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Abstract. We review Wilhelm’s work on WCET for hard real-time ap-
plications and also recent work on analysis of soft-real time systems using
probabilistic methods. We then present Probabilistic Abstract Interpre-
tation (PAI) as a quantitative variation of the classical approach; PAI
aims to provide close approximations – this should be contrasted to the
safe approximations studied in the standard setting. We discuss the rela-
tion between PAI and classical Abstract Interpretation as well as average
case analysis.

1 Introduction

This paper has been written as a contribution to the Festschrift to celebrate
the sixtieth birthday of Reinhard Wilhelm. As befits such an occasion, we have
sought to relate some of our current interests to Reinhard’s canon of work. Given
such an illustrious career, there is no shortage of possible topics. We have taken
Reinhard’s relatively recent work on worst case execution times (WCET) as our
inspiration. This combines abstract interpretation, the topic about which the
middle author and Reinhard first met 21 years ago, with quantitative issues –
an area which is the topic of much of our recent work.

Reinhard’s approach, which is surveyed in [1], concentrates on WCET for
hard real-time problems – examples include safety-critical systems such as con-
trol software in automobiles. It is not difficult to see traditional approaches to
WCET, for example those based on Timing Schemata [2], as abstract interpre-
tation. States are abstracted to upper bounds on execution times and language
constructs abstracted to work with these. For example a suitable interpretation
for the conditional construct might be the function λxyz.x + max(y, z). The
complexities of modern processors mean that WCET is much less predictable
than this; cache performance and pipelines can have a dramatic impact and
timing anomalies [3] can have counter-intuitive effects. As a consequence, Rein-
hard’s approach is much more sophisticated: the first phase extracts a control
flow graph – for some classes of language this may already involve an abstract
interpretation or program analysis; he then performs some abstract interpreta-
tion to predict cache and pipeline behaviour; the result of this is upper bounds
on the execution times for basic blocks and these are combined and integer lin-
ear programming is used to produce an upper bound on WCET for the whole
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program. The paper [1] analyses the sources of unpredictability in these bounds
and is actually a manifesto for ”Design for Predictability”.

In safety-critical embedded systems it is essential to work with worst case exe-
cution times. In systems with softer real-time constraints average case execution
times can be a useful design tool in analysing power/performance trade-offs. Ex-
ample application areas are multi-media and mobile devices. Approaches based
on stochastic modelling have become popular in recent years. Stochastic Petri
Nets [4,5], Stochastic Automata Networks [6] and Stochastic State Machine Lan-
guages have all been used. Kwiatkowska [7] and co-workers have used the latter
with PRISM and MAPLE to optimise average energy usage whilst bounding the
average number of requests waiting to be served. PRISM is used to generate the
generator stochastic matrix for systems and MAPLE is used for formulating and
solving the linear optimisation problem. As an alternative to model-checking, we
have developed an approach to abstract interpretation of such stochastic matri-
ces [8]. In this paper we explore how our framework can be used to study average
case behaviour.

2 Probabilistic Abstract Interpretation

Without doubt, static program analysis is a fascinating and interesting area
from a purely theoretical point of view – but it is done for a practical reason:
In order to protect oneself against nasty surprises when software is run, the
idea is to predict in advance what will happen when a program is executed.
Unfortunately, well known fundamental results, like the Halting problem, tell
us that it is in principle impossible to know everything about the behaviour of
every program. The solution to this obstacle of undecidabilty is to aim for partial
answers to some of the questions.

However, different applications and users have different priorities and interests
and therefore accept different kinds of imprecision. When it comes, for example,
to systems which are critical for life and limb of humans one might be cautious
and attempt to determine absolute limits on what can go wrong in the worst
case – like in the case of safety critical systems in cars, air planes, etc. If, on the
other hand, the possible damage is only in terms of lost money, time or other
resource one might be inclined to accept an estimate in order to forecast average
profits or losses – as in the context of speculative threading, power consumption
of mobile devices, etc.

There is no one-size-fits-all approach to this issue: While the cliché of a Ger-
man engineer will aim to protect his “Vorsprung durch Technik” by accommo-
dating for a worst case catastrophe, the caricature of a British speculator might
gamble on an average case scenario – and both approaches can be justified in
certain circumstances.

Abstract Interpretation [9,10,11] provides a general methodology for con-
structing static analyses which is, to some extent, independent of the particular
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style used to specify the program analysis. Thus, it applies to any formulation
of a (data/control flow or type/effect-system) analysis.

One common theme behind all traditional approaches to program analysis
(data and control flow analysis, type and effect systems, abstract interpretation)
is that in order to remain computable, one can only provide approximate answers
[11]. As a consequence an analysis does not usually give precise information;
moreover, in order for this information to be useful, the analysis must be safe,
that is the information obtained from the analysis must be proved to be correct
with respect to a semantics of the programming language.

Quantitative approaches to program analysis aim at developing techniques
which provide approximate answers (in a way similar to the classical program
analysis) together with some numerical estimate of the approximation introduced
by the analysis.

One useful source of numerical information for a quantitative program analysis
is a probabilistic semantics and in particular the use of vector space or linear
algebraic structures for modelling the computational domain. By exploiting the
probabilistic information resulting from a probabilistic program analysis one can
quantify the precision of the analysis and obtain as a result answers which are
for example “approximate up to 35%”.

As a quantitative approach to program analysis we have developed Prob-
abilistic Abstract Interpretation (PAI) [8,12] which recasts classical Abstract
Interpretation in a probabilistic setting where linear spaces replace the classical
order-theoretic domains, and the notion of the so-called Moore-Penrose pseudo-
inverse of a linear operator replaces the classical notion of a Galois connection.
The abstractions we get this way are close approximations of the concrete se-
mantics. Thus, closeness is a quantitative replacement for classical safety which
does not require any approximation ordering.

The application of operator algebraic methods instead of order theoretic ones
makes the framework of probabilistic abstract interpretation essentially different
from approaches which apply classical abstract interpretation to probabilistic do-
mains [13,14]. Although classical AI techniques can also be used in a probabilistic
context, e.g. to approximate distributions, as was demostrated for example in a
number of papers by D.Monniaux [13,14], this will always result in safe, i.e. worst
case analysis. In contrast, our PAI approach allows to construct averages and other
statistical information which are more in the spirit of an average case analysis.

The definition of a probabilistic abstract interpretation is given in terms of
probabilistic domains. We define a probabilistic domain as a suitable vector space
with a inner product 〈., .〉, namely as a Hilbert space.

Probabilistic Abstract Interpretation is defined in general for infinite dimen-
sional Hilbert spaces. We recall here the general definition, although in this
paper we will only consider the finite dimensional case. Given two probabilis-
tic domains C and D, a probabilistic abstract interpretation is defined by a pair
of linear maps, A : C �→ D and G : D �→ C, between the concrete domain C
and the abstract domain D, such that G is the Moore-Penrose pseudo-inverse
of A, and vice versa. Let C and D be two Hilbert spaces and A : C �→ D a
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bounded linear map between them. A bounded linear map A† = G : D �→ C is
the Moore-Penrose pseudo-inverse of A iff

A ◦ G = PA and G ◦ A = PG

where PA and PG denote orthogonal projections (i.e. P∗
A = PA = P2

A and
P∗

G = PG = P2
G) onto the ranges of A and G.

Alternatively, if A is Moore-Penrose invertible, its Moore-Penrose pseudo-
inverse, A† satisfies the following:

(i) AA†A = A,
(ii) A†AA† = A†,

(iii) (AA†)∗ = AA†,
(iv) (A†A)∗ = A†A,

where M∗ is the adjoint of M. The adjoint M∗ of a linear operator M on a
Hilbert space H is uniquely defined via the condition 〈M(x), y〉 = 〈x,M∗(y)〉,
for all x, y ∈ H. In matrix terms, M∗ corresponds to the transpose complex
conjugate matrix MT of the matrix M.

It is instructive to compare these equations with the classical setting. For
example, if (α, γ) is a Galois connection we similarly have α ◦ γ ◦ α = α and
γ ◦ α ◦ γ = γ.

Please note that we identify linear maps and operators with their matrix
representation. This implies that for two linear maps or operators represented
by matrices M and N their composition M◦N (if it is well-defined) corresponds
to the matrix product N · M = NM, i.e. in the reverse order. Similarily, the
application of M to a (row) vector, i.e. M(x), corresponds to a vector/matrix
multiplication x · M = xM. This notation is consistent with the one for the
octave tool [15] which was used by us to compute the examples in this paper.

As in the classical framework, given a concrete semantics we can always con-
struct a best correct approximation for this semantics, although the notions of
correctness and optimality assume a different connotation in our linear setting
as explained in the following.

If Φ is a linear operator on some vector space V expressing the probabilistic
semantics of a concrete system, and A : V �→ W is a linear abstraction function
from the concrete domain into an abstract domain W , we can compute the
(unique) Moore-Penrose pseudo-inverse G = A† of A. An abstract semantics
can then be defined as the linear operator on the abstract domain W :

Ψ = A ◦ Φ ◦ G = GΦA.

In the case of classical abstract interpretation the abstract semantics con-
structed in this way (called the induced semantics in [16]) is guaranteed to be
the best correct approximation of the concrete semantics, meaning that it is
the most precise among all correct approximation (the relative precision being
left unquantified). In the linear space based setting of PAI where the order of
the classical domains is replaced by some notion of metric distance, the induced
abstract semantics is the closest one to the concrete semantics. This “closeness”
property expresses both the “safety” of the approximation and its optimality,
which comes from the following properties of the Moore-Penrose pseudo-inverse.
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The theory of the least-square approximation [17,18] tells us that if C and D are
two finite dimensional vector spaces, A : C �→ D a linear map between them, and
A† = G : D �→ C its Moore-Penrose pseudo-inverse, then the vector x0 = yG is
the one minimising the distance between xA, for any vector x in C, and y, i.e.

inf
x∈C

‖xA − y‖ = ‖x0A− y‖,

where ‖.‖ denotes the usual Euclidean or 2-norm.
In other words, if we consider the equation xA = y we can identify a (exact)

solution x∗ as a vector for which ‖x∗A−y‖ = 0. In particular, in the case that no
such solution vector x∗ exists we can generalise the concept of a exact solution to
that of a “pseudo-solution”, i.e. we can look for a x0 such that x0A is the closest
vector to y we can construct. This closest approximation to the exact solution
is now constructed using the Moore-Penrose pseudo-inverse, i.e. take x0 = yA†.

Returning to our program analysis setting, suppose that we have an operator
Φ and a vector x. We can apply Φ to x and abstract the result giving xΦA or we
can apply the abstract operator to an abstract vector giving xAA†ΦA. Ideally,
we would like these to be equal. If A is invertible then its Moore-Penrose pseudo-
inverse is identical to the inverse and we are done. As in program analysis abstract
domains are usually smaller (i.e. in our setting vector spaces of smaller dimension)
than the concrete ones, A is never a square matrix and thus AA† in xAA†ΦA
will lead to some loss of precision. The Moore-Penrose pseudo-inverse is as close
as possible to an inverse if the matrix is not invertible and thus for the particular
choice of A, A†ΦA is the best approximation of Φ that we can have. Moreover, by
choosing an appropriate notion of distance we can measure this closeness to get a
quantitative estimate of the information lost in the abstraction process [12].

3 Approximations: A Classical Example

Classical abstract interpretation and probabilistic abstract interpretation pro-
vide “approximations” for completely different mathematical structures, namely
partial orders vs vector spaces. In order to illustrate and compare their features
we therefore need a setting where the domain in question in some way natu-
rally provides both structures. One such situation is in the context of classical
function interpolation or approximation.

The set of real-valued functions on real interval [a, b] obviously comes with a
canonical partial order, namely the point-wise ordering, and at the same time is
equiped with a vector space structure, again the point-wise addition and scalar
multiplication. Some care has to be taken in order to define an inner product,
e.g. one could consider only the square integrable functions L2([a, b]). In order
to avoid mathematical (e.g. measure-theoretic) details we simplify the situation
by just considering the step functions on the interval [a, b].

For a (closed) real interval [a, b] ⊆ R we call the set of subintervals [ai, bi] with
i = 1, . . . , n the n-subdivision of [a, b] if

⋃n
i=1[ai, bi] = [a, b] and bi − ai = b−a

n for
all i = 1, . . . , n. We assume that the subintervals are enumerated in the obvious
way, i.e. ai < bi = ai+1 < bi+1 for all i and in particular that a = a1 and bn = b.
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Definition 1. The set of n-step functions Tn([a, b]) on [a, b] is the set of real-
valued functions f : [a, b] → R such that f is constant on each subinterval (ai, bi)
in the n-subdivision of [a, b].

Note that since L2 is the set of equivalence classes of functions with respect to
the equivalence relation ∼ defined by f ∼ g iff

∫
|f(x) − g(x)|2dx = 0, we can

identify functions if they differ in only finitely many points. Thus, the values
f(ai) and f(bi) are irrelevant for our purpose.

We define a partial order on Tn([a, b]) in the obvious way: for f, g ∈ Tn([a, b]):

f � g iff f(
bi − ai

2
) ≤ g(

bi − ai

2
), for all 1 ≤ i ≤ n

i.e. iff the value of f (which we obtain by evaluating it on the mid-point in
(ai, bi)) on all subintervals (ai, bi) is less or equal to the value of g.

It is also obvious to see that Tn([a, b]) has a vector space structure isomorphic
to R

n and thus is also provided with an inner product. More concretely we
define the vector space operations . · . : R × Tn([a, b]) → Tn([a, b]) and . + . :
Tn([a, b]) × Tn([a, b]) → Tn([a, b]) pointwise as follows:

(α · f)(x) = αf(x)

(f + g)(x) = f(x) + g(x)

for all α ∈ R, f, g ∈ Tn([a, b]) and x ∈ [a, b]. The inner product is given by:

〈f, g〉 =
n∑

i=1

f(
bi − ai

2
)g(

bi − ai

2
).

In this setting we now can apply and compare both the classical and the
quantitative version of abstract interpretation as in the following example.

Example 1. Let us consider a step function f in T16 (the concrete values of a
and b don’t really play a role in our setting) which can be depicted as:

a b
0
1
2
3
4
5
6
7
8
9
10
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We can also represent f by the vector in R
16:

(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)

We then construct a series of abstractions which correspond to coarser and
coarser sub-divisions of the interval [a, b], e.g. considering 8, 4 etc. subintervals
instead of the original 16. These abstractions are from T16([a, b]) to T8([a, b]),
T4([a, b]) etc. and can be represented by 16× 8, 16× 4, etc. matrices. For exam-
ple, the abstraction which joins two sub-intervals and which corresponds to the
abstraction α8 : T16([a, b]) → T8([a, b]) together with its Moore-Penrose pseudo-
inverse is represented by:

A8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

G8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

With the help of Aj , j ∈ {1, 2, 4, 8}, we can easily compute the abstraction of
f as fAj, which in order to compare it with the original f we can then again
concretise using G, i.e. computing fAG. In a similar way we can also compute
the over- and under-approximation of f in Ti based on the above pointwise
ordering and its reverse ordering. The result of these abstractions is depicted
geometrically in Figure 1.

The individual diagrams in this figure depict the original, i.e. concrete step
function f ∈ T16 together with its approximations in T8, T4, etc. On the left
hand side the PAI abstractions show how coarser and coarser interval subdi-
visions result in a series of approximations which try to interpolate the given
function as closely as possible, sometimes below, sometimes above the concrete
values. The diagrams on the right hand side depict the classical over- and under-
approximations: In each case the function f is entirely below or above these
approximations, i.e. we have safe but not necessarily close approximations. Ad-
ditionally, one can also see from these figures not only that the PAI interpolation
is in general closer to the original function than the classical abstractions (in fact
it is the closest possible) but also that the PAI interpolation is always between
the classical over- and under-approximations.
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Probabilistic Abstract Interpretation Classical Abstract Interpretation

T8

T4

T2

T1

Fig. 1. Average, Over- and Under-Approximation

The vector space framework also allows us to judge the quality of an ab-
straction or approximation via the Eucledian distance between the concrete and
abstract version of a function. We can compute the least square error as

‖f − fAG‖.
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In our case we get for example:

‖f − fA8G8‖ = 3.5355
‖f − fA4G4‖ = 5.3151
‖f − fA2G2‖ = 5.9896
‖f − fA1G1‖ = 7.6444

which illustrates, as expected, that the coarser our abstraction is the larger is
also the mistake or error.

This example also illustrates how PAI and averages are closely related. The
coarsest abstraction α1 : T16 → T1 computes in effect the average of all the
values of f , i.e. the (constant) value of fA1G1 is exactly the average of

5, 5, 6, 7, 8, 4, 3, 2, 8, 6, 6, 7, 9, 8, 8, 7.

In general, we can always compute such an average via the one point abstraction
of an n-dimensional space given by

AT =
(
1 1 1 . . . 1

)

with Moore-Penrose pseudo-inverse given by

A† = (
1
n

,
1
n

, . . . ,
1
n

).

4 Parallel Systems

Multi-core processors and multi-threaded applications are emerging as the new
models in computing. This makes the development of adequate tools and tech-
niques for code parallelisation one of today’s major challenges. At the same time
the study of parallel systems and their performance also poses many difficulties
due to their complexity deriving from the exponential growth of the number of
states.

Automatic tools such as compilers must provide code that works in all cases.
Therefore, when a compiler has to parallelise two pieces of code it has to con-
sider all potential dependencies. Current techniques are over-conservative: if a
dependency cannot be proved, the compiler assumes that it does occur. As
a consequence, many opportunities for parallelisation are missed in the code
generation.

Contrary to this “worse-case” conservative approach, speculative threading is
an emerging technique which allows for some incorrect thread parallelisation by
postponing the check to some later time. In the following example we will show
how this “optimistic” approach can be justified via PAI. We will also show how
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PAI can be used to face the state space explosion problem in the performance
evaluation of parallel systems.

4.1 Tensor Models

We will now discuss how to abstract or simplify dynamical systems described
by iterations of linear maps, in particular stochastic systems, i.e. Discrete Time
Markov Chains (DTMCs).

There exist numerous formalisms to describe the semantics or dynamics of dis-
crete as well as continuous time (stochastic) systems like, for example, Stochastic
Petri Nets (SPNs) [4,5], Stochastic Automata Networks (SANs) [6], etc.

In practice, in most of these models, as well as in the authors’ Probabilistic
Chemical Abstract Machine (pCHAM) [19] and the linear semantics of Proba-
bilistic KLAIM (pKLAIM) [20], the operation which combines the semantics of
individual components of the system (nodes, etc.) in order to describe the global
structure (network, etc.) is the tensor product. The tensor or Kronecker product
A⊗ B of an n × m matrix A and a k × l matrix B is an nk × ml matrix:

A⊗ B =

⎛

⎜
⎝

a11B . . . a1nB
...

. . .
...

a1mB . . . anmB

⎞

⎟
⎠

This construction has the advantage of a clean separation of local and global
aspects, i.e. of the micro and macro dynamics of a system. However, the price to
pay for this is the (exponential) state explosion introduced by the tensor product.
The issue we discuss next is how to control this explosion, at least partially, by
simplifying the model using the PAI framework.

Before we look at an example of such an abstraction, let us first present the
basic elements of “tensor models”. The basic entities of these models are simple
counters, which could be interpreted as “token stores” (as in pKLAIM) or to
indicate the “multiplicity of molecules” (as in the pCHAM model).

The basic local operations we allow for are essentially just counting operations
in steps of +1 and −1. These are represented by so called shift operators:

(C)ij =
{

1 for j = i + 1
0 otherwise and (D)ij =

{
1 for j = i − 1
0 otherwise

or more concretely:

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 0
0 0 0 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠



170 A. Di Pierro, C. Hankin, and H. Wiklicky

Additionally we need to provide for testing operations which determine whether
a certain “counter” is below or above a certain threshold. We represent these by
projection operators:

(Tmin
m )ij =

{
1 for i = j ≥ m
0 otherwise and (Tmax

m )ij =
{

1 for i = j ≤ n
0 otherwise

or more concretely again:

Tmin
m =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Tmax
n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 0 0
0 0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

To simplify our treatment we assume in the following that all operators have
the right dimension, e.g. are all s × s matrices. It could also be noted that by
moving from finite dimensional matrix algebras to infinite dimensional operator
algebras, e.g. C∗ algebras, one can drop limits for the counting operations, i.e.
s = ∞.

Due to the huge size of “tensor models” it is necessary to simplify them in
some way in order to extract certain global behavioural properties. The under-
lying idea is somewhat similar to the approach in statistical mechanics, where
macroscopic parameters like pressure or temperature are explained or aggregated
from the statistics of the microscopic features of individual molecules, such as
their momentum, mass, velocity, etc.

The simplification of tensor product models using probabilistic abstract inter-
pretation can drastically reduce the complexity of the analysis while we can still
guarantee that the obtained results are as close as possible to the exact values.
It also allows a kind of compositional analysis as Moore-Penrose pseudo-inverse
and tensor product are compatible in the following sense: Given two (bounded)
linear operators A1 and A2 on a Hilbert space, then

(A1 ⊗ A2)† = A†
1 ⊗ A†

2.

Therefore, by exploiting the algebraic properties of the tensor product, we can
abstract tensor models component wise, i.e.

(A1 ⊗ A2)†(T1 ⊗ T2)(A1 ⊗ A2) = (A†
1T1A1) ⊗ (A†

2T2A2)

This is illustrated in the following example where we only abstract one part of
the system while another one stays unchanged, i.e. we use an abstraction of the
form I ⊗ A with I the identity.

4.2 Average Running Time

A simple example which relates to the issue of speculative threading or schedul-
ing we discussed before concerns the parallel execution of two processes with



Abstract Interpretation for Worst and Average Case Analysis 171

the following constraint: If thread A finishes before thread B then B has to be
restarted. The reason could be, for example, the following scenario: process A
puts its final result into some storage area or memory which is used by process
B to store intermediate results: as long as process A does not finish, the re-
sults/computations in thread B are correct, but if process A finishes too early
than we have to redo all its work again. The problem is to estimate the maximal
and average chance that this happens.

Let us consider a slightly simplified version where we are interested in analy-
sing the behaviour of A in parallel with B until a restarting is needed. Concretely
we have two processes: A just executes three steps and then stops; B counts up
to some number n, e.g. n = 100, and then terminates. However at every step
B can also terminate immediately; the chances for continuing counting or for
termination are 50 : 50. The tensor model for this example is simply given by:

Tn = A⊗ Bn

with A being represented simply by a creation operator in four dimensions:

A = C4 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ .

The representation of Bn is a bit more complicated:

Bn =
1
2
· Cn +

1
2
· (

n−1∑

i=0

Tmin
i Tmax

i (Cn)n−i).

In other words, this process either continues counting from i to i + 1, or if has
already reached exactly i (for which we have a min and a max test) then by
applying the (n − i)-th power of the creation operator produces the n which
leads to the termination of the whole process. More concretely, for n = 4 we
have:

B4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1
2 0 0 1

2
0 0 1

2 0 1
2

0 0 0 1
2

1
2

0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

The worst case analysis of these processes needs, in effect, to determine the
longest running time of both process. That means we have to determine the
nilpotency of Tn or at least of A and Bn. It is easy to see that the longest
possible running time, i.e. the nilpotency, for A is 3 steps, while for Bn is n. If
we look at Tn = A ⊗ Bn, then it is easy to see that (for n > 3) the maximal
running time is also as n.

There are a few problems with this analysis: firstly, in complexity theoretic
terms, it requires to analyse a rather large 4n × 4n matrix (and with more



172 A. Di Pierro, C. Hankin, and H. Wiklicky

processes the tensor product will cause a huge explosion in the dimension of the
exact model); secondly, for unbounded counting in B we don’t get any meaningful
result; and thirdly, the results are somewhat meaningless as the chances that B
counts to n stepwise, instead of terminating early are rather small such that the
average running time of B is much smaller than n, i.e. in the scenario discussed
earlier it is rather unlikely that we have to restart B.

In order to see this we can compute an abstracted version of B and compare
this to the worst case estimates and the exact results. For this we identify all
intermediate states except for the terminating state n. We can use the following
simple abstraction represented by the n × 2 matrix

(K)ij =

⎧
⎨

⎩

1 for i < n and j = 1
1 for i = n and j = 2
0 otherwise

e.g. K4 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0
1 0
1 0
1 0
0 1

⎞

⎟
⎟
⎟
⎟
⎠

K†
4 =

(
1
4

1
4

1
4

1
4 0

0 0 0 0 1

)

It is particular easy to compute K† for abstractions like K where every concrete
state is uniquely classified, i.e. where every row of K contains only one non-zero
entry equal to 1: K† is in this case obtained by transposing K followed by a
row-normalisation. With this we can construct abstract versions B#

n = K†BK
of Bn which are given by only 2×2 matrices, i.e. the combination of the concrete
A process and the abstract process B#

n is represented by just a 6 × 6 matrix.
If we compare the concrete average running time of Bn, which means we have

to iterate a n × n matrix, with the average running times of its abstract 2 × 2
version we get the following numerical results.

avg avg# P (3) P (3)# max

B#
5 =

(
0.38 0.62
0.00 0.00

)

1.8750 1.6000 0.8750 0.9473 5

B#
10 =

(
0.44 0.56
0.00 0.00

)

1.9961 1.8000 0.8750 0.9122 10

B#
25 =

(
0.48 0.52
0.00 0.00

)

2.0000 1.9200 0.8750 0.8750 25

B#
100 =

(
0.49 0.51
0.00 0.00

)

2.0000 1.9800 0.8750 0.8750 100

Here we present the simplified 2×2 systems and give the exact average running
time ‘avg’, the abstract average running time (of the simplified system) ‘avg#’,
the exact and abstract probabilities for terminating after three steps P (3) and
P (3)#, and finally the maximal, i.e. worst case running time max.

This example illustrates a number of important technical issues, e.g.: (i) how
PAI can be used to reduce the complexity of a model, in this case from 4n ×
4n to just 6 × 6 matrices; and (ii) the small difference between the concrete
properties and the PAI approximated values, e.g. of the average running time or
the probability of stopping after a certain number of steps.
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This example also demonstrates a case where worst case analysis, although
correct, is practically nearly useless: The worst case running time of 100 steps for
the process B100 is much larger than the 3 steps for A. This would suggest in a
speculative threading situation that it would be pointless to execute A and B100

in parallel as B100 would finish too late and thus have to be restarted anyway.
However, the average case analysis and in particular the value for P (3) tells us
that B100 will terminate with nearly 90% chance before A, and that it would
therefore make sense to schedule these two processes in parallel.

5 Conclusions

We started by reviewing Reinhard’s work on WCET analysis. Knowledge of worst
case execution times is absolutely essential in many applications. The field is
quite mature and Reinhard’s work provides an excellent example of a semantics-
based approach to this problem. In the body of this paper, we have argued for the
equal importance of average case execution times. The need for such analyses is
well-recognised by the soft real-time community where average values are much
more useful in the optimisation of designs (average power consumption, average
heap usage, . . . ).

We have shown how Probabilistic Abstract Interpretation may be used to sup-
port average case analysis; this contrasts with classical abstract interpretation
where safety constrains us to workwith worst cases.This paper presents first tenta-
tive steps in this direction. There are many open problems; one of the most funda-
mental is how to present operator algebra semantics in a compositional way. This
is a necessary development to allow us to construct automatic tools for analysis as
alternatives to the model checking approaches discussed in the Introduction.
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