applications [7], using
the Arnowitt-Deser-Misner (ADM) formulation for the evolution of the Einstein
equations from first principles that are augmented by the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) [8] method to improve numerical stability for simu-
lation of black holes.

These codes represent grand-challenge scientific problems that require access
to ultra-scale systems and provide code bases mature enough that they have
the potential to fully utilize the largest-scale computational resources available.
Performance results, presented in Gflop/s per processor and percentage of peak,
are used to compare the relative time to solution of our evaluated computing
systems. When different algorithmic approaches are used for the vector and
scalar implementations, this value is computed by dividing a baseline flop-count
obtained from the ES system hardware counters by the measured wall-clock time
of each platform.

3 Lattice-Boltzmann Turbulence Simulations

Lattice-Boltzmann methods (LBM) are an alternative to conventional numer-
ical approaches for simulating fluid flows and modeling physics in fluids [9].
The basic idea is to develop a simplified kinetic model that incorporates the es-
sential physics, and reproduces correct macroscopic averaged properties. These
algorithms have been used extensively over the past ten years for simulating
Navier-Stokes flows, and more recently, several groups have applied the LBM
to the problem of magneto-hydrodynamics (MHD) [10,11,12] with promising re-
sults [5]. As can be expected from explicit algorithms, LBM are prone to numer-
ical nonlinear instabilities as one pushes to higher Reynolds numbers. These nu-
merical instabilities arise because there are no constraints imposed to enforce the
distribution functions to remain non-negative. Such entropic LBM algorithms,
which do preserve the non-negativity of the distribution functions—even in the
limit of arbitrary small transport coefficients—have recently been developed for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Performance Evaluation of Scientific Applications 495

Navier-Stokes turbulence [13,14]. Our LBM applications are representative of
these two active research areas: the LBMHD3D code simulates the behavior of a
conducting fluid evolving from simple initial conditions through the onset of tur-
bulence; and the ELBM3D code uses the entropic LB algorithm to simulate the
behavior of Navier-Stokes turbulence [15].

While LBM methods lend themselves to easy implementation of difficult
boundary geometries, e.g., by the use of bounce-back to simulate no slip wall con-
ditions, here we report on 3D simulations under periodic boundary conditions,
with the spatial grid and phase space velocity lattice overlaying each other. Each
lattice point is associated with a set of mesoscopic variables, whose values are
stored in vectors proportional to the number of streaming directions. The lattice
is partitioned onto a 3-dimensional Cartesian processor grid, and MPI is used
for communication. As in most simulations of this nature, ghost cells are used
to hold copies of the planes of data from neighboring processors.

In logical terms an LB simulation proceeds by a sequence of collision and
stream steps. A collision step involves data local only to that spatial point, al-
lowing concurrent, dependence-free point updates; the mesoscopic variables at
each point are updated through a complex algebraic expression originally derived
from appropriate conservation laws. A stream step evolves the mesoscopic vari-
ables along the streaming lattice to adjacent lattice sites. However, in an actual
implementation, a key optimization described by Wellein and co-workers [16] is
often carried out. The two phases of the simulation can be combined, so that
either the newly calculated particle distribution function could be scattered to
the correct neighbor as soon as it was calculated, or equivalently, data could be
gathered from adjacent cells to calculate the updated value for the current cell.
Our implementation uses the latter method.

For ELBM3D, a non-linear equation must be solved for each grid-point and
at each time-step so that the collision process satisfies certain constraints. The
equation is solved via Newton-Raphson iteration (5 iterations are usually enough
to converge to within 10−8), and as this equation involves taking the logarithm
of each component of the distribution function at each iteration, the whole al-
gorithm become heavily constrained by the performance of the log function.

Figure 1 shows a slice through the xy-plane in the (left) LBMHD3D and (right)
ELBM3D simulation, where the vorticity profile has distorted considerably after
several hundred time steps as turbulence sets in.

3.1 Vectorization Details

The basic structure of both applications consists of three nested loops over spa-
tial grid points (typically 100s iterations per loop) with inner loops over velocity
streaming vectors and, in the case of LBMHD3D, magnetic field streaming vec-
tors (typically 10s iterations). Within these innermost loops the various macro-
scopic quantities and their updated values are calculated via various algebraic
expressions.

For the LBMHD3D case, on both the ES and SX-8, the innermost loops were
unrolled via compiler directives and the (now) innermost grid point loop was

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

496 J. Carter, L. Oliker, and J. Shalf

vectorized. This proved a very effective strategy, and was also followed on the
X1E. In the case of the X1E, however, the compiler needed more coercing via
directives to multi-stream the outer grid point loop and vectorize the inner grid
point loop once the streaming loops had been unrolled. We then inserted the
compiler directive NO CACHE ALLOC in the attempt to optimize cache use
on the X1E [17]. This directive works by indicating to the compiler that certain
arrays that have low reuse are not be to be cached. In this way, space is preserved
for data that can be more beneficially cached, producing a speedup of 10%. For
the superscalar architectures, we utilized a data layout that has been previously
shown to be optimal on cache-based machines [16], but did not explicitly tune
further for any architecture.

For ELBM3D, in the case the vector architectures, the compilers were able
to vectorize all loops containing log functions. The routine containing the non-
linear equation solver was rewritten to operate on an array of grid points, rather
than a single point, allowing vectorization of this recursive operation. After this
optimization, high performance was achieved on all the vector systems. For the
X1E, two other factors are important to note. In a similar way to LBMHD3D,
compiler directives to enable efficient cache use led to a modest 5% speedup. Less
data is moved per gridpoint in ELBM3D as compared with LBMHD3D, so cache
tuning could reasonably be expected to produce less of a speedup. Additionally,
the call to the non-linear equation solving routine prevented multistreaming
of the outer grid point loop on the X1E. Because of this, the innermost grid
point loop is now both multistreamed and vectorized. For the tests run here, the
vector length does not drop below 64, but it does lead to shorter vector lengths
compared to the LBMHD3D code.

For the superscalar systems, using the rewritten non-linear equation solving
routine proved to be much faster than the original approach. Presumably this
is due to a reduction of routine-call overhead and better use of the functional

Fig. 1. Contour plot of xy-plane showing the evolution of vorticity into turbulent struc-
tures using (left) LBMHD3D and (right) ELBM3D

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Performance Evaluation of Scientific Applications 497

units. Depending on the architecture, a speedup of 20-30% is achieved on switch-
ing to the new routine. Another important optimization was to use optimized
library routines to compute a vector of logarithm values per invocation. Each
architecture offers an optimized math function library: MASS for IBM Power5
and Power3, MKL for Intel Itanium2; and ACML for AMD Opteron. A 15-30%
speedup over the the “non-vector” log function is achieved, with the Itanium2
showing the largest speedup. In addition, the innermost grid point loop was
blocked to try and improve cache reuse. A downside to this optimization is that
it reduces the length of the array being passed to the log function. This produced
very minor speedups for Power3 and Power5, a slowdown for the Itanium2, but
a moderate improvement (roughly 15%) for the Opteron system.

3.2 Experimental Results

Tables 3 and 4 and present the performance of both LB applications across the
seven architectures evaluated in our study. Cases where the memory or number
of processors required exceeded that available are indicated with a dash.

For LBMHD3D, the vector architectures outperform the scalar systems by a
large margin. This is largely unsurprising since our efforts at optimization had
produced highly vectorized applications. Performance monitoring tools showed
that the application exhibits an average vector length (AVL) very close to the
maximum and a vector operation ratio (VOR) of more than 99%. In accordance
with peak performance, the SX-8 is the leader by a wide margin, achieving the
highest per processor performance to date for LBMHD3D; this is followed by
the X1E, and then the ES. Although the SX-8 achieves the highest absolute
performance, the percentage of peak is somewhat lower than that of ES. Based
on previous work [18], we believe that this is related to the memory subsystem
and use of DDR-SDRAM.

Turning to the superscalar architectures, the Opteron cluster outperforms the
Itanium2 system by almost a factor of 2x. One source of this disparity is that the
Opteron system achieves stream memory bandwidth (see Table 1) of more than
twice that of the Itanium2 system. Another possible source of this degradation
are the relatively high cost of inner-loop register spills on the Itanium2, since
the floating point values cannot be stored in the first level of cache. Given the

Table 3. LBMHD3D performance in GFlop/s (per processor) across the studied ar-
chitectures for a range of concurrencies and grid sizes. Percentage of peak is shown in
parenthesis.

P Size Power3 Power5 Itanium2 Opteron X1E ES SX-8

16 2563 0.14 (9) 0.81 (11) 0.26 (5) 0.70 (16) 6.19 (34) 5.50 (69) 7.89 (49)
64 2563 0.15 (10) 0.82 (11) 0.35 (6) 0.68 (15) 5.73 (32) 5.25 (66) 8.10 (51)

256 5123 0.14 (9) 0.79 (10) 0.32 (6) 0.60 (14) 5.65 (31) 5.45 (68) 9.66 (60)
512 5123 0.14 (9) 0.79 (10) 0.35 (6) 0.59 (13) 5.47 (30) 5.21 (65) —

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

498 J. Carter, L. Oliker, and J. Shalf

Table 4. ELBM3D performance in GFlop/s (per processor) across the studied archi-
tectures for a range of concurrencies and grid sizes. Percentage of peak is shown in
parenthesis.

P Size Power3 Power5 Itanium2 Opteron X1E ES SX-8

64 5123 0.49 (32) 2.31 (30) 1.86 (33) 1.15 (26) 4.49 (25) 3.36 (42) 5.87 (37)
256 5123 0.45 (30) 2.02 (27) 1.51 (27) 1.08 (25) 4.43 (25) 3.35 (42) 5.86 (37)
512 10243 — 2.04 (27) 1.79 (27) 1.04 (24) 4.62 (26) 3.16 (39) —

1024 10243 — — 1.54 (26) — — 3.12 (39) —

age and specifications, the Power3 does quite reasonably, obtaining a higher
percent of peak that the Itanium2, but falling behind the Opteron. The Power5
achieves a slightly better percentage of peak than the Power3, but somewhat
disappointingly trails the Opteron.

For ELBM3D (Table 4), all superscalar architectures achieve a high percent-
age of peak performance. The main reason is the much higher computational
intensity and less complex data access patterns of the application relative to
LBMHD3D. For the vector architectures, the converse is true—all achieve a
lower percentage of peak, as compared to LBMHD3D, with the ES decreasing
the most. The problem is not due to a significant increase of non-vectorizable
code portions, as the ELBM3D application has an AVL and VOR very close to
that of LBMHD3D. Lack of arithmetic operations and data movement in the
application has lessened the advantage of the fast ES memory, and the log func-
tion is probably a bottleneck in computation. However, although the advantage
of vector over superscalar has diminished, the SX-8 still achieves the highest
overall performance, followed by the X1E and ES.

4 CACTUS

Einsteins equations from theory of general relativity are among most complex
in physics: Dozens of coupled nonlinear hyperbolic and elliptic equations, each
with thousands of terms. The Cactus Computational ToolKit [19,8] evolves these
equations to simulate gravitational waves, such as from two black holes colliding
or neutron star mergers. Gravitational waves are ripples in spacetime curvature,
causing distances to change. Their existence was postulated nearly 90 years ago
by Albert Einstein, and constitutes the only major component of his General
Theory of Relativity (GR) that has yet to be tested. If gravitational waves do
exist, then an exciting new field of scientific research is about to be born that
will provide fundamentally new information about the universe. The Cactus cal-
culations aid in the experimental programs that are set to detect these phenom-
ena using extremely sensitive laser interferometers. While Cactus is a modular
framework supporting a wide variety of multi-physics applications [7], this study
focuses exclusively on the GR solver, which implements the ADM-BSSN [8]
method for stable evolutions of black holes. Figure 2 presents a visualization of
one of the first simulations of the grazing collision of two black holes computed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Performance Evaluation of Scientific Applications 499

Fig. 2. Visualization of grazing collision of two black holes as computed by Cactus1

by the Cactus code. The merging black holes are enveloped by their “apparent
horizon”, which is colorized by its Gaussian curvature.

The Cactus General Relativity components solve Einstein’s equations as an
initial value problem that evolves partial differential equations on a regular grid
using the method of finite differences. For the purpose of solving Einstein’s GR
equations, the ADM solver decomposes the solution into 3D spatial hypersur-
faces that represent different slices of space along the time dimension. In this
formalism, the equations are written as four constraint equations and 12 evo-
lution equations. Additional stability is provided by the BSSN modifications to
the standard ADM method [8]. The BSSN implementation uses the Method of
Lines (MoL) to reformulate a partial differential equation (PDE) solution so that
it can be solved as a coupled set of ordinary differential equations (ODEs). MoL
greatly improves the numerical efficiency of the PDE solver. A “lapse” function
describes the time slicing between hypersurfaces for each step in the evolution,
while a “shift metric” is used to move the coordinate system at each step to avoid
being drawn into a singularity. The four constraint equations are used to select
different lapse functions and the related shift vectors. For parallel computation,
the grid is block domain decomposed so that each processor has a section of the
global grid. The standard MPI driver for Cactus solves the PDE on a local grid
section and then updates the values at the ghost zones by exchanging data on
the faces of its topological neighbors in the domain decomposition.

4.1 Vectorization Details

For the superscalar systems, the computations on the 3D grid are blocked in or-
der to improve cache locality. Blocking is accomplished through the use of tem-
porary “slice buffers”, which improve cache reuse while modestly increasing the
computational overhead. On vector architectures these blocking optimizations

1 Visualization by Werner Benger (AEI/ZIB) using Amira [20].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

500 J. Carter, L. Oliker, and J. Shalf

were disabled, since they reduced the vector length and inhibited performance.
The ES compiler misidentified some of the temporary variables in the most
compute-intensive loop of the ADM-BSSN algorithm as having inter-loop de-
pendencies. When attempts to force the loop to vectorize failed, a temporary
array was created to break the phantom dependency.

Another performance bottleneck that arose on the vector systems was the cost
of calculating radiation boundary conditions. The cost of boundary condition en-
forcement is inconsequential on the microprocessor based systems, however they
unexpectedly accounted for up to 20% of the ES runtime and over 30% of the X1
overhead. The boundary conditions were vectorized using very lightweight mod-
ifications such as inline expansion of subroutine calls and replication of loops to
hoist conditional statements outside of the loop. Although the boundaries were
vectorized via these transformations, the effective AVL remained infinitesimally
small. Obtaining longer vector lengths would have required more drastic modi-
fications that were deemed impractical due the amount of the Cactus code that
would be affected by the changes. The boundary condition modification was very
effective on the X1 because the loops could be successfully multistreamed by the
compiler. Multistreaming enabled an easy 3x performance improvement in the
boundary calculations that reduced their runtime contribution from the most
expensive part of the calculation to just under 9% of the overall wallclock time.
These same modifications produced no net benefit for the ES or SX-8, however,
because of the extremely short vector lengths.

4.2 Experimental Results

The full-fledged production version of the Cactus ADM-BSSN application was
run on each of the architectures with results for two grid sizes shown in Table 5.
The problem size was scaled with the number of processors to keep the compu-
tational load the same (weak scaling). Cactus problems are typically scaled in
this manner because their science requires the highest-possible resolutions.

For the vector systems, Cactus achieves almost perfect VOR (over 99%) while
the AVL is dependent on the x-dimension size of the local computational domain.
Consequently, the larger problem size (250x64x64) executed with far higher effi-
ciency on both vector machines than the smaller test case (AVL = 248 vs. 92),

Table 5. Cactus performance in GFlop/s (per processor) shown for a range of concur-
rencies. Percentage of peak is shown in parenthesis.

P Size/CPU Power3 Power5 Itanium2 Opteron X1 ES SX-8

16 803 0.31 (21) 1.12 (15) 0.60 (11) 0.98 (22) 0.54 (4) 1.47 (18) 1.86 (12)
64 803 0.22 (14) 1.04 (14) 0.58 (10) 0.81 (18) 0.43 (3) 1.36 (17) 1.81 (11)

256 803 0.22 (14) 1.12 (15) 0.58 (10) 0.76 (17) 0.41 (3) 1.35 (17) 1.75 (11)
16 250x642 0.10 (6) 1.07 (14) 0.58 (10) 0.82 (19) 0.81 (6) 2.83 (35) 4.27 (27)
64 250x642 0.08 (6) 0.95 (13) 0.57 (10) 0.92 (21) 0.72 (6) 2.70 (34) 4.04 (25)

256 250x642 0.07 (5) 0.95 (13) 0.55 (10) 0.68 (16) 0.68 (5) 2.70 (34) 3.87 (24)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Performance Evaluation of Scientific Applications 501

achieving 34% of peak on the ES. The oddly shaped domains for the larger test
case were required because the ES does not have enough memory per node to
support a 2503 domain. This rectangular grid configuration had no adverse ef-
fect on scaling efficiency despite the worse surface-to-volume ratio. Additional
performance gains could be realized if the compiler was able to fuse the X and Y
loop nests to form larger effective vector lengths. Also, note that for the Cactus
simulations, bank conflict overheads are negligible for the chosen (non power of
two) grid sizes.

Recall that the boundary condition enforcement was not vectorized on the
ES and accounts for up to 20% of the execution time, compared with less than
5% on the superscalar systems. This demonstrates a different dimension of ar-
chitectural balance that is specific to vector architectures: seemingly minor code
portions that fail to vectorize can quickly dominate the overall execution time.
The architectural imbalance between vector and scalar performance was partic-
ularly acute of the X1, which suffered a much greater impact from unvectorized
code than the ES. (Cactus results are not available on the X1E due to code
crashing; Cray engineers have been notified of the problem.) On the SX-8, the
boundary conditions occupy approximately the same percentage of the execution
time as it did on the ES, which is consistent with the fact that the performance
improvements in the SX8 scalar execution unit have scaled proportionally with
the vector performance improvements. The decreased execution efficiency is pri-
marily reflected in lower efficiency in the vector execution.

The microprocessor based systems offered lower peak performance and gen-
erally lower efficiency than the NEC vector systems. The Opteron, however,
offered impressive efficiency as well as peak performance in comparison to the
Power3 and the Itanium2. Unlike the Power3, the Opteron maintains its perfor-
mance even for the larger problem size. The relatively low scalar performance
on the microprocessor-based systems is partially due to register spilling, which
is caused by the large number of variables in the main loop of the BSSN cal-
culation. However, the much lower memory latency of the Opteron and higher
effective memory bandwidth relative to its peak performance allow it to main-
tain higher efficiency than most of the other processors. The Power5 shows much
higher performance than the Power3 for the larger problem size thanks to much
improved memory bandwidth and more advanced prefetch features. For the large
case, it approaches the efficiency of the Opteron and achieves the highest raw
performance amongst the superscalar system.

5 Conclusions

This study examined three scientific codes on the parallel vector architectures
of the X1/X1E, ES and SX-8, and four superscalar platforms, Power3, Power5,
Itanium2, and Opteron. Results show that the SX-8 achieves the highest perfor-
mance of any architecture tested to date for our applications. However, the SX-8
could not match the computational efficiency of the ES, due in part, to a rel-
atively higher memory latency and higher overhead for irregular data accesses.
Both the SX-8 and ES also consistently achieved a significantly higher fraction

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

502 J. Carter, L. Oliker, and J. Shalf

of peak than the X1/X1E, due to superior scalar processor performance, mem-
ory bandwidth, and network bandwidth relative to the peak vector flop rate.
Taken together, these results indicate that for applications that have a high
degree of exploitable data parallelism, vector architectures have a tremendous
performance capabilities.

A comparison of the superscalar platforms shows the Power5 having the best
absolute performance overall, sometimes overtaking the X1. However, it is often
less efficient than the Opteron processor, which in turn, consistently outperforms
the Itanium2 and Power3 in terms of both raw speed and efficiency. We note that
although the Itanium2 exceeds the performance of the older Power3 processor,
the percentage of peak achieved often falls below that of Power3. Our study also
shows that the slide in the sustained performance of microprocessor cores is not
irreversible if microprocessor architects are willing to invest the effort to make
architectural decisions that eliminate bottlenecks in scientific applications. For
instance, the Power5 shows some improvement over its predecessors (the Power3
and Power4) in the execution efficiency for the all the applications, thanks to dra-
matically improved memory bandwidth and increased attention to latency hid-
ing through advanced prefetch features. Future work will expand our study to
include additional areas of computational sciences, with a focus on irregular and
unstructured algorithms, while examining the latest generation of supercomput-
ing platforms, including high-scalability experiments on BG/L and the XT3.

Acknowledgments

The authors would like to thank the staff of the Earth Simulator Center, espe-
cially Dr. T. Sato, S. Kitawaki and Y. Tsuda, for their assistance during our
visit. We are also grateful for the early SX-8 system access provided by HLRS,
Stuttgart, Germany. This research used the resources of several computer cen-
ters supported by the Office of Science of the U.S. Department of Energy: the
National Energy Research Scientific Computing Center under Contract No. DE-
AC02-05CH11231; Lawrence Livermore National Laboratory under contract No.
W-7405-Eng-48; the National Center for Computational Sciences at Oak Ridge
National Laboratory under Contract No. DE-AC05-00OR22725. The authors
were supported by the Office of Advanced Scientific Computing Research in
the Department of Energy Office of Science under contract number DE-AC02-
05CH11231.

References

1. Russell, R.: The CRAY-1 Computer System. Comm. ACM V 21, N 1 (1978)
2. Oliker, L., Canning, A., Carter, J., Shalf, J., Ethier, S.: Scientific computations on

modern parallel vector systems. In: Proc. SC2004: High Performance Computing,
Networking, and Storage Conference. (2004)

3. Oliker, L., et al.: Evaluation of cache-based superscalar and cacheless vector ar-
chitectures for scientific computations. In: Proc. SC2003: High Performance Com-
puting, Networking, and Storage Conference. (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Performance Evaluation of Scientific Applications 503

4. Dongarra, J., Luszczek, P.: HPC Challenge Benchmarks - Stream EP. http://
icl.cs.utk.edu/hpcc/index.html (2006)

5. Carter, J., Soe, M., Oliker, L., Tsuda, Y., Vahala, G., Vahala, L., Macnab, A.: Mag-
netohydrodynamic turbulence simulations on the Earth Simulator using the lattice
Boltzmann method. In: Proc. SC2005: High performance computing, networking,
and storage conference. (2005)

6. Vahala, G., Yepez, J., Vahala, L., Soe, M., Carter, J.: 3D entropic lattice Boltzmann
simulations of 3D Navier-Stokes turbulence. In: Proc. of 47th Annual Meeting of
the APS Division of Plasma Physics. (2005)

7. Font, J.A., Miller, M., Suen, W.M., Tobias, M.: Three dimensional numerical
general relativistic hydrodynamics: Formulations, methods, and code tests. Phys.
Rev. D 61 (2000)

8. Alcubierre, M., Allen, G., Brgmann, B., Seidel, E., Suen, W.M.: Towards an un-
derstanding of the stability properties of the 3+1 evolution equations in general
relativity. Phys. Rev. D (gr-qc/9908079) (2000)

9. Succi, S.: The lattice Boltzmann equation for fluids and beyond. Oxford Science
Publ. (2001)

10. Dellar, P.: Lattice kinetic schemes for magnetohydrodynamics. J. Comput. Phys.
79 (2002)

11. Macnab, A., Vahala, G., Pavlo, P., , Vahala, L., Soe, M.: Lattice Boltzmann model
for dissipative incompressible MHD. In: Proc. 28th EPS Conference on Controlled
Fusion and Plasma Physics. Volume 25A. (2001)

12. Macnab, A., Vahala, G., Vahala, L., Pavlo, P.: Lattice Boltzmann model for dis-
sipative MHD. In: Proc. 29th EPS Conference on Controlled Fusion and Plasma
Physics. Volume 26B., Montreux, Switzerland (June 17-21, 2002)

13. Ansumali, S., Karlin, I.V.: Stabilization of the lattice Boltzmann method by the
H theorem: A numerical test. Phys. Rev. E62 (2000) 7999–8003

14. Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for
hydrodynamics. Europhys. Lett. 63 (6) (2003)

15. Keating, B., Vahala, G., Vahala, L., Soe, M., Yepez, J.: Entropic lattice boltzmann
simulations of turbulence. In: Proceeding of 48th Annual Meeting of the Division
of Plasma Physics. (2006)

16. Wellein, G., Zeiser, T., Donath, S., Hager, G.: On the single processor performance
of simple lattice bolzmann kernels. Computers and Fluids 35 (2006) 910

17. Worley, P.: Private communication (2005)
18. Carter, J., Oliker, L.: Performance evaluation of lattice-Boltzmann magnetohyd-

drodynamics simulations on modern parallel vector systems. In: High Performance
Computing on Vector Systems. (2006) 41–50

19. Schnetter, E., et al.: Cactus Code Server. http://www.cactuscode.org (2006)
20. TGS Inc.: Amira - Advanced 3D Visualization and Volume Modeling.

http://www.amiravis.com (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://icl.cs.utk.edu/hpcc/index.html
http://icl.cs.utk.edu/hpcc/index.html
http://www.cactuscode.org
http://www.amiravis.com

Numerical Simulation of Three-Phase Flow in

Heterogeneous Porous Media

Eduardo Abreu1,�, Frederico Furtado2, and Felipe Pereira1

1 Universidade do Estado do Rio de Janeiro,
Nova Friburgo, RJ 25630-050, Brazil

eabreu@iprj.uerj.br, pereira@iprj.uerj.br
http://www.labtran.iprj.uerj.br

2 University of Wyoming, Laramie 82071-3036, USA
furtado@uwyo.edu

http://www.uwyo.edu/furtado/

Abstract. We describe an efficient numerical simulator, based on an op-
erator splitting technique, for three-phase flow in heterogeneous porous
media that takes into account capillary forces, general relations for the
relative permeability functions and variable porosity and permeability
fields. Our numerical procedure combines a non-oscillatory, second or-
der, conservative central difference scheme for the system of hyperbolic
conservation laws modeling the convective transport of the fluid phases
with locally conservative mixed finite elements for the approximation of
the parabolic and elliptic problems associated with the diffusive trans-
port of fluid phases and the pressure-velocity calculation. This numerical
procedure has been used to investigate the existence and stability of non-
classical waves (also called transitional or undercompressive waves) in
heterogeneous two-dimensional flows, thereby extending previous results
for one-dimensional problems.

Keywords: Three-phase flow, porous media, central difference scheme,
mixed finite elements, non-classical waves, operator splitting.

1 Introduction

Three-phase flow in porous media is important in a number of scientific and
technological contexts. Examples include gas injection and thermal flooding in oil
reservoirs, flow of non-aqueous phase liquids in the vadose zone, and radio-nuclide
migration from repositories of nuclear waste. In this paper we are concerned with
the accurate numerical simulation of three-phase flow in heterogeneous porous
media.

Three-phase flow in a porous medium can be modeled, using Darcy’s law, in
terms of the relative permeability functions of the three fluid phases (say, oil,
gas, and water). Distinct empirical models have been proposed for the relative

� Corresponding Author.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 504–517, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Numerical Simulation of Three-Phase Flow in Heterogeneous Porous Media 505

permeability functions [10,13,26,17]. It is well known that for some of these mod-
els [10,26], which have been used extensively in petroleum engineering, the 2× 2
system of conservation laws (the saturation equations) that arises when capil-
larity (diffusive) effects are neglected fails to be strictly hyperbolic somewhere
in the interior of the saturation triangle (the phase space). This loss of strict
hyperbolicity leads to the frequent occurrence of non-classical waves (also called
transitional or undercompressive shock waves) in the solutions of the three-phase
flow model. Crucial to calculating transitional shock waves is the correct mod-
eling of capillarity effects [15].

We describe a numerical procedure, based on a two-level operator splitting
technique, for three-phase flow that takes into account capillary pressure dif-
ferences. This procedure combines a non-oscillatory, second order, conservative
central difference scheme, introduced by Nessyahu-Tadmor (NT) [24], for the nu-
merical approximation of the system of conservation laws describing the convec-
tive transport of the fluid phases with locally conservative mixed finite elements
for the approximation of the parabolic and elliptic problems associated with
the diffusive transport of fluid phases and the pressure-velocity calculation [23]
(see also [2,3,4]). This numerical procedure has been used to indicate the exis-
tence of non-classical transitional waves in multidimensional heterogeneous flows
(see [3,4] for preliminary computational results), thereby extending previous re-
sults for one-dimensional problems [22,2]. The authors are currently investigat-
ing, with the numerical procedure developed, the existence and stability (with
respect to viscous fingering) of transitional waves in heterogeneous formations
as a first step in the analysis of the scale-up problem for three-phase flow.

We list four distinctive aspects of our numerical scheme:

– Dimensional splitting is unnecessary. Recently, a “corrected” time-splitting
method for one-dimensional nonlinear convection-diffusion problems was in-
troduced in [18,19] to better account for the delicate balance between the fo-
cusing effects of nonlinear convection, which lead to the formation of shocks,
and the smoothing effects of diffusion. As a consequence, this new method re-
duces considerably the error associated with viscous splitting, allowing accu-
rate large time-steps to be taken in the computation. However, the extension
of this method to multidimensional problems requires the use of dimensional
splitting. It is known that in the presence of strong multidimensional effects
the errors of dimensional splitting might be large (see [9]).

– Riemann solvers or approximate Riemann solvers are unnecessary.
– A CFL time-step restriction applies only to the hyperbolic part of the cal-

culation. The parabolic part of the calculation is performed implicitly, and
does not restrict the size of the time-steps for stability.

– We compute accurate velocity fields in the presence of highly variable perme-
ability fields by discretizing the elliptic equation with mixed finite elements.

Different approaches for solving numerically the three-phase flow equations
are discussed in [5,7,21].

The rest of this paper is organized as follows. In Section 2 we introduce the
model for three-phase flow in heterogeneous porous media that we consider. In

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

506 E. Abreu, F. Furtado, and F. Pereira

Section 3 we discuss strategies for solving the hyperbolic and diffusive problems
taking into account variable porosity fields. In Section 4 we present computa-
tional solutions for the model problem considered here. Conclusions appear in
section 5.

2 Governing Equations for Three-Phase Flows

We consider two-dimensional, horizontal flow of three immiscible fluid phases
in a porous medium. The phases will be refereed to as water, gas, and oil and
indicated by the subscripts w, g, and o, respectively. We assume that there are
no internal sources or sinks. Compressibility, mass transfer between phases, and
thermal effects are neglected.

We assume that the three fluid phases saturate the pores; thus, with Si de-
noting the saturation (local volume fraction) of phase i,

∑
i Si = 1, i = g, o, w.

Consequently, any pair of saturations inside the triangle of saturations � :=
{ (Si, Sj) : Si, Sj ≥ 0, Si + Sj ≤ 1, i �= j} can be chosen to describe the state
of the fluid.

We refer the reader to [25,3] for a detailed description of the derivation of the
phase formulation of the governing equations of three-phase flow. In our model
we shall work with the saturations Sw and Sg of water and gas, respectively.
Then, the equations governing the three-phase flow are as follows:

Saturation equations:

∂

∂t
(φ(x)Sw) + ∇ · (vfw(Sw, Sg)) = ∇ · ww (1)

∂

∂t
(φ(x)Sg) + ∇ · (vfg(Sw, Sg)) = ∇ · wg. (2)

The diffusion terms ww and wg that arise because of capillary pressure differ-
ences are given by

[ww,wg]T = K(x)B(Sw, Sg) [∇Sw, ∇Sg]
T

. (3)

Here, [a,b] denotes the 2-by-2 matrix with column vectors a and b, and B(Sw, Sg)
= QP ′, where

Q(Sw, Sg) =

⎡

⎣
λw(1 − fw) −λwfg

−λgfw λg(1 − fg)

⎤

⎦ , P ′(Sw, Sg) =

⎡

⎢⎢⎢⎣

∂pwo

∂Sw

∂pwo

∂Sg

∂pgo

∂Sw

∂pgo

∂Sg

⎤

⎥⎥⎥⎦ . (4)

In the above, K(x) and φ(x) are the absolute permeability and the rock porosity
of the porous medium, respectively. λi(Sw, Sg) = ki/μi, i = w, g, denote the
phase mobilities, given in terms of the phase relative permeabilities ki and phase
viscosities μi. The fractional flow function of phase i is given by fi(Sw, Sg)=λi/λ.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Numerical Simulation of Three-Phase Flow in Heterogeneous Porous Media 507

The capillary pressures pij = pi − pj , i �= j, where pi is the pressure in phase i,
are assumed to depend solely on the saturations.

Pressure-Velocity equations:

∇ · v = 0, (5)
v = −K(x)λ(Sw, Sg)∇po + vwo + vgo, (6)

where vwo and vgo are “correction velocities” defined by

vij = −K(x)λi(Sw, Sg)∇pij . (7)

Boundary and initial conditions for the system of equations (1)-(7) must be
imposed to complete the definition of the mathematical model. In particular, Sw

and Sg must be specified at the initial time t = 0.

3 The Numerical Simulator

We employ a two-level operator-splitting procedure for the numerical solution of
the three-phase flow system (1)-(7). Operator splitting techniques constitute one
of the several bridges between numerical and functional analysis. In numerical
analysis, they represent algorithms intended to approximate evolution equations
accurately in a computationally efficient fashion. In functional analysis, they
are used to prove estimates, existence and representation theorems. The survey
article [8] discusses both uses and point to a large bibliography.

The splitting technique discussed here allows for time steps for the pressure-
velocity calculation that are longer than those for the diffusive calculation, which,
in turn, can be longer than those for advection. Thus, we introduce three time
steps: Δtc for the solution of the hyperbolic problem for the advection, Δtd for
the solution of the parabolic problem for the diffusive calculation and Δtp for the
elliptic problem for the pressure-velocity calculation, so that Δtp ≥ Δtd ≥ Δtc.
We remark that in practice variable time steps are always useful, especially for
the advection micro-steps subject dynamically to a CFL condition.

The oil pressure and the Darcy velocity, Eqs. (5)-(7), are approximated at
times tm = mΔtp, m = 0, 1, 2, . . . using locally conservative mixed finite ele-
ments (see [3]). The linear system of algebraic equations that arises from the
discretization can be solved by a preconditioned conjugate gradient procedure
(PCG) or by a domain decomposition procedure [11,4,3].

The saturations Sw and Sg are approximated at times tn = nΔtd, n = 1, 2, . . .
in the diffusive calculation; recall that they are specified at t = 0. For t >
0 these values are obtained from last solution of the hyperbolic subsystem of
conservation laws modeling the convective transport of the fluid phases. In this
stage the parabolic subsystem associated to the system (1)-(4) is solved. Locally
conservative mixed finite elements are used to discretize the spatial operators in
the diffusion system. The time discretization of the latter is performed by means
of the implicit backward Euler method (see [3]).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

508 E. Abreu, F. Furtado, and F. Pereira

In addition, there are values for the saturations computed at intermediate times
tn,κ = tn + kΔtc for tn < tn,κ ≤ tn+1 that take into account the convective
transport of water and gas but ignore the diffusive effects. In these intermediate
times the subsystem of nonlinear conservation laws is approximated by a
non-oscillatory, second order, conservative central difference scheme (see [24,3]).

We refer to [3,2] for a detailed description of the fractional-step procedure.

3.1 The NT Central Scheme for Variable Porosity Fields

In this section we discuss a possible implementation of the NT central differ-
encing scheme for variable porosity fields (see [24] for the original scheme) and
its application to the solution of the hyperbolic subsystem associated with sys-
tem (1)-(4). For brevity, we only discuss the ideas for a scalar conservation law
and in one space dimension. The simplicity of the extension of the ideas to sys-
tems of equations, by a component-wise application of the scalar scheme, and to
multi-dimensions is one of the hallmarks of the NT scheme.

The key features of the NT scheme are: a non-oscillatory, piecewise linear
(bilinear in two-space dimension) reconstruction of the solution point-values from
their given cell averages and central differencing based on the staggered evolution
of the reconstructed averages.

Consider the following scalar conservation law,

∂

∂t
(φ s) +

∂

∂x
f(s) = 0, (8)

where φ = φ(x) is the porosity and s = s(x, t) is the saturation (the volume
fraction of one of the fluid phases). At each time level, a piecewise constant
approximate solution over cells of width Δx = xj+ 1

2
− xj− 1

2
(see Figure 1),

s(x, t) = sj(t), xj− 1
2

≤ x ≤ xj+ 1
2
, (9)

is first reconstructed by a piecewise linear approximation of the form

Lj(x, t) = sj(t) + (x − xj)
1

Δx
s′j(t), xj− 1

2
≤ x ≤ xj+ 1

2
, (10)

using nonlinear MUSCL-type slope limiters (see [24] and references therein) to
prevent oscillations. This reconstruction compensates the excessive numerical
diffusion of central differencing. We observe that (9) and (10) can be interpreted
as grid projections of solutions of successive noninteracting Riemann problems
which are integrated over a staggered grid (xj ≤ x ≤ xj+1; see Figure 1). The
form (10) retains conservation, i.e., (here the over-bar denotes the [xj− 1

2
, xj+ 1

2
]-

cell average),
L̄j(x, t) = s̄(x, t) = sj(t). (11)

Second-order accuracy is guaranteed if the numerical derivatives, defined as
1

Δxs′j , satisfy (see [24]):

1
Δx

s′j(t) =
∂

∂x
s(x = xj , t) + O(Δx). (12)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Numerical Simulation of Three-Phase Flow in Heterogeneous Porous Media 509

In the second stage, the piecewise linear interpolant (10) is evolved in time
through the solution of successive noninteracting Generalized Riemann (GR)
problems (see Figure 1),

s(x, t + Δtc) = GR(x, t + Δtc; Lj(x, t), Lj+1(x, t)), xj < x < xj+1. (13)

The resulting solution (13) is then projected back into the space of staggered
piecewise constant grid-functions to yield

sj+ 1
2
(t + Δtc)φj+ 1

2
≡ 1

Δx

∫ xj+1

xj

φ(x)s(x, t + Δtc) dx, (14)

where φj+ 1
2

is the average value of φ(x) on the cell [xj , xj+1]. In view of the
conservation law (8),

sj+ 1
2
(t + Δtc)φj+ 1

2
=

1
Δx

[∫ x
j+ 1

2

xj

φ(x)Lj(x, t) dx +
∫ xj+1

x
j+ 1

2

φ(x)Lj+1(x, t) dx

]

− 1
Δx

[∫ t+Δtc

t

f(s(xj+1, τ)) dτ −
∫ t+Δtc

t

f(s(xj , τ)) dτ

]
.

(15)
The first two integrands on the right of (15), Lj(x, t) and Lj+1(x, t), can be
integrated exactly. We remark that the porosity is assumed to be constant on
cells, φ(x) = φj for xj−1/2 < x < xj+1/2. Moreover, if the CFL condition

Δtc
Δx

max
xj≤x≤xj+1

{
f ′(s(x, t))

φ(x)

}
<

1
2
, (16)

holds, then the last two integrands on the right of (15) are smooth functions
of τ . Hence, they can be integrated approximately by the midpoint rule, at the
expense of an O(Δt3) local truncation error, to yield the following corrector step,

sj+ 1
2
(t + Δtc)φj+ 1

2
=

1
2
[φjsj(t) + φj+1sj+1(t)] +

1
8
[φjs

′
j(t) − φj+1s

′
j+1(t)]

−αx

[
f

(
s
(
xj+1, t + Δtc

2

))
− f

(
s
(
xj , t + Δtc

2

))]
,

(17)
where αx = Δtc/Δx.

We observe that the spatial integration in (15) is performed over the entire
Riemann fan, which consists of both left- and right-going waves. This is the dis-
tinctive feature of the NT scheme. On the one hand, this integration eliminates
the need of any detailed knowledge about the exact (or approximate) generalized
Riemann solver GR(·; ·, ·); on the other hand, it facilitates accurate computa-
tion of the numerical flux,

∫ t+Δtc

t
f(s(xj , τ))dτ , whose values are extracted from

the smooth interface of two noninteracting generalized Riemann problems (see
Figure 1).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

510 E. Abreu, F. Furtado, and F. Pereira

x

Lj(x, t)

1
Δ xs′j+1

xj xj+1 xj+ 3
2

xj− 1
2

xj+ 1
2

Lj+1(x, t)
1

Δ xs′j
sj(t)

sj+ 1
2
(t + Δtc)

sj+1(t)

Fig. 1. Evolution from the time level t to the time level t + Δtc. The porosity is
assumed to be piecewise constant, with constant values on the cells of the original grid:
φ(x) = φj , xi−1/2 < x < xi+1/2.

By Taylor expansion and the conservation law (8),

s(xj , t + Δtc/2) = sj(t) − 1
2φj

αxf ′
j(t), (18)

may serve (as a predictor step) for the approximation of the saturation mid-
values of the numerical fluxes that appears in (17) within the permissible second-
order accuracy requirement. Here, 1

Δxf ′
j stands for an approximate numerical

derivative of the numerical flux f(s(x = xj , t)),

1
Δx

f ′
j(t) =

∂

∂x
(f(s(x = xj , t))) + O(Δx). (19)

Next, a piecewise linear interpolant is reconstructed

Lj+ 1
2
(x, t+Δtc) = sj+ 1

2
(t+Δtc)+(x−xj+ 1

2
)

1
Δx

s′j+ 1
2
(t + Δtc), xj ≤ x ≤ xj+1,

(20)
again using nonlinear slope limiters, and then averaged over the original grid to
yield the non-staggered cell average

st+Δtc

j =
1
2

(st+Δtc

j+ 1
2

+ st+Δtc

j− 1
2

) +
1
8

(s′ t+Δtc

j− 1
2

− s′ t+Δtc

j+ 1
2

). (21)

(Here st+Δtc

j ≡ sj(t + Δtc).)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Numerical Simulation of Three-Phase Flow in Heterogeneous Porous Media 511

Remarks:

1) The NT central differencing scheme for the approximation of the hyperbolic
conservation law (8) can be written in the form of three separate steps: a
prediction step (18), a correction step (17), and a projection step (21).

2) The numerical derivatives that appear in equations (17), (18), and (21)
should obey the accuracy constraints (12) and (19). The second-order ac-
curate correction step (17) augments the first-order accurate prediction step
(18), and results in a high-resolution second-order central difference approx-
imation of (8).

3) To guarantee the desired non-oscillatory property of these approximations,
the numerical derivatives 1

Δxs′j and 1
Δxf ′

j must be carefully chosen [24] (see
[3] for our choice).

4) To solve the hyperbolic subsystem associated to the system (1)-(4) we use
a component-wise extension [24] of the NT scheme for scalar equations dis-
cussed above.

5) The CFL condition for the subsystem of hyperbolic conservation laws as-
sumes the form

Δtc
Δx

max
xj≤x≤xj+1

ρ

(
1

φ(x)
J(fw, fg)

)
<

1
2
, (22)

where ρ(A) denotes the spectral radius of matrix A and J(fw, fg) is the Jaco-
bian matrix of the fractional flow functions associated to the system (1)-(4).

3.2 Numerical Approximation of the Diffusive System with Variable
Porosity Field

We discuss a numerical procedure in two space dimensions that we employ for
the solution of the parabolic subsystem associated to the system (1)-(4). This
procedure combines a domain decomposition technique with an implicit time
backward Euler method (see [3]) in the construction of an efficient iterative
method which allows for variable porosity.

We consider an element-by-element domain decomposition and require that
the pairs (Swj ,wwj) and (Sgj ,wgj) (where Sij = Si|Ωj , i = w, g.) be a solution
of the subsystem associated with (1)-(4) for x ∈ Ωj , j = 1, . . . , M . It is also
necessary to impose the consistency conditions,

Swj = Swk
, Sgj = Sgk

x ∈ Γjk,
wwjk

· νj + wwkj
· νk = 0, wgjk

· νj + wgkj
· νk = 0, x ∈ Γjk,

(23)

where νj is a outward normal unit vector of the element Ωj .
In order to define an iterative method to solve the above problem, it will be

convenient to replace the consistency conditions in Eq. (23) by the equivalent
Robin transmission boundary conditions [12]. These consistency conditions are
given by

− χwjk
wwj · νjj + Swj = χwjk

wwk
· νjk + Swk

, x ∈ Γjk ⊂ ∂Ωj , (24)
−χwkj

wwk
· νjk

+ Swk
= χwkj

wwj · νjj + Swj , x ∈ Γkj ⊂ ∂Ωk, (25)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

512 E. Abreu, F. Furtado, and F. Pereira

− χgjk
wgj · νjj + Sgj = χgjk

wgk
· νjk

+ Sgk
, x ∈ Γjk ⊂ ∂Ωj , (26)

−χgkj
wgk

· νjk
+ Sgk

= χgkj
wgj · νjj + Sgj , x ∈ Γkj ⊂ ∂Ωk, (27)

where χwjk
and χgjk

are positive functions on Γjk (see [12]).
We consider the lowest index Raviart-Thomas space [23] over Ωj to approxi-

mate the pairs (Sw,ww) and (Sg,wg). The degrees of freedom on an element Ωj

are the values Swj and Sgj and the two values wwjβ
and wgjβ

, β = L, R, B, T ,
of the diffusive fluxes across the edge of the elements. We shall also introduce
the Lagrange multipliers �wβ

and �gβ
, β = L, R, B, T , for the water and gas

saturations, respectively, on Γjk; these multipliers are constant on each edge.
So, after some standard calculations the discrete form of the parabolic sub-

system can be written as (see [1,11]):

φj

(
Swj − S̄wj

Δtd

)
− 1

hx
(wwjR

+ wwjL
) +

1
hy

(wwjU
+ wwjD

) = 0, (28)

wwjβ
B−1

11β
+ wgjβ

B−1
12β

=
2
hx

(Swj − �wjβ
), β = L, R, (29)

wwjβ
B−1

11β
+ wgjβ

B−1
12β

=
2
hy

(Swj − �wjβ
), β = B, T, (30)

φj

(
Sgj − S̄gj

Δtd

)
− 1

hx
(wgjR

+ wgjL
) +

1
hy

(wgjU
+ wgjD

) = 0, (31)

wwjβ
B−1

21β
+ wgjβ

B−1
22β

=
2
hx

(Sgj − �gjβ
), β = L, R, (32)

wwjβ
B−1

21β
+ wgjβ

B−1
22β

=
2
hy

(Sgj − �gjβ
), β = B, T, (33)

where B−1
ijβ

are the entries of the inverse matrix B−1(�wβ
, �gβ

)=(QP ′)−1(�wβ
, �gβ

).
Here a trapezoidal rule is used for the evaluation of the pertinent integrals in
the derivation of Eqs. (28)-(30) and Eqs. (31)-(33). To simplicity of notation, in
this section φj means the value of the porosity in the element Ωj .

Define an iterative scheme for the solution of the parabolic subsystem by
applying Eqs. (24)-(25) to Eqs. (29)-(30) and Eqs. (26)-(27) to Eqs. (32)-(33)
to express all Lagrange multipliers in terms of Lagrange multipliers and fluxes
associated with adjacent elements. This scheme, developed in [1,3] for constant
porosity (see also [11]) is a natural extension for parabolic systems of the proce-
dure introduced in [12] for scalar elliptic and parabolic problems.

The time discretization for the equations (28)-(33) is performed by means of
the implicit backward Euler method (see [3]). Note that S̄w and S̄g are the initial
conditions for the diffusive (discrete form) system (28)-(33).

4 Numerical Experiments

We consider the following Riemann problem for the numerical experimentsre-
ported in this work:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Numerical Simulation of Three-Phase Flow in Heterogeneous Porous Media 513

SL
w = 0.721 SL

g = 0.279 and SR
w = 0.05 SR

g = 0.15. (34)

We take the Leverett model [20] for capillary pressure which is given by

pwo = 5ε(2 − Sw)(1 − Sw) and pgo = ε(2 − Sg)(1 − Sg), (35)

where the coefficient ε controls the relative importance of convective and diffusive
forces. We take ε = 0.001 and fluid viscosities μo = 1.0, μw = 0.5, and μg = 0.3.

We adopt two distinct sets of relative permeability functions in our numerical
experiments. These sets are particular choices of the following expressions

kw = S2
w, ko = S2

o , and kg = (1 − αg)S2
g + αgSg, 0 ≤ αg ≤ 1. (36)

By setting the parameter αg = 0 we obtain the classical immiscible Corey-type
model for phase relative permeabilities. For this model, the subsystem of conser-
vation laws modeling phase convection loses strict hyperbolicity at a particular
point in the interior of the saturation triangle, whose location is determined by
the fluid viscosities. It is well known that non-classical transitional shock waves
typically arise in solutions of this model, and that their correct computation
requires the precise modeling of capillarity effects. See [6] for some experimental
evidence of the occurrence of transitional shock waves.

Following [16], any choice
αg >

μg√
μw μo

(37)

leads to a strictly hyperbolic (in the interior of the saturation triangle) subsystem
of conservation laws for the convective transport of fluid phases.

The boundary conditions and injection and production specifications for three-
phase flow equations (1)-(7) are as follows. For the horizontal slab geometry
(Figure 2), injection is performed uniformly along the left edge (x = 0 m) of the
reservoir (see top picture in Figure 2) and the (total) production rate is taken
to be uniform along the right edge (x = 512 m); no flow is allowed along the
edges appearing at the top and bottom of the reservoir. In the case of a five-
spot geometry (Figure 3), injection takes place at one corner and production at
the diametrically opposite corner; no flow is allowed across the entirety of the
boundary. In the simulations reported in Figures 2, 3, and 4 (right column) the
Corey-type model was used (αg = 0).

Note in Figure 3 that a low porosity region drives a fast finger towards this
region (see top left picture in Figure 3). This finger is better resolved under
refinement (see bottom left and right pictures in Figure 3).

For the study reported in Figure 2 we consider a scalar absolute permeability
field K(x) taken to be log-normal (a fractal field, see [14] and references therein for
more details) with moderately large heterogeneity strength. The spatially variable
permeability field is defined on a 512 × 128 grid with the coefficient of variation
((standard deviation)/mean) Cv = 0.5. The porosity field is piecewise constant
with two distinct alternating values, 0.1 and 0.3 (see top picture in Figure 2).

Next we turn to a 1D comparison between the two models for phase relatives
permeabilities. Figure 4 shows that the numerical solution of (1)-(7) with Rie-
mann problem data (34) for the Corey-type model (αg = 0) has a transitional

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

514 E. Abreu, F. Furtado, and F. Pereira

0
32

64
96

128
160

192
224

256
0

16
32

48
64

0

0.1

0.2

0.3

YX

S
g

Fig. 2. Mesh refinement study for the gas saturation surface for three-phase flow af-
ter 920 days of simulation. The heterogeneous reservoir extends over a 512 m × 128 m
rectangle and has a random permeability field with coefficient of variation Cv = 0.5. The
porosity field is piecewise constant with two distinct alternating values 0.1 (blue) and 0.3
(red) (top picture). Computational grids: 256 × 64 (middle) and 512 × 128 (bottom).

shock wave which is not present in the solution of the model with αg = 0.43
(left), which is a strictly hyperbolic subsystem of conservation laws modeling
the convective transport of fluid phases in the three-phase flow region.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Numerical Simulation of Three-Phase Flow in Heterogeneous Porous Media 515

0

16

32

48

64

80

96

112

128

0163248648096112128
Y

X

0816243240485664

0
8

16
24

32
40

48
56

64

0.1

0.15

0.2

0.25

0.3

Y

X

S
g

0163248648096112128

0
16

32
48

64
80

96
112

128

0.1

0.15

0.2

0.25

0.3

Y

X

S
g

Fig. 3. Mesh refinement study in a 5-spot pattern reservoir after 250 days of simulation.
The porosity field (top left) is piecewise constant with only two distinct values: 0.002 in
a small rectangular region which drives the development of a finger and 0.2 elsewhere.
The 128 m × 128 m reservoir is discretized with computational grid having 64 × 64
(top right), 128 × 128 (bottom left), and 256 × 256 (right left) elements.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Position

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

O
il

sa
tu

ra
tio

n

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Position

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

O
il

sa
tu

ra
tio

n

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Position

0,12

0,15

0,18

0,21

0,24

0,27

G
as

 s
at

ur
at

io
n

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Position

0,12

0,15

0,18

0,21

0,24

0,27

G
as

 s
at

ur
at

io
n

Fig. 4. Oil and gas saturation profiles are shown as functions of dimensionless distance
from top to bottom at time 750 days for two models of phase relative permeabilities. We
remark that for the choice αg = 0 a transitional (intermediate) shock wave is simulated
(right) which is not present in the solution model of phase relative permeabilities with
αg = 0.43 (left) that leads to a strictly hyperbolic subsystem of conservation laws.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

516 E. Abreu, F. Furtado, and F. Pereira

5 Conclusions

We described the development of a numerical simulation tool for three-phase
immiscible incompressible flow in porous media. The porous medium may be
heterogeneous with variable porosity and permeability fields. General relations
for the relative permeability functions may be used.

Commonly used relative permeability functions lead to the loss of strict hy-
perbolicity and, thus, to the existence of elliptic regions or umbilic points for
the system of nonlinear hyperbolic conservation laws describing the convective
transport of the fluid phases. In such situations, non-classical waves, such as
transitional or undercompressive shocks, are frequently observed in solutions.
We remark that such non-classical waves display a strong dependence upon the
physical diffusion being modeled (see [15] and references therein). Thus their
accurate computation constitutes a bona fide test for numerical simulators.

The numerical procedure described here has been used to investigate the ex-
istence and stability of non-classical waves in heterogeneous two-dimensional
flows, thereby extending previous results for one-dimensional problems.

Acknowledgments. E.A. thanks CAPES/Brazil (IPRJ/UERJ) for a Ph.D. Fel-
lowship. F.F. was supported by NSF grant INT-0104529. F.P. was supported
by CNPq grants 472199/01-3, CTPetro/CNPq, 470216/2003-4, 504733/2004-4,
and CNPq/NFS grant 490696/2004-0.

References

1. Abreu, E.: Numerical simulation of three-phase water-oil-gas flows in petroleum
reservoirs. Universidade do Estado do Rio de Janeiro, M.Sc Thesis (2003) (in Por-
tuguese - Available at http://www.labtran.iprj.uerj.br/Orientacoes.html)

2. Abreu, E., Furtado, F., Pereira, F.: On the Numerical Simulation of Three-Phase
Reservoir Transport Problems. Transport Theory and Statistical Physics, 33 (5-7)
(2004) 503–526

3. Abreu, E., Douglas, J., Furtado, F., Marchesin, D., Pereira, F.: Three-Phase Im-
miscible Displacement in Heterogeneous Petroleum Reservoirs. Mathematics and
Computers in Simulation, 73, (1-4) (2006) 2-20

4. Abreu, E., Furtado, F., Marchesin, D., Pereira, F.: Transitional Waves in Three-
Phase Flows in Heterogeneous Formations. Computational Methods for Water Re-
sources, Edited by C. T. Miller, M. W. Farthing, W. G. Gray and G. F. Pinder,
Series: Developments in Water Science, I, (2004) 609–620

5. Berre, I., Dahle, H. K., Karlson, K. H., Nordhaug, H. F.: A streamline front track-
ing method for two- and three-phase flow including capillary forces. Contemporary
Mathematics: Fluid flow and transport in porous media: mathematical and numer-
ical treatment, 295 (2002) 49–61

6. Bruining, J., Duijn, C.J. van.: Uniqueness Conditions in a Hyperbolic Model for Oil
Recovery by Steamdrive. Computational Geosciences (February 2000), 4, 65–98

7. Chen, Z., Ewing, R. E.: Fully-discrete finite element analysis of multiphase flow in
ground-water hydrology. SIAM J. on Numerical Analysis. 34, (1997) 2228–2253

8. Chorin, A. J., Hughes, T. J. R., McCraken, M. F., and Marsden, J. E.: Product
Formulas and Numerical Algorithms. Comm. Pure Appl. Math.. 31, (1978) 205–256

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Numerical Simulation of Three-Phase Flow in Heterogeneous Porous Media 517

9. Colella, P., Concus, P., and Sethian, J.: Some numerical methods for discontinuous
flows in porous media. The Mathematics of Reservoir Simulation. SIAM Frontiers
in Applied Mathematics 1. Edited by Richard E. Ewing, (1984) 161–186

10. Corey, A., Rathjens, C., Henderson, J., Wyllie, M.: Three-phase relative perme-
ability. Trans. AIME, 207, (1956) 349–351

11. Douglas, Jr. J., Furtado, F., Pereira, F.: On the numerical simulation of waterflood-
ing of heterogeneous petroleum reservoirs. Comput. Geosci., 1, (1997) 155–190

12. Douglas, Jr. J., Paes Leme, P. J., Roberts, J. E. and Wang, J.: A parallel iterative
procedure applicable to the approximate solution of second order partial differential
equations by mixed finite element methods. Numer. Math., 65, (1993) 95–108

13. Dria, D. E., Pope, G.A, Sepehrnoori, K.: Three-phase gas/oil/brine relative per-
meabilities measured under CO2 flooding conditions. SPE 20184, (1993) 143–150

14. J. Glimm, B. Lindquist, F. Pereira, and R. Peierls.: The fractal hypothesis and
anomalous diffusion. Computational and Applied Mathematics, 11 (1992) 189–207

15. Isaacson, E., Marchesin, D., and Plohr, B.: Transitional waves for conservation
laws. SIAM J. Math. Anal., 21, (1990), 837–866

16. Juanes, R., Patzek, T. W.: Relative permeabilities for strictly hyperbolic models of
three-phase flow in porous media. Transp. Porous Media, 57 No. 2 (2004) 125-152

17. Juanes, R., Patzek, T. W.: Three-Phase Displacement Theory: An Improved De-
scription of Relative Permeabilities. SPE Journal. 9, No. 3, (2004) 302–313

18. Karlsen, K. H, Risebro, N. H.: Corrected operator splitting for nonlinear parabolic
equations. SIAM Journal on Numerical Analysis, 37 No. 3, (2000) 980-1003

19. Karlsen, K. H, Lie, K.-A., Natvig, J. R., Nordhaug, H. F., and Dahle, H. K.:
Operator splitting methods for systems of convection-diffusion equations: nonlinear
error mechanisms and correction strategies. J. of Computational Physics, 173, Issue
2, (2001) 636-663

20. Leverett, M. C., Lewis, W. B.: Steady flow of gas-oil-water mixtures through un-
consolidated sands. Trans. SPE of AIME, 142, (1941) 107–16

21. Li, B., Chen, Z., Huan, G.: The sequential method for the black-oil reservoir sim-
ulation on unstructured grids. J. of Computational Physics, 192, (2003) 36–72

22. Marchesin, D., Plohr, B. J.: Wave structure in WAG recovery. SPE 71314, Society
of Petroleum Engineering Journal, 6, no. 2, (2001) 209–219

23. Raviart P-A., Thomas, J. M.: A mixed finite element method for second order
elliptic problems. Mathematical Aspects of the Finite Element Method, Lecture
Notes in Mathematics, Springer-Verlag, Berlin, New York, I. Galligani, and E.
Magenes, eds. 606 (1977) 292–315

24. Nessyahu, N., Tadmor, E.: Non-oscillatory central differencing for hyperbolic con-
servation laws. J. of Computational Physics, (1990) 408–463

25. Peaceman, D. W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, Am-
sterdam (1977)

26. Stone, H. L.: Probability model for estimating three-phase relative permeability.
Petrol. Trans. AIME, 249. JPT, 23(2), (1970) 214–218

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simulation of Laser Propagation in a Plasma

with a Frequency Wave Equation

R. Sentis1, S. Desroziers1, and F. Nataf 2

1 CEA/Bruyeres, Service SEL, 91680 Bruyeres, France
2 Labo J-L-Lions, Université Paris VI, 75013 Paris, France

Abstract. The aim of this work is to perform numerical simulations
of the propagation of a laser beam in a plasma. At each time step, one
has to solve a Helmholtz equation with variable coefficients in a domain
which may contain more than hundred millions of cells.

One uses an iterative method of Krylov type to deal with this system.
At each inner iteration, the preconditioning amounts essentially to solve
a linear system which corresponds to the same five-diagonal symmetric
non-hermitian matrix. If nx and ny denote the number of discretization
points in each spatial direction, this matrix is block tri-diagonal and the
diagonal blocks are equal to a square matrix A of dimension nx which
corresponds to the discretization form of a one-dimension wave operator.
The corresponding linear system is solved by a block cyclic reduction
method.

The crucial point is the product of a full square matrix Q of dimen-
sion nx by a set of ny vectors where Q corresponds to the basis of the nx

eigenvectors of the tri-diagonal symmetric matrix A. We show some re-
sults which are obtained on a parallel architecture. Simulations with 200
millions of cells have run on 200 processors and the results are presented.

Keywords: Cyclic reduction method, Domain Decomposition Method,
Separable matrix, Non-hermitian linear solver, Helmholtz equation.

1 Introduction

The numerical simulation of propagation of high power intensity lasers in a
plasma is of importance for the ”NIF project” in USA and ”LMJ Facility project”
in France. It is a very challenging area for scientific computing indeed the wave
length 2π/k0 is equal to a fraction of one micron and the simulation domain
has to be much larger than 500 microns. One knows that in a plasma the
index of refraction is equal to

√
1 − Ne/Nc, where Ne is the electron plasma

density and the critical density Nc is a constant depending only on the wave
length. In macroscopic simulations (where the simulation lengths are in the
order of some millimeters), geometrical optics models are used and numerical
solutions are based on ray tracing methods. To take into account more specific
phenomena such as diffraction, autofocusing and filamentation, one generally
uses models based on a paraxial approximation of the full Maxwell equations

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 518–529, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simulation of Laser Propagation in a Plasma 519

(see for example [5], [1] or, for a new approach in a tilted frame, [6]). But this
approximation is valid only if the macroscopic index of refraction is quite con-
stant, in such a way that the wave vector is quite constant in the simulation
domain.

There are situations where the macroscopic variations of the plasma density
Ne are not small. Particularly if one considers a laser beam propagating in a
region near the critical density, it undergoes a total change of direction near a
surface called caustic surface and the wave vector is strongly varying near this
surface. So, the paraxial approximation is no more valid and one has to deal
with a model based on a frequency wave equation (obtained by time envelope of
the solution of the full Maxwell equations).

Whatever propagation model is used, it is necessary to perform a coupling with
the fluid dynamics system for modelling the plasma behavior. For a derivation of
the models and a physical exposition of the phenomena under interest, see e.g.
[13] or [7]. This paper is aiming at describing the numerical methods for solving
the frequency wave equation. Notice that our simulation have been performed to
take into account diffraction, refraction and auto-focusing phenomena but the
Brillouin parametric instabilities which create laser backscattering are not taken
into account up to now.

In the section 2, we describe the model based on the frequency wave equation.
In this paper, only 2D problems are considered but the method may be extended
to 3D computations. Denote by x the space variable and set x = (x, y) the two
spatial coordinates. After time discretization, to find the laser field ψ at each
time step, one has to solve a Helmholtz equation of the following form

Δψ +
(
k2
0(1 − N) + ik0μ

)
ψ = f (1)

where f is a given complex function and μ a real coefficient. We assume that the
gradient of the macrocsopic non-dimension density N(x) = Ne/Nc is parallel to
the x-axis, then we set

N(x, y) = N0(x) + δN(x, y) (2)

where N0 depends on the x variable only and δN is small compared to 1. To solve
accurately equation (1), one considers a spatial discretization of finite difference
type with a spatial step equal to a fraction of the wave length. If nx and ny

denote the number of discretization points in each direction, it leads to solve a
the linear system with nxny degrees of freedom (which may be equal to 108 for
a typical 2D spatial domain). One chooses an iterative method of Krylov type
with a preconditioning which amounts to solve a linear system corresponding to
a five-diagonal symmetric non-hermitian matrix

⎛

⎜⎜⎝

α + A −T
−T A −T

−T A −T ...
−T A ...

⎞

⎟⎟⎠

where T is equal to a constant times the identity matrix of dimension nx, and
A corresponds to the discretization of one-dimension Helmholtz operator (α is a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

520 R. Sentis, S. Desroziers, and F. Nataf

constant). Since this matrix is separable, the corresponding linear system may
be solved by the block cyclic reduction method. This method which is derived
from the classical cyclic reduction method, has been used for instance in [12] for
the numerical solution of Helmholtz problems, but the problem here is a more
complicated, indeed one has to deal with Perfectly Matched Layers on two sides
of the simulation domain.

The crucial point is the product of a full square matrix Q of dimension nx by
the set of ny vectors which are of length nx, where Q corresponds to the basis
of the nx eigenvectors of the tri-diagonal matrix A.

In section 3, we describe the key points of the numerical method for solving (1).
In section 4 we give some details on the parallel implementation ; for that purpose
the processors are shared out according to horizontal slabs. In the last section we
present numerical results in a small simulation domain with only 3 millions of cells
and another case of 200 millions of cells which has run on 200 processors.

2 The Model and the Boundary Conditions

The laser beam is characterized by an electromagnetic wave with a fixed pulsa-
tion ck0 where c is the light speed and the wave length in vacuum is equal to
2π/k0. For modelling the laser, one considers the time envelope ψ = ψ(t,x) of
the transverse electric field. It is a slowly time varying complex function. On the
other hand, for modelling the plasma behavior one introduces the non-dimension
electron density N = N(t,x) and the plasma velocity U = U(t,x).

Modelling of the plasma.For the plasma, the simplest model is the following
one. Let P = P (N,x) a smooth function of the density N which may depend
also of the position x , according to the variation of the electron temperature.
Then one has to solve the following barotropic Euler system :

∂

∂t
N + ∇(NU) = 0, (3)

∂

∂t
(NU) + ∇(NUU) + ∇(P (N)) = −Nγp∇|ψ|2. (4)

The term γp∇|ψ|2 corresponds to a ponderomotive force due to a laser pressure
(the coefficient γp is a constant depending only on the ion species).

Modelling of the laser beam. The laser field ψ = ψ(t,x) is a solution to the
following frequency wave equation (which is of Schrödinger type)

2i
1
c

∂

∂t
ψ +

1
k0

Δψ + k0(1 − N)ψ + iνψ = 0, (5)

where the absorption coefficient ν depends on space and the density N = N(t,x)
is solution to the fluid system stated above. Of course, the problem is interesting
only in the region where N(t,x) ≤ 1.

General framework. For the numerical solution of the fluid system, we use the
method described in [8] or [1] which has been implemented in a parallel platform

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simulation of Laser Propagation in a Plasma 521

called HERA. For solving (5), the spatial mesh has to be very fine, at least 10
cells per wave length in each direction. Generally the modulus |ψ| of the electric
field is slowly varying with respect to the spatial variable, one can use a crude
mesh for the simulation of the Euler system (the mesh size has to be of order
of the 2π/k0). If the modulus |ψ| was not slowly varying in a region, one would
have to solve in this region the Euler system with a fine mesh also.

So we handle a two-level mesh of finite difference type : in a 2D simulation,
each cell of the fluid system is divided into p0 × p0 cells for the Helmholtz level,
with p0 = 10 or 5. We assume in the whole paper that the hypothesis (2) holds,
so it allows to perform a preconditioning of the global linear system by another
system which is simpler since it does not take into account the perturbation
δN(x, y); this last system corresponds to a separable matrix and therefore a
block cyclic reduction method may be used for its numerical solution.

Boundary conditions. The laser beam is assumed to enter in x = 0. Since the
density N depends mainly on the x−variable, we may denote by N in the mean
value of the incoming density on the boundary and by Nout the mean value of
the density on the outgoing boundary . Let eb be the unit vector related to the
direction of the incoming laser beam and set Kin = eb

√
1 − N in. The boundary

condition on the part of the boundary (x = 0) reads (with n = (−1, 0) the
outwards normal to the boundary)

(k−1
0 n.∇ + iKin.n)(ψ − αineik0Kinx) = 0. (6)

where αin = αin(y) is a smooth function which is, roughly speaking, independent
of the time. On the part of the boundary x = xmax, there are two cases according
to the value Nout :

i) If Nout > 1 the wave does not propagate up to the boundary and the
boundary condition may read as ∂ψ/∂x = 0.

ii) If Nout ≤ 1 it is necessary to consider a transparent boundary condition.
Here we take the simplest one, that is to say

(k−1
0 n.∇ + i

√
1 − Nout)(ψ) = 0.

On the other hand, on the part of the boundary corresponding to y = 0 and
y = ymax, it is crucial to have a good transparent boundary condition, so we
introduce perfectly matched layers (the P.M.L. of [2]). For the simple equation
−Δψ − ω2ψ = f, this technique amounts to replace in the neighborhood of the

boundary, the operator ∂
∂y by

(
1 + σ

iω

)−1
∂
∂y , where σ is a damping function

which is not zero only on two or three wave lengths and which increases very
fast up to the boundary. Notice that the feature of this method is that it is
necessary to modify the discretization of the Laplace operator on a small zone
near the boundary.

Time discretization. At each time step δt determined by the CFL criterion for
the Euler system, one solves first the Euler system with the ponderomotive force
and afterwards the frequency wave equation (5). For the time discretization of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

522 R. Sentis, S. Desroziers, and F. Nataf

this equation, an implicit scheme is used. The length cδt is very large compared
to the spatial step therefore the time derivative term may be considered as a
perturbation and one has to solve the following equation of the Helmholtz type

Δψ +
(
k2
0(1 − N) + ik0(μ0 + ν)

)
ψ = iμ0ψ

ini (7)

where μ0 = 2k0/(cδt). The boundary conditions are the same as above.

3 Principle of the Numerical Methods for the Helmholtz
Equation

The spatial discretization (7) is the classical one of finite difference type. Denote
by nx and ny the number of discretization points in each direction. Beside the
interior domain, there are two zones corresponding to the two PMLs near the
boundary y = 0 and y = ymax, the width of these layers corresponds to 2p0
points. Then the linear system to be solved has the following form

⎛

⎝
P1 C1 0
E1 AI + D E2
0 C2 P2

⎞

⎠ Ψ = F, (8)

where P1 and P2 are square matrices whose dimension is 2p0nx , it corresponds
to the discretization of the equation in the P.M.L. On the other hand Ci, Ei

are coupling matrices (whose dimensions are nxny, times 2p0nx). The square
matrix AI whose dimension is nxny, corresponds to the discretization of

(Δ + k2
0(1 − N0) + ik0μ0)• (9)

in the interior domain. Moreover, D is a diagonal matrix corresponding to the
terms δN(x, y) + ik0ν(x, y). Notice that the domain decomposition method is
used with Robin interface conditions (see [10], [3]) which corresponds to a dis-
cretization of the condition on the interfaces between subdomains

∂

∂n
ψ + αψ =

∂

∂n
ψneib + αψneib

(α is a complex parameter and ψneib is the value in the other subdomain).

3.1 Solution of the Linear System

To solve (8), the principle is to performe an iterative Krilov method with a
preconditioning which correponds to the discretization of the Helmholtz operator
(9). To save CPU time, the GMRES method has been found to be the best Krylov
method ; since the number of iterations is not very high, it is not necessary to
use a restart procedure. The preconditioning is performed by solving the linear
system based on AI in the interior domain and on P1 and P2 in the P.M.L.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simulation of Laser Propagation in a Plasma 523

domains, that is to say the main point is to solve as fast as possible a system of
the following form

PU = f, where P =

⎛

⎝
P1 0 0
0 AI 0
0 0 P2

⎞

⎠ (10)

where P1 and P2 are small matrices which may be easily factorized in the stan-
dard LU product. The symmetric non-hermitian matrix AI has the following
form

AI =

⎛

⎜⎜⎜⎜⎜⎝

B −T
−T A −T

.
−T A −T

−T B

⎞

⎟⎟⎟⎟⎟⎠
,

where T is equal to a constant times the identity matrix, B = A + α and A is a
tri-diagonal matrix of dimension nx related to the discretization of the operator
(∂2

xx +k2
0(1−N0)+ik0μ0)· ; that amounts to the solution of the following system

AI ·

⎛

⎜⎜⎜⎜⎜⎝

u1
u2
...

uny−1
uny

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

f1
f2
...

fny−1
fny

⎞

⎟⎟⎟⎟⎟⎠
(11)

where the elements um and fm are nx−vectors,

3.2 The Cyclic Reduction Method

Since AI is separable, to solve the system (11) in the central domain, we use the
block cyclic reduction method. Let us recall the principle of this method. For the
sake of simplicity, assume ny = 2k −1. We know that A and T are commutative.
Consider 3 successive lines of (11) for i = 2, 4, ..., ny − 1 :

⎧
⎨

⎩

−Tui−2 + Aui−1 − Tui = fi−1
− Tui−1 + Aui − Tui+1 = fi

− Tui + Aui+1 − Tui+2 = fi+1.
(12)

After a linear combination of these lines, we get :

−T 2A−1ui−2 +
(
A − 2T 2A−1) ui − T 2A−1ui+2 = fi + TA−1 (fi−1 + fi+1) (13)

After this first step, the elimination procedure may be performed again by
induction. That is to say, denote A(0) = A, B(0) = B, T (0) = T and f (0) = f ;
after r elimination steps, the reduced system for 0 ≤ r ≤ k − 1 owns 2k−r − 1
blocs and reads as:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

524 R. Sentis, S. Desroziers, and F. Nataf

⎛

⎜⎜⎜⎜⎜⎝

B(r) −T (r)

−T (r) A(r) −T (r)

.
−T (r) A(r) −T (r)

−T (r) B(r)

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

u2r

u2.2r

...
u(ny−1)−2r+1

uny−2r+1

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

f
(r)
2r

f
(r)
2.2r

...
f

(r)
(ny−1)−2r+1

f
(r)
ny−2r+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

where for r = 1, ..., k − 2 :

A(r) = A(r−1) − 2
(
T (r−1)

)2 (
A(r−1)

)−1

B(r) = A(r−1) −
(
T (r−1)

)2
((

A(r−1)
)−1

+
(
B(r−1)

)−1
)

(14)

T (r) =
(
T (r−1)

)2 (
A(r−1)

)−1

For the right hand side, we get the induction formula :

f
(r)
i.2r = f

(r−1)
i.2r + T (r−1)

(
A(r−1)

)−1 (
f

(r−1)
i.2r−2r−1 + f

(r−1)
i.2r+2r−1

)
(15)

After all the elimination steps, it remains only one equation for finding u2k−1 .
Once this value is obtained, one deduces all the other values step by step by
induction.

4 Parallel Implementation

Notice first that A = ik0μ0 + A0 where A0 is a symmetric tri-diagonal matrix
whose coefficients are real except the one in the first line and the first column
(due to the boundary condition (6)). We have checked that it is possible to find
a basis of eigenvectors of A0 which are orthogonal for the pseudo scalar product
< u, v >= uT .v. They are computed by using the LR algorithm of Parlett (cf.
[11]) although it was designed for Hermitian matrices. So denote Q the matrix
whose columns are the eigenvectors of A0 , the matrix Q is orthonormal for the
pseudo scalar product, that is to say

QQT = QT Q = I

Since T is the identity matrix up to a multiplicative constant, one can intro-
duce the diagonal matrices Λ(0) and Γ (0)

A = QΛ(0)QT , T = QΓ (0)QT . (16)

So we get
A(r) = QΛ(r)QT , T (r) = QΓ (r)QT (17)

with the following induction formulas

Λ(r) = Λ(r−1) − 2
(
Γ (r−1)

)2 (
Λ(r−1)

)−1
, Γ (r) =

(
Γ (r−1)

)2 (
Λ(r−1)

)−1
(18)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simulation of Laser Propagation in a Plasma 525

Let us summarize the algorithm

• Introduce the vectors f̃i transformed of fi in the eigenvector basis

f̃i = QT fi for i = 1, . . . , ny.

• At each step r, the vector f̃ r
i transformed of f r

i of the right hand side,
reads

f̃
(r)
i.2r = f̃

(r−1)
i.2r + Γ (r−1)

(
Λ(r−1)

)−1 (
f̃

(r−1)
i.2r−2r−1 + f̃

(r−1)
i.2r+2r−1

)

• One computes the vectors ũ2k−1 by solving

Λ(k−1)ũ2k−1 = f̃
(k−1)
2k−1

• One recursively distributes the solutions by solving sub-systems of the fol-
lowing type

Λ(r)ũj.2r+1−2r = g̃
(r)
j.2r+1−2r

where g̃
(r)
j.2r+1−2r = f̃

(r)
j.2r+1−2r + Γ (r)

(
ũ(j−1).2r+1 + ũ(j).2r+1

)

• Lastly, the solution u is given by

ui = Qũi pour i = 1, . . . , ny.

For the parallel implementation, the crucial point is the product of a full ma-
trix Q of dimension nx × nx by a set of ny vectors (each vector corresponds to
a horizontal line of the mesh). So the processors are shared out according to
horizontal slabs of the mesh. On our architecture, each node ownes four pro-
cessors, but often the memory devoted to the node is not large enough to store
four times the matrix Q, so multi-thread techniques are used to overcome this
difficulty. The matrix Q is stored once on the local memory of the node and four
threads are carried out simultaneously on the four processors on the node ; then
the products of the matrix Q by the vectors are performed simultaneously for
the four horizontal slabs.

Scalability. The code has run on a massively parallel architecture with HP-
Compaq processors of the EV67 type. For a typical problem, with 40 106 complex
unknowns, when the CPU time for one Krilov iteration is equal to 1 with 16
processors, it is equal to 0.98 with 32 processors and 0.96 with 64 processors, so
the efficiency of the parallelism is very good.

On the other hand, consider now problems whose size is multiplied by 2 in
each direction. When the number of degrees of freedom is nxny =1.6 106, the
CPU time with 4 processors is equal to 1 for one Krilov iteration, it is equal
to 2.1 with 16 processors for nxny =6.4 106, and it is equal to 4.2 with 32
processors for nxny =25.6 106. That is to say the CPU is about two time larger
when the number of processors and the number of degrees of freedom are 4 times

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

526 R. Sentis, S. Desroziers, and F. Nataf

Fig. 1. Laser intensity at time 3 ps. Incoming boundary condition with 3 speckles.

larger; this is coherent with the fact that the number of operations for the cyclic
reduction method grows like n2

xny.

5 Numerical Results

The incoming boundary condition αin(y) is roughly speaking equal to a sum of
narrow Gaussian functions depending of the y variable ; the half height width
of each Gaussian function is equal to 8 wave lengths and is assumed to describe
a speckle (a speckle is a light spot of high intensity). One considers first a sim-
ulation domain of 100 × 300 wave lengths ; the initial profile of density is a
linear function increasing from 0.1 at x = 0 to 1.1 at x = xmax. The incoming
boundary condition consists in three speckles with the same incidence angle. At
the Helmholtz level, one handles only 3 millions of cells. With 32 PEs, the CPU
time is about 20 seconds per time step for approximately 10 Krylov iterations at
each time step. Without the coupling with the plasma, it is well known that the
solution is very close to the one given by the geometrical optics ; the speckles
propagate in a parallel way, undergo macroscopic refraction when the electron
density increases and are tangent to a caustic line (here it is the line correspond-
ing to x = x� such that N0(x�) = cos2(θ), where θ is the incidence angle of the
speckles). With our model, if the laser intensity is low (which corresponds to a
weak coupling with the plasma), one notices that a small digging of the plasma
density occurs. This digging is more significant when the laser intensity is larger,
then an autofocusing phenomenon takes place.

On figure 1, one sees the map of the laser intensity that is to say the quantity
|ψ|2, which corresponds to this situation after some picoseconds, knowing that
the time step in about 0.05 picosecond. We notice here that the speckles undergo
autofocusing phenomena and some filamentation may be observed.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simulation of Laser Propagation in a Plasma 527

Fig. 2. Laser intensity at time 22 ps. Incoming condition with 20 speckles.

Another case is considered, corresponding to simulation domain of 2000×2000
wave lengths. In the left half of the domain, the electron density is constant and
equal to 0.15 and one uses the paraxial model ; in the right half of the domain
the density increases from 0.15 to 0.95 and the Helmholtz model is used. The
coupling of the two method has to be performed accurately ; it is described in [4].

The incoming boundary condition consists in 20 speckles with various inten-
sity. In this domain, one handles 200 millions of cells (whose size is 1/10 of the
wave length) and the simulation have run on 200 PEs. The map of the laser
intensity is shown on figure 2 after 22 ps (the time step is roughly equal to 0.02
ps). We have chosen a small absorption coefficient ν = 2.10−5N2 so the problem
is quite sharp. Here the digging of the plasma is locally very important since the
variation of density δN reaches 0.05 in a region where N(x) = 0.8, see a map
of the non-dimension density on the figure 3.

About 13 iterations of the Krilov method are enough to converge. The CPU
time is equal to 240 s for solving the full linear system and 270 s for each time step
(including the solution of the LR algoritm and the hydrodynamics of the plasma).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

528 R. Sentis, S. Desroziers, and F. Nataf

Fig. 3. Plasma density at time 22 ps (zoom). Incoming condition with 20 speckles.

6 Conclusion

In the framework of the hydrodynamics parallel platform HERA, we have devel-
oped a solver for the laser propagation based on the frequency wave equation.
The assumption that the density N depends mainly on the x−variable only
allows to perform a preconditioning by a domain decomposition method (two
PMLs and a large Helmholtz zone) where the linear system corresponding to
the Helmholtz zone is solved by the block cyclic reduction method. This kind of
simulation is new. Up to our knowledge, the solution of this kind of model in a
wide two-dimension domain has been published only in [9], but the framework
is different : the gradient of the electron density is 20 times more larger and the
simulation domain is 100 times smaller than in our problem.

Most of the computer time is spent by the product of the full matrix Q by a
set a ny vectors. In the future some CPU time may be saved if inside the inner
iteration loop of the Krylov method, we do not consider the whole spatial domain
that is to say all the ny vectors but only the vectors which does not belong to
some subinterval [n1

y, n2
y] for instance the ones where the solution varies very few

from an iteration to the other.

References

1. Ph. Ballereau, M.Casanova, F.Duboc, D. Dureau, H.Jourdren, P.Loiseau, J.Metral,
O.Morice, R. Sentis. Coupling Hydrodynamics with a Paraxial solver, to appear.

2. J.-P. Berenger. A Perfectly Matched Layer for the Absorption of Electromagnetic
Waves. J. Comp. Physics 114, p185-200 (1994).

3. B. Després, Domain decomposition method and the Helmholtz problem. II, in:
Second International Conference on Mathematical and Numerical Aspects of Wave
Propagation (Newark, DE, 1993), SIAM, (1993).

4. S. Desroziers Modelisation de la propagation laser par résolution de l’équation
d’Helmholtz, Ph. D. dissertation, University Paris VI, (2006).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simulation of Laser Propagation in a Plasma 529

5. M.R. Dorr , F.X. Garaizar, J.A. Hittinger, Simuation of laser-Plasma filamenta-
tion. J. Comp. Phys. 17, p233-263 (2002).

6. M. Doumic, F. Golse, R. Sentis. Propagation laser paraxiale en coordonnées
obliques, Note C. R. Ac. Sciences, Paris, série I, t.336, p.23-28 (2003).

7. S. Hüller, Ph. Mounaix, V.T. Tikhonchuk, D. Pesme. Interaction of two neighboring
laser beams, Phys. Plasmas, 4, p.2670-2680, (1997).

8. H. Jourdren. HERA hydrodynamics AMR Plateform for multiphysics simulation,
Proceedings of Chicago workshop on AMR methods, Plewa T. et al., eds., Springer
Verlag, Berlin (2005).

9. Maximov A.V. and al Modeling of stimulated Brillouin .. Phys Plasmaa 11, p.2994-
3000, (2004).

10. P.-L. Lions, On the Schwarz alternating method, III. in: Third International Sym-
posium on Domain Decomposition Methods for PDE, Chan and al., ed., SIAM
(1990).

11. B. N.Parlett : Acta Numerica, p 459-491, (1995).
12. T. Rossi, J. Toivanen. A parallel fast direct solver for block tridiagonal systems with

separable matrices, SIAM J. Sci. Comput. 20 (1999), pp. 1778-1796.
13. R. Sentis, Mathematical Models for Laser-Plasma Interaction, ESAIM: Math.

Modelling and Num. Analysis, 39, p275-318 (2005).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 530 – 543, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Particle Gradient Evolutionary Algorithm Based on
Statistical Mechanics and Convergence Analysis

Kangshun Li1,2,3, Wei Li1,3, Zhangxin Chen4, and Feng Wang5

1 School of Information Engineering, Jiangxi University of Science and Technology,
Ganzhou 341000, China

{Kangshun Li, lks}@public1.gz.jx.cn
2 Key Laboratory of High-Performance Computing Technology of Jiangxi Province,

Jiangxi Normal University, Nanchang 330022, China
3 Key Laboratory of Intelligent Computation and Network Measurement-Control
Technology of Jiangxi Province, Jiangxi University of Science and Technology,

Ganzhou 341000, China
4 Center for Scientific Computation and Department of Mathematics,

Southern Methodist University, Dallas, TX 75275-0156, USA
5 Computer School of Wuhan University, Wuhan 430072, China

Abstract. In this paper a particle gradient evolutionary algorithm is presented
for solving complex single-objective optimization problems based on statistical
mechanics theory, the principle of gradient descending, and the law of evolving
chance ascending of particles. Numerical experiments show that we can easily
solve complex single-objective optimization problems that are difficult to solve
by using traditional evolutionary algorithms and avoid the premature phenome-
non of these problems. In addition, a convergence analysis of the algorithm in-
dicates that it can quickly converge to optimal solutions of the optimization
problems. Hence this algorithm is more reliable and stable than traditional
evolutionary algorithms.

1 Introduction

Evolutionary algorithms (EAs) are searching methods that take their inspiration from
natural selection and survival of the fittest in the biological world [1,2]. EAs differ
from traditional optimization techniques in that they involve a search from a “popula-
tion” of solutions, not from a single point. Each iteration of an EA involves a competi-
tive selection that weeds out poor solutions. The solutions with high “fitness” are “re-
combined” with other solutions by crossing parts of a solution with another. Solutions
are also “mutated” by making a small change to a single element of the solutions. Re-
combination and mutation are used to generate new solutions that are biased toward
regions of the space for which good solutions have already been seen. However, there
are two main problems puzzling researches in the literature of EC (evolutionary com-
putation) research. The first is the premature, which is one of the basic problems in EC
research, and the second is the lack of a proper stopping criterion in problem solution.
Previous evolutionary algorithms (we call them traditional evolutionary algorithms) are
difficult to avoid the premature phenomenon, and fall into local optimal solutions; the
reason is that the traditional evolutionary algorithms cannot take all the individuals of
population to participate in crossing and mutating all the time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Particle Gradient EA Based on Statistical Mechanics and Convergence Analysis 531

In this paper a particle gradient evolutionary algorithm for solving complex single-
objective optimization problems (SPGEA) is presented to overcome the shortcomings
of the traditional evolutionary algorithms mentioned above. SPGEA adopts the
method of solving the gradient of an optimization problem to construct the fitness
function of the problem, which simulates the principle of energy minimizing of parti-
cles in statistical mechanics, and designs an evolving chance function of individuals
as the amount of individual crossing, which simulates the law of entropy increasing of
particles in statistical mechanics. Based on this construction method, the algorithm
guarantees that all the particles have a chance to cross and evolve all the time and
produces the global optimization solution of a problem.

This paper is organized as follows: In Section 2, theoretical foundations of statisti-
cal mechanics are discussed. The principle of gradient descending and the law of
evolving chance ascending in a particle system are then analyzed theoretically in
Section 3. A detailed description of a SPGEA flow is designed in Section 4. In Sec-
tion 5, we perform experiments to test SPGEA by solving three complex optimization
problems. The convergence of SPGEA is studied in Section 6. Finally, we draw some
conclusions in Section 7.

2 Relevant Theories of Statistical Mechanics

Statistical mechanics [3,4] is to apply a statistical analysis method of applied mathe-
matics to study the average behavior and statistical rules of a number of particles. It
is an important branch of theoretical physics. The non-equilibrium statistical mechan-
ics is to study more complex problems. Not until in the mid-20th century has the
study of statistical mechanics achieved a rapid development. For a macro physical
system being composed of a number of particles, the probability of the system that
keeps a more disordered state exceeds the probability of the system that keeps a more
ordered state. A closed physical system always trends to the disordered state from the
ordered state. In thermodynamics, this is the corresponding law of entropy ascending.
Therefore, the free energy theory and entropy theory of statistical mechanics are very
important in the course of discussing the equilibrium and non-equilibrium particle
system below.

2.1 Law of Entropy Ascending

Assume that a closed system is composed of two open subsystems that may exchange
energy and particles so that the entropy of the system increases, i.e., 21 SSS += ,

where 1S and 2S denote the entropies of the first and second systems, respectively.

Furthermore, assume that the relationship between the micro-state number of the
micro-canonical ensemble and the entropy function is)(ΔΩ= fS , and the two

subsystems are independent of each other. As a result, the micro-state number of an
isolated system is 21ΔΩΔΩ=ΔΩ . Thus)(2121 ΔΩΔΩ=+ fSS and ΔΩ= lnBkS ,

where Bk is called the Boltzmann constant. According to the entropy equilibrium

equation and Boltzman H-theorem, we see that the entropy function is a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

532 K. Li et al.

monotonically increasing function of time in a closed system; i.e., 0
)(≥

dt

tdS
. There-

fore, the entropy is irreversible in the thermo-insulated system, which is the law of
entropy increasing.

2.2 Principle of Energy Descending

The concept of “free energy” is a key concept to characterize physically relevant
states in statistical mechanics. Given an equilibrium system of statistical mechanics
with energy levels iE of the microstates i , the Helmholtz free energy is defined as

)(log
1

)(β
β

β ZF −= ,

where

∑ −=
i

iEeZ ββ)(

is the partition function and β is the inverse temperature. Apparently, the Helmholtz

free energy is different from the internal energy U given by

iEZU =
∂
∂−=)(log β
β

.

The difference is given by the entropy times the temperature:

TSUF −= .

This equation can also be regarded as descending a Legendre transformation from
U to F . Equilibrium states minimize the free energy; in this sense F is more rele-
vant than U . The minimum of F can be achieved in two competing ways: Either by
making the internal energy U small or by making the entropy S large. The basic
principle underlying statistical mechanics, the maximum entropy principle, can also
be formulated as a “principle of minimum free energy ”.

Through the above analysis of a particle system, we know that the equilibrium state
of the particle system depends on the result of the competition between free energy
descending of this particle system and entropy ascending.

3 Principle of Gradient Descending and Law of Evolving Chance
Ascending

We apply the principle of free energy descending and the law of entropy ascending in
statistical mechanics to the SPGEA design. In the design of SPGEA, we consider
individuals of a population as particles in the particle phase space, and the population
of each generation as a system of particles. Our purpose is to simulate the particle
system discipline in the physics system to cross and mutate individuals of the popula-
tion, which tries to change its state from non-equilibrium to equilibrium, and as a
result, solves for all the optimal solutions, and avoid problems’ premature.

Because the establishment of a fitness function and an iterative stopping criterion
of SPGEA is based on the principle of gradient descending and the law of evolving

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Particle Gradient EA Based on Statistical Mechanics and Convergence Analysis 533

chance ascending in a physical system, which simulates the law of entropy ascending
and the principle of energy descending, SPGEA is guaranteed to drive all the parti-
cles in the phase space to participate in crossing and mutating, and to speed up its
convergence; in the meantime it improves its computing performance so that the
probability of the phase space equals and the equilibrium state in the phase space is
achieved.

4 Algorithm Flow of SPGEA

4.1 Description of Optimization Problem

We consider the optimization problem :

)(min Xf
DX∈

， qkXgSXD k ,,2,1,0)(;{ =≤∈= ,

where nRS ⊂ is the searching space, usually a hypercube of N dimensions, namely,
niuxl iii ,,2,1, =≤≤ , RSf →: the objective function, n the dimension of the

decision space, and D the set of feasible points.

4.2 Variation of the Objective Function

We assume that the population size is N , and the individuals Nxxx ,,, 21 as N

particles in a physical system. Then we add the number t of a continuous evolving
iteration into the objective function of the optimization problem, and get the new dy-
namical single-objective function of the optimization problem),(min

0,
Xtf

tDX >∈
 related

to the iteration time. We say that),(min
0,

Xtf
tDX >∈

 is a SPGEA objective function.

4.3 Algorithm Process of SPGEA

According to the principle of free energy descending and the law of entropy ascend-
ing of the physical system, we give the definitions of a gradient descending equation
and a evolving chance ascending equation of SPGEA as follows:

Definition 1 (SPGEA gradient descending equation): We call the difference equa-
tion),1(),(),(iii xxx −∇−∇=∇ tftftp as a SPGEA gradient descending equation

(SPGEA free energy) of thi particle ix at time t, where)(xf is a function on D ,

.3,2,1, =∈ iDix

Definition 2 (SPGEA evolving chance ascending): We call the evolving chance
counting function),(ixtα of thi particle ix at time t the SPGEA evolving chance

ascending (SPGEA entropy), whose value is determined as follows: When particles

ix participate in the evolving operation in time t ,

1),1(),(+−= ii xx tatα ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

534 K. Li et al.

Otherwise,

),1(),(ii xx −= tatα ， NiD 3,2,1, =∈ix �

Definition 3 (SPGEA fitness function): We define the weighted function

)1),(ln(),(),(2
0

1 ++∇= ∑
=

iii xxx tkptselect
t

k
p

αλλ as the SPGEA fitness function,

where]1,0[, 21 ∈λλ , 121 =+ λλ , and 21,λλ are called SPGEA Boltzmann constants,

whose values depend on the significance of ∑
=

∇
t

k
p

kp
0

),(ix and)1),(ln(+ixtα on

the right-hand side of the fitness function equation, respectively. That is, the more
significant it is, the larger the corresponding SPGEA Boltzmann constant is. This
ensures the whole physical system to reach the equilibrium state from the non-
equilibrium state, and hence to achieve the equal probability in the phase space; in
the meantime, all the individuals in the population have a chance to take part in cross-
ing and mutating at all the iteration times so that global optimal solutions can be
achieved. In the SPGEA fitness function we can also see that the reason why SPGEA
can avoid the premature phenomenon is that the SPGEA fitness function contains the
SPGEA gradient descending term (SPGEA free energy) and the SPGEA evolving
chance ascending term (SPGEA entropy).

Definition 4 (SPGEA stopping criterion): We define a SPGEA stopping criterion by

ε<∇∑
=

ttp
N

i
p

/)),((
1

ix or ∑
=

>+
N

i

Tt
1

)1),(ln(ixα ,

where ε is a given small positive constant.
The first SPGEA stopping criterion is constructed by SPGEA free energy, and the

second SPGEA stopping criterion is built by SPGEA entropy. We can easily see that
the purpose of SPGEA is to minimize SPGEA free energy and maximize SPGEA
entropy. These two terms are like the Helmholtz free energy and the entropy of parti-
cles in the physical system, and always compete with each other in the course of
changing from non-equilibrium to equilibrium spontaneously under the same
temperature.

According to the above four basic definitions of SPGEA we design the detailed al-
gorithm of SPGEA as follows:

Step 1: Initialize particles in the physical system to generate an initial population
with N individuals { }N21 x,,x,x=ΓN randomly, and set 0:=t .

Step 2: Calculate all the function values of the particles in NΓ and set 0),(=∇ ixtp ,

0),(=ixtα , NΓ∈ix ; then calculate the fitness values of fitness functions

),(ixtselect , which are in the order from small to large.

Step 3: Save all the particles and their function values in the system NΓ .

Step 4: Begin to iterate: 1: += tt .
Step 5: Select n particles ix′ , ni ,,2,1= on the forefront of),1(ix−tselect ; if all

the values of),1(ix−tselect are the same, select n particles randomly.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Particle Gradient EA Based on Statistical Mechanics and Convergence Analysis 535

Step 6: Implement evolving operations on the n particles of the physical system, and
generate n random numbers nii ,,2,1],1,1[=−∈α that satisfy

∑
=

≤≤−
n

i
i

1

5.15.0 α and Xxx ∈′= ∑
=

n

i
ii

1

ˆ α ; if the function value at the point x̂

is better than the worst function value at the point ix~ , then we replace the in-

dividual ix~ by x̂ ; otherwise repeat this evolving operation.

Step 7: Save the best particles, and their function values and fitness values in the sys-
tem NΓ .

Step 8: Renew all the values of),(ixtselect and re-sort in an ascending order.

Step 9: Calculate the stopping criterion; if ε<∇∑
=

ttp
N

i
p

/)),((
1

ix or

∑
=

>+
N

i

Tt
1

)1),(ln(ixα , stop iteration; otherwise, go to step 4.

In the above two SPGEA stopping criteria we know that the individuals which are
not selected in the previous generation have more chance to be selected to take part in
the evolving operation in the next generation because the fitness values added up by
non-selected individuals in the previous generation are less than other individuals’
fitness values calculated by the selected individuals in the previous generation. In this
way, it is guaranteed that all the individuals in the population have a chance to take
part in crossing and mutating all the time; this is one of the main features of SPGEA.

5 Data Experiments

In this section, three typical optimization problems that are difficult to solve using the
traditional EA [5-8] will be experimented to test the performance of SPGEA. In the
first experiment, we use SPGEA to solve the minimization problem of the function

7.0)4cos(4.0)3cos(3.0),(min 21

2

2

2

121 +−−+=
∈

xxxxxxf
Sx

ππ ,

where 5050 1 ≤≤− x and 5050 2 ≤≤− x . From Fig.1 we can see that this optimization

problem has almost an infinite number of local optimal points in the searching space,
but there is only one global minimum point at 01 =x and 02 =x that reaches the

minimum value 0* =f of the function. Only the local optimal points can be solved

by using the traditional evolutionary algorithm in general.
In this experiment, we set the population size 80=N . The weighted coefficient

11

21 10,2.0,8.0 −=== ελλ , and the maximal value of the evolving chance function
810=T , and then select four particles (individuals) that are located in front of the

fitness values of the function),(itselect x in the order from small to large to cross and

mutate. According to the above configured parameters we run the SPGEA program 10
times continuously, in every iteration time we can get the optimal point that is given

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

536 K. Li et al.

-2
-1

0
1

2

-2
-1

0
1

2

0

2

4

6

8

10

Fig. 1. The landscape of experiment 1

Table 1. The results of running SPGEA program 10 times in experiment 1

Min value f 1x 2x step

0 1.53257e-010 -1.92252e-009 796
0 2.20815e-010 9.12350e-012 780
0 -1.13563e-009 -4.89725e-010 696
0 -1.92390e-009 1.30710e-010 718
0 3.66944e-010 6.67918e-010 708
0 -1.63819e-010 2.56498e-010 670
0 -2.59710e-010 1.85425e-011 831
0 1.02611e-009 -3.04113e-010 747
0 -5.06763e-011 5.91274e-010 745
0 4.64298e-010 2.06257e-010 812

in Table 1. The convergent speed by using SPGEA is faster and the results are more
accurate than the traditional evolutionary algorithm in Ref. [8].

In the second experiment, we use SPGEA to test a non-convex function as follows:

2

1

2

2

2

121)1()(100),(min xxxxxf
S

−+−=
∈x

where 048.2048.2,048.2048.2 21 ≤≤−≤≤− xx ; this function is non-convex (see

Fig.2). In running SPGEA, we set the population size 60=N ,
20

21 10,2.0,8.0 −=== ελλ , and the maximal value of the evolving chance function
610=T ; the crossing and mutating method is the same as in the first experiment.

Running the SPGEA program 10 times continuously, we can get the optimal point
every time which is given in Table 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Particle Gradient EA Based on Statistical Mechanics and Convergence Analysis 537

-20
0

20

-20

0

20

0

5

10

15

20

Fig. 2. The landscape of experiment 2

Table 2. The results of running SPGEA program 10 times in experiment 2

Min value f 1x 2x step

3.11543E-244 1.00000E+00 1.00000E+00 9976
1.06561E-241 1.00000E+00 1.00000E+00 9999
9.01807E-241 1.00000E+00 1.00000E+00 10000
7.33725E-243 1.00000E+00 1.00000E+00 9991
8.85133E-243 1.00000E+00 1.00000E+00 9984
1.75654E-243 1.00000E+00 1.00000E+00 9989
4.45935E-242 1.00000E+00 1.00000E+00 9999
5.99649E-242 1.00000E+00 1.00000E+00 9998

In the third experiment, a complex single-objective minimization problem (Ackley
function) is tested by using SPGEA, and the optimization problem is as follows:

ex
n

x
n

xxf
n

i
i

n

i
iS

++⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∑∑

==∈
20)2cos(

1
exp

1
2.0exp20),(min

11

2

21 π
x

where nixi ,2,1,768.32768.32 =≤≤− , 2=n . It is obvious that the optimal solu-

tion 0* =f is reached at the point 01 =x and 02 =x . From Fig.3 we can also see

that this function is non-convex and includes multi-local-optimal-points. So it is diffi-
cult to solve by using the traditional evolutionary algorithms. In fact, it is very easy to
fall into the local solutions, i.e., the premature phenomenon of the algorithms.

We set the parameters of SPGEA: population size 80=N .
20

21 10,2.0,8.0 −=== ελλ , and the maximal value of the evolving chance function

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

538 K. Li et al.

610=T ; the crossing and mutating method is same as in the first experiment. Run-
ning the SPGEA program 10 times continuously, in each iteration time we also can
easily get the optimal point that is given in Table 3.

-50

0

50

-50

0

50
0

10

20

30

40

50

Fig. 3. The landscape of experiment 3

Table 3. The results of running SPGEA program 10 times in experiment 3

Min value f 1x 2x step

1.54096e-009 1.23727e-016 2.74191e-016 913
1.54096e-009 -1.03297e-016 -7.22339e-017 975
1.54096e-009 -3.43706e-017 -8.11170e-017 855
1.54096e-009 2.35071e-016 1.00479e-016 777
1.54096e-009 2.75004e-017 2.20330e-017 871
1.54096e-009 -2.01528e-016 1.24738e-016 780
1.54096e-009 1.66060e-017 1.26505e-017 893
1.54096e-009 -7.42641e-019 7.21961e-019 822
1.54096e-009 -4.29195e-016 -1.45410e-016 938
1.54096e-009 -4.87201e-017 -1.01773e-017 902

Furthermore, we have also done many experiments to solve some well-konwn
complex single-objective optimization problems like the Six Hump Camel Back
Function, Axis-Parallel Hyperellipsoid Function, and Griewangk’s Function by using
SPGEA, and we have obtained very accurate optimal solutions, which are difficult to
solve by using the traditional evolutionary algorithms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Particle Gradient EA Based on Statistical Mechanics and Convergence Analysis 539

6 Convergent Analysis of SPGEA

The convergence, time efficiency, and precision of optimal solutions are very impor-
tant factors when optimization problems are solved by using evolutionary algorithms
[9-12], which provide a reliable indication to an efficient algorithm. In this section the
convergence of SPGEA is studied to illustrate the advantages of SPGEA according to
the theory of the Markov chain and other convergent theories related to EC [13-15].

Assume the optimization problem:

}|)(min{ Sxxf ∈ , (1)

where f is a function in the decision space S and 0)(, ≥∈∀ xx fS . S can be

either a finite set (e.g., composition optimization problems), or a set in the real space
nR (e.g., continuous optimization problems). Then we get four definitions as follows:

Definition 5: For the SPGEA optimization problem (1), suppose that random variable
}},,,1,0{::min{ * nZfFZtT t ==∈= −− represents the time the global optimal

point is found at the first time, if 1}{ =∞<TP and independent of the initial popula-

tion; then we say that the SPGEA algorithm can find the global optimal solutions of
optimization problems in probability 1 in the finite time [16].

Definition 6: For a non-negative random variable sequence }{ nX , ,,1,0=t ,

which is defined in the probability space),,(PAΩ .

(1) If 0>∀ε such that ∑
∞

=
>

0

)(
n

nXP ε is convergent, then }{ nX is called com-

pletely convergent to 0.

(2) If 0>∀ε such that ∑
∞

= ∞→
==

0

1}0)(lim:{
n

nn
XP ωω , then }{ nX is called conver-

gent to 0 in the probability 1.
(3) If 0>∀ε such that 0})({lim =>

∞→
εωnn

XP , then }{ nX is called convergent

to 0 in probability.

In the above three convergent forms, the completely convergent is the strongest,
which implies both the convergent in the probability 1 and the convergent in probabil-
ity, and the convergent in probability is the weakest [16].

Define *)(fFXdD ttt −== , where *f is the optimal solution of the optimization

problem, and)(tt fF x= is the best solution of the optimization problem in the t th

generation, and then set the convergence definition of SPGEA as follows:

Definition 7: We call solving optimization problem (1) the completely convergent
(the convergent in the probability 1 or the convergent in probability) to the global
optimal points of the problem, if the non-negative random sequence)0:(≥tDt

produced by this optimization problem is completely convergent (convergent in the
probability 1 or convergent in probability) to 0 [16].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

540 K. Li et al.

Definition 8: We call solving optimization problem (1) which adopts the elite reser-
vation strategy by using SPGEA the completely convergent (the convergent in the
probability 1 or the convergent in probability) to the global optimal point *f , if the

non-negative random sequence)0:(≥tDt produced by this optimization problem is

completely convergent (convergent in the probability 1 or convergent in probability)
to 0 [16].

According to the above definitions, we get the next convergence theories of
SPGEA.

Theorem 1: If the optimization problem (1) solved by using SPGEA satisfies the
following conditions:

(1) In every evolving iteration t , if xx ~≠ for all individuals x))((tP∈x in the

population)(tP and S∈∀x~ , then through crossover and mutation operation once,

the probability mutating x to x~ is more than or equal to)(tp , where)(tp is a con-

stant more than 0, and the probability is related to generation t .

(2) 0))(1(
1

=−∏
∞

=t

tp .

Then SPGEA can certainly find the global optimal solution of the optimization
problem in probability in finite generation times, that is,

1}{ =∞<TP , and it has nothing to do with the distribution of the iterating initial

population.

Proof: In the evolving process of tht generation, it needs to mutate to N individuals
of the population by using a mutation operator independently from condition (1); we
know that in tht generation of any evolving operation, through the mutation of the
mutating operator, any individual in population)(tP can mutate to any other individ-

ual in the search space S on the lower boundary probability)(tp . Therefore, in the

mutation process the probability which mutates any individual *arg f∉x to one of

the global optimal solutions is no less than)(tp , i.e. the probability which is the first

found global optimal point is at least)0)((>tp in the evolving process of t th genera-

tion. So, after the t generations, the probability)(tp that no global optimal point

found satisfies

)(tp ∏
=

−≤
t

i

tp
1

))(1(,

namely, 0)(lim =
∞→

tp
t

, and then we get

{}{ PTP ≥∞< find a global optimal point in t generations})(1 tp−= .

Setting ∞→t on both sides of the above equation, it reduce to 1}{ =∞<TP ; that

is, SPGEA can find global optimal solutions of the optimization problem in the prob-
ability 1 in the finite evolving times, and obviously, from the proof process we can

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Particle Gradient EA Based on Statistical Mechanics and Convergence Analysis 541

see that it has nothing to do with the selecting method of an initial population in this
theorem’s proof.

Theorem 2: If the optimization problem (1) solved by using SPGEA satisfies the
following conditions:

(1) In every evolving iteration t , if yx ≠ for all individuals x))((tP∈x in the

population)(tP and S∈∀y , then by crossover and mutation operation once, the

probability mutating x to y is more than or equal to)(tp , where)(tp is a constant

more than 0 and the probability is related to generation t .

(2) 0))(1(
1

=−∏
∞

=t

tp .

(3) Adopt the strategy of the elite reservation to evolve.

Then, SPGEA certainly converges to the optimal solution of the optimization prob-
lem in probability, and it has nothing to do with the selecting method of an initial
population.

If SPGEA satisfies the following additional condition:

(4) There exists a constant 0>p such that ptp ≥)(for all generation t , then

SPGEA is completely convergent.

Proof: Assume that the global optimal point of the optimization problem is first found
in the tht generation, because SPGEA is evolved according to the strategy of elite
reservation. This guarantees the first found optimal solution individual to be main-
tained ever to the last generation in the evolving. Hence we get

∏
=

−=>=>−=>
t

i
ttt ipDPfFPfFP

1

**))(1(}0{}0{}{ .

Setting ∞→t , it is
0}0{lim =>

∞→ tt
DP ; namely, SPGEA is convergent in probability.

If SPGEA satisfies condition (4), too, e.g., if we can find a constant 0>p such

that ptp ≥)(for all t , then

t

t

i

t

i
ttt

pp

ipDPfFPfFP

)1()1(

))(1(}0{}0{}{

1

1

**

−=−≤

−=>=>−=>

∏
∏

=

=

Because the Taylor series ∑
∞

=
−

0

)1(
n

tp is convergent, according to definitions 6 (1) and

7, we conclude that)0:(≥tDt is completely convergent to 0; accordingly, SPGEA is

completely convergent to 0 as well. From all the proof process we can see that the
convergence of SPGEA has nothing to do with the selection method of an initial
population.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

542 K. Li et al.

7 Conclusions

Through the above theoretical and experimental analysis of SPGEA, we conclude that
SPGEA has obviously more advantages than traditional EAs. Because SPGEA is
based on statistical mechanics theory according to the principle of gradient descend-
ing and the law of evolving chance ascending of particles, which simulate the princi-
ple of energy minimizing and law of entropy increasing in the phase space of particles
in statistical mechanics, it makes all the particles to have a chance to evolve, and
drives all the particles to cross and mutate to reproduce new individuals of the next
generation from the beginning to the end. Because of these reasons SPGEA can easily
and quickly search for the global optimal solutions and avoid premature phenomenon
of the algorithm. Meanwhile, convergent analysis of SPGEA has proved that it is
reliable, stable, and secure by using SPGEA to solve complex single-objective opti-
mization problems.

Acknowledgements

This work is supported by the National Natural Science Key Foundation of China
with the Grant No.60133010, the Research Project of Science and Technology of
Education Department of Jiangxi Province with the Grant No.Gan-Jiao-Ji-
Zi[2005]150, and the Key Laboratory of High-Performance Computing Technology
of Jiangxi Province with the Grand No.JXHC-2005-003.

References

1. Pan Zhengjun, Kang Lishan, Chen Yuping. Evolutionary Computation[M], Tsinghua Uni-
versity Press, 1998.

2. Lack D L. Daewin’s Finches[M]. Cambridge University Press, Cambridge, England, 1947.
3. Reichl L E. A Modern Course in Statistical Mechanics[M]. University of Texas Press,

Austin, Texas, 1980.
4. Radu Balescu. Statistical Dynamics[M]. Imperial College Press, London, 2000.
5. Li Yuanxiang, Zou Xiufen, Kang Lishan and Zbigniew Michalewicz, A New Dynamical

Evolution Algorithm Based on Statistical Mechanics [J], Computer Science & Technology
2003, Vol. 18, No.3.

6. Michaelwicz Z.. Genetic Algorithms + Data Structures = Evolution Programs[M].
Springer-Verlag, Berlin, Her-delberg, New York., 1996.

7. Mitchell M, Forrest S, Holland J H. The royal road for genetic algorithms: Fitness land-
scapes and GA perform-ance[A]. In Proc. The first European Conference on Artificial Life,
Varela F J, Bourgine P (eds.), MIT Press, Cambridge, Massachusetts, 1992, pp.245-254.

8. Zhijian Wu, Lishan Kang, Xiufen Zou. An Elite Subspace Evolutionary Algorithm for
Solving Function Optimization Problems [J], Computer Applications, Vol.23, No.2 13-15

9. Bäck T, Fogel D B, Michalewicz Z. Handbook of Evolutionary Computation. Oxford: Ox-
ford University Press, 1997.

10. Bäck T, Kok J N, DeGraaf J M, et al. Theory of Genetic Algorithms[J]. Bulletin of the
EATCS, 1997, 63:161-192.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Particle Gradient EA Based on Statistical Mechanics and Convergence Analysis 543

11. Rudolph, G. Finite Markov Chain Results in Evolutionary Computation: A Tour
d’Horizon. Fundamenta in Informaticae[J], 1998, 35(1-4):67-89.

12. Eiben, A E, Rudolph G. Theory of Evolutionary Algorithms: A Bird Eye View[J]. Theo-
retical Computer Science, 1999,229(1/2):3-9.

13. Jun Qin, Lishan Kang. A Convergence Analysis Framework for Multi-objective Optimiza-
tion Evolutionary Algorithm[J]. Computer Application and Research, 2005, No.2, pp: 68-70.

14. Zhou Yu-Ren, Yue Xishun, Zhou Ji-Xiang. The Convergence Rate and Eff iciency of Evo-
lutionary Algorithms[J]. Chinese Journal of Computer, Vol.27 No.11, 2004, pp: 1485-1491.

15. Günter Rudolph. Local Convergence Rates of Simple Evolutionary Algorithms with
Cauchy Mutations[J]. IEEE Transaction on Evolutionary Computation, Vol.1, No.4, 1997,
pp: 249-258.

16. Minqiang Li, Jisong Kou, Dan Lin, Shuquan Li. Basic Theory and Applications on
Genetic Algorithm[M]. Chinese Science Press, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 544 – 555, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Computational Framework for Cardiac Modeling
Based on Distributed Computing and Web Applications

D.M.S. Martins1,2, F.O. Campos1, L.N. Ciuffo1, R.S. Oliveira1, R.M. Amorim1,
V.F. Vieira1, N.F.F. Ebecken2, C.B. Barbosa1, and R. Weber dos Santos1

1 Department of Computer Science , Universidade Federal de Juiz de Fora,
Juiz de Fora, Minas Gerais, Brazil

rodrigo.weber@ufjf.edu.br
2 Department of Computer Science , Universidade Federal do Rio de Janeiro,

Rio de Janeiro, Rio de Janeiro, Brazil
nelson@ntt.ufrj.br

Abstract. Cardiac modeling is here to stay. Computer models are being used in
a variety of ways and support the tests of drugs, the development of new
medical devices and non-invasive diagnostic techniques. Computer models
have become valuable tools for the study and comprehension of the complex
phenomena of cardiac electrophysiology. However, the complexity and the
multidisciplinary nature of cardiac models still restrict its use to a few
specialized research centers in the world. We propose a computational
framework that provides support for cardiac electrophysiology modeling. This
framework integrates different computer tools and allows one to bypass many
complex steps during the development and use of cardiac models. The
implementation of cardiac cell models is automatically provided by a tool that
translates models described in CellML language to executable code that allows
one to manipulate and solve the models numerically. The automatically
generated cell models are integrated in an efficient 2-dimensional parallel
cardiac simulator. The set up and use of the simulator is supported by a user-
friendly graphical interface that offers the tasks of simulation configuration,
parallel execution in a pool of connected computer clusters, storage of results
and basic visualization. All these tools are being integrated in a Web portal that
is connected to a pool of clusters. The Web portal allows one to develop and
simulate cardiac models efficiently via this user-friendly integrated
environment. As a result, the complex techniques and the know-how behind
cardiac modeling are all taken care of by the web distributed applications.

1 Introduction

The phenomenon of electric propagation in the heart comprises a set of complex non-
linear biophysical processes. Its multi-scale nature spans from nanometre processes
such as ionic movements and protein dynamic conformation, to centimetre phenomena
such as whole heart structure and contraction. Computer models [1,2] have become
valuable tools for the study and comprehension of such complex phenomena, as they

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Computational Framework for Cardiac Modeling 545

allow different information acquired from different physical scales and experiments to
be combined in order to generate a better picture of the whole system functionality.

Not surprisingly, the high complexity of the biophysical processes translates into
complex mathematical models. The modern cardiac electrophysiology models are
described by non-linear systems of partial differential equations with millions of
variables and hundreds of parameters. Whereas the setup process of the simulations is
time consuming and error prone, the numerical resolution demands high performance
computing environments. In spite of the difficulties, the benefits and applications of
these complex models justify their use. Computer models have been used during the
tests of drugs [3], development of new medical devices [4], and of new techniques of
non-invasive diagnosis [5] for several heart diseases.

We propose a computational framework that provides support for cardiac
electrophysiology modelling. A web portal architecture which combines server and
applications is presented in Figure 1.

Fig. 1. The high level architecture

Through a public website (1), a user can select a biological model previously
stored in the system (2), or submit its own model described in CellML meta-language
(3), which has recently emerged as an international standard for the description of cell
models [6]. Once established the biological model to be used, a compiler for CellML
[6] will generate parallel C code based on the Message Passing Interface library (MPI
[7]) (4). The result of the compilation is used as input by the simulator software which
we have previously developed [8]. At the same time, the user can type the parameters
in an electronic form to configure the initial states and conditions for the simulation
(5). These parameters are used as simulator's data input. The simulations run on a
pool of clusters and generate binary files in the end of the process (6) which can be
downloaded and visualized (Figure 2).

The tools described above (XML based code generator, parallel cardiac simulators,
graphical user interface environments and the web portal) provide a user-friendly
environment for cardiac simulation. The complex techniques and know-how that are
behind cardiac simulations, such as parallel computing, advanced numerical methods,
visualization techniques and even computer code programming, are all hidden behind
the integrated and easy-to-use web based framework.

The next sections describe the details of each of these components.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

546 D.M.S. Martins et al.

Fig. 2. Visualization of simulated results showing an electrical wave that propagates through
the ventricles

2 AGOS Tool

There are two basic components in mathematical models of cardiac electric
propagation: the cell model and the tissue model. The first component models the
flow of ions across the cell membrane as first proposed by Hodgkin and Huxley [2] in
their work on nerve cells. This component typically comprises of a system of
Ordinary Differential Equations (ODEs). The Second component is an electrical
model for the tissue that describes how currents from one region of a cell membrane
interact with the neighborhood. This component is represented by a Partial
Differential Equation (PDE). In this section, we present an on-line tool, the AGOS
tool, aimed to help researchers in the development and solution of cell models or any
other scientific model based on systems of ODEs. Special computational tools for
handling the second component (the PDEs) are covered in the next sections.

AGOS stands for API (Application Program Interface) Generator for ODE
Solution. Through its use one can submit a meta-model file to automatically generate
a C++ API for solving first-order initial-value ODE systems.

The input data is a CellML [6] or a Content MathML [9] file, i.e., XML-based
languages. CellML is an open-source mark-up language used for defining
mathematical and electrophysiological models of cellular function. MathML is a W3C
standard for describing mathematical notation. A CellML file includes Content
MathML to provide both a human- and computer-readable representation of
mathematical relationships of biological components [10]. Therefore, the AGOS tool
allows the submission of a complete CellML file or just its MathML subset.

Once submitted, the XML file is translated to an API. The generated API is an
object oriented C++ code. Functions are created for system initialization (initialization
of parameters like the number of iterations, discretization interval and initial values of
variables), numerical solution (via Explicit Euler scheme) and results storage. In
addition, the API offers public reflexive functions used, for example, to restore the
number of variables and their names. These reflexive functions allow the automatic
creation of model-specific interfaces. This automatic generated interface enables one
to set any model initial condition or parameter, displaying their actual names, as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Computational Framework for Cardiac Modeling 547

documented in the CellML or MathML input file. The AGOS tool is available at
(www.fisiocomp.ufjf.br), from where it is possible to download the API source-code.
AGOS can also be used online via a web application (see section 4), which uses the
generated API to solve ODE systems and visualize their results.

In the next section, we present how the XML code is translated to C++ code.

2.1 The Translator

The AGOS application was implemented in C++ and makes use of basic computer
structure and algorithms in order to capture the variables, parameters and equations, i.e.
the ODE conceptual elements, that are embedded in a MathML file and translate these
to executable C++ code, i.e. the AGOS API. The translator tool comprises of three basic
components: a Preprocessor for XML format, an Extractor of ODE conceptual
elements, and a Code Generator. The components are organized as a pipeline. The
Preprocessor reads an XML-based file (MathML or CellML) and extracts the content
into an array of tree data structures. Every tree of this array is processed by the ODE
extractor that identifies the ODE elements and stores them in appropriate data formats.
At the end of the pipeline, the Code Generator combines the extracted information to a
code template and generates the AGOS API. The adopted strategy for code generation is
largely based on code templates. The syntactical structure of code templates is described
using formal grammar notation. Details related to the AGOS API and to the translator
are documented in the AGOS manuals that can be found at [11].

The MathML description language uses a prefix format, i.e., the operators precedes
the operands. The translator goal is achieved via the creation of a structure that
supports easy identification of the operands and operators. AGOS converts the XML
embedded equations in a tree-like structure. We briefly illustrate the translator tasks
via a simple example. Consider the following equation:

n at += 0.6 (1)

The corresponding Content MathML code and the generated tree are presented in
Figure 3.

<math xmlns="http://www.w3.org/1998/Math/MathML">

 <apply><eq/>

 <ci> </ci>

 <apply><plus />

 <cn> </cn>

 <apply><root/>

 <degree><ci> </ci></degree>

 <ci> </ci>

 </apply>

 </apply>

 </apply>

</math>

t

6.0

n

a

Fig. 3. Content MathML code and the extracted tree structure

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

548 D.M.S. Martins et al.

The tree nodes contain information about each operand and operator, besides the
equation type (if it is a differential equation or an algebraic one). The translator uses
this information to include the mathematical code in the right place in the API. Using
a search in depth, the following code is generated: “t = (6.0 + pow(a, 1.0/n));”.

3 The Parallel Cardiac Simulator

The set of Bidomain equations [12] is currently one of the most complete
mathematical models to simulate the electrical activity in cardiac tissue:

() ⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂=∇⋅∇),(nf

t
Cmii φφχφσ (2)

() ⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂−=∇⋅∇),(nf

t
Cmee φφχφσ (3)

),(ng
t

n φ=
∂
∂

 (4)

where φe is the extracellular potential, φi the intracellular potential and φ is the
transmembrane potential. Eq. 4 is a system of non-linear equations that accounts for
the dynamics of several ionic species and channels (proteins that cross cell
membrane) and their relation to the transmembrane potential. The system of Eq. 4
typically accounts for over 20 variables, such as ionic concentrations, protein channel
resistivities and other cellular features. σi and σe are the intracellular and extracellular
conductivity tensors, i.e. 3x3 symmetric matrices that vary in space and describe the
anisotropy of the cardiac tissue. Cm and χ are the cell membrane capacitance and the
surface-to-volume ratio, respectively.

Unfortunately, a solution of this large nonlinear system of partial differential
equations (PDEs) is computationally expensive. One way to solve (2)–(4) at every
time step is via the operator splitting technique [13]-[15]. The numerical solution
reduces to a modular three step scheme which involves the solutions of a parabolic
PDE, an elliptic PDE and a nonlinear system of ordinary differential equations
(ODEs) at each time step. Rewriting equations (2)–(4) using the operator splitting
technique (see [16] for more details) we get the following numerical scheme:

() () ;12/1 k
ei

k
i

k tAtA ϕϕϕ Δ+Δ+=+ (5)

()
();,

/,
2/11

2/12/11

kkkk

kkkk

tg

Cmtf

ξϕξξ
ξϕϕϕ

++

+++

Δ+=

Δ−=
 (6)

()() ;11 ++ −=+ k
i

k
eei AAA ϕϕ (7)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Computational Framework for Cardiac Modeling 549

where ϕk, ϕe
k and ξk discretizes φ, φe and η at time k Δt; Ai and Ae are the

discretizations for ∇.σi∇ and ∇.σe∇, respectively. Spatial discretization was done via
the Finite Element Method using a uniform mesh of squares and bilinear polynomials
as previously described in [16].

Steps (5), (6) and (7) are solved as independent systems. Nevertheless, (5), (6) and (7)
are still computationally expensive. One way of reducing the time spent on solving
these equations is via parallel computing.

3.1 The 2-Dimensional Parallel Cardiac Simulator

A solution for the Bidomain model was implemented in parallel using the MPI and
PETSc [17] libraries. PETSc provides a suite of data structures and routines for the
scalable solution of applications modeled by PDEs. The nonlinear ODE system was
solved via the explicit forward-Euler scheme (see section 3.2 for more details). The
PDEs are the most computationally expensive portion of the model and thus need a
more robust algorithm. The Conjugate Gradient (CG) method combined with an
appropriate preconditioner has become a standard choice for an iterative solver and
was applied for the solution of the elliptic and parabolic PDEs.

The CG was parallelized via linear domain decomposition. The spatial rectangular
domain was decomposed into nproc nonoverlapping domains of equal size, where
nproc was the number of processors involved in the simulation. For the 2-D problem,
the slice was made in the y direction.

3.2 Integration with AGOS

As described in Section 2, one can select or submit a biological model through a
public web site. This model is compiled into a scalable (parallel) shared library, which
can be used by the simulator.

The shared library is dynamic, thus the Simulator does not need to be compiled for
every new cell model. Therefore, when it is necessary to solve the nonlinear system of
ODEs, i.e. during the step described by equation (6), the Simulator makes a call to the
functions of the automatic generated API library on run time, the functions are loaded
to memory and executed.

 The parallelization is easily obtained: each processor is responsible for a
rectangular domain that has nx . ny /nproc ODE systems associated with. These are
independent systems. The solution of these systems does not involve communication.

3.3 Simulator Graphic User Interface (GUI)

In order to provide an easy way for setting up simulations, a Java GUI was developed
and it is here briefly presented.

The GUI allows the creation, set up, execution and visualization of simulations.
First, one must create a project and set several parameters for simulating the spread of
cardiac electric activity. Then, the parallel simulation can be started and its results
will be stored in a folder that has the same name of the project. Visualization of the
results can also be initiated via the GUI. Currently the visualization is done via an
interface to FLOUNDER, a free software developed at the Calgary University [18].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

550 D.M.S. Martins et al.

Once the project is created, it is possible to select which variables should be saved
for later analyzes (intra-, transmembrane, extracellular potentials, etc.). Parameters as
time and space discretization, size of the bidimensional portion of tissue and number
of iterations can be set. Via the selection of input files one defines the geometry of the
model, cardiac fiber and sheet orientations. Stimuli type, location and intensity can
also be configured. Figure 4 shows an example of a simulation set up using the
simulator GUI.

Fig. 4. Simulation set up using the GUI

3.4 The Cluster

The set up of a parallel environment based on commodity network and desktop computers
can be a complex task. In order to set up a Linux cluster for scientific computing, several
software packages are necessary for tasks such as installation, configuration and
management. Fortunately, there are some popular kits that support these tasks.

The cluster used in this work [11], is based on NAPCI Rocks architecture and it is
made up of eight nodes, Athlon 64 3000+ with 2 GB of RAM, connected by a fast
Gigabit Ethernet switching device. Rocks [19] is a collection of open source software
integrated to the Red Hat Linux which aims at building high performance clusters.

For monitoring the cluster status, Rocks provides a tool named Ganglia, which is a
scalable distributed monitoring system for high-performance computing systems.
Ganglia allows the cluster administrator to visualize historical monitoring information
for cluster, host, and metric trends over different time granularities ranging from

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Computational Framework for Cardiac Modeling 551

minutes to years. It generates graphics that present the historical trends of metrics
versus time. Typical and useful graphics include information on network bandwidth
utilization and CPU load for the whole cluster as well as for each individual node. All
the monitoring in Ganglia can be done via a web browser.

In addition, Rocks is integrated to Sun Grid Engine (SGE). SGE schedules the jobs
submitted to the cluster to the most appropriate nodes, based on management policies
previously defined by the cluster administrator. SGE is integrated with Message
Passing Interface and Parallel Virtual Machine and allows users to run parallel jobs
based on these libraries. Any number of different parallel environment interfaces can
be configured concurrently. Sun Grid Engine also provides dynamic scheduling and
job migration via checkpoints, i.e., the procedure of storing the state of an active
process. A graphical interface called QMON provides for easy control and
configuration of all SGE capabilities.

3.5 Simulation Example

In this section we present an example of the use of the environment discussed in the
preceding sections. We simulate the cardiac electric propagation on a 2-dimensional
cut of the left ventricle obtained during the cardiac systole phase by the resonance
magnetic technique of a healthful person. After segmenting the resonance image, a
two-dimensional mesh of 769 X 769 points is generated, that models the cardiac
tissue, blood and torso. All bidomain parameters were taken from [20]. The cardiac
tissue conductivity values have been set to: σil = 3 mS/cm, σit = 0.31 mS/cm, σel = 2
mS/cm and σet = 1.35 mS/cm, where i(e) denotes intracellular (extracellular), l(t) and
stands for longitudinal (transversal) to the fiber orientation. The capacitance per unit
area and the surface area-to-volume ratio are set to 1 mF/cm2 and 2000 cm-1,
respectively. The interface between cardiac tissue and bath is modeled as described in
[21]. All the other boundaries are assumed to be electrically isolated. The spatial and
temporal discretization steps of the numerical model are set to 150 μm and 10 μs,
respectively. The simulation was carried out for 20 ms after a single current stimulus
was introduced at a selected endocardial site.

For simulating the action potential of cardiac cells we used the human ventricular
model of ten Tusscher [22]. The explicit Euler implementation described by equation
(6) was generated automatically by AGOS, based on a CellMl model description
downloaded from the CellML repository [6]. The linear system associated to the
parabolic part of the bidomain formulation, see equation (5), is solved with the
Conugate Gradient (CG) method and ILU (Incomplete LU factorization with zero fill-
in) preconditioner. The linear system associated to the elliptic part, equation (7),
dominates computation and is solved with CG and a parallel Algebraic Multigrid
preconditioner. In this work we adopted the parallel AMG code BoomerAMG [23]
with its Falgout-coarsening strategy.

Figure 5 shows the simulation result overlapped to the resonance image. The color-
coded image represents the transmembrane potential distribution for a certain time
instant.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

552 D.M.S. Martins et al.

Fig. 5. Simulated electrical wave propagation overlapped to the Resonance Image

The simulation was run using one, two, four and eight processors. As presented in
Figure 6, when running the simulation on eight processors the relative speedup
(execution time using 1 processor / execution time with n processors) is near 5. The
execution time drops from near 5 hours when running with 1 processor to less than 1
hour running with 8 processors. Linear speedups were not achieved. This is mainly
due to communication overhead and to the Multigrid Preconditioner adopted. The
direct method used in the coarsest grid of the preconditioner is not parallelized and
thus limits scalability. Nevertheless, the results indicate the importance and benefits
of cluster computing for cardiac electrophysiology modeling.

Execution Time and Speedup x Procs

0

1

2

3

4

5

6

1 2 4 8
Number of Processors (Procs)

E
xe

cu
ti

o
n

 T
im

e
(H

o
u

rs
)

an
d

S

p
ee

d
u

p
 (

re
la

ti
ve

)

Execution Time (Hours)

Relative Speedup

Fig. 6. Parallel speedup and execution time in hours

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Computational Framework for Cardiac Modeling 553

4 The Web Portal: Goals, Current Status and Future Work

The Web portal is under development and has three main goals:
1- To popularize the technology of cardiac simulation. The tools described above

(XML based code generator, parallel cardiac simulators and user interface
environments) are being combined in a single Web application which has access to a
pool of clusters. The web portal supports the development and simulation of cardiac
models efficiently via this user-friendly integrated environment. The complex
techniques and know-how that are behind cardiac simulations, such as parallel
computing, advanced numerical methods, visualization techniques and even computer
code programming, are all taken care by the integrated and easy-to-use web
application. Online tutorials [11] instruct the users on how to make efficient use of the
integrated environment.

2- To promote the share of the computational resources among different research
centers. The web application under development will allow users to execute their
simulations on a pool of clusters made of clusters residing on different research centers.
This will bring a parallel environment to those that do not have access to it as well as
increase the computational power of the participating centers. Currently, there are three
small clusters being integrated to the Web Portal (4-node cluster from Lanec-UFSJ
(Neuroscience Laboratory), 5-node cluster from Labma-UFRJ (Applied Mathematics
Laboratory), and the 8-node cluster from FISIOCOMP-UFJF (Computational
Physiology Laboratory). This integration will be done using the Sun Grid Engine.

Fig. 7. Web portal usage example

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

554 D.M.S. Martins et al.

3- To promote the development of cardiac modeling. The integration of the above
mentioned tools in a single web portal will speed up the development of new and
more realistic electro-physiological models of the heart and further integrate different
research centers, promoting international collaborations.

Currently the AGOS tool is fully operational and integrated to the Web Portal. After
registration, the user is granted a new account and is able to create, manage, execute and
store the results of simulation projects. Associated to each registered researcher there is
a folder in the server’s hard disk. This folder contains one subfolder for each created
project, with all the input and output files generated by the AGOS application. Those
files can be downloaded and visualized at anytime. In addition, the researcher may
modify the API parameters to generate new PDF and PS graphics. One of the portal
screenshots is shown in the Figure 7.

We are using JSP [24] and Struts framework [25] and some web pages also use
PHP [26] language. All data is being stored in a MySQL [27] database and the web-
site runs in an Apache Tomcat server [28]. The simulator GUI described in
section 3.3 is currently being integrated to the web portal. The easy-to-use
computational framework composed of AGOS, the parallel cardiac simulator and the
SGE grid computing tool, will efficiently support cardiac modeling in distributed
environments.

5 Conclusion

In this work we presented a computational framework that supports cardiac
electrophysiology modeling. The framework is made of different components and
technologies and aims on simplifying the development and use of cardiac models. The
combination of an XML based automatic code generator, parallel cardiac simulators,
graphical user interface environments and a web portal provides an user-friendly
environment for cardiac simulation. The complex techniques and know-how that are
behind cardiac modeling, such as parallel computing, advanced numerical methods,
visualization techniques and even computer code programming are all hidden behind
the integrated and easy-to-use web based framework.

Acknowledgements

This work was supported by the Brazilian Ministry of Science and Technology, CNPq
(process 506795/2004-7).

References

[1] HENRIQUEZ C. S. (1993): ‘Simulating the electrical behavior of cardiac tissue using the
bidomain model’, Crit Rev. Biomed. Eng, 21, 1-77

[2] HODGKIN A. L., and HUXLEY A. F. (1952): ‘A quantitative description of membrane
current and its application to conduction and excitation in nerve’, J. Physiol., 117, 500-544

[3] GIMA K., and RUDY Y. (2002): ‘Ionic current basis of electrocardiographic waveforms:
a model study’, Circ. Res., 90, 889-896

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 A Computational Framework for Cardiac Modeling 555

[4] SANTOS R. W. D., STEINHOFF U., HOFER E., SANCHEZ-QUINTANA D., and
KOCH H. (2003): ‘Modelling the electrical propagation in cardiac tissue using detailed
histological data’, Biomedizinische Technik. Biomedical Engineering, 48, 476-478

[5] SANTOS R. W. D., KOSCH O., STEINHOFF U., BAUER S., TRAHMS L., and KOCH
H. (2004): ‘MCG to ECG source differences: measurements and a 2D computer model
study’, Journal Of Electrocardiology, 37 Suppl

[6] CellML biology, math, data, knowledge., Internet site address: http://www.cellml.org/
[7] MPI (Message Passing Interface), Internet site address: http://www.mpi-forum.org/
[8] SANTOS R. W. D., PLANK G., BAUER S., and VIGMOND E. J. (2004): ‘Parallel

Multigrid Preconditioner for the Cardiac Bidomain Model’, IEEE Trans. Biomed. Eng.,
51(11), 1960-1968

[9] Mathematical Markup Language (MathML) Version 2.0 (Second Edition), Internet site
address: http://www.w3.org/TR/MathML2/

[10] LLOYD C. M., HALSTEAD M. D. B., and NIELSEN P. F. (2004): ‘CellML: its future,
present and past’, in Biophysics & Molecular Biology, 85, 433-450

[11] FISIOCOMP: Laboratory of Computational Physiology, internet site address: http://
www.fisiocomp.ufjf.br/

[12] SEPULVEDA N. G., ROTH B. J., and WIKSWO Jr. J. P. (1989): ‘Current injection into
a two-dimensional anistropic bidomain’, Biophysical J., 55, 987-999

[13] VIGMOND E., AGUEL F., and TRAYANOVA N. (2002): ‘Computational techniques
for solving the bidomain equations in three dimensions’, IEEE Trans. Biomed. Eng., 49,
1260-9

[14] SUNDNES J., LINES G., and TVEITO A. (2001): ‘Efficient solution of ordinary
differential equations modeling electrical activity in cardiac cells’, Math. Biosci., 172, no.
2, 55-72

[15] KEENER J., and BOGAR K. (1998): ‘A numerical method for the solution of the
bidomain equations in cardiac tissue’, Chaos, 8, no. 1, 234-241

[16] SANTOS R. W. D., PLANK G., BAUER S., and VIGMOND E. J. (2004):
‘Preconditioning techniques for the bidomain equations’. Lecture Notes In Computational
Science And Engineering, 40, 571-580

[17] PETSc: Portable, Extensible Toolkit for Scientific Computation, Internet site address:
http://www-unix.mcs.anl.gov/petsc/petsc-as/

[18] Calgary University, Internet site address: http://www.ucalgary.ca/
[19] NAPCI Rocks, Internet site address: http://www.rocksclusters.org/Rocks/
[20] MUZIKANT, A. L. and HENRIQUEZ, C. S. (1998): ‘Validation of three-dimensional

conduction models using experimental mapping: are we getting closer?’ Prog. Biophys.
Mol. Biol. 69:205-223

[21] KRASSOWSKA, W. and NEU, J. C. (1994): ‘Effective boundary conditions for syncytial
tissues.’ IEEE Trans. Biomed. Eng 41:143-150

[22] ten TUSSCHER, K. H. W. J., NOBLE D., NOBLE P. J., and PANFILOV A. V. (2004):
‘A model for human ventricular tissue’, J. Physiol., 286, 1573-1589

[23] HENSON V. E., and YANG U. M. (2000): ‘BoomerAMG: a Parallel Algebraic Multigrid
Solver and Preconditioner. ’ Technical Report UCRL-JC-139098, Lawrence Livermore
National Laboratory

[24] Sun Microsystems, Internet site address: http://java.sun.com/products/jsp/
[25] Apache Software Foundation, internet site address: http://struts.apache.org/
[26] The PHP Group, Internet site address: http://www.php.net/
[27] MySQL AB., Internet site address:http://www.mysql.com/
[28] The Apache Jakarta Project, Internet site address: http://jakarta.apache.org/tomcat/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Triangular Clique Based Multilevel Approaches

to Identify Protein Functional Modules�

S. Oliveira and S.C. Seok

Department of Computer Science, 14 MLH, University of Iowa,
Iowa City IA 52242, USA

{oliveira, sseok}@cs.uiowa.edu
Phone: (319)-335-0731, (319)-353-4851

Fax: (319)-335-3624

Abstract. Identifying functional modules is believed to reveal most
cellular processes. There have been many computational approaches to
investigate the underlying biological structures [1,4,9,13]. A spectral clus-
tering method plays a critical role identifying functional modules in a
yeast protein-protein network in [9]. One of major obstacles clustering
algorithms face and deal with is the limited information on how close two
proteins with or without interactions are. We present an unweighted-
graph version of a multilevel spectral algorithm which identifies more
protein complexes with less computational time [8]. Existing multilevel
approaches are hampered with no preliminary knowledge how many lev-
els should be used to expect the best or near best results. While existing
matching based multilevel algorithms try to merge pairs of nodes, we here
present a new multilevel algorithms which merges groups of three nodes
in triangular cliques. These new algorithms produce as good clustering
results as previously best known matching based coarsening algorithms.
Moreover, our algorithms use only one or two levels of coarsening, so we
can avoid a major weakness of matching based algorithms.

Topic: Computing in Biosciences, Data Processing, Numerical Methods.

1 Introduction

Most cellular processes are carried out by groups of proteins. Identifying func-
tional modules in protein-protein networks is considered as one of the most im-
portant and challenging research topics in computational systems biology. There
has been many recent computational approaches to disclose the underlying bio-
logical structures.[1,4,9,13]

Successful approaches to clustering functional modules include partition-based
algorithms [4,9]. Pothen et al. proposed a two-level architecture for a yeast pro-
teomic network [9] and Ding et al. introduced a partitioning algorithm on a bi-
partite model. Pothen et al. construct a smaller network from a protein-protein
interaction network by removing proteins which interact with too many or too
� This work was supported in part by NSF ITR grant DMS-0213305.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 556–565, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Triangular Clique Based Multilevel Approaches 557

few proteins. And then a spectral clustering method was applied to identify
functional modules in the protein-protein network in their research.

The biggest obstacle to identifying functional modules is that protein-protein
interaction networks are unweighted or uniformly weighted. Unweighted graphs
are considered to be harder to partition than weighted graphs because un-
weighted graphs provide only limited information on the strength of connection
between two vertices. Multilevel (ML) algorithms have been introduced to iden-
tify more functional modules based on matching algorithms in PPI networks
[8]. But these algorithms are hampered by two weaknesses. First, it is hard to
find the optimal number of levels. Second, most matching based algorithms use
random algorithms, so the clustering results vary from an experiment to another.

Our Triangular Clique (TC) based multilevel algorithm was inspired by Spirin
et al’s approach to investigate the large-scale structure of PPI networks [12].
They used the Clique idea to identify highly connected clusters of proteins in
protein-protein interaction networks. They not only enumerated all cliques of
size 3 and larger (complete subgraphs) but also partially complete subgraphs
with high quality.

Our algorithm use only triangular cliques (cliques of size 3). These are dif-
ferent from matching based ML algorithms which pick pairs of nodes based on
edge or node related information to merge, TC based algorithms try to merge
highly connected triples of nodes. We present four different kinds of TC based
algorithms according to the decision on how to deal with two TCs which share
one or two nodes. These algorithms are compared and analyzed with the com-
putational results.

We show some TC based algorithms identify as good as or better functional
modules with one or two levels of coarsening than the best matching based ML
algorithm we found in [8].

2 Features of Interaction Networks and Two-Level
Approach

Graph theory is commonly used as a method for analyzing protein-protein in-
teraction (PPI) networks in Computational Biology. Each vertex represents a
protein, and edges correspond to experimentally identified PPIs. Proteomic net-
works have two important features [2]. One is that the degree distribution func-
tion P (k) follows a power law (and so is considered a scale-free network). This
means that, most vertices have low degrees, called low-shell proteins, and a few
are highly connected, called hub proteins. The other feature is the small world
property which is also known as six degrees of separation. This means the diam-
eter of the graph is small compared with the number of nodes.

A two level approach was proposed by Pothen et al. [9] to identify functional
modules in a proteomic network in yeast. The main idea is derived from the k-
cores concept which was originally suggested as a tool to simplify complex graph
structures by Seidman in 1983 [10]. If we repeatedly remove vertices of degree
less than k from a graph until there are no longer any such vertices, the result

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

558 S. Oliveira and S.C. Seok

is the k-core of the original graph. The vertices removed are called the low-shell
vertices. The two-level approach pays attention to three facts in protein-protein
interaction networks:

– The hub proteins have interactions with many other proteins, so it is hard to
limit them to only one cluster and the computational complexity increases
when they are included.

– There are many low-shell proteins, which increases the size of network. These
nodes are easy to cluster when the nodes they are connected to are clustered
first.

– Proteomic networks are mostly comprised of one big component and several
small components.

So, disregarding hub proteins and low-shell proteins, and confining attention to
the biggest component of proteomic networks leaves us to focus on the nodes
which are most meaningful to cluster. We keep track of the path connecting the
low-shell proteins to the others. After the clusters are created we can then add
the low-shell back to the appropriate cluster.

3 Background on Multilevel Approaches and Clustering
Algorithms

Let G = (V, E) be a graph with vertex set V and set of undirected edges E.
One of the most commonly used data structures for graphs are matrices. Matrix
representations are very useful to store weights for edges and vertices. We can
also use a lot of well-known computational techniques from Linear Algebra. In
our matrix representations S = (sij), diagonal entries sii store the weights of
vertices and off-diagonal entries sij represent edge weights. Our ML algorithms
use this matrix representation.

3.1 Multilevel Spectral Clustering

The basic concept of “Multilevel clustering” algorithms is that when we have
a large graph G = (V, E) to partition, we construct a smaller graph whose
vertices are groups of vertices from G. We can apply a clustering method to this
smaller graph, and transfer the partition to the original graph. This idea is very
useful because smaller matrices or graphs require much less time to cluster. The
process of constructing the smaller matrix is called coarsening, and the process
of transferring the partition is called decoarsening.

Coarsening and decoarsening steps are implemented by multiplying a graph
matrix S by a special coarsening matrix C. Each entry of C is either 0 or 1. We
set cij = 1 if node i of the fine graph belongs to node j of the coarsened graph.
A series of matrices S0, S1, · · · , Sl are recursively constructed using C1, · · · , Cl in
the form of Si = C′

i ∗Si−1 ∗Ci with i = 1, · · · , l. Note that C′ is the transpose of
C (i.e. cij = cji) . A partitioning algorithm is applied to matrix Sl and we will
have an initial partition Cut in the coarsest level.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Triangular Clique Based Multilevel Approaches 559

Partitioning is done by using a recursive spectral bipartitioning (divisive
partitioning). Recursive bipartitioning algorithms repeatedly performs two main
steps. One is selecting a cluster to split, and the other is applying a two-way
clustering algorithm.

The best known spectral clustering algorithms is the MinMaxCut algorithm
[5]. Two-way MinMaxCut clustering algorithm aims to minimize

JMMC(A, B) =
s(A, B)
s(A, A)

+
s(A, B)
s(B, B)

=
s(A, Ā)
s(A, A)

+
s(B, B̄)
s(B, B)

, (1)

where s(A, B) =
∑

i∈A,j∈B sij .
In [5], a continuous approximation to this problem has the solution which is

the eigenvector q2 associated with the second smallest eigenvalue of the system
(D −S)q = λDq, where D = diag(d1, d2, · · · , dn) and di =

∑
j sij . The partition

(A, B) is calculated by finding index opt such that the corresponding objective
function gets optimum value with the partition, A = {q2(i) | q2(i) < q2(opt)}
and B = {q2(i) | q2(i) ≥ q2(opt)}.

The optimum value of two-way MinMaxCut is called the cohesion of the clus-
ter and can be an indicator to show how closely vertices of the current cluster
are related [5]. This value can be used for the cluster selection algorithm. Di-
visive algorithms recursively choose a cluster which has the least cohesion for
partitioning until we have the predefined number of clusters or until all current
clusters satisfy a certain condition. On level i we have a partition (Aj) of the
vertices of Gi. To represent the partition, we use a vector Cuti on level i where
(Cuti)k = j if k ∈ Aj .

Decoarsening is how we get back to the original graph. The partition from
the coarsest level is mapped into finer levels by using a proper coarsening matrix
Cuti = C′

i · Cuti−1 where i is the level number of the coarser level. Then a
Kernighan-Lin (KL) type refinement algorithm is applied to improve the quality
at each level [6]. KL starts with an initial partition; it iteratively searches for
nodes from each cluster of the graph if moving a node to one of the other clusters
leads to a better partition. For each node, there may be more than one cluster to
give smaller objective function values than the current cut. So the node moves to
the cluster that gives the biggest improvement. The iteration terminates when
it does not find any node to improve the partition.

3.2 Matching Based Coarsening Algorithms

A matching in a graph is a set of edges in which no two of them are incident on
the same node. We introduced a heuristic matching algorithm which works very
well on weighted graphs in [7], called Sorted Matching (SM). SM was used earlier
by us to improve clustering results for groups of documents, which compose
weighted graphs. In SM, nodes are merged in order of decreasing edge weight.

The simplest matching for unweighted graphs is random matching. One node
is randomly visited and one of unmatched node is randomly chosen to be merged
with the node (RVRM). A drawback is that the nodes with low degrees have

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

560 S. Oliveira and S.C. Seok

higher chance to be left unmerged than high degree nodes. In order to avoid this
problem we can pick the lowest degree node among unmerged nodes and choose
one of the unmerged nodes randomly to merge (LVRM). Thus this algorithm
tends to merge more nodes than RVRM.

Our matching algorithm for unweighted graphs introduced in [8] goes as follows:
we define the weights of edges as follows. The edge weights are all 1’s to start with,
but become the sum of the number of edges combined after a matching step. A
node weight is defined as the total number of nodes merged into it.

In the PPI network, at first we have equal edge weights. We perform the first
level of coarsening by combining nodes with each other, as long as they are not
matched. The results are similar for any order we pick up for this step. After
this matching we will have groups of edges which share the same weight (the
maximum resulting edge weight will be 4 for a clique with 4 nodes/vertices).
We then give the higher priority to the edge with lower combined node weights,
i.e. we take the edge with maximum 1/w(ni) + 1/w(nj) as a tie-break rule,
where w(ni) and w(nj) are the node weights, that is, the number of nodes, of
supernodes ni and nj . We call this matching scheme Heavy-Edge-Small-Node
(HESN). HESN was introduced and shown to outperform the other matching
based algorithms in [8].

4 Coarsening with Triangular Cliques

Matching based coarsening algorithms merge groups of at most two nodes which
have an edge between them. These algorithm have worked well especially on
weighted graphs because all edges have different weights. These weights play a
key role for picking pairs of nodes to merge. Meanwhile unweighted graphs do
not provide this information. The ML algorithm with HESN works well on the
unweighted graphs even though HESN is a matching based coarsening. However,
in general, matching based ML algorithms have two main weaknesses. First, it
is hard to find the optimal number of levels which generates the best cluster-
ing. Second, most matching based algorithms has a random component, so the
clustering results vary from an experiment to another.

A clique in an undirected graph G = (V, E) is a subset V ′ ⊆ V , where each
pair of vertices is connected by an edge. The problem of finding the maximal size
of a clique for a given graph is an NP-complete problem [11]. However, finding
all cliques comprised of three vertices takes O(|E|2/|V |) time. We pay attention
to that, first, if both proteins p1 and p2 interact with the protein p3, p1 and
p2 should interact and second, when three proteins p1, p2, p3 forms a triangular
clique (TC), the chance all three proteins are clustered in the same functional
module is high. We show the quality of triangular cliques in section 5. These
three nodes p1, p2, p3 in a graph compose a triangular clique.

When we use TCs to form sets of vertices to be merged, we have to make two
decisions. The first is because many TCs shares one or two nodes with others.
Overlapping pairs of TCs fall into different cases: sharing one or two common ver-
tices. How do we merge TCs for each case? We consider two aspects when dealing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Triangular Clique Based Multilevel Approaches 561

with two TCs sharing nodes. One is a criterion to decide to merge two TCs. The
criterion we use in this paper is the density of the subgraph after merging two TCs.
When two TCs are decided to be merged, no other consideration is necessary. How-
ever, when two TCs sharing one or two nodes are not merged, a decision should be
made regarding unmerged nodes. That is, we have to decide that if we leave them
for possible merging with other TCs or group them in a separate supernodes. The
graph at the upper-left of Figure 1 has four TCs, from TC1 through TC4. TC1
and TC2 share two common nodes and TC3 and TC4 share one common node.
We present four schemes according to the above two aspects. One way is to merge
all nodes in TCs which share one or two nodes into one supernode, let us call this
method TC ALL. In this case, any group of TCs which share one or more vertices
is merged into a supernode. Another simple way is to merge one of two TCs for
both cases and leave other vertices unmerged, let us call this TC ONLY. When
we assume that TC1 and TC3 are chosen over TC2 and TC4 and merged into
two separate supernodes by TC ONLY, two nodes of TC4 and one node of TC2
are left unmerged. We consider two variants of TC ONLY according to how to
deal with these three unmerged nodes. The one unmerged node of TC2 forms an
edge with the supernode after coarsening and looks reasonable to be grouped in
the same cluster with the supernode made of TC1. So we devise a new algorithm,
TC ONE, which is basically the same as TC ONLY but merging the left out node
of TC2 and TC1 into a supernode. Similarly, the two unmerged nodes of TC4 form
a TC with the supernode created. The two unmerged nodes have high chance to
be merged with newly created supernode into a supernode if we have additional
levels of coarsening. If we do not want to merge them with the supernode, we can
have all three nodes of TC3 and two nodes of TC4 form two separate supernodes.
Let us call this algorithm TC TWO. In this case, the one unmerged node of TC2
by TC ONLY is still left unmerged as shown in Figure 1.

Second problem we face is whether or not we keep creating more levels. If
we use more than one level then the question is how many levels to create.
In this paper we focus on using the same algorithm to create more levels. The
performance of these four algorithms is presented and compared with a matching
based coarsening algorithm, HESN, in the following section.

5 Model Networks and Computational Experiments

The budding yeast, Saccharomyces cerevisiae, is considered the simplest and so is
the most investigated organism. Pothen’s two-level architecture is applied to the
CORE dataset of DIP (Database of Interacting Proteins, dip.doe-mbi.ucla.edu),
where the pairs of interacting proteins identified were validated according to the
criteria described in Deane et al. [3]. The network has 2610 proteins and 6236
interactions. Their idea is that removing high degree proteins (hub proteins)
and low degree proteins (low-shell proteins) from the network before clustering
leads to a better partitioning and then the removed nodes can be added to the
partitioning. The residual network after removing hub proteins and low shell
proteins has 499 proteins and 1229 interactions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

562 S. Oliveira and S.C. Seok

TC1
TC2

TC3

TC4

TC _ALL

TC _TWO

TC _ONETC _ONLY

Fig. 1. Four different TC based coarsening algorithms. Each circle stands for a node
and a triangle represents a supernode after coarsening.

Instead of using the small network (CORE dataset), we use the DIP network
which has 4931 nodes and 17471 edges to validate our ML algorithms. Con-
structing a residual network starts with removing nodes that have degree 20 or
more from the original network. Then low-shell proteins whose degree is 3 or less
are pruned from the biggest component. The residual network has 1078 nodes
and 2778 edges.

After our ML spectral algorithm is applied to this residual network, the clus-
tering results are compared with the MIPS (mips.gsf.de) dataset as we did in
[8]. Note that the residual network and MIPS dataset share 800 proteins. So the
maximum number of correctly clustered nodes is 800 for any experiment.

Now we present various computational results to investigate the properties of
TC based ML algorithms. Table 1 shows the number of nodes, the number of TCs,
and the number of correctly grouped nodes as the number of levels increases. The
sum of the maximum number of proteins which belong to the same functional
module in each supernode is what we use as the number of correctly grouped
proteins. Notice that, as the number of levels increases, the number of correctly
grouped proteins should not increase. The original number of proteins in the resid-
ual network is 1078. As expected, TC ALL collapses the largest number of nodes
at each level of coarsening (see the first entries in row TC ALL). But the quality
of grouping worsens pretty fast (see the third entries in row TC ALL). So with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Triangular Clique Based Multilevel Approaches 563

TC ALL as the number of level increases the size of network shrinks very fast
and the quality of coarsening is becoming very bad. Meanwhile, TC TWO merges
the least after the first level, 819 proteins. TC ONLY merges more nodes than
TC TWO at the beginning but the least after all. Even though TC ONLY merges
the least nodes after all, the quality of grouping remains good. TC ONE merges
the most nodes except when compared to TC ALL and the quality of grouping
also decreases faster than TC ONLY and TC TWO.

There are 1195 TCs found in the original graph. The number of TCs decreases
at the first level to as few as 145 for TC ONE or as many as 580 for TC TWO.
And then the number of TCs does not change much for the first a few levels
except TC ALL for which the number of TCs significantly continues to decrease.

Table 1. The comparison of four different TC based coarsening algorithms. Note that
xx/yy/zz means xx nodes, yy TCs, and zz correctly grouped nodes.

level 1 2 3 4 5

HESN 601 333 182 102 56
TC ALL 513/272/586 303/198/265 89/39/91 35/4/47
TC ONE 662/145/733 550/145/647 501/342/544 468/333/460 438/316/405
TC TWO 819/580/759 686/261/719 561/147/679 533/133/650 517/140/610
TC ONLY 770/273/754 630/168/693 578/214/624 554/308/567 540/334/523

Finally, we see the clustering results when the ML spectral clustering algo-
rithm is actually applied with the coarsening algorithms. Tables 2 shows the
number of correctly clustered proteins with four different TC based coarsening
algorithms when 1 up to 5 levels are used to form 40, 60, and 80 clusters. These
results are compared with the HESN matching [8] based ML algorithm. Some
algorithms, like HESN and TC ALL, do not have big enough networks to form
particular number of clusters after particular levels of coarsening. For example,
there are only 56 nodes after three levels of coaresening with HESN, so we do not
try to construct 60 and 80 clusters. First row has the results with HESN which
is considered to work best among the matching based algorithms in [8]. With-
out any ML algorithm 201, 234, and 286 proteins are reported to be correctly
clustered to form 40, 60, and 80 clusters respectively.

The most remarkable point from the table is the clustering results of TC ONE
and TC ONLY with one level of coarsening are the best or almost best compared
with more than one level of coarsening. As for TC TWO, the results are improv-
ing up to some point. The quality of grouping by TC TWO is shown well in
Table 1. However, the clustering results of TC TWO are not good compared
to TC ONLY and TC ONE when these algorithms are actually applied to ML
spectral algorithm. While TC ONLY provides the best results with one level of
coarsening, TC ONE generates the best results with one or two levels. And the
quality of clustering of TC ONLY drops significantly with two levels. We guess
that more than one level of coarsening causes overmerging, that is, the quality
of grouping with two or more levels is not good enough to improve clustering.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

564 S. Oliveira and S.C. Seok

Table 2. The numbers of correctly clustered proteins with four different TC based
coarsening algorithms and one matching based algorithm to form 40, 60, and 80 clus-
ters, when 1 up to 5 levels are used. First row has the clustering results with a matching
based ML algorithm, HESN. Best results are in bold font.

40 60 80

HESN 232/248/258/253/267 300/312/329/308 354/364/342/367
TC ALL 245/234/235 299/286 346/321
TC ONE 257/261/253/246/238 323/319/319/307/312 368/370/358/359/361
TC TWO 203/230/249/253/248 283/296/300/314/314 336/363/357/355/360
TC ONLY 271/248/248/243/238 329/306/316/298/301 369/361/367/354/349

6 Conclusion

In this paper we presented Triangular Clique (TC) based multi level algorithms
not only to avoid problems caused by matching based algorithms but also to
improve the quality of clustering. Triangular Clique based coarsening algorithms
works easily by finding TCs in a given graph and then merging in the nodes to
form a supernode in the next level as described in section 4. Among our four
TC based algorithms TC ONLY with one level usually gives the best results.
TC ONE also shows almost the same result as TC ONLY with one or two levels.
Our TC based ML algorithms do not rely as much on random algorithms. We
believe our TC based algorithms outperforms matching based ML algorithm
because TC based algorithms take advantage of the fundamental structure of
unweighted graphs.

References

1. G. D. Bader and C. W. Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics, 4(1), 2003.

2. S. Bornholdt and H. G. Schuster, editors. Handbook of Graphs and Networks. Wiley
VCH, 2003.

3. C. M. Deane, L. Salwinski, I. Xenarios, and D. Eisenberg. Protein interactions:
two methods for assessment of the reliability of high throughput observations. Mol
Cell Proteomics., 1(5):349–56, May 2002.

4. C. Ding, X. He, R. F. Meraz, and S. R. Holbrook. A unified representation of
multiprotein complex data for modeling interaction networks. Proteins: Structure,
Function, and Bioinformatics, 57(1):99–108, 2004.

5. C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A minmaxcut spectral method for
data clustering and graph partitioning. Technical Report 54111, LBNL, December
2003.

6. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 1970.

7. S. Oliveira and S. C. Seok. A multi-level approach for document clustering. Lecture
Notes in Computer Science, 3514:204–211, Jan 2005.

8. S. Oliveira and S. C. Seok. A multilevel approach for identifying functional modules
in protein-protein interaction networks. Proceedings of IWBRA 2006, Lecture Notes
in Computer Science, 3992, 2006. to appear.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Triangular Clique Based Multilevel Approaches 565

9. E. Ramadan, C. Osgood, and A. Pothen. The architecture of a proteomic net-
work in the yeast. Proceedings of CompLife2005, Lecture Notes in Bioinformatics,
3695:265–276, 2005.

10. S.B. Seidman. Network structure and minimum degree. Social Networks, 5:269–
287, 1983.

11. S. Skiena. The Algorithm Design Manual. New York:Springer-Verlag, 1998.
12. V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular

networks. Proc Natl Acad Sci U S A, 100(21):12123–12128, October 2003.
13. H. Xiong, X. He, C. Ding, Y. Zhang, V. Kumar, and S. Holbrook. Identification

of functional modules in protein complexes via hyperclique pattern discovery. In
Pacific Symposium on Biocomputing (PSB 2005), volume 10, pages 221–232, 2005.
Available via http://psb.stanford.edu/psb-online/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 566 – 578, 2007.
© Springer-Verlag Berlin Heidelberg 2007

BioPortal: A Portal for Deployment of Bioinformatics
Applications on Cluster and Grid Environments

Kuan-Ching Li1, Chiou-Nan Chen2, Tsung-Ying Wu3,
Chia-Hsien Wen4, and Chuan Yi Tang2

1 Parallel and Distributed Processing Center
Department of Computer Science and Information Engineering

Providence University Shalu, Taichung 43301 Taiwan
kuancli@pu.edu.tw

2 Department of Computer Science
National Tsing Hua University Hsinchu 30013 Taiwan

{cnchen, cytang}@cs.nthu.edu.tw
3 Grid Operation Center

National Center for High-Performance Computing
Taichung 40767 Taiwan
alex@nchc.org.tw

4 Department of Computer Science and Information Management
Providence University Shalu, Taichung 43301 Taiwan

chwen@pu.edu.tw

Abstract. Over last few years, interest on biotechnology has increased
dramatically. With the completion of sequencing of the human genome, such
interest is likely to expand even more rapidly. The size of genetic information
database doubles every 14 months, overwhelming explosion of information in
related bioscience disciplines and consequently, overtaxing any existing
computational tool for data analysis. There is a persistent and continuous search
for new alternatives or new technologies, all with the common goal of
improving overall computational performance. Grid infrastructures are
characterized by interconnecting a number of heterogeneous hosts through the
internet, by enabling large-scale aggregation and sharing of computational, data
and other resources across institutional boundaries. In this research paper, we
present BioPortal, a user friendly and web-based GUI that eases the deployment
of well-known bioinformatics applications on large-scale cluster and grid
computing environments. The major motivation of this research is to enable
biologists and geneticists, as also biology students and investigators, to access
to high performance computing without specific technical knowledge of the
means in which are handled by these computing environments and no less
important, without introducing any additional drawback, in order to accelerate
their experimental and sequence data analysis. As result, we could demonstrate
the viability of such design and implementation, involving solely freely
available softwares.

1 Introduction

The merging of two rapidly advancing technologies, molecular biology and computer
science, has resulted in a new informatics science, namely bioinformatics.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 BioPortal: A Portal for Deployment of Bioinformatics Applications 567

Bioinformatics includes methodologies on processing molecular biological
information, in order to speedup researches in molecular biology. Modern molecular
biology is characterized by huge volume of biological data. Take the classic
molecular biology data type, the DNA sequence, for instance, major bioinformatics
database centers including GeneBank, the NIH (National Institute of Health) genetic
sequence database and its collaborating databases, the European Molecular Biology
Laboratory and the DNA Data Bank of Japan, these data have reached a milestone of
100 billion bases from over 165,000 organisms [3]. Common operations on biological
data include sequences analysis, protein structures predication, genome sequences
comparison, sequence alignment, phylogeny tree construction, pathway research,
visualization of sequence alignment results and placement of sequence databases. The
most basic and important bioinformatics task is to find the set of homologies for a
given sequence, since sequences are often related in functions if they are similar.

Genome research centers, such as the National Center for Biotechnology
Information (NCBI) and the European Molecular Biology Laboratory (EMBL), they
host enormous volume of biological information in their bioinformatics database. They
also provide a number of bioinformatics tools for database search and data acquisition.
With the explosion of sequence information available to researchers, computational
biologists face the challenge to aid biomedical researches, that is, to invent efficient
toolkits to enlarge the use of available computational cycles. Sequence comparison,
multiple sequence alignment and phylogeny tree construction are the most fundamental
works in biomedical research. There have been many abundant examples of
bioinformatics applications that are able to provide solutions for these problems in
biomedical research. Some of most extensively utilized applications for these research
activities include BLAST [4][5], ClustalW [6][7] and Phylip [8].

However, bioinformatics applications typically are distributed in different
individual projects and they require high performance computational environments.
Biomedical researchers need to combine many works to conclude their investigation.
For instance, in the south of an Asian area, once farms with many dead chickens are
reported, biologist may need to identify whether it was infected by H5N1 influenza
virus urgently. After obtained the chicken’s testimony and RNA sequence, biologist
may use BLAST tool to search and acquire other influenza virus sequences from the
public database. ClustalW tool is required to compare and investigate their similarity,
so then construct the phylogenic tree using Phylip tool. In the above situation,
biomedical researchers need these bioinformatics applications. They may download a
local version to their own computer or use them in individual server, but either one is
complicated and inefficient way, due to a number of drawbacks that any similar
solution may bring. Therefore, an efficient and integrated bioinformatics portal is
necessary, in order to facilitate biomedical researches.

Grid computing has irresistible potential to apply supercomputing power to address
a vast range of bioinformatics problems. A computational grid is a collection of
distributed and heterogeneous computing nodes that has emerged as an important
platform for computation intensive applications [9][10][15]. They enable large-scale
aggregation and sharing of computational, data and other resources across
institutional boundaries. It offers an economic and flexible model for solving massive
computational problems using large numbers of computers, arranged as clusters
embedded in a distributed infrastructure [11][12][13][14].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

568 K.-C. Li et al.

In this research paper, we integrate several important bioinformatics applications
into a novel user-friendly and biologist-oriented web-based GUI portal on top of
PCGrid grid computing environment [16]. The major goal in developing such GUI is
to assist biologists and geneticists to access to high performance computing, without
introducing additional computing drawbacks to this attempt, as to accelerate their
experimental and sequence data analysis.

The remainder of this paper is organized as follows. In Section 2, a number of
bioinformatics application tools available are introduced, while in Section 3 is
introduced the experimental grid computing platform PCGrid, a computing
environment built by interconnecting a number of computational resources located
inside Providence University Campus. In Section 4, it is discussed the BioPortal
bioinformatics portal workflow and implementation. Finally, in Section 5,
conclusions and future works are presented.

2 Bioinformatics Applications Overview

Molecular biologists measure and utilize huge amounts of data, of various types. The
intention is to use these data to:

1. reconstruct the past (e.g., infer the evolution of species),
2. predict the future (e.g., predict how some genes affect a certain disease),
3. guide bio-technology engineering (such as improving the efficiency of drug

design).

Some of the concrete tasks are so complex that intermediate steps are already
regarded as problem in their own and constructed an application for it. For instance,
while the consensus motif of a sequence in principle determines its evolution
function, one of the grand challenges in bioinformatics is to align multiple sequences
among to conclude their consensus pattern and predict its function. Sequence
comparison, multiple sequence alignment and phylogeny tree construction are
fundamental works in biomedical research and bioinformatics. The most extensively
applications for these works include BLAST, ClustalW and Phylip. BLAST is a
sequence comparison and search tool, ClustalW is a progressive multiple sequence
alignment tool, and Phylip is a program for inferring phylogenic tree.

The BLAST (Basic Local Alignment Search Tool) application is a widely used tool
for searching DNA and protein databases for sequence similarity to identify homologs
to a query sequence [20]. While often referred to as just “BLAST”, this can really be
thought of as a set of five sub-applications: blastp, blastn, blastx, tblastn, and tblastx.

Five sub-applications of BLAST perform the following tasks:

1. blastp: compare an amino acid query sequence against a protein sequence
database,

2. blastn: compare a nucleotide query sequence against a nucleotide sequence
database,

3. blastx: compares the six-frame conceptual translation products of a
nucleotide query sequence (both strands) against a protein sequence
database,

4. tblastn: compares a protein query sequence against a nucleotide sequence
database dynamically translated in all six reading frames (both strands),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 BioPortal: A Portal for Deployment of Bioinformatics Applications 569

5. tblastx: compares the six-frame translations of a nucleotide query sequence
against the six-frame translations of a nucleotide sequence database.

BLAST tool plays an extremely important role in NCBI GenBank database. It not
only provides sequence database search, but also include many toolkits for sequence
comparison. BLAST is based on Smith-Waterman local alignment algorithm [17][18],
which basically identifies the best local alignment between two sequences by using
dynamic programming and tracing back metrology through the sequence matrix. The
mpiBLAST is a parallelized version of BLAST, developed by Los Alamos National
Laboratory (LANL) [19]. The mpiBLAST segments the BLAST database and
distributes it across cluster computing nodes, permitting BLAST queries to be
processed on a number of computing nodes simultaneously. The mpiBLAST-g2 is an
enhanced version of LANL’s mpiBLAST application [21]. This enhanced application
allows the parallel execution of BLAST on a grid computing environment.

ClustalW is a general purpose multiple sequence alignment program for DNA or
proteins, and it produces biologically meaningful multiple sequence alignments of
divergent sequences. It calculates the best match for the selected sequences, and lines
them up so that the identities, similarities and differences can clearly be seen.
ClustalW is one of the most popular sequences alignment packages, and it is not only
a multiple sequence alignment package, but also a phylogenetic tree construction tool.
The progressive alignment algorithm of ClustalW is based on three steps:

1. Calculating sequence pairwise similarity,
2. Construction of guide tree,
3. Progressive alignment of sequence.

In the first step, all pairs of sequences are aligned separately, in order to calculate a
distance matrix giving the divergence of each pair of sequences. As next step, the
trees are used to guide the final multiple alignment processes that are calculated from
the distance matrix of step 1 using the Neighbor-Joining method [22]. In the final
step, the sequences are progressively aligned according to the branching order in the
guided tree. ClustalW-MPI [24] is a parallel implementation of ClustalW. All three
steps have been parallelized in order to reduce the global execution time, and it runs
on distributed workstation clusters as well as on traditional parallel computers [23].
The only requirement is that all computing nodes involved in ClustalW-MPI
computations should have installed MPI.

Phylip is an application for inferring phylogenies tree. The tree construction
algorithm is quite straightforward, and it adds species one by one to the best place in
the tree and makes some rearrangement to improve the result.

3 The PCGrid Computing Infrastructure

The PCGrid grid-computing platform, standing for The Providence University Campus
Grid platform, consists basically of five cluster platforms located in different floors and
laboratories inside the College of Computing and Informatics (CCI) of this university.
The project of constructing such grid infrastructure is aimed to increase Providence
University’s computational power and share the resources among investigators and
researchers in fields such as bioinformatics, biochemistry, medical informatics,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

570 K.-C. Li et al.

economy, parallel compilers, parallel software, data distribution, multicast, network
security, performance analysis and visualization toolkit, computing node selection,
thread migration, scheduling in cluster and grid environments, among others.

The PCGrid computing infrastructure is formed by interconnecting the cluster
computing platforms via Gigabit Ethernet (1Gb/s), as illustrated in Figure 1.

AMD
Homogeneous

Cluster

Intel
Heterogeneous

Cluster

AMD 64-bit OpenMosix
Cluster

SDCen tilion 1 2 00

PC C AP OP OWER RS - 23 2 C

Bay Netw o rks

RE ADY AL ARMRES ET

S D

E I A 2 3 2
I

O K

B002 - PDPC/ Parallel and Distributed Processing Center

PDPC

M230 - Laboratory of Algorithms

M229a - CCI Computing Center

Outside World via TWAREN

AMD
Homogeneous

Cluster

Intel
Heterogeneous

Cluster

AMD 64-bit OpenMosix
Cluster

SDCen tilion 1 2 00

PC C AP OP OWER RS - 23 2 C

Bay Netw o rks

RE ADY AL ARMRES ET

SDCen tilion 1 2 00

PC C AP OP OWER RS - 23 2 C

Bay Netw o rks

RE ADY AL ARMRES ET

S D

E I A 2 3 2
I

O K

S D

E I A 2 3 2
I

O K

S D

E I A 2 3 2
I

O K

B002 - PDPC/ Parallel and Distributed Processing Center

PDPC

M230 - Laboratory of Algorithms

M229a - CCI Computing Center

Outside World via TWAREN

Fig. 1. The PCGrid grid computing infrastructure

The first platform is AMD Homogeneous Cluster, consisting of 17 computing
nodes, where each node contains one AMD Athlon 2400+ CPU, 1GB DDR memory,
80GB HD, FedoreCore4 OS, interconnected via Gigabit Ethernet. The second cluster
is Intel Heterogeneous Cluster, built up using 9 computing nodes with different CPU
speed and memory size, FedoraCore2 OS, interconnected via Fast Ethernet. The third
cluster platform consists of 4 computing nodes, where each computing node has one
AMD 64-bit Sempron 2800+ CPU, 1GB DDR memory, 120GB HD, FedoreCore4
OS, interconnected via Gigabit Ethernet. The fourth cluster platform is IBMCluster,
consisting of 9 computing nodes, where each node contains one Intel P4 3.2GHz
CPU, 1 GB DDR memory, FedoraCore3 OS, 120GB HD, interconnected via Gigabit
Ethernet. The fifth computing system is IBMBlade, consisting of 6 computing blades,
where each blade has two PowerPC 970 1.6 GHz CPUs, 2GB DDR memory and
120GB HD, SUSE Linux OS, interconnected via Gigabit Ethernet. At moment, the
total storage contains more than 6TB of storage space.

3.1 Selecting Computing Nodes to Run Parallel Applications

There are two ways to select computing nodes in PCGrid grid computing platform,
either manual or automatic. In the manual process, the developer chooses the
computing nodes based on CPU activities, depending on the status (busy or idle), as
shown in figures 2A and 2B. If the developer persists in selecting a computing node
showing RUNNING (that is, CPU in use), this job will be queued, and its execution
will only be started when all selected computing nodes are idle. The alternative way

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 BioPortal: A Portal for Deployment of Bioinformatics Applications 571

to select computing nodes is automatic. All computing nodes in PCGrid platform are
sorted and ranked, so that the developer selects a given condition, if he would like to
select a number of computing nodes according to their speed (and idle) or he would
like to select a number of computing nodes with higher network bandwidth.

All jobs submitted by any user are ranked according to user credentials, his level of
priority inside the queue. The higher a user’s credentials; highest is the priority to
execute this user’s applications in our computing platform. The queue is re-ranked
every time a job is submitted to our grid platform.

Fig. 2A. Computing Node manual selection simple mode

Fig. 2B. Real-time display of all computing nodes status in complete mode

3.2 Performance Visualization

We have developed a performance visualization toolkit, to display application
execution performance data charts [1][2]. Performance data of sequential or parallel
applications executed in PCGrid computing platform are captured and saved, and later
displayed the CPU and memory utilization of that given application, as in figure 3A.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

572 K.-C. Li et al.

During different stages of the development of an application, the developer may
want to compare the performance of different implementations of this application. For
such usage on PCGrid platform, we have developed a toolkit able to perform such
comparisons, as shown in figure 3B. The corresponding charts of CPU and memory
utilization of each computing node involved in the computation are overlapped, to
facilitate the visualization of such performance comparisons.

Fig. 3A. Performance data of each computing node involved in computation of PCGrid grid
platform

Fig. 3B. Performance comparison of two application execution results, computing node by
computing node, CPU load and memory usage

4 BioPortal: A Portal for Bioinformatics Applications in Grid

We have integrated most fundamental computing applications in biomedical research
and bioinformatics inside BioPortal: sequence comparison, pairwise or multiple

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 BioPortal: A Portal for Deployment of Bioinformatics Applications 573

sequence alignment and phylogeny tree construction, all in a complete workflow. We
also provide an additional feature to biologists to choose automatically computing
nodes to execute their parallel applications, by setting the number of computing
nodes. The BioPortal will take care of selecting best computing nodes that fits users’
requested computation, as described in subsection 3.1.

Fig. 4. BioPortal web-based GUI screenshot

 Fig. 5A. bl2seq interface Fig. 5B. Blastc13 interface

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

574 K.-C. Li et al.

Figure 4 shows the bioinformatics portal homepage. The biologist can use bl2seq
(a BLAST toolkit for two sequence comparison) to compare their own sequence with
other sequences that was acquired from a bioinformatics database by blastcl3 (a NCBI
BLAST client). Figure 5A and 5B show the web interface screenshot of Bl2seq and
Blastcl3 respectively.

Biologists make use of ClustalW-MPI to perform multiple sequence alignment
with a number of sequences, and then construct corresponding phylogenic tree using
Phylip directly. Biologists do need not to copy the alignment result from the
ClustalW-MPI and paste to Phylip to get the phylogeny tree, since our system provide
a “shortcut” button in order to facilitate similar procedures. Figure 6 shows the web
interface of ClustalW-MPI integrated with Phylip. We also develop a data format
translation tool to ease biologist’s usage. Biologist can input GeneBank data format,

Fig. 6. Using Phylip application to construct phylogenic tree, directly from the output generated
by ClustalW-MPI

Fig. 7. BioPortal web-based GUI complete workflow

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 BioPortal: A Portal for Deployment of Bioinformatics Applications 575

and our translation toolkit can transform it to legal FASTA format for ClustalW-MPI, as
in figure 8. Detailed description of all bioinformatics services available in our BioPortal
is listed in table 1, while Figure 7 shows the complete workflow of the BioPortal.

Table 1. List of bioinformatics applications provided by BioPortal

Application Tools Description

mpiBLAST-g2 An enhanced parallel application that permits parallel execution of
BLAST on Grid environments, based on GLOBUS and MPICH

Bl2seq This application performs comparison between two sequences,
using either blastn or blastp algorithms

Blastall This application may be used to perform BLAST comparisons

BLASTcl3 A BLAST software client running on local computers that connects
to BLAST servers located at NCBI, in order to perform searches

and queries of NCBI sequence databases

Formatdb It is used to format protein or nucleotide source database before
these can be utilized by Blastall, Blastpgp or MEGABlast

BlastReport2 A Perl script that reads the output of Blastcl3, reformats it to ease
its use and eliminates useless information

ClustalW-MPI Parallel version of a general purpose multiple sequence alignment
application for DNA or proteins, by producing meaningful multiple

sequence alignment of divergent sequences

Phylip Set of applications that performs phylogenic analyses

Fig. 8. Sequence data transformation toolkit

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

576 K.-C. Li et al.

5 Conclusions and Future Work

We have constructed a campus scale computing grid platform, as also implemented a
portal providing a number of well-known bioinformatics application toolkits. Not
only to provide easy access of bioinformatics application toolkits to biologists and
geneticists, but also large amount of computational cycles in an easy way. This portal
contributes three fundamental molecular biology activities: sequence comparison,
multiple sequence alignment and phylogenic tree construction, all integrated in a
friendly and easy-to-use web-based GUI portal. We have solved many data
inconsistency problems and finally integrated a number of different tools that are able
to cooperate all together. This BioPortal not only facilitate biomedical researcher
investigations and computational biology courses in graduate-level, as also it
demonstrates a well-succeeded combination of high performance computing with the
use of grid technology and bioinformatics.

As future work, several directions of this research are ongoing. One of goals is to
develop a one-stop-shop bioinformatics portal, to provide efficient and economic
computational power and cycles to biomedical researchers. At the present moment,
we are in the process of integrating other well-known bioinformatics applications into
this BioPortal, for instance, applications for protein structure predication and protein
visualization. We expect to continuously develop on top of grid technology, so that in
near future, researchers will not only be able to seamlessly utilize PCGrid
computational resources, but also expand on demand to larger scale grid computing
platforms, such as regional or national grid platforms.

Acknowledgements

This paper is based upon work supported in part by National Science Council (NSC),
Taiwan, under grants no. NSC94-2213-E-126-005 and NSC95-2221-E-126-006-
MY3, and National Center for High-Performance Computing (NCHC), Taiwan. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSC or NCHC.

References

[1] K.C. Li, H.H. Wang, C.N. Chen, C.C. Liu, C.F. Chang, C.W. Hsu, S.S. Hung, “Design
Issues of a Novel Toolkit for Parallel Application Performance Monitoring and Analysis
in Cluster and Grid Environments”, in I-SPAN'2005 The 8th IEEE International
Symposium on Parallel Architectures, Algorithms, and Networks, Las Vegas, USA,
2005.

[2] H.C. Chang, K.C. Li, Y.L. Lin, C.T. Yang, H.H. Wang, and L.T. Lee, “Performance
Issues of Grid Computing Based on Different Architecture Cluster Computing
Platforms”, in AINA'2005 The 19th IEEE International Conference on Advanced
Information Networking and Applications, vol. II, Taipei, Taiwan, 2005.

[3] Public Collections of DNA and RNA Sequence Reach 100 Gigabases, National Institutes
of Health, August 22, 2005. (http:// www.nlm.nih.gov/news/press_releases/
dna_rna_100_gig.html).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 BioPortal: A Portal for Deployment of Bioinformatics Applications 577

[4] S.F. Altschul, W. Gish, W. Miller, E.G. Myers, and D.J. Lipman, “Basic Local
Alignment Search Tool”, J. Mol. Biol. 215,403-410, 1990.

[5] S. F. Altschul, T. L. Madden, A. A. Schaeffer, J. Zhang, Z. Zhang, W. Miller and D.J.
Lipman, “Gapped BLAST and PSI-BLAST: A new generation of protein database search
programs”, Nucleic Acids Research, 25, pp. 3389-3402, 1997.

[6] D.G. Higgins, P.M. Sharp, “CLUSTAL: a package for performing multiple sequence
alignment on a microcomputer”, Gene, Dec 15;73(1):237-44, 1988.

[7] J.D. Thompson, D.G. Higgins, T.J. Gibson, “CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice”, Nucleic Acids Res. Nov 11;22(22):4673-80,
1994.

[8] Joe Felsenstein, “PHYLIP (Phylogeny Inference Package)”, version 3.5c.
(http://evolution.genetics.washington.edu/phylip.html), 1993.

[9] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnal, and S. Tuecke. “Data Management and Transfer in High
Performance Computational Grid Environments”, Parallel Computing, vol. 28 (5), pp.
749-771, 2002.

[10] B. Allcock, J. Bester, J. Bresnahan, I. Foster, J. Gawor, J. A. Insley, J. M. Link, and M.
E. Papka. “GridMapper: A Tool for Visualizing the Behavior of Large-Scale Distributed
Systems”, in Proceedings of 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC-11), 2002.

[11] M. Baker, R. Buyaa, D. Laforenza, “Grid and Grid Technologies for Wide-Area
Distributed Computing”, available at http://www.csse.monash.edu.au/~rajkumar/papers/
gridtech.pdf .

[12] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnson, K.
Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski, “The
GrADS Project: Software Support for High-Level Grid Application Development”,
International Journal of High-Performance Computing Applications, 15(4), 2002.

[13] M. Chetty, R. Buyya, “Weaving computational Grids: How analogous are they with
electrical Grids?” Journal of Computing in Science and Engineering (CiSE), 2001.

[14] K. Czajkowski, I. Foster, and C. Kesselman. “Resource Co-Allocation in Computational
Grids”, in Proceedings of the Eighth IEEE International Symposium on High
Performance Distributed Computing (HPDC-8), pp. 219-228, 1999.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. “Grid Information Services
for Distributed Resource Sharing”, in Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing (HPDC-10), 2001.

[16] K.C. Li, C.N. Chen, C.W. Hsu, S.S. Hung, C.F. Chang, C.C. Liu, C.Y. Lai, “PCGrid:
Integration of College’s Research Computing Infrastructures Using Grid Technology”, in
NCS'2005 National Computer Symposium, Taiwan, 2005.

[17] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local
alignment search tool”, Journal of Molecular Biology, vol. 215, pp. 403–410, 1990.

[18] T.F. Smith, M.S. Waterman, “Identification Of Common Molecular Subsequences”,
Journal of Molecular Biology, vol. 147, pp. 195-197, 1981.

[19] Los Alamos National Laboratory (http://mpiblast.lanl.gov).
[20] Heshan Lin, Xiaosong Ma, Praveen Chandramohan, Al Geist and Nagiza Samatova,

“Efficient Data Access for Parallel BLAST”, IEEE International Parallel & Distributed
Symposium, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

578 K.-C. Li et al.

[21] mpiBLAST-g2, Bioinformatics Technology and Service (BITS) team, Academia Sinica
Computing Centre (ASCC), Taiwan. (http://bits.sinica.edu.tw/mpiBlast/mpiBlast-
g2/README.mpiBLAST-g2.html)

[22] N. Saitou, M. Nei, “The Neighbor-Joining Method: A New Method for Reconstructing
Phylogenetic Trees”, Molecular Biology and Evolution, 4(4), pp. 406-25, 1987.

[23] J.D. Thompson, D.G. Higgins, and T.J. Gibson, “CLUSTAL W: Improving the
Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting,
Positions-Specific Gap Penalties and Weight Matrix Choice”, Nucleic Acids Research,
22, pp. 4673-4680, 1994.

[24] K.B. Li, “ClustalW-MPI: ClustalW Analysis Using Distributed and Parallel Computing”,
Bioinformatics, 19(12), pp.1585-6, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distributed Metamodeling

Dirk Gorissen, Karel Crombecq, Wouter Hendrickx, and Tom Dhaene

Antwerp University, Middelheimlaan 1, 2020 Antwerp, Belgium
{dirk.gorissen,wouter.hendrickx,tom.dhaene}@ua.ac.be,

karel.crombecq@student.ua.ac.be

Abstract. Simulating and optimizing complex physical systems is known to be
a task of considerable time and computational complexity. As a result, metamod-
eling techniques for the efficient exploration of the design space have become
standard practice since they reduce the number of simulations needed. How-
ever, conventionally such metamodels are constructed sequentially in a one-shot
manner, without exploiting inherent parallelism. To tackle this inefficient use of
resources we present an adaptive framework where modeler and simulator in-
teract through a distributed environment, thus decreasing model generation and
simulation turnaround time. This paper provides evidence that such a distributed
approach for adaptive sampling and modeling is worthwhile investigating. Re-
search in this new field can lead to even more innovative automated modeling
tools for complex simulation systems.

1 Introduction

Computer based simulation has become an integral part of the engineering design
process. Rather than building real world prototypes and performing experiments, appli-
cation scientists can build a computational model and simulate the physical processes at
a fraction of the original cost. However, despite the steady growth of computing power,
the computational cost to perform these complex, high-fidelity simulations maintains
pace. For example, to quote [1]:

“...it is reported that it takes Ford Motor Company about 36-160 hrs to run one
crash simulation [2]. For a two-variable optimization problem, assuming on
average 50 iterations are needed by optimization and assuming each iteration
needs one crash simulation, the total computation time would be 75 days to 11
months, which is unacceptable in practice.”

Luckily, most of these simulations can be reduced to parallel parameter sweep type ap-
plications. These consist of several instances of the simulator that are run independently
for different input parameters or datasets. Due to the inherent parallelism this can be
done in a distributed fashion thus significantly reducing “wall-clock” execution time.

For most realistic problems the high computational cost of simulator codes and
the high dimensionality of the design space simply prohibit this direct approach, thus
making these codes unusable in engineering design and multidisciplinary design opti-
mization (MDO). Consequently, scientists have turned towards upfront approximation
methods to reduce simulation times. The basic approach is to construct a simplified

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 579–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

580 D. Gorissen et al.

approximation of the computationally expensive simulator (e.g.: aerodynamic drag gen-
erated by a particular airfoil shape [3]), which is then used in place of the original code
to facilitate MDO, design space exploration, reliability analysis, etc. [4] Since the ap-
proximation model acts as surrogate for the original code, it is often referred to as a
surrogate model or metamodel. Examples of such metamodels include Kriging mod-
els, Artificial Neural Networks, Support Vector Machines, radial basis function models,
polynomial and rational models.

The remainder of this paper is structured as follows: In section 2 we discuss the
motivation for constructing parametrized metamodels while section 3 gives an overview
of similar research efforts and related projects. Section 4 describes the design and pro-
totype implementation of our framework and section 5 some preliminary performance
results. We conclude with a critical evaluation and pointers to future work.

2 Motivation

The reasons for constructing metamodels are twofold: on the one hand metamodels are
often used for efficient design space exploration, on the other hand they are used as a
cheap surrogate to replace the original simulator. When performing an optimum search,
the metamodel guides the search to potentially interesting regions (local minima) [3,5].
Once an adequate solution has been found, the model is discarded. When building a
global, scalable model, the metamodel itself forms the object of interest. Here the goal
is to construct a parametrized metamodel that can entirely replace the original objective
function in a subset of the design space of interest. This is useful since the metamodel is
much cheaper to evaluate. Once constructed the metamodel is retained and the objective
function discarded. In this paper we are primarily concerned with the latter.

However, constructing an accurate metamodel is no trivial undertaking. In some
cases it remains questionable if a usable metamodel can be constructed at all. Even
if an accurate metamodel is feasible, the process of building it still requires evaluations
of the original objective function. Therefore, if the process of constructing a metamodel
requires, say, 80 function evaluations and each evaluation takes 10 hours, the rate at
which the design space can be explored is still relatively low. Nevertheless, the authors
argue that this is justifiable since it is a one time, up front investment.

To help tackle this bottleneck we propose a framework that integrates the automated
building of metamodels and the adaptive selection of new simulation points (sequential
design) with the distributed evaluation of the cost function. This framework will build
upon previous work in modeling [6,7,8] and distributed systems [9,10].

3 Related Work

Research efforts and tools that integrate modeling and design space exploration tech-
niques with grid computing techniques can be divided into two categories: those
focussed on design optimization and those geared towards the building of standalone
scalable metamodels. The first category is by far the most populous. First we have, usu-
ally commercial, integrated systems that model and optimize application specific prob-
lems. Examples are modeFRONTIER [11] for ship hulls and FlightLab [12] for aircraft.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distributed Metamodeling 581

On the other hand there are many general optimization frameworks which can be
applied to different problem domains. The most notable again being Nimrod/O [13].
Nimrod/O is based on the Nimrod/G broker [14] and tackles its biggest disadvantage.
This is that Nimrod/G will try to explore the complete design space on a dense grid. This
is usually intractable for realistic problems. Nimrod/O performs a guided search through
the design space trying to find that combination of parameters that will minimize (max-
imize) the model output. To this end Nimrod/O employs a number of search algorithms
(e.g.: P-BFGS, Simplex, Simulated Annealing). A similar project is DAKOTA [15] from
Sandia Laboratories. It is a C++ toolkit that allows a user to choose different optimiza-
tion algorithms to guide the search for optimal parameter settings. Other projects in-
clude GEODISE [16], The Surrogate Management Framework (SMF), SciRun and its
precursor Uintah, NetSolve, NEOS and the work by Y. S. Ong et al [17,18].

While all projects mentioned above are tailored towards optimization, they are not
concerned with creating a parameterized that can be used on its own. Research ef-
forts that do build replacement metamodels exist [19,20,5,6], notably the Multistage
Bayesian Surrogate Methodology (MBSM) proposed by C.H. Amon et al [21], but fail
to include concepts of distributed computing. Thus the repetitive process of evaluating
the objective function while constructing the metamodel is done in a sequential fashion,
and this can be extremely time consuming. We were unable to find evidence of other
real projects that tackle this. Perhaps the project that comes closest to what we wish
to achieve is described in [22], though it too is biased towards optimization and lacks
adaptivity.

4 The Design

In this section we outline the architecture of the framework we have designed. Note
that treating each individual component in depth is out of scope for this paper. Instead
we will concentrate on how they fit together and interact on a more general level. More
detailed analyses will follow in future publications.

A high level design diagram is shown in figure 1. The workflow is as follows: Given
an application specific simulator (i.e. the objective function) and an XML configuration
file containing a number of model/algorithmic tuning parameters, the modeler will build
a metamodel with the user-required accuracy level. In order to do so it interacts with the
simulator through the SampleEvaluator (SE) which executes the simulator on the grid
through an existing grid middleware or broker.

4.1 The Modeler

The first component of the framework is the modeler. This component interacts with
the simulator in order to construct a meta representation of the original objective func-
tion. Our modeler of choice is the Matlab M3 Toolbox [8] and its schematic flowchart
is shown in figure 2. The box on the right represents the simulation backend, the com-
ponent responsible for evaluating the samples. This is the part that will be distributed.
The center box depicts the core loop of the toolbox, it drives the whole modeling pro-
cess and the selection of new samples. The leftmost box shows the modeler itself. It is
responsible for building the polynomial/rational/Neural Network/... metamodels.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

582 D. Gorissen et al.

Fig. 1. High level components

The main modeling loop goes as follows: First, an initial sample distribution in the
input space is chosen, and simulations are run for all points in this initial sample set.
Then, several models of different complexity are built based on the locations of the
sample points and the corresponding outputs of the simulator. The models are then
compared over a number of measures, and ranked according to their estimated accu-
racy. The best models are kept, and a new set of sample locations is adaptively chosen
(sequential design). The new sample set is passed on to the simulation backend, which
will call the simulator for each of the new sample points. After that, the whole loop
repeats itself and will continue until the toolbox has reached the desired accuracy.

For a more detailed treatment of how the modeler works (sample selection, termina-
tion criteria, etc) please refer to [7].

Fig. 2. The Multivariate MetaModeling toolbox (M3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distributed Metamodeling 583

4.2 The Grid Middleware

In order to distribute the simulation backend across heterogeneous resources an extra
software layer is needed that takes care of the distribution details. In this case we have
used APST [23,24] (though other middlewares such as ProActive, SGE, CoBRA, Nim-
rod/G and Gridbus will be supported in the future). APST can use remote machines
accessed through either a Globus GRAM or ssh, remote storage accessed through a
Globus GASS server, scp, ftp, sftp, or an SRB server, and queuing systems controlled
by Condor, DQS, LoadLeveler, LSF, PBS, or SGE. Since APST grew from AppleS
(APPlication LEvel Scheduling) [25] it also tries to schedule jobs optimally based on
the characteristics of the resources used. To do this it makes use of established grid
information services such as Ganglia, MDS and NWS.

APST consists of an APST client (apst) and an APST daemon (apstd), both
which may be running on separate machines. The client may connect to the server
and submit jobs or query the server for job status information. To submit jobs or add
resources to the resource pool the client generates an XML file which is then sent to the
server.

4.3 Sample Evaluator

The Sample Evaluator (SE) can be seen as a kind of Application Aware Scheduler
(AAS) that forms the glue between the modeler and the middleware (of course local
evaluation is supported as well). It is responsible for translating modeler requests (i.e.
evaluations of datapoints) into middleware specific jobs (in this case APST <task>
tags), polling for results, and returning them to the modeler. The SE is implemented as
a set of Java interfaces and base classes that are sub classed for each of the supported
middlewares. This is illustrated for the case of APST in figure 3. As can be seen from
the figure there is a separate delegate for each step in the sample evaluation process: job
submission, job status monitoring and processing the finished results.

As research continues, the intelligence of the SE will be constantly improved. In-
stead of the simple bridge it is now, we will include application specific and resource
specific knowledge into the scheduling decision. Rather than requesting a batch of sam-
ples to be evaluated with equal priority the modeler assigns scores to each data sample

Fig. 3. APST Sample Evaluator Backend

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

584 D. Gorissen et al.

(i.e., data samples corresponding to interesting features of the objective function, such
as minima and maxima, will receive higher scores). The AAS can then take these prior-
ities into account when making scheduling decisions. Likewise, the AAS should make
use of resource information in order to achieve an optimal task − host mapping (i.e.,
complex tasks should be scheduled on the fastest nodes).

5 Performance Comparison

5.1 Experimental Setup

In this section we illustrate the application of our M3 framework to an example from
Electromagnetics (EM). We will model the the problem twice, once sequentially and
once in parallel, and compare the performance. The simulator, for which we shall build
a parametrized, scalable metamodel, computes the scattering parameters for a step dis-
continuity in a rectangular waveguide. The 3D inputs consists of input frequency, the
gap height and the gap length. The (complex) outputs are the scattering parameters of
this 2-port system. Figure 4 shows an approximate plot of the input-output relation at
three different discrete frequencies.

Fig. 4. A Plot of |S11|, the Modulus of the First Scattering Parameter

While a real world example, this simulator is still relatively cheap to evaluate. One
evaluation takes about 8-13 seconds. Once we are satisfied with the plumbing of the
underlying framework we will turn to heavier problems with evaluation times in the
order of minutes to hours.

Due to the characteristics of the simulator the exact hardware characteristics of the
testbed are of little importance. Nevertheless we list them for completeness. The stan-
dalone case was run on a Pentium IV 1.9GHz with 768MB main memory. For the dis-
tributed case we used 6 hosts accessible through the local LAN. These included: four
Pentium IV 2.4 GHz, one AMD Opteron 1.7 GHz, and one Pentium M 1.6GHz, each
with 512MB RAM. While we regret not having been able to use ’real’ grid resources

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distributed Metamodeling 585

we note that this is not really an issue since (1) we are currently only interested in a
proof-of-concept (2) we expect the speedup (distributed vs. sequential) to increase lin-
early with the amount of hosts, thus adding more hosts will simply increase the speedup
factor.

The M3 toolbox and apstd ran on the same host and the APST scheduling al-
gorithm was the default simple work-queue strategy. No grid information service was
configured.

For each case the M3 toolbox was used to build a metamodel for the objective
function described above. We recorded the total time needed to build the model, the
time needed to evaluate each batch of samples that is requested as the modeling pro-
gresses, and the total number of function evaluations. The results were averaged over
three runs.

5.2 Test Results

Table 1 summaries the different results for each of the runs. If we first look at the
average time to process one sample batch we find it is about 56 seconds in the sequential
vs 14 in the distributed case. Thus we have an effective speedup factor of about 4. The
size of each batch varies between about 3 to 6 samples.

We notice something similar if we look at the total execution times for each run
in figure 5. The total time in the distributed case is about 4 times smaller than in the
sequential case for a comparable number of function evaluations.

Fig. 5. Comparison Sequential and Distributed

Figure 5 seems unlogical since 6 hosts were used in the distribution. One would ex-
pect a speed up factor of 6 (or in general N , if N hosts were used). The reason is that the
M3 toolbox is not yet resource aware (see section 4.3) which results in an underutiliza-
tion of the available compute nodes. With this improvement, together with the move to
proper distributed setups involving Globus and SGE administered resources, we expect
to improve the speedup significantly in the very near future. Nevertheless these figures
still stand since their purpose was to illustrate the integration of distributed computing,
adaptive metamodeling and sequential design.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

586 D. Gorissen et al.

Table 1. Test Results: Sequential (top) and Distributed (bottom)

Run # Samples Avg Time per Sample Batch (s) Total Runtime (s)

1 217 56.39 2199.21
2 221 55.75 2229.86
3 206 56.29 2082.66

Avg 214.67 56.14 2170.58
Sequential

1 212 14.91 583.55
2 206 13.56 517.12
3 227 13.82 582.45

Avg 215 14.1 561.05
Distributed

6 Evaluation and Future Work

In this paper we have made the case for the use of distributed computing techniques
while building scalable metamodels. We have presented a framework based on the M3

toolbox and APST and contrasted its performance with the traditional approach of an-
alyzing datapoints sequentially. The proof of principle results look very promising and
warrant further extension of our framework in the future.

Future work will include:

– Move to real distributed setups involving Globus and SGE administered clusters.
– Creation of a ’real’, pluggable framework where the user will be able to easily

choose the modeling algorithm and the grid middleware to suit his or her applica-
tion. In addition, if a required capability is not available the user should be able to
plug in his own extension.

– Apply AI techniques such as genetic algorithms and machine learning algorithms
to enhance the modeling, decrease the reliance on simple heuristics, and allow for
more automated tuning of the modeling process.

References

1. Wang, G. G., S.S.: Review of metamodeling techniques in support of engineering design
optimization. ASME Transactions, Journal of Mechanical Design (2006) in press

2. Gu, L.: A comparison of polynomial based regression models in vehicle safety analysis. In
Diaz, A., ed.: 2001 ASME Design Engineering Technical Conferences - Design Automation
Conference, ASME, Pittsburgh, PA. (2001)

3. Marsden, A.L., Wang, M., Dennis, J.J.E., Moin, P.: Optimal aeroacoustic shape design using
the surrogate management framework: Surrogate optimization. Optimization and Engineer-
ing Volume 5 (2004) pp. 235–262(28)

4. Simpson, T.W., Booker, A.J., Ghosh, D., Giunta, A.A., Koch, P.N., Yang, R.J.: Approxima-
tion methods in multidisciplinary analysis and optimization: A panel discussion. Structural
and Multidisciplinary Optimization 27 (2004) 302–313

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Adaptive Distributed Metamodeling 587

5. Martin, J.D., Simpson, T.W.: Use of adaptive metamodeling for design optimization. In: In
Proc. of 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization, 4-6
September, Atlanta, Georgia. (2002)

6. Hendrickx, W., Dhaene, T.: Multivariate modelling of complex simulation-based systems.
Proceedings of the IEEE NDS 2005 conference (2005) 212–216

7. Hendrickx, W., Dhaene, T.: Sequential design and rational metamodelling. In Kuhl, M.,
M., S.N., Armstrong, F.B., Joines, J.A., eds.: Proceedings of the 2005 Winter Simulation
Conference. (2005) 290–298

8. Hendrickx, W., Dhaene, T.: M3-toolbox (2005) Available on www.coms.ua.ac.be in
the Software section.

9. Gorissen, D., Stuer, G., Vanmechelen, K., Broeckhove, J.: H2O Metacomputing - Jini
Lookup and Discovery. In: Proceedings of the International Conference on Computational
Science (ICCS), Atlanta, USA. (2005) 1072–1079

10. Hellinckx, P., Vanmechelen, K., Stuer, G., Arickx, F., J., B.: User experiences with nuclear
physics calculations on H2O and on the BEgrid. In: in Proceedings of the International
Conference on Computational Science (ICCS), Atlanta, USA. (2005) 1081–1088

11. modeFRONTIER: (http://www.esteco.it/products/)
12. FlightLab: (http://www.flightlab.com/)
13. Abramson, D., Lewis, A., Peachey, T., Fletcher, C.: An automatic design optimization tool

and its application to computational fluid dynamics. In: Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM). (2001) 25–25

14. Abramson, D., Giddy, J., Kotler, L.: High performance parametric modeling with Nimrod/G:
Killer application for the global grid? In: Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS), Cancun, Mexico. (2000) 520– 528

15. Giunta, A., Eldred, M.: Implementation of a trust region model management strategy in
the DAKOTA optimization toolkit. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA. (2000)

16. Eres, M.H., Pound, G.E., Jiao, Z., Wason, J.L., Xu, F., Keane, A.J., Cox, S.J.: Implementation
and utilisation of a grid-enabled problem solving environment in matlab. Future Generation
Comp. Syst. 21 (2005) 920–929

17. Ng, H.K., Lim, D., Ong, Y.S., Lee, B.S., Freund, L., Parvez, S., Sendhoff, B.: A multi-cluster
grid enabled evolution framework for aerodynamic airfoil design optimization. In: ICNC (2).
(2005) 1112–1121

18. Ng, H.K., Ong, Y.S., Hung, T., Lee, B.S.: Grid enabled optimization. In: EGC. (2005)
296–304

19. Lehmensiek, R., Meyer, P.: Creating accurate multivariate rational interpolation models for
microwave circuits by using efficient adaptive sampling to minimize the number of compu-
tational electromagnetic analyses. IEEE Trans. Microwave Theory Tech. 49 (2001) 1419–

20. De Geest, J., Dhaene, T., Faché, N., De Zutter, D.: Adaptive CAD-model building algo-
rithm for general planar microwave structures. IEEE Transactions on Microwave Theory
and Techniques 47 (1999) 1801–1809

21. Weiss L.E., Amon C.H., F.S.M.E.R.D.V.I.W.L., P.G., C.: Bayesian computer-aided experi-
mental design of heterogeneous scaffolds for tissue engineering. Computer Aided Design 37
(2005) 1127–1139

22. Parmee, I., Abraham, J., Shackelford, M., Rana, O.F., Shaikhali, A.: Towards autonomous
evolutionary design systems via grid-based technologies. In: Proceedings of ASCE Comput-
ing in Civil Engineering, Cancun, Mexico. (2005)

23. Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS parameter sweep template:
User-level middleware for the grid. In: Proceedings of Supercomputing (SC 2000). (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

588 D. Gorissen et al.

24. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling parameter
sweep applications in grid environments. In: Proc. 9th Heterogeneous Computing Workshop
(HCW), Cancun, Mexico (2000) 349–363

25. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes,
J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov, D.: Adap-
tive computing on the grid using AppLeS. IEEE Transactions on Parallel and Distributed
Systems (TPDS) 14 (2003) 369–382

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Distributed General Logging Architecture for

Grid Environments

Carlos de Alfonso, Miguel Caballer, José V. Carrión, and Vicente Hernández

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia,

46022 Valencia, Spain
{calfonso,micafer,jocarrion,vhernand}@dsic.upv.es

Abstract. The registry of information about the activity of applications
is an important issue in Grid environments. There are different projects
which have developed tools for supporting the track of the resources.
Nevertheless, most of them are mainly focused in measuring CPU us-
age, memory, disk, etc. because they are oriented to the classical use
of the Grid to share computational power and storage capacity. This
paper proposes a distributed architecture which provides logging facili-
ties in service oriented Grid environments (DiLoS). This architecture is
structured so that can fit to hierarchical, flat, etc. grid deployments. The
information generated during the activity in the services are scattered
among the different levels of a Grid deployment, providing features such
as backup of the information, delegation of the storage, etc. In order to
create the hierarchy of log services, the architecture is based on discovery
facilities that can be implemented in different ways, which the user may
configure according to the specific deployment. A case of use is described,
where the DiLoS architecture has been applied to the gCitizen project.

1 Introduction

Almost any operation which occurrs in a shared environment such as the Grid is
susceptible to be registered for its late analysis. Some examples of events which
are likely to be registered are the access to the services (who and when acceded),
the kind of resources which are mainly used by someone who is authorised to
work in the Grid, how many time has been used a resource, the changes in the
state of a service, etc.

The registered information can be used later for extracting statistics about
the usage of the resources in the Grid with upgrading purposes, obtaining infor-
mation about the proper (or not) usage of the resources when a problem arises,
debugging a distributed application, or obtaining how many resources have been
used in a project for accounting purposes, among others.

In a computing environment, the most common technique for registering the
activity of an application (service, daemon, etc.) in a traditional system is to
create a log file which would contain text lines describing every action which has
been performed by this application.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 589–600, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

590 C. de Alfonso et al.

This model translated to a Grid environment would mean to have a lot of
files pertaining to any of the resources which have been deployed. Nevertheless
it would need a mechanism for mergeing these files, and thus obtaining the log
information about the whole Grid system.

One of the main objectives of Grid technology is to provide with a great
number of resources which would be frequently used by a huge number of people.
In such case, the activity in the Grid, considered in a medium-long period of
time, would generate a lot of registries which would be hard to store, manage or
backup. Also, these data would be hard to query for obtaining useful information
when analyzing the activity of the system. So, in a Grid environment, it is needed
a more appropiate method for the registration of this activity.

This paper proposes a Distributed Log System (DiLoS) which defines an ar-
chitecture for the registration and maintenance of the information about the
activity in the system. The DiLoS system scatters the log files through a Virtual
Organization, for obtaining features such as backup, redundancy, ease of access
to logs, or decentralization, among others.

The paper is organized as follows: Section 2 discuss about the systems which
are already used in Grid environment for accounting, auditory, debugging or
activity registration purposes. Next, the section 3 describes the DiLoS systems,
its components and the protocols used. Also it is described how the grid com-
ponents would be integrated in the system. Later, the section 4 exposes a case
of study about the usage of the DiLoS system in a Grid deployment oriented
to eGovernment. Finally, section 5 summarizes and outlines the work which will
follow to the proposal of the described architecture.

2 State of Art and Motivation

The registry of information is a feature which has been traditionally assumed
in Grid environments. This characteristic would support features such as ac-
counting or auditing. Nevertheless, up to now, most of the developments which
address these issues only implement partial solutions for specific subjects of each
project about Grid computing.

Most of these deployments are oriented to obtain accounting information
about specific resource usage by the users (memory, disk, load, executed jobs,
etc). The data is mainly used for being published for the rest of members of the
Virtual Oganization with the aim of monitoring the state of the system, and
scheduling tasks according that resource usage.

The next summary exposes a simple classification about the tools and archi-
tectures which are currently being deployed [1].

– NASA-IPG [2]: The system follows a common monitoring architecture for
Grid environments, sensors to measure some characteristics of the resources,
actuators to perform some process control actions and event services that
provides a mechanism for forwarding sensor-collected information to other
processes that are interested in that information. The event services represent
the monitored data using eXtensible Markup Language (XML).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Distributed General Logging Architecture for Grid Environments 591

– Heartbeart Monitor [3]: The Globus Heatbeat Monitor (HBM) was de-
signed to provide a mechanism for monitoring the state of processes and
notifying the failure of them. It allows simultaneous monitoring both Globus
system processes and application processes.

– Netlogger [4]: NetLogger proposes a distributed system which contains a
central daemon called netlogd which receives information about the usage
of specific resources (network, memory, cpu, etc.), from the applications in
the system. On the other side, the applications are instrumented, using the
NetLogger API, to generate log lines in the Universal format for Logger
Messages (ULM), which contain the values about the monitorization of the
usage of the resources during the execution of a set of commands. This
project is mainly oriented to the analysis of high performance applications.

– GMS [5]: GMS supports resource monitoring, visualizing, and accounting.
GMS was developed on top of existing Globus CORE. The system has been
successfully deployed across the Nanyang Campus Grid. The system is able
to capture Grid jobs information, organize and store the information into
a relational database, and support analyzing and visualization of the data
through the Web.

– DGAS [6]: It was originally developed within the EDG project and is now
being maintained and re-engineered within the EGEE project. The Purpose
of DGAS is to implement Resource Usage Metering, Accounting and Account
Balancing (through resource pricing) in a fully distributed Grid environment.
It is conceived to be distributed, secure and extensible.

– APEL [7]: APEL (Accounting Processor for Event Logs) parses batch, sys-
tem and gatekeeper logs generated by a site and builds accounting records,
which provide a summary of the resources consumed based on attributes such
as CPU time, Wall Clock Time, Memory and grid user DN. The collection
of accounting usage records is done through R-GMA. Each site publishes its
own accounting data using an R-GMA primary producer using its locally as-
signed R-GMA server. To collect the data from all participating sites, data is
streamed to a centralised database via a secondary producer. It is developed
in LCG Project and used in the EGEE project.

Most of the projects commented above are mainly oriented to traditional com-
putational Grids in which CPU usage, memory, disk capacity, load of the system
or jobs in execution are the parameters that worth measuring. Nevertheless in
a Grid environment also happens other events that should be tracked, such as
who accedes a services, when does it, etc. The tools which are currently being
deployed are not useful for these purpose, as they are oriented to monitor the
system and not to track the services.

Moreover, current Grid trends are oriented to architectures based on the pro-
vision of general services. This means that shared resources are more heteroge-
neous, as they are others than CPU cycles or storage capacity. The current Grid
environments are built by deploying general services, which need general logging
facilities for enabling the track of the whole system.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

592 C. de Alfonso et al.

Currently, there is a lack of support for these general services. The traditional
systems uses log files to register any information which is generated by the
running applications or the operations in a service from the Operative System. In
this sense, Syslog [8] is the most commonly used system logging utility for UNIX
systems. The applications register significant information in log files, which are
classified by the configuration of the log daemon. The saved data is useful for
analyzing the state of system, extracting statistics of usage or guess who has
misused a resource, for instance.

3 DiLoS Architecture

The DiLoS architecture is composed by two kinds of elements. On one hand, the
services which provide the log data and need to be integrated into the DiLoS
architecture, and on the other hand a specific service called “Log” which will
coordinate the distributed information.

The services which provide the logs are likely to be organized according to any
distribution (such as hierarchical, cyclical, plane, etc.). Regarding the specific
organization, the DiLoS Log Services (DLS) are distributed through system,
so that they are properly acceded by the other services. Figure 1 outlines the
architecture proposed by DiLoS, and some of the functional use cases which may
happen in the system.

Each DLS is in charge of gathering the information about a set of services,
which are under its scope. The scope of each DLS is defined according to the
specific deployment. So, DLS do not need to be installed on each node, as each
of them may gather the log information from many services. The services which
provide the logs have to be configured in such way that they are able to accede
the DLS that is in charge of it.

Each service saves log data in a local repository using the LOG operation.
Also the DLS may have their local log repository (a DLS behaves as any other
services in the system in which it is deployed).

Periodically, the services send their local registries to the DLS which is in
charge of gathering its information (using the PUSH operation). Then, the DLS
stores the registries of the service into a General Log repository, in order to
integrate them into the Distributed Log of the Grid system.

Notwithstanding the services are the only responsible to send the information
to the DLS, the data integration operation may also be initiated from the upper
level, in order to flush the local Log repositories. The DLS would call its services
for their log registries (PULL operation). This operation is part of the protocol
which suggest the services to start their PUSH operation. Nevertheless PULL
and PUSH operations are asynchronous. Moreover, it is not compulsory for the
services to PUSH data to a DLS as a response of a PULL operation (i.e. it might
not have new log entries).

On the other side, in order to provide a redundance of the information, the
General Repositories managed by the DLS are also sent to other DLS which are
into another scope.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Distributed General Logging Architecture for Grid Environments 593

Intermediate Level

Lower Level

LOG
Service
N0-A

Service CService BService A

LOG LOG LOG
LOG

PULL

PUSH

PULL PUSH

LOG

General
Log
IL1

LOG
Service
N1-B

LOG
Service
N1-A

LO
G

PULL

PUSH

Upper Level

LOG
Service
N2-B

PULL

Local
logs

LOG LOG
Service
N2-B

PULL

PUSH

PUSH

General
Log
UL1

redundancy

Service D

LOG

General
Log
IL2

PULL
PULL

Local
logs

Local
logs

Local
logs

Local
logs

Local
logs

Local
logs Local

logs

Fig. 1. DiLoS functional architecture

The architecture considers the possibility of having more than one instance
of DLS for each scope, in order to enhance performance, backup capacity, load
balancing and redundancy. When a service is ready to send their log registries
to the DLS, the service itself is the only responsible of deciding the instance to
which is going to PUSH them.

In order to integrate the services into the DiLoS architecture, the interfaces
would implement the next operations, which are also provided by the API:

– PULL: It is a public method included in general services, but also in DLSs.
It is exclusively invoked by a DiLoS Log service, in order to suggest the
service which implements it to send the log registries to the corresponding
DLS service, deployed in DiLoS architecture.

– PUSH: It is a public method implemented only by DLSs. It is invoked by
any service when they need to transmit its registries to the log service. The
registries PUSHed are not changed by the DLS, as the main purpose is to
store them into the general repository. The connection between different
DLSs is also carried out using this operation.

– LOG: It is a private method which is implemented by general services. It is
called by the service itself to locally save a log. Later it would be transmitted
to DiLoS log services using PUSH operations.

– QUERY: This public method returns a set of logs which accomplish with a
pattern (date, user, name service).

Although the protocol for relaying the logs to a DLS is created by the pair
of calls PULL/PUSH, it is important to remark that these operations are asyn-
chronous: the DiLoS log services would require the services for log registries by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

594 C. de Alfonso et al.

using the PULL operation, but these services are the effective responsible of
deciding whether to send or not the data, and when to perform the operation.

Furthermore, it is not compulsory that the DLS to which the services PUSH
the logs would be the same to which calls for the PULL operation. The services
are the responsible of deciding the DLS to which send their registries, by using a
specific discovery system for the infrastructure in which is deployed. The discov-
ery of the DLS services is modelled by an operation which the user may provide
for its particular organization. Some examples are (1) a static file which contains
the URIs of the DLS, (2) a function which searches for services in a Globus Index
Service or (3) a method which links with a specific discovery architecture.

The DiLoS architecture provides a simple implementation for DLS discovery,
which is based on static files for any service, which contain the list of possible
DLSs to which the service can PUSH its log registries.

In order to clarify the functionality of this operation the next fragment exposes
the pseudo code of the function, which would send the log entries, using the
discovery system.

Procedure Relay (log_block)
LLS = Discover_log_services
If (is empty (LLS)) Then

Abort_operation
Else

LLS(i).PUSH(log_block)
Save_reference_log_service(LLS(i))

End if
End Procedure

The usage of the specific discovery system is the key for connecting the Di-
LoS architecture to any particular Grid infrastructure. When the services are
deployed, they have to be configured so that they create the proper organiza-
tion which may be reflected in the system. As an example, a local department
may use a DLS while another department should use its specific DLS; so, the
services under each scope should be configured in such way that they discover
its corresponding DLS when they try to PUSH their block of log registries.

3.1 Logging Policy

According to the structure proposed by DiLoS architecture, it may seem that it
tries to centralise the information into a General Log repository. Nevertheless, it
is only an extreme which would be possible, by applying the facilities provided
by the architecture.

The effective owners of the log registries are the services themselves, as they
are in a Grid environment. Nevertheless, the usage of DLS provides mechanisms
for these services to delegate the storage of such information to the DiLoS Log
Services, which would be part of the Grid infrastructure.

Furthermore, each service is the effective responsible of sending the informa-
tion to the DLSs, but also deciding which kind of registries are going to be sent

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Distributed General Logging Architecture for Grid Environments 595

to these Log Services. In fact, the DLS are introduced for modelling situations
such as backup of information or providing more storage capacity.

In some cases, the laws also enforce the electronic transactions to be stored
by some entities (such as the LSSI in Spain [9]). The DLS would also be useful
for implementing such policies, as the Log services may be associated to the
authorities which may store the information.

Nevertheless, it is possible to isolate a set of data (preventing its relay to other
scopes) from other levels, where it may be useless.

3.2 Data Saved in a Log

Each service deployed in a Grid environment is the responsible of deciding which
kind of information may be registered, and thus saved into the log file. In this
sense, in order to provide support for general services, the DiLoS architecture
does not force to store a strict kind of information. This decission is supported
by the fact of the deployers of the services are also the responsible of providing
applications to interpret the information that is registered.

So, the DiLoS architecture allows registering any type of log information.
Nevertheless, the DiLoS architecture defines three basic fields which are needed
to be stored for the integration and querying for data, but also an extended field
in which the services can save their data in their specific format

Every registry stored by the DiLoS log system is composed by the next fields:

1. User identity: it is the identity of the effective user which has called the
service, and thus is the responsible of the operation.

2. Time stamp: it defines the time and date when the service calls the LOG
function.

3. Service identification: it can be a particular identification for the service
which saves the log line. It is important that this field is interpreted according
to the specific system deployment. An example of deployment would use WS-
naming [10] as a method for services identification.

4. LOG part: it is the extended field which encapsulates the data to be register
by the service.

3.3 Use Cases

The DiLoS architecture defines the interface, the architecture and the protocol
which would be used for implementing a Distributed Logging System. Never-
theless, there may be a large variety of particular deployments of the DiLoS
architecture, which would implement the particularities of each system. The fig-
ure 2 explains a general example of use case.

1. At first, a general service performs an operation, and it needs to register this
occurrence. So, the service uses LOG interface to save a log line in its local
repository (a log file).

2. A log service called N1-B, which is placed in a upper level, requires gath-
ering the log registries of service D. So, the log service N1-B invokes the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

596 C. de Alfonso et al.

General
Service D

DiLoS Log
service N1-B

DiLoS Log
service N2-B

Service Discovery
System

General
Log IL1

General
Log IL2

LOG

PULL

LOG

PULL

LOG

PUSH
Save Registries

LOG

PUSH
Save Registries

Relay

Discover Log Service

Ref. to Service N1-B

PUSH
Save Registries

Save reference to N1-B

Fig. 2. DiLoS sequence diagram. Interaction among services in DiLoS Architecture.

PULL operation over the service D. As any other general service it can call
its internal LOG function to store some information about its operations
performed. After some time, the service D calls the PUSH interface of log
service N1-B. In this way, a set of registries are sent and stored in a general
log repository by the log service N1-B.

3. Moreover, the service N2-B located at level 2 needs collect data from another
log services placed at lower levels. The service N2-B can search for a DLS
through the discovery system. The procedure continues, as the second point
calling PULL operation over the service N1-B.

4. The local repository of the general service D is full, and it is needed to
perform a backup of the log entries. The service D initializes the RELAY
procedure, which will discover the DLS to send the block of registries, and
will perform the PUSH operation.

These would be the description of the steps which would be carried on in a
general use case. It is possible to summarize the use cases in the next categories:

1. Only store and not relaying (single mode): the service store log data in a
local repository (LOG), but it does not use the DLS to scatter its registries.
The service works as an independent entity.

2. Relay but not storing (diskless mode): the services relays every log line gen-
erated (PUSH). The information is delegated to one or several log services.

3. Store and relay all the data (backup mode): in this mode, the DLS services
work as backup systems. As in the first case all the log data is stored locally,
but the information is also sent to a DLS (LOG and PUSH) in order to have
a backup copy for its later recovery.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Distributed General Logging Architecture for Grid Environments 597

4. Store a set and relay the rest (selected mode): when the services decide that
a particular information do not has to be sent to any other entity, it is stored
locally this data. In other case, the information is PUSHed into another DLS
(LOG and PUSH selected logs).

3.4 Application Models

The main purpose of the DiLoS architecture is to provide a General Log System
for general Grid services. Any application (service, daemon, activity system,
etc.) generates a set of useful information which has to be available for several
reasons. DiLoS cover the requirements of most of the log models in current Grid
environments, performing the specific configurations.

Some of the purposes for which this architecture would be applicable are:

– Audit procedures: It is important to collect information about a period of
time with the aim of identifying the global state of the system. The DiLoS
architecture provides mechanisms for storing the identity of the users which
use the services, and thus identifying what happened at each moment.

– Accounting: in a Grid environment can exist specific services which provide
resources to the user. These resources may be meassured, and annotated
who has used them for later stablishing a price of usage and thus creating a
model of exploitation. The services can use the DiLoS log services to registry
log lines including information about the executed jobs, time of cpu spent for
each one, disk quota, permitted or deny access, etc. and any log line would
be associated to the identity of the user who has called the service.

– Debugging: An application can employ DiLoS to analyze logs, and deciding
whether the behaviour of the application is what was expected or not, and
thus correcting it.

4 A Particular Implementation: The gCitizen Project

As commented in previous sections, the DiLoS system can be adapted to most
of the service oriented Grid deployments. The key issue is to provide the specific
implementation of the functions which decide where common services have to
send their log entries. As an example it is described the DiLoS customization for
the middleware developed in the gCitizen project [11].

The aim of the gCitizen project is the creation of a Grid middleware for the
transparent management of the information about citizens in the public admin-
istration, and the administrative procedures in which the citizens are involved,
independently of the point of entry to the Administration (understood as a global
entity). The vision of the project is outlined in the Figure 3.

The gCitizen project uses the Globus Toolkit 4 implementation of the WSRF
standard, adding some new components which complete the architecture in order
to use it in an eGovernment framework.

One of the main components of gCitizen is a General Addressing Convention
(GAC), which is used to identify the services in the system. GAC follows a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

598 C. de Alfonso et al.

Fig. 3. gCitizen Project

similar approach to the LDAP Distinguished Names [12,13], using the standard
DN fields as C, ST, O, OU, etc. and some other additional fields added to
complete the hierarchy in the public administration. It uses the DN to identify
the services, but also provides some semantic information about its functionality
and the hierarchical location in the gCitizen system. An example of the DNs used
in the gCitizen project is:

/C=ES/A=Valencia/ST=Valencia/O=Diputacion de Valencia/
OU=Gestion/CN=Padron

In order to find the services using this addressing convention, the gCitizen
project provides the Distributed Discovery Architecture (DiDA), which enables
to obtain the physical location of a service, using its DN.

The DiLoS architecture has been used in the gCitizen project, applying the
DiDA discovery system and the GAC convention in order to guess the proper
DLS to which each service may send its log entries.

The most suitable distribution of DiLoS services in gCitizen is to set up one
DLS at each administrative level, and another one for each department. Never-
theless, some of these sections would not be able to deploy the corresponding
DLS, and thus would delegate the responsibility to the DLS at upper levels.

The DiLoS architecture makes easy the customization, by detaching the dis-
covery of the corresponding DLS as a function which may be provided by the
user. In this sense, a function has been specifically created for gCitizen, making
use of the GAC and the DiDA architecture.

According to the distribution of the DLS, the name of the one to which a
service must send its logs is obtained by changing the CN from its DN, and
using the ”CN=Log” instead. For the service shown previously the name of the
DiLoS service of the same level it would be:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Distributed General Logging Architecture for Grid Environments 599

/C=ES/A=Valencia/ST=Valencia/O=Diputacion de Valencia/
OU=Gestion/CN=Log

If this service does not exist or is unavailable, the service must go up in
the levels of the hierarchy provided by its DN, searching a DLS at an upper
organizational level. This scheme must be followed until it finds an available
DLS or it reaches the top of the hierarchy:

/C=ES/A=Valencia/ST=Valencia/CN=Log

When a DLS needs to use the PULL operation, it must remove the CN from its
DN, and contact every service which matches the remaining DN. As an example,
the previous DLS would try to use the next pattern:

/C=ES/A=Valencia/ST=Valencia/*

The services in gCitizen log the external calls, the user who has performed
the operation, a timestamp which indicates when it was carried out, and some
specific information for each operation.

5 Conclusions and Further Work

Most of the current Grid monitoring developments are oriented to the registra-
tion of the information regarding to computing services among the Grid. Never-
theless, there is a lack of support for registering the activity in Grid deployments
composed by general services.

In this sense, the DiLoS architecture has been developed. It provides a protocol
and an architecture for scattering the logging information among distinct scopes
in the Grid. In this sense, the DiLoS system provides elements for backing up
the information, delegating its storage, etc. for the services which are deployed
in the Grid.

Notwithstanding these facilities, the services are the effective owners of the
information, and thus they are the responsible of deciding whether to send or
not to the DiLoS Log services which are part of the logging infrastructure.

This is a complete architecture with a well defined protocol and responsibili-
ties. It also provides an implementation which would cover common infrastruc-
tures. In order to ease the process, it is based on a discovery mechanism, which
is the key to addapt DiLoS to almost any Grid organization.

Nevertheless, there are some issues which should be enhanced in order to
complete the system. As an example, the recovery of the information needs a
revision, in order to establish a protocol for gathering all the information which
is scattered in the system. Currently, the services need to recover it from upper
services, querying them about the registries generated by itself.

Another issue which would be interesting to be studied is the usage of standard
formats for creating the log entries. As an example, it would be interesting to
use XML further than the current plain text format.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

600 C. de Alfonso et al.

Acknowledgments

The authors wish to thank the financial support received from the “Ministerio
de Industria, Turismo y Comercio” to develop the project with reference
FIT-350101-2004-54.

References

1. Zoltán Balaton, Peter Kacsuk, Norbert Podhorszki, and Ferenc Vajda. Comparison
of representative grid monitoring tools. http://www.lpds.sztaki.hu/publications/
reports/lpds-2-2000.pdf, 2000.

2. A. Waheed, W. Smith, J. George, and J. Yan. An infrastructure for monitoring
and management in computational grids. In S. Dwarkadas, editor, Proceedings of
the 5th International Workshop on Languages, Compilers, and Run-Time Systems
for Scalable Computers (LCR 2000), page 235, Rochester, NY, USA, May 2000.

3. The Globus Alliance. The globus heartbeat monitor specification.
http://www-fp.globus.org/hbm/heartbeat spec.html.

4. Brian Tierney, William E. Johnston, Brian Crowley, Gary Hoo, Chris Brooks, and
Dan Gunter. The netlogger methodology for high performance distributed systems
performance analysis. In HPDC, pages 260–267, 1998.

5. Hee-Khiang Ng, Quoc-Thuan Ho, Bu-Sung Lee, Dudy Lim, Yew-Soon Ong,
and Wentong Cai. Nanyang campus inter-organization grid monitoring system.
http://ntu-cg.ntu.edu.sg/pub/GMS.pdf, 2005.

6. Cosimo Anglano, Stefano Barale, Luciano Gaido, Andrea Guarise, Giuseppe Pata-
nia, Rosario M. Piro, and Albert Werbrouck. The distributed grid accounting
system (dgas). http://www.to.infn.it/grid/accounting/main.html, 2004.

7. Rob Byrom, Roney Cordenonsib, Linda Cornwall, Martin Craig, Abdeslem
Djaoui, Alastair Duncan, Steve Fisher, John Gordon, Steve Hicks, Dave
Kant, Jason Leakec, Robin Middleton, Matt Thorpe, and Antony Wilson.
John Walk. Apel: An implementation of grid accounting using r-gma.
http://www.gridpp.ac.uk/abstracts/allhands2005/ahm05 rgma.pdf, 2005.

8. C. Lonvick. The BSD Syslog protocol. RFC 3164, Internet Engineering Task Force
(IETF), 2001.

9. Ministerio de Industria Turismo y Comercio. Ley de Servicios de la Sociedad de la
Información y de comercio electrónico. http://www.lssi.es, 2002.

10. Andrew Grimshaw and Manuel Pereira. OGSA naming working group.
https://forge.gridforum.org/projects/ogsa-naming-wg, 2005.

11. Carlos de Alfonso, Miguel Caballer, and Vicente Hernández. gCitizen, Grid Tech-
nology for eGovernment Systems Integration. In Proceedings of IADIS Interna-
tional Conference e-Commerce 2005, pages 321–324, 2005.

12. W. Yeong, T. Howes, and S. Kille. Lightweight directory access protocol. RFC
1777, Internet Engineering Task Force (IETF), 1995.

13. S. Kille. A string representation of distinguished names. RFC 1779, Internet
Engineering Task Force (IETF), 1995.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.lpds.sztaki.hu/publications/reports/lpds-2-2000.pdf
http://www.lpds.sztaki.hu/publications/reports/lpds-2-2000.pdf

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 601 – 609, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Interoperability Between UNICORE and ITBL

Yoshio Suzuki1, Takahiro Minami1, Masayuki Tani1, Norihiro Nakajima1,
Rainer Keller2, and Thomas Beisel2

1 Center for Computational Science and E-systems,
Japan Atomic Energy Agency

6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015, Japan
{suzuki.yoshio,minami.takahiro,tani.masayuki,

nakajima.norihiro}@jaea.go.jp
2 High Performance Computing Center Stuttgart,

Universität Stuttgart
70550 Stuttgart, Germany

{keller, beisel}@hlrs.de

Abstract. The interoperability among different science grid systems is indis-
pensable to worldwide use of a large-scale experimental facility as well as a
large-scale supercomputer. One of the simplest ways to achieve the interopera-
bility is to convert message among different science grid systems without modi-
fying themselves. Under such consideration, the interoperability between
UNICORE and ITBL (IT-Based Laboratory) has been achieved without modi-
fying these grid systems by adopting a connection server which works as a me-
diator. Until international standardization is established, the method of message
conversion among different science grid systems is promising as a way to
establish the interoperability.

1 Introduction

Recently, there are some scientific global projects such as the International Thermo-
nuclear Experimental Reactor (ITER) as well as the Large Hadron Collider (LHC). As
the increase of global projects, the worldwide science grid environment which enables
worldwide use of such a large-scale experimental facility becomes more necessary.
To construct such an environment, the interoperability among different science grid
systems is indispensable. A worldwide science grid environment is also expected to
worldwide use of a large-scale supercomputer. In Japan, the national project (hereaf-
ter peta-scale supercomputer project) to develop and utilize the leading edge and
multipurpose supercomputer begins in April 2006, where a 10 PFlops supercomputer
is planned to be available around year 2010. The development and improvement of
grid middleware is also situated in this project.

So far, as the most promising way to achieve international interoperability among
different science grid systems, research and development of international standardiza-
tion of grid systems have been promoted. The establishment of standardization makes
it easier to interoperate different science grid systems. It also contributes to the en-
hancement of a grid system because each component of different grid systems can
cooperate more flexibly with each other. However, since different types of grid sys-
tem have already constructed by adopting various architectures in all the world, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

602 Y. Suzuki et al.

standardization of all these systems demands their modification, which prevents users
from continuing the development of their applications on these grid systems.

It is critical to keep operating existing science grid environments in which the users
continuously develop and execute their applications. One of the simplest ways to
achieve the interoperability with keeping their operations is to convert message
among different grid systems without modifying themselves. Under such considera-
tion, the interoperability between UNICORE and IT-Based Laboratory (ITBL) [1] has
been tried.

ITBL project is a national project placed as one of the e-Japan Priority Policy Pro-
gram to realize the e-Japan Strategy which sets goals to make Japan the world's most
advanced IT nation. ITBL project was launched at April 2001 by six institutes: the
National Institute for Materials Science (NIMS), the National Research Institute for
Earth Science and Disaster Prevention (NIED), Japan Aerospace Exploration Agency
(JAXA), the Institute of Physical and Chemical Research (known as RIKEN), Japan
Science and Technology Agency (JST), and Japan Atomic Energy Agency (JAEA)
and has been carried out to March 2006 as 5 years’ plan. The objective of ITBL pro-
ject is to establish virtual laboratories in which researchers in various disciplines can
collaboratively develop highly sophisticated simulation systems by fully utilizing
computer resources located in high-speed network. To achieve this, ITBL project has
been classified roughly into 4 activities; development of applications, development of
system infrastructure software, maintenance of shared facility including a supercom-
puter, and promotion activity.

Center for Computational Science and E-systems of Japan Atomic Energy Agency
(CCSE/JAEA) has developed ITBL middleware as ITBL system infrastructure soft-
ware and has operated it since April 2003. Tools of ITBL middleware enable secure
communication among plural supercomputers via internet (STARPC: Seamless
Thinking Aide Remote Procedure Call), parallel computation between different types
of supercomputer (STAMPI: Seamless Thinking Aide Message Passing Interface),
job control on distributed computational environment (TME: Task Mapping Editor),
parallel and distributed visualization (AVS/ITBL) and so on [1]. Researchers can use
these tools on the Web browser.

Figure 1 shows the overview of the ITBL environment. At the end of the project
(March 2006), 680 researchers from 89 organizations participate in ITBL project and
ITBL middleware integrates about 1/5 (45 TFlops) of all the computer resources
owned by the institutes and the universities for scientific research in Japan. These
resources consist of 26 computers from 13 sites (10 organizations and 3 areas of
JAEA). CCSE/JAEA keeps operating ITBL middleware to maintain the ITBL envi-
ronment and contributes to the establishment of a backbone grid environment in the
peta-scale supercomputer project launched at April 2006.

Uniform Interface to Computing Resources (UNICORE) [2] is one of the represen-
tative grid middleware. It has been developed in UNICORE project and UNICORE
Plus project [2] of Germany and improved in EUROGRID project [3] and GRID
project [4] of EU and now further improved in UniGrids project [5]. And UNICORE
is used in High Performance Computing Center in Stuttgart (HLRS), Germany with
which CCSE/JAEA has collaborates since 1999. Thus we have selected UNICORE as
a first step towards international interoperability with ITBL.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Interoperability Between UNICORE and ITBL 603

Also in Japan, UNICORE has been used in National Research Grid Initiative
(NAREGI) project [6]. This project has been carried out from April 2003 to March
2006, aimed at developing infrastructure software of sufficient quality to become an
international standard. This infrastructure software is also expected to contribute to
the development and improvement of grid middleware in the peta-scale supercom-
puter project. Therefore, the interoperability between UNICORE and ITBL is also
meaningful to enhance the Japanese science grid environment.

89 organizations （680 users） 26 computers （19 Types, 45TFlops ）

Super SINET (10Gbps)
SINET(1Gbps)

32GFlops
1500GFlops 12400GFlops

-

SV1EXSC/EX40 PC cluster

8GFlops

Onyx300

13100GFlops

Altix3900

-

Origin2000

334GFlops

Altix3700

282GFlops

SX-7

96GFlops

SX-6

790GFlops

720GFlops

SR800

8GFlops

SX-6i

135GFlops

19GFlops

VPP5000

9300GFlops

1000GFlops

21GFLOPS

5GFLops
PrimePower

5440GFlops

SR11000

1GFlops

pSeries610

83GFlops

pSeries690

Material Design
Platform

Distributed Data
Base System

3-D Full Scale
Earthquake

Testing System

Space and
Aeronautics
Simulation

System

Cell
Simulation
System

Information
Sharing System

for
Bioinformatics

Numerical
Environment

System

・Institute of Industrial Science,
University of Tokyo

・Institute for Materials Research,
Tohoku University

・Disaster Control Research Center,
Tohoku University

・Computing and Communication
Center, Kyushu University

・Faculty of Engineering,
Kyoto University

・Center for Information Science,
Japan Advanced Institute of
Science and Technology

・National Institute for Materials Science
・Japan Aerospace Exploration Agency
・National Research Institute for Earth
Science and Disaster Prevention

・Japan Atomic Energy Agency
(Tokai, Ueno, Kansai)

・RIKEN

main applications

440(SPEC

fp2000

X 2

H9000V

9.6GFlops

SR2201

-

Origin3200

13 sites

Fig. 1. Overview of the ITBL environment. 680 users from 89 organizations share 26 com-
puters containing 19 types ones from 13 sites (11 organizations and 3 areas of JAEA). Main
applications developed in ITBL project are also shown.

2 Main Function

As a main function of the interoperability between UNICORE and ITBL, we have
achieved a job submission with each other. Namely, ITBL users can submit a job to
any computer under UNICORE (Vsite) by using Task Mapping Editor (TME) [7, 8]
which is a work flow tool on ITBL middleware. And UNICORE users can submit a
job to any computer under ITBL (ITBL computer) by using a client graphic user in-
terface (GUI) of UNICORE.

TME has a function to define, execute and monitor a scenario of job submissions,
program executions and input/output file transfers over ITBL computers. Most of the
applications developed on ITBL use the function of TME. Therefore, most of ITBL
users can use any Vsite in the same manner. We have installed the following functions.

− Conversion of request from TME into Abstract Job Object (AJO)
− Submission of converted AJO into UNICORE

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

604 Y. Suzuki et al.

− Mutual transfer of input/output file
− Monitoring a program execution

Here, AJO is the Java object created when the job is submitted from the client GUI of
UNICORE.

TME has the GUI to define programs and input/output files as an individual mod-
ule and to connect them to be one scenario. Using the module which defines the pro-
gram (program execution module), users can specify the computer to execute the
program. In the same manner, users can specify the Vsite and execute the program
(executable software) on it. Figure 2 shows an example of the work flow using the
Vsite. Here, data on the ITBL computer is an input file (the module at the lower left in
figure 2), the program is executed on the Vsite (the module in the middle) and data is
output as an output file on the ITBL computer (the module on the right).

It should be noted that users have to set the input file which defines the program
execution on the Vsite as a module (the module at the upper left).

Push “Run All” to
execute Job

Program
on UNICORE
Computer （Vsite）

Output File

on ITBL Computer

Input Files

on ITBL Computers

Fig. 2. The GUI of TME. A program (executable software) executed on UNICORE computer
(Vsite) is defined as a module of TME.

Inversely, UNICORE users can use any ITBL computer. We have installed the fol-
lowing functions.

− Recognition of ITBL site as an UNICORE site (Usite)
− Conversion of AJO into ITBL’s request
− Mutual transfer of input/output file
− Monitoring a program execution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Interoperability Between UNICORE and ITBL 605

Figure 3 shows an example of the work flow using the ITBL computer from the
client GUI of UNICORE. Here, data on the Vsite is an input file (the module at the
upper in figure 3), the program is executed on the ITBL computer (the module in the
middle) and data is output as an output file on the Vsite (the module at the bottom).

USite corresponding to
ITBL site

VSite corresponding to
ITBL computer

Description example
of Script task

Client GUI of UNICORE

Export task (Output)
Files on Vsite

Script task
(script, command)

Import task (Input)
Files on Vsite

Fig. 3. The GUI of UNICORE client and the description example of script task

3 Architecture

To achieve the above function without modifying architectures of UNICORE mid-
dleware and ITBL middleware, we have adopted a connection server which works as
a mediator between these two systems. Both in UNICORE and ITBL, each site has
one gateway server respectively. Thus, it is appropriate to prepare the virtual server to
enable to change the way of accessing the computers.

The architecture to achieve the interoperability is shown in Figure 4. To control the
job on any Vsite from the client GUI of ITBL (TME), we installed in the connection
server "UNICORE collaboration tool" which consists of "Job Relay Servlet",
"UNICORE Collaboration Interface" and "UNICORE Collaboration Module". Here is
the brief process to submit the job from the client GUI of ITBL to the Vsite.

1. The request from the client GUI of ITBL to an Usite is received by the Job Relay
Servlet.

2. The Job Relay Servlet calls the UNICORE Collaboration interface on the connec-
tion server by way of RMI (Remote Method Invocation) according to the request.

3. The ITBL certificate is connected with the UNICORE certificate.
4. The UNICORE Collaboration Module generates AJO according to the request infor-

mation, the authentication using this UNICORE certificate is performend on the
UNICORE server, and then the AJO is submitted to the Usite. After processing at the
Usite, a result of the AJO request is returned to UNICORE Collaboration Module.

5. The result is relayed to Job Relay Servlet, and is returned to the client GUI.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

606 Y. Suzuki et al.

Fig. 4. Architecture of interoperability between UNICORE middleware and ITBLmiddleware

Inversely, in order to control the job on ITBL computers from the client GUI of
UNICORE, we installed in the connection server the similar system to the UNICORE
and "ITBL collaboration application" that manages job submission, job cancellation
and status acquisition on ITBL computers based on the information from TSI (Target
System Interface).

As the process to execute the program on the ITBL computer, the following proce-
dures are executed in the connection server:

1. Gateway checks the certification attached to AJO and transfers the request to NJS
(Network Job Supervisor) which is located inside the firewall.

2. NJS receives AJO certified by Gateway, checks with UUDB (UNICORE User
Data Base) whether it is possible to login to the computer resource, converts (em-
bodies) AJO into the job executable on the computer and forwards the request to
TSI.

3. ITBL collaboration application converts information from TSI in order to submit
the job to the ITBL computer.

4. The UNICORE certificate is connected with the ITBL certificate, and then the au-
thentication using this ITBL certificate is performed on the ITBL server.

5. The job is submitted to the ITBL computer.
6. The result is returned to the client GUI of UNICORE.

Here, procedures from 1 to 3 are the same as those when a program is executed in
UNICORE.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Interoperability Between UNICORE and ITBL 607

Finally in this section, we mention the certification method. Both UNICORE and
ITBL use X.509 certificate. As the realization of this interoperability, users can use
two grid environments with single sign-on, if they are allowed to use both systems
(namely they have to have both certificates). Shown in the previous procedures, when
ITBL users access the Vsite, ITBL certificate is converted to UNICORE certificate by
UNICORE Collaboration Module. On the other hand, when UNICORE users access
the ITBL computer, UNICORE certificate is converted to ITBL certificate by ITBL
Collaboration Application.

ITBL adopts HTTPS protocol when users access the ITBL (Front) Server located
in DMZ (DeMilitarized Zone). The connection server is also located in the same
DMZ. SSL protocol is adopted for the communication between UNICORE server and
communication server. Consequently, the secure communication based on SSL en-
cryption is guaranteed.

4 Examination

We evaluate the time for job submission between two systems. To evaluate that, we
use the ‘date’ command described in a shell script as the executing job. In addition,
we use the same machine for Vsite and ITBL computer. Table 1 shows the time from
beginning the operation for job submission to getting the message of job completion
for four cases. In case 1 (using only UNICORE), it takes 9 seconds totally. Since the
time of job execution is less than 1 second (shown in case 3), it takes about 7 seconds
to get the message of job completion. In case 2 (UNICORE to ITBL), it takes 56
seconds from job submission to beginning of job execution (procedure 1, 2, 3 and 4
mentioned in the previous section). This is mainly for the authentication to access
ITBL (procedure 4 mentioned in the previous section). It is 72 seconds from the be-
ginning of job execution to getting message of job completion. The reason why it
takes longer is that the message of job completion got in ITBL is converted to AJO.

Table 1. Evaluation of the time for job submission between UNICORE and ITBL

 Job submission Beginning of job
execution

Getting message
of job completion

1. UNICORE only 00:01 00:02 00:09
2. UNICORE to ITBL 00:01 00:57 02:09
3. ITBL only 00:03 - 00:03
4. ITBL to UNICORE 00:10 - 01:08

It takes longer time for job submission from ITBL to UNICORE based on the simi-
lar reason. The reason why the case2 is longer than the case4 is that it takes longer
time for ITBL to authenticate the certificate. Since these times are enough shorter
than that of the usual job execution as well as the data transfer, these delays do not
become the bottleneck. The huge data transfer caused by large-scale simulations via
Internet is serious problem regardless of interoperability. This is beyond the scope of
this paper and requires further study.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

608 Y. Suzuki et al.

To further evaluate the constructed functions we have applied them into
UNICORE of HLRS, Germany under the international cooperation between HLRS
and CCSE/JAEA. As a result, the science grid environment enabling to interoperate
SX-8 of HLRS and the 26 computers of ITBL has been constructed. Now we have
been installing the assembled-structure analysis program (we call it ITBLFEM) in 4
computers: Altix3700Bx2 in Tokai Research and Development Center of JAEA,
SX-6 and pSeries690 in CCSE of JAEA, and SX-8 in HLRS. ITBLFEM has been
developed on ITBL environment to contribute to the safety of the nuclear power
plant in case of extra large-scale earthquake. The results will be described in our
future paper.

5 Related Works

There have been the GRIP and the UniGrids as related works. The GRIP has been
carried out for 2 years from January 2002 to December 2003. The UniGrids, which is
placed as one of the 6th framework program Specific Targeted Research Project
(STREP), has been carried out for 2 years from July 2004. These projects aim at the
realization of the interoperability of UNICORE and Globus [9]. The research and
development for standardization have also been addressed. Both projects enable
UNICORE users to utilize computers managed by Globus. Here, the standardization
of these systems (especially for UNICORE in the GRIP) demands their modification.

6 Summary

We have achieved the interoperability between UNICORE and ITBL by adopting a
connection server which works as a mediator between these different grid systems.
The advantage of this method is that both systems need not be modified. By realizing
the interoperability, ITBL users can control a job on any UNICORE computer from
the GUI of TME, which is the work flow tool of ITBL, and UNICORE users can
control a job on any ITBL computer from the client GUI of UNICORE.

 Applying this function to UNICORE in HLRS of Germany, we have constructed
the science grid environment interoperating the SX-8 in HLRS and SX-6, pSeries690,
and Altix3900 in JAEA. The method of message conversion among different science
grid systems is promising as a way to establish the interoperability until international
standardization is established.

Acknowledgement

The authors thank Dr. Resch (HLRS), Dr. Yagawa (CCSE/JAEA), Dr. Hirayama
(CCSE/JAEA), and Dr. Aoyagi (CCSE/JAEA) for their insightful advice. Part of this
research carried out under the international cooperation between Center for Computa-
tional Science and E-systems in JAEA (CCSE/JAEA) and High Performance
Computing Center in Stuttgart (HLRS).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Interoperability Between UNICORE and ITBL 609

References

1. Kenji Higuchi, Toshiyuki Imamura, Yoshio Suzuki, Futoshi Shimizu, Masahiko. Machida,
Takayuki Otani, Yasuhiro Hasegawa, Norihiro Yamagishi, Kazuyuki Kimura, Tetsuo Ao-
yagi, Norihiro Nakajima, Masahiro Fukuda and Genki Yagawa: Grid Computing Support-
ing System on ITBL Project. High Performance Computing, Veidenbaum et al. (Eds.) 5th
International Symposium ISHPC2003 (20-22 October 2003, Tokyo-Odaiba, Japan, Pro-
ceedings), LNCS2858 (2003) 245-257

2. UNICORE FORUM http://www.unicore.org/
3. EUROGRID PROJECT http://www.eurogrid.org/
4. GRID INTEROPERABILITY PROJECT http://www.grid-interoperability.org/
5. UNIGRID PROJECT http://www.unigrids.org/
6. NAREGI PROJECT http://www.naregi.org/index_e.html
7. Toshiyuki Imamura Yukihiro Hasegawa, Nobuhiro Yamagishi and Hiroshi Takemiya:

TME: A Distributed resource handling tool. Recent Advances in Computational Science &
Engineering, International Conference on Scientific & Engineering Computation (IC-SEC)
(3-5 December 2002, Raffles City Convention Centre, Singapore) (2002) 789-792

8. Y. Suzuki, N. Matsumoto, N. Yamagishi, K. Higuchi, T. Otani, H. Nagai, H. Terada, A.
Furuno, M. Chino and T. Kobayashi: Development of Multiple Job Execution and Visuali-
zation System on ITBL System Infrastructure Software and Its Utilization for Parametric
Studies in Environmental Modeling. Computational Science - ICCS 2003 Sloot et al. (Eds.)
International Conference (2-4 June 2003, Melbourne, Australia and St. Petersburg, Russia,
Proceedings, Part III), LNCS2659 (2003) 120-129

9. The Globus Alliance http://www.globus.org/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Failure Injection Mechanisms to Experiment and
Evaluate a Grid Failure Detector

Sébastien Monnet1 and Marin Bertier2

1 IRISA/University of Rennes I
Sebastien.Monnet@irisa.fr

2 IRISA/INSA
Marin.Bertier@irisa.fr

Abstract. Computing grids are large-scale, highly-distributed, often hierarchi-
cal, platforms. At such scales, failures are no longer exceptions, but part of the
normal behavior. When designing software for grids, developers have to take fail-
ures into account. It is crucial to make experiments at a large scale, with various
volatility conditions, in order to measure the impact of failures on the whole sys-
tem. This paper presents an experimental tool allowing the user to inject failures
during a practical evaluation of fault-tolerant systems. We illustrate the usefulness
of our tool through an evaluation of a hierarchical grid failure detector.

Keywords: Failure injection, failure detection, performance evaluation, fault tol-
erance, grid computing.

1 Introduction

A current trend in high-performance computing is the use of large-scale computing
grids. These platforms consist of geographically distributed cluster federations gather-
ing thousands of nodes. At this scale, node and network failures are no more exceptions,
but belong to the normal system behavior. Thus grid applications must tolerate failures
and their evaluation should take reaction to failures into account.

To be able to evaluate a fault-tolerant application, it is essential to test how the appli-
cation reacts to failures. But such applications are often non deterministic and failures
are not predictable. However, an extensive experimental evaluation requires execution
reproducibility.

In this paper, we introduce a failure injection tool able to express and reproduce var-
ious failure injection scenarios. This provides the ability to extensively evaluate fault-
tolerance mechanisms used by distributed applications. As an illustration, we use this
tool to evaluate a failure detector service adapted to the grid architecture [7]. A fail-
ure detector is a well-known basic building block for fault-tolerant distributed systems,
since most fault-tolerance mechanisms require to be notified about failures. These ex-
periments are run over the Grid’5000 National French grid platform [1].

The remainder of this paper is composed as follows: Section 2 motivates the need of
failure injection mechanisms. Section 3 describes our failure injection tool and explains
how to use it. Section 4 presents the failure detector we evaluate. Section 5 illustrates
the usage of our failure injection tool for a practical evaluation of the failure detector.
Finally, Section 6 concludes the paper.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 610–621, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Failure Injection Mechanisms to Experiment 611

2 Experimenting with Various Volatility Conditions

2.1 System Model

In this paper, we suppose that the grid architecture of the system implies a hierarchical
organization. It consists of clusters of nodes with high-connectivity links, typically Sys-
tem Area Networks (SAN) or Local Area Networks (LAN), interconnected by a global
network, such as Internet. In this context, we call local group each pool of processes
running within the same SAN or LAN, and global network the network which connects
the local groups.

Each local group is a finite set of processes that are spread throughout a local net-
work. The distributed system is composed of a finite set of local groups. Every process
communicates only by sending and receiving messages. All processes are assumed to
have a preliminary knowledge of the system’s organization.

We rely on the model of partial synchrony proposed by Chandra and Toueg in [12].
This assumption fit the behavior of a typical computing grid: nodes crashes are possible
and messages may be delayed or dropped by routers during network congestion.

Note that the two levels of the grid hierarchy exhibit different properties for commu-
nications (latency, bandwidth, message loss rate).

2.2 Benefits of Experimentation

A theoretical evaluation of a system can be carried out using a formal proof of a sys-
tem model, which can validate the system design. However, it relies on a formal model,
which is generally a simplification of the reality (taking into account only significant
parameters). A second type of evaluation uses extensive simulations [9,15,11], which
as formal proof, generally run models of the design and not the implementation itself.
Finally, experimentations on real testbeds can serve as a proof of concept. Such a prac-
tical evaluation can capture aspects related, for instance, to the node specifications or
to specifics of the underlying physical network. In this paper we focus on experimental
evaluations.

Experimenting large-scale distributed software is difficult. The tests have to be de-
ployed and launched on thousands of geographically distributed nodes, then the results
have to be collected and analyzed. Besides, the tests have to be reproducible. Achieving
these tasks for a large-scale environment is not a trivial task.

2.3 Controlling Volatility

In the context of large-scale, fault-tolerant distributed systems, one important aspect
which needs to be controlled is node volatility. This section introduces a tool that
provides the ability to inject failures according to pre-defined scenarii during exper-
iments, in order to evaluate the quality of fault-tolerance mechanisms. More specif-
ically, we illustrate how such a tool can be used in order to test a failure-detection
service.

Failure Injection Requirements. The use of failure injection mechanisms provides
the ability to test fault-tolerant mechanisms with different volatility conditions. This

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

612 S. Monnet and M. Bertier

may validate that the service provided by the software is still available when particular
types of failures occur. It also provides the ability to measure the overhead introduced
by the fault-tolerant mechanism to support different kinds of failures.

The experimentations are run on a testbed that is assumed to be stable. As we want
to experiment with controlled failures, we assume that there are no other unexpected
failures during the test (in case of a real failure, the developer will have to re-launch
his test). The test tool can help the developer to introduce controlled failures during
the experimentation. In order to emulate some specific scenarios and to be scalable, the
test tool has to provide a simple and efficient way to describe failures distributed across
thousands of nodes.

The failure injection mechanisms should be able to take only statistical parameters
and then compute failure schedules accordingly. This allows the tester to generate a
failure scenario across thousands of nodes by giving only a few parameters. The failure
injection mechanisms also need to be highly customizable allowing the user to specify
groups of nodes that should fail simultaneously. More generally, they need to provide
the availability to express failure dependencies between nodes. This should allow the
tester to emulate correlated failures. Furthermore, an important feature of a failure in-
jector (volatility controller) is reproducibility. Even if failures are computed using sta-
tistical parameters, one may want to replay an execution with the same set of failures,
while varying other parameters (e.g. in order to tune the fault-tolerance algorithms).
While experimenting various parameters of a fault tolerance feature or testing differ-
ent fault tolerance mechanisms one may want to compare different solutions within the
same context.

Scenarios

Simple failure scheme. One simple way to describe a failure scheme is to assume that
all the nodes have the same probability of failure and that they are independent (i.e the
failure of a particular node does not depend on the failure of other ones). For instance,
one may assume that the MTBF (Mean Time Between Failures) of a particular set of
nodes may be one hour. The MTBF of a specific architecture can be easily observed.
The developer may wish to run experiments with smaller MTBF values in order to stress
the fault-tolerant mechanisms.

Correlated failures. As the underlying physical network system may be very com-
plex, with hubs and switches, some failures may induce new ones. The crashes of some
nodes may lead to the crashes of other nodes. By instance, while running a software
on a cluster federation, a whole cluster may crash (Figure 1). This may be due to a
power failure in one cluster room, for instance. While designing a fault-tolerant system
for such an architecture, it is important to experiment its behavior while multiple fail-
ures occurs concurrently as it may happen in real executions (without failure injection
mechanisms).

Accurate control. As the roles played by the different nodes in the system may not
be strictly equivalent (some are more critical than others), the developer should be able

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Failure Injection Mechanisms to Experiment 613

to test some particular cases. For instance, one may want to experiment the simultaneous
crash of two particular nodes, or the crash of a node when it is in a particular state.
Typically, as illustrated by Figure 1, experimenting the failure of a node having manager
capabilities may be really interesting as it may involve particular cases of the fault-
tolerant algorithms.

2.4 Related Work

Researchers working in the fault-tolerance area need to inject failures during their ex-
periments. Most often this is done in an ad-hoc manner, by manually killing nodes or
by introducing a few code statements into the tested system’s source code, to make fail-
ures occur. The overhead for the tester is non negligible and usually it is neither scalable
nor reproducible. The goal of our failure injection mechanism is precisely to automate
this task, making it easy for the testers to inject failures at large scale and to control
volatility conditions.

Many research efforts focus on failure injection. However, most of them are very
theoretical or focus on the problem of failure prediction [18,17,6]. In this paper we do
not address the issue of when a failure should be injected or what it will induce, but we
provide a practical solution to how to inject it. The tester may use the results of these
previous research works to feed our failure injectors.

Failure injection has also been studied for simulation and emulation. For instance, [3]
provides a solution to test protocols under failure injection, but it relies on a fully cen-
tralized approach. Our work is intended to be used for tests running on real distributed
architectures, with the full application code.

FAIL [14] (FAult Injection Language) defines a smart way to define failures scenar-
ios. It relies on a compiler to trap application communications to emulate failures. Our
work is integrated in the test environment, not at application level, thus it allows to
inject failures even when the source code is unavailable.

In contrast to previous work, we use failure mechanisms within a test tool, providing
a simple way to deploy, run and fetch results of a test under various controlled volatility
conditions.

network

Power failure

Standard node Manager node

Global

Fig. 1. Different kinds of failures

(00) <network analyze-class="test.Analyze">
(01) <profile name="manager" replicas="1">
(02) <!-- peer information -->
(03) <peer base-name="peerA"/>
...
(11) <bootstrap class="test.MyClass1"/>
(12) <!-- argument -->
(13) <arg value="x"/>
(14) </profile>
(15) <profile name="non-manager" replicas="20">
(16) <peer base-name="peerB"/>
...
(23) <bootstrap class="test.MyClass2"/>
(24) </profile>
(25) </network>

Fig. 2. JDF’s description language

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

614 S. Monnet and M. Bertier

3 Our Proposal: A Flexible Failure Injection Tool

3.1 JXTA Distributed Framework (JDF)

We are currently developing our failure injection mechanism within the JXTA Dis-
tributed Framework (JDF [19,4]) tool. The JDF project has been initiated by Sun
Microsystems, and is currently being actively developed within the PARIS Research
Group [2]. JDF is a tool designed to automate the tests of JXTA-based systems. In [4]
we have specified that this kind of tool should provide the ability to control the simula-
tion of nodes’ volatility. In the remaining of this section we show how to provide this
ability inside JDF. A detailed description of JDF can be found in [19].

JDF allows the user to describe his test through 3 configuration files. 1) a node
file containing the list of nodes on which the test is run, 2) a file storing the names
and paths of the files to deploy on each node, and 3) a XML file describing the node
profiles, in particular, the Java classes associated and the parameters given to these
classes.

JDF’s XML description file allows the tester to describe his whole system through
profiles. Figure 2 defines two profiles, one from line 01 to 14 and one from line 15 to
24. Then multiple nodes can share a same profile. The profile named non-manager on
Figure 2 is replicated on 20 different nodes (thanks to the replicas attribute). The first
experimentation phase consists of the creation of these files. This phase is called basic
configuration thereafter.

3.2 JDF Description Language Extension

The first requirement to fulfill in order to use failure injection is to incorporate failure
information is into the JDF test description language.

To provide the ability to express failures dependencies (to represent correlated fail-
ures) we add a new XML tag: failure. This tag may have 2 attributes: 1) grp to indicate
that all nodes having this profile are part of a same failure group; 2) dep to indicate
that nodes having this profile depend, from a failure point of view, on nodes of another
profile. The grp attribute allows to specify groups of nodes that should fail together
(i.e. if one of them crashes, then all the set crashes). This can help the tester to simu-
late the failure of clusters, for instance. The dep attribute can be used to indicate that a
node should crash if another one crashes (by instance to emulate the fact that the sec-
ond node may serve as a gateway for the first one). For instance, in Figure 2, adding
the line “(17) <failure grp="1"/>” in the non-manager profile will make all the non-
manager nodes crash as soon as on of them crashes. Furthermore, if the line “(18) <fail-
ure dep="manager"/>” is added, all non-manager nodes will crash if the node having
manager profile crashes.

3.3 Computing the Failure Schedule

We have developed a tool that generates a configuration file with volatility-related pa-
rameters (e.g. the global MTBF) which are given as an input to JDF. To do this, we
introduce a new configuration file. In order to make the failure conditions reproducible,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Failure Injection Mechanisms to Experiment 615

this file contains the uptimes for all nodes (i.e. the failure schedule). It is generated us-
ing the XML description file, which is necessary in order to take into account failure
dependencies. This phase is called failure schedule generation thereafter.

The tool works as follows: it computes the first date using a given MTBF and the
number of nodes (obtained from the XML description file), then it randomly chooses a
node to which it assigns this first failure date. This operation is repeated until a failure
date is assign to each node. Next, dependency trees are built using the information
contained in the XML description file. The dependency trees are used to ensure that 1)
in each failure group, nodes are assigned the smallest failure date of the group; 2) if the
failure date of a node is greater than the failure date of a node on which it depends (the
dep attribute), then the smallest date is assigned. This way, all dependencies expressed
in the XML description file are satisfied.

Computing the failure schedule statically before launching the test allows the tester to
easily reproduce failure conditions. The tool can be launched once to compute a failure
schedule, and the same computed schedule can be used by multiple experiments.

3.4 Running Experiments with Failure Injection

Assuming that the standard JDF configuration files exist (i.e. the basic configuration
phase has been done), the complexity overhead induced by the failure injection mecha-
nisms to launch tests is very low.

To run a test by providing a MTBF value (Simple failure scheme) the tester has to
launch a JDF script that will compute the failure dates before running his test (boxes
A, C and E in Figure 3).

The failure schedule generation phase consist in executing a script with the desired
MTBF value and the JDF standard configuration files.

As a further step, to use correlated failures, the tester needs to use our JDF descrip-
tion language extension. In this case, one Failure configuration phase is required to add
failure tags in the XML configuration file (Box B in Figure 3).

Finally, the tester may need an accurate control of the failures (i.e inject a failure on
a specific node at a specific time). To do this, the failure schedule has to be explicitly
edited (Box D in Figure 3).

Once the schedule is computed no extra step is needed to re-execute an experiment
with the same failure conditions.

C

Basic configuration

Configuration

Failure configuration Failure schedule generation

Execution

Reproducibility
E

A B

Failure schedule refinement

D

Fig. 3. Failure injection usage

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

616 S. Monnet and M. Bertier

3.5 Run Time Failure Injection

At deployment time, a configuration file containing the failure schedule is sent to each
node. At launch time, a killer thread is started. This thread reads the failure date (which
is actually an uptime), then waits accordingly. If the application is still running at the
failure date, this thread kills it, thereby emulating a failure. Note that all the application
threads are killed, but the physical node itself remains up and running. If an application
uses the TCP protocol, the node will answer immediately that no process is currently
listening to this port. If the node were really down, the application would have to wait
for a TCP time-out. In the case of the UDP protocol (as for the experiments presented
in this paper), this side-effect does not exist. For applications using the TCP protocol,
the thread killer should either trap messages or really shutdown the network interface.

4 A Scalable Failure Detection Service

We used the failure injection mechanisms previously described to evaluate a scalable
failure detector adapted to hierarchical grids.

4.1 Unreliable Failure Detectors

Concepts. Since their introduction by Chandra and Toueg in [12], failure detectors are
becoming a basic building block for fault-tolerant systems. A failure detector is one
solution to circumvent the impossibility [13] of solving deterministically the consensus
in asynchronous systems in presence of failure. The aim of failure detectors is to provide
information about the liveness of other processes. Each process has access to a local
failure detector which maintains a list of processes that it currently suspects of having
crashed. Since a failure detector is unreliable, it may erroneously add to its list a process
which is still running. But if the detector later realizes that suspecting this process is a
mistake, it then removes the process from its list. Failure detectors are characterized
by two properties: completeness and accuracy. Completeness characterizes the failure
detector capability of suspecting incorrect process permanently. Accuracy characterizes
the failure detector capability of not suspecting correct processes.

We focus on the ♦P detector, named Eventually Perfect, it is one of failure detector
classes, which enable to solve the consensus problem (i.e. it is not the weakest). This
detector requires the following characteristics:

Strong completeness: there is a time after which every process that crashes is perma-
nently suspected by every correct process.

Eventual strong accuracy: there is a time after which correct processes are not sus-
pected by any correct process.

Utility. A failure detector ♦P provides the ability to solve the consensus, but it does
not contradict the impossibility of Fischer, Lynch and Paterson, then it is impossible to
implement it in asynchronous systems.

A failure detector has several advantages from a theoretical and a practical point of
view. The first one is to abstract synchronism matter: algorithms that use a failure de-
tector depends on failure only. The hypotheses, in terms of completeness and accuracy,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Failure Injection Mechanisms to Experiment 617

describe how a failure detector detects other processes failures. These hypotheses are
more natural than temporal ones but also useful.

In a practical way, the need to detect failures is a common denominator among the
majority of distributed reliable applications. In fact an application must know if one
of these processes has crashed: to be able to replace it in case of replication or more
generally to avoid waiting infinitely its result. From this perspective, a failure detector
is a specific service which provides the ability to guarantee the application vivacity.
This service can be shared by several applications and then its cost is amortized.

4.2 GFD (GRID Failure Detector)

Properties. The aim of our failure detector is to propose a shared and moreover scal-
able detection service among several applications. In this implementation we dissociate
two aspects: a basic layer which computes an estimation of the expected arrival date
to provide a short detection time and an adaptation layer specific for each application.
This adaptation layer guarantees the adequacy between the detection quality of service
and the application needs. This architecture provides the ability to generate only one
flow of messages to provide adapted detection information for all applications.

The second specificity is the hierarchical organization of the detection service in
order to decrease the number of messages and the processor load [8]. It comprises two
levels: a local and a global one, mapped upon the network topology. The system is com-
posed of local groups, mapped upon SANs or LANs, bound together by a global group.
Each group is a detection space: every group member watches all the other members of
its group. Every local group designates at least one mandatory which will participate to
the global group.

This organization implies two different failure detector types. This distinction is
important since a failure does not have the same interpretation in the local context as
in the global one. A local failure corresponds to the crash of a host, whereas in the
global context a failure represents the crash of an entire local group. In this situation,
the ability to provide different qualities of service to the local and the global detectors
is a major asset of our implementation. Therefore a local group mandatory has two
different failure detectors, one for the local group and one for global group.

In a local group, the failure detector uses IP-Multicast for sending periodicals “I
am alive” messages. In SANs and LANs, IP-Multicast can be used with the broadcast
property. Therefore a host only sends one message to communicate with all the other
hosts. Failure detectors in a global group use UDP in order to be more compatible with
the general network security policy.

5 Experimentations

We use our tool to inject failures and measure the time it takes to detect them with our
failure detection service. Reproducibility is used to perform multiple experiments with
the same set of failure while tuning the failure detector. The correlated failure feature is
used to experiment the global level of the failure detector’s hierarchy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

618 S. Monnet and M. Bertier

5.1 Experimental Setup

For all the experiments, we used the Grid’5000 platform [1], which gathers 9 clusters
geographically distributed in France. These clusters are connected together through the
Renater Education and Research National Network (1 Gb/s). For our preliminary ex-
periments, we used 64 nodes distributed in 4 of these sites (Rennes, Lyon, Grenoble
and Sophia). In these 4 sites, nodes are connected through a gigabit Ethernet network
(1 Gb/s). This platform is hierarchical in terms of latency: a few milliseconds among
the clusters, around 0.05 within each cluster.

As our failure detector is hierarchical, with a local and a global level, the 64 nodes
are partitioned into 4 local groups, one in each cluster. Within each local group, a spe-
cial node (mandatory) is responsible for the failure detection at global level (i.e cluster
failures).

Even if our algorithms do not require a global clock assumption, for measurements
purposes, we assume a global clock. Each node runs a ntp (network time protocol) client
to synchronize its local clock and we assume that the local clock drifts are negligible (as
the test period is short, of the order of a few tens of minutes). This assumption stands
only for measurements purposes.

Performance Metrics. The most important parameter of the failure detector is the
delay between heartbeats. It defines the time between two successive emissions of an
“I am alive” message. The failure injection is essentially characterized by the MTBF
(Mean Time Between Failure) and possibly by the correlation between failures de-
scribed in the test files. The experimental results are essentially expressed in terms
of detection latency. It corresponds to the elapsed time between a node crash and the
moment when the other nodes start suspecting it permanently.

5.2 Preliminary Tests

We started by evaluating the failure injection mechanisms alone. The goal is to assess
its ability to inject failures according to a given MTBF following an exponential distri-
bution. To do this, we launch 20 times a test with a MTBF value set to one minute, with
no failure dependencies. Before each test, the failure schedule is recomputed in order
to obtain mean failure dates. Figure 4 shows that the average number of alive nodes
decrease as the time elapses. The experimental results are close to the theoretical ones
obtained using an exponential distribution.

In a second experiment, we evaluated the ability of our failure injector to correctly
generate correlated failures. There again we assume the failures follow the same expo-
nential distribution. Besides, we add a failure dependency: all members of local group
1 (located in Rennes) depend on their mandatory (i.e. they must fail if the manda-
tory fails). This results in a gap on Figure 5 when Rennes’ mandatory is killed, as all
nodes in Rennes fail concurrently. After this correlated failure happens, the slope of the
curve is smaller. This is due to the fact that the dependency made some failures happen
sooner.

We can conclude that the failure injector is able to inject failures according to a given
MTBF and may also take into account correlated failures.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Failure Injection Mechanisms to Experiment 619

Theoretical results

 45

 50

 55

 60

 65

 0 5 10 15 20 25 30

N
um

be
r

of
 n

od
es

Time (min)

Experimental results

 40

Fig. 4. Failure injection according to MTBF

Number of nodes

 35

 40

 45

 50

 55

 60

 65

 0 5 10 15 20 25 30

N
um

be
r

of
 n

od
es

Time (min)

 30

Fig. 5. Correlated failures

5.3 Experimenting with the Failure Detector

Tradeoff: Detection Time Versus Network Stress. The failure detector is hierar-
chical: it provides failure detection in local groups (i.e clusters) and between these
groups. We first evaluate the detection time at local level (within local groups) ac-
cording to the delay between heartbeats of the failure detector. To do this evaluation,
we set a MTBF of 30 seconds with no failure dependency, and no mandatory fail-
ures. During each run of 10 minutes, 18 nodes are killed. Figure 6 shows for each
delay between heartbeats the average failure detection time in local groups. The re-
sults are very close to what we expected: theoretically, the average detection time
is (delay_between_heartbeats/2) + latency (and the maximum detection time is
almost (delay_between_heartbeats) + latency). On the other hand, as the delay be-
tween heartbeats decreases, the number of messages increases, as shown by figure 7.
For a fixed accuracy of the failure detection, there is a tradeoff between detection time
and network stress. This is why, through adapters, our failure detector allows multiple
applications to share the same heartbeat flow to minimize the network load.

Local detection times

 400

 600

 800

 1000

 1200

 1400

 1600

 500 1000 1500 2000 2500 3000

D
et

ec
tio

n
la

te
nc

y
(m

s)

Delay between heartbeats (ms)

 200

Fig. 6. Local detection times

Number of received messages

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 500 1000 1500 2000 2500 3000

N
um

be
r

of
 r

ec
ei

ve
d

m
es

sa
ge

s
pe

r
m

in
ut

e

Delay between heartbeats (ms)

 200

Fig. 7. Network stress

Correlated Failures. The aim of this second experiment is to evaluate the detection
time at the global level. At this level, the failure detection is done through the local
group mandatories. When the failure of a mandatory is detected in a group, a new
one is designated to replace it with an average measured nomination delay of 156ms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

620 S. Monnet and M. Bertier

Thus, to experiment failure detection at global level, we need to use correlated fail-
ures in order to induce the crash of whole local groups. We emulate the failure of
sites by introducing a failure dependency between the members of a group (i.e nodes
in one site) and their mandatory. By instance, for the Rennes cluster, we add: <fail-
ure dep="RennesInitialMandatory"/> in the profiles of Rennes’ non-initially manda-
tory nodes.

Global detection times

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 500 1000 1500 2000 2500 3000

D
et

ec
tio

n
la

te
nc

y
(m

s)

Delay between heartbeats (ms)

 200

Fig. 8. Global detection times

During a 10 minutes run, 3 out of 4 mandatories are killed. Figure 8 shows the
average failure detection times according to the delay between heartbeats. The results
are similar to the ones obtained in local groups. The irregularity comes from the fact that
less failures occur than for the previous tests. It is important to note that the correlated
failures feature is mandatory to perform these measurements as a whole site should
fail.

6 Conclusion and Future Work

In grid environments, building and evaluating fault-tolerant softwares is a hard task. In
this paper, we present a test environment providing failure injection features, allowing
the developer to control volatility without altering the application code. To illustrate
this tool, we evaluate a hierarchical failure detection service. First, our experiments
have show that our failure injection tool is able to provide accurate volatility control in a
reproducible manner. This allowed us to evaluate a hierarchical failure detection service
by emulating independent and correlated failures. In each of these two cases, we have
run multiple experiments for different configurations of the failure detector. The results
show that the faults are efficiently detected. To the best of our knowledge, no failure
detectors have been experimented in the past using automated failure injection on grid
platforms.

We plan to further enhance our test environment by adding support for message
loss injection. This can be done through network emulation tools like Dummynet [16]
or NIST Net [10]. The failure description language will be extended accordingly, in
order to incorporate message loss description. Furthermore we will use this test envi-
ronment to evaluate the fault tolerance mechanisms of higher-level grid service (e.g. the
JUXMEM [5] data sharing service).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Using Failure Injection Mechanisms to Experiment 621

References

1. Grid’5000 project. http://www.grid5000.org.
2. The PARIS research group. http://www.irisa.fr/paris.
3. Guillermo A. Alvarez and Flaviu Cristian. Centralized failure injection for distributed, fault-

tolerant protocol testing. In International Conference on Distributed Computing Systems,
pages 0–10, 1997.

4. Gabriel Antoniu, Luc Bougé, Mathieu Jan, and Sébastien Monnet. Going large-scale in P2P
experiments using the JXTA distributed framework. In Euro-Par 2004: Parallel Processing,
number 3149 in Lect. Notes in Comp. Science, pages 1038–1047, Pisa, Italy, August 2004.
Springer-Verlag.

5. Gabriel Antoniu, Jean-François Deverge, and Sébastien Monnet. How to bring together fault
tolerance and data consistency to enable grid data sharing. Concurrency and Computation:
Practice and Experience, (17), September 2006. To appear. Available as RR-5467.

6. Jean Arlat, Alain Costes, Yves Crouzet, Jean-Claude Laprie, and David Powell. Fault injec-
tion and dependability evaluation of fault-tolerant systems. IEEE Transactions on Comput-
ers, 42(8):913–923, 1993.

7. Marin Bertier, Olivier Marin, and Pierre Sens. Implementation and performance evaluation of
an adaptable failure detector. In Proceedings of the International Conference on Dependable
Systems and Networks, pages 354–363, Washington, DC, June 2002.

8. Marin Bertier, Olivier Marin, and Pierre Sens. Performance analysis of a hierarchical fail-
ure detector. In Proceedings of the International Conference on Dependable Systems and
Networks, San Francisco, CA, USA, june 2003.

9. A Collaboration between researchers at UC Berkeley, LBL, USC/ISI, and Xerox PARC. The
ns manual (formerly ns notes and documentation). http://www.isi.edu/nsnam/ns/
doc/ns_doc.pdf, 2003.

10. Mark Carson and Darrin Santay. NIST Net - a Linux-based network emulation tool. 2004.
To appear in special issue of Computer Communication Review.

11. Henry Casanova. Simgrid: A toolkit for the simulation of application scheduling. In First
IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 430–441,
Brisbane, Australia, 2001.

12. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 1996.

13. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, apr 1985.

14. William Hoarau and Sébastien Tixeuil. Easy fault injection and stress testing with fail-fci,
January 2006.

15. Marc Little and Daniel McCue. Construction and use of a simulation package in c++. Tech-
nical Report 437, University of Newcastle upon Tyne, June 1993.

16. Luigi Rizzo. Dummynet and forward error correction. In 1998 USENIX Annual Technical
Conference, New Orleans, LA, 1998. FREENIX track.

17. Jeffrey Voas, Frank Charron, Gary McGraw, Keith Miller, and Michael Friedman. Predicting
how badly “good” software can behave. IEEE Software, 14(4):73–83, 1997.

18. Jeffrey Voas, Gary McGraw, Lora Kassab, and Larry Voas. A ’crystal ball’ for software
liability. Computer, 30(6):29–36, 1997.

19. JXTA Distributed Framework. http://jdf.jxta.org/, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.grid5000.org
http://www.irisa.fr/paris
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://jdf.jxta.org/

Semantic-Based Service Trading: Application to
Linear Algebra�

Michel Daydé, Aurélie Hurault, and Marc Pantel

IRIT - ENSEEIHT, 2 rue Camichel, B.P. 7122, F-31071 TOULOUSE CEDEX 7
{Michel.Dayde,Aurelie.Hurault,Marc.Pantel}@enseeiht.fr

Abstract. One of the great benefit of computational grids is to provide
access to a wide range of scientific software and computers with different
architectures. It is then possible to use a variety of tools for solving the
same problem and even to combine these tools in order to obtain the
best solution technique.

Grid service trading (searching for the best combination of software
and execution platform according to the user requirements) is thus a
crucial issue. Trading relies both on the description of available services
and computers, on the current state of the grid, and on the user require-
ments. Given the large amount of services available on the Grid, this
description cannot be reduced to a simple service name.

We present in this paper a more sophisticated service description sim-
ilar to algebraic data type. We then illustrate how it can be used to
determine the combinations of services that answer a user request. As
a side effect, users do not make direct explicit calls to grid-services but
talk to a more applicative-domain specific service trader.

We illustrate this approach and its possible limitations within the
framework of dense linear algebra. More precisely we focus on Level 3
BLAS ([DDDH90a, DDDH90b]) and LAPACK ([ABB+99]) type of basic
operations.

1 Introduction

Given all the services deployed on a grid, finding the most appropriate service or
composition of services which are able to fulfill a user request is quite challenging
and requires more than the knowledge of the service’s signatures.

We introduce here an approach that consists in adding additional semantic
information to the services in order to reduce ambiguity in their description and
allow to find the services or combination of services that provide good answers
to a user request using equational unification to identify all the possible choices.
As a benefit, users do not need to make explicit call to specific services over
the grid (such as some GridRPC call for example). The user does not need to
� This work has been partially supported by the French Ministery of Research throught

the GRID-TLSE Project from ACI « Globalisation des Ressources Informatiques et
des Données » and by the ANR (Agence Nationale de la Recherche) through the
LEGO Project referenced ANR-05-CIGC-11.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 622–633, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Semantic-Based Service Trading: Application to Linear Algebra 623

know the exact name of the service he is looking for, he just has to describe
the mathematical operation he wants to compute in a given applicative domain.
Our service trader finds the appropriate service or combination of services (even-
tually it can provide the user a list of possible choices and ask him to choose
the best one given the mathematical operation and not the library name). The
interaction with the middleware can then be hidden behind a domain specific
interface.

We take examples from dense linear algebra for the sake of simplicity, but
this approach can be extended to other areas since the algorithm is generic and
parameterized by the description of the application domain.

2 Problem Description

A key issue in advanced trading of services is the choice of a description formalism
for the available services. The comparison between the available services and the
user’s requests depends on the formalism chosen for this description.

2.1 Different Approaches

The simplest description used in most SOA (Service Oriented Architecture) such
as RPC, CORBA, COM, DCOM, RMI makes only use of the service signatures
(input and output types of parameters). This information has the advantage to
be easily available. But it is not sufficient for sophisticated trading, even if we use
type isomorphisms to remove the problems of parameter position. Indeed, with
such an approach there is no way to distinguish addition from multiplication as
both share the same signature.

We can add keywords or meta-data to the service signature (this is currently
the case in the Grid-Tlse project [PPA05, Pan04]). This formalism allows an
easy comparison of the services and the request. But this description requires
a preliminary agreement to define the keywords and their meaning, with all
the ambiguities implied by the natural language. Another disadvantage is the
difficulty to describe a complex service. How to describe without ambiguity and
with keywords some Level 3 BLAS procedures such as SGEMM expressed by
the following formula: α ∗ A ∗ B + β ∗ C ?

Another approach which extends keywords and metadata is based on ontolo-
gies such as OWL. The advantage of ontologies is the possibility to have a formal
description. It also provides the logic associated to reason about the descriptions.
The disadvantage is that we do not control this logic which can be undecidable.
The ontologies also need a preliminary agreement to define the keywords and
their meaning. In the case of ontologies, this preliminary agreement is formally
described thanks to relation between the different keywords, this is a main ad-
vantage over the previous approach. Moreover the definition of an ontology is
not trivial and hard to achieve for a non specialist.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

624 M. Daydé, A. Hurault, and M. Pantel

In the Monet1 and HELM2 projects the description of the computational
services is based on MathML3 and OpenMath4 which provide an accurate de-
scription. But the comparison of services is based on RDF and ontologies which
did not allow easily to adapt and combine services during the trading.

We follow the same approach as the NASA Amphion project [SWL+94] and
more particularly the theorem prover Snark (independence of the application
domain, reasoning based on starting from a description of the domain). But,
this project relies on «term rewriting and the paramodulation rule for reasoning
about equality». This supposes that «a recursive path ordering is supplied when
the application domain theory is formulated». The last constraint require that
the user is familiar with complex rewriting technics. One of our main require-
ments is that the user should not need to know anything about the underlying
technologies.

We are looking for a simpler description, with the least possible ambiguities,
that can be specified by a specialist of a given domain without the help of a
specialist on ontologies or the use of complex knowledge in rewriting techniques.

For all theses reasons, we have opted for a description similar to algebraic data
types. The advantages of this description is the possibility of describing without
ambiguity both the services and the knowledge of the main properties of the
domain that are required for composing services to fulfill the user requests.

We describe in more details our semantic-based description of services in the
next section. The trading algorithm is described in Section 3. Examples and
possible limitations of this approach when looking for the best combination of
services are reported in Section 4. We finally conclude in Section 5.

2.2 An Algebraic Data Type Based Description for Advanced
Trading

As said before, the semantic used is similar to algebraic data type description
[GH78]. Indeed the required information are:

– the types (or sorts) used;
– the main operators of the specific domain and their signatures (we allow

overloading);
– the operators properties (such as commutativity and associativity) and the

equations that link operators.

When considering dense linear algebra and basic operations such as BLAS
and LAPACK, we define:

– Types: Int, Real, Char, Matrix, . . .
– Operators and their signatures:

1 http://monet.nag.co.uk/cocoon/monet/index.html
2 http://helm.cs.unibo.it/
3 http://www.w3.org/Math/
4 http://www.openmath.org/cocoon/openmath/index.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://monet.nag.co.uk/cocoon/monet/index.html
http://helm.cs.unibo.it/
http://www.w3.org/Math/
http://www.openmath.org/cocoon/openmath/index.html

Semantic-Based Service Trading: Application to Linear Algebra 625

• Addition of matrices: + : Matrix × Matrix → Matrix
• Multiplication of a matrix by a scalar: ∗ : Real × Matrix → Matrix
• Matrix multiplication: ∗ : Matrix × Matrix → Matrix
• Transpose of a matrix: T : Matrix → Matrix
• Identity: I :→ Matrix
• Null matrix: O :→ Matrix
• . . .

– Properties:
• Addition +: commutative and associative (can be expressed directly by

the corresponding equations)
• Multiplication ∗: associative (can be expressed directly by the corre-

sponding equations)
• Neutral element I: a : Matrix I ∗ a = a
• Absorbant element O: a : Matrix O ∗ a = O
• Distributivity ∗/+:

a : Matrix b : Matrix c : Matrix a ∗ (b + c) = (a ∗ b) + (a ∗ c)
• Distributivity ∗/+:

a : Real b : Matrix c : Matrix a ∗ (b + c) = (a ∗ b) + (a ∗ c)
• . . .

The last two equations can be factorized by:

a : b : Matrix c : Matrix a ∗ (b + c) = (a ∗ b) + (a ∗ c).

That means that the equation is valid for all the types of a for which a∗(b+c)
and (a ∗ b) + (a ∗ c) are well typed.

With this description, we can describe some of the Level 3 BLAS procedures
in a formalism very similar to the official BLAS specification [DDDH90a].

SGEMM performs one of the matrix-matrix operations:

C=α∗op(A)∗op(B)+β∗C

where α and β are scalars, op(A) and op(B) are rectangular matrices of di-
mensions m×k and k×n, respectively, C is a m × n matrix, and op(A) is A
or AT .

In the trader, SGEMM will be described by an XML document whose
meaning is:

SGEMM(TRANSA:Char, TRANSB:Char, M:Int, N:Int, K:Int, ALPHA:Real,
A:Matrix, LDA:Int, B:Matrix, LDB:Int, BETA:Real, C:Matrix, LDC:Int)

C <- ALPHA * op(TRANSA,A) * op(TRANSB,B) + BETA * C

Among the equations of the domain, will be: op(′n′, a) = a and op(′t′, a) = aT .
However, this description is not rich enough for sophisticated trading involving

service combination. Some numerical properties of the matrix are very important
to select a suitable Level 3 BLAS procedure. For example when considering
matrix-matrix multiplication, symmetry of one of the matrices involved in the
operation may lead to select SSY MM rather than SGEMM and similarly

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

626 M. Daydé, A. Hurault, and M. Pantel

when dealing with a triangular matrix that is supported by STRMM . To take
into account these properties, subtypes have been introduced in the description.
Some restrictions are required about the definitions of subtypes. The relation on
types must be a partial order relation (antisymmetric, transitive and reflexive),
and must verify some constraints expressed in [CGL92].

To the previous description, we add:

– Types:
• Invertible matrices: InvMatrix < Matrix
• Symmetric matrices: SymetricMatrix < Matrix
• Triangular matrices: TriangularMatrix < Matrix
• Invertible triangular matrices:

InvT riangularMatrix < TriangularMatrix,
InvT riangularMatrix < InvMatrix

• . . .
– Operators and their signatures (we can specify the conservation of a property

by an operator):
• Multiplication of a symmetric matrix by a scalar:

∗ : Real × SymetricMatrix → SymetricMatrix
(the symmetric property is conserved)

• Multiplication of a triangular matrix by a scalar:
∗ : Real × TriangularMatrix → TriangularMatrix

• Multiplication of an invertible triangular matrix by a non-zero scalar:
∗ : NzReal × InvT riangularMatrix → InvT riangularMatrix

• Transpose of a triangular matrix:
T : TriangularMatrix → TriangularMatrix

• . . .
– . . .

In the examples, we give high level properties, but we can enrich the descrip-
tion to specify more precisely the matrix. The user which defines the application
domain chosses the level of granularity of the description. It is important to
notice that the impact of a more precise description is in relation with the new
equations that the new properties may imply. Adding types is not very costly
but it generally leads to introduce new equations which is more expensive.

We are now able to define all the services.
SSY MM performs one of the matrix-matrix operations:

C=α∗A∗B+β∗C, or C=α∗B∗A+β∗C

where α and β are scalars, A is an m × m symmetric matrix (only the upper or
lower triangular part is used), B and C are m × n matrices.

In the trader SSY MM will be described by an XML document whose mean-
ing is:

SSYMM(SIDE:Char,UPLO:Char, M:Int, N:Int, ALPHA:Real,A:SymetricMatrix,
LDA:Int, B:Matrix, LDB:Int, BETA:Real, C:Matrix, LDC:Int)

IF SIDE=’l’ THEN C <- ALPHA * A * B + BETA * C
IF SIDE=’r’ THEN C <- ALPHA * B * A + BETA * C

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Semantic-Based Service Trading: Application to Linear Algebra 627

In practice the description is not exactly this one to take into account the UPLO
parameter. This point will be discussed later.

STRSM solves one of the matrix equations:

A∗X=α∗B, AT ∗ X=α∗B, X∗A=α∗B, or X ∗ AT =α∗B

where α is a scalar, X and B are m × n matrices and A is a unit, or non-unit,
upper or lower triangular matrix. B is overwritten by X.

In the trader STRSM will be described by an XML document whose meaning
is:

STRSM(SIDE:Char, UPLO:Char, TRANSA:Char, DIAG:Char, M:Int, N:Int,
ALPHA:Real, A:InvTriangularMatrix, LDA:Int, B:Matrix, LDB:Int)

IF SIDE=’l’ THEN B <- ALPHA * op(TRANS,A^{-1}) * B
IF SIDE=’r’ THEN B <- ALPHA * B * op(TRANS,A^{-1})

In practice the description is not exactly this one to take into account the UPLO
and DIAG parameters.

The matrix A is not necessary a triangular matrix, but can be considered as
a triangular matrix (UPLO indicates if it is a lower or upper triangular matrix
and DIAG if it is a unit matrix). This is the case when this matrix is used
to store two different triangular matrices (like after a LU factorization). This
problem needs more work to reach an acceptable treatment.

Currently, STRSM is defined with A not necessary a triangular matrix, and
with operation done on the upper or lower part, but it is not a good solution
because the real problem is not STRSM but the object which represents several
objects. We must design a general solution for this problem instead of the ad-hoc
approach currently in use which have an impact on all the services.

These descriptions illustrate that we can manage parameters which are both
input and output. We can also specify the service in function of a given
parameter.

We can now describe the services and the user’s request. Our aim is to find
the services or the combination of services that satisfies the client’s request. For
doing so, we first compute all the available services and combination of available
services which answer the user request. Then, in a second step, we will chose the
«best» one, according to the user’s criteria. We may combine these two step for
a better effectiveness.

3 Computing the Combination of Services Corresponding
to an User’s Request

To identify all the services and combinations of services that answer the user’s
problem, we compare the description of the user’s problem with the description
of all the services, taking into account the properties of the domain (here dense
linear algebra).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

628 M. Daydé, A. Hurault, and M. Pantel

3.1 The Trading Algorithm

Our comparison of two descriptions is based on equational unification [BS01]
and in particular on the set of transformations of Gallier and Snyder which has
been proved to be sound and complete [GS89]. This system has been adapted
to add types and subtypes and also to improve the performance. The problems
introduced by the overloaded functions with subtyping are treated as in [CGL92].

To control the algorithm we use two parameters: the depth of combination al-
lowed and the number of equations applied. This second number is really critical
because our algorithm has an exponential complexity for this parameter. Further
improvements to our algorithm are required in the future to limit the complexity
of computing the combinations of services corresponding to a request. It may be
interesting to use ad-hoc treatments for properties such as commutativity, asso-
ciativity, distributivity, zero element, identity element, . . . The general principle
of the algorithm is explained in details in [HP06].

3.2 Examples

We consider examples arising in dense linear algebra with a complete description
of this domain.

For all the following examples, the results given, are some among all the
results computed by the trader. The number of equations allowed and the depth
of combination given are the minimum ones. If more equations are allowed to be
applied and a bigger depth of combination is allowed, the number of results will
grow.

Example 1. The available services are the ones from the Level 3 BLAS. The
request of the user is A : Matrix, B : Matrix, C : Matrix C = A ∗ B ∗ C.

One combination of services computed by the trader is:

Matrix p2=Any x1;
SGEMM(’n’,’n’,m?,n?,k?,1.,B,lda?,C,ldb?,0.,p2,ldc?); \\p2<-B*C
Matrix p1=Any x1;
SGEMM(’n’,’n’,m?,n?,k?,1.,A,lda?,p2,ldb?,0.,p1,ldc); \\p1<-A*p2
p1;

where Any x1 can be any matrix and the parameters following by a “?” are the
ones we cannot determine, they will be determined later on.
To find this solution, the trader must be run with more than 5 equations allowed
to be applied and a depth of combination allowed of at least 1.

Example 2. Now, the available services are the ones from the Level 3 BLAS
and some from LAPACK [ABB+99] (row interchanges SLASWP , the Cholesky
factorization SPOTRF and the LU factorization SGETRF). The user wants to
solve the linear system with multiple right-hand side members Ax = B (where
no property is known about A). One answer computed by the trader is:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Semantic-Based Service Trading: Application to Linear Algebra 629

InvMatrix p2=A;
Vector p6=ipiv?;
SGETRF(m?,n?,p2,lda?,p6,info?);\\p2<-fatorization LU of A (A= P*L*U)
Matrix p5=B;
SLASWP(n?,p5,lda?,k1?,k2?,p6,incx?); \\p5<-row interchanges of B
Matrix p3=p5;
STRSM(’l’,’l’,’n’,u?,m?,n?,1.,p2,lda?,p3,ldb?); \\solve L*x=p5; p3<-x;
Matrix p1=p3;
STRSM(’l’,’u’,’n’,u?,m?,n?,1.,p2,lda?,p1,ldb?); \\solve U*x=p3; p1<-x;
p1;

To find this solution, the trader must be run with more than 7 equations allowed
to be applied and a depth of combination allowed of at least 3.

Example 3. The example in similar conditions as the previous one but now A is
a symmetric positive definite matrix.

The trader computes the following compositions of services:

SymDefPosMatrix p2=A:SymDefPosMatrix ;
Vector p6=ipiv?;
SGETRF(m?,n?,p2,lda?,p6,info?); \\ p2<-fatorization LU of A (A= P*L*U)
Matrix p5=B;
SLASWP(n?,p5,lda?,k1?,k2?,p6,incx?); \\ p5<-row interchanges of B
Matrix p3=p5;
STRSM(’l’,’l’,’n’,diag?,m?,n?,1.,p2,lda?,p3,ldb?); \\solve L*x=p5; p3<-x;
Matrix p1=p3;
STRSM(’l’,’u’,’n’,diag?,m?,n?,1.,p2,lda?,p1,ldb?); \\solve U*x=p3; p1<-x;
p1;

To find this solution, the trader must be run with more than 7 equations allowed
to be applied and a depth of combination allowed of at least 3.

and

SymDefPosMatrix p2=A;
SPOTRF(’u’,p2,info); \\ p2<- Cholesky factorization of A (A=U{^T}*U)
Matrix p3=B;
STRSM(’l’,’u’,’t’,diag?,m?,n?,1.,p2,lda?,p3,ldb?); \\solve U{^T}*x=B; p3<-x;
Matrix p1=p3;
STRSM(’l’,’u’,’n’,diag?,m?,n?,1.,p2,lda?,p1,ldb?); \\solve U*x=p3; p1<-x;
p1;

To find this solution, the trader must be run with more than 6 equations allowed
to be applied and a depth of combination allowed of at least 3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

630 M. Daydé, A. Hurault, and M. Pantel

and

SymDefPosMatrix p2=A;
SPOTRF(’l’,p2,info); \\p2<- Cholesky factorization of A (A=L*L{^T})
Matrix p3=B;
STRSM(’l’,’l’,’n’,diag?,m?,n?,1.,p2,lda?,p3,ldb?); \\solve L*x=B; p3<-x;
Matrix p1=p3;
STRSM(’l’,’l’,’t’,diag?,m?,n?,1.,p2,lda?,p1,ldb?); \\solve U{^T}*x=p3; p1<-x;
p1;

To find this solution, the trader must be run with more than 7 equations allowed
to be applied and a depth of combination allowed of at least 3.

The first solution is the same as in the general case for A (i.e. A general
square). The other uses the fact that A is positive definite and replaces the LU
factorization by a Cholesky factorization which is a better solution.

Example 4. The example in similar conditions as the previous ones but now A
is an invertible upper triangular matrix.

The following solution is found:

Matrix p1=B;
STRSM(’l’,’u’,’n’,diag?,m?,n?,1.,A,lda?,p1,ldb?); \\solve A*x=B; p1<-x;
p1;

To find this solution, the trader must be run with more than one equation allowed
to be applied and any depth of combination (since no combination is needed).

These examples illustrate the fact that the trader look for several solutions
taking into account the properties of the domain and of the parameters. All the
solutions do not have the same quality, a choice must be made among these
solutions.

4 Choosing the Solution to Be Run

The trading algorithm finds all the suitable solutions within given depth and
number of equations applied. We still have to select the one that will be executed.
Among the set of solutions produced, only the most relevant ones are kept. When
this first choice is made, we will interact with a grid middleware to finally select
the one to execute.

4.1 Discarding Solutions Without Interest

When looking for a solution, we compare the request with all the services. For a
given service, we may find a solution that is a combination of services involving
subproblems to be solved. In this case, we run again the algorithm on the sub-
problems. To avoid computation of uninteresting solutions, we do not run again
the algorithm if there is a subproblem which is the same as the initial problem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Semantic-Based Service Trading: Application to Linear Algebra 631

Example: We want to compute a + b and we have the service x ∗ y. Then,
{x ← a + b, y ← I} is a solution requiring a combination, but we discard it.

We also simplify the request before running again the algorithm. This is nec-
essary, to avoid running the algorithm on requests such that a + O, a ∗ I, . . .

4.2 Selecting the Most Relevant Solutions

Piloting Research. To improve the search of relevant results, we can explore
first the most interesting services.

To decide whether a service is interesting, we consider its complexity (static
information) and its availability (dynamic information). By exploring these ser-
vices at the beginning of the trading process, the initial solutions found will be
the most relevant ones, since they will be the least complex and they will be
available.

Static information are not sufficient since we are on a Grid whose QoS can
change dramatically, and we must take into account the network load, the data
migration, Indeed, we prefer to satisfy a request with a service located on
a server which has a strong availability rather than with a service located on a
busy server assuming that both servers have the same performance. Improving
the computation of services using these dynamic informations that can be pro-
vided by a middleware such as Diet (see section 4.3), used in the Grid-Tlse
project, may be crucial for performance and will require further improvements
and experiments in the trading algorithm.

Another way to find first the most relevant solutions is to change the way we
traverse the research tree. Currently, we do a breadth first traversal. It may be
interesting to use a more complex traversal based on a weighting of the branches.
This weight will be calculated in function of the complexity of the subproblem.

Sorting Results. The obtained results must be sorted. Currently, this sort is
done by considering the complexity of the services. Services which have the same
complexity, are sorted in function of their parameters.

Assume that f(x, y, x, O), f(x, y, O, O) and f(x, y, Any, O) solve the problem.
The most interesting result is the last one (f(x, y, Any, O)) because it is the
most general. f(x, y, O, O) is more interesting than f(x, y, x, O), because the
null matrix is, in general, less complex than the user matrix. In the general case,
services with same complexity will be sorted according to the increasing numbers
of Any, constants and parameters given by the user within their parameters.

4.3 Interaction with a Middleware

The trader can then choose to transmit the most relevant result to the middle-
ware which will schedule the chosen composite service. It can also choose to trans-
mit several relevant results. The choice among the different results will be done
by the middleware. Several environments provide the features needed: NetSolve
[AAB+01], NINF [TNS+03], DIET [DIE], NEOS [NEO], or RCS [AGM97]. DIET
is the middleware used in the Grid-Tlse project, where our work takes place.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

632 M. Daydé, A. Hurault, and M. Pantel

In the case of simple service (without combination), the state of the machine
where the service is located, its capacity, its availability, . . . will be considered.
In the case of combination of services, in addition to these information, the data
dependencies must also be taken into account to evaluate the costs in term of
communication between the computers running the different services. Indeed,
the local execution (even on a less powerful server) might be quicker than the
remote execution because of the extra overhead due to data movements.

If none of the services is satisfying to the middleware, it can ask for more
results until it obtains satisfaction. More complex searches may then be started.
As soon as the middleware obtains a valid solution, it executes the request (or
the sequence of requests).

5 Conclusion

We have described an approach for advanced trading of services based on an
algebraic data type like description of applicative domain and services. Our
trading algorithm allows to compose existing services in order to satisfy the user
request.

The trading algorithm first computes all the possible solutions within a given
depth and a given number of equations examined. The main difficulty in that
process is to limit the exponential complexity of the search for solutions by dis-
carding the less relevant ones. Some issues are currently explored consisting in
using a different strategy for searching in the solution tree: aiming at decreasing
the number of branches explored, use of a cache mechanism for avoiding recom-
puting solutions, Finally, within the set of solutions computed, a selection
is made by considering the complexity of the operations and their parameters.

The current trading algorithm provides the appropriate results but it is still
very preliminary and further improvements on time and memory performances
are required. Our goal would be to incorporate such a trading mechanisms within
interactive scientific computing environments such as MATLAB or SciLAB to
allow users to take advantage of grid services - when adequate - in a transparent
way (without explicit calls) and to interact with a middleware to benefit of their
scheduling capacity.

References

[AAB+01] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi,
Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4. Computer
Science Dept. Technical Report CS-01-467, University of Tennessee,
Knoxville, TN, July 2001.

[ABB+99] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J.
Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen. LAPACK Users’ guide (third ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1999.

[AGM97] P. Arbenz, W. Gander, and J. Mori. The Remote Computational System.
Parallel Computing, 23(10):1421–1428, 1997.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Semantic-Based Service Trading: Application to Linear Algebra 633

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 8, pages 445–532. Elsevier Science, 2001.

[CGL92] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus
for overloaded functions with subtyping. In Proceedings of the ACM
Conference on Lisp and Functional Programming, volume 5, pages 182–
192, 1992.

[DDDH90a] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679.
a set of Level 3 Basic Linear Algebra S ubprograms. ACM Transactions
on Mathematical Software, 16:1–17, 1990.

[DDDH90b] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679.
a set of level 3 basic linear algebra subprograms: model implementation
and test programs. ACM Transactions on Mathematical Software, 16:18–
28, 1990.

[DIE] DIET. http://graal.ens-lyon.fr/DIET.
[GH78] John V. Guttag and James J. Horning. The algebraic specification of

abstract data types. Acta Inf., 10:27–52, 1978.
[GS89] J. H. Gallier and W. Snyder. Complete Sets of Transformations for

General E-Unification. Theor. Comput. Sci., 67(2-3):203–260, 1989.
[HP06] Aurélie Hurault and Marc Pantel. Mathematical service trading based

on equational matching. In Proceedings of the 12th Symposium on the In-
tegration of Symbolic Computation and Mechanized Reasoning (Calcule-
mus 2005), volume 151, pages 161–177. Electronic Notes in Theoretical
Computer Science, 21 March 2006.

[NEO] NEOS - Server for Optimization. http://www-neos.mcs.anl.gov/neos/.
[Pan04] M. Pantel. Test of Large Systems of Equations on the Grid: Meta-Data

for Matrices, Computers, and Solvers. In PMAA’04, 2004.
[PPA05] Marc Pantel, Chiara Puglisi, and Patrick Amestoy. Grid, Components

and Scientific computing. In Submission to Euro-Par 2005, 2005.
[SWL+94] Mark E. Stickel, Richard J. Waldinger, Michael R. Lowry, Thomas Press-

burger, and Ian Underwood. Deductive composition of astronomical soft-
ware from subroutine libraries. In CADE, pages 341–355, 1994.

[TNS+03] Yoshio Tanaka, Hidemoto Nakada, Satoshi Sekiguchi, Toyotaro Suzu-
mura, and Satoshi Matsuoka. Ninf-G: A Reference Implementation of
RPC-based Programming Middleware for Grid Computing. Journal of
Grid Computing, 1(1):41–51, 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://graal.ens-lyon.fr/DIET
http://www-neos.mcs.anl.gov/neos/

Management of Services Based on a Semantic
Description Within the GRID-TLSE Project

Patrick Amestoy, Michel Daydé, Christophe Hamerling, Marc Pantel,
and Chiara Puglisi

TLSE Project�,
IRIT-ENSEEIHT, 2 rue Camichel, 31071 Toulouse CEDEX, France

surname.name@enseeiht.fr
http://www.irit.enseeiht.fr/tlse

Abstract. The goal of the GRID-TLSE Project is to design an expert
site that provides an easy access to a number of tools allowing compara-
tive analysis of sparse matrix packages on a user-submitted problem, as
well as on particular matrices from the matrix collection also available
on the site.

When making available a large amount of software over a compu-
tational Grid, facilitating its deployment and its exploitation become
crucial. Within the GRID-TLSE Project, we use a software component
approach based on a high level semantic description of the scientific com-
puting services. In this paper, we focus on one aspect of this description
of the computational services: the use of meta-data called abstract param-
eters. Our approach allows the automatic discovery and the exploitation
of new services throught the concept of scenario.

1 Introduction

The main goal of the GRID-TLSE Project is to design an expert site that
provides an easy access to a number of direct solvers for solving sparse lin-
ear systems, allowing their comparative analysis on user-submitted problems,
as well as on matrices from collections also available on the site. The site pro-
vides user assistance in choosing the right solver for its problems and appropri-
ate values for the control parameters of the selected solver. It is also intended
to be a testbed for experts in sparse linear algebra. A computational Grid is
used to deal with all the runs arising from user requests. For more details see
http://www.irit.enseeiht.fr/tlse.

The expert site asks the user through a WEB interface (called WebSolve) to
describe his problem as well as, optionally, the characteristics of the computers
and the software that he plans to use. The expertise kernel (called Weaver) takes
into account the user requirements, the internal expertise scenarios and the Grid
state to build experience plans which are run using the DIET middleware [3]
� Funded by the French Ministery of Research throught ACI «Globalisation des

Ressources Informatiques et des Données» and by the ANR (Agence Nationale de
la Recherche) through the LEGO Project referenced ANR-05-CIGC-11.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 634–643, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Management of Services Based on a Semantic Description 635

(http://graal.ens-lyon.fr/˜diet/). The results and metrics are used to produce
synthetic graphics which help the user in choosing the best tools – and the
corresponding value of control parameters – for his problem (according to some
metric e.g. minimizing execution time).

In sparse linear algebra, similarly to other areas of scientific computing, there
exists a lot of different algorithmic approaches for solving the same problem
with different features and performance (e.g. several algorithmic variants for
factorizing a sparse matrix).

As a consequence, the description of the computational services provided by
each component is much more complex than usually advocated in software engi-
neering (typically restricted to service name, type of input / output parameters).
The computing services have functional parameters and results – as usual – but
also make use of parameters and results for algorithmic control and execution
metrics that depend on the numerical algorithms used. Controls (usually pa-
rameters) allow to adapt the algorithm to the user performance requirements.
Metrics (usually results) provide the users insights on the results quality and on
the way the computer was used.

We describe in the next sections the approach used within the GRID-TLSE
Project. It has been initially designed for allowing experts in sparse linear alge-
bra, that are not always grid computing specialists, to deploy easily software over
the grid and to use it within the expertise process they describe using scenarios.
This approach is generic and may be used in other areas.

2 Sparse Direct Solvers for Linear Systems

2.1 Sparse Direct Solvers

The main service used in the GRID-TLSE Project aims at solving Ax = b where
A is sparse using direct solvers.

The direct approach for solving Ax = b consists in factorizing the matrix
A into a product of simpler matrices (so called factors) and then computing
the solution x. There exists different factorizations of A: A = LU , A = QR,
A = LL�, A = LDL�,

Several algorithms can be used for solving the same linear system. They all use
the same functional input parameters A and b and produce the same functional
result x. However, they do not always have the same set of input / output
parameters for algorithm control. They also provide execution metrics (execution
time, amount of memory used, number of flops, . . .) that may not be similar.

The performance of the sparse solvers depends on the exploitation of the
structural and numerical properties of the matrix A and on the target com-
puting platform characteristics. For the sake of simplicity, we focus on the LU
factorization in the following sections.

2.2 Algorithm Controls and Execution Metrics

A computational service may possess a lot of input / output parameters for
algorithm controls and execution metrics that may vary with its implementation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

636 P. Amestoy et al.

In the general case, A is factorized into PQRDRADCQCP� where :

– DR and DC are diagonal scaling matrices for respectively rows and columns
of A ;

– QR and QC are unsymmetric permutations for respectively rows and columns.
Solvers often use only one.

– P is a symmetric permutation whose purpose is to reduce the size of the
factors during the factorization of A.

The problem to be solved is then Âx̂ = b̂ where Â = PQRDRADCQCP�,
x̂ = PQ�

CD−1
C x and b̂ = PQRDRb. These transformations are usually computed

in the first phase of the algorithm referred to as symbolic analysis. The per-
mutations and scalings are also performed during this step. Algorithmic control
parameters are tuned according to the properties of the matrix for improving
execution.

Depending on the software, the permutations are either symmetric (P), unsym-
metric (either QR or QC), left (PQR) or right (QCP�). Many algorithms - called
orderings - are available for computing permutations, for example AMD (Approxi-
mate Minimum Degree [1]), Metis (graph partitioning [11]), MMD (Multiple Mini-
mum Degree [12], Matrix bandwidth reduction [4]). Some packages provide several
orderings and a control parameter is used to select one.

The LU factorization of Â is performed next. During this factorization phase,
the static symmetric ordering P can be completed by a dynamic ordering PN

(referred to as the numerical permutation) monitored using a pivoting threshold.
The linear system is then PN Âx̂ = PN b̂. The pivoting threshold is not always
available as an algorithm control.

The last step (“solve”) computes x̂ using the factors L and U .
Most of the direct algorithms for solving a sparse linear problem are using

these three steps (symbolic analysis, factorization and solve) in sequence. It is
therefore possible to share the symbolic analysis between several factorizations
(with different values for the pivoting threshold) and to share a factorization
between several solves (with different values of b). One of the main benefit is to
be able to use the ordering available within one sparse solver as an input for the
factorization of another solver. This implies that a functional description of the
package must be available to be able to call separately ordering, factorization
and solve and to recover the corresponding outputs.

3 The GRID-TLSE Reflexive Approach

We use a component approach with a dynamic discovery of component character-
istics. This approach relies on meta-data – called abstract parameters - describing
all the possible features for all available service implementations. This approach
is usually referred to as reflexive as it relies on services managing services. Note
that one package may be deployed in several places and several versions, i.e.
there may be several services implementing the same sofware.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Management of Services Based on a Semantic Description 637

There are two kinds of services within the GRID-TLSE Project:

– Computational services that correspond to sparse softwares or tools for pro-
cessing sparse matrices (visualization, . . .)

– Scenarios that are a high level level description of the expertise process.
The interpretation of scenarios by the Weaver software layer generates the
workflows executed over the Grid. Scenarios are specified by sparse linear
algebra experts.

4 Use of Abstract Parameters for Describing Services

From the Web interface to define the objective and parameters of the user request
up to the construction of scenarios, we use the same description of services based
on common meta-data.

To describe a computational service, we specify:

– its functionalities: assembled/elemental entries, type of factorisations (LU ,
LDLT ,QR), multiprocessor, multiple Right-Hand-Side Members, . . . ;

– and its algorithmic properties: unsymmetric/symmetric solver, multifrontal,
left/right looking, pivoting strategy,

To describe a scenario, in addition to service input / output parameters (as
usual), we specify:

– its execution metrics sent back by the solver executions: memory, numerical
precision, execution time, . . .

– its control: type of graphic visualization for post-processing, level of user
(expert, non-expert, intermediate user).

More expert is the user, more control he may have on the parameters of the
expertise process.

4.1 Expressing Dependencies Between Abstract Parameters

The abstract parameters are used to express constraints and/or relations that
forms the basis of the expertise scenario. We can thus express qualitative and
quantitative dependencies between values of metrics and control parameters
within scenarios. This feature allows to limit the combinatorial explosion in-
herents to the expertise process. Here are some examples:

– If A symmetric and user is non-expert, then select only symmetric solver.
– Indicate that time and memory mostly depend on method and permutations

but also on scaling and pivoting.
– Indicate that numerical accuracy mostly depends on pivoting but also on

scaling and permutations.
– Advise orderings for QR based on AT A.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

638 P. Amestoy et al.

– Indicate that multiple Right Hand Side option, although not available, can
still be performed (simulated within computational service).

– Threshold for partial pivoting ∈ [0, 1].

The first item illustrates how it is possible to limit the number of experiments
performed over the grid: when the user is non-expert and when the targert
matrix is symmetric, only symmetric solvers are experimented (while an expert
user may want to run an unsymmetric solver on a symmetric matrix).

4.2 Example: Description of the MUMPS Software

We illustrate this by considering the MUMPS software ([2]). The abstract pa-
rameters describing this software (this is not an exhaustive list) looks like:

– Functional decomposition: Symbolic analysis, Factorization, Solve (the three
steps are available and can be called independently)

– Control parameters: Symmetric Permutation, Unsymmetric Permutation,
Pivoting Threshold

– Possible values : Symmetric Permutations available are { AMD, Metis, . . . }.
Unsymmetric Permutations are . . .

– Metrics: estimated flops from the symbolic analysis, effective time for the
whole solution, numerical precision after the solve, . . .

– Dependency: numerical precision depends on the pivoting threshold values

4.3 Structuring Abstract Parameters: Illustration with Symmetric
Permutations

An ordering is a heuristic to permute the graph of the initial matrix with the
aim to limit the cost of the numerical factorization; the ordering has a strong
impact on both the number of operations and the memory used by a solver.
Orderings involves symmetric or unsymmetric permutations. We focus on the
abstract parameter associated to symmetric permutations.

The abstract parameter SymPerm that corresponds to symmetric permu-
tations is implemented as an enumeration of large size. One of the symmetric
ordering often used is the Approximate Minimum Degree (AMD [1]) available in
MUMPS and other sparse solvers. Each software may have its own implementa-
tion of the AMD ordering. One representative of the set of AMD implementa-
tions over all the sparse solvers available might be enough in most cases but they
may perform differently. How to define/select a representative implementation
of AMD since it may change from time to time is a quite complex issue.

Furthermore when studying the impact of using various symmetric orderings,
one may not want to test all possible values of the symmetric permutation. On
some matrices a subclass of orderings may be known to be superior. A non-
expert user only wants to capture major differences between orderings, thus
using a “good” representative of a subclass may be enough. This is a crucial
issues for limiting the combinatorial complexity of this expertise process (i.e.
avoiding to explore / execute all possibilities).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Management of Services Based on a Semantic Description 639

The "permutation" abstract parameter can be represented as a tree where:

– we define a default representative at each level of the tree,
– and a default realization for each leaf of the tree.

When managing expertise scenarios, it helps in designing more dynamic server
pages by adapting the web pages to the level of the user (normal, expert, debug-
ger), and in limiting cost of scenarios.

Figure 1 illustrates the structuration of the abstract parameter corresponding
to permutations (only the symmetric permutation subtree is detailled).

SymOrdering

Block−tridiag

Global

ORDERING

BBT

RCM CM

ND

UnsOrdering

Local

MMDAMD

MD MF

AMDD MF AMF

Scotch

AMDD−MUMPS

ScotchMetis PORD

PORD

TAUCS SuperLU UMFPACK MC47 MUMPS

AMF4−MUMPS

Fig. 1. Structuring the Permutation Abstract Parameter

5 Using Abstract Parameters Within the GRID-TLSE
Project

The TLSE Weaver expertise kernel relies on two levels of services : the expertise
scenarios exploited by users and the solvers used by scenarios and experts.

Extensibility is a key point in TLSE : new scenarios and new solvers will be
integrated in the expertise site regularly. New scenarios should be able to use
old solvers and new solvers should be used by old scenarios without modifica-
tion. Modifications should only be required if scenarios want to use new specific
features from solvers.

All services do not provide the whole set of controls and metrics. Input /
output parameters should then be optional with either default values, values
computed by other services or values explicitly provided. Tools may use or pro-
duce values in a slightly different manner for the same control or metric. It is
therefore necessary to add a wrapper around each tool in order to adapt its real
interface to the common one. New solvers may provide additional controls and
metrics. Their interfaces should therefore be extensible.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

640 P. Amestoy et al.

The solution chosen in the TLSE Project relies on the definition of an easy to
extend set of features for each service which will be wrapped around each tool.
Scenarios are then using these features.

The meta-data framework used within TLSE can be summarized as follows:

– Solvers are described using meta-data and wrappers translate meta-data
values to/from solver’s parameters and results.

– Scenarios require solvers to provide specific meta-data and process experi-
ments which are sets of meta-data.

– The middleware exchanges sets of meta-data with the wrappers of solvers.
– The Web interface is dynamically built from scenarios and their correspond-

ing meta-data and solver meta-data and their values.

The service profile is composed of an abstract parameter set. It qualifies the
following aspects of the service : the name of the tool; the service semantics;
the functional parameters and results; the parameters and results for algorithm
control; the parameters and results for execution metrics.

Each abstract parameter is defined using:

– its values (type, possible values, variation (linear, logarithmic, normal, Gaus-
sian, . . .));

– its mode : input or output;
– its constraint : mandatory, optional, with default value, with value com-

putable by another service;
– the expertise level of the users (novice, standard, advanced, expert, man-

ager);
– some documentation related to its purpose (several levels may be defined

according to the user level);
– dependencies with other features for expressing incompatibilities, depen-

dence upon a parameter and other constraints.

It is quite similar to an interface in the component world but extended in
order to enable an easy integration of the tools that provide the same service
with quite different algorithms (therefore different controls and metrics).

6 Use of Abstract Parameters Within Expertise Scenarios

The expertise scenarios are used by the expertise kernel to build experience plans
according to the user request. These experience plans are worflows executed over
the Grid. The results of one experience plans may be used to biuld the next
experience plan and thus the workflows executed are dynamic since they may
depend of results of a previous executions.

The scenarios are structured hierarchically in a dataflow like approach. Sce-
nario inputs and outputs are connected to the sub-scenario inputs and outputs.
It can also contain internal links between sub-scenario inputs and outputs. A sce-
nario may also use internal operators for creation, modification, execution and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Management of Services Based on a Semantic Description 641

filtering of experience plans. A given scenario may then build several internal ex-
perience plans, executes these plans, and finally produces new plans depending on
the results from the previous ones. Scenarios are therefore fully dynamic and may
depend on the availability of services and the results of experiences in order to gen-
erate new experiences. In order to ensure that a scenario will stop, there must be
no internal cyclic links between sub-scenarios. Experience plan creation and ex-
ecution operators use service description in order to assign a value to experience
abstract parameters. Some instances may not qualify if some of their abstract pa-
rameters have values that are different from the ones required in the experiences.

The ”Ordering sensitivity” scenario consists into studying the effect of using
the available orderings on the solution of the linear systems in terms of the met-
rics selected by the user (execution time, memory, number of flops, . . .). We
only generates runs for default solvers (defined by experts), which is some kind
of leaf cleaning and limits the combinatorial complexity of the expertise. The
first box called "AllOrdering" corresponds the search of all available symmet-
ric orderings. The second box, called "Exec", requires the executions of all the
permutations sent by first box. The final results, in term of the metrics asked
by the user, are then produced in a graphical way. The scenario is described by
expert using a graphical interface called ”GEOS” that is interpreted by Weaver
to build experience plans. It is reported in Figure 2.

Generator

Symmet.

Ordering

Run for

Ordering

each

AllOrdering

Exec

A

Services

Sym Control User Level

Results

b

Fig. 2. Ordering Sensitivity Scenario

In the ”Minimum time” scenario displayed in Figure 3, we try to identify
which combination of ordering and factorization achieves the best execution
time. Some branch cleaning is effected by selecting only one possibility at each
level of tree of available permutations. This is expressed by the sequence of the
two boxes: "AllOrdering" (used in the previous example) and "Select". We then
only execute the default solvers (defined by the sparse linear algebra experts)
which corresponds to some leaf cleaning.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

642 P. Amestoy et al.

AllOrdering
Numeri.

Exec

Exec

Select

best

Ordering

Select

MinimumTime (Sym, Level)

SymPerm

Ordering

Generator

Symmet.

Services

A

Sym User Level Control

Results

b

Fig. 3. Minimum Time Scenario

7 Conclusion

We have described the main aspects of the component framework used in the
GRID-TLSE Project. This high level description of scientific software is used
within the scenarios for generating the dynamic workflows that perform exper-
tise. The main benefit is that adding / removing solvers does not require to
update scenarios (they will be automatically discovered). New scenarios make
use of all the deployed softwares.

This type of reflexive approach is commonly used for the dynamic discovery
of services (for example, in the Java language or the Corba middleware). Sim-
ilar approaches have been described for the use of object-oriented technologies
for scientific computations in order to combine several algorithmic solutions:
for example centralized and distributed matrix structures, see F. Guidec [8],
E. Noulard and N. Emad [6]), the SANS (Self Adapting Numerical Software)
Project (see [5]), or the Salsa Project (see [7]).

Our component framework combines two approaches : a static approach for
accessing the functional parameters and the results for a given service; a dynamic
approach for accessing the controls and metrics of a service. The set of meta-data
used within the TLSE Project can be easily extended which is not always the
case in the approaches mentioned above.

The GRID-TLSE Project focus on sparse solvers. The corresponding abstract
parameters are defined using a graphical interface called PRUNE. Adding ab-
stract parameters or specifying an entire set of new parameters is easy. As a
consequence, the approach described in this paper can be extended to other
areas providing that an adequate set of abstract parameters has been derived.

An important requirement in our approach is to be able to give an accurate
description of the computation done by a given service according to its functional
parameters and results. The service semantics could also be described using
algebraic specification technologies. This semantics could then be used for service

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Management of Services Based on a Semantic Description 643

trading. This point is currently under investigation (see [10]). The use of accurate
semantics allows to combine basic services in order to provide more sophisticated
ones. This trading approach can also be combined with a scheduler for finding
the best service combination (see [9]).

References

1. P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree
ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17:886–
905, 1996.

2. P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 184:501–
520, 2000.

3. E. Caron, F. Desprez, E. Fleury, F. Lombard, J.-M. Nicod, M. Quinson, and
F. Suter. Une approche hiérarchique des serveurs de calcul. Calculateurs par-
allèles, 2001.

4. E. Cuthill. Several strategies for reducing the bandwidth of matrices. In D. J.
Rose and R. A. Willoughby, editors, Sparse Matrices and Their Applications, New
York, 1972. Plenum Press.

5. J. Dongarra and V. Eijkhout. Self-adapting numerical software and automatic tun-
ing of heuristics. In Proceedings of the International Conference on Computational
Science, June 2–4 2003, St. Petersburg (Russia) and Melbourne (Australia), 2003.

6. N. Emad E. Noulard. A key for reusable parallel linear algebra software. Parallel
Computing, 27(10):1299–1319, 2001.

7. Victor Eijkhout and Erika Fuentes. A proposed standard for numerical metadata.
Technical Report ICL-UT-03-02, Innovative Computing Laboratory, University of
Tennessee, 2003.

8. F. Guidec. Object-Oriented Parallel Software Components for Supercomputing. In
Peters D’Hollander, Joubert and Trystram, editors, Parallel Computing: State of
the Art and Perspectives. Proceedings of PARCO’95 (Parallel Computing), Gent,
Belgium, Advances in Parallel Computing. North-Holland, 1995.

9. A. Hurault, M. Pantel, and F. Desprez. Recherche de services en algèbre linéaire sur
une grille. 5-8 Avril 2005. Rencontres Francophones en Parallélisme, Architecture,
Système et Composant (RenPar’16), Croisic, (France).

10. Aurélie Hurault and Marc Pantel. Mathematical service trading based on equa-
tional matching. In Calculemus 2005, 12th Symposium on the Integration of Sym-
bolic Computation and Mechanized Reasoning, Newcastle, United Kingdom, July
18-19 2005.

11. G. Karypis and V. Kumar. MeTiS – A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings
of Sparse Matrices – Version 4.0. University of Minnesota, September 1998.

12. J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimina-
tion. ACM Transactions on Mathematical Software, 11(2):141–153, 1985.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extending the Services and Sites of Production Grids by
the Support of Advanced Portals�

Péter Kacsuk

MTA SZTAKI
Computer and Automation Research Institute of the

Hungarian Academy of Sciences
H-1518 Budapest, P.O. Box 63., Hungary

kacsuk@sztaki.hu

Abstract. Meanwhile production Grids are robust and reliable Grid systems they
are not able to progress as fast as Grid research would enable it and they do not
grow as fast as they were originally expected. The remedy for the first problem
could be the introduction of volunteer services that can extend production Grids
with new services based on the latest Grid research results. Solution for the sec-
ond problem could be the extension of production Grids with volunteer Grid sites
deploying either the same or different Grid middleware used by the production
Grid. Advance Grid portal service is a good example for the volunteer Grid ser-
vices. Combining it with other volunteer services like legacy code service, bro-
kering, monitoring it can even help in solving the second problem by enabling
the adoption of volunteer Grid sites without compromising the robustness of the
core production Grid. The acceptance of the volunteer service and site concept
can contribute to the long term sustainability of production Grids.

1 Introduction

In the beginning of the Grid Computing era it was not clear if the volunteer or pro-
duction Grid model was more viable. The volunteer Grid model means that anyone
can offer resources for a Grid system and anyone can claim resources dynamically, ac-
cording to the actual needs, in order to solve a computationally intensive task. Though
the model seems to be ideal, in practice, it has failed due to the significant manpower,
expertise and skill that are required to deploy and maintain the necessary Grid middle-
ware on the Grid sites. As a result volunteer Grid sites were not reliable enough causing
frustration and disappointment among Grid users.

This failure of the volunteer Grid concept led to the rise of the production Grid model
where building the Grid requires much more discipline and commitment from the Grid
site managers. In production Grids not anybody can offer Grid resources rather only
a relatively small number of institutes that are ready to sign a service level agreement
(SLA) in which they accept the conditions of providing a 24/7 service. All the Grid sites
should deploy the same Grid middleware that is already thoroughly tested and in this

� This research work is carried out under the FP6 Network of Excellence CoreGRID funded by
the European Commission (Contract IST-2002-004265).

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 644–655, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extending the Services and Sites of Production Grids 645

way they try to guarantee the robustness of the production Grid system. Such production
Grids are, for example, EGEE and the UK NGS. The main advantage of the production
Grids is that they are much more reliable and robust than the volunteer Grids.

However, production Grids should pay significant price for their robustness:

The number of potential Grid sites is much less than in the volunteer Grids. (For ex-
ample, in the UK NGS there are only 10 sites [1].)

They grow much slower than it was expected in the volunteer model. (Production
Grids apply a very conservative policy in accepting new sites and new services.)

They are very slow in adapting new Grid technologies and research results so their
overall progress is much slower than it is desired. (UK NGS, for example, is still a
100% GT2-based Grid system although service-oriented Grid technologies have
been available for several years. EGEE tried to adapt the service-oriented Grid
technology but only in a very restricted and limited way in their new gLite mid-
dleware [2].)

What could the remedy be for all these problems? The solution could be a kind of
compromise between the production and volunteer Grid model taking the advantage of
both concepts. As a starting point the production Grid model should be kept since it
guaranties reliability and robustness. It means that we need a Grid system where the
core sites are organized as a production Grid based on strict SLA rules. However, these
core sites should be extended with volunteer sites and volunteer services. Volunteer
sites enable the fast growing of these Grids meanwhile volunteer services enable the
fast adoption of new Grid technologies and research results. The paper will describe
such a volunteer site and service adoption concept using as example advance Grid portal
technology, legacy code services, brokering and Grid monitoring.

Section 2 introduces the basic concept of volunteer services using Grid portals and
particularly P-GRADE portal as an example for such services. Section 3 defines the
concept of volunteer Grid services and shows three different examples (legacy code
services, brokering and Grid monitoring) to demonstrate the advantages of the concept.
Section 4 deals with the problem of extending production Grids with volunteer Grid sites
either based on the same or different middleware used by the production Grid. Finally,
the section on Conclusions summarizes the main advantages of the volunteer service and
site concept in the context of providing long term sustainability of production Grids.

2 Grid Portals as Volunteer Services

A volunteer Grid service is a service that can be added to a particular production Grid
without any changes of the Grid middleware applied in the production Grid. A volunteer
service is a simple add-on to the existing Grid middleware. A very natural candidate for
such a volunteer service is a Grid portal that is built on top of the existing services, in
fact, providing typically graphical user interface for accessing the middleware function-
alities of the Grid.

The advantage of using portals within a production Grid is three-fold:

The user should not install anything on his/her client machine in order to use the Grid
services.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

646 P. Kacsuk

The portal can be accessible from anywhere, i.e. even a mobile user can easily and
conveniently access the Grid services.

The user should not learn the low level command line interface of the Grid middleware
applied in the production Grid

Multi-Grid portals [3] can have even more advantages if they are used not only for
a single Grid but rather for several different kinds of production Grids. In this case the
main advantage is that the portal provides a unified access mechanism and interface
for the connected Grids and hence the user does not have to learn the command line
interface of the different connected Grids. Even more when an application should be
migrated from one Grid to another one, the application porting effort could be mini-
mized if the same portal can serve for both Grids. In this case it is the portal that should
be ported between the two different Grids and not the individual applications. Advance
multi-Grid portals can be connected to several Grids at the same time and can simulta-
neously serve several Grids by distributing the jobs of a single user among several of
the connected Grids (provided that the user has certificates to several Grids). In this way
a user can access several Grids at the same time and hence the power of using Grids can
be tremendously enhanced.

One of the hot topics of today’s Grids is the solution of interoperability among the
various production Grids. Most of the research is devoted to solve this problem at the
middleware level. This is a very hard issue particularly in case of the 2nd generation,
resource-oriented Grid systems. Unfortunately, the overwhelming majority of the cur-
rent production Grids is based on 2nd generation Grid technology. Multi-Grid portals
provide a natural solution for the Grid interoperability problem from the users’ point of
view. The user wants to run his job

in any of the Grids that can serve it
or in the Grid that can provide the shortest response time if there are several Grids

capable to run his job.

Multi-Grid portals can be connected to the brokers of different Grids and hence can
contact these brokers on behalf of their users and can select the right Grid and right
resources among the connected Grids. As a result the portal provides Grid transparency
and Grid interoperability among the connected Grids from the user’s point of view.

The usual view on Grid portals is that they simply provide a graphical user interface
to submit jobs and to enable the view of Grid resources and job execution results. The
other typical approach is that they are tailored to the needs of a certain end-user com-
munity (e.g. [4]) or to the technology of a particular Grid (e.g. Genius [5] for EGEE).

However, this simplified view is far not enough for the benefit of the whole Grid user
community and hence more sophisticated, more advance and more generic concepts
are needed to build Grid portals. A good starting point is GridSphere [6] that provides
a Grid portal framework including basic functionalities necessary for any kind of Grid
portal and at the same time enables the easy extension of the basic functions with new
portlets by which the portal can be tailored to specific user needs and Grid requirements.

Building on this concept P-GRADE portal has further developed this idea providing
a workflow-oriented generic Grid portal framework where users can develop and run
DAG-like workflow [7] applications as a core functionality of the portal. Nodes of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extending the Services and Sites of Production Grids 647

workflows are jobs to be executed in the Grid and arcs of the DAG graph represent the
necessary dependencies and file transfers among the jobs of the workflow. The portal
provides all the supporting functions

to graphically edit workflows,
to manage jobs and the necessary file transfers during workflow execution,
to monitor and visualize workflow execution,
to archive workflows,
to support porting workflows between different portals,
to manage certificate proxies during workflow execution
to support mapping jobs of the workflow to various Grid resources or to Grid brokers
to manage Grids and Grid sites that can be accessed during workflow execution
to provide information system view on Grids and Grid sites

With all these built-in functionalities P-GRADE portal provides a convenient Grid
environment where users can easily develop and run workflow-oriented Grid applica-
tions. Of course, single jobs are a special case of workflows and hence P-GRADE portal
covers all the functionalities of single job based portals, too.

Advance Grid portal technology also means that a portal can be connected to several
different Grids and provides transparent Grid access mechanism among the different
Grids as it was described above. P-GRADE portal also satisfies this criterion. It is a
multi-Grid portal where nodes of the workflows can simultaneously be executed in
several connected Grids. As a result, in case of P-GRADE portal Grid interoperability
can be realized not only at job level but also at the workflow level. Due to this feature
of P-GRADE portal it was selected as the GIN VO Resource Test portal [8]. GIN VO
was built by the GIN-CG [9] of OGF in order to investigate the Grid interoperability
issues by connecting TeraGrid, OSG, EGEE, NorduGrid and UK NGS sites in the same
VO. P-GRADE portal is the only portal currently that can provide transparent access to
all these different Grid resources solving at the Grid interoperability problem at the job
and workflow level [10].

In summary the advance features of P-GRADE portal provide a volunteer Grid ser-
vice that significantly extends the services of existing production Grids. It is connected
as volunteer service to all the major production Grids: EGEE, UK NGS, OSG, Tera-
Grid, NorduGrid. More than that if such a portal is connected to several of these Grids
it can solve the Grid interoperability among the connected Grids.

3 Extending Production Gridswith Volunteer Services

As it was written in Section 2 a volunteer Grid service is a service that can be added
to a particular production Grid without any changes of the Grid middleware applied in
the production Grid. The question is if there are Grid middleware services that can be
added as volunteer services to production Grids. In order to provide an answer for this
question we have to give a precise definition of volunteer Grid services.

A volunteer Grid service is a service that can be added to a particular production Grid

1. without any changes of the Grid middleware
2. without installing any additional software on the core sites of the production Grid

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

648 P. Kacsuk

It means that any volunteer services should be placed on additional host machines
providing the volunteer service functionality. If this service (host) does not work, the
production Grid works as before. If the volunteer service (host) works, users of the
production Grid can access to extra Grid functionalities (services) without compromis-
ing the original services. In the rest of this section we describe three such volunteer
services:

1. GEMLCA
2. GMT
3. GTBroker

3.1 GEMLCA as Volunteer Grid Service

GEMLCA (Grid Execution Management for Legacy Code Architecture) was developed
for service-oriented Grid systems to enable the nearly automatic turning of legacy ap-
plications into Grid services without modifying either the source or binary of the legacy
code. The GEMLCA architecture [11] in its original form assumed the availability of
the legacy codes on the Grid sites and required the installation of a service-oriented Grid
middleware layer (GT4 for the time being) and the GEMLCA Resource layer on every
Grid site. Although this architecture concept perfectly suits to the service-oriented Grid
approach it became an obstacle to provide GEMLCA as volunteer service for produc-
tion Grids. There was a problem with all the three layers of GEMLCA in the current
production Grids. The GEMLCA Resource layer was contradicting to the definition of
volunteer services, site managers of core sites are not ready to install additional legacy
codes on their resources and finally, the necessity of a service-oriented Grid layer was
a problem in the current production Grid systems that do not employ service-oriented
Grid layers.

Recognizing these problems GEMLCA was re-designed towards a volunteer service.
The GEMLCA resource layer was removed from the Grid sites and placed into a sepa-
rate GEMLCA service provider hosting environment. This hosting environment can be
a single host or a set of distributed and interconnected host machines. The requirement
for a service-oriented Grid layer on the Grid sites and the assumption on the avail-
ability of legacy codes were also eliminated by introducing the GEMLCA legacy code
repository concept. In the new GEMLCA architecture every Grid site is represented by
a GEMLCA resource located in the GEMLCA service provider hosting environment.
Every GEMLCA resource is associated with a legacy code repository. If the Grid site
that is represented by the GEMLCA resource is a service-oriented Grid site (e.g. GT4
site) and the legacy code is available on the Grid site, then the legacy code repository
contains the description (call interface) of the legacy code service. Otherwise, the legacy
code repository contains the executable legacy code and once this service is invoked the
executable is transferred to the 2nd generation Grid site as a traditional job submission
(meanwhile the user interface looks like a real service invocation).

With these tricks GEMLCA has been successfully adapted as a volunteer service
to UK NGS, TeraGrid, OSG and EGEE. The user interface of GEMLCA was inte-
grated with P-GRADE portal [11] and as result the workflow nodes of P-GRADE por-
tal can be not only sequential and MPI jobs but also Grid service invocations. There

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extending the Services and Sites of Production Grids 649

are some additional advantages of integrating P-GRADE portal and GEMLCA as vol-
unteer services for production Grids. Before such integration P-GRADE portal could
solve Grid interoperability only between 2nd generation Grids. By extending the portal
with GEMLCA, interoperability with even 3rd generation Grids are solved [10] at the
portal, job and workflow level. Section 4.2 shows that the GEMLCA/P-GRADE por-
tal also enables the extension of 2nd generation production Grids with 3rd generation
volunteer Grid sites.

3.2 GMT as Volunteer Grid Service

In order to offer GEMLCA legacy code as volunteer services for production Grid
systems, automatic testing of these services is inevitable. The GEMLCA Monitoring
Toolkit (GMT) was developed to provide monitoring information based on probes con-
cerning the status of GEMLCA resources. Using the GMT, system administrators are
automatically alarmed when a test fails and can also request the execution of any test
on-demand. The GMT also assists P-GRADE portal users when mapping the execution
of workflow components to resources by offering only verified Grid resources when
creating a new workflow or when rescuing a failed one.

The implementation of GMT is based on MDS4 (Monitoring and Discovery System)
[12] that is part of the Globus distribution. MDS4 is capable to collect, store and index
information about resources, respond to queries concerning the stored information us-
ing the XPath language, and control the execution of testing and information retrieval
tools built as part of the GEMLCA Monitoring Toolkit. It can be extended and tailored
to obtain specific information by means of polling resources, subscription to obtain no-
tifications regarding changes to the state of specific resources, and execution of test and
information collection scripts (probes).

As part of the GMT, several probes were implemented that collect information con-
cerning the state of basic Globus services, local job manager functionality, and GEMLCA
services. The probes can immediately be used as standalone tools executed automatically
from the MDS by means of an XML configuration file, or manually from a command line
interface, and they are also integrated into the P-GRADE portal assisting both system
administrators and end-users.

Site administrators can configure the MDS4 service to run the various probes at
pre-defined intervals. The results are collected by a portlet that is integrated into the
P-GRADE portal. Administrators can also select a specific probe from a pull-down list
displayed by a portlet and run it to verify the state of a specific service at a specific
site on demand. GMT probes can also be integrated into the workflow editor of the
portal to assist end-users when mapping a new workflow execution onto available Grid
resources, or when rescuing and re-mapping a failed workflow. In the latest P-GRADE
portal release, mapping of workflow components to underlying resources happens ei-
ther manually by the end-user, or in case of LCG type Grids, by the LCG broker. The
GMT aims to support manual mapping (when no LCG type broker is available) by dy-
namically querying the MDS4 during workflow creation time, and offering only those
GEMLCA resources for mapping where the latest GMT test results were positive. Al-
though, this does not guarantee that the resource will actually work when executing the
workflow, but the probability of a successful execution will significantly be increased.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

650 P. Kacsuk

Fig. 1. GMT based resource availability prediction as volunteer service

Work is also undergoing to connect GMT to the LCG resource broker, as illustrated
in Figure 1. GMT, as shown on the figure, runs regular probes on the production Grid
resources and, besides updating the MDS indexing service, also creates a historical
database. When the portal submits a workflow, a classifier component runs data mining
algorithms on this historical data and determines which resources are ”very likely to
be alive”. This information can be passed to the production Grid broker, for example
in case of an LCG broker within the JDL (Job Description Language) file. The broker
then maps the execution to the appropriate resources taking now the GMT provided in-
formation into consideration too. Notice that in this solution both MDS-4, GMT, GMT
Classifier and the Historical test data database work as volunteer services for the con-
nected production Grid that can be EGEE, UK NGS, OSG, TeraGrid, etc.

3.3 GTBroker as Volunteer Service

Most of the Globus based productions Grids (e.g. UK NGS, OSG, TeraGrid) are used
without a broker that makes the life of Grid users quite hard since it is the user’s task
in these Grids to select the necessary Grid resource. It is not a big problem for a single
task but becomes more and more difficult as the user would like to use large workflows
or parameter study applications. Recognising this problem a broker called as GTBroker
[13] was designed and implemented in MTA SZTAKI as volunteer Grid service for 2nd
generation Globus based production Grids.

For determining the available hosts in the grid GTBroker quiries the MDS with
LDAP requests. The job submission to resources is done through GRAM, and a GASS
server is used to put the files needed for the job to the remote host and to get back

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extending the Services and Sites of Production Grids 651

the result files if there are any. Job requirements have to be specified in a simple RSL
file. GTbroker acts in the following way: First it reads the given RSL file to get the
user requirements and job properties. Then it turns to the MDS information service of
the production Grid in order to get information about the resources. After getting the
available nodes from the MDS the broker orders them by a predefined criterion. In the
criteria one can use the following metrics: CPU speed, number of CPUs, free CPUs on
the node, disk size and whether a node is a cluster. With these metrics the hosts can
be ordered in a way that the ones having the best resources get higher priority than the
others. Should a job fail or be pending for too much time on a node, the broker cancels
and resubmits it to another host. The actual state of the jobs is tracked by the broker,
that’s why it is able to cancel and resubmit jobs.

Originally, the main reason for developing GTBroker was providing a way to submit
up to hundreds of small jobs as fast as possible, without any failures in a 2nd generation
Globus based Grid. This requirement of brokering hundreds of small jobs is extremely
important for parameter study applications. After the first successful experiments more
ambitious goals were defined, i.e., GTBroker should be able to

handle not only small jobs
support LCG-2 based Grids, too
work as a built-in service of P-GRADE portal

All these requirements were successfully met with the latest version of GTBroker. It
can handle large number of larger jobs even in LCG-2 Grids and comparison measure-
ments show that GTBroker significantly outperforms the official LCG-2 broker. All this
is achieved without modifying any middleware software in LCG-2 production Grids
or without requiring to install any additional software on the LCG-2 resources. This
means that GTBroker satisfies the volunteer service criteria and hence can be used for
UK NGS, OSG, TeraGrid and LCG-2 Grids.

The same way as GEMLCA and GMT can be used as independent volunteer ser-
vices but can also be integrated with P-GRADE portal, GTBroker was integrated with
P-GRADE portal. In this way the portal can provide high level broker services for its
workflows and parameter study applications even if such broker service is not available
in the connected production Grid or the available broker is a different type.

4 Extending Production Grids with Volunteer Grid Sites

As it was written in the Introduction another problem of existing production Grids is
that they do not grow as fast as volunteer Grids can do due to the strict SLA require-
ments. Many potential sites are reluctant to sign such strict SLAs because of the lack of
the necessary manpower or they want to install slightly or radically different Grid mid-
dleware on their own resources. However, production Grid management does not want
to compromise the production Grid stability with enabling the join of volunteer sites
based on less strict SLAs. As a result production Grids are not big enough to attract the
critical mass of users that could justify their existence. Notice that a Grid is not attrac-
tive for a user if he can access a large cluster and in the Grid he cannot get access at
least an order of magnitude more resources than on his own cluster. So, volunteer sites

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

652 P. Kacsuk

would play an important role to increase the size and attractiveness of Grid systems and
this would be really important.

Again a solution for this problem could be a volunteer advanced portal service that
hides the unreliable nature of volunteer Grid sites.

4.1 Volunteer Site with Less Strict SLA

The assumption is that quite a number of volunteer sites would be ready to join existing
production Grids if they were not be forced to accept the strict SLAs. This, of course,
would mean that many of these sites would regularly down causing frustration to the
Grid users.

However, using and advanced Grid portal like P-GRADE integrated with a broker
like the GTBroker we could keep the advantages of having large number of volunteer
sites without causing any frustration for the users due to the unreliability of these vol-
unteer sites. The portal users would submit their jobs and workflows through GTBroker
that has the outstanding feature of tracking the status of jobs. If a job is failed on the
selected resource, GTBroker is able to automatically select a new Grid resource and re-
submit the job to the newly selected resource. All this is transparent to the user. He does
not have to care that in the background GTBroker tried several different resources until
his job successfully completed. Obviously, such resubmission increases the response
time of the Grid. If a user needs a very fast response, he can give higher priority to
the selection of the core Grid sites that provide more reliable service and hence shorter
response time. This prioritization can easily be done by the RSL description of the job
requirements.

Overall those who are concerned with speed and reliability can use the original core
sites of the production Grid, those who are not so much concerned with speed and
reliability can exploit the larger number of available volunteer Grid sites. All these are
managed in a transparent way by a volunteer portal and broker service that are originally
not available in the production Grid as a core service. So, introducing volunteer services
into a production Grid can help in introducing volunteer sites as well.

4.2 Volunteer Site with Different Middleware

Many potential sites do not want to join a production Grid because they insist on their
own Grid middleware installation. It is particularly true if their Grid middleware instal-
lation is more advanced than the one used in the production Grid. For example, UK
NGS uses GT2 middleware and there are many universities in the UK where already
GT4 middleware is installed and used. Obviously a production Grid cannot be directly
extended with volunteer Grid sites if they rely on a different Grid middleware.

Again this problem could be solved by an advanced multi-Grid portal like the inte-
grated GEMLCA/P-GRADE portal. This portal enables the access to any Grid resource
that uses one of the following Grid middlewares: GT2, GT4, LCG-2, glite, NorduGrid.
This feature means that if a GT4 site would like to join for example the UK NGS as a
volunteer site, it is feasible and useful since any GEMLCA/P-GRADE portal user could
immediately exploit the new GT4 site through the GEMLCA service of the portal. (No-
tice that without the volunteer portal service the original GT2 site users could not access

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extending the Services and Sites of Production Grids 653

the GT4 sites and hence GT4 sites could not support the NGS.) Moreover, the user can
create a workflow where some of the nodes of the workflow are sent as jobs to the core
NGS sites and some of the nodes are invoked as Grid services on the volunteer GT4
sites. In this way both the users and NGS can benefit from the availability of the new
volunteer GT4 sites as shown in Figure 2.

Fig. 2. Extending GT2 production Grids with GT4 resources

5 Conclusion

Volunteer services and volunteer Grid sites can play important role in future production
Grid systems. There are many services needed by the production Grids (both users and
Grid providers recognize their importance) but there is no manpower to develop these
services by members of the production Grid. In this case, these services can be pro-
vided as volunteer services without compromising the robustness of existing services.
This means that a large external research community can contribute to the develop-
ment and maintenance of the new required services on a voluntary basis. If a volunteer
service is widely accepted by the user community it can become officially part of the
production Grid middleware stack after going through a thorough re-engineering and
testing procedure like the one provided by OMII-UK.

This model of using volunteer Grid services has the following benefits:

Extends the services of production Grids without compromising their robustness.
Volunteer services should compete with each other and with the utility Grid services.

The best will be selected in a natural way to be used later as a core service.
Reduces the development cost of production Grids.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

654 P. Kacsuk

Attracts researchers to develop new Grid services.
Increases competition among Grid researchers but at the same time provides better

conditions for them to test and evaluate their research results in real Grid environ-
ment by real Grid users.

Supports the collaboration of Grid researchers and Grid service/infrastructure
providers.

Volunteer advanced Grid portal services integrated with other volunteer services can
significantly extend the capabilities of production Grid systems. Several examples were
shown in the paper in the field of

Providing legacy code services
Brokering
Monitoring
Solving Grid interoperability at the job and workflow level
Supporting the extension of production Grids with volunteer sites

P-GRADE portal is used as volunteer service for the GILDA [15] and as an offi-
cial service for HunGrid [16], SEE-GRID [17], VOCE [18], EGRID [19] and many
national Grids (e.g. CroGrid [20], Turkish Grid [21], etc.). Recently a volunteer service
portal [23] was deployed at Worcester Polytechnic Institute (USA) to solve the interop-
erability of TeraGrid, OSG and SEE-GRID. A GEMLCA/P-GRADE portal [14] is used
as volunteer service for the UK NGS where it extends the original GT2 sites of NGS
with volunteer GT4 resources and GT4 Grids. The NGS portal is also extended with
GMT providing monitoring service for the volunteer GEMLCA and GT4 resources of
NGS. Another GEMLCA/P-GRADE portal extended with the GMT monitoring system
is accepted as the official resource testing portal of GIN VO [22].

In summary we can say that taking into consideration all these advantages of the
volunteer service and volunteer site concept this approach represents a very promising
way of solving the sustainability of production Grids in a long term.

References

1. The UK NGS: http://www.grid-support.ac.uk
2. S. Burke et al.: glite 3.0 User Guide,

https://edms.cern.ch/file/722398//gLite-3-UserGuide.pdf
3. P. Kacsuk and G. Sipos: Multi-Grid, Multi-User Workflows in the P-GRADE Grid Portal,

Journal of Grid Computing, Vol. 3, No. 3-4, pp. 221-238, 2005
4. C. Blanchet and V. Lefort: GPS@: Bioinformatics grid portal for protein sequence analysis

on EGEE grid, EGEE User Forum, Geneva, 2006
5. R. Barbera, A. Falzone and A. Rodolico: The GENIUS Grid Portal, Computing in High

Energy and Nuclear Physics, La Jolla, California, 2003
6. http://www.gridsphere.org/
7. J. Frey: Condor DAGMan: Handling Inter-Job Dependencies,

http://www.cs.wisc.edu/condor/dagman/, 2002
8. GIN VO Resource Test portal: https://gin-portal.cpc.wmin.ac.uk:8080/

gridsphere/gridsphere
9. C. Catlett: Grid Interoperation Now DRAFT Charter, OGF documents, March, 2006

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.grid-support.ac.uk
https://edms.cern.ch/file/722398//gLite-3-UserGuide.pdf
http://www.gridsphere.org/
http://www.cs.wisc.edu/condor/dagman/
https://gin-portal.cpc.wmin.ac.uk:8080/gridsphere/gridsphere
https://gin-portal.cpc.wmin.ac.uk:8080/gridsphere/gridsphere

Extending the Services and Sites of Production Grids 655

10. P. Kacsuk, T. Kiss and G. Sipos: Solving the Grid Interoperability Problem by P-GRADE
Portal at Workflow Level, Proc. of the Grid-Enabling Legacy Applications and Supporting
End User Workshop, in conjunction with HPDC’06, Paris, pp. 3-7, 2005

11. T. Delaitre, et al.: GEMLCA: Running Legacy Code Applications as Grid Services, Journal
of Grid Computing, Vol. 3, No. 1-2, pp. 75-90, 2005

12. Globus Team, Globus Toolkit 4.0 Release Manuals:
http://www.globus.org/toolkit/docs/4.0/

13. A. Kertesz: Brokering on Globus, 5th Int. Conf. of PhD Students, University of Miskolc, pp.
73-78, 2005

14. UK NGS portal:
https://gngs-portal.cpc.wmin.ac.uk:8080/gridsphere/gridsphere

15. GILDA portal: http://portal.p-grade.hu/gilda/
16. HunGrid portal: http://portal.p-grade.hu/hungrid/
17. SEE-GRID portal: http://portal.p-grade.hu/seegrid/
18. VOCE portal: http://portal.p-grade.hu/voce/
19. EGRID portal: http://portale.egrid.it:8080/gridsphere/gridsphere
20. CroGrid portal:

http://cro-grid-portal.irb.hr:8080/gridsphere/gridsphere
21. Turkish Grid portal:

http://portal.grid.org.tr:8080/gridsphere/gridsphere
22. GIN VO portal: https://gin-portal.cpc.wmin.ac.uk:8080/gridsphere/

gridsphere
23. WPI portal: http://pgrade.wpi.edu

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.globus.org/toolkit/docs/4.0/
https://gngs-portal.cpc.wmin.ac.uk:8080/gridsphere/gridsphere
http://portal.p-grade.hu/gilda/
http://portal.p-grade.hu/hungrid/
http://portal.p-grade.hu/seegrid/
http://portal.p-grade.hu/voce/
http://portale.egrid.it:8080/gridsphere/gridsphere
http://cro-grid-portal.irb.hr:8080/gridsphere/gridsphere
http://portal.grid.org.tr:8080/gridsphere/gridsphere
https://gin-portal.cpc.wmin.ac.uk:8080/gridsphere/gridsphere
https://gin-portal.cpc.wmin.ac.uk:8080/gridsphere/gridsphere
http://pgrade.wpi.edu

PSO-Grid Data Replication Service

Vı́ctor Méndez Muñoz1 and Felix Garćıa Carballeira2

1 Universidad de Zaragoza, CPS, Edificio Ada Byron, Maŕıa de Luna, 1. 50018
Zaragoza, Spain

vmendez@unizar.es, eureka@nodo50.org
2 Universidad Carlos III de Madrid, EPS, Edificio Sabatini, Av. de la Universidad,

30, 28911 Leganés. Madrid. Spain
fgcarbal@inf.uc3m.es

Abstract. Data grid replication is critical for improving the perfor-
mance of data intensive applications. Most of the used techniques for
data replication use Replica Location Services (RLS) to resolve the log-
ical name of files to its physical locations. An example of such service
is Giggle, which can be found in the OGSA/Globus architecture. Clas-
sical algorithms also need some catalog and optimization services. For
example, the EGEE DataGrid project, based in Globus open source com-
ponents, implements for this purpose the Replica Optimization Service
(ROS) and the Replica Metadata Catalog (RMC). In this paper we pro-
pose a new approach for improving the performance of Data grid repli-
cation. With this aim, we apply Emergent Artificial Intelligence (EAI)
techniques to data replication. The paper describes a new algorithm for
replica selection in grid environments based on a PSO-LRU (Particle
Swarm Optimization) approach. For evaluating this technique we have
implemented a grid simulator called SiCoGrid. The simulation results
presented in the paper demonstrate that the new technique improve the
performance compared with traditional solutions.

1 Introduction

Grid replication of remote data is critical for data intensive enterprise and sci-
entific applications, mostly implemented over Globus middleware[1]. Virtual Or-
ganisations are usually geographical and user affinity communities around a big
data producer, in the scale of Tera Bytes a day, with the aim of extract infor-
mation from this read-only remote data, by running jobs on the Grid. On this
context replication is used for fault tolerance as well as to provide load balancing
by distributed replicas of data.

The OGSA[2] and therefore the Globus Toolkit 4.0 assumes the Giggle[3]
as a framework for constructing scalable Replica Location Services(RLS) that
allows the registration and discovery of replicas. Given a logical identifier of a
file(LFN), the RLS must to provide the physical locations of the replicas for
the file(PFN). The RLS consists of two components. Local Replica Catalogs
(LRCs) manages consistent information about logical to physical mappings on
each site or node. Replica Location Indices (RLIs) hold the information about

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 656–669, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PSO-Grid Data Replication Service 657

the mappings contained in one or more LRC. Strong consistency is not required
on the RLIs, a soft protocol send LRC state information to connected RLIs,
which then incorporate this information into their indices and delete time outs
entries. The basic Giggle architecture on figure 1 shows two layers, but the
architecture is usually configured on N layers of hierarchical RLI.

Fig. 1. Basic RLS Architecture

Many research groups have developed algorithms for replica selection and lo-
cation functionalities, based on the Giggle[3] RLS architecture, using hierarchical
RLS topologies, that are characterized with six parameters shown on the Table
1 of the contribs section, in wich we have added some new values that will be
explained.

Other important OGSA/Globus data Grid service components are: GridFTP
a not Web Service(WS) component for files transfer, Reliable File Transfer
(RFT) for GridFTP monitoring, Data Replication Service (DRS) is the WS
component that encapsulate the non-WS RLS and RFT for GT4, OGSA-DAI
it is a WS GT4 component for relational data base and XML objects repli-
cation. Furthermore, usually it is need some aditional funtionalities, thus the
EGEE DataGrid has the ROS and RMC components for the data Grid service
framework.

Next section of this paper describes the related work on some aspects of data
Grid service:

– Replica state of the art algorithms.
– We analyze the research branches to get some theoretical conclusions.
– We describe the features of the Grid simulators used for experimental test

of this algorithms.

After related work section we explain the main contributions of our approach:
a framework review for an enhanced Giggle, a better performance algorithm for
replica selection based on PSO and LRU.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

658 V.M. Muñoz and F.G. Carballeira

On the fourth section we explain the evaluation methodology and we present
SiCoGrid, and on fifth we present experimental results of our improved approach
to the data Grid. Finally we summarise some conclusions.

2 Related Work

Chervenak et al.[3] present some initial performance results for five canonical
implementation approaches based on following Giggle configurations:

– RLS1: Single RLI for all LRCs.
– RLS2: LFN Partitioning, Redundancy, Bloom Filters.
– RLS3: Compression, Partitioning based on Collections.
– RLS4: Replica Site Partitioning, Redundancy, Bloom Filters.
– RLS5: A Hierarchical Index.

They use prototype implementations that show good scalability but does not
include network simulation, the prototype is focused on disks throughput, but
both disks and network could be system lack depending on study issue class.

There are some approaches that propose an economical algorithm for replica
selection where the costs of file transfers are evaluated as generic equation 1:

cost(f, i, j) = f(bandwidhti,j , sizef) (1)

Lamehamedi and Deelman approach[4] uses bouth hierarchical and flat propa-
gation graphs spanning the overall set of replicas to overlay replicas on the data
grid and minimizing inter-replica communications cost. Beginning on the hierar-
chical Giggle topology they introduce a flat-tree structure with redundant inter-
connections for its nodes; closer the node is to the root, more interconnections
it has. The flat-tree was originally introduced by Leisersons[5] to improve the
performance of interconnection networks in parallel computing systems. Lame-
hamedi et al. identifies on this approach that flat-tree on a ring topology suits
best than hierarchical with multiple servers or peer replica applications. For sim-
ulation framework they use a network simulation[6], without consider the disks
throughput, so results are limited by the premise that the system lack is on the
network. Anyway they obtain rough network resource consumption evaluation
comparing with the pure hierarchical RLS.

Another economic approach[7][8] understand the Grid as a market where data
files represent the goods. They are purchased by Computing Elements for jobs
and by Storage Element in order to make an investment that will improve their
revenues in the future. The files are sold by Storage Elements to Compute El-
ements and to other Storage Elements. Compute Elements try to minimise the
file purchase cost and the Storage Elements have the goal of maximising profits.

When a replication decision is taken, the file transfer cost is the price for the
good, like the function 1 show above. The Replica Optimiser may replicate or not
based on whether the replication(with associated file transfer and file deletion)
will result in to reduce the expected future access cost for the local Computing

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PSO-Grid Data Replication Service 659

Elements. Replica Optimiser keeps track of the file requests it receives and uses
an evaluation function: E(f, r, n), defined in [9] that returns the predicted num-
ber of times a file f, will be request in the next n, based on the past r request
history base line. The prediction function E is calculated for a new file request
received on Replica Optimiser for file f. E is also calculated for every file in the
storage node. If there is no file with less value than the value of new file request
f, then no replication occurs. Otherwise least value file is selected for deletion an
new replica is created for f.

The research group that propose this approach also present OptorSim [10]
[11], the first Grid simulator that holds network and in some way disk costs.
The first version was time driven but second version is event driven and it also
has others scheduling improvements[12]. Results [7] present some specific realistic
cases where the economic model shows marked performance improvements over
traditional methods.

A Peer-to-Peer replica location service based on a distributed hash table[13] is
fill on Giggle with Peer-to-Peer-RLI(P-RLI). P-RLI uses the Chord algorithm to
self-organise P-RLI and it exploits the Chord overlay network to replicate P-RLI
mappings. The Chord algorithm also route adaptively the P-RLI logical names
with LRC sites. The replication of mappings provides a high level of reliability
in the P-RLI, the consistency is stronger than in simple RLI nodes. The P-RLS
performance is tested on a 16-node cluster scale with the network size. It is
also tested with a simulation for larger network of P-RLI nodes, evaluating the
distribution of mappings in the P-RLS network. The simulation for this test
section is not a complete simulation of the P-RLS system, but rather, it focuses
on how keys are mapped to the P-RLI nodes and how queries for mappings are
resolved in the network.

Nowadays there are many approaches with similar methods and similar per-
formances as state of the art above. Other descentralized adaptive replication
mechanism[14] organise nodes into overlay network and distribute location in-
formation, but do not route requests. Each node that participates in the dis-
tribution network build, in time, a view of the whole system and can answer
queries locally without forwarding request. Unfortunatelly this is not common
on large scale scientific datasets, that suppose the most of the operative Grid
infrastructures.

3 Contributions

3.1 Proposed Data Grid Service Framework

The enhanced Giggle shown on Table 1 avoid the restrictions for the flat ap-
proaches. Now it is not necessary to store the LFN mapping out of the local
node. It is not necessary to implement any RLI layer on the architecture. There-
fore the RLS is completely consistent. On the function used to partitioning the
LFN name space, we add a entry for flat architecture with no partitioning by
LFN. Every LRC manage the name space locally independent. First introduced
value is for G = 0 pointing out a flat RLS composed only by LRCs and no RLI

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

660 V.M. Muñoz and F.G. Carballeira

layer. There are a no partitioning actions for LFN names space (PL = flat), and
no partitioning the RLI name space (PR = flat). For the degree of redundancy
in the index space we add a new case R = 0 for the LFN mapping only on
the LRC. We also have include economic and flat heuristic for possible S values
(the function used to determine what LRC information to send to other catalog
entities and when).

Table 1. The six parameters enhanced Giggle RLS structures and values

G The number of RLIs
G = 0 A flat partitioned index, only LRC on a flat layer
G = 1 A centralised, non-redundant or partitioned index
G > 1 An index that includes partitioning and/or redundancy
G ≥ N A highly descentralized index

PL The function used to partitioning the LFN name space
PL = O No partitioning by LFN. The RLIs must have storage

to record information about all LFNs, a large number
PL = hash Random partitioning. +load balance, -locality
PL = coll Partitioning on collection name. -load balance, +locality
PL = flat No partitioning by LFN. Every LRC is locally manage

PR Function used to partition replica site name space
PR = 0 No partitioning by site name. Indices have entries for every

replica of every LFN they are responsible for.
PR = IP Partitioning by domain name or similar.
PR = flat There are no index for partitioning site name space.

R The degree of redundancy in the index space
R = 0 The LFN mapping is only on the LRC
R = 1 No redundancy: each replica is indexed by only one RLI
R = G > 1 Full index of all replicas at each RLI. Implies

no partitioning, much redundancy/space overhead.
1 < R < G A highly descentralized index.

C The function used to compress LRC information
C = O No compression: RLIs receives full LFN/site information
C = bloom RLIs receive bloom filters summaries
C = coll RLIs receive summaries based on collection distribution

S Function to set what LRC information to send where
S = full Periodically send entire state to relevant RLIs
S = partial In addition, send periodic summaries of updates
S = economic Every economic decision send entire state to RLIs
S = flat Only statistical information is send for flat heuristic

At the end of the day we will have a stand alone LRC for each node, with
a local location service and the need of an implicit global location interface as
show figure 2, with a distributed RLS service on each node.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PSO-Grid Data Replication Service 661

Fig. 2. Flat RLS architecture over enhaced Giggle

The data Grid service framework proposed, will complementary need a mod-
ified ROS, with flat heuristic features on two maners:

– Those algorithms like PSO that need to seend some statistical information,
bind pear to pear conexion between ROS servers in each node.

– Other Emergent Artificial Intelligence (EAI) algorithms are stand alone ROS
servers, and does not need any control information transfer.

There also is a distributed ROS service.
The typical RMC service si not necesary for our goal. We do not use a GUID,

because each local catalog make mapping betwing LFNs and PFN in a oneness
way for the local node. But the LRC will need two aditional entries for the
metadata information and the original producer node of the file. So we use an
enhaced RLS with some soft catalog funtionalities.

This new theoretical approach requires an heuristic that realizes enough per-
formances with only statistical information about LRC, and a request routing
scheme self described. This is our goal on the next subsection proposing PSO
file location and selection scheme and LRU deletion mechanism as an alternative
to traditional approaches. Our data Grid service framework is also valid for any
new approach that may walk on flat heuristic way.

3.2 The Algorithm: PSO-Grid

PSO is an Emergent Artificial Intelligence technique. EAI is an Artificial Intel-
ligence branch that uses the natural social behaviour as ant colons or PSO[15]
inspired on bees swarm or birds flocks searching food. PSO has been proved as
a valid approach for many different real solutions[16][17].

On Grid environments we introduce some tactic modifications, based on the
strategy ”follow the closer bird from the food chunk” as social PSO flavour.

– A bird flock is in a random search for food in an area.
– For each bird there is only one valid kind of food.
– The bird does not known where is the food chunk, but its known how long

is from the different areas and it know how many birds are finding they food

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

662 V.M. Muñoz and F.G. Carballeira

chunk on this areas, this is called food chirp. This is the social component
of our approach, thus the distance to the food chunk is calculated for each
bird flock, not for individual birds.

– The strategy is to follow the closer bird flock with best success food search.

Translating this analogy to the Grid, we suppose that a file location request
is a bird searching food. When the bird stand on an area it is on a Grid node,
when the bird fly looking for food to another node is moving through the Remote
Network. The bird takes the decision from where to search based on the flock
food chirp, that is the best performance external hit ratio of different nodes.
On the other hand, the food chirp will decreased across distance. If the bird is
over-flying a node and find food then it will change direction to get it, if the
bird arrive to destination and is no food then start again from this point. Thus
the performance function for file f to node j from node i looks as following. The
PSO-Grid uses a performance metric for a file replication between two nodes i,
j , defined in equation 2. We use b as the identifier of the node with the best
performance metric asociated to i, from the evaluated j nodes. Initially b is the
producer node of the replica, that will be return by LRC soft catalog metadata
information described above. We use e for the external hit ratio and c for the
network cost defined below on equation 3.

pi,j = (ej ∗ ci,j) + ((1 − eb) ∗ ci,b) (2)

The external hit ration is calculated based on N lasts external success request
ratio on node j. The external ration events are the information that is sent from
one ROS in each node to another. Considering network access cost we propose
the following:

c(i, j) = lti,j ∗ c1 + (MAXBW − bwi,j) ∗ c2 (3)

Latency is a constant but do not mean neutral on transfers[18], the latencies are
growing from one network to an other, the bandwidth on a network connection
is the minimal bandwidth assigned from one network to another.

For our case c1 = 1 and c2 = 0.2. On the equation 3 c1 and c2 are coefficients
that balance the relative relevance between latency and bandwidth, they also
should fit with the bandwidth and latency values of the specific Grid infras-
tructure, and also fit with their measure relationship (ms. and MB/s.). At the
end of the day latency is more important than bandwidth, because latency is
always constant, and bandwidth has a variable behaviour depending on sockets
allocations and number of network request in a specific moment. MAXBW is
the highest bandwidth of all the Grid infrastructure.

The performance function 2 is balancing the probability of find a replica in a
node j with the probability of not finding on j, where we have to reply from the
node with best metric b, initially the producer.

On the PSO-Grid algorithm the file request is a bird or more formally a
particle, and the particles in a Site are a swarm. When the file object is found
the particle died and the file reply is done with traditional routing methods. The
basic algroithm is exposed on the next pseudo-code.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PSO-Grid Data Replication Service 663

Loop
For each particle not finding file on node i

Initialize best node as requested file producer site,
and best metric as performance from i to producer.

For each node j, not i, from the Grid
If actual performance(i,j) is less than best one.

Get new performance(i,j) as best metric,
and j as best node.

End if
End for each j.
Launch replica request to best node.

End for each particle.
Until End Condition.

The deletion decision is taken in each node only to serve local request, using
the LRU or LFU algorithm for select the file target. When a file deleted is on
process to remote node reply, the node trigger a new PSO reply in the name of
the in-reply remote node for the rest of the file transfer.

4 Evaluation Methodology

As we have seen on related work section, the best reliable Grid simulation shape
should consider disks throughput and network traffic. For a reliable evaluation
methodology we have design a Grid simulator with both of them. The complete
SiCoGrid (Simulador Completo Grid) toolkit includes:

– Main Grid event driven simulator develop in Parsec[19].
– Workload generator, developed on C.
– E/S Subsistem: integrating DiskSim[20] on the general Grid simulator with

a parsec interface.

4.1 Data Grid Simulation Design

Figure 3 presents the SiCoGrid UML design, with all the modelled components
and some of the main attributes.

The toolkit includes a workload generating program, represented on the figure
3 as the Access Pattern. The log is writed on file for the given input arguments:
access pattern, random seed, number of Grid clients by node, number of jobs by
Grid client.

The access pattern are full file, sequential block access, random, unitary ran-
dom walk, gaussian random walk, same as OptorSim simulator[10][7]. The ran-
dom seed is for statistical experiment repetitions. Number of Grid Clients in a
node is a component of the simultaneous request on a node. The number of jobs
by grid client is a temporal lenght component of the simulation.

The Client Data Grid, Storage Element and Computer Element are conected
across the Local Network. The Grid node is directly conected to the RB, on

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

664 V.M. Muñoz and F.G. Carballeira

Fig. 3. SiCoGrid UML design

the same machine. Between nodes there is a remote network simulation with an
infrastructure described on network configuration file.

On this environment each job will request many file blocks. The workload
application return for each file request an Active Time and a Passive Time.
Those times are empirical model of Web document arrivals at access link[21].
After a job get a file block response, it spend an Active Time for process the block
part of the job, this time is calculated based on Computer Elements featured
specifications on network configuration file. The last job requested block also
uses an extra Active Time slice for process the final job computing events, and
it is shaped with Weibull distribution with a=1.46 y b=0.382, and infinite mean
and variance, that is characteristic of Web Services [22]. Passive Time is the
time that the user hold between one job and another. For this parameter we use
a Pareto distribution with k=1 and alpha = 0.9 with infinite mean and variance,
that is a characteristic Web Service users distribution[22].

The Grid Site may inherit in a Router, and Grid Node with assigned Com-
puting and Storage Elements. All Grid site components are connected to a Local
Network, usually token media access with a hight bandwidth if we compare with
Remote Networks.

Each Remote Network has aggregate various Socket instantiations that imple-
ments partial bandwidth of the total assigned for the Remote Network. SiCoGrid
response as real systems: when the available bandwith is close to the top, more
bandwith is asigned for a network transaction, when is close zero, then less
bandwidth is asigned.

Pure data Grid uses computing on the client, thus all the active and passive
time is consumed on the Grid client, as show figure 4

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PSO-Grid Data Replication Service 665

Fig. 4. Pure Data Grid Simulated Protocol

(a): The client read the request from the log file. (b): The client launch a
request on the site or node, through the Local Network to the Resource Broker,
that will manage the request in order to return to the clien t the appropriate data
and/or computing results. (c): If the requested file is not on the site, then the
RB pass the request to the node that depending on the replication algorithms,
it route to the appropriate Remote Network instantiation. If the requested file is
on the site, then go below to (b) RB pass the request to SE. (d): Asynchronous
data replies from remote sites are received on the node, that send it to the
corresponding SE. (b) RB pass the block request to the SE. (b)-ACK: Requested
block file is send from SE to Client data Grid.

The drawback of the presented SiCoGrid is that suppose unlimited buffering
resources for scheduling and replica algorithms. This is a small lack comparing
with the much more significant assumptions of others Grid simulators.

One of the SiCoGrid meaningful features is that it launch a thread for any
entity instantiation, taking advance over other simulators toolkits, that uses one
thread for each task(task as a part of a job) in a way that avoid uses for large
scale simulations.

SiCoGrid file deletion mechanism could be Least Frecuent Used(LFU) and
Least Recent Used(LRU), but LRU performs better and the used on this data
Grid simulation design. SiCoGrid implements the spcefic market economic model
deletion scheme, that also uses LRU for secondary deletion decisions. For replica
selection, location and optimisation we use three algorithms: Unconditional repli-
cation, this is the canonical that always take the replica source from the Grid

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

666 V.M. Muñoz and F.G. Carballeira

site file producer; Market Economic Model, the OptorSim scheme[10][7], Particle
Swarm Optimisation approach, as we explain on a previous sections.

4.2 Simulation Infrastructure

We have configured our SiCoGrid for a common Grid stage[23] shown on the
Table 2. These is the typical CERN datagrid specification for node tier class of
a Virtual Organisation. The storage capacity, file size, and network bandwidth
is scaled in the magnitude of twenty, for time simulation reasons. Therefore the
obtained time results will be on the same magnitude.

Table 2. Scaled Grid Stage

Tier Class Real MB/s Scaled Mb/s / 20 Real TB Scaled TB / 20
1 2048 102.4 220 11
2 320 16 100 5
3 10 0.5 20 1

On the figure 5 we can see the network infrastructure used in our experiment.
The graph disposes a nomenclature where the nodes has a first number that is
the tier class, and after the point another identification number. Below there is
the storage size of the node in TB. The networks have assigned two numbers,
the first one is the latency in ms and the other is the bandwidth in MB/s.

Fig. 5. Simulated Grid Stage

5 Simulation Results

Following figure 6 presents Grid simulation results based on the stage described
above, with three statistical repitions for each experiment simulation. We use

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PSO-Grid Data Replication Service 667

Gaussian random walk, that is the best performance for the state of the art eco-
nomic OptorSim approach[10]. The job response time is scaled in the magnitude
of 20 to usual jobs duration from hours to some days. There are shown different
Grid sizes, as combination of the number of Grid clients by node and the number
of jobs submitted by a Grid client: 4X4, 4X5, 4X6, 4X7, 5X4, 5X5, 5X6, 5X7,
6X4, 6X5, 6X6, 6X7, 7X4, 7X5, 7X6 and 7X7, so the serie increases the number
of jobs for each clients by node configuration. We present results for the best
performance LRU over LFU deletion scheme.

The figure 6 shows the unconditional-LRU performances with black line, the
market economic modell on dark gray, and the PSO-Grid with LRU deletion on
light gray. As it was expected the unconditional used for base compare, has the
worst results. PSO-Grid is the best performances for all simulation series shown
on the graph, and also for all the repetitions. PSO-Grid response rate is around
30% faster than canonical algorithm, and 15% faster than the market economic
modell.

Fig. 6. Results in Simulated Grid Stage

Furthermore we compare canonical line with others, and we can see that
PSO-Grid fits well with the unconditional pattern but with lower response time
results. Thus PSO-Grid has good scalability features in our experiment. Market
economic modell starts following this canonical pattern, but with heavy workload
experiments, on the right part of the chart, it is quickly prone to join with
canonical results, showing bad scalability features.

PSO-Grid performance is better due to its features: less control trafic, dis-
tributed optimization, localization and selection services, autonomous manage-
ment of each node wich will fit best on user and geografical afinities, colaborative
strategie against competitive strategie of the economic, that usually performs
better on the long term.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

668 V.M. Muñoz and F.G. Carballeira

6 Conclusions and Future Work

We have described two relevant contributions to the Data Grid corpus. The en-
hanced Giggle framework that consider flat RLS structures, opening the door to
the EI and other EAI approaches for the OGSA data Grid replication architec-
ture. Specific PSO-Grid algorithm has been proved as the better performance job
response time and much better scalability features than traditional approaches,
using a full network and disk subsystem simulation, with SiCoGrid toolkit.

We have open research lines for the following targets: Cyclical graph grid
infrastructure simulations, other emergent EAI algorithms like Ant Colony Op-
timization and a depth variable correlations studies.

Acknowledgments

This work has been supported by the Spanish Ministry of Education and Science
under the TIN2004-02156 contract.

References

1. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. IJSA
11(2) (1997) 115–128

2. Foster, I., Kesselman, C., M.Nick, J., Tuecke, S.: The physiology of the grid an
open grid services architecture for distributed system integration. Technical report,
Globus Proyect Draft Overwiev Paper (2002)

3. Chervenak, A.L., Deelman, E., Foster, I., Iamnitchi, A., Kesselman, C., Hoschek,
W., Kunszt, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K.,
Tierney, B.: Giggle: A framework for constructing scalable replica location services.
In: Proc. of the IEEE Supercomputing Conference (SC 2002), IEEE Computer
Society Press (November 2002)

4. Lamehamedi, H., Szymanski, B., shentu, Z., Deelman, E.: Data replication strate-
gies in grid environments. In: Proceedings Of the Fifth International Conference
on Algorithms and Architectures for Parallel Processing, ICA3PP02) (2002)

5. Leiserson, C.H.: Flat-trees: Universal network for hardware-efficient supercomput-
ing. IEEE Transactions on Computers C-34(10) (1985) 892–901

6. http://www mash.cs.berkeley.edu/ns: Ns network simulator (1989)

7. Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P., Stockinger, K., Zini, F.:
Simulation of dynamic grid replication strategies in optorsim. In: Proc. of the
ACM/IEEE Workshop on Grid Computing (Grid 2002), Springer-Verlag (Novem-
ber 2002)

8. Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Nicholson, C., Stockinger, K.,
Zini, F.: Evaluating scheduling and replica optimisation strategies in optorsim. In:
International Workshop on Grid Computing (Grid 2003), IEEE Computer Societe
Press (November 2003)

9. Capozza, L., Stockinger, K., , Zini., F.: Preliminary evaluation of revenue prediction
functions for economically-effective file replication. Technical report, DataGrid-02-
TED-020724, Geneva, Switzerland, July 2002 (July 2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

PSO-Grid Data Replication Service 669

10. Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P., Stockinger, K., Zini, F.:
Optorsim - a grid simulator for studying dynamic data replication strategies. In-
ternational Journal of High Performance Computing Applications 17(4) (2003)

11. Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Nicholson, C., Stockinger,
K., Zini, F.: Analysis of scheduling and replica optimisation strategies for data
grids using optorsim. International Journal of Grid Computing 2(1) (2004) 57–69

12. Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Nicholson, C., Stockinger,
K., Zini, F.: Optorsim: A simulation tool for scheduling and replica optimisation
in data grids. In: International Conference for Computing in High Energy and
Nuclear Physics (CHEP 2004), Interlaken (September 2004)

13. Min Cai, Ann Chervenak, M.F.: A peer-to-peer replica location service based on
a distributed hash table. In: Proceedings of the High Performance Computing,
Networking and Storage Conference, SCGlobal (2004)

14. Ripeanu, M., Foster, I.: A decentralized, adaptive replica location mechanism. In:
11th IEEE International Symposium on High Performance Distributed Computing
(HPDC-11). (2002)

15. Shi, Y. ;Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of
the IEEE International Conference on Evolutionary Computation, IEEE Press.
Piscataway, NY (1998) 69–73

16. Cockshott, Hartman: Improving the fermentation medium for echinocandin b pro-
duction. part ii: Particle swarm optimization. Process Biochemistry 36 (2001)
661–669

17. Yoshida, Kawata, Fukuyama: A particle swarm optimization for reactive power
and voltage control considering voltage security assessment. IEEE Trans. on Power
Systems 15 (2001) 1232–1239

18. Cheshire, S.: It’s the latency, stupid. Technical report, Stanford University (1996)
19. Leijen, D.: Parsec, a fast combinator parser. Technical report, Computer Science

Department, University of Utrecht (2002)
20. R.Granger, G., L.Worthington, B., N.Patt, Y., eds.: The DiskSim Simulation En-

vironment. Version 2.0 Reference Manual. University of Michigan (1999)
21. Deng, S.: Empirical model of www document arrivals at access link. In: Proceedings

of the 1996 IEEE International Conference on Communication, IEEE-P (1996)
22. Barford, P., Crovella, M.: Generating representative web workloads. In: Network

and Server Performance Evaluation In Proceedings of the 1998 ACM SIGMET-
RICS International Conference on Measurement and Modeling of Computer Sys-
tems, ACM SIGMETRICS (1998) 151–160

23. Ranganathan, K., Foster, I.: Identifying dynamic replication strategies for a high-
performance data grid. Technical report, Departament of Computer Science, The
University of Chicago (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 670 – 678, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Execution Management of Scientific Models on
Computational Grids

Alexandre Vassallo1, Cristiane Oliveira1, Carla Osthoff1,
Halisson Brito2, Julia Strauch3, and Jano Souza2,4

1 LNCC – Brazilian Scientific Computing Laboratory
Av. Getúlio Vargas, 333, Quitandinha, ZIP Code: 25651-075, Petrópolis, RJ, Brazil

{alex, cris, osthoff}@lncc.br
2 COPPE/UFRJ – Systems Engineering and Computer Science Program

Federal University of Rio de Janeiro – PO Box 68511, ZIP Code: 21945-970, Rio de
Janeiro, RJ, Brazil

{hmbrito, jano}@cos.ufrj.br
3 ENCE/IBGE – Brazilian School of Statistical Sciences, R. André Cavalcanti, 106, s. 401

ZIP Code: 20231-050, Rio de Janeiro, RJ, Brazil
juliast@ibge.gov.br

4 IM/UFRJ – Institute of Mathematics/Federal University of Rio de Janeiro
PO Box 68511, ZIP Code: 21945-970, Rio de Janeiro, RJ, Brazil

Abstract. This paper presents ModRunner, a scientific model execution
manager running on a Grid platform. ModRunner is part of the MODENA
environment. Besides model execution, MODENA also deals with knowledge
management in scientific models. It also works as a model library allowing for
cataloguing, searching, reusing and generating scientific models. ModRunner is
a simple and effective Grid Computing access system that facilitates
management of independent task execution on the Grid. In this paper, we
present ModRunner running over the Grid Computing middleware OurGrid. As
a case study we have been using ModRunner to schedule, submit and manage
tasks for the execution of Population Dynamics models.

1 Introduction

Model management has been the subject of several scientific works, ranging from
model creation and execution to result analysis and model feedback, as stated by [1].

Models can generally be described as simplified representations of reality, whose
goal is to abstract the reality portion which matters for the solution of a problem.
Besides, models contain relevant information on phenomena or processes with the
advantage of hiding irrelevant details of real problems.

In scientific work, phenomena or processes are usually complex and unknown. So,
models may be used to represent them, being essential parts of any scientific
experiment. An experiment usually tries to verify (either positively or negatively) some
hypothesis stated by a scientist and it may have an underlying model, or even a
combination of models on the phenomenon it intends to prove. So models play an
important role both in research and practical applications in many fields of knowledge.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Execution Management of Scientific Models on Computational Grids 671

In this work we consider model execution as the steps of running “model instances”,
like programs or workflow definitions, in order to perform the simulation process.
According to [2], the simulation process made with scientific experiments usually does
the transformation of input data to produce data with added scientific value.

In order to support model execution, we present ModRunner, a simple and
effective web tool to perform the execution on Grid platforms. It can be used to
encapsulate tasks submission to the Grid, providing a management layer over that
submission. It provides easy to use interfaces to perform management issues like
capturing model parameters, obtaining remote input data, scheduling execution
submissions, submitting a model to execution, keeping a history of each execution
instance and storing result data.

ModRunner is part of MODENA [3], an environment for scientific model
management on a Computational Grid platform. This environment has been
developed to support researchers of the Geoma Project (Thematic Network for
Research in Environmental Modeling of the Amazon) [4], which aims at the
development of models to evaluate and foresee sustainability scenarios under
different kinds of human activities and public policies for the Amazon.

MODENA is aimed at providing an infrastructure that allows geographically
distributed research institutions to share data, metadata, models, knowledge, and
workflow definitions, as well as to share model execution in high performance
environments, through an uniform Grid Computing platform. The MODENA
environment has to provide, at the same time, client and data server features to 1)
reduce data, information and knowledge acquisition costs, 2) avoid data duplication,
3) reduce data processing and selection time, 4) reduce environmental data analysis
and execution time, and 5) generate simulation models and environmental scenarios.

ModRunner has been developed to run either on Grid Workflow platforms, like
Globus [5] or on Bag of Tasks (BoT) platforms, like OurGrid [6]. This paper presents
ModRunner running on OurGrid, which is the part that is in its most advanced
development stage.

We have been using population dynamics models to validate our proposals. Those
models try to investigate the control of the mosquito population in order to reduce the
number of malaria cases in the Amazon region.

This work is organized as follows: the second section presents the case study
applied to population dynamics; the third discusses some related works in the
technologies employed here; the fourth describes the Grid Computing middleware
architecture used in this work; the fifth section does a brief review of the MODENA
environment and presents the ModRunner task execution management system; and
finally the sixth section presents final considerations and indications of future works.

2 The Case Study on Population Dynamics

Malaria is a serious public health problem around the world, affecting 40% of the
population of more than 100 countries [7]. According to the World Health
Organization, about 300 to 500 million new cases and 1 million deaths happen each
year. In Brazil, 99% of all cases occur in the Amazon region where about 500
thousand cases are reported every year.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

672 A. Vassallo et al.

In the last few years, scientists have been working to create genetically modified
mosquitoes in order to encapsulate the malaria plasmodium. These mosquitoes should
couple to wild mosquitoes, and introduce refractory genes into wild mosquito
populations.

The substitution of wild mosquito populations for genetically modified ones aims at
the reduction or elimination of disease transmission, since a vaccine for malaria has not
been discovered yet. This attempt should however begin only after a rigorous study on
the feasibility of the control strategy and on the side effects has been made [8].

As part of the GEOMA Project, a recent work [8] aims to analyze a mathematical
model consisting of a system of ordinary differential equations, which represents the
main characteristics of the population dynamics for Anopheles darlingi in areas of the
Brazilian Amazon. The model also takes into account the seasonal variation of the
density of the mosquito population due to water level fluctuations.

This is an example of an application that may be shared and managed by
geographically distributed researchers from distinct fields of research. So, researchers
could benefit from the management issues of MODENA and the execution
management issues of ModRunner.

3 Related Works

Some related works are described in the literature. Allcock et al [9] argue that service
requirements involved in data transport over Grids to high-performance, distributed
data-intensive applications are: i) secure, reliable and have efficient data transfer; and
ii) able to register, locate, and manage multiple copies of datasets. The authors also
presented the design and implementation of the GridFTP protocol which implements
extensions to FTP that provide GSI security and parallel, striped, partial, and third-
party transfers in a Globus environment.

Karnik and Ribbens [10] presented an approach based on a data-centric framework
that offers a high-level architecture for Grid Computing Environments based on layers
with clear interfaces defined in three entities, as follows:

 Model: A model, in the context of the work of [10], is a directed graph of specific
executable pieces defining the control-flow and data-flow in a computation.

 Model Instance: A model instance is a model with all parameters specified.
 Simulation: A simulation is a model instance assigned to and run on a particular

computational resource.

That architecture consists of three tools: job submission, parameter sweep and
simulation lookup. We highlight the parameter sweep that is composed of three
subsystems: i) an XML Generator that produces an XML representation of a typical
input file, identifying the various parameters in it; ii) a Parameter Sweep Definition
tool that allows the user to interactively indicate parameters and ranges that define an
experiment, and use the XML file to produce a parameterized input file; and iii) a
Sweep-Engine. This is interesting because it distinguishes the model from its
representation, although this approach accepts some parameters that may not be
specified until runtime.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Execution Management of Scientific Models on Computational Grids 673

Zang, Wu and Wang [11] presented grid workflow based on dynamic scheduling
and performance evaluation implemented over standards as GCC and WFMC, which
consists of user portal, resource management component, grid services manage-
ment, performance management and grid workflow engine featured by dynamic
scheduling.

W. Cirne et al. [12] present an OurGrid Molecular Dynamic Simulation applica-
tions platform. The platform provides an out-of-box solution to Grid users. However,
the system is not integrated to any scientific model management database system.

The MODENA proposal, besides doing model management also does knowledge
management, bringing a novelty and contributing with the dissemination of the
knowledge about scientific models. Furthermore, it offers transparency to the user-
researcher in the access to high performance environments based on the OurGrid
platform. So, one of the main advantages of ModRunner is that the end-user does not
need to know low level details of grid configuration or submission to have one’s tasks
executed in a grid environment. By using a simple Web user interface, a scientist with
no deep knowledge of grid details may submit his/her models to execution, track the
execution evolution and get the results, obtaining access to the benefits of using a grid
environment.

4 Grid Computing Middleware Architecture

OurGrid Middleware [6] is a production-quality solution for users who want to
execute Bag-of-Task (BoT) applications on a computational grid today. BoT applic-
ations are parallel applications whose tasks are independent. OurGrid provides an
important platform for users that do not want to pay the cost of the installation and
deployment of a heavy grid software such as Globus Middleware [5].

OurGrid design goals are to be a simple, complete and encompassing Grid
Computing Platform. In other words, it means that the system has to be as close as
possible to an out-of-box solution. The idea is that when a user wants to run his/her
application, the last things he/she wants to be concerned with are grid details. Comp-
lete means that the system must cover the whole production cycle, from development
to execution, passing by deployment and manipulation of input and output. Finally,
the system is encompassing in the sense that all machines the user has access to can
be used to run his/her BoT applications.

The OurGrid middleware assumes that the user has a machine, which is called the
home machine, which coordinates the execution of BoT applications in OurGrid. The
user submits tasks that form the application in the home machine, which is
responsible for performing the tasks in the user’s grid. The home machine schedules
tasks to run on grid machines.

OurGrid provides simple abstraction through which the user can easily deal with
the grid, hiding away the nonessential details. It schedules the application over
whatever resources the user has access to, whether this access is some grid
infrastructure, such as Globus or via simple remote login (such as ssh).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

674 A. Vassallo et al.

5 The System for Execution Management of Scientific Models

In our work, model execution management is supported by a set of tools that perform
other model management tasks, within the MODENA environment. MODENA
(Scientific Models Management Environment) has four layers (Fig. 1).

Fig. 1. MODENA Architecture

The first layer is the Web interface, where the user can have access to management
functionalities. The second layer is the management one, which provides several
features for knowledge management about models and execution management of
model instances; the third comprises the MODENA repository layer, which contains
data, metadata, workflows, models, knowledge and ontologies; and the fourth is the
grid access layer, where the model instances are really executed.

The second layer of MODENA consists of two systems. The first one, named
ModManager [13], comprises a system for knowledge management on scientific
models, responsible for activities like capturing, retrieving, generating and
exchanging data, metadata and knowledge. Fig. 2 shows the ModManager screen
responsible for model metadata registration. The screen portion presented corresponds
to the registration of model parameters. Equations, workflow definitions, algorithms,
programs, default data, among many other model features, can also be registered.

It also enables model composition, which is the base for the workflow composition
that originates chained model execution.

The second system, which is the subject of this paper, is called ModRunner,
a developing tool to perform computer simulations through the execution of instances

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Execution Management of Scientific Models on Computational Grids 675

Fig. 2. Model metadata registration

of the models stored in the database. These instances may be formed by workflow
definitions that represent the steps of model execution. A workflow editor permits the
transformation of model instances into steps to be executed by a services processor.

ModRunner provides an easy to use interface to perform tasks like capturing model
parameters (e.g. files, numeric values, string data and command line parameters),
obtaining remote input data, scheduling execution submissions, submitting a model to
execution, keeping a history of each execution instance and storing result data. Output
data is stored at the knowledge base, where model parameters and information on file
submission are also kept. Furthermore, it lets the user register qualitative data on the
execution results.

The system works integrated to ModManager, meaning that the latter registers and
manages model metadata while the first captures model parameters, creates a model
instance, submits it to execution and stores the results. Both systems access the same
database, as shown in Fig. 1.

As mentioned in section 1, ModRunner has been developed to run on different grid
platforms, like Globus and OurGrid. However, this should be transparent to the user,
as he/she only wants to submit his/her tasks to the grid and obtain the results, with no
knowledge of the grid infrastructure. The difference is greater for the system
manager, who has to decide which grid platform he/she wants to provide access to.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

676 A. Vassallo et al.

A good point of this system is that it provides an interface that helps an user who is
not an expert in Grid Computing to generate an execution task for each model to be
submitted to the Grid.

Another feature of the system is that execution results, as well as execution
histories, may be exported to other researchers, in formats like CSV, XML and KO
(Knowledge Objects), just as ModManager does with any model metadata [12].

In order to submit a task in ModRunner, the user has to:

1) Get the target application executable file.
2) Save the EXE file in MODENA’s database system, for future executions.
3) Fill the application parameter fields.

Fig. 3 shows an example of a ModRunner task submission screen. In this case there
are three parameter fields, all of them of the ‘file’ kind. The name of the model and
the quantity and type of the parameters have been retrieved from the system database.
The last field is the name of the output file the user may choose to save the results. If
the field is left blank, the results will automatically be stored in the database.

After the model has been submitted, an OurGrid task execution command line is
assembled and sent to the OurGrid Scheduler System to be executed. After the
execution, OurGrid either sends back the results to the system or saves them into the
file the user has chosen.

Fig. 3. Task Submission

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Execution Management of Scientific Models on Computational Grids 677

Task submission in ModRunner lets the user either use different input data sets
with the same model or use the same data set to different population dynamics
models. Each simulation corresponds to different model instances running in the Grid
Computing environment. So, ModRunner offers flexibility, usability, and extensibility
to model execution management, allowing the user change the parameters and submit
tasks to the grid environment without any knowledge about it.

The models used in the case study had to execute numerical simulations in order to
satisfy the following constraints:

− Assume that the genetic manipulation does not affect the environment fitness of
the mosquitoes;

− Consider transgenic heterozygous lines, so that the propagation of the malaria-
refractory gene is stabilized at 56%, according to the crossing rule;

− The population density of genetically modified mosquitoes maintains the same
seasonal pattern as the population density of wild-type mosquitoes;

− Numerical simulation equations are adjusted to the county of Novo Airão
(Amazon state), the geographical area under study.

In order to find the closest parameters that represent the above constraints, the
researcher had to test a large amount of parameters. Each task submission parameter,
as well as each instance execution model, was stored in the MODENA database for
future historical analysis.

6 Concluding Remarks

The contribution of this work is to present a simple and effective system that
encapsulates model execution submissions for the user, apart from providing a
number of facilities for model execution management on grid platforms. It also works
with ModManager, another MODENA module, making a management cycle that
covers from knowledge and metadata management to execution and data
management.

The test with the population dynamics model was effective as the scientists were
able to conduct several simulations, changing the parameters and the kind of models
until they found the best model that fit their requirements, through an usable interface.

The tests also showed that the substitution of wild-type mosquitoes for genetically
modified ones may take some years, depending, among other factors, on the amount
of genetically modified mosquitoes introduced in the environment. Field observations
should however be carried out for a sufficient large period of time to allow the
detection of new variables or environmental modifications that initially were not
taken into account in the mathematical model. With these new parameters, the model
could be improved, tested and validated. Therefore, ModRunner has been considered
an useful tool to help population dynamics researchers manage and share their results
with the scientific community.

As future works we aim the integration of the system with existing model libraries.
We also aim the progress of the development of the workflow management features,
besides the implementation of grid services management and performance
management.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

678 A. Vassallo et al.

Acknowledgement. The authors would like to acknowledge the assistance of CNPq
(Brazilian National Council for Research) and of the GEOMA Network, for their
funding, and NACAD/UFRJ (High Performance Computing Center / Federal
University of Rio de Janeiro), LNCC (Brazilian Scientific Computing Laboratory)
and the IST/LNCC (High Tech Institute).

References

1. Krishnan, R., Chari, K.: Model management: survey, future research directions and a
bibliography. Interactive Transactions of OR/MS, (2000) 3 (1).

2. Cavalcanti, M. C., Mattoso, M., Campos, M. L., Llirbat, F., Simon, E.: Sharing Scientific
Models in Environmental Applications. Proceedings of the 2002 ACM symposium on
Applied computing, Madrid, Spain (2002) 453-457.

3. Brito, H., J. Strauch, Souza, J., Osthoff, C.: Scientific Models Management in
Computational Grids. 17th International Scientific and Statistical Database Management
Conference (SSDBM). Santa Barbara, California (2005).

4. Geoma Network. http://www.geoma.lncc.br. (2006).
5. Globus Project http://www.globus.org. (2006).
6. OurGrid Project. http://www.ourgrid.org. (2006).
7. World Health Organization. http://www.who.int/en/. (2006).
8. Wyse, A. P., Bevilacqua, L., Rafikov, M.: Population Dynamics of An. darlingi in the

Presence of Genetically Modified Mosquitoes with Refractoriness to Malaria. (2005).
9. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I., Kesselman, C., Meder,

S., Nefedova, V., Quesnel, D., Tueck, S.: Data Management and Transfer in High-
Performance Computational Grid Environments. Mathematics and Computer Science
Division. Argonne National Laboratory. http://www.globus.org/alliance/publications/
papers/dataMgmt.pdf. (2004).

10. Karnik, A., Ribbens, C. J.: Data and Activity Representation for Grid Computing.
Department of Computer Science, Blacksburg, VA. http://eprints.cs.vt.edu/archive/
00000598/01/hpdc.pdf. (2002).

11. Zang, S., Wu, Y., Wang, W.: Grid Workflow based on Performance Evaluation.
Department of Computing and Information Technology, Fudan University, Shanghai,
China. http://166.111.202.9/chinagrid/download/GCC2003/pdf/347.pdf. (2003)

12. Cirne, W., Brasileiro, F., Paranhos, D., Costa, L., Santos-Neto, E., Osthoff, C.: Building a
User-Level Grid for Bag-of-Tasks Applications. Book Chapter, High Performance
Computing Paradigm and Infrastructure. Wiley Series on Parallel and Distributed
Computing, Albert Y.Zomaya, Series Editor. (2005).

13. Brito, H., Strauch, J., Souza, J. ModManager: a Web-based system for Knowledge
Management about Scientific Models (in Portuguese). IV Brazilian Congress of
Knowledge Management (KMBrasil). São Paulo (2005).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Replica Refresh Strategies in a Database

Cluster�

Cécile Le Pape and Stéphane Gançarski

Laboratoire d’Informatique de Paris 6, Paris, France
Firstname.Lastname@lip6.fr

Abstract. Relaxing replica freshness has been exploited in database
clusters to optimize load balancing. However, in most approaches, re-
freshment is typically coupled with other functions such as routing or
scheduling, which makes it hard to analyze the impact of the refresh
strategy itself on performance. In this paper, we propose to support
routing-independent refresh strategies in a database cluster with mono-
master lazy replication. First, we propose a model for capturing existing
refresh strategies. Second, we describe the support of this model in Re-
fresco, a middleware prototype for freshness-aware routing in database
clusters. Third, we describe an experimental validation to test some typ-
ical strategies against different workloads. The results show that the
choice of the best strategy depends not only on the workload, but also
on the conflict rate between transactions and queries and on the level of
freshness required by queries. Although there is no strategy that is best
in all cases, we found that one strategy is usually very good and could
be used as default strategy.

Keywords: replication, database cluster, load balancing, refresh strategy.

1 Introduction

Database clusters provide a cost-effective alternative to parallel database sys-
tems, i.e. database systems on tightly-coupled multiprocessors. A database clus-
ter [10, 21, 22] is a cluster of PC servers, each running an off-the-shelf DBMS.
With a large number of servers, it can reach high performances, and thus can
be used as a basic block for building Grid environments, by grouping several
database clusters distributed in a large scale network such as the Internet. The
typical solution to obtain good load balancing in a database cluster is to replicate
data at different nodes so that users can be served by any of the nodes. If the
workload consists of (read-only) queries, then load balancing is relatively easy.
However, if the workload includes (update) transactions in addition to queries,
as it is the case in Grid environments, load balancing gets more difficult since
replica consistency must be enforced. With lazy replication, a transaction up-
dates only one replica and the other replicas are updated (refreshed) later on by
separate refresh transactions [19]. By relaxing consistency, lazy replication can
provide flexible transaction load balancing, in addition to query load balancing.
� This work was partially financed by the French ANR-ARA Respire project.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 679–691, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

680 C. Le Pape and S. Gançarski

Relaxing consistency using lazy replication has gained much attention [1, 2,
18,25,22,14], even quite recently [11]. The main reason is that applications often
tolerate to read data that is not perfectly consistent, and this can be exploited
to improve performance. However, replica divergence must be controlled since
refreshing replicas becomes more difficult as divergence increases. In [15], we
addressed this problem in the context of a shared-nothing database cluster. We
chose mono-master lazy replication because it is both simple and sufficient in
many applications where most of the conflicts occur between transactions and
queries. Transactions are simply sent to a single master node while queries may
be sent to any node. Because refresh transactions at slave nodes can be sched-
uled in the same order as the transactions at master nodes, queries always read
consistent states, though maybe stale. Thus, with mono-master replication, the
problem reduces to maintaining replica freshness. A replica at a slave node is
totally fresh if it has the same value as that at the master node, i.e. all the corre-
sponding refresh transactions have been applied. Otherwise, the freshness level
reflects the distance between the state of the replica at the slave node and that
at the master node. By controlling freshness at a fine granularity level (relation
or attribute), based on application requirements, we gained more flexibility for
routing queries to slave nodes, thus improving load balancing.

In most approaches to load balancing, refreshment is tightly-coupled with
other issues such as scheduling and routing. This makes it difficult to analyze
the impact of the refresh strategy itself. For example, refreshment in [22] is in-
terleaved with query scheduling: it is activated by the scheduler, for instance
if a node is too stale to fullfill the freshness requirement of any query in the
scheduler input queue. Furthermore, they do not use routing-dependent refresh:
when no node is fresh enough for a query, the query execution is delayed, without
guarantee on the query liveness. Many refresh strategies have been proposed in
the context of distributed databases, data warehouse and database clusters. A
popular strategy is to propagate updates from the source to the copies as soon
as possible (ASAP), as in [3, 4, 6]. Another simple strategy is to refresh replicas
periodically [5, 16] as in data warehouses [7]. Another strategy is to maintain
the freshness level of replicas, by propagating updates only when a replica is too
stale [24]. There are also mixed strategies. In [18], data sources push updates
to cache nodes when their freshness is too low. However, cache nodes can also
force refreshment if needed. In [14], an asynchronous Web cache maintains ma-
terialized views with an ASAP strategy while regular views are regenerated on
demand. In all these approaches, refresh strategies are not chosen to be optimal
with respect to the workload. In particular, refreshment cost is not taken into ac-
count in the routing strategy. There has been very few studies of refresh strategies
and they are incomplete. For instance, they do not take into account the starting
time of update propagation [23, 13] or only consider variations of ASAP [20].

This paper has three main contributions. First, we propose a model which al-
lows describing and analyzing existing refresh strategies, independent of other
load balancing issues. Second, we describe the support of this model in our Re-
fresco prototype. Third, we describe an experimental validation based on a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Replica Refresh Strategies in a Database Cluster 681

workload generator, to test some typical strategies against different workloads.
The results show that the choice of the best strategy depends not only on the work-
load itself, but also on the conflict rate between transactions and queries and on
the level of freshness required by queries. Although there is no strategy that is best
in all cases, we found that one strategy, As Soon As Underloaded or ASAUL(0), is
usually very good and could be used as default strategy. Our prototype allows to
select the best strategy according to the workload type generated by the applica-
tion. It is thus compliant with the OGSA-DAI [17] definition of a Data Resource
Manager providing flexible and transparent access for Grid applications.

The paper is organized as follows. Section 2 describes our database cluster
architecture, with emphasis on load balancing and refreshment. Section 3 defines
our model to describe refresh strategies. Section 4 defines a workload model
which helps defining typical workloads for experimentations. Section 5 presents
our experimental validation which compares the relative performance of typical
refresh policies. Section 6 concludes.

2 Database Cluster Architecture

Figure 1 gives an overview of our database cluster architecture. It preserves
the autonomy of both applications and databases which can remain unchanged,
which is important for Grid applications which require sites autonomy. It re-
ceives requests from the applications through a standard JDBC interface. All
additional information necessary for routing and refreshing is stored and man-
aged separately of the requests.

Fig. 1. Mono-master replicated database architecture

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

682 C. Le Pape and S. Gançarski

We assume that the database is fully replicated: node N0 is the master node
which is used to perform transactions while nodes N1, N2, . . . , Np are slaves
nodes used for queries. The master node is not necessarily a single cluster node
which could be a single point of failure and a bottleneck. It is an abstraction and
can be composed of several cluster nodes coordinated by any eager replication
protocol such as [12]. Slave nodes are only updated through refresh transactions
which are sent sequentially, through refresh sequences, according to the serializa-
tion (commit) order on the master node. This guarantees the same serialization
order on slave nodes. Access to the database is through stored procedures. Each
updating (resp. read-only) procedure defines a transaction class (resp. query
class). A query class potentially conflicts with a transaction class if an instance
of the transaction class may write data that an instance of the query class may
read. We formally defined potential conflicts using conflict classes in [15].

The request factory enriches requests wih metadata such as parameters for
stored procedures and required freshness for a query. Then it sends the requests
to a FIFO scheduler. Dynamic information such as transaction commit time on
the master node, data freshness on slave nodes, estimated nodes load, is main-
tained by the cluster state manager. The information related to each transaction
is maintained until every node has executed the corresponding refresh transac-
tion, after which it is removed.

The router implements an enhanced version of SELF (Shortest Execution
Length First). Depending on application needs, the router can be switched to
perform routing-dependent (on-demand) refreshment. To this end, it asks the
freshness evaluation module to compute, for every node, the corresponding min-
imum refresh sequence to make the slave node fresh enough for Q, and includes
the cost of the possible execution of this sequence into the cost function. Af-
ter the eventual on-demand refresh is performed by the refresher on the selected
node, the router sends the query to this node and updates the cluster state. Since
queries are only sent to slave nodes, they do not interfere with the transaction
stream on the master node.

The refresh manager handles routing-independent refreshment. According to
the refresh policy, it receives events coming from different parts of the cluster
state manager: load evaluation module, freshness evaluation module or external
events such as time. It then triggers the selected routing-independent refresh
policy which eventually asks the refresher module to perform refresh sequences.
Whenever the refresher sends refresh sequences to a node, it updates the cluster
state for further freshness evaluations.

3 Modeling Refresh Strategies

Freshness requirements are specified for access atoms, which represent portions
of the database. Depending on the desired granularity, an access atom can be
as large as the entire database or as small as a tuple value in a table. A fresh-
ness atom associated with an access atom a is a condition on a which bounds
the staleness of a under a certain threshold t for a given freshness measure μ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Replica Refresh Strategies in a Database Cluster 683

i.e. such as μ(a) ≤ t. If we note ai the copy of access atom a on the slave node
Ni, the staleness of ai is computed by μ(ai) and represents the divergence be-
tween the value of ai (on the slave node) and the value of a0 (on the master node).
The freshness level of a set of access atoms {a1, a2, ..., an} is defined as the logi-
cal conjunction of freshness atoms on ai. In [15] we introduced several freshness
measures. For simplicity in this paper, we consider only measure Age : Age(aN)
denotes the maximum time since at least one transaction updating a has commit-
ted on the master node and has not yet been propagated on slave node N. The
freshness level of a query Q is a freshness level on the set of access atoms read by
Q. Users determine the access atoms of the query at the granularity they desire,
and define a freshness atom for each access atom. A node N is fresh enough to
satisfy Q if the freshness level of Q is satisfied on N . The freshness level of a node
N is simply the freshness level on the entire database on N .

A refresh strategy is described by the triggering events which raise its activa-
tion, the nodes where the refresh transactions are propagated and the number
of transactions which are part of the refresh sequence. A refresh strategy may
handle one or more triggering events, among:

– Routing(N, Q): a query Q is routed to node N.
– Underloaded(N, limit): the load of node N gets a value less than or equal to

the limit value.
– Stale(N, μ, limit): the freshness of node N for measure μ decreases below the

limit value. In other words, the freshness level of node N for measure μ and
threshold limit is no more satisfied. In this paper, since we only consider
the Age measure, this parameter becomes implicit and the event can be
simplified as Stale(N, limit) which stands for Stale(N, Age, limit)

– Update sent(T): a transaction T is sent to the master node.
– Period(t): triggers every t seconds.

As soon as an event handled by the refresh manager is raised, the refresher com-
putes a sequence of refresh transactions to propagate. Depending on the nature of
the event, the refresh sequence is sent to a single slave node or broadcast to all slave
nodes. For instance, Routing(N, Q) activates a refreshment only on slave node N
while Period(t) activates a refreshment on all the slave nodes. Finally, the refresh
quantity of a strategy indicates how many refresh transactions are part of the re-
fresh sequence. This value can be minimum, i.e. the minimum refresh sequence
which brings a node to a certain freshness. The maximum value denotes a refresh
sequence containing every transaction not yet propagated to the destination. Of
course, the quantity may also be arbitrary (for instance, a fixed size).

We apply our refresh model to the following strategies, which we implemented
and compared, since they are the most popular in the literature.

– On-Demand (OD). On-Demand strategy is triggered by event Routing(N).
It sends a minimal refresh to node N to make it fresh enough for Q.

– As Soon As Possible (ASAP). ASAP strategy is triggered by a Up-
date sent(T) event. It sends a maximal refresh sequence to all the slave
nodes. As ASAP strategy maintains slave nodes perfectly fresh, the refresh
sequence is reduced to the transaction T which raised the event.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

684 C. Le Pape and S. Gançarski

– Periodic(t). The Periodic(t) strategy is triggered by a period(t) event. It
sends a maximum refresh sequence to all the slave nodes.

– As Soon As Underloaded (ASAUL(limit)). The ASAUL strategy is
triggered by a Underloaded(N,limit) event. It sends a maximum refresh se-
quence to N .

– As Soon As Too Stale (ASATS(limit)). ASATS strategy is triggered
by event Stale(N, limit). It sends a maximum refresh sequence to N .

Hybrid Strategies. Refresh strategies can be combined to improve perfor-
mance. Though a lot a combinations are possible, we focus here on the interaction
between routing-dependent (On-Demand) and routing-independent strategies
(all other strategies). Thus, for each routing-independent strategy, we derive
an hybrid version which combines it with On-demand. We ran several experi-
ments (not shown here for space limitations) to compare each basic strategy with
its hybrid version. They showed that hybrid strategies always outperform basic
strategies because they never trigger unnecessary refreshments. Therefore in the
following, we study only hybrid strategies. In order to simplify the presentation,
we use the same name as the basic strategy, since there si no ambiguity.

4 Experimental Validation

In this section, we compare the performance of hybrid refresh strategies under
different workloads. After describing our experimental setup and workloads, we
study the impact of conflict rate and of tolerated freshness on performance.

4.1 Experimental Setup and Workload

Our experimental validation is based on the enhanced version of the Refresco
prototype, which is developed in Java 1.4.2. In order to get results independent
of the underlying DBMS’s behaviour, we simulated the execution of a request on
a node, with 128 slave nodes, using Simjava, a process-based discrete event simu-
lation package in Java (see http://www.dcs.ed.ac.uk/home/hase/simjava/).
We chose simulation because it makes it easier to vary the various parameters and
compare strategies. We also calibrated our simulator for database access using an
implementation of our Refresco prototype on the 64-node cluster system of the
Paris team at INRIA (http://www.irisa.fr/paris/General/cluster.htm)
with PostgreSQL as underlying DBMS. In this case, for typical transactions
and queries, the value of a Time Unit (TU) is approximately 10 ms.

Our main objective is to provide a relative comparison of the refresh strategies.
Therefore, we strive to keep the workload model simple, with a definition of
the main parameters that impact refreshment. Note that our objective is not
to capture all possible workloads which would require a much more complex
workload model and is beyond the scope of this paper.

A workload is composed of several clients. Each client is either of type transac-
tion or of type query, i.e. it only sends transactions or only queries. The number

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.dcs.ed.ac.uk/home/hase/simjava/
http://www.irisa.fr/paris/General/cluster.htm

Replica Refresh Strategies in a Database Cluster 685

of transaction clients is fixed to 16, while the number of query clients is fixed to
256. Each workload has a total duration of 10000 TU. Each request is considered
as a fixed-duration job: 100 TU for queries and 5 TU for transactions. We con-
sider that a transaction load (tl) is low (respt. high) when the transaction clients
are active 1/4 (respt. 2/3) of the time. A query load (ql) is low (respt. high)
when queries clients wait 300 TU (respt. 0 TU) between two queries. All the
workloads are parameterized with the conflict rate (cr) and a tolerated staleness
for queries (ts). We define the conflict rate of a workload as the proportion of
potential conflicts between transactions and queries. Let {TC1, TC2, . . . , TCn}
be the application set of transaction classes and {QC1, QC2, . . . , QCm} the ap-
plication set of query classes. The conflict rate (cr) of a workload is defined by
the following formula :

cr =

∑n
i=1

∑m
j=1 αj × conflict(TCi, QCj)∑m

j=1 αj

where conflict(TCi, QCj) is equal to 1 if the transaction class TCi potentially
conflicts (see Section ??) with the query class QCj , otherwise it is equal to 0 and
αj is the number of instances of the query class QCj in the workload. In order to
simplify, all the queries in a workload have the same tolerated staleness, which
is the threshold of every query’s freshness level. It is the maximal staleness
a data on a node can have for the query to be executed on it. For instance,
a workload where queries require to read perfectly fresh data has a tolerated
staleness equal to 0. Thus, a workload is described as a tuple (tl, ql, cr, ts). Not all
the parameters do impact on all the strategies. For instance, the ASAP strategy,
which propagates immediately any transaction sent to the master node, is not
sensitive to the cr and ts parameters.

4.2 Impact of Conflict Rate on Performance

Figure 2 shows the query mean response time (QMRT, average of the observed
response times of queries during the experiment) of the various refresh strategies
versus the conflict rate. As we focus on the conflict rate, there is no tolerated stale-
ness (ts is fixed to 0), which is the worst case for performances. We omit workloads
of type (high,low,cr,ts) and (low,high,cr,ts), but they yield similar conclusions.

Light Workloads. Figure 2(a) shows that, except for very small conflict rates,
the best performance for light workloads is obtained with strategies that refresh
frequently, i.e. maintain nodes (almost) always fresh. These strategies are ASAP
(obviously) and ASAUL since nodes are idle very often. They trigger refreshment
often but do not interfere much with queries because the refresh sequences are
executed mostly during idle periods. In this context, ASAUL(0) is better than
ASAP since it refreshes exactly during idle periods while ASAP may trigger
refreshments during non-idle periods, even if such periods are rare. On the con-
trary, On-Demand performs rather poorly as soon as the conflict rate exceeds
0.4. Indeed, since queries are rare, it is triggered rarely. Thus, each time a query
is routed, the refresher must propagate many updates (since the last refresh)
before executing the query. This increases response time significantly.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

686 C. Le Pape and S. Gançarski

(a) light workloads: (low,low,cr,0)

(b) heavy workloads: (high,high,cr,0)

Fig. 2. Performance comparisons with varying conflict rate (tolerated staleness=0)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Replica Refresh Strategies in a Database Cluster 687

Heavy Workloads. In Figure 2(b) , the behavior of the strategies is quite
different from that in Figure 2(a). On-Demand yields the best performance in
most cases (except when the conflit rate exceeds 0.9) because refreshment is
done often (the query frequency is high), but only when needed. In this context,
ASAP is better only for very high conflict rates because it always refreshes.
This is useless for smaller conflict rates where refresh is not frequently required.
Similarly, Periodic and ASATS do not perform well. As they do not take into
account the nodes load and perform maximum refresh sequences, they raise
useless overhead when refreshing. We also observe that ASAUL(0) performs as
On-Demand because nodes are never idle.

4.3 Impact of Tolerated Staleness on Performance

Figure 3 shows the performance (QMRT) of the various refresh strategies versus
the tolerated staleness. As we focus here on the tolerated staleness, the conflict
rate is fixed to 1, which is the worst case w.r.t to performances. High-low and
low-high workloads give results similar to high-high and thus are omitted. A
general observation is that, for all strategies except ASAP, the results are better
when the tolerated staleness is higher. Obviously, when queries do not require
high freshness, there is a higher probability that a node is fresh enough for
any query. Thus on-demand refresh is less necessary, which speeds up query
execution. This is not the case for ASAP, since it does not require on-demand
refresh. When the tolerated staleness is beyond a given value, performance does
not change for most strategies. This is due to the fact that all the nodes are
always fresh enough for queries and thus on-demand is no more triggered. Thus,
refreshing nodes is useless for queries. This is obviously the case for Periodic, but
also for ASATS. In fact, ASATS also behaves periodically in this context. This
is due to the fact that transactions are performed periodically on the master
node, thus the freshness on slave nodes always decreases at the same speed. For
light workloads, ASAUL has also a periodic behavior: when a node is idle or
lightly loaded, ASAUL refreshes it and the node becomes busy. Thus, it is no
longer refreshed during a given duration and gets idle. Then ASAUL refreshes
it, and so on. For heavy workloads, nodes are always busy and thus, as already
mentioned, ASAUL is similar to On-Demand. In particular, as nodes are never
idle, ASAUL(0) performs quite the same as On-Demand. On-Demand is always
sensitive to the tolerated staleness. As nodes are refreshed only when necessary,
performance increases as tolerated staleness increases.

Light Workloads. Figure 3(a) shows that On-Demand is outperformed by
strategies which frequently refresh nodes and thus take advantage of nodes being
frequently idle. Among them, ASAUL(0) is the best since it naturally adapts to
idle node events.

Heavy Workloads. Figure 3(b) shows that when the tolerated staleness is be-
low 100 TU, ASAP is the best strategy, since frequent refreshments are necessary.
From 100 up to 500, PERIODIC(100) and ASATS(100), which behave equally,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

688 C. Le Pape and S. Gançarski

Fig. 3. Comparing strategies for varying tolerated staleness and conflict rate 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Replica Refresh Strategies in a Database Cluster 689

are the best strategies. When the tolerated staleness is over 500, the overhead
due to frequent refreshment is higher since nodes are never idle. Furthermore,
it is useless since queries do not require high freshness. In this case, ASAUL(0)
is the best strategy since it naturally adapts to idle node events. For the sake
of clarity, values for a tolerated staleness over 1000 are not represesented. They
remain constant for all the strategies, except for ASAUL(500) which still de-
creases down to 550 for a tolerated staleness of 5000, and for ASAUL(0) and
On-Demand which have almost equal performance (since nodes are never idle,
ASAUL(0) only triggers on-demand) and decrease down to 300, thus being the
best strategies.

5 Conclusion

Relaxing replica freshness can be well exploited in database clusters to optimize
load balancing. However, the refresh strategy requires special attention as the
way refreshment is performed has strong impact on response time. In particular,
it should be independent of other load balancing issues such as routing.

In this paper, we proposed a refresh model that allows capturing (among oth-
ers) state-of-the-art refresh strategies in a database cluster with mono-master lazy
replication. We distinguished between the routing-dependent (or on-demand)
strategy, which is triggered by the router, and routing-independent strategies,
which are triggered by other events, based on time-outs or on nodes state. We also
proposed hybrid strategies, by mixing the basic strategies with the On-demand
strategy. We described the support of this model by extending the Refresco mid-
dleware prototype with a refresh manager which implements the refresh strategies
described in the paper. The refresh manager is independent of other load bal-
ancing functions such as routing and scheduling. In our architecture, supporting
hybrid strategies is straightforward, since they are simple conjunctions of basic
strategies already implemented in the refresh manager (or in the router for On-
Demand).

In order to test the different strategies against different application types, we
proposed a workload model which captures the major parameters which impact
performance: transaction and query loads, conflict rate between transactions and
queries, and level of freshness required by queries on slave nodes.

We described an experimental validation to test some typical strategies against
different workloads. An important observation of our experiments is that the hy-
brid strategies always outperform their basic counterpart. The experimental re-
sults show that the choice of the best strategy depends not only on the workload,
but also on the conflict rate between transactions and queries and on the level
of freshness required by queries. Although there is no strategy that is best in all
cases, we found that one strategy (ASAUL(0)) is usually very good and could be
used as default strategy for the workload types we defined. As a future work, we
plan to continue testing strategies against other workload types, using a richer
workload model. For instance, we can assign different freshness levels for differ-
ent queries in the same workload, or we can vary the ratio query/transaction

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

690 C. Le Pape and S. Gançarski

in a workload, and so on. We also plan to integrate the refresh strategies into
the multi-master approach presented in [9], as we suggested in [8]. The work
presented in this paper can be seen as a first step toward a self-adaptable re-
fresh strategy, which would combine different strategies by analysing on-line the
incoming workload. According to the real-life applications dynamicity, our mid-
dleware should automatically adapt the refresh strategy to the current workload,
using for instance machine-learning techniques.

Our approach currently works on a database cluster. As mentionned in the
introduction, database clusters are good candidates to build large scale Grid
environments. However, this implies that we must adress some new issues to cope
with Grid application requirements. The first issue is the heterogeneity of the
source. Our approach handles any relational data sources, through the use of SQL
procedure and a standard JDBC driver. We must adapt it to non-relational data
sources, for instance XML documents, for instance using a mediator/wrapper
approach. The second issue is fault-tolerance : we must distribute our middleware
over several nodes, using for instance a shared memory layer, to prevent it from
being a single point of failure. Finally, we must also adapt our system to large
scale distribution, by modifying the cost function used for load balancing, in
order to take into account the different latencies between different sites.

References

1. R. Alonso, D. Barbará, and H. Garcia-Molina. Data caching issues in an informa-
tion retrieval system. ACM Trans. on Database Systems, 15(3):359–384, 1990.

2. D. Barbará and H. Garcia-Molina. The demarcation protocol: A technique for
maintaining constraints in distributed database systems. VLDB Journal, 3(3):325–
353, 1994.

3. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil. A
critique of ansi isolation levels. In ACM SIGMOD Int. Conf., 1995.

4. Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz. Update
propagation protocols for replicated databates. In ACM SIGMOD Int. Conf., pages
97–108, 1999.

5. D. Carney, S. Lee, and S. Zdonik. Scalable application aware data freshening. In
IEEE Int. Conf. on Data Engineering, 2002.

6. P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred updates and data placement
in distributed databases. In IEEE Int. Conf. on Data Engineering, pages 469–476,
1996.

7. L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for
deferred view maintenance. In ACM SIGMOD Int. Conf., pages 469–480, 1996.

8. S. Gançarski, C. Le Pape, and H. Naacke. Fine-grained refresh strategies for man-
aging replication in database clusters. In VLDB Wshp. on Design, Implementation
and Deployment of Database Replication, pages 47–54, 2005.

9. S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. The leganet system:
Freshness-aware transaction routing in a database cluster. Information Systems,
To appear.

10. S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. Parallel processing with au-
tonomous databases in a cluster system. In Int. Conf. On Cooperative Information
Systems (CoopIS), 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Replica Refresh Strategies in a Database Cluster 691

11. H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein. Relaxed currency and
consistency: How to say ”good enough” in sql. In ACM SIGMOD Int. Conf., 2004.

12. B. Kemme and G. Alonso. A new approach to developing and implementing eager
database replication protocols. ACM Trans. on Database Systems, 25(3):333–379,
2000.

13. S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive framework for
tunable consistency and timeliness using replication. In Int. Conf. on Dependable
Systems and Networks, pages 17–26, 2002.

14. A. Labrinidis and N. Roussopoulos. Balancing performance and data freshness in
web database servers. In Int. Conf. on VLDB, pages 393–404, 2003.

15. C. Le Pape, S. Gançarski, and P. Valduriez. Refresco: Improving query performance
through freshness control in a database cluster. In Int. Conf. On Cooperative
Information Systems (CoopIS), pages 174–193, 2004.

16. H. Liu, W.-K. Ng, and E.-P. Lim. Scheduling queries to improve the freshness of
a website. World Wide Web, 8(1):61–90, 2005.

17. S. Malaika, A. Eisenberg, and J. Melton. Standards for databases on the grid.
SIGMOD Rec., 32(3):92–100, 2003.

18. C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation
queries over replicated data. In Int. Conf. on VLDB, 2000.

19. E. Pacitti, P. Minet, and E. Simon. Fast algorithms for maintaining replica con-
sistency in lazy master replicated databases. In Int. Conf. on VLDB, 1999.

20. E. Pacitti and E. Simon. Update propagation strategies to improve freshness in
lazy master replicated databases. VLDB Journal, 8(3–4):305–318, 2000.

21. U. Röhm, K. Böhm, and H.-J. Schek. Cache-aware query routing in a cluster of
databases. In IEEE Int. Conf. on Data Engineering, 2001.

22. U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. Fas - a freshness-sensitive co-
ordination middleware for a cluster of olap components. In Int. Conf. on VLDB,
2002.

23. Y. Saito and H. M. Levy. Optimistic replication for internet data services. In Int.
Symp. on Distributed Computing, pages 297–314, 2000.

24. S. Shah, K. Ramamritham, and P. Shenoy. Maintaining coherency of dynamic data
in cooperative repositories. In Int. Conf. on VLDB, 1995.

25. H. Yu and A. Vahdat. Efficient numerical error bounding for replicated network
services. In Int. Conf. on VLDB, 2000.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Evaluation of a Data Consistency Protocol
for Efficient Visualization in Grid Applications�,��

Gabriel Antoniu1, Loïc Cudennec2, and Sébastien Monnet3

1 IRISA/INRIA
Gabriel.Antoniu@irisa.fr

2 IRISA/INRIA
Loic.Cudennec@irisa.fr
3 IRISA/University of Rennes I

Sebastien.Monnet@irisa.fr

Abstract. Data visualization is important in the context of grid applications, es-
pecially when successive refinements are iteratively realized based on interme-
diate results. We mainly focus on code coupling grid applications, structured as
a set of distributed, autonomous, weakly-coupled codes. We consider the case
where the codes are able to interact using the abstraction of a shared data space.
In previous work, we have proposed an efficient visualization scheme by intro-
ducing a new operation called relaxed read, as an extension to the entry consis-
tency model. This operation can efficiently take place without locking, in parallel
with write operations. On the other hand, the user has to relax the consistency
constraints, and accept slightly older versions of the data, whose “freshness” can
however still be controlled. In this paper, we discuss and extensively evaluate the
proposed consistency protocol, whose efficiency is clearly demonstrated by our
experimental results.

Keywords: Data consistency, code-coupling applications, grid, visualization.

1 Introduction

With the growing demand of computing power, grid computing [11] has emerged as
an appealing approach, allowing to federate and share computing and storage resources
among multiple, geographically distributed sites (universities, companies, etc.). Thanks
to this aggregated computing power, grids are typically useful to solve computation-
ally intensive, parallel and/or distributed applications. In most cases, grids consist of
a hierarchical federation of clusters. This hierarchy is defined in terms of hierarchical
distribution, with a direct impact on the communication latency. Low-latency System-
Area Networks (SANs), such as Giga Ethernet or Myrinet are often used to connect
nodes within a given cluster. The various clusters may be interconnected through a
higher-latency network, which can be a dedicated Wide-Area Network (WAN) whose
bandwidth may reach 1 Gb/s or more.

� This work was supported by the GDS project (ACI MD - French Ministry of Research, INRIA,
CNRS), by the RESPIRE project of the French National Research Agency (ARA MDMSA),
by the Regional Council of Brittany and by Sun Microsystems.

�� Candidate to the Best Student Paper Award.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 692–706, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Evaluation of a Data Consistency Protocol 693

A particular class of applications running on grids relies on the code-coupling
paradigm: such an application is designed as a set of (usually) parallel codes, each
of which runs on a different cluster. The computation is distributed in such a way
that transfers between clusters are minimized. However, some data and synchroniza-
tion messages still have to be exchanged among the clusters.

Code-coupling is used in high-performance computing. Computations can be very
long, and it is generally impractical to wait for the end of the application to see if the
results are correct. In order to monitor the progress of the application, it is often useful
to have the ability to perform an efficient visualization of the running process, without
degrading the overall performance of the computation. To allow the state of the com-
putation to be monitored, pieces of data shared by different codes need to be accessed.

In grid environments, as in other distributed systems, data sharing is a crucial is-
sue. Currently, the most widely-used approach relies on the explicit data access model,
where clients have to move data to computing servers. A typical example is the use of
the GridFTP protocol [3]. Though this protocol provides authentication, parallel trans-
fers, checkpoint/restart mechanisms, etc., it is still a transfer protocol which requires ex-
plicit data localization by the programmer. Such a low-level approach makes data man-
agement on grids rather complex. On the other hand, the concept of transparent data
access in distributed systems through the illusion of a shared memory has intensively
been studied in the context of distributed shared memory systems (DSM) since the late
eighties ([12,10,4,9]). Nevertheless, DSM systems have been designed to address small
scale physical architectures, usually made of tens (up to a hundred) of nodes and have
usually been used on clusters. Furthermore, most of the data consistency models and
protocols assume that the infrastructure is static, without failures. For instance, they of-
ten implicitly assume stable entities. These hypotheses are not longer valid within the
grid context, where failures are part of the systems’ properties. Therefore, fault toler-
ance and volatility increase the difficulty of designing a system providing transparent
data access. The predominance of grid systems based on explicit transfers (GridFTP [3],
IBP [8], etc.) demonstrates that transparent data sharing upon large scale architectures
is still a real challenge.

In order to overcome these limitations and make a step forward towards a real vir-
tualization of the management of large-scale distributed data, the concept of grid data-
sharing service has been proposed [5]. The idea is to provide transparent access to
distributed grid data: in this approach, the user accesses data via global identifiers. The
service which implements this model handles data localization and transfer without
any help from the programmer. It transparently manages data persistence in a dynamic,
large-scale, distributed environment. The data sharing service concept is based on a hy-
brid approach inspired by Distributed Shared Memory (DSM) systems (for transparent
access to data and consistency management) and peer-to-peer (P2P) systems (for their
scalability and volatility-tolerance). The JuxMem (Juxtaposed Memory) platform [5]
(described in more detail in Section 2) illustrates the grid data-sharing concept. JuxMem
relies on JXTA [1], a generic P2P software platform initiated by Sun Microsystems.
JuxMem also serves as an experimental framework for fault-tolerance strategies and
data consistency protocols.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

694 G. Antoniu, L. Cudennec, and S. Monnet

We focus on the problem of efficient data visualization within code-coupling ap-
plications designed for grid architectures. The goal is to modify the data consistency
protocol behavior in order to efficiently support the presence of a visualization process
(that we call observer). To this purpose we have proposed an extension of the entry
consistency model and a corresponding protocol that allows efficient reads, possibly
concurrent with writes to a given data. As a counterpart, the observer has to relax the
consistency constraints, and accept slightly older versions of the data, whose “fresh-
ness” can however still be controlled. The approach underlying this work has first been
introduced in [6]. In this paper, we discuss and evaluate the extension of the data con-
sistency protocol. An implementation of this strategy has been integrated within the
JuxMem platform and experimented on the Grid’5000 testbed [2]. Preliminary exper-
imental results of this work show that this solution improves the performance of the
visualization observer without degrading the performance of the application that keeps
reading and writing the observed data.

The next Section introduces the JuxMem grid data sharing service. Section 3 briefly
describes the consistency model and explains the proposed protocol extensions. An
experimental evaluation is presented in Section 4. Finally, Section 5 discusses the con-
tribution and the future work.

2 JuxMem : A Decoupled Architecture Combining Data
Consistency and Fault-Tolerance

2.1 JuxMem Overview

To experiment our approach, we have used the JuxMem software experimental platform
for grid data sharing, described in [5]. From the user’s perspective, JuxMem is a service
providing transparent access to persistent, mutable shared data.

JuxMem has a hierarchical software architecture, which mirrors a hardware archi-
tecture consisting of a federation of distributed clusters. Figure 1 shows the hierarchy
of the entities defined in JuxMem, consisting of a network of peer groups (cluster
groups A, B and C on the figure), which usually correspond to clusters at the physical
level. All the groups belong to a wider group, which includes all the peers which run
the service (the juxmem group).

Each cluster group includes several kinds of nodes. Those which provide mem-
ory for data storage are called providers. Within each cluster group, the available
providers are managed by a node called cluster manager. Finally, a node which simply
uses the service to allocate and/or access data blocks is called client. A node may at the
same time act as a cluster manager, as a client, and as a provider. However, for the sake
of clarity, each node only plays a single role on the figure.

When allocating memory, the client has to specify on how many clusters the data
should be replicated, and on how many nodes in each cluster. This results into the
instantiation of a set of data replicas, associated to a group of peers called data group.
The allocation primitive returns a global data ID, which can be used by the other nodes
to identify existing data. To obtain read and/or write access to a data block, the clients
only need to use this ID.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

cluster
juxmem
cluster
cluster
data

A Practical Evaluation of a Data Consistency Protocol 695

Group "juxmem"

Group "cluster A" Group "cluster C"
Group "data"

Group "cluster B"

Cluster CCluster A

Overlay network

Physical network

Cluster B

Client

Cluster manager

Provider

Node

Fig. 1. Hierarchy of the entities in the network overlay defined by JuxMem

The data group is also hierarchically organized, as illustrated on Figure 2: the
Global Data Group (GDG) gathers all provider nodes holding a replica of the same
piece of data. These nodes may be distributed in different clusters, thereby increasing
the data availability if faults occur. The GDG group is divided into local data groups
(LDG), which correspond to data copies located in the same cluster.

Fig. 2. JuxMem : a hierarchical architecture

In order to access a piece of data, a client has to be attached to a specific LDG. Then,
when the client performs the read/write and synchronization operations, the consistency
protocol layer manages data synchronization and data transmission between clients,
LDGs and GDG, with the strict respect of the consistency model.

2.2 Starting Point: A Hierarchical, Fault-Tolerant Consistency Protocol

The Entry Consistency Model. To guarantee data consistency, JuxMem provides a con-
sistency protocol that implements the entry consistency model. This model was first in-
troduced in the Midway system [9]. As opposed to other relaxed models, it requires an
explicit association of data to synchronization objects. This allows the model to lever-
age the relationship between a synchronization object that protects a critical section, and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

data

696 G. Antoniu, L. Cudennec, and S. Monnet

the data accessed within that section. A node’s view of some data becomes up-to-date
only when the node enters the associated critical section. This eliminates unnecessary
data traffic, since only nodes that declare their intention to access data will get updated,
and only the data which will be accessed will be updated. Such a concern for efficiency
makes this model a good candidate in the context of scientific grid computing.

When using the entry consistency model, exclusive accesses to shared data have to
be explicitly distinguished from non-exclusive accesses by using two different primi-
tives: acquire, which grants mutual exclusion; acquireRead, which allows non-
exclusive accesses on multiple nodes to be performed in parallel.

Adapting the Entry Consistency to the Grid. Existing protocols that implement the entry
consistency model can not be applied directly to the grid. First, they have been designed
for flat, small-scale architectures and do not cope with the hierarchical architecture of
the grid (which implies a hierarchy in terms of communication latency, as previously
explained). JuxMem addresses this aspect by implementing a hierarchical, consistency
protocol that minimizes data traffic on long-distance, inter-cluster links. Second, tradi-
tional protocols have been designed for clusters and parallel machines, and often im-
plicitly assume stable entities (e.g. a home node). However, failures and disconnections
are part of grid’s specifications. JuxMem implements a hierarchical, home-based proto-
col for entry consistency, where, to enhance fault tolerance, the critical role of the home
is played by the a group (the LDG) at cluster level and by another group (the GDG)
at global level. This protocol is described in detail in [7]. When using this protocol,
if a client asks for a data access, its request may go through each level of the data
group hierarchy, in order to be satisfied. For instance, when a client needs to acquire the
read-lock, it sends a request to its associated LDG. If the LDG does not already have
the read-lock, the LDG sends a request to the GDG. Then the lock is sent back from
the GDG to the LDG and finally to the client. In this model, if a client owns a lock, its
associated LDG owns the same lock. When the client modifies the data, the modifica-
tions are transmitted to the LDG when the client releases the lock, and they can further
be transmitted to the GDG either immediately or lated, according to the desired level of
fault-tolerance. These aspects are detailed in Section 3.

Finally, the consistency protocol gives priority to writers: a writer only has to wait
that previous requests are satisfied, whereas a reader has to wait that no writer is asking
for the lock. In its basic version, this strategy can cause readers starvation if two or
more writers get alternatively the lock, postponing data access to readers. In order to
guarantee that readers eventually access the date, a simple solution consists in setting a
limit on the number of times writers actually use this priority.

3 Efficient Visualization Through Concurrent Reads and Writes

3.1 Proposed Enhancement: Relaxed Reads

We consider a scenario where an observer node reads some shared data for visualization
purpose. The reads performed by this node should be efficient and low intrusive. The
first idea is to favor access locality by taking advantage of the data copies located on the
client node (if any), else fetch a data copy on its associated LDG, in the same cluster (if

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

acquire
acquireRead
data

A Practical Evaluation of a Data Consistency Protocol 697

available). The second idea is to perform the read operation without acquiring a lock.
This particular read operation provides the ability to have concurrent reads and writes
as it does not lock the data.

The entry consistency model guarantees that the data is up-to-date only if the associ-
ated lock has been acquired. If the associated lock has not been acquired, no guarantees
are provided. The approach highlighted in this paper proposes to enable relaxed reads
(i.e. without acquiring a lock) for which the user application is able to keep control on the
data “freshness”. This implies that the consistency protocol implementing this extended
model respects some bounds on the difference between the version of the data returned
by the rlxread primitive and the latest version of the data (i.e. the one read after acquiring
a lock). Note that this is an extenssion to the entry consistency model: the guarantees of
the original model are preserved under the same conditions (i.e. when using the regular
synchronization primitives); besides, new guarantees are provided in some cases where
the original model does not guarantee anything. This is detailed in Section 3.4.

Therefore, for each relaxed read operation, the application specifies (as a parameter
of the rlxread primitive) an upper bound on the difference between the latest version
and the one returned by the rlxread primitive call.

3.2 Controlling Data Freshness

Specifying the difference between the latest version and the one returned by the rlxread
primitive is not a trivial problem. The hierarchical aspect of the data consistency protocol
does not provide the ability to retrieve the latest version in one step. For some given
data, different LDGs may store different versions indeed. The LDG that owns the lock
associated to the data hosts the latest version of this data while the other ones may host
an older version (as LDGs do not necessarily propagate every data update to the GDG).
Furthermore, even client nodes attached to the same LDG may host different versions of a
given data according to the last time they access this data: the data stored by a client node
is only updated when it accesses the data (using the consistency protocol primitives).

To express the difference between the latest version and the version returned by the
rlxread primitive, we introduce two parameters that take into account the two layers of
the hierarchical consistency protocol.

– The D parameter is a constant attached to each piece of data.
– The w parameter (also called reading window) is specified for each call to the

rlxread primitive.

The D constant corresponds to the number of times a LDG can give the exclusive
lock to its locally-attached client nodes without sending updates to the GDG. The D
parameter is set when the data is allocated by the service. Setting D to a small value
forces the LDG to spread updates frequently, offering the possibility to get fresher data
from the other LDGs. However, this solution adds an overhead due to frequent GDG
updates (releasing the lock, sending update messages, etc.). Alternatively, using a larger
value lets the writers perform writes within the same cluster (associated to a given
LDG), without wasting time in frequent GDG updates. The counterpart is that the data
versions returned by the relaxed read in other LDGs may be a bit older. For instance, if
D = 0 LDGs have to spread their modifications to the GDG after each release of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

698 G. Antoniu, L. Cudennec, and S. Monnet

exclusive lock by a client. In this case, all LDGs have the same version of the data (the
latest). The D parameter has been inspired by the hierarchical synchronization protocol
described in [5].

The w parameter is the reading window. It is specified for each call of the rlxread
primitive. It defines an upper bound on the distance between the latest version of the
data and the version returned by the relaxed read. Therefore, w must be greater than or
equal to D. Considering the smallest value for w (i.e. w = D) implies that the relaxed
read returns the LDG’s version. This solution offers fresher data but it also implies more
network traffic when data updates occur frequently (and therefore less efficient relaxed
reads). Relaxing the read (i.e. using a greater value for w), enhances the observer access
speed by reducing the network traffic but the relaxed read primitive may return older
versions of the data.

Note that distances D and w are positive or null and w must be greater than or equal
to D. The difference w − D indicates the upper bound between the version of the data
stored on the client’s LDG and the one returned by the relaxed read primitive on the
client’s node. For instance, if D = 3 then all the LDG can successively give the lock up
to 3 times without updating the GDG. If w = 4 then the version of the data read by the
client is either the LDG’s version of the data or the previous version.

For a given data, if a client stores version VC of the data and if VLDG is the ver-
sion stored on its LDG, the client can use its own version VC as long as the following
condition is satisfied (α):

Vc ≥ VLDG − (w − D)

This condition is checked by the LDG each time a client node performs a relaxed
read.

Efficient visualization relies on the correct tuning of both D and w parameters.
Therefore, a smart combination of D and w parameters has to be used depending on the
type of application that is monitored and the visualization accuracy that is required.

3.3 Example

Figure 3 illustrates the roles played by w and D within the hierarchical architecture
of the protocol. The d data is available in 3 different versions stored on client nodes
or LDGs (Va in one cluster, Vb and Vc in a second cluster). Several clients acquire the
lock, write the data, release the lock and send updates to LDG A, increasing the Va

version (1). Every Dd lock releases within LDG A, data updates are sent to the other
LDGs (i.e. to the GDG) (2). At the same time, in the second cluster, Client C performs
relaxed reads, using a window w as a parameter of each access. A relaxed read request
is sent from Client C to LDG B. This request contains 2 pieces of information: 1) the
w parameter and 2) Vc: the version of the data owned by client C (3). Depending on the
evaluation of the α condition, the LDG B sends back either its Vb version of the data or
a message that allows the client to use its own version (4).

3.4 Discussion

The relaxed read proposes an extension of the consistency model. Entry consistency is
still preserved and guarantees that clients read an up-to-date version of the data, pro-
vided they acquire the associated lock. Besides, the entry consistency model is extended

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Evaluation of a Data Consistency Protocol 699

by a new feature: some controls are now available when processing a read without ac-
quiring the lock.

Note that setting D = 0 and w = 0 is not equivalent to the classic sequence of
performing a read after getting a read-lock. First, during the relaxed read, the lock can
be acquired by another client which can modify the data. This is not allowed in the
original entry consistency model. Second, between the moment when the LDG sends
the data to the client and the moment when the data is returned by the rlxread primitive,
new versions can be produced (as the protocol allows writes to continue). Therefore, the
user has to know that this approach does not offer strict guarantees on data freshness.
Providing more guarantees would require that the LDG wait for a client acknowledg-
ment before accepting new updates. Such an approach would however be less efficient.
Furthermore, these guarantees are not necessarily needed for the problem of efficient
visualization within code-coupling applications.

client C

LDG
B

(3)
(4)

LDG
A

(2)

(2)

(2)

(2)

Vc

Vb Va

clients

(1)

Va

Fig. 3. A relaxed read overview

4 Evaluation

To perform an experimental evaluation of the proposed protocol, we used the Grid’5000
platform [2], which gathers 9 clusters geographically distributed in several cities of
France. These clusters are connected together through the Renater Education and Re-
search National Network (1 Gb/s). For these experiments, we used from 9 to 25 nodes
in 3 of these cities (Orsay, Rennes and Toulouse). In each of these 3 clusters, nodes are
locally interconnected through a Giga-Ethernet network (1 Gb/s).

Note that we do not use more nodes, as these experiments aim at evaluating the cost
of the observation of a single piece of data. Even if a grid application may involve
hundreds or thousands of nodes, a single piece of data is rarely accessed by more than
a few tens of nodes.

4.1 A Visualization Scenario

We consider a synthetic code-coupling application running across 2 clusters located in
Rennes (Cluster C1) and Toulouse (cluster C2). As illustrated by Figure 4, Cluster C1
runs processes that iteratively write the shared piece of data. We call these processes
writers thereafter. On Cluster C2, some processes (called readers) perform read opera-
tions. Finally, a third cluster, located in Orsay (Cluster C3) is used to run a visualization
process, called observer.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

700 G. Antoniu, L. Cudennec, and S. Monnet

The experiments are configured as follows: each writer performs 50 writes, and each
reader performs 50 reads concurrently on the same piece of data. At the same time,
the observer on Figure 4 performs 50 observations of the piece of data. Note that the
data is replicated: there is one copy in each cluster. In this example, the size of the
LDGs is reduced to 1 (i.e. there is only one copy of the data in each cluster). The
3 LDGs compose the GDG for this data. The main reason that motivated this choice
is that fault-tolerance is not the main goal of these experiments. Furthermore, a high
replication degree would not be really relevant here, as it has a low impact on read and
relaxed read operations.

The goal of these experiments is to evaluate the impact of the consistency model
extension upon the visualization process. Therefore, each test is performed twice, by
relying on two mechanisms for visualization: 1) using the acquireRead/release primi-
tive (called acquireRead-based visualization thereafter); 2) using the rlxread primitive
described in this paper, with no lock synchronization. Finally, we vary the visualiza-
tion constraints by tuning w and D parameters, and measure how the visualization cost
evolves.

In order to evaluate the impact of the data size in our experiments, we use 4 different
sizes: 1 KB, 512 KB, 1 MB and 10 MB.

Initially, we use a single writer and a single reader. Then, in order to vary the com-
munication patterns the number of writers and readers is gradually increased (up to 9
readers performing 9 ∗ 50 reads and 9 writers performing 9 ∗ 50 writes).

C2 (Toulouse)

LDG

Readers

Manager

LDG
Manager

LDG

Writers

Manager

C1 (Rennes)

C3 (Orsay)

network
Renater

Observer

Fig. 4. Experiments configuration

4.2 Results Analysis

Benefits of the Extension. The goal of these first set of experiments is to evaluate
the impact of the protocol extension even when parameters D and w are set to 0. As
explain in section 3.4, this is not equivalent to reading the data through the acquireRead
primitive, as no lock is acquired. However, this corresponds to the maximal freshness
degree that is allowed by the rlxread primitive.

Figure 5 illustrates the impact on the visualization process. The improvement by
approximately 80% is mainly explained by the fact that the visualization does not need

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Evaluation of a Data Consistency Protocol 701

Fig. 5. Improving the observation cost

to wait for a lock. The benefit is growing with the data size: the larger the data, the
longer the time to update the data and release the lock. The benefit even reaches 94%
for a 10MB piece of data (not displayed on the figure for the sake of readability).

The visualization process is not the only one to take advantage of the rlxread prim-
itive. The application itself shows a small improvement as it no longer has to wait for
the visualization process to release its lock.

Fig. 6. Impact on the writing cost

Figures 6 and 7 respectively illustrate the gain for the writer and the reader. However,
the improvement is small: in the case of the acquireRead-based visualization, the im-
pact on the application is already low as the read lock is shared between the application
reader and the visualization process.

Consequently, the main improvement concerns the visualization process, as shown
on Figure 8, which summarizes the benefits for the reader, the writer and the observer.

Influence of D and w. In order to evaluate the impact of the D and w parameters upon
the visualization and the application, we have run a second set of experiments, setting
D = 2 and w = 3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

702 G. Antoniu, L. Cudennec, and S. Monnet

Fig. 7. Impact on the reading cost

Fig. 8. Overall benefit

According to these values:

– the LDG located in Cluster C1 propagates updates at least every 3 writes. There-
fore, the degree of fault tolerance is lower here: the latest version of the piece of
data may be lost if a failure occurs in Cluster C1 between two update propagations.
The D parameter provides the ability to tune the tradeoff between fault tolerance
and data access performance.

– the LDG in Cluster C2 sends back the data to the observer only if the difference
between its version and the observer’s version is larger than 1 (w−D). That allows
the observer not to transfer the data each time a new version is available on its LDG.
Therefore, it increases performance and decreases network load while providing a
sightly less accurate observation.

Figure 9 shows that relaxing the constraints on the data freshness results in an im-
provement for the visualization (33% for a data size of 1MB). Setting w = 3 reduces the
probability for the observer to transfer the data. Therefore the improvement increases
with the data size. On the other hand, the data returned by the rlxread primitive is a
little bit less up-to-date.

The impact on the application is really low (almost null), as shown by figures 10
and 11.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Evaluation of a Data Consistency Protocol 703

Fig. 9. Improving the observation cost (D=2 W=3)

Fig. 10. Impact on the writing cost (D=2 W=3)

Fig. 11. Impact on the reading cost (D=2 W=3)

Varying Communication Patterns. Finally, the number of writers in Cluster C1 and
the number of readers in Cluster C2 is increased in order to evaluate the impact of the
number of readers and writers. Each test is run with both the acquireRead-based vi-
sualization (using the acquireRead primitive) and with the rlxread-based visualization.
The size of the data is 1 KB. The results presented in Figure 12 show that the latency
of the rlxread primitive is constant (and lower than in the case of acquireRead-based

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

704 G. Antoniu, L. Cudennec, and S. Monnet

Fig. 12. Impact on the observation cost

Fig. 13. Impact on the reading cost

Fig. 14. Impact on the writing cost

visualization): it does not depend on the number of writers and readers. The rlxread
primitive only induces communications between the visualization process and its LDG.
The latency of the acquireRead-based visualization decreases while the number of read-
ers increases: a high number of readers increases the probability that a read lock as al-
ready been given in the system. In this case, there is no need to wait for a release, the
read lock can be shared by the numerous readers, providing a lower read latency.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Evaluation of a Data Consistency Protocol 705

However, as the number of writers and readers increases, the average write time
grows. As the write lock is exclusive, the probability to wait for a release increases
with the number of processes accessing the data using lock synchronization (i.e. except
the ones using the rlxread primitive). However, Figures 13 and 14 show that using the
rlxread primitive provides a significant improvement even increasing the number of
writers and readers.

As for the acquireRead-based visualization, the latency of the read operation de-
creases while the number of readers increases. There again, the improvement offered
by the rlxread primitive is significant.

5 Conclusion

Visualization is an useful feature in the context of code-coupling applications, as it
may help tuning the application dynamically, while also allowing to get preliminary
results, to perform demos, etc. This paper presents and evaluates an extension to the en-
try consistency model. We introduce the concept of relaxed read, that can be performed
concurrently to the data accesses performed by the application. This provides the ability
to achieve an efficient, and still rather accurate visualization.

Preliminary results obtained on the Grid’5000 testbed show that using the new op-
eration (rlxread) is a lot more efficient and slightly less intrusive than using lock-based
synchronization (e.g. through the acquireRead operation provided by the entry con-
sistency model). The data version returned by the rlxread operation is not necessarily
the most recent, however its “freshness” can be controlled and should be sufficient for
visualization purposes.

We plan to further refine the approach proposed in this paper. A step forward towards
transparency and self-adaptivity would consist in considering the w parameter as a hint
(e.g. not accurate, accurate or very accurate), according to the needs of the visual-
ization process. JuxMem may then automatically decide what exactly the w parameter
should be (which expresses the “freshness degree”), by taking into account parameters
like the network load or the data update rate.

References

1. The JXTA project. http://www.jxta.org
2. Projet Grid’5000. http://www.grid5000.org
3. Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl Kessel-

man, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke. Data manage-
ment and transfer in high-performance computational grid environments. Parallel Comput.,
28(5):749–771, 2002.

4. Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakrish-
nan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks: Shared memory computing
on networks of workstations. IEEE Computer, 29(2):18–28, February 1996.

5. Gabriel Antoniu, Luc Bougé, and Mathieu Jan. JuxMem: An adaptive supportive platform
for data sharing on the grid. Scalable Computing: Practice and Experience, 6(3):45–55,
November 2005. Extended version to appear in Kluwer Journal of Supercomputing.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.jxta.org
http://www.grid5000.org

706 G. Antoniu, L. Cudennec, and S. Monnet

6. Gabriel Antoniu, Loïc Cudennec, and Sébastien Monnet. Extending the entry consistency
model to enable efficient visualization for code-coupling grid applications. In Proceedings of
the 6th IEEE International Symposium on Cluster Computing and the Grid (CCGrid’2006),
May 2006. To appear.

7. Gabriel Antoniu, Jean-François Deverge, and Sébastien Monnet. How to bring together fault
tolerance and data consistency to enable grid data sharing. Concurrency and Computation:
Practice and Experience, 2006. To appear.

8. Alessandro Bassi, Micah Beck, Graham Fagg, Terry Moore, James S. Plank, Martin Swany,
and Rich Wolski. The internet backplane protocol: A study in resource sharing. In CCGRID
’02: Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid, page 194, Washington, DC, USA, 2002. IEEE Computer Society.

9. Brian N. Bershad, Mattew J. Zekauskas, and Wayne A. Sawdon. The Midway distributed
shared memory system. In Proceedings of the 38th IEEE International Computer Conference
(COMPCON Spring ’93), pages 528–537, Los Alamitos, CA, February 1993.

10. John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and performance of
Munin. In 13th ACM Symposium on Operating Systems Principles (SOSP), pages 152–164,
Pacific Grove, CA, October 1991.

11. Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. Supercomputer Applications, 15(3):200–222, March 2001.

12. Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Trans-
actions on Computer Systems, 7(4):321–359, November 1989.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 707 – 718, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Experiencing Data Grids

Nicolaas Ruberg, Nelson Kotowski, Amanda Mattos, Luciana Matos,
Melissa Machado, Daniel Oliveira, Rafael Monclar, Cláudio Ferraz,

Talitta Sanchotene, and Vanessa Braganholo

COPPE/Federal University of Rio de Janeiro, Brazil
{nicolaas, kotowski, amandasm, lrmatos, msm, danielc,

rmonclar,cferraz, talittas, vanessa}@cos.ufrj.br

Abstract. Many scientific experiments deal with data-intensive applications
and the orchestration of computational workflow activities. These can benefit
from data parallelism exploited in parallel systems to minimize execution time.
Due to its complexity, robustness and efficiency to exploit data parallelism, grid
infrastructures are widely used in some e-Science areas like bioinformatics.
Workflow techniques are very important to in-silico bioinformatics experi-
ments, allowing the e-scientist to describe and enact experimental process in a
structured, repeatable and verifiable way. The main purpose of this paper is to
describe our experience with Tavena Workbench and PeDRo, which are part of
myGrid project. Taverna is provided with a workflow toolset and enactor, allow-
ing the specification of processing units, data transfer and execution constraints.
As a data entry tool, PeDRo provides a model, a controlled vocabulary and field
validations for Web Services descriptions, leveraging the knowledge associated
to the workflows. The main contribution of this work is a summary of some
considerations drawn by our experience with the use of these tools, emphasiz-
ing its advantages and negative aspects, together with proposals for some future
improvements.

1 Introduction

The development of computational infra-structures and the mass use of tools to
manipulate the bioinformatics data produced by e-scientists have increased the neces-
sity to execute in-silico experiments. Such experiments are usually captured by a
workflow, and can be enacted using workflow engines. One of such computational
strategies is myGrid [19], which exploits Grid technology to efficiently support bioin-
formatics applications and experiments.

However, the construction of formal data models to represent these experiments
and their associate data is characterized by the use of free-text representations or semi
structured data. As an example, the experiments are annotated with free-text describing
the main aspects of the adopted experimental technique. These annotations are essential
for a more complete analysis of the experiment, and also for future experiments.

Traditionally, several formats and formalisms have been used to construct annota-
tion databases. Free-text is still the most common formalism. The main advantage
of this approach is its expressiveness. However, the use of free-text limits search

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

708 N. Ruberg et al.

capabilities and automated comparisons. A simple alternative would be to use a
controlled vocabulary. Nevertheless, this approach would reduce the expressiveness.
The most adequate option would then be to use ontologies together with a tool that
allows the construction of data models and their association with the ontologies.

Different areas consider different definitions for ontologies [7,9,10]. In bioinfor-
matics, ontology is a concise and non-ambiguous description of the relevant entities
of the application domain, and of the relationship of such entities [16]. Entities may
be objects, processes, functions, predicates and other application-dependant types. An
ontology eliminates the uncertainty and misinterpretations of the semantics of data,
programs and their relationships. Consequently, it makes it easier to create application
systems in the bioinformatics domain.

Towards an engine that could not only provide an effective means of creating and
enacting bioinformatics (scientific) workflows, but also deal with ontologies and the
benefits that they may provide, in this paper, we describe two tools of the myGrid
environment:

• Taverna [20], a workbench for the development and execution of workflows.
Taverna allows the integration of Web Services in scientific workflows, which
makes it easier to create workflows, and discover ready-to-use Web Services; and

• PeDRo [14], a tool that allows creation, manipulation and maintenance of bio-
logical ontologies.

By experiencing these tools, we provide our first contribution: a report on how
good Taverna and PeDRo did concerning the aspects just highlighted. With the
considerations and aspects shown in this report, we then draw our second and main
contribution, which is a set of proposals for future improvements in these tools.

This paper is organized as follows. We briefly describe Taverna and PeDRo in
Sections 2 and 3. Section 4 presents a report on our experience in using both of these
tools. Finally, Section 5 closes this work with some final remarks and research
perspectives.

2 Taverna

An initiative from the collaboration among several institutions (the European Bioin-
formatics Institute (EBI), IT Innovation, the School of Computer Science, University
of Newcastle, Newcastle Centre for Life, School of Computer Science at the Univer-
sity of Manchester and the Nottingham University Mixed Reality Lab), research
projects (the Biomoby project [2], Seqhound [17], Biomart [1]) and various individu-
als in general, Taverna [20] plays the role of a workbench for the development and
execution of workflows concerning bioinformatics in the myGrid project.

When we use the term “workflow” in the myGrid environment, we are referring to
the composition of local and remote (Web) services to achieve a biological experi-
ment. This kind of composition is provided by defining the workflow steps using the
SCUFL language. We consider a Web Service a software component that is available
on the Internet and that uses a standardized XML messaging system. There should be
some mechanisms so that the interested parts can easily locate services and their
public interfaces.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Experiencing Data Grids 709

Especially in bioinformatics, most of these in-silico experiments are related to the
use of computational tools and databases. Almost all of these computational tools are
being made available as Web services. Because of that, those who make use of such
tools feel the need to orchestrate these web services in workflows as part of their
in-silico experiments. Once the workflow is defined in the SCUFL language, each
step within a workflow represents one atomic task (a Web service, for example).

One important issue that needs clarification is the main difference between busi-
ness workflows and scientific workflows, since Taverna is strictly concerned with
scientific workflows. According to Santos [15], scientific workflows share many
characteristics of business workflows, but present some important items not found in
business workflows:

1. Scientific Workflows are normally designed by scientists: Taverna’s main target
audience (biologists and bioinformaticians) may neither pursue a wide computa-
tional background, nor the necessary computing infrastructure or specialized staff
to develop or support such workflows. Usually, Taverna users lack the knowl-
edge of scripting or programming languages. In order to allow the ease of work-
flow development and usage, Taverna Workbench provides a window-based,
user-friendly interface. The workflow components are added through the
rovided examples, and also through the standardized data structures available,
which are close to a general workflow creation language. The workflows devel-
oped in Taverna are written in the Simplified Conceptual Workflow Language
(SCUFL) and enacted using the Freefluo workflow enactment engine [12].

2. Scientific Workflows are designed to prove a Hypothesis or a Theory. This way,
the definition of the workflow is always a dynamic process that it is influenced by
the obtained results, generating constant changes in the execution flow to achieve
a desired result. The workflow will probably be re-executed many times in a day,
week or month. Because of that, a mechanism that allows the scientist to save the
developed workflow is needed and Taverna provides this kind of mechanism.

3. Scientific Workflows will probably be reused by other scientists: workflows
already executed can be reused to reproduce an earlier experiment. The workflow
tool must provide a way to recover previous workflows that can be reused or
modified as needed.

4. Provenance data must be collected in order to assure high data quality: prove-
nance data like “Responsible for the workflow execution”, “Date and Time of the
execution”, “Annotation Data” are very important to other scientists who will
re-execute the workflows in order to compare the results achieved;

5. Controlled Execution of the workflow (Partial execution): we can define a work-
flow as “a learning process”. Because of that, scientists will only be able to
decide to continue workflow execution after they have evaluated the partial
results already achieved. If the results achieved are unsatisfactory, they can stop
the execution and start it again with new parameters or input data. This kind of
mechanism is very useful because some services included in the workflow can
take a long time to execute. Because of this, the scientist must be able to stop the
execution of any workflow and start it again from the point he/she has stopped it
before. This way, it should be provided some “savepoints” in the workflow to
mark the points in which execution can be re-started.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

710 N. Ruberg et al.

6. Fault Tolerance: when an error occurs, there must be a contingency plan. It is
important to say that these errors are related to execution problems, like unavail-
able services. This way, the user must be able to define alternate services that will
be executed as needed.

By default, Taverna provides some “standard” Web services that are available to
the users after installation (Biomart Data Services, Soaplab Analysis Services at EBI,
SOAP Services, and so on) and new Web services can be added as needed.

The Taverna Workbench is composed of four main modules: the Advanced Model
Explorer (Scufl Model Explorer), in which the workflow is developed following the
above considerations, the Workflow Diagram (Scufl Diagram), a module that presents
the workflow graphically to its users, the Available Services, where the user is able to
select or simply point to which local or remote service to use inside a workflow, and
the Enactor Launch Panel, that presents the status of the workflow steps execution
and its final result to the user [13].

Besides workflow development and execution, Taverna holds the ability to support
highly complex data analysis, not only from private or local databases, but from any
Web service at hand. For example, one of the workflow examples provided in Tav-
erna Workbench allows its users to track down a gene ontology graphically. With a
simple data input (an alpha-numerical code that represents the gene identification),
the user submits the workflow execution, which then accesses a Web service and
retrieves the gene ontology for the input provided. While the workflow is being proc-
essed, GraphViz starts to draw the result tree and associates specific roles within the
ontology with colors.

3 PeDRo

The Taverna workflow environment is provided with a tool for data entry of biologi-
cal data models. This tool, PeDRo [14], allows biologists to enter descriptions and
ontological annotations on data sources and biological services. The data input is
validated against an XML schema, and data fields are verified against a controlled
vocabulary. The idea of an XML schema validation is to provide an intrinsic support
to a domain metadata; and the goal of a controlled vocabulary field association is to
enable an easy way to support ontologies.

The XML schema provided with Taverna/PeDRo is conceived to describe services
and workflows for the purpose of discovery. The actual standards for service descrip-
tions, UDDI, OWL-S and WSDL are not semantically rich enough to provided que-
ries over the Taverna ontologies. Thus, such standards are extended to incorporate the
concepts needed for Taverna to search and discover services in the Grid. More details
on these issues are described in [14].

In order to build and to support the use of ontologies, PeDRo plays two roles: i) a
data entry tool from a predefined XML schema; and ii) a quick modeling tool. As a
data entry tool, PeDRo is embedded within Taverna environment as part of the Java
application interface. When activated, it opens a window with a navigation tree and an
edition form. On the navigation tree, elements are structured and presented accord-
ingly to the XML schema. On the edition form, data is inserted and ontologies associ-
ated to each field. As a modeling tool, PeDRo is available as a standalone application.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Experiencing Data Grids 711

It provides the same interface as in the bundle application but with more flexibility
with respect to the construction of XML schema and ontologies -- both data are stored
in plain text files. Therefore, to custom the XML schema, it suffices to change
the XML schema text file (Figure 1), as well as to custom the ontologies, editing the
respective file will incorporate the desirable property (Figure 2).

<xs:element name="serviceDescription">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="serviceName" type="xs:string" minOccurs="0"/>
 <xs:element ref="organisation" minOccurs="0"/>
 <xs:element name="serviceType" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Soaplab service"/>
 <xs:enumeration value="WSDL service"/>
 ...

Fig. 1. XML Schema sample for Taverna ontology

bioinformatics_application
 Basic_Local_Alignment_Search_Tool
 tblastn
 tblastx
 blastn
 blastp
 blastx
 EMBOSS
 primer3
...

Fig. 2. Taverna field to Ontologies association file

4 Taverna and PeDRo Getting Together

In this section we describe our experience using the Taverna Workbench and PeDRo
tools by means of a practical example. However, before proceeding, we present some
difficulties found and positive aspects of Taverna.

4.1 Experiencing Taverna

We have installed and used Taverna Workbench version 1.2 in both Linux and Win-
dows platforms and we found it very useful and easy to use. Despite the simplicity of
the installation process and the effectiveness of the installation guide, some difficul-
ties were encountered in this phase.

In order to fully experiment the Workbench we installed myGrid, and for that
installation and experience we point out three minor faults observed: i) the configura-
tion process; ii) security issues; and iii) lack of tools to integrate/create virtual
organizations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

712 N. Ruberg et al.

The first aspect that called our attention was the amount of configuration files
required to run myGrid services, which is not an easy task, susceptible to errors. To
uncomment the wrong line or miss a comment in the configuration file is enough to
make some tools not to work at all. Moreover, some guidelines found within those
files do not match the available information in the user’s guide. Thus, for unskilled
users such as e-scientists, it is difficult to install the required tools.

While configuring the XML files and properties, we noticed that security aspects
are not fully observed. For example, logins and passwords are stored in plain text in
XML files, which are edited by the users themselves. Since most partial results
in these experiments are confidential, security can be an issue.

The third aspect observed regards the definition, construction and use of a virtual
organization in a grid environment. In that sense, there is no documentation in how to
setup a custom virtual organization in myGrid. It is not clear how to aggregate ser-
vices, since Taverna does not easily provide features to publish these services.
Finally, there is no authentication in the grid. Therefore there is no restriction in the
use of the services provided.

Despite of these difficulties, Taverna gave us a positive impression. The tool has
shown us an expressive importance to bioinformatics researchers as it offers a simple
and efficient environment. This workbench is intuitive, useful and loads bioinformat-
ics web services in its initialization. The user can verify the workflow status in
real time, based on the services selected to compose the workflow activities. Also,
services can be added to Taverna from specific sites which contain their definition
code.

The workflow definition language (SCUFL) is simple and easy to learn. Although
one can find some difficulties to use this language, it is possible to create a workflow
connecting operations and filling some properties in a friendly user interface that is
provided in Taverna. The user may also define them directly on a XML file. A draw-
back is that the SCUFL language do not complies with the defacto standard for Web
Services Workflow BPEL4WS [4].

 The real time workflow visualization is an interesting aspect observed since it pre-
vents rework. The graphical representation of the workflow can be saved in various
image formats. Many kinds of visualization are offered, from the simplest to the more
complex ones, in which workflow information is exposed in the graph.

4.2 Using Taverna and PeDRo in Practice

Our strategy to test the Taverna workbench and PeDRo attributes is to cover a com-
plete cycle of a biologist interaction with the platform. Our experiment involves: i)
constructing and deploying a Web Service in the workbench; ii) describing the Web
Service via the PeDRo tool; and iii) constructing and running a workflow with this
Web Service.

For didactical purposes, we tested a workflow with the implementation of a simple
Web Service. Its WSDL specification is presented in Fig. 3. This service receives a
string as input, and echoes that string back as an output. We called it EchoService.
The Web Service is constructed using the AXIS framework, which is the defacto
standard for Java Web Services implementation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Experiencing Data Grids 713

…
<wsdl:message name="serviceMethodResponse">
 <wsdl:part name="serviceMethodReturn" type="xsd:string"/>
</wsdl:message>
<wsdl:message name="serviceMethodRequest">
 <wsdl:part name="inputArg" type="xsd:string" />
</wsdl:message>
<wsdl:portType name="EchoService">
 <wsdl:operation name="serviceMethod" parameterOrder="arg">
 <wsdl:input message="impl:serviceMethodRequest" name="serviceMethodRequest" />

 <wsdl:output message="impl:serviceMethodResponse" name="serviceMethodResponse" />
 </wsdl:operation>
</wsdl:portType>
...

Fig. 3. EchoService WSDL extract

Constructing and deploying the Web Service. When starting, the Taverna Work-
bench displays three windows: the Model Explorer, the Workflow Diagram, and the
Available Services. In the first interaction, the biologist constructs a scientific work-
flow by picking up services on the available services window; connecting them on the
model explorer window. The graphical visualization of the experiment is shown in
the Workflow Diagram window.

In order to make the EchoService available to the workbench, we need to include it
on the available services window. All the available services are displayed in a tree
structure on the interface. To add a new service, we right-click the root of all services,
and we select the appropriate service category on the displayed menu, which, in our
case, is the “WSDL scavenger”. After providing the WSDL description file address or
the WSDL description URI, the service is included on the tree of services and is ready
for use. In our particular case, the available services window with the EchoService is
shown in Fig. 4.

In this first moment we observed that is necessary to re-include the service every
time the workbench is restarted. This can be cumbersome if we have several custom-
ized Web Services.

Describing the Web Service via the PeDRo tool. In order to enable a semantic
search over the services registered in the Grid, the Feta Engine is provided. This tool
relies on an agreed ontology for the services description and an entry tool to input
the data required by the ontology. With the perspective of an e-scientist, we used
PeDRo to provide the semantic description of the EchoService. As mentioned before,
PeDRo allows an annotation according to a predefined XML schema, and restricts
some fields to a controlled vocabulary.

In order to provide this description, we access the PeDRo tool interface from Tav-
erna’s main menu. A form is presented so that one can provide the service description.
Most of the input fields are required information to describe the service itself, such as
the Web Service WSDL. However, some extra information is also necessary to better
describe the service. To illustrate, in Fig. 5 we present the service description for the
EchoService. We observe that the fields Web Service type, author, description text, and
organization do not belong to the WSDL specification shown in Fig. 3, though they
were included in order to increase the service semantic description.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

714 N. Ruberg et al.

Fig. 4. New service in Taverna Workbench

Fig. 5. Describing a Service in PeDRo

Two important aspects were observed in our experiment with PeDRo: i) although
the service is already on the workbench, no description information is retrieved auto-
matically by PeDRo; ii) in the interface, the built semantic description is ready to be
published in the consortium registry site, but there is no option for a local publishing,
at least not in an out of the box manner.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Experiencing Data Grids 715

Fig. 6. Workflow with the built Web Service

Constructing and running a workflow with the EchoService. Our third step on the
experiment was to include the EchoService in a workflow. We picked up one of
the example workflows provided with the workbench, the ShowGeneOntology. The
idea of this workflow is to retrieve the Gene ontology tree and display its graphical
view for a given Gene Ontology ID. In order to have a running example with our
service, we attached the input of our EchoService to the workflow input field, and
attached the service output to the corresponding input services in the workflow. The
resulting workflow is shown in Fig. 6.

5 Suggested Improvements and Final Remarks

In this paper, we have experienced Taverna and PeDRo. Both of these tools are
focused on the bioinformatics area. Our University is involved in the BiowebDB
Consortium that aims at supporting genomic workflows to provide interoperability
among different analyses tools and more sensitive algorithms for distant homology
detection [3]. This evaluation has motivated us to integrate some of Taverna/Pedro
tools with current BiowebDB services architecture. With this idea in mind, we would
like to point some problems out, and make some improvement suggestions. This is the
main contribution of this paper.

Inside the Taverna Workbench we found that one of the most important topics for
the development of scientific workflows is the possibility to do a controlled execu-
tion. In this tool we can steer the workflow execution by using the breakpoints feature
or simply by manually pausing it. This is very useful, as we can partially or com-
pletely execute a given workflow, edit its intermediate values and even simulate a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

716 N. Ruberg et al.

step-by-step execution by placing breakpoints at each activity to be interrupted.
Although these assets provide some advantages, they do not have the necessary flexi-
bility to enact scientific workflows completely, as we can not change the activities
course at runtime according to the intermediate results.

In certain experiments, such as those concerning bioinformatics, it is almost
impossible to execute the workflow in its totality, as the processing time of each web
service may be enormous [12]. A workflow executed step-by-step could help to visu-
alize errors that may have happened during the execution of a web service that is part
of the workflow. Moreover, it makes it possible to cancel the workflow execution,
avoiding the execution of all other processes with errors generated by previous web
services, saving CPU time and reducing the cost of experiments.

However, in the Taverna development environment, the e-scientist can not find a
way to dynamically choose other services to be executed on the next workflow steps
depending on the results. Also, it is not possible to re-execute the workflow from a
specific previous step, editing the intermediate values. It is only allowed to continue
the execution from the paused step or to re-execute the entire workflow.

Another improvement opportunity is related to enabling visual workflow design
through the workflow diagram. Currently, the workflow composition task is only
available in Workflow Explorer module. The Workflow Diagram provides just the
visualization of the created workflow, but not its edition.

We suggest the possibility to create/exclude workflow objects from the workflow
project and, moreover, to edit its properties or metadata, working directly on the
graph. We consider that with these improvements inside the workflow diagram mod-
ule, similarly to what is provided in the workflow explorer, the workflow composition
would be simplified and faster, especially for complex workflows.

After having the opportunity to analyze the Taverna Scufl Workbench environ-
ment, we would like to go further and use it in a more standard grid environment such
as Globus [8]. It is not clear for us if the Taverna Team has plans to develop a
Globus/myGrid integration module. In our opinion this would broad the Workbench
execution possibilities by taking advantage of the Globus Toolkit components, which
involves failure management and wider use of grid services. However, the issues here
go beyond that, since the use of Web Services in Grids still poses some problems. As
defined by Foster (1998) a grid must provide security, unique identification service
and quality of service [6]. Nevertheless, the current implementation of the Web
Services specification does not provide these features. This is because the HTTP
connection between the server and the client uses no cryptography, which means that
SOAP messages are exchanged with no security. Besides, there is no user identity
guarantee in service calls. The only identity is the IP address, which can be easily
forged (through a HTTP proxy, for instance). Another aspect is that the HTTP and
SOAP protocols have no mechanism to guarantee the provided service. This way, it is
still not possible to apply the current Web Services architecture in Grids, but there are
standardization proposals in Web Services involving these features. It is called Web
Services Security (WS-Security) [11].

WS-Security proposes an extension to the SOAP protocol by adding message
deliver guarantee, confidentiality and a unique authentication mechanism. However,
WS-Security is not a standard yet [5]. This way, we can foresee a common path
between Grid Services and Web Services, despite of the deficiencies to achieve the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Experiencing Data Grids 717

Grid requirements in the current Web Services specification. WS-Security can be the
way to get there. Globus GT4 seems to be going in this direction.

Our remarks concerning the PeDRo tool salient its characteristics as a data entry
tool as well as a design tool. Pedro allowed Taverna/ myGrid to incorporate ontologies
to the description of Web Services and workflows. It favors a simple input of Web
Services description and validation against a predefined XML Schema. In addition,
the decision to integrate the tool to the workbench was due to some design aspects of
PeDRo. It is built in Java and made available as a package with interfaces for other
Java applications. Besides defining the data model control, data validation routines
can be associated to a data entry. To summarize, the benefits of PeDRo are [14]:

• it can be used for rapid data modeling and for data entry;
• it lets the creation of complete, well-formed data files;
• it supports context-sensitive help that describes the model;
• it supports controlled vocabulary (ontology) service;
• it is free and a supported open-source tool serving a user-base of scientists;
• it is simple to use and has an intuitive interface.

In other words, PeDRo allowed the Taverna development team to easily provide a
model, a controlled vocabulary and field validations for Web Services descriptions on
the workbench. These characteristics guarantee that the elements described with the
tool will respect the requirements of the myGrid ontologies.

The main drawback to PeDRo is the lack of tools to support the data modeling. The
PeDRo tool needs several configuration files, as for example, one with the validation
schema, another with the contextual help, and other with the controlled vocabulary for
an input field. Those configuration files are particular to the tool, which restrains
changes in the ontology model; as well as the designer has to rely on other tools, e.g.
XML editors, to build the XML configuration and vocabulary text files. Just the veri-
fication and integrity validation of these files are done through PeDRo’s interface.
Those several configuration files bring up another issue that increases the difficulty in
modeling with PeDRo, those configuration files are spread in several directories. For
example, the XML schema is stored in a different directory from the ontologies. As
improvement, the generation of these configuration files should be done automatically
through PeDRo’s interface or a provided tool.

In this paper, we provided a summary on our experience using Taverna and
PeDRo, both part of myGrid project, considering their importance to the e-science
scenario. Based on these experiences, we proposed some improvements to these tools.
Such suggestions aim at making easier the tasks of scientific workflow design and
enaction.

References

1. BioMart Project. 2006. Available at http://www.biomart.org/.
2. BioMOBY. Available at http://biomoby.open-bio.org/.
3. BiowebDB. Available at http://www.biowebdb.org/index.html/.
4. Business Process Execution Language for Web Service version 1.1. In http://

www-128.ibm.com/developerworks/library/specification/ws-bpel/, Feb 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

718 N. Ruberg et al.

5. Foster, I. A Globus Primer. Available at http://www.globus.org/toolkit/docs/4.0/key/.
2005.

6. Foster, I.; Kesselman, C. The Grid: Blueprint for a new computing infrastructure. Morgan
Kaufmann. 1998.

7. Van Heijst, G.; Schreiber, A.; Wielinga, B. Using explicit ontologies in KBS development.
International Journal of Human-Computer Studies. 46. pp. 183-292. 1996.

8. Globus Toolkit. Available at http://www.globus.org/toolkit/.
9. Gruber, T. A translation approach to portable ontologies. Knowledge Acquisition, 5(2),

pp. 199-220. 1993.
10. Guarino, N. Formal Ontology and Information Systems. In: International Conference on

Formal Ontologies in Information Systems (FOIS). Trento, Italy, June 1998. pp. 3-15.
11. Kaler, C. et. al. Web Services Security (WS-Security). Available at http://www-

128.ibm.com/developerworks/webservices/library/ws-secure/. 2002.
12. Oinn, Tom; Greenwood, Mark; Addis, Matthew; Alpdemir, M. Nedim; Ferris, Justin;

Glover, Kevin; Goble, Carole; Goderis, Antoon; Hull, Duncan; Marvin, Darren; Li, Peter;
Lord, Phillip; Pocock, Matthew; Senger, Martin; Stevens, Robert; Wipat, Anil; Wroe,
Chris. Taverna: Lessons in creating a workflow environment for the life sciences. In: Con-
currency and Computation: Practice and Experience, pp.2. 2002.

13. Oinn, Tom; Addis, Matthew; Ferris, Justin; Marvin, Darren; Senger, Martin; Greenwood,
Mark; Carver, Tim; Glover, Kevin; Pocock, Matthew R.; Wipat, Anil; Li, Peter. Taverna:
a tool for the composition and enactment of bioinformatics workflows. Bioinformatics
Journal, 20(17), pp. 3045-3054. 2004.

14. PeDRo, dynamic form generation, XML Schema, data validation, controlled vocabulary
services…; Manchester University; 2004; Available at http://pedrodownload.man.ac.uk/
main.html.

15. Santos, R. T – “O Ambiente 10+C para a definição e execução de workflows in silico
através de serviços web” – Master Thesis, COPPE/UFRJ, 2004. In Portuguese.

16. Schulze-Kremer, S. Ontologies for Molecular Biology. In: Pacific Symposium on Bio-
computing. 1998. pp. 693-704.

17. SeqHound. Available at http://www.blueprint.org/seqhound/.
18. Silva, F.; Cavalcanti, M. Intermediate Data Management for In-Silico Workflows using

Web Services. In: Workshop de Teses e Dissertações em Banco de Dados, 2005. Uber-
lândia, MG, Brazil.

19. Stevens, R.; Robinson, A.; Goble, C. myGrid: Personalized bioinformatics on the infor-
mation grid. Bioinformatics, 19(1), pp. 302-304. 2003.

20. Taverna Project Website. 2006. Available at http://taverna.sourceforge.net/.
21. Wroe, C.; Lord, P.; Miles, S., Papay, J., Moreau, L.; Goble, C. Recycling Services and

Workflows through Discovery and Reuse. Proc UK e-Science All Hands Meeting 2004,
pp. 622-629. 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index

Abreu, Eduardo 504
Akbarinia, Reza 158
Alfonso, Carlos de 589
Almentero, Bruno Kinder 212
Alonso, J.M. 13
Alves, Juliana M.T. 131
Amestoy, Patrick 634
Amorim, R.M. 544
Antoniu, Gabriel 692
Aparcio, G. 225
Araújo, Gisele 184
Ávila, Rafael 145

Bahi, Jacques M. 79
Balsa, C. 281
Barbosa, C.B. 544
Beisel, Thomas 601
Bergdorf, Michael 391
Bertier, Marin 610
Blanquer, I. 225
Borges, Carmen L.T. 131
Braganholo, Vanessa 707
Braza, M. 281
Brito, Halisson 670
Bulić, Patricio 236

Caballer, Miguel 589
Campos, F.O. 544
Cardozo, Marcelo Augusto 198
Carretero, Jesús 120
Carrión, José V. 589
Carter, Jonathan 490
Carvalho Junior,

Francisco Heron de 184
Cavalheiro, Gerson Geraldo H. 198
Chakravorty, Sayantan 476
Chen, Chiou-Nan 566
Chen, Zhangxin 530
Choe, Tae-Young 172
Ciuffo, L.N. 544
Conceição, Duilio 319
Cordeiro, Otávio Corrêa 198
Corrêa, Ricardo Cordeiro 184
Costa, Myrian C.A. 52

Coutinho, Alvaro 292
Couturier, Raphaël 79
Crombecq, Karel 579
Cudennec, Löıc 692
Cunha, Carlos A. 93

Daydé, Michel 281, 622, 634
Denneulin, Yves 145
Desroziers, S. 518
Dhaene, Tom 579
Drummond, L.A. 417

Ebecken, Nelson F.F. 52, 544
Elias, Renato 292
Evsukoff, Alexandre Gonçalves 52, 212

Ferraz, Cláudio 707
Filho, Ayru L. Oliveira 131
Flores-Becerra, Georgina 349
Flores-Sánchez, Omar 426
Flores-Sánchez, Pedro 426
Foster, Ian 1
Franchetti, Franz 363
Fürlinger, Karl 39
Furtado, Frederico 504

Galiano, V. 417
Gançarski, Stéphane 679
Garćıa Carballeira, Felix 656
Garćıa, Carlos 439
Garcia, Félix 120
Garćıa, Victor M. 349, 426
Gaspary, Luciano Paschoal 198
Gerndt, Michael 39
Gioachin, Filippo 476
Goldfeld, Paulo 319
Gorissen, Dirk 579
Guštin, Veselko 236

Hamerling, Christophe 634
Hendrickson, Bruce 260
Hendrickx, Wouter 579
Hermann, Everton 145
Hernández, Vicente 13, 225, 403, 589
Hurault, Aurélie 622

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

720 Author Index

Isailă, Florin 120
Israeli, Moshe 378

Kacsuk, Péter 27, 644
Kalé, Laxmikant V. 476
Katagiri, Takahiro 305
Keller, Rainer 601
Kise, Kenji 305
Kiss, Tamás 27
Kotowski, Nelson 707
Koumoutsakos, Petros 391

Le Pape, Cécile 679
Li, Kangshun 530
Li, Kuan-Ching 566
Li, Wei 530
Lins, Rafael Dueire 184
López, R. 13

Machado, Melissa 707
Marques, Osni 417, 466
Martins, D.M.S. 544
Martins, Marcos 292
Martins, Vidal 158
Mathew, Tarek 452
Matos, Luciana 707
Mattos, Amanda 707
Mattoso, Marta 1, 212
Mello, Rodrigo Fernandes de 107
Mendes, Celso L. 476
Meyer, Luiz 1
Migallón, V. 417
Minami, Takahiro 601
Modenesi, Marta V. 52
Moltó, G. 13
Monclar, Rafael 707
Monnet, Sébastien 610, 692
Monteiro, Miguel P. 93
Mourelle, Luiza de Macedo 249
Muñoz, Vı́ctor Méndez 656

Nakajima, Kengo 334
Nakajima, Norihiro 601
Nataf, F. 518
Navaux, Philippe 145
Nedjah, Nadia 249

Ohshima, Satoshi 305
Oliker, Leonid 490
Oliveira, Cristiane 670
Oliveira, Daniel 707

Oliveira, R.S. 544
Oliveira, S. 556
Osthoff, Carla 670

Pacitti, Esther 158
Palma, J. 281
Pantel, Marc 622, 634
Penadés, J. 417
Pereira, Felipe 504
Podhorszki, Norbert 27
Pothen, Alex 260
Prieto, Manuel 439
Puglisi, Chiara 634
Püschel, Markus 363

Quinn, Thomas 476

Roman, J.E. 403
Ruberg, Nicolaas 707
Ruiz, D. 281

Sanchotene, Talitta 707
Santiago, Chanderlie Freire de 184
Sarkis, Marcus 319, 452
Schaerer, Christian E. 452
Scheftner, Doug 1
Senger, Luciano José 107
Sentis, R. 518
Seok, S.C. 556
Setoain, Javier 439
Shalf, John 490
Sharma, Amit 476
Shen, Linshan 172
Sherman, Alexander 378
Singh, David 120
Sobral, João L. 93
Souza, Jano 670
Strauch, Julia 670
Suzuki, Yoshio 601

Talia, Domenico 66
Tang, Chuan Yi 566
Tani, Masayuki 601
Tirado, Francisco 439
Tomas, A. 403
Trunfio, Paolo 66

Valduriez, Patrick 158
Vasconcelos, Paulo B. 466
Vassallo, Alexandre 670
Vidal, Antonio M. 349
Vidal, Vicente E. 426

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index 721

Vieira, V.F. 544
Vöckler, Jens 1
Voronenko, Yevgen 363
Vuillemin, Philippe 79

Wang, Feng 530
Weber dos Santos, R. 544

Wen, Chia-Hsien 566
Wilde, Mike 1
Wu, Tsung-Ying 566

Yuba, Toshitsugu 305

Zeng, Jingdi 66

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

	Title
	Preface
	Organization
	Table of Contents
	An Opportunistic Algorithm for Scheduling Workflows on Grids
	Introduction
	Related Work
	VDS Planning Architecture
	The Opportunistic Algorithm
	Experiments
	Results
	Conclusions and Future Work
	References

	A Service Oriented System for on Demand Dynamic Structural Analysis over Computational Grids
	Introduction
	Parallel 3D Linear Dynamic Analysis of Buildings
	Service Oriented Dynamic Structural Analysis
	The GUI Client
	Structural Dynamic Analysis Grid Service
	The Structural Analysis Process
	Interacting with the Computational Grid Via GMarte

	Multiuser Structural Case Study
	Execution Results

	Conclusions

	Scalable Desktop Grid System
	Introduction
	Related Work

	SZTAKI Desktop Grid
	Single Organisation's Desktop Grid
	Supporting Clusters Within SZTAKI Desktop Grid
	Hierarchical Desktop Grid
	The SZTAKI Desktop Grid Service

	Conclusion
	References

	Analyzing Overheads and Scalability Characteristics of OpenMP Applications
	Introduction
	Methodology
	Overhead Analysis
	Scalability Analysis

	Evaluation
	Related Work
	Summary and Future Work
	References

	Parallel Fuzzy c-Means Cluster Analysis
	Introduction
	The Fuzzy c-Means Algorithm
	Cluster Validity Index
	Parallel Cluster Analysis Implementation
	Results and Discussion
	Environment
	The Cluster Mercury Results and Speed-Up Analysis
	The Altix Machine Tests

	Conclusions
	References

	Peer-to-Peer Models for Resource Discovery in Large-Scale Grids: A Scalable Architecture
	Introduction
	Related Work
	Resources and Query Types
	System Architecture
	Local Component
	Static Attribute Discovery
	Dynamic Attribute Discovery

	Performance Evaluation
	Conclusions
	References

	JaceV: A Programming and Execution Environment for Asynchronous Iterative Computations on Volatile Nodes
	Introduction
	Related Work
	The JaceV System
	The Goal of JaceV
	Architecture of the System
	The Dispatcher
	The Daemon
	The Spawner

	Problem Description
	Experiments
	Conclusion and Future Works
	References

	Aspect Oriented Pluggable Support for Parallel Computing
	Introduction
	Related Work
	Overview of AspectJ
	Aspect Oriented Collection for Parallel Computing
	Case Studies
	Successive Over-Relation
	RayTracer

	Performance Results
	Conclusion
	References

	Model for Simulation of Heterogeneous High-Performance Computing Environments
	Introduction
	The Model
	Parameterization
	Validation
	Conclusions
	References

	On Evaluating Decentralized Parallel I/O Scheduling Strategies for Parallel File Systems
	Introduction
	Parallel I/O Scheduling Problem
	Related Work
	Parallel File System Overview
	Goals
	Parallel Scheduling I/O Heuristics
	Evaluation
	Synthetic Benchmark
	BTIO Benchmark

	Conclusions and Current Work
	References

	Distributed Security Constrained Optimal Power Flow Integrated to a DSM Based Energy Management System for Real Time Power Systems Security Control
	Introduction
	Security Constrained Optimal Power Flow
	Distributed SCOPF Based on Message Passing
	Distributed Algorithm Based on Message Passing

	Distributed SCOPF Integrated to the DSM Real Time System
	Distributed Algorithm Using the DSM System Resources

	Message Passing Implementation Results
	Computational Platform and Test System
	Results Analysis

	DSM Real Time System Implementation Results
	Computational Platform and Test System
	Results Analysis

	Conclusions
	References

	Metaserver Locality and Scalability in a Distributed NFS
	Introduction
	dNFSp -- A Distributed NFS Server
	Benchmark and Cluster Environment
	The NAS/BTIO Benchmark
	The i-Cluster2

	Performance, Scalability and Locality Evaluation
	Performance Analysis
	Scalability Evaluation
	Metaservers and IODs Locality Impact

	Related Work
	Conclusions and Final Considerations
	References

	Top-k Query Processing in the APPA P2P System
	Introduction
	APPA Architecture
	Top-k Query Processing
	Problem Definition
	Algorithm
	Analysis of Bandwidth Cost
	Reducing the Number of Messages

	Performance Evaluation
	Experimental and Simulation Setup
	Scale Up

	Related Work
	Conclusion
	References

	Posterior Task Scheduling Algorithms for Heterogeneous Computing Systems
	Introduction
	Problem Definition
	Related Works
	Proposed Algorithms
	Selection of Scheduling Algorithm
	HPSA1 Algorithm
	HPSA2 Algorithm

	Illustration of an Example
	Using HPSA1 to Post-process
	Using HPSA2 to Post-process

	Experimental Results
	Conclusions
	References

	Design and Implementation of an Environment for Component-Based Parallel Programming
	Introduction
	The # Component Model: Principles and Intuitions
	From Processes to Concerns
	Skeletal Programming and Parameterized Component Types

	An Architecture for # Programming Frameworks
	A # Environment for Parallel Programming
	Component Kinds

	Conclusions and Lines for Further Work
	References

	Anahy: A Programming Environment for Cluster Computing
	Introduction
	Related Work
	The Anahy Programming Interface
	Handling Tasks with Anahy
	A POSIX-Like Thread Interface

	The Anahy Scheduler
	Scheduling Algorithm
	Multilevel Scheduling

	Case Study
	Conclusion
	References

	DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data Warehouses
	Introduction
	The Apriori Algorithm
	Apriori Implementation in DWMiner
	Database Clusters
	Adapting Apriori to DBMS Access
	Adapting Apriori to Database Clusters

	Experimental Results
	Conclusions and Future Work
	References

	A Parallel Implementation of the K Nearest Neighbours Classifier in Three Levels: Threads, MPI Processes and the Grid
	Introduction
	K Nearest Neighbours
	Three-Layer Parallelism Architecture
	Implementation
	Grid Computing Level
	MPI and POSIX Threads Computing Level
	User Interface

	Results
	Conclusion
	References

	On the Use of the MMC Language to Utilize SIMD Instruction Set
	Introduction
	The MMC Language
	Access to the Array Elements
	Operators

	Implementation of the MMC Compiler
	Developing Multimedia Kernels
	Conclusion
	References

	A Versatile Pipelined Hardware Implementation for Encryption and Decryption Using Advanced Encryption Standard
	Introduction
	Advanced Encryption Standard
	Pipelined Hardware Implementation of AES
	Experimental Results
	Conclusion
	References

	Combinatorial Scientific Computing: The Enabling Power of Discrete Algorithms in Computational Science
	Introduction
	Parallel Computing
	Mesh Generation
	Solving Sparse Linear Systems
	Direct Methods
	Iterative Methods

	Optimization, Derivatives, and Coloring
	Overview
	A Jacobian Computation Problem
	Variations on Matrix Computation

	Statistical Physics
	Computational Chemistry
	Bioinformatics
	Information Processing
	The Future
	References

	Improving the Numerical Simulation of an Airflow Problem with the BlockCGSI Algorithm
	Introduction
	The BlockCGSI Algorithm
	Some Numerical Experiments in an Airflow Problem
	Optimal Dimension of the Basis
	Costs-Benefits of the Two-Phase Approach

	Conclusions
	References

	EdgePack: A Parallel Vertex and Node Reordering Package for Optimizing Edge-Based Computations in Unstructured Grids
	Introduction
	Edge-Based Structure and Data Reordering
	EdgePack
	Preliminary Results
	Sedimentary Basin – Model 1
	Sedimentary Basin – Model 2
	Incompressible Fluid Flow

	Conclusions and Incoming Work
	References

	Parallel Processing of Matrix Multiplication in a CPU and GPU Heterogeneous Environment
	Introduction
	Background and Related Work
	Parallel Processing in a CPU and GPU Heterogeneous Environment
	Execution Time Analysis of Parallel Processing
	Case of One CPU and One GPU
	Parallelization of Matrix Multiplication

	Preliminary Performance Experiments
	Performance of the 1-CPU System
	Performance of the 1-GPU System
	Performance Prediction of the Heterogeneous Environment

	Performance Evaluation of the CPU and GPU Heterogeneous Environment
	Performance Evaluation of the Heterogeneous System
	Performance Evaluation with Varying Matrix Sizes
	Performance Evaluation on Heterogeneous Environment with Different GPU

	Conclusion and Future Work
	References

	Robust Two-Level Lower-Order Preconditioners for a Higher-Order Stokes Discretization with Highly Discontinuous Viscosities
	Introduction
	The Stokes Model
	Variational Formulation
	Discretization
	BDD for Stokes Problem
	Schur Complement System
	BDD Preconditioning
	Matrix Form of Preconditioner
	The Coarse Space

	Implementation Aspects
	BDD Implementation
	A Higher Order Method

	Numerical Results
	Constant Viscosity Tests
	Discontinuous Viscosities
	Parallel Performance

	Conclusions
	References

	The Impact of Parallel Programming Models on the Performance of Iterative Linear Solvers for Finite Element Applications
	Introduction
	Parallel Programming Models on SMP Cluster Architectures
	Previous Work
	Present Work

	Overview of Hardware and Software Environments
	Hardware
	Software

	Single PE/SMP Node Performance
	Effect of the Number of Colors
	Elastic Solid Mechanics
	Selective Blocking Preconditioning for Contact Problems
	Multigrid Preconditioning for Poisson Equations

	Multiple Nodes
	Conclusions
	References

	Efficient Parallel Algorithm for Constructing a Unit Triangular Matrix with Prescribed Singular Values
	Introduction
	Method Based in Weyl's Conditions(WE Method)
	Parallel Algorithm for Distributed Memory Model
	Theoretical and Experimental Costs

	Parallel Algorithm for Shared Memory Model
	Experimental Tests

	Conclusions

	A Rewriting System for the Vectorization of Signal Transforms
	Introduction
	Background
	Vectorization Through Rewriting
	Rewriting System

	Experimental Results
	Conclusion
	References

	High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations
	Introduction
	Outline of the Algorithm
	The Auxiliary Equation
	Solution of Modified Helmholtz Equation in a Box
	Problem Formulation
	Constructions of Auxiliary Function
	Solution of the Modified Helmholtz Equation with Homogeneous RHS
	Solution of the Modified Helmholtz Equation with Nonhomogeneous RHS
	Solution of the Modified Helmholtz Equation in the Non-compatible Case

	Domain Decomposition
	Numerical Results
	References

	Multiresolution Simulations Using Particles
	Approximations Using particles
	Function Approximation
	Differential Operator Approximation

	Solving Transport Problems with Particle Methods
	Remeshing
	Hybrid Particle Methods

	Adaptive Particle Methods
	Particle Method with Adaptive Global Mappings
	Wavelet-Based Multiresolution Particle Method
	Parallelization

	Conclusions
	References

	Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers and Their Parallel Implementations
	Introduction
	Description of the Method
	Basic Lanczos Algorithm
	Lanczos in Finite Precision Arithmetic
	Explicit Restart
	Gram-Schmidt Orthogonalization

	Lanczos Methods in SLEPc
	Numerical Results
	Performance Analysis
	Conclusions
	References

	PyACTS: A High-Level Framework for Fast Development of High Performance Applications
	Introduction
	Why Python?
	Software Tools
	Introduction to PyScaLAPACK

	Examples of PyScaLAPACK Utilization
	PyClimate: A Set Climate Analysis Tools
	Large Inverse Problems in Geo-Physics

	Conclusions
	References

	Sequential and Parallel Resolution of theTwo-Group Transient Neutron DiffusionEquation Using Second-Degree IterativeMethods
	Introduction
	Problem Description
	Second-Degree Iterative Methods
	Second Degree Method A
	Second Degree Method B

	Hardware and Software Platform
	Test Case
	Sequential Study of Methods A and B and Some Variations
	Parallel Numerical Results
	Conclusions

	Enhancing the Performance of Multigrid Smoothers in Simultaneous Multithreading Architectures
	Introduction
	Multigrid Introduction
	Experimental Platform
	Cache-Aware Red-Black Smoothers
	SMT-Aware Red-Black Smoothers
	Performance Results
	Conclusions
	References

	Block Iterative Algorithms for the Solution of Parabolic Optimal Control Problems
	Introduction
	The Optimal Control Problem
	The Basic Saddle Point System
	The Reduced System for u
	Numerical Experiments
	Concluding Remarks
	References

	Evaluation of Linear Solvers for Astrophysics Transfer Problems
	Introduction and Problem Overview
	Projection Phase and Matrix Formulation
	ACTS: Tools of the Trade
	Numerical Results
	Conclusions and Future Work
	References

	Scalable Cosmological Simulations on Parallel Machines
	Introduction
	Related Work
	New ChaNGa Code
	Charm++ Infrastructure
	Major ChaNGa Features

	Optimizations and Experimental Evaluation
	Uniprocessor Performance
	Software Cache Mechanism
	Data Prefetching
	Tree-in-Cache Effects
	Interaction Lists
	Load Balancer Importance
	Scalability with Number of Processors

	Conclusions and Future Work
	References

	Performance Evaluation of Scientific Applications on Modern Parallel Vector Systems
	Introduction
	HEC Platforms and Evaluated Applications
	Scientific Applications

	Lattice-Boltzmann Turbulence Simulations
	Vectorization Details
	Experimental Results

	CACTUS
	Vectorization Details
	Experimental Results

	Conclusions
	References

	Numerical Simulation of Three-Phase Flow in Heterogeneous Porous Media
	Introduction
	Governing Equations for Three-Phase Flows
	The Numerical Simulator
	The NT Central Scheme for Variable Porosity Fields
	Numerical Approximation of the Diffusive System with Variable Porosity Field

	Numerical Experiments
	Conclusions
	References

	Simulation of Laser Propagation in a Plasma with a Frequency Wave Equation
	Introduction
	The Model and the Boundary Conditions
	Principle of the Numerical Methods for the Helmholtz Equation
	Solution of the Linear System
	The Cyclic Reduction Method

	Parallel Implementation
	Numerical Results
	Conclusion
	References

	A Particle Gradient Evolutionary Algorithm Based on Statistical Mechanics and Convergence Analysis
	Introduction
	Relevant Theories of Statistical Mechanics
	Law of Entropy Ascending
	Principle of Energy Descending

	Principle of Gradient Descending and Law of Evolving Chance Ascending
	Algorithm Flow of SPGEA
	Description of Optimization Problem
	Variation of the Objective Function
	Algorithm Process of SPGEA

	Data Experiments
	Convergent Analysis of SPGEA
	Conclusions
	References

	A Computational Framework for Cardiac Modeling Based on Distributed Computing and Web Applications
	Introduction
	AGOS Tool
	The Translator

	The Parallel Cardiac Simulator
	The 2-Dimensional Parallel Cardiac Simulator
	Integration with AGOS
	Simulator Graphic User Interface (GUI)
	The Cluster
	Simulation Example

	The Web Portal: Goals, Current Status and Future Work
	Conclusion
	References

	Triangular Clique Based Multilevel Approaches to Identify Protein Functional Modules
	Introduction
	Features of Interaction Networks and Two-Level Approach
	Background on Multilevel Approaches and Clustering Algorithms
	Multilevel Spectral Clustering
	Matching Based Coarsening Algorithms

	Coarsening with Triangular Cliques
	Model Networks and Computational Experiments
	Conclusion
	References

	BioPortal: A Portal for Deployment of Bioinformatics Applications on Cluster and Grid Environments
	Introduction
	Bioinformatics Applications Overview
	The PCGrid Computing Infrastructure
	Selecting Computing Nodes to Run Parallel Applications
	Performance Visualization

	BioPortal: A Portal for Bioinformatics Applications in Grid
	Conclusions and Future Work
	References

	Adaptive Distributed Metamodeling
	Introduction
	Motivation
	Related Work
	The Design
	The Modeler
	The Grid Middleware
	Sample Evaluator

	Performance Comparison
	Experimental Setup
	Test Results

	Evaluation and Future Work
	References

	Distributed General Logging Architecture for Grid Environments
	Introduction
	State of Art and Motivation
	DiLoS Architecture
	Logging Policy
	Data Saved in a Log
	Use Cases
	Application Models

	A Particular Implementation: The gCitizen Project
	Conclusions and Further Work
	References

	Interoperability Between UNICORE and ITBL
	Introduction
	Main Function
	Architecture
	Examination
	Related Works
	Summary
	References

	Using Failure Injection Mechanisms to Experiment andEvaluate a Grid Failure Detector
	Introduction
	Experimenting with Various Volatility Conditions
	System Model
	Benefits of Experimentation
	Controlling Volatility
	Related Work

	Our Proposal: A Flexible Failure Injection Tool
	JXTA Distributed Framework (JDF)
	JDF Description Language Extension
	Computing the Failure Schedule
	Running Experiments with Failure Injection
	Run Time Failure Injection

	A Scalable Failure Detection Service
	Unreliable Failure Detectors
	GFD (GRID Failure Detector)

	Experimentations
	Experimental Setup
	Preliminary Tests
	Experimenting with the Failure Detector

	Conclusion and Future Work
	References

	Semantic-Based Service Trading: Application to Linear Algebra
	Introduction
	Problem Description
	Different Approaches
	An Algebraic Data Type Based Description for Advanced Trading

	Computing the Combination of Services Corresponding to an User's Request
	The Trading Algorithm
	Examples

	Choosing the Solution to Be Run
	Discarding Solutions Without Interest
	Selecting the Most Relevant Solutions
	Interaction with a Middleware

	Conclusion
	References

	Management of Services Based on a Semantic Description Within the GRID-TLSE Project
	Introduction
	Sparse Direct Solvers for Linear Systems
	Sparse Direct Solvers
	Algorithm Controls and Execution Metrics

	The GRID-TLSE Reflexive Approach
	Use of Abstract Parameters for Describing Services
	Expressing Dependencies Between Abstract Parameters
	Example: Description of the MUMPS Software
	Structuring Abstract Parameters: Illustration with Symmetric Permutations

	Using Abstract Parameters Within the GRID-TLSE Project
	Use of Abstract Parameters Within Expertise Scenarios
	Conclusion

	Extending the Services and Sites of Production Grids by the Support of Advanced Portals
	Introduction
	Grid Portals as Volunteer Services
	Extending Production Gridswith Volunteer Services
	GEMLCA as Volunteer Grid Service
	GMT as Volunteer Grid Service
	GTBroker as Volunteer Service

	Extending Production Grids with Volunteer Grid Sites
	Volunteer Site with Less Strict SLA
	Volunteer Site with Different Middleware

	Conclusion
	References

	PSO-Grid Data Replication Service
	Introduction
	Related Work
	Contributions
	Proposed Data Grid Service Framework
	The Algorithm: PSO-Grid

	Evaluation Methodology
	Data Grid Simulation Design
	Simulation Infrastructure

	Simulation Results
	Conclusions and Future Work
	References

	Execution Management of Scientific Models on Computational Grids
	Introduction
	The Case Study on Population Dynamics
	Related Works
	Grid Computing Middleware Architecture
	The System for Execution Management of Scientific Models
	Concluding Remarks
	References

	Replica Refresh Strategies in a Database Cluster
	Introduction
	Database Cluster Architecture
	Modeling Refresh Strategies
	Experimental Validation
	Experimental Setup and Workload
	Impact of Conflict Rate on Performance
	Impact of Tolerated Staleness on Performance

	Conclusion
	References

	A Practical Evaluation of a Data Consistency Protocol for Efficient Visualization in Grid Applications
	Introduction
	JuxMem: A Decoupled Architecture Combining Data Consistency and Fault-Tolerance
	JuxMem Overview
	Starting Point: A Hierarchical, Fault-Tolerant Consistency Protocol

	Efficient Visualization Through Concurrent Reads and Writes
	Proposed Enhancement: Relaxed Reads
	Controlling Data Freshness
	Example
	Discussion

	Evaluation
	A Visualization Scenario
	Results Analysis

	Conclusion
	References

	Experiencing Data Grids
	Introduction
	Taverna
	PeDRo
	Taverna and PeDRo Getting Together
	Experiencing Taverna
	Using Taverna and PeDRo in Practice

	Suggested Improvements and Final Remarks
	References

	Author Index

