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Classical Derivatives

3.1 Directional Derivatives

Convention. Throughout this chapter, unless otherwise specified, we assume
that E and F are normed vector spaces, D ⊆ E is nonempty and open, x̄ ∈ D,
and f : D → F .

We will recall some classical concepts and facts. To start with, we consider
directional derivatives. We write

∆f(x̄, y) := f(x̄ + y)− f(x̄) ∀ y ∈ D − x̄.

We use the following abbreviations: G-derivative for Gâteaux derivative,
H-derivative for Hadamard derivative, F-derivative for Fréchet derivative.

Definition 3.1.1 Let y ∈ E. We call

fG(x̄, y) := lim
τ↓0

1
τ ∆f(x̄, τy) directional G-derivative,

fs
G(x̄, y) := lim

τ↓0
x→x̄

1
τ ∆f(x, τy) strict directional G-derivative,

fH(x̄, y) := lim
τ↓0
z→y

1
τ ∆f(x̄, τz) directional H-derivative,

fs
H(x̄, y) := lim

τ↓0
x→x̄
z→y

1
τ ∆f(x, τz) strict directional H-derivative

of f at x̄ in the direction y, provided the respective limit exists.

Lemma 3.1.2

(a) If fH(x̄, y) exists, then fG(x̄, y) also exists and both directional derivatives
coincide.

(b) If f is locally L-continuous around x̄, then fH(x̄, y) exists if and only if
fG(x̄, y) exists.
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Proof. (a) is obvious. We verify (b). Assume that fG(x̄, y) exists. Let ε > 0
be given. Then there exists δ1 > 0 such that

∥
∥ 1

τ ∆f(x̄, τy)− fG(x̄, y)
∥
∥ < ε

2 whenever 0 < τ < δ1.

Since f is locally L-continuous around x̄, there further exist λ > 0 and δ2 > 0
such that

‖f(x1)− f(x2)‖ ≤ λ‖x1 − x2‖ ∀x1, x2 ∈ B(x̄, δ2).

Now set
δ3 :=

ε

2λ
and δ4 := min

{

δ1,
δ2

δ3 + ‖y‖

}

.

If z ∈ B(y, δ3) and 0 < τ < δ4, then we obtain ‖τy‖ < δ2 and

‖τz‖ ≤ τ(‖z − y‖+ ‖y‖) ≤ τ(δ3 + ‖y‖) ≤ δ2

and so
∥
∥ 1

τ ∆f(x̄, τz)− fG(x̄, y)
∥
∥

≤ 1
τ

∥
∥f(x̄ + τz)− f(x̄ + τy)

∥
∥ +

∥
∥ 1

τ ∆f(x̄, τy)− fG(x̄, y)
∥
∥

≤ λ‖z − y‖+ ε
2 < ε.

We conclude that fH(x̄, y) exists and equals fG(x̄, y). ��

Lemma 3.1.3 If the directional H-derivative fH(x̄, ·) exists in a neighborhood
of y0 ∈ E, then it is continuous at y0.

Proof. Let ρ0 > 0 be such that fH(x̄, y) exists for each y ∈ B(y0, ρ0). Let
ε > 0 be given. Then there exists ρ ∈ (0, ρ0) such that

∥
∥ 1

τ ∆f(x̄, τy)− fH(x̄, y0)
∥
∥ ≤ ε whenever 0 < τ < ρ and y ∈ B(y0, ρ).

Letting τ ↓ 0, we obtain

‖fG(x̄, y)− fH(x̄, y0)‖ ≤ ε ∀ y ∈ B(y0, ρ).

By Lemma 3.1.2 we have fG(x̄, y) = fH(x̄, y) for each y ∈ B(y0, ρ0), and the
assertion follows. ��

Now we consider a proper function f : E → R. If D := int dom f is
nonempty, then of course the above applies to f |D. In addition, we define the
following directional derivatives:

fG(x̄, y) := lim sup
τ↓0

1
τ ∆f(x̄, τy) upper directional G-derivative,

f
G

(x̄, y) := lim inf
τ↓0

1
τ ∆f(x̄, τy) lower directional G-derivative,

fH(x̄, y) := lim sup
τ↓0
z→y

1
τ ∆f(x̄, τz) upper directional H-derivative,

f
H

(x̄, y) := lim inf
τ↓0
z→y

1
τ ∆f(x̄, τz) lower directional H-derivative.
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Notice that these directional derivatives generalize the Dini derivates of a
function f : I → R (I ⊆ R an interval) which are defined at x̄ ∈ int I by

D+f(x̄) := lim sup
h↓0

f(x̄ + h)− f(x̄)
h

, D+f(x̄) := lim inf
h↓0

f(x̄ + h)− f(x̄)
h

,

D−f(x̄) := lim sup
h↑0

f(x̄ + h)− f(x̄)
h

, D−f(x̄) := lim inf
h↑0

f(x̄ + h)− f(x̄)
h

.

If x̄ ∈ I is the left boundary point of I, then D+f(x̄) and D+f(x̄) still make
sense; an analogous remark applies to the right boundary point of I. Notice
that, among others, D+f(x̄) = fG(x̄, 1). If D+f(x̄) = D+f(x̄), then this
common value is called the right derivative of f at x̄ and is denoted f ′

+(x̄).
The left derivative f ′

−(x̄) is defined analogously.

3.2 First-Order Derivatives

Our aim in this section is to recall various kinds of derivatives. For this, the
following notion will be helpful.

Definition 3.2.1 A nonempty collection β of subsets of E is called bornology
if the following holds:

each S ∈ β is bounded and
⋃

S∈β

S = E,

S ∈ β =⇒ −S ∈ β,

S ∈ β and λ > 0 =⇒ λS ∈ β,

S1, S2 ∈ β =⇒ ∃S ∈ β : S1 ∪ S2 ⊂ S.

In particular:

– The G-bornology βG is the collection of all finite sets.
– The H-bornology βH is the collection of all compact sets.
– The F-bornology βF is the collection of all bounded sets.

We set

L(E,F ) := vector space of all continuous linear mappings T : E → F.

Definition 3.2.2 Let β be a bornology on E.

(a) The mapping f : D → F is said to be β-differentiable at x̄ if there exists
T ∈ L(E,F ), the β-derivative of f at x̄, such that

lim
τ→0

sup
y∈S

∥
∥ 1

τ

(
f(x̄ + τy)− f(x̄)

)
− T (y)

∥
∥ = 0 ∀S ∈ β. (3.1)
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(b) The mapping f : D → F is said to be strictly β-differentiable at x̄ if there
exists T ∈ L(E,F ), the strict β-derivative of f at x̄, such that

lim
τ→0
x→x̄

sup
y∈S

∥
∥ 1

τ

(
f(x + τy)− f(x)

)
− T (y)

∥
∥ = 0 ∀S ∈ β. (3.2)

(c) In particular, f is said to be G-differentiable or strictly G-differentiable
if (3.1) or (3.2), respectively, holds with β = βG. In this case, T is
called (strict) G-derivative of f at x̄. Analogously we use (strictly) H-
differentiable if β = βH and (strictly) F-differentiable if β = βF . In the
respective case, T is called (strict) H-derivative or (strict) F-derivative
of f at x̄.

Remark 3.2.3

(a) If the β-derivative T of f at x̄ exists for some bornology β, then

T (y) = lim
τ→0

1
τ

(
f(x̄ + τy)− f(x̄)

)
= fG(x̄, y) ∀ y ∈ E.

Hence if two of the above derivatives exist, then they coincide. This jus-
tifies denoting them by the same symbol; we choose

f ′(x̄) := T.

Condition (3.1) means that we have

lim
τ→0

∥
∥ 1

τ

(
f(x̄+τy)−f(x̄)

)
−f ′(x̄)y

∥
∥=0 uniformly in y ∈ S for each S ∈ β.

An analogous remark applies to (3.2). Here and in the following we write
f ′(x̄)y instead of f ′(x̄)(y). If f : D → R, then f ′(x̄) ∈ E∗ and as usual we
also write 〈f ′(x̄), y〉 instead of f ′(x̄)(y).

(b) Now let E be a (real) Hilbert space with inner product (x | y) and f : E →
R a functional. If f is G-differentiable at x̄ ∈ E, then the G-derivative
f ′(x̄) is an element of the dual space E∗. By the Riesz representation
theorem, there is exactly one z ∈ E such that 〈f ′(x̄), y〉 = (z | y) for all
y ∈ E. This element z is called gradient of f at x̄ and is denoted ∇f(x̄) .
In other words, we have

〈f ′(x̄), y〉 = (∇f(x̄) | y) ∀ y ∈ E.

Proposition 3.2.4 says that f is G-differentiable at x̄ if and only if the
directional G-derivative y �→ fG(x̄, y) exists and is linear and continuous
on E. An analogous remark applies to strict G-differentiability as well as
(strict) H-differentiability. Recall that if g : E → F , then

g(x) = o(‖x‖), x→ o means lim
x→o

g(x)
‖x‖ = o.
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Proposition 3.2.4

(i) f is G-differentiable at x̄ if and only if there exists f ′(x̄) ∈ L(E,F ) such
that f ′(x̄)y = fG(x̄, y) for all y ∈ E.

(ii) f is H-differentiable at x̄ if and only if there exists f ′(x̄) ∈ L(E,F ) such
that f ′(x̄)y = fH(x̄, y) for all y ∈ E.

(iii) The following assertions are equivalent:
(a) f is strictly H-differentiable at x̄.
(b) There exists f ′(x̄) ∈ L(E,F ) such that f ′(x̄)y = fs

H(x̄, y) for y ∈ E.
(c) f is locally L-continuous around x̄ and strictly G-differentiable at x̄.

(iv) f is F-differentiable at x̄ if and only if there exists f ′(x̄) ∈ L(E,F ) such
that (

f(x̄ + z)− f(x̄)
)
− f ′(x̄)z = o(‖z‖), z → o.

(v) f is strictly F-differentiable at x̄ if and only if there exists f ′(x̄) ∈ L(E,F )
such that

(
f(x + z)− f(x)

)
− f ′(x̄)z = o(‖z‖), z → o, x→ x̄.

Proof. We only verify (iii), leaving the proof of the remaining assertions as
Exercise 3.8.4.
(a) =⇒ (c): Let (a) hold. We only have to show that f is locally L-continuous
around x̄. Assume this is not the case. Then there exist sequences (xn) and
(x′

n) in B(x̄, 1
n ) such that

‖f(xn)− f(x′
n)‖ > n‖xn − x′

n‖ ∀n ∈ N. (3.3)

Setting τn :=
√

n‖xn − x′
n‖ and yn := 1

τn
(x′

n − xn), we obtain as n →∞,

0 ≤ τn ≤
√

n(‖xn − x̄‖+ ‖x̄− x′
n‖) <

2√
n
→ 0 and ‖yn‖ =

1√
n
→ 0.

By (3.3) we have
∥
∥ 1

τn
∆f(xn, τnyn)

∥
∥ > 1

τn
· n‖τnyn‖ =

√
n ∀n ∈ N,

and the continuity of f ′(x̄) implies that, with some n0 ∈ N, we obtain ‖f ′(x̄)‖·
‖yn‖ < 1

2 for each n > n0. It follows that
∥
∥ 1

τn
∆f(xn, τnyn)− f ′(x̄)yn)

∥
∥

≥
∥
∥ 1

τn
∆f(xn, τnyn)

∥
∥− ‖f ′(x̄)‖ · ‖yn‖ >

√
n− 1

2 ∀n > n0,

which contradicts (3.2) for the compact set S := {o} ∪ {yn |n > n0}.
(c) =⇒ (b): Let y ∈ E and ε > 0 be given. Since f is strictly G-differentiable
at x̄, there exists δ1 > 0 such that

∥
∥ 1

τ ∆f(x, τy)− f ′(x̄)y
∥
∥ < ε whenever 0 < |τ | < δ1, ‖x− x̄‖ < δ1. (3.4)



44 3 Classical Derivatives

Since f is locally L-continuous around x̄, there further exist λ > 0 and δ2 > 0
such that

‖f(x1)− f(x2)‖ < λ‖x1 − x2‖ ∀x1, x2 ∈ B(x̄, δ2). (3.5)

Setting x1 := x + τz and x2 := x + τy, we have the estimates

‖x1 − x̄‖ ≤ ‖x− x̄‖+ |τ |(‖z − y‖+ ‖y‖) and ‖x2 − x̄‖ ≤ ‖x− x̄‖+ |τ |‖y‖

which show that x1, x2 ∈ B(x̄, δ2) provided |τ |, ‖z − y‖, and ‖x − x̄‖ are
sufficiently small. Under this condition, (3.4) and (3.5) imply that

∥
∥ 1

τ ∆f(x, τz)− f ′(x̄)y
∥
∥

≤ 1
|τ |

∥
∥f(x + τz)− f(x + τy)

∥
∥ +

∥
∥ 1

τ ∆f(x, τy)− f ′(x̄)y
∥
∥ ≤ λ‖z − y‖+ ε.

This verifies (b).
(b) =⇒ (a): Let (b) hold and assume that (a) does not hold. Let T ∈ L(E,F )
be given. Then for some compact subset S of E, the relation (3.2) does not
hold. Hence there exist ε0 > 0 as well as sequences τn ↓ 0, yn ∈ S, and xn → x̄
such that ∥

∥ 1
τ ∆f(xn, τnyn)− T (yn)

∥
∥ > ε0 ∀n ∈ N.

Since S is compact, a subsequence of (yn), again denoted (yn), converges to
some y ∈ S. It follows that for any n > n0 we have

∥
∥ 1

τ ∆f(xn, τnyn)− T (y)
∥
∥

≥
∥
∥ 1

τ ∆f(xn, τnyn)− T (yn)
∥
∥

︸ ︷︷ ︸
> ε0

−‖T‖ · ‖yn − y‖
︸ ︷︷ ︸

< ε0/2

>
ε0
2

; (3.6)

in this connection, we exploited that T is linear and continuous. However, the
relation (3.6) contradicts (b). ��
Proposition 3.2.5 If f : D → F is H-differentiable at x̄, then f is continu-
ous at x̄.

Proof. See Exercise 3.8.5. ��

3.3 Mean Value Theorems

We recall a variant of the classical mean value theorem (see, for instance,
Walter [212]).

Proposition 3.3.1 (Mean Value Theorem in Terms of Dini Derivates)
Let I and J be intervals in R and let A ⊆ I be a countable set. Further let
f : I → R be continuous, let D ∈ {D+,D+,D−,D−}, and assume that

Df(x) ∈ J ∀x ∈ I \A.
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Then
f(b)− f(a)

b− a
∈ J ∀ a, b ∈ I, a �= b.

If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then
by the intermediate value theorem for derivatives the set J := {f ′(x) |x ∈
(a, b)} is an interval and so the usual mean value theorem follows from
Proposition 3.3.1.

Now we return to the setting described by the convention at the beginning
of the chapter. If x, z ∈ E, we write

[x, z] := {λx + (1− λ)z | 0 ≤ λ ≤ 1}.

If f : D → F is G-differentiable on D (i.e., G-differentiable at any x ∈ D),
then we may consider the mapping f ′ : x �→ f ′(x) of D to L(E,F ).

Definition 3.3.2 Let f be G-differentiable on D. The mapping f ′ is said to
be radially continuous if for all x, y ∈ E such that [x, x+ y] ⊆ D, the function
τ �→ f ′(x + τy)y is continuous on [0, 1].

Proposition 3.3.3 (Mean Value Theorem in Integral Form) Let f :
D → R be G-differentiable and let f ′ be radially continuous. Then for all
x, y ∈ D such that [x, x + y] ⊆ D one has

f(x + y)− f(x) =
∫ 1

0

〈f ′(x + τy), y〉dτ. (3.7)

Proof. For τ ∈ [0, 1] let ϕ(τ) := f(x + τy). By assumption ϕ is continuously
differentiable and ϕ′(τ) = 〈f ′(x + τy), y〉. The main theorem of calculus gives

ϕ(1)− ϕ(0) =
∫ 1

0

ϕ′(τ) dτ,

which is (3.7). ��

The above result is formulated for functionals only, in which case it will be
used later. In Proposition 4.3.8 below we shall describe an important class of
functionals to which the mean value formula (3.7) applies. We mention that,
by an appropriate definition of the Riemann integral, the formula extends to
a mapping f : D → F provided F is a Banach space.

If β is a bornology of E, we denote by Lβ(E,F ) the vector space L(E,F )
equipped with the topology of uniform convergence on the sets S ∈ β.
In particular, LβF

(E,F ) denotes L(E,F ) equipped with the topology gen-
erated by the norm ‖T‖ := sup{‖Tx‖ | x ∈ BE}. In particular we write
E∗

β := Lβ(E, R).
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Proposition 3.3.4 (Mean Value Theorem in Inequality Form) Let
y ∈ E be such that [x̄, x̄ + y] ⊆ D and f is G-differentiable on [x̄, x̄ + y].
Further let T ∈ LβF

(E,F ). Then one has

‖
(
f(x̄ + y)− f(x̄)

)
− Ty‖ ≤ ‖y‖ sup

0≤τ≤1
‖f ′(x̄ + τy)− T‖.

Proof. Set g(x) := f(x) − T (x − x̄), x ∈ E. By the Hahn–Banach theorem,
there exists v ∈ F ∗ satisfying ‖v‖ = 1 and

〈
v,∆g(x̄, y)

〉
= ‖∆g(x̄, y)‖. Now

define ϕ(τ) :=
〈
v, g(x̄+τy)

〉
, τ ∈ [0, 1]. It is easy to see that ϕ is differentiable,

and one has

ϕ′(τ) =
〈
v, g′(x̄ + τy)y

〉
=

〈
v, f ′(x̄ + τy)y − Ty

〉
. (3.8)

By the classical mean value theorem, there exists τ ∈ (0, 1) such that ϕ′(τ) =
ϕ(1)− ϕ(0). This together with (3.8) and
∣
∣
〈
v, f ′(x̄ + τy)y − Ty

〉∣
∣ ≤ ‖v‖‖f ′(x̄ + τy)y − Ty‖ ≤ ‖f ′(x̄ + τy)− T‖‖y‖

completes the proof. ��

3.4 Relationship between Differentiability Properties

In this section we will study the interrelations between the various differen-
tiability properties. First we introduce some terminology.

Definition 3.4.1

(a) The mapping f : D → F is said to be β-smooth at x̄ if f is β-differentiable
for any x in an open neighborhood U of x̄ and the mapping f ′ : x �→ f ′(x)
of U to Lβ(E,F ) is continuous on U .

(b) The mapping f : D → F is said to be continuously differentiable at x̄ if
f is G-differentiable for any x in an open neighborhood U of x̄ and the
mapping f ′ : x �→ f ′(x) of U to LβF

(E,F ) is continuous at x̄.
(c) If f : D → F is continuously differentiable at every point of D, then f is

said to be a C1-mapping on D, written f ∈ C1(D,F ).

We shall make use of the following abbreviations:

(G): f is G-differentiable at x̄,
(SG): f is strictly G-differentiable at x̄,
(CD): f is continuously differentiable at x̄.

In analogy to (G), (SG) we use (H), (SH), (F), and (SF).
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Proposition 3.4.2 The following implications hold true:

(CD) =⇒ (SF )
=⇒
←− (SH)

=⇒
← − (SG)

⇓ ⇓ ⇓
(F )

=⇒
←− (H)

=⇒
← − (G)

In this connection, ←− means implication provided E is finite dimensional,
and ← − means implication provided f is locally L-continuous around x̄.

Proof. In view of the foregoing, it only remains to verify the implication (CD)
=⇒ (SF). Thus let (CD) hold. Then there exists ρ > 0 such that f is G-
differentiable on B(x̄, 2ρ). If x ∈ B(x̄, ρ) and y ∈ B(o, ρ), then [x, x + y] ⊂
B(x̄, 2ρ). By Proposition 3.3.4 with T := f ′(x̄), we obtain

‖f(x + y)− f(x)− f ′(x̄)y‖ ≤ ‖y‖ sup
0≤τ≤1

‖f ′(x + τy)− f ′(x̄)‖. (3.9)

Now let ε > 0 be given. Since f ′ is continuous at x̄, there exists δ > 0 such
that

sup
0≤τ≤1

‖f ′(x + τy)− f ′(x̄)‖ < ε ∀x ∈ B(x̄, δ) ∀ y ∈ B(o, δ).

This together with (3.9) implies (SF). ��

Remark 3.4.3 By Proposition 3.4.2 it is clear that if f is continuously dif-
ferentiable on an open neighborhood U of x̄, then f is β-smooth at any x̄ ∈ U
for any bornology β ⊆ βF . In particular, f is F-differentiable at any x̄ ∈ U
and the F-derivative f ′ is continuous from U to LβF

(E,F ).

Beside E and F let G be another normed vector space. Beside f : D → F
let g : V → G be another mapping, where V is an open neighborhood of
z̄ := f(x̄) in F . Assume that f(D) ⊂ V . Then the composition g ◦ f : D → G
is defined.

Proposition 3.4.4 (Chain Rule) Assume that f and g are H-differentiable
at x̄ and z̄, respectively. Then g ◦ f is H-differentiable at x̄, and there holds

(g ◦ f)′(x̄) = g′(z̄) ◦ f ′(x̄).

An analogous statement holds true if H-differentiable is replaced by F-differen-
tiable.

The proof is the same as in multivariate calculus. An analogous chain rule
for G-differentiable mappings does not hold (see Exercise 3.8.3).
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3.5 Higher-Order Derivatives

We again use the notation introduced at the beginning of the chapter. Ass-
ume that f ∈ C1(D,F ). If the (continuous) mapping f ′ : D → LβF

(E,F )
is continuously differentiable on D, then f is said to be a twice continuously
differentiable mapping on D, or a C2-mapping on D, with second-order deriv-
ative f ′′ := (f ′)′. The set of all twice continuously differentiable mappings
f : D → F is denoted C2(D,F ).

Notice that f ′′ maps D into H := LβF

(
E,LβF

(E,F )
)
. Parallel to H we

consider the vector space B(E,F ) of all continuous bilinear mappings b :
E × E → F , which is normed by

‖b‖ := sup{‖b(y, z)‖ | ‖y‖ ≤ 1, ‖z‖ ≤ 1}. (3.10)

If h ∈ H, then
bh(y, z) := h(y)z ∀ (y, z) ∈ E × E

defines an element bh ∈ B(E,F ). Conversely, given b ∈ B(E,F ), set

h(y) := b(y, ·) ∀ y ∈ E.

Then h ∈ H and bh = b. Evidently the mapping h �→ bh is an isomorphism of
H onto B(E,F ). Therefore H can be identified with B(E,F ). In this sense,
we interpret f ′′(x̄) as an element of B(E,F ) and write f ′′(x̄)(y, z) instead of(
f ′′(x̄)y

)
z. If, in particular, f ∈ C2(D, R), then f ′′(x̄) is a continuous bilinear

form on E × E.

Proposition 3.5.1 (Taylor Expansion) Assume that D is open and f ∈
C2(D, R). Then for all x̄ ∈ D, y ∈ D − x̄ one has

f(x̄ + y) = f(x̄) + 〈f ′(x̄), y〉+ 1
2f ′′(x̄)(y, y) + r(y), where lim

y→o

r(y)
‖y‖2 = o.

In particular, there exist σ > 0 and ε > 0 such that

f(x̄ + y) ≥ f(x̄) + 〈f ′(x̄), y〉 − σ‖y‖2 ∀ y ∈ B(o, ε). (3.11)

Proof. The first assertion follows readily from the classical Taylor expansion
of the function ϕ(τ) := f(x̄ + τy), τ ∈ [0, 1]. From the first result we obtain
(3.11) since in view of (3.10) we have

|12f ′′(x̄)(y, y)| ≤ 1
2‖f

′′(x̄)‖ ‖y‖2 ∀ y ∈ E,

and the limit property of r entails the existence of κ > 0 such that |r(y)| ≤
κ‖y‖2 if ‖y‖ is sufficiently small. ��

We only mention that in an analogous manner, derivatives of arbitrary
order n, where n ∈ N, can be defined using n-linear mappings, which leads to
higher-order Taylor expansions.
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3.6 Some Examples

For illustration and later purposes we collect some examples. Further examples
are contained in the exercises.

Example 3.6.1 Let E be a normed vector space and a : E×E → R a bilinear
functional. Recall that a is said to be symmetric if a(x, y) = a(y, x) for all
x, y ∈ E, and a is said to be bounded if there exists κ > 0 such that

|a(x, y)| ≤ κ‖x‖ ‖y‖ ∀x, y ∈ E.

Consider the quadratic functional f : E → R defined by

f(x) := 1
2a(x, x), x ∈ E,

where a is bilinear, symmetric, and bounded. It is left as Exercise 3.8.6 to show
that f is continuously differentiable on E and to calculate the derivative.
In particular, if E is a Hilbert space with inner product (x | y), then the
functional

g(x) :=
1
2
‖x‖2 =

1
2
(x |x), x ∈ E,

is continuously differentiable on E with 〈g′(x), y〉 = (x | y) for all x, y ∈ E.
Hence ∇g(x) = x for any x ∈ E. Finally, concerning the norm functional
ω(x) := ‖x‖ =

√
2g(x), the chain rule gives ∇ω(x) = x

‖x‖ for any x �= o.

Example 3.6.2 Let again E denote a Hilbert space with inner product (x | y)
and define g : E → R by

g(x) :=
(
δ2 + 2δ(u |x− x̄)− ‖x− x̄‖2

)1/2
,

where the positive constant δ and the element u ∈ E are fixed. Choose ε > 0
such that the term (· · · ) is positive for each x ∈ B̊(x̄, ε). Define ψ : (0,+∞) →
R by ψ(z) := z1/2 and ϕ : B̊(x̄, ε) → R by

ϕ(x) := δ2 + 2δ(u |x− x̄)− ‖x− x̄‖2.

Then we have g = ψ ◦ ϕ, and the chain rule implies

(g′(x) | y) =
δ(u | y)

(
δ2 + 2δ(u |x− x̄)− ‖x− x̄‖2

)1/2
∀x ∈ B̊(x̄, ε) ∀ y ∈ E.

In particular, (g′(x̄) |y ) = (u | y) for all y ∈ E, which means ∇g(x̄) = u.
Moreover, it is easy to see that g is a C2-mapping on B̊(x̄, ε). This example
will be used later in connection with proximal subdifferentials.

In view of Example 3.6.3, recall that an absolutely continuous function
x : [a, b] → R is differentiable almost everywhere, i.e., outside a Lebesgue null
set N ⊆ [a, b]. Setting ẋ(t) := 0 for each t ∈ N , which we tacitly assume
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from now on, the function ẋ : [a, b] → R belongs to L1[a, b] and one has∫
[a,b]

ẋ(t) dt = x(b) − x(a). In this connection, also recall that Lp[a, b], where
p ∈ [1,+∞), denotes the vector space of all Lebesgue measurable functions g :
[a, b] → R such that |g|p is Lebesgue integrable over [a, b]. In addition, L∞[a, b]
denotes the vector space of all Lebesgue measurable functions g : [a, b] → R

such that ess supx∈[a,b]|g(x)| < +∞. We denote by AC∞[a, b] the vector space
of all absolutely continuous functions x : [a, b] → R such that ẋ ∈ L∞[a, b].
Notice that AC∞[a, b] is a Banach space with respect to the norm

‖x‖1,∞ := max{‖x‖∞, ‖ẋ‖∞}.

Example 3.6.3 Let E := AC∞[a, b], where a < b, and consider the varia-
tional functional

f(x) :=
∫ b

a

ϕ
(
t, x(t), ẋ(t)

)
dt ∀x ∈ AC∞[a, b].

If x̄ ∈ AC∞[a, b] is fixed, we write ϕ(t) := ϕ
(
t, x̄(t), ˙̄x(t)

)
for any t ∈ [a, b].

Assume that the function (t, x, v) �→ ϕ(t, x, v) is continuous on [a, b]× R× R

and has continuous first-order partial derivatives with respect to x and v
there. We shall show that the functional f is continuously differentiable at
any x̄ ∈ AC∞[a, b] and that

〈f ′(x̄), y〉 =
∫ b

a

(
ϕx(t) · y(t) + ϕv(t) · ẏ(t)

)
dt ∀ y ∈ AC∞[a, b]. (3.12)

Proof.

(I) The directional G-derivative fG(x̄, y) exists for all x̄, y ∈ AC∞[a, b]. In
fact, we have

fG(x̄, y) =
∂

∂τ
f(x̄ + τy)

∣
∣
∣
τ=0

=

∫ b

a

∂

∂τ

[
ϕ(t, x̄(t) + τy(t), ˙̄x(t) + τ ẏ(t))

]∣
∣
∣
τ=0

dt

=

∫ b

a

[ϕ̄x(t)y(t) + ϕ̄v(t)ẏ(t)] dt.

Notice that the assumptions on ϕ and x̄ imply that the integrand in
the last term is bounded, which allows differentiating under the integral
sign.

(II) It is easy to verify that the functional y �→ fG(x̄, y) is linear and contin-
uous. Hence the G-derivative is given by (3.12).

(III) f is continuously differentiable at any x̄ ∈ AC∞[a, b]. For arbitrary
x, x̄, y ∈ AC∞[a, b] we have

[f ′(x)− f ′(x̄)]y

=
∫ b

a

[ϕx(t, x, ẋ)− ϕx(t, x̄, ˙̄x)]y dt +
∫ b

a

[ϕv(t, x, ẋ)− ϕv(t, x̄, ˙̄x)]ẏ dt
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and so

‖f ′(x)− f ′(x̄)‖ = sup
‖y‖1,∞≤1

|[f ′(x)− f ′(x̄)]y|

≤
∫ b

a

|ϕx(t, x, ẋ)− ϕx(t, x̄, ˙̄x)|dt +
∫ b

a

|ϕv(t, x, ẋ)− ϕv(t, x̄, ˙̄x)|dt,

< ε if ‖x− x̄‖1,∞ is sufficiently small.

Justification of the last line: According to hypothesis, ϕx and ϕv are
continuous on [a, b]×R×R, hence uniformly continuous on the compact
set

{(t, ξ, ζ) ∈ R
3 | t ∈ [a, b], |ξ − x̄(t)| ≤ 1, |ζ − ˙̄x(t)| ≤ 1}.

Thus, for each ε > 0 there exists δ ∈ (0, 1) such that

|ϕx(t, x(t), ẋ(t)) − ϕx(t, x̄(t), ˙̄x(t))| <
ε

2(b− a)

whenever t ∈ [a, b], |x(t)− x̄(t)| ≤ δ, and |ẋ(t)− ˙̄x(t)| ≤ δ. An analogous
estimate holds for ϕv. ��

3.7 Implicit Function Theorems and Related Results

Now we make the following assumptions:

(A) E, F , and G are normed vector spaces.
U and V are open neighborhoods of x̄ ∈ E and ȳ ∈ F , respectively.
f : U × V → G.

Define g1 : U → G by g1(x) := f(x, ȳ), x ∈ U . We denote the derivative
(in the sense of Gâteaux, Hadamard, or Fréchet) of g1 at x̄, whenever it exists,
by f 1(x̄, ȳ) or by D1f(x̄, ȳ) and call it partial derivative of f , with respect
to the first variable, at (x̄, ȳ). Notice that f 1(x̄, ȳ) is an element of L(E,G).
If f 1(x, y) exists, say, for all (x, y) ∈ U × V , then

f 1 : (x, y) �→ f 1(x, y), (x, y) ∈ U × V,

defines the mapping f 1 : U × V → L(E,G). An analogous remark applies to
f 2(x, y) and D2f(x̄, ȳ).

As in classical multivariate calculus, we have the following relationship.

Proposition 3.7.1 Let the assumptions (A) be satisfied.

(a) If f is G-differentiable at (x̄, ȳ), then the partial G-derivatives f 1(x̄, ȳ)
and f 2(x̄, ȳ) exist and one has

f ′(x̄, ȳ)(u, v) = f 1(x̄, ȳ)u + f 2(x̄, ȳ)v ∀ (u, v) ∈ E × F. (3.13)

An analogous statement holds for H- and F-derivatives.
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(b) Assume that the partial G-derivatives f 1 and f 2 exist on U × V and are
continuous at (x̄, ȳ). Then f is F-differentiable at (x̄, ȳ) and (3.13) holds
true.

Now we establish two implicit function theorems: one under standard
hypotheses and one under relaxed differentiability hypotheses but with G
finite dimensional.

Theorem 3.7.2 (Classical Implicit Function Theorem) In addition to
(A), let the following hold:

(a) E, F , and G are Banach spaces.
(b) f is continuous at (x̄, ȳ) and f(x̄, ȳ) = 0.
(c) The partial F-derivative f 2 exists on U × V and is continuous at (x̄, ȳ).
(d) The (continuous linear) mapping f 2(x̄, ȳ) : F → G is bijective.

Then:

(i) There exist neighborhoods U ′ ⊆ U and V ′ ⊆ V of x̄ and ȳ, respectively,
such that for each x ∈ U ′ there is precisely one ϕ(x) ∈ V ′ satisfying

f
(
x, ϕ(x)

)
= o ∀x ∈ U ′.

(ii) If f is continuous in a neighborhood of (x̄, ȳ), then the function ϕ : x �→
ϕ(x) is continuous in a neighborhood of x̄.

(iii) If f is continuously differentiable in a neighborhood of (x̄, ȳ), then ϕ is
continuously differentiable in a neighborhood of x̄ and there holds

ϕ′(x) = −f 2

(
x, ϕ(x)

)−1 ◦ f 1

(
x, ϕ(x)

)
. (3.14)

Concerning the proof of the theorem, which is based on the Banach fixed point
theorem, see for instance Dieudonné [53], Schirotzek [196], or Zeidler [222].
Observe that the assumptions on f 2 guarantee that f 2

(
x, ϕ(x)

)−1 exists as
an element of L(G,F ) provided ‖x− x̄‖ is sufficiently small.

Now we relax the differentiability assumptions on f 2.

Proposition 3.7.3 In addition to (A), let the following hold:

(a) G is finite dimensional.
(b) f is continuous in a neighborhood of (x̄, ȳ) and f(x̄, ȳ) = 0.
(c) The partial F-derivative f 2(x̄, ȳ) exists and is surjective.

Then, for each neighborhood V ′ ⊆ V of ȳ there exist a neighborhood U ′ ⊆ U
of x̄ and a function ϕ : U ′ → V ′ such that the following holds:

(i) f
(
x, ϕ(x)

)
= o ∀x ∈ U ′, ϕ(x̄) = ȳ.

(ii) ϕ is continuous at x̄.
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Proof.

(I) Without loss of generality we may assume that ȳ = o. Further we
set T := f 2(x̄, o). By assumption, T is a continuous linear map-
ping of F onto the finite-dimensional space G. Hence there exists a
finite-dimensional linear subspace F̃ of F such that the linear mapping
T−1 : G → F̃ satisfying TT−1(z) = z for any z ∈ G is a linear iso-
morphism. In order to verify the assertions (i) and (ii), we may replace
f : E × F → G by its restriction to E × F̃ . But F̃ can be identified
with G and so we may assume that F = G. Then T is a bijective linear
mapping of G onto G.

(IIa) Let ε > 0 be such that BF (o, ε) ⊆ V and f is continuous on the neigh-
borhood BE(x̄, ε)× BF (o, ε) of (x̄, o). Let α ∈ (0, ε) be such that

|f(x̄, y)− T (y)| ≤ α

2‖T−1‖ ∀ y ∈ BF (o, α). (3.15)

Since f is continuous and BF (o, α) is compact, there further exists β ∈
(0, ε) such that

|f(x̄, y)− f(x, y)| ≤ α

2‖T−1‖ ∀x ∈ BE(x̄, β) ∀ y ∈ BF (o, α). (3.16)

(IIb) For any x ∈ BE(x̄, β) define hx : BF (o, α) → F by hx(y) := y −
T−1f(x, y). Notice that hx is continuous.

(IIc) We now show that hx maps BF (o, α) into itself. Let any y ∈ BF (o, α)
be given. We have

‖hx(y)‖ ≤ ‖y − T−1f(x̄, y)‖+ ‖T−1
(
f(x̄, y)− f(x, y)

)
‖. (3.17)

Furthermore, we obtain

‖y − T−1f(x̄, y)‖ = ‖T−1
(
T (y)− f(x̄, y)

)
‖

≤ ‖T−1‖ · ‖T (y)− f(x̄, y)‖ ≤
(3.15)

α

2
(3.18)

as well as

‖T−1
(
f(x̄, y)− f(x, y)

)
‖ ≤

(3.16)
‖T−1‖ · α

2‖T−1‖ =
α

2
.

Hence (3.17) shows that hx maps BF (o, α) into itself.
(IId) In view of (IIb) and (IIc) the Brouwer fixed-point theorem applies, ensu-

ring that hx has a fixed point ψ(x) in BF (o, α). This defines a mapping
ψ : x �→ ψ(x) of BE(x̄, β) into V satisfying

ψ(x)− T−1f
(
x, ψ(x)

)
= hx

(
ψ(x)

)
= ψ(x)

and so f
(
x, ψ(x)

)
= o for any x ∈ BE(x̄, β).
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(III) Let a neighborhood V ′ ⊆ V of o be given. Choose ν ∈ N such that
BF (o, 1

ν ) ⊆ V ′ and set Vi := BF (o, 1
ν+i ) for i = 1, 2, . . . By step (II) we

know that for each i there exist a neighborhood Ui of x̄ and a function
ψi : Ui → Vi satisfying f

(
x, ψi(x)

)
= o for any x ∈ Ui. Without loss

of generality we may assume that Ui+1 is a proper subset of Ui for
i = 1, 2, . . . and that

⋂∞
i=1 Ui = {x̄}. Now let U ′ := U1 and define

ϕ : U ′ → V ′ by

ϕ(x̄) := o = ȳ, ϕ(x) := ψi(x) whenever x ∈ Ui \ Ui+1.

Then (i) holds by definition of ϕ. We verify (ii). Thus let η > 0 be given.
Then we have Vi ⊆ BF (o, η) for some i and ψi : Ui → Vi. It follows that

‖ϕ(x)− o‖ = ‖ψi(x)− o‖ ≤ η whenever x ∈ Ui \ Ui+1.

By the construction of Ui and Vi, we conclude that ϕ(Ui) ⊆ BF

(
o, η

)
.
��

Theorem 3.7.4 (Halkin’s Implicit Function Theorem) In addition to
(A), let the following hold:

(a) G is finite dimensional.
(b) f is continuous in a neighborhood of (x̄, ȳ) and f(x̄, ȳ) = 0.
(c) f is F-differentiable at (x̄, ȳ) and the partial F-derivative f 2(x̄, ȳ) is sur-

jective.

Then there exist a neighborhood U ′ of x̄ and a function ϕ : U ′ → V satisfying:

(i) f
(
x, ϕ(x)

)
= o ∀x ∈ U ′, ϕ(x̄) = ȳ.

(ii) ϕ is F-differentiable at x̄ and there holds

f 1(x̄, ȳ) + f 2(x̄, ȳ) ◦ ϕ′(x̄) = o. (3.19)

Proof.

(I) With the same argument as in step (I) of the proof of Proposition 3.7.3 we
may assume without loss of generality that F = G. We may also assume
that x̄ = o and ȳ = o. We set S := f 1(o, o) and T := f 2(o, o). Notice
that T is a bijective linear mapping of G onto G.

(II) By Proposition 3.7.3, there exist a neighborhood U ′ of x̄ = o and a
function ϕ : U ′ → V such that (i) holds and ϕ is continuous at o. We verify
(ii). Since f is F-differentiable at o, there exists a function r : U ′ → F
such that

f ′(o, o)
(
x, ϕ(x)

)
+ r

(
x, ϕ(x)

)
= o ∀x ∈ U ′, (3.20)

lim
‖x‖+‖y‖→0

r(x, y)
‖x‖+ ‖y‖ = o. (3.21)
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By Proposition 3.7.1, (3.20) passes into

S(x) + T
(
ϕ(x)

)
+ r

(
x, ϕ(x)

)
= o ∀x ∈ U ′,

i.e.,
ϕ(x) = −T−1S(x)− T−1r

(
x, ϕ(x)

)
∀x ∈ U ′. (3.22)

(III) We estimate ‖ϕ(x)‖. Let σ > 0 be such that BE(o, σ) ⊆ U ′ and

‖r(x, y)‖ ≤ (‖x‖+ ‖y‖)
2‖T−1‖ whenever ‖x‖ ≤ σ, ‖y‖ ≤ σ. (3.23)

Since ϕ is continuous at o, there further exists α ∈ (0, σ) such that
‖ϕ(x)‖ ≤ σ for all x ∈ BE(o, α). It follows that

‖ϕ(x)‖ ≤
(3.22)

‖T−1S‖ · ‖x‖+ ‖T−1‖ · ‖r
(
x,¸ϕ(x)

)
‖

≤
(3.23)

(
‖T−1S‖+

1
2
)
· ‖x‖+

1
2
‖ϕ(x)‖ ∀x ∈ BE(o, α)

and so
‖ϕ(x)‖ ≤ (2‖T−1S‖+ 1) · ‖x‖ ∀x ∈ BE(o, α). (3.24)

We also have

‖T−1r
(
x, ϕ(x)

)
‖ ≤ ‖T−1‖ · ‖r

(
x, ϕ(x)

)
‖.

The latter inequality, (3.21) and (3.24) show that ‖T−1r
(
x, ϕ(x)

)
‖/‖x‖

is arbitrarily small for all x in a sufficiently small neighborhood of
x̄ = o. In view of (3.22), we conclude that ϕ is F-differentiable at o,
with derivative ϕ′(o) = −T−1S. ��

To prepare the next result, recall (once more) that if the mapping
f : E → G is F-differentiable at x̄ ∈ E, then with some neighborhood
U of x̄, one has

f(x) = f(x̄) + f ′(x̄)(x− x̄) + r(x) ∀x ∈ U,

where lim
x→x̄

r(x)
‖x− x̄‖ = o.

Our aim now is to replace the correction term r(x) for the function values
on the right-hand side by a correction term ρ(x) for the argument on the
left-hand side:

f
(
x + ρ(x)

)
= f(x̄) + f ′(x̄)(x− x̄) ∀x ∈ U,

where lim
x→x̄

ρ(x)
‖x− x̄‖ = o.

(3.25)

Theorem 3.7.5 says that this is possible under appropriate hypotheses.
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Theorem 3.7.5 (Halkin’s Correction Theorem) Let E and G be
normed vector spaces with G finite dimensional. Further let f : E → G
and x̄ ∈ E. Assume the following:

(a) f is continuous in a neighborhood of x̄.
(b) The F-derivative f ′(x̄) exists and is surjective.

Then there exist a neighborhood U of x̄ and a function ρ : U → E such that
(3.25) holds. The function ρ satisfies ρ(x̄) = o and is F-differentiable at x̄ with
ρ′(x̄) = o.

Proof. Let F be the finite-dimensional linear subspace of E which f ′(x̄) maps
onto G. Define f̃ : E × F → G by

f̃(x, y) := f(x + y)− f ′(x̄)(x− x̄)− f(x̄).

Notice that f̃ is F-differentiable at (x̄, o) and that

f̃ 1(x̄, o) = o, f̃ 2(x̄, o) = f ′(x̄). (3.26)

Hence Theorem 3.7.4 applies to f̃ at (x, o). Thus there exist a neighborhood
U of x̄ and a function ϕ : U → F that is F-differentiable at x̄ and is such that

f̃
(
x, ϕ(x)

)
= o ∀x ∈ U, ϕ(x̄) = o,

f̃ 1(x̄, o) + f̃ 2(x̄, o) ◦ ϕ′(x̄) = o.

Setting ρ := ϕ, the definition of f̃ gives

f
(
x + ρ(x)

)
= f(x̄) + f ′(x̄)(x− x̄) ∀x ∈ U.

Moreover, by (3.26) we have f ′(x̄)◦ρ′(x̄) = o. Since f ′(x̄) : F → G is bijective,
it follows that ρ′(x̄) = o. From this and ρ(x̄) = o we finally deduce that
ρ(x)/‖x− x̄‖ → o as x→ x̄. ��

Theorem 3.7.5 will be a key tool for deriving a multiplier rule for a non-
smooth optimization problem in Sect. 12.3.

Theorem 3.7.6 (Halkin’s Inverse Function Theorem) Let E be a
finite-dimensional normed vector space. Further let f : E → E and x̄ ∈ E.
Assume the following:

(a) f is continuous in a neighborhood of x̄.
(b) The F-derivative f ′(x̄) exists and is surjective.

Then there exist a neighborhood U of x̄ and a function ϕ : U → E such that
the following holds:

(i) f
(
ϕ(x)

)
= x ∀x ∈ U, ϕ

(
f(x̄)

)
= x̄.

(ii) ϕ is F-differentiable at f(x̄), with ϕ′(f(x̄)
)

= f ′(x̄)−1.
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Proof. Define f̃ : E×E → E by f̃(u, v);= u−f(v) and set ū := f(x̄), v̄ := x̄.
Then f̃ is F-differentiable at (ū, v̄), with f̃ 1(ū, v̄) = idE and f̃ 2(ū, v̄) =
−f ′(x̄). By Theorem 3.7.4 applied to f̃ at (ū, v̄), there exist a neighborhood
U of ū and a function ϕ : U → E such that f̃

(
u, ϕ(u)

)
= o for any u ∈ U and

ϕ(ū) = v̄. Moreover, ϕ is F-differentiable at ū and satisfies

f̃ 1(ū, v̄) + f̃ 2(ū, v̄) ◦ ϕ′(ū) = o.

It is obvious that ϕ meets the assertions of the theorem. ��

3.8 Bibliographical Notes and Exercises

The subject of this chapter is standard. We refer to Dieudonné [53],
Schirotzek [196], Schwartz [197], and Zeidler [222] for differential calculus
in Banach spaces and to Zeidler [221, 224] for differentiability properties of
integral functionals on Sobolev spaces. The results from Proposition 3.7.3 to
the end of Sect. 3.7 are due to Halkin [82]. See also the Bibliographical Notes
to Chap. 4.

Exercise 3.8.1 Define g : R
2 → R by

g(x1, x2) :=

{
x3
1

x2
if x2 �= 0,

0 if x2 = 0.

Show that g is G-differentiable but not H-differentiable at x̄ = (0, 0).

Exercise 3.8.2 Show that the function

f(x) := x2 sin(1/x) if x ∈ R \ {0}, f(x) := 0 if x = 0

is F-differentiable but not continuously differentiable at x̄ = 0.

In Sect. 4.6 we shall show that the maximum norm on C[a, b], where a < b,
is H-differentiable at certain points but nowhere F-differentiable; compare this
and the preceding two examples with Proposition 3.4.2.

Exercise 3.8.3 Define f : R
2 → R

2 by f(x1, x2) := (x1, x
3
2) and let

g : R
2 → R be the function of Exercise 3.8.1. Then f is F-differentiable

(and so G-differentiable) on R
2 and g is G-differentiable at x̄ = (0, 0). Is the

composite function g ◦ f G-differentiable at x̄?

Exercise 3.8.4 Carry out the omitted proofs for Proposition 3.2.4.

Exercise 3.8.5 Prove Proposition 3.2.5.



58 3 Classical Derivatives

Exercise 3.8.6 Show that the functional f(x) := 1
2a(x, x), x ∈ E, where a :

E×E → R is bilinear, symmetric, and bounded, is continuously differentiable
on E and calculate its derivative (cf. Example 3.6.1).

Exercise 3.8.7 Assume that ϕ : [a, b] × R × R → R is continuous and
possesses continuous partial derivatives with respect to the second and the
third variable. Modeling the proof in Example 3.6.3, show that the functional
f : C1[a, b]× [a, b]× [a, b] defined by

f(x, σ, τ) :=
∫ τ

σ

ϕ
(
t, x(t), ẋ(t)

)
dt, x ∈ C1[a, b], σ, τ ∈ (a, b),

is continuously differentiable and calculate its derivative. (Functionals of this
kind appear in variable-endpoint problems in the classical calculus of varia-
tions.)




