

Lecture Notes in Computer Science 4444
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Thomas Reps Mooly Sagiv
Jörg Bauer (Eds.)

Program Analysis
and Compilation,
Theory and Practice

Essays Dedicated to Reinhard Wilhelm
on the Occasion of His 60th Birthday

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Volume Editors

Thomas Reps
University of Wisconsin-Madison
Computer Sciences Department
1210 West Dayton Street, Madison, WI 53706-1685, USA
E-mail: reps@cs.wisc.edu

Mooly Sagiv
Tel-Aviv University
School of Computer Science, Schreiber 317
Tel-Aviv, 69978, Israel
E-mail: msagiv@post.tau.ac.il

Jörg Bauer
Technical University of Denmark
Informatics and Mathematical Modelling
Building 322, 2800 Kongens Lyngby, Denmark
E-mail: joba@imm.dtu.dk

The illustration appearing on the cover of the book is the work of Sabrina Sperl,
Saarbrücken.

The piece of art is in the possession of the International Conference and Research
Centre for Informatics in Schloss Dagstuhl.

Library of Congress Control Number: 2007922986

CR Subject Classification (1998): D.3, F.3.1-2, D.2.8, F.4.2, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-71315-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71315-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12032570 06/3142 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

On June 9–10, 2006, a celebratory symposium in honor of Reinhard Wilhelm’s 60th
birthday was held at Schloß Dagstuhl. Many of his graduate students and research col-
laborators, as well as current and former colleagues, gathered for this celebration, and
Schloß Dagstuhl was certainly the most appropriate location to honor its founder. Dur-
ing this day and a half of scientific discussions, there were 15 research presentations,
as well as a group discussion on the topic “The Future of Static Analysis.” The event
consisted of the following talks:

1. Christian Ferdinand:
“New Developments in WCET Analysis”

2. Wolfgang J. Paul:
“Verification of Distributed Systems with Realistic Time Bounds”

3. Dieter Maurer:
“Lazy Execution of Boolean Queries”

4. Raimund Seidel:
“Ideally Distributed Dynamic Random Search Trees Without Using Extra Space”

5. Andreas Zeller:
“Static and Dynamic Inference of Temporal Properties”

6. Helmut Seidl:
“Verification of Cryptographic Protocols by Means of Tractable Classes of Horn
Clauses”

7. Neil Jones:
“The Flow of Data and the Complexity of Algorithms”

8. Jaan Penjam:
“Deductive and Inductive Methods for Program Synthesis”

9. Arnd Poetzsch-Heffter:
“Encapsulation Properties of OO-Programs Require New Heap Analyses”

10. Bernhard Steffen:
“Service-Oriented Compiler Construction”

11. Chris Hankin:
“Average Case Execution Times Matter Too”

12. Robert Giegerich:
“Making Dynamic Programming Fun”

13. Patrick Cousot:
“Grammar Abstract Interpretation”

14. Yosi Ben-Asher:
“Source Level Merging of Programs for Embedded Systems”

15. Mila Majster-Cederbaum:
“Ensuring Properties of Interaction Systems by Construction”

The articles of this volume serve roughly as a proceedings of this Dagstuhl sympo-
sium, although some of the contributors could not participate in the celebration, and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VI Preface

not all of the participants managed to contribute an article. However, we are pleased to
have been able to assemble this stimulating collection of research articles, which honor
both Reinhard’s 60th birthday and more broadly his contributions to computer science
(some of which are summarized in the lead-off article, “An Appreciation of the Work
of Reinhard Wilhelm”).

The Dagstuhl symposium could not have been the success that it turned out to
be without the help of Angelika Müller, Rosi Bardohl, Annette Beyer, and all of the
Dagstuhl staff.

Following lunch on the second day, the participants traveled to Saarbrücken to attend
a less scientific (and more alcoholic) 60th-birthday celebration, as is traditional for a
German academic, given by the Computer Science Department at Saarland University.
There, Reinhard endured another series of talks offered by his graduate students, his
Dagstuhl colleagues, his colleagues from the department, his brother, and several close
friends. Reinhard’s closing speech in response provided insight into some of the events
and influences—both personal and intellectual—that have shaped his career.

We would like to thank the local organizers of the afternoon/evening celebration,
and in particular, Erich Reindel from the Computer Science Department at Saarland
University and Volker Geiß from the Max Planck Institute for Computer Science.

We offer this volume to Reinhard as a token of the honor that he so richly deserves. It
is fitting that the ideas in the articles found herein span such a broad range of Reinhard’s
research interests, from ones from very nearly the beginning of his career to current
and—we hope!—future work to come.

December 2006 Thomas Reps
Mooly Sagiv

Jörg Bauer

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VII

Reinhard Wilhelm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

An Appreciation

An Appreciation of the Work of Reinhard Wilhelm 1
Thomas Reps, Mooly Sagiv, and Jörg Bauer

Technical Papers

New Developments in WCET Analysis . 12
Christian Ferdinand, Florian Martin, Christoph Cullmann,
Marc Schlickling, Ingmar Stein, Stephan Thesing, and
Reinhold Heckmann

Realistic Worst-Case Execution Time Analysis in the Context of
Pervasive System Verification . 53

Steffen Knapp and Wolfgang Paul

Lazy Execution of Boolean Queries . 82
Dieter Maurer

Cryptographic Protocol Verification Using Tractable Classes of Horn
Clauses . 97

Helmut Seidl and Kumar Neeraj Verma

Infering Ownership Types for Encapsulated Object-Oriented Program
Components . 120

Arnd Poetzsch-Heffter, Kathrin Geilmann, and Jan Schäfer

ViDoC- Visual Design of Optimizing Compilers . 145
Tiziana Margaria, Oliver Rüthing, and Bernhard Steffen

Abstract Interpretation for Worst and Average Case Analysis 160
Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky

Grammar Analysis and Parsing by Abstract Interpretation 175
Patrick Cousot and Radhia Cousot

Ensuring Properties of Interaction Systems . 201
Gregor Gössler, Susanne Graf, Mila Majster-Cederbaum,
Moritz Martens, and Joseph Sifakis

On the Expressive Power of Live Sequence Charts 225
Werner Damm, Tobe Toben, and Bernd Westphal

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

X Table of Contents

Refinement-Based Verification for Possibly-Cyclic Lists 247
Alexey Loginov, Thomas Reps, and Mooly Sagiv

Abstract Counterexample-Based Refinement for Powerset Domains 273
Roman Manevich, John Field, Thomas A. Henzinger,
G. Ramalingam, and Mooly Sagiv

Types from Control Flow Analysis . 293
Flemming Nielson and Hanne Riis Nielson

Data Flow Analysis for CCS . 311
Hanne Riis Nielson and Flemming Nielson

Towards a Source Level Compiler: Source Level Modulo Scheduling 328
Yosi Ben-Asher and Danny Meisler

Author Index . 361

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Appreciation of the Work of Reinhard Wilhelm

Thomas Reps1, Mooly Sagiv2, and Jörg Bauer3

1 Comp. Sci. Dept., University of Wisconsin
reps@cs.wisc.edu

2 School of Comp. Sci., Tel-Aviv University
msagiv@post.tau.ac.il

3 Fachrichtung Informatik, Univ. des Saarlandes
joba@cs.uni-sb.de

Reinhard Wilhelm’s career in Computer Science spans more than a third of a cen-
tury. During this time, he has made numerous research contributions in the areas
of programming languages, compilers and compiler generators, static program
analysis, program transformation, algorithm animation, and real-time systems;
co-founded a company to transfer some of these ideas to industry; held the Chair
for Programming Languages and Compiler Construction at Saarland University;
and served since its inception as the Scientific Director of the International Con-
ference and Research Center for Computer Science at Schloß Dagstuhl.

1 Research Activities

1.1 Foundations of Programming and Programming Languages

Reinhard’s work in the area of programming languages is unusual in that he has had an
interest in, and made contributions in, all styles of programming languages (imperative,
functional, logic, parallel, object-oriented, and constraint-oriented) [14,15,16,17,20,19,
21, 22, 24, 25, 26, 31, 77].

1.2 Compilers, Compiler Generators, and Compilation Algorithms

Compilers convert a program or specification written in some language into a form that
allows it to be executed on a computer or network of computers. Compiler generators
are tools for creating compilers themselves (or components of compilers) from speci-
fications. From the number of his publications on these subjects, and their distribution
in time, it is easy to see that Reinhard’s longest-held interest and deepest attachment
in Computer Science has been to the area of compilers [32], including compiler gen-
erators [27, 28, 29, 30] and the algorithms needed to accomplish the tasks required in
various phases of compilation (see below).

Attribute Grammars. Attribute grammars are a language-description formalism that
was introduced by Donald Knuth in 1968.1 In an attribute grammar, a language and its
properties are specified by giving

1 D.E. Knuth: Semantics of context-free languages. Math. Syst. Theory 2(2): 127-145 (1968).

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2 T. Reps, M. Sagiv, and J. Bauer

– a context-free grammar for the language,
– sets of “attributes” (annotations) to be attached to nodes of the grammar’s derivation

trees, and
– rules that describe how information from one node’s attributes affects the attributes

of other nodes.

Reinhard’s research in this area concerned analysis and applications of attribute gram-
mars [33,34,35,36,37,38,39,40,41,60,61]. Reinhard also spearheaded the implemen-
tation of three of the most influential compiler-generation systems that were based on
attribute grammars: MUG1 [28], MUG2 [29, 30], and OPTRAN [38, 77, 40, 41, 72].

Code Generation via Transformational Grammars/Tree Automata. The code-ge-
neration phase of a compiler turns an intermediate representation of a program into a se-
quence of machine-code instructions. One code-generation subtask is code selection—
the actual selection of the instructions to be emitted. In a sequence of papers [44,46,48],
Reinhard together with Helmut Seidl developed the connections between the code-
selection problem and the theories of regular-tree grammars and finite tree automata.
This work provided a sound theoretical basis for code selection, generalized and im-
proved existing methods, and furthered the understanding of how to generate code-
selection components of compilers from machine descriptions.

Other Compilation Algorithms. Other compilation issues with which Reinhard has
been concerned include table compression [47], graph reduction [42], code optimization
[43, 49], and virtual machines [50, 51].

1.3 Static Program Analysis

One of the areas in which Reinhard has worked for multiple decades, and made many
important contributions, is static program analysis (also known as “dataflow analysis”
or “abstract interpretation”). Static analysis is the basic technique used in optimizing
compilers and other programming tools for obtaining information about the possible
states that a program can reach during execution, but without actually running the pro-
gram on specific inputs. Instead, static-analysis techniques explore a program’s behav-
ior for all possible inputs to determine (an approximation of) all possible states that the
program can reach. To make this feasible, the program is “run in the aggregate”—i.e.,
on descriptors that represent collections of many states. The fundamental theory that
provides the foundation for such techniques is that of abstract interpretation, enunci-
ated in 1977 by Patrick and Radhia Cousot.2

Reinhard’s work in the area of static analysis includes [52,53,54,55,56,57,58,61,59],
as well as many other papers mentioned below.

Grammar Flow Analysis. In two papers with U. Möncke [60,61], Reinhard proposed
the technique of “grammar flow analysis”. This work generalized the concepts and

2 P. Cousot, R. Cousot: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. POPL 1977: 238-252.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Appreciation of the Work of Reinhard Wilhelm 3

algorithms of (intraprocedural) dataflow analysis—which generally is applied to graph
data structures—to a method for obtaining information about properties of derivation
trees of the nonterminals in context-free grammars (but without actually building the
grammar’s derivation trees). Not only does this generalization have important applica-
tions in interprocedural dataflow analysis, but Möncke and Wilhelm also showed how
grammar flow analysis has applications in many other areas of compilers—ranging from
static-semantic analysis to code generation.

Shape Analysis. In a series of papers with M. Sagiv, T. Reps, and others, (e.g., [62,
63, 64, 65, 66, 67, 68, 69, 70, 71]), Reinhard has addressed one of the major remaining
challenges in static analysis of program behavior—sometimes called shape analysis—
namely, how to check properties of programs that manipulate linked data structures (i.e.,
programs that use dynamic allocation and freeing of storage cells, and destructive up-
dating of structure fields—as happens pervasively in languages such as C, C++, and
Java). In such programs, data structures can grow and shrink dynamically, with no fixed
upper bound on their size or number. The analysis problem is complicated even more
by the fact that such languages also permit fields of dynamically allocated objects to
be destructively updated. In the case of thread-based languages, such as Java, the num-
ber of threads can also grow and shrink dynamically—again with no fixed upper bound
on size or number. These features create considerable difficulties for any method that
tries to check program properties, and this subject is considered to be one of the most
challenging areas of program analysis.

A key issue when analyzing programs that use such features is how to create finite-
sized descriptors of memory configurations, such that the descriptors

– abstract away certain details, but
– retain enough key information so that the analysis can identify interesting properties

that hold.

One of the crucial obstacles is that dynamically-allocated storage cells have no static
names, and the number of such objects is, in general, unbounded.

The Sagiv-Reps-Wilhelm approach [67] provides a solution to the problem of de-
vising finite-sized descriptors of the infinite number of storage configurations that can
arise at a point in the program. Moreover, it also provides a way to tune the precision
of the descriptors in use, which is important both for reducing the time required to run
an analysis, and for reducing the number of false positives that an analysis may report.
From a static-analysis perspective, the work is novel because of the way that it uses
3-valued logic to address these issues.

1.4 Program Transformation/Rewriting

The heart of many compilation steps (such as optimization and code generation) is
tree transformation or rewriting. Reinhard’s work in this area has concerned systems

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

4 T. Reps, M. Sagiv, and J. Bauer

for program transformation and optimization—originally formalized using attribute-
grammar-based notations and implemented as rewriting of attributed abstract-syntax
trees [72,73,74,75,77]. Later work addressed these problems using a specialized func-
tional notation for specifying patterns and transformations [78].

1.5 Algorithm Animation and Visualization

Algorithm animation concerns how to create visual presentations of computations. This
area has been another of Reinhard’s long-term interests [79, 80, 81, 82, 83]. He has
worked on such varied problems as the depiction of compilation steps [83], finite-state
automata [82], and abstract interpretation [79, 80].

1.6 Timing Analysis for Real-Time Systems

In a series of papers with various authors (beginning with [84]), Reinhard spearheaded
a new approach to predicting the timing behavior of processors that are equipped with
cache memory. Because of the substantial differences exhibited by modern processors
between the latency for an access that goes to main memory versus an access that can
be resolved in the cache, cache behavior has to be taken into account to predict a pro-
gram’s execution time. Classical methods based on experimental measurement provide
only soft guarantees: any measurement-based approach, via either hardware or software,
only determines the execution time for the specific inputs of the test suite. Moreover,
software-based monitoring alters the code, thereby influencing the cache behavior—
and hence the performance—of the program whose performance one is trying
to measure.

The behavior-prediction techniques that Reinhard has helped to devise make use of
static program analysis, which (as noted above) provides a way to obtain information
about the possible states that a program reaches during execution, but without actually
running the program on specific inputs. Using this approach, Reinhard and his col-
leagues have shown that it is possible to determine the worst-case cache behavior (i.e.,
to identify what could be in the cache at each point in the program) [84,85,86,87,88,89],
as well as to bound the worst-case running time of real-time programs and to check
the program for the possibility of cache conflicts that could affect time-critical parts
[90,91,92,93,94,95,96,97,98]. The advantage of their approach is that the predictions
obtained using their techniques are valid for all inputs. From a static-analysis perspec-
tive, the work often combines “may” and “must” information in an unusual way.

An additional area of concern has been with processor models—e.g., with such is-
sues as the semantics of processors and how to specify them—as well as with gaining an
understanding of which real-time systems are time-predictable [99, 100, 101, 102, 103].

2 Technology Transfer

Reinhard has been successful in making the work on timing analysis for real-time
systems accessible to the embedded-systems and real-time communities, thereby

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Appreciation of the Work of Reinhard Wilhelm 5

demonstrating how static program analysis can be applied to the problems that arise
in these domains. This work also forms the basis for the products of a company that
Reinhard co-founded (AbsInt Angewandte Informatik GmbH, Saarbruecken, Germany
[104]). Their tool has been successfully used to certify time-critical subsystems of the
Airbus A380 plane.

3 Pedagogical Activities

Reinhard Wilhelm holds the Chair for Programming Languages and Compiler Con-
struction at Saarland University, where he has supervised twenty-five Ph.D. theses and
nearly one hundred fifty Masters/Diploma theses.

Reinhard’s textbook (“Compiler Design”), co-authored with D. Maurer and pub-
lished in German [10], French [11], and English [12], is successfully used in many
graduate and undergraduate compiler courses. The book is noteworthy for the way that it
presents the problems of compiling imperative languages, functional languages, object-
oriented languages, and logic-programming languages in a way that draws out their
commonalities. The book covers in depth many difficult aspects of compilation, such
as bottom-up parsing with error recovery, attribute grammars, and abstract interpreta-
tion. Compared with other textbooks, Reinhard’s book provides the most theoretically
well-grounded treatment of the problems that arise in writing compilers.

Recently, Reinhard also participated in an effort to design a graduate curriculum on
embedded software and systems [13].

4 Schloß Dagstuhl

Reinhard has also performed a notable service to the international Computer Science
community by having served since its inception as the Scientific Director of the Inter-
national Conference and Research Center for Computer Science at Schloß Dagstuhl.
Dagstuhl was set up in 1990 along the lines of the famous conference center for Math-
ematics at Oberwolfach. Dagstuhl hosts several kinds of activities, but predominantly
“Dagstuhl Seminars”, which are week-long intensive seminars involving lectures, group
discussions, software demonstrations, etc. By now, Dagstuhl Seminars have been held
in a large number of different subject areas of Computer Science. There are about forty
of these every year, each with somewhere between twenty and sixty participants from
all over the world.

Reinhard has been involved with Dagstuhl from the start, and as the founding Sci-
entific Director, his imprint is to be found on all aspects of its operation, including not
just the choice of seminar topics and attention to maintaining the highest scientific stan-
dards, but also the original renovation of Schloß Dagstuhl, the design and construction
of a major second building, the solicitation of donations from industry and charita-
ble foundations, the arrangement of a special funding program for junior researchers
(young faculty and graduate students), and the list could go on and on. Many weeks, he
even leads the traditional Wednesday mid-week hike.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

6 T. Reps, M. Sagiv, and J. Bauer

Reinhard has made Dagstuhl a very special place for Computer Scientists by his
quiet, but skillful, way of using his “bully pulpit” to nudge the Computer Science com-
munity into fruitful and interesting interactions:

– He has made seminars that bring together groups that have common interests, but that
for one reason or another have had relatively limited contact, a Dagstuhl specialty.

– He attends at least one day of each Dagstuhl seminar to monitor progress and offer
advice to that week’s organizers about possible mid-course corrections.

– He actively solicits Seminars on new and promising topics.
– During the planning stages of Seminars, he keeps an eye out for potential attendees

who might have been overlooked, but who would especially profit from and/or
contribute to the activities of a Seminar.

Dagstuhl and its attendees have also benefited from Reinhard’s careful—and
tasteful—attention to detail, which goes far beyond the scientific aspects of the estab-
lishment: the choice of music scores and musical instruments in Dagstuhl’s music room;
the organizing of displays of modern art in the Dagstuhl buildings and on the Dagstuhl
grounds; even the choice of wine in the famous Dagstuhl Wine Cellar, where partic-
ipants are encouraged to repair for the evening for both technical and non-technical
conversation.

5 A Partial List of Reinhard Wilhelm’s Collaborators

L. Almeida, M. Alt, H.-J. Bach, M. Baston, J. Bauer, G. Becker, Y. Ben-Asher, A.
Benveniste, C. Berg, J. Börstler, P. G. Bouillon, B. Bouyssounouse, B. Braune, F. War-
ren Burton, G. C. Buttazzo, P. Caspi, J. Ciesinger, V. Claus, I. Crnkovic, W. Damm,
S. Diehl, J. Engblom, A. A. Evstiougov-Babaev, C. Fecht, C. Ferdinand, G. Fohler, F.
Fontaine, N. Francez, N. Fritz, H. Ganzinger, M. Garcı́a-Valls, R. Giegerich, I. Glasner,
H. Hagen, R. Heckmann, E. Hoffmann, D. Johannes, D. Kästner, A. Kerren, H. Kopetz,
B. Kuhn, W. Lahner, Y. Lakhnech, M. Langenbach, F. Laroussinie, L. Lavagno, T.
Lev-Ami, G. Lipari, P. Lipps, J. Loeckx, P. Lucas, A. Lucks-Baus, F. Maraninchi, F.
Martin, D. Maurer, K. Mehlhorn, J. Messerschmidt, U. Möncke, T. Müldner, F. Müller,
R. Nollmann, H.-G. Oberhauser, M. Olk, O. Parshin, P. Peti, J. Antonio de la Puente, M.
Raber, A. Rakib, F. Randimbivololona, T. Rauber, T. Remmel, T. Reps, N. Rinetzky,
K. Ripken, B. Robinet, M. Rodeh, G. Rünger, M. Sagiv, G. Sander, A. L. Sangiovanni-
Vincentelli, N. Scaife, M. Schmidt, J. Schneider, A. Schuster, R. Seidel, H. Seidl, M.
Sicks, J. Sifakis, R. de Simone, J. Souyris, O. Spaniol, H. Theiling, S. Thesing, L.
Thiele, W. Thome, M. Törngren, P. Verı́ssimo, B. Weisgerber, A.J. Wellings, D.B.
Whalley, S. Wilhelm, T.A.C. Willemse, E. Yahav, W. Yi, G. Yorsh.

Acknowledgments

We would like to thank Angelika Müller, Rosi Bardohl, Annette Beyer, and all of
the Dagstuhl staff for the splendid job they did organizing and hosting the Reinhard
Wilhelm 60th-Birthday Celebratory Symposium. We would also like to thank Patrick

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Appreciation of the Work of Reinhard Wilhelm 7

Cousot for furnishing us with the list of references to Reinhard’s publications that he as-
sembled for the presentation of Reinhard’s work at the Saarland University celebration
of Reinhard’s birthday.

References

1. R. Wilhelm. Informatics: 10 Years Back. 10 Years Ahead. Lecture Notes in Computer
Science 2000. Springer, Berlin, Germany, 2001.

2. R. Wilhelm: Compiler Construction, 10th International Conference, CC 2001 Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2001 Gen-
ova, Italy, April 2-6, 2001, Proceedings Springer 2001

3. R. Wilhelm: Informatik: Grundlagen - Amwendungen - Perspektiven [Forum ”Perspektiven
der Informatik”, Dagstuhl, November 1993] Verlag C. H. Beck 1996

4. R. Wilhelm: Generische und generative Methoden. Perspektiven der Informatik 1993: 84-85
5. R. Wilhelm, H. Hagen: Programmiersprachen. Perspektiven der Informatik 1993: 86-90
6. V. Claus, R. Wilhelm: Einleitung. Perspektiven der Informatik 1993: 9-12
7. R. Wilhelm, O. Spaniol: Parallele und verteilte Systeme. Perspektiven der Informatik 1993:

90-94
8. B. Robinet, R. Wilhelm: ESOP 86, European Symposium on Programming, Saarbrücken,

Federal Republic of Germany, March 17-19, 1986, Proceedings, LNCS 213, Springer 1986
9. R. Wilhelm: GI - 10. Jahrestagung, Saarbrücken, 30. September - 2. Oktober 1980, Pro-

ceedings Springer 1980
10. R. Wilhelm and D. Maurer. Übersetzerbau - Theorie, Konstruktion, Generierung. Springer,

Berlin, Germany, 1992, 2. Auflage Springer 1997
11. R. Wilhelm and D. Maurer. Les Compilateurs, théorie, construction, génération. Masson,

Paris, France, 1994.
12. R. Wilhelm and D. Maurer. Compiler Design: Theory, Construction, Generation. Addison-

Wesley, Reading, MA, 1996.
13. P. Caspi, A. L. Sangiovanni-Vincentelli, Luı́s Almeida, A. Benveniste, B. Bouyssounouse,

G. C. Buttazzo, I. Crnkovic, W. Damm, J. Engblom, G. Fohler, M. Garcı́a-Valls, H. Kopetz,
Y. Lakhnech, François Laroussinie, L. Lavagno, G. Lipari, F. Maraninchi, P. Peti, J. An-
tonio de la Puente, N. Scaife, J. Sifakis, R. de Simone, M. Törngren, P. Verı́ssimo, A.J.
Wellings, R. Wilhelm, T.A.C. Willemse, W. Yi: Guidelines for a Graduate Curriculum on
Embedded Software and Systems. ACM Trans. Embedded Comput. Syst. 4(3): 587-611
(2005)

14. R. Wilhelm: Imperative, prädikative und funktionale Programmierung (Kurzfassung). GI
Jahrestagung 1982: 188-193

15. J. Messerschmidt, R. Wilhelm: Constructors for Composed Objects. Comput. Lang. 7(2):
53-59 (1982)

16. R. Wilhelm: Symbolische Programmausführung - Das aktuelle Schlagwort. Informatik
Spektrum 6(3): 170 (1983)

17. J. Loeckx, K. Mehlhorn, R. Wilhelm: Grundlagen der Programmiersprachen. Teubner, 1986
18. G. Becker, B. Kuhn, D. Maurer, R. Wilhelm: SiATEX - eine interaktive Arbeitsumgeubng

für TEX. Innovative Informations-Infrastrukturen 1988: 162-169
19. J. Loeckx, K. Mehlhorn, R. Wilhelm: Foundations of Programming Languages. John Wiley,

1989
20. M. Baston, H.-J. Bach, A. Lucks-Baus, F. Müller, R. Wilhelm: Implementierung der funk-

tionalen Programmiersprache HOPE mit Hilfe von Kombinatoren. Innovative Informations-
Infrastrukturen 1988: 114-131

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

8 T. Reps, M. Sagiv, and J. Bauer

21. R. Wilhelm: Übersetzer für imperative, funktionale und logische Programmiersprachen: Ein
Vergleich (eingeladener Vortrag). Software-Entwicklung 1989: 156-165

22. Y. Ben-Asher, G. Rünger, A. Schuster, R. Wilhelm: 2DT-FP: An FP Based Programming
Language for Efficient Parallel Programming of Multiprocessor Networks. PARLE 1993:
42-55

23. Y. Ben-Asher, G. Rünger, R. Wilhelm, A. Schuster: Implementing 2DT on a Multiproces-
sor. CC 1994: 113-127

24. T. Rauber, G. Rünger, R. Wilhelm: An application specific parallel programming paradigm.
HPCN Europe 1995: 735-740

25. R. Heckmann, R. Wilhelm: A Functional Description of TEX’s Formula Layout. J. Funct.
Program. 7(5): 451-485 (1997)

26. P. Lucas, N. Fritz, R. Wilhelm: The Development of the Data-Parallel GPU Programming
Language CGiS. Int. Conf. on Computational Science, 2006: 200-203

27. H. Ganzinger, R. Wilhelm: Verschränkung von Compiler-Moduln. GI Jahrestagung 1975:
654-665

28. R. Wilhelm, K. Ripken, J. Ciesinger, H. Ganzinger, Walter Lahner, R. Nollmann: Design
Evaluation of the Compiler Generating System MUGI. ICSE 1976: 571-576

29. H. Ganzinger, K. Ripken, R. Wilhelm: Automatic Generation of Optimizing Multipass
Compilers. IFIP Congress 1977: 535-540

30. H. Ganzinger, R. Giegerich, U. Möncke, R. Wilhelm: A Truly Generative Semantics-
Directed Compiler Generator. SIGPLAN Symposium on Compiler Construction 1982: 172-
184

31. R. Wilhelm, M. Alt, F. Martin, M. Raber: Parallel Implementation of Functional Languages.
LOMAPS 1996: 279-295

32. P. Lucas, N. Fritz, R. Wilhelm: The CGiS Compiler-A Tool Demonstration. CC 2006:
105-108

33. R. Giegerich, R. Wilhelm: Implementierbarkeit attributierter Grammatiken. GI Jahresta-
gung 1977: 17-36

34. R. Giegerich, R. Wilhelm: Counter-One-Pass Features in One-Pass Compilation: A Formal-
ization Using Attribute Grammars. Inf. Process. Lett. 7(6): 279-284 (1978)

35. R. Wilhelm: Attributierte Grammatiken. Informatik Spektrum 2(3): 123-130 (1979)
36. R. Wilhelm: LL- and LR-Attributed Grammars. Fachtagung über Programmiersprachen

1982: 151-164
37. U. Möncke, B. Weisgerber, R. Wilhelm: How to Implement a System for Manipulation of

Attributed Trees. Fachtagung über Programmiersprachen 1984: 112-127
38. P. Lipps, U. Möncke, M. Olk, R. Wilhelm: Attribute (Re)evaluation in OPTRAN. Acta Inf.

26(3): 213-239 (1988)
39. Winfried Thome, R. Wilhelm: Simulating Circular Attribute Grammars Through Attribute

Reevaluation. Inf. Process. Lett. 33(2): 79-81 (1989)
40. R. Wilhelm: Attribute Reevaluation in OPTRAN. Attribute Grammars, Applications and

Systems 1991: 507
41. P. Lipps, U. Möncke, R. Wilhelm: An Overview of the OPTRAN System. Attribute Gram-

mars, Applications and Systems 1991: 505-506
42. M. Raber, T. Remmel, E. Hoffmann, D. Maurer, F. Müller, H.-G. Oberhauser, R. Wilhelm:

Complied Graph Reduction on a Processor Network. ARCS 1988: 198-212
43. R. Wilhelm: Code-Optimierung Mittels Attributierter Transformationsgrammatiken. GI

Jahrestagung 1974: 257-266
44. B. Weisgerber, R. Wilhelm: Two Tree Pattern Matchers for Code Selection. CC 1988:

215-229
45. C. Ferdinand, H. Seidl, R. Wilhelm: Tree Automata for Code Selection. Code Generation

1991: 30-50

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Appreciation of the Work of Reinhard Wilhelm 9

46. R. Wilhelm: Tree Tranformations, Functional Languages, and Attribute Grammars. WAGA
1990: 116-129

47. J. Börstler, U. Möncke, R. Wilhelm: Table Compression for Tree Automata. ACM Trans.
Program. Lang. Syst. 13(3): 295-314 (1991)

48. C. Ferdinand, H. Seidl, R. Wilhelm: Tree Automata for Code Selection. Acta Inf. 31(8):
741-760 (1994)

49. P. G. Bouillon, G. Sander, R. Wilhelm: Lokale Optimierung ausnahmebehafteter Pro-
gramme durch Spuroptimierung. Inform., Forsch. Entwickl. 9(2): 72-81 (1994)

50. D. Maurer, R. Wilhelm: MaMa - eine abstrakte Maschine zur Implementierung funktionaler
Programmiersprachen. Inform., Forsch. Entwickl. 4(2): 67-88 (1989)

51. M. Alt, G. Sander, R. Wilhelm: Generation of Synchronization Code for Parallel Compilers.
PLILP 1993: 420-421

52. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, R. Wilhelm: A Semantics for Procedure Local
Heaps and its Abstractions. POPL 2005: 296-309

53. T. Lev-Ami, T. Reps, M. Sagiv, R. Wilhelm: Putting Static Analysis to Work for Verifica-
tion: A Case Study. ISSTA 2000: 26-38

54. F. Martin, M. Alt, R. Wilhelm, C. Ferdinand: Analysis of Loops. CC 1998: 80-94
55. M. Sagiv, N. Francez, M. Rodeh, R. Wilhelm: A Logic-Based Approach to Program Flow

Analysis. Acta Inf. 35(6): 457-504 (1998) 1997
56. R. Wilhelm: Program Analysis: A Toolmaker’s Perspective. SIGPLAN Notices 32(1):

120-121 (1997) 1996
57. R. Wilhelm: Program Analysis - A Toolmaker’s Perspective. ACM Comput. Surv. 28(4es):

177 (1996)
58. M. Sagiv, N. Francez, M. Rodeh, R. Wilhelm: A Logic-Based Approach to Data Flow

Analysis Problem. PLILP 1990: 277-292
59. R. Wilhelm: Computation and Use of Data Flow Information in Optimizing Compilers.

Acta Inf. 12: 209-225 (1979)
60. U. Möncke, R. Wilhelm: Grammar Flow Analysis. Attribute Grammars, Applications and

Systems 1991: 151-186
61. U. Möncke, R. Wilhelm: Iterative Algorithms on Grammar Graphs, 8th Conf. on Graphthe-

oretic Concepts in Comp. Sci. 1982: 177-194
62. M. Sagiv, T. Reps, R. Wilhelm: Solving Shape-Analysis Problems in Languages with De-

structive Updating. POPL 1996: 16-31
63. M. Sagiv, T. Reps, R. Wilhelm: Solving Shape-Analysis Problems in Languages with De-

structive Updating. ACM Trans. Program. Lang. Syst. 20(1): 1-50 (1998)
64. M. Sagiv, T. Reps, R. Wilhelm: Parametric Shape Analysis via 3-Valued Logic. POPL 1999:

105-118
65. R. Wilhelm, M. Sagiv, T. Reps: Shape Analysis. CC 2000: 1-17
66. R. Wilhelm, T. Reps, M. Sagiv: Shape Analysis and Applications. The Compiler Design

Handbook 2002: 175-218
67. M. Sagiv, T. Reps, R. Wilhelm: Parametric Shape Analysis via 3-Valued Logic. ACM Trans.

Program. Lang. Syst. 24(3): 217-298 (2002)
68. E. Yahav, T. Reps, M. Sagiv, R. Wilhelm: Verifying Temporal Heap Properties Specified

via Evolution Logic. ESOP 2003: 204-222
69. T. Reps, M. Sagiv, R. Wilhelm: Static Program Analysis via 3-Valued Logic. CAV 2004:

15-30
70. E. Yahav, T. Reps, M. Sagiv, R. Wilhelm: Verifying Temporal Heap Properties Specified

Via Evolution Logic. Logic Journal of the IGPL 14, 5 (Oct. 2006): 755-784
71. G. Yorsh, T. Reps, M. Sagiv, R. Wilhelm: Logical Characterizations of Heap Abstractions.

ACM Trans. Comp. Logic 8, 1 (Jan. 2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

10 T. Reps, M. Sagiv, and J. Bauer

72. I. Glasner, U. Möncke, R. Wilhelm: OPTRAN, a Language for the Specification of Program
Transformations. Fachtagung über Programmiersprachen 1980: 125-142

73. R. Giegerich, U. Möncke, R. Wilhelm: Invariance of Approximate Semantics with Respect
to Program Transformations. GI Jahrestagung 1981: 1-10

74. R. Wilhelm: A Modified Tree-to-Tree Correction Problem. Inf. Process. Lett. 12(3): 127-
132 (1981)

75. R. Wilhelm: Inverse Currying Transformation on Attribute Grammars. POPL 1984:
140-147

76. F. Warren Burton, D. Maurer, H.-G. Oberhauser, R. Wilhelm: A Space-Efficient Optimiza-
tion of Call-by-Need. IEEE Trans. Software Eng. 13(6): 636-642 (1987)

77. P. Lipps, U. Möncke, R. Wilhelm: OPTRAN - A Language/System for the Specification of
Program Transformations: System Overview and Experiences. CC 1988: 52-65

78. M. Alt, C. Fecht, C. Ferdinand, R. Wilhelm: Transformation Development: TrafoLa-H Sub-
system. PROSPECTRA Book 1993: 539-576

79. D. Johannes, R. Seidel, R. Wilhelm: Algorithm Animation Using Shape Analysis: Visual-
ising Abstract Executions. SOFTVIS 2005: 17-26

80. R. Wilhelm, T. Müldner, R. Seidel: Algorithm Explanation: Visualizing Abstract States and
Invariants. Software Visualization 2001: 381-394

81. B. Braune, R. Wilhelm: Focusing in Algorithm Explanation. IEEE Trans. Vis. Comput.
Graph. 6(1): 1-7 (2000)

82. B. Braune, S. Diehl, A. Kerren, R. Wilhelm: Animation of the Generation and Computation
of Finite Automata for Learning Software. WIA 1999: 39-47

83. G. Sander, M. Alt, C. Ferdinand, R. Wilhelm: CLaX - A Visualized Compiler. Graph Draw-
ing 1995: 459-462

84. M. Alt, C. Ferdinand, F. Martin, R. Wilhelm: Cache Behavior Prediction by Abstract Inter-
pretation. SAS 1996: 52-66

85. C. Ferdinand, R. Wilhelm: On Predicting Data Cache Behavior for Real-Time Systems.
LCTES 1998: 16-30

86. C. Ferdinand, F. Martin, R. Wilhelm, M. Alt: Cache Behavior Prediction by Abstract Inter-
pretation. Sci. Comput. Program. 35(2): 163-189 (1999)

87. C. Ferdinand, R. Wilhelm: Efficient and Precise Cache Behavior Prediction for Real-Time
Systems. Real-Time Systems 17(2-3): 131-181 (1999)

88. H. Theiling, C. Ferdinand, R. Wilhelm: Fast and Precise WCET Prediction by Separated
Cache and Path Analyses. Real-Time Systems 18(2/3): 157-179 (2000)

89. A. Rakib, O. Parshin, S. Thesing, R. Wilhelm: Component-Wise Instruction-Cache Behav-
ior Prediction. ATVA 2004: 211-229

90. R. Wilhelm: Why AI + ILP Is Good for WCET, but MC Is Not, Nor ILP Alone. VMCAI
2004: 309-322

91. S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wilhelm, C.
Ferdinand: An Abstract Interpretation-Based Timing Validation of Hard Real-Time Avion-
ics Software. Proc. Int. Performance and Dependability Symp.: 625-632

92. C. Ferdinand, D. Kästner, F. Martin, M. Langenbach, M. Sicks, S. Wilhelm, R. Heckmann,
Nico Fritz, S. Thesing, F. Fontaine, H. Theiling, M. Schmidt, A. A. Evstiougov-Babaev, R.
Wilhelm: Validierung des Zeitverhaltens von kritischer Echtzeit-Software. GI Jahrestagung
(1) 2003: 335-339

93. C. Ferdinand, R. Heckmann, H. Theiling, R. Wilhelm: Convenient User Annotations for a
WCET Tool. WCET 2003: 17-20

94. R. Wilhelm, J. Engblom, S. Thesing, D.B. Whalley: Industrial Requirements for WCET
Tools - Answers to the ARTIST Questionnaire. WCET 2003: 39-43

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Appreciation of the Work of Reinhard Wilhelm 11

95. R. Heckmann, M. Langenbach, S. Thesing, R. Wilhelm: The Influence of Processor Archi-
tecture on the Design and the Results of WCET Tools. Proc. of the IEEE 91(7): 1038-1054
(2003)

96. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S.
Thesing, R. Wilhelm: Reliable and Precise WCET Determination for a Real-Life Processor.
EMSOFT 2001: 469-485

97. C. Ferdinand, D. Kästner, M. Langenbach, F. Martin, M. Schmidt, J. Schneider, H. Theil-
ing, S. Thesing, R. Wilhelm: Run-Time Guarantees for Real-Time Systems - The USES
Approach. GI Jahrestagung 1999: 410-419

98. R. Wilhelm: Timing Analysis and Validation for Real-Time Systems - Guest Editor’s Intro-
duction. Real-Time Systems 17(2-3): 127-129 (1999)

99. R. Wilhelm: Timing Analysis and Timing Predictability. FMCO 2004: 317-323
100. R. Wilhelm: Formal Analysis of Processor Timing Models. SPIN 2004: 1-4
101. L. Thiele, R. Wilhelm: Design for Timing Predictability. Real-Time Systems 28(2-3):

157-177 (2004)
102. R. Wilhelm: Run-Time Guarantees for Real-Time Systems. FORMATS 2003: 166-167
103. R. Wilhelm: Determining Bounds on Execution Times. In R. Zurawski, editor, Handbook

on Embedded Systems, pages 14-1,14-23. CRC Press, 2005.
104. http://www.absint.com/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis

Christian Ferdinand1, Florian Martin1, Christoph Cullmann1,
Marc Schlickling1,2, Ingmar Stein1, Stephan Thesing2,

and Reinhold Heckmann1

1 AbsInt Angewandte Informatik GmbH
Science Park 1, D-66123 Saarbrücken, Germany

info@absint.com
http://www.absint.com

2 Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany
{schlickling,thesing}@cs.uni-sb.de

http://rw4.cs.uni-sb.de

Abstract. The worst-case execution time analyzer aiT originally devel-
oped by Saarland University and AbsInt GmbH computes safe and pre-
cise upper bounds for the WCETs of tasks. It relies on a pipeline model
that usually has been handcrafted. We present some new approaches aim-
ing at automatically obtaining a pipeline model as required by aiT from
a formal processor description in VHDL or Verilog. The derivation of the
total WCET from the basic-block WCETs requires knowledge about up-
per bounds on the number of loop iterations. We present a new method
for loop bound detection using dataflow analysis to derive loop invari-
ants. A task may contain infeasible paths caused by conditionals with
logically related conditions. We present a static analysis that identifies
and collects conditions from the executable, and relates these collections
to detect infeasible paths. This new analysis uses the results of a novel
generic slicer on the level of binary code.

1 Introduction

Many tasks in safety-critical embedded systems have hard real-time character-
istics. A schedulability analysis has to be performed in order to guarantee that
all timing constraints will be met [1]. It requires the worst-case execution time
(WCET) of each task in the system to be known prior to its execution. The
worst-case execution time analyzer aiT originally developed by Saarland Univer-
sity and AbsInt GmbH computes safe and precise upper bounds for the WCETs
of tasks (see Section 2).

Input of the analyzer is an executable. After decoding it, value analysis com-
putes upper and lower bounds for the values in the registers and memory cells.
Then a microarchitecture analysis computes the WCETs of basic blocks taking
into account cache and pipeline behavior. It relies on a pipeline model that usu-
ally has been handcrafted. In Section 6, we present some new approaches aiming
at automatically obtaining a pipeline model as required by aiT from a formal
processor description in VHDL or Verilog.

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 12–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 13

The derivation of the total WCET from the basic-block WCETs requires
knowledge about upper bounds on the number of loop iterations. We present
a new method for loop bound detection using dataflow analysis to derive loop
invariants in Section 3.

A task may contain infeasible paths caused by conditionals with logically re-
lated (weaker, stronger, or even equivalent) conditions. Including such infeasible
paths in the global WCET computation may lead to a huge overestimation of
the WCET. In Section 4, we present a static analysis that identifies and collects
conditions from the executable, and relates these collections to detect infeasible
paths. This new analysis uses the results of a novel generic slicer on the level of
binary code that is presented in Section 5.

2 Worst-Case Execution Time Prediction by aiT

The determination of the WCET of a task is a difficult problem because of
the characteristics of modern software and hardware [2]. Caches, branch target
buffers, and pipelines are used in virtually all performance-oriented processors.
Consequently the timing of the instructions depends on the execution history.
Hence, the widely used classical methods of predicting execution times are not
generally applicable. Software monitoring and dual-loop benchmark change the
code, which in turn changes the cache behavior. Hardware simulation, emulation,
or direct measurement with logic analyzers can only determine the execution
time for some fixed inputs.

In contrast, abstract interpretation [3] can be used to efficiently compute
a safe approximation for all possible cache and pipeline states that can occur
at a program point in any program run with any input. These results can be
combined with ILP (Integer Linear Programming) techniques to safely predict
the worst-case execution time and a corresponding worst-case execution path.

The overview paper [4] describes different approaches to the WCET problem
and surveys several commercially available tools and research prototypes. Here
we concentrate on AbsInt’s aiT WCET analyzer tools. These tools get as input
an executable, user annotations, a description of the (external) memories and
buses (i.e. a list of memory areas with minimal and maximal access times), and
a task (identified by a start address). A task denotes a sequentially executed
piece of code (no threads, no parallelism, and no waiting for external events).
This should not be confused with a task in an operating system that might
include code for synchronization or communication. Effects of interrupts, IO
and timer (co-)processors are not reflected in the predicted runtime and have to
be considered separately (e.g., by a quantitative analysis).

aiT operates in several phases (see Figure 1). First a decoder reads the ex-
ecutable, identifies the instructions and their operands, and reconstructs the
control flow [5]. The reconstructed control flow is annotated with the informa-
tion needed by subsequent analyses and then translated into CRL (Control-Flow
Representation Language).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

14 C. Ferdinand et al.

Fig. 1. Phases of WCET computation

The original control-flow graph is modified by the so-called loop transforma-
tion, which turns loops into separate routines that call themselves recursively.
The purpose of this loop transformation is to enhance the precision of timing
analysis in presence of loops. Note that loop transformation only concerns the
graphs used as internal representation; the executable itself is not affected.

Figure 2 shows the effect of loop transformation on a simple loop. The picture
on the left shows the control-flow graph of routine F that contains such a simple
loop. The routine is entered at b0 and left at the special exit node end. In a kind
of pseudo source code, this routine could be specified as

routine F {
b0;
while (b1) b2;
b3;

}

The picture on the right hand side of Figure 2 shows the result of loop trans-
formation. The loop has been turned into a separate loop routine named F.L1
that is called from F at loop call F.L1; the calling relationship is indicated by
the arrow from routine F to routine F.L1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 15

Fig. 2. Loop transformation

In pseudo source code, the transformed program could be specified as

routine F {
b0;
loop_call_F.L1: call F.L1;
b3;

}
routine F.L1 {
if (b1) {
b2;
loop_call_rec_F.L1: call F.L1;

}
}

Thus, iteration has been replaced by recursion: the loop routine calls itself at
loop call rec F.L1, indicated by the arrow from loop call rec F.L1 to b1.
The loop routine is left if b1 is false, which is depicted by the arrow from b1 to
end.

The loop-transformed control-flow graph serves as the input for all further
analyses. Value analysis tries to determine the values in the processor registers
for every program point and execution context. Often it cannot determine these
values exactly, but only finds safe lower and upper bounds, i.e. intervals that are
guaranteed to contain the exact values. The results of value analysis are used to
determine possible addresses of indirect memory accesses—important for cache
analysis—and in loop bound analysis.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

16 C. Ferdinand et al.

WCET analysis requires that upper bounds for the iteration numbers of all
loops be known. Previous versions of aiT tried to determine the number of loop
iterations by a loop bound analysis, that relied on a combination of value analysis
and pattern matching, which looks for typical loop patterns. In general, these
loop patterns depend on the code generator and/or compiler used to generate the
code that is being analyzed. There are special aiT versions adapted to various
generators and compilers. In Section 3, we present a new method for loop bound
analysis that is entirely based on data-flow analysis and therefore provides a more
generic approach since it does not rely on compiler-specific or generator-specific
code patterns.

Cache analysis classifies the accesses to main memory. The analysis in our tool
is based upon [6], which handles analysis of caches with LRU (Least Recently
Used) replacement strategy. However, it had to be modified to reflect the non-
LRU replacement strategies of common microprocessors: the pseudo-round-robin
replacement policy of the ColdFire MCF 5307, and the PLRU (Pseudo-LRU)
strategy of the PowerPC MPC 750 and 755. The modified algorithms distinguish
between sure cache hits and unclassified accesses. The deviation from perfect
LRU is the reason for the reduced predictability of the cache contents in case of
ColdFire 5307 and PowerPC 750/755 compared to processors with perfect LRU
caches [7].

Pipeline analysis models the pipeline behavior to determine execution times
for a sequential flow (basic block) of instructions. It takes into account the current
pipeline state(s), in particular resource occupancies, contents of prefetch queues,
grouping of instructions, and classification of memory references as cache hits or
misses. The result is an execution time for each instruction in each distinguished
execution context.

Pipeline analysis relies on a pipeline model that usually has been handcrafted,
using mainly the processor documentation as input. A more reliable and com-
plete source of information about the timing behavior of the processor pipeline
is given by formal processor descriptions in VHDL or Verilog (if available). In
Section 6, we present some new approaches aiming at automatically obtaining a
pipeline model as required by aiT from such a formal processor description.

Using the results of the micro-architecture analyses, path analysis determines
a safe estimate of the WCET. While the analyses described so far are based
on abstract interpretation, integer linear programming is used for path analysis.
The program’s control flow is modeled by an integer linear program [8] so that
the solution to the objective function is the predicted worst-case execution time
for the input program.

Detailed information about the WCET, the WCET path, and the possible
cache and pipeline states at any program point are visualized in the aiSee tool [9].

The predicted WCET is in general an upper bound of the real WCET. Some
imprecision may be caused by the presence of infeasible paths not noticed by
aiT. Consider for instance code such as

if (x > 0) b1; b2; if (x < 0) b3;

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 17

where x may hold any positive or negative value depending on the inputs and is
not modified in any of the three blocks. Then the path b1→ b2→ b3 that includes
both b1 and b3 is infeasible because b1 and b3 cannot be executed together in
the same run through this code snippet. Yet each of the three blocks is feasible
since there are runs that execute b1 and other runs that execute b3. aiT’s tradi-
tional path analysis does not track conditions and will display the infeasible path
b1→ b2→ b3 as the worst-case execution path. This is a safe but imprecise ap-
proximation of the real WCET since the infeasible path b1→ b2→ b3 needs more
time than the feasible paths b1→ b2 and b2→ b3. In Section 4, we present a static
analysis that identifies and collects conditions from the executable, and relates
these conditions to detect implications and equivalences among them that cause
infeasible paths. This new analysis uses the results of a novel generic slicer on the
level of binary code that is presented in Section 5.

3 Loop Bound Detection by Data-Flow Analysis

To calculate the WCET for a program, safe upper bounds for the iterations of
all included loops must be known. To get a high precision WCET estimation,
lower bounds should be known, too.

As programs tend to contain many loops with bounds depending on the call
sites of the surrounding routine, relying on user annotations for loop bounds
would cause too much work for the user. Beside that, there is also the inherent
danger that user-annotated bounds could contain errors. Therefore aiT aims at
deriving safe loop bounds automatically by using a static analysis.

Until now, a solely pattern-based approach for loop bound detection is used.
This method needs adjustments for all supported compilers and in some cases
even different optimization levels. While experience has shown that this works
well for many simple loops, no bounds are detectable for more complex loops
with multiple modifications of the loop counter inside one iteration.

To overcome these restrictions, we introduced a new method for loop bound
detection that uses an interprocedural data-flow analysis to derive loop invariants
from the semantics of the instructions. This new analysis does not depend on the
compiler used or optimization level but only on the semantics of the instruction
set for the target machine. It is able to handle loops with multiple exits and
multiple modifications of the loop counter per iteration including modifications
in procedures called from the loop.

In this section, we describe the techniques behind the old and new loop anal-
yses, compare their results, and provide insight on how the new analysis will be
used in aiT. First we start in Section 3.1 with introducing the common basis of
both analyses. In Section 3.2 two small examples for loops are shown that will
be used later as running examples to illustrate the application of both analy-
ses. Section 3.3 will cover the pattern-based approach. Then we introduce the
new data-flow based approach in Section 3.4 and compare both analyses in Sec-
tion 3.5. Finally we show how the new analysis is integrated into the WCET
Analyzer aiT in Section 3.6.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

18 C. Ferdinand et al.

3.1 Common Basis for Both Analyses

As both loop analyses have been developed to be used as part of the WCET
Analyzer aiT, they are using the aiT framework presented in Section 2. In
particular, they operate on loops that have been transformed to tail-recursive
routines by the loop transformation. The next section will show two example
loop routines, which are used in the subsequent description of both analyses. A
loop iteration equals one execution of the loop routine.

To avoid code duplication, the analyses use the existing value analyzer of the
framework to query the addresses of memory accesses and to obtain knowledge
about the contents of accessed registers and memory cells. As the value analysis
produces integer intervals as approximations for addresses and memory contents,
both loop analyses use intervals for their calculations, too. Beside this, the loop
analyses query the value analysis for infeasible control-flow edges, i.e. edges that
are not taken in any run of the program. This information is used in both analyses
to exclude unreachable loops from loop bound detection. For more details about
the value analysis please refer to [10].

The analyses take into account that programs often contain nested loops for
which the iteration bounds of the inner loops depend on the iteration bounds of
outer loops. Therefore both analyses sort the loops by their nesting depth and
analyze them from the outside to the inside. After handling one nesting depth,
value analysis is restarted with the new derived loop bounds as input to get
more precise information while looking for the bounds of the inner loops.

As value analysis gets more precise if it also knows the lower bound of a
loop, both analyses output not only the safe upper bounds needed to calculate
any WCET, but intervals that are guaranteed to contain all possibilities for the
number of loop iterations.

3.2 Running Examples

To illustrate the working of the two loop analyses, two simple loops found in
programs for the PowerPC architecture are chosen as examples. Figures 3 and
4 show the corresponding loop routines.

Both loops use machine register 31 as their loop counter. We assume for the
upcoming calculations and analyses that this register contains the value zero
before the first loop iteration.

The loop in Figure 3 is a simple loop incrementing its loop counter in each
iteration by exactly one. The loop is first entered with counter value 0, then
with value 1, etc. until it reaches 16. When it is entered with counter value
16, the test r31 < 16 fails for the first time so that there are no further loop
iterations. Therefore, there are exactly 17 loop iterations. The loop analysis
should thus return the interval [17, 17] (the most precise answer) or any larger
interval containing 17 (correct, but imprecise).

The loop in Figure 4 is similar, but a counter increment of one or two is pos-
sible, as the control flow forks into two branches inside the loop routine. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 19

Fig. 3. A loop with one loop test and single increment

safe upper bound is still 17 like in the first example, but the lower bound is
now only 9. The result of the loop analysis should thus be [9, 17] or any larger
interval.

3.3 The Pattern-Based Approach

The current loop analysis in aiT uses fixed patterns to detect the loop bounds
for common loop variants. These patterns are handcrafted for the supported
compilers and their different optimization levels. Some intraprocedural analyses
are used to handle the matching, like intraprocedural slicing and dominator/
postdominator analysis.

A typical loop pattern to detect loops generated by C compilers from for-
loops consists of the following conditions:

– The loop is only left by one conditional branch;
– a compare of a register with a constant sets the condition for this branch;
– the register that is compared is incremented by a constant value at the same

instruction in each iteration;
– the start value of the register is known by the value analysis.

To match even such a simple pattern, multiple internal subanalyses must be
performed. For this example pattern, the following steps would be needed:

– Check for a conditional branch instruction that dominates and postdomi-
nates the recursive call of the loop routine;

– slice backwards from the branch inside the loop routine to find the compare
instruction modifying the condition flag evaluated by the branch instruction;

– test whether it is a compare of a register with a constant;
– slice backwards from the compare instruction to find all instructions modi-

fying the registers/memory cells used in the compare instruction;

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

20 C. Ferdinand et al.

Fig. 4. A loop with one loop test and two different increments

– test whether only one instruction is found in the last step and whether it is
a constant addition/subtraction;

– test whether this one instruction dominates and postdominates the compare
instruction;

– query the value analysis for the start value of the used register;
– calculate the bounds by using the now known start/end value and increment.

If we apply this pattern to our example loop of Figure 3, we get a match,
as this loop is left only by a conditional branch after the compare of the loop
counter with some constant and the loop counter is incremented in each round
by one. The resulting bound would be [17, 17], which is in this case the optimal
solution.

The slightly more complex loop of Figure 4 is not matched by this pattern,
as the loop counter is not incremented in each iteration by the same instruction,
but by two different addi instructions in two different control-flow branches.
Therefore no loop bound can be determined and thus no WCET is obtained.

Given how many steps are already needed for this simple pattern and that
all this needs to be done by handwritten code, it is clear that bigger patterns
to handle more complex loops, like the one shown above, are hard to imple-
ment correctly and to maintain. This illustrates the need for a new kind of loop
analysis, which will be presented in the next section.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 21

3.4 Improved Loop Analysis Based on Data-Flow Analysis

To enhance the loop bound detection for more complex loops and to avoid the
dependencies on compiler versions and optimization levels, a new loop bound
analysis based on data-flow analysis was designed. The following provides a brief
introduction to this new method. More information can be found in [11].

A run of the new analysis consists of the following phases:

1. Classification of all loops;
2. Detection of possible loop counters;
3. Data-flow analysis to derive the invariants;
4. Analysis of the loop tests to calculate the loop bounds.

Loop classification. In the first phase, loops are classified using information
obtained from value analysis. Loops that can never be reached are excluded from
further analysis and get the safe bound [0, 0] as the corresponding loop routines
are never called. For the remaining loops, the algorithm checks whether value
analysis already knows after how many recursive calls their loop routine cannot
be called again. If this number is known, it can be taken as a safe upper bound
for the loop, even if the further stages fail to produce results.

Search for possible loop counters. For the loops that still need to be ana-
lyzed, a simple intraprocedural analysis is run to search all registers and memory
cells accessed inside the loop routine. Then it is checked whether value analysis
knows their start value, i.e. their value before the first call of the loop routine.
The registers and memory cells with known start value are considered as poten-
tial loop counters. They are further examined by a data-flow analysis to derive
loop invariants (see below).

Our first example loop (Figure 3) only accesses register 31. For our second
example (Figure 4), the intraprocedural analysis would find registers 30 and
31. Assuming that value analysis only knows the start value of register 31, this
register would be the only potential loop counter in both loops.

Invariant analysis. This data-flow analysis is the core of the improved loop
analysis. For each potential loop counter detected in the previous phase, it cal-
culates for each program point of the loop routine a set of expressions, called
invariants, that indicate how the counter is modified from the entry of the loop
routine to this point in each iteration.

The analysis uses a special language for the expressions, IVALA. Variables
in IVALA expressions describe registers or memory cells, including information
about the register number or memory address and the data size in bytes. The
loop counter in our examples would be expressed in IVALA as (register , 31, 4),
as it is register 31, which is 4 byte wide.

The language allows to express assignment between variables, assignment of a
constant integer interval to a variable, and modification of a variable by adding a
constant integer interval. This seems to be very restrictive, as other modifications
like non-constant addition or any kind of multiplication are not supported, but

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

22 C. Ferdinand et al.

the evaluation in the next section will show that it is sufficient to detect most
loop bounds in a program, as the most common loops are counting loops. Besides,
this restriction serves to keep the complexities of invariant analysis and of the
subsequent bound calculation within reasonable bounds.

For the loop routine of our first example shown in Figure 3 the analysis would
e.g. calculate the following expression set for the ingoing edge of the recursive
call of the loop routine:

{(register , 31, 4) = (register , 31, 4)◦ + [1, 1]}

where (register , 31, 4)◦ is a placeholder for the value of (register , 31, 4) at the
beginning of the loop iteration. The expression indicates that register 31 is in-
cremented by exactly one in each iteration. For the example in Figure 4 the
analysis would calculate:

{(register , 31, 4) = (register , 31, 4)◦ + [1, 2]}

This provides the information that the register is incremented by one or two.

Evaluation of the loop tests and bound calculation. In this phase, for
each loop all existing loop tests will be evaluated. A loop test is a basic block
with a conditional branch leaving the loop routine. For each test a bound will
be calculated. All these bounds are then combined to one bound for the whole
loop. The following steps are needed to calculate the bound for a loop test:

– The branch type is determined;
– the compare instruction evaluating the condition used by the branch is

searched;
– the variables used in the compare instruction are detected;
– the flow-analysis results are used to get expressions for the found variables;
– an equation system is built and solved to get the concrete loop bound.

A detailed description of this process can be found in [11].
For our first example, this process would look as follows:

– Inspection of the branch in basic block 0x100044 yields that the loop is left
on greater-equal.

– A search for the corresponding compare instruction finds the first instruction
in the block.

– As variable (register , 31, 4) and the constant integer 16 are used, the exit
expression is (register , 31, 4) ≥ 16.

– The flow-analysis will yield that (register , 31, 4) is incremented by one in
each iteration.

– The solver will compute the concrete bound [17, 17], which is the optimal
solution.

The handling of the second example is analogous, except that the flow-analysis
delivers an increment of [1, 2] and therefore the solver would calculate the
bound [9, 17].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 23

3.5 Evaluation of Both Methods

While the new analysis is more generic by design, we still need to demonstrate
that it is applicable to real-world programs. Therefore an extensive evaluation
with both code from a compiler benchmarks suite and with real software from
the embedded-system world was performed in [11].

The results show that the new analysis method works for most loops equally
well or better than the pattern-based method. Only in some corner cases, the old
analysis takes the lead, as it has special patterns for them. The runtime costs of
both analyses are comparable: the new analysis is slower than the pattern-based
approach only by a constant factor of at most three for some tests.

To show that the new analysis is compiler-independent, Tables 1 and 2 present
the results of both analyses for code generated by the DiabData and GNU C
compiler, respectively. While both analyses work reasonably well for the Diab-
Data compiler, only the data-flow based analysis works for the GNU C compiler
without adjustments. To obtain comparable results, the pattern-based analysis
would require additional effort to develop loop patterns adapted to the code
generated by the GNU C compiler.

Table 1. Synthetic tests with one single loop, DiabData

test optimal bound old analysis new analysis

do char 001 [1, ∞] [1, ∞] [1, ∞]
do char 008 [16] [16] [16]
do char 009 [16] [16] [1, ∞]
do char 010 [1, 16] [1, 16] [1, ∞]

for char 001 [17] [1, ∞] [17]
for char 017 [17] [17] [17]
for char 049 [1] [1, 17] [1, 17]
for char 058 [17] [1, ∞] [17]
for char 061 [9] [1, ∞] [9]
for char 062 [17] [1, ∞] [17]
for int 001 [17] [1, ∞] [17]
for int 017 [17] [17] [17]
for int 049 [1] [1, 17] [1, 17]
for int 058 [17] [1, ∞] [17]
for int 061 [9] [1, ∞] [9]
for int 062 [17] [1, ∞] [17]

3.6 Integration in aiT, and Outlook

As the evaluation has shown, both analyses have some benefits in their own
areas. While the pattern-based analysis can keep the lead for special cornercases
where handcrafted patterns can play out their strength, the data-flow based
analysis works best for typical loops occurring in standard programs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

24 C. Ferdinand et al.

Table 2. Synthetic tests with one single loop, GNU

test optimal bound old analysis new analysis

do char 001 [1, ∞] [1, ∞] [1, ∞]
do char 008 [16] [1, ∞] [16]
do char 009 [16] [1, ∞] [16]
do char 010 [1, 16] [1, ∞] [1, 16]
for char 001 [17] [1, ∞] [17]
for char 017 [17] [1, ∞] [17]
for char 049 [1] [1, ∞] [1, 17]
for char 058 [17] [1, ∞] [17]
for char 061 [9] [1, ∞] [9]
for char 062 [17] [1, ∞] [17]
for int 001 [17] [1, ∞] [17]
for int 017 [17] [1, ∞] [17]
for int 049 [1] [1, ∞] [1, 17]
for int 058 [17] [1, ∞] [17]
for int 061 [9] [1, ∞] [9]
for int 062 [17] [1, ∞] [17]

As aiT is aimed to provide the best loop bound detection possible, both
analyses will be used in combination. First the fast pattern-based analysis is
applied, and only for the loops it is not able to handle, the more generic new
analysis is run. This avoids any slow down for the analysis of programs for which
the old analysis already detected all bounds, and enables the calculation of the
WCET for programs with more complex loops.

This combined strategy is already in use for the PowerPC and M32 architec-
tures, with plans to extend it to the VAMP architecture in the near future.

4 Detecting Infeasible Paths by Analyzing Conditions

The result of an ILP-based path analysis is a path that represents a safe upper
bound of the execution time. However, it is possible that this path can never
occur at runtime. At a fork in the control-flow graph, the decision which of the
successor nodes will be executed next often depends on the path that leads to
the fork. Depending on the execution history, only one of two successors might
be feasible. Those dependencies are not accounted for in the ILP, and the path
analysis views both nodes as possible successors. This situation can lead to a
drastic overestimation of the real WCET.

In this section, we introduce an extension of the aiT analyzer that incor-
porates those dependencies into the ILP, which in turn improves the WCET
prediction. The analysis produces additional ILP constraints that can exclude
several classes of infeasible paths.

The example in Figure 5 illustrates how flow facts can be beneficial for the
WCET computation. In this example, the path analysis has to select the succes-
sor nodes with the highest costs for both of the branches A and D. The resulting

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 25

A

B C

D

E F

G

10 100

100 10

true

false true

false

Fig. 5. A control flow graph

WCET is the sum of the costs associated with the edges constituting the critical
path, i.e. 100 + 100 = 200.

However, if the analysis finds out that a positive outcome of the branch con-
dition at A implies a positive outcome of the branch condition at D, it creates
a flow fact which allows only the paths ACDFG and ABDEG. As a result, the
new critical path has a WCET of 100 + 10 = 110.

Such constructs as in the example often occur in code generated by code-
generators such as SCADE or in mode-driven code where many execution paths
are controlled via relatively few flags.

4.1 Overview

The input for the flow-constraint analysis is the control-flow graph of the pro-
gram. While traversing this graph, each conditional branch is visited and an
expression describing the branch condition is built. This step is trivial for high-
level programming languages where the conditions are given in the source code,
but as we are facing machine code, we have to reconstruct this information. Using
the slicing component presented in the next section 5, we find a set of instruc-
tions and variables that contribute to the branch conditions. If all instructions
contained in that set can be mapped to arithmetic or comparison operations, we
can build a boolean expression representing the branch condition.

In a second step, the expressions are transformed into another representation
suitable for a solver library (Omega). The solver is used to compare two expres-
sions, i.e. to check whether one expression implies the other or whether they

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

26 C. Ferdinand et al.

are even equivalent. Beforehand, we test whether the two expressions can actu-
ally occur on the same path because not every implication allows for a sensible
statement about the program.

The results of the comparisons are used to create new ILP constraints that
are added to the ILP for the path analysis. This leads to a higher precision of
the WCET prediction, i.e. a predicted worst-case execution time that is lower
than the predicted WCET without the flow-constraint analysis, but still is a safe
upper bound of the real WCET.

4.2 The Flow-Constraint Analysis

The flow-constraint analysis traverses the control-flow graph and inspects all
conditional branches, i.e. all inner nodes with more than one successor that are
not call nodes.

If value analysis finds the exact (singleton) value of the condition register at
a conditional branch, it marks one of the two outgoing edges as infeasible, and
additional flow facts cannot improve the situation any more. Hence, only those
branches where value analysis cannot deduce the value of the condition register
are relevant for the flow-fact generation; the ones whose outcome is already
determined by the value analysis are skipped.

A backward slice is computed for each considered conditional branch using
the condition register as the initial target. A slice is a set of program points that
directly or indirectly participate in the computation of the slicing criterion. A
method how to compute slices is presented in the next section 5.

Definition 1. A slice is called linear iff the program points contained in the slice
can be ordered such that each program point is dominated by its predecessor. A
linear slice that is ordered like that is called an ordered slice.

Example 1 (Linear slice). Figure 6 shows two control-flow graphs. The instruc-
tions that constitute two different slices are highlighted using a bold border. The
left graph represents a linear slice because the two basic blocks can be ordered as
A, D and block A dominates block D. In contrast, the right graph is non-linear
because block C dominates neither D nor A.

We now restrict the analysis to linear slices. This excludes exactly those con-
ditions that are built up on several different paths. The ordered slices are then
transformed into slice trees. The inner nodes of a slice tree represent instructions
while the leaves are either registers, memory cells, or constants (see for instance
Figure 7).

Slice trees containing memory accesses whose target addresses cannot be de-
termined statically cannot be used for the following comparisons and are there-
fore discarded.

A slice tree is an intermediate representation that can be transformed into
other formats for different theorem provers. This process is described in the
following for the Omega library.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 27

A

B C

D

A

B C

D

Fig. 6. Linear slice (left) and non-linear slice (right)

bc.gt

cmpi0xd 0x2c.t

0 add 0

r3 r4

Fig. 7. A slice tree

The Omega Project is a collection of “Frameworks and Algorithms for the
Analysis and Transformation of Scientific Programs” by William Pugh and the
Omega Project Team [12]. In particular, Omega offers a tautology test for Pres-
burger formulas that we will use to compare the branch expressions.

Definition 2. Presburger arithmetic is defined as an arithmetic with the con-
stants 0 and 1, a function +, a relation = and the axioms

1. ∀x : ¬(0 = x + 1);
2. ∀x∀y : ¬(x = y) ⇒ ¬(x + 1 = y + 1);
3. ∀x : x + 0 = x;
4. ∀x∀y : (x + y) + 1 = x + (y + 1);
5. If P (x) is a formula consisting of the constants 0, 1, +, = and a single free

variable x, then the following formula is an axiom

(P (0) ∧ ∀x : P (x) ⇒ P (x + 1)) ⇒ ∀x : P (x).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

28 C. Ferdinand et al.

Slice trees are translated into Omega trees by mapping the semantics of the
individual instructions to arithmetic or comparison operations. Instructions with
unknown semantics are treated as symbolic functions. Several patterns are used
during the translation of instructions into Omega operators that allow for the
combination of multiple instructions into a single operator. While the inner nodes
of Omega trees represent operations, the leaves are translated as follows:

– Integer constants remain constants.
– Registers and memory cells become free variables. A prefix of the variable

name encodes the type of the variable as shown in Table 3.

Table 3. Omega tree leaves

Prefix Type Suffix

r Register Register number
m Memory cell (word) Memory address
h Memory cell (halfword) Memory address
b Memory cell (byte) Memory address

>

+ 0

r3 r4

Fig. 8. An Omega tree

Figure 8 shows the Omega tree resulting from the slice tree of Figure 7 using
a simplified notation.

If all conditional branches are annotated with Omega trees, we can compare
the branch conditions of two basic blocks A and B by testing several boolean
expressions using Omega: A ⇒ B, A ⇒ ¬B, ¬A ⇒ B, ¬A ⇒ ¬B and the same
expressions with A and B swapped. If Omega determines one of the expressions
to be a tautology, we can derive the flow constraints according to Table 4. The
names at, af , bt, and bf stand for the true and false successors of the two basic
blocks a and b, and c(x) the execution count of basic block x. The table includes
expressions that are logically equivalent to cover those cases where some of the
successors at, af , bt, and bf are unavailable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 29

Table 4. Implications and corresponding flow constraints

Expression Flow constraint

A ⇒ B c
(
at

)
≤ c

(
bt

)

A ⇒ ¬B c
(
at

)
≤ c

(
bf

)

¬A ⇒ B c
(
af

)
≤ c

(
bt

)

¬A ⇒ ¬B c
(
af

)
≤ c

(
bf

)

B ⇒ A c
(
bt

)
≤ c

(
at

)

B ⇒ ¬A c
(
bt

)
≤ c

(
af

)

¬B ⇒ A c
(
bf

)
≤ c

(
at

)

¬B ⇒ ¬A c
(
bf

)
≤ c

(
af

)

4.3 Evaluation

In order to evaluate the effectiveness of the analysis, we have analyzed a set of test
programs. All tests were performed using aiT for MPC755. Table 5 illustrates how
the WCET changes if path analysis is run without or with the flow constraints
(WCETfc). The last column shows the number of generated flow facts.

Table 5. Results for several test programs

Program WCET WCETfc Improvement Constraints

Synth. example 1 1440 cycles 1154 cycles 19.9 % 4
Synth. example 2 1140 cycles 819 cycles 28.2 % 5

avionic 1 1480 cycles 1420 cycles 4.1 % 1
avionic 2 3178 cycles 3050 cycles 4.0 % 8

zlib 6706 cycles 5242 cycles 21.8 % 2

Table 6. Sizes of the test programs

Program Instructions Basic Blocks Size [Bytes] Type

Synth. example 1 44 13 912 Mach-O
Synth. example 2 38 13 792 Mach-O

avionic 1 764 40 26232192 ELF
avionic 2 523 14 433472 ELF

zlib 163 40 1700 Mach-O

4.4 Outlook

With the main work done, we now look at possible future enhancements and
additional uses of the flow-constraint analysis.

Portability. We plan to implement the analysis for further microarchitectures
besides the PowerPC platform. The ARM platform is a natural extension since
the slicing component already exists for it.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

30 C. Ferdinand et al.

A

C

B

D

A

false

true

true

false

Fig. 9. Implication that cannot be described as a simple flow constraint

Nonlinear slices. Furthermore, it seems worthwhile to examine nonlinear slices
to find out whether new opportunities for optimization arise if the linearity con-
straint is dropped. Nonlinear slices may be handled by using a data-flow analysis
that propagates the node conditions and subsequently combines all conditions
associated with a node. However, the risk is very high that the resulting expres-
sions grow too large for the Omega library and that the runtime increases by
several orders of magnitude.

Theorem-prover interface. In addition to this, other theorem provers could
be evaluated by providing an interface to the flow-constraint analysis. An alter-
native prover could provide a performance superior to Omega in some cases or
offer more functionality such as floating-point support.

Context-sensitive flow constraints. Version 2 of AbsInt’s Control-Flow
Representation Language (CRL2) offers several advantages over the CRL1 lan-
guage that is used in the PowerPC implementation of the analysis. One of them
is the possibility to formulate flow constraints valid in a single context in con-
trast to CRL1 where constraints have to be valid either for each context in a
uniform way or for the sums of the execution counts over all contexts. It can be
beneficial to create flow constraints for individual contexts in order to handle
loops that are not completely unrolled.

Linear combinations. Some implications cannot be accounted for by a sim-
ple flow constraint. Figure 9 illustrates such a situation. The control-flow graph
contains two conditional branches with complementary branch conditions. Both
have only one successor that is not a post-dominator. The constraint that node

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 31

C cannot be reached if node B was taken cannot be expressed as a simple
flow constraint. One needs a constraint that represents a linear combination of
the execution counts of several basic blocks. Which implications result in which
linear combinations is shown in Table 7.

Table 7. Implications and associated linear combinations

Expression Linear combination

A ⇐⇒ ¬B c
(
a
)

= c
(
at

)
+ c

(
bt

)

c
(
a
)

= c
(
af

)
+ c

(
bf

)

A ⇐⇒ B c
(
a
)

= c
(
at

)
+ c

(
bf

)

c
(
a
)

= c
(
af

)
+ c

(
bt

)

Elimination of unreachable code. With a simple extension, flow-constraint
analysis is able to detect some cases of unreachable code and to exclude the
respective code blocks from the subsequent analyses, e.g., pipeline analysis. For
that, a condition of a child node is compared to that of its direct parent. If they
are equivalent or complementary, one of the two successors of the child node can
be marked as infeasible.

PAG. Unreachable code elimination as described above is an example how
the information gathered by flow-constraint analysis can be used for additional
purposes. Another use case is PAG-generated analyzers whose precision can be
improved by path exclusions.

5 Generic Slicing of Binary Code

The complexity of software used in embedded systems grows rapidly whereas
the development cycle is getting shorter and shorter. Furthermore, embedded
software often is subject to strict timing and resource constraints.

While guaranteeing the safeness of an application, the developer needs knowl-
edge about targets of indirect call and branch instructions, which often depends
on values stored in memory. Yet finding the program point(s) where the values
were written to memory may be hard. Slicing may help the developer to find
these point(s).

Another application of slicing has already been introduced in Section 4, where
slicing is used for restricting the set of possible execution paths through a pro-
gram to detect infeasible paths.

This section introduces the idea of a generic slicing tool for binaries. The pro-
posed approach computes slices in an interprocedural, context-sensitive manner
as defined in [13]. First, we briefly introduce program dependency based slicing
in Section 5.1. In Section 5.2 we present some challenges in computing data de-
pendencies. Section 5.3 introduces a new dynamic solution for modeling memory
accesses, and Section 5.4 describes the resulting slicing algorithm. Experimental
results are presented in Section 5.5. Section 5.6 concludes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

32 C. Ferdinand et al.

5.1 Slicing Using Program Dependencies

A program slice according to [14,15,16] consists of all parts of a program that
potentially affect the values computed at a point of interest. This point is called
the slicing criterion. It will be written as C = (n, V), where n denotes a node
in the control-flow graph and V is a subset of the program’s variables. In [17],
Ottenstein and Ottenstein presented a slicing approach based on a program
dependency graph. Horwitz, Reps, and Binkley [13] extended this approach to
compute interprocedural, context-sensitive slices.

Let def (i) denote the set of all variables defined at node i and ref (i) be the
set of all variables referenced at node i. Using these notations, several types of
data dependence can be defined, such as flow dependence, output dependence
and anti-dependence. For slicing, only flow dependence is taken into account:

A node j is flow dependent on a node i if there exists a variable x such that:

– x ∈ def (i),
– x ∈ ref (j),
– there exists a path from i to j without any redefinition of x.

Furthermore, it is necessary to define control dependency between two nodes.
This is usually done in terms of postdominance:

A node j is postdominated by a node i if all paths from j to the exit node of the
control-flow graph contain the node i.
A node j is control dependent on a node i if

– there exists a path π from i to j such that for any u ∈ π, u �= i, node u is
postdominated by j, and

– i is not postdominated by j.

As mentioned in the overview section 2, the annotated control-flow graph ob-
tained from the executable serves as input for slicing. The annotations include
information on used and defined resources, but do not provide any relation be-
tween instructions and registers. Thus, it is necessary to reconstruct the control
and data dependencies.

The reconstruction of control dependencies is analogous to the two-level defi-
nition. It can be computed by two successive standard data-flow analyses, namely
a dominator and a postdominator analysis. The nodes on which a specific node
n of the control-flow graph is control dependent are computed by combining the
data-flow values of these two analyses:

CtrlDep(n) = {m ∈ dfidom(n) | n �∈ dfipdom(m)},

where dfidom(n) and dfipdom(n) return the data-flow values of the dominator
and the postdominator analyses for node n respectively.

Reconstruction of data dependencies, or, to be more precise, of flow dependen-
cies, can be easily formulated as a data-flow problem by computing the reach-
ing definitions for each node in the control-flow graph. A definition reaches a
program point if there is a path from the definition to this point without any

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 33

redefinition. This data-flow problem computes a superset of the flow dependen-
cies (a proof can be found e.g., in [18]).

Computing reaching definitions on binaries requires a mapping f defined on
the set R of processor resources such that f(r) is the set of nodes in the control-
flow graph defining resource r. The domain for reaching-definitions analysis con-
sists of these functions plus additional least and greatest elements ⊥ and
:

domrd ≡ {f | f : R → P(N)} ∪ {⊥,
}

Here, the order of the functions is pointwise, i.e. f
 g iff f(r) ⊆ g(r) for all r
in R. At control-flow joins the union of the incoming information is formed.

5.2 Challenges in Computing Data-Dependencies

On many architectures, assembly instructions can be executed with an optional
guard. The value of such a guard often cannot be determined by static analysis
so that it is not known whether the instruction is executed or not. To be correct,
guarded instructions have to be treated in a different way than the others.

If it is statically not decidable whether an instruction is executed, the incoming
data-flow value has to be preserved and the actual program point has to be added
to the set of defining points for the changed resources. This way of updating
the data-flow value is called a may-update. In the other case (the instruction
is definitively executed), the changes of resources are definitive, and thus, the
incoming value has to be updated by removing all previously existing defining
points for the changed resources. This update is called a must-update.

Another characteristic of hardware architectures are composed registers. These
registers are composed of smaller subregisters that can be accessed with different
names at the assembly level. Figure 10 shows an example for a composed register.
The reaching-definition analysis has to deal with these special registers. For this,
a register tree as shown in Figure 11 has been introduced. An assignment to
register R1 in Figure 10 does not change the content of register R2, but a part
of the content of R changes. Thus, in case of a must-update of R1, a may-
update of R has to be performed. On the other hand, a change of R definitively
affects the registers R1 and R2. In general, all hierarchy ranks below the changed
register have to be updated, whereas all hierarchy levels higher than the changed
one may change their value.

Fig. 10. Example for a composed register

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

34 C. Ferdinand et al.

Fig. 11. Example for a register tree

5.3 Modeling Memory Accesses

The dependencies computed so far are sufficient for the computation of slices on
programs using only registers for computation, but this approach is not suitable
for programs using the memory.

Looking at the example program in Figure 12(a), a slice for the criterion C =
(5, R1)will be wrong if the memory is handled like a normal register (Figure 12(b)).
To be correct, changes ofmemory cells have to be always handled like may-updates.
This leads to the conservative slice displayed in Figure 12(c), but this is often un-
satisfactory. To take the best benefit from a slice, it has to contain as few statements
as possible. The minimal slice for criterion C is shown in Figure 12(d).

0 : M [0] = 1;
1 : M [1] = 2;
2 : R1 = M [0];
3 : R2 = M [1];
4 : R1 = R1 + R2;
5 : M [0] = R1;

(a)

M [1] = 2;
R1 = M [0];

R1 = R1 + R2;

(b)

M [0] = 1;
M [1] = 2;
R1 = M [0];

R1 = R1 + R2;

(c)

M [0] = 1;

R1 = M [0];

R1 = R1 + R2;

(d)

Fig. 12. (a) Example sequence, (b) wrong slice, (c) conservative slice, and (d) minimal
slice for criterion (5, R1)

To get high-quality slicing results, it is necessary to model the memory in
more detail. Thus, a memory function Ξ : A → P(N) has to be determined on
the set A of memory addresses of an architecture such that Ξ(a) is the set of
program points at which the memory cell with address a has been last modified.
The update functions must : (A → P(N)) × N × P(A) → (A → P(N)) and
may : (A → P(N)) × N × P(A) → (A → P(N)) are defined as:

must(f, n, I)(a) =

{
{n}, if a ∈ I,
f(a), if a �∈ I.

and

may(f, n, I)(a) =

{
f(a) ∪ {n}, if a ∈ I,
f(a), if a �∈ I.

With these two update functions, it is possible to set up an analysis that calcu-
lates an approximation of the memory function Ξ.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 35

Unfortunately, a direct implementation of the domain of functions A → P(N)
and the update functions as presented above is too inefficient. Also a partitioning
of the memory in disjoint parts separating different accesses from each other is
generally not computable in static analysis. Thus, there is a need for a model
handling memory accesses and their access widths dynamically. The approach
presented here uses a binary tree structure where each node is labeled with an
interval denoting the boundaries of the memory cells it represents. A leaf is also
labeled with a set of points denoting the program points defining the memory
cells represented by the leaf.

So, the set M of memory trees can be recursively defined as:

A tuple (x1, x2, A) ∈ L ≡ N × N × P(N) is called a leaf.
A tuple (x1, x2, t1, t2) ∈ I ≡ N × N × M × M is called an inner node.
An element m ∈ M is called a memory tree if in case of m = (x1, x2, t1, t2) ∈ I
and w.l.o.g. t1 = (y1, y2, ...) ∧ t2 = (w1, w2, ...)

x1 < x2 ∧ y2 = w1 − 1
∧ y1 = x1 ∧ w2 = x2

∧ y1 ≤ y2 < w1 ≤ w2

∧ t1, t2 ∈ M

and in case of m = (x1, x2, A) ∈ L

x1 ≤ x2

∧ A ⊆ N

holds.
An example memory tree is shown in Figure 13. It carries the information that

the memory cells between a and b have been last modified at program point n1,
the cells from b+1 to c have been modified at program points n2 or n3, whereas
the cells from c + 1 to d have not been modified since program start.

Assuming that there is a function returning the address range of a memory
access, there are 10 different transformations to transform a memory tree into a
new one. Each case must also be treated differently for may-updates and must-
updates (see Section 5.2 for more details). Thus two functions may : M×P(N)×

[a, d]
����

����
[a, b]

{n1}

[b + 1, d]
���

���
[b + 1, c]

{n2, n3}

[c + 1, d]

{}

Fig. 13. Example for a memory tree

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

36 C. Ferdinand et al.

must-Update

[a, d]
���

���
[a, b − 1]

P

[b, d]
�

�
�

�
[b, c]

{n}

[c + 1, d]

P

may-Update

[a, d]
����

				
[a, b − 1]

P

[b, d]
���

���
[b, c]

P ∪ {n}

[c + 1, d]

P

Fig. 14. Transformation of a leaf (a, d, P) for access address [b, c] at program point n

N× N → M and must : M×N × N× N → M have to be defined. One example
transformation for a leaf is shown in Figure 14.

[19,20] shows that analyzing values of registers and the memory is possible
within a data-flow analysis. Moreover, [21] describes a format to exchange the
computed data-flow values between different analyses. Thus, it is possible to use
information about the access range of load and store instructions of an external
value analysis within the analysis of the memory. In addition, the results of the
external value analysis contain a flag indicating whether the access range of an
instruction could be determined exactly.

Using the results of value analysis, it is possible to define the memory access
problem as a data-flow problem on the domain M ∪{
, ⊥}. Whenever a memory
access cannot be uniquely determined, the old data-flow values for the affected
memory cells have to be preserved, i.e. the data-flow values have to be updated
using the may-update function. Otherwise, the must-update function can be used.

So, considering the example control-flow graph in Figure 15 composed of ARM
assembly instructions, and assuming a stack pointer value r13 = 0x80, the mem-
ory tree displayed in Figure 16 can be constructed.

By construction, the data-flow value at a program point always represents the
whole memory. To access the calculated value for a specific node n, the data-flow
value needs to be restricted to the interval the instruction n accesses. Thus, an
access function MemDep(n) for a node n can be defined.

5.4 Computing Slices

Interprocedural slices for arbitrary criteria can be computed by means of reacha-
bility along control- and flow-dependence edges as described in [17]. Furthermore,
the dependence introduced by memory accesses has to be gathered.

The general slicing algorithm is shown in Figure 17. The input for the algo-
rithm is the control-flow graph and the result of the value analysis. Thus, the
slicing tool perfectly fits into the tool chain described in Section 2. After the
computation of the data-flow problems introduced in the Sections 5.1 and 5.3,
slices can be computed arbitrarily often until abort is requested.

For computation, the algorithm holds two sets. One set is the working set
(wset) containing tuples of nodes and resources that still have to be considered.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 37

0

1

2

3

4

5

6

7

8

9

10

11

Fig. 15. Example control-flow graph

The visited set (vset) contains all tuples that have already been treated guaran-
teeing termination of the algorithm. A third set (tset) is employed as temporary
storage. While the working set is not empty, the slice is not yet completely com-
puted. In this case, an element (m, w) is selected from the working set and added
to the visited set, together with all “control nodes” c on which the current node
m is control-dependent. All data and memory dependencies of the current node
m and also the data and memory dependencies of the control nodes are inter-
sected with the visited set and then added to the working set. This guarantees
the termination of the algorithm in O(|N | × |R|) where |N | is the number of
nodes in the analyzed program.

The slice for the specified criterion C can be calculated as the projection of
the visited set to the nodes of the given control-flow graph.

5.5 Evaluation

The usability of the described slicing algorithm depends on two criteria: the time
required for the computation and the quality of the results. The first point can
be split in different parts:

– Initialization time,
– time for executing the analyses,
– and time for the computation of slices for arbitrary slicing criteria.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

38 C. Ferdinand et al.

[0x0,∞]������������

������������
[0x0, 0x7B]������

������
[0x0, 0x6F]

{}

[0x70, 0x7B]�����
�����

[0x70, 0x73]

{3}

[0x74, 0x7B]
����

����
[0x74, 0x77]

{5}

[0x78, 0x7B]

{7}

[0x7C,∞]
����

����
[0x7C, 0x7F]

{0}

[0x80,∞]

{}

Fig. 16. Memory tree for example graph in Figure 15

Input : control flow graph (N, E, s, x) ,
results of a value analysis

compute Drd, Dpdom, Ddom and Dmem for (N, E, s, x)

while (no abort) {
wait for new slicing criterion C = (n, V)
wset = {(n, v) | v ∈ V }
vset = ∅
while (wset �= ∅){

let (m, w) ∈ wset
vset = vset ∪ {(m, w)} ∪ {(c,) | c ∈ CtrlDep(m)}
tset = {m} ∪ CtrlDep(m)
wset = wset\{(m, w)} ∪(

vset ∩
⋃

o∈tset, u∈def (o)\{Mem}
(
{(x, u) | x ∈ DataDep(o, u)} ∪ {(x, Mem) | x ∈ MemDep(o)}

))

}
slice = {m | (m, w) ∈ vset}

}

Fig. 17. The slicing algorithm

Especially the last point depends only on the chosen slicing criterion, thus, a
general statement is impossible. For the example programs being analyzed, this
computation time for arbitrary criteria was always smaller than 1 second.

But for a practical usage, the first two points were also very interesting. These
two times can be summarized as the precomputation time.

The example programs chosen are typical applications to guarantee the quality
of software projects. They are chosen because of their characteristics: minmax is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 39

a rather simple program containing no loops and no recursion, whereas fac
contains a recursive implementation of the factorial function called within a
loop. prime is chosen for testing loops, dry2 1 is a real benchmark program. The
usability in real world software projects is shown with automotif, a program for
controlling the pressure of wheels in automobiles. The characteristics are shown
in Table 8. All example programs are compiled for the Arm-architecture family.

The measurement of the precomputation times has been performed on an Intel
Pentium III 1200 MHz CPU with 256 MB SD-RAM and a Debian Woody OS.
Each test was run several times and the average execution time was computed.
These times are shown in Table 9. The columns show the times for building up
the internal data structure (pre) and to execute the analyses.

A measure for the quality of a computed slice is the relative deviation Δ
of its size to the size of a minimal slice. Since minimal slices are not com-
putable [14,15,16], the relative deviation cannot be determined automatically.
Nevertheless, minimal slices for certain slicing critera in the example executables
have been determined by hand. The Δ-values for the corresponding computed
slices were always smaller than 25%, and their average was less than 9%. More
details can be found in [18].

Table 8. Characteristics of the example programs

program minmax fac prime dry2 1 automotif
routines 4 2 4 17 163

instructions 114 24 119 773 3820
calls 5 2 4 32 309
loops 0 1 2 9 50
loads 4 2 20 296 984
stores 4 2 10 140 877

Table 9. Precomputation times for the example programs

program pre Drd Dpdom Ddom Dmem

∑

minmax 0.03 s 0.02 s < 0.01 s < 0.01 s < 0.01 s 0.07 s
fac 0.02 s 0.03 s < 0.01 s 0.02 s 0.02 s 0.10 s
prime 0.03 s 0.04 s < 0.01 s 0.02 s 0.02 s 0.13 s
dry2 1 0.17 s 0.25 s 0.07 s 0.10 s 0.32 s 0.82 s

automotif 0.50 s 173.20 s 0.40 s 0.40 s 1.20 s 177.50 s

5.6 Conclusion

This section has shown how to slice binaries with only a minimum of hardware-
specific knowledge. Besides the reconstruction of data and control dependencies,
we introduced a dynamic solution for modeling memory accesses efficiently.

The results of the various analyses have been used to design an efficient slic-
ing algorithm. They are all combined to a tool, which has been successfully

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

40 C. Ferdinand et al.

integrated in the aiT framework. Moreover, an interface was designed to display
the computed slices in the interactive graph viewing software aiSee3.

Several experiments have also shown that the precomputation times can be
considered as moderate and furthermore the computed slices are precise enough
to legitimate their usage in software development environments. Moreover, the
proposed slicing technique has been successfully used for restricting the set of
possible execution paths through a program. A similar approach at a different
level to speed up WCET analysis using slicing techniques has been presented
in [22].

6 From VHDL to Timing Models

All the sections so far dealt with certain parts of aiT. In contrast, this section
deals with a method to generate some part of aiT, namely the timing model
used in the pipeline analysis, which models the effects of the pipeline including
related features such as out-of-order evaluation or branch prediction.

Timing models are used as the basis for WCET analysis, describing the sys-
tem’s behavior at cycle granularity. Abstract interpretation of the timing model
is guaranteed to give upper WCET bounds for the execution of an instruction
sequence [23]. The guarantee, however, is relative to the model itself. If the model
fails to correctly describe the system’s behavior, the computed WCET bound
may be incorrect.

To ensure correctness of the model it is highly desirable to derive it from
an authoritative specification of the system. Such specifications are available as
system descriptions written in a hardware description language such as VHDL
or Verilog HDL. Nowadays the system hardware itself is synthesized from these
descriptions.

Unfortunately, a VHDL description of a typical system component, e.g., CPU
or system controller, is much too large to serve as the basis for a WCET analy-
sis. Furthermore, the component itself can only handle concrete data, while the
WCET analysis has to handle abstract data, e.g., address intervals instead of
addresses for unknown data accesses. Therefore, a VHDL model has to be re-
duced and abstracted until it reaches a compatible and sufficiently efficient form
and size [24].

In this section, we describe a semi-automatic framework that can be used
to perform this task. First, we briefly introduce VHDL and its semantics in
Section 6.1. Then, we present the semantics of the timing analysis and how the
final timing model fits into the whole framework. Section 6.3 presents the steps
necessary to transform a VHDL model into a timing model suitable to be plugged
into the aiT timing analysis.

6.1 VHDL and Its Semantics

VHDL is an IEEE Standard (IEEE 1076) [25,26]. The focus of the language
ranges from specifying circuits at the physical timing/wavefront level to describ-
ing them with high-level language constructs. Therefore, the language and the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 41

standard are quite huge. For our purposes, we only have to look at the so called
synthesizable subset of VHDL, which is defined in the 1076.3 substandard. The
goal of this subset is to restrict the language to constructs that can easily be
synthesized into actual hardware (mostly by translating them into netlists and
mapping those via design libraries to actual layouts).

A VHDL description of a circuit is given by a declaration of the interfacing of
the circuit and then by one (or more) implementation(s) for the circuit. In VHDL
parlance, the first is called an entity, the second an architecture. An example for
a simple bit counter can be seen in Figure 18.

ENTITY ctr IS
PORT(clk: IN std logic; reset: IN std logic;

val: OUT std logic vector(2 downto 0));
END;
ARCHITECTURE rtl OF ctr IS

SIGNAL cnt: std logic vector(2 downto 0);
work: PROCESS(reset, clk) IS

IF (reset=’1’) THEN
cnt<="000";

ELSIF (rising edge(clk)) THEN
cnt<=cnt+’1’;
val<=cnt;

END IF;
END;

END;

Fig. 18. A simple 3-bit counter in VHDL

Here, the implementation of the circuit is given in terms of a process called
work. The code of this process is executed, whenever one of the signals in its
sensitivity list (clk and reset) changes its value. In the example, the process
first checks whether the reset signal is asserted and sets the internal 3-bit signal
cnt back to the initial value in that case. If the circuit is not reset, the process
then checks for the rising edge of the clock signal clk and then increments the
internal counter if the event occurs. Afterwards, the internal cnt is driven to the
output signal val.

Another way to specify the circuit is to compose it from (smaller) circuits:
the architecture gives the components (entities) and defines the wiring of input
and output signals among them. Figure 19 gives an example for this style.

Here, a circuit for the logical implication a → b for two inputs a and b and the
output c is built from a logical-or gate or and a negation gate not, implementing
the implication by the formula c = ¬a ∨ b. Note that or0 is an instance of the
generic entity or, as not0 is one of the entity not.

When one has a definition of a circuit as a collection of entities and archi-
tectures that realize them, one has to perform elaboration in order to get one

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

42 C. Ferdinand et al.

ENTITY implies IS
PORT(a: IN std logic; b: IN std logic;

c: OUT std logic);
END;
ARCHITECTURE struct OF implies IS
BEGIN
SIGNAL int neg: std logic;
not0: ENTITY not PORT MAP(a, int neg);
or0: ENTITY or PORT MAP(int neg, b, c);

END;

int_negnot0

or0

a

b
c

Fig. 19. A structural VHDL architecture

flat definition for the circuit. Elaboration performs all the wiring in structural
definitions, does the necessary renaming so that the names of locally declared
signals do not clash, etc. The result can be seen as one big entity with a number
of processes that define the behavior of the circuit and a set of locally defined
signals (i.e. signals not occurring in the external interface of the circuit).

A process consists of a set of local variables that are only accessible from the
process itself. Local signals, on the other hand, can be accessible from two or
more processes. The only restriction is that no two distinct processes can drive
(i.e. assign to) the same signal1.

VHDL makes a distinction between assignments to a variable and to a signal.
Assigning a value to a variable takes effect immediately, and the next reference to
that variable results in the new value to be returned. Assigning a value to a signal,
however, only schedules the new value to be the future value of the signal. E.g.,
in Figure 18 the signal assignment cnt<=cnt+’1’; schedules the next value of
cnt to be the current value plus one. However, the next assignment, val<=cnt;,
schedules the next value of val to be the current value of cnt. These ‘future’
values scheduled by signal assignments take effect as soon as the process suspends
its execution. A process suspends if it executes a wait S instruction, where S is
a set of signal names. The process resumes execution as soon as a signal s ∈ S
changes its value. In full VHDL, the wait instruction may also contain a timeout,
after which the process resumes even if no signal from S changed its value in
the meantime. However, timeouts are not allowed in the synthesizable subset of
VHDL.

The signals from the sensitivity list of a process are automatically waited
for when the process finishes its execution. That means that we can transform a
process p : PROCESS(s1, . . . , sn) IS body END; to an equivalent process without
a sensitivity list, namely: p′ : PROCESS IS body; wait s1, . . . , sn; END;. The

1 In full VHDL, one can use the construct of resolution functions to compute the value
that wins if two processes assign to the same signal. This construct can be modeled in
the reduced subset of VHDL we are looking at by introducing new signals with new
names for each occurrence of the signal, and another process that uniquely assigns
to the original signal and has the new signals in its sensitivity list.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 43

only place where a wait instruction may occur within a process is at the end of
the body of the process.

The instructions that can occur within a process are either assignments to
signals (<=) or variables (:=), sequences of instructions, the conditional (IF-THEN-
ELSE), bounded loops (WHILE), or procedure calls. Expressions may contain the
expected set of operators on integers and bit values (arithmetic, logical operators,
shifts, etc.) and function calls.

The semantics of the VHDL program, i.e. a set of processes, can then be
described as follows:

1. Execute any process until it suspends (i.e. it reaches a wait statement).
2. If all processes are suspended, perform all scheduled signal assignments at

once.
3. If any signal s changes its value by this and it occurs in a set S from a wait

S instruction of a process, resume all such processes and go to step 1.
4. Otherwise, an external signal must change its value for the execution to

resume. If this happens, resume all processes waiting for the changed external
signal and go to step 1.

Note that this semantics is different from the usual semantics for full VHDL:
because synthesizable VHDL does not allow to specify timeouts in wait state-
ments, time can only pass if an external signal (i.e. a signal that is input
to the circuit and is not driven by any process in the program) changes its
value.

As we are only interested in synchronous designs, i.e. designs where actions
are triggered by the rising (and/or falling) edge of a global clock, the clock and
the reset signal are most often the only signals being waited for in a process.

It is noteworthy that the semantics of signal assignment and the process lo-
cality of variables mean that the order in which we execute processes until they
suspend is arbitrary: the resulting values for variables (which depend only on
the process’ execution itself) and the scheduled values for signals (only at most
one process is allowed to drive a signal) are always the same, no matter what the
order of execution was. We can, when defining a semantics, thus choose a fixed
ordering. However, a process is only executed if a signal in its sensitivity list
changed. Nevertheless, we can transform a set of processes into one sequential
program by introducing new conditionals that check whether a signal changed
its value since the last time the process was executed. To support this construct
and to handle the signal assignment semantics in terms of the more commonly
met instant assignment semantics, we furthermore introduce for each signal s
two variants of the signal, sold and snew, representing its values before the last
assignment and the future value, resp. Thus, we can replace every occurrence
s<=e of a signal assignment by snew:=e.

The check at the start of a process p whether any of the signals s1, . . . , sn in
its sensitivity list changed its value can then be written as

SCH(s1, . . . , sn) ≡
∨

1≤i≤n

si �= soldi

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

44 C. Ferdinand et al.

When all processes have been executed, the synchronization phase (i.e. the
copying of the future signal values to the current ones) can then be simply a
short piece of code COPY(s1, . . . , sn), where s1, . . . , sn are all signals:

COPY(s1, . . . , sn) ≡
sold1 :=s1;
s1:=snew1 ;
. . .
soldn :=sn;
sn:=snewn ;

Now we can express the semantics of VHDL’s simulation algorithm by giv-
ing an equivalent piece of a sequential program with only simple, well known,
constructs. So let p1, . . . , pn be the bodies of the n processes in the design. The
equivalent sequential program is then as shown in Figure 20.

Init; SIMUL

where

SIMUL ≡ DO
IF SCH(s1

1,. . .,s
1
m1) THEN

p1

FI
...
IF SCH(sn

1 ,. . .,s
n
mn

) THEN
pn

FI
IF SCH(e1,. . .,ek) THEN

e
FI
COPY(s1

1,. . .,s
n
mn

, e1,. . .,ek)
WHILE (SCH(s1

1,. . .,s
n
mn

, e1,. . .,ek))

Fig. 20. Transforming VHDL processes into a sequential program

There, si
1, . . . , s

i
mi

are the signals from process i’s sensitivity list, e1, . . . , ek

are the external signals of the design and e is a code piece (not in VHDL) that
performs the actions of the external circuits, acting upon the external signals.
Init is the initialization code, which assigns initial values to the variables and
signals in a way that SCH(s) is true for any signal s in the first iteration of the
loop. The external piece e will often be used to drive the clock signal and provide
the reactions of the external circuit to outputs driven by the design.

This representation allows us to easily apply standard data-flow techniques,
as the whole VHDL semantics is represented in a standard imperative language.
However, our aim is to derive timing information from the design in terms of
processor cycles spent on program execution. The notion of time at this level

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 45

Init
DO

clk:=1; clkold:=0; clknew:=1;
SIMUL
clk:=0; clkold:=1; clknew:=0;
SIMUL

WHILE(true);

Fig. 21. Transforming VHDL processes into a sequential program with a clock

is present only for synchronous designs, which act upon the rising edge of a
clock. Thus, we want to introduce as basic notion how the design evolves during
one processor cycle, i.e. what action is triggered by a rising edge of the system
clock. Thus, we first have to identify the system clock signal, say clk. As clocks
cannot be modeled in synthesizable VHDL, clk has to be an external signal
of the design. We make the clock transition from low to high (the rising edge)
explicit in our representation of the design as a sequential program and arrive
at the code in Figure 21.

Here, we basically perform the VHDL simulation twice, for the rising edge of
the clock and the falling edge in an infinite loop. If no process acts upon the
falling edge, then naturally the second occurrence of SIMUL can be omitted.

With this construct, we can simulate one clock cycle as one iteration of the
outermost loop. This simulation serves as the basis for our timing analysis. An
abstracted and reduced version of this code will be plugged into the timing
analysis in order to simulate the processor’s behavior. The next section will
further explain the abstract cycle-wise simulation used in the timing analysis.

6.2 Timing Models and Analysis Framework

A timing model is at the heart of the pipeline analysis in Figure 1. A timing
model describes how the processor state changes during one processor cycle.
The pipeline analysis can then, for each instruction in the CFG, simulate this
model, until the instruction leaves the pipeline. The number of simulation cycles,
which correspond to one processor cycle each, then gives the execution time
of that instruction from the given start state of the processor. A sequence of
instructions can be simulated in the same way: the states where an instruction
leaves the pipeline mark the start of the next instruction—for the purposes of
counting processor cycles; at this point, the next instruction usually is already
in the pipeline for some time. This overlapping of instructions means that the
number of simulation cycles is usually smaller than the sum of the execution
times for instructions simulated separately.

Because we are performing a static analysis, some parameters in the processor
states and some inputs will not be known exactly. One example is the contents
of memory cells, another one is inputs read from peripherals. Furthermore, for
practical reasons it is impossible to represent even information that we may

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

46 C. Ferdinand et al.

know exactly in full detail in the analysis. If we were to exactly record e.g.,
the contents of all memory cells or registers, the space required for the analysis
would be prohibitive. Luckily, in many cases the exact knowledge about these
things is not important as far as timing is concerned: an addition always takes
the same amount of time, no matter what the arguments are. In other cases, the
timing does depend on such information, but we may choose to lose the exact
timing knowledge in order to make the analysis more efficient, or even to make it
possible at all. One example for this are multiplications on some architectures,
which are faster if one argument has many leading zero bits. By not keeping
track of the arguments exactly, we have to assume an entire range of execution
times for multiplication. The loss in precision is acceptable in this case, as the
difference is usually only a few processor cycles and multiplications are rare.

The framework of abstract interpretation [3] gives a useful methodology, where
one can trade precision of the analysis against efficiency by choosing different
abstractions and concretization relations between the concrete domain (set of
processor states) and an abstract one (set of abstract processor states). Abstract
processor states in our case are simply processor states where some components
are left out (memory cells, registers) and others are approximated, e.g., the
addresses of data accesses in an access queue. The details can be found in [23].

When we go to abstract processor states by leaving out components or ap-
proximating others, the evolution of one processor state to another given by the
timing model is no longer deterministic. This is obvious since decisions in the
state transition depend on information that is no longer represented exactly in
the state. What we obtain is then a non-deterministic state evolution for one
processor cycle starting from an abstract processor state: one abstract processor
state can have several successor states for one cycle evolution.

The pipeline analysis is now simply an abstract simulation on abstract pro-
cessor states. For each instruction in the CFG and a set of abstract processor
states present at the start of execution of that instruction2 we take each abstract
state and simulate it for one cycle, giving a set of result states. For the states in
this result, we repeat the simulation until the instruction has finished execution
in the resulting states. The highest number of simulation cycles we encounter for
the whole simulation is then an upper bound for the WCET of that instruction.

For our purposes, what is important is that the pipeline analysis does a pro-
cessor cycle-wise simulation that receives as input an abstract processor state
and outputs a set of result states. Furthermore, it requires that we can decide
when an instruction has finished execution (i.e. left the pipeline) given an ab-
stract processor result state at the end of a simulation cycle. More precisely, the
simulation cycle function must provide, for each result state, a status, which can
be one of:

Finished: The current instruction has finished its execution.
Busy: The current instruction is still executing in the result state.
2 Or, more precisely, after the predecessor instruction has finished execution. In

pipelined processors, a successor instruction has often already begun to execute
when its predecessor instruction finishes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 47

Stopped: The processor has stopped in this state. This may happen, e.g., be-
cause of special instructions that halt the processor or because an exception
occurred in that state. The WCET for this program will be unbounded.

Deleted: This means that the result state represents an impossible state in the
processor, e.g., the state propagated to the target of a conditional branch
whose condition evaluated to false. Such a state can arise because of our ap-
proximation or as artifact of the data-flow framework. It will not contribute
to the WCET computation and will not be simulated further: it is simply
dropped.

Remembering the VHDL simulation per clock cycle from Figure 21, we can
now see how to integrate that into the timing framework with simulation function
detailed above. The values of the VHDL variables and signals will form our
processor state. Abstraction of unnecessary and expensive components will give
the abstract processor state, consisting of abstract VHDL signals and variables,
together with the signals and variables that are kept precisely.

An adapted version of the VHDL simulation from Figure 21 will then give
the simulation function for the timing analysis framework. To obtain status
information for each state, we have to define predicates on the VHDL signals
and variables that determine when an instruction has left the pipeline, etc. The
next section presents the necessary steps for obtaining the abstract states and
predicates from the concrete VHDL design.

6.3 Transformation of VHDL to a Timing Model

When we transform a VHDL design into a timing model as described in the pre-
vious section, the first thing we have to do is to identify the clock and reset signals
of the VHDL design, a trivial task. Because we are interested in execution times
for an instruction, we then have to identify the place in the VHDL design, where
an instruction leaves the pipeline, i.e. it finishes execution. Here, we add an arti-
ficial bit variable isfinished into the design that is asserted via an assignment
isfinished:=1; when the instruction finishes. Furthermore, we reset this vari-
able at the start of each processor cycle simulation cycle by isfinished:=0;3.
Note that instruction retirement may be performed at more than one place in the
VHDL design. E.g., branches may be removed from the instruction stream by a
fetch unit and never reach the execution stages of the pipeline. Then, we must in-
sert code at all these places and handle multiple retirement.

Because our timing analysis is a data-flow analysis on the control-flow graph
of the program, when a branch instruction is encountered, we have to know
which abstract states correspond to executions along which outgoing edges of
the branch. For this, we may have to add variables to the design that keep track
of the direction of branches encountered (taken, not-taken). Then we can decide
which state is propagated along which branch successor edge: a state with the
taken bit set for the oldest branch is propagated along the taken edge of the
3 For processors with multiple retirement, we simply add an array of such variables and

additionally an array of the addresses of the retired instructions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

48 C. Ferdinand et al.

branch but not along the fall-through edge. Additionally, we have to keep the
number of branches encountered but not handled (i.e. passed during propagation
in the CFG). Finally, so that we know which instruction should be worked on in
the CFG, we add a component that holds the address of that instruction. With
this, we can decide when a state has to be deleted: if its address in the CFG
does not match the component address.

As noted earlier, a VHDL design is too large to be used directly for timing
analysis: we have to throw away things not influencing timing and abstract other
parts to reduce size (thereby losing precision and introducing non-determinism).
To determine the components that influence timing, we look again at the places
where an instruction is retired. We determine all variables and code sections in
the design that may influence this retirement. For this, we determine a backwards
slice (cf. Section 5) for the variable isfinished at the end of the design code
from Figure 21. This backwards slice determines all code sequences in the design
that may influence the retirement of an instruction and thus its timing. All places
not in this backwards slice can be removed from the design without influencing
the timing behavior. Only external variables or signals or those being assigned
to in the slice can influence timing. All others can be removed from the design,
without influencing timing behavior.

Signals and variables that are used (i.e. read) but not assigned to never change
their values during execution. Their value thus stays at the value they had after
initialization of the system, i.e. after reset handling had been finished. To deter-
mine those fixed values, we analyze the reset behavior. Reset normally means
that the reset signal is asserted for a given number of cycles and when it is
deasserted again, the components have their initial values. We can obtain these
values by simply performing a forward slice with reset=14 as input and look
at all code sections that are activated by this configuration. Then, we perform
a constant propagation analysis [27] on that slice and record the values of the
variables and signals at the end of the design code: they are the initial values we
can substitute into all read-only places in the backward-sliced design, removing
these variables/signals completely.

Furthermore, the timing analysis makes some assumptions about the behav-
ior of the system and the code itself, e.g., that no exceptions are caused by
instructions or that no interrupts occur, etc. To utilize these assumptions in the
reduction of the design, one has to identify the signals that trigger e.g., inter-
rupts. Then, by asserting that these always remain unasserted, one can perform
a forward slice and remove unreachable code (the interrupt handling code of the
design) and unreachable components.

Even after removing all components that do not influence timing, the design
will most probably be too large to be handled efficiently. Especially large memory
arrays like main memory, caches or register files blow up the design. If the
execution time of an instruction is data dependent, e.g., a multiplication with
shortcuts for operands with many leading zeros, memory arrays will still be in the
design after the first removal phase. In order to have an efficient analysis, we need

4 Or reset=0 for low-active reset lines.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 49

to introduce abstractions for large components. Abstraction is done in the sense
of abstract interpretation theory [3] by giving an abstract domain with abstract
components that approximate concrete components but are smaller in size. In
general, this loses precision because one abstract component may describe a set
of concrete components, which are then indistinguishable under the abstraction.
One example is the approximation of a cache by an abstract cache as described
in [6]. One abstract cache describes a set of concrete ones. If a memory block
is in the abstract cache, then it is guaranteed to be in all concrete caches thus
represented by the abstract cache.

Abstraction can happen in a wide range of choices: on the one extreme we can
abstract a component by itself, thus not losing any information at the cost of not
obtaining any size reduction. At the other extreme, we can abstract a component
by a single symbol,
, which represents all concrete components. This variant
retains no information, because all concrete components are indistinguishable,
but needs no space for representation, thus is most compact. Our abstractions for
the components in the VHDL design will be somewhere in this range. Memory
arrays and register files will be abstracted by
, while signals that trigger process
reevaluation will often be represented exactly.

Another reason why we need abstraction anyway is that some data is never
available exactly. Most notably, the data access addresses of instructions are
only known as safe intervals, not as single addresses, computed by the value
analysis, cf. Section 2. Thus, we have to adapt the VHDL design to utilize
this information instead of the real computation of addresses. For this, we have
to identify the places where data access memory addresses are generated by
instructions. At these places, pseudo VHDL code has to be added that interfaces
with the value analysis to retrieve the previously computed intervals. Hence, we
abstract addresses by intervals.

Using abstraction in the VHDL design leads to a significant change in the
VHDL code semantics. Removing unreachable components and code did not
change anything w.r.t. the simulation of the VHDL code. Introducing abstrac-
tions makes it impossible to directly simulate the VHDL code because now condi-
tions in expressions, if-then-else, and loop statements may depend on abstracted
components whose exact value is no longer known but only approximations are
available. This means that we no longer get one result state from our simulation,
but we have to go over to a set of result states: whenever a condition depends on
an abstracted component, and we cannot evaluate the condition exactly under
the abstraction used5, we introduce a new state by copying the current one. We
then simulate the remaining VHDL code once with the old state assuming that
the condition evaluates to true and once with the new state assuming that the
condition is false. For expressions that contain abstracted components, e.g., in
the assignment c:=a AND b;, where c and b are represented exactly as 1-bit
variables and a is abstracted, we continue with one state, where c is ’1’ and

5 Note that sometimes it is possible to evaluate an abstracted condition exactly. E.g.,
the condition a>0x1000 for an address a is false if a is abstracted by the interval
[0x0000, 0x0080].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

50 C. Ferdinand et al.

one state where it is ’0’. This handling of multiple states can automatically
be generated by a compiler that takes the VHDL code with abstractions and
outputs C code for the processor cycle simulation. It uses a work list to keep
track of the states currently being worked on.

The process of abstraction may make some components superfluous because
they no longer influence other components (they are ‘shadowed’ by the abstrac-
tion). Thus, we can repeat the elimination process described previously. The
introduction of abstractions is an iterative process that terminates when the
abstract processor state has reached a size that can be efficiently handled.

Finally, the analysis simulates the VHDL semantics of process reevaluation
triggered by changes of the signals in sensitivity lists. This reevaluation is in
principle not bounded, thus the ordering and number of reevaluations of process
code is not static in general. However, most synchronous designs have a fixed
depth and clear conditions when processes can be reevaluated. If the abstraction
did not destroy the reevaluation conditions, a static analysis of the processes
can find a fixed finite ordering of the process reevaluation, thus replacing the
DO-WHILE loop from Figure 21 by a number of process evaluations.

Finally, the transformed (pseudo) VHDL code is passed to a code generator
that generates C code that simulates the VHDL effects on the (abstracted)
signals and variables, inserting abstract versions for things like additions on
addresses that are now abstracted as intervals, and handles the non-determinism
as described above. This code can then be invoked by the pipeline analysis,
finishing the transformation process.

6.4 Outlook and Conclusions

We described a way to generate authoritative timing models for WCET anal-
ysis from the VHDL code of a processor/system design. The method is highly
automated and requires only minor manual actions, namely in the identifica-
tion of the places where an instruction leaves the pipeline and performs data
accesses. The design of suitable abstractions also remains to be done manually,
although the “standard” abstractions like intervals for addresses or caches could
be performed automatically, too. The effects of the abstractions are handled
automatically. The generation of code suitable to be plugged into the pipeline
analysis is automatized, too. This methodology utilizes a number of sophisti-
cated analyses in order to reduce the VHDL design to a size that can be handled
efficiently.

A framework based on the tools and intermediate formats of aiT is being
developed in the context of the AVACS SFB of the German Science Foundation
(DFG). The current research foccusses on a generator producing efficient C code
that simulates the abstracted VHDL. Furthermore, first versions of the forward
and backward slicing algorithms are currently being developed. A first target
will be the Leon SPARC processor. Future work includes the optional usage of
designs written in Verilog, the second-most popular HDL.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

New Developments in WCET Analysis 51

References

1. Stankovic, J.A.: Real-Time and Embedded Systems. ACM 50th Anniversary
Report on Real-Time Computing Research. (1996) http://www-ccs.cs.umass.edu/
sdcr/rt.ps

2. Wilhelm, R.: Determining bounds on execution times. In Zurawski, R., ed.: Hand-
book on Embedded Systems. CRC Press (2005) 14–1 – 14–23

3. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proceed-
ings of the 4th ACM Symposium on Principles of Programming Languages, Los
Angeles, California (1977)

4. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mueller, F., Puaut, I., Puschner, P.,
Staschulat, J., Stenström, P.: The worst-case execution time problem - overview of
methods and survey of tools. Under revision for ACM Transactions on Embedded
Computing Systems (2007)

5. Theiling, H.: Extracting safe and precise control flow from binaries. In: Proceedings
of the 7th Conference on Real-Time Computing Systems and Applications, Cheju
Island, South Korea (2000)

6. Ferdinand, C.: Cache Behavior Prediction for Real-Time Systems. PhD Thesis,
Universität des Saarlandes (1997)

7. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of pro-
cessor architecture on the design and the results of WCET tools. Proceedings of
the IEEE 91(7) (2003) 1038–1054 Special Issue on Real-Time Systems.

8. Theiling, H., Ferdinand, C.: Combining abstract interpretation and ILP for mi-
croarchitecture modelling and program path analysis. In: Proceedings of the 19th
IEEE Real-Time Systems Symposium, Madrid, Spain (1998) 144–153

9. AbsInt Angewandte Informatik GmbH: aiSee Home Page. http://www.aisee.com.
(2006)

10. Sicks, M.: Adreßbestimmung zur Vorhersage des Verhaltens von Daten-Caches.
Diploma Thesis, Universität d. Saarlandes (1997)

11. Cullmann, C.: Statische Berechnung sicherer Schleifengrenzen auf Maschinencode.
Diploma Thesis, Universität d. Saarlandes (2006)

12. Pugh, W.: The Omega Test: A Fast and Practical Integer Programming Algorithm
for Dependence Analysis. In: Proceedings of the 4th International Conference on
Supercomputing. (1991)

13. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: Proceedings of the ACM SIGPLAN ’88 Conference on Programming Language
Design and Implementation. Volume 23., Atlanta, GA (1988) 35–46

14. Weiser, M.: Program Slicing. IEEE Transactions on Software Engineering SE-
10(4) (1984) 352–357

15. Weiser, M.: Program Slices: Formal, Psychological, and Practical Investigations
of an Automatic Program Abstraction Method. PhD thesis, The University of
Michigan (1979)

16. Weiser, M.: Programmers Use Slicing When Debugging. Communications of the
ACM 25(7) (1982) 446–452

17. Ottenstein, K.J., Ottenstein, L.: The program dependence graph in a software
development environment. ACM SIGPLAN Notices 19(5) (1984) 177–184

18. Schlickling, M.: Generisches Slicing auf Maschinencode. Diploma Thesis, Univer-
sität des Saarlandes (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www-ccs.cs.umass.edu/sdcr/rt.ps.
http://www-ccs.cs.umass.edu/sdcr/rt.ps.

52 C. Ferdinand et al.

19. Ferdinand, C., Kästner, D., Langenbach, M., Martin, F., Schmidt, M., Schneider,
J., Theiling, H., Thesing, S., Wilhelm, R.: Run-Time Guarantees for Real-Time
Systems — The USES Approach. In: Proceedings of Informatik ’99 – Arbeitstagung
Programmiersprachen. (1999)

20. Ferdinand, C., Kästner, D., Langenbach, M., Martin, F., Schmidt, M., Schneider,
J., Theiling, H., Thesing, S., Wilhelm, R.: Run-Time Guarantees for Real-Time
Systems - The USES Approach. Proceedings of the ATPS (1999)

21. Theiling, H., Martin, F., Schneider, J., Schmidt, M.: Specification of the Standard
for a File Format used for Exchanging Results of Different Parts of a Run-Time
Analysis (ERD). Technischer Bericht, Universität des Saarlandes, AbsInt Ange-
wandte Informatik GmbH (2003)

22. Sandberg, C., Ermedahl, A., Gustafsson, J., Lisper, B.: Faster WCET flow analysis
by program slicing. In: ACM SIGPLAN Conference on Languages, Compilers and
Tools for Embedded Systems (LCTES2006), Ottawa, Canada, ACM (2006)

23. Thesing, S.: Safe and Precise WCET Determination by Abstract Interpretation of
Pipeline Models. PhD thesis, Saarland University (2004)

24. Thesing, S.: Modeling a System Controller for Timing Analysis. In: Proceedings of
the 6th ACM Conference on Embedded Software, EMSOFT’06. (2006) to appear.

25. Institute of Electrical and Electronic Engineers New York: Draft IEEE Standard
P1076 2000/D3 VHDL Language Reference Manual. (2000)

26. Ashenden, P.J.: The Designer’s Guide to VHDL. 2nd edn. Morgan Kaufmann
Publishers, Academic Press (2002)

27. Callahan, D., Cooper, K.D., Kennedy, K., Torczon, L.: Interprocedural Constant
Propagation. ACM SIGPLAN Notices 21(7) (1986) 152–161 Proceedings of the
ACM SIGPLAN ’86 Symposium on Compiler Construction, Palo Alto, USA.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic Worst-Case Execution Time Analysis
in the Context of Pervasive System Verification

Steffen Knapp� and Wolfgang Paul

Saarland University, Computer Science Dept., 66123 Saarbrücken, Germany
{sknapp,wjp}@wjpserver.cs.uni-sb.de

Abstract. We describe a gate level design of a FlexRay-like bus interface. An
electronic control unit (ECU) is obtained by integrating this interface into the de-
sign of the verified VAMP processor. We get a time triggered distributed real-time
system by connecting several such ECU’s via a common bus. We define a pro-
gramming model for such a system at the instruction set architecture (ISA) level
and prove that it is correctly implemented at the gate level. The proof combines
theories of processor correctness, communication systems, program correctness
and realistic worst-case execution time (WCET) analysis into a single unified
mathematical theory.

1 Introduction

1.1 Pervasive Verification and Unified Theory

The results of this paper were obtained under the German Verisoft project that aims at
the development of tools and methods for the pervasive formal verification of computer
systems. Pervasive correctness theorems argue simultaneously about the correctness of
several system components like: Processors, I/O devices and programs. For real-time
systems the correctness proofs are also based on the fact that certain computations are
performed within certain time bounds.

Here we consider a distributed real-time system. In the pervasive correctness proof
of this system we combine theories of processor correctness, communication systems,
program correctness and realistic worst-case execution time (WCET) analysis [Abs06]
into a single unified mathematical theory in the following sense:

Concepts shared between theories must not only be defined using the same formal-
ism (this can be done easily using e.g. set theory) they must be defined literally in
the same way in all theories concerned. Hardware correctness proofs of processors,
I/O-devices and networks must use the same hardware- and the same instruction set
architecture (ISA)1 model. Correctness proofs of communicating assembler programs
must use literally the same ISA model, too.

� Work partially funded by the International Max Planck Research School for Computer Sci-
ence (IMPRS) and the German Federal Ministry of Education and Research (BMBF) in the
framework of the Verisoft project under grant 01 IS C38.

1 In a nutshell the ISA is an assembler semantic with interrupts visible, i.e. syntactic sugar for
the machine language.

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 53–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

54 S. Knapp and W. Paul

fbus

ECUh .pv
h .fv

v

Fig. 1. Electronic Control Units

WCET analysis done for hardware models with real-time timers must clearly be
based on cycle counts of the hardware. Yet in a pervasive theory of real-time sys-
tems this execution time analysis must be formally combined with program correctness
proofs based on the ISA model, where caches are invisible and hence argumentation
about the exact cycle count is impossible.

1.2 System Overview

The distributed real-time system considered here is very similar to systems used in
the automotive industry: A fixed number p of electronic control units ECUv for v ∈
{0, . . . , p − 1} are connected via a FlexRay-like bus; applications run with a fixed
schedule under an OSEKtime-like [OSE06] real-time operating system.

FlexRay is a communication protocol for safety critical real-time automotive ap-
plications, which has been developed by the FlexRay Consortium [Fle06]. It is a static
time division multiplexing network protocol that supports clock synchronization. In this
paper we do not deal with fault tolerance regarding the inter ECU communication.

The hardware of each ECU is clocked by an oscillator with a nominal clock period
of say τref . For all v the individual clock period τv of ECUv is allowed to deviate from
the nominal period by δ = 0.15%:

| τv − τref | ≤ τref · δ

This limitation can be easily achieved by current technology.
With Δ = 2δ/(1 − δ) we easily bound for all u and v the relative deviation of

individual clock periods among each other by:

| τv − τu | ≤ τv · Δ

The assembler programmer sees such a system mostly at the ISA level. An ECU
configuration dv = (dv.p, dv.f), see Fig. 1, is a pair consisting of a DLX processor
configuration dv.p, as defined in [DHP05], and a configuration of a FlexRay-like inter-
face (f-interface) dv.f .

From an interface configuration dv.f it is easy to define two user-visible buffers:
A send buffer sb(dv) and a receive buffer rb(dv). Each buffer is capable of holding a
message of � bytes.

In the distributed system all communications and computations proceed in rounds r
where r ∈ N. As depicted in Fig. 2 each round is divided into an even2 number of
slots s where s ∈ {0, . . . , ns − 1}. The tuple (r, s) refers to slot s in round r.

2 In Sect. 4.1 we will argue why an even number of slots is required.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 55

0 1

slot

time

ns-2 ns-1 0 1 ns-2 ns-1

round

Fig. 2. Slots and Rounds

On each ECU, boundaries between slots are determined by local timer interrupts
every T hardware cycles. At the beginning of each round, the local timers are synchro-
nized.

Given a slot (r, s) we define the predecessor (r, s) − 1 and the successor (r, s) + 1
according to the lexicographical order of slots. We denote by dv(r, s) the first and by
ev(r, s) the last ISA configuration of ECUv during slot (r, s).

ECUs communicate according to a fixed schedule that is identical for each round:
The function send specifies for all rounds r the ECU that owns the bus during slot (r, s):

send : {0, . . . , ns − 1} → {0, . . . , p − 1}

During slot (r, s) the content of the send buffer of ECUsend(s) at the end of the
previous round (r, s) − 1 is broadcast to the receive buffers of all units ECUu and
becomes visible there at the beginning of the next round (r, s) + 1:

∀u, r, s : sb(esend(s)((r, s) − 1)) = rb(du((r, s) + 1)).

1.3 Results

We present the following results:

1. We describe a gate level design of a FlexRay-like bus interface and elaborate the
sketchy correctness proof from [BBG+05] in a distributed hardware model (Theo-
rem 1). To the best of our knowledge this is the first detailed gate level correctness
proof of an I/O device.

2. An ECU is obtained by integrating the f-interface into the verified VAMP proces-
sor [BJK+03, DHP05]. We develop an ISA model for such an ECU. This model
is necessarily nondeterministic, because f-interfaces contain timers that interrupt
the processor every say T hardware cycles; but cache misses (and hence hardware
cycles) are invisible at the ISA level. We then prove the correctness of its hardware
implementation (Theorem 2). To the best of our knowledge this is the first hardware
correctness proof for a processor together with a device capable of generating timer
interrupts.

3. Combining the first two results we obtain a correctness proof for the hardware
of an entire distributed real-time system (Theorem 3). Again, to the best of our
knowledge no such proof has been presented in the literature before.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

56 S. Knapp and W. Paul

4. The last result (Theorem 4) is technical. We show how pervasive correctness proofs
for local ISA computations with timer interrupts (which are nondeterministic) and
the underlying hardware can be obtained from i) conventional correctness proofs
for ISA programs that cannot be interrupted ii) hardware correctness theorems and
iii) WCET analysis.

2 Overview and Related Work

Consider a situation, where a sending ECU puts a bit on the bus and this bit is sampled
into registers of receiving ECUs. Then, due to the clock drift between ECUs, we cannot
guarantee that the set up and hold times of the receiving registers are obeyed at all clock
edges. This problem occurs whenever computers without a common clock exchange
data. It is solved by serial interfaces using a nontrivial protocol. Section 3 deals with the
hardware correctness proof of a serial interface as prescribed by the FlexRay standard.

The main arguments have already been published in [BBG+05], so we only summa-
rize the results. We cannot completely argue on the digital levels. Certain lemmas con-
cerning the data transmission on the bus argue about continuous time. Formal proofs
for these arguments have already been obtained [Sch06]. Beautiful automatic correct-
ness proofs for abstract versions of protocols for serial interfaces using k-induction are
reported in [BP06]. It would be highly desirable to use results of this nature as lemmas
in overall correctness proofs for serial interface hardware. However, this would require
to formally justify the abstractions being used in [BP06] within a hardware model with
set-up and hold times.

In Sect. 4 we deal with f-interfaces that are constructed with the help of serial inter-
faces. The interfaces have local timers that are synchronized at the start of each round.
Using arguments from classical clock synchronization [WL88] we derive conditions on
the number of cycles T of each slot, such that for all slots (r, s) the following holds:
The send buffer of the sending unit ECUsend(s) can be broadcast to the receive buffers
of all units in a transmission window, when according to their local timers all ECUs
are in slot (r, s). This section provides the crucial arguments of lemmas sketched with-
out proof in [BBG+05]. Detailed hardware constructions and proofs for the results of
Sects. 3 and 4 can be found in the lecture notes [Pau05].

The ISA processor configuration is sketched in Sect. 5. Furthermore the semantics
of the processor’s DLX instruction set are defined by specifying the next state functions
of the processor. Details regarding this function are to be found in [HP96, MP00]. Here
we focus on the semantics of load / store instructions and on the interrupt mechanism.

In Sect. 6 we introduce an ISA model of a processor together with a f-interface. The
next state function of the processor gets two new arguments. One of them is the input
sampled by the device on the bus. The second new argument is an oracle input for the
ISA computation of the ECU indicating whether a timer interrupt is generated or not. At
first sight this looks odd because after all the ECU hardware is completely deterministic.
But here we are not looking at the hardware, we are only looking at its ISA model. As
pointed out above, in the ISA model, cache hits and misses are not visible. Hence the
occurrence of timer interrupts is inherently nondeterministic at the ISA level.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 57

S

fbus

clkv

R

R

^

clku

Fig. 3. Serial Interface

In Sect. 7 we show the hardware correctness theorems: The hardware of the entire
distributed system simulates the ISA model for a particular choice of the oracle inputs
(the latter is specified in Sect. 6.2). We first review the concept of scheduling functions
and proof strategies from [SH98, MP00, BJK+03, DHP05]. The scheduling functions
enable us to determine the interrupted ISA instructions in a straightforward way. This
determines the oracle inputs and thus resolves the nondeterminism present in the pure
ISA model.

Section 8 starts with fairly plain computation theory for uninterrupted ISA computa-
tions as well as for hardware computations. In particular we formally define the run time
and the result of such computations. The definition of run times of hardware computa-
tions is again based on the scheduling functions. Then we formally combine the results
of WCET analysis, of program correctness proofs for uninterrupted ISA computations
and of the hardware correctness proofs into a single result: At the end of slots, the
post conditions for memories and registers (but not for program counters) stated for the
uninterrupted local ISA computation also hold for their counter parts in the hardware
configuration.

3 Serial Interface

In this section we deal with the implementation and the correctness proof of a serial
interface as prescribed by the FlexRay standard.

3.1 Hardware Model with Continuous Time

In the standard digital hardware model a computation proceeds in cycles i. The hard-
ware configuration of ECUv during cycle i of ECUv is denoted by hi

v.
Configurations h have components h.R where R is a register content or the content

of a memory. Circuits compute signals S from register contents or memory contents.
The value of such a signal S is therefore –in well designed hardware– a function S(h)
of the hardware configuration.

We denote the clock enable signal, which triggers the update of registers R, by Rce.
Then Rce(hi) is the value of the clock enable of register R in cycle i.

The problems solved by serial interfaces can by their very nature not be treated in
the standard digital hardware model with a single digital clock clk. Nevertheless, we
can describe each ECUv in a standard digital hardware model having its own hardware
configuration hv .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

58 S. Knapp and W. Paul

e(i)

Sdin

S x

tpd

x

Fig. 4. Sender Register

In order to argue about a 1-bit sender register S of a sending unit ECUv that is
transmitting data via the FlexRay-like bus (fbus) to a 1-bit receiver register R of a
receiving ECU, as depicted in Fig. 3, we have to extend the digital model.

For the 1-bit registers –and only for these registers– connected to the fbus we extend
the hardware model such that we can deal with the concepts of propagation delay (tpd),
set-up time (ts), hold time (th) and metastability of registers from hardware data sheets.
In the extended model used near the fbus we therefore consider time to be a real valued
variable t. The clock edge ev(i) starting cycle i on ECUv is defined by

ev(i) = cv + i · τv (1)

for some offset cv < τv . In this continuous time model the content of the sender regis-
ter S at time t is denoted by S(t).

Now we have enough machinery to define in the continuous time model the output
of a sender register Sv on ECUv during cycle i of ECUv, i.e. for t ∈ (ev(i), ev(i+1)].
If in cycle i−1 the digital clock enable Sce(hi−1

v) signal was off, we see the old digital
value hi−1

v .S of the register during the whole cycle. If the update enable signal was
on, then during some propagation delay tpd < τv − ts we cannot predict what we see,
which is denoted by Ω. When the tpd has passed, we see the new digital value of the
register, which is given by the digital input Sdin(hi−1

v) during the previous cycle (see
Fig. 4):

Sv(t) =

⎧
⎪⎨

⎪⎩

hi−1
v .S ¬Sce(hi−1

v)
Ω Sce(hi−1

v) ∧ t ≤ ev(i) + tpd

Sdin(hi−1
v) Sce(hi−1

v) ∧ t > ev(i) + tpd

The fbus is an open collector bus modeled for all time t by:

fbus(t) =
∧

v

Sv(t)

Now consider a receiver register Ru on ECUu whose clock enable is continuously
turned on; thus the register always samples from the fbus . In order to define the new
digital value hj

u.R of register R during cycle j on ECUu we have to consider the value
of the fbus(t) in the time interval (eu(j) − ts, eu(j) + th), i.e. from the clock edge
minus the set-up time until the clock edge plus the hold time. If during that time the
fbus has a constant digital value x, the register samples that value:

∃x ∈ {0, 1} ∀t ∈ (eu(j) − ts, eu(j) + th) : fbus(t) = x → hj
u.R = fbus(eu(j))

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 59

e (i)s

ts th

e (j)r

Fig. 5. Clock Edges

Otherwise we define hj
u.R = Ω. Thus we still have to argue how to deal with un-

known values Ω as input to digital hardware. We use the output of register R only as
input to a second register R̂ whose clock enable is always turned on, too. If Ω is clocked
into R̂ we assume that R̂ has an unknown but digital value:

hj
u.R = Ω → hj+1

u .R̂ ∈ {0, 1}

Indeed, in industrial systems the counterpart of register R̂ exists. The probability that
R becomes metastable for an entire cycle and that this causes R̂ to become metastable
too is for practical purposes zero. This is exactly what has been formalized above.

Note that the above model uses different but fixed individual clock periods τv . There
is no problem to extend the model to deal with jitter. Let τv(i) denote the length of
cycle i on ECUv, then we require for all v and i:

τv(i) ∈ [τref · (1 − δ), τref · (1 + δ)]

The time ev(i) of the i-th clock edge on ECUj is then defined as:

ev(i) =

{
cv i = 0
ev(i − 1) + τv(i − 1) otherwise

This does not complicate the subsequent theory significantly.

3.2 Continuous Time Lemmas for the Bus

Consider a pair of ECUs, where ECUs is the sender and ECUr is a receiver in a
given slot. Let i be a sender cycle such that Sce(hi−1

s) = 1, i.e. the output of S is
not guaranteed to stay constant at time es(i). This change can only affect the value
of register R of ECUr in cycle j if it occurs before the sampling edge er(j) plus the
hold time th: es(i) < er(j) + th. Figure 5 shows a situation where due to a hold
time violation we have es(i) > er(j). The first cycle that is possibly being affected is
denoted by:

cyr,s(i) = min{j | es(i) < er(j) + th}
In what follows we assume that all ECUs other than the sender unit ECUs put the

‘idle’ value 1 on the bus (hence fbus(t) = Ss(t) for all t under consideration) and
we consider only one receiving unit ECUr. Because the indices r and s are fixed we
simply write cy(i) instead of cyr,s(i).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

60 S. Knapp and W. Paul

...
end

/end

TSS
0

FSS
1

BS0
1

BS1
0

B0
0

B7
0

FES
0

TES
1

idle
1

Fig. 6. Frame Encoding

There are two essential lemmas whose proof hinges on the continuous time model.
The first lemma considers a situation, where we activate the clock enable Sce of the
sender ECU in cycle i − 1 but not in the following seven cycles3. In the digital model
we then have hi

s.S = . . . = hi+7
s .S and in the continuous time model we observe

x = fbus(t) = Ss(t) = hi
s.S for all t ∈ [es(i) + tpd, es(i + 8)]. We claim that x is

correctly sampled in at least six consecutive cycles.

Lemma 1 (Correct Sampling Interval). Let the clock enable signal of the S register
be turned on in cycle i − 1, i.e. Sce(hi−1

s) = 1 and let the same signal be turned off in
the next seven cycles, i.e. Sce(hj

s) = 0 for j ∈ {i, . . . , i + 6} then:

hcy(i)+k
r .R = hi

s.S for k ∈ {1, . . . , 6}

The second lemma simply bounds the clock drift. It essentially states that within 300
cycles clocks cannot drift by more than one cycle; this is shown using δ ≤ 0.15%.

Lemma 2 (Bounded Clock Drift). The clock drift in the interval m ∈ {1, . . . , 300} is
bounded by:

cy(i) + m − 1 ≤ cy(i + m) ≤ cy(i) + m + 1

Detailed proofs of very similar lemmas are to be found in [Pau05, BBG+05, Sch06].

3.3 Serial Interface Construction and Correctness

For natural numbers n and bits y we denote by yn the string in which bit y is replicated
n times, e.g. 04 = 0000. For strings x[0 : k − 1] consisting of k bits x[i] we denote by
8 · x the string obtained by repeating each bit eight times:

8 · x = x[0]8 · · ·x[k − 1]8

Our serial interface transmits messages m[0 : � − 1] consisting of � bytes m[i] from
a send buffer sb of the sending ECU to a receive buffer rb of the receiving ECU.

The following protocol is used for transmission (see Fig. 6). A frame f(m) is created
from a message m by inserting falling edges between the bytes and adding some bits at
the start and the end of the frame:

f(m) = 0110m[0] · · ·10m[� − 1]01

3 This particular interval of 8 cycles is taken from the FlexRay standard [Fle06].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 61

S R

R̂

fbus
clk s

clkr

sender
logic

receiver
logic

SB

RB

automaton

automaton

start

Fig. 7. Send and Receive Buffer

In f(m) we call the first zero the transmission start sequence (TSS), the first one the
frame start sequence (FSS), the last zero the frame end sequence (FES) and the last
one the transmission end sequence (TES). The two bits producing a falling edge before
each byte are called the byte start sequence (BS0 ,BS1).

The sending ECU broadcasts 8 · f(m) over the fbus . For each bit of the frame the
update-enable signal is on for 1 cycle and then off for 7 cycles. All serial interfaces that
are not actively transmitting put by construction the idle value (the bit 1) on the bus.

Figure 7 shows a simplified view of the hardware involved in the transmission of a
message. On the sender side, there is an automaton keeping track of which bit of the
frame is currently being transmitted. This automaton inserts the additional protocol bits
around the message bytes. Hardware for sending each bit eight times and for addressing
the send buffer is not shown.

On the receiver side there is the automaton from Fig. 6 trying to keep track of which
bit of the frame is currently being transmitted (the automaton on the sender side is very
similar). That it does so successfully requires proof.

The bits sampled in register R̂ are processed in the following way. The voted bit v is
computed by applying a majority vote to the last five sampled bits. These bits are given
by the R̂ register and a 4-bit shift register as depicted in Fig. 8.

R

R̂

fbus

5-major

4 shift

v

Fig. 8. Receiver Logic

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

62 S. Knapp and W. Paul

3-cnt

=

100

strobe

sync

Fig. 9. Strobe Signal

According to Lemma 1 for each bit of the frame a sequence of at least six bits is cor-
rectly sampled. The filtering essentially maintains this property. If the receiver succeeds
to sample that sequence roughly in the middle, he wins. For this purpose the receiver
has a modulo-8 counter trying to keep track of which of the eight identical copies of a
frame bit is currently being transmitted. When the counter value equals four the strobe
signal is turned on (see Fig. 9). For frame decoding the voted bit is sampled with this
strobe signal. The automaton trying to keep track of the protocol is also clocked with
the strobe signal.

Clocks are drifting, hence the hardware has to perform a low level synchronization.
The counter is reset by a sync signal in two situations: At the beginning of a trans-
mission or at an expected falling edge during the byte start sequence. Abbreviating
signals s(hi

r) with si we write:

synci = (idlei ∨ BS1 i) ∧ (¬vi ∧ vi−1)

The crucial part of the correctness proof is a lemma arguing simultaneously about
three statements by induction over the receiver cycles:

1. The state of the automaton keeps track of the transmitted frame bit.
2. The sync signal is activated at the corresponding falling edge of the voted bit v

between BS1 and BS0 .
3. Sequences of identical bit are sampled roughly in the middle.

We sketch the proof of this lemma. Statement 1 is clearly true in the idle state.
From statement 1 follows that the automaton expects the falling edges of the voted
signal exactly when the sender generates them. Thus the counter is well synchronized
after these falling edges. This shows statement 2. Immediately after synchronization
the receiver samples roughly in the middle. There is a synchronization roughly every 80
sender cycles. By Lemma 2 and because 80 < 300, the sampling point can wander by at
most one bit between activations of the sync signal. This is good enough to stay within
the correctly sampled six copies. This shows statement 3. If transmitted frame bits are
correctly sampled, then the automaton keeps track of them. This shows statement 1.

Let t0 be the time (not the cycle) when the start signal of the sender is activated.
Let t1 be the time, when all automata have reached the idle state again and all write
accesses to the receive buffer have completed. Let the number of ‘transmission cycles’
be defined by:

tc = 45 + 80 · �

Intuitively, the product 80 · � in the definition of tc comes from the fact that each byte
produces 10 frame bits and each of these is transmitted 8 times. The four bits added at

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 63

mod ns mod T

h.f.timer

ovf

s cy

Fig. 10. Hardware Timer

the start and the end of the frame contribute 4 · 8 = 32. The remaining 13 cycles are
caused by delays in the receiver logic, in particular by delay in the shift register before
the majority voter. The correctness of message transmission is stated as follows:

Lemma 3 (Correct Message Transfer With Time Bound). Messages are correctly
transmitted, and the transmission does not last longer than tc sender cycles:

rb(t1) = sb(t0)
t1 − t0 ≤ tc · τs

4 FlexRay-Like Interfaces and Clock Synchronization

In this section we outline the implementation and the correctness proof of FlexRay-like
interfaces (f-interfaces).

4.1 Hardware Components

Recall that we denote hardware configurations of ECUv by hv. If the index v of the
ECU does not matter, we drop it. The hardware configuration is split into a processor
configuration h.p and an interface configuration h.f . In addition to the registers of the
serial interface, the essential components of the hardware configuration h.f of our (non
fault tolerant) f-interface are

– double buffers h.f.sb(par) and h.f.rb(par), where par ∈ {0, 1}, implementing
the user-visible send and receive buffers,

– the flipflops of a somewhat non trivial timer h.f.timer,
– configuration registers.

The organization of the hardware timer h.f.timer is depicted in Fig. 10. The low-
order bits h.f.timer.cy count the cycles of a slot. Unless the timer is synchronized,
slots have locally T cycles, thus the low-order bits are part of a modulo-T counter. The
high-order bits h.f.timer.s count the slot index s of the current slot (r, s) modulo ns.
The timer is initialized with the value (ns − 1, T − 1).

The timers on all ECUs but ECUsend(0) stall when reaching the maximum value
(ns−1, T−1) and wait for synchronization. The timer on ECUsend(0) always continues
counting. Details regarding the synchronization mechanism are given in Sect. 4.2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

64 S. Knapp and W. Paul

The overflow signal ovf (h) between the low-order and the high-order bits of the
counter can essentially serve as the timer interrupt signal ti(h) generated by the inter-
face hardware4:

ti(hi) = ovf (hi) ∧ ¬ovf (hi−1)

The low-order bit of the slot counter keeps track of the parity of the current slot and
is called the hardware parity signal:

par(h) = h.f.timer.s[0]

In general the fbus side of the interface sees the two buffers h.f.sb(par(h)) and
h.f.rb(par(h)). Messages are always transmitted between these buffers. The processor
on the other hand writes to h.f.sb(¬par(h)) and reads from h.f.rb(¬par(h)). This
does not work at boundaries of rounds unless the number of slots ns is even.

The configuration registers are written immediately after reset / power-up. They con-
tain in particular the locally relevant portions of the scheduling function. Thus if ECUv

is (locally) in a slot with slot index s and send(s) = v then ECUv transmits the con-
tent of the send buffer h.f.sb(par(h)) via the fbus during some transmission interval
[ts(r, s), te(r, s)].

If we can guarantee that during the transmission interval all ECUs are locally in
slot (r, s), then transmission is successful by Lemma 3. The clock synchronization al-
gorithm together with an appropriate choice of the transmission interval guarantees
exactly that.

4.2 Clock Synchronization

The idea of clock synchronization is easily explained: Imagine one slot is one hour and
one round is one day. Assume different clocks drift by up to drift = 5 minutes per day.
ECUs synchronize to the first bit of the message transmission due between midnight
and 1 o’clock. Assume adjusting the clocks at the receiving ECUs takes up to adj = 1
minute. Then the maximal deviation during 1 day is off = drift + adj = 6 minutes.
ECUsend(s), which is the sender in hour s, is on the safe side if it starts transmitting
from s o’clock plus off minutes until off minutes before s + 1 o’clock, i.e. somewhen
in between s : 06 o’clock and s + 1 : 54 o’clock.

At midnight life becomes slightly tricky: ECUsend(0) waits until it can be sure that
everybody believes that midnight is over and hence nobody is transmitting, i.e. until its
local time 0 : 06. Then it starts sending. All other ECUs are waiting for the broadcast
message and adjust their clocks to midnight + off = 0 : 06 once they detect the first
falling bit. Since that might take the receiving ECUs up to 1 minute it might be 0 : 07
o’clock on the sender when it is 0 : 06 o’clock at the receiver; thus after synchronization
the clocks differ by at most adj = 1 minute.

We formalize this idea in the following way: Assume without loss of generality
that send(0) = 0. All ECUs but ECU0 synchronize to the transmission start se-
quence (TSS) of the first message of ECU0. When ECU’s waiting for synchronization

4 In general one needs to keep an interrupt signal active until it is cleared by software; the extra
hardware is simple.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 65

slot of length T

off

time

off

Fig. 11. Slots

(d.f.timer = (ns − 1, T − 1)) receive this TSS , they advance their local slot counter
to 0 and their cycle counter to off . Analysis of the algorithm implies that for all v 	= 0,
ECUv is waiting for synchronization, when ECU0 starts message transmission in any
slot (r, 0).

First we define the start times αv(r, s) of slot (r, s) on ECUv . This is the start time
of the first cycle t in round r when the timer in the previous cycle had the value:

ht−1.f.timer = ((s − 1 mod ns), T − 1)

These are the cycles immediately after the local timer interrupts. For every round r,
we also define the cycles βv(r) when the synchronization is completed on ECUv. For-
mally this is defined as the first cycle β > αv(r, 0) such that the local timer has value:

hβ.f.timer = (0, off)

Timing analysis of the synchronization process in the complete hardware design
shows that for all v and y adjustment of the local timer of ECUv to value (0, off)
is completed within an adjustment time ad = 15 · τy after α0(r, 0):

β0(r) = α0(r, 0) + off · τ0

βv(r) ≤ β0(r) + 15 · τy

For s ≥ 1 no synchronization takes place and the start of new slots is only determined
by the progress of the local timer:

αv(r, s) =

{
βv(r) + (T − off) · τv s = 1
αv(r, s − 1) + T · τv s > 1

ECU0 synchronizes the other ECUs. Thus the start of slot (r, 0) on ECU0 depends
only on the progress of the local counter:

α0(r, 0) = α0(r − 1, ns − 1) + T · τ0

An easy induction on s bounds the difference between start times of the same slot on
different ECUs:

αx(r, s) − αv(r, s) ≤ 15 · τv + (s · T − off) · (τx − τv)
≤ 15 · τv + (ns · T · Δ · τv)
= τv · (15 + (ns · T · Δ))
= τv · off

(2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

66 S. Knapp and W. Paul

time

te(r,s)ts(r,s)
ECU

ECU

ECU

send(s)

u

v

α (r,s)v α ((r,s)+1)v

Fig. 12. Schedules

Thus we have off = ad + drift with ad = 15 and drift = ns · T · Δ.
Transmission is started in slots (r, s) by ECUsend(s) when the local cycle count

is off . Thus the transmission start time is:

ts(r, s) = αsend(s)(r, s) + off · τsend(s)

By Lemma 3 the transmission ends at time:

te(r, s) = ts(r, s) + tc · τsend(s)

= αsend(s)(r, s) + (off + tc) · τsend(s)

The transmission interval [ts(r, s), te(r, s)] must be contained in the time interval,
when all ECUs are in slot (r, s), as depicted in Fig. 12.

Lemma 4 (No Bus Contention). For all indices v and u of ECUs:

αv(r, s) ≤ ts(r, s)
te(r, s) ≤ αu((r, s) + 1)

Proof. The first inequality holds because of (2). Let x = send(s):

αv(r, s) ≤ αx(r, s) + τx · off
= ts(r, s)

The second inequality determines the minimal size of T :

te(r, s) ≤ αx(r, s) + (off + tc) · τx

≤ αu(r, s) + off · τu + (off + tc) · (1 + Δ) · τu

≤ αu((r, s) + 1)
= αu(r, s) + T · τu

Further calculations are necessary at the borders between rounds. Details can be
found in [Pau05]. ��

From the local start times of slots αv(r, s) we calculate the numbers of local start cycles
tv(r, s) using (1)

αv(r, s) = cv + tv(r, s) · τv

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 67

and then solving for tv(r, s). Trivially the number uv(r, s) of the locally last cycle on
ECUv is:

uv(r, s) = tv((r, s) + 1) − 1

Consider slot (r, s). Lemma 3 and Lemma 4 then imply that the value of the send
buffer of ECUsend(s) on the network side (par = s mod 2) at the start of slot (r, s) is
copied to all receive buffers on the network side by the end of that slot.

Theorem 1 (Message Transfer With Cycles). Let x = send(s). Then for all v:

htx(r,s)
x .f.sb(s mod 2) = huv(r,s)

v .f.rb(s mod 2)

This theorem talks only about digital hardware and hardware cycles. Thus we have
shown the correctness of data transmission via the bus and we are back in the digital
world.

5 Specifying an Instruction Set Architecture

In this section we sketch the DLX instruction set architecture (ISA).

5.1 Configurations and Auxiliary Concepts

Processor configurations d have the following components:

– d.R ∈ {0, 1}32: The current value of register R. For this paper, the relevant reg-
isters are: The program counter pc, the delayed PC dpc (which is used to specify
the delayed branch mechanism detailed in [MP00]), the general purpose registers
gpr[x] with x ∈ {0, 1}5, the status register sr (it contains the mask bits for the
interrupts) as well as a exception cause register eca (to be explained later on).

– The byte addressable memory d.m : {0, 1}32 → {0, 1}8. The content of the mem-
ory at byte address a is given by d.m(a).

For addresses a, memories m, and natural numbers x we denote by mx(a) the con-
catenation of the memory bytes from address a to address a + x − 1 in little-endian
order:

mx(a) = m(a + x − 1) . . .m(a)

The instruction executed in configuration d is the memory word addressed by the
delayed PC:

I(d) = d.m4(d.dpc)

The six high-order bits of the instruction word constitute the opcode:

opc(d) = I(d)[31 : 26]

Instruction decoding can easily be formalized by predicates on I(d). In some cases it
suffices to inspect the opcode only. The current instruction is for instance a ‘load word’
(lw) instruction if the opcode (opc) equals 100011:

lw(d) ⇔ opc(d) = 100011

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

68 S. Knapp and W. Paul

opcode RS1 RS2 RD SA function

opcode program counter offset

opcode RS1 RD

0 6 11162126

I -Type

R -Type

J -Type

imm

Fig. 13. Instruction Types

DLX instructions come in three instruction types as shown in Fig. 13. The type of an
instruction defines how the bits of the instruction outside the opcode are interpreted. The
occurrence of an register-type (R-type) instruction, e.g. a add or a subtract instruction,
is for instance specified by:

rtype(d) ⇔ opc(d) = 000000

Definitions of immediate-constant-type (I-type) instructions and jump-type (J-type)
instructions are slightly more complex.

Depending on the instruction type, certain fields have different positions within the
instruction. For the register ‘destination’ operand (RD) we have for instance:

RD(d) =

{
I(d)[20 : 16] itype(d)
I(d)[15 : 11] otherwise

The effective address (ea) of load / store operations is computed as the sum of the
content of the register addressed by the RS1 field d.gpr(RS1(d)) and the immediate
field imm(d) = I(d)[15 : 0]. The addition is performed modulo 232 using two’s com-
plement arithmetic. Formally, the sign extension of the immediate constant is defined
by:

sxt(imm(d)) = imm(d)[15]16imm(d)

This turns the immediate constant into a 32-bit constant while preserving the value
as a two’s complement number. It is like adding leading zeros to a natural number.
Denoting ordinary binary addition modulo 232 by +32 we define:

ea(d) = d.gpr(RS1(d)) +32 sxt(imm(d))

This works because n bit two’s complement numbers and n bit binary numbers have
the same value modulo 2n. For details see e.g. Sect. 2 of [MP00].

5.2 Basic Instruction Set

With the above few preliminary definitions in place we easily specify the next config-
uration d′, i.e. the configuration after execution of I(d). This obviously formalizes the
instruction set. In the definition of d′ we split cases depending on the instruction to be
executed. As an example we specify the next configuration for a load word instruction.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 69

The main effect of a load word instruction is that the general purpose register ad-
dressed by the RD field is updated with the memory word addressed by the effective
address ea:

d′.gpr(RD(d)) = d.m4(ea(d))

The PC is incremented by four in 32-bit binary arithmetic and the old PC is copied
into the delayed PC:

d′.pc = d.pc +32 03010
d′.dpc = d.pc

This part of the definition is identical for all instructions except control instructions.
One also must specify what is not changed:

d′.m = d.m
d′.gpr(x) = d.gpr(x) for x 	= RD(d)

d′.sr = d.sr
d′.eca = d.eca

The main effect of store word instructions is that the general purpose register content
addressed by RD is copied into the memory word addressed by ea:

d′.m4(ea(d)) = d.gpr(RD(d))

Completing this definition for all instructions, we get the definition of a DLX next
state function:

d′ = δD(d)

5.3 Interrupts

Interrupts are triggered by interrupt event signals that might be internally generated
(like illegal instruction, misalignment, or overflow) or externally generated (like reset
and timer interrupt). Interrupts are numbered with indices j ∈ {0, . . . , 31}. We classify
the set of these indices in two ways:

1. maskable / not maskable. The set of indices of maskable interrupts is denoted by M .
2. external / internal. The set of indices of external interrupts is called E.

We denote external event signals by eev[j] with j ∈ E and we denote internal event
signals by iev[j] with j /∈ E. We gather the external event signals into a vector eev and
the internal event signals into a vector iev.

Formally these signals must be treated in a very different way. Whether an internal
event signal iev[j] is activated in configuration d is determined only by the configura-
tion. For instance if we use j = 1 for the illegal instruction interrupt and LI ⊂ {0, 1}32

is the set of bit patterns for which d′ is defined if I(d) ∈ LI , then:

iev(d)[1] ⇔ I(d) /∈ LI

Thus the vector of internal event signals is a function iev(d) of the current processor
configuration d. In contrast, external interrupts are external inputs for the next state
function. We therefore get a new next state function:

d′ = δD(d, eev)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

70 S. Knapp and W. Paul

The cause vector ca of all event signals is a function of the processor configuration d
and the external input eev:

ca(d, eev)[j] =

{
eev[j] j ∈ E

iev(d)[j] otherwise

The masked cause vector mca is computed from ca with the help of the interrupt
mask stored in the status register: If interrupt j is maskable and sr[j] = 0, it is masked
out:

mca(d, eev)[j] =

{
ca(d, eev)[j] ∧ d.sr[j] j ∈ M

ca(d, eev)[j] otherwise

If any one of the masked cause bits is on, the jump to interrupt service routine (JISR)
bit is turned on:

JISR(d, eev) =
∨

j

mca(d, eev)[j]

If this occurs, many things happen. We mention only a few: The PCs are forced to
point to the start addresses of the interrupt service routine (ISR). We assume it starts at
the (binary) address 0:

d′.dpc = 032

d′.pc = 03010

All maskable interrupts are masked:

d′.sr = 032

The masked cause register is saved into the exception cause register:

d′.eca = mca(d, eev)

For a complete definition see Chap. 5 of [MP00].

6 ISA of Processors with f-Interfaces

In this section we integrate our f-interface into the ISA model of the processor.

6.1 I/O Ports and Message Buffers

As already mentioned earlier an ISA configuration d of a processor with an f-interface
is a pair (d.p, d.f), where d.p is a processor configuration as described in the previous
section. It has registers d.p.R and a memory d.p.m. The range of the function m is
however restricted to a subset A ⊂ {0, 1}32 of the entire address range:

d.p.m : A → {0, 1}8

Identifying bit strings a with their value if they are interpreted as a binary number,
we define A to be in the range of addresses below a certain address D:

A = {a | a < D}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 71

d.p.R d.p.m

memory map

dfind.f
ba

cpu

dti

Fig. 14. Memory Mapped IO

Addresses from address D on are called I/O ports. They are reserved for I/O devices.
Every device dv is assigned a base address ba(dv) in the range of I/O ports (see Fig. 14):

ba(dv) ∈ {D, . . . , 232 − 1}

Here we only consider a single device and a single base address ba.
When a processor accesses a device with K I/O ports, then for k = �log K� the

device configuration (here d.f) must contain a memory:

d.f.m : {0, 1}k → {0, 1}8

In our case the memory of the device contains the send buffer, the receive buffer
–each with � bytes where � is a multiple of 4– and say c configuration registers. Thus

K = 2 · � + 4 · c

We use the first � bytes of this memory for the send buffer, the next � bytes for the
receive buffer and the remaining bytes for the configuration registers. We formalize this
by defining for all indices of message bytes y ∈ {0, . . . , � − 1}:

sb(d)(y) = d.f.m(y)
rb(d)(y) = d.f.m(� + y)

The semantics of accesses of the processor to the I/O ports are simply defined by a
slight change of the semantics of lw and sw instructions. If the effective address5 lies
in the address range assigned to the device in the memory map, i.e. if

ea(d.p) = ba + x with 0 ≤ x ≤ K − 4

the essential effect of a load word instruction is

d′.p.gpr(RD(d.p)) = d.f.m4(x)

and the essential effect of a store word instruction is:

d′.f.m4(x) = d.p.gpr(RD(d.p))
5 We require the effective address be word aligned.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

72 S. Knapp and W. Paul

6.2 Timer Interrupt and I/O

So far we have covered a single processor with a device but we have not considered
timer interrupts. The consequences for integrating those in the processor construc-
tion and processor correctness proofs have already been outlined (e.g. for a hard-disk)
in [HIP05]. In the remainder of this section we extend these results with timer interrupts
generated by an f-interface.

As pointed out earlier, at the ISA level the timer interrupt must be treated as an
oracle input dti. Furthermore we have to deal with external data input dfin from the
f-interface. Thus –ignoring reset– the next state function for the device has on the ISA
level the format:

d′ = δD(d, dti, dfin)

If we denote by dtii and dfini the oracle input and the input from the fbus for the i-th
executed instruction, then we get computations d0, d1, . . . by defining (straight from the
automata theory textbooks):

di+1 = δD(di, dtii, dfini)

In our distributed system we have configurations dv from many ECUs. Within this
programming model we now introduce names, e.g. jv(r, s), for certain indices of local
instructions on ECUv .

Intuitively, the timer interrupts the instruction executed in the local configuration
d

jv(r,s)
v of ECUv, and this locally ends slot (r, s).

Based on these indices we can define some more useful concepts purely within the
ISA model:

– iv(r, s) = jv((r, s) − 1) + 1: The index of the first local instruction in slot (r, s)
– dv(r, s) = d

iv(r,s)
v : The first local ISA configuration in slot (r, s)

– ev(r, s) = d
jv(r,s)
v : The last local ISA configuration in slot (r, s)

We can even define the sequence dti(r, s) of oracle timer inputs dtii where i ∈
{iv(r, s), . . . , jv(r, s)}. It has the form

dti(r, s) = 1a0b1

where the timer interrupt is cleared by software instruction iv(r, s)+a−1 and a+b+1 =
jv(r, s) − iv(r, s) + 1 is the number of local instructions in slot (r, s).

Indeed we can complete, without any effort, the entire ISA programming model. The
effect of an interrupt on the processor configuration has been defined in the previous
section, thus we get for instance:

dv(r, s).dpc = 032

dv(r, s).pc = 03010

Also for the transition from ev(r, s) to dv((r, s) + 1) and only for this transition we
use the external input:

dfinjv(r,s) ∈ {0, 1}8·�

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 73

Thus we assume that it consists of an entire message and we copy that message into
the user-visible receive buffer:

rb(dv((r, s) + 1)) = dfinjv(r,s)

Of course we also know what this message is supposed to be: The content of the
user-visible send buffer of ECUsend(s) at the end of slot (r, s) − 1:

dfinjv(r,s) = sb(esend(s)((r, s) − 1)

Thus

rb(dv((r, s) + 1)) = sb(esend(s)((r, s) − 1)) (3)

This completes the user-visible ISA model. And with Theorem 1 we essentially al-
ready completed the hardware correctness proof of the implementation of (3). The non-
determinism is completely encapsulated in the numbers jv(r, s) as it should be, at least
if the local computations are fast enough. All we need to do is to justify the model by a
hardware correctness theorem and to identify the conditions under which it can be used.

7 Hardware Correctness

In this section we outline a hardware correctness proof that establishes a relationship
between an ISA configuration and a hardware configuration.

7.1 Scheduling Functions

The processor correctness proofs considered here hinge on the concept of schedul-
ing functions s. The hardware of pipelined processors consists of many stages k, e.g.
fetch stage, issue stage, reservation stations, reorder buffer, write back stage, etc. (see
Fig. 17). Stages can be full or empty due to pipeline bubbles. The hardware keeps track
of this with the help of full bits fullk for each stage as defined in [MP00]. Recall that
fullk(ht) is the value of the full bit in cycle t. We use the shorthand full tk. Note that the
fetch state is always full, i.e. ∀t : full t0 = 1.

For hardware cycles t and stages k that are full during cycle t, i.e. such that full tk
holds, the value s(k, t) of the scheduling function is the index i of the instruction that
is in stage k during cycle t. If the stage is not full, it is the index of the instruction that
was in stage k in the last cycle before t when the stage was full. Initially s(0, 0) = 0
holds.

The formal definition of scheduling functions uses an extremely simple idea: Imag-
ine that the hardware has registers that can hold integers of arbitrary size. Augment
each stage with such a register and store in it the index of the instruction currently
being executed in that stage. These indices are computed exactly as the tags in a Toma-
sulo scheduler. The only difference is that they have unbounded size because we want
to count up to arbitrarily large indices. In real hardware this is not possible and not
necessary. In an abstract mathematical model there is no problem to do this.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

74 S. Knapp and W. Paul

0 MUX 1

B

C

sel

A

stage k'

stage k

stage k''

Fig. 15. Scheduling Functions

Each stage k of the processors under consideration has an update enable signal uek.
Stage k gets new data in cycle t if the update enable signal uek was on in cycle t − 1.
We fetch instructions in order and hence define for the instruction fetch stage IF :

s(IF , t) =

{
s(IF , t − 1) + 1 uet−1

IF

s(IF , t − 1) otherwise

In general, a stage k can get data belonging to a new instruction from one or more
stages k′. Examples where more than one predecessor stage k′ exists for a stage k are
i) cycles in the data path of a floating point unit performing iterative division or ii) the
producer registers feeding on the common data bus of a Tomasulo scheduler. In this
situation we must define for each stage k a predicate trans(k′, k, t) indicating that in
cycle t data are transmitted from stage k′ to stage k. In the example of Fig. 15 we use
the select signal sel of the multiplexer and define:

trans(k′, k, t) = uet
k ∧ sel t

If trans(k′, k, t − 1) holds for some k′, then we set s(k, t) = s(k′, t − 1) for that k′.
Otherwise s(k, t) = s(k, t − 1).

7.2 Simple Simulation Relations

For ECUs we first consider a ‘naive’ simulation relation sim(d, h) between ISA con-
figurations d and hardware configurations h. We require that the user-visible registers R
have identical values:

h.p.R = d.p.R

Furthermore we require that the send and receive buffers on the processor side (in-
dexed in the hardware by ¬par(h)) of the hardware have the same value as the user-
visible buffers. Thus, we require for all indices y ∈ {0, . . . , � − 1} of message bytes:

h.f.sb(¬par(h))(y) = sb(d)(y)
h.f.rb(¬par(h))(y) = rb(d)(y)

For the addresses a in the processor we would like to make a similar definition,
but this does not work, because the user-visible processor memory is simulated in the
hardware by a memory system consisting e.g. of an instruction cache icache, a data

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 75

dcache

icache

d.p.m

a
instruction

a
data

Fig. 16. Memory System

cache dcache and a user main memory mainm. Thus there is a quite nontrivial function
m(h.p) : A → {0, 1}8 specifying the memory simulated by the memory system. We
can define this functions in the following way: Imagine you apply in configuration h at
the memory interface (either at the icache or at the dcache) address a. Considering a hit
in the instruction cache, i.e. ihit(h.p, a) = 1, the icache would return icache(h.p, a).
Similarly, considering a hit in the data cache dhit(h.p, a) = 1 the dcache would return
dcache(h.p, a). Then we can define6:

m(h.p)(a) =

⎧
⎪⎨

⎪⎩

icache(h.p, a) ihit(h.p, a)
dcache(h.p, a) dhit(h.p, a)
h.p.mainm(a) otherwise

Using this definition we can require in the simulation relation for all addresses not
being I/O ports, i.e. a ∈ A:

m(h.p)(a) = d.p.m(a)

In a pipelined machine this simulation relation almost never holds, because in one
cycle different hardware stages k usually hold data from different ISA configurations;
after all this is the very idea of pipelining. There is however an important exception:
When the pipe is drained, i.e. all hardware stages except the instruction fetch stage are
empty:

drained(h) ⇔ ∀k : k 	= IF → full tk = 0

This happens to be the case after interrupts, in particular initially after reset and at
the boundaries between slots when a timer interrupt is being generated.

7.3 Processor Correctness Theorem

Figure 17 shows in simplified form the stages of a processor with out of order processing
and a Tomasulo scheduler.

Each user-visible register d.R of the processor has a counter part h.R belonging
to the stage in the hardware specified by stage(R). If the processor would have only

6 In the processors under consideration the caches snoop on each other; data of address a is only
in at most one cache [Bey05, BJK+03].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

76 S. Knapp and W. Paul

IF

ISSUE

Reservation Stations

ROB

WB

funct.
units

mem

mem1

Fig. 17. Processor Pipeline

registers R and no memory, we could show by induction over t for all cycles t and
stages k:

If k = stage(R), then the value ht.p.R of the hardware register R in cycle t is
the value ds(k,t).p.R of the ISA register R for the instruction scheduled in stage k in
cycle t:

ht.p.R = ds(k,t).p.R

For the memory we have to consider the memory unit of the processor consisting
of two stages mem and mem1. Stage mem contains hardware for the computation of
the effective address. The memory m(ht.p) that is simulated by the memory hierarchy
of the hardware in cycle t, is identical with the ISA memory ds(mem1,t).p.m for the
instruction scheduled in stage mem1 in cycle t:

m(ht.p) = ds(mem1,t).p.m

In the hardware the send and receive buffers are ‘parallel’ to the memory system, so
we can reuse the scheduling functions. For the copy of the buffers on the processors
side we get:

ht.f.sb(¬par(ht)) = sb(ds(mem1,t))
ht.f.rb(¬par(ht)) = rb(ds(mem1,t))

We summarize this by stating for all ECUs the correctness statement for the pro-
cessor and the processor side of the interface for slot (r, s). It is proven by induction
over the cycles of the slot. Recall from Sect. 4.2 that we know already the start cycles
tv(r, s) for all ECUs. The statement of the theorem is identical for all ECUv. Thus we
drop the subscript v.

The theorem assumes that at the start of a slot the pipe is drained (e.g. by the timer
interrupt that ended the previous slot) and that the simulation relation holds between the
first hardware configuration h(r, s) = ht(r,s) and the first ISA configuration d(r, s) =
di(r,s) of the slot.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 77

Theorem 2 (Hardware Correctness for One Slot). Assume that drained(h(r, s))
and sim(d(r, s), h(r, s)) holds. Then for all t ∈ {t(r, s), . . . , t((r, s) + 1) − 1}, for
all stages k and for all registers R with stage(R) = k:

ht.p.R = ds(k,t).p.R

m(ht.p) = ds(mem1,t).p.m

ht.f.sb(¬par(ht)) = sb(ds(mem1,t))
ht.f.rb(¬par(ht)) = rb(ds(mem1,t))

The theorem is proven by induction over the cycles of the slot. Using the above theorem
we can show:

Theorem 3 (Hardware Correctness for System)

∀(r, s), v : drained(hv(r, s)) ∧ sim(dv(r, s), hv(r, s))

Theorem 3 is proven by induction over the slots (r, s) using additional assumptions
about registers not visible at the ISA level. In order to argue about the boundaries be-
tween two slots Theorem 2 and Lemma 4 must be applied on the last cycle of the
previous slot.

7.4 The Interrupted Instruction

To support precise interrupts the cause signals of internal as well as of external inter-
rupts are sampled in the write back stage (WB). The instruction interrupted by an active
cause signal in cycle t is therefore the instruction scheduled in the writeback stage dur-
ing cycle t. Thus the index j(r, s) of the interrupted instruction, which resolves the
nondeterminism and makes the proof work, is:

j(r, s) = s(WB , t(r, s))

For detailed processor correctness proofs dealing with sequences of internal and ex-
ternal interrupts (but without devices) see [Bey05, Dal06].

8 Pervasive Correctness Proofs

Finally, we show how pervasive correctness proofs for computations with timer in-
terrupts can be obtained from i) correctness proofs for ISA programs that cannot be
interrupted ii) hardware correctness theorems and iii) WCET analysis. As one would
expect, the arguments are reasonably simple, but the entire formalism of the last sec-
tions is needed in order to formulate them.

We consider only programs of the form7:

{P; a : jump a; a+4 : NOP }

The program does the useful work in portion P and then waits in the idle loop for the
timer interrupt. P initially has to clear and then to unmask the timer interrupt, which is
masked when P is started (see Sect. 6.2).

7 Note that we have a byte addressable memory and that in an ISA with delayed branch the idle
loop has two instructions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

78 S. Knapp and W. Paul

8.1 Computation Theory

We have to distinguish carefully between the transition function δD(d, dti, fdin) of the
interruptible ISA computation and the transition function δU (d) of the non interruptible
ISA computation, which we define as follows:

δU (d) = δD(d, 0, ∗)

Observe that this definition permits the non interruptible computation to clear the
timer interrupt bit by software. Non interruptible computations starting from configura-
tion d are obtained by iterated application of δU :

δi
U (d) =

{
d i = 0
δU (δi−1

U (d)) otherwise

For the ISA computation

d(r, s) = di(r,s), di(r,s)+1, . . . , dj(r,s) = e(r, s)

that has been constructed in Theorem 2 we get:

Lemma 5. For all instructions in a given slot, i.e. t ∈ [0 : (j(r, s) − i(r, s))]:

di(r,s)+t = δt
U (d(r, s))

This lemma holds due to the definition of j(r, s) and the fact that the timer is masked
initially such that the instructions of the interruptible computation are not interrupted.

We define the ISA run time TU (d, a), i.e. the time until the idle loop is reached,
simply as the smallest i such that δi

U fetches an instruction from address a:

TU (d, a) = min{i | δi
U (d).p.dpc = a}

Furthermore we define the result of the non interruptible ISA computation as:

resU (d, a) = δ
TU (d,a)
U (d)

Correctness proofs for non interruptible computations can be obtained by classical
program correctness proofs. They usually have the form d ∈ E → resU (d, a) ∈ Q or,
written as a Hoare triple {E}P{Q}.

We assume that the definition of Q does not involve the PC and the delayed PC.
Because the idle loop only changes the PC and the delayed PC of the ISA computation
we can infer on the ISA level that property Q continues to hold while we execute the
idle loop:

∀i ≥ TU (d, a) : δi
U (d) ∈ Q

8.2 Pervasive Correctness

Assume sim(d, h) holds. Then the ISA configuration d can be decoded from the hard-
ware configuration by a function:

d = decode(h)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Realistic WCET Analysis in the Context of Pervasive System Verification 79

Clearly, in order to apply the correctness statement {E}P{Q} to a local computation
in slot (r, s), we have to show for the first ISA configuration in the slot:

d(r, s) ∈ E

In order to apply the processor correctness theorem the simulation relation must hold
initially:

sim(d(r, s), h(r, s))

Now consider the last hardware configuration g(r, s) = ht((r,s)+1)−1 of the slot. We
want to conclude

Theorem 4. The decoded configuration obeys the postcondition Q:

decode(g(r, s)) ∈ Q

This only works if portion P is executed fast enough on the pipelined processor
hardware.

8.3 Worst-Case Execution Time

We consider the set H(E) of all hardware configurations h encoding an ISA configura-
tion d ∈ E:

H(E) = {h | decode(h) ∈ E}
While the decoding is unique, the encoding is definitely not. Portions of the ISA

memory can be kept in the caches in various ways.
For a hardware configuration h = h0 we define the hardware run time TH(h, a)

until a fetch from address a as the smallest number of cycles such that in cycle t an
instruction, which has been fetched in an earlier cycle t′ < t from address a, is in the
write back stage WB . Using scheduling functions this definition is formalized as:

TH(h, a) = min{t | ∃t′ : s(WB , t) = s(IF , t′) ∧ ht′
.dpc = a}

Thus for ISA configurations satisfying E we define the worst-case execution time
WCET (E, a) as the largest hardware runtime TH(h, a) of a hardware configuration
encoding a configuration in E:

WCET (E, a) = max{TH(h, a) | h ∈ H(E)}

As pointed out earlier such estimates can be obtained from (sound!) industrial tools
based on the concept of abstract interpretation [Abs06]. AbsInt’s WCET analyzer does
not calculate the “real” worst-case execution time WCET (E, a), but an upper bound
WCET ′(E, a) ≥ WCET (E, a). Nevertheless this is sufficient for correctness since
WCET ′(E, a) ≤ T − off ⇒ WCET (E, a) ≤ T − off . Assume we have:

WCET (E, a) ≤ T − off

Within slot (r, s) we look at the ISA configuration d(r, s) = di(r,s) and a local compu-
tation starting in hardware configuration h(r, s) = ht(r,s). Considering the computation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

80 S. Knapp and W. Paul

after hardware run time many cycles TH(h(r, s), a) < T − off we can conclude that
the computation is not interrupted and the instruction in the write back stage (at the end
of the computation) is the first instruction being fetched from a. By the definition of the
ISA run time this is exactly instruction i(r, s) + TU (d(r, s), a), thus:

s(WB , t(r, s) + TH(h(r, s), a)) = i(r, s) + TU (d(r, s), a)

Let h′ = ht(r,s)+TH(h(r,s),a) be the hardware configuration in this cycle and let
d′ = di(r,s)+TU (d(r,s),a) = resU (d(r, s), a) be the ISA configuration of the instruction
in the write back stage.

In this situation the pipe is almost drained. It contains nothing but instructions from
the idle loop. Thus the processor correctness theorem sim(d′, h′) holds for all com-
ponents of the configuration but the PC and the delayed PC. Therefore we weaken the
simulation relation sim to a relation dsim by dropping the requirement that the PCs
and delayed PCs should match:

dsim(d′, h′)

Until the end of the slot in cycle t(r, s) + T and instruction j(r, s), only instructions
from the idle loops are executed. They do not affect the dsim relation, hence:

dsim(e(r, s), g(r, s))

Since resU (d(r, s), a) ∈ Q and Q does not depend on the program counters we
have e(r, s) ∈ Q. We derive that decode(g(r, s)) coincides with e(r, s) except for the
program counters. And again, because this does not affect the membership in Q, we get
the desired Theorem 4.

References

[Abs06] AbsInt Angewandte Informatik GmbH. Worst-Case Execution Time Analyzers.
http://www.absint.com/, December 2006.

[BBG+05] S. Beyer, P. Böhm, M. Gerke, M. Hillebrand, T. In der Rieden, S. Knapp, D. Leinen-
bach, and W.J. Paul. Towards the formal verification of lower system layers in au-
tomotive systems. In 23nd IEEE International Conference on Computer Design:
VLSI in Computers and Processors (ICCD 2005), 2–5 October 2005, San Jose, CA,
USA, Proceedings, pages 317–324. IEEE, 2005.

[Bey05] Sven Beyer. Putting It All Together: Formal Verification of the VAMP. PhD thesis,
Saarland University, Computer Science Department, March 2005.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolfgang
Paul. Instantiating uninterpreted functional units and memory system: Functional
verification of the VAMP. In D. Geist and E. Tronci, editors, Proc. of the 12th
Advanced Research Working Conference on Correct Hardware Design and Verifi-
cation Methods (CHARME), volume 2860 of LNCS, pages 51–65. Springer, 2003.

[BP06] Geoffrey M. Brown and Lee Pike. Easy parameterized verification of biphase mark
and 8N1 protocols. In Proceedings of the 12th International Conference on Tools
and the Construction of Algorithms (TACAS’06), volume 3920 of LNCS, pages
58–72. Springer, 2006.

[Dal06] Iakov Dalinger. Formal Verification of a Processor with Memory Management
Units. PhD thesis, Saarland University, Computer Science Department, July 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.absint.com/

Realistic WCET Analysis in the Context of Pervasive System Verification 81

[DHP05] Iakov Dalinger, Mark Hillebrand, and Wolfgang Paul. On the verification of mem-
ory management mechanisms. In D. Borrione and W. Paul, editors, Proceedings
of the 13th Advanced Research Working Conference on Correct Hardware Design
and Verification Methods (CHARME 2005), volume 3725 of LNCS, pages 301–
316. Springer, 2005.

[Fle06] FlexRay Consortium. http://www.flexray.com, December 2006.
[HIP05] Mark Hillebrand, Thomas In der Rieden, and Wolfgang Paul. Dealing with I/O

devices in the context of pervasive system verification. In ICCD ’05, pages 309–
316. IEEE Computer Society, 2005.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, second edition, 1996.

[MP00] Silvia M. Müller and Wolfgang J. Paul. Computer Architecture: Complexity and
Correctness. Springer, 2000.

[OSE06] OSEK/VDX. http://www.osek-vdx.org, December 2006.
[Pau05] Wolfgang Paul. Lecture Notes from the lecture Computer Architecture 2: Automo-

tive Systems. http://www-wjp.cs.uni-sb.de/lehre/vorlesung/
rechnerarchitektur2/ws0506/temp/060302 CA2 AUTO.pdf, 2005.

[Sch06] Julien Schmaltz. A formal model of lower system layer. In Aarti Gupta and Pana-
giotis Manolios, editors, Formal Methods in Computer-Aided Design, 6th Interna-
tional Conference, FMCAD 2006, San Jose, CA, USA, November 12–16, 2006,
Proceedings. IEEE Computer Society, 2006. To appear.

[SH98] Jun Sawada and Warren A. Hunt. Processor verification with precise exceptions
and speculative execution. In Alan J. Hu and Moshe Y. Vardi, editors, CAV ’98,
pages 135–146. Springer, 1998.

[WL88] J. Lundelius Welch and N. Lynch. A new fault-tolerant algorithm for clock syn-
chronization. Information and Communication, 77(1):1–36, April 1988.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.flexray.com
http://www.osek-vdx.org
http://www-wjp.cs.uni-sb.de/lehre/vorlesung/
rechnerarchitektur2/ws0506/temp/060302_CA2_AUTO.pdf

Lazy Execution of Boolean Queries

Dieter Maurer

Eichendorffstr. 23, D-66385 St. Ingbert
dieter@handshake.de

Abstract. Lazy evaluation, the technique to build special data struc-
tures allowing to perform an evaluation at a later time, has many uses
in functional programming languagues [1,2,3]. This article shows a use
in imperative (object oriented) languages: the lazy execution of boolean
queries. Applying lazy index lookup can result in drastic gains in search
speed and reduce the amount of required main memory.

1 Introduction

Functional programming languages and especially lazy evaluation have been a
focal point of Reinhard’s research for some time. The lazy evaluation technique
builds special data structures, so called closures, allowing to postpone evaluations
until the result is known to be required. Hughes [1] demonstrates how this feature
can be used to increase modularity. Especially, he applies it to searching using
quadtrees. More recently, Nordin&al [3] exploited lazyness to modularize a set
of algorithms for contraint satisfaction problems.

Obviously, delaying work may be advantageous in non-functional and espe-
cially imperative contexts, too. It may prevent doing work which ultimately
would turn out to be irrelevant for the final task or to collect additional infor-
mation allowing to perform the work more efficiently.

The next section introduces boolean queries. Such queries are often used by
search engines. The result set of such queries is usually large but in almost all
cases, only a few hits will be examined. It therefore seems promising to execute
the search lazily or incementally: rather than determining the complete result set
as a whole, determine only a few hits at a time and continue the search when the
user calls for more hits. Even when the complete final result is called for, large
parts of intermediate results may be irrelevant. This holds especially for specific
“and” queries. Lazy execution can partly avoid the computation of those parts.

The following section demonstrates how lazy query execution can be imple-
mented in an object oriented language. Even when the complete result set must
be determined, the technique can often reduce search costs both in terms of time
and main memory needs as the construction of irrelevant intermediate results is
avoided. Some experimental results are shown in section 4.

2 Boolean Queries

Queries supported by most search engines usually consist of a set of search terms
with an indication whether the documents in the result set may, must or must not

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 82–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lazy Execution of Boolean Queries 83

contain a given term. Such queries form a subset of the boolean queries. Boolean
queries are constructed from elementary queries with the boolean operators ∧
(“and”), ∨ (“or”) and ¬ (“not).

Search engine search results are often large, so large that usually only a tiny
part of the result set is examined. Therefore, it seems promissing to execute the
search lazily or incrementally.

We first define the boolean queries formally and exhibit the standard inter-
pretation as a document set (the search result).

2.1 Abstract Syntax

Boolean queries are constructed from elementary queries with the boolean oper-
ators ∧ (“and”), ∨ (“or”) and ¬ (“not). We are not interested in the elementary
queries and treat them as terminals. Boolean queries are defined by the abstract
syntax in table 2.1.

Table 1. Abstract Syntax of Boolean Queries

Terminals
e ∈ E Elementary query

Nonterminals
b ∈ B Boolean query

Structure
b = e

| ∧(b1, ..., bn) “and” query
| ∨(b1, ..., bn) “or” query
| ¬(b) “not” query

2.2 Standard Interpretation

Boolean queries are usually interpreted over a finite domain D of documents as
a subset of D, the set of query hits. ∧, ∨ and ¬ are interpreted as set inter-
section, union and complement of D subsets, respectively. The evaluation of an
elementary query e over D yields the set of documents in D matching e.

Note that the evaluation result is obtained as a whole and that the evaluation
of an “and” query may involve much larger intermediate sets than the final
result. If set operations are performed in main memory this may lead to high
memory consumption.

Elementary queries are usually implemented by means of indexes. In realistic
applications indexes are large and maintained on secondary storage. A naive
implementation could touch large index parts not relevant for the final result
with the potential to significantly increase search time due to larger amounts of
slow IO operations.

3 Lazy Execution

Our lazy execution of boolean queries will not determine the result set as a whole
but instead will incrementally determine the elements in the result set one at a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

84 D. Maurer

time. The size of any intermediate result is linear in the size of the final result
and the complexity of the query (as measured by the sum of the complexities of
the elementary queries). It will try to optimize access to the results of elementary
subqueries.

Of course, most optimization potential comes from the “and” queries as they
have the potential to drasticly reduce the result set.

We will use the name hit for an element in the result set of a (given) query. In
order to get a concise notion for terms like “the first hit” and the “next hit”, we
impose a total order ≤ on D. In order to later avoid boundary cases, we extend
D to a domain D̄ by adding new minimal and maximal elements BOT and TOP,
respectively. As the order does not need to have any semantic meaning, such
an order always exists. In fact, real implementations do not handle documents
(and sets thereof) directly but instead persistent document ids, mapped to the
real documents as late as possible. These document ids usually have a natural
complete order and induce an adequate order on the document set.1

Relevance ranking becomes vital when the result sets get large. In a ranked
result list, the first hits are the most relevant ones. This drasticly increases
the probability that only the first few hits need to be examined and therefore
the profits to determine the result incrementally. If relevancy is based on query
independent document properties (only), then it can be used to define the order
mentioned above.2 In this case, the lazy execution will incrementally generate
the hits ordered by relevancy. The link connectivity of a document is an example
for a query independent relevance criteria. If the relevance criteria depends on
the query, then the approach described in this article cannot directly generate
hits in relevance order.

Dealing not with the complete result set as a whole but instead with one
hit at a time is widely used in query processing. The standard device for such
incremental hit processing is called a cursor. Its current state represents one
hit. It has a method to advance to the next hit (if any). In some sense the
imperative cursor corresponds to the closure notion in the functional world in
that it encapsulates the state necessary to continue execution at a later time. We,
too, use a form of cursor, a so called HitCursor. Our cursors, however, provide
more versatile advancing methods to efficiently skip hits deemed irrelevant based
on environmental knowledge.

HitCursor is an abstract object class. The lazy interpretation of boolean
queries maps each query to a HitCursor instance. It takes over the role of the
“subset of D” in the standard interpretation. We use subclasses to represent
the various query types, among others AndCursor, OrCursor and NotCursor to
represent the result of an “and”, “or” and “not” query, respectively. Their con-
structors are used as the lazy interpretation of the ∧, ∨ and ¬ query operators.

1 The document order induced by the id order often has no semantic meaning. If,
however, ids are assigned consecutively, then this order implies age.

2 Relevancy will define only a preorder: there may be different documents with the
same rank. This can easily by fixed by combining the relevance order with an artificial
total order in a lexicographic way.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lazy Execution of Boolean Queries 85

Each HitCursor has an associated set it traverses. We call the elements in this
set the hits of the cursor. We will define AndCursor, OrCursor and NotCursor
in such a way that their associated sets are the intersection, union and difference
of the associated sets of their children, respectively.

HitCursor instances c have attributes value ∈ D̄, the current cursor value,
and classification, an indication whether the current value is a hit, and
methods

– advanceTo(to ∈ D) -> Classification
– advanceFrom(from ∈ D̄, limit ∈ D̄) -> Classification
– asSet() -> Subset of D

Derived HitCursor classes may of course have additional attributes (and meth-
ods). In particular, most of the classes described in this article will have the
attribute subcursors. Its value is a list of hit cursors which represents the
operand[s] for the given hit cursor.

Classification has the following values

HIT: c.value is in the associated set
NOHIT: c.value is not in the associated set
CANDIDATE: c.value may or may not be in the associated set
END: the cursor is exhausted, c.value is TOP

A newly constructed HitCursor c has c.value = BOT and c.classification=
NOHIT.

Informally, advanceTo(to) moves forward to to or, if that is not a hit, fur-
ther to the next potential hit (called a candidate), provided a candidate can be
efficiently determined.

Informally, advanceFrom(from, limit) moves forward to the smallest hit
between from and limit (both exclusive) or, if there is no hit in this range, to
the next candidate beyond limit.3

The parameters to and from/limit, respectively, pass environmental knowl-
edge down into the methods. to and from indicate that any hit below the given
value is irrelevant and can be skipped/needs not be computed. limit is used to
tell the method that there is no need to put in effort at the moment to determine
a hit above limit.

The distinction between NOHIT and CANDIDATE is an optimization. It is used
primarily by advanceTo. advanceTo(to) will return CANDIDATE when to is not
a hit but the next potential hit (the next candidate) could be efficiently deter-
mined. The calling environment can use this candidate to optimize the overall
search for the next hit. If, on the other hand, the next potential hit can not
be efficiently determined, then NOHIT will be returned. In this case, the calling
environment must continue its search without additional information from this
hit cursor.
3 It can use limit, but if it can efficiently determine a value c > limit with no hit

between limit (inclusive) and c (exclusive), then c is a better (more efficient) choice.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

86 D. Maurer

A HitCursor is called initial when its value is BOT and its (potentially 0)
subcursors are initial. asSet called on an initial HitCursor returns its associated
set.

There is a notion of consistency which plays an essential role for the algorithm
correctness proof. For a cursor to be consistent, its value and classification
must relate as given above in the classification values definition and all subcur-
sors must be consistent. We call this base consistency. Moreover, consistency
relates the value of a HitCursor to that of its subcursors. We call this child
consistency. The various subclasses define child consistency differently. A cursor
is consistent if it is both base and child consistent. An initial cursor is consistent.
The advancing methods must maintain consistency.

As the names suggest, a HitCursor c behaves like a cursor over its associated
set. c.value is the current cursor value which may or may not be in the set
depending on c.classification. advanceTo and advanceFrom move the cur-
sor forward over the set. It is illegal to call advanceTo or advanceFrom on an
inconsistent cursor or with a first parameter d smaller than the cursor’s value.
A call to advanceFrom is also illegal when limit is not larger than from. A
concrete implementation may raise an exception for an illegal call or may show
undefined behaviour.

A legal call of c.advanceTo(to) must satisfy the following restrictions.

To0 c remains consistent.
To1 If to is a hit, then the call will return HIT and will set c.value to to.
To2 If the call returns CANDIDATE, then the call has set c.value to a value

d ∈ D larger than to and there are no hits between to (inclusive) and d
(exclusive). c.value is in this case the next possible hit candidate.

To3 If the call returns NOHIT, then the call has set c.value to to. As a conse-
quence of To1 to is not a hit.

To4 If the call returns END, then there are no hits at or above to. c.value is
set to TOP.

A legal call of c.advanceFrom(from, limit) must satisfy the following1 Vreak
restrictions.

Fr0 c remains consistent.
Fr1 If there is a hit between from (exclusive) and limit (exclusive), then the

call must return HIT and set c.value to the smallest such hit.
Fr2 If the call returns CANDIDATE, then the call has set c.value to a value

d ∈ D not smaller than limit and there are no hits between from and d
(both exclusive). c.value is in this case the next possible hit candidate.

Fr3 The call does not return NOHIT.
Fr4 If the call returns END, then there are no hits above from. c.value is set to

TOP.

In all these cases, c.classification is set to the return value of advanceTo or
advanceFrom.

Below is the definition of the asSet method (in the programming language
Python [4]). Fr1 ensures that this method called on an initial HitCursor indeed
returns its associated set. All advanceFrom calls are obviously legal.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lazy Execution of Boolean Queries 87

asSet Definition

def asSet(self):
s = set()
while self.advanceFrom(self.value, TOP) == HIT:
s.add(self.value)

return s

3.1 AndCursor

An AndCursor implements the lazy execution of a (non-empty) “and” query
It derives from HitCursor and adds to it an additional attribute subcursors
containing the (non-empty) list of HitCursors which implement the subqueries
that are “and”ed together.

An AndCursor is child consistent, when no subcursor value is larger than its
value.

AndCursor.advanceTo Definition

def advanceTo(self, to):
Note: ’self.subcursors’ is not empty
for subcursor in self.subcursors:
cl = subcursor.advanceTo(to)
if cl != HIT: break

self.value = subcursor.value
self.classification = cl
return cl

AndCursor.advanceFrom Definition

def advanceFrom(self, from_, limit):
self.value = from_
Note: ’self.subcursors’ is not empty
subcursor0 = self.subcursors[0]
while True:
chose a candidate from the first subcursor
cl = subcursor0.advanceFrom(self.value, limit)
self.value = subcursor0.value
self.classification = cl
if the first subcursor does not have a hit, there is None
if cl != HIT: return cl
verify the candidate with all subcursors
verified = False
while not verified:
verified = True
for subcursor in self.subcursors:

cl = subcursor.advanceTo(self.value)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

88 D. Maurer

self.value = subcursor.value
self.classification = cl
if cl == HIT: continue
elif cl == END: return END
the verification failed, the candidate is not a hit
we return, in case we have advanced enough
if self.value >= limit: return CANDIDATE
we leave the verification loop,
when we did not get a new candidate
if cl == NOHIT: break
otherwise, we continue verification with the new candidate
verified = False

get a new candidate from the first subquery when
we have no current candidate
if cl == NOHIT: break

if verified: return HIT

As we move the cursor value when we move one of its subcursor values, any
legal cursor method call of a cursor maintains child consistency. A direct verifi-
cation also shows that a legal cursor method call on a cursor results in only legal
subcursor method calls.

Let c be a consistent AndCursor with subcursors c1 . . . cn (n >= 1), S1 . . . Sn

their associated sets. We want to compute the set associated with c. With S :=⋂n
i=1 Si a legal call to advanceFrom(from, limit) fulfills:

And-Fr1 If there is d ∈ S between from (exclusive) and limit (exclusive), then
the call returns HIT and sets c.value to the smallest such d.

And-Fr2 If the call returns CANDIDATE, then the call sets c.value to a value
d ∈ D not smaller than limit and there are no d′ ∈ S between from and d
(both exclusive).

And-Fr3 The call does not return NOHIT.
And-Fr4 If the call returns END, then there are no d ∈ S above from. c.value

is set to TOP.

As a consequence, c.asSet() returns S for an initial c and the associated set of
an AndCursor is indeed the intersection of the associated sets of its subcursors.
Moreover, advanceFrom fulfills Fr0 to Fr4 and advanceTo To0 to To4.

As a simple example, lets take a look at the (initial) AndCursor c with
subcursors c1 and c2 and associated sets {1, 5, 9, 10} and {6, 8, 9, 15}, respec-
tively. The first hit is determined by c.advanceFrom(BOT, TOP). This call
will start with a call c1.advanceFrom(BOT, TOP) and get HIT with a value of
1. This value is then verified with c2 by calling c2.advanceTo(1). The call
will return CANDIDATE with a value of 6. 6 is our new candidate which will
be checked with c1.advanceTo(6), skipping 5. This returns CANDIDATE with
a value of 9. c1.advanceTo(9) and c2.advanceTo(9) both return HIT: we
have found 9 as the first hit for c. The next hit could then be computed by
c.advanceFrom(9, TOP).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lazy Execution of Boolean Queries 89

3.2 OrCursor

An OrCursor implements the lazy execution of an “or” query. It derives from
HitCursor and adds to it two additional attributes, a heap candidates of sub-
cursors ordered by their value and a list noncandidates of subcursors. Initially,
candidates is empty and noncandidates is the list of HitCursors which imple-
ment the subqueries that are “or”ed together. As the names suggest, candidates
contains the subcursors for which candidates with respect to the cursor’s cur-
rent value are known while noncadidates contains the remaining subcursors.
candidates is a heap to efficiently determine the smallest candidate.

An OrCursor c is child consistent if for all subcursors c′ in c.noncandidates
we have c′.value <= c.value and for all subcursors c′ in c.candidateswe have
c′.value >= c.value and there is no d ∈ Dc′ with c.value < d < c′.value.

OrCursor.advanceTo Definition

def advanceTo(self, to):
heap = self.candidates
nohits = []
advance the heap until we either find a hit
or all values are > to
cl = NOHIT
while heap:
subcursor = heap[0]
if subcursor.value > to: break
if subcursor.value == to and subcursor.classification == HIT:
cl = HIT; break

clt = subcursor.advanceTo(to)
if clt in (HIT, CANDIDATE):
heapreplace(heap, subcursor) # replace top by subcursor
if clt == HIT: cl = HIT; break

else:
heappop(heap) # remove top element
if clt == NOHIT: nohits.append(subcursor)
"clt == END"; thus we can forget this subcursor now

if cl == NOHIT: # no hit found so far
check non-candidates
noncandidates = self.noncandidates
for i,subcursor in enumerate(noncandidates[:]):
del noncandidates[i]
cl = subcursor.advanceTo(to)
if cl in (HIT, CANDIDATE):

heappush(heap, subcursor)
if cl == HIT: break

elif cl == NOHIT: nohits.append(subcursor)
"cl == END": we can forget about this subcursor

self.noncandidates.extend(nohits)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

90 D. Maurer

if cl != HIT: # no hit found
if nohits:
we have "nohits" and cannot provide a candidate
self.value = to; self.classification = NOHIT
return NOHIT

elif heap:
subcursor = heap[0]; cl = CANDIDATE

else:
no candidates and no noncandidates -- at the end
self.value = TOP; self.classification = END
return END

we found at least a candidate
self.value = subcursor.value
self.classification = cl
return cl

OrCursor.advanceFrom Definition

def advanceFrom(self, from_, limit):
heap = self.candidates
cl = NOHIT
advance the heap until its first (lowest) value is > "from_"
and is a hit
while heap:
subcursor = heap[0]
if subcursor.value > from_:
if cl == NOHIT and subcursor.value >= limit:

cl = CANDIDATE; break
either: cl == HIT (i.e. "limit" already found to be a hit)
or: subcursur.value < limit
in both cases: subcursor.value <= limit
ensure, this is indeed a hit (and not only a candidate)
clt = subcursor.classification
if clt != HIT:

clt = subcursor.advanceTo(subcursor.value)
if clt == NOHIT:
it is not a hit of this subcursor
we may need to get rid of it
if subcursor.value == limit:
"limit" is a hit (see above)
clt = HIT

else:
note: subcursor.value < limit
clt = subcursor.advanceFrom(subcursor.value, limit)

else: clt = subcursor.advanceFrom(from_, limit)
if clt in (HIT, CANDIDATE):

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lazy Execution of Boolean Queries 91

heapreplace(heap, subcursor)
if clt == HIT:

any hit is better than a previous one
limit = subcursor.value; cl = HIT

else: heappop(heap) # END
process noncandidates
for subcursor in self.noncandidates:
clt = subcursor.advanceFrom(from_, limit)
if clt in (HIT, CANDIDATE):
heappush(heap, subcursor)
if clt == HIT:

any hit is better than the previous one
limit = subcursor.value; cl = HIT

elif cl == NOHIT: cl = CANDIDATE
else: END -- we can forget the exhausted cursor

self.noncandidates = []
if cl == NOHIT:
we are at the end
self.value = TOP; self.classification = END
return END

self.value = heap[0]
self.classification = cl
return cl

A direct verification shows that a legal call to advanceTo and advanceFrom
maintains child consistency and causes only legal calls for subcursors.

Let c be a consistent OrCursor with subcursors c1, ...cn, Si the associated set
of ci (i = 1 . . . n) and S :=

⋃n
i=1 Si, then a legal call c.advanceFrom(from, limit)

satisfies:

Or-Fr1 If there is d ∈ S between from (exclusive) and limit (exclusive), then
the call returns HIT and sets c.value to the smallest such d.

Or-Fr2 If the call returns CANDIDATE, then the call sets c.value to a value
d ∈ D not smaller than limit and there are no d′ ∈ S between from and d
(both exclusive).

Or-Fr3 The call does not return NOHIT.
Or-Fr4 If the call returns END, then there are no d ∈ S above from. c.value is

set to TOP.

As a consequence, S is the set associated with c and advanceFrom satisfies Fr0
to Fr4. A direct verification shows that advanceTo satisfies To0 to To4.

As a simple example, lets take a look at the (initial) OrCursor cwith subcursors
c1 and c2 and associated sets {1, 5, 9, 10} and {6, 8, 9, 15}, respectively. After the
construction of c, the heap candidates is empty and noncandidates contains
[c1, c2]. The call c.advanceFrom(BOT, TOP) to compute the first hit finds an
empty heap and calls c1.advanceFrom(BOT, TOP). This returns HIT with value
1. This hit is used as new limit. There is no need for another hit cursor to invest

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

92 D. Maurer

effort in computing hits above 1. c1 is put onto the heap. c2.advanceFrom(BOT,
1) is called and returns CANDIDATEwith value 6. c2 is put onto the heap. We now
have two candidates and no noncandidates and the heap top gives us the first hit:
1. c.advanceFrom(1, TOP) is called to determine the next hit. It finds c1 on the
heap top with a too small value. Therefore, it calls c1.advanceFrom(1,TOP), gets
HIT with value 5 and replaces the heap top. The heap top is now larger than from,
it is a hit and we have no noncandidates. Thus, 5 is the next hit.

3.3 NotCursor

A NotCursor implements the lazy execution of a “not” query. In order to define
it, we need another class: a DocumentEnumerator.

A DocumentEnumerator for D has a single method next returning for d ∈ D̄
the next smallest element in D or TOP (if no next smallest element exists). E
denotes a DocumentEnumerator for D.

A NotCursor derives from HitCursor and adds the additional attribute
subcursor. Initially, subcursor is set to the HitCursor describing the subquery
of which we want to determine the “not”.

A NotCursor is child consistent when its subcursor value is not smaller than
its value and there are no subcursor hits between the cursor’s and the subcursor’s
value (both exclusive).

NotCursor.advanceTo Definition

def advanceTo(self, to):
self.value = to
subcursor = self.subcursor
if to < subquery.value: cl = HIT
else:
cl = subcursor.advanceTo(to)
cl = cl == HIT and NOHIT or HIT

self.classification = cl
return cl

NotCursor.advanceFrom Definition

def advanceFrom(self, from_, limit):
subcursor = self.subcursor
self.value = from_; cl = CANDIDATE
while self.value < limit:
self.value = E.next(self.value)
if self.value == TOP: cl = END; break
if self.value < subcursor.value: cl = HIT; break
cl = subcursor.advanceTo(self.value)
if cl != HIT: cl = HIT; break
cl = CANDIDATE

self.classification = cl
return cl

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lazy Execution of Boolean Queries 93

Let c be a consistent NotCursor with subcursor c′, S′ the set associated with
c′ and S := D − S′, then a legal call c.advanceFrom(from, limit) satisfied:

Not-Fr1 If there is d ∈ S between from (exclusive) and limit (exclusive), then
the call returns HIT and sets c.value to the smallest such d.

Not-Fr2 If the call returns CANDIDATE, then the call sets c.value to a value
d ∈ D not smaller than limit and there are no d′ ∈ S between from and d
(both exclusive).

Not-Fr3 The call does not return NOHIT.
Not-Fr4 If the call returns END, then there are no d ∈ S above from. c.value

is set to TOP.

As a consequence, S is the set associated with c and ows that advanceTo satisfies
To0 to To4.

As a simple example, assume that the document enumerator enumerates docu-
ments 1, 2, 3 . . . and that the (initial) NotCursor c contains a subcursor c1with as-
sociated set {1, 5, 9, 10}.The call c.advanceFrom(BOT,TOP) to determine the first
hit will get 1 from the document enumerator. It will check with c1.advanceTo(1)
and get a HIT. Therefore, 1 is not a hit of the NotCursor and the document enumer-
ator is asked for the next value: 2. This time, c1.advanceTo(2)returns CANDIDATE
with its value set to 5. This implies that there are not c1 hits between 2 (inclusive)
and 5 (exclusive). c.advanceFrom(BOT, TOP) returns HIT with its value set to 2.
When the next hit is determined by c.advanceFrom(2,TOP), the enumerator will
return 3 and as this is smaller than c1.value, the call will return HIT with value
set to 3.

3.4 IndexLookupCursor

Search engines perform queries over very large document sets. Indexes are used
to speed up queries. The most elementary indexes map a search term to the set
of documents that are matched by this term. More complex indexes are often
composed of one or more elementary indexes.

As documents can usually be modified and such a modification may change the
search terms matching the document, the set implementation used for elementary
indexes must efficiently support dynamic insertion and removal of documents.
Some variant of B+ trees are an often used implementation for such sets. The
leaf nodes of such trees contain a non-empty (usually) ordered set of keys. The
keys of all leaf nodes together form the represented set. The inner nodes contain
c1, k1, c2, k2, . . . , cn where the ci are the child nodes and k1 < k2 < . . . kn−1 are
keys. With k0 := BOT and kn := TOP , all keys k in ci satisfy ki−1 <= k < ki.
A comparison with the ki can thus determine in which child a given key k might
be found. If these trees are balanced, then lookup, insertion and removal of a
key all have logarithmic time complexity.

It is easy to define a HitCursor for such a tree. We call it an IndexLookup-
Cursor. It derives from HitCursor and adds the attribute tree holding the tree
iterated over. Its advanceTo(to) informally locates the leaf l of tree that may
contain to together with the key k separating this leaf from the next leaf. If l

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

94 D. Maurer

indeed contains to, then we found a hit. If l contains a key larger than to, then
the smallest of these keys is a candidate. Otherwise, k is a candidate, unless
it is TOP in which case the cursor is exhausted. Similarly, the implementation
of advanceFrom(from, limit) is informally given by: locate the leaf that may
contain from and the leaf following it (if any). Combine the keys from these
leaves. If there are no keys above from in this set, the cursor is exhausted.
Otherwise, the smallest such key is either a hit or a candidate depending of
whether it is smaller than limit or not, respectively. The associated set obviously
is the set represented by tree.

This implementation uses constant space but requires logarithimic time per
advanceTo and advanceFrom call. We may use the fact that the overall algorithm
only performs legal advanceTo and advanceFrom calls to speed up typical calls
(e.g. by caching the path from the tree root to the most recently accessed leaf)
but the worst case will remain unchanged.

4 Experimental Results

I implemented a (slightly optimized) variant of the above algorithm as Incre-
mentalSearch2 [5]. This section describes two series of measurements demon-
strating the performance of IncrementalSearch2.

All measurements were performed with empty caches to analyse especially
the IO reduction, which heavily dominates the search time. When all objects are
already cached, the searches only take a few milliseconds.4 To be fair, the asSet
method is measured for the lazy execution. This means that the lazy and non-
lazy execution both determine the same result. The lazyness gain only comes
from the more efficient handling of intermediate results.

The first series measures subpath queries. Sometimes documents may have
an associated hierachical classification, e.g. their location in a hierarchical file
system or their location in a hierarchical classification structure. We call such a
hierarchical classification a path. A path query determines for a given query path
the documents the path of which contains the query path as subpath. Usually,
the query specifies where the query path can occur as a subpath, e.g. at the
start, at the end, at a fixed level or anywhere.

Path queries are supported by specialized path indexes. If a document has
path s1 . . . sn, then the path index indexes the document under all pairs si, i for
1 ≤ i ≤ n. In order to determine e.g. the documents the path of which starts
with s1 . . . sn, it can use an “and” query over the documents indexed under si, i
for 1 ≤ i ≤ n. We study this type of queries. We observe that the number of
“and” operands is equal to the path length. Table 4 shows the results for a series
of path queries with increasing path length against a dataset of about 270.000
documents.

Path searches represent one of the query types that can best be optimized by
lazy query execution. Pure “or” queries on the other hand cannot be optimized
and are a bit slower than with eager search. Table 4 shows measurements for the
4 Whether or not we execute the query lazily or eagerly.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Lazy Execution of Boolean Queries 95

Table 2. Search/Load Time and Number of Objects Loaded for Path Queries depend-
ing on Path Length (“len”)

len # hits search time (ms) # loads load time (ms)
eager lazy % eager lazy % eager lazy %

1 262233 10089 10075 99 3153 3153 100 8176 8180 100
2 32909 11930 11695 98 3550 3555 100 9239 9194 100
3 10964 11874 11431 96 3680 3580 97 9537 9286 97
4 935 12125 4559 37 3770 1394 37 9736 3623 37
5 9 12097 342 3 3773 78 2 9778 210 2
6 3 12582 357 3 3912 79 2 10135 207 2
7 1 13250 341 3 4128 80 2 10692 210 2

execution of queries of the form Ge(created, 2004− 01− 01) ∧ Eq(forum, fid)∧
Eq(reply,′′). They locate not too old threads in the forum fid. The Ge
(“GreaterOrEqual”) subquery is in fact a large or with about 600 elementary sub-
queries. The total number of documents is about 35.000.

Table 3. Search/Load time and Number of Objects Loaded for specific queries with
large “or” component

hits search time (ms) # loads load time (ms)
eager lazy % eager lazy % eager lazy %

1851 2630 2156 82 828 669 81 2210 1801 81
1570 2557 2076 81 806 643 80 2154 1741 81
1475 2585 2089 81 822 648 79 2188 1748 80
365 2393 1740 72 755 542 72 2012 1458 72
246 2353 1637 70 742 493 66 1987 1357 68
174 2792 1620 58 738 503 68 2419 1356 56
13 2310 1584 69 732 493 67 1947 1327 68
10 2510 1598 63 732 496 68 2151 1335 62

5 Conclusion

We have presented an algorithm for the execution of boolean queries. The algo-
rithm was motivated by the lazy evaluation of funtional programming languages.
Indexes as well as subqueries are interpreted as cursor like data structures ac-
cessing the indexes in a lazy fashion. Main memory consumption is linear in
the number of final hits and query complexity (as measured by the number of
elementary indexes involved). Lazy index access can often drasticly reduce the
number of loaded objects and thereby query time as IO dominates the com-
plete search process. The gain is especially high for specific “and” queries (up
to two orders) but slightly negative for pure “or” queries. Typical quite specific
queries involving a large “or” query can still expect gains in the order of 20 to
40 percent.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

96 D. Maurer

References

1. John Hughes: Why Functional Programming Matters. Internal report, Programming
Methodology Group, Chalmers Institute of Technology, Gothenburg, Sweden, 1985

2. R. Bird and P.Wadler: Introduction to Functional Programming. Prentice Hall, 1988
3. Thomas Nordin and Andrew Tolmach: Modular Lazy Search for Constraint Satis-

faction Problems. Pacific Software Research Center, Oregon Graduate Institute &
Portland State University, 1999

4. Guido van Rossum: Programming Language Python. http://www.python.org
5. Dieter Maurer: IncrementalSearch2.

http://www.dieter.handshake.de/pyprojects/zope#IncrementalSearch2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable
Classes of Horn Clauses

Helmut Seidl and Kumar Neeraj Verma

Institut für Informatik, TU München, Germany
{seidl,verma}@in.tum.de

Abstract. We consider secrecy problems for cryptographic protocols modeled
using Horn clauses and present general classes of Horn clauses which can be
efficiently decided. Besides simplifying the methods for the class of flat and one-
variable clauses introduced for modeling of protocols with single blind copying
[7,25], we also generalize this class by considering k-variable clauses instead of
one-variable clauses with suitable restrictions similar to those for the class S+.
This class allows to conveniently model protocols with joint blind copying. We
show that for a fixed k, our new class can be decided in DEXPTIME, as in the
case of one variable.

1 Introduction

Cryptographic protocols are today widely deployed for securing communication in vari-
ous applications notably electronic commerce. These protocols are rules for exchanging
messages, and rely on certain cryptographic algorithms like encryption and decryption
of messages using keys. Experience has shown that even very simple protocols can have
subtle flaws which are hard to detect by manual analysis. The classic example is that
of the Needham-Schroeder public key protocol [19], which was considered to be cor-
rect until a bug was found 15 years after its publication [17]. Such experiences have
recently led to considerable work on techniques for automatic verification of crypto-
graphic protocols.

An important point in the example cited above is that the attack does not consist in
breaking any underlying cryptographic algorithm like encryption or decryption. These
algorithms are assumed to be perfect, and the attack only involves simple techniques
like replaying intercepted messages, encrypting and decrypting messages with known
keys, etc. Such considerations have led to the use of the so-called Dolev-Yao model [10]
which essentially consists in treating cryptographic algorithms as black boxes, and as-
suming agents to be communicating over a completely hostile network, in the sense
that any message passing through it can be intercepted or deleted by an all-powerful
adversary. Further, new messages known to the adversary could be sent to agents, for
example with the aim of impersonating as another honest agent. These assumptions al-
low us to treat messages as terms and allow us to design symbolic techniques, e.g. those
based on automata and logic, for analyzing these protocols.

The complexity of verifying such protocols is due to several factors, like potentially
infinite number of sessions of the same protocol between different agents, possibly in

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 97–119, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

98 H. Seidl and K.N. Verma

parallel with complex interactions between them, possibly infinite number of agents, in-
finite possibilities for messages etc. Several kinds of restrictions are considered in order
to have efficient algorithms for the verification problem. For example if the number of
sessions is bounded, then checking for the presence of an attack is NP-complete [24].
This may be helpful for detecting some simple attacks during the design phase, con-
sidering that most known attacks involve very small number of sessions. However we
are often interested in certifying protocols, i.e. guaranteeing that there are no attacks
involving any number of sessions. This is a difficult problem, and remains undecidable
even with serious restrictions [5]. This class of problem is often modeled using Horn
clauses of first order logic [2,7,25,26] and related formalisms like automata and set
constraints [5,16,18]. In order to obtain tractable problems, one often uses safe abstrac-
tions, i.e. those that detect all attacks, but can possibly introduce false attacks. Further,
algorithms are also designed for specific classes of protocols which can be efficiently
treated.

In this paper we present several interesting classes of Horn clauses which can be ef-
ficiently treated. We consider secrecy questions about cryptographic protocols modeled
as satisfiability problems about Horn clauses. Our goal is to have as general classes
of clauses as possible, which can be decided in single exponential time. We consider
single exponential time to be the feasibility limit for this class of protocol verification
problems, as in [25]. For our modeling, we typically use a unary predicate known that
represents the set of messages that the adversary can know after arbitrary many ses-
sions of the protocol. The secrecy question is then whether known(t) does not hold
for a certain message t. In particular we adopt the approach of normalization of Horn
clauses, i.e. given a set of clauses we transform it to a set of simpler clauses on which
various kinds of queries, e.g. whether some ground P (t) holds, can be easily evaluated
(in polynomial time). The classes we deal with are interesting in the sense that they
are all general classes which still allow exponential time normalization, and further, no
decidable generalizations of these classes seem to be evident.

Compared to related work on verification of cryptographic protocols, note that our
interest is in certifying protocols, whereas approaches dealing with a bounded number
of sessions [24] only help to find some attacks involving small number of sessions. Ap-
proaches involving general classes of Horn clauses [2] seem to work well in practice, but
no termination guarantees are offered for the algorithm. Most similar to our approach
are works like [5,26,7] which try to find decidable classes of automata or clauses which
however may not model all protocols. In these approaches, the infinitely many nonces
(random numbers), generated in different protocol sessions, are typically abstracted to
finitely many nonces. This is a safe abstraction. A more precise modeling may repre-
sent these nonces not as constants but as functions of the history (all previous sessions).
But this leads to clauses which are difficult to treat efficiently. Another possibility is to
use linear logic instead of classical logic [3]. Finally, certain decidability results have
been obtained for general classes of protocols with infinitely many sessions, by putting
certain tagging constraints on the protocols [4,21,22].

In the rest of the section we describe the classes dealt with in the paper. We start with
the class H1 [20] which generalizes uniform Horn clauses [12] and further allows us to
express operations on relations like Cartesian products of relations, transitive closures

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 99

and permutations of components, still allowing exponential time normalization. This
also shows that despite their generality, H1 describes only (Cartesian products of) reg-
ular tree languages. We then consider the related class of flat clauses which models
various extensions of tree automata like two-wayness and alternation, permutations and
duplications of components, but also equality constraints between brothers which is
disallowed by H1. Compared to the various classes of flat clauses considered in the
literature, we allow maximal generality. In particular different functional terms may
contain different sets of variables. We show that this class can still be normalized in
exponential time.

While these two classes have very general features, they do not easily model specific
kinds of actions occurring in cryptographic protocols. In particular, we consider crypto-
graphic protocols in which each step involves copying of at most one piece of unknown
message. This class was considered in [7,9] and was modeled using flat clauses and
clauses involving at most one variable. The original upper bound provided in [7,9] for
this class of clauses and protocols was triply exponential. We introduced new tech-
niques like on-the-fly decomposition of one-variable terms to show that this class can
in fact be decided in single exponential time, giving us the optimal complexity for the
class of protocols as well as of clauses [25]. The proof in [25] used resolution and dealt
only with the satisfiability problem (in the Horn as well as non-Horn cases).

The main contribution of the present paper therefore is to simplify the algorithm for
the Horn case as well as to obtain a normalized set of clauses. Furthermore, we con-
sider protocols where, instead of just one piece of unknown message, several pieces of
unknown messages can be copied in a protocol step. Multiple blind copying, however,
easily leads to undecidability. We show here, though, that multiple blind copying can
be dealt with given that copying is always joint, i.e., all copied parts always occur in
every non-ground functional subexpression of the protocol. For that, we introduce a
generalization of the class of flat and one-variable Horn clauses. The new class allows
k-variable instead of one-variable clauses, but with some restriction, similar to those
for the class S+ [11]. We show that our ideas for the one-variable case can be suitably
generalized to give an exponential normalization procedure also for the k-variable case.

Several proofs have been ommitted in order to keep the paper readable. They can be
found in a longer version available from the authors and at http://www2.in.tum
de/ verma.

2 Horn Clauses and Cryptographic Protocols

A Horn clause is of the form A ⇐ A1 ∧ . . . ∧ An where n ≥ 0 and A, Ai are atoms
of the form P (t1, . . . , tk) where P is a k-ary predicate for k ≥ 0 and ti are terms built
up from variables and function symbols of fixed arities. A is called the head, and the
remaining part the body of the clause. Substitutions map variables to terms. Applica-
tion of a substitution σ to a term, atom, clause or substitution M is denoted Mσ and is
defined as usual. Composition of substitutions is defined as usual: M(σ1 . . . σk) should
be read as (. . . (Mσ1) . . .)σk . The least Herbrand model H of a set S of clauses is a set
of ground atoms (i.e. those without variables) inductively defined as: if σ is a ground
substitution (mapping variables to ground terms), if clause A ⇐ A1 ∧ . . . ∧ An ∈ S

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www2.in.tum.de/~verma
http://www2.in.tum.de/~verma

100 H. Seidl and K.N. Verma

and if each Aiσ ∈ H then Aσ ∈ H . Further we are interested in considering clauses
as representing generalizations of tree automata. Accordingly if P (t1, . . . , tn) is in the
least Herbrand model of a set of clauses then we also say that the state P accepts the
tuple (t1, . . . , tn). We also say that P (t1, . . . , tn) holds. Hence given a set of Horn
clauses, we can talk of questions like membership (is a given tuple accepted at a given
state), non-emptiness (does a given state accept at least one tuple) or intersection-non-
emptiness (do two given states of the same arity accept at least one common tuple?).
Another approach is to treat these questions as questions about satisfiability of a set of
clauses. For example a term P (t1, . . . , tn) holds iff the set of clauses, together with the
clause ⊥ ⇐ P (t1, . . . , tn) is unsatisfiable, i.e. ⊥ is present in the least Herbrand model,
where ⊥ is a special zero-ary predicate representing a contradiction. Our approach to
dealing with these questions is to convert the set of clauses into another equivalent set of
simple clauses, which we call normal clauses, on which such queries can be easily eval-
uated (in polynomial time). Hence our emphasis in this paper is to give normalization
algorithms for the clause sets that we consider.

For modeling of cryptographic protocols, we assume at least the binary functions
{ } and 〈 , 〉 denoting encryption and pairing. Here is the Needham-Schroeder proto-
col, mentioned in the introduction, in standard notation. Message {〈x, y〉}k is abbrevi-
ated as {x, y}k.

A → B : {A, NA}KB

B → A : {NA, NB}KA

A → B : {NB}KB

The meaning of the protocol is as follows. The notation A → B : M denotes agent
A sending message M to agent B. Inside messages, A and B represent the identities
of respective agents, KA and KB their public keys. Public keys are known to everyone
and messages encrypted with the public key are decrypted with the corresponding pri-
vate keys (which are known only to the respective agents), and vice-versa. In the first
step, A starts a session with B by sending his identity and a nonce (a random number)
NA that he generates, both encrypted with the public key of B. B decrypts the mes-
sage and sends back the received nonce with a nonce that he generates, both encrypted
again appropriately. This can be considered as a proof that B got the original message
and sent this message as a reply. A sends back the received nonce, again encrypted,
as a confirmation. Such a protocol is usually executed to establish authenticity of the
communicating parties before going ahead with some further transaction. For exam-
ple B could be a bank which is contacted by client A for some monetary transaction.
Hence they may execute this protocol at the beginning to agree on secret values NA and
NB which is expected to remain unknown to third parties. Further encrypted messages
dealing with some financial transactions would then include these secret values as proof
that these messages have really been generated by A and B and not by some adversary
pretending to be A or B. While it may not be apparent at first glance, we have men-
tioned that the protocol has a flaw discovered 15 years after its publication. The attack
involves two parallel sessions, one in which the adversary plays the role of B and an-
other in which he plays the role of A but impersonating as the agent playing A’s role in
the first session. This kind of attack is also known as a man-in-the-middle attack.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 101

We present here a modeling of this protocol using Horn clauses. Our modeling will
only deal with the secrecy problem, i.e. whether some message is known to the adver-
sary or not. Note however that other security questions are also interesting. For example
authenticity talks about questions like whether some message received by a given agent
was actually sent by another given agent. When we restrict ourself to the secrecy prob-
lem then we only need to consider three agents in our model for finding whether the
above protocol is secure. This is a consequence of a result [8,7]) stating that under
some mild assumptions on the protocol and for many security properties including se-
crecy, we need to consider a very small number (which is calculable from the protocol
and the security property) of agents in our modeling in order to find whether there exists
an attack. For the example protocol we need to consider two honest and one dishonest
agent. We now need to consider all possible sessions between these bounded number of
agents. For every two agents u and v in our model, we have infinitely many sessions in
which u is the initiator (i.e. plays the role of A) and v is the responder (i.e. plays the role
of B). In each of these sessions we have a fresh nonce. We choose two nonces n1

uv and
n2

uv to represent these infinitely many nonces. This modeling using only finitely many
nonces is a safe abstraction. Corresponding to the three steps in the protocol we have
the following clauses for all agents u and v. Our intention is that known(m) should hold
exactly for messages m which the adversary can know.

known({〈u, n1
uv〉}kv)

known({〈x, n2
uv〉}ku) ⇐ known({〈u, x〉}kv)

known({x}kv) ⇐ known({〈n1
uv, x〉}ku)

Note that we write such clauses for all (finitely many) pairs of agents in our system,
whether they are honest or dishonest agents. The above clauses correspond to our as-
sumption that all messages received by agents are sent by the adversary, and hence
should be known to the adversary, and that all messages sent by agents become known
to the adversary. For example the second clause represents the fact that v, on receiving
a message of the form {〈u, x〉}kv , sends a message of the form {〈x, n2

uv〉}ku . We use
a variable x in place of the nonce sent by u, since this is an unknown for the recipient
v, and the adversary could send to him any message of this form, provided he knows
such a message. Implicit in this modeling is the fact that we may have arbitrary many
sessions between u and v. Note that we can apply the clauses as many times as we like
for different values of concerned variables. The essential abstraction is in our modeling
here is that infinitely many nonces from different sessions are represented by finitely
many nonces. This is a safe abstraction and insecure protocols remain insecure in our
modeling. It is possible to make less severe abstractions at the cost of introducing more
complex clauses, and we will see some examples in Sections 5 and 7.

We need further clauses to express adversary capabilities. The clauses

known({x}y) ⇐ known(x) ∧ known(y)
known(x) ⇐ known({x}k) ∧ known(k′)
known(〈x, y〉) ⇐ known(x) ∧ known(y)
known(x) ⇐ known(〈x, y〉)
known(y) ⇐ known(〈x, y〉)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

102 H. Seidl and K.N. Verma

express the ability of the adversary to perform encryption, decryption, pairing and un-
pairing, where k′ is the private key corresponding to public key k. We have considered
k and k′ to be constants, although there exist other methods of modeling public and
private keys, e.g. letting the term sk(x) represent the private key corresponding to the
public key x.

The adversary’s knowledge of other data m like agents’ names, public keys, etc.
are expressed by clauses known(m). For example if w is some dishonest agent then
we have the clause known(k′

w) to say that private key of w is known to the adversary.
Further we have clauses known(n1

wu) and known(n2
uw) for every other agent u, to say

that nonces generated by dishonest agents are known to the adversary. Then the secrecy
question, whether some message m is known to the adversary is translated to the mem-
bership question, whether known(m) holds. More precisely, our modeling involves safe
abstraction, so that if m is known to the adversary then known(m) holds. Further check-
ing whether known(m) holds is equivalent to checking whether the clause set together
with the clause ⊥ ⇐ known(m) is unsatisfiable.

In the above particular example, our modeling requires two honest agents a and b
and a dishonest agent c. Each of these can be the initiator of a session or the responder
of a session. We don’t consider the cases where the same agent can be the initiator as
well as the responder, though some models and tools allow this possibility, and this can
easily be allowed in our Horn clause modeling. After writing the necessary clauses and
running a suitable solver, e.g. a solver for the class H1, we find that known(n1

ab) does
not hold. As our modeling involves safe abstraction, we are then sure that the nonce
generated by an honest initiator for an honest responder is never leaked to the adver-
sary. On the other hand, known(n2

ab) holds. This suggests the possibility that the nonce
created by an honest responder for an honest initiator can be leaked to the adversary.
Indeed such a leak happens in the man-in-the-middle attack mentioned above. More
precisely, in this attack, the nonce n2

ab is generated by the agent b because he is fooled
into believing that the agent a has started a session with him.

3 H1 and Strongly Recognizable Relations

A relation on ground terms is called strongly recognizable if it can be described as finite
union of Cartesian products of recognizable languages (i.e. languages accepted by tree
automata). In case of unary relations, strongly recognizable relations are just the recog-
nizable languages. The class H1 presented in this section allows general forms of clauses
which still describe only strongly recognizable relations. Although H1 is not specifically
meant formodeling someparticular classofprotocols, theadvantageof thisclass is thatwe
have a systematic way of safely abstracting arbitrary clauses to clauses in this class [14].

With a clause we associate a variable dependence graph whose vertices are the atoms
in the body of the clause, and two atoms are neighbors if they have a common variable.
Two variables are called connected if they occur within connected atoms. In particular
two variables in the same atom are connected. A clause has property H1 if

1. the head is linear (i.e. no variables occur twice in it).
2. if variables x and y occur in the head and are connected in the body then they are

siblings in the head.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 103

Here we call two variables as siblings if they occur as arguments of a common father.
Hence x, y are connected in P (x, y) and in Q(f(x, a, y)). The class H1 consists of
finite sets of H1 clauses. H1 allows clauses which can express various operations on
relations, like arbitrary projections through constructors, permutations of components,
and compositions of relation [20]:

P (x, y) ⇐ Q(f(x, y, z))
Q(x, y, z) ⇐ Q(y, z, x)
P (x, z) ⇐ Q(x, y) ∧ R(y, z)

However they still describe only strongly recognizable relations. To show this we
give a procedure that converts the set of clauses into a new set of simple clauses, that
we call normal clauses. Normal H1 clauses are H1 clauses of the form

1. P (f(x1, . . . , xn)) ⇐ P1(x1) ∧ . . . ∧ Pn(xn).
2. P (x1, . . . , xn) ⇐ P1(x1) ∧ . . . ∧ Pn(xn) where n
= 1.

where x1, . . . , xn are pairwise distinct variables. Here we allow n = 0 to take care of
nullary symbols and predicates. Clearly a set of normal H1 clauses can describe only
strongly recognizable relations, and conversely every strongly recognizable relation can
be described by a set of normal H1 clauses. We now show that any set of H1 clauses
can be normalized, i.e. converted to an equivalent set of normal H1 clauses, implying
that H1 describes exactly strongly recognizable relations.

Theorem 1 ([20,14]). A set of clauses in H1 can be normalized in DEXPTIME.

Proof: First we ensure that all variables in the head occur also in the body, by adding
atoms P (x) in the body where P is a fresh predicate defined to accept all terms. Then
we ensure that every head is of the form P (f(x1, . . . , xn)) or P (x1, . . . , xn). For exam-
ple the clause P (f(x, y), z) ⇐ P1(x, x′) ∧ P2(x′, y) ∧ P3(z, z′) is replaced by clauses
P (x, z) ⇐ P ′(x), P3(z, z′) and P ′(f(x, y)) ⇐ P1(x, x′) ∧ P2(x′, y) where P ′ is a
fresh predicate. Now it remains to simplify the bodies of clauses.

We use sets {P1, . . . , Pn} of unary predicates to represent intersections of the unary
predicates. P1 is identified with the set {P1}. The normalization procedure essentially
consists of using a non-normal clause and a normal clause to produce a new simpler
clause and continuing this process until the non-normal clauses are redundant. The fol-
lowing kinds of steps are involved.

– Clauses Ti(f(x1, . . . , xn)) ⇐ S1
i (x1) ∧ . . . ∧ Sn

i (xn) produce clause T (f(x1,

. . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn) where T =
⋃

i Ti and Sj =
⋃

i Sj
i .

– Clauses h ⇐ B∧S(f(t1, . . . , tn)) and S(f(x1, . . . , xn)) ⇐ S1(x1)∧. . .∧Sn(xn)
produce the clause h ⇐ B ∧ S1(t1) ∧ . . . ∧ Sn(tn), where B is used here and
elsewhere to denote a conjunction of atoms.

– Clauses h ⇐ B ∧ S(t1, . . . , tn) and S(x1, . . . , xn) ⇐ S1(x1) ∧ . . . ∧ Sn(xn)
produce the clause h ⇐ B ∧ S1(t1) ∧ . . . ∧ Sn(tn) where n ≥ 1.

– Clause h ⇐ B ∧ S1(x) ∧ S2(x) produces the clause h ⇐ B ∧ (S1 ∪ S2)(x).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

104 H. Seidl and K.N. Verma

– Clause S(x) ⇐ S′(x) and S′(f(x1, . . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn) produce
S(f(x1, . . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn).

– Clause h ⇐ B ∧ S(x) produces the clause h ⇐ B if x does not occur in h ⇐ B,
and if S accepts at least one term using only the normal predicates.

The essential idea in the above and other normalization algorithms is that if at all
the clause set contains a non-normal clause which is not redundant, then we con-
sider a minimal derivation which uses some non-normal clause C of the form A ⇐
A1 ∧ . . . ∧ An. This clause allows us to derive the atom Aσ by applying some ground
substitution σ. Now we consider the reason why C is not normal. If some Ai is of the
form P (f(t1, . . . , tn)), then we know that the atom Aiσ is derivable using only nor-
mal clauses, because of the minimality assumption. The last clause D used in the latter
derivation is of the form P (f(x1, . . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn). But then a nor-
malization step involving C and D can produce a ”simpler” clause which could instead
be used for deriving Aσ. A similar argument holds for the case where the body of C
contains a non-unary predicate. On the other hand, if C is not normal because two of
the atoms in the body are of the form S1(x) and S2(x) then we can replace these two
atoms by the atom (S1 ∪ S2)(x). The first rule above intuitively defines the meaning of
the fresh predicates {P1, . . . , Pn}. The intuition behind the last two rules is simple, and
they remove some other clauses which are not normal. �

Note that H1 allows for example the modeling of the Needham-Schroeder protocol de-
scribed above, and more [13]. As our approach always involves safe abstractions, all
attacks, in particular the man-in-the-middle attack on the Needham-Schroeder proto-
col, are found. The normalization procedure further means that for example the secrecy
question, whether some term is not accepted at some predicate, can be evaluated in time
polynomial on the resulting clause size. Further, subclasses of H1, for example the class
H3 [20] can be normalized in polynomial time and suffice for the above example proto-
col. H1 has also been successfully used to verify real implementations of cryptographic
protocols in the C language [15].

4 General Flat Clauses

The class H1 allows us to represent tree automata, as well as their extensions like alter-
nating tree automata and two-way tree automata [6]. Alternation is described by clauses
of the form

P (x) ⇐ P1(x) ∧ . . . ∧ Pn(x)

whereas two-way tree automata contain clauses like

P (x) ⇐ Q(f(x, y, z)), Q1(y), Q2(z)

The clauses in Section 2 describing abilities of the adversary to perform encryption,
decryption, pairing and unpairing are clauses of two-way tree automata, upto some
details. Despite its generality, H1 does not allow for example the clause

P (f(x, y, x)) ⇐ Q(x) ∧ R(y)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 105

Such clauses describe tree automata with equality constraints between brothers [6]. In
fact, it may be verified that allowing such clauses will make the class H1 undecidable.

We now consider a class which is specially suited for describing such features, e.g.
tree automata with alternation, two-wayness and equality constraints between brothers.
A general flat clause is one that contains only atoms of the form P (x) and P (f(x1,
. . . , xn)). We put no restrictions on the occurrences and repetitions of variables. An
example clause is

P (f(x, y, x)) ⇐ Q(g(y, y, z)) ∧ R(y)

Note that we consider only unary predicates. This class of clauses is more general (in
the Horn case) than the flat clauses considered in [25]. The complexity for this class is
however still DEXPTIME, as for the class in [25]. Among other things, these clauses
can model the ability of the adversary to perform operations like encryption, decryp-
tion, pairing, unpairing, hashing etc. But we have tried throughout this paper to obtain
maximal classes which can be efficiently decided. A general flat clause is called normal
if it is of the form

P (f(x1, . . . , xn)) ⇐ P1(xi1) ∧ . . . ∧ Pk(xik
)

where {x1, . . . , xn} = {xi1 , . . . , xik
} and xi1 , . . . , xik

are pairwise distinct. Define
trivial terms, atoms or clauses to be those in which no function symbols appear.

Theorem 2. A set of general flat clauses can be normalized in DEXPTIME.

Proof: We proceed exactly as in the case of H1 clauses, by trying to simplify the body.
However since the heads can be non-linear, the variables in the non-trivial atoms in
clauses can get unified. E.g. clauses P1(f(x, y)) ⇐ P2(g(x, y, z)) ∧ P3(h(x, x)) and
P2(g(x, x, z)) ⇐ P4(x)∧P5(z) produce P1(f(x, x)) ⇐ P3(h(x, x))∧P4(x)∧P5(z).
Similarly clauses P (f(x, y, y)) ⇐ P1(x)∧P2(y) and Q(f(x, x, y)) ⇐ Q1(x)∧Q2(y)
produce the {P, Q}(f(x, x, x)) ⇐ {P1, P2, Q1, Q2}(x). Hence in general arbitrary se-
quences of variables can occur in the non-trivial atoms in a clause. However the number
of such atoms is always linearly bounded and the number of variables in clauses is also
linearly bounded. Hence only exponential number of clauses are possible. �

5 One Variable Clauses

One-variable clauses are defined to be clauses in which at most one variable occurs.
Note that we put no restriction on the number of occurrences of this variable. The
following is an example of a one-variable clause.

P (f(x, g(h(x), i(x, x)))) ⇐ Q(g(x, x)) ∧ R(x)

Having dealt with general flat clauses, our next goal is to allow general flat clauses in
the presence of one-variable clauses. However we will restrict the form of general flat
clauses that we consider. This is done in the next section. In this section we show how
to deal with just one-variable clauses. The main motivation is that this allows us to nat-
urally encode a very interesting class of cryptographic protocols, namely cryptographic

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

106 H. Seidl and K.N. Verma

protocols with single blind copying, introduced in [7]. As we saw in Section 2, each
protocol step involves copying certain unknown parts of the received message into the
sent message. In the example we discussed, an agent always copies only one unknown
(the nonce created by the other participant) into the sent message. This is precisely the
restriction imposed by the restriction of single blind copying. Although in our example,
this unknown occurs exactly once in the received and sent messages, we may allow
more than one occurrences thereof. As a consequence of this restriction, the clauses
required for modeling the protocol steps are one-variable clauses, as we can see for
our example protocol. The other clauses which are independent of the protocol steps,
e.g. encryption and decryption abilities of the adversary, are modeled using general flat
clauses of Section 4 or their restrictions introduced in the next section.

The modeling described in Section 2 of the Needham-Schroeder protocol is based on
abstraction of an infinite set of nonces by a single constant. This is secure in the sense
that no attacks are missed. However this may sometimes lead to too many false attacks.
Hence we could adopt a less severe abstraction in which a nonce is not necessarily a
constant, but a function of some previous messages exchanged in the protocol. Hence
nonces in two distinct sessions may still be the same. This kind of abstraction leads to
the following clauses for the steps of the Needham-Schroeder protocol. Note that the
second nonce n2

uv is now a function of the first nonce n1
uv which is a constant. These

clauses are still one-variable clauses, although they do not belong to the class H1.

known({〈u, n1
uv〉}kv)

known({〈x, n2
uv(x)〉}ku) ⇐ known({〈a, x〉}kv)

known({x}kv) ⇐ known({〈n1
uv, x〉}ku)

We restrict ourselves to only unary predicates. For one-variable clauses, this causes no
loss of generality as we can encode atoms P (t1, . . . , tn) as P (c(t1, . . . , tn)) by choos-
ing a fresh symbol c. Normal one-variable clauses are one-variable clauses of the forms

1. P (t) ⇐ Q(x) where t is non-ground and non-trivial.
2. P (t) where t is ground.
3. P (x).

To restrict the form of unifiers of one-variable terms required during normalization,
we decompose these terms, similar to decomposing a string into symbols. If t is a one-
variable term (i.e. one containing at most one variable) which is non-ground and s is any
other term, then t[s] denotes the effect of replacing the variable in t by s. This notation is
extended to sets of terms in the expected manner. A non-ground one-variable term t[x] is
called reduced if it is not of the form u[v[x]] for any non-ground non-trivial one-variable
terms u[x] and v[x]. The term f(g(x), h(g(x))) for example is not reduced because it
can be written as f(x, h(x))[g(x)]. The term f ′(x, g(x), a) is reduced. Unifying it with
the reduced term f ′(h(y), g(h(a)), y) produces ground unifier {x �→ h(y)[a], y �→ a}
and both h(y) and a are strict subterms of the given terms. Indeed we find:

Lemma 1. Let s[x] and t[y] be reduced, non-ground and non-trivial terms where x
= y
and s[x]
= t[x]. If s and t have a unifier σ, then xσ, yσ ∈ U [V] where U is the set of
non-ground (possibly trivial) strict subterms of s and t, and V is the set of ground strict
subterms of s and t.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 107

In case both terms (even if not reduced) have the same variable:

Lemma 2. Let σ be a unifier of two non-trivial, non-ground and distinct one-variable
terms s[x] and t[x]. Then xσ is a ground strict subterm of s or of t.

The intuition behind Lemma 2 is that the variable x could not be mapped to a non-
ground non-trivial term because that term itself would contain x. Similarly the intuition
behind Lemma 1 is that if x (resp. y) is not immediately mapped to a ground term, then
x (resp. y) is mapped to a non-ground subterm of t[y] (resp. s[x]) and then y (resp. x)
could only be mapped to a ground term.

Hence in the following one-variable clauses are simplified to involve only reduced
terms.

Lemma 3. Any non-ground one-variable term t[x] can be uniquely written as t[x] =
t1[t2[. . . [tn[x]] . . .]] where n ≥ 0 and each ti[x] is non-trivial, non-ground and re-
duced. This decomposition can be computed in time polynomial in the size of t.

Proof: We represent t[x] as a DAG by doing maximal sharing of subterms. If t[x] = x
then the result is trivial. Otherwise let N be the position in this graph, other than the
root node, closest to the root such that N lies on every path from the root to the node
corresponding to the subterm x. Let t′ be the strict subterm of t at position N and let t1
be the term obtained from t by replacing the sub-DAG at N by x. Then t = t1[t′] and
t1 is reduced. We then recursively decompose t′.

Uniqueness of decomposition follows from Lemma 1. �

Above and elsewhere, if n = 0 then t1[t2[. . . [tn[x]] . . .]] denotes x. Now if there is
an atom P (t[x]) occurring in some clause, with t[x] being non-ground, and if t[x] =
t1[. . . [tn[x]] . . .] where each ti is non-trivial and reduced, then we create fresh predi-
cates Pt1 . . . ti for 1 ≤ i ≤ n−1 and replace this atom by the atom Pt1 . . . tn−1(tn[x]).
Also we add clauses Pt1 . . . ti(ti+1[x]) ⇐ Pt1 . . . ti+1(x) and Pt1 . . . ti+1(x) ⇐
Pt1 . . . ti(ti+1[x]) for 0 ≤ i ≤ n − 2 to our clause set.

Hence now we assume that non-ground atoms in clauses involve only reduced terms
or trivial terms as arguments of predicates. Let Ng be the set of these terms, w.l.o.g.
containing also the trivial term. Let Ngs be the set of non-ground subterms of terms in
Ng. Let G be the ground terms occurring in the clauses. During normalization we are
only going to produce atoms P (t) with t ∈ Ng ∪ Ng[Ngs[G]]. As before we consider
sets of predicates to represent intersections of individual predicates. If a clause has a
non-ground head and a ground body then we add the atom P (x) in the body, where
P (x) is a fresh predicate. We add the clause P (x) to the set to say that P accepts all
terms. Here are the possible normalization steps.

– We have clause h ⇐ B ∧ S(t[x]) and normal clause S(s[y]) ⇐ S′(y) where s, t ∈
Ng are non-trivial. The normalization step produces hσ ⇐ Bσ ∧ S′(yσ) where σ
unifies s and t. If s[x] = t[x] then σ is a renaming. Otherwise xσ, yσ ∈ Ngs[G] by
Lemma 1. Further Ngs[G] ⊆ Ng[Ngs[G]]. Ground atoms S′′(g) are removed from
the body by checking that g is accepted at S′′ using the normal clauses only.

– We have clauses h ⇐ B ∧ S(t[y]) and S(s) where t ∈ Ng is non-trivial and s ∈
Ng[Ngs[G]]. The normalization step produces hσ ⇐ Bσ where σ unifies t and s.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

108 H. Seidl and K.N. Verma

The ground atoms from the body are removed as before. If s ∈ Ngs[G] then the
clause is clearly of the right form. Otherwise s = u[g] where u ∈ Ng is non-trivial,
and g ∈ Ngs[G]. Hence σ is also a unifier of non-trivial reduced terms t and u. If
s[x] = t[x] then the result is easy. Otherwise by Lemma 1, xσ ∈ Ngs[G], and the
result is again easy. The last argument is crucial: the unifier is independent of g
hence the ground terms in clauses don’t grow arbitrarily.

– Clause S(x) ⇐ S′(x) and normal clause S′(t) ⇐ B produce S(t) ⇐ B where B
may be possibly empty.

– The case of normalization steps involving clause P (x) is easy.
– Clause h ⇐ B ∧ S1(x) ∧ S2(x) produces h ⇐ B ∧ (S1 ∪ S2)(x).
– Normal clauses S1(s) ⇐ T1(x) and S2(t) ⇐ T2(x) produce (S1 ∪ S2)(tσ) ⇐

(T1∪T2)(xσ) where σ unifies s and t. Similarly a normal non-ground and a normal
ground clause can produce a new clause. The unifications involved are as consid-
ered above.

Hence we produce only polynomially many terms during normalization and hence only
exponentially many clauses. While [25] uses resolution techniques to decide satisfiabil-
ity for these clauses, we further show here that the clauses can even be put into normal
form.

Theorem 3 ([25]). A set of one-variable clauses can be normalized in DEXPTIME.

6 One Variable Clauses and Flat Clauses

We now return to our goal of having both general flat clauses and one-variable clauses,
in order to be able to model cryptographic protocols with single blind copying. However
instead of the general flat clauses considered before, we consider flat clauses which are
those general flat clauses in which every non-trivial atom contains all variables of the
clause. The clause

P (f(x, y)) ⇐ Q(g(y, z))

is a general flat clause but not a flat clause. The set of variables in one atom is {x, y}
and in the other is {y, z}. The following clause is a flat clause.

P1(f(x, y, x, z)) ⇐ P2(g(y, z, x)) ∧ P3(h(y, y, x, z, z)) ∧ P4(x)

This class of flat clauses is what is considered in [25] and also suffices for modeling
cryptographic protocols with single blind copying. Recall that the one-variable clauses
model the protocol steps involving single blind copying, as explained in Section 5 and
the flat clauses model the additional capabilities of the adversary to perform encryption,
decryption etc. This restriction simplifies the interaction between flat and one-variable
clauses. Normal clauses are now defined to be clauses which are either normal one-
variable clauses or normal flat clauses. Note that the definition of normal flat clauses
is same as in the case of general flat clauses. Our goal in this case is to obtain a set of
normal flat clauses and normal one-variable clauses.

We will now have three kinds of normalization steps. Normalization steps between
two flat clauses or between two one-variable clauses are as in Sections 4 and 5. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 109

third kind of normalization step is between a one-variable clause and a flat clause, and
this always produces a one-variable clause. As a typical example a normalization step
between the following two clauses

C1 = P1(f(x, y)) ⇐ P2(g(y, x)) ∧ P3(x)
C2 = P2(g(x, h(h(x)))) ⇐ P4(x) ∧ P5(x)

produces the clause

P1(f(h(h(x)), x)) ⇐ P3(h(h(x))) ∧ P4(x) ∧ P5(x)

Further the term f(h(h(x)), x) is reduced. However h(h(x)) is not reduced and hence
this term needs to be further decomposed. We replace this clause by the following
clauses where P3h(x) is a fresh predicate. In general we require new predicates cor-
responding to original predicates and a sequence of one-variable terms. The variables
occurring in the terms in these sequences are not important, and these new predicates
are identified upto replacements of these variables by other variables.

P1(f(h(h(x)), x)) ⇐ P3h(x)(h(x)) ∧ P4(x) ∧ P5(x)
P3h(x)(x) ⇐ P3(h(x))
P3(h(x)) ⇐ P3h(x)(x)

Let Ngs be the set of non-ground (subterms of) terms in the one-variable clauses,
Ngr = {{s[xr+1] | s is non-ground and reduced,and for some t, s[t] ∈ Ngs}. Define
Ngrr = {s1[. . . [sm] . . .] | s1[. . . [sn] . . .] ∈ Ngs, m ≤ n, and each si is non-trivial
and reduced}. The reason we need these new sets is that during resolution we cre-

ate subterms of reduced terms which need to be then further decomposed, as in the
above example. We further define the set Ngr1 = {f(s1, . . . , sn) | g(t1, . . . , tm) ∈
Ngr, {s1, . . . , sn} = {t1, . . . , tn}}. These terms are reduced but are exponentially
many. These are produced as instances of the non-trivial terms in the flat clauses as
in the above example. However, the number of such terms in a clause is linear in the
initial clause size. Further a normalization step of this clause with a normal flat clause
can only produce strict subterms of these terms (in Ngrr) which can then be further
decomposed. Readers may consult [25] for precise details about the form of clauses
produced during normalization.

The other important observation is that we need only polynomially many fresh pred-
icates for performing decompositions, because the trivial atoms in the flat clause C2

above can never involve the auxiliary predicates. This is because when we introduce
auxiliary predicate as above, the clause becomes a one-variable clause. No further steps
can transform this atom into a trivial atom in a non-trivial flat clause.

Theorem 4 ([25]). A set of flat and one-variable clauses can be normalized in DEXP-
TIME.

While only the satisfiability problem is considered in [25] (for Horn and non-Horn
clauses), we have here presented a simpler procedure which further produces a set of
normal clauses in the Horn case.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

110 H. Seidl and K.N. Verma

Example 1. Consider the set S = {C1, . . . , C5} of clauses where

C1 = P (a)
C2 = Q(a)
C3 = P (f(g(x1, a), g(a,x1), a)) ⇐ P (x1)
C4 = P (f(g(x1, a), g(a,x1), b)) ⇐ P (x1)
C5 = R(x1) ⇐ P (f(x1,x1,x2)) ∧ Q(x2)

We first get the following normal clauses.

C′
1 = {P}(a)

C′
2 = {Q}(a)

C′
3 = {P}(f(g(x1, a), g(a,x1), a)) ⇐ {P}(x1)

C′
4 = {P}(f(g(x1, a), g(a,x1), b)) ⇐ {P}(x1)

The clause
C′

5 = {R}(x1) ⇐ {P}(f(x1,x1,x2)) ∧ {Q}(x2)

is not normal. A normalization step with C′
3 gives the clause

{R}(g(a, a)) ⇐ {P}(a) ∧ {Q}(a)

As a is accepted at {P} and {Q} using the normal clauses C′
1 and C′

2, hence we get a
new normal clause

C6 = {R}(g(a, a))

Resolving C′
5 with C′

4 gives

{R}(g(a, a)) ⇐ {P}(a) ∧ {Q}(b)

But b is not accepted at {Q} using the normal clauses hence this clause is rejected.
Finally C′

1 and C′
2 also give the normal clause

C7 = {P, Q}(a)

The resulting set of normal clauses is {C′
1, . . . , C

′
4, C6, C7}.

For protocols this gives us the following complexity of the verification problem,
which is also optimal [25].

Theorem 5 ([25]). Secrecy for cryptographic protocols with single blind copying can
be decided in DEXPTIME.

7 k-Variable Clauses and Flat Clauses

Now we consider a further generalization by allowing not just one-variable clauses
but also k-variable clauses, i.e. clauses having at most k variables. Our goal is to be
able to model protocols in which more than one unknown data may be blindly copied.
We are interested in the case where k is small, hence we assume it is bounded by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 111

some constant. Further, to obtain decidability, we impose restrictions on the occurrences
of variables. A term or literal is called covering if every non-ground functional term
occurring in it contains all variables of the term or literal. A clause is called covering
if every literal in it is covering and every non-ground literal involving a n-ary predicate
for n ≥ 2 contains all variables of the clause. We are interested in covering k-variable
clauses together with flat clauses. Note that every flat clause can also be considered as
covering k-variable clauses for a suitable k, however we allow the flat clauses to have
arbitrary many variables. Further as in the one-variable case, we could restrict covering
k-variable clauses to have only unary-predicates. However during normalization, we are
going to introduce new predicates of arity at most k. Hence w.l.o.g. we assume that our
k-variable clauses always involve predicates of arity at most k. Flat clauses of course
involve only unary predicates. Our definitions are inspired by that of the class S+ [11].
Flat clauses belong to the class S+. Our definition of covering k-variable clauses is
essentially the same as that of S+ clauses, except for the fact that we have restricted the
number of variables, and we allow arbitrary ground subterms unlike in the case of S+.

As example for protocols modeled by such clauses, consider the Yahalom proto-
col [1] below. Participants A and B use a trusted server S to compute a common key
KAB. NA and NB are nonces chosen by A and B respectively. KAS and KBS are long
term shared keys between A and S and between B and S respectively.

A −→ B : A, NA

B −→ S : B, {A, NA, NB}KBS

S −→ A : {B, KAB, NA, NB}KAS , {A, KAB}KBS

A −→ B : {A, KAB}KBS , {NB}KAB

To model the protocol, as before we use constants n1
uv and n2

uv to represent the two
respective nonces chosen by u and v for sessions among themselves. For every pair
(u, v) of agents, the clauses corresponding to the protocol steps as as follows. For the
first step we have the clause

known(〈u, n1
uv〉)

For the second step we have clauses, using the fact that the adversary knows a pair of
message iff he knows the individual messages.

known(v) ⇐ known(〈u, x〉)
known({〈u, x, n2

uv〉}kbS
) ⇐ known(〈u, x〉)

By similar reasoning we obtain the following clauses for the third step.

known({〈v, kuv, x, y〉}kuS) ⇐ known(v), known({〈u, x, y〉}kvS)
known({〈u, kuv〉}kvS) ⇐ known(v), known({〈u, x, y〉}kvS)

For the fourth step we have the following clause, where the body has only the first
component of the message received by u, because the second component is copied
without any checks, hence has no impact on the adversary’s knowledge.

known({x}y) ⇐ known({〈v, y, n1
uv, x)〉}kuS)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

112 H. Seidl and K.N. Verma

Here we consider 〈 , , 〉 and 〈 , , , 〉 to be 3-ary and 4-ary functions respectively,
instead of considering them to be built up by compositions of the binary function 〈 , 〉.
With this choice, the clauses we obtain are covering 2-variable clauses. Further, if we
adopt a milder abstraction, as in Section 5 for the Needham-Schroeder protocol, then
we have the following covering k-variable clauses. n2

uv is now a function of n1
uv and

kuv is a function of both of them.

known(〈u, n1
uv〉)

known(v) ⇐ known(〈u, x〉)
known({〈u, x, n2

uv(x)〉}kvS) ⇐ known(〈u, x〉)
known({〈v, kuv(x, y), x, y〉}kuS) ⇐ known(v), known({〈u, x, y〉}kvS)
known({〈u, kuv(x, y)〉}kvS) ⇐ known(v), known({〈u, x, y〉}kvS)
known({x}y) ⇐ known({〈v, y, n1

uv, x)〉}kuS)

In case of k-variable clauses, we define normal clauses to be those of the form

1. P (t1, . . . , tn) ⇐ Q(x1, . . . , xm) where x1, . . . , xm are exactly the (pairwise dis-
tinct) variables in the head, and (t1, . . . , tn) is not a permutation of (x1, . . . , xm).

2. P (t1, . . . , tn).

It is easy to check that given a set of normal clauses of the above form, we can ver-
ify in polynomial time whether some ground atom P (t1, . . . , tn) holds (membership
test). First we show how to normalize a set of k-variable covering clauses. As in the
case of one-variable clauses, we need to rely on decompositions of terms. But as we
have more than one variable, it is more convenient to talk of decompositions of substi-
tutions. In this section, we consider substitutions σ to be always over a finite domain
dom(σ) of variables and fv(σ) denotes the set of free variables of the terms in the range
range(σ) of σ, also called the variables occurring in σ. If X is the domain of σ and
Y ⊂ X then σ|X denotes as usual the restriction of σ to the domain Y . We define a
k-variable term, literal, or substitution to be one in which at most k variables occur.
A substitution is called covering if every non-ground functional term occurring in the
range contains all variables in the range. A term or literal is called simple if it contains
only variables or ground terms. A substitution is simple if it maps variables to variables
and ground terms. A covering k-variable substitution σ is called fat if it maps every
variable to a non-ground term and xσ = yσ only when x = y. The only substitutions
which are both fat and simple are renamings. The substitution {x �→ a, y �→ f(x, y)}
is neither fat nor simple. Composition of two fat covering k-variable substitutions is a
fat covering k-variable substitution. A non-renaming fat covering k-variable substitu-
tion σ is called reduced if it cannot be written as composition of two non-renaming fat
covering k-variable substitutions. A term t is called reduced if the substitution {x �→
t} is reduced. We will consider tuples (t1, . . . , tn) interchangeably as substitutions
{x1 �→ t1, . . . , xn �→ tn} for convenience. Hence if substitution σ has a domain of
size n and P is a n-ary predicate then P (σ) denotes an atom as expected.

The extra problem in the k-variable case is that reduced terms may become non-
reduced after application of some simple substitutions which unify two subterms. E.g.
the substitution {x �→ f(x1, g(x1, x2, a), g(x1, a, x2))} is reduced. However the in-
stance {x �→ f(x1, g(x1, a, a), g(x1, a, a))} is not reduced and can be written as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 113

{x �→ f(x1, x2, x2)}{x1 �→ x1, x2 �→ g(x1, a, a)}. Indeed the only way to unify
two distinct k-variable covering terms, which have the same set of free variables, is by
mapping variables to variables and to ground subterms of the two terms.

Lemmas 4 and 5 below are generalizations of Lemmas 1 and 2 to the k-variable case.
Given two substitutions σ1 and σ2 over disjoint domains σ1 ⊕ σ2 denotes as expected
the substitution over the union of the two domains.

Lemma 4. Consider two non-renaming reduced fat covering k-variable substitutions
σ1 and σ2, over the same domain, and which are not renamings of each other. Let G be
the set of ground subterms of terms in the range of σ1 and σ2 and fv(σ1) ∩ fv(σ2) = ∅.
Let σ be the mgu of σ1 and σ2. Then one of the following cases occur.

– σ = σ3 ⊕ σ4 where dom(σ3) = fv(σ1), dom(σ4) = fv(σ2). σ3 maps variables in
dom(σ1) to variables in dom(σ1) and to terms in G. σ4 is of the form θρσ3 where
θ maps variables in dom(σ2) to variables in dom(σ2) and to terms in G, ρ and is
a fat substitution. Further, either θ or σ3 is non-renaming.

– The symmetric case, with roles of σ1 and σ2 exchanged.

Essentially non-renaming unification involves a fat substitution preceded and succeeded
by simple substitutions. One of these two simple substitutions has to be non-renaming
because of the reducedness condition. For example consider

σ1 = {x �→ f(h(x1, a, y1), h(x1, y1, a), g(x1, y1)), y �→ g(x1, y1)}
σ2 = {x �→ f(x2, x2, y2), y �→ y2}

We have σ3 ⊕ σ4 as the mgu of σ1 and σ2 where

σ3 = {x1 �→ x1, y1 �→ a}
θ = {x2 �→ x2, y2 �→ y2}
ρ = {x2 �→ h(x1, a, y1), y2 �→ g(x1, y1)}
σ4 = θρσ3

Here the first two arguments of σ1(x) had to be unified which led to y1 being mapped
to a. In case the sets of free variables in the ranges are the same, then we have the
following generalization of Lemma 2.

Lemma 5. Consider two covering k-variable substitutions σ1 and σ2 over the same
domain. Let G be the set of ground subterms of terms in the range of σ1 and σ2 and
fv(σ1) = fv(σ2). Let σ be the mgu of σ1 and σ2. If σ1 and σ2 are not renamings then σ
maps variables to variables and to terms in G.

For example the mgu of the substitutions {x �→ f(x, g(x, y, z), h(a))} and {x �→
f(y, g(x, y, z), z)} is {x �→ x, y �→ x, z �→ h(a)}. The point is that a variable x
cannot be mapped to a non-ground functional term since that term itself must contain the
variable x. Lemma 3 is generalized as follows. We decompose covering substitutions
as σ = θρ1 . . . ρn where θ is simple and ρi are fat and reduced. Intuitively θ tells us
exactly which variables should be made equal to each other, and which variables should
be made ground. The uniqueness of the choice of the ρi follows from Lemma 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

114 H. Seidl and K.N. Verma

Lemma 6. 1. Every non-ground covering k-variable substitution can be uniquely
written as θσ where θ is simple and σ is a fat covering k-variable substitution.

2. Every fat covering k-variable substitution σ can be uniquely written as σ =
ρ1 . . . ρn where n ≥ 0 and each ρi is a reduced fat covering k-variable substi-
tution.

For example the substitution {x1 �→ f(x, y), x2 �→ f(x, y), x3 �→ f(y, x), x4 �→
x, x5 �→ h(a)} can be written as θσ where θ = {x1 �→ y1, x2 �→ y1, x3 �→ y2, x4 �→
x, x5 �→ h(a)} is simple and σ = {y1 �→ f(x, y), y2 �→ f(y, x), x �→ x} is fat cov-
ering. The fat covering substitution {x1 �→ f(h(x), g(y)), x2 �→ f(g(y), h(x)), x3 �→
h(x)} can be written as ρ1ρ2 where ρ1 = {x1 �→ f(y1, y2), x2 �→ f(y2, y1), x3 �→ y1}
and ρ2 = {y1 �→ h(x), y2 �→ g(y)} are reduced fat covering. If k = 1 then the sub-
stitution {x1 �→ f(g(x), h(x))} is reduced. But if k ≥ 2 then we can decompose it as
{x1 �→ f(y1, y2)} and {y1 �→ g(x), y2 �→ h(x)}.

Hence given a set S of k-variable covering clauses, let G be the set of all ground terms
occurring in S. We add to S all possible instances of clauses by mapping variables to
variables and terms from G. This means that now we never need to consider instances
of these clauses which unify two distinct subterms occurring in a term or which unify
some non-ground term in a clause with a term in G.

Next we decompose the terms occurring in the clauses, as in the one-variable case.
An atom of the form P (θρ1 . . . ρn), with n ≥ 1, in a clause is replaced by the atom
Pθ,ρ1,...,ρn(x) and we add clauses

Pθ(x) ⇐ P (θ)
P (θ) ⇐ Pθ(x)

Pθ,ρ1(x) ⇐ Pθ(ρ1)
Pθ(ρ1) ⇐ Pθ,ρ1(x)

. . .
Pθ,ρ1,...,ρn(x) ⇐ Pθ,ρ1,...,ρn−1(ρn)

Pθ,ρ1,...,ρn−1(ρn) ⇐ Pθ,ρ1,...,ρn(x)

where in each clause, x represents a sequence of mutually distinct variables of appropri-
ate length, Pθ,ρ1,...,ρi are fresh predicates, θ is a simple covering k-variable substitution
and ρi are non-renaming reduced fat covering k-variable substitutions. In case θ is a re-
naming then Pθ is the same as P and the first two clauses are omitted. If n = 0 then the
atom is replaced by Pθ(x). This means that now predicates are only applied to simple
or reduced fat substitutions. As an example the literal P (f(h(x), g(y)), f(g(y), h(x)),
h(x)) is written as P (σ) where σ = {x1 �→ f(h(x), g(y)), x2 �→ f(g(y), h(x)), x3 �→
g(x)}. σ can be written as ρ1ρ2 where ρ1 = {x1 �→ f(y1, y2), x2 �→ f(y2, y1), x3 �→
y1} and ρ2 = {y1 �→ h(x), y2 �→ g(y)}. Hence this literal can be replaced by the literal
Pρ1ρ2(x, y) and additionally we have the following clauses. Further if in the original
clause x and y never needed to be unified then in the new clauses also x and y never
need to be unified, and y1 and y2 never need to be unified.

Pρ1(y1, y2) ⇐ P (f(y1, y2), f(y2, y1), y1)
P (f(y1, y2), f(y2, y1), y1) ⇐ Pρ1(y1, y2)
Pρ1ρ2(x, y) ⇐ Pρ1(h(x), g(y))
Pρ1(h(x), g(y)) ⇐ Pρ1ρ2(x, y)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 115

Let S1 be the new set of clauses. Even after these transformations, we never need
to consider instances of our clauses which unify two distinct subterms occurring in a
term or which unify some non-ground term in a clause with a term in G. This property
is going to be preserved during all stages of our normalization procedure. Further we
preserve the property that at most one atom in a clause has a predicate applied to a
non-renaming substitution. Let Ng be the set of non-ground terms occurring in S1, and
Ngs the set of their subterms, as well as non-ground subterms of terms occurring in S

(not S1). Let F be the set of fat covering k-variable substitutions with domain of size at
most k and range containing (renamings of) terms from Ngs. Let S be the set of simple
k-variable substitutions with domain of size at most k and the ground terms in the
range being only from G. Compositions of sets of substitutions are defined as expected.
During normalization, we are only going to produce atoms in which the predicate has
an argument of one of the following forms.

– θ ∈ S.
– some non-renaming reduced ρ ∈ F.
– θ1ρ1ρ2θ2, where θ1, θ2 ∈ S, θ2 is ground, ρ1, ρ2 ∈ F and ρ1 is non-renaming and

reduced.

The normalization procedure now consists of the following kinds of steps, quite
similar to the one-variable case. Because of our assumptions about the kinds of in-
stantiations that need to be made of clauses, we are going to avoid unnecessary uni-
fications between the atoms involved. Further the assumptions will continue to hold
after each normalization step. We further maintain the invariant that every clause has
at most two literals, one of which is a renaming. This is true of the auxiliary clauses
produced above. The clauses produced by replacing original clauses have only renam-
ings as arguments in literals. To them we apply the following transformation. For ev-
ery n-ary predicate and permutation π over n variables, we introduce predicate Pπ
which is supposed to accept tuples σ such that σπ is accepted at P . We further in-
troduce n-ary predicates {P1, . . . , Pi}, where Pi are n-ary predicates, with the usual
meaning. Given n-ary predicate S and unary predicates S1, . . . , Sn we introduce pred-
icate S[S1, . . . , Sn] which accepts tuples (x1, . . . , xn) accepted at S such that xi is
accepted at Si. Given a permutation π, S[S1, . . . , Sn]π is defined to be a state of the
same form as expected. S[S1, . . . , Sn] ∪ T [T1, . . . , Tn] is defined to be (S ∪ T)[S1 ∪
T1, . . . , Sn∪Tn]. S[∅, . . . , ∅] is same as S. ∅[∅, . . . , ∅, Si, ∅, . . . , ∅](x1, . . . , xn) is same
as Si(xi). Then a conjunction S(x1, . . . , xn) ∧ T (x1, . . . , xn) in the body is replaced
by (S ∪ T)(x1, . . . , xn).

– We have a non-normal clause C1 = h ⇐ S(σ1) and a normal clause C2 =
S(σ2) ⇐ B and the normalization step produces C = hσ ⇐ Bσ where σ is
mgu of σ1 and σ2. B has at most one atom. The following cases are possible. In our
case analysis below, we frequently need to forbid steps where two variables need to
be made equal or where a variable needs to be instantiated to a term in G. We will
do this without stating the reason explicitly.

• σ1 is a renaming. We consider this step only if the substitution occurring as
argument in the head is also a renaming since we have assumed C1 to be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

116 H. Seidl and K.N. Verma

non-normal. Then C is trivially of the required form. In the remaining subcases
below, we assume that σ1 is not a renaming. Hence the head of C1 must have
a renaming as argument.

• σ1 ∈ S is not a renaming. If σ2 ∈ F then this step is not performed. If σ2 ∈ S
then this step is performed only if σ2 is a renaming of σ1, and then C is of the
required form. If σ2 is of the third form above then C is a ground clause with
literals of the required form. Any ground atom from the body is removed by a
membership test on the normal clauses.

• σ1 ∈ F is not a renaming and σ2 is a renaming. Then B2 is empty and C is
trivially of the required form.

• σ1 ∈ F is not a renaming and σ2 ∈ S is not a renaming. Then then this step is
not possible.

• σ1 ∈ F is not a renaming and σ2 ∈ F is not a renaming. If σ2 is a renaming
of σ1 then C is of the right form. Otherwise this normalization step is not
considered because of the substitutions involved according to Lemma 4.

• σ1 ∈ F is not a renaming and σ2 is of the form θ1ρ1ρ2θ2 where θ1, θ2 ∈ S,
θ2 is ground, ρ1, ρ2 ∈ F and ρ1 is non-renaming and reduced. θ1 must be a
renaming for this normalization step to be allowed. Hence σ is also a unifier
of σ1 and ρ1. By Lemma 4, σ is of the form ρ3θ3 where θ3 ∈ S is ground and
ρ3 ∈ F. Hence the resulting clause is a ground clause of the right form.

– Two normal clauses S1(σ1) ⇐ B1 and S2(σ2) ⇐ B2, where S1 and S2 have the
same arity, produces a clause (S1 ∪ S2)(σ1σ) ⇐ B1σ ∧ B2σ where σ unifies σ1

and σ2. The unifications involved are as above. A possible ground literal from the
body is removed as before. A possible conjunction of two literals (with renamings
as arguments) in the body is replaced by a single literal as before.

– Normal clause S[S1, . . . , Sn](t1, . . . , tn) ⇐ B produces normal clause S[S1, . . . ,
Si−1, Si ∪ T, Si+1, . . . , Sn](t1, . . . , tn) ⇐ B ∧ T (ti) if ti is a variable. The con-
junction in the body is replaced by a single literal as before.

– Given normal clauses S[S1, . . . , Sn](t1, . . . , tn) ⇐ B1 and T (t) ⇐ B2 (t can-
not be a variable) we consider the mgu σ of ti and t. We generate the clause
S[S1, . . . , Si−1, Si ∪T, Si+1, . . . , Sn](t1, . . . , tn)σ ⇐ B1σ ∧B2σ. Ground literals
from body are again removed by membership tests.

– Normal clause S(σ) ⇐ B produces clause Sπ(σπ−1) ⇐ B where π−1 is the
inverse of the permutation π.

In other words we have polynomially many possible tuples occurring as arguments
of predicates and consequently exponentially many clauses.

Theorem 6. For a fixed k, a set of covering k-variable clauses can be normalized in
DEXPTIME.

For practical implementations, the systematic instantiations and decompositions
could be wasteful. Hence it is better to do them as required. Firstly it is only necessary
to decompose the arguments in heads but not in the body. Secondly the instantiations

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 117

followed by decomposition should be done before a normalization step as needed, and
not in advance. This avoids unnecessary instantiations. Hence given clauses

h ⇐ P (g(h(x)), g(h(x))))
P (g(x), g(y)) ⇐ Q(x, y)

we apply the substitution {x �→ x, y �→ x} on the second clause and the new clause can
then be decomposed to produce the following clauses

P ′(x) ⇐ Q(x, x)
P (x, x) ⇐ P ′′(x)
P ′′(x) ⇐ P (x, x)

P ′′(h(x)) ⇐ P ′(x)
P ′(x) ⇐ P ′′(h(x))

Hence a normalization step then produces the new clause

h ⇐ P ′′(g(h(x)))

When we further allow flat clauses together with k-variable clauses, then the situa-
tion is again analogous to the case of one-variable clauses with flat clauses. Normaliza-
tion steps between a covering k-variable clause and a flat clause produces a covering
k-variable clause, which may again need to be decomposed.

Theorem 7. For a fixed k, a set of covering k-variable clauses and flat clauses can be
normalized in DEXPTIME.

As we have considered k to be a constant, this upper bound does not apply to the class
S+. However letting k be a variable in our algorithm still allows us to show:

Theorem 8. Satisfiability for the class S+ can be decided in double exponential time
in the Horn case.

As far as we know no upper bound was previously known for this class. DEXPTIME
lower bound for this class is obvious, and tightening the complexity bounds further
remains to be done.

8 Conclusion

We have considered several general classes of Horn clauses. For each of them, we pro-
vided a normalization procedure which runs in exponential time but practically may
be much faster. In particular, our methods can be used to decide satisfiability for these
classes. Moreover, these classes provide flexible tools for modeling and certifying se-
crecy of protocols.

Beyond simplifying the methods from [25], we also generalized the class of flat and
one-variable clauses to allow (restricted) k-variable clauses. For fixed small k, normal-
ization and thus satisfiability still is in DEXPTIME. For unbounded k, we have pro-
vided a new double exponential time upper bound, which thus also holds for the full
Horn fragment of the class S+. It remains as a challenging problem whether this upper
bound can be significantly improved.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

118 H. Seidl and K.N. Verma

References

1. Spore: Security protocol open repository. Available at
http://www.lsv.ens-cachan.fr/spore/.

2. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th
IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Computer
Society Press, Cape Breton, Nouvelle-Écosse, Canada, 2001.

3. B. Blanchet. Security protocols: From linear to classical logic by abstract interpretation.
Information Processing Letters, 95(5):473–479, 2005.

4. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces ter-
mination. Theoretical Computer Science, 333(1-2):67–90, 2005.

5. H. Comon and V. Cortier. Tree automata with one memory, set constraints and cryptographic
protocols. Theoretical Computer Science, 331(1):143–214, 2005.

6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications.http://www.grappa.univ-lille3.fr/
tata, 1997.

7. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic
and application to cryptographic protocols. In R. Nieuwenhuis, editor, 14th International
Conference on Rewriting Techniques and Applications (RTA’03), volume 2706 of LNCS,
pages 148–164, Valencia, Spain, June 2003. Springer-Verlag.

8. H. Comon-Lundh and V. Cortier. Security properties: Two agents are sufficient. In 12th
European Symposium on Programming (ESOP’03), volume 2618 of LNCS, pages 99–113,
Warsaw, Poland, Apr. 2003. Springer-Verlag.

9. V. Cortier. Vérification Automatique des Protocoles Cryptographiques. PhD thesis, ENS
Cachan, France, 2003.

10. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, IT-29(2):198–208, March 1983.

11. C. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution Decision Procedures, chap-
ter 25, pages 1791–1849. Volume II of Robinson and Voronkov [23], 2001.

12. T. Frühwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic programs as types for logic
programs. In 6th Annual IEEE Symposium on Logic in Computer Science (LICS’91), Ams-
terdam, The Netherlands, July 1991. IEEE Computer Society Press.

13. J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de preuve, comment le faire compren-
dre à un assistant de preuve? In V. Ménissier-Morain, editor, Actes des 12èmes Journées
Francophones des Langages Applicatifs (JFLA’04). INRIA, collection didactique, 2004.

14. J. Goubault-Larrecq. Deciding H1 by resolution. Information Processing Letters, 95(3):401–
408, 2005.

15. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
R. Cousot, editor, 6th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’05), volume 3385 of LNCS, pages 363–379. Springer-Verlag, 2005.

16. J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abstraction and resolution modulo AC:
How to verify Diffie-Hellman-like protocols automatically. Journal of Logic and Algebraic
Programming, 64(2):219–251, Aug. 2005.

17. G. Lowe. An attack on the Needham-Schroeder public-key protocol. Information Processing
Letters, 56(3):131–133, 1995.

18. D. Monniaux. Abstracting cryptographic protocols with tree automata. In A. Cortesi and
G. Filé, editors, 6th International Static Analysis Symposium (SAS’99), volume 1694 of
LNCS, pages 149–163, Venice, Italy, September 1999. Springer-Verlag.

19. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.lsv.ens-cachan.fr/spore/
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses 119

20. F. Nielson, H. R. Nielson, and H. Seidl. Normalizable Horn clauses, strongly recognizable
relations and Spi. In 9th Static Analysis Symposium (SAS’02), volume 24477 of LNCS, pages
20–35. Springer-Verlag, 2002.

21. R. Ramanujam and S. P. Suresh. A decidable subclass of unbounded security protocols. In
Workshop on Issues in the Theory of Security (WITS’03), 2003.

22. R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable with unbounded nonces as
well. In 23rd Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’03), volume 2914 of LNCS, pages 363–374. Springer-Verlag, 2003.

23. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. North-
Holland, 2001.

24. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is NP-
complete. In P. Pandya and J. Radhakrishnan, editors, 14th IEEE Computer Security Founda-
tions Workshop (CSFW’01), Cape Breton, Nova-Scotia, Canada, June 2001. IEEE Computer
Society Press.

25. H. Seidl and K. N. Verma. Flat and one-variable clauses: Complexity of verifying cryp-
tographic protocols with single blind copying. In F. B. ad Andrei Voronkov, editor, 11th
International Conference on Logic for Programming Artificial Intelligence and Reasoning
(LPAR’04), volume 3452 of LNCS, pages 79–94. Springer-Verlag, 2005.

26. C. Weidenbach. Towards an automatic analysis of security protocols. In H. Ganzinger, editor,
16th International Conference on Automated Deduction (CADE’99), number 1632 in LNAI,
pages 378–382. Springer-Verlag, 1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types for Encapsulated

Object-Oriented Program Components

Arnd Poetzsch-Heffter�, Kathrin Geilmann, and Jan Schäfer��

Technische Universität Kaiserslautern, Germany
{poetzsch|geilmann|jschaefer}@informatik.uni-kl.de

Abstract. Modular analyses of object-oriented programs need clear
encapsulation boundaries between program components. The reference
semantics of object-oriented languages complicates encapsulation. Own-
ership type systems are a way to guarantee encapsulation. However, they
introduce a substantial and nontrivial annotation overhead for the pro-
grammer. This is in particular true for type systems with an access policy
that is more flexible than owners-as-dominators. As we want to use own-
ership disciplines as basis for modular analyses, we need the flexibility.
However, to keep it practical, the annotation overhead should be kept
minimal.

In this paper, we present such a flexible ownership type system to-
gether with an inference technique to reduce the annotation overhead.
Runtime components in our approach can be accessed via the interface of
the owner as well as via other boundary objects with explicitly declared
interface types. The resulting type system is quite complex, however,
the programmer only has to annotate the interface types of a compo-
nent. The ownership type information for the classes implementing the
components is automatically inferred by a constraint-based algorithm.
We proved the soundness of our approach for a Java-like core language.

1 Introduction

The practical application of global program analyses is limited by the size of
the program. The goal of modular program analysis is to make analyses scalable
to very large programs. The basic idea is to partition the program into com-
ponents and to analyse the components separately such that the results of the
analysis of one component C can be exploited in the analysis of components that
use C. Modularity is in particular important for costly analysis and verification
techniques like for example shape analysis, making these techniques even more
powerful and effective than they are today.

Modularity needs clear encapsulation boundaries between components. In
object-oriented programming, encapsulation is endangered by the reference se-
mantics and subtyping. References to objects implementing the state of a run-
time component C could be passed out to C’s clients giving them direct access
� Partially supported by the Rheinland-Pfalz cluster of excellence “Dependable Adap-

tive Systems and Mathematical Modelling” (DASMOD).
�� Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation).

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 120–144, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 121

to the internal state. This breach of encapsulation is usually called representa-
tion exposure (cf. [13]). For programming and program analysis, representation
exposure has two main disadvantages:

– It allows clients to read internal secrets and to break implementation invari-
ants.

– It prevents modular program analysis, because such analyses can only be
sound if all accesses to a component can be statically controlled.

In the last years, a number of techniques have been developed to prevent rep-
resentation exposure (see Sect. 5). In particular, a variety of ownership type
systems have been designed and studied ([11, 29, 3, 8, 2, 25, 39]). They stati-
cally control references going into a runtime component. The basic idea is that
only the owner ow of a component C is allowed to hold references to C’s in-
ternal objects (extensions are discussed below). Thus, access to C is completely
controlled by ow ’s interface. By ownership type systems, the programmer can
in particular express which objects should be confined to a representation.

The static encapsulation guarantees of ownership type systems are not for
free. Ownership type systems that are sufficiently expressive for common pro-
gramming patterns are complex and create a heavy annotation burden for the
programmer. She or he has to extend the normal type information by parametric
ownership annotations. This is more than challenging for the ordinary program-
mer and diverts the development focus. Furthermore, the additional annotations
can lead to less readable programs.

Our approach to encapsulated object-oriented components is based on two
goals:

1. It should allow access to a component via several references or ports. This
is needed to handle common programming patterns like iterators and ob-
servers. In addition, this avoids to develop wrappers or facades for composed
components which is important for scalability.

2. The annotation should be restricted to component interfaces. This reduces
the annotation overhead and simplifies the applicablility as well as the reuse
of existing components.

In this paper, we present the techniques to achieve these goals, namely a gener-
alized ownership discipline and a new technique for ownership type inference.

Our programming and component model is based on interface-oriented pro-
gramming: Like a class, a component can be instantiated. A component instance
is called a box. Like an object, a box has an identity and a local state. However, in
general, a box may consist of several objects and inner boxes. To provide flexible
access to a box and to simplify the composition of boxes, a box can be accessed
via multiple read-write references generalizing the owners-as-dominators disci-
pline. In particular, a box B0 that is composed of boxes B1, . . . , Bn can make the
services of the Bi’s directly available to its clients and need not to reimplement
all their methods as part of the interface of the owner of B0. The programmer
has to declare all interface types that provide access to a box. That is, only

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

122 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

references of these types are allowed to be passed out of the box. We call this
the encapsulation property. The implementation of components consists of a set
of classes some of which implement the component interfaces.

Our ownership type system is used to statically check the encapsulation prop-
erty. It distinguishes between three kinds of objects, namely objects outside the
box, objects in the box that are not allowed to be accessed from the outside,
so-called local objects, and objects in the box accessible from the outside, so-
called boundary objects. The programmer has to provide ownership annotations
only for the interfaces of the box, the ownership annotations of the classes are
automatically inferred. Thus, the programmer is freed from annotating the im-
plementation, but remains in control to define the encapsulation. In particular,
she controls which references are allowed to be passed into and out of a compo-
nent. This is different from [3, 30] where explicit component interfaces are not
supported (cf. Sect. 5) and where the goal of inference essentially is to discover
potential encapsulation in given code. This can end up with almost no encapsu-
lation, whereas in our approach the encapsulation structure is given by the box
interfaces and the inferred type information is only used to statically check the
encapsulation property. As we have more predetermined knowledge, we are less
dependent on heuristics.

Overview. In Sect. 2, we illustrate and explain the approach by an example.
We substantiate the approach by presenting an object-oriented core language
for interface-oriented programming with an appropriate ownership type system
(Sect. 3). The type system adapts the one described in [39] to boxes. Section
4 presents the new inference algorithm based on constraint solving. Section 5
discusses related work, Section 6 contains our conclusions.

2 Encapsulated Object-Oriented Components

In this section, we illustrate the goals of our approach from a programmer’s
perspective. First, we describe how box implementations look like. Then, we
show which ownership information is derived by our approach.

Programming with Boxes. The box model builds on the general object-oriented
model with interfaces, classes, objects, (object) references, object-local state,
and methods to define behavior. The following brief description of the model
is merely to motivate our type inference approach. A more detailed description
including the discussion of design decisions and showing the use of the model for
modular specification can be found in [36].

Boxes are described by modules. Figure 1 shows a module implementing sim-
ple list boxes with iterators. It provides two interfaces and three classes. In our
simple language, a module defines exactly one box interface and one box class,
indicated by the keyword box. The box class has to implement the box inter-
face. Like in Java, we assume default constructors for classes. In addition, box
interfaces have a default constructor. Calling the constructor of a box interface

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 123

module list;

box interface List<d> {
void add(d Object o);
boundary Iterator<d> iter();

}
interface Iterator<d> {

d Object next();
}

box class ListImp
implements List {
Node head;
void add(Object o) {

head = new Node(head,o);
}
Iterator iter() {

return new LIterator(head);
}

}

class Node {
Node next;
Object value;
Node(Node n, Object o) {

next = n;
value = o;

}
}

class LIterator
implements Iterator {
Node current;
LIterator(Node n) {

current = n
}
Object next() {

Node t = current;
current = current.next;
return t.value;

}
}

Fig. 1. The list module

B calls the constructor of the class implementing B. An application of box con-
structor List is demonstrated in Fig. 2 in the body of method do. A box is a
runtime entity that is created together with an object of a box class. That is, the
mentioned constructor call creates a ListImp object, say l, and a box; l is called
the owner of the box. Objects of normal classes are usually created in the box of
the this-object. E.g. the Node and LIterator objects created in class ListImp
belong to the List box owned by the current this-object. In general, our type
system allows to create objects in all boxes that are accessible at the creation
site (for details see Sect. 3).

module client;
import list;

box interface Client {
void do();

}

box class ClientImp
implements Client {
void do(){

List l = new List();
l.add(new Object());
Iterator it = l.iter();
Object o = it.next();

}
}

Fig. 2. Client module using the list module

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

124 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

d

local

boundary

List

Node Node Node

Object Object Object

Iterator

Client

Fig. 3. A list box at runtime showing the different objects and their domains. Objects
are represented by rectangles, arrows are references, the box is indicated by a solid
rounded rectangle, the different domains are shown as dashed rounded rectangles. The
box owner resides on the edge of the box.

Every box has two domains – a local and a boundary domain. Each object of
a box resides in one of these domains. Local objects are encapsulated and cannot
be referenced from the outside, boundary objects are accessible from the outside.
Figure 3 shows a list box at runtime. The client object can only access the List
object itself or Iterator objects in the boundary domain. As Node objects are
in the local domain, they cannot be accessed. Data objects referenced by Node
objects reside in an external domain d, which is a parameter of the box.

Ownership Annotations. A box can only be accessed via the interfaces given in
the module. E.g. a List box can only be accessed via the reference of its owner
or via Iterator references. In particular, the implementation must not pass out
references to Node objects. E.g. method next in Fig. 1 is not allowed to return t
instead of t.value. However, it can return references of outside objects that are
captured earlier (e.g. next returns a reference captured earlier in a call to add).
To statically check this encapsulation property, we use an ownership type system.
Types can be annotated with local, boundary and global, representing the do-
main of the referenced objects. In addition, we allow genericity parameters. E.g.
the List module is generic w.r.t. the owner of objects entered into the list. This
is indicated by the parameter <d> in Fig. 1. In our approach, the programmer
only has to annotate the interfaces with ownership information. Classes need not
to be annotated. The ownership information is automatically inferred. Figure 4
shows the list module with inferred ownership types to illustrate the gain of our
inference technique. For more complex examples, the gain is even bigger. The
type system underlying the annotations is described in the next section.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 125

module list;

box interface List<d> {
void add(d Object o);
boundary Iterator<d> iter();

}
interface Iterator<d> {

d Object next();
}

box class ListImp<d>
implements List<d> {
local Node<d> head;
void add(d Object o) {

head =
new local Node<d>(head,o);

}
boundary Iterator<d> iter() {

return new boundary
LIterator<d>(head);

}
}

class Node<d> {
local Node<d> next;
d Object value;
Node(local Node<d> n, d Object o) {

next = n;
value = o;

}
}

class LIterator<d>
implements Iterator<d> {
local Node<d> current;
boundary LIterator(

local Node<d> n) {
current = n

}
d Object next() {

local Node<d> t = current;
current = current.next;
return t.value;

}
}

Fig. 4. The list module with inferred ownership annotations

3 Ownership Domains for Boxes

The basic idea of Ownership Domains for Boxes is to group objects into distinct
domains. Every box has two domains, a local domain and a boundary domain.
Every object belongs to exactly one domain. A box belongs to the domain to
which its owner object belongs to. The ownership relation of domains and objects
forms a hierarchy rooted at the special domain global. Encapsulation is defined
by the accessibility relation of objects in different domains. Objects in the local
domain of a box are encapsulated and cannot be accessed by the outside. Objects
in the boundary domain can be accessed by the outside of a box and have access
to objects in the corresponding local domain. The owner object of a box has a
special role as it can access the local domain, even though the object itself belongs
to the surrounding domain. In order to statically guarantee the encapsulation
property at runtime, types are parameterized with domain annotations. Like
ordinary types, the additional domain annotations restrict the possible values
that a variable or field can hold.

This section presents a formalization of the language and the ownership type
system. To shorten the presentation, the language is a slight simplification of the
language that we used in Sect. 2 to illustrate our approach. The formalization is
inspired by several existing formal type systems for Java, namely Featherweight

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

126 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

P ::= Li Lb Lm e programs

Li ::= interface I〈α, β〉 { Mh } interfaces

Lb ::= box interface B〈α, β〉 { Mh } box interfaces

Lm ::= module { Kb Ki } modules

Kb ::= box class C implements B { T f; M } box classes

Ki ::= class C implements I { T f; M } classes

Mh ::= T m(T x) method headers
M ::= Mh {e} methods
N ::= C | I | B type names

T , U ::= N〈d〉 types
d, g ::= α | b.c | global domain annotations
b ::= box | x | null | ? domain owners
c ::= boundary | local domain kinds
e ::= expressions

x local variables

| new C〈d〉 object creation

| new B〈d〉 box creation
| e.f field access
| e.f = e field update
| e.m(e) method call
| let x = e in e variable binding

| (C〈d〉) e cast
| null null constant

I ∈ interface names
B ∈ box interface names
C ∈ class names
m ∈ method names
α, β ∈ domain parameters

Fig. 5. Abstract syntax

Java (FJ) [22] and ClassicJava [17], and by several flavors of these type systems
which already incorporate ownership information [11, 10, 2, 37, 25].

3.1 Language Syntax

The object-oriented core language supports interface-oriented programming with
the box model described in [36] and an adapted version of the Simple Loose
Ownership Domains type system described in [39]. The abstract syntax of our
formal language is shown in Fig. 5. We use similar notations as FJ [22]. A bar
indicates a sequence: L = L1, L2, . . . , Ln, where the length is defined as |L| = n.
Similar, T f; is equal to T1 f1; T2 f2; . . . ; Tn fn. If there is some sequence x, we
write xi for any element of x.

A program consists of interfaces, box interfaces, modules and an expression,
which acts as the main procedure of the program. Every module contains one
box class implementing a box interface and normal classes implementing other
interfaces.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 127

For simplicity, we assume that every class has a companion interface that it
implements. In our simple language, an interface essentially lists the publicly
available methods of the class. The syntactic separation of interfaces and classes
also simplifies the presentation of our inference technique. We do not consider
inheritance in this paper. Subtyping is only supported between classes and inter-
faces. It is straightforward to extend our language with subtyping of interfaces.
Our language has no constructors; new objects are created by setting all fields
to null. Note that we can simulate constructors by ordinary method calls. For
example, we could demand that methods named init are always called directly
after an object has been created and can never be called directly. Classes and box
classes can declare fields and methods. As we do not support abstract classes, a
class has to implement all methods declared in its interface.

For conciseness of the formalization, we have streamlined the notation of
ownership annotations used in Sect. 2. Instead of writing the owning domain in
front of the type, we now write it as the first parameter of the type. Furthermore,
we make the owning domain of the current receiver object explicit by adding
an additional domain parameter (this follows notations of similar systems, see
e.g. [10]). With this modifications, a domain annotation can either be a domain
parameter α, the global domain, or is of the form b.c, where the first part defines
the owner of the domain, and the second part defines the domain kind, that is,
whether it is the boundary or local domain.

The keyword box denotes the owner of the current box. The name of a local
variable x is used for objects of box classes and denotes the box owned by x.
For example, x.local denotes the local domain of the box owned by x. Owners
null and ? do not belong to the user syntax (indicated by an underline), but can
appear during reduction. ? as owner represents an invalid domain annotation,
and null is the owner of the global domain. In fact, all occurrences of global are
treated as null.local.

The domain kind c can either be boundary or local. For example, consider an
object x with field f of type N〈box.local, box.boundary〉 and let b be the box to
which x belongs. Then, f can hold references to objects y in the local domain
of b, such that the second domain parameter of y’s type is instantiated by the
boundary domain of b.

In our language we have the usual set of expressions. Just the creation expres-
sions need some explanations. To create a new box we use the interface name of
the box, for classes we use their class name. As in our language classes are only
visible inside their module, this implies that within a module M only boxes or
objects for classes declared in M can be created.

3.2 Auxiliary Functions

To define the type system for our language we need some helper functions. To
retrieve the type name and the domains from a type, we use the functions raw

and doms.
raw(N〈d〉) � N

doms(N〈d〉) � d

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

128 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

To save space we only give informal descriptions for the following auxiliary
functions.

intfNames(P) � the set of interface names defined in P

boxNames(P) � the set of box interface names defined in P

classNames(L) � the set of class names defined in module L

implBox(L) � the name of the implemented box interface in L

boxClass(B) � the class that implements box B

isBoxClass(C) � class C is a box class
isBoxType(N〈d〉) � N is either a box class or a box interface

The function owner returns the owner part of a domain annotation. Its first
parameter N is the type in which the domain annotation is interpreted. It is
used to make the case distinction between objects of box and non-box types. If
N is not a box type, we know that box is a representation of the owner. Otherwise,
we do not have a syntactic representation of the owner. Thus, function owner

returns ?, leading to an invalid type.

owner(N, d) �

⎧
⎪⎨

⎪⎩

b if d = b.c
box if d = α ∧ ¬isBoxType(N)

? if d = α ∧ isBoxType(N)

params just returns the domain parameters of a class or an interface.

. . . interface N〈α〉 . . .
params(N) = α

. . . class C implements N . . .
params(C) = params(N)

The function field looks up the type of a field in a class. Analogous for the
method function which returns the method definition of m.

. . . class C . . . T ′ f; . . .
field(C〈 〉, f) = T ′

. . . class C . . . T m(T x){e} . . .

method(C〈 〉, m) = T m(T x){e}

. . . interface N〈 〉 . . . T m(T x) . . .

method(N〈 〉, m) = T m(T x)

The function boxOwner checks whether an expression denotes a valid owner
representation. Only variables and null can be used as owners.

boxOwner(e) �
{

e if e = x or e = null

? else

For method call and field selection sites, the declared generic type of parameters
and fields has to be translated to the domain in which it is used. This translation
takes the type annotation N〈d〉 of the actual method parameter or of the selected
expression and uses it to adapt the domain parameters and box owner of the
declared formal parameter or field type. A domain parameter α is replaced by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 129

Γ ; T ; b � � environment Γ is valid
Γ ; T ; b � d1 → d2 domain d1 can access domain d2

Γ ; T ; b � d domain d is valid
Γ ; T ; b � T type T is valid
Γ ; T ; b � e : T expression e has type T

Γ ; T ; b � Mh method header Mh is well-typed
Γ ; T ; b � M method M is well-typed
T <: U type T is a subtype of type U

Lm � N type name N is valid in module Lm

Lm � Ki class Ki is well-typed in module Lm

Lm � Kb box class Kb is well-typed in module Lm

� P program P is well-typed
� Lm module Lm is well-typed
� Li interface Li is well-typed
� Lb box interface Lb is well-typed

Fig. 6. Judgments used by the type system

the corresponding actual domain, the box keyword is replaced depending on
whether N is a box type or not.

(trans-c)

¬isBoxType(N) params(N) = α

trans(N〈d〉, e, d ′) = [d/α, owner(N, d1)/box]d ′

(trans-b)

isBoxType(N) params(N) = α

trans(N〈d〉, e, d ′) = [d/α, boxOwner(e)/box]d ′

(trans-type)

trans(T , e, N〈d〉) = N〈trans(T , e, d)〉

3.3 Type System

We now present the rules of our type system. The used judgments are shown in
Fig. 6. Some judgments are of the form Γ ; T ; b � This means, that the right
hand side is evaluated under the context Γ ; T ; b, where Γ is the type environment,
T is the current context type, i.e. the type of this, and b represents the current
box. T is important as it defines the valid domain parameters and whether the
current context is a box class or a normal class. b is needed for the accessibility
relation.

By the type of box we refer to the class name of the box class of the current
module, which is left implicit, parameterized by the parameters of the imple-
mented interface.

Lm � C box class C . . . params(C) = α

type(box) = C〈α〉

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

130 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

Subtyping. The subtype relation is the reflexive closure of the relation between
classes and their implemented interfaces. Note that the subtype relation on types
require that the domain parameters must be the same.

(t-sub-refl)

N <: N

(t-sub-direct)

. . . class C implements N . . .
C <: N

(t-sub-type)

N1 <: N2

N1〈d〉 <: N2〈d〉

Valid Type Names. Interfaces are visible everywhere, but class names can only
be used in their corresponding module.

(v-class)

C ∈ classNames(Lm)

Lm � C

(v-interface)

I ∈ intfNames(P)

Lm � I

(v-box)

B ∈ boxNames(P)

Lm � B

Environment. The environment Γ is a map from variables to types. It records
the type information of free variables.

Γ ::= ∅ | Γ , x : T environment

The following rules ensure that valid environments can only be extended by
variables not already existing in the domain of Γ , i.e. Γ , x : T ; T ′; b � � ⇒ x /∈
dom(Γ), and that all variables are well-typed.

(v-env-empty)

owner(N, d1) = b ∨ type(b) <: N〈d〉
∅; N〈d〉; b � �

(v-env-var)

Γ ; T ′; b � � x /∈ dom(Γ) Γ ; T ′; b � T

Γ , x : T ; T ′; b � �

Accessibility Relation. The key element of our type system is the accessibility
relation on domains which is shown in Fig. 7. It is the basis of the encapsulation
property. The judgment Γ ; T ; b � d1 → d2 tells us that domain d1 can access
domain d2 in the given context. That is, objects in domain d1 can access all
objects in domain d2. The relation formalizes the informal accessibility between
domains that we explained above, which depends on the ownership hierarchy of
boxes.

The accessibility relation is reflexive (a-refl), that is, every domain can ac-
cess itself. Note however that it is not transitive. For example in the program
scenario of Fig. 1 and 2, a client object can access an iterator object, itera-
tor objects can access the nodes of their list, but client objects may not access
node objects. Rule (a-owner) tells us that two domains with the same owner,
i.e. domains belonging to the same box, can access each other. The following
four rules relate the domains of the current context type and the domains of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 131

the current box. The domains of the current box can access all parameter do-
mains (a-param); this is mirrored by type rule (v-type) that regulated the
instantiation of domain parameters (see below). Furthermore, the first parame-
ter domain, that is, the owner domain of this, has access to all other parameter
domains (a-param-2). If the current context class is not a box class, then the
first parameter domain can access the domains of the current box (a-param-3).
If it is a box class then it can only access the boundary domain of the current
box (a-param-4). A domain can always access the boundary domain of a box,
which it can access (a-boundary). The boundary domain of a box has access
to the owning domain of its box (a-boundary-2). Every domain can access the
global domain, i.e. domains owned by null (a-null).

(a-refl)

Γ ; T ;b � d → d

(a-owner)

Γ ; T ; b � b.c1 → b.c2

(a-param)

Γ ; N〈d〉; b � b.c → d

(a-param-2)

Γ ; N〈d〉; b � d1 → d

(a-param-3)

¬isBoxType(N)

Γ ; N〈d〉; b � d1 → b.c

(a-param-4)

isBoxType(N)

Γ ; N〈d〉; b � d1 → b.boundary

(a-boundary)

Γ ; T ; b � b ′ : N〈d〉 Γ ; T ; b � d → d1

Γ ; T ; b � d → b ′.boundary

(a-boundary-2)

Γ ; T ;b � b ′ : N〈d〉
Γ ; T ; b � b ′.boundary → d1

(a-null)

Γ ; T ; b � d → null.c

Fig. 7. Accessibility relation

Valid Domains and Types. Figure 8 shows rules to ensure the validity of domains
and types. Valid domains have neither ?, nor variables as owners that are not of
a box type. The (v-type) rule is very important, because it ensures that it is not
possible to break encapsulation by passing domains as parameters which are not
accessible by the first domain parameter. In addition, all domain parameters
must be accessible by the domains of the current box. The rule is implicitly
parameterized by the module Lm.

Programs, Interfaces, Modules and Classes. Figure 9 shows the typing rules
for programs, interfaces, modules and classes. The (t-prog) rule requires some
explanation. The initial expression e is typed under the context type
Global〈null.local〉. We just assume that Global is some predefined interface
without any methods. In addition, all other elements of the program must be
well-typed, and some sanity conditions must hold. A module is correctly typed
if its classes are correctly typed. Classes and box classes are correctly typed if
their methods and fields are correctly typed under the corresponding context.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

132 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

(v-domain-box)

Γ ; T ; b � box.c

(v-domain-box)

Γ ; T ; b � null.c

(v-domain-box)

Γ ; N〈d〉; b � di

(v-domain-var)

Γ ; T ; b � x : Tx isBoxType(Tx)

Γ ; T ; b � x.boundary

(v-type)

Lm � N Γ ; T ; b � d Γ ; T ; b � � Γ ; T ; b � d1 → d

Γ ; T ; b � b.c → d |params(N)| = |d|

Γ ; T ; b � N〈d〉

Fig. 8. Valid domains and types

Methods are typed as usual. The types appearing in the method signature must
be valid in the current context, and the type of the body expression must be a
subtype of the declared return type.

Expressions. The expression type rules are shown in Fig. 10. The non-standard
rules are (t-field) and (t-invk). In both rules the function trans from above
is used to adapt the declared type to the application context.

3.4 Properties

This subsection summarizes the central properties of our type system.1 We
proved Subject Reduction, that is, that during the execution of a well-typed
program all dynamic types are subtypes of their declared static types.

Theorem 1 (Subject Reduction). If an expression is typed by the type sys-
tem, then the type of the evaluated expression is a subtype of the original type.

Proof. By defining an operational semantics for our language and using induction
on its rules.

The Subject Reduction Theorem is a central prerequisite to prove that objects
during runtime can only access other objects according to their declared static
domains.

Theorem 2 (Accessibility Invariant). Objects can only access other objects
which are

1. in the same box,
2. in the boundary domain of a box which they can access,
3. in a surrounding box of their own box.

1 The operational semantics and the proofs of the theorems can be obtained from the
authors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 133

(t-prog)

� Li � Lb ∅; Global〈null.local〉; null � e : T � Lm

∀B ∈ boxNames(Lb). ∃Lm ∈ Lm. implBox(Lm) = B

∀Lm, L ′
m ∈ Lm. implBox(Lm) = implBox(L ′

m) ⇒ Lm = L ′
m

� Li Lb Lm e

(t-interface)

this : T ; T ; box � Mh

� . . . interface T { Mh }

(t-method-header)

Γ ; Ti; b � T Γ ; Ti; b � T

Γ ; Ti; b � T m(T x)

(t-module)

Lm = module { Kb Ki } Lm � Kb Lm � Ki

� Lm

(t-class)

α = params(C) ∅; C〈α〉;box � T this : C〈α〉; C〈α〉; box � M

All methods of interface N are implemented in M

Lm � class C implements N { T f; M }

(t-method)

Γ ; Tc; b � T , T Γ , x : T ; Tc; b � e : Te Te <: T

Γ ; Tc; b � T m(T x){e}

Fig. 9. Program, interface, module, class and method typing

Note that an object can access a box if it can access its owner object. The
negation of the Accessibility Invariant is the Encapsulation Invariant:

Corollary 1 (Encapsulation Invariant). Objects in the local domain of a box
cannot be accessed by objects of surrounding boxes.

4 Domain Inference

In the previous section we presented a language which statically guarantees
object encapsulation. The type system ensures this by checking the domain an-
notations of types. However, the domain annotations are a significant syntactical
overhead and an additional burden to the programmer. As we believe that the
programmer wants to express the domain restrictions in the interfaces, but wants
to leave them out in the implementation, we present an inference algorithm that
infers all domain annotations within a module, but requires fully annotated inter-
faces. That is, our inference algorithm is intra-module but inter-class. As within
a module, only classes of the same module or interfaces can be used as types,
we can modularly infer the types of a single module. The algorithm also only in-
fers domain annotations, all other type information, like class or interface names

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

134 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

(t-null)

Γ ; Tc;b � T

Γ ; Tc; b � null : T

(t-var)

Γ ; Tc; b � T

x : T ∈ Γ

Γ ; Tc; b � x : T

(t-field)

Γ ; Tc; b � e : T

Tf = trans(T , e, field(T , f)) Γ ; Tc;b � Tf

Γ ; Tc;b � e.f : Tf

(t-field-up)

Γ ; Tc; b � e1.f : Tf

Γ ; Tc; b � e2 : T T <: Tf

Γ ; Tc; b � e1.f = e2 : T

(t-invk)

Γ ; Tc;b � e : Te

Γ ; Tc; b � e : Te method(Te, m) = Tm m(Tm) . . . T = trans(Te, e, Tm)

T = trans(Te, e, Tm) Te <: T Γ ; Tc; b � T Γ ; Tc; b � T

Γ ; Tc; b � e.m(e) : T

(t-new-class)

Γ ; T ; b � C〈d〉 ¬isBoxClass(C)

Γ ; T ; b � new C〈d〉 : C〈d〉

(t-new-box)

Γ ; T ; b � B〈d〉
Γ ; T ; b � new B〈d〉 : B〈d〉

(t-let)

Γ ; T ; b � e1 : T1

Γ , x : T1; T ;b � e2 : T2 Γ ; T ; b � T2

Γ ; T ; b � let x = e1 in e2 : T2

(t-cast)

Γ ; Tc; b � e : T ′

T <: T ′ ∨ T ′ <: T

Γ ; Tc; b � (T)e : T

Fig. 10. Expression type rules

must be given by the programmer. There are other inference algorithms that can
infer such kind of type information for object-oriented languages e.g. [33, 35, 15].

4.1 Overall Inference Algorithm

Figure 11 describes the tasks and the overall procedure of our inference al-
gorithm. The input is an unannotated module and the set of all interfaces.
The preparation step adds type annotations to the type names occurring in
the classes. More precisely: Let N be a type occurring in some class C.

– If N is a parameter or return type of a method m declared in the implemented
interface, N gets the annotation it has in the interface.

– Otherwise, it gets an annotation of the form 〈X1, . . . , Xn〉 where the Xis are
fresh constraint variables (see below) and n equals |params(N)|. By fresh
we mean here that all constraint variables added to the module are distinct.

Furthermore, to simplify the presentation of the algorithm, preparation renames
all parameters and variables introduced in let expressions so that they are unique
in the module.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 135

PreparationLi, Lb, Lm
Constraint

Solving
Type

Checking

Solution
Extension

Type
Checking

Type Error

Successful
Inference

Failed
Inference

fail

Solution
complete

Solution
incomplete

Constraint
Generation

Fig. 11. Inference algorithm

In the second step, a set of constraints is generated for the module. The third
step solves the constraints by a unification algorithm. There are three possible
results of the third step. If it fails, then the constraints are contradictory, and
we know that there are no type correct annotations for the module. If it does
not fail, it returns a solution for the constraint set. A solution is a map from
constraint variables to concrete domain annotations. If all constraint variables
are covered by the solution, we call the solution complete, otherwise we call it
incomplete. In both cases we have to check the solution by the type system,
because our constraint inference algorithm only considers a subset of the typing
rules, and the resulting constraint set may be under-determined. Before checking
an incomplete solution we extend it by setting all unsolved variables to box.local
to obtain a complete solution. Note that this extension may be type incorrect as
the contraints ignore the accessability rules of the type system. Therefore, if in
the case of an incomplete solution the type check fails we do not know whether
a correct annotation exists or not, because the failure may be caused by the
extension or may have already existed in the input. In summary, the algorithm
has three possible outcomes :

1. Type Error: The program cannot be typed.
2. Successful Inference: A type correct annotation is inferred.
3. Failed Inference: There might be a correct annotation, but it is not found.

4.2 Constraint Generation

For the constraint system we extend the syntax for domain annotations (see
Fig. 12). We add constraint variables, standing for unknown annotations. In
addition, we need a delayed substitution and ω(N, d).c, where ω is later reduced
to the owner function. The set of possible types is extended by a type Null to
type the null constant.

Auxiliary Functions. Due to the syntax extension of the domain annotations we
redefine the trans rule of the normal type system in order to use the delayed
substitution � � instead of an ordinary substitution and to use ω instead of
owner.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

136 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

(trans-c)

¬isBoxType(N) params(N) = α

trans(N〈d〉, e, d ′) = �d/α�[ω(N, d1)/box]d ′

(trans-b)

isBoxType(N) params(N) = α

trans(N〈d〉, e, d ′) = �d/α�[boxOwner(e)/box]d ′

The cgen function generates constraints for two given types. If one of the
types is the Null type, which matches every type, cgen returns the empty set.

T1
= Null T2
= Null

cgen(T1, T2) = {doms(T1) = doms(T2)}

T1 = Null ∨ T2 = Null

cgen(T1, T2) = { }

Inference Rules. The constraint inference rules are of the form

Γ � e : T | R

read: “expression e has type T under environment Γ , whenever constraints R are
satisfied”. The constraints in R are equations of extended domain annotations.

The inference rules are given in Fig. 13. Note that the preparation step already
has replaced all missing domain annotations by unique constraint variables, and
that all local variables are renamed so that they are unique in the regarded
module.

As we do not take the accessibility relation into account, new constraints are
only created for field updates, method declarations and method calls. For a field
update the type on both sides of the assignment has to be the same. In method
calls the argument types have to match the declared parameters and for method
declarations the declared return type has to match the type of the implementing
expression.

Properties. If there is a substitution of constraint variables by domain annota-
tions, such that the resulting program is type correct by our type system, then
such a substitution will fulfill the constraint set generated by the inference rules.
Note, however, that the solution for some constraint sets, generated by our infer-
ence rules, can lead to a type incorrect program. This is due to the fact, that the
inference rules ignore the accessibility relation. Taking the accessibility relation
into account complicates the algorithm. In the examples that we studied, the
gain in precision was too small to justify the additional technical complexity.

X, Y, Z constraint variables
d ::= . . . | dx extended domain annotations
dx ::= X | ρ d | ω(N, d).c augmented domain annotations
ρ ::= �d1/d2� delayed substitution
T ::= . . . | Null extended types

Fig. 12. Extended syntax for the inference algorithm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 137

(ct-var)

x : T ∈ Γ

Γ � x : T | { }

(ct-null)

Γ � null : Null | { }

(ct-cast)

Γ � e : T | R

Γ � (T1)e : T1 | R

(ct-new-c)

Γ � new C〈d〉 : C〈d〉 | { }

(ct-new-b)

Γ � new B〈d〉 : B〈d〉 | { }

(ct-let)

Γ � e1 : T1 | R1 Γ , x : T1 � e2 : T2 | R2

Γ � let x = e1 in e2 : T2 | R1 ∪ R2

(ct-field)

Γ � e : T | R T ′ = trans(T , boxOwner(e), field(T , f))

Γ � e.f : T ′ | R

(ct-fieldup)

Γ � e1.f : T1 | R1 Γ � e2 : T2 | R2 R′ = R1 ∪ R2 ∪ cgen(T1, T2)

Γ � e1.f = e2 : T2 | R ′

(ct-call)

Γ � e1 : T | R1 method(T , m) = Tm m(Tm) . . .

Tr = trans(T ,boxOwner(e1), Tm) Tp = trans(T , boxOwner(e1), Tm)

Γ � e2 : T2 | R2 R ′ = R1 ∪ R2 ∪ cgen(T 2, Tp)

Γ � e1.m(e2) : Tr | R ′

(ct-method)

Γ , x : Tp � e : Te | Re R = Re ∪ cgen(Te, Tr)

Γ � Tr m(Tp x){e} | R

(ct-class)

params(I) = α this : C〈α〉 � M | R

� class C implements I {Tf;M} | R

(ct-box)

params(B) = α this : C〈α〉 � M | R

� box class C implements B {Tf; M} | R

(ct-module)

� Kb | Rb � Kc | Rc R ′ =
⋃

Rc ∪ Rb

� module {KbKc} | R ′

Fig. 13. Constraint inference rules

4.3 Constraint Solving

In this subsection we present the algorithm to solve the generated constraint set.

Domain Reduction. To elimate the delayed substitutions ρ and the owner terms
ω in domain annotations, we define a reduction relation ↪→ on domains. A
delayed substitution is reduced to a normal substitution if neither the domain,
which is to be replaced, nor the domain on which the substitution is applied, con-
tains a constraint variable. ω is only reduced to owner on unextended domains,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

138 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

because otherwise owner would not be defined. The function FV(d) returns the
set of constraint variables appearing anywhere in d.

FV(d2) ∪ FV(d) = ∅

�d1/d2�d ↪→ [d1/d2]d

d
= dx

ω(N, d).c ↪→ owner(N, d).c

We write D for a domain annotation with a hole [] somewhere inside the domain
annotation. D[d] means that the hole is replaced by d. E.g. if D = �d1/[]�d then
D[d2] = �d1/d2�d. With D we extend the reduction relation to subterms.

d ↪→ d ′

D[d] ↪→ D[d ′]

↪→∗ is the transitive, reflexive closure of ↪→. A domain that cannot not be
further reduced by ↪→∗ is called a normal form and denoted by ↓d. The normal
form of a domain is unique as the reduction relation ↪→ is confluent, i.e. it is
congruent and terminating.

Unification. To find a solution for the constraint set R, we use the unification
algorithm given in Fig. 14. It is similar to the one presented in [34, Chap. 22.4].
The input is a set R of constraints, and the output is a unifier for R which is
a map from constraint variables to domains. The inverse delayed substitution
�d1/d2�−1 used in the formulation of the algorithm can be expressed as �d2/d1�
in concrete domain annotations.

The algorithm uses three sets: R is the constraint set we try to find a solution
for, Q stores constraints which cannot be fully processed at the moment and Q ′

stores the set Q of the previous recursive call and is needed to ensure termination.
As long as R contains constraints we try to calculate a part of the solution and
call unify recursively. If the chosen constraint d = g cannot yet be processed
because an inverse of the delayed substitution ρ cannot be calculated, or the
single constraint variable of one side occurs also on the other side, d = g is
stored in Q and therefore it will be processed again later. The algorithm halts if
R and Q are empty, or if R is empty and Q has not changed in the last call; that is,
if no new information has been gathered, but there are still unsolved constraints
left. This happens e.g. if fields are declared but never used, so nothing is known
about their annotations.

Properties. Theunification algorithmhas three important properties. First,unify

always terminates and either returns a solution or fails. Second, if the solution is
complete then it is the most general unifier for the input constraints. And third, if
there exists a unifier for R then unify will find a solution, i.e. it will not fail.

4.4 Properties of the Overall Inference Algorithm

As described in Subsect. 4.1, the overall inference algorithm has three possible
outcomes. We proved the following properties:
1. If, for a given unannotated module, there exists a type correct annotation,

then the outcome is either “Successful Inference” with a correctly inferred
type annotation or “Failed Inference”.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 139

unify(R) = unifyr(R, { }, { })
unifyr(R,Q, Q ′) =

if (R
= { }) then
choose (d ′ = g ′) in R in
let R ′ = R \ {d ′ = g ′} in
let d = ↓d ′, g = ↓g ′ in

if d = g then
unifyr(R

′, Q, Q ′)
else if d = X and X /∈ FV(g) then

unifyr([X �→ g]R ′, [X �→ g]Q, [X �→ g]Q ′) ◦ [X �→ g]

else if g = X and X /∈ FV(d) then
unifyr([X �→ d]R ′, [X �→ d]Q, [X �→ d]Q ′) ◦ [X �→ d]

else if d = X and X ∈ FV(g) then
unifyr(R

′, {d = g} ∪ Q, Q ′)
else if g = X and X ∈ FV(d) then

unifyr(R
′, {d = g} ∪ Q, Q ′)

else if d = ρ X and FV(ρ) = { } and X /∈ FV(g) then
unifyr([X �→ ρ−1g]R ′, [X �→ ρ−1g]Q, [X �→ ρ−1g]Q ′) ◦ [X �→ ρ−1g]

else if g = ρX and FV(ρ) = { } and X /∈ FV(d) then
unifyr([X �→ ρ−1d]R ′, [X �→ ρ−1d]Q, [X �→ ρ−1d]Q ′) ◦ [X �→ ρ−1d]

else if d = ρ d ′′ or g = ρg ′′ then
unifyr(R

′, {d = g} ∪ Q, Q ′)
else if d = ω(N, d ′′).c then

unifyr(R
′, {d = g} ∪ Q, Q ′)

else if g = ω(N,g ′′).c then
unifyr(R

′, {d = g} ∪ Q, Q ′)
else fail

else if Q
= { } then
if Q ′ = Q then []

else
unifyr(Q, { }, Q)

else []

Fig. 14. Unification algorithm

2. Otherwise, if there exists no type correct annotation, then the outcome is
either “Type Error” or “Failed Inference”.

Thus, a type error is always a fault in the input program and needs to be fixed by
the progammer. So far our experience showed that in practical program examples
the algorithm only rarely terminates with “Failed Inference”.

5 Related Work

We focus the discussion of related work to techniques for object encapsulation
and type inference. For related work on the use of the box model, we refer the
reader to [36].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

140 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

Object Encapsulation. The first systems encapsulating objects were proposed by
Hogg with Islands [21] and by Almeida with Balloons [4]. Both solution needed
a different assignment semantics to ensure encapsulation.

Ownership Types are a static way to guarantee encapsulation of objects dur-
ing runtime. The notion of ownership types stems from Clarke [11, 12, 9] to
formalize the core of Flexible Alias Protection [31]. Ever since, many researchers
investigated ownership type systems [29, 3, 8, to name a few]. Ownership type
systems have been used to prevent data-races [6], deadlocks [7, 5], and to allow
the modular specification and verification of object-oriented programs [28, 14].
Lately, ownership types have been combined with type genericity [37].

All the mentioned ownership type systems have one thing in common: They
have problems with multi-access ownership contexts like our boxes. In partic-
ular, they cannot handle the iterator pattern properly. Recently several more
or less powerful solutions have been proposed. The first allows the creation of
dynamic aliases to owned objects [10], that is, aliases stored in the stack. The
second approach [9, 7] is to allow Java’s inner member classes [18] to access the
representation objects of their parent objects. Both solutions do not provide the
full power to generalize the owners-as-dominators property. Ownership Domains
(OD) [2] has been the first approach which could handle the iterator problem
properly. Objects are not owned directly by other objects anymore, but are
owned by domains, which are in turn owned by objects. Every object can have
an arbitrary number of domains, which can either be private or public. Objects
in the private domain are encapsulated, and objects in the public domain can be
accessed by the outside. This is similar to our local and boundary domains. The
difference is that we only allow two domains per object, where OD allows an
arbitrary number of domains. In addition, the accessibility between domains is
hard-wired in our approach, where in OD the programmer has the possibility to
define which domains can access which other domains by link declarations. Our
system presented in the paper can be completely encoded in the OD approach.
However, our system can be extended by so called loose domains, not presented
here, which allow programming patterns that are not possible in OD [39]. OD
have been combined with an effects system [40]. A more general version of OD
has been formalized in System F [23].

Lu and Potter [25] presented a type system which separates object ownership
and accessibility. Instead of only giving the owner of a type, types are also
annotated by their possible accessibility. This introduces a very flexible system,
which allows programming patterns not possible with our type system. However,
this flexibility comes with the price of a higher annotation overhead, as both the
owner and the accessibility must be given. This effectively doubles the number
of parameters needed for classes and interfaces.

A previous system [26] considers the encapsulation of effects instead of ob-
jects. This allows, for example, to access internal representation objects from
the outside, but disallows their direct modification. This mechanism is similar
to the read-only mechanism of the Universes approach [29], where it is allowed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 141

to have read-only references to representation objects. However, this approach
forbids programming patterns where boundary objects should be able to directly
change the state of representation objects without using the owner object.

Confined Types [41, 42] is a lightweight mechanism that allows the encapsu-
lation of objects within the boundary of a Java package. Confined types can be
relatively easily inferred from unannotated programs [19].

Beside type systems there are other possibilities to statically ensure object
encapsulation. In Boogie [24] a theorem prover is used to prove the absence
of illegal accesses to representation objects. This is, for sure, the most flexible
approach that is statically possible, however, it is also very heavy compared to
a type system.

Type Inference. Robinson introduced the unify algorithm [38], Hindley [20] and
Milner [27] introduced the notion of polymorphic type inference.

Aldrich et al. [3] present a constraint-based inference algorithm for AliasFJ,
a capability-based alias annotation system. The annotations in their system not
only define, which objects can access some other objects but also specify which
aliases to an object may exist. Their inference algorithm first constructs a di-
rected graph, consisting of a node for every entity in the program, to which a
type can be assigned, i.e. fields, variables, expressions, etc., and different types
of edges, representing different types of constraints, then propagation rules are
used to determine annotations for all nodes. In contrast to our approach, their
algorithm is supposed to infer alias information for completely unannotated pro-
grams. The found annotations can be refined by the programmer. But as the
inference often leads to an unmanageable number of alias parameters, this is
difficult. They have no proof that their algorithm terminates.

Agarwal and Stoller [1] present a runtime inference algorithm to infer type
annotations for an ownership type system. During runtime, information about
the accesses to some objects is collected, which is analyzed afterwards and leads
to an annotated program. The runtime analysis is combined with a static analysis
about the uniqueness of references. A small number of program executions suffice
to gather enough information to infer a meaningful annotation for the whole
program. For some type systems this approach is more effective, i.e. it can infer
more annotations than type inference algorithms just based on static analysis.

In [6], Boyapati and Rinard use an ownership type system to guarantee that
programs are free of data races. They presented a constraint-based intra-method
algorithm to infer annotations for method-local variables. Because their con-
straints are simpler then ours, they can use a standard union-find algorithm to
solve them. Like we do, they extend incomplete solutions with a default value.

Flanagan et al. [16] present an inference algorithm to verify automicity. In
their approach the type rules generate a set of constraints, which is later solved
by a fix-point iteration. Similar to our approach, they use a delayed substitution,
delaying the application of a substition on a constraint variable until the variable
is resolved to some value.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

142 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

6 Conclusions

We draw the conclusions in connection with the event that caused us to write up
the presented boxes, namely Reinhard Wilhelm’s birthday. Boxes cannot only
be used as containers for birthday presents, they can as well encapsulate other
objects and boxes. Although – like in the birthday scenario – ownership transfer
is very important, we focussed here on a simpler box model in which the owner
is determined at box creation time. In the presentation, we adapted an ownership
type system to the box model and developed an algorithm for inferring ownership
annotations.

What might not be directly obvious from the small presentation, is the fact that
it causes new work for researches like Reinhard Wilhelm who are interested in
heap analysis. The semantic-based structuring and encapsulation techniques for
heaps can be used to localize and modularize heap analyses. Another interesting
goal would be to use heap analyses to support type or structure inference in more
complex encapsulation models, e.g. in models that support ownership transfer.

References

[1] Rahul Agarwal and Scott D. Stoller. Type inference for parameterized race-free
Java. In Proceedings of the Fifth International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI), volume 2937 of LNCS, pages
149–160. Springer, January 2004.

[2] Jonathan Aldrich and Criag Chambers. Ownership domains: Separating aliasing
policy from mechanism. In Odersky [32], pages 1–25.

[3] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations
for program understanding. In Proc. OOPSLA 2002, pages 311–330. ACM Press,
November 2002.

[4] Paulo Sérgio Almeida. Balloon Types: Controlling sharing of state in data types.
In Proc. ECOOP’97, volume 1241 of LNCS, pages 32–59. Springer, June 1998.

[5] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe Programming.
PhD thesis, Massachusetts Institute of Technology, February 2004.

[6] Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for
race-free java programs. In Proc. OOPSLA 2001, pages 56–69. ACM Press, Oc-
tober 2001.

[7] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In Proc. OOPSLA 2002,
pages 211–230. ACM Press, November 2002.

[8] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for
object encapsulation. In Proc. POPL ’03, pages 213–223. ACM Press, January
2003.

[9] Dave Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, July 2001.

[10] Dave Clarke and S. Drossopoulou. Ownership, encapsulation, and the disjointness
of type and effect. In Proc. OOPSLA 2002, pages 292–310. ACM Press, November
2002.

[11] Dave Clarke, John Potter, and James Noble. Ownership types for flexible alias
protection. In Proc. OOPSLA ’98, pages 48–64. ACM Press, October 1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Infering Ownership Types 143

[12] Dave Clarke, James Noble, and John M. Potter. Simple ownership types for object
containment. In J. Lindskov Knudsen, editor, Proc. ECOOP 2001, volume 2072
of Lecture Notes in Computer Science, pages 53–76. Springer, June 2001.

[13] David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with rep
exposure. Research Report 156, Digital Systems Research Center, July 1998.
SRC-RR-156.

[14] Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Jour-
nal of Object Technology, 4(8):5–32, 2005.

[15] Alan Donovan, Adam Kiežun Matthew S. Tschantz, and Michael D. Ernst. Con-
verting java programs to use generic libraries. In OOPSLA ’04, pages 15–34. ACM
Press, 2004.

[16] ”Cormac Flanagan, Stephen N. Freund, and Marina Lifshin”. Type inference for
atomicity. In In Proc. TLDI ’05, pages 47–58. ACM Press, 2005.

[17] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s
reduction semantics for classes and mixins. Formal Syntax and Semantics of Java,
1523:241–269, 1999.

[18] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language
Specification – Second Edition. Addison-Wesley, June 2000.

[19] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with
confined types. In Proc. OOPSLA 2001, pages 241–253. ACM Press, October
2001.

[20] J. Roger Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146:29–60, December 1969.

[21] John Hogg. Islands: Aliasing protection in object-oriented languages. In
Proc. OOPSLA ’91, pages 271–285. ACM Press, November 1991.

[22] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems (TOPLAS), 23(3):396–450, May 2001.

[23] Neel Krishnaswami and Jonathan Aldrich. Permission-based ownership: Encap-
sulating state in higher-order typed languages. In Proc. PLDI’05, pages 96–106.
ACM Press, June 2005.

[24] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In Odersky
[32], pages 491–516.

[25] Yi Lu and John Potter. On ownership and accessibility. In Dave Thomas, editor,
Proc. ECOOP 2006, volume 4067 of LNCS, pages 99–123. Springer, July 2006.

[26] Yi Lu and John Potter. Protecting representation with effect encapsulation. In
In Proc. POPL ’06, pages 359–371. ACM Press, 2006.

[27] Robin Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17(3):348–375, 1978.

[28] Peter Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer, 2002.

[29] Peter Müller and Arnd Poetzsch-Heffter. A type system for controlling represen-
tation exposure in Java. In Drossopoulou et al., editor, Formal Techniques for
Java Programs. Technical Report 269–5, Fernuniversität Hagen, 2000.

[30] Matthias Niklaus. Static universe type inference using a sat-solver. Master’s thesis,
Software Component Technology Group, Department of Computer Science, ETH
Zurich, 2006.

[31] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In Eric Jul,
editor, Proc. ECOOP’98, volume 1445 of LNCS, pages 158–185. Springer, July
1998.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

144 A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer

[32] Martin Odersky, editor. Proc. ECOOP 2004, volume 3086 of LNCS, June 2004.
Springer.

[33] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In
OOPSLA ’91, pages 146–161. ACM Press, 1991.

[34] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002. ISBN
0-262-16209-1.

[35] John Plevyak and Andrew A. Chien. Precise concrete type inference for object-
oriented languages. In OOPSLA ’94, pages 324–340. ACM Press, 1994.

[36] Arnd Poetzsch-Heffter and Jan Schäfer. Modular specification of encapuslated
object-oriented components. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever, editors, Formal Methods for Components and
Objects, Fourth International Symposium, FMCO 2005, volume 4111 of LNCS,
pages 313–341. Springer, 2006.

[37] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic ownership
for generic java. In Proc. OOPSLA 2006. ACM Press, 2006.

[38] J. Alan Robinson. Computational logic: The unification computation. Machine
Intelligence, 6:63–72, 1971.

[39] Jan Schäfer and Arnd Poetzsch-Heffter. Simple loose ownership domains. In
ECOOP Workshop on Formal Techniques for Java-like Programs (FTfJP), July
2006.

[40] Matthew Smith. Towards an effects system for ownership domains. In ECOOP
Workshop - FTfJP 2005, July 2005.

[41] Jan Vitek and Boris Bokowski. Confined types in Java. Software – Practice and
Experience, 31(6):507–532, 2001.

[42] Tian Zhao, Jens Palsberg, and Jan Vitek. Lightweight confinement for feather-
weight Java. In Ron Crocker and Guy L. Steele Jr., editors, Proc. OOPSLA 2003,
pages 135–148. ACM Press, October 2003.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ViDoC- Visual Design of Optimizing Compilers

Tiziana Margaria1, Oliver Rüthing2, and Bernhard Steffen2

1 Universität Potsdam
margaria@cs.uni-potsdam.de

2 Universität Dortmund
{Oliver.Ruething,Bernhard.Steffen}@udo.edu

Abstract. Designing optimizing compilers is a challenging task that in-
volves numerous mutually interdependent transformations. Often, these
interdependencies are only captured in an ad-hoc manner, relying on the
ingenuity and experience of the compiler engineers. ViDoC is a tool-kit for
the specification-driven, interactive development of program optimizers
in a service oriented way. In particular, ViDoC facilitates the specification
of dependencies between transformations in terms of modal logic prop-
erties and requirements. These specifications can be used for checking,
as well as synthesizing, suitable optimization sequences , which are ex-
pressed in terms of a workflow (graph) model. ViDoC also offers various
kinds of visual support, like the display of flow graphs, call graphs and
analysis information, and the visualization and even manipulation of the
graphs expressing the optimization workflows. These features make Vi-
DoC especially appropriate for rapid prototyping. ViDoC is constructed
on top of the Soot infrastructure project, that targets the manipulation
of Java byte code and offers powerful engines for realizing the specified
analyzes and transformations. The visualization and workflow handling
are designed according to the paradigm of Lightweight Process Coordi-
nation, realized in the jABC environment.

1 Introduction

Generating high-quality optimized code is a difficult and laborious task, that is
occupying tool and environment builders since the inception of high-level coding.
Even with a set of optimizations at disposal, it is often impossible to reliably
predict their run-time behaviour, and how they perform together. Although
coupling effects (feature interactions) among optimizations have been studied
already long ago [3] exploring interactions systematically is restricted to set-
tings with a few, mutually enhancing transformations [12,2]. In a real optimizing
compiler, however, one is faced with numerous interdependent transformations
including also destructive coupling effects. This hampers already the platform-
independent optimization level. Nowadays, hardware-targeted optimizations are
becoming common, thus predictions become even more difficult because of the
impact of machine characteristics, like cache sizes and register limitations on the
foreseen optimizations. Up to now, the potential space of optimization combina-
tions is not adequately explored: Usually, the order of applications among a set

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 145–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

146 T. Margaria, O. Rüthing, and B. Steffen

of program transformations is chosen in an ad-hoc manner, capturing only some
of the most obvious interactions recognized by compiler engineers.

Addressing these issues systematically requires an advanced tool-set for the
specification of and experimentation with complex optimization scenarios, and
for their analysis prior to enactment. ViDoC provides such a platform, that ex-
ploits for the management and coordination of heterogeneous optimizations the
paradigm of Lightweight Process Coordination, as realized in METAFrame’s
ABC, and now in the java Application Building Center (jABC) [11,14]. This
enables enables the rapid prototyping and context/platform-specific evaluation
of complex optimizations.

The paper is organized as follows. In Sect. 2 we provide an overview of ViDoC’s
structure, followed, in Sect. 3, by a sketch of its relation with the underlying
jABC coordination framework. In Sect. 4 we illustrate its capabilities in detail
by means of a running example. Finally, Sect. 5 discusses related work and Sect. 6
presents our conclusions and plans for future work.

2 ViDoC

ViDoC provides a platform for the design, analysis, and implementation of com-
piler optimizations. Its focus is on rapid prototyping and experimental evaluation
of the optimizations, and on the analysis of the impact of their interdependencies.
For this purpose, ViDoC supports the

– easy integration of functionalities of existing compiler infrastructures,
– coordination of different compiler functionalities to complex solutions beyond

the boundaries of individual compiler platforms
– visual analysis of the coordination graph, representing the complex solutions,

as well as of the analysis and optimization results.

The general structure of ViDoC is shown in Figure 1.
ViDoC heavily exploits the Soot Java optimization framework [6] for analyz-

ing and transforming Java bytecode. It is implemented in Java and provides a
set of Java APIs for different functionalities that are needed for optimizing or
transforming Java bytecode. Soot is particularly suitable for our project since it

– allows users to automatically generate customized control-flow representa-
tions of Java byte code which are more adequate for flow analysis and trans-
formations than Java byte code itself. In the ViDoC project the intermediate
format Jimple [6], a Soot specific 3-address format, rendered most convenient
as a starting point.

– offers a strong engine to create analyzes and transformations automatically
from specifications. This supports compiler developers to design their own
analyzes and transformations in an easy and rapid way.

In order to implement a new flow analysis Soot only requires to implement
a new subclass of the Java class FlowAnalysis. This is essentially accom-
plished by implementing the standard ingredients of the data flow framework

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ViDoC- Visual Design of Optimizing Compilers 147

Fig. 1. Structure of ViDoC

like the underlying abstract domain, the local transfer functions and the
merge operator. Likewise Soot also facilitates the integration of customized
transformations which are specified by implementing a BodyTransformer or
SceneTransformer.

– provides a rich selection of standard analyzes and transformations that can
readily be used with or without further enhancements.

– gives a good handle to import transformation descriptions as building blocks
into the ViDoC’s coordination environment, and to export the optimization
workflows back to Soot.

3 The Coordination Framework

The java Application Building Center (jABC) [11,14] provides the technology
concerning workflow modelling and coordination, ViDoC ḿeans to express com-
positions of analyzes, optimizations, and transformations.

Essentially, the jABC is an application-independent framework for the
analysis, verification, and synthesis of services, and more generally of component-
based systems. Technically, such component-based systems are modelled in terms
of workflow graphs whose nodes are units of functionality called service in-
dependent building blocks (SIBs). The construction and manipulation of SIB
graphs is supported by a flexible graphical editor that in particular supports the
drag-and-drop construction and configuration of workflows on the basis of col-
lections of SIBs. Vital system constraints on the workflows like causality or

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

148 T. Margaria, O. Rüthing, and B. Steffen

eventuality properties are specified in terms of temporal logic formulas, and are
then validated by means of a built-in model checker [15].

To use the jABC, individual transformations specified in Soot can be imported
via an automated mechanism as SIBs of an application-specific Soot SIB palette.
Constraints among optimization transformations are expressed in terms of tem-
poral logic. For instance, correct partial redundancies elimination (PRE) [4] can
be easily formalized by requiring that the transformation:

1. must always be preceded by a removal of critical edges;
2. should be performed at least once;
3. should not be performed again without a PRE-enabling transformation, like

the elimination of dead assignments;
4. should be followed by a variable subsumption transformation.

In practice, these constraints are typically validated using model checking. How-
ever, it would also be possible to synthesize executable optimization sequences
using our tableaux-based synthesis feature [16].

It is easy to construct a temporal formula that expresses all these conditions
as conjunction of subformulas for the single requirements. This is important
as numerous program transformations require specific additional preconditions,
such as the program being given in SSA form, having a reducible flow graph,
or having no critical edges. Moreover, the preconditions differ, influencing the
quality of the obtained optimization, and they may be destroyed during some
of the transformations. ViDoC’s coordination facility is tailored to deal with the
structures required for this enterprise. It supports hierarchy, which is necessary
to reason at different levels of abstraction, and it is typed, allowing to elegantly
characterize the required preconditions for the transformations.

In order to complete the cycle the information on a satisfying optimization
schedule has to be transfered back to Soot. Since Soot’s transformation package
which implements the selection of transformations cannot cope with cycles in
the transformation orderings, the transformations are executed using the jABC
Tracer. This is a SIB graph interpreter, which traverses the graph and at each
SIB delegates its execution to the Soot environment, if it is a Soot SIB, or to its
jABC functionality if it is a jABC SIB.

4 Using ViDoC

In the following, we illustrate ViDoC’s capabilities in detail by means of a running
example. After presenting the concrete optimization example in Section 4.1, we
focus on illustrating the visual support by ViDoC. First, for the design of complex
optimizations, second, for visualizing program representations, and third, for
visualizing analysis and transformation results.

4.1 Example: Partial Dead Code Elimination

Partial dead code elimination (PDCE) [5] is a powerful program transformation
composed of two mutually enhancing transformations. Essentially, its idea is to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ViDoC- Visual Design of Optimizing Compilers 149

Fig. 2. The SIB graph of the PDCE complex optimization

utilize assignment sinking in order to increase the potential for the elimination
of dead assignments, which is a standard transformation for removing assign-
ments to variables that are not subsequently used. Furthermore, as almost any
transformation involving code movement, PDCE benefits from the removal of
critical edges, i.e., edges in the flow graph that connect nodes with multiple suc-
cessors with nodes with multiple predecessors. The remainder of this section will
illustrate ViDoC using this example.

4.2 Visual Aids for Designing Optimizations

Workspace and SIBs. Since ViDoC is constructed as a jABC-plugin it uses
jABC’s graphic interface for displaying and manipulating workflows process-
ing SIB graphs. Figure 2 shows the SIB graph of the PDCE transformation.
Nodes are SIBs representing elementary transformations contributing to the
PDCE transformation. The SIBs are connected by directed edges which model

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

150 T. Margaria, O. Rüthing, and B. Steffen

Fig. 3. ViDoC’s workspace with SIB palettes and available Soot SIBs

their order of execution. The set of possible edge labels is provided by the im-
plementation of the source SIB. In this example, most SIBs only allow single
outgoing edges with default-labels.

In the graph of Figure 2, the CriticalEdgeRemover and the DeadAssign-
mentEliminator are part of Soot’s standard transformation package. SIBs corre-
sponding to each transformation of this package have been automatically
generated and are thus readily available within ViDoC. Figure 3 shows how to ac-
cess them from a drop-down menu in the main workspace of ViDoC. Here we see on
the left the palette of available transformations. The Sootbuiltin palette is di-
rectly imported from the Soot environment, while the SIBs AssignmentSinking
and FaintCodeEliminator in Fig. 2 represent specific transformations which
have been created within Soot. Finally, some SIBs like CompareEq and
assign counter are generic SIBs available in the jABC environment. They have
simply been appropriately parameterized and renamed for this application.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ViDoC- Visual Design of Optimizing Compilers 151

Fig. 4. Setting the parameters of the assign counter SIB

A short description of each SIB pops up in a tooltip when moving the cursor
on the entry. In Figure 3 we see this illustrated by means of the Soot SIB
CommonSubexpressionEliminator.

In addition to the two basic Soot SIBs, in the PDCE graph we see the
AssignmentSinkingTransformer SIB, a new transformation that has been built
using Soot’s data flow analysis and transformation engines. Moreover,
two compare SIBs are used for checking whether the loop over the main trans-
formations reaches stability. Finally, a counter SIB is introduced, to force ter-
mination of the transformation cycle if a preset value is reached. Figure 4 shows
how to initialize the SIB parameters in the corresponding SIB inspector of the
jABC.

The Context Viewer. Tracing the execution of SIB workflows is facilitated
by means of an integrated context viewer that is started from the workspace,
as shown in Figure 5. The context viewer gives information on the state of
variables and their changes during the execution of the transformation, as in
Fig. 6.

The effects of the execution of the SIBs on the code are displayed by other
ViDoC modules. For program representations, like the JIMPLE intermediate
format and certain flow graph representations (see Section 4.3), various difference
viewers are available, emphasizing the structural changes to the code under
optimization. The design of ViDoC makes it easy to profit here from functionality
provided by other tools.

Model Checking. Vital constraints concerning both the correctness of the
transformation as well as the correctness of the general workflow can be expressed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

152 T. Margaria, O. Rüthing, and B. Steffen

Fig. 5. Starting the Context Viewer from the workspace

Fig. 6. Context viewer window with context information

in terms of modal logics, and model checked automatically for the underlying
SIB graph.

As an example consider the following constraint concerning a correct use of a
counter, which occurs in the PDCE graph:

//: CounterCheck
// Every counter must be assigned before it can be used
//(e.g., read, incremented, decremented).

constraint CounterCheck{
Forall X in model (’Start =>
AWU_F(~(’UseCounter[name == X]),

’AssignCounter[name == X]))
}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ViDoC- Visual Design of Optimizing Compilers 153

Fig. 7. Flow graph visualization

ViDoC uses the counter example facility of the jABC to highlight runs violating
these kinds of constraints.

4.3 Visualizing Program Representations

ViDoC provides flexible access to the control flow visualization of the programs
that are manipulated, with flexible access to views of distinct granularity. For
instance, users can interactively explode nodes in the call graph representation of
a program to basic block flow graphs of their corresponding methods, and then
further refine the presentation to an instruction-wise representation. Displaying
corresponding fragments of the flow graphs in a common panel emphasizes the
effects of the transformations.

Our implementation uses GXL (the Graph eXchange Language) as graph spec-
ification language and JGraphpad, a versatile free graph editor, as layout tool. We
are still improving and extending ViDoC’s visualization capabilities, with main
focus on integrating visual support for documenting the impact of analyzes and
transformation.

Figure 7 shows the visualization of the control flow graph in terms of a single
instruction representation. In this figure, an example flow graph is subjected to
an extension of partial dead code elimination called partial faint code elimination.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

154 T. Margaria, O. Rüthing, and B. Steffen

Since no assignment is found eliminable on this code, the initial flow graph (on
the left side) is not altered (on the right side).

In this representation the source code is ”inlined” in the node. Alternatively,
a SIB graph representation can be chosen in the jABC, with the actual code as
label (SIB name) below a generic SIB icon. In this representation the program
assumes a look very similar to the workflow graph of Fig. 2.

Finally, Figures 8 and 9 show the JGraphpad layout of call graphs and basic
block flow graphs, respectively. The inlined basic blocks can be explored in the
large canvas, while a miniature picture of the whole program is available in the
right inspector.

Fig. 8. Call graph visualisation

4.4 Visualizing Transformation Results

As mentioned, ViDoC’s difference viewers provide a means to relate the results of
optimizations with the underlying original program (see Section 4.2). However,
this can only give a rough picture on the impact of the transformation. In order to
evaluate the quality of optimization orders and to compare different orders ViDoC
integrates a documentation tool that automatically runs benchmark suites and
summarizes the results in graphical reports. The documentation tool is based on
the JVM profiling tool HPROF and the Java chart library JFreeChart.

Figure 10 gives an impression on the documentation tool’s GUI: several views
collect and condense data concerning several runs on the single benchmarks and
on benchmark suites. This enables the comparison of the effects of different
transformations, in particular of different complex transformations realized in
ViDoC).

Figure 11 shows as example a histogram evaluation of a benchmark set against
several transformations. Representations like this help engineers tuning the
transformations and refining the own intuition about interactions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ViDoC- Visual Design of Optimizing Compilers 155

Fig. 9. Basic block graph visualisation

5 Related Work

Dependencies among optimizing program transformations as a research issue has
been pioneered by the work of Giegerich, Möncke and Wilhelm [3]. In partic-
ular, the idea of flexibly combining enabling analyzes and transformations was
later further generalized [2]. However, these approaches focus on a small set of
mutually enabling transformations.

Most closely related to ViDoC are two approaches dealing with a broader
set of optimizing transformations and their dependencies. Soffa and Whitfield
proposed a framework for reasoning on transformation orders [19] which inte-
grates a specification mechanism for transformations called Gospel and a tool
called Genesis. However, only enabling and disabling properties between trans-
formations are discovered. Hence this framework does not resolve transformation
orders where parts have to be iterated. Moreover, their tool Genesis is less flex-
ible than ViDoC in managing transformation orders and thus not as suited for
rapid prototyping. Vista is another tool focussing on transformation orders [20].
However, this tool targets more on the generation of low-level embedded code.
Moreover, its usage is highly interactive requiring the user to guide through the
whole transformation process where single transformations can be committed or
undone.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

156 T. Margaria, O. Rüthing, and B. Steffen

Fig. 10. GUI of the documentation tool

Fig. 11. Benchmark results as bar charts

Lerner et al. have proposed domain specific languages for specifying analyzes
and transformations and proving them automatically correct [8,9]. Basically,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ViDoC- Visual Design of Optimizing Compilers 157

Fig. 12. Remote access to ViDoC via jETI

their approach checks a specification based on an abstract interpretation against
the programs full semantics and mainly targets on proving one individual transfor-
mation or analysis correct. Although they also address the problem of combining
analyzes and transformations [7] their approach is essentially based on checking
the effect of all possible combinations exhaustively. In contrast, our approach fo-
cusses on capturing the interactions between the different transformations.

6 Conclusion and Future Work

We have presented ViDoC, a flexible platform for supporting the visual, library-
based design of optimizing compilers. ViDoC offers (semi-)automatic support for
validating vital constraints of compilation and transformation schedules and for
evaluating and relating the quality of different schedules. Moreover it supports
systematic experimentation and rapid prototyping, and is therefore an ideal
means for the context/platform-specific evaluation of complex optimizations.

We plan to make ViDoC available on the world wide web in order to open it for
third parties for all purposes of research, teaching, development, and experimen-
tation. This will be done on top of the Electronic Tool Integration Platform jETI
[1,13,10], which supports the flexible integration of remote tools into complex,
heterogeneous optimization solutions. As sketched in Figure 12, ViDoC and its
functionality will be specified as a web-service running on a jETI-server. This
service can be accessed from any jABC-client with a corresponding jETI-Plugin.
According to jETI’s philosophy researchers can contribute to the project by
releasing additional tool components on a jETI-server as well.

Finally, an ambitious future goal is to globalize and automate correctness
arguments for program transformations. Focussing on the underlying analyzes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

158 T. Margaria, O. Rüthing, and B. Steffen

the work on data flow analysis as model checking [17,18] gives a good handle for
correctness arguments. In this setting temporal logic is used as a declarative lan-
guage for specifying “what” the analysis computes rather “how” this is actually
done.

Acknowledgement

We are grateful to Lenore Zuck and Harald Raffelt for discussions and valuable
comments. The implementation of ViDoC has been supported by a one-year stu-
dent project. We would like to thank the members of the project group VIDOC.

References

1. T. Margaria A. Arenas, J. Bicarregui. The FMICS view on the verified software
repository. Proc. Integrated Design and Process Technology, IDPT-2006, San Diego
(USA), 26-29.6.2006, Society for Design and Process Science, 2006.

2. C. Click and K. D. Cooper. Combining analyses, combining optimizations. ACM
Transactions on Programming Languages and Systems, 17(2):181 – 196, 1995.

3. Robert Giegerich, Ulrich Möncke, and Reinhard Wilhelm. Invariance of approxi-
mate semantics with respect to program transformations. In 11. GI Jahrestagung.
In conjunction with Third Conference of the European Co-operation in Informatics
(ECI), number 50 in Informatik-Fachberichte, pages 1–10, Heidelberg, Germany,
1981. Springer-Verlag.

4. J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion: Theory and practice.
ACM Trans. Prog. Lang. Syst., 16(4):1117–1155, 1994.

5. Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimination.
In SIGPLAN Conference on Programming Language Design and Implementation,
pages 147–158, 1994.

6. Patrick Lam, Feng Qian, and Ondrej Lhoták. Soot: a java optimization framework.
See http://www.sable.mcgill.ca/soot/.

7. Sorin Lerner, David Grove, and Craig Chambers. Combining dataflow analyses and
transformations. In In Conferernce Record of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2002), pages 270–
282, 2002.

8. Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically proving the
correctness of compiler optimizations. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 220–231, 2003.

9. Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated sound-
ness proofs for dataflow analyses and transformations via local rules. In In Con-
ferernce Record of the 32nd ACM SIGPLAN-SIGACT, Symposium on Principles
of Programming Languages (POPL 2005), pages 364–377, 2005.

10. T. Margaria. Web services-based tool-integration in the ETI platform. SoSyM, Int.
Journal on Software and System Modelling, Vol. 4, N. 2,pp. 141 - 156, Springer
Verlag, May 2005.

11. T. Margaria and B. Steffen. Service engineering: Linking business and IT. IEEE
Computer, 2006. (To appear), Cover feature of IEEE Computer, (invited), issue
for the 60th anniversary of the Computer Society.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

ViDoC- Visual Design of Optimizing Compilers 159

12. O. Rüthing. Interacting Code Motion Transformations: Their Impact and Their
Complexity. PhD thesis, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 1997. Lecture Notes in
Computer Science, vol. 1539, Springer-Verlag, Heidelberg, 1998.

13. B. Steffen, V. Braun, and T. Margaria. The electronic tool integration platform:
Concepts and design. Int. Journal on Software Tools for Technology Transfer
(STTT), 1(1/2):9–30, 1997. See also http://eti.cs.uni-dortmund.de.

14. B. Steffen and T. Margaria. Metaframe in practice: Intelligent network service
design. In B. Steffen E.-R. Olderog, editor, Correct System Design – Issues, Meth-
ods and Perspectives, volume 1710 of Lecture Notes in Computer Science (LNCS),
pages 390 – 415, Heidelberg, Germany, 1999. Springer-Verlag.

15. B. Steffen, T. Margaria, R. Nagel, S. Jörges, and C. Kubczak. Model-driven devel-
opment with the jABC. Proc. HVC’06, IBM Haifa Verification Conference, Haifa
(Israel), (to appear in LNCS), Springer Verlag, October 2006.

16. B. Steffen, T. Margaria, and M. von der Beeck. Automatic synthesis of linear
process models from temporal constraints: An incremental approach. In Proc.
ACM Int. Workshop on Automated Analysis of Software (AAS’97) - affiliated to
POPL’97, pages 127–141, 1997.

17. Bernhard Steffen. Data flow analysis as model checking. In A.R. Meyer T. Ito, ed-
itor, Theoretical Aspects of Computer Science (TACS’91), Sendai (Japan), volume
526 of Lecture Notes in Computer Science (LNCS), pages 346–364, Heidelberg,
Germany, September 1991. Springer-Verlag.

18. Bernhard Steffen. Generating data flow analysis algorithms from modal specifi-
cations. International Journal on Science of Computer Programming, 21:115–139,
1993.

19. Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring code improv-
ing transformations. ACM Transactions on Programming Languages and Systems,
19(6):1053–1084, 1997.

20. W. Zhao, B. Cai, D. Whalley, M. Bailey, R. van Engelen, X. Yuan, J. Hiser,
J. Davidson, K. Gallivan, and D. Jones. Vista: a system for interactive code im-
provement. In In Proceedings of the joint conference on Languages, compilers and
tools for embedded systems (LCTES), pages 155–164. ACM Press, 2002.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Interpretation for Worst and Average

Case Analysis

Alessandra Di Pierro1, Chris Hankin2, and Herbert Wiklicky2

1 Dipartimento di Informatica, University of Pisa, Italy
2 Department of Computing, Imperial College London, UK

Abstract. We review Wilhelm’s work on WCET for hard real-time ap-
plications and also recent work on analysis of soft-real time systems using
probabilistic methods. We then present Probabilistic Abstract Interpre-
tation (PAI) as a quantitative variation of the classical approach; PAI
aims to provide close approximations – this should be contrasted to the
safe approximations studied in the standard setting. We discuss the rela-
tion between PAI and classical Abstract Interpretation as well as average
case analysis.

1 Introduction

This paper has been written as a contribution to the Festschrift to celebrate
the sixtieth birthday of Reinhard Wilhelm. As befits such an occasion, we have
sought to relate some of our current interests to Reinhard’s canon of work. Given
such an illustrious career, there is no shortage of possible topics. We have taken
Reinhard’s relatively recent work on worst case execution times (WCET) as our
inspiration. This combines abstract interpretation, the topic about which the
middle author and Reinhard first met 21 years ago, with quantitative issues –
an area which is the topic of much of our recent work.

Reinhard’s approach, which is surveyed in [1], concentrates on WCET for
hard real-time problems – examples include safety-critical systems such as con-
trol software in automobiles. It is not difficult to see traditional approaches to
WCET, for example those based on Timing Schemata [2], as abstract interpre-
tation. States are abstracted to upper bounds on execution times and language
constructs abstracted to work with these. For example a suitable interpretation
for the conditional construct might be the function λxyz.x + max(y, z). The
complexities of modern processors mean that WCET is much less predictable
than this; cache performance and pipelines can have a dramatic impact and
timing anomalies [3] can have counter-intuitive effects. As a consequence, Rein-
hard’s approach is much more sophisticated: the first phase extracts a control
flow graph – for some classes of language this may already involve an abstract
interpretation or program analysis; he then performs some abstract interpreta-
tion to predict cache and pipeline behaviour; the result of this is upper bounds
on the execution times for basic blocks and these are combined and integer lin-
ear programming is used to produce an upper bound on WCET for the whole

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 160–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Interpretation for Worst and Average Case Analysis 161

program. The paper [1] analyses the sources of unpredictability in these bounds
and is actually a manifesto for ”Design for Predictability”.

In safety-critical embedded systems it is essential to work with worst case exe-
cution times. In systems with softer real-time constraints average case execution
times can be a useful design tool in analysing power/performance trade-offs. Ex-
ample application areas are multi-media and mobile devices. Approaches based
on stochastic modelling have become popular in recent years. Stochastic Petri
Nets [4,5], Stochastic Automata Networks [6] and Stochastic State Machine Lan-
guages have all been used. Kwiatkowska [7] and co-workers have used the latter
with PRISM and MAPLE to optimise average energy usage whilst bounding the
average number of requests waiting to be served. PRISM is used to generate the
generator stochastic matrix for systems and MAPLE is used for formulating and
solving the linear optimisation problem. As an alternative to model-checking, we
have developed an approach to abstract interpretation of such stochastic matri-
ces [8]. In this paper we explore how our framework can be used to study average
case behaviour.

2 Probabilistic Abstract Interpretation

Without doubt, static program analysis is a fascinating and interesting area
from a purely theoretical point of view – but it is done for a practical reason:
In order to protect oneself against nasty surprises when software is run, the
idea is to predict in advance what will happen when a program is executed.
Unfortunately, well known fundamental results, like the Halting problem, tell
us that it is in principle impossible to know everything about the behaviour of
every program. The solution to this obstacle of undecidabilty is to aim for partial
answers to some of the questions.

However, different applications and users have different priorities and interests
and therefore accept different kinds of imprecision. When it comes, for example,
to systems which are critical for life and limb of humans one might be cautious
and attempt to determine absolute limits on what can go wrong in the worst
case – like in the case of safety critical systems in cars, air planes, etc. If, on the
other hand, the possible damage is only in terms of lost money, time or other
resource one might be inclined to accept an estimate in order to forecast average
profits or losses – as in the context of speculative threading, power consumption
of mobile devices, etc.

There is no one-size-fits-all approach to this issue: While the cliché of a Ger-
man engineer will aim to protect his “Vorsprung durch Technik” by accommo-
dating for a worst case catastrophe, the caricature of a British speculator might
gamble on an average case scenario – and both approaches can be justified in
certain circumstances.

Abstract Interpretation [9,10,11] provides a general methodology for con-
structing static analyses which is, to some extent, independent of the particular

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

162 A. Di Pierro, C. Hankin, and H. Wiklicky

style used to specify the program analysis. Thus, it applies to any formulation
of a (data/control flow or type/effect-system) analysis.

One common theme behind all traditional approaches to program analysis
(data and control flow analysis, type and effect systems, abstract interpretation)
is that in order to remain computable, one can only provide approximate answers
[11]. As a consequence an analysis does not usually give precise information;
moreover, in order for this information to be useful, the analysis must be safe,
that is the information obtained from the analysis must be proved to be correct
with respect to a semantics of the programming language.

Quantitative approaches to program analysis aim at developing techniques
which provide approximate answers (in a way similar to the classical program
analysis) together with some numerical estimate of the approximation introduced
by the analysis.

One useful source of numerical information for a quantitative program analysis
is a probabilistic semantics and in particular the use of vector space or linear
algebraic structures for modelling the computational domain. By exploiting the
probabilistic information resulting from a probabilistic program analysis one can
quantify the precision of the analysis and obtain as a result answers which are
for example “approximate up to 35%”.

As a quantitative approach to program analysis we have developed Prob-
abilistic Abstract Interpretation (PAI) [8,12] which recasts classical Abstract
Interpretation in a probabilistic setting where linear spaces replace the classical
order-theoretic domains, and the notion of the so-called Moore-Penrose pseudo-
inverse of a linear operator replaces the classical notion of a Galois connection.
The abstractions we get this way are close approximations of the concrete se-
mantics. Thus, closeness is a quantitative replacement for classical safety which
does not require any approximation ordering.

The application of operator algebraic methods instead of order theoretic ones
makes the framework of probabilistic abstract interpretation essentially different
from approaches which apply classical abstract interpretation to probabilistic do-
mains [13,14]. Although classical AI techniques can also be used in a probabilistic
context, e.g. to approximate distributions, as was demostrated for example in a
number of papers by D.Monniaux [13,14], this will always result in safe, i.e. worst
case analysis. In contrast, our PAI approach allows to construct averages and other
statistical information which are more in the spirit of an average case analysis.

The definition of a probabilistic abstract interpretation is given in terms of
probabilistic domains. We define a probabilistic domain as a suitable vector space
with a inner product 〈., .〉, namely as a Hilbert space.

Probabilistic Abstract Interpretation is defined in general for infinite dimen-
sional Hilbert spaces. We recall here the general definition, although in this
paper we will only consider the finite dimensional case. Given two probabilis-
tic domains C and D, a probabilistic abstract interpretation is defined by a pair
of linear maps, A : C �→ D and G : D �→ C, between the concrete domain C
and the abstract domain D, such that G is the Moore-Penrose pseudo-inverse
of A, and vice versa. Let C and D be two Hilbert spaces and A : C �→ D a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Interpretation for Worst and Average Case Analysis 163

bounded linear map between them. A bounded linear map A† = G : D �→ C is
the Moore-Penrose pseudo-inverse of A iff

A ◦ G = PA and G ◦ A = PG

where PA and PG denote orthogonal projections (i.e. P∗
A = PA = P2

A and
P∗

G = PG = P2
G) onto the ranges of A and G.

Alternatively, if A is Moore-Penrose invertible, its Moore-Penrose pseudo-
inverse, A† satisfies the following:

(i) AA†A = A,
(ii) A†AA† = A†,

(iii) (AA†)∗ = AA†,
(iv) (A†A)∗ = A†A,

where M∗ is the adjoint of M. The adjoint M∗ of a linear operator M on a
Hilbert space H is uniquely defined via the condition 〈M(x), y〉 = 〈x,M∗(y)〉,
for all x, y ∈ H. In matrix terms, M∗ corresponds to the transpose complex
conjugate matrix MT of the matrix M.

It is instructive to compare these equations with the classical setting. For
example, if (α, γ) is a Galois connection we similarly have α ◦ γ ◦ α = α and
γ ◦ α ◦ γ = γ.

Please note that we identify linear maps and operators with their matrix
representation. This implies that for two linear maps or operators represented
by matrices M and N their composition M◦N (if it is well-defined) corresponds
to the matrix product N · M = NM, i.e. in the reverse order. Similarily, the
application of M to a (row) vector, i.e. M(x), corresponds to a vector/matrix
multiplication x · M = xM. This notation is consistent with the one for the
octave tool [15] which was used by us to compute the examples in this paper.

As in the classical framework, given a concrete semantics we can always con-
struct a best correct approximation for this semantics, although the notions of
correctness and optimality assume a different connotation in our linear setting
as explained in the following.

If Φ is a linear operator on some vector space V expressing the probabilistic
semantics of a concrete system, and A : V �→ W is a linear abstraction function
from the concrete domain into an abstract domain W , we can compute the
(unique) Moore-Penrose pseudo-inverse G = A† of A. An abstract semantics
can then be defined as the linear operator on the abstract domain W :

Ψ = A ◦ Φ ◦ G = GΦA.

In the case of classical abstract interpretation the abstract semantics con-
structed in this way (called the induced semantics in [16]) is guaranteed to be
the best correct approximation of the concrete semantics, meaning that it is
the most precise among all correct approximation (the relative precision being
left unquantified). In the linear space based setting of PAI where the order of
the classical domains is replaced by some notion of metric distance, the induced
abstract semantics is the closest one to the concrete semantics. This “closeness”
property expresses both the “safety” of the approximation and its optimality,
which comes from the following properties of the Moore-Penrose pseudo-inverse.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

164 A. Di Pierro, C. Hankin, and H. Wiklicky

The theory of the least-square approximation [17,18] tells us that if C and D are
two finite dimensional vector spaces, A : C �→ D a linear map between them, and
A† = G : D �→ C its Moore-Penrose pseudo-inverse, then the vector x0 = yG is
the one minimising the distance between xA, for any vector x in C, and y, i.e.

inf
x∈C

‖xA − y‖ = ‖x0A− y‖,

where ‖.‖ denotes the usual Euclidean or 2-norm.
In other words, if we consider the equation xA = y we can identify a (exact)

solution x∗ as a vector for which ‖x∗A−y‖ = 0. In particular, in the case that no
such solution vector x∗ exists we can generalise the concept of a exact solution to
that of a “pseudo-solution”, i.e. we can look for a x0 such that x0A is the closest
vector to y we can construct. This closest approximation to the exact solution
is now constructed using the Moore-Penrose pseudo-inverse, i.e. take x0 = yA†.

Returning to our program analysis setting, suppose that we have an operator
Φ and a vector x. We can apply Φ to x and abstract the result giving xΦA or we
can apply the abstract operator to an abstract vector giving xAA†ΦA. Ideally,
we would like these to be equal. If A is invertible then its Moore-Penrose pseudo-
inverse is identical to the inverse and we are done. As in program analysis abstract
domains are usually smaller (i.e. in our setting vector spaces of smaller dimension)
than the concrete ones, A is never a square matrix and thus AA† in xAA†ΦA
will lead to some loss of precision. The Moore-Penrose pseudo-inverse is as close
as possible to an inverse if the matrix is not invertible and thus for the particular
choice of A, A†ΦA is the best approximation of Φ that we can have. Moreover, by
choosing an appropriate notion of distance we can measure this closeness to get a
quantitative estimate of the information lost in the abstraction process [12].

3 Approximations: A Classical Example

Classical abstract interpretation and probabilistic abstract interpretation pro-
vide “approximations” for completely different mathematical structures, namely
partial orders vs vector spaces. In order to illustrate and compare their features
we therefore need a setting where the domain in question in some way natu-
rally provides both structures. One such situation is in the context of classical
function interpolation or approximation.

The set of real-valued functions on real interval [a, b] obviously comes with a
canonical partial order, namely the point-wise ordering, and at the same time is
equiped with a vector space structure, again the point-wise addition and scalar
multiplication. Some care has to be taken in order to define an inner product,
e.g. one could consider only the square integrable functions L2([a, b]). In order
to avoid mathematical (e.g. measure-theoretic) details we simplify the situation
by just considering the step functions on the interval [a, b].

For a (closed) real interval [a, b] ⊆ R we call the set of subintervals [ai, bi] with
i = 1, . . . , n the n-subdivision of [a, b] if

⋃n
i=1[ai, bi] = [a, b] and bi − ai = b−a

n for
all i = 1, . . . , n. We assume that the subintervals are enumerated in the obvious
way, i.e. ai < bi = ai+1 < bi+1 for all i and in particular that a = a1 and bn = b.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Interpretation for Worst and Average Case Analysis 165

Definition 1. The set of n-step functions Tn([a, b]) on [a, b] is the set of real-
valued functions f : [a, b] → R such that f is constant on each subinterval (ai, bi)
in the n-subdivision of [a, b].

Note that since L2 is the set of equivalence classes of functions with respect to
the equivalence relation ∼ defined by f ∼ g iff

∫
|f(x) − g(x)|2dx = 0, we can

identify functions if they differ in only finitely many points. Thus, the values
f(ai) and f(bi) are irrelevant for our purpose.

We define a partial order on Tn([a, b]) in the obvious way: for f, g ∈ Tn([a, b]):

f � g iff f(
bi − ai

2
) ≤ g(

bi − ai

2
), for all 1 ≤ i ≤ n

i.e. iff the value of f (which we obtain by evaluating it on the mid-point in
(ai, bi)) on all subintervals (ai, bi) is less or equal to the value of g.

It is also obvious to see that Tn([a, b]) has a vector space structure isomorphic
to R

n and thus is also provided with an inner product. More concretely we
define the vector space operations . · . : R × Tn([a, b]) → Tn([a, b]) and . + . :
Tn([a, b]) × Tn([a, b]) → Tn([a, b]) pointwise as follows:

(α · f)(x) = αf(x)

(f + g)(x) = f(x) + g(x)

for all α ∈ R, f, g ∈ Tn([a, b]) and x ∈ [a, b]. The inner product is given by:

〈f, g〉 =
n∑

i=1

f(
bi − ai

2
)g(

bi − ai

2
).

In this setting we now can apply and compare both the classical and the
quantitative version of abstract interpretation as in the following example.

Example 1. Let us consider a step function f in T16 (the concrete values of a
and b don’t really play a role in our setting) which can be depicted as:

a b
0
1
2
3
4
5
6
7
8
9
10

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

166 A. Di Pierro, C. Hankin, and H. Wiklicky

We can also represent f by the vector in R
16:

(
5 5 6 7 8 4 3 2 8 6 6 7 9 8 8 7

)

We then construct a series of abstractions which correspond to coarser and
coarser sub-divisions of the interval [a, b], e.g. considering 8, 4 etc. subintervals
instead of the original 16. These abstractions are from T16([a, b]) to T8([a, b]),
T4([a, b]) etc. and can be represented by 16× 8, 16× 4, etc. matrices. For exam-
ple, the abstraction which joins two sub-intervals and which corresponds to the
abstraction α8 : T16([a, b]) → T8([a, b]) together with its Moore-Penrose pseudo-
inverse is represented by:

A8 =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

G8 =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

With the help of Aj , j ∈ {1, 2, 4, 8}, we can easily compute the abstraction of
f as fAj, which in order to compare it with the original f we can then again
concretise using G, i.e. computing fAG. In a similar way we can also compute
the over- and under-approximation of f in Ti based on the above pointwise
ordering and its reverse ordering. The result of these abstractions is depicted
geometrically in Figure 1.

The individual diagrams in this figure depict the original, i.e. concrete step
function f ∈ T16 together with its approximations in T8, T4, etc. On the left
hand side the PAI abstractions show how coarser and coarser interval subdi-
visions result in a series of approximations which try to interpolate the given
function as closely as possible, sometimes below, sometimes above the concrete
values. The diagrams on the right hand side depict the classical over- and under-
approximations: In each case the function f is entirely below or above these
approximations, i.e. we have safe but not necessarily close approximations. Ad-
ditionally, one can also see from these figures not only that the PAI interpolation
is in general closer to the original function than the classical abstractions (in fact
it is the closest possible) but also that the PAI interpolation is always between
the classical over- and under-approximations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Interpretation for Worst and Average Case Analysis 167

Probabilistic Abstract Interpretation Classical Abstract Interpretation

T8

T4

T2

T1

Fig. 1. Average, Over- and Under-Approximation

The vector space framework also allows us to judge the quality of an ab-
straction or approximation via the Eucledian distance between the concrete and
abstract version of a function. We can compute the least square error as

‖f − fAG‖.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

168 A. Di Pierro, C. Hankin, and H. Wiklicky

In our case we get for example:

‖f − fA8G8‖ = 3.5355
‖f − fA4G4‖ = 5.3151
‖f − fA2G2‖ = 5.9896
‖f − fA1G1‖ = 7.6444

which illustrates, as expected, that the coarser our abstraction is the larger is
also the mistake or error.

This example also illustrates how PAI and averages are closely related. The
coarsest abstraction α1 : T16 → T1 computes in effect the average of all the
values of f , i.e. the (constant) value of fA1G1 is exactly the average of

5, 5, 6, 7, 8, 4, 3, 2, 8, 6, 6, 7, 9, 8, 8, 7.

In general, we can always compute such an average via the one point abstraction
of an n-dimensional space given by

AT =
(
1 1 1 . . . 1

)

with Moore-Penrose pseudo-inverse given by

A† = (
1
n
,
1
n
, . . . ,

1
n

).

4 Parallel Systems

Multi-core processors and multi-threaded applications are emerging as the new
models in computing. This makes the development of adequate tools and tech-
niques for code parallelisation one of today’s major challenges. At the same time
the study of parallel systems and their performance also poses many difficulties
due to their complexity deriving from the exponential growth of the number of
states.

Automatic tools such as compilers must provide code that works in all cases.
Therefore, when a compiler has to parallelise two pieces of code it has to con-
sider all potential dependencies. Current techniques are over-conservative: if a
dependency cannot be proved, the compiler assumes that it does occur. As
a consequence, many opportunities for parallelisation are missed in the code
generation.

Contrary to this “worse-case” conservative approach, speculative threading is
an emerging technique which allows for some incorrect thread parallelisation by
postponing the check to some later time. In the following example we will show
how this “optimistic” approach can be justified via PAI. We will also show how

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Interpretation for Worst and Average Case Analysis 169

PAI can be used to face the state space explosion problem in the performance
evaluation of parallel systems.

4.1 Tensor Models

We will now discuss how to abstract or simplify dynamical systems described
by iterations of linear maps, in particular stochastic systems, i.e. Discrete Time
Markov Chains (DTMCs).

There exist numerous formalisms to describe the semantics or dynamics of dis-
crete as well as continuous time (stochastic) systems like, for example, Stochastic
Petri Nets (SPNs) [4,5], Stochastic Automata Networks (SANs) [6], etc.

In practice, in most of these models, as well as in the authors’ Probabilistic
Chemical Abstract Machine (pCHAM) [19] and the linear semantics of Proba-
bilistic KLAIM (pKLAIM) [20], the operation which combines the semantics of
individual components of the system (nodes, etc.) in order to describe the global
structure (network, etc.) is the tensor product. The tensor or Kronecker product
A⊗ B of an n×m matrix A and a k × l matrix B is an nk ×ml matrix:

A⊗ B =

⎛

⎜
⎝

a11B . . . a1nB
...

. . .
...

a1mB . . . anmB

⎞

⎟
⎠

This construction has the advantage of a clean separation of local and global
aspects, i.e. of the micro and macro dynamics of a system. However, the price to
pay for this is the (exponential) state explosion introduced by the tensor product.
The issue we discuss next is how to control this explosion, at least partially, by
simplifying the model using the PAI framework.

Before we look at an example of such an abstraction, let us first present the
basic elements of “tensor models”. The basic entities of these models are simple
counters, which could be interpreted as “token stores” (as in pKLAIM) or to
indicate the “multiplicity of molecules” (as in the pCHAM model).

The basic local operations we allow for are essentially just counting operations
in steps of +1 and −1. These are represented by so called shift operators:

(C)ij =
{

1 for j = i+ 1
0 otherwise and (D)ij =

{
1 for j = i− 1
0 otherwise

or more concretely:

C =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

D =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 0
0 0 0 . . . 1 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

170 A. Di Pierro, C. Hankin, and H. Wiklicky

Additionally we need to provide for testing operations which determine whether
a certain “counter” is below or above a certain threshold. We represent these by
projection operators:

(Tmin
m)ij =

{
1 for i = j ≥ m
0 otherwise and (Tmax

m)ij =
{

1 for i = j ≤ n
0 otherwise

or more concretely again:

Tmin
m =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

Tmax
n =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . .
...

0 0 0 . . . 0 0
0 0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

To simplify our treatment we assume in the following that all operators have
the right dimension, e.g. are all s × s matrices. It could also be noted that by
moving from finite dimensional matrix algebras to infinite dimensional operator
algebras, e.g. C∗ algebras, one can drop limits for the counting operations, i.e.
s = ∞.

Due to the huge size of “tensor models” it is necessary to simplify them in
some way in order to extract certain global behavioural properties. The under-
lying idea is somewhat similar to the approach in statistical mechanics, where
macroscopic parameters like pressure or temperature are explained or aggregated
from the statistics of the microscopic features of individual molecules, such as
their momentum, mass, velocity, etc.

The simplification of tensor product models using probabilistic abstract inter-
pretation can drastically reduce the complexity of the analysis while we can still
guarantee that the obtained results are as close as possible to the exact values.
It also allows a kind of compositional analysis as Moore-Penrose pseudo-inverse
and tensor product are compatible in the following sense: Given two (bounded)
linear operators A1 and A2 on a Hilbert space, then

(A1 ⊗ A2)† = A†
1 ⊗ A†

2.

Therefore, by exploiting the algebraic properties of the tensor product, we can
abstract tensor models component wise, i.e.

(A1 ⊗ A2)†(T1 ⊗ T2)(A1 ⊗ A2) = (A†
1T1A1) ⊗ (A†

2T2A2)

This is illustrated in the following example where we only abstract one part of
the system while another one stays unchanged, i.e. we use an abstraction of the
form I ⊗ A with I the identity.

4.2 Average Running Time

A simple example which relates to the issue of speculative threading or schedul-
ing we discussed before concerns the parallel execution of two processes with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Interpretation for Worst and Average Case Analysis 171

the following constraint: If thread A finishes before thread B then B has to be
restarted. The reason could be, for example, the following scenario: process A
puts its final result into some storage area or memory which is used by process
B to store intermediate results: as long as process A does not finish, the re-
sults/computations in thread B are correct, but if process A finishes too early
than we have to redo all its work again. The problem is to estimate the maximal
and average chance that this happens.

Let us consider a slightly simplified version where we are interested in analy-
sing the behaviour of A in parallel with B until a restarting is needed. Concretely
we have two processes: A just executes three steps and then stops; B counts up
to some number n, e.g. n = 100, and then terminates. However at every step
B can also terminate immediately; the chances for continuing counting or for
termination are 50 : 50. The tensor model for this example is simply given by:

Tn = A⊗ Bn

with A being represented simply by a creation operator in four dimensions:

A = C4 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ .

The representation of Bn is a bit more complicated:

Bn =
1
2
· Cn +

1
2
· (

n−1∑

i=0

Tmin
i Tmax

i (Cn)n−i).

In other words, this process either continues counting from i to i + 1, or if has
already reached exactly i (for which we have a min and a max test) then by
applying the (n − i)-th power of the creation operator produces the n which
leads to the termination of the whole process. More concretely, for n = 4 we
have:

B4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1
2 0 0 1

2
0 0 1

2 0 1
2

0 0 0 1
2

1
2

0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

The worst case analysis of these processes needs, in effect, to determine the
longest running time of both process. That means we have to determine the
nilpotency of Tn or at least of A and Bn. It is easy to see that the longest
possible running time, i.e. the nilpotency, for A is 3 steps, while for Bn is n. If
we look at Tn = A ⊗ Bn, then it is easy to see that (for n > 3) the maximal
running time is also as n.

There are a few problems with this analysis: firstly, in complexity theoretic
terms, it requires to analyse a rather large 4n × 4n matrix (and with more

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

172 A. Di Pierro, C. Hankin, and H. Wiklicky

processes the tensor product will cause a huge explosion in the dimension of the
exact model); secondly, for unbounded counting inB we don’t get any meaningful
result; and thirdly, the results are somewhat meaningless as the chances that B
counts to n stepwise, instead of terminating early are rather small such that the
average running time of B is much smaller than n, i.e. in the scenario discussed
earlier it is rather unlikely that we have to restart B.

In order to see this we can compute an abstracted version of B and compare
this to the worst case estimates and the exact results. For this we identify all
intermediate states except for the terminating state n. We can use the following
simple abstraction represented by the n× 2 matrix

(K)ij =

⎧
⎨

⎩

1 for i < n and j = 1
1 for i = n and j = 2
0 otherwise

e.g. K4 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0
1 0
1 0
1 0
0 1

⎞

⎟
⎟
⎟
⎟
⎠

K†
4 =

(
1
4

1
4

1
4

1
4 0

0 0 0 0 1

)

It is particular easy to compute K† for abstractions like K where every concrete
state is uniquely classified, i.e. where every row of K contains only one non-zero
entry equal to 1: K† is in this case obtained by transposing K followed by a
row-normalisation. With this we can construct abstract versions B#

n = K†BK
of Bn which are given by only 2×2 matrices, i.e. the combination of the concrete
A process and the abstract process B#

n is represented by just a 6 × 6 matrix.
If we compare the concrete average running time of Bn, which means we have

to iterate a n × n matrix, with the average running times of its abstract 2 × 2
version we get the following numerical results.

avg avg# P (3) P (3)# max

B#
5 =

(
0.38 0.62
0.00 0.00

)
1.8750 1.6000 0.8750 0.9473 5

B#
10 =

(
0.44 0.56
0.00 0.00

)
1.9961 1.8000 0.8750 0.9122 10

B#
25 =

(
0.48 0.52
0.00 0.00

)
2.0000 1.9200 0.8750 0.8750 25

B#
100 =

(
0.49 0.51
0.00 0.00

)
2.0000 1.9800 0.8750 0.8750 100

Here we present the simplified 2×2 systems and give the exact average running
time ‘avg’, the abstract average running time (of the simplified system) ‘avg#’,
the exact and abstract probabilities for terminating after three steps P (3) and
P (3)#, and finally the maximal, i.e. worst case running time max.

This example illustrates a number of important technical issues, e.g.: (i) how
PAI can be used to reduce the complexity of a model, in this case from 4n ×
4n to just 6 × 6 matrices; and (ii) the small difference between the concrete
properties and the PAI approximated values, e.g. of the average running time or
the probability of stopping after a certain number of steps.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Interpretation for Worst and Average Case Analysis 173

This example also demonstrates a case where worst case analysis, although
correct, is practically nearly useless: The worst case running time of 100 steps for
the process B100 is much larger than the 3 steps for A. This would suggest in a
speculative threading situation that it would be pointless to execute A and B100

in parallel as B100 would finish too late and thus have to be restarted anyway.
However, the average case analysis and in particular the value for P (3) tells us
that B100 will terminate with nearly 90% chance before A, and that it would
therefore make sense to schedule these two processes in parallel.

5 Conclusions

We started by reviewing Reinhard’s work on WCET analysis. Knowledge of worst
case execution times is absolutely essential in many applications. The field is
quite mature and Reinhard’s work provides an excellent example of a semantics-
based approach to this problem. In the body of this paper, we have argued for the
equal importance of average case execution times. The need for such analyses is
well-recognised by the soft real-time community where average values are much
more useful in the optimisation of designs (average power consumption, average
heap usage, . . .).

We have shown how Probabilistic Abstract Interpretation may be used to sup-
port average case analysis; this contrasts with classical abstract interpretation
where safety constrains us to workwith worst cases.This paper presents first tenta-
tive steps in this direction. There are many open problems; one of the most funda-
mental is how to present operator algebra semantics in a compositional way. This
is a necessary development to allow us to construct automatic tools for analysis as
alternatives to the model checking approaches discussed in the Introduction.

References

1. Wilhelm, R.: Timing analysis and timing predictability. In de Boer, F., Bonsangue,
M., Graf, S., de Roever, W.P., eds.: Formal Methods for Components and Objects.
Volume 3657 of Lecture Notes in Computer Science. Springer (2004) 317–323

2. Shaw, A.: Reasoning about time in higher-level language software. IEEE Transac-
tions on Software Engineering 15 (1989) 875–889

3. Lundquist, T., Stenström, P.: Timing anomalies in dynamically scheduled micro-
processors. In: 20th IEEE Real-Time Systems Symposium. (1999)

4. Balbo, G.: Introduction to stochastic Petri nets. In: Springer Lectures on Formal
Methods and Performance Analysis. Springer (2002) 84–155

5. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets – An Introduction to the Theory.
second edn. Vieweg Verlag (2002)

6. Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems.
IEEE Transactions on Software Engineering 17 (1991) 1093–1108

7. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., Gupta, R.: Formal analysis
and validation of continuous time Markov chain based system level power man-
agement strategies. In Rosenstiel, W., ed.: Proc. 7th Annual IEEE International
Workshop on High Level Design Validation and Test (HLDVT’02), IEEE Computer
Society Press (2002) 45–50

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

174 A. Di Pierro, C. Hankin, and H. Wiklicky

8. Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Proba-
bilistic Abstract Interpretation. In Gabbrielli, M., Pfenning, F., eds.: Proceedings of
PPDP’00 – Priciples and Practice of Declarative Programming, Montréal, Canada,
ACM SIGPLAN, Association of Computing Machinery (2000) 127–138

9. Cousot, P., Cousot, R.: Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming 13 (1992) 103–180

10. Abramsky, S., Hankin, C., eds.: Abstract Interpretation of Declarative Languages.
Ellis-Horwood, Chichester, England (1987)

11. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Verlag, Berlin – Heidelberg (1999)

12. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations. In:
Proceedings of LOPSTR’00 – 10th International Workshop on Logic-Based Pro-
gram Synthesis and Transformation, London, UK. Volume 2042 of Lecture Notes
in Computer Science., Berlin – New York, Springer Verlag (2001) 147–164

13. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Proceedings
of SAS’00. Volume 1824 of Lecture Notes in Computer Science., Springer Verlag
(2000)

14. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Seventh
International Static Analysis Symposium (SAS’00). Number 1824 in Lecture Notes
in Computer Science, Springer Verlag (2000) 322–339

15. Eaton, J.: Gnu Octave Manual. www.octave.org (2002)
16. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:

Symposium on Principles of Programming Languages (POPL), San Antonio, Texas
(1979) 269–282

17. Deutsch, F.: Bet Approximation in Inner Product Spaces. Volume 7 of CMS Books
in Mathematics. Springer Verlag, New York — Berlin (2001)

18. Ben-Israel, A., Greville, T.: Generalised Inverses — Theory and Applications.
second edn. Volume 15 of CMS Books in Mathematics. Springer Verlag, New York
— Berlin (2003)

19. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic chemical abstract machine
and the expressiveness of linda languages. In de Boer, F., Bonsangue, M., Graf, S.,
de Roever, W.P., eds.: Proceedings of FMCO 2005, 4th International Symposium
on Formal Methods for Components and Object. Volume 4111 of Lecture Notes in
Computer Science., Springer Verlag (2006) 388–407

20. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative static analysis of distributed
systems. Journal of Functional Programming 15 (2005) 1–47

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract

Interpretation

Patrick Cousot1 and Radhia Cousot2

1 École Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05 (France)
Patrick.Cousot@ens.fr
www.di.ens.fr/~cousot

2 CNRS & École polytechnique, 91128 Palaiseau cedex (France)
Radhia.Cousot@polytechnique.fr

www.enseignement.polytechnique.fr/profs/informatique/Radhia.Cousot/

Abstract. We study abstract interpretations of a fixpoint protoderiva-
tion semantics defining the maximal derivations of a transitional seman-
tics of context-free grammars akin to pushdown automata. The result is a
hierarchy of bottom-up or top-down semantics refining the classical equa-
tional and derivational language semantics and including Knuth gram-
mar problem, classical grammar flow analysis algorithms, and parsing
algorithms.

1 Introduction

Grammar flow problems consist in computing a function of the [proto]language
generated by the grammar for each nonterminal. This includes Knuth’s gram-
mar problem [1,2], grammar decision problems such as emptiness and finiteness
[3], and classical compilation algorithms such as First and Follow [4]. For
the later case, Ulrich Möncke and Reinhard Wilhelm introduced grammar flow
analysis to solve computation problems over context-free grammars [5,6,7], [8,
Sect. 8.2.4]. The idea is to provide two fixpoint algorithm schemata, one for
bottom-up grammar flow analysis and one for top-down grammar flow analy-
sis which can be instantiated with different parameters to get classical iterative
algorithms such as First and Follow.

More generally, we show that grammar flow algorithms are abstract interpre-
tations [9] of a hierarchy of bottom-up or top-down grammar semantics refining
the classical (proto-)language semantics.

Then, we apply this comprehensive abstract-interpretation-based approach to
the systematic derivation of parsing algorithms.

2 Languages and Context-Free Grammars

A sentence σ ∈ A� over the alphabet A of length |σ| Δ= n � 0 is a possibly
empty finite sequence σ1σ2 . . . σn of letters σ1, σ2, . . . , σn ∈ A. For n = 0, the
empty sentence is denoted ε of length |ε| = 0. A language Σ over the alphabet A

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 175–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

176 P. Cousot and R. Cousot

is a set of sentences Σ ∈ ℘(A�). We represent concatenation by juxtaposition.
It is extended to languages as ΣΣ′ Δ= {σσ′ | σ ∈ Σ ∧ σ′ ∈ Σ′}. For brevity, σ
denotes the language {σ} so that we can write ΣσΣ′ for Σ{σ}Σ′. The junction
of languages is Σ ; Σ′ Δ= {σ1σ2 . . . σmσ′

2 . . . σ′
n | σ1σ2 . . . σm ∈ Σ ∧ σ′

1σ
′
2 . . . σ′

n ∈
Σ′∧σm = σ′

1}. Given a set P
Δ= {[i | i ∈ Δ}∪{]i | i ∈ Δ} of matching parentheses

and an alphabet A, the Dyck language DP,A ⊆ (P ∪ A)� over P and A is
the set of well-parenthesized sentences over P ∪ A. It is pure if A = ∅. The
parenthesized language over P and A is PP,A

Δ= {[iσ]i | i ∈ Δ∧σ ∈ DP,A\{ε}}.
A context-free grammar [10,11] is a quadruple G = 〈T , N , S, R〉 where

T is the alphabet of terminals, N such that T ∩ N = ∅ is the alphabet of
nonterminals, S ∈ N is the start symbol (or axiom) and R ∈ ℘(N ×V �) is the
finite set of rules written A → σ where the lefthand side A ∈ N is a nonterminal
and the righthand side σ ∈ V � is a possibly empty sentence over the vocabulary
V

Δ= T ∪ N . By convention, ε
∈ V .

3 Transitional Semantics of Context-Free Grammars

Pushdown automata (PDA) and context-free grammars are equivalent [8, Sect.
8.2]. Inspired by PDA, we define the transitional semantics of grammars by
labelled transition systems where states are stacks, labels encode the structure of
sentences and transitions are small steps in the recursive derivation of sentences.

Stacks. Given a grammar G = 〈T , N , S, R〉, we let stacks � ∈ S Δ= (R�∪M)�

be sentences over rule states R� Δ= {[A → σ�σ′] | A → σσ′ ∈ R} specifying the
state of the derivation (σ′ is still to be derived) and markers M = {�, �} where
� (resp. �) marks the beginning (resp. the end) of a sentence. The height of a
stack � is its length |�|.

Example 1. A stack � for the gram-
mar A → AA, A → a is �[A →
AA�][A → A�A][A → a�]. It records the
ancestors in an infix traversal of a parse
tree, as shown opposite.

�� ������

������ ��

A

A· · · A

A· · ·A

a �

�
[A → AA�]
[A → A�A]
[A → a�]

�

Labels. We let P
Δ= O ∪ C be the set of parentheses where O

Δ= {�A| A ∈ N }
is the set of opening parentheses while C

Δ= {A� | A ∈ N } is the set of closing
parentheses. We let labels � ∈ L be parentheses or terminals so that L

Δ= P∪T .
A pair of parentheses �A. . .A� delimits the structure of a sentence deriving from
nonterminal A ∈ N while terminals describe elements of the sentence.

Labelled Transition System. Given a grammar G = 〈T , N , S, R〉, we define
a labelled transition system St�G�

Δ= 〈S, L , −→, �〉 where the initial state is �
and the labelled transition relation �−→, � ∈ L is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 177

� �A−→ �[A → �σ], A → σ ∈ R (1)

�[A → σ�aσ′] a−→ �[A → σa�σ′], A → σaσ′ ∈ R (2)

�[A → σ�Bσ′]
�B−→ �[A → σB�σ′][B → �ς], A → σBσ′ ∈ R ∧ B → ς ∈ R (3)

�[A → σ�] A�−→ �, A → σ ∈ R . (4)

4 Maximal Derivations

The maximal derivation semantics of a grammar is the set of all possible maximal
derivations for this grammar where a maximal derivation is a finite labelled trace
of maximal length generated by the transitional semantics.

Example 2. The maximal derivation for the sentence a of the grammar 〈{a},

{A}, A, {A → AA, A → a}〉 is � �A−→ � [A → �a] a−→ � [A → a�] A�−→ � while

for the sentence aa it is � �A−→ � [A → �AA]
�A−→ � [A → A�A][A → �a] a−→

� [A → A�A][A → a�] A�−→ � [A → A�A]
�A−→ � [A → AA�][A → �a] a−→ �

[A → AA�][A → a�] A�−→ � [A → AA�] A�−→ � . �

Traces. Formally a trace θ ∈ Θn of length |θ| = n + 1, n � 0, has the form θ =

�0
�0−→ �1 . . . �n−1

�n−1−→ �n whence it is a pair θ = 〈θ, θ〉 where θ ∈ [0, n]
→ S is
a nonempty finite sequence of stacks θi = �n, i = 0, . . . , n and θ ∈ [0, n−1]
→ L
is a finite sequence of labels θj = �j , j = 0, . . . , n−1. Traces θ ∈ Θ are nonempty,
finite, of any length so Θ

Δ=
⋃

n�0 Θn.
Again concatenation is denoted by juxtaposition and extended to sets. We

respectively identify a single state � and a transition �
�−→ �′ with the corre-

sponding traces containing only the single state � and the transition �
�−→ �′.

By abuse of notation, a trace �0
�0−→ �1 . . . �n−1

�n−1−→ �n is also understood

as the concatenation of �0,
�0−→, �1, . . ., �n−1,

�n−1−→ , �n which, informally,
matches the trace pattern ς0�1 . . . ςn−1�nςn by letting ς0 = �0

�0−→, . . . , ςn−1

= �n−1
�n−1−→ and ςn = ε. We also need the junction of sets of traces, as follows

T ; T ′ Δ= {θ
�−→ �

�′
−→ θ′ | θ

�−→ � ∈ T ∧ �′ �′
−→ θ′ ∈ T ′ ∧ � = �′} .

The selection of the traces in T for nonterminal B is denoted T.B defined as

T.B
Δ= {�

�B−→ θ | �
�B−→ θ ∈ T } .

For the recursive incorporation of a derivation � �0−→ ��1 . . . ��n−1
�n−1−→ � into

another one, we need the operation

〈�, �′〉 ↑ � �0−→ ��1 . . . ��n−1
�n−1−→ � Δ= �

�0−→ �′�1 . . . �′�n−1
�n−1−→ �′

〈�, �′〉 ↑ T
Δ= {〈�, �′〉 ↑ τ | τ ∈ T } .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

178 P. Cousot and R. Cousot

Example 3. We have 〈�[A → �AA], �[A → A�A]〉 ↑ � �A−→ �[A → �a] a−→
�[A → a�] A�−→ � = �[A → �AA]

�A−→ �[A → A�A][A → �a] a−→ �[A → A�A][A →
a�] A�−→ �[A → A�A] which we can recognize as the replacement of the first A
deriving into a in the derivation for the sentence aa in Ex. 2. �

A derivation of grammar G is a trace �0
�0−→ �1 . . . �n−1

�n−1−→ �n, n � 0
generated by the transition system St�G� that is ∀i ∈ [0, n − 1] : �i

�i−→ �i+1.
A prefix derivation of grammar G is a derivation of grammar G starting with an
initial state �0 = �. A suffix derivation of grammar G is derivation of grammar
G ending with an final state ∀� ∈ S : ∀� ∈ L : ¬(�n

�−→ �), so that �n = �
by def. (1–4) of −→. A maximal derivation of grammar G is both a prefix and a
suffix derivation of the grammar G.

Derivations are well-parenthesized so that the grammatical structure of sen-
tences can be described by trees. Let us define the parenthesis abstraction αp for
a stack � by αp(��′) Δ= αp(�′)αp(�), αp(�) = αp(�) = ε and αp([A → σ�σ′]) Δ=
A�, for a label, αp(a) Δ= ε for all a ∈ T , αp(�A) Δ= �A and αp(A�) Δ= A�, and for a

trace αp(�0
�0−→ �1

�1−→ . . . �n−1
�n−1−→ �n) Δ= αp(�0)αp(�1) . . . αp(�n−1)αp(�n).

Lemma 4. For any prefix derivation θ of a grammar G, αp(θ) ∈ DP,∅ is a pure

Dyck language. A maximal derivation θ = � �0−→ �1
�1−→ . . . �n−1

�n−1−→ � of G
is well-parenthesized in that αp(θ) = αp(�0)αp(�1) . . . αp(�n−1) ∈ DP,∅ is a pure
Dyck language. �

5 Prefix Derivation Semantics

The prefix derivation semantics S∂
→

�G� of a grammar G = 〈T , N , S, R〉 is the
set of all prefix derivations for the labelled transition system 〈S, L , −→, �〉,
that is

S∂
→

�G�
Δ= {�0

�0−→ �1 . . . �n−1
�n−1−→ �n | n > 0 ∧ �0 = � ∧

∀i ∈ [0, n − 1] : �i
�i−→ �i+1} .

Lemma 5. If the prefix derivation semantics S∂
→

�G� of a grammar G = 〈T , N ,
S, R〉 contains a prefix derivation θ1�θ2 then

– either � = � if and only if θ1 = ε
– or the stack � has the form � = �[A1 → η1A2�η′

1][A2 → η2A3�η′
2] . . . [An →

ηn�η′
n] where Ai → ηiAi+1η

′
i ∈ R and An → ηiη

′
n ∈ R are grammar rules

and θ1 = � �A1−→ θ′1.
– Moreover if θ1�θ2 ∈ S∂

→
�G�.A then necessarily A1 = A. �

It has been shown in the more general context of [12, Th. 11] that we have the
following fixpoint characterization of the prefix derivation semantics

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 179

Theorem 6

S∂
→

�G� = lfp
⊆

F∂
→

�G� = gfp
⊆

F∂
→

�G�

where F∂
→

�G� ∈ ℘(Θ)
→ ℘(Θ) is a complete ∪ and ∩ morphism defined as

F∂
→

�G�
Δ= λ X . {�} ∪ X ; −→ . �

6 Transitional Maximal Derivation Semantics

The maximal derivation semantics Sd̂�G� ∈ ℘(Θ) of a grammar G = 〈T , N , S,

R〉 is the set of maximal derivations for the labelled transition system St�G�
Δ=

〈S, L , −→, �〉.

Sd̂�G�
Δ= {�0

�0−→ �1 . . . �n−1
�n−1−→ �n | n > 0 ∧ �0 = � ∧

∀i ∈ [0, n − 1] : �i
�i−→ �i+1 ∧ ∀� ∈ S : ∀� ∈ L : ¬(�n

�−→ �)} .

(5)

Lemma 7. A maximal derivation of the transition system St�G� has the form

� �A−→ �[A → �σ] �1−→ ��2 . . .��n−1
A�−→ � where �n−1
= ε. �

7 Bottom-Up Fixpoint Maximal Derivation Semantics

The maximal derivation semantics (5) can be expressed in fixpoint form.

Example 8. For the grammar G = 〈{a, b}, {A}, A, {A → aA, A → b}〉, we have

Sd̂�G� = lfp
⊆ −→̂

F d̂�G� where

−→̂
F d̂(T)

Δ
= � �A−→ �[A → �b] b−→ �[A → b�] A�−→ � ∪

� �A−→ (�[A → �aA])
a−→ (〈�[A → a�A], �[A → aA�]〉 ↑ T.A) � (�[A → aA�]) A�−→ �.

The first iterates of −→̂
F d̂�G� from −→̂

F d̂
0 = ∅ are

−→̂
F d̂

1 = {� �A−→ �[A → �b] b−→ �[A → b�] A�−→ �}
−→̂
F d̂

2 = {� �A−→ �[A → �b] b−→ �[A → b�] A�−→ �,

� �A−→ �[A → �aA] a−→ �[A → a�A]
�A−→ �[A → aA�][A → �b] b−→

�[A → aA�][A → b�] A�−→ �[A → aA�] A�−→ �}
.

−→̂
F d̂

ω = lfp
⊆ −→̂

F d̂�G� �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

180 P. Cousot and R. Cousot

More generally, let us define the set of traces bottom-up transformer −→̂
F d̂�G� ∈

℘(Θ)
→ ℘(Θ) as

−→̂
F d̂�G�

Δ= λ T .
⋃

A→σ∈R

� �A−→ −→̂
F d̂[A → �σ]T

A�−→ � (6)

where −→̂
F d̂[A → σ�σ′] ∈ ℘(Θ)
→ ℘(Θ) is defined as

−→̂
F d̂[A → σ�aσ′] Δ

= λ T . (�[A → σ�aσ′]) a−→ −→̂
F d̂[A → σa�σ′]T (7)

−→̂
F d̂[A → σ�Bσ′] Δ

= λ T . (〈�[A → σ�Bσ′], �[A → σB�σ′]〉 ↑ T.B) �
−→̂
F d̂[A → σB�σ′]T (8)

−→̂
F d̂[A → σ�] Δ

= λ T . (�[A → σ�]) . (9)

Observe that −→̂
F d̂�G� is upper-continuous.

Lemma 9. If all traces in T ⊆ Θ are derivations of the transition system St�G�

then all traces in −→̂
F d̂[A → σ�σ′]T are generated by the transition system St�G�,

start in state (�[A → σ�σ′]) and end in state (�[A → σσ′�]). It follows that all

traces in −→̂
F d̂�G�T are derivations of the transition system St�G�.

The derivation semantics of a grammar G can be expressed in fixpoint form as

Theorem 10. Sd̂�G� = lfp
⊆ −→̂

F d̂�G� . �

8 Protoderivations

Prototraces (formally defined below) are traces in construction containing non-
terminal variables which are placeholders for unknown prototraces to be substi-
tuted for the nonterminal variables. Protoderivations are prototraces generated
by the grammar, initially a nonterminal variable (such as the grammar axiom),
obtained by top-down replacement of a nonterminal on the lefthand side of a
grammar rule by the corresponding righthand side, until no nonterminal variable
is left.

Example 11. A prototrace derivation for the grammar G = 〈{a}, {A}, A, {A →
AA, A → a}〉 is (the prototrace derivation relation is written Ď��=⇒G)

� A−→ �
Ď��=⇒G � �A−→ �[A → �AA]

A−→ �[A → A�A]
A−→ �[A → AA�] A�−→ �

Ď��=⇒G � �A−→ �[A → �AA]
A−→ �[A → A�A]

�A−→ �[A → AA�][A → �a] a−→
�[A → AA�][A → a�] A�−→ �[A → AA�] A�−→ �

Ď��=⇒G � �A−→ �[A → �AA]
�A−→ �[A → A�A][A → �a] a−→ �[A → A�A][A →

a�] A�−→ �[A → A�A]
�A−→ �[A → AA�][A → �a] a−→ �[A → AA�][A →

a�] A�−→ �[A → AA�] A�−→ � . �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 181

Prototraces. The set of nonterminal variables is N � Δ= {A | A ∈ N }. A
prototrace π ∈ Πn of length |π| = n +1, n � 0, has the form π = �0

κ0−→ �1 . . .

�n−1
κn−1−→ �n whence is a pair π = 〈π, π〉 where π ∈ [0, n]
→ S is a nonempty

finite sequence of stacks πi = �n, i = 0, . . . , n and π ∈ [0, n − 1]
→ (L ∪ N �)
is a finite sequence of labels or nonterminal variables πj = κj , j = 0, . . . , n − 1.
Prototraces π ∈ Π are nonempty, finite, of any length so Π

Δ=
⋃

n�0 Πn and
Θ ⊆ Π .

Again prototrace pattern matching, prototrace concatenation, set of pro-
totraces concatenation, the assimilation of a single state � and a transition
�

�−→ �′ with the corresponding prototraces, the junction ; of sets of proto-
traces, the selection P.B of the prototraces in P for nonterminal B and the
stack incorporation in a prototrace 〈�, �′〉 ↑ π or a set T of prototraces 〈�,
�′〉 ↑ T are defined as for traces and sets of traces.

Prototrace Derivation. The prototrace generated by a grammar rule A →
σ ∈ R is ŘĎ[A → σ] where ŘĎ ∈ R
→ Π is

ŘĎ[A → σ] Δ= � �A−→ F̌Ď[A → �σ]
A�−→ � (10)

F̌Ď[A → σ�aσ′] Δ= �[A → σ�aσ′] a−→ F̌Ď[A → σa�σ′]

F̌Ď[A → σ�Bσ′] Δ= �[A → σ�Bσ′]
B−→ F̌Ď[A → σB�σ′]

F̌Ď[A → σ�] Δ= �[A → σ�] .

The prototrace derivation relation Ď��=⇒G∈ ℘(Π×Π) for a grammar G = 〈T , N ,
S, R〉 consists in replacing one or several nonterminal variables by the prototrace
generated by a grammar rule for that nonterminal.

π Ď��=⇒G π′ (11)
Δ= ∃n > 0, ς1, . . . , ςn+1, �1, . . . , �n+1 ∈ S, A1, . . . , An ∈ N , σ1, . . . , σn ∈ V � :

π = ς1�1
A1−→ �2ς2 . . . ςn�n

An−→ �n+1ςn+1 ∧ ∀i ∈ [1, n] : Ai → σi ∈ R ∧
π′ = ς1〈�1, �2〉 ↑ ŘĎ[A1 → σ1]ς2 . . . ςn〈�n, �n+1〉 ↑ ŘĎ[An → σn]ςn+1 .

9 Maximal Protoderivation Semantics

The top-down maximal protoderivation semantics SĎ�G� ∈ N
→ ℘(Π) of a
context-free grammar G is

SĎ�G�
Δ= λA . {π ∈ Π | (� A−→ �)

�

Ď��=⇒G π} . (12)

where rn, n ∈ N are the powers of relation r, rn� Δ=
⋃

i<n ri (so that r0� Δ=
⋃

∅ =
∅), r+ (resp. r�) is the transitive closure (resp. reflexive transitive closure) of r.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

182 P. Cousot and R. Cousot

10 Top-Down Fixpoint Maximal Protoderivation
Semantics

The protoderivation semantics can be expressed in fixpoint form, as follows
(where post ∈ ℘(Σ)
→ ℘(Σ) is post[r]X Δ= {s′ ∈ Σ | ∃s ∈ X : 〈s, s′〉 ∈ r})

Theorem 12. SĎ�G� = lfp
⊆̇

F̌Ď�G� where ⊆̇ is the pointwise extension of ⊆
and the set of prototraces transformer F̌Ď�G� ∈ (N
→ ℘(Π))
→ (N
→ ℘(Π))
is

F̌Ď�G�
Δ= λφ . λA . {� A−→ �} ∪ post[Ď��=⇒G]φ(A) . �

11 Abstraction of the Top-Down Protoderivation
Semantics into the Bottom-Up Derivation Semantics

The trace derivations θ ∈ Sd̂�G�.A for a nonterminal A can be constructed top-

down using the prototrace derivation
�

Ď��=⇒G as (� A−→ �)
�

Ď��=⇒G θ.

Lemma 13. If T = {π ∈ Θ | ∃A ∈ N : (� A−→ �)
n∗

Ď��=⇒G π} then −→̂
F d̂[A →

σ�σ′](T) = {π ∈ Θ | F̌Ď[A → σ�σ′]
n∗

Ď��=⇒G π} . �

Lemma 14. Let −→̂
F d̂

n be the iterates of −→̂
F d̂�G� from −→̂

F d̂
0 = ∅. We have

−→̂
F d̂

n = {π ∈ Θ | ∃A ∈ N : (� A−→ �)
(n+1)∗
Ď��=⇒G π} �

Theorem 15. Sd̂�G� = {π ∈ Θ | ∃A ∈ N : (� A−→ �)
�

Ď��=⇒G π} . �

Let us define the abstraction αĎd̂ Δ= λP . λA .P (A)∩Θ which collects the ter-
minal traces (without nonterminal variables) among prototraces. This abstrac-

tion defines a Galois connection [13] 〈N
→ ℘(Π), ⊆̇〉 −−−−→−→←−−−−−−
αĎd̂

γĎd̂

〈N
→ ℘(Θ),

⊆̇〉. The restriction of the top-down maximal protoderivation semantics is the
maximal derivation semantics.

Theorem 16. αĎd̂(SĎ�G�) = λA .Sd̂�G�.A . �

12 The Hierarchy of Grammar Semantics

Th. 16 shows that the bottom-up derivation semantics Sd̂�G� of a grammar G is,
up to an isomorphism, an abstraction of the top-down protoderivation semantics

SĎ�G�
Δ= λ A . {π ∈ Π | (� A−→ �)

�

Ď��=⇒G π} by the abstraction αĎd̂. We now
introduce a hierarchy of abstractions of the protoderivation semantics SĎ�G�, as
given in Fig. 1. The various semantics and abstractions in Fig. 1 (apart from
SĎ�G�, Sd̂�G�, and αĎd̂) are described below.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 183

↑ bottom-up semantics

top-down semantics ↓

���������αĎd̂

�

SĎ�G�
protoderivation se-
mantics

αδ̌

���������αδ̌δ̂

�

Sδ̌�G�
Δ
= αδ̌(SĎ�G�)

protoderivation
tree semantics

αš

���������

�

αšŝ

Sš�G�
Δ
= αš(Sδ̌�G�

protosyntax tree se-
mantics

αĽ

��
�

�
�

�
���

=
SĽ�G�

Δ
= αĽ(Sš�G�

protolanguage
semantics

� Sd̂�G�
derivation semantics

�

αδ̂

� Sδ̂�G�
Δ
= αδ̂(Sd̂�G�)

derivation tree semantics

�

αŝ

� Sŝ�G�
Δ
= αŝ(Sδ̂�G�)

syntax tree semantics

�
α̇L̂

� SL̂�G�
Δ
= α̇L̂(Sŝ�G�

protolanguage semantics

�

α̇�α̇�

� S��G�
Δ
= α̇�(SL̂�G�)

terminal language semantics

Fig. 1. The hierarchy of bottom-up grammar semantics

[Proto]Derivation Tree Abstraction αδ̌ and αδ̂. [Proto]derivations can
be described by [proto]derivation trees where internal nodes are labelled with
nonterminals, leafs are labelled with terminals [or nonterminal variables] and
branches are decorated with rule states.

Example 17. One possible pro-
toderivation tree for the protosentence
AaA of the grammar 〈{a}, {A}, A,
{A → AA, A → a}〉 is given on the
right. It can be represented in paren-
thesized form through an infix traversal
as �A[A → �AA] A [A → A�A]�A[A →
�AA]�A[A → �a]a[A → a�]A�[A →
A�A]A [A → AA�]A�[A → AA�]A� .

�

A

�

A
�

A

�

A
�

A
�

a

�
�

��

�
�

��
�

�
�

�

�
�

�
�

[A → �AA] [A → A�A] [A → AA�]

[A → �AA] [A → A�A] [A → AA�]

[A → �a] [A → a�]

�

We let Ǔ
Δ= T ∪ N � ∪ R� and Ď Δ= (P ∪ Ǔ)�. A protoderivation tree δ̌ is

represented by a well-parenthesized sentence over Ǔ so that δ̌ ∈ PP,Ǔ ⊆ Ď. We

extend the selection to ℘(Ď) whence ℘(PP,Ǔ) as D.A
Δ= {�BσB� ∈ D | B =

A} ∪ {B ∈ D | B = A} so that D.A is the set of protoderivation trees in D
rooted at A ∈ N .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

184 P. Cousot and R. Cousot

The protoderivation tree abstraction αδ̌ ∈ Π
→ Ď of protoderivations is

αδ̌(� κ−→ τ) Δ= αδ̌(�)καδ̌(τ) αδ̌(�) Δ= ε

αδ̌(ε) Δ= ε αδ̌(s1 . . . sn) Δ= sn, s1 . . . sn ∈ S,

αδ̌(�) Δ= ε n > 0, otherwise

which is extended elementwise to αδ̌ ∈ ℘(Π)
→ ℘(Ď) as αδ̌(T) Δ= {αδ̌(π) |

π ∈ T } so that we get the Galois connection 〈℘(Π), ⊆〉 −−−→−→←−−−−
αδ̌

γ δ̌

〈℘(Ď), ⊆〉,

further extended pointwise to αδ̌ ∈ (N
→ ℘(Π))
→ (N
→ ℘(Ď)) as αδ̌(φ) Δ=
λA .αδ̌(φ(A)). The restriction of αδ̌ to derivation trees D̂ Δ= (P ∪ Û)� where

Û
Δ= T ∪R� is written αδ̂ so that 〈℘(Θ), ⊆〉 −−−→−→←−−−−

αδ̂

γ δ̂

〈℘(D̂), ⊆〉. A derivation tree

δ̂ is represented by a well-parenthesized sentence over Û so that δ̂ ∈ PP,Û ⊆ D̂.

[Proto]Syntax Tree Abstraction αš and αŝ. [Proto]syntax trees are [proto]-
derivation trees denuded of the rule states decorating the branches. We represent
[proto]syntax trees in parenthesized form through an infix traversal. We let Ť
Δ= (P ∪ T ∪ N �)�. A protosyntax tree τ̌ is represented by a well-parenthesized
sentence over (T ∪ N �) so that τ̌ ∈ PP,(T ∪N �) ⊆ Ť .

Example 18. One possible protosyntax tree for
the protosentence AaA of the grammar 〈{a}, {A},
A, {A → AA, A → a}〉 is given on the right and rep-
resented as �AA �A�AaA�AA�A� .

�

A

�

A
�

A

�

A
�

A
�

a

�� ��
�� ��

�

The protosyntax tree abstraction αš ∈ Ď
→ Ť of protoderivation trees is (A ∈
N , � ∈ L)

αš(σ�Aσ′) Δ= αš(σ)�Aαš(σ′) αš(σ[A → ς�ς ′]σ′) Δ= αš(σ)αš(σ′)

αš(σA�σ′) Δ= αš(σ)A�αš(σ′) αš(σ�σ′) Δ= αš(σ)�αš(σ′)

αš(σ Aσ′) Δ= αš(σ)Aαš(σ′) αš(ε) Δ= ε

extended elementwise to αš ∈ ℘(Ď)
→ ℘(Ť) as αš(D) Δ= {αš(δ̌) | δ̌ ∈ D} so that

we get a Galois connection 〈℘(Ď), ⊆〉 −−−→−→←−−−−
αš

γš

〈℘(Ť), ⊆〉 which can be extended

pointwise to (N
→ ℘(Ď))
→ (N
→ ℘(Ť)) as αš(φ) Δ= λA .αš(φ(A)). The

restriction αŝ to syntax trees T̂ Δ= (P∪T)� is such that 〈℘(D̂), ⊆〉 −−−→−→←−−−−
αŝ

γŝ

〈℘(T̂),

⊆〉. A syntax tree τ̂ is represented by a well-parenthesized sentence over T so
that τ̂ ∈ PP,T ⊆ T̂ .

Protosentence Abstraction αĽ and α̇L̂. The protolanguage of a grammar
G = 〈T , N , S, R〉 with V

Δ= T ∪N is the set of protosentences deriving from

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 185

the grammar axiom S where protosentences η ∈ V � contain both terminals in T
and nonterminals in N and the derivation consists in replacing a nonterminal
A by the righthand side σ of a grammar rule A → σ ∈ R.

The protolanguage abstraction αĽ ∈ Ť
→ V � of protosyntax trees is defined
as (we follow the tradition of confusing nonterminals A denoting the grammatical
structure and nonterminal variables A for protosentence substitution)

αĽ(σ�Aσ′) Δ= αĽ(σ)αĽ(σ′), A ∈ N αĽ(σaσ′) Δ= αĽ(σ)aαĽ(σ′), a ∈ T

αĽ(σA�σ′) Δ= αĽ(σ)αĽ(σ′) αĽ(ε) Δ= ε

αĽ(σ Aσ′) Δ= αĽ(σ)AαĽ(σ′)

extended elementwise to αĽ ∈ ℘(Ť)
→ ℘(V �) as αĽ(D) Δ= {αĽ(τ̌) | τ̌ ∈ D}

so that we get a Galois connection 〈℘(Ť), ⊆〉 −−−−→−→←−−−−−
αĽ

γĽ

〈℘(V �), ⊆〉 which can

be extended pointwise to αĽ ∈ (N
→ ℘(Ť))
→ (N
→ ℘(V �)) as αĽ(φ) Δ=
λA .αĽ(φ(A)).

Example 19. For the protosyntax tree in Ex. 18 of the grammar 〈{a}, {A},

A, {A → AA, A → a}〉, we have αĽ
(
�AA �A�AaA�AA�A�

)
= AaA . �

For syntax trees, we define the flattener αL̂ ∈ T̂
→ ℘(V �) as

αL̂(�AσA�σ′) Δ= ({A} ∪ αL̂(σ))αL̂(σ′) αL̂(aσ′) Δ= {a}αL̂(σ′) αL̂(ε) Δ= {ε}

extended elementwise to αL̂ ∈ ℘(T̂)
→ ℘(V �) as αL̂(Σ) Δ=
⋃

{αL̂(σ) | σ ∈ Σ}
and pointwise to α̇L̂ ∈ ℘(T̂)
→ (N
→ ℘(V �)) as α̇L̂(S) Δ= λA .αL̂(S.A) so

that we get the Galois connection 〈℘(T̂), ⊆〉 −−−−→−→←−−−−−
α̇L̂

γ̇L̂

〈N
→ ℘(V �), ⊆̇〉.

Terminal Sentence Abstraction α̇�. Terminal sentence abstraction elimi-
nates the sentences of a protolanguage which are not terminal. Let us define the
eraser α� ∈ V �
→ ℘(T �) as

α�(Aσ) Δ= ∅ α�(aσ) Δ= aα�(σ) α�(ε) Δ= ε

extended to α� ∈ ℘(V �)
→ ℘(T �) as α�(Σ) Δ=
⋃

{α�(σ) | σ ∈ Σ} = Σ ∩ T �

so that we get a Galois connection 〈℘(V �), ⊆〉 −−−→−→←−−−−
α�

γ�

〈℘(T �), ⊆〉 which can

be extended pointwise to α̇� ∈ (N
→ ℘(V �))
→ (N
→ ℘(T �)) as α̇�(ρ) Δ=
λA .α�(ρ(A)).

13 Fixpoint Bottom-Up Abstract Semantics

All bottom-up semantics S�̂�G� ∈ D̂�̂ of context-free grammars G are instances
of the following abstract interpreter (which generalizes the bottom-up grammar
flow analysis of [8, Def. 8.2.18]).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

186 P. Cousot and R. Cousot

S�̂�G� = lfp
� −→̂

F �̂�G� (13)

where 〈D̂�̂, �, ⊥, �〉 is a cpo/complete lattice and the transformer−→̂
F �̂�G� ∈ D̂�̂
→

D̂�̂ is

−→̂
F �̂�G�

Δ= λ ρ .
⊔

A→σ∈R

A�̂(−→̂F �̂[A → �σ]ρ) (14)

−→̂
F �̂[A → σ�aσ′] Δ= λ ρ . [A → σ�aσ′]�̂ .�̂

−→̂
F �̂[A → σa�σ′]ρ

−→̂
F �̂[A → σ�Bσ′] Δ= λ ρ . [A → σ�Bσ′]�̂(ρ, B) ;�̂

−→̂
F �̂[A → σB�σ′]ρ

−→̂
F �̂[A → σ�] Δ= λ ρ . [A → σ�]�̂

where the abstract rooting is A�̂ ∈ D̂�̂
→ D̂�̂, [A → σ�aσ′]�̂ ∈ D̂�̂, the abstract
concatenation is .�̂ ∈ (D̂�̂ × D̂�̂)
→ D̂�̂, [A → σ�Bσ′]�̂ ∈ (D̂�̂ × N)
→ D̂�̂, the
abstract junction is ;�̂ ∈ (D̂�̂ × D̂�̂)
→ D̂�̂, and [A → σ�]�̂ ∈ D̂�̂.

The existence of the least fixpoint is guaranteed by the following

Hypothesis 20. For all [A → σ�σ′] ∈ R�, −→̂
F �̂[A → σ�σ′] ∈ (N
→ L)
−→ L is

upper continuous for the ordering � on D̂�̂3. �

Hyp. 20 is guaranteed by the following local continuity conditions

Lemma 21. If A�̂ is continuous, .�̂ is continuous in its second argument, [A →
σ�Bσ′]�̂ is continuous in its first argument, ;�̂ is continuous then Hyp. 20 holds.

�

The hierarchy of semantics discussed in Sect. 12 is obtained by the instances of
the bottom-up abstract semantics (13) given in Fig. 2. Classical semantics and
flow analyzes also have the same form given in Fig. 3 (where �Δ= {ff, tt}).

We can define the soundness of an abstract interpreter S�̂�G� with respect to
a concrete interpreter S��G� as α(S��G�) = S�̂�G� using a Galois connection 〈L�,

��〉 −−−→←−−−
α

γ
〈L�̂, ��̂〉. This global soundness condition on the abstraction is implied

by the rule soundness condition

α(A�(
−→̂
F �[A → �σ]ρ)) = A�̂(

−→̂
F �̂[A → �σ]α(ρ)) (15)

which is itself implied by the local soundness conditions on the abstract operators
(for all x, y, ρ ∈ L�̂)

α(A�(x)) = A�̂(α(x)), α([A → σ�Bσ′]�(ρ,B)) = [A → σ�Bσ′]�̂(α(ρ), B),

α([A → σ�aσ′]�) = [A → σ�aσ′]�̂, α(x �
� y) = α(x) �

�̂ α(y),

α(x �
� y) = α(x) �

�̂ α(y), α([A → σ�]�) = [A → σ�]�̂ .

3 Indeed monotony is sufficient [14].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 187

Abstract se− Maximal Derivation Syntax Proto−
mantics S�̂�G� derivation Sd̂�G� tree Sŝ�G� tree Sŝ�G� language SL̂�G�

D̂�̂ ℘(Θ) ℘(D̂) ℘(T̂) N
→ ℘(V �)

� ⊆ ⊆ ⊆ ⊆̇
⊥ ∅ ∅ ∅ ∅̇

� ∪ ∪ ∪ ∪̇

A�̂(X) � �A−→ X
A�−→ � �AXA� �AXA� AL̂(X)

[A → σ�aσ′]�̂ (�[A → σ�aσ′]) a−→ [A → σ�aσ′]a a4 λ A′ . a

�
�̂ .5 . . .

[A → σ�Bσ′]�̂(ρ, B) [A → σ�Bσ′]d̂(ρ,B) [A → σ�Bσ′] ρ.B ρ.B λ A′ . {B} ∪ ρ(B)

�
�̂

� . . .

[A → σ�]�̂ �[A → σ�] [A → σ�] ε λ A′ . ε

where AL̂(X)
Δ
= λ A′ . (A′ = A ? {A}∪X(A) : ∅)6 and [A → σ�Bσ′]d̂(ρ, B)

Δ
= 〈�[A →

σ�Bσ′], �[A → σB�σ′]〉 ↑ ρ.B.

Fig. 2. Semantic instances of the abstract bottom-up grammar semantics (13)

Theorem 22. The above local soundness conditions imply the soundness and
completeness of the abstract interpreter α(S�̂�G�) = S�̂�G�. �

For example, the terminal language semantics S��G� defines the classical equa-
tional definition of the language generated by a grammar [15,16].

Theorem 23 (Ginsburg, Rice, Schützenberger). S��G� = lfp
⊆̇ −→̂

F ��G� .

Example 24. For the grammar G = 〈{(,)}, {A}, A, {A → (A)A, A → ε}〉, the

fixpoint equation ρ = −→̂
F ��G�(ρ) or equivalently ρ(A) = −→̂

F ��G�(ρ)(A) is ρ(A) =
(ρ(A))ρ(A)∪ε, which defining X = ρ(A), is X = {(}X{)}X ∪{ε} which generates
the Dyck language over parentheses {(,)} that is, by iteration, {ε} ∪ {()} ∪
{(()), ()()} ∪ �

14 Extension of the Bottom-Up Structural Abstract
Semantics to Grammar Rule States

When D̂�̂ is of the form N
→ L, the abstract semantics S�̂�G� ∈ N
→ L can

be extended to grammar rule states −→̂
S

ˆ
��G� ∈ R�
→ L as

4 Recall that a (and ε) is a shorthand for {a} (and {ε}).
5 Sentence and language concatenation . is denoted by juxtaposition, extended

pointwise.
6 (tt ? a : b) = a, (ff ? a : b) = b, (ff ? a | tt ? b : c) = b, (ff ? a | ff ? b : c) = c, etc.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

188 P. Cousot and R. Cousot

Abstract se− Terminal First ε−Produc− Nonterminal pro−
mantics S�̂�G� language S��G� S1�G� tivity Sε�G� ductivity S���G�

D̂�̂ N
→ ℘(T �) N
→ ℘(T ∪ {ε}) N
→ � N
→ �

� ⊆̇ ⊆̇ ˙=⇒ ˙=⇒
⊥ ∅̇ ∅̇ λ N . ff λ N . ff

� ∪̇ ∪̇ ∨̇ ∨̇

A�̂(X) A�(X) A1(X) Aε(X) A��(X)

[A → σ�aσ′]�̂ λ A′ . a λ A′ .a λ A′ . ff λ A′ . tt

�
�̂ . ⊕̇1 ∧̇ ∧̇

[A → σ�Bσ′]�̂(ρ,B) λ A′ . ρ(B) λ A′ . ρ(B) λ A′ . ρ(B) λ A′ . ρ(B)

�
�̂ . ⊕̇1 ∧̇ ∧̇

[A → σ�]�̂ λ A′ . ε λ A′ . ε λ A′ . tt λ A′ . tt

where A�(X) = A1(X)
Δ
= λ A′ . (A′ = A ? X(A) : ∅), Aε(X) = A��(X)

Δ
= λ A′ . (A′ =

A ? X(A) : ff), the first abstraction ⊕1 of language concatenation is defined in Lem.
29, and ⊕̇1

is its pointwise extension.

Fig. 3. Flow analysis instances of the abstract bottom-up grammar semantics (13)

−→̂
S

ˆ
��G�[A → σ�σ′] Δ= −→̂

F �̂[A → σ�σ′](S�̂�G�) (16)

where −→̂
F

ˆ
��G� ∈ (R�
→ L)
→ (R�
→ L) is

−→̂
F �̂�G�ρ[A → σ�aσ′] Δ= [A → σ�aσ′]�̂ .�̂

−→̂
F �̂�G�ρ[A → σa�σ′] (17)

−→̂
F

ˆ
��G�ρ[A → σ�Bσ′] Δ= [A → σ�Bσ′]�̂(

⊔

C→ς∈R

C �̂(−→̂F �̂[C → �ς](ρ)), B) ;�̂

−→̂
F

ˆ
��G�ρ[A → σB�σ′]

−→̂
F �̂�G�ρ[A → σ�] Δ= [A → σ�]�̂

with the following fixpoint characterization

Theorem 25
−→̂
S

ˆ
��G� = lfp

� −→̂
F

ˆ
��G� . �

The relationship between the abstract semantics S�̂�G� and its extension −→̂
S �̂�G�

to grammar rule states is given by (16) and the following

Theorem 26. If G = 〈T , N , S, R〉 is a grammar then

S�̂�G� =
⊔

A→σ∈R

A�̂(−→̂S �̂�G�[A → �σ]) . �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 189

15 Fixpoint Top-Down Abstract Semantics

The top-down semantics in the hierarchy of Sect. 12 can all be viewed as
instances of an abstract interpreter generalizing the top-down flow analysis of [8,
Def. 8.2.19]. For brevity, we consider only the protolanguage semantics SĽ�G� ∈
N
→ ℘(V �) of a context-free grammar G = 〈T , N , S, R〉, which is the
protolanguage generated by the grammar G for each nonterminal. It is defined
as

SĽ�G�
Δ= αĽ(αš(αδ̌(SĎ�G�))) . (18)

Let us define the protolanguage derivation �=⇒G for a grammar G = 〈T , N , S,
R〉 (�=⇒ when G is understood)

η �=⇒G η′ (19)
Δ= ∃n > 0, ς1, . . . , ςn+1, A1, . . . , An, σ1, . . . , σn : η = ς1A1ς2 . . . ςnAnςn+1 ∧

∀i ∈ [1, n] : Ai → σi ∈ R ∧ η′ = ς1σ1ς2 . . . ςnσnςn+1 .

This is [8, Def. 8.2.2] for n = 1, the difference being that we allow several
simultaneous substitutions.

The protolanguage semantics can be defined in fixpoint form as
Theorem 27

SĽ�G� = lfp
⊆̇

F̌Ľ�G�

where F̌Ľ�G�
Δ= λφ . λ A . {A} ∪ post[�=⇒G]φ(A) . �

As a corollary of this proof and (12), it follows that

λA . {αĽ(αš(αδ̌(π))) | (� A−→ �)
�

Ď��=⇒G π} = λA . {η | A �=⇒G η} (20)

so that we also have the classical definition of the protolanguage generated by a
grammar [8, Def. 8.2.3]

SĽ�G� = λA . {η ∈ V � | A
�

�=⇒G η} . (21)

Applying the terminal language abstraction, we get the classical definition of the
terminal language generated by a grammar [8, Def. 8.2.3]

Theorem 28. S��G�
Δ= α̇�(SL̂�G�) = λ A . {σ ∈ T � | A

�
�=⇒G σ}. �

The protolanguage semantics SĽ�G� ∈ N
→ ℘(V �) can be extended to grammar

rule states −→̂
S Ľ�G� ∈ R�
→ ℘(V �) as follows

−→̂
S Ľ�G�[A → σ�aσ′] Δ= a

−→̂
S Ľ�G�[A → σa�σ′] (22)

−→̂
S Ľ�G�[A → σ�Bσ′] Δ= SĽ�G�(B)−→̂S Ľ�G�[A → σB�σ′]

−→̂
S Ľ�G�[A → σ�] Δ= ε

so that
−→̂
S Ľ�G�[A → σ�σ′] = {ς ∈ V � | σ′ �

�=⇒G ς} . (23)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

190 P. Cousot and R. Cousot

16 Bottom-Up Grammar Analysis

Classical grammar analysis algorithms such as First [8, Sect. 8.2.8], nonter-
minal productivity [8, Sect. 8.2.4], and ε-productivity ε-Prod [8, Sect. 8.2.3]
are abstractions of the bottom-up grammar semantics and are instances of the
bottom-up abstract interpreter (13).

16.1 First

The first abstraction α1 ∈ T �
→ ℘(T ∪ {ε}) of a terminal sentence is the
first terminal of this sentence or ε for empty sentences. α1 Δ= λ σ . {a ∈ T |
∃σ′ ∈ T � : σ = aσ′} ∪ {ε | σ = ε}. It is extended to terminal languages
α1 ∈ ℘(T �)
→ ℘(T ∪ {ε}) in order to collect the first terminals of the sen-
tences of these languages α1 Δ= λ Σ . ⋃

σ∈Σ α1(σ) and finally extended pointwise
α̇1 ∈ (N
→ ℘(T �))
→ (N
→ ℘(T ∪ {ε})) on terminal languages derived for
nonterminals as α̇1 Δ= λL . λA .α1(L(A)).

The first abstraction of language concatenation is

Lemma 29. For all Σ, Σ′ ∈ ℘(T �) and F, F ′ ∈ ℘(T),

α1(ΣΣ′) = α1(Σ) ⊕1 α1(Σ′)

where F ⊕1 F ′ Δ= �F ′
= ∅ � (F \ {ε}) ∪ �ε ∈ F � F ′ � ∅� � ∅�

and {a} ⊕1 F ′ Δ= �F ′
= ∅ � {a} � ∅� . �

The first concatenation is monotone (hence upper-continuous since T is finite)

Lemma 30. If F1 ⊆ F ′
1 and F2 ⊆ F ′

2 then F1 ⊕1 F2 ⊆ F ′
1 ⊕1 F ′

2. �

The first semantics S1�G� ∈ N
→ ℘(T ∪ {ε}) of a grammar G is

S1�G�
Δ= α̇1(S��G�) . (24)

The classical definition of the First derivation of a grammar [8, Def. 8.2.33] is

Theorem 31

S1�G� = λA . {a ∈ T | ∃σ ∈ T � : A
�

�=⇒G aσ} ∪ {ε | A
�

�=⇒G ε} . �

For parsing, the input sentence is often assumed to be followed by the final mark
�, so it is useful to extend S1�G� to S1��G� ∈ N
→ ℘(T ∪ {�}) as

S1��G�
Δ= λA . {a ∈ T | ∃σ ∈ T � : A

�
�=⇒G aσ} ∪ {� | A

�
�=⇒G ε} . (25)

The first algorithm [8, Fig. 8.11] is indeed a fixpoint computation S1�G� =

lfp
⊆̇ −→̂

F 1�G� where the bottom-up transformer−→̂
F 1�G� is (14) instantiated as given

in Sect. 137.
7 The classical definition [8, Fig. 8.11] is simpler since all grammar nonterminals are

assumed to be productive.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 191

16.2 ε-Productivity

The classical definition of ε-Prod [8, Sect. 8.2.3] provides information on which
nonterminals can be empty. The corresponding abstraction is αε Δ= λ Σ . �ε ∈
Σ � tt � ff� extended pointwise to αε Δ= λL . λA .αε(L(A)) so that 〈N
→
℘(T �), ⊆̇〉 −−−→−→←−−−−

αε

γ̇ε

〈N
→ �, ˙=⇒〉. The ε-productivity semantics Sε�G�
Δ=

αε(S��G�) = αε(S1�G�) since αε = αε ◦ α̇1 and S1�G� = α̇1(S��G�). This is
the classical definition of ε-productivity for a grammar [8, Sect. 8.2.9] since
Sε�G� = λ A .A

�
�=⇒G ε. The ε-productivity iterative computation [8, Fig.

8.14] is indeed a fixpoint computation Sε�G� = lfp
=̇⇒ −→̂

F ε�G� where the bottom-

up transformer −→̂
F ε�G� is (14) instantiated as given in Sect. 13.

16.3 Nonterminal Productivity

The classical definition of nonterminal productivity [8, Sect. 8.2.4] provides infor-
mation on which nonterminals of the grammar can produce a non-empty terminal
language. The nonterminal productivity semantics of a context-free grammar is
indeed an abstraction of its first semantics S���G�

Δ= α̇��(S��G�) = α̇��(S1�G�)
where the nonterminal productivity abstraction is defined pointwise on termi-
nal languages derived for nonterminals α̇��

Δ= λL . λ A .α��(L(A)) as true if the
nonterminal can produce a non-empty terminal language and false otherwise

α��
Δ= λΣ . �Σ
= ∅ � tt � ff� so that 〈N
→ ℘(T �), ⊆̇〉 −−−−→−→←−−−−−

α̇��

γ̇��

〈N
→ �,

˙=⇒〉.The productivity iterative fixpoint computation [8, Ex. 8.2.12] is S���G� =

lfp
=̇⇒ −→̂

F ���G� where the bottom-up transformer −→̂
F ���G� is (14) instantiated as

given in Sect. 13.

17 Top-Down Grammar Analysis

17.1 Follow

The classical definition of Follow [8, Sect. 8.2.8] provides information on the
possible right context of nonterminals during syntax analysis. The follow ab-
straction αf ∈ V �
→ (N
→ ℘(T ∪ {�})) is

αf (η) Δ= λ A . {a ∈ T | ∃η′, η′′ : η = η′Aη′′ ∧ ∃η′′′ ∈ T � : η′′ �
�=⇒G aη′′′} ∪

{� | ∃η′, η′′ : η = η′Aη′′ ∧ η′′ �
�=⇒G ε}

where we use the classical convention that sentences derived from the grammar
axiom S are assumed to be followed by the extra symbol �
∈ V (� is # in [8,
Sect. 8.2.8]). This is extended to αf (Σ) ∈ ℘(V �)
→ (N
→ ℘(T ∪ {�})) as

αf (Σ) Δ= λ A . ⋃
η∈Σ αf (η)A so that 〈℘(V �), ⊆〉 −−−→−→←−−−−−

αf

γf

〈N
→ ℘(T ∪ {�}),

⊆̇〉.The definition of Follow [8, Def. 8.2.22] can also use that of First since

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

192 P. Cousot and R. Cousot

Theorem 32. αf (Σ) = λ A . ⋃
η′Aη′′∈Σ

−→̂
S 1�G�(η′′)[ε/�] where X [a/b] Δ= (X \

{a}) ∪ {b | a ∈ X}. �

The follow semantics Sf �G� of a grammar G is Sf �G�
Δ= αf (SĽ�G�(S)) so that

we get [8, Def. 8.2.22]

Theorem 33. Sf �G� = λA . {a ∈ T | ∃η, η′ : S
�

�=⇒G ηAaη′}∪{� | ∃η : S
�

�=⇒G

ηA} .

By abstraction of the fixpoint characterization Th. 27 of SĽ�G�, we get the
classical Follow algorithm as an iterative fixpoint computation [8, Fig. 8.13]

Theorem 34. Sf �G� � lfp
⊆̇

F̌f �G� where

F̌f �G�
Δ= λφ . λA . {� | A = S} ∪

⋃

B→σAσ′∈R

(−→̂S 1�G�(σ′) \ {ε}) ∪ �ε ∈−→̂
S 1�G�(σ′) � φ(B) � ∅� .

and � denotes = if all nonterminals in G are productive (as defined in Sect.
16.3) else � denotes ⊆. �

17.2 Nonterminal Accessibility

The classical definition of accessible nonterminals [8, Def. 8.2.4] provides in-
formation on which nonterminals of the grammar are used in the definition of
the language generated for the grammar axiom. The accessibility abstraction is
αa Δ= λΣ . λ A . �∃σ, σ′ ∈ V � : σAσ′ ∈ Σ � tt � ff� so that 〈N
→ ℘(V �),

⊆̇〉 −−−→−→←−−−−−
αa

γa

〈N
→ �, ˙=⇒〉 . The nonterminal accessibility semantics is Sa�G�
Δ=

αa(SĽ�G�(S)). This is the classical definition [8, Def. 8.2.4] since

Theorem 35. Sa�G� = λA . ∃σ, σ′ ∈ V � : S
�

�=⇒G σAσ′ . �

The accessibility semantics Sa�G� has the following fixpoint characterization

Theorem 36. Sa�G� = lfp
⊆̇

F̌a�G�where F̌a�G�φA
Δ= (A = S)∨

∨

B→σAσ′∈R

φ(B). �

The accessibility semantics is an abstraction of the follow semantics since, if
all nonterminals are productive (as defined in Sect. 16.3), a nonterminal is
accessible if and only if it has a non-empty follow set.

Theorem 37. (All nonterminals are productive) =⇒
(
Sa�G� = α��(Sf �G�)

)
. �

18 Grammar Problem

Knuth’s grammar problem [1], a generalization of the single-source shortest-path
problem, is to compute the minimum-cost derivation of a terminal string from

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 193

each non-terminal of a given superior grammar that is a context-free grammar,
with rules of the form A → g(A1, . . . , An), n � 0 (where ‘g’, ‘(’, ‘,’, and ‘)’ are
terminals), equipped with a cost function val such that the cost of a derivation is
val(A → g(A1, . . . , An)) = val(g)(val(A1), . . . , val(An)) and val(g) ∈ Rn

+
→ R+,
R+

Δ= {x ∈ R | x � 0} ∪ {∞}, is a so-called superior function [1], a condition
weakened in [2] where Knuth’s algorithm is also given an incremental version.

Knuth’s grammar problem [1] can be generalized to any bottom-up abstract
grammar semantics S�̂�G� by considering α(S�̂�G�) where 〈D̂�̂, �〉 −−−→←−−−

α

γ
〈R+, �〉

is a Galois connection and 〈R+, �, ∞, 0, min, max〉 is a complete lattice.
Knuth considers the particular case when S�̂�G� = S��G� and 〈D̂�̂, �〉 = 〈℘(S),

⊆〉 where S is a set (indeed S = ℘(T �) in [1,2]) with α(X) Δ= min{val(x) | x ∈
X} and γ(m) Δ= {x ∈ S | val(x) � m}. Since α is antitone, the corresponding
abstract semantics is taken in terms of greatest fixpoints for � [2]. Knuth’s
monotony hypothesis [1,2] ensures the existence of the greatest fixpoint. The
rule soundness condition (15) then amounts to Knuth’s hypothesis that for every
nonterminal A, every string in S��G�A is a composition of superior functions
α(g(x1, . . . , xn)) = val(g)(α(x1), . . . , α(xn)).

Knuth superiority condition [1] and its variant [2] ensure that the greatest
fixpoint can be computed by an elimination algorithm (generalizing Dijkstra’s
algorithm to solve shortest path problems [17]). However in general one must
resort to an infinite fixpoint iteration as shown with the choice of S = ℘(T �),
val(x) = 1

|x| so that val(g)() = 1
3 and val(g)(x1, . . . , xn) = 1

1
x1

+...+ 1
xn

+n+2
which,

for the grammar A → a(), A → b(A, A) requires an infinite iteration and a
passage to the limit 0.

Our generalization also copes with implicit abstractions of a grammar consid-
ered by [1,2] where a grammar is “recoded” into a superior grammar, which can
indeed be defined by an appropriate α.

19 Bottom-Up Parsing

Given a grammar G = 〈T , N , S, R〉 and an input σ = σ1σ2 . . . σn ∈ T �, n ≥ 0,
parsing consists in proving either σ ∈ S��G�(S) or σ
∈ S��G�(S), that is, by Th.
28, providing an algorithmic answer to the question S

�
�=⇒G σ?

Bottom-up parsing is an abstraction of a bottom-up grammar semantics by
restriction to a given input sentence. This is illustrated with the Cocke-Younger-
Kasami or CYK algorithm [4, Sect. 4.2.1] attributed by [18] to John Cocke,
[19,20]). It is traditionally restricted to grammars G = 〈T , N , S, R〉 in Chomsky
normal form with rules of the form A → BC and A → a where A, B, C ∈ N
and a ∈ T . We now design CYK by calculus for arbitrary grammars.

CYK is an abstract interpretation of the terminal language semantics S��G�
by

αCYK Δ= λσ . λ X . {〈i, j〉 ∈ D̂CYK (σ) | σi . . . σi+j−1 ∈ X} (26)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

194 P. Cousot and R. Cousot

where

D̂CYK Δ= λ σ . {〈i, j〉 | i ∈ [1, |σ| + 1] ∧ j ∈ [0, |σ|] ∧ i + j ≤ |σ| + 1}

so that 〈i, j〉 denotes the subsentence of length j from position i in σ (in par-
ticular 〈|σ| + 1, 0〉 denotes the empty sentence ε after σ = σε). Given σ ∈ T �,
we have

〈℘(T �), ⊆〉 −−−−−−−→←−−−−−−−
αCYK (σ)

γCYK (σ)
〈℘(D̂CYK (σ)), ⊆〉 .

The pointwise extension to N is

αCYK Δ= λσ . λ X . λ A .αCYK (X(A)) (27)

so that

〈N
→ ℘(T �), ⊆̇〉 −−−−−−−→←−−−−−−−
αCYK (σ)

γCYK (σ)
〈N
→ ℘(D̂CYK (σ)), ⊆̇〉 .

The correctness of this parsing approach is proved by the following

Theorem 38. σ ∈ S��G�(S) ⇐⇒ 〈1, |σ|〉 ∈ αCYK (σ)(S��G�)(S) . �

The CYK algorithm is derived by abstracting the fixpoint definition Th. 23 of

S��G� = lfp
⊆̇ −→̂

F ��G� by αCYK .

Theorem 39

αCYK (σ)(S��G�)(S) = lfp
⊆̇ −→̂

F CYK �G�(σ)

where

−→̂
F CYK �G� ∈ ℘(D̂CYK)
→ ℘(D̂CYK)
−→̂
F CYK �G�

Δ= λ ρ . λ A .
⋃

A→σ∈R

−→̂
F CYK [A → �σ]ρ

−→̂
F CYK [A → σ�aσ′] Δ= λ ρ . {〈i, j〉 ∈ D̂CYK (σ) | σi = a ∧

〈i + 1, j − 1〉 ∈−→̂
F CYK [A → σa�σ′]ρ}

−→̂
F CYK [A → σ�Bσ′] Δ= λ ρ . {〈i, j〉 ∈ D̂CYK (σ) | ∃k : 0 � k � j : 〈i, k〉 ∈ ρ(B)

∧ 〈i + k, j − k〉 ∈−→̂
F CYK [A → σB�σ′]ρ}

−→̂
F CYK [A → σ�] Δ= λ ρ . {〈i, 0〉 | 1 � i � |σ|} �

Because the abstract domain 〈N
→ ℘(D̂CYK (σ)), ⊆̇〉 is finite, the iterative
computation of lfp

⊆̇
FCYK �G�(σ) terminates whence by Th. 39 and Th. 38 so

does the CYK parsing algorithm. The CYK dynamic programming algorithm
organizes the computation of the pairs 〈i, j〉 ∈ D̂CYK (σ) in order to avoid
repetition of work already done.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 195

20 Top-Down Parsing

20.1 Nonrecursive Predictive Parser

A nonrecursive predictive parser is formally derived from the prefix derivation
semantics S∂

→
�G� of Sect. 5 by applying the abstraction

αLL Δ= λ S . λ σ . λ X . {〈i, �〉 | ∃θ = �0
�0−→ �1 . . .�m−1

�m−1−→ �m ∈ X.S :
i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧ � = �m}

where the terminal abstraction ατ ∈ Θ
→ T � collects terminal labels of deriva-
tions, as follows

ατ (θ1
�A−→ θ2)

Δ= ατ (θ1)ατ (θ2) ατ (�) Δ= ε, � ∈ S

ατ (θ1
A�−→ θ2)

Δ= ατ (θ1)ατ (θ2) ατ (�) Δ= ε

ατ (θ1
a−→ θ2)

Δ= ατ (θ1)aατ (θ2), a ∈ T ατ (�) Δ= ε .

Let us write ℘1(S) Δ= {{x} | x ∈ S} for the set of singletons of a set S and let
α• ∈ ℘1(S)
→ S be α•({x}) Δ= x. We have

Lemma 40. ∀θ ∈ Θ() : ατ (θ) = α• ◦ α� ◦ αL̂ ◦ αŝ ◦ αδ̂(θ).

The interpretation of the pair 〈i, �i〉 is that in the left-to-right scanning of
the input sentence σ up to position i, the prefix σ1 . . . σi (ε when i = 0) has
been recognized by a prefix derivation from the start symbol S. The stack �i

allows for the recognition of the rest of the sentence, if possible. Fixing the start
symbol S and the input sentence σ, we have a Galois connection

〈℘(Θ), ⊆〉 −−−−−−−−→←−−−−−−−−
αLL(S)(σ)

γLL(S)(σ)
〈℘([0, |σ|] × S), ⊆〉

The correctness of this parsing approach is proved by the following

Theorem 41. σ ∈ S��G�(S) ⇐⇒ 〈|σ|, �〉 ∈ αLL(S)(σ)(S∂
→

�G�). �

To get a correct parsing algorithm, it remains

– to express αLL(S)(σ)(S∂
→

�G�) in fixpoint form by abstraction of the fixpoint
definition Th. 6 of S∂

→
�G� (as shown in Th. 42), and

– to prove the termination of the fixpoint iteration (as shown in Th. 44 for
non left-recursive grammars).

Theorem 42. αLL(S)(σ)(S∂
→

�G�) = lfp
⊆

FLL�G�(σ) where

FLL�G�(σ) ∈ ℘([0, |σ|] × S)
→ ℘([0, |σ|] × S)

FLL�G�(σ) = λX . {〈0, �〉} ∪ {〈0, �[S → �η]〉 | 〈0, �〉 ∈ X ∧ S → η ∈ R} ∪
{〈i + 1, �[A → ηa�η′]〉 | 〈i, �[A → η�aη′]〉 ∈ X ∧ a = σi+1} ∪
{〈i, �[A → ηB�η′][B → �ς]〉 | 〈i, �[A→ η�Bη′]〉∈ X ∧ B → ς ∈ R}
∪ {〈i, �〉 | 〈i, �[A → η�]〉 ∈ X} . �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

196 P. Cousot and R. Cousot

lfp
⊆

FLL�G�(σ) is exactly the set of reachable states of the transition system
〈[0, |σ|] × S,

LL−→〉 where

〈0, �〉 LL−→ 〈0, �[S → �η]〉 S → η ∈ R (28)

〈i, �[A → η�σi+1η
′]〉 LL−→ 〈i + 1, �[A → ησi+1�η′]〉 (29)

〈i, �[A → η�Bη′]〉 LL−→ 〈i, �[A → ηB�η′][B → �ς]〉 B → ς ∈ R (30)

〈i, �[A → η�]〉 LL−→ 〈i, �〉 (31)

with initial state 〈0, �〉. By Th. 41, parsing is therefore reduced to proving that
the final state 〈|σ|, �〉 is reachable (which can be done by computing the iterates of
FLL�G�(σ) or equivalently by exploring the descendants of the transition relation
LL−→ with backtracking when reaching a dead-end [4, Alg. 4.1, Sect. 4.1.3]).

Example 43. Consider the grammar G = 〈{a, b}, {A}, A, {A → A, A → a}〉.
For the input sentence σ = a we have

〈0, �〉 �initial state�
LL−→ 〈0, �[A → �a]〉 �by (28) with rule A → a�
LL−→ 〈1, �[A → a�]〉 �by (29) since σ1 = a�
LL−→ 〈1, �〉 �by (31), which is a final state .�

On the other hand, the transitions for σ = b either lead to dead ends or do not

terminate

〈0, �〉 �initial state�
LL−→ 〈0, �[A → �A]〉 �by (28) with rule A → A since A → a would lead to a

dead end because σ1 = b
= a�
LL−→ 〈0, �[A → �A][A → �A]〉 �by (30) with rule A → A since A → a would

lead to a dead end because σ1 = b
= a�
LL−→ 〈0, �[A → �A][A → �A][A → �A]〉 �by (30) with rule A → A since A → a

would lead to a dead end because σ1 = b
= a�
LL−→ . . . �etc, ad infinitum, without any possibility of success or failure in a

blocking state.� �

Theorem 44. The nonrecursive predictive parsing algorithm for a grammar G
= 〈T , N , S, R〉 terminates (i.e. the transition relation LL−→ has no infinite
trace for all input sentences σ ∈ T �) if and only if the grammar G has no left
recursion (that is ∃A ∈ N : ∃η ∈ V � : A

+
�=⇒G Aη). �

20.2 Nonrecursive Predictive Parsing with Lookahead

The nondeterminism in predictive parsing can be reduced by driving the right
context in derivations (as approximated using First and Follow). We start
by elucidating the rôle of the right context in derivations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 197

Given a stack � = �[A1 → η1�η′
1] . . . [Ap → ηp�η′

p], p � 0 where � = � when
p = 0, we define the right context �	 of � as

�	 Δ= η′
pη

′
p−1 . . . η′

2η
′
1

with η′
pη

′
p−1 . . . η′

2η
′
1 = ε when p = 0.

Theorem 45. Let �0
�0−→ �1 . . .�i−1

�i−1−→ �i
�i−→ �i+1 . . .�n−1

�n−1−→ �n ∈
Sd̂�G� be a maximal derivation of the grammar G = 〈T , N , S, R〉 with i > 0.
Then

�i
	 �

�=⇒G ατ (�i
�i−→ �i+1 . . . �n−1

�n−1−→ �n) �

We call ατ (�i
�i−→ �i+1 . . . �n−1

�n−1−→ �n) the terminal right context of �i.
In order to approximate the right contexts in derivations by their first symbol,

we define

−→̂
S 1�G�[A → η�η′] (32)

Δ= −→̂
S 1�G�(η′) ⊕1 Sf �G�(A)

= �Sf �G�(A)
= ∅ � (−→̂S 1�G�(η′) \ {ε}) ∪ �ε ∈−→̂
S 1�G�(η′) � Sf �G�(A) � ∅� � ∅�

= �Sf �G�(A)
= ∅ � (−→̂S 1�G�(η′) \ {ε}) ∪ �−→̂S ε�G�(η′) � Sf �G�(A) � ∅� � ∅� .

Corollary 46. Let �0
�0−→ �1 . . .�i−1

�i−1−→ �i
�i−→ �i+1 . . .�n−1

�n−1−→ �n ∈
Sd̂�G�.S, i > 0 be a maximal derivation of the grammar G = 〈T , N , S, R〉
from the grammar start symbol S. Then

ατ (�i
�i−→ �i+1 . . .�n−1

�n−1−→ �n)� = aσ

where �i = �′
i[A → η�η′], a ∈ T ∪ {�}, σ ∈ (T ∪ {�})� and

a ∈−→̂
S 1�G�[A → η�η′] . �

If the input sentence σ derives from the start symbol S then the right context
�	 of the stack � in 〈i, �〉 should derive in the rest σi+1 . . . σn of the input
sentence. In order to introduce a lookahead, this can be approximated by the
fact that, according to Cor. 46, the first symbol of this right context should be
σi+1 (which, by definition, is � when i = n so that σ|σ|+1

Δ= �).

αLL(1) Δ= λ S .λσ . λ X . {〈i, �〉 | ∃θ = �0
�0−→ �1 . . . �m−1

�m−1−→ �m ∈ X.S :
i ∈ [0, |σ|] ∧ ατ (θ) = σ1 . . . σi ∧ � = �m ∧ ∀�′ ∈ S, A → ηη′ ∈R :

(� = �′[A → η�η′] ∧ i � |σ|) =⇒ (σi+1 ∈−→̂
S 1�G�[A → η�η′])} .

The correctness of the nonrecursive predictive parser with lookahead is estab-
lished by the following

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

198 P. Cousot and R. Cousot

Theorem 47

σ ∈ S��G�(S) ⇐⇒ 〈|σ|, �〉 ∈ αLL(1)(S)(σ)(S∂
→

�G�) . �

The nonrecursive predictive parser with lookahead is obtained by expressing the
abstract semantics in fixpoint form
Theorem 48

αLL(1)(S)(σ)(S∂
→

�G�) = lfp
⊆

FLL(1)�G�(σ)

where FLL(1)�G�(σ) ∈ ℘([0, |σ|] × S)
→ ℘([0, |σ|] × S) is

FLL(1)�G�(σ) = λ X . {〈0, �〉} ∪ (33)

{〈0, �[S → �η]〉 | 〈0, �〉 ∈ X ∧ S → η ∈ R ∧
σ1 ∈−→̂

S 1�G�[S → �η]} ∪
{〈i + 1, �[A → ηa�η′]〉 | 〈i, �[A → η�aη′]〉 ∈ X ∧

a = σi+1 ∧ σi+2 ∈−→̂
S 1�G�[A → ηa�η′]} ∪

{〈i, �[A → ηB�η′][B → �ς]〉 | 〈i, �[A → η�Bη′]〉 ∈ X ∧
B → ς ∈ R ∧ σi+1 ∈−→̂

S 1�G�[B → �ς]} ∪
{〈i, �〉 | 〈i, �[A → η�]〉 ∈ X} . �

Again, observe that lfp
⊆

FLL(1)�G�(σ) is exactly the set of reachable states of
the transition system 〈[0, |σ|] × S,

LL(1)−→〉 where

〈0, �〉 LL(1)−→ 〈0, �[S → �η]〉 S → η ∈ R ∧ (34)

σ1 ∈−→̂
S 1�G�[S → �η]

〈i, �[A → η�σi+1η
′]〉 LL(1)−→ 〈i + 1, �[A → ησi+1�η′]〉 (35)

σi+2 ∈−→̂
S 1�G�[A → ηa�η′]

〈i, �[A → η�Bη′]〉 LL(1)−→ 〈i, �[A → ηB�η′][B → �ς]〉 B → ς ∈ R ∧ (36)

σi+1 ∈−→̂
S 1�G�[B → �ς]}

〈i, �[A → η�]〉 LL(1)−→ 〈i, �〉 (37)

with initial state 〈0, �〉. This is essentially the algorithm suggested at the end
of [4, Sect. 4.1.4] to speed up top-down nondeterministic parsing.

Indeed the lookahead may been done freely between the two extremes of
everywhere in Th. 47 and nowhere Th. 41, as follows

Corollary 49. If FLL(1)�G�(σ) ⊆ F�G�(σ) ⊆ FLL�G�(σ) then

σ ∈ S��G�(S) ⇐⇒ 〈|σ|, �〉 ∈ lfp
⊆

F�G�(σ) .

The iterative computation of lfp
⊆

F�G�(σ) terminates for all σ if and only if the
grammar G has no left recursion. �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Grammar Analysis and Parsing by Abstract Interpretation 199

Our presentation of LL(1) parsing differs from the classical introduction in [8],
mainly because, for practical efficiency and simplicity reasons, only the table-
driven deterministic case is classically considered.

21 Conclusion

Many meanings assigned to grammars (such as syntax tree, protolanguage or
terminal language generation) and grammar manipulation algorithms (such as
grammar flow analyses or parsers) have quite similar structures. We have shown
that this is because they are all abstract interpretations of a grammar small-step
operational semantics to derive sentences together with their structure.

Future work should include the extension of the approach to context-free
grammars such as contextual grammars [21] or to mildly context-sensitive gram-
mars attempting to express the formal power needed to define the syntax of
natural languages by tree rewriting such as (multicomponent) tree adjoining
grammars or, more generally, range concatenation grammars [22].

Acknowledgements. We thank Tom Reps for drawing our attention to [1,2].

References

1. Knuth, D.: A generalization of Dijkstra’s algorithm. Inf. Process. Lett. 6(1) (Feb.
1977) 1–5

2. Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the
shortest-path problem. J. Algorithms 21(2) (Sep. 1996) 267–305

3. Bar-Hillel, J., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Z. Phonetik. Sprachwiss. Kommunikationforsch. 14 (1961) 143–172

4. Aho, A., Ullman, J.: Parsing. Volume 1 of The Theory of Parsing, Translation and
Compiling. Prentice-Hall (1972)

5. Möncke, U., Wilhelm, R.: Iterative algorithms on grammar graphs. In Schneider,
H., Gottler, H., eds.: Proc. 8th Conf. on Graphtheoretic Concepts in Computer
Science (WG’82), Hanser Verlag (1982) 177–194

6. Möncke, U.: Generierung von Systemen zur Transformation attributierter Opera-
torbäume; Komponenten des Systems und Mechanismen der Generierung. Diplo-
marbeit, Universität des Saarlandes, Saarbrücken (1985)

7. Möncke, U., Wilhelm, R.: Grammar flow analysis. In Alblas, H., Melichar, B.,
eds.: Attribute Grammars, Applications and Systems, Intl. Summer School SAGA,
Prague, CZ, 4–13 June , 1991, Proc. Volume 545 of LNCS., Springer (1991) 151–186

8. Wilhelm, R., Maurer, D.: Übersetzerbau. Theorie, Konstruktion, Generierung.
Springer (1992)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th POPL,
Los Angeles, CA, ACM Press (1977) 238–252

10. Chomsky, N.: Three models for the description of language. IEEE Trans. Infor-
mation Theory 2(3) (1956) 113–124

11. Chomsky, N.: Syntactic Structures. Mouton, de Gruyter (1957)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

200 P. Cousot and R. Cousot

12. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoret. Comput. Sci. 277(1—2) (2002) 47–103

13. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL, San Antonio, TX, ACM Press (1979) 269–282
14. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems.

Pacific J. Math. 82(1) (1979) 43–57
15. Ginsburg, S., Rice, G.: Two families of languages related to ALGOL. J. ACM 9

(1962) 350–371
16. Schützenberger, M.: On a theorem of R. Jungen. Proc. Amer. Math. Soc. 13

(1962) 885–889
17. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1

(1959) 269–271
18. Hays, D.: Introduction to Computational Linguistics. Amer. Elsevier (1967)
19. Younger, D.: Recognition and parsing of context-free languages in time n3. Inform.

and Control 10(2) (1967) 609–617
20. Kasami, T.: An efficient recognition and syntax analysis algorithm for context-free

languages. Technical report, Air Force Cambridge Research Laboratory, Bedford,
MA, US (Aug. 1965)

21. Ehrenfeucht, A., Päun, G., Rozenberg, G.: Contextual grammars and formal lan-
guages. In Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Languages.
Volume 2. Springer (1997) 237–293

22. Boullier, P.: From contextual grammars to range concatenation grammars. ENTCS
53 (Apr. 2001) 41–52 http://www.elsevier.nl/locate/entcs/volume53.html.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.elsevier.nl/locate/entcs/volume53.html

Ensuring Properties of Interaction Systems

G. Gössler1, S. Graf2, M. Majster-Cederbaum3,�, M. Martens3, and J. Sifakis2

1 INRIA Rhône-Alpes, Montbonnot, France
gregor.goessler@inria.fr

2 VERIMAG, Grenoble, France
{graf,sifakis}@imag.fr

3 University of Mannheim, Mannheim, Germany
mcb@informatik.uni-mannheim.de

Abstract. We propose results ensuring properties of a component-based
system from properties of its interaction model and of its components. We
consider here deadlock-freedom and local progress of subsystems. This
is done in the framework of interaction systems, a model for component
based modelling described in [9]. An interaction system is the superpo-
sition of two models: a behavior model and an interaction model. The
behavior model describes the behavior of individual components. The
interaction model describes the way the components may interact by in-
troducing connectors that relate actions from different components. We
illustrate our concepts and results with examples.

1 Introduction

Component-based design techniques are important for mastering design com-
plexity. Nevertheless, for these techniques to be useful, it is essential that they
guarantee more than syntax-based interface compatibilities. Methods based on
the assume-guarantee paradigm [15] or similarly on the more recent interface
automata [4] are useful for the verification of safety properties provided that
they can be easily decomposed into a conjunction of component properties.

We show how one can discuss properties such as (global) deadlock-freedom
and progress of a subset of components in a framework for component-based
modelling by making use of compositional methods in various ways. Given that
violations of safety properties can be expressed as deadlocks, these results can
be also applied for general safety properties.

In previous papers [8,9,7,16], a framework for component-based modelling
was proposed which clearly separates interaction from behavior. An interaction
model describes how system components can interact. A behavior model is
used to describe the behavior of individual components. The aim of this frame-
work is twofold. One is to allow compositional verification. The second aim is
to provide a composition framework with a flexible means for controlling the
collaboration of a set of components. A general framework for defining such
� While working on this paper the author was a guest at and supported by the Ecole

Polytechnique in Palaiseau.

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 201–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

202 G. Gössler et al.

glue operators was presented in [16] and its main ingredients are the interaction
model presented here and priority rules, which are not considered in this paper.

Here, we generalize the initial results of [9] for proving deadlock freedom and
local progress, 1) to apply to a broader class of systems and 2) to apply to
subsystems. In addition, we adapt the framework to support bottom-up system
development. Hence, we may start with some interaction systems that exhibit
certain desirable properties. These can be combined to build more complex sys-
tems. We may now ask under which conditions the desirable properties can be
ensured for the composed system.

We present and illustrate here the central notions and results concerning
deadlock-freedom and progress on a simple version of the framework without
variables.

2 Connectors, Interaction Models and Interaction
Systems

We consider a framework where components i in a set K of components together
with their port sets {Ai}i∈K are the basic building blocks. Components can
interact, that is cooperate. A set C of connectors controls the cooperation. A
connector is a set of ports with at most one port of each component, and an
interaction is a subset of a connector. As an example, we consider a system with
three components 1, 2, 3 and an interaction α = {a, b, c}, where a is a port
of component 1, b a port of component 2 and c a port of component 3. The
interaction α describes a step of the system where a, b, and c are performed
simultaneously. Each component i may constrain the order in which interactions
on its ports can take place. We consider here these constraints to be given in the
form of a transition system with edges labelled by elements in the port set.

Definition 1
A component system CS = (K, {Ai}i∈K) consists of a set K of components and
has for each component i ∈ K a port set Ai, that is disjoint from the port set
of every other component. Ports are also referred to as actions.

The union A =
⋃

i∈K

Ai of all port sets is the port set of K. A finite nonempty

subset c of A is called a connector for CS, if it contains at most one port of each
component i ∈ K. A connector set is a set C of connectors for CS that covers
all ports, and where no connector contains any other:

a)
⋃

c∈C

c = A

b) c ⊆ c′ ⇒ c = c′ for all c, c′ ∈ C.

If c is a connector, I(c) denotes the set of all nonempty subsets of c and is called
the set of interactions of c. For a set C of connectors,

I(C) =
⋃

c∈C

I(c)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 203

1 2 3

a1

b2 c2

b1

a3 c3b3

c1

a2

Fig. 1. Example of connectors

is the set of interactions of C. If C is a connector set, it is clear by the above
that the connectors c ∈ C are the maximal elements in I(C). For component i
and interaction α, we put i(α) = Ai ∩ α. We say that component i participates
in α, if i(α) �= ∅.

Remark 1
A connector c = {a}, a ∈ Ai, consisting of a single action, can be identified
with this action. It models the situation that a is considered as internal action
of component i that takes place independently of the environment.

In the following, we always assume that K = {1, ..., n} for some n ∈ N or that
K is countably infinite.

Example 1
We consider three components 1, 2, 3 with port sets A1 = {a1, a2, a3}, A2 =
{b1, b2, b3}, and A3 = {c1, c2, c3}. The connector set

C = {{a1, b1}, {b1, c1}, {a1, c1}, {a2, b2, c2}, {a3}, {b3}, {b2, c3}}

describes a situation where any two systems may cooperate via their first port or
they cooperate all via their second port. Components 1 and 2 may act individu-
ally via their third port. Finally component 2 may cooperate with the third port
of component 3 via its second port. This situation can be graphically displayed
by Figure 1 where a connector c with |c| > 1 is represented by a line connecting
its ports.

Remark 2
Please note, that connectors allow a very liberal form of cooperation. One action
may cooperate withm1 other actions in one connector whereas it cooperates with
m2 actions in a different connector. In the above example this is the case for
action b2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

204 G. Gössler et al.

When we have specified for a component system (by choosing a connector set
C) how the components can interact, we want to state which interactions should
be considered independent of the availability of actions of other components.

In the example above, one design decision could be to declare the interactions
{a2} and {b1} independent. That is, no matter if the actions occurring in a
connector involving one of these actions are available or not, a2 respectively b1
may be performed independently of the environment, i. e. the status of other
components. For this purpose, we introduce the notion of complete interactions
and interaction model.

An interaction model for a component system CS is defined by a connector
set C together with a set Comp of interactions that are declared to be complete.
If an interaction is declared complete, it can be performed independently of
the environment. By environment we mean the other components and potential
extensions of the system. In [9] it is required that all supersets of a complete
interaction in I(C) should also be complete1, that is, Comp has to be closed
with respect to I(C) in the following sense.

Definition 2
Let U, T be sets of sets, U ⊆ T . Then U is closed w.r.t. T , if for any u ∈ U
it contains all supersets t ∈ T of u. The closure of U w.r.t. T , cl(U, T), is the
smallest set that contains U and is closed w.r.t. T .

Definition 3
Let C be a connector set for the component system CS. If Comp ⊆ I(C) is
closed with respect to I(C), then

IM = (C,Comp)

is called an interaction model for CS. The elements of Comp are called complete
interactions.

Example 1 continued
By choosing

Comp = cl({{a2}, {b1}}, I(C)) =

{{a2}, {a2, b2}, {a2, c2}, {a2, b2, c2}, {b1}, {a1, b1}, {b1, c1}}

we model the situation described above.
As we stated before, we assume in this paper that the local behavior of each

component i ∈ K of a component system is given by a transition system Ti.
When the connector set C is fixed, the global behavior of the system is given by
allowing in each global state those transitions that correspond to interactions in
I(C).

1 Please note, that most results carry over to a situation where we drop this condition.
The results in Section 5 have to be slightly modified if we work in this more general
setting.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 205

Definition 4
Let CS = (K, {Ai}i∈K) be a component system and IM = (C,Comp) an inter-
action model for CS.

Let for each component i ∈ K a transition system Ti = (Qi, Ai,→i) be given,

where →i⊆ Qi ×Ai ×Qi. We write q
a→i q

′ for (q, a, q′) ∈→i. We suppose that
Qi ∩Qj = ∅ for i �= j.

The induced interaction system is given by

Sys = (CS, IM, T),

where the global behavior T = (Q, I(C),→) is obtained from the behaviors
of individual components, given by transition systems Ti, in a straightforward
manner:

– Q =
∏

i∈K Qi, the cartesian product of the Qi, which we consider to be
order independent. We denote states by tuples (q1, ..., qj , ...) and call them
global states.

– the relation →⊆ Q× I(C) ×Q, defined by

∀α ∈ I(C) ∀q, q′ ∈ Q : [q = (q1, ..., qj , ...)
α→ q′ = (q′1, ..., q

′
j , ...) iff

∀i ∈ K (qi
i(α)→i q

′
i if i participates in α and q′i = qi otherwise)].

A state qi ∈ Qi, resp. a global state q ∈ Q, is called complete, if there is some
interaction α ∈ C ∪Comp and some q′i with qi

α→i q
′
i, resp. some q′ with q

α→ q′.
Otherwise it is called incomplete.

Note that a global state q = (q1, q2, ...) is complete if qi is complete for some i.
But q may be complete even if all qi are incomplete.

Please also note that we allow edges to be labelled by elements that are neither
maximal nor complete in the definition of T . For Sys itself we will only be
interested in transitions labelled with α ∈ C ∪Comp as those are independent of
the environment. When, however, we compose interaction systems as described in
Section we will need the information about the transitions labelled with elements
in I(C).

Remark 3
A connector c = {a1, ..., al} specifies a degree of cooperation. For this connector
to be performed in the global system, all l partners have to cooperate. As different
connectors may have different size and involve different components, the degree
of cooperation and the involved partners vary in the system. For instance, in one
global state m1 components may cooperate via one connector and alternatively
m2 components may cooperate via some other connector. In another state yet
another type of cooperation is possible. Also, one port may cooperate in different
connectors with different partners and different degrees of cooperation. Note that
this is a very interesting feature of the model which allows for great flexibility
and distinguishes our framework from others, for example process algebras or
I/O-automata [10]. In process calculi such flexibility is either not realizable or
can be achieved only in a clumsy way.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

206 G. Gössler et al.

Control1 count

s0

Control21

r1

1

r1

2

end1

start1
end1

start1

Control22

r2

1

r2

2

end2

end2

start2

Worker1

st t01 st t11

e t11e t01

Workern
st t0n st t1n

e t1ne t0n

q1

0

q1

1
q1

2

st t01

e t01

st t11

e t01

start2

s1

count

count

Worker2st t02 st t12

e t12e t02

Fig. 2. Worker example: components with ports and component behavior

Example 2
Consider a set of components Workeri, 1 ≤ i ≤ n, that may choose between the
execution of two tasks, t0i and t1i. Each component Workeri can do its task
t0i independently of the others, but has to cooperate with component Control1
counting the number of tasks t0 already started. For executing the task t1i,
the component Workeri needs the collaboration of Control21 or of Control22
for the whole duration of the execution of t1i. As the execution of a task may
have some duration such that during its execution other interactions may take
place, each task execution is represented by a corresponding start and end event.
The definition of the components together with the local transition systems is
provided in Figure 2.

In order to achieve the collaboration of these components, we consider the
interaction model IM1 = (C,Comp) with the connector set

C = {conn1i, conn2i, conn3si, conn3ei, conn4si, conn4ei|1 ≤ i ≤ n}

and Comp = ∅. Here

conn1i: {count, st t0i}, for all i ∈ {1...n}
conn2i: {e t0i}, for all i ∈ {1...n}
conn3si: {start1, st t1i}, for all i ∈ {1...n}
conn3ei: {end1, e t1i}, for all i ∈ {1...n}
conn4si: {start2, st t1i}, for all i ∈ {1...n}
conn4ei: {end2, e t1i}, for all i ∈ {1...n}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 207

All connectors represent binary rendezvous or local actions, which can easily
be expressed in process algebra. However, the actions representing the start and
end of execution of task t1i can synchronize either with Control21 due to the
connectors conn3 or with Control22 due to the connectors conn4. This can not
be directly expressed in CCS- or TCSP -style process algebra. Also, a third con-
trol unit Control23 for improving the performance of the system, could be added
without changing the behavior of the worker components. In this interaction sys-
tem e.g. any global state q containing qi

1, for some i, as well as (sl, q
1
2 , ..., q

n
2 , r

1
1 , r

2
2)

is complete for any l, whereas e.g. the states (sl, q
1
2 , ..., q

n
2 , r

1
1 , r

2
1) are incomplete

for any l. We can modify this system Sys = (CS, IM1, T) in various ways. One
may modify the local behavior while maintaining the interaction model. Or one
may conceive a different scheme for the interaction. For example, instead of in-
terleaving the terminations of the tasks t0i, we may also allow executing them in
cooperation; this can be done by replacing the n connectors conn2i by a single
connector conn2, leading to interaction model IM2:

conn2 : {e t01, e t02, ..., e t0n}

and declare each individual action to be complete. In this modelling when any
number of workers is ready to terminate they may do so simultaneously.

3 Properties of Interaction Systems

We consider in the following two essential properties of interaction systems and
show in the next sections how they can be established by either testing the
property using a graph criterion or by deriving the property from properties of
subsystems. In what follows, we consider a system

Sys = (CS, IM, T) with

CS = (K, {Ai}i∈K) and IM = (C,Comp) and T = (Q, I(C),→).

where T is constructed from given transition systems Ti, i ∈ K, as described in
Definition 4.

The first property under consideration is (global) deadlock-freedom. A system
is considered to be (globally) deadlock-free if in every global state it may per-
form a maximal or complete interaction, in other words, if every global state is
complete. This definition is justified by the fact that both for complete and max-
imal interactions there is no need to wait for other components to participate.
In the case of maximal interactions there do not exist such components, in the
case of complete interactions this holds true by the definition of an interaction
model. If a maximal or complete interaction is enabled in a global state q, it may
be performed right-away. A global state q where neither a maximal or complete
interaction may be performed means that every component needs some other
components’ cooperation which do not provide the needed ports in q.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

208 G. Gössler et al.

Definition 5
An interaction system Sys is called deadlock-free if for every state q ∈ Q there

is a transition q
α→ q′ with α ∈ C ∪ Comp.

In many systems there is a designated start-state q0 and one is only interested in
the states that can be reached from q0. To model this and similar situations we
introduce a notion of P -deadlock-freedom in [6], where P is a predicate on the
state space and the existence of a transition labelled by some α ∈ C ∪ Comp is
only requested for states satisfying P . For P = true we obtain the above notion
of deadlock-freedom.

Deadlock-freedom is an important property of a system. But it does not pro-
vide any information about the progress that an individual component i ∈ K
may achieve. Hence, it is interesting to consider the property of (individual)
progress of component i, i.e. the property that at any point of any run of the
system, there is an option to proceed in such a way that i will eventually par-
ticipate in some interaction, which means that a clever scheduler can achieve
progress of component i.

Definition 6
Let Sys be a deadlock-free interaction system. A run of Sys is an infinite se-
quence σ

q0
α0→ q1

α1→ q2 . . .

with ql ∈ Q and αl ∈ C ∪Comp. For n ∈ N, σn denotes the prefix

q0
α0→ q1

α1→ q2 . . .
αn−1→ qn

We define here a notion of progress of subsets K ′ ⊆ K of components in two
ways. In the first case, we just guarantee that the system may always proceed
in such a way that some component of K ′ participates in some interaction. In
the second case, it may proceed in such a way that every component i ∈ K ′

participates in some interaction.

Definition 7
Let Sys be a deadlock-free interaction system. Let K ′ ⊆ K.

– K ′ may progress in Sys, if for any run σ of Sys and for any n ∈ N there
exists σ′ such that σnσ

′ is a run of Sys and for some i ∈ K ′, i participates
in some interaction α of σ′.

– K ′ may strongly progress in Sys, if for any run σ of Sys and for any n ∈
N there exists σ′ such that σnσ

′ is a run of Sys such that every i ∈ K ′

participates in some interaction α of σ′.

If a setK ′ of components may progress in Sys then a clever scheduler can guaran-
tee that a run is chosen where infinitely often some interaction with participation
of the subsystem K ′ is performed.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 209

If |K ′| = 1 then the two notions coincide and yield the special case presented
in [9]. As for deadlock-freedom one may generalize the progress properties to
P -progress.

In the following example, we look at some of the properties defined above.
For this example, we introduce the following rule of maximal progress.

Definition 8
The maximal progress rule restricts the transition relation for Sys to maximal

transitions, i.e. to those transitions such that q
α→ q′, implies that there is no

β, q′′ with α � β and q
β→ q′′.

Example 3
We consider a system of n identical tasks that have to be scheduled, differently
to the preceding example, by allowing preemption and without explicit repre-
sentation of a scheduler or a controller. In our framework, we achieve this by
collaboration of the n tasks with an appropriate interaction model.

We consider a set of tasks i (i ∈ K = {1, ..., n}) that compete for some re-
source in mutual exclusion. The transition system Ti of each task i is given
in Figure 3 and needs not to be further explained. Let the set of ports of
component i be:

Ai = {activatei, starti, resumei, preempti, f inishi, reseti}

We want to guarantee mutual exclusion with respect to the exec state, i.e. no
two tasks should be in this state at the same time, in the sense that this is an
inductive invariant 2. Mutual exclusion, in this sense, can be achieved using the
rule of maximal progress and the interaction model IM = (C,Comp) with the
connector set C = {conni

1, conn
ij
2 , conn

ij
3 , conng}, where

conni
1: {activatei}, i ∈ K

connij
2 : {preempti, startj}, i, j ∈ K, i �= j

connij
3 : {resumei, f inishj}, i, j ∈ K, i �= j

conng: {reset1,...,resetn}

and Comp = cl({{startj}, {finishj}|1 ≤ j ≤ n}, I(C)).
Mutual exclusion is guaranteed because whenever component j enters execj ,

either by startj or resumej, then either there is no other task in its exec-state
or the component i that is in the state execi must leave this state. The following
items explain why this is the case for each of the two transitions entering the
exec-state:

– for resumej, the reason is that resumej can never happen alone. It can only
be executed together with the finishi action if component i is currently in
the critical state execi.

2 Whenever a global state satisfies this condition then any successor state should
satisfy it as well.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

210 G. Gössler et al.

inaci

waiti

execi suspi

activatei

starti

finishi

preempti

resumei

reseti

Fig. 3. Transition system of task i

– for startj , which is complete, the reason is the rule of maximal progress: when
component i is in the critical state execi, it can execute the preempti action.
Therefore, startj cannot be executed alone as also the pair {preempti, startj}
is enabled. On the other hand, if there is no process in the critical section,
component j can enter it by executing startj alone.

We now consider the properties of deadlock-freedom and progress. The inter-
action system Sys = (CS, IM, T) as defined above, where we first ignore the rule
of maximal progress, is deadlock-free as the only incomplete state in each local
transitions system Ti is the state suspi. But the global state in which all compo-
nents are in state suspi admits the interaction conng = {reset1, ..., resetn} ∈ C
and hence does not cause any problems. Each component i may progress.

When a finite interaction system is deadlock-free, then it is also deadlock-free
when we apply the rule of maximal progress. This is the case because, even if we
disallow some transitions in a global state q, as they are not maximal there is
always at least one transition with a label in C ∪Comp left. Hence, our example
is deadlock-free under the rule of maximal progress. Also every component may
progress under the rule of maximal progress. As all components have identical
behavior it suffices to consider one of them, say component 1. The only situation
in which component 1 cannot proceed by itself is when it is in state susp1. We
have to show that we can reach a global state where it can perform a transition:

– case 1) all other components are in the state susp. Then conng can happen
and component 1 has proceeded.

– case 2) at least one component j is in the state execj . Then {resume1, f inishj}
may happen.

– case 3) not all other components are in state susp and none is in state exec.
Then there must be one component j that is in state inacj or waitj . If it
is in state inacj then it performs the complete action activatej and reaches
state waitj . As there is no component in state exec there is no preempt

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 211

action available and startj may be performed alone even under the rule of
maximal progress. Now, {resume1, f inishj} may happen and component 1
has made progress.

In this example, we enforced deadlock-freedom by introducing the connector
conng, i.e., by solving the problem on the level of the interaction model. An
alternative way is to consider an invariant on the state space, namely the one
expressing that not all local states are susp-states. One then shows that if we
start in a state that satisfies this invariant then all successor states satisfy the
invariant too. Hence, the problematic state is never reached from a good state.

In [6] we introduce further properties of interaction systems, in particular local
deadlock-freedom, liveness, fairness, and robustness of properties with respect
to failure of ports/components.

4 Testing Deadlock-Freedom and Progress

The definition of deadlock-freedom and other properties of interaction systems
are conditions on the global state space and hence cannot be tested directly in an
efficient way. In [13] it was shown that deciding deadlock-freedom in interaction
systems is NP-hard. In [12] it was shown that deciding liveness is NP-hard.
Therefore it is desirable to establish (stronger) conditions that are easier to
test and entail the desired properties. In [6] we present a condition that can be
tested in polynomial time and ensures liveness of a set of components. In [11]
we gave a parameterized condition that can be tested in polynomial time and
ensures (local) deadlock-freedom of an interaction system. Here we present a
generalization of a criterion developed in [9] that ensures deadlock-freedom and
give a condition that guarantees local progress of a set of components.

In what follows, we assume for simplicity that the local transition systems Ti

have the property that they offer at least one action in every state. The general
case can be reduced to this case by introducing idle actions or by adapting the
definitions and results below to include this situation.

In [9], a condition for deadlock-freedom of Sys (called interaction safety there)
was presented that uses a directed graph with labels in A =

⋃
Ai. The set of

nodes is given by
V = K ∪H

where K is the set of components and H is some subset of C×Comp. The edges
relate nodes in K with nodes in H and vice versa. The non-existence of certain
cycles in the graph ensures deadlock-freedom of the system. We propose here
another graph called GSys that is simpler and smaller. One can exhibit a system
with n components where the graph of [9] contains O(n3) nodes and Ω(n3) edges
independently of the structure of the transition systems. In contrast to this GSys

has n nodes and - depending on the local transition systems - possibly no edges.
Based on GSys we establish a criterion involving a notion of refutability that

– allows classifying a larger set of systems as deadlock-free
– is suitable to give a characterization of all deadlock-free systems.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

212 G. Gössler et al.

In the following we define the labelled directed graph GSys. The nodes of this
graph are the components of Sys. There are two kinds of labels for the edges. An
edge (i, c, j), where c ∈ C, means that there is an incomplete state qi ∈ Qi such
that i(c) is enabled in qi and j participates in c. Similarly an edge (i, (c, α), j)
means that there is an incomplete state qi ∈ Qi such that i(c) is enabled in qi
and j participates in α. Both edges mean that it might happen in some global
state (. . . , qi, . . .) that i has to wait for j.

Definition 9
Let Sys be an interaction system. The dependency graph for Sys is a labelled
directed graph

GSys = (V,E)

where the set of nodes is V = K and the set of labels is L = L1 ∪ L2, with

L1 = {c ∈ C |� ∃α ∈ Comp : α ⊆ c}

and

L2 = {(c, α) | c ∈ C,α ∈ Comp, α ⊆ c and � ∃β ∈ Comp : β � α}

and the set of edges is E ⊆ V × L× V such that

a) (i, c, j) ∈ E, where c ∈ L1, iff

∃qi ∈ Qi, qi incomplete, ∃q′i ∈ Qi such that qi
i(c)→ q′i and j(c) �= ∅

b) (i, (c, α), j) ∈ E, where (c, α) ∈ L2, iff

∃qi ∈ Qi, qi incomplete, ∃q′i ∈ Qi such that qi
i(c)→ q′i and j(α) �= ∅.

In addition to GSys, resp. subgraphs G of GSys, we will refer to snapshots of
GSys, resp. G, with respect to a global state q = (q1, q2, . . . , qi, . . .) ∈ Q

GSys(q) = (V,E(q))

where E(q) ⊆ E such that

a) (i, c, j) ∈ E(q), where c ∈ L1, iff

qi is incomplete and ∃q′i ∈ Qi such that qi
i(c)→ q′i

b) (i, (c, α), j) ∈ E(q), where (c, α) ∈ L2, iff

qi is incomplete and ∃q′i ∈ Qi such that qi
i(c)→ q′i

Moreover, we introduce the snapshot Ga
Sys(q) = (V,Ea(q)) relative to q and

a = (a1, ..., ai, ...) with ai ∈ Ai. G
a
Sys(q) contains those edges (i, c, j), resp.

(i, (c, α), j), of GSys(q), where ai = i(c) and we apply the same constructions
to subgraphs of GSys.

Remark 4
Note that for the construction of the graph we inspect each local transition sys-
tem Ti separately and hence avoid the combinatorial complexity of global state
analysis. In the finite case, i.e. K = n, Ai finite and Ti finite for i = 1, ..., n,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 213

the graph GSys can be constructed in cost polynomial in |C|, |Comp|, and the
sum of the sizes of the local transition systems.

In the following we will use predicates on global states that are conjunctions of
predicates on local states.

Notation 1
Let for i ∈ K predi be a state predicate on Qi. We say q = (q1, q2, . . .) ∈ Q
satisfies predi if qi satisfies predi.

We use the following predicates on states. en(ai) describes all states of com-
ponent i where action ai is enabled. cond(e) for edge e = (i, c, j) describes all
global states q = (q1, . . . , qi, . . .) such that i(c) is enabled in qi and there is some
action ak in c that is not enabled in the respective local state of q. inc(i) yields
all incomplete states of component i.

Definition 10
For ai ∈ Ai, i ∈ K: en(ai) = {qi ∈ Qi | qi

ai→ q′i for some q′i}.
For e = (i, c, j) ∈ E: cond(e) = en(i(c)) ∧ (∃x ∈ c : ¬en(x)).
For e = (i, (c, α), j) ∈ E: cond(e) = en(i(c)) ∧ (∃x ∈ α : ¬en(x)).
For i ∈ K: inc(i) = {qi ∈ Qi | qi is incomplete}.
If p = e1, ..., er is a path in GSys, then we put cond(p) =

∧r
i=1 cond(ei).

In the next definition the notion of critical path is introduced. A critical cycle
describes a situation where cyclic waiting of components could arise.

Definition 11
A path p in GSys is called critical, if (cond(p) ∧

∧
i∈p inc(i)) �≡ false, where

i ∈ p means that node i is the start of some edge of p. A path p in GSys(q) is
called critical if (cond(p) ∧

∧
i∈p inc(i)) (q) �= false. A path that is not critical

is called non-critical.

Certain paths can immediately be singled out as non-critical.

Lemma 1
If c ∈ L1 occurs | c |-times as a label on path p in GSys, where for any two edges
e = (i, c, k), e′ = (j, c, l) we have i �= j, then cond(p) ≡ false. (Analogously for
the label (c, α)).

Definition 12
Let p be a critical cycle in a finite successor-closed subgraph Gf of GSys, q =
(q1, q2, ...) a global state. p is said to be refutable, if, whenever p lies in Gf (q),
where qi is incomplete for every i, then there is a non-critical path p̂ in Gf (q) such
that for every edge e = (i, c, j), resp. e = (i, (c, α), j), on that path en(i(c))(qi)
holds.

There are some simpler but stronger conditions that guarantee refutability.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

214 G. Gössler et al.

Lemma 2
Let p be a critical cycle in a finite successor-closed subgraph Gf of GSys. p is
refutable, if one of the following conditions holds:

a) whenever p lies in Ga
f (q) then there is a non-critical path p̂ in Ga

f (q) with
i ∈ p̂⇒ i ∈ p.

b) whenever p lies in Gf (q) then there is a non-critical path p̂ in Gf (q) such that
for every edge e = (i, c, j), resp. e = (i, (c, α), j), on that path en(i(c))(qi)
holds if qi is incomplete.

As the next theorem shows, a system is deadlock-free if there is a successor-closed
subgraph of GSys that does not contain any critical cycle. One can show that a
system satisfies this condition iff it satisfies the condition of [9]. In addition, the
theorem states that, if there is no such subgraph, we have the option to check if
there is a subgraph in which the critical cycles can be refuted. The second part
of the theorem is more of theoretical interest and gives a characterization of of
deadlock-free systems in terms of snapshots of the graph.

Theorem 1
Let Sys be an interaction system as above.

1) If there is a finite nonempty successor-closed subgraph Gf of GSys such that
every critical cycle in Gf is refutable, then Sys is deadlock-free.

2) Sys is deadlock-free iff ∀q ∈ Q the following holds
a) either GSys(q) has a node with out-degree 0
b) or there is α ∈ L1 resp. (c, α) ∈ L2 such that α = {ai1 , ..., air}, aij ∈ Aij

and GSys(q) has a simple cycle with the nodes i1, ..., ir where all labels
are α, resp. (c, α) and for every such cycle p cond(p)(q) = false.

Proof: See Appendix.

Remark 5
If |c| ≤ 2 for all c ∈ C then the condition in 1) can be tested in polynomial
time. The theorem can be formulated analogously for the notion of P -deadlock-
freedom.

Example 3 continued: GSys has no proper successor-closed subgraphs, so we
have to check GSys for critical cycles. We discuss the case n = 3. In this case
GSys is given in Figure 4.

Here lij = (connij
3 , {finishj}) where connij

3 = {resumei, f inishj}. We have
omitted the label conng for better reading, so all edges without label carry the
label conng. Let us consider the cycle

p = (1, ({resume1, finish2}, {finish2}), 2), (2, ({resume2, finish1}, {finish1}), 1).

This cycle is critical as in q = (susp1, susp2, q3) with q3 ∈ {inac3, wait3, exec3,
susp3}

cond(p) = (en(resume1) ∧ ¬en(finish2)) ∧ (en(resume2) ∧ ¬en(finish1))

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 215

1 2 3
l32l21

l12 l23

l31

l13

Fig. 4. The graph GSys for the scheduling example, n = 3

is satisfied and qi is incomplete for i = 1, 2. This cycle, however, can be refuted. If
the last state is complete, i.e. �= susp3, then we consider the path p̂ = (3, l32, 2).
The path p̂ is non-critical and satisfies condition b) of Lemma 2. If the last state
is incomplete, i.e. = susp3 then the path p̂ = (1, conng, 2) is non-critical as

cond(p̂) = en(reset1) ∧ (¬en(reset2) ∨ ¬en(reset3))

is false in the state (susp1, susp2, susp3). The other cycles in the graph are
treated analogously.

The graph that we use to determine deadlock-freedom of a system can also be
used to determine if a subsystemK ′ ⊆ K may progress. For this we construct the
restriction IM [K ′] of the interaction model IM to K ′ as given in the Appendix
and define when K ′ is controllable with respect to an interaction α ∈ I(C[K ′]),
that is a potential partner for an interaction in I(C) \Comp, which means that
we may ensure that the subsystem defined by K ′ will be able to provide α, when
it is needed.

Definition 13
LetSys=((K, {Ai}i∈K), IM, T)be an interaction system,K ′ ⊆ K. LetSys[K ′]=
((K ′, {Ai}i∈K′), IM [K ′], T [K ′]) be the induced system where

T [K ′] = (Q[K ′], I(C[K ′]),→′), Q[K ′] =
∏

i∈K′

Qi

is given by Definition 4.
A state q ∈ Q[K ′] is called complete in Sys[K ′] if ∃q′ ∃α ∈ Comp[K ′] ∪
C[K ′] : q

α

→′ q′. For X ⊆ Q[K ′] define pre(X) ⊆ Q[K ′] such that q ∈ pre(X) if

a) q ∈ Q[K ′] is complete in Sys[K ′] then ∃α ∈ Comp[K ′] ∃q′ : q
α

→′ q′∧ q′ ∈ X
b) q ∈ Q[K ′] is incomplete in Sys[K ′] then

∀q′ ∈ Q[K ′] ∀α ∈ (I(C[K ′]) \ Comp[K ′]) : (q
α

→′ q′ =⇒ q′ ∈ X)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

216 G. Gössler et al.

For Q0 ⊆ Q[K ′], we denote by PRE(Q0) the least solution of X = Q0 ∪ pre(X).
PRE(Q0) is the set of states from which we can reach a state in Q0 along a path
in T [K ′] by always performing complete interactions whenever a state is complete
in Sys[K ′].

Definition 14
Let Sys be a deadlock-free interaction system.
K is controllable with respect to α ∈ I(C), if PRE(en(α)) = Q.
K ′ ⊆ K is controllable with respect to IM , if ∀α′ ∈ I(C[K ′])

(∃α ∈ I(C) \ Comp : (α ∪ α′ ∈ I(C) =⇒
K ′ is controllable with respect to α′ in the induced subsystem Sys[K ′])).

We can now present a condition ensuring that a subsystem induced by K ′ may
strongly progress, i.e. for every run σ we may at any point continue with a run
σ′ such that every component of K ′ will participate at some time in the run σ′.

Theorem 2
Let Sys be a deadlock-free interaction system. Let K ′ ⊆ K finite or infinite.
K ′ may strongly progress in Sys, if the following two conditions hold

a) ∀i ∈ K ′ ∃ a finite successor-closed subgraph Gf,i of GSys that contains i and
does not contain any critical cycle.

b) ∀i ∈ K ′ ∀α ∈ C[K ′′] owners(α) is controllable with respect to IM , where
K ′′ is the set of components of Gf,i, and owners(α) = {k ∈ K | k(α) �= ∅}.

Proof: See Appendix.

In an analogous way, we can treat the concept of may progress.

5 Composition of Systems

5.1 Composition of Interaction Models and Systems

In this section, we explain how interaction systems can be constructed bottom
up from smaller interaction systems. In contrast to other bottom up techniques
composition is performed in such a way that the individual components remain
visible after composition. The composition operator can be also used as a basis
for a different approach to tackle the problem of NP-hardness of deciding the
properties introduced above. In order to establish a desirable property for a
composite system we might try to establish the property for the subsystems and
infer the property for the composite system. In Section 5.2 we display some first
conditions under which such a procedure can be applied.

Our view of composition is given in the following. Composition is deter-
mined on the level of the interaction models. We start with two (or more) dis-
joint interaction models, say IMi = (Ci, Compi) for finite component systems
(Ki, {Aj}j∈Ki), i = 1, 2. We then decide how these two models should be able to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 217

interact by providing a new set S of connectors that relate an interaction of one
model with an interaction of the other. We always assume that S contains only
maximal elements with respect to set inclusion, in analogy to the definition
of a connector set. In addition, we may declare a set BComp of new complete
elements. For those we request that they must be new interactions in I(S). This
condition guarantees that by putting systems together, we do not interfere with
the structure of the sub-models.

The following proposition explains how to compose in general two interaction
models with respect to a given set S of new connectors and a set BComp of new
complete elements.

Notation 2
Let X,Y be sets of port sets. Then X �� Y := {x∪y | x ∈ X∧y ∈ Y }. maxel(X)
denotes the set of maximal elements of X with respect to set inclusion.

Proposition 1
Let CS1 = (K1, {Ai}i∈K1), CS2 = (K2, {Ai}i∈K2) be two component systems
such that K1, K2 are disjoint and the elements in {Ai}i∈K1∪K2 are pairwise
disjoint. Let IMi = (Ci, Compi) be interaction models for CSi, i = 1, 2. Let

– S ⊆ I(C1) �� I(C2) be the set of new connectors,
– BComp ⊆ I(S) ∩ (I(C1) �� I(C2)) be the set of new complete elements.

We put

– C = maxel(C1 ∪C2 ∪ S),
– Comp = cl(Comp1 ∪ Comp2 ∪BComp, I(C)).

Then

a) C is a connector set for (K1 ∪ K2, {Ai}i∈K1∪K2) with S ⊆ C and I(C) =
I(C1) ∪ I(C2) ∪ I(S)

b) IM = (C,Comp) is an interaction model for (K1 ∪K2, {Ai}i∈K1∪K2).

Definition 15
Under the conditions of Proposition 1, the interaction model IM = (C,Comp)
is said to be obtained by composition from IM1 and IM2 and we write

IM = IM1

⋃

S,BComp

IM2.

When composing interaction models IMi and IMj for some i, j using a set S
of new connectors we use the notation Sij to denote S, where it is understood
that Sij = Sji. Analogously, BCompij is used to denote the set of new complete
elements and it is understood that BCompij = BCompji.

The composition of interaction models defined above is obviously commu-
tative. One can show that it is associative. Associativity is an important
property that allows composing systems incrementally without regarding the
order in which subsystems are added. In process calculi, interaction is modelled
by parallel operators that enforce restriction as in some versions of CSP [5]
or a general parallel operator in combination with a restriction operator as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

218 G. Gössler et al.

e.g. in CCS. Associativity is generally not given for process calculus type parallel
constructs.

Remark 6
The composition operator defined in Definition 15 is binary. If we want to com-
pose systems from more than two subsystems then we can exploit the associa-
tivity of the operator. For example consider systems Sysi, where 1 ≤ i ≤ 3. We
want to compose these systems by introducing a connector c = α1∪α2∪α3 where
αi ∈ I(Ci) and another connector c′ = β1 ∪β3 where βi ∈ I(Ci). To achieve this
we first compose Sys1 with Sys3 using the connectors α1 ∪ α3 and c′. Then we
compose the resulting system with Sys2 using the connector (α1 ∪α3)∪α2 = c.
Similarly we may handle the interactions that we want to declare complete.

When the composition of the interaction models is defined, the interaction sys-
tems are now composed in a straightforward manner to yield a more complex
system.

Definition 16
Let Sysi = ((Ki, {Aj}j∈Ki), IMi, Ti), i = 1, 2, be interaction systems, S12 ⊆
I(C1) �� I(C2) a set of new connectors and BComp12 ⊆ I(S12) ∩ (I(C1) ��
I(C2)), then

Sys1‖
S12, BComp12

Sys2

is the system given by

Sys = ((K1 ∪K2, {Aj}j∈K1∪K2), IM1

⋃

S12,BComp12

IM2, T) where

T = (Q1 ×Q2, I(C12),→12) and →12 is the least relation satisfying

1. if q1
α1→1 q

′
1 then (q1, q2)

α1→12 (q′1, q2)
2. if q2

α2→2 q
′
2 then (q1, q2)

α2→12 (q1, q′2)
3. if q1

α1→1 q
′
1, q2

α2→2 q
′
2, α1 ∪ α2 ∈ I(S12) then (q1, q2)

α1∪α2→12 (q′1, q
′
2).

From the associativity for composition of interaction models, it is straightforward
to see that the so defined parallel operator on interaction systems is associative
and Remark 6 applies analogously.

5.2 Ensuring Deadlock-Freedom and Progress by Construction

In this section we rise the question under which conditions desirable proper-
ties of subsystems can be lifted to composed systems. As an example we treat
deadlock-freedom and progress of a component. In the following, we consider
two interaction systems Sysi = (CSi, IMi, Ti), i = 1, 2 that are composed by
introducing a new set of connectors S12. We assume that all conditions that are
necessary to compose systems are fulfilled, as required in Proposition 1. We first
consider deadlock-freedom.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 219

Proposition 2
Let Sysi i = 1, 2 be interaction systems. If one of the following conditions is
satisfied

a) Let Sys1 be deadlock-free and C1 ⊆ Comp1 and let S12 ⊆ I(C1) �� I(C2)
be arbitrary.

b) Sys1 is deadlock-free and S12 ⊆ (I(C1) \ C1) �� I(C2)
c) Sys1 is deadlock-free or Sys2 is deadlock-free and

S12 ⊆ (Comp1 �� (I(C2) \ C2)) ∪ ((I(C1) \ C1) �� Comp2)

then

Sys1‖
S12, BComp12

Sys2

is deadlock-free for any BComp12 ⊆ I(S12) ∩ (I(C1) �� I(C2)).

Sketch of proof for b): in this case the connectors of the deadlock-free system
Sys1 remain maximal after composition and as the complete elements of Sys1

remain complete by definition every state in Sys1‖
S12, BComp12

Sys2 offers a complete or

maximal interaction in I(C).

These are only some examples for conditions that can be put on the level of
the interaction models. Further conditions, as well as conditions imposing re-
strictions on the local transition systems, and conditions involving the graph
criterion of Theorem 1 are being elaborated.

Example 4
We consider the following two component systems CS1 and CS2. The compo-
nents of CS1 are 1 and 2 those of CS2 are 3 and 4. The port sets of 1 and 2 are
given by A1 = {a1, a2, a3} and A2 = {c1, c2, c3}. The port sets of the other two
components are given by A3 = {b1, b2, b3} and A4 = {d1, d2}. We define IMi =
(Ci, Compi) for CSi where C1 := {{a1, c1} , {a2, c2} , {a3} , {c3}} and Comp1 :=
{{a2} , {a2, c2} , {c3}} respectively C2 := {{b1} , {b2, d1} , {d2} , {b3}} and
Comp2 := {{b1}} . The behavior of the second system Sys2 is given by the
two local transition systems of Figure 5. It is clear that Sys2 is deadlock-free.
Now let the behavior of the first system be given by any transition system that
is labelled with interactions from I (C1). Composing the two systems according
to S12 := {{b2, a2, c2} , {b2, c3}} ∪ {{b1, a1} , {b1, c1}} and arbitrary BComp12

yields a deadlock-free system according to Proposition 2 c).

We now consider the question under which conditions a component k that may
progress in Sys1 will still have this property when Sys1 is composed with some
other system. We present here two examples for conditions that are similar to
those that ensure deadlock-freedom for the composite system.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

220 G. Gössler et al.

p1

p2 p3

q1

q2

b1

b2

b3 d1 d2

Fig. 5. Local Transition Systems

Proposition 3
Let Sysi, i = 1, 2, be interaction systems and let Sys1 be deadlock-free and
let k ∈ K1 be a component that may progress in Sys1. If one of the following
conditions is satisfied

a) S12 ⊆ (I(C1) \ C1) �� I(C2)
b) S12 ⊆ Comp1 �� I(C2)

then k may progress in Sys1‖
S12, BComp12

Sys2 for any BComp12 ⊆ I(S12) ∩ (I(C1) ��

I(C2)).

Sketch of proof for a): the reason is that the maximal and complete interac-

tions of Sys1 are still so in Sys1‖
S12, BComp12

Sys2.

6 Discussion and Related Work

The paper proposes results ensuring properties of component-based systems from
properties of its interaction model and its components in the framework of in-
teraction systems encompassing heterogeneous interaction presented in [9]. The
following features of the framework are instrumental for developing our results:

– the separation of behavior and coordination, where coordination is not ex-
pressed by another behavior, but by an interaction model. We hope that the
small examples illustrate the flexibility of this framework for coordinating a
set of components at a high level of abstraction without interfering with the
components’ behaviors.

– the associativity of the framework which is the basis for well-defined incre-
mental construction of systems.

An important motivation for introducing a clean theoretical framework for
interaction and control is the hope that this will provide means for proving
properties – which in general have to be shown on global models – in an in-
cremental manner and as independently as possible from the behavior models

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 221

of components. It has been shown in [13] that deciding deadlock-freedom in
interaction systems is NP-hard. A similar result exists for liveness of a set of
components [12]. This motivates the focus on conditions for establishing such
properties. Our examples show the usefulness of these results. More such results
are still needed, and can probably be obtained when some specificities of an
application domain are exploited.

Related methods for showing absence of deadlocks or mutual waiting have
been studied in various settings, for example in the context of data base transac-
tions in a more restricted form [18,14] or operating systems for dynamic deadlock
avoidance [17].

More recently, in [2], absence of interlocking has been studied for a framework
of communicating processes where processes interact in all their interactions with
the same fixed set of other processes. In [1] a condition under which a composed
system is deadlock-free is given in a CSP -like setting. In [3] a condition for the
deadlock-freedom of a component-system with two components is given.

Extended versions of our framework, including local variables of components
and priority rules as an additional control layer, are presently being implemented.
The implementation in the context of the Prometheus tool focusses on verifica-
tion, in particular verification of SystemC specifications. A second implementa-
tion, called BIP, focusses on the efficient execution of systems and includes also
timed specifications.

The work presented here shows some typical results that can be established
in this framework. Further properties such as liveness, fairness and robustness as
well as a result presenting a condition that can be tested in polynomial time and
ensures liveness can be found in [6]. There is work in progress that is concerned
with robustness and further exploits compositionality. Moreover first steps to
incorporate probabilities have been taken in order to eventually be able to make
quantitative propositions about the properties presented here. For example we
want be able to prove statements like “with probability p no deadlock occurs”.
The notion of a component can be extended with various additional information
including invariants [9], but also observability criteria and associated equivalence
relations are of interest. Other possible interesting extensions concern introduc-
tion of time, as well as dynamic reconfiguration.

References

1. Robert Allen and David Garlan. A Formal Basis for Architectural Connection.
ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

2. P.C. Attie and H. Chockler. Efficiently verifiable conditions for deadlock-freedom
of large concurrent programs. In R. Cousot, editor, proc. VMCAI’05, volume 3385
of LNCS, pages 465–481, 2005.

3. Hubert Baumeister, Florian Hacklinger, Rolf Hennicker, Alexander Knapp, and
Martin Wirsing. A Component Modell for Architectural Programming. In Pro-
ceedings of FACS 2005. ENTCS, 2005.

4. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of
the 8th European Software Engineering Conference, Vienna, pages 109–120, 2001.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

222 G. Gössler et al.

5. N. Francez, C.A.R. Hoare, D.J. Lehmann, and W.P. de Roever. Semantics of
non-determinism, concurrency and communication. Journal of Computer Science,
19:290–308, 1979.

6. G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, and J. Sifakis. An Ap-
proach to Modelling and Verification of Component Based Systems. In Proceedings
of the 33rd International Conference on Current Trends in Theory and Practice of
Computer, Science SOFSEM07, volume 4362 of LNCS, 2007.

7. Gregor Gßler and Joseph Sifakis. Component-based construction of deadlock-free
systems. In proceedings of FSTTCS 2003, Mumbai, India, LNCS 2914, pages 420–
433, 2003.

8. Gregor Gßler and Joseph Sifakis. Priority systems. In proceedings of FMCO’03,
LNCS 3188, 2004.

9. Gregor Gßler and Joseph Sifakis. Composition for component-based modeling. Sci.
Comput. Program., 55(1-3):161–183, 2005.

10. Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI-Quarterly, 2(3):219–246, September 1989.

11. Mila Majster-Cederbaum, Moritz Martens, and Christoph Minnameier. A
Polynomial-Time Checkable Sufficient Condition for Deadlock-Freedom of
Component-Based Systems. In Proceedings of the 33rd International Conference on
Current Trends in Theory and Practice of Computer, Science SOFSEM07, volume
4362 of LNCS, 2007.

12. Moritz Martens, Christoph Minnameier, and Mila Majster-Cederbaum. Deciding
Liveness in Component-Based Systems is NP-hard. Technical report TR-2006-017,
Universität Mannheim, 2006.

13. Christoph Minnameier. Deadlock-Detection in Component-Based Systems is NP-
hard. Technical report TR-2006-015, Universität Mannheim, 2006. also submitted
for publication elsewhere.

14. Christos H. Papadimitriou. The Theory of Database Concurrency Control. Com-
puter Science Press, 1986.

15. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logics and Models for Concurrent Systems. NATO, ASI Series F, Vol.
13, Springer Verlag, 1985.

16. Joseph Sifakis. A framework for component-based construction. In 3rd IEEE
International Conference on Software Engineering and Formal Methods, volume
Key note talk, Koblenz, 2005.

17. A.S. Tanenbaum. Modern Operating Sytems. Prentice Hall, 2001.
18. Jeffrey D. Ullman. Data Base and Knowledge-Base Systems, vol.1. Computer

Science Press, 1988.

A Appendix

A.1 Subsystems

In order to be able to talk about subsystems, we define a notion of restriction
of an interaction model to a subset of components.

Definition 17
Let CS = (K, {Ai}i∈K) be a component system, IM = (C,Comp) an interaction
model for CS and K ′ ⊆ K. Denote by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Ensuring Properties of Interaction Systems 223

C[K ′] := {c′ ⊆ A[K ′] | ∃ c ∈ C : c′ = c ∩A[K ′]∧ � ∃ c̄ ∈ C : c′ � c̄ ∩A[K ′]}

the restriction of the connectors in C to K ′ where A[K ′] =
⋃

i∈K′
Ai.

We put Comp[K ′] = I(C[K ′]) ∩ Comp.
If C[K ′] is a connector set for CS[K ′] = (K ′, {Ai}i∈K′), then the induced

interaction model for CS[K ′] is given by: IM [K ′] := (C[K ′], Comp[K ′]) which
is also called the restriction of IM to K ′.

Remark 7
Note that in the case of a system with infinitely many components it might occur
that C[K ′] does not satisfy the conditions for a connector set. In particular,
C[K ′] might be empty for infinite systems. For finite systems C[K ′] is always
a connector set for CS[K ′] = (K ′, {Ai}i∈K′) and I(C[K ′]) = {α ∩ A[K ′] | α ∈
I(C)}.

A.2 Proofs

Proof of Theorem 1
The proof of part 1) is an extension of the proof of the corresponding theorem
in [9] if there is a successor-closed subgraph that does not contain any critical.
In addition one has to show that refutability will do if there are critical cycles.
We give here the proof of part 2):

Let Sys be deadlock-free and q = (q1, q2, . . .) a state in Q.

Case 1: There exists i such that qi is complete.
Then the node i has out-degree 0 in GSys(q).
Case 2: ∀i qi is incomplete.
As Sys is deadlock-free, there is some β ∈ C ∪ Comp q

β→ q′ for some q′.
Case 2.1: β is a minimal element in C ∪ Comp.
Case 2.1.1: β = {ai1 , . . . , air} ∈ C, r > 1
Hence β ∈ L1, then choose α = β. Hence (ij , α, ik) is an edge in GSys(q),
j �= k, j, k = 1, . . . , r. I.e. we obtain edges labelled with α between any two
nodes in {i1, . . . , ir}. In particular there is the cycle i1

α→ i2
α→ ir

α→ i1.
For any such cycle p between these nodes cond(p)(q) = false.
Case 2.1.2: β = {ai1 , . . . , air} ∈ Comp \ C, r > 1
Let c be a connector with β ⊂ c. Put α = β. Then (c, α) ∈ L2. Hence we get
edges (ij , (c, α), ik) in GSys(q), j �= k, j, k = 1, . . . , r and for all cycles p over all
these nodes labelled with (c, α) cond(p)(q) = false.
Case 2.2: β is not minimal in C ∪ Comp
Then there is some minimal α ∈ Comp with α ⊂ β. As there is some transition
q

β→ q′ for some q′ in T , we also have a transition q
α→ q′′ for some q′′. Let

α = {ai1 , . . . , air}, r > 1. We now proceed as in Case 2.1.2.
Let conversely each state q satisfy a) or b). Let q be an arbitrary state. We

have to show that there is some α ∈ C ∪ Comp with q α→ q′ for some q′.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

224 G. Gössler et al.

If a) is satisfied then let i be the node in GSys(q) with out-degree 0. In this
case qi is complete and the statement is obvious.
If b) is satisfied then there is α ∈ L1 or (c, α) ∈ L2 such that α = {ai1 , ..., air}
whith aij ∈ Aij and GSys(q) has a simple cycle with the nodes i1, ..., ir where all
labels are α, resp. (c, α) and for every such cycle we have cond(p)(q) = false.

Case 1: Label α. Let w.l.o.g. i1
α→ i2

α→ ir
α→ i1 be a simple cycle with

cond(p)(q) = false. Then there must be one edge e with cond(e) = false, hence
for some j (en(aij) ∧ ∃x ∈ α, x �= aij : ¬en(x))(q) = false. But this edge is only
in GSys(q) if en(aij)(qij) = true, hence α ∈ C can be performed in state q.
Case 2: Label (c, α): analogously.

Proof of Theorem 2
One shows in a first step that, under the conditions of the theorem, every k ∈
K ′ may progress in Sys. This can be done in a similar way as in [9] and is
hence omitted here. In a second step we conclude that for finite K ′, K ′ may
strongly progress and finally we show how to obtain the result for infinite K ′.
Let K ′ be finite, K ′ = {k1, k2 . . . , kn}. Let σ = q0

α0→ q1
α1→ q2 . . . be a run of

Sys and n ∈ N. As k1 may progress in Sys there exists σ′ such that σ(1) =
σnσ

′ is a run of Sys and k1 participates in some interaction of σ′. Let σ′
l1

be a prefix of σ′ of length l1 such that k1 participates in some interaction of
this prefix. Set n1 = n + l1 then there must be some σ′′ such that σ(2) =
σ(1)n1σ

′′ is a run of Sys and component k2 participates in some interaction of
σ′′. As K ′ is finite this process terminates and we have a run in which finally
every component participates in some interaction. We now assume that K ′ is
countable. We consider the set R of all runs of Sys and introduce a metric
d : R×R→ {0, 1} on R by d(σ, σ̂) = inf{1/2n : σn = σ̂n}. (R, d) is a complete
metric space by standard arguments, hence every Cauchy-sequence converges in
R. We now proceed as above and construct for every m ∈ N a run σ(m) such
that every element {1, 2, . . . ,m} participates in some interaction of σ(m) by
maintaining the prefix that has participation of {1, . . . ,m} when constructing
the run that has participation of {1, . . . ,m + 1}. In such a way we construct a
Cauchy-sequence of runs σ(1), σ(2), The limit of this sequence is the desired
run that has the prefix σn and then contains for every k ∈ K ′ an interaction in
which k participates.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of

Live Sequence Charts�

Werner Damm, Tobe Toben, and Bernd Westphal

Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
{damm,toben,westphal}@informatik.uni-oldenburg.de

Abstract. The Live Sequence Charts (LSC) language is a formally rig-
orous variant of the well-known scenario language Message Sequence
Charts (MSC). LSCs yield expressive power by means to distinguish
mandatory and scenario behaviour, means to characterise by another
scenario the context in which a specification applies, and means to dis-
tinguish required from possible progress, i.e. to require liveness.

From the original proposal by Damm & Harel [1], two slightly different
dialects emerged, one in the context of LSC play-in and -out [2] and one
for the use of LSCs as formal requirements specification language in
formal, model-based approaches to software development [3].

In this paper, we investigate the expressive power of LSCs in the sense
of [3]. That is, we first (constructively) show that for each LSC there is
an equivalent CTL∗ formula. Complementing existing work, we show
that the containment is strict, that is, not each CTL∗ formula has an
equivalent LSC. To complete the discussion, we present for the first time
a way back, from a syntactically characterised fragment of CTL∗ to the
subset of bonded LSC specifications, thereby establishing an equivalence.

1 Introduction

Scenario-based approaches are an adequate approach to the formal specification
of requirements on systems that are composed of different components [4,5]. The
common idea of scenario-based specification is to formally yet comprehensibly
describe all interactions between system components, and their interaction with
the environment, that are necessary to accomplish a certain task. This is, for
example, in contrast to temporal logic patterns [6,7], which also claim compre-
hensibility but only provide rather atomic templates for action/response pairs
of which many have to be used to cover more complex tasks.

The Live Sequence Charts (LSC) language is a particular formalism that sup-
ports the scenario-based approach. It has been introduced by Damm & Harel in [1]
as a conservative extension of the well-known ITU-standard Message Sequence
Charts (MSC) [8] and in the meantime gained wide adoption [9,10,11,12,13].

In the following, we give a brief example to recall the scenario-based approach
and the LSC language. Although the LSC language is graphical and intuitive,
� This work was partly supported by the German Research Council (DFG) in SFB/TR

14 AVACS and in project DA 206/7-3 (USE), SPP 1064.

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 225–246, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

226 W. Damm, T. Toben, and B. Westphal

there is no complete introduction possible within a page or two. For a more
thorough introduction, the reader is referred to [1,3,2].

Consider the design of the software of a level-crossing system. There might be
a central controller ‘CrossingCtrl’ and separate controllers ‘LightsCtrl’ and ‘Bar-
rierCtrl’ for the traffic lights and the barriers. One requirement on the system is
clearly to secure the crossing on a request ‘secreq’ by the environment. Then the
central controller shall finally trigger the lights and barrier controller by sending
appropriate messages. If the lights controller is operational at that point in time,
it shall continue to switch on the red traffic lights and report back success while
the barrier controller simultaneously initiates lowering of the barrier and finally re-
ports back success. The barrier moving up in between the latter two events would
be an error. After both sub-controllers reported success, it would be kind (but not
necessary) if the central controller reported success back to the environment.

LSC: sec xing
AC: true
AM: invariant I: strict

Environment LightsCtrl

Operational

CrossingCtrl BarrierCtrl

secreq

lights on barrier down

red on
lights ok

barrier ok

¬MvUp

done

Fig. 1. Live Sequence Chart for a system of level-crossing controllers

This prosaic specification can be formalised using scenarios by the LSC shown
in Figure 1. There is one (vertical) instance line for each sub-controller labelled
accordingly and one for the environment, as indicated by the diagonal lines. The
large dashed hexagon is called pre-chart and characterises the activation of the
scenario, that is, the situations in which the remainder (or main chart) of the
chart is supposed to be observed. In the example, this is the single asynchronous
message, i.e. receipt occurs strictly after sending, ‘secreq’ from the environment,
which requests securing. To express that the central controller shall finally send
the following two instantaneous messages ‘lights on’ and ‘barrier down’, we can
use the LSC feature that instance line segments have a temperature. Tempera-
ture hot, graphically indicated by a solid line segment, enforces progress, while
cold, indicated by a dashed line segment, doesn’t. The segment of the ‘Cross-
ingCtrl’ instance line starting at the top of the main-chart is hence solid.

Black circles on instance lines are simultaneous regions, which enforce simul-
taneity. Thus messages ‘lights on’ and ‘barrier down’ should be sent (and re-
ceived) simultaneously.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 227

The smaller hexagon on the ‘LightsCtrl’ instance line is a condition, which
requires that the controller shall be operational at the point in time when
‘lights on’ is received. Note that conditions in LSC are treated differently than
MSC conditions. First of all, they are semantically significant in LSCs, while in
MSCs they are merely comments. And secondly they may also have a tempera-
ture, either hot or cold, which is graphically indicated by solid or dashed outline.
The semantics of cold conditions is that if they hold when evaluated, then in
order to satisfy the LSC one has to adhere to the remainder of the scenario; and
if they don’t hold, the whole scenario is immediately considered to be satisfied.
Thus cold conditions can be used to provide legal exits to a scenario. In practice,
scenarios with legal exits are typically complemented by another scenario which
shares the same prefix and continues after the complementary condition with the
actions to take in the complementary case. Thus in our example, there should be
another chart which specifies the system behaviour in case the lights controller
is not operational when receiving ‘lights on’.

To indicate that a condition is supposed to hold for a span of time, we can
use the LSC feature local invariant. In Figure 1, there is a local invariant that
starts exclusively with the receipt of ‘barrier down’ and ends inclusively with the
sending of ‘barrier ok ’ as denoted by the unfilled and filled circles. It requires
that the barrier shall not move up from (strictly after) the point in time where
‘barrier down’ has been received up to (and including) the point in time where
‘barrier ok ’ is sent. The solid outline of the condition hexagon indicates that its
temperature is hot, that is, if the condition is violated during a system run that
matched the scenario up to this point, then the system violates the LSC.

As we don’t care in which order the subsidiary controllers reported back to the
central controller, the order on messages ‘lights ok ’ and ‘barrier ok ’ is explicitly
relaxed by enclosing them in a coregion, graphically indicated by the dotted line
in parallel to the ‘CrossingCtrl’ instance line. Both messages may be observed
in either order or even simultaneously.

Note that progress is enforced up to the configuration or cut (cf. 2.2) indi-
cated by the horizontal gray line, as there are hot instance line segments at the
participating instances. Below the gray line, all instance line segments are cold,
that is, progress is no longer enforced. In other words, the message ‘done’ may
be sent, but need not.

In addition to locations and conditions, the whole chart also has a tempera-
ture, either hot or cold, which is graphically indicated by the box enclosing the
main chart, which complements the pre-chart. In order to satisfy a hot (or uni-
versal) chart as in the example, a system has to satisfy the main chart whenever
the pre-chart is observed. In contrast, a cold (or existential) chart is already
satisfied if there exists a single system run that adheres to the concatenation of
pre- and main-chart.

The last aspect of Figure 1 to discuss is the header, the small box on top
of the pre-chart. It assigns the chart a name, chooses an interpretation, and
may further restrict activation. Namely, the pre-chart is only considered, if the
activation condition (AC) holds. That is, if the activation holds at some point

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

228 W. Damm, T. Toben, and B. Westphal

in time and from there on the pre-chart is observed, than the main-chart has
to be considered. The activation mode (AM) denotes the candidates for eval-
uation of the activation condition. If it is invariant, then any point in time is
considered while if it is initial, only the initial states of the system are. A third
mode, iterative, is similar to invariant but excludes overlapping activation. If
the LSC is non-reactivating, that is, if the pre-chart is not a sub-sequence of
the main-chart, then the iterative mode is equivalent to the invariant mode. If
the LSC is reactivating, then the LSC has not even an equivalent in CTL∗ thus
we will exclude this mode from the discussion in the following sections. Finally,
the interpretation (I) determines the significance of additional occurrences of
messages. In the strict interpretation, additional occurrences are considered to
be violations, thus an implementation of ‘LightsCtrl’ that sends ‘red on’ twice
before reporting back success violates Figure 1. In the weak (or tolerant [2])
interpretation, additional occurrences of messages are ignored.

Having introduced the most common features of the LSC language, we can
summarise that the most significant differences between LSCs and MSCs are

– modalities for
• the whole chart, distinguishing example scenarios from universal ones,
• locations, possibly indicating liveness,
• conditions, providing for legal exits and anti-scenarios, and
• messages (cf. [1,3,2]),

– precise characterisation of the activation time by pre-charts, activation con-
dition, and activation mode, and

– semantical significance of conditions.

These additions make LSCs significantly more powerful than MSCs in the sense
that more behaviour is distinguishable with LSCs than with MSCs (cf. [1] for
details) whereas the graphical appeal and intuitive comprehensibility of MSCs
is preserved by indicating the modalities graphically.

In order to understand the relation of this work to [14,15], note that after
the original introduction of LSCs by Damm & Harel [1], two slightly different
dialects, motivated by different application domains, emerged.

The LSC language of Harel & Marelly [2] is tailored for the so called play-out
approach. They employ a tool called play-engine to execute LSC specifications,
i.e. sets of LSCs. Thereby there needn’t be an implementation of the intra-object
behaviour of the system under design; the set of LSCs is the implementation.
To this end, they added elements like actions to modify the state of the system,
loops, and sub-charts to [1]. The semantics is given using the linearisation of
partial orders [2].

The LSC language of Damm & Klose [3], which is the subject of this paper,
is tailored to complement the model-based development of the intra-object be-
haviour of a system using, e.g., Statemate state-charts or UML state-machines.
The model can then formally be checked for whether it adheres to the LSC spec-
ification, for example employing model-checking techniques as discussed in [16]
and demonstrated in [13] for Statemate and in [17] for Rhapsody/UML.1 To this
1 Statemate and Rhapsody are trademarks of i-Logix, Inc.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 229

end, they added local invariants and the activation mode [1]. The semantics is
given by a variant of Büchi Automata [18,3].

The motivation of this work is also rooted in the latter application domain.
As MSCs and LSCs are, in contrast to other graphical formalisms, not simply
graphical representations of more fundamental and well-understood formalisms
like Temporal Logic but have been designed driven by the needs of the ap-
plication domain, with an intuition of the semantics in mind, which has then
been formalised. In order to understand the potentials and limitations of the
LSC language, it is necessary to compare its expressive power to more funda-
mental formalisms like temporal logic. Pragmatically, a translation from LSCs
to temporal logic makes it possible to employ any of the many temporal logic
model-checkers for formal verification of LSCs against given system models.

The first result of our paper is similar to [14,15] where the relation of a small
subset of the LSCs of [2] to CTL∗ has already been established. We consider
the different LSC dialect of [3] and obtain the result in a different way. Using
the automaton based semantics of LSCs [3], we can employ older results for
the translation from particular automata to temporal logic by [19]. In addition,
we already convey a first comparison of both dialects on the common level of
temporal logic; a full comparison will be possible with the full version of [15]
that proposes to discuss a larger subset of the LSCs of [2]. Furthermore, we not
only provide an embedding of LSCs into temporal logic but can more precisely
characterise a fragment of first-order CTL∗ that comprises the subset of LSCs
we consider via an inductive syntactical definition (similar to the syntactical
characterisation of the common fragment of LTL and CTL∗ [20]).

As a second result, we obtain for the first time a description of an equivalent
fragment of first-order CTL∗ for the slightly smaller but most commonly used
subset of bonded LSCs, i.e. where conditions and local invariants only appear in
simultaneous regions with messages. The equivalence is shown constructively by
providing a translation back from formulae to LSCs.

A minor original contribution of this paper is the full version of a closed
formalisation of the syntax and the semantics of the LSCs of [3], including the
interpretations weak and strict. It turned out to be necessary to introduce an
alternative formalisation, since [3,18] give the semantics of LSCs only in form
of an imperative unwinding algorithm that iteratively constructs the automaton
for a given LSC. Our formalisation allowed to establish the results presented
here and in [21,16]. We expect it to be useful in further research on both dialects
of LSCs since we are confident that it is extendable to the LSCs of [2].

2 Core Live Sequence Charts

For a (slightly clearer) presentation, in the following we introduce a subset of
the LSCs of [3] which we call core LSCs. Core LSCs are missing three features
that are out of the scope of this paper. Firstly, we discuss activation only by
an activation condition and not the general case of pre-charts. An activation
condition can be used if the activation only depends on properties of a single

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

230 W. Damm, T. Toben, and B. Westphal

system state and not on a whole scenario. For the translation to temporal logic,
pre-charts can be treated similar to [15] as an implication from the formula of
the pre-chart to the formula of concatenation of pre- and main-chart.

Secondly, we only consider un-timed LSCs, that is, we exclude timer-set and
-reset and timeout elements as well as timing intervals which LSCs inherit from
MSCs. General timed LSCs require a timed Temporal Logic. They can be treated
similar to the Real time Symbolic Timing Diagrams (RSTD) in [22] since they
use the same kind of automata that we use for LSCs [3].

And thirdly, we consider only hot asynchronous messages, i.e. sending and re-
ceipt has to be observed in contrast to cold asynchronous messages, which admit
that the message is lost. Cold asynchronous messages add irregular transitions
to the Symbolic Automaton, which are tedious to consider but effectively don’t
harm the automaton properties we use in the proofs. The translation to tempo-
ral logic extends directly to possible asynchronous messages, for the translation
back we might need to exclude them.

The new representation of the abstract syntax of LSCs we introduce in the
following Section 2.1 is equivalent to the one used in [3] in that it is closely
related to the actual graphical charts like the one shown in Figure 1, but it is
much more concise than [3]. Note that for our purpose, it is not sufficient to use
a more abstract notion of abstract syntax like, for instance, partial orders on
the set of LSC elements as demonstrated by [14]. The reason is that the proof of
equivalence between a fragment of first-order prenex CTL∗ (cf. Section 3) and
a subset of LSCs in Section 3.2 inductively constructs an LSC, and to this end
needs a rather detailed abstract syntax.

As mentioned in the introduction, our definition of the LSC semantics in
Section 2.2 is equivalent to the one of [3] but closed, instead of in terms of a
translation algorithm, and thus much more appropriate to our needs.

2.1 Syntax

Formally, annotations of messages, conditions, and local invariants of an LSC are
boolean expressions, i.e. core LSCs are defined over a signature. A signature S =
(V ,P , χ) comprises a set of variables V , a set P of predicates, and – in addition to
the standard definition – a partial function χ : P ⇀ P with dom(χ)∩ran (χ) = ∅
that partitions P into the three sets of message send predicates Psnd := domχ,
message receive predicates Prcv := ranχ, and non-message predicates Pcnd :=
P \ Pmsg, where Pmsg = Psnd ∪̇ Prcv. This separation of predicates is the key to
identify messages and conditions in the formula when considering the translation
back to LSCs. The boolean expressions over S, denoted by ExprS , are defined by
the grammar ψ ::= true | p0 | p(x1, . . . , xn) | ¬ψ1 | ψ1 ∨ ψ2 where p0 is a 0-ary
predicate and p of arity n > 0. We shall use the common abbreviations false,
∧, →, and ↔. A tuple M = (U , I) is called structure of S if U is a non-empty
set called universe and I is an interpretation of the predicates in P . A function
σ : V → U is called valuation of V . The semantics of ψ ∈ ExprS is standard given
a structure (U , I) and a valuation from ValU(S), the set of all valuations of V .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 231

A central piece of information in the concrete syntax of an LSC as given in
Figure 1 is the order of elements along a single instance line as their order shall
be preserved unless relaxed by coregions. As coregions mustn’t be nested, the
order of elements is actually a scenario order as defined in the following. An LSC
instance line is then simply a set equipped with a scenario order and a function
that assigns each element a temperature from Temp := {hot, cold}.

Definition 1 (LSC Instance Line). Let A be a finite, non-empty set. The
tuple (A,≺) is called instance line if and only if ≺⊆ A× A is a scenario order
(or direct predecessor relation) on A, that is, if and only if

(i) ∃! a⊥ ∈ A ∀ a ∈ A : a⊥ ≺∗ a (Unique Minimum)
where ≺∗ denotes the reflexive transitive closure of ≺.

(ii) ∀ a, a1, a2 ∈ A : a ≺ a1 ∧ a ≺ a2 =⇒ a1��≺∗a2 (Unordered Successors)
where a1��≺∗a2 denotes that a1, a2 are unordered, i.e. a1 �≺∗ a2 and a2 �≺∗ a1.

(iii) ∀ a1, a2 ∈ A : (∃ a0 ∈ A : a0 ≺ a1 ∧ a0 ≺ a2)
=⇒ (∀ a3 ∈ A : a1 ≺ a3 =⇒ a2 ≺ a3). (Diamond Property)

A triple (A,≺, ϑ) with ϑ : A → Temp is called LSC instance line if and only
if (A,≺) is an instance line. The elements a ∈ A are then called (tempered)
atoms. When dealing with multiple instance lines, we use a1 ��a2 to denote that
the atoms a1 and a2 belong to the same instance line. ♦

The following definition of core LSCs captures the essence of an LSC picture like
Figure 1, in particular the set of elements and their order on the instance lines.
Formally, a core LSC is structured into the body and the information found in the
head and given by the frame around the body, namely the activation condition,
the activation mode, the interpretation, and the quantification. The body is
further structured and comprises a set of LSC instance lines together with three
sets of the elements: messages, conditions, and local invariants (cf. Figure 2).
Messages in addition have a synchroneity from Sync := {inst, asyn}, conditions
and local invariants are equipped with an obligation from Obl := {mand, poss}
(the formal names for hot and cold), and a local invariant start- and end-atom
has a containedness from Cont =: {incl, excl}.

Definition 2. Let S = (V ,P , χ) be a signature. A core LSC over S is a tuple
L = (�, ac, am, int, quant) with activation condition ac ∈ ExprS , activation mode
am ∈ {initial, invariant, iterative}, interpretation int ∈ {strict,weak}, quantifi-
cation quant ∈ {existential, universal}, and body

� = ({(A1,≺1, ϑ1), . . . , (An,≺n, ϑn)},MsgL,CondL,LocInvL), n ≥ 1, where

– {(A1,≺1, ϑ1), . . . , (An,≺n, ϑn)} is a set of disjoint LSC instance lines.
We set Inst(L) := {1, . . . , n}, AL :=

⋃
i∈Inst(L)Ai, ≺L:=

⋃
i∈Inst(L) ≺i,

and ϑL :=
⋃

i∈Inst(L) ϑi. We denote by a⊥i the minimum of ≺i, i ∈ Inst(L),
also called instance head, and set A⊥

L := {a⊥i | i ∈ Inst(L)}. By A|i := A∩Ai

we denote the projection of a set A ⊆ AL onto instance i ∈ Inst(L).
If the LSC L is clear by context we shall simply write, e.g., ≺ instead of ≺L.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

232 W. Damm, T. Toben, and B. Westphal

LSC: sec xing
AC: true
AM: invariant I: strict

Environment LightsCtrl

Operational

CrossingCtrl BarrierCtrl

secreq

lights on barrier down

red on
lights ok

barrier ok

¬MvUp

done

a⊥

1

a1,1

a1,2

a⊥

2

a2,1

a2,2

a2,3

a⊥

3

a3,1

a3,2

a3,3

a3,4

a⊥

4

a4,1

a4,2

(A4,≺4, ϑ4) = ({a⊥

4 , a4,1, a4,2},
{a⊥

4 ≺4 a4,1 ≺4 a4,2},
{a⊥

4 �→ cold, a4,1 �→ hot, a4,2 �→ cold})

Msg = {(a2,1, a3,1, inst,mand, lights on),
(a3,1, a4,1, inst, mand, barrier down),
(a2,2, a1,1, inst, mand, red on),
(a2,3, a3,2, inst, mand, lights ok),
(a4,2, a3,3, inst, mand, barrier ok),
(a3,4, a1,2, inst, mand, done)}

Cond = {({a2,1}, poss,Operational)}

LocInv = {((a4,1, excl), (a4,2, incl),
mand,¬MvUp)}

Fig. 2. Abstract syntax of the LSC from Figure 1. For brevity, we only consider the
LSC body, give the order and temperature only for the right-most instance line, and
in messages omit the receive expressions as they are equal to the send expressions.

– (m ∈) MsgL is a set of messages,

m = (as, ar, ς, ψs, ψr) ∈ A ×A × Sync × ExprS × ExprS ,

each comprising the message send and receive atoms as and ar, the mes-
sage synchroneity ς, and the message send and receive expressions ψs =
p(x1, .., xn) with p ∈ Psnd and ψr = χ(p)(x1, .., xn), n ≥ 0, xi ∈ V. By
Msginst(L) := {m ∈ Msg(L) | ς(m) = inst} and Msgasyn(L) := {m ∈
Msg(L) | ς(m) = asyn} we denote the sets of instantaneous and asynchro-
nous messages of L and set atoms(m) := {as, ar};

– (c ∈) CondL is a set of conditions,

c = (Ac, κ, ψc) ∈
(
2A \ {∅}

)
× Obl × ExprS ,

each comprising the set of condition atoms Ac with at most one atom per
instance line2, i.e. |(Ac|i)| ≤ 1 for i ∈ Inst(L), the condition mode κ, and
the condition expression ψc. We set atoms(c) := Ac(c);

– (l ∈) LocInvL is a set of local invariants,

l = ((as, γs), (ae, γe), κ, ψ) ∈ (A × Cont) × (A × Cont) × Obl × ExprS ,

each comprising the local invariant start and end atoms as and ae with
containedness γs and γe, the local invariant mode κ, and the local invariant
expression ψ. We set atoms(l) := {as, ae}.

2 In general, conditions are not limited to single instance lines as shown in Figure 1,
but may span multiple instance lines; a condition spanning multiple instance lines
synchronises the participating components.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 233

The set elems(L) := MsgL ∪ CondL ∪ LocInvL is called the set of elements of
L. To denote the components of a given element we use functional notations,
like as(m) for a message m, etc. These functions and ‘atoms’ are canonically
extended from single elements to subsets of elems(L) yielding sets of components
and atoms, respectively, and we set atoms(L) := atoms(elems(L)).

A core LSC is called closed if and only if atoms(elems(L)) ∪ A⊥
L = AL, i.e.

if there are no atoms not used by elements except for instance heads. In the
following we will only consider closed core LSCs. ♦

Note that all expressions in an LSC may use variables from V . Thereby we cover
dynamic binding of core LSCs as introduced in [23,24] as an extension of the
static binding core LSCs in [3]. The example in Figure 1 is statically bound. To
extend it, for example, to cover systems with four barriers, each having its own
barrier controller, we would write ‘barrier down(b)’ where b is a free variable
ranging over the identities of barrier controllers in the system.

Definition 3 (LSC Specification). Let Lsc = {L1, . . . , Ln} �= ∅ be a set of
core LSCs over signature S. Lsc is then called core LSC specification over S. ♦

2.2 Semantics

The central concept of the LSC semantics of [3] is the cut that represents how
far each instance line has been observed. If the LSC has been activated and no
element has been observed yet, then the cut is empty. Any other cut comprises
at least one atom per instance line. It may comprise multiple atoms from one
instance line if they all belong to the same coregion.

Definition 4 (Cut). Let S be a signature and L a core LSC over S. A set of
atoms α ⊆ atoms(L) is called cut if and only if
(i) α �= ∅ =⇒∀ i ∈ Inst(L) : α|i �= ∅ and (ii) ∀ a1, a2 ∈ α : a1 ��a2 =⇒ a1��≺∗a2.

We call α0 := ∅ the initial cut, α⊥(L) := A⊥
L the instance heads cut, and

αfin(L), the maximal cut α with ∀ a ∈ α ∀ a′ ∈ atoms(L) : a ≺∗ a′ =⇒ a′ = a,
the final cut. The temperature of α, denoted by ϑ(α), is ‘cold’ if α = αfin(L) or
∀ a ∈ α : ϑ(a) = cold and ‘hot’ otherwise. Cuts(L) is the set of all cuts of L. ♦

The unit by which a cut can be advanced is the simultaneous class (simclass
for short). Simultaneity is transitively induced by synchronous messages and by
conditions that span multiple instance lines. All atoms of these elements are
supposed to be observed at the same point in time.

Definition 5 (Simclass). Let S be a signature and L a core LSC over S. Two
atoms a1, a2 ∈ atoms(L) are called simultaneous, denoted by a1 ∼ a2, if and
only if
(i) a1 = a2, or
(ii) {a1, a2} ⊆ A⊥

L , or
(iii) ∃ e ∈ Cond(L)∪Msginst(L) : {a1, a2} ⊆ atoms(e), or
(iv) ∃ a3 ∈ atoms(L) : a1 ∼ a3 ∧ a3 ∼ a2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

234 W. Damm, T. Toben, and B. Westphal

For each a ∈ atoms(L), [a] := {a′ ∈ atoms(L) | a′ ∼ a} denotes the equiv-
alence class of ‘a’ with respect to ∼. The elements of the set Simclass(L) :=
atoms(L)/ ∼ of all equivalence classes of atoms from atoms(L) are called sim-
classes.

By elems(scl) := {e ∈ elems(L) | atoms(e) ∩ scl �= ∅} we denote the set of
LSC elements that share an atom from the simclass scl ∈ Simclass(L). ♦
A cut α can be advanced by observing a set of enabled simclasses. A simclass scl
is enabled by a cut α if each atom in scl has all of its direct predecessors in α or
belongs to a coregion and there is at least one other atom from the same coregion
in α. The intuition of asynchronous messages is explicitly added by saying that
a simclass is only enabled if for each asynchronous message receive atom in scl
the sending has been observed in α or earlier. The step function formalises the
advancement of α by a non-empty set of enabled simclasses. We note without a
proof that StepL yields a proper cut if applied to a cut and a non-empty set of
enabled simclasses, and that it strictly advances the cut.

Definition 6 (Ready-set and StepL). Let L be a core LSC over signature
S, α ∈ Cuts(L), and scl ∈ Simclass(L). We say α enables scl , denoted α � scl ,
if and only if

(∀ a′ ∈ scl : prereq(a′) ⊆ α ∨ ∃ a ∈ α : a��a′ ∧ a��≺∗a′)
∧(∀m ∈ Msgasyn(L) ∩ elems(scl) : ar(m) ∈ scl =⇒ ∃ a ∈ α : as(m) ≺∗ a)

where prereq(a) := {a′ ∈ atoms(L) | a′ ≺ a} is the prerequisite of a.
A non-empty set of simclasses Scl ⊆ Simclass(L) such that each simclass

scl ∈ Scl is enabled by α, i.e. α � scl , is called fired-set of α. The set ReadyL(α)
of all fired-sets of α is called the ready-set of α.

For ∅ �= {scl1, . . . , scln} ⊆ Simclass(L), the step function of L is defined as
StepL(α, {scl1, . . . , scln}) := Max(α ∪ scl1 ∪ · · · ∪ scln) where Max(A) := A \
{a ∈ A | ∃ a′ ∈ A : a ≺+ a′}. ♦
The semantics of an LSC L is defined in terms of AL, the Symbolic Automaton of
its body. Symbolic Automata are a variant of Büchi automata whose transitions
are labelled by expressions over a signature S instead of by elements of an
alphabet. They accept sequences of interpretations of the predicates in S on a
fixed universe and under a fixed valuation of the variables in S.

Definition 7 (Symbolic Automata). A Symbolic Automaton over signature
S is a tuple A = (Q, qs,�, F) comprising a finite set of states Q, the initial
state qs ∈ Q, the transition relation �⊆ Q×ExprS ×Q, and the accepting states
F ⊆ Q. We write qi → qj if and only if (qi, ψ, qj) ∈� for some ψ and qi→̂qj if
and only if qi → qj and qi �= qj.

A is called partially ordered, or POSA, if the reflexive transitive closure of →
is antisymmetric. It is called deterministic if (q, ψ1, q1) ∈� and (q, ψ2, q2) ∈�,
q1 �= q2, implies M, σ |= ¬(ψ1 ∧ ψ2) for any M and σ.

For a universe U ,
−→
IntU(S) is the set of all interpretation sequences, i.e.

sequences �ι = ι0 ι1 ι2 . . . of interpretations ιi of the predicates P in S. By

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 235

α

StepL

(α, Scl1)
StepL

(α, Scln)

αfin

. . .

. . .

HoldL(α, int)

TransL(α, Scl1) TransL(α,Scln)

ExitL(α)

true

(a) Outgoing transitions from state α.

α0

α⊥

αfin

. . .
...

. . .

TransL(α0, {A
⊥

L})

ExitL(α0)

HoldL(α, int)ExitL(α⊥)

true

(b) Overall structure of AL.

Fig. 3. Structure of the LSC body automaton. Double lined states are in F .

�ι/k := ιkιk+1 . . . we denotes the suffix of �ι starting at position k and set
�ι k := ιk.

An infinite sequence r = q0 q1 q2 . . . of states qi ∈ Q is called a run of A over
�ι under σ if and only if q0 = qs and for i ∈ N0 there is a (qi, ψ, qi+1) ∈� such
that (U , ιi), σ |= ψ.

The set of runs of A over �ι under σ is denoted by Π�ι
σ(A). The language

accepted by A is Lσ(A) := {�ι ∈ −→
IntU (P) | ∃ r ∈ Π�ι

σ(A) : inf(r) ∩ F �= ∅} where
inf(r) is the set of states occurring infinitely often in r. ♦

The states of AL are the cuts of L and each state gets three kinds of outgoing
transitions, a self-loop, progress transitions to the following cuts, and a legal exit
transition if possible conditions have to be considered (cf. Figure 3).

To construct the transition annotations, we use a number of abbreviations.
The following five abbreviations select relevant elements from a simclass and,
point-wise extended, from sets of simclasses.

Cond(scl) := Cond(L) ∩ elems(scl), Msg(scl) := Msg(L) ∩ elems(scl),
Condposs(scl) := {c ∈ Cond(scl) | κ(c) = poss}, Msgsnd(scl) :=

{m ∈ Msg(scl) | as(m) ∈ scl}, Msgrcv(scl) := {m ∈ Msg(scl) | ar(m) ∈ scl}.

A local invariant l ∈ LocInv(L) affects the transition annotation of a cut α if it
is active beyond α, i.e. ∃ a, a′ ∈ α : as(l) ≺∗ a∧a′ ≺+ ae(l) or if it is active at α,
i.e. it ends inclusively at α or it is active beyond α and not starting exclusively
at α. By aliL,=(α) (aliL,>(α)) we denote all local invariants active at (beyond)
α and by alipossL,= (α) (alipossL,>(α)) those l ∈ aliL,=(α) (aliL,>(α)) with κ(l) = poss.

The expression
A{scl1,...,scln} :=

∧
(ψs(Msgsnd(scl1 ∪ · · · ∪ scln))∪ψr(Msgrcv(scl1 ∪ · · · ∪ scln)))

characterise the simultaneous occurrence of allmessages of simclasses scl1, . . . , scln
and

N{scl1,...,scln}:=¬
∨

(ψs(Msgsnd(scl1 ∪ · · · ∪ scln))∪ψr(Msgrcv(scl1 ∪ · · · ∪ scln)))

the absence of these messages where
∨
{ψ1, . . . , ψn} := (ψ1∨· · ·∨ψn),

∨
∅ := false,∧

{ψ1, . . . , ψn} := (ψ1 ∧ · · · ∧ ψn), and
∧
∅ := true.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

236 W. Damm, T. Toben, and B. Westphal

The first kind of transitions is labelled with a hold predicate

HoldL(α, int) := NExclMsg(int) ∧
∧
ψ

(
aliL,>(α)

)

which allows the automaton to remain in a state α while none of the awaited
messages is observed and all local invariants active beyond α hold. The progress
transitions are labelled with transition predicates

TransL(α, int,Scl) := AScl ∧NExclMsg(int)\Scl

∧
∧
ψc(Cond(Scl)) ∧

∧
ψ

(
aliL,=(StepL(α,Scl))

)

where ExclMsg(weak) = {scl ∈ Simclass(L) | ∃Scl ∈ ReadyL(α) : scl ∈ Scl}
and ExclMsg(strict) = Simclass(L), and F = {α ∈ Cuts(L) | ϑ(α) = cold},
allows a transition from α to α′ = StepL(α,Scl) if all messages required by the
fired-set Scl and none of the messages from any other fired-set in the ready-
set are observed and if the conditions co-located with the relevant messages
and the local invariants active in α′ hold. And legal exit transitions with exit
predicates

ExitL(α, int) :=
∨

scl∈
ReadyL(α)

[
N{scl} ∧ ¬

∨
ψ

(
alipossL,>(α)

)
∨A{scl}∧

(
¬
∧
ψc(Condposs(scl)) ∨ ¬

∧
ψ

(
alipossL,= (StepL(α, scl))

))]

which allow to the take the legal exit from α if a possible local invariant is violated
while the awaited messages are not yet observed or if a possible condition or
local invariant at a target cut is violated when observing the relevant messages.
The disjunction over the complete ready-set avoids parallel exit edges in the
automaton.

Definition 8. Given a core LSC L over signature S with interpretation ‘int’,
the Symbolic Automaton of L is AL := (Q, qs,�, F) with Q = Cuts(L), qs = α0,

�= {(α,HoldL(α, int), α) | α ∈ Cuts(L) \ {α0}}
∪ {(α,ExitL(α, int), αfin(L)) | α ∈ Cuts(L),

� Scl ∈ ReadyL(α) : StepL(α,Scl) = αfin(L)} \ {αfin(L)}
∪ {(α,TransL(α, int,Scl), α′) | α ∈ Cuts(L),

Scl ∈ ReadyL(α), α′ = StepL(α,Scl) �= αfin(L)}
∪ {(α,TransL(α, int,Scl) ∨ ExitL(α, int), α′) | α ∈ Cuts(L),

Scl ∈ ReadyL(α), α′ = StepL(α,Scl) = αfin(L)}.

Figure 4 shows the automatonAL of the body of the LSC from Figure 1 according
to Definition 8, omitting the exit transitions annotated with false and all states
not reachable from the Vinitial cut.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 237

q0
l on, b dn

q1
b ok, red,¬Up

q2 red q3

b ok, l ok,¬Up

q4l ok q5 b ok,¬Up

q6
donesnd

q7donercv

q8true qexittrue

l on, b dn,Op

l on, b dn,¬Op

red, b ok,¬Up
b ok, red,¬Up

(1)
(2) l ok, b ok,¬Up

(3)
red

l ok b ok,¬Up

donesnd

donercv

(1) red, b ok,¬Up
(2) b ok, l ok,¬Up
(3) l ok, b ok,¬Up

Fig. 4. For lack of space, message and condition names are abbreviated, negation of
message-observation predicates is expressed by over-lining, and a comma is used for
conjunction. E.g. q0’s loop fires if neither ‘lights on’ nor ‘barrier down’ are observed.

Note that the interpretation strict or weak (called tolerant in [2]) has no effect
on the structure of the automaton but only on the annotations. A strict LSC
restricts the occurrence of the messages used in the LSC to exactly those points in
time where they are supposed to occur according to the scenario. For example,
if a level-crossing system sends ‘red on’ twice (to play safe) then the system
wouldn’t satisfy Figure 1 in the strict interpretation. In the weak interpretation,
the specification is satisfied if each necessary message occurs at least once where
it is supposed to.

By the following Lemma, the Symbolic Automaton of a (bonded) LSC is a
(deterministic) POSA. We provide the rather technical proof in the appendix.

Lemma 1 (POSA). Let L be a core LSC over signature S. Then AL is a
POSA. If L is bonded, i.e. if all condition and local invariant atoms in L are
co-located with at least one message atom, then AL is a deterministic POSA.

In practice, LSCs are nearly always bonded. Non-bonded LSCs, i.e. those with
loose conditions, are highly counter-intuitive and it is significantly harder to
understand counter-examples obtained from model-checking because AL runs of
a given counter-example need not be unique. Already [3] explicitly recommends
to avoid loose conditions.

The semantics of a complete LSC L is obtained by quantifying the inter-
pretation sequences accepted by its AL according to the activation mode and
quantification.

Definition 9 (LSC Semantics). Let L = (�, ac, am, int, quant) be a core LSC
over signature S and U a universe. A set of interpretation sequences �I ⊆ −→

IntU (S)
is said to satisfy L, denoted �I |=LSC L, if and only if

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

238 W. Damm, T. Toben, and B. Westphal

– quant = existential and
∃�ι ∈ �I ∃σ ∈ ValU (S) : am = initial ∧

(
(U ,�ι 0), σ |= ac ∧ �ι/0 ∈ Lσ(AL)

)

∨am = invariant ∧
(
∃ k ∈ N0 : (U ,�ι k), σ |= ac ∧ �ι/k ∈ Lσ(AL)

)

– quant = universal and
∀�ι ∈ �I ∀σ ∈ ValU (S) : am = initial ∧

(
(U ,�ι 0), σ |= ac =⇒ �ι/0 ∈ Lσ(AL)

)

∨am = invariant ∧
(
∀ k ∈ N0 : (U ,�ι k), σ |= ac =⇒ �ι/k ∈ Lσ(AL)

)
.

The language accepted by L is L(L) := {�I ⊆ −→
IntU (P) | �I |=LSC L}. ♦

A set �I of interpretation sequences satisfies a core LSC specification Lsc if and
only if it satisfies all core LSCs in Lsc. The language of Lsc is the intersection
of the languages of the core LSCs in Lsc.

3 The Temporal Logics of Core LSCs

In order to cover symbolic LSCs with free variables, the temporal logic has to
provide first-order quantification over logical variables. And in order to cover
both, existential and universal LSCs, LTL is not sufficient but quantification
over paths is necessary. Consequently, we basically use first-order CTL∗ as the
destination temporal logic.

For convenience, the following definition already introduces a fragment of
CTL∗ which we call FOP-CTL∗ (first-order prenex CTL∗). Its expressive power
is sufficient for our purposes since LSCs only need top-level path and logical
quantifiers and the semantics (which is standard) can be explained using a set
of (system) runs instead of a computation tree for general CTL∗.

Definition 10 (FOP-CTL∗). The set of first-order prenex CTL∗ (FOP-CTL∗)
formulae over signature S is defined by the grammar

ϕ ::= ϕ∃ ∀ | ¬ϕ | ϕ1 ∨ ϕ2 ϕ∃ ∀ ::= ϕEA | ∃x . ϕ∃ ∀ | ∀x . ϕ∃ ∀

ϕEA ::= φ | Eφ | Aφ φ ::= ψ | ¬φ | φ1 ∨ φ2 | φ1 Uφ2 | Xφ

where ψ ∈ ExprS . We shall use the abbreviations ∧, →, ↔, F , G , and W .

The formulae we construct for core LSCs in Section 3.1 are in FOP-CTL∗ but we
can identify further structure. We will find that general core LSCs translate to
formulae from the FOP-CTL∗ fragment CSCTL and the bonded ones translate
to DCSCTL. Formulae of the latter fragment even provide enough information
to establish a way back to LSCs (cf. Section 3.2).

Definition 11 (CSCTL, DCSCTL). The set of communication sequence
FOP-CTL∗ (CSCTL) formulae over signature S is

ζ ::= ξE | ξA | ζ ∧ ζ ξE ::= E (ψ → π) | EG (ψ → π) | ∃x . ξE
π ::= ηU π̂ | ηW π̂ ξA ::= A (ψ → π) | AG (ψ → π) | ∀x . ξA
η ::= ¬μ ∧ η | ψ π̂ ::= π̂1 ∨ π̂2 | τ ∧ Xπ | false
τ ::= ¬μ ∧ τ | μ ∧ τ | ψ μ ::= pmsg(x1, . . . , xn) (1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 239

where ψ ∈ ExprS , xi ∈ V, 1 ≤ i ≤ n, and pmsg ∈ Pmsg is a message predicate.
Deterministic CSCTL (DCSCTL) comprises the formulae obtained from

grammar (1) with the π̂ production changed to

π̂ ::= τ ∨ φ | (τ ∧ X π) ∨ φ, φ ::= false | τ | φ1 ∨ φ2,

that satisfy

(i) occurrences of p ∈ Psnd and χ−1(p) in ξE and ξA are injectively related,
(ii) if ¬μ1 and μ2 occur on both sides of an U or W , then μ1 = μ2, and
(iii) in each π̂, any μ in τ is disjoint to φ, i.e. |= ¬(μ ∧ φ). ♦

3.1 From Core LSCs to Temporal Logic...

Lemma 2 (Schlör [19]). Let A = (Q, qs,�, F) be a POSA over signature S,
U a universe, and σ ∈ ValU(S) a valuation. Then there is an LTL formula φA
over S with �ι ∈ Lσ(A) ⇐⇒ �ι, σ |= φA. ♦

The proof is by induction over the distance of states from the states whose only
outgoing transitions are self-loops, in case of AL this is only αfin(L). The POSA
property ensures that the sequence of the sets of states with distance 1, 2, . . . is
ascending with respect to ⊆. The formula constructed in the course of the proof
is recursively defined as φA := φqs with

φq := ψ(q, q) Uq

∨

q→̂q′

(
ψ(q, q′) ∧ Xφq′

)

for q ∈ Q where ψ(q1, q2) denotes the (well-defined) transition predicate of a
transition q1 → q2 between locations q1, q2 ∈ Q. The temporal operator Uq is W
(unless or weak until) if q ∈ F and U (until or strong until) otherwise.

As an example consider the outgoing transitions of a typical automaton state
as shown in Figure 3(a).We may stay at state α as long as the hold condition
HoldL(α, int) holds and may leave α if any of the outgoing transitions can fire.
Then, recursively, we may stay at the destination state as long as the destination
state’s hold condition holds etc. The formula directly follows this structure (cf.
Figure 5).

Theorem 1. Let L be a core LSC over signature S. There is a CSCTL formula
φL over S with L(L) = L(φL). If L is bonded, then there is an equivalent formula
in DCSCTL. ♦

φα = HoldL(α, int)U
�
(TransL(α, Scl1) ∧ X φStepL(α,Scl1)) ∨ · · · ∨
(TransL(α, Scln) ∧ X φStepL(α,Scln)) ∨ (ExitL(α) ∧ X φαfin)

�

Fig. 5. Schlör formula of the location α shown in Figure 3(a)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

240 W. Damm, T. Toben, and B. Westphal

By Lemma 1, we can apply Lemma 2 to the automaton AL of an LSC, which
represents the LSC body. Adding path and variable quantifiers according to
the LSC activation mode and quantification completes the proof of the first
claim. For example, an LSC L = (�, ac, am, int, quant) with am = invariant and
quant = universal over a signature S = ({x1, . . . , xn},P , χ) becomes φL ::=
∀x1 . . . ∀xn .A G (ac → φAL). The second claim is established by a result of [19]
that transforms the CSCTL formula to the desired DCSCTL form if the
transition expressions, here ψ(q, q′), are mutually disjoint which is the case by
Lemma 1. The finer structure of DCSCTL formulae is obtained by close examina-
tion of the construction of the translation relation � for AL. Theorem 1 extends
to an LSC specification Lsc by conjoining the formulae of all LSCs in Lsc.

As a first observation, the formula for bonded LSCs is actually in deterministic
ACTL, and thus in LTL, as also observed in [15]. They also claim that non-
bonded LSCs in their interpretation are in LTL which is not the case for ours as
non-bonded LSCs introduce non-determinism via self-loops annotated only with
true. Restricted to messages, the core LSCs studied here and the kernel LSCs
studied in [15] coincide (as expected).

LSCs are strictly weaker than general first-order CTL∗ as they can’t express
alternating path quantifiers [15]. The following lemma shows that there are sim-
pler patterns not expressible by core (and kernel) LSCs. Intuitively, core (and
kernel) LSCs only consider non-temporal properties as hold-conditions, i.e. be-
fore the “until” operator. Thus they can in general not express that some sub-
scenario shall be repeated until the main-scenario continues. In contrast to [3],
the LSC dialect of [2] provides (bounded and unbounded) loops, so the full ver-
sion of [15] will show whether that extension is sufficient to make LSCs equivalent
to LTL.

Lemma 3. FOP-CTL∗ over S is strictly more expressive than core LSCs. ♦

Proof. Assume there were an equivalent LSC for the formula ϕ = (X X p)U q
from the LTL fragment of CTL∗. The interpretation sequence �ι = p̄q̄ p̄q̄ pq p . . .
satisfies ϕ. Then φL, a formula equivalent to L, has by Theorem 1 a conjunctive
term of the form A (ψ → ηU π̂) or A (ψ → ηW π̂) that is satisfied by �ι. This
implies p̄q̄ → ψ and p̄q̄ → η since ψ and η don’t comprise temporal operators.
Consequently �ι′ |= L with �ι′ = p̄q̄ p̄q̄ p̄q̄ p̄q̄ . . . but �ι′ �|= ϕ in contradiction to
the equivalence assumption. ��

3.2 ...and Back

Theorem 2. Let ζ be a DCSCTL formula over signature S. There exists a
bonded LSC specification Lsc over S such that L(Lsc) = L(ζ). ♦

The constructive proof exploits that ζ is a DCSCTL formula, i.e. has the prop-
erties (i)–(iii) from Definition 11. Intuitively, a sub-formula of ζ of the form

π = ¬μ
︸︷︷︸

η

∧ψ1 U ((μ ∧ ψ2︸ ︷︷ ︸
τ

∧X π1) ∨ φ)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 241

ih io

≺
≺

pmsg1(x), pmsg2(x)

pmsg3 (x), falsefalse
, pmsg4

(x)

ψ2

ψ1 ¬φ
π

τ ∨ φ

ε

(a) Inductive construction base.

π0

τ ∨ φ

ψ1 ∧ ¬μ ∧ ¬φ

μ ∧ ψ2 ∧ ¬φ
φ

true

(b) Induction base.

[π1]

ih io

≺
pmsg1(x), pmsg2(x)

p
msg (x), falsefals

e, p
msg

(x)

pmsg (x), pmsg (x)

ψ2

ψ1 ¬φ
π

π1

(c) Inductive construction step.

αn+1

[Aαn]

η

τφ

(d) Induction step.

Fig. 6. Construction of an LSC from a DCSCTL formula and its automaton structure

says that η is supposed to hold until either τ is observed and the (system) run
continues as required by π1, or φ holds which indicates that the current (system)
run exhibits a different message order than the one accepted by π. If this different
message order is legal, then there is another sub-formula of ζ that is satisfied by
the (system) run. Transferring this intuition to LSCs, we inductively construct a
core LSC specification of bonded core LSCs with (for convenience) two instance
lines ih and io. Each LSC accepts one particular message order, the atoms are
pairs of the instance line name and the sub-formula that is observed up to this
location. For example, the instance head atoms are (ih, π) and (io, π).

The expression ψ1 in π becomes a mandatory local-invariant that is required
to hold until τ , one or more messages co-located with a condition ψ2, is observed,
unless a parallel cold local-invariant with expression ¬φ is violated, indicating
that this core LSC can not accept the (system) run (cf. Figure 6(a) and 6(c)).

We omit the (tedious) formal inductive construction, but focus on the proof
of language equivalence to the formula.

Proof. Part 2. Without loss of generality we assume that ζ accepts exactly one
message order since the general case is a conjunction of such formulae. Let L be
the core LSC specification constructed for ζ by the procedure described above.
By construction, all instantaneous messages and conditions in L either share all
atoms or none, so all simclasses and all consistent cuts (see below) are of the
form {(ih, π), (io, π)}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

242 W. Damm, T. Toben, and B. Westphal

We define the nesting depth of a formula by dep(η U τ∨φ) = 0 and dep(η U τ∧
π ∨φ) = n+ 1 if dep(π) = n with U ∈ {U , W }. There is at most one consistent
cut {(ih, π), (io, π)} ∈ Cuts(L) with dep(π) = n. A cut is called consistent if
∀ a ∈ α, a′ ∈ [a] ∃ a′′ ∈ α : a′ ≺∗ a′′.

Let AL = (Q, qs,�, F) be the automaton of L. The sequence (Tn)n∈N0 with
Tn := {q ∈ Q | dep(q) ≤ n ∧ q consistent} is monotone. We prove by induction

∀n ∈ N0 ∀αn ∈ Tn ∀σ ∈ ValU(S),�ι ∈ −→
IntU (P):�ι ∈ Lσ(Aαn

L) ⇐⇒ �ι, σ |= ϕαn ,

where Aq
L := (Q, q,�, F) is the automaton that coincides with AL except for

the start location q ∈ Q and where ϕαn := π if αn = {(ih, π), (io, π)}.
Let N be the nesting depth of the largest π sub-formula of ζ. Then π =

ϕαN . Examining the quantifiers in ζ and in the semantics of L according to
Definition 9, we obtain the desired equivalence between L and ζ.

Induction base. T0 comprises only the cut {(ih, π0), (io, π0)} with π0 = ηW (τ∨
φ) = (¬μ∧ψ1)W (μ∧ψ2∨φ) (the until (‘U ’) case follows analogously). The au-
tomaton Aα0

L is depicted in Figure 6(b). Its corresponding formula φAα0
L

obtained
by the construction of Lemma 2 is

φAα0
L

= (¬μ ∧ ψ1 ∧ ¬φ)W (μ ∧ ψ2 ∧ X (trueW false) ∨ φ ∧ X (trueW false))

⇐⇒ (¬μ ∧ ψ1 ∧ ¬φ)W (μ ∧ ψ2 ∨ φ) ⇐⇒ (¬μ ∧ ψ1)W (μ ∧ ψ2 ∨ φ) = π0.

Induction step. Now let αn+1 = {(ih, π), (io, π)} ∈ Tn+1 with

π = ηW (τ ∧ X (π1) ∨ φ) = (¬μ ∧ ψ1)W (μ ∧ ψ2 ∧ X (π1) ∨ φ)

(‘ U ’ case analogously). By construction of ≺L, the only simclass that can possi-
bly be enabled by αn+1 is scl := {(ih, π1), (io, π1)}. It is actually enabled since all
its prerequisites are obviously part of αn+1 and all the sendings of asynchronous
receptions lie strictly before αn+1 by definition of DCSCTL (Definition 11.(i))
and construction of L. By definition of the StepL function, αn+1 has a unique
successor cut, namely StepL(αn+1, {scl}) = scl = αn with dep(ϕαn) = n.

The automaton Aαn+1
L is shown in Figure 6(d). The τ transition leads to the

state StepL(αn+1, {scl}) which we just identified to lie in Tn and the φ transition
leads to the final cut that lies in T0 by definition. Hence we can use the induction
hypothesis as follows, where (∗) exploits the style of outgoing transitions of αn+1:

�ι, σ |= ϕαn+1 � �ι, σ |= ηW (τ ∧ X (ϕn) ∨ φ)
� �ι, σ |= G (η) ∨ (η U (τ ∧ X (ϕn) ∨ φ))

� ∀ j ∈ N0 : �ι j |= η ∨
(
∃ k ∈ N0 : (∀ 0 ≤ j < k : �ι j , σ |= η)

∧ (�ι k+1, σ |= φ ∨ �ι k+1, σ |= τ ∧ �ι/k + 2, σ |= ϕαn)
)

� (∃ r ∈ Π�ι
σ(Aαn+1

L) : r = αn+1 αn+1 αn+1 . . .

∨ (∃ r̃ ∈ Π�ι
σ(Aαfin(L)

L) ∃ k > 0 : r = αk
n+1r̃ ∧ inf(r̃) ∩ F �= ∅)

∨ (∃ r̃ ∈ Π�ι
σ(Aαn

L) ∃ k > 0 : r = αk
n+1r̃ ∧ inf(r̃) ∩ F �= ∅))

(∗)
� ∃ r ∈ Π�ι

σ(Aαn+1
L) : inf(r) ∩ F �= ∅ � �ι ∈ Lσ(Aαn+1

L) ��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 243

Recall that intuitively the translation considers single paths through the LSC
specification, that is a translation back and forth yields as many LSCs as there
are paths through the original ones. Thus the back-translation makes the possi-
ble paths and combinations of conditions and local invariants explicitly visible
and thus may help in the debugging of LSC specifications. But in presence of
concurrency introduced, for instance, by independent parts or coregions, a sin-
gle original LSC can be exponentially more succinct then the back and forth
translation.

4 Conclusion

Our new concise formalisation of the LSCs of [3] makes it possible to compare
these LSCs to temporal logic. General core LSCs are at most as powerful as the
fragment CSCTL of FOP-CTL∗ for which we provided a syntactical characteri-
sation. The practically relevant set of bonded core LSCs is exactly as powerful as
the smaller fragment DCSCTL because we can construct an LSC specification
for a given formula. The embedding into first-order prenex CTL∗ is strict even
without resorting to nesting of path quantifiers [15].

These results have a number of applications. Section 3.1 formally justifies
the practice of LSC model-checking using formulae [3] and allows to compare
both dialects of LSCs that emerged from the original proposal [1]. Section 3.2
provides for the first time an instrument to decide whether a given formula
has an equivalent LSC specification. This is useful since experts in formal
methods sometimes easier come up with a formula for a given requirement
while for discussion within a more general audience it is highly desirable to
present the requirement in form of LSCs. Another aspect stems from the ob-
servation of [25] that their distributed LTL model-checker performs extraor-
dinarily well on formulae that are a chain of right-nested “Until” operators
without noticing that this is exactly the structure of (D)CSCTL. Section 3
would justify a restriction of their input language to (D)CSCTL, thus ob-
taining an LSC model-checker, and raise the question whether this restriction
could yield further speedup. Finally, the fact that we use results from the the-
ory of Symbolic Timing Diagrams [19,22] (STD) raises the question whether
STDs also qualify as a scenario language and, for example, whether they can
be played out [26].

Further work comprises the extension to the full LSC language of [3], that
is, pre-charts, real-time, and possible asynchronous messages, as outlined in the
introduction of Section 2.

Acknowledgements. The authors want to express their gratitude to Matthias
Brill and Hartmut Wittke for clarifying discussions on the intricacies of LSCs,
sharing of expertise, and valuable hints on related literature.

Note. An abridged version of this paper appeared at the SofSem’06 poster
session [27].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

244 W. Damm, T. Toben, and B. Westphal

References

1. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19 (2001) 45–80

2. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer (2003)

3. Klose, J.: Live Sequence Charts: A Graphical Formalism for the Specification of
Communication Behavior. PhD thesis, C. v.O. Universität Oldenburg (2003)

4. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenarios in system develop-
ment: Current practice. IEEE Software 15 (1998) 34–45

5. Amyot, D., Eberlein, A.: An evaluation of scenario notations and construction
approaches for telecommunication systems development. Telecommunications Sys-
tems Journal 24 (2003) 61–94

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: ICSE’99. Proceedings of the 1999 International
Conference on Software Engineering, May 16-22, 1999, Los Angeles, CA, USA.,
ACM (1999) 411–420

7. Bitsch, F.: Safety patterns - the key to formal specification of safety requirements.
In Voges, U., ed.: Computer Safety, Reliability and Security, 20th International
Conference, SAFECOMP 2001, Budapest, Hungary, September 26-28, 2001, Pro-
ceedings. Volume 2187 of Lecture Notes in Computer Science., Springer (2001)
176–190

8. ITU-T: ITU-T Rec. Z.120: Message Sequence Chart (MSC). ITU-T, Geneva (1999)
9. Knieke, C., Huhn, M., Goltz, U.: Modelling and simulation of an automotive system

using LSCs. In Houmb, S.H., Jürjens, J., eds.: Proc. CSDUML’2005, TUM (2005)
0–0 TUM-TR.

10. Combes, P., Harel, D., Kugler, H.: Modeling and verification of a telecommunica-
tion application using Live Sequence Charts and the Play-Engine tool. In: Proc.
ATVA 2005. Number 3707 in LNCS (2005)

11. Bunker, A., Gopalakrishnan, G., Slind, K.: Live Sequence Charts applied to hard-
ware requirements specification and verification: A VCI bus interface model. Soft-
ware Tools for Technology Transfer 7 (2004) 341–350

12. Bontemps, Y., Heymans, P., Kugler, H.: Applying LSCs to the specification of an
air traffic control system. In: Proc. SCESM’03. (2003)

13. Bohn, J., Damm, W., Wittke, H., Klose, J., Moik, A.: Modelling and validating
train system applications using statemate and live sequence charts. In: Proc. IDPT
2002, Society for Design and Process Science (2002)

14. Bontemps, Y.: Relating Inter-Agent and Intra-Agent Specifications. PhD thesis,
University of Namur (Belgium) (2005)

15. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal logic for scenario-
based specifications. In Halbwachs, N., Zuck, L.D., eds.: Proc. TACAS 2005. Vol-
ume 3440 of LNCS. (2005)

16. Klose, J., Toben, T., Westphal, B., Wittke, H.: Check it out: On the efficient
formal verification of Live Sequence Charts. In Ball, T., Jones, R.B., eds.: Proc.
CAV 2006. Volume 4144 of Lecture Notes in Computer Science., Springer-Verlag
(2006) 219–233

17. Schinz, I., Toben, T., Mrugalla, C., Westphal, B.: The Rhapsody UML Verification
Environment. In Cuellar, J.R., Liu, Z., eds.: Proc. SEFM 2004. (2004) 174–183

18. Klose, J., Wittke, H.: An automata based interpretation of Live Sequence Charts.
In Margaria, T., Yi, W., eds.: Proc. TACAS 2001. Number 2031 in LNCS (2001)
512–527

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On the Expressive Power of Live Sequence Charts 245

19. Schlör, R.C.: Symbolic Timing Diagrams: A Visual Formalism for Model Verifica-
tion. PhD thesis, C. v.O. Universität Oldenburg (2000)

20. Maidl, M.: The common fragment of ctl and ltl. In: IEEE Symp. on Foundations
of Computer Science. (2000) 643–652

21. Westphal, B., Toben, T.: The good, the bad and the ugly: Well-formedness of Live
Sequence Charts. In Baresi, L., Heckel, R., eds.: Proc. FASE 2006. Volume 3922
of Lecture Notes in Computer Science., Springer-Verlag (2006) 230–246

22. Feyerabend, K., Josko, B.: A visual formalism for real time requirement specifica-
tion. In Bertran, M., Rus, T., eds.: Proc. ARTS’97. Volume 1231 of LNCS. (1997)
158–168

23. Klose, J., Westphal, B.: Relating LSC specifications to UML models. In Ehrig, H.,
Grosse-Rhode, M., eds.: Proc. INT’02. (2002)

24. Damm, W., Westphal, B.: Live and let die: LSC-based verification of UML-models.
Science of of Computer Programming 55 (2005) 117–159

25. Barnat, J.: Distributed Memory LTL Model Checking. PhD thesis, Faculty of
Informatics, Masaryk University Brno (2004)

26. Harel, D.: personal communication (2005)
27. Toben, T., Westphal, B.: On the expressive power of LSCs. In Wiedermann, J.,

Tel, G., Pokorný, J., Bieliková, M., Štuller, J., eds.: Proc. SofSem 2006. Volume 2.,
Institute of Computer Science AS CR, Prague (2006) 33–43

Appendix

Definition 12. Let L be a core LSC over signature S and α, α′ ∈ Cuts(L). The
cut α′ is said to be larger than α, denoted by α � α′, if and only if

∀ i ∈ Inst(L) ∀ a ∈ α|i ∃ a′ ∈ α′|i :

a ≺∗ a′ ∧ ∃ i ∈ Inst(L) : α|i � α′|i ∨ α′ �= ∅ ∧ ∀ a ∈ α|i, a′ ∈ α′|i : a ≺+ a′.

Note that � is a strict partial order (irreflexive, asymmetric, and transitive). ♦

Proof of Lemma 1

Part 1. Let AL = (Q, qs,�, F). We have to prove antisymmetry of →∗, i.e.
(q →∗ q′) ∧ (q′ →∗ q) =⇒ q = q′ for q, q′ ∈ Q. Consider the interesting case
where q �= αfin(L) �= q′. Then there is a minimal n ∈ N0 such that

q0 → . . .→ qk−1 → qk → qk+1 → . . .→ qn

with q0 = qn = q and qk = q′ and none of the transitions is a self-loop, i.e.
qk �= qk+1, 0 ≤ k < n.

Also none of the transitions is an exit loop, i.e. a transition annotated by
ExitL, since then one of intermediate states were the final cut αfin(L), thus
q = αfin(L) by (∗) in contradiction to the assumption.

Thus all transitions are by regular transitions defined by StepL, i.e. there are
fired-sets Sclk ∈ ReadyL(qk) such that qk+1 = StepL(qk,Sclk), 0 ≤ k < n. Since
StepL strictly advances the cut, we have qk � qk+1, 0 ≤ k < n and thus

q = q0 � q1 � · · · � qn−1 � qn = q

in contradiction to the fact that the cut order is a strict partial order.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

246 W. Damm, T. Toben, and B. Westphal

Part 2. If L is bonded, i.e. ∀ e ∈ Cond ∪ LocInv ∀ a ∈ atoms(e)∃m ∈ Msg :
κ(m) = mand∧ [a]∩ atoms(m) �= ∅, we have that every simclass Scl contains at
least one message send or message receive atom.

To prove determinism of AL, we have to show for all α ∈ Q

(i) |= ¬(HoldL(α, int) ∧TransL(α, , intf)),
(ii) |= ¬(TransL(α, int, f1) ∧ TransL(α, int, f2)),
(iii) |= ¬(HoldL(α, int) ∧ ExitL(α, int)), and
(iv) |= ¬(ExitL(α, int) ∧TransL(α, int, f))

for arbitrary f, f1, f2 ∈ ReadyL(α) with f1 �= f2. Most of the cases can be
proved by exploiting the observation that |= ¬(A{Scl} ∧N{Scl}) if Msgsnd(Scl) ∪
Msgrcv(Scl) �= ∅. In the other cases, the condition and local invariant expressions
ensure the mutual disjointness of the transition predicates. ��

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists�

Alexey Loginov1,��, Thomas Reps2, and Mooly Sagiv3

1 IBM T.J. Watson Research Center
alexey@us.ibm.com

2 Comp. Sci. Dept., University of Wisconsin
reps@cs.wisc.edu

3 School of Comp. Sci., Tel-Aviv University
msagiv@post.tau.ac.il

Abstract. In earlier work, we presented an abstraction-refinement mechanism
that was successful in verifying automatically the partial correctness of in-situ
list reversal when applied to an acyclic linked list [10]. This paper reports on the
automatic verification of the total correctness (partial correctness and termina-
tion) of the same list-reversal algorithm, when applied to a possibly-cyclic linked
list. A key contribution that made this result possible is an extension of the finite-
differencing technique [14] to enable the maintenance of reachability information
for a restricted class of possibly-cyclic data structures, which includes possibly-
cyclic linked lists.

1 Introduction

Reinhard Wilhelm has long been associated with the Dagstuhl Seminars on Computer
Science. In March of 2003, the Dagstuhl Seminar “Reasoning about Shape” was ded-
icated to one of the subjects that benefited from important contributions on the part of
Reinhard Wilhelm. During that seminar, Richard Bornat posed an interesting challenge
problem to the authors. The challenge concerns the application of the in-situ list rever-
sal procedure Reverse to a panhandle list, i.e., a linked list that contains a cycle but
in which at least the head of the list is not part of the cycle. (The lists shown in Fig. 1
are examples of panhandle lists.) Richard Bornat challenged us to use our techniques to
demonstrate that, when applied to a panhandle list, Reverse produces a list in which
the orientation of the successor edges in the panhandle (the acyclic part of the list) is
as it was in the input list, while the orientation of the successor edges on the cycle is
reversed.

In [10], we presented an abstraction-refinement mechanism for use in static analy-
ses based on 3-valued logic [17], where the semantics of statements and the query of
interest are expressed using logical formulas. Our abstraction-refinement mechanism
introduces additional instrumentation relations (defined via logical formulas over core
relations, which capture the basic properties of memory configurations). Instrumenta-
tion relations record auxiliary information in a logical structure, thus providing a mech-
anism to fine-tune an abstraction: an instrumentation relation captures a property that

� Supported by ONR (N00014-01-1-{0708,0796}) and NSF (CCR-9986308 and CCF-
{0524051,0540955}).

�� The work was performed while Loginov was at the University of Wisconsin.

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 247–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

248 A. Loginov, T. Reps, and M. Sagiv

an individual memory cell may or may not possess. In general, the introduction of addi-
tional instrumentation relations refines an abstraction into one that is prepared to track
finer distinctions among stores. This allows more properties of the program’s stores to
be identified. The abstraction-refinement mechanism made possible the automatic veri-
fication of a number of interesting properties, including the partial correctness of in-situ
list reversal when applied to an acyclic linked list.

In our context, the semantics of statements is expressed using logical formulas that
describe changes to core-relation values. When instrumentation relations have been
introduced to refine an abstraction, the challenge is to reflect the changes in core-
relation values in the values of the instrumentation relations. To address this chal-
lenge, the authors presented finite differencing, a technique that constructs automati-
cally instrumentation-relation maintenance formulas, the part of abstract transformers
that deals with instrumentation relations [14].

A key aspect of the finite-differencing technique is its handling of reachability instru-
mentation relations, i.e., relations defined via the transitive-closure operator. In [14], we
adapted a result by Dong and Su [2] to enable the maintenance of reachability informa-
tion for acyclic data structures purely in first-order logic, i.e., without the recomputation
of transitive closure, which generally results in a loss of precision.

In this paper, we reduce the problem of reachability maintenance for possibly-cyclic
lists, e.g., panhandle lists, to the problem of reachability maintenance in acyclic data
structures. The essential problem is that all nodes in the cyclic part of a panhandle list
“look the same” in some sense, and the key to a solution is finding a way to break the
symmetry of the cycle. (This is discussed further in §3.) The key idea—inspired by a
similar idea used by William Hesse in his Ph.D. thesis—is to “break” each cycle: we
define a binary instrumentation relation sfen to include all edges of the data structure,
except one designated edge on each cycle. We define an additional instrumentation
relation, sfpn, to be the reflexive transitive closure of the acyclic relation sfen.1 The
relation sfpn can be maintained using our prior results for acyclic reachability mainte-
nance. Reachability information in the actual (possibly-cyclic) data structure can then
be computed based on sfpn.

This reduction addresses the shortcoming of finite differencing that prevented
our techniques from establishing interesting properties of programs that manipulate
possibly-cyclic linked lists. We show that, equipped with the extended finite-
differencing technique, the abstraction-refinement mechanism is capable of introducing
instrumentation relations that are sufficient to encode the key properties of Reverse
when applied to possibly-cyclic linked lists. The contributions of this paper can be sum-
marized as follows:

– We present an extension of finite differencing that allows first-order-logic main-
tenance of reachability information in possibly-cyclic linked lists. This is achieved
via a reduction to the problem of reachability maintenance in acyclic data
structures.

– We demonstrate the use of a Data-Structure Constructor for constructing an
abstract representation of all possibly-cyclic linked lists, including panhandle lists.

1 As discussed later, sfen and sfpn stand for “spanning-forest edge” and “spanning-forest path”,
respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 249

– We demonstrate the use of automatic abstraction refinement for introducing the
instrumentation relations that are sufficient for verifying the partial correctness of
Reverse when applied to any possibly-cyclic linked list.

– We present a simple progress monitor that allows the analysis to establish the ter-
mination of Reverse on any possibly-cyclic linked list.

The contributions fall into two categories: (i) extending the scope of finite differ-
encing so that reachability information can be maintained for possibly-cyclic lists, and
(ii) the application of abstraction refinement for verifying properties of Reverse. The
former contribution category is discussed in §3. The latter contribution category is dis-
cussed in §6.

An advantage of our abstract-interpretation approach is that it does not require the
use of a theorem prover. This is particularly beneficial in our setting because our logic
is undecidable [5].

2 Program Analysis Using 3-Valued Logic

1

x

8 4n n 9 5n n

n

3n 2n 7n 4n (a)

3 9 1n n 4 3n n

n

7n 2n 8n 5n

yx

(b)

Fig. 1. Possible stores for panhandle linked lists. (a) A panhandle list
pointed to by x. We will refer to lists of this shape as type-X lists.
(b) A panhandle list pointed to by x with y pointing into the middle of
the cycle. We will refer to lists of this shape as type-XY lists.

In this section, we
give a brief overview
of the framework
of parametric shape
analysis via 3-valued
logic. For more de-
tails, the reader is re-
ferred to [17].

Program states
are represented us-
ing first-order logi-
cal structures, which consist of a collection of individuals, together with an interpre-
tation for a finite vocabulary of finite-arity relation symbols, R. An interpretation is
a truth-value assignment for each relation symbol for every appropriate-arity tuple of
individuals. To ensure termination, the framework puts a bound on the number of dis-
tinct logical structures that can arise during analysis by grouping individuals that are
indistinguishable according to a special subset of unary relations, A. The grouping of
nodes is referred to as canonical abstraction and the set A is referred to as the set of
abstraction relations.

The application of canonical abstraction typically transforms a logical structure S
into a 3-valued logical structure S#, in which the third value, 1/2, denotes the possibil-
ity of having either 0 (false) or 1 (true) in S. A program state is updated and queried via
logical formulas, which are interpreted over the 3-valued structure S# using a straight-
forward extension of Kleene’s 2-valued semantics.

Because of canonical abstraction, an individual in a 3-valued structure can represent
more than one individual in a given 2-valued structure; such an individual is referred
to as a summary individual. In general, a 3-valued logical structure can represent an
infinite set of 2-valued structures.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

250 A. Loginov, T. Reps, and M. Sagiv

Table 1. (a) Declaration of a linked-list datatype in C; (b) core relations used for representing
the stores manipulated by programs that use type List

typedef struct node {
struct node *n;
int data;

} *List;

Relation Intended Meaning
x(v) Does pointer variable x point to memory cell v?
n(v1, v2) Does the n field of v1 point to v2?

(a) (b)

Program states are encoded in terms of core relations, C ⊆ R. Core relations are
part of the underlying semantics of the language to be analyzed; they record atomic
properties of stores. For instance, Tab. 1 gives the definition of a C linked-list datatype,
and lists the core relations that would be used to represent the stores manipulated by
programs that use type List, such as the stores in Fig. 1. Unary relations represent
pointer variables, and binary relation n represents the n field of a List cell. Fig. 2(a)
shows 2-valued structure S2, which represents the store of Fig. 1(a) using the relations
of Tab. 1.

Table 2. Defining formulas of instrumentation relations commonly employed in analyses of pro-
grams that use type List. The relation name isn abbreviates “is-shared”. There is a separate
reachability relation rn,x for every program variable x.

p Intended Meaning Defining Formula

isn(v) Do n fields of two or more list nodes ∃ v1, v2 : n(v1, v) ∧ n(v2, v)∧ v1 �=v2

point to v?
rn,x(v) Is v reachable from pointer variable x ∃ v1 : x(v1) ∧ n∗(v1, v)

along n fields?
cn(v) Is v on a directed cycle of n fields? n+(v, v)

u3
n

u4
n

u5
nu2

n
u1

n
u6

nx

n
u7

u9
n

u8
n

(a)

u3

n
u4

nisncnrn,x u5

n
u2

n
u1

n

x

u6

n
u7

n
u9

n

u8

n

rn,xrn,xrn,x
cnrn,x

cnrn,x

cnrn,x

cnrn,x

cnrn,x (b)

Fig. 2. A logical structure S2 that represents the store shown in Fig. 1(a) in graphical form: (a) S2

with relations of Tab. 1; (b) S2 with relations of Tabs. 1 and 2

The abstraction function on which an analysis is based, and hence the precision of
the analysis defined, can be tuned by (i) choosing to equip structures with additional in-
strumentation relations to record derived properties, and (ii) varying which of the unary

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 251

core and unary instrumentation relations are used as the set of abstraction relations. The
set of instrumentation relations is denoted by I. Each arity-k relation symbol is defined
by an instrumentation-relation defining formula with k free variables. Instrumentation-
relation symbols may appear in the defining formulas of other instrumentation relations
as long as there are no circular dependences.

Tab. 2 lists some instrumentation relations that are important for the analysis of
programs that use type List. Instrumentation relations that involve reachability prop-
erties, such as relation rn,x(v), often play a crucial role in the definitions of abstrac-
tions. These relations have the effect of keeping disjoint sublists summarized separately.
Fig. 2(b) shows 2-valued structure S2, which represents the store of Fig. 1(a) using the
core relations of Tab. 1, as well as the instrumentation relations of Tab. 2.

n
u3

n
u4u2u1

n

x
n nn

isncnrn,x

rn,x rn,x
cnrn,x

Fig. 3. A 3-valued structure S3 that is the
canonical abstraction of structure S2. In addi-
tion to S2, S3 represents any type-X panhan-
dle list with at least two nodes in the panhandle
and at least two nodes in the cycle.

If all unary relations are abstraction
relations, the canonical abstraction of 2-
valued logical structure S2 is S3, shown in
Fig. 3, with list nodes corresponding to u2

and u3 in S2 represented by the summary
individual u2 of S3 and list nodes corre-
sponding to u5, . . . , u9 in S2 represented
by the summary individual u4 of S3. S3

represents any type-X panhandle list with
at least two nodes in the panhandle and at
least two nodes in the cycle. The follow-
ing graphical notation is used for depicting
3-valued logical structures:

– Individuals are represented by circles containing (non-0) values for unary relations.
Summary individuals are represented by double circles.

– A unary relation p corresponding to a pointer-valued program variable is repre-
sented by a solid arrow from p to the individual u for which p(u) = 1, and by
the absence of a p-arrow to each node u′ for which p(u′) = 0. (If p = 0 for all
individuals, the relation name p is not shown.)

– A binary relation q is represented by a solid arrow labeled q between each pair of
individuals ui and uj for which q(ui, uj) = 1, and by the absence of a q-arrow
between pairs u′

i and u′
j for which q(u′

i, u
′
j) = 0.

– Relations with value 1/2 are represented by dotted arrows.

For each kind of statement in the programming language, the concrete semantics is de-
fined by relation-update formulas for core relations. The structure transformers for the
abstract semantics are defined by the same relation-update formulas for core relations
and relation-maintenance formulas for instrumentation relations. The latter are gener-
ated automatically via finite differencing [14]. Abstract interpretation collects a set of
3-valued structures at each program point. It is implemented as an iterative procedure
that finds the least fixed point of a certain set of equations [17]. When the fixed point is
reached, the structures that have been collected at a program point describe a superset
of all the execution states that can arise there.

Not all logical structures represent admissible stores. To exclude structures that do
not, we impose integrity constraints. For instance, relation x(v) of Tab. 1 captures

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

252 A. Loginov, T. Reps, and M. Sagiv

whether pointer variable x points to memory cell v; x would be given the attribute
“unique”, which imposes the integrity constraint that x can hold for at most one indi-
vidual in any structure: ∀ v1, v2 : x(v1)∧x(v2) ⇒ v1 = v2. This formula evaluates to 1
in any 2-valued logical structure that corresponds to an admissible store. Integrity con-
straints contribute to the concretization function (γ) for our abstraction [18]. Integrity
constraints are enforced by coerce, a clean-up operation that may “sharpen” a 3-valued
logical structure by setting an indefinite value (1/2) to a definite value (0 or 1), or dis-
card a structure entirely if an integrity constraint is definitely violated by the structure
(e.g., if the structure cannot represent any admissible store).

3 Reachability Maintenance in Possibly-Cyclic Linked Lists

Unfortunately, the relations defined in Tabs. 1 and 2 do not permit precise maintenance
of reachability information, such as relation rn,x, in possibly-cyclic lists. A difficulty
arises when reachability information has to be updated to reflect the deletion of an
n edge on a cycle (e.g., as a result of statement y->n = NULL). With the relations
defined in Tabs. 1 and 2, such an update requires the recomputation of a transitive-
closure formula, which generally results in a drastic loss of precision in the presence of
abstraction.

u3
n n

u5
nnn n

u7

x y

u1 u4

n

u6

n

u2

n

n

n nu8

Fig. 4. Logical structure S4 that represents type-XY panhandle lists, such as the store of Fig. 1(b).
The relations of Tab. 2 are omitted to reduce clutter. Their values are as expected for a type-XY
list: rn,x holds for all nodes, rn,y and cn hold for all nodes on the cycle, and isn holds for u3.

We demonstrate the issue on panhandle lists represented by the abstract structure
S4 shown in Fig. 4, i.e., lists of type XY . Statement y->n = NULL has the effect
of deleting the n edge leaving u5, thus making the nodes represented by u6, u7, and
u8 unreachable from x.2 Note that a first-order-logic formula over the relations of
Tabs. 1 and 2 cannot distinguish the list nodes represented by u4 from those repre-
sented by u6, u7, and u8: all of those nodes are reachable from both x and y, none
of those nodes are shared, and all of them lie on a cycle. Our inability to characterize
the group of nodes represented by u4 via a first-order formula requires the maintenance
formula for the reachability relation rn,x to recompute some transitive-closure informa-
tion, e.g., the transitive-closure subformula of the definition of rn,x, namely, n∗(v1, v).
However, in the presence of abstraction, recomputing transitive-closure formulas often

2 Clearly, all nodes except u5 also become unreachable from y.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 253

yields 1/2. For instance, in S4, formula n∗(v1, v) evaluates to 1/2 under the assignment
[v1 �→ u1, v �→ u4] because of the many 1/2 values of relation n (see the dashed edges
connecting u1 with u2, for example).

The essence of a solution that enables maintaining reachability relations for possibly-
cyclic lists in first-order logic is to find a way to break the symmetry of each cycle.
The basic idea for a solution was suggested to us by William Hesse and Neil Immer-
man. It consists of maintaining a spanning-tree representation of a possibly-cyclic list.
Reachability in such a representation can be maintained using first-order-logic formu-
las. Reachability in the actual list can be expressed in first-order logic based on the
spanning-tree representation. We now explain our approach and highlight some differ-
ences with the approach taken by Hesse [4].

Our approach relies on the introduction of additional core and instrumentation re-
lations. We extend the set of core relations (Tab. 1) with unary relation rocn, which
designates one node on each cycle to be the representative of the cycle. (We refer to
such a node as a rocn node.) Relation rocn is used for tracking a unique cut edge on
each cycle, which allows the maintenance of a spanning tree. Fig. 5(a) shows 2-valued
structure S5, which represents the store of Fig. 1(a) using the extended set of core rela-
tions. Here, we let u7 be the rocn node. In general, we simply require that exactly one
node on each cycle be designated as a rocn node. Later in this section we describe how
we ensure this.

Tab. 3 lists the extended set of instrumentation relations. Note that relation rocn is
not part of the semantics of the language. A natural question is whether rocn(v) can
be defined as an instrumentation relation. For instance, we can try to define it using the
following defining formula:

cn(v)∧ ∃ v1 : n(v1, v)∧¬cn(v1) (1)

Formula (1) identifies nodes that lie on a cycle but have a predecessor that does not.
There are three problems with this approach. First, this definition works for panhandle
lists but not for cyclic lists without a panhandle. (In general, no other definition can
work for cyclic lists without a panhandle because if one existed, it would need to choose
one list node among identical-looking nodes that lie on each cycle.) Second, because
the cyclicity relation cn is defined in terms of rocn (and sfpn), the definition of rocn

has a circular dependence, which is disallowed. (This circularity cannot be avoided,
if we want all reachability relations to benefit from the precise maintenance of one
transitive-closure relation—here, sfpn.) The third problem with introducing rocn as an
instrumentation relation is discussed later in the section (in footnote 3).

We divide our description of the abstraction based on the new set of relations into
three parts, which describe (i) how the relations of Tab. 3 define directed spanning
forests, (ii) how we maintain precision on a cycle in the presence of abstraction, and
(iii) how we generate maintenance formulas for instrumentation relations automatically.
The three parts highlight the differences between our approach and that of Hesse.

Defining Directed Spanning Forests. Instrumentation relation sfen—sfe stands for
spanning-forest edge—is used to maintain the set of edges that form a spanning forest
of list nodes. In Hesse’s work, the spanning-forest edges retain the direction of the n
edges. As a result, he maintains spanning forests, in which the edges lead to the roots of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

254 A. Loginov, T. Reps, and M. Sagiv

Table 3. Defining formulas of instrumentation relations. The sharing relation isn is defined as
in Tab. 2. Relations rn,x and cn are redefined via first-order-logic formulas in terms of other
relations.

p Intended Meaning Defining Formula

isn(v) Do n fields of two or more list nodes ∃ v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 �=v2

point to v?
sfen(v1, v2) Is there an n edge from v2 to v1 n(v2, v1) ∧ ¬rocn(v2)

(assuming that v2 is not a rocn node)
sfpn(v1, v2) Is v2 reachable from v1 along sfen edges? sfe∗

n(v1, v2)

tn(v1, v2) Is v2 reachable from v1 along n fields?

sfpn(v2, v1) ∨

∃ u, w :

⎛

⎝
sfpn(u, v1)∧
rocn(u)∧ n(u, w)
∧ sfpn(v2, w)

⎞

⎠

rn,x(v) Is v reachable from pointer variable x ∃ v1 : x(v1) ∧ tn(v1, v)
along n fields?

cn(v) Is v on a directed cycle of n fields?
∃ v1, v2 : rocn(v1) ∧ n(v1, v2)

∧ sfpn(v, v2)

prx(v) Does v lie on an sfen path from x (does v ∃ v1 : x(v1) ∧ sfpn(v1, v)
precede x on an n-path to a rocn node)?

pr is(v) Does v lie on an sfen path from a shared ∃ v1 : isn(v1) ∧ sfpn(v1, v)
node (does v precede a shared node
on an n-path to a rocn node)?

the spanning forest, which are designated as rocn nodes in our abstraction. For clarity of
presentation, we define sfen to be the reverse of n edges (all but the edges leaving rocn

nodes). The graph defined by the sfen relation then defines a directed spanning forest
with rocn nodes as spanning-forest roots and with the usual orientation of spanning-
forest edges.

Instrumentation relation sfpn—sfp stands for spanning-forest path—is used to main-
tain the set of paths in the spanning forest of list nodes. Binary reachability in the actual
lists (see relation tn in Tab. 3) can be defined in terms of n , rocn, and sfpn using a
first-order-logic formula: v2 is reachable from v1 if there is a spanning-forest path from
v2 to v1 or there is a pair of spanning-forest paths, one from the source of a cut edge (a
rocn node) to v1 and the other from v2 to the target of the cut edge (the n-successor of
the same rocn node).

Unary reachability relations rn,x and the cyclicity relation cn can be defined via
first-order formulas, as well. We defined rn,x in terms of binary reachability relation tn.
While we could define cn in terms of tn, as well, we chose another simple definition by
observing that a node lies on a cycle if and only if there is a spanning-forest path from
it to the target of a cut edge (the n-successor of a rocn node).

Fig. 5(b) shows 2-valued structure S5, which represents the store of Fig. 1(a) using
the extended set of core and instrumentation relations. The relations prx and pr is will
be explained shortly.

Preserving Node Ordering on a Cycle in the Presence of Abstraction. The fact
that our techniques need to be applicable in the presence of abstraction introduces a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 255

n
u3

n
u4

n u7
rocn

n
u2

n
u1

n
u6u5

x nu9
n

u8
n

(a)

isn
rn,x,cn
pris

u3 u4 u5u2rn,x
prx
pris

u1 u6 rocnrn,x,cn

u7n

x

n n n n

sfen sfen sfensfen sfen

nn
sfen

n

sfen

n

sfen

rn,x
pris

rn,x
pris

cnrn,x

cnrn,x

u8
rn,x,cn
pris

u9
rn,x,cn
pris

(b)

Fig. 5. A logical structure S5 that represents the store shown in Fig. 1(a) in graphical form: (a) S5

with the extended set of core relations.(b) S5 with the extended set of core and instrumentation
relations (core relations appear in grey). Transitive-closure relations sfpn and tn have been omit-
ted to reduce clutter. The values of the transitive-closure relations can be readily seen from the
graphical representation of relations sfen and n . For instance, node u5 is related via the sfpn

relation to itself and all nodes appearing to the left or above it in the pictorial representation.

complication that is not present in the setting studied by Hesse. His concern was with the
expressibility of certain properties within the confines of a logic with certain syntactic
restrictions. Our concern is with the ability to maintain precision in the framework of
canonical abstraction.

n
u3 u4u2u1 n

rn,xrn,x

n,sfen

rocnrn,x,cn
rn,y

n,sfen

sfen

nsfe
n

sfen

n
sfe

n

n

sfe
n

yx

isn
rn,x,cn

rn,y

rn,x,cn
rn,y

u6

u5

rn,xrn,y

cn

Fig. 6. A 3-valued structure S6 that is the canonical ab-
straction of structure S4 if relations prx and pr is are not
added to A and node u7 is the rocn node

Unary reachability relations
rn,x (one for every program
variable x) play a crucial role
in the analysis of programs
that manipulate acyclic linked
lists. In addition to keeping
disjoint lists summarized sep-
arately, they keep list nodes
that have been visited during a
traversal summarized separately
from nodes that have not been
visited: if x is the pointer used
to traverse the list, then the
nodes that have been visited will
have value 0 for relation rn,x,
while the nodes that have not been visited will have value 1. If a list contains a cy-
cle, then all nodes on the cycle are reachable from the same set of variables, namely,
all variables that point to any node in that list. As a result, the instrumentation relations
discussed thus far cannot prevent nodes u4, u6, and u8 of S4 shown in Fig. 4 from being
summarized together. Thus, assuming that u7 is the rocn node, the canonical abstrac-
tion of S4 is the 3-valued structure S6 shown in Fig. 6. The nodes represented by u4, u6,
and u8 of S4 are represented by the single summary individual u6 in S6. The symmetry
hides all information about the order of traversal via pointer variable y. Moreover, the
values of the sfpn relation (not shown in Fig. 6) lose precision because ancestors of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

256 A. Loginov, T. Reps, and M. Sagiv

shared node in the spanning tree are summarized together with its descendants in the
spanning tree.

We break the symmetry of the nodes on a cycle using a general mechanism via unary
properties akin to unary reachability relations rn,x. In the definitions of relations prx of
Tab. 3, full reachability (relation tn) has been replaced with spanning-forest reachability
(relation sfpn). The relations prx distinguish nodes according to whether or not they
are reachable from program variable x along spanning-forest edges. The relation pr is
is defined similarly but using instrumentation relation isn; pr is partitions the nodes of
a panhandle list into ancestors and descendants of the shared node in the spanning tree.
Fig. 7 shows structure S7 that is the canonical abstraction of S4 of Fig. 4, assuming that
u7 is the rocn node. In S7, each of the nodes u4, u6, and u8 has a distinct vector of
values for the relations pry and pr is , thus breaking the symmetry.

n n nnn n

x y
n n

u3 u5u1 u4u2

n

prypris

pry
pris

pry

prx
prypris

pry rocn

n

prypris
n n

u7u6

u8

Fig. 7. A 3-valued structure S7 that is the canonical abstraction of structure S4 if node u7 is the
rocn node. S7 represents panhandle lists of type XY , such as the store of Fig. 1(b). The only
instrumentation relations shown in the figure are prx, pry , and pr is . As in structure S4 shown in
Fig. 4, rn,x holds for all nodes, rn,y and cn hold for all nodes on the cycle, and isn holds for u3.

Automatic Generation of Maintenance Formulas for Instrumentation Relations.
In his thesis, Hesse gives hand-specified update formulas for a collection of relations
that are used for maintaining a spanning-forest representation of possibly-cyclic linked
lists. Instead of specifying them by hand, we rely on finite differencing to generate
relation-maintenance formulas for all instrumentation relations. Finite-differencing-
generated maintenance formulas have been effective in maintaining all relations defined
via first-order-logic formulas, i.e., all relations of Tab. 3 except sfpn. Additionally, un-
der certain conditions, finite-differencing-generated maintenance formulas have been
effective in maintaining relations defined via the reflexive transitive closure of binary
relations. The necessary conditions for this technique to be applicable for the mainte-
nance of relation sfpn are:

Acyclicity condition: The graph defined by sfen needs to be acyclic;
Unit-size-change condition: The change to the graph effected by any program state-

ment needs to be a single-edge addition or deletion (but not both).

The acyclicity condition applies in our setting because the graph defined by sfen defines
a spanning forest. The unit-size-change condition requires some discussion.

The relation sfen is defined in terms of n and rocn. While we have not yet discussed
the relation-update formulas for core relation rocn, it should be clear that the value of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 257

the relation rocn should only change in response to a change in the value of a node’s
n field. There are two types of statements that change the value of the n field and thus
may have an effect that should be reflected in the value of the sfen relation, namely,
statements of the forms x->n = NULL and x->n = y. The former destroys the n
edge leaving the node pointed to by x, and the latter creates a new n-connection from
the node pointed to by x to the node pointed to by y. While both of these statements
add or remove a single edge of the n relation, it is not necessarily the case that they add
or remove a single edge of the sfen relation. When interpreted on logical structure S7

of Fig. 7, statement y->n = NULL has the effect of deleting the n edge leaving u5, an
action that should result in the deletion of the sfen edge entering u5 (not shown in the
figure). However, to preserve the spanning-forest representation, we need to ensure that
rocn holds only for nodes that lie on a cycle and that sfen represents spanning-forest
edges. This requires setting the value of rocn for u7 to 0 and adding an sfen edge from
u8 to u7. Because, as this example illustrates, a language statement may result in the
deletion of one sfen edge and the addition of another, our technique for maintaining
instrumentation relations defined via the transitive-closure operator does not apply.

To work around this problem, we apply each transformer associated with statements
x->n = NULL and x->n = y in two phases. In one phase, we apply the part of
the transformer that corresponds to the relation n and reflect it in the values of all in-
strumentation relations. In the other phase, we apply the part of the transformer that
corresponds to the relation rocn and reflect it in the values of all instrumentation rela-
tions. As we explain below, each phase of the two transformers satisfies the requirement
that the change adds a single edge or removes a single edge of the sfen relation.3 Addi-
tionally, by paying attention to the order of phases, we ensure that the graph defined by
the relation sfen remains acyclic throughout the application of the transformers.

To preserve the acyclicity condition in the case of statement x->n = NULL, we
apply the part of the transformer that corresponds to the relation n first:

n ′(v1, v2) = n(v1, v2)∧¬x(v1). (2)

Unless x points to a rocn node (or x->n is NULL), this phase results in the deletion of
the sfen edge that enters the node pointed to by x. In the second phase, we apply the
part of the transformer that corresponds to the relation rocn:

roc′n(v) = rocn(v)∧ ∃ v1 : n(v, v1)∧ sfpn(v, v1) (3)

This phase sets the rocn property of the source ns of a cut edge to 0, if there is no longer
a spanning-forest path from ns to the target nt of the same cut edge. When this happens
and x does not point to ns, i.e., the cut edge is not being deleted, this phase results in
the addition of an sfen edge from nt to ns.

To preserve the acyclicity condition in the case of statement x->n = y, we apply
the part of the transformer that corresponds to the relation rocn first:

roc′n(v) = rocn(v)∨(x(v)∧ ∃ v1 : y(v1)∧ sfpn(v, v1)) (4)

3 The third problem with defining rocn as an instrumentation relation (alluded to earlier in the
section) is that we would lose the ability to apply the two parts of a transformer separately:
the change in the values of n would immediately trigger a change in the values of rocn. The
resulting transformer would not be able to satisfy the unit-size-change condition.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

258 A. Loginov, T. Reps, and M. Sagiv

If there is a spanning-forest path from node nx, pointed to by x, to node ny, pointed to
by y, the statement creates a new cycle in the data structure. The update of Formula (4)
sets the rocn property of nx to 1, thus making nx the source of a new cut edge and
ny the target of the cut edge. Because there was no n edge from nx to ny prior to the
execution of this statement,4 this phase results in no change to the sfen relation. In the
second phase, we apply the part of the transformer that corresponds to the relation n:

n ′(v1, v2) = n(v1, v2)∨(x(v1)∧ y(v2)) (5)

Unless the node pointed to by x became a rocn node in the first phase, this phase results
in the addition of an sfen edge from ny to nx.

The break-up of the transformers corresponding to statements x->n = NULL and
x->n = y into two phases, as described above, ensures that the sfen relation remains
acyclic throughout the analysis (the acyclicity condition) and that the change to the sfen

relation effected by each phase is a unit-size change (the unit-size-change condition).5

Thus, it is sound to maintain sfpn (= sfe∗
n) via the techniques described in [14]. Addi-

tionally, it is also sound to maintain the remaining instrumentation relations via those
techniques because the remaining relations are defined by first-order-logic formulas.
Soundness guarantees that the stored values of instrumentation relations agree with the
relations’ defining formulas throughout the analysis. However, the stored values may
not agree with the relations’ intended meanings. For instance, if the n-transfer phase
of the transformer for statement x->n = NULL removes a non-cut n edge on a cycle,
the sfen relation will temporarily not span the entire list. However, as long as we do
not query the results of abstract interpretation between the phases of a two-phase trans-
former, the stored values of instrumentation relations agree with the relations’ intended
meanings, as well as their defining formulas.

Optimized Maintenance of Relation sfpn. By demonstrating that the acyclicity and
unit-size-change conditions hold for relation sfen, we were able to rely on the tech-
niques of [14] to maintain the relation sfpn. Note, however, that the definition of sfen

ensures that the graph defined by sfen is not only acyclic but is tree-shaped. This knowl-
edge has no bearing on the maintenance formulas that reflect a positive unit-size change
Δ+[sfen] to the sfen relation in the values of the sfpn relation (see [14, Formula 8]).
However, it allows a negative unit-size change Δ−[sfen] to the sfen relation to be re-
flected in the values of the sfpn relation in a more efficient manner. In a tree-shaped
graph, there exists at most one path between a pair of nodes; if that path goes through
the sfen edge to be deleted, it should be removed (cf. [14, Formula 10]):

sfp′
n(v1, v2) = sfpn(v1, v2)

∧ ¬(∃ v′1, v
′
2 : sfpn(v1, v

′
1)∧Δ−[sfen](v′1, v

′
2)∧ sfpn(v′2, v2)).

(6)

4 By normalizing procedures to include a statement of the form x->n = NULL prior to a
statement of the form x->n = y, we ensure that x->n is always NULL prior to the latter
assignment.

5 Ensuring the unit-size-change condition requires answering a question that is in general unde-
cidable. However, we found that a conservative approximation based on a syntactic analysis
of logical formulas suffices for the types of analyses we have performed so far [14].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 259

We extended our finite-differencing technique with the optimized schema for main-
taining the transitive closure of a tree-shaped binary relation in response to a negative
unit-size change in the relation. We will refer to the method of [14] as acyclic-sfen

maintenance and the optimized method as tree-shaped-sfen maintenance.

4 Expressing Properties of Transformations

When discussing properties of Reverse, we are interested in making assertions that
compare the state of a store at the end of the procedure with its state at the start. For
instance, we may be interested in checking that all tree nodes reachable from variable
x at the start of the procedure are guaranteed to be reachable from x at the end. To
allow the user to make such assertions, we double the vocabulary: for each relation p,
we extend the program-analysis specification with a history relation, p0, which serves
as an indelible record of the state of the store at the entry point. We will use the term
history relations to refer to the latter kind of relations, and the term active relations to
refer to the relations from the original vocabulary. We can now express the property
mentioned above:

∀ v : rn,x(v)⇔ r0
n,x(v). (7)

If Formula (7) evaluates to 1, then the elements reachable from x after the procedure
executes are exactly the same as those reachable at the beginning of the procedure.

In addition to history relations, we introduce a collection of nullary instrumentation
relations that track whether active relations have changed from their initial
values. For each active relation p(v1, . . . , vk), the relation samep() is defined by for-
mula ∀ v1, . . . , vk : p(v1, . . . , vk)⇔ p0(v1, . . . , vk). We can now use samern,x() in
place of Formula (7). Additionally, we introduce a unary relation chn which tracks
the changes to the sole binary core relation, n . The relation chn is defined by the for-
mula chn(v) = ¬∀ v1 : n(v, v1)⇔ n0(v, v1); it is not part of the set of abstraction
relations, A.

5 In-Situ List-Reversal Algorithm

[1] void reverse(List *x)
[2] { List *y = NULL;
[3] while (x != NULL) {
[4] t = y;
[5] y = x;
[6] x = x->n;
[7] y->n = NULL;
[8] y->n = t;
[9] }
[10] x = y;
[11] }

Fig. 8. In-situ list reversal algorithm

Fig. 8 shows the list-reversal algorithm that we
analyze. The algorithm performs the reversal in
place using three pointer variables, x, y, and t.
The n field of list nodes is reversed on lines [7]
and [8]. During the execution of the statements
on those lines, x points to the next node to be
processed, y points to the node whose n field is
reversed, and t points to the predecessor of that
node.

First, let us consider how Reverse pro-
cesses an acyclic list La with head u1, pointed
to by x. Fig. 9 shows a logical structure S9 that
represents a store that arises before line [7] dur-
ing the application of Reverse to La. At this

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

260 A. Loginov, T. Reps, and M. Sagiv

point the n edges of nodes u1, . . . , u3 have been reversed, while the remaining edges
retain their original orientation. The statements on lines [7] and [8] replace the n edge
from u4 to u5 with an n edge from u4 to u3. The traversal continues until, on the last
loop iteration, t is set to point to u7’s predecessor in the input list, y is set to point to
u7, and x is set to NULL. The subsequent execution of lines [7] and [8] reverses the
remaining n edge. The head of the reversed list is u7, pointed to by y. As in the input
list, no node lies on a cycle. The last statement of the procedure (the assignment on
line [10]) restores x as the head pointer. The transformation described above can be
stated formally using history relations as follows:

samern,x()∧ samecn()∧ ∀ v1, v2 : n(v1, v2)⇔n0(v2, v1). (8)

u3 u4
n

u5
n

u1
n n

u7
n ……

xyt

Fig. 9. Logical structure S9 that represents a store that arises prior to line [7] of Reverse when
the algorithm is applied to an acyclic list

Let us consider how Reverse processes a list Lc that consists of a single cycle
without a panhandle, such as the acyclic list La discussed above, but with an additional
n edge from u7 to u1. The behavior of Reverse on list Lc is nearly identical to its
behavior on list La. The outgoing n edges are reversed one at a time until, on the last
iteration, t is set to point to u7, y is set to point to u1, and x is set to NULL. The
subsequent execution of lines [7] and [8] reverses the remaining n edge from u7 to u1.
The head of the reversed list remains u1, pointed to by y. Every list node still lies on a
cycle. The last statement of the procedure (the assignment on line [10]) restores x as the
head pointer. The transformation of lists such as Lc also obeys the property specified in
Formula (8).

Now, we discuss how Reverse processes a panhandle list Lp. Initially, the proce-
dure advances the three pointer variables, x, y, and t, down the panhandle, reversing
the n edges out of y. After the panhandle is processed, the algorithm proceeds with
the processing of the cycle. Fig. 10(a) shows a logical structure that represents a store
that arises prior to line [7] while Reverse processes nodes that lie on the cycle. Until
Reverse completes the processing of the cycle, the steps are identical to the steps
taken during the processing of lists La and Lc. Note that the orientation of the n edges
in the panhandle is reversed when the loop body is executed with x pointing to u5

(while reversing the backedge at the end of processing the cycle). As a result, the al-
gorithm proceeds along the reversed n edges down the panhandle, reestablishing the
original orientation of those edges. Fig. 10(b) shows a logical structure that represents a
store that arises prior to line [7] while Reverse processes panhandle nodes for the sec-
ond time. Instead of reversing every n edge in the list, as it does for lists La and Lc,6 the

6 Reversing every n edge of a panhandle list is not possible because it requires the shared node
(u5 in Fig. 10) to have two outgoing n edges.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 261

u6 u9
…

t

n
u8

x

u7

y

n nn
u1

… u5
…nnn

n

(a)

u2 u9
…u4

x

u3

y

nn
u1

…n

n

u5
…

t

n nnn

(b)

Fig. 10. Logical structures that represent stores that arise prior to line [7] of Reverse when
the algorithm is applied to a panhandle list. (a) Logical structure that represents a store that
arises while Reverse processes nodes that lie on the cycle, i.e., after processing nodes that lie
in the panhandle once. (b) Logical structure that represents a store that arises while Reverse
processes nodes that lie on the panhandle for the second time, i.e., after processing nodes that lie
on the cycle.

algorithm reverses the direction of every n edge on the cycle but reestablishes the orig-
inal direction of the n edges in the panhandle. The cyclicity property of all nodes re-
mains as it was on input. The head of the output list remains u1, pointed to by y. The last
statement of the procedure (the assignment on line [10]) restores x as the head pointer.
The transformation described above can be stated formally using history relations as
follows:

samern,x()∧ samecn()∧
∀ v1, v2 : (c0

n(v1)∧ c0
n(v2)) ∧ (n(v1, v2)⇔n0(v2, v1))

∨ ¬(c0
n(v1)∧ c0

n(v2)) ∧ (n(v1, v2)⇔n0(v1, v2)).
(9)

Note that while the behavior of Reverse on lists consisting of a cycle without a
panhandle can be described by Formula (8), as we mentioned above, it can also be
described by Formula (9). (The case described by formula ¬(c0

n(v1)∧ c0
n(v2)) never

arises.)

6 Establishing Properties of Reverse

In this section we describe how the abstraction-refinement mechanism presented in [10]
can be used to verify automatically that Reverse obeys the properties described in the
previous section.

Constructing All Valid Inputs for Reverse. To verify that Reverse satisfies the
properties discussed in the previous section, we need a collection of 3-valued abstract
input structures that represent all valid inputs to the procedure. Our methodology for
obtaining values for abstract input structures is to perform an abstract interpretation on
a loop that nondeterministically constructs the family of all valid inputs to the program
(we call such a loop a Data-Structure Constructor, or DSC). This allows the values of
instrumentation relations to be maintained (as input structures are manufactured from

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

262 A. Loginov, T. Reps, and M. Sagiv

the empty store) rather than computed; in general, this results in more precise values
for the instrumentation relations without requiring the user to specify input 3-valued
logical structures.

[1] List *x = NULL;

[3] int sz =
[4] sizeof(List);
[5] while (?) {
[6] List *t = malloc(sz);

[11] t->n = x;
[12] x = t;
[13] }

List *x, *y, *h; [1]
x = y = h = NULL; [2]
int sz = [3]

sizeof(List); [4]
while (?) { [5]

List *t = malloc(sz); [6]
// save the last node [7]
if (y == NULL) y = t; [8]
// save a node (or NULL) [9]
if (?) h = t; [10]
t->n = x; [11]
x = t; [12]

} [13]
// if y and h are non-NULL, [14]
// this will create a cycle [15]
if (y != NULL) y->n = h; [16]

(a) (b)

Fig. 11. (a) The Data-Structure Constructor for acyclic linked lists. (b) The Data-Structure Con-
structor for possibly-cyclic linked lists (including acyclic and panhandle lists). The differences
between the two versions appear in bold.

Two examples of our methodology are depicted in Fig. 11. The loop on the left non-
deterministically constructs an acyclic linked list pointed to by x: a list is constructed
from tail to head (i.e., most deeply nested node first); the loop exits after some number
of nodes have been added at the front of the list. The slight modification shown on the
right nondeterministically constructs a (cyclic or acyclic) linked list pointed to by x.
This is achieved by setting y to point to the last list node on line [8], nondeterministi-
cally setting h to point to some list node (or NULL) on line [10], and setting y->n to
point to h on line [16] if y is non-NULL (possibly completing a cycle). If h is NULL, the
DSC constructs an acyclic list. If h points to the head of the list, the DSC constructs a
list consisting of a cycle with no panhandle. If h is neither NULL nor points to the head
of the list, the DSC constructs a panhandle list.

Abstract interpretation of the DSC of Fig. 11(b) constructs an abstract representation
of all linked lists pointed to by x. When testing the application of a procedure to acyclic
lists, we select only those structures collected at the exit of the DSC that satisfy the
following formula:

(∃ v : rn,x(v))∧(∀v : rn,x(v)⇒ ¬cn(v)) (10)

We will refer to input abstractions satisfying Formula (10) as type Acyclic. When testing
the application of a procedure to cyclic lists without a panhandle, we select only those
structures collected at the exit of the DSC that satisfy the following formula:

(∃ v : rn,x(v))∧(∀v : rn,x(v)⇒ cn(v)) (11)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 263

We will refer to input abstractions satisfying Formula (11) as type Cyclic. When test-
ing the application of a procedure to panhandle lists, we select only those structures
collected at the exit of the DSC that satisfy the following formula:

(∃ v1 : rn,x(v1)∧ ¬cn(v1))∧(∃ v2 : rn,x(v2)∧ cn(v2)) (12)

We will refer to input abstractions satisfying Formula (12) as type Panhandle. Note that
Formulas (10)–(12) ensure that each of the input types admits only non-empty lists.
Note also that the three types represent disjoint collections of data structures. Addition-
ally, the cross product of the set of lists represented by type Acyclic and the set of lists
represented by type Cyclic is in a one-to-one correspondence with the set of lists repre-
sented by type Panhandle: the acyclic-list component corresponds to the panhandle of
a panhandle list and the cyclic-list component corresponds to its cycle. We will make
use of these facts in §7.

In addition to constructing the valid inputs prior to the first analysis of Reverse,
the DSC is used for constructing refined inputs on every iteration of abstraction refine-
ment: after abstraction refinement introduces additional instrumentation relations, the
abstract interpretation of the DSC is performed using an extended vocabulary that con-
tains the new relation symbols; the 3-valued structures collected at the exit node of the
DSC become the abstract input to the original procedure for the subsequent abstract
interpretation of the procedure.

Note that history relations (such as r0
n,x(v) from §4) are intended to record the state

of the store at the entry point to the procedure or, equivalently, at the exit from the
DSC. To make sure that these relations have appropriate values, they are maintained in
tandem with their active counterparts during abstract interpretation of the DSC. When
abstract input refinement is completed, values of history relations are frozen in prepa-
ration for the abstract interpretation that is about to be performed on the procedure
proper.

Abstraction-Refinement Steps. After an abstraction of the appropriate valid input
is constructed by analyzing the DSC, the abstract interpretation collects all struc-
tures that arise at all program points of Reverse. To check if Reverse satisfies
the expected properties, we check if all structures collected at the exit of Reverse
satisfy the appropriate query (Formula (8) when testing the application of the pro-
cedure to lists represented by type Acyclic and Formula (9) when testing the ap-
plication of the procedure to lists represented by type Panhandle; we can check
either query when testing the application of the procedure to lists represented by
type Cyclic).

Both queries (Formulas (8) and (9)) contain formula n(v1, v2)⇔n0(v2, v1) as a
subformula. Because this formula evaluates to 1/2 under any assignment that maps v1

and v2 to the same summary individual with a 1/2-valued self-loop for the relation
n , it should come as no surprise that the first run of abstract interpretation returns an
indefinite answer, whether we are checking Formula (8) or Formula (9).

In [10], we introduced subformula-based refinement, which analyzes the sources of
imprecision in the evaluation of the query in a structure collected at the exit of a pro-
cedure, and chooses how to define new instrumentation relations using subformulas

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

264 A. Loginov, T. Reps, and M. Sagiv

of the query that contribute to the indefinite answer. Tab. 4 shows the instrumenta-
tion relations that are introduced by subformula-based refinement after Formula (8)
evaluates to 1/2 on a structure collected at the exit of Reverse, given an input ab-
straction of either type Acyclic or Cyclic. Column 2 of Tab. 4 shows the imprecise
subformulas that are used to define new instrumentation relations. To gain precision
improvements from storing and maintaining the new instrumentation relations all oc-
currences of the defining formulas for the new instrumentation relations in the query
and in the definitions of other instrumentation relations are replaced with the use of
the corresponding new instrumentation-relation symbols. Here, the use of Formula (8)
in the query is replaced with the use of the stored value rev1(). Then the definitions
of all instrumentation relations are scanned for occurrences of the defining formulas
for rev1, . . . , rev6. These occurrences are replaced with the names of the six relations.
In this case, only the new relations’ definitions are changed, yielding the definitions
given in Column 3 of Tab. 4.

Table 4. Instrumentation relations created by subformula-based refinement when the application
of Reverse is checked against the query expressed in Formula (8) on an input abstraction of
either type Acyclic or Cyclic

Relation Imprecise Subformula Defining formula

rev1()
samern,x() ∧ samecn()∧
∀ v1, v2 : n(v1, v2)⇔ n0(v2, v1)

samern,x()∧ samecn() ∧ rev2()

rev2() ∀ v1, v2 : n(v1, v2)⇔ n0(v2, v1) ∀ v1 : rev3(v1)

rev3(v1) ∀ v2 : n(v1, v2)⇔ n0(v2, v1) ∀ v2 : rev4(v1, v2)

rev4(v1, v2) n(v1, v2) ⇔ n0(v2, v1) rev5(v1, v2) ∧ rev6(v2, v1)

rev5(v1, v2) n(v1, v2) ⇒ n0(v2, v1) n(v1, v2) ⇒ n0(v2, v1)

rev6(v2, v1) n0(v2, v1) ⇒ n(v1, v2) n0(v2, v1)⇒ n(v1, v2)

Tab. 5 shows the instrumentation relations that are introduced by subformula-
based refinement after Formula (9) evaluates to 1/2 on a structure collected at
the exit of Reverse, given an input abstraction of either type Panhandle or
Cyclic. Column 2 of Tab. 5 shows the imprecise subformulas that are used to de-
fine new instrumentation relations. Note that subformulas of acycSame(v1, v2), i.e.,
¬(c0

n(v1)∧ c0
n(v2))∧(n(v1, v2)⇔n0(v1, v2)) were not introduced. This is because

refinement was triggered by imprecise evaluation on a structure that had a single
concrete individual in the panhandle. However, relation rev3 is capable of main-
taining the key property of nodes in the panhandle with enough precision, so that
another refinement iteration is not required. Column 3 of Tab. 5 gives the defi-
nitions of the new instrumentation relations after all occurrences of the defining
formulas of new instrumentation relations in the query and in the definitions of
other instrumentation relations have been replaced with the use of the correspond-
ing new instrumentation-relation symbols. Again, only the query and new relations’
definitions are changed.

After the introduction of the new instrumentation relations (Tab. 4 or 5, depending on
the query being verified), the abstract interpretation of the DSC is performed using an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 265

Table 5. Instrumentation relations created by subformula-based refinement when the ap-
plication of Reverse is checked against the query expressed in Formula (9) on an
input abstraction of either type Panhandle or Cyclic. For compactness, we refer to
formula (c0

n(v1)∧ c0
n(v2))∧(n(v1, v2) ⇔ n0(v2, v1)) as cycRev (v1, v2) and to formula

¬(c0
n(v1) ∧ c0

n(v2)) ∧(n(v1, v2)⇔ n0(v1, v2)) as acycSame(v1, v2).

Relation Imprecise Subformula Defining formula

rev1()
samern,x()∧ samecn() ∧
∀ v1, v2 : cycRev (v1, v2) ∨ acycSame(v1, v2)

samern,x() ∧ samecn()∧ rev2()

rev2() ∀ v1, v2 : cycRev (v1, v2) ∨ acycSame(v1, v2) ∀ v1 : rev3(v1)

rev3(v1) ∀ v2 : cycRev (v1, v2) ∨ acycSame(v1, v2) ∀ v2 : rev4(v1, v2)

rev4(v1, v2) cycRev(v1, v2) ∨ acycSame(v1, v2) rev5(v1, v2)∨ acycSame(v1, v2)

rev5(v1, v2) cycRev(v1, v2) (c0
n(v1)∧ c0

n(v2))∧ rev6(v2, v1)

rev6(v1, v2) n(v1, v2) ⇔ n0(v2, v1) rev7(v1, v2)∧ rev8(v2, v1)

rev7(v1, v2) n(v1, v2) ⇒ n0(v2, v1) n(v1, v2)⇒ n0(v2, v1)

rev8(v2, v1) n0(v2, v1)⇒ n(v1, v2) n0(v2, v1) ⇒ n(v1, v2)

extended vocabulary that contains the new instrumentation-relation symbols. The sub-
sequent abstract interpretation of Reverse succeeds: in all of the structures collected
at the exit, rev1() = 1.

Establishing that Reverse Terminates. We can establish that Reverse terminates
using a few unary core relations and a simple progress monitor. We introduce a collec-
tion of unary core state relations, state0(v), state1(v), and state2(v).7 Every time the
reversal of the n pointer of the list node pointed to by y is completed (after line [8] of
Fig. 8), the node’s state is changed to the next state. (The state relations carry no seman-
tics with respect to the pointer values of nodes; they simply record the “visit counts” for
each node.) For each state relation s, we create a copy of s, which is used to save the
values of relation s at the start of the currently-processed loop iteration (after line [3]
of Fig. 8). We give the new relations the superscript lh to indicate that they hold the
loop-head values. The first abstract operation of each iteration of the loop takes a snap-
shot of the current states of nodes: state lh

i (v) ← statei(v), for each i ∈ [0..2] and each
assignment of v to an individual in the abstract structure being processed. Additionally,
it asserts that x does not point to a list node in state 2 at the head of the loop (at that
point, x points to the node whose n edge is about to be reversed). The last operation of
every loop iteration performs a progress test by asserting the following formula:

∃ v :
(
state lh

0 (v)∧ state1(v)∨ state lh
1 (v)∧ state2(v)

)
∧

∀ v1 	= v :
∧

i∈[0..2]

(
state lh

i (v1)⇔ statei(v1)
)

The assertion ensures that one node’s state makes forward progress (the first line of
the assertion) and that no other node changes state (the second line of the assertion).
Together with the assertion that x does not point to a list node in state 2 at the start of
the loop, the above progress monitor establishes that each list node is visited at most
twice, thus establishing that the algorithm terminates.

7 The state relations are not added to the set of abstraction relations, A.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

266 A. Loginov, T. Reps, and M. Sagiv

7 Performance

The tables shown in Fig. 12 give execution times that were collected on a 3GHz Linux
PC. The rows indicate the type of data structures assumed as input, and the columns
indicate the query to be verified. In each case, one round of abstraction refinement
was required to obtain the definite answer 1 to the query. In other words, two rounds
of analysis were performed for both the DSC and Reverse: the first analysis round
of the DSC and Reverse used the initial abstraction (the core relations of Tab. 1,
core relation rocn, the instrumentation relations of Tab. 3, and the history relations
of §4), while the second round used the final abstraction, which additionally included
the relations of Tab. 4 or 5, depending on the query. For a given abstraction, the cost
of the DSC analysis is nearly identical for all input types because the general DSC
of Fig. 11(b) constructs an abstraction of all input types, from which structures that
represent the chosen input type are selected at the end using Formula (10), (11), or (12).
To gain a better understanding of the cost of verifying Reverse proper, the tables also
include the execution times for the last analysis round (using the final abstraction) of
Reverse, excluding the analysis time for the DSC.

The tables of Fig. 12 show that the use of tree-shaped-sfen maintenance in place
of acyclic-sfen maintenance for maintaining the relation sfpn results in a reduction of
the total analysis time by a factor in the range of 2.8-4.8. The highest-cost analyses are
those that include type Panhandle as input. Using tree-shaped-sfen maintenance, the
last iteration of the analysis of Reverse with the input abstraction of type Panhan-
dle/Cyclic takes approximately 2.5 minutes (the total execution time is approximately
4.5 minutes). The last iteration of the analysis of Reverse when the input abstraction
is of any other type takes under 13 seconds. The majority of the total analysis cost in
those cases is due to the use of the general DSC, which could be specialized to produce
input abstractions of type Acyclic or Cyclic more efficiently (e.g., using the DSC shown
in Fig. 11(a)).

The two tables of Fig. 12 share many qualitative characteristics. Below we
draw some conclusions from Fig. 12(b), but all of the conclusions can be drawn
from Fig. 12(a) equally well. As expected, the cost of the last run of the analy-
sis of Reverse when the input abstraction is of type Acyclic/Cyclic is close to
the sum of the cost when the input abstraction is of type Acyclic and the cost
when the input abstraction is of type Cyclic. Similarly, the cost of the last run of
the analysis of Reverse when the input abstraction is of type Panhandle/Cyclic
is close to the sum of the cost when the input abstraction is of type Panhandle
and the cost when the input abstraction is of type Cyclic. Curiously, the total cost
of the analysis when the input abstraction is of type Panhandle is slightly higher
than the total cost when the input abstraction is of type Panhandle/Cyclic. The rea-
son is that a structure of type Cyclic triggers the refinement process at an earlier
point. The resulting shorter execution of the first run of the analysis of Reverse
explains the counterintuitive relation of total execution times. The cost of the anal-
ysis when the input abstraction is of type Cyclic (both total cost and the cost
of the last iteration of the analysis of Reverse) is similar for the two queries.
The panhandle query (Formula (9)) results in the introduction of a more complex

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 267

Query
Input Type acyclic panhandle

total/last total/last

Acyclic 161.2/11.8

Cyclic 208.1/28.2 232.9/34.6

Acyclic/Cyclic 219.7/38.6

Panhandle 1320.3/782.3

Panhandle/Cyclic 1249.3/810.3

Query
Input Type acyclic panhandle

total/last total/last

Acyclic 57.1/4.6

Cyclic 65.6/8.4 71.5/9.0

Acyclic/Cyclic 69.1/12.5

Panhandle 277.1/147.8

Panhandle/Cyclic 268.1/154.9

(a) (b)

Fig. 12. Execution times in seconds using (a) acyclic-sfen maintenance for maintaining the re-
lation sfpn; (b) tree-shaped-sfen maintenance for maintaining the relation sfpn. In row labels,
input types “Acyclic/Cyclic” and “Panhandle/Cyclic” denote an abstraction that represents lists
of either type. The label of column 2 (query “acyclic”) denotes the query of Formula (8). The
label of column 3 (query “panhandle”) denotes the query of Formula (9). Empty cells indicate
inappropriate input/query combinations. The first number in each column represents the total
execution time for all iterations of the analysis (on both the DSC and Reverse). The second
number represents the execution time for only the last iteration of the analysis of Reverse (and
not the DSC).

abstraction (cf. Tabs. 5 and 4), so the costs in column 3 of Fig. 12(b) are slightly
higher.

The cost of verifying that Reverse terminates is negligible (when compared to the
cost of verifying the query) because the progress monitor does not increase the size of
the reachable state space.

The three analyses represented by column 3 of Fig. 12(a), i.e., analyses using the
panhandle query (Formula (9)) and acyclic-sfen maintenance, used a maximum of ap-
proximately 170 MB of memory, as reported by the Java Runtime. All other analyses
required significantly less memory.

As a sanity check, we studied the number of distinct 3-valued structures collected at
all points of Reverse during the last run of the analysis. As we expected, that informa-
tion is identical when the analysis relies on acyclic-sfen maintenance and when it relies
on tree-shaped-sfen maintenance, thus providing a cross-validation of the implementa-
tion of the two methods. The structure counts are shown in Tab. 6. The table shows that
when the input abstraction is of type Cyclic, the same number of structures is collected
with either query. Also, the number of structures collected when the input abstraction
is of type Acyclic/Cyclic is the sum of the number when the input abstraction is of type
Acyclic and the number when the input abstraction is of type Cyclic. Similarly, the num-
ber of structures collected when the input abstraction is of type Panhandle/Cyclic is the
sum of the number when the input abstraction is of type Panhandle and the number
when the input abstraction is of type Cyclic.

Additionally, we used the data collected in our experiments to answer an instance
of the following general question: “Can we predict how much work needs to be done
for analysis X when we know how much work is done for related analyses Y and Z?”
Given the correspondence of lists represented by type Panhandle with combinations

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

268 A. Loginov, T. Reps, and M. Sagiv

Table 6. The number of distinct
3-valued structures collected during
the last iteration of the analysis of
Reverse (and not the DSC). Rows
and columns have the same meaning as
in Fig. 12.

Query
Input Type acyclic panhandle

Acyclic 103

Cyclic 162 162

Acyclic/Cyclic 265

Panhandle 921

Panhandle/Cyclic 1083

of lists represented by type Acyclic and lists
represented by type Cyclic, we made a predic-
tion about the number of structures collected
during the analysis of Reverse when the input
abstraction is of type Panhandle (using the pan-
handle query) based on the number of structures
collected during the analyses of Reversewhen
the input abstraction is of types Acyclic and
Cyclic (using the acyclic query). Let an, cn, and
pn, represent the numbers of structures collected
at CFG node n during the analysis of Reverse
when the input abstraction is of type Acyclic,
Cyclic, and Panhandle, respectively. For a CFG
node n that lies outside the loop of Reverse,
we expect that pn = an ∗ cn. For a CFG node n
that lies inside the loop, we expect that

pn = centry ∗ an + aexit ∗ cn + cexit ∗ an, (13)

where centry is the number of structures at the entry node of Reverse when the in-
put abstraction is of type Cyclic, aexit is the number of structures collected at the exit
of Reverse when the input abstraction is of type Acyclic, and cexit is the number
of structures collected at the exit of Reverse when the input abstraction is of type
Cyclic. The intuition behind the first summand of Formula (13) is that every acyclic
structure collected at n (when the input abstraction is of type Acyclic) can be extended
to centry panhandle structures at n. These structures represent the states in which the
panhandle is being reversed before the cycle is entered. The intuition behind the sec-
ond summand of Formula (13) is that every cyclic structure collected at n (when the
input abstraction is of type Cyclic) can be extended to aexit panhandle structures. These
structures represent the states in which the cycle is being reversed after the panhandle
has been reversed. Finally, the intuition behind the third summand of Formula (13) is
that every acyclic structure collected at n can be extended to cexit panhandle structures.
These structures represent the states in which the panhandle is being un-reversed after
the cycle has been reversed. The summation of predicted values for pn over the nodes n
of Reverse gives 858 structures. This prediction is a little short of the actual number
(921). This relatively small discrepancy is probably due to the fact that our prediction
for a run using the panhandle query (which leads to the abstraction of Tab. 5) is based on
numbers for the right-hand side quantities of Formula (13) gathered from runs that use a
slightly different abstraction, namely, Tab. 4. The more complex abstraction introduced
when verifying the panhandle query apparently creates a few additional intermediate
structures.

Note that the sum of the numbers of structures collected during the analyses when
the input abstraction is of types Acyclic and Cyclic is much lower than the number of
structures collected during the analysis when the input abstraction is of type Panhan-
dle. The sum of the execution times of the analyses when the input abstraction is of
types Acyclic and Cyclic is also much lower than the execution time of the analysis

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 269

when the input abstraction is of type Panhandle. A possible extension of this work is
to infer properties of Reverse when applied to input abstraction of type Panhandle
from properties of Reverse when applied to input abstractions of types Acyclic and
Cyclic. To make this possible, we need to find a way to infer properties of heap config-
urations from properties of components of those configurations. The concept of local
heaps introduced by Rinetzky et al. is relevant in this line of research [16].

8 Related Work

In §3, we compared our work with that of William Hesse, which is closest in spirit to
what is reported here. Prior work that is related to the general concept of finite differenc-
ing has been discussed in [14]. Work related to the abstraction-refinement mechanism
has been discussed in [10]. In this section, we discuss a few approaches that bear resem-
blance to ours in that they attempt to translate or simulate a data structure that cannot
be handled by some core techniques into one that can.

The idea of using spanning-tree representations for specifying or reasoning about
data structures that are “close to trees” is not new. Klarlund and Schwartzbach intro-
duced graph types, which can be used to specify some common non-tree-shaped data
structures in terms of a spanning-tree backbone and regular expressions that specify
where non-backbone edges occur within the backbone [7]. Examples of data structures
that can be specified by graph types are doubly-linked lists and threaded trees. A pan-
handle list cannot be specified by a graph type because in a graph type the location of
each non-backbone edge has to be defined in terms of the backbone using a regular ex-
pression, and a regular expression cannot be used to specify the existence of a backedge
to some node that occurs earlier in the list. In the PALE project [12], which incorpo-
rates work on graph types, automated reasoning about programs that manipulate data
structures specified as graph types can be carried out using a decision procedure for
monadic second-order logic. Unfortunately, the decision procedure has non-elementary
complexity. Additionally, the decision procedure cannot handle 2-vocabulary structures,
which the present paper uses to express data-structure transformations (the second vo-
cabulary consists of history relations p0). An advantage of our approach over that of
PALE is that we do not rely on the use of a decision procedure.

Immerman et al. presented structure simulation, a technique that broadens the ap-
plicability of decision procedures to a larger class of data structures [6]. Under certain
conditions, it allows data structures that cannot be reasoned about using decidable logics
to be translated into data structures that can, with the translation expressed as a first-
order-logic formula. Unlike graph types, structure simulation is capable of specifying
panhandle lists. However, this technique shares a limitation of graph types because it
relies on decision procedures for automated reasoning about programs.

Manevich et al. specified abstractions (in canonical-abstraction and predicate-
abstraction forms) for showing safety properties of programs that manipulate possibly-
cyclic linked lists [11]. By maintaining reachability within list segments that are not
interrupted by nodes that are shared or pointed to by a variable, they are able to break
the symmetry of a cycle. The definition of several key instrumentation relations in that
work makes use of transitive-closure formulas that cannot be handled precisely by finite

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

270 A. Loginov, T. Reps, and M. Sagiv

differencing. As a result, a drawback of that work is the need to define some relation-
maintenance formulas by hand. Another drawback is the difficulty of reasoning about
reachability (in a list) from a program variable (see reachability relations rn,x of Tab. 3).
Because in [11] reachability in a list has to be expressed in terms of reachability over a
sequence of uninterrupted segments, a formula that expresses the reachability of node
v from program variable x in a list has to enumerate all permutations of other program
variables that may act as interruptions on a path from x to v in the list.

A number of past approaches to the analysis of programs that manipulate linked lists
relied on first-order axiomatizations of reachability information. All of these approaches
involved the use of first-order-logic decision procedures. While our approach does not
have this limitation, it is instructive to compare our work with those approaches that
included mechanisms for breaking the symmetry on a cycle. Nelson defined a set of
first-order axioms that describe the ternary reachability relation rn(u, v, w), which has
the meaning: w is reachable from u along n edges without encountering v [13]. The use
of this relation alone is not sufficient in our setting because in the presence of abstraction
we require unary distinctions (such as the relations prx and pr is of §3) to break the
symmetry. Additionally, the maintenance of ternary relations is more expensive than
the maintenance of binary relations. Lahiri and Qadeer specify a collection of first-
order axioms that are sufficient to verify properties of procedures that perform a single
change to a cyclic list, e.g., the removal of an element [8]. They also verify properties
of in-situ list reversal, albeit under the assumption that the input list is acyclic. (We
verify properties of Reverse when applied to any linked list, including cyclic and
panhandle lists.) They break the symmetry of cycles in a similar fashion to how it is
done in [11]: the blocking cells of [8] are a subset of the interruptions of [11]. The
blocking cells include only the set of head variables—program variables that act as
heads of lists used in the program. This set has to be maintained carefully by the user
to (i) satisfy the system’s definition of acceptable (well-founded) lists, (ii) allow the
system to verify useful postconditions, and (iii) avoid falling prey to the difficulty—
that arises in [11]—of expressing reachability in the list. The current mechanism of [8]
is insufficient for reasoning about panhandle lists because the set of blocking cells does
not include shared nodes. This limitation can be partially addressed by generalizing
the set of blocking cells to mimic interruptions of [11] more faithfully. However, this
may make it more difficult to satisfy points (ii) and (iii) stated above. As in our work,
Lahiri and Qadeer rely on the insight that reachability information can be maintained
in first-order logic. They use a collection of manually-specified update formulas that
define how their relations are affected by the statements of the language and the (user-
inserted) statements that manage the set of head variables.

Gotsman et al. present an interprocedural shape-analysis algorithm that is capable of
checking some properties of programs that manipulate possibly-cyclic linked lists [3].
This algorithm is based on a novel abstract domain that consists of formulas in a decid-
able fragment of Separation Logic [1,15]. The analysis relies on carefully hand-crafted
inductive predicates and axioms to evaluate some properties of possibly-cyclic linked
lists precisely and efficiently. However, because the formulas allowed in the analysis
need to come from a decidable fragment of Separation Logic and, furthermore, need to
make up a finite abstract domain, the set of properties that can be tested is limited. For

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Refinement-Based Verification for Possibly-Cyclic Lists 271

instance, their analysis of Reverse when applied to a panhandle list verifies mem-
ory safety and the absence of memory leaks, but shows neither the partial correctness
(the property described by Formula (9)), nor the termination of the algorithm. Although
our analysis is also based on logic, our abstract domain consists of sets of (abstracted)
logical structures. An advantage of our approach is the ability to test more general prop-
erties. Additionally, our approach does not rely on decision procedures.8

Lee et al. defined a shape-analysis algorithm that extends the shape graphs of Sagiv
et al. [17] with grammars [9]. Grammars are employed in place of instrumentation rela-
tions for expressing and maintaining derived properties of data structures. The meaning
of a grammar is given by an inductive predicate of Separation Logic. An important con-
nection of that work with ours is the cutting of one edge on each cycle for modeling
some cyclic structures by acyclic ones. Lee et al. define a cut rule, which removes one
edge from each cycle and stores information about the edge in the grammar that corre-
sponds to the data structure. Their mechanism is sufficiently precise to represent cyclic
and panhandle lists. While Lee et al. do not discuss the application of their techniques
to Reverse, their techniques should be capable of ensuring that the program has no
unsafe memory operations or memory leaks when applied to a cyclic or a panhandle
list. However, their analysis has no mechanism for relating the input and output data
structures—a mechanism required for showing the total correctness of the algorithm.

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments,
as well as Hongseok Yang for important clarifications on the power and limitations of
grammar-based shape analysis [9].

References

1. D Distefano, P O’Hearn, and H Yang. Interprocedural shape analysis with separated heap
abstractions. In Tools and Algs. for the Construction and Analysis of Systems, pages 287–302,
March 2006.

2. G. Dong and J. Su. Incremental maintenance of recursive views using relational calcu-
lus/SQL. SIGMOD Record, 29(1):44–51, 2000.

3. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated heap
abstractions. In Static Analysis Symp., pages 240–260, August 2006.

4. W. Hesse. Dynamic Computational Complexity. PhD thesis, Dept. of Computer Science,
University of Massachusetts, June 2003.

5. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundary between de-
cidability and undecidability for transitive closure logics. In Workshop on Computer Science
Logic, pages 160–174, September 2004.

6. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Verification via structure
simulation. In Computer-Aided Verification, pages 281–294, July 2004.

7. N. Klarlund and M. Schwartzbach. Graph types. In Symp. on Principles of Programming
Languages, January 1993.

8 In fact, the logic that we use is not decidable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

272 A. Loginov, T. Reps, and M. Sagiv

8. S. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In Symp. on
Principles of Programming Languages, pages 115–126, January 2006.

9. O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using grammar-based
shape analysis. In European Symp. On Programming, pages 124–140, April 2005.

10. A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via inductive learning. In
Computer-Aided Verification, pages 519–533, July 2005.

11. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and canonical
abstraction for singly-linked lists. In Verification, Model Checking, and Abstract Interpreta-
tion, pages 181–198, January 2005.

12. A. Møller and M. Schwartzbach. The pointer assertion logic engine. In Conf. on Program-
ming Language Design and Impl., pages 221–231, June 2001.

13. G. Nelson. Verifying reachability invariants of linked structures. In Symp. on Principles of
Programming Languages, pages 38–47, January 1983.

14. T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static analysis.
In European Symp. On Programming, pages 380–398, April 2003.

15. J. Reynolds. Separation Logic: A logic for shared mutable data structures. In Symp. on Logic
in Computer Science, pages 55–74, July 2002.

16. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for procedure local
heaps and its abstractions. In Symp. on Principles of Programming Languages, pages 296–
309, January 2005.

17. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on
Programming Languages and Systems (TOPLAS), 24(3):217–298, 2002.

18. G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical characterizations of heap abstractions.
To appear in ACM Transactions on Computational Logic (TOCL).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement

for Powerset Domains

R. Manevich1,�, J. Field2, T.A. Henzinger3,��,
G. Ramalingam4,���, and M. Sagiv1

1 Tel Aviv University
{rumster,msagiv}@tau.ac.il

2 IBM T.J. Watson Research Center
jfield@watson.ibm.com

3 EPFL
tah@epfl.ch

4 Microsoft Research India
grama@microsoft.com

Abstract. Counterexample-guided abstraction refinement (CEGAR) is
a powerful technique to scale automatic program analysis techniques to
large programs. However, so far it has been used primarily for model check-
ing in the context of predicate abstraction. We formalize CEGAR for gen-
eral powerset domains. If a spurious abstract counterexample needs to be
removed through abstraction refinement, there are often several choices,
such as which program location(s) to refine, which abstract domain(s) to
use at different locations, and which abstract values to compute. We de-
fine several plausible preference orderings on abstraction refinements, such
as refining as “late” as possible and as “coarse” as possible. We present
generic algorithms for finding refinements that are optimal with respect
to the different preference orderings. We also compare the different order-
ings with respect to desirable properties, including the property if locally
optimal refinements compose to a global optimum. Finally, we point out
some difficulties with CEGAR for non-powerset domains.

1 Introduction

The CEGAR (Counterexample-guided Abstraction Refinement) paradigm [1,3]
has been the subject of a significant body of work in the automatic verification
community. The basic idea is as follows. First, we statically analyze a program us-
ing a given abstraction. When an error is discovered, the analyzer generates an ab-
stract counterexample, and checks whether the error occurs in the corresponding
concrete execution path. If so, the execution path is presented to the user. Oth-
erwise, the analyzer examines the spurious abstract counterexample and refines
the abstraction to remove it. The analyzer continues refining iteratively, driven by
abstract counterexamples, until it either reaches a fixpoint or runs out of resources.

� This research is partially supported by the Clore Fellowship Programme.
�� Supported in part by the Swiss National Science Foundation.

��� Work done while author was at IBM T.J. Watson Research Center.

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 273–292, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

274 R. Manevich et al.

Our motivation for creating a general model for the abstract counterexample-
based refinement problem is twofold. First, given a spurious abstract counterex-
ample, there may be more than one abstraction refinement that eliminates it.
Indeed, in some situations the set of suitable refinements is infinite. However, two
refinements that remove the same spurious abstract counterexample may differ
significantly in their cost to compute, or in their effect on the number of subse-
quent refinement steps required to reach convergence. Until now, we had no way
to cleanly separate refinement strategies from the abstractions that use them;
this in turn made it difficult to compare and contrast the cost and effectiveness
of different CEGAR techniques, or to mix and match abstraction constructions
and refinement strategies. Second, most abstraction refinement techniques have
heretofore been based on predicate abstractions. We would like to extend the
applicability of automatic refinement to other domains, in particular to expen-
sive domains such as the ones used for shape analysis [12], in order to achieve
scalability. Although in this paper we do not demonstrate how to instantiate our
framework for abstract domains not based on predicate abstraction, we hope
that the framework can be used as a first step in this direction.

In the remainder of this paper, we lay out a framework for counterexample-
guided abstraction refinement for arbitrary abstract domains, place existing work
in this framework, define various “preference orderings” that may be used to se-
lect among candidate abstraction refinements, and compare and contrast the
consequences of various refinement strategies that use these orderings. For ex-
ample, we show that for certain preference orderings, computing optimal refine-
ments for each counterexample path iteratively does not necessarily compose to
a globally optimal abstraction.

Our focus is on a single refinement step within the CEGAR method: how
to refine the abstraction in order to remove one abstract counterexample. We
present a theoretical framework for refining abstractions in order to remove
spurious abstract counterexamples. Our framework is based on the theory of
abstract interpretation [4], making it possible to extend the problem beyond
predicate abstraction. Inspired by the concept of “parsimonious abstractions”
[7], we allow different abstractions to be associated with different control flow
locations. Furthermore, we consider a parametric variant of refinement. In this
setting, rather than computing refinements over the space of all abstractions
of a concrete domain, we assume we are given as a parameter a lattice of
predefined abstractions, e.g., because its values are computationally cheap to
manipulate.

During the investigation of the problem, we discovered that the refinement
of powerset domains1 is simpler than refinement of non-powerset domains. In
the latter case, refinement may need to be done for a set of control flow paths
simultaneously, and special underapproximation techniques may have to be de-
vised (see Appendix A for further details). We therefore focus on refinement of
powerset domains.

1 An abstract domain is a powerset domain if it is closed under unions. For example,
predicate abstractions yield relational domains.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 275

The main results of this paper are as follows:

Refinement Orderings. For a given spurious counterexample, there may be
many possible refinements that eliminate it. We identify and focus on three di-
mensions2 in the space of refinements: (i) the abstract domain at the control
flow locations along the trace, (ii) the set of control flow locations where refine-
ment occurs, and (iii) the abstract elements that appear along the refined trace
at those locations. We use these dimensions to define preference orders on the
space of refinements.

Refinement Procedures. We present new refinement procedures that provide
optimal refinements with respect to a given preference order and we identify,
along the way, a set of abstract domain operations that can be used for refining
abstract counterexamples.

Constrained Problem Settings. We modify the initial idealized setting of the
problem to consider a more realistic situation where refinement of an abstract
domain is done by adding abstract values from a given lattice of abstract values.

Local Optima vs. Global Optima. We consider the question of whether
proving a property by refining abstract counterexamples in a locally optimal
way provides globally optimal solutions (w.r.t. the orderings we define). We
show that the answer depends on the given ordering, and that for two of the
orderings the answer is negative, and for one it is positive.

Running Example. Consider the simple program shown in Table 1. The goal is
to prove the assertion at label 5, which is true, since the variable x is assigned the
values 0, 1, 2, 3 at labels 2, 3, 4, 5, respectively. The initial abstract domain A has
the following overapproximations available for these values at the corresponding
program labels: 2:{x < 7}, 3:{x = 1}, 4:{x = 0}, and 5:{x = 2}. Using a
sound (overapproximate) abstract semantics, the analysis determines that x can
have any value at labels 4 and 5 (since the abstract values {x = 0} and {x = 2}
cannot be used to approximate the values of x at labels 4 and 5), which is
insufficient to prove the assertion.

We can eliminate the abstract counterexample by adding new (more precise)
abstract values to the abstraction at the corresponding program labels, resulting
in the abstract domain U . One such refinement adds the following abstract values
at the corresponding labels: 2:{x = 0}, 4:{x = 2}, and 5:{x = 3}. The refined
abstract semantics produces the sequence of values 2:{x = 0}, 3:{x = 1},
4:{x = 2}, and 5:{x = 3}, which proves the assertion, since {x = 3} ⊆ {x <
10}. Another refinement that eliminates the abstract counterexample adds the
following values to the abstractions at the corresponding labels: 3:{x < 8},
4:{x < 9}, and 5:{x < 10}. We denote the refined abstract domain by W .
The refined abstract semantics produces the sequence of values 2:{x < 7},
2 In this paper, we use the term dimension loosely to talk about properties of refine-

ments. The properties are in fact inter-related.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

276 R. Manevich et al.

3:{x < 8}, 4:{x < 9}, and 5:{x < 10}, which proves the assertion, since
{x < 10} ⊆ {x < 10}.

Notice that the two refinements discussed here refine at different sets of labels
(the first refines at {2, 4, 5}, and the second refines at {3, 4, 5}). They use different
abstract values to perform the refinement, and the “shape” of the abstract values
is different — the first refinement uses rather simple abstract values, of the form
{x = a}, where a is a constant, whereas the second refinement uses values
of the form {x < a}. This shows that the same problem can have solutions
with different characteristics. We will look at several characteristics of the set
of possible refinements and explain how to favor some refinements over others,
according to these characteristics.

Table 1. Program label and statement; ValA:initial sequence of abstract values;
ValU :sequence of abstract values with abstract domain U ; and ValW :sequence of ab-
stract values using abstract domain W . In every row, the values correspond to the label
before the statement.

label: statement ValA ValU ValW
1: x=0 {x ∈ N} {x ∈ N} {x ∈ N}
2: x=x+1 {x < 7} {x = 0} {x < 7}
3: x=x+1 {x ∈ N} {x = 1} {x < 8}
4: x=x+1 {x ∈ N} {x = 2} {x < 9}
5: assert(x<10) {x ∈ N} {x = 3} {x < 10}

Outline. In Sec. 2, we present a theoretical framework for the abstract coun-
terexample refinement problem, based on abstract interpretation. In Sec. 3,
we characterize the space of solutions for the problem, and define axes and
preference orders on the set of solutions. In Sec. 4, we present refinement pro-
cedures that produce optimal solutions for the preference orders we define. In
Sec. 5, we consider a constrained variant of the problem. In Sec. 6, we in-
vestigate the relation between locally optimal solutions and globally optimal
solutions for different optimality criteria. Sec. 7 discusses related work and
concludes the paper.

2 Abstract Counterexample-Based Refinement

Throughout the paper, we fix the abstract counterexample refinement problem
to be 〈P, C, φ, A, π〉 where: P is a program, C is a concrete domain (with a
fixed concrete semantics), φ is a property we wish to prove, A is the initial
compound abstract domain, and π

·= l1, . . . , lk is a sequence of program location
representing the abstract counterexample with the associated abstract values
a1, . . . , ak. We now explain each element of these elements in detail.

Program. The program P is represented by a control flow graph (CFG).
The vertices of the CFG are program locations {entry = l1, . . . , lm = exit}. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 277

edges of the CFG are labeled by program statements using the notation sti,j to
denote the statement on the edge (li, lj).

Concrete Domain and Concrete Semantics. Let STATES be the set of
all possible concrete states that may occur at any program location (the states
do not include the program counter). The complete lattice C is the powerset
of STATES, ordered by the subset relation. A concrete operational semantics
assigns a forward meaning to each program statement st, post(st) : C → C.3

The entry location is associated with an initial value init, which is the set of
concrete states that program execution may begin with.

Property. The exit location is associated with a safety property φ—a set of
concrete states—which defines the set of legal program executions. A concrete
execution that ends at the exit location with a concrete state σ ∈ STATES is
considered legal when σ ∈ φ.

Localized Abstractions and Abstract Semantics. Every program loca-
tion li is associated with a powerset abstract domain in the form of a com-
plete sublattice Ai ⊆ C such that Ai is given by an upper closure operator4,
ρi : C → C, i.e., Ai

·= {ρi(c) | c ∈ 2STATES}. Thus, the elements of our ab-
stract domains are sets of concrete states. This is not a limiting assumption,
since every Galois Connection is isomorphic to one such abstract domain with a
corresponding upper closure operator. We use this assumption purely to simplify
the presentation.

The initial abstraction for P is a compound abstract domain A
·= 〈A1, . . . ,

Am〉. We say that an abstract domain A is more precise than B if B ⊆ A. We use
the point-wise extension of this order to compare the precision of two compound
abstract domains.

The abstract semantics of a statement sti,j is given by post�(sti,j)
·= ρj ◦

post(sti,j) where Aj is obtained via the upper closure operator ρj .
Abstract Counterexample. We define a trace to be a sequence of program

locations l1, . . . , lk (with possible repetitions of locations) that form a path in the
CFG. For a given abstraction A such that Ai is the abstract domain at location
li, given by the upper-closure operator ρi, we define the sequence of abstract
values associated with the trace by: a1

·= ρ1(init), and ai+1
·= post�(sti)(ai) for

every i = 1 . . . k − 1, where sti is the statement between li and li+1. We will
use this notation as a convention for other abstract domains and corresponding
sequences of abstract values along a trace. The trace and associated abstract
values together make an abstract counterexample if ak � φ.

There are two different cases. The abstract counterexample is a real coun-
terexample if (post(stk) ◦ . . . ◦ post(st1))(init) � φ. Otherwise, we say that the
abstract counterexample is a spurious counterexample.

3 Notice that the statements are interpreted directly over sets of concrete states, since
we are using the collecting semantics [11].

4 ρ : C → C is an upper closure operator if it is monotone (x ⊆ y implies ρ(x) ⊆ ρ(y)),
extensive (x ⊆ ρ(x)), and idempotent (ρ(x) = ρ(ρ(x))). In particular, this means
that for every x ∈ C, ρ(x) is the best overapproximation of x in {ρ(y) | y ∈ C}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

278 R. Manevich et al.

Goal. The goal of the problem is to first differentiate between real coun-
terexamples and spurious counterexamples. Second, in the case of a spurious
counterexample, a solution is a compound abstract domain A′ ·= 〈A′

1, . . . , A′
m〉,

which we call a a refinement, such that: (i) A′
i ⊇ Ai for every i = 1, . . . , k (i.e., A′

i

is as least as precise as Ai), and (ii) (post�
′(stk−1)◦ . . .◦post�

′(st1)◦ρ′1)(init) ⊆ φ,
where post�

′(sti)
·= ρ′j ◦ post(sti).

Additional Definitions and Notations. We shall refer to the operations
pre(st, c) and post(st, c), which supply the semantic weakest-precondition and
strongest-postcondition of the statement st and set of concrete states c, respec-
tively. We shall also refer to the curried versions of the pre and post operators,
i.e., pre(st) = λ c ∈ C . pre(st, c) and post(st) = λ c ∈ C . post(st, c).

For a powerset domain A, the operation ρ(c), which is not standard in abstract
interpretation, supplies the best, i.e., the tightest, under-approximation for a set
of concrete states c. This operation can be defined by ρ

A
(c) ·=

⋃
a∈A,a⊆c a. The

resulting abstract element is in the abstract domain since the domain is closed
under union.

Given a powerset domain A, the best transformer for a statement st is given
by postA(st) ·= ρA ◦ post(st). The best underapproximation of the backward
meaning of a statement is given by pre

A
(st) ·= ρ

A
◦ pre(st).

The operation U 	RelW accepts two powerset domains and gives the coars-
est, i.e., most abstract, powerset domain that is more precise than U and
W (App. B supplies further details on this operation). For a set of concrete
states S ∈ STATES, D(S) ·= {S,
C}, where
C = STATES, is the coarsest
abstract domain containing the element S. For sets of concrete states S1, ...,
Sb, the notation D(S1, ..., Sb)

·= 	Rel(D(S1), . . . , D(Sk)) denotes the coarsest
abstract domain containing the sets. The notation D� stands for the abstract
domain {
C}.

Limitations of the Model. There are certain features in static analyses that
are not handled in this paper:

– We consider only the problem of refining abstract counterexamples along a
fixed number of iterations over loops. This simplification does not affect the
correctness of a solution, only its “quality”. That is, the resulting solution
eliminates a spurious counterexample but may be sub-optimal with respect
to the preference orderings we define.

– We assume that all of the abstract domains are powerset domains. This
assumption allows us to refine different control-flow paths independently
and also to define unique optimal refinements for the orderings we define.

– The model considered above assumes that the analysis does not use widening
operators, which are sometimes used by static analyses to accelerate least-
fixpoint computations.

– We ignore scoping mechanisms, e.g., procedures and objects.

These limitations do not affect the applicability of the model but may affect its
effectiveness in real applications.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 279

3 Refinement Orderings

The problem defined in Sec. 2 does not lead, in general, to a unique refinement,
as shown by the running example.

We denote by Ref(A) the set of solutions to the given abstract counterexample
refinement problem 〈P, C, φ, A, π〉, i.e., the set of compound powerset domains
that refine A and remove the abstract counterexample.

Notice that a trivial refinement A′ ·= 〈A′
1 = C, . . . , A′

k = C〉 (i.e., the concrete
domain at every position) eliminates any spurious counterexample along a given
path. However, this defeats the purpose of counterexample-based refinement,
which is an attempt to refine the given abstraction only as much as needed to
achieve the verification goal. Since there are potentially many refinements, we
would like to be able to evaluate them according to some quality ordering, and
favor refinements of high quality. In this section, we define interesting properties
of refinements, allowing us define the orderings.

Definition 1 (Refinement Dimensions). Let 〈P, C, φ, A, π〉 be an instance
of the abstract counterexample refinement problem, and let B

·= 〈B1, . . . , Bk〉 be
in Ref(A).

Domains Dimension. The coordinate of the refinement along the domain
dimension is the vector 〈B1, . . . , Bk〉.

Values Dimension. The forward abstract interpretation of the trace l1, . . . ,
lk with B yields the sequence of abstract values b1

·= ρB1(init), and
bi+1

·= postBi+1
(sti, bi). We define ValB

·= 〈b1, . . . , bk〉.
Indices Dimension. We define IndB

·= {i | Ai ⊂ Bi} to be the set of indices
where B refines A.

In the running example, IndU = {2, 4, 5} and IndW = {3, 4, 5}; and the refined
domains and corresponding abstract values are shown in Table 2.

In the rest of this section, we define a preference ordering for each dimension
and establish lower and upper bounds for each ordering.

Table 2. Label; initial abstraction A and abstract values; a refinement U ; abstract
values ValU ; a refinement W ; abstract values ValW . In every row, the abstract domains
and values correspond to the label before the statement.

lab. A ValA U ValU W ValW
1 D� �C D� �C D� �C

2 D({x < 7}) {x < 7} D({x < 7}, {x = 0}) {x = 0} D({x < 7}) {x < 7}
3 D({x = 1}) �C D({x = 1}) {x = 1} D({x = 1}, {x < 8}) {x < 8}
4 D({x = 0}) �C D({x = 0}, {x = 2}) {x = 2} D({x = 0}, {x < 9}) {x < 9}
5 D({x = 2}) �C D({x = 2}, {x = 3}) {x = 3} D({x = 2}, {x < 10}) {x < 10}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

280 R. Manevich et al.

3.1 A Preference Ordering on the Domains Dimension

We consider the following preference ordering on the domains dimension.

Definition 2 (Domain Coarseness Ordering). For two compound abstract
domains U and W , we write U �dom W if Wi ⊆ Ui for every i = 1 . . . k. That
is, W is less precise than U .

In the running example, U and W are incomparable by the domain coarseness
ordering.

A refinement can extend the abstract domains along the trace by adding
“useless” abstract values, i.e., values that are not needed in order to eliminate the
given abstract counterexample. It is possible to remove useless abstract values
to obtain an equivalent refinement that is maximal w.r.t. the ordering �dom. We
now formalize this.

Definition 3. For two compound abstract domains U and W , we write U ∼val

W when ValU = ValW .

It is straightforward to verify that ∼val is an equivalence relation. We now show
that every equivalence class of ∼val contains a maximal element (w.r.t. �dom).

Definition 4. Let π
·= l1, . . . , lk be a sequence of program locations and let

A
·= 〈A1, . . . , Ak〉 be the initial abstraction. Let U

·= 〈U1, . . . , Uk〉 be a compound
abstract domain with the associated sequence of abstract values u1, . . . , uk. We
define the compound abstract domain Û by Û i

·= Ai 	Rel D(ui), i.e., Û mini-
mally refines Ai with the abstract value computed at location li by the abstract
semantics with the compound abstraction U .

The following proposition shows that for every refinement there is a unique
maximal refinement with respect to �dom.

Proposition 1. For every compound domain U ∈ Ref(A): (i) U ∼val Û ,

(ii) Û ∈ Ref(A), and (iii) for every W ∈ Ref(A), if W ∼val U then W �dom Û .

The refinement algorithm of Ball et el. [1] works in two phases. The first phase
computes a set of predicates that can be added to the abstract domain to elim-
inate a spurious counterexample. The second phase tries to remove redundant
predicates, i.e., predicates that are not needed to eliminate the counterexample.
In our framework, the second phase can be seen as an attempt to maximize with
respect to the ordering �dom.

In the sequel, we consider only members of ∼val-equivalence classes that are
maximal w.r.t. �dom.

3.2 A Preference Ordering on the Values Dimension

We now define an ordering on the abstract values dimension.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 281

Definition 5 (Value Coarseness Ordering). For two compound abstract do-
mains U, W ∈ Ref(A), we write U �val W when the corresponding sequences of
abstract values u1, . . . , uk and w1, . . . , wk are such that ui ⊆ wi for i = 1, . . . , l.

In the running example, U �val W .
In order to define optimal refinements for the value coarseness ordering, we use

the followingdefinition,which establishes lower andupper bounds for this ordering.

Definition 6. [Extremal Values] Let π
·= l1, . . . , lk be a trace. We define and

fix three sequence of abstract values.
The lower envelope is the sequence of abstract values: f1

·= init, and fi+1
·=

post(sti, fi), for i = 1, . . . , k − 1.
The sequence of abstract values computed by a backward analysis, using weakest-

precondition is bk
·= φ and bj

·= pre(stj , bj+1), for j = 1 . . . k − 1.
The upper envelope is the sequence of abstract values: hi

·= ai ∩ bi (recall that
ai is the abstract value at location li computed with A).

The following lemma uses the extremal values to supply a constructive way to
differentiate between real and spurious abstract counterexamples.

Lemma 1. Let 〈P, C, φ, A, π〉 be an instance of the abstract counterexample re-
finement problem. Then: (i) π is spurious if and only if f1 = init ⊆ h1, and
(ii) if f1 ⊆ h1 then fi ⊆ hi, for every i = 1, . . . , k.

The next lemma establishes lower and upper bounds for the value coarseness
ordering.

Lemma 2. Let U be a compound abstract domain in Ref(A) with the sequence
of abstract values {ui}k

i=1. Let {ai}k
i=1 be the sequence of abstract values for

the initial abstraction A and let {fi}k
i=1, {bi}k

i=1, and {hi}k
i=1 be the sequences

defined Def. 6. Then, the following holds for every i = 1, . . . , k: fi ⊆ ui ⊆ hi.

The first phase of the refinement algorithm of Ball et el. [1] finds refinement
predicates using strongest postconditions, i.e., it computes the abstract values of
the lower envelope. In our framework, this can be seen as an attempt to minimize
with respect to the ordering �val. The refinement algorithm of Henzinger et
al. [8] computes the weakest-precondition to find the abstract values used for
refinement. In our framework, this can be seen as an attempt to maximize with
respect to the ordering �val.

3.3 A Preference Ordering on the Indices Dimension

Notice that in the running example, U and W refine at different sets of control
flow locations, except for locations 4 and 5. We now ask ourselves whether there
exists a minimal set of indices where refinement is necessary for every refinement.
This gives a lower bound along the indices dimension. Formally, we are interested
in the set

Indmin
·=

⋂
{IndU | U ∈ Ref(A)} .

The following proposition gives such a lower bound.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

282 R. Manevich et al.

Proposition 2. Let 〈P, C, φ, A, π〉 be an instance of the abstract counterexample
refinement problem such that π is spurious, and let {fi}k

i=1 and {hi}k
i=1, be the

lower and upper envelope values, respectively. The set Indmin, defined above, can
be constructively defined as follows: Indmin = {i | ρi(fi) � hi}.

In the running example, Indmin = {4, 5}.
We say that a set I ⊆ {1, . . . , k} is sufficient (to eliminate a spurious abstract

counterexample) if there exists a refinement that extends the abstract domains
only at the locations in I. Although the set Indmin is included in the set of
indices of every refinement, it is not always sufficient. In the running example,
it is not enough to refine at just the control flow locations in Indmin = {4, 5}.

Intuitively, we would like to favor refinements that extend the abstract do-
mains at as few locations as possible.

We would like to find a minimal set of locations, with respect to the subset
relation, where refinement is sufficient to remove a spurious counterexample.
The intuition is that refining fewer abstract domains could lead to a cheaper
analysis.

We define an ordering on the indices dimension. The ordering aims to minimize
the set of locations where refinement occurs by choosing the locations that have
the highest indices.

Definition 7 (Lazy Indices Ordering). For two compound abstract domains
U, W ∈ Ref(A), we write U �lazy W if IndU ⊆ IndW , or when IndU is lexico-
graphically greater than or equal to IndW .

In the running example, W �lazy U .
The lazy indices ordering has certain interesting properties. First, the set

of indices is minimal in the sense that it is not possible to remove any lo-
cation from the set and remain with a set of locations that are sufficient to
remove a spurious counterexample. Second, the first index is as far as possible
from the beginning of the trace. The refinement method in [8] starts refining
as late as possible in order to reduce the amount of re-computation in subse-
quent refinement iteration steps. Some refinement techniques (e.g., [1] and [7])
refine at every location along the trace, aiming to eliminate as many spurious
counterexamples as possible that share a common prefix with the given coun-
terexample; this can be seen as a method that attempts to maximize with
respect to the ordering �lazy.

From Def. 7 it immediately follows that the set of refinements that are minimal
with respect to the lazy refinement ordering determine a unique set of indices.
We denote this set by Indlazy. In the next section we present a procedure for
finding Indlazy. The upper bound on the indices dimension, for the lazy indices
ordering, is given by the set of indices 1, . . . , k.

3.4 Combining Preference Orderings

We combine preference orderings as follows. For an ordering �, let � denote
its reversed version. A combined ordering 〈a, b〉, where a ∈ {�lazy, �lazy} and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 283

b ∈ {�val, �val}, compares two compound abstract domains lexicographically,
first by the ordering a and then by the ordering b. We also consider the combined
ordering 〈b, a〉.

4 Refinement Procedures

In this section, we provide refinement procedures that yield optimal solutions
for the preference orderings defined in the previous section. We describe the
procedures and state the corresponding correctness and optimality claims.

We first describe two helper procedures: Fig. 1(a) shows a procedure for
finding the abstract values found by backward propagation of the property, by
using weakest preconditions, and for finding the abstract values of the upper
envelope, according to Lem. 2; and Fig. 1(b) is used to detect real counterex-
amples before attempting to apply any refinement procedure. If init � b1, then
executing the concrete semantics with any value in init \ b1 yields a concrete
counterexample.

Proposition 3. Given an instance of the abstract counterexample refinement
problem 〈P, C, φ, A, π〉, the procedure in Fig. 1(b) detects whether π is a real
counterexample or a spurious counterexample.

UpperEnvelope()
bk := φ
for i = k − 1 to 1

bi := pre(sti, bi+1)
for i = k − 1 to 1

hi := bi ∩ ai

DetectRealError()
call UpperEnvelope()
if init � h1 then

ReportError(’Found a real error!’)

(a) (b)

Fig. 1. (a) A procedure that computes the upper envelope values, according to Lem. 2;
(b) A procedure for detecting real counterexamples

4.1 Refining with the Most Concrete Values/Most Abstract Values

The refinement procedures for the preference orderings {�val, �val} are shown
in Fig. 2. These procedures use Lem. 2 in order to choose the values with
which to refine. Applying RefineMostConcrete to the running example
yields the refinement U , and applying RefineMostAbstract yields the re-
finement W .

Theorem 1. Given an instance of the abstract counterexample refinement prob-
lem 〈P, C, φ, A, π〉 where π is a spurious counterexample, the procedures shown in
Fig. 2 output the optimal refinements for the orderings 〈�val, b〉 and 〈�val, b〉, re-
spectively. That is, they result with refinements that have the most concrete values

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

284 R. Manevich et al.

(Fig. 2(a)) or the most abstract values (Fig. 2(b)), regardless of the ordering on
the indices, b. (This is because the optimums are unique and thus exactly determine
the locations where refinement occurs.)

RefineMostConcrete()
1: st0 := skip
2: R0 := init
3: for i := 0 to k
4: Ri := post(sti−1, Ri−1)
5: if Ri �∈ Ai then
6: A′

i := Ai �Rel Ri

else
7: A′

i := Ai

RefineMostAbstract()
1: st0 := skip
2: R0 := ρ1(init)
3: for i := 0 to k
4: Ri := postAi

(sti−1, Ri−1)
5: if Ri � hi then
6: Ri := hi

7: A′
i := Ai �Rel Ri

else
8: A′

i := Ai

(a) (b)

Fig. 2. (a) A procedure that refines with the most concrete values (the lower en-
velope values {fi}k

i=1); and (b) A procedure that refines with the most abstract
values (the upper envelope values {hi

·
= ai ∩ bi}k

i=1)

4.2 Computing Indlazy

Theorem 2. Given an instance of the abstract counterexample refinement prob-
lem 〈P, C, φ, A, π〉 where π is a spurious counterexample, the procedure in Fig. 3(a)
outputs the sequence of indices Indlazy.

The procedure in Fig. 3(a) uses the approximations that are available in the ab-
stract domains when they are contained in the upper envelope. Otherwise, it does
not overapproximate the values, in order to increase the opportunity of finding ap-
propriate approximations in the domains at the subsequent locations. Applying
the procedure to the running example result in locations {3, 4, 5}.

4.3 Adapting the Refinement for the Most Concrete Values/Most
Abstract Values

Theorem 3. Given an instance of the abstract counterexample refinement prob-
lem 〈P, C, φ, A, π〉 where π is a spurious counterexample, and a set of indices I ⊆
{1, . . . , k} that are sufficient for refinement, theprocedures inFig. 3(b) andFig. 3(c)
output the refinements with the most concrete abstract values and the most coarse
abstract values, respectively.

The advantage of having the indices as an additional parameter is that we
can use the same procedures with different orderings on the indices, not just
the lazy indices ordering. Applying RefineHigh to the running example with
the indices {3, 4, 5} yields the refinement W .

We combine the procedures to produce optimal refinements for a combined
ordering 〈a, b〉. The procedure is shown in Fig. 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 285

IndLazy()
Indlazy := {}
st0 := skip
R0 := init
for i := 1 to k

Li := post(sti−1, Ri−1)
Hi := ρi(Li)
if Hi ⊆ hi then

Ri := Hi

else
Ri := Li

Indlazy := Indlazy ∪ {i}

RefineLow(I : indices)
st0 := skip
R0 := init
for i := 0 to k

Li := post(sti−1, Ri−1)
Hi := ρi(Li)
if i ∈ I then

Ri := Hi

A′
i := Ai �Rel Ri

else
Ri := Li

A′
i := Ai

RefineHigh(I : indices)
stk := skip
Rk+1 := φ
for i := k to 1

Hi := pre(sti, Ri+1)
Li := ρ

i
(Hi)

if i ∈ I then
Ri := Hi

A′
i := Ai �Rel Ri

else
Ri := Li

A′
i := Ai

(a) (b) (c)

Fig. 3. (a) A procedure for finding Indlazy; (b) A procedure for refining at a spec-
ified set of control flow locations with the most precise abstract values; and (c) A
procedure for refining at a specified set of control flow locations with the coarsest
abstract values

RefineIndVal(〈a, b〉 : ordering)
if a is �lazy

I := IndLazy()
else // a is �lazy

I := [1, . . . , k]
if b is �val

RefineHigh(I)
else // b is �val

RefineLow(I)

Fig. 4. A procedure for the optimal refinement for the preference ordering 〈a, b〉

Theorem 4. Given an instance of the abstract counterexample refinement prob-
lem 〈P, C, φ, A, π〉 where π is a spurious counterexample, and a combined ordering
〈a, b〉, the procedure in Fig. 4 outputs the optimal refinement w.r.t. 〈a, b〉.

5 Constrained Problem Settings

In previous sections, we considered the abstraction refinement problem over
the entire space of abstractions of the concrete domain. In this section, we
constrain the set of possible abstractions in the following way. For a con-
crete domain C, we assume that an abstract domain D ⊆ C is given as a pa-
rameter. Intuitively, D is rather precise but possibly very expensive for static
analysis. We consider the lattice of abstractions that weaken D:

Weak(D) ·= {D′ | ρ is an upper-closure operator and D′ = ρ(D)} .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

286 R. Manevich et al.

(As an example for a lattice of abstractions consider the set of abstractions
obtained by choosing different subsets from a fixed set of predicates.) Essen-
tially, the domain D establishes a lower bound on the precision of the refine-
ment. This can be used both to guide the refinement process in the abstract
values it chooses, and to limit the number of refinement iterations (by the
height of the lattice D). Although it is possible to use different lattices of
abstractions at different locations, we use the same lattice in every location
to simplify things. Generalizing to different lattices of abstractions at different
locations is straightforward.

We now rephrase the goal of the abstraction refinement problem in the
modified settings. The goal of the refinement procedure is to check whether
it is possible to refine the compound abstract domain A

·= 〈A1, . . . , Am〉 into
A′ ·= 〈A′

1, . . . , A′
m〉, where Ai and A′

i are in Weak(D) for every i = 1, . . . , m,
such that (post�

′(stk−1) ◦ . . . ◦ post�
′(st1) ◦ ρ′1)(init) ⊆ φ, where post�

′(sti) =
ρ′j ◦ post(sti) for every i = 1 . . . k − 1. If this is impossible (with A′

i = Di for
i = 1, . . . , n) then report that D is insufficiently precise to prove that φ holds
on the path.

The refinement procedures from the previous section can be adapted to the
new setting by replacing post(st) with postD(st) ·= ρD ◦ post(st), and replacing
pre(st) with pre

D
(st) ·= ρ

D
◦ pre(st).

We note that in this setting, the optimality of the refinement procedures
is used in a narrower sense than in the previous sections. Here, optimality is
given with respect to the lattice Weak(D) (not Weak(C)).

Cost-based Preference Orderings. It is possible to define more sophisticated
preference orderings by assigning costs to abstract values. For example, the
abstract values used in the running example by the refinement U are simpler
than the values used by the refinement W , and thus may be assigned lower
costs. A very simple technique to find cheap refinements is to first try refining
with a low cost elements, and if this fails try refining with more costly ele-
ments. We plan to investigate the issue of cost-based ordering in future work.

6 Local Optima vs. Global Optima

Until now, we have focused on a single step within the CEGAR framework
— refining along a given path. The analyzer starts with an initial abstrac-
tion and then iteratively applies the refinement step to individual paths in the
CFG in order to prove the property. When this process converges, it yields a
final abstraction, i.e., a compound abstract domain for the entire CFG, and
set of abstract values (stored in each control flow location). For a given prefer-
ence ordering, let us call the final abstraction (and abstract values) that result
by applying an optimal refinement in each refinement step a locally optimal
solution. We continue by defining preference orderings on entire CFGs, which
allow us to define globally optimal solutions. We then compare the two types
of solutions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 287

The dimensions defined in Sec. 3 do not depend on having the locations set
on a path. Therefore, they extend immediately to an entire CFG. Thus, we
can extend the domain coarseness ordering by point-wise comparison of the
abstract domains in all CFG locations. Similarly, we can extend the values
ordering by point-wise comparison of the fixpoint values computed with the
two abstractions. The ordering on indices depends on a “natural” order on
the locations along a path. We therefore consider an extension only for acyclic
CFGs, by fixing a topological order on the locations.

We say that a refinement is globally optimal if it is precise enough to prove
the property and optimal with respect to a given preference ordering.

1: x = 3
2: y = 3

if (...)
3t: x = x + 1

else
3f: y = y + 1
4: assert(x == 4 || y == 4)

label: statement A ValA
1: x = 0 D� �C

if (...)
2t: x = x + 1 D({x = 0}) {x = 0}

else
2f: x = x + 5 D({x = 0}) {x = 0}
3: x = x + 1 D({x < 5}) {x < 8}
4: x = x + 1 D({x = 2}, {x = 6}) �C

5: assert(x < 10) D({x < 10}) �C

(a) (b)

Fig. 5. (a) An example program for the domain coarseness order; (b) An example
program for the lazy indices order; initial abstraction; corresponding abstract values

Domain Coarseness Order. We now show that for the domain coarseness
ordering the globally optimal solution can be better than a locally optimal
solution. This is not surprising. Iterative refinement might refine at a given
location numerous times (for different spurious counterexamples) until reach-
ing the final abstraction U . On the other hand, it is possible to use Def. 4 to
produce a coarser abstraction that suffices to prove the property by refining
with at most one abstract value at every location. The next example shows
this gap.

Example 1. Assume we are given the program fragment shown in Fig. 5(a)
with an empty initial abstraction and that we wish to verify that the assertion
in line 4 holds. There are two control flow paths (1, 2, 3t, 4) and (1, 2, 3f, 4),
which we first consider separately:

– For the path (1, 2, 3t, 4), we compute the weakest-precondition p3t : x = 3 ∨
y = 4 at location 3t, p2 : x = 3 at location 2, and p1 : true at location 1.

– For the path (1, 2, 3f, 4), we compute the weakest-precondition p3f : x = 4 ∨
y = 3 at location 3f, p2 : true at location 2, and p1 : true at location 1.

By refining the abstraction for each path separately, we get the abstract
domain D({(x = a, y = b) | a = 3∨ b = 4})∧D({(x = a, y = b) | a = 4∨ b = 3}),
which includes all of the points from both of the individual abstract domains.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

288 R. Manevich et al.

However, if we compute the weakest-precondition over the two control flow
paths together, we get the set of states {(x = a, y = b) | (a = 3∨ b = 4)∧ (a =
4 ∨ b = 3)} = {(x = 3, y = 3), (x = 4, y = 4)}. This allows us to obtain a
coarser abstraction than before, representing only two concrete states. 	�

Lazy Indices Order. The following example shows that the globally optimal
solution, with respect to the lazy indices order, can be better than a locally
optimal solution. Consider the program shown in Fig. 5(b). The globally op-
timal solution contains the single location {3}, since it is possible to refine
the domain at location 3 to D({x < 5}, {x = 1}, {x = 2}) and prove the
property. This solution is obtained by modifying the procedure IndLazy to
operate simultaneously on sets of acyclic paths.

If the analysis first refines the trace (1, 2t, 3, 4, 5), the lazy indices order
gives us the set of locations {4} (e.g., it is possible to refine the trace with
the abstract domain D({x = 2}, {x = 6}, {x < 6})). However, no matter how
we refine at location 4 (either with the most precise value {x = 1}, or with
the most abstract value {x < 6}), the trace (1, 2f, 3, 4, 5) still needs to be
refined at location 3 (say, with the value {x = 5}). Thus, the locations where
refinement occurs are {3, 4} �lazy {3}, which shows the optimality gap.

Abstract Values Order. We now state a positive optimality result. Intu-
itively, this optimality result holds because the global optimum for the values
order, at every location, is given by the intersection of the upper envelope
values for the set of all program traces at that location.

Theorem 5. An analysis that iteratively refines spurious counterexamples us-
ing the procedure RefineMostAbstract produces the globally optimal solution.

7 Related Work and Conclusions

GulavaniandRajamani [6]describeand implementanalgorithmfor refiningwiden-
ing operators to joins and join operators to disjunctions for non-powerset domains,
which our model does not handle. However, their method does not refine powerset
domains, which we consider here. Therefore, their work is orthogonal to ours.

Giacobazzi and Quintarelli [5] use a procedure that iteratively refines the
abstract domain in order to achieve completeness of the abstract interpreta-
tion. They show that in the limit, a complete abstract interpretation removes
all spurious counterexamples. This gives a semi-algorithm that can be applied
to a given path to remove the abstract counterexample, albeit indirectly. The
algorithm is guaranteed to converge for finite concrete domains. Our frame-
work is geared towards eliminating a given counterexample directly using a
different set of operations, and since our refinement procedure does not re-
quire completeness of the abstract interpretation it always terminates.

Loginov et al. [10] use inductive learning to refine abstractions for 3-valued
shape analysis. Their refinement is not guided by abstract counterexamples
but rather by imprecisions detected during the analysis itself.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 289

Beyer et al. [2] integrate the TVLA system [9] into the BLAST software
model checker [8] and use information from counterexamples to refine 3-valued
structures in order to make shape analysis more scalable. Their technique is
one application of abstract-counterexample refinement that goes beyond pred-
icate abstraction.

In this paper, we present a theoretical framework for refinement of power-
set domains in order to eliminate spurious counterexamples. We describe op-
erations on abstract domains and generic algorithms that can be used as a
starting point for applying counterexample-guided refinement in new settings,
e.g., shape analysis. Using the framework, we are able to define different opti-
mality criteria and compare locally optimal refinements with globally optimal
refinements, which was not done until now.

References

1. T. Ball and S. K. Rajamani. The slam project: Debugging system software via
static analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 1–3, New York, NY,
USA, 2002. ACM Press.

2. D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. In Pro-
ceedings of the 18th International Conference on Computer-Aided Verification
(CAV), volume 4144 of LNCS, pages 532–546. Springer Verlag, 2006.

3. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Proc. Computer Aided Verification, pages
154–169, 2000.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixed points. In
Proc. Symp. on Principles of Prog. Languages, pages 238–252, New York, NY,
1977. ACM Press.

5. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refine-
ments in abstract model-checking. In P. Cousot, editor, Static Analysis: 8th In-
ternational Symposium, SAS 2001, pages 356–373. Springer-Verlag GmbH, July
2001.

6. B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement for
abstract interpretation. In Appeared in the 12th. International Conference on
Tools and Algortihms for the Construction and Analysis of Systems, TACAS’06,
pages 474–488. Springer-Verlag, Mar 2006.

7. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions
from proofs. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 232–244, 2004.

8. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Symposium on Principles of Programming Languages, pages 58–70, 2002.

9. T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static anal-
ysis. In Proc. Static Analysis Symp., volume 1824 of LNCS, pages 280–301.
Springer-Verlag, 2000.

10. A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via inductive learn-
ing. In Proceedings of the 17th International Conference on Computer-Aided
Verification (CAV), LNCS, pages 519–533. Springer Verlag, 2005.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

290 R. Manevich et al.

11. F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 2001.

12. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems (TOPLAS),
24(3):217–298, 2002.

A The Challenges of Refining Non-powerset Domains

Inter-Path Dependencies. We now show that in the face of non-powerset
abstract domains, it is not always possible to remove spurious counterexam-
ple by refining single control flow paths independently. Consider the C pro-
gram fragment shown in Fig. 6(a) and assume that the abstract domain used
to verify the property in the assertion statement is the constant propagation
domain, or ICP, shown in Fig. 6(b). The verification fails, since the abstract
value propagated after the statement x=2 is x = 2, the abstract value propa-
gated after the statement x=4 is x = 4, and the join of the values is x =
,
which is not precise enough to prove the property, even though the property
holds on every concrete execution.

Now, if we consider each control flow path through the if statement sep-
arately, we discover that the abstract domain is precise enough to verify the
property: we get x = 2 for the path the follows the positive branch and x = 4
for the path that follows the negative branch, both of which satisfy the prop-
erty. The loss of imprecision is due to the join operator, which approximates
the set of values {2, 4} from the two paths with
. This shows that in or-
der to remove spurious counterexamples, the analysis needs to consider both
control flow paths.

Non-Existence of Best Underapproximations. It is known that for an
abstract domain, every concrete state c ∈ C has the best overapproximation in
A, given by ρ(c). However, this is not generally true for underapproximation,
as stated by the next lemma.

Lemma 3. For a concrete domain C and an abstract domain A, the best un-
derapproximation in A of every concrete element in C is ensured to exist only
when A is a powerset domain.

Proof. We first give an example showing that when A is a non-powerset do-
main the best underapproximation does not exist. Consider the concrete
domain given by the powerset of integers and its abstraction by the ICP lat-
tice. The set {2, 3} can be underapproximated in the ICP domain by either 2
or 3. Both of these underapproximations are tight, yet they are incomparable.

Let c be an element in C. We claim that ρ
A
(c) ≡

⋃
a∈A,a⊆c a is the best

underapproximation of c in A5.
5 In this case, ρ

A
is a lower closure operator, and A is a complete sublattice of

C.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Abstract Counterexample-Based Refinement for Powerset Domains 291

if (...)
x = 2

else
x = 4

assert(x==2 || x==4)
Not a constant

Don’t know

0 1 2-1-2… …

(a) (b)

Fig. 6. An example for inter-path dependency: (a) A program fragment; (b) The
Constant Propagation Lattice

First, since every x ∈ A such that x ⊆ c contains only states in c, ρ
A
(c) ⊆ c is

an underapproximation. Furthermore, since A is a powerset domain, ρ
A
(c) ∈ A is

an underapproximation in A. Now, if x′ ∈ A is an underapproximation of c then
x ⊆

⋃
x∈A,x⊆c x, and therefore ρ

A
(c) is the tightest underapproximation. 	�

As seen in this paper, best underapproximations are very useful for abstract coun-
terexample refinement. They are used both to determine in which control flow lo-
cation to refine and how to refine (which abstract values to use).

B Abstract Domain Refinement

In this section, we discuss the operations used for refinement in the general
abstract domains setting and in the setting of powerset abstract domains in
particular. We use Fig. 7 as an illustrative example.

Let C
·= 2STATES be a concrete domain containing all subsets of concrete

states as its elements with set inclusion as an ordering relation. Given two
abstract domains A and B (given by upper closure operators), the reduced
product operation of A and B, denoted by A 	 B, is the simplest (i.e., most
abstract) abstract domain containing A ∪ B. In the context of this paper, A
is an initial abstraction of C, and B is a simple domain containing the el-
ements we wish to be included in the refined abstract domain. The reduced
product operation is natural here, since it does the minimal amount of refine-
ment needed to add the new elements. As an example, Fig. 7(a) and Fig. 7(b)
show to abstract domain, and Fig. 7(c) shows their reduced product.

Notice that the domains in Fig. 7(a) and Fig. 7(b) are powerset domains.
However, their reduced product is not, since, for example, the element {1, 2, 3}
is missing. In this paper, we focus only on powerset abstract domains. We
would like an operation that takes as input two powerset abstract domains
and gives the simplest powerset abstract domain that includes its operands.
Therefore, the reduced product operation in itself is inappropriate for this
kind of abstract domain refinement. To fix this, we need to extend the re-
sult of the reduced product in order to achieve closure under set union. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

292 R. Manevich et al.

abstract domain operation that achieves this is called disjunctive completion.
We denote by A 	Rel B the operation that accepts two powerset abstract do-
mains and returns the simplest powerset abstract domain that is more precise
than A and B. Fig. 7(d) shows the result of applying this operation to the
abstract domains in Fig. 7(a) and Fig. 7(b).

{1,2}

{1} {2}

{1,2,3,4}

{}

{3}

{1,2,3,4}

{}

{1,2}

{1} {2}

{1,2,3,4}

{}

{3}

{1,2}

{1} {2}

{1,2,3}

{}

{3}

{1,3} {2,3}

{1,2,3,4}

(a) (b) (c) (d)

Fig. 7. Abstractions of C = 2{1,2,3}: (a) A powerset abstract domain A1; (b) A
powerset abstract domain A2; (c) The reduced product A = A1 � A2; and (d) The
disjunctive completion of A

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis

Flemming Nielson and Hanne Riis Nielson

Informatics and Mathematical Modelling, Richard Petersens Plads bldg. 321,
Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

{nielson|riis}@imm.dtu.dk

Abstract. Control flow analysis is a powerful method for analysing
which functions are applied to which arguments. However, many users
find the information more understandable if the information is presented
in the form of types rather than sets of function abstractions. We there-
fore show how to translate the result of the control flow analysis into the
syntax of types (to be called observed types).

To compare our approach with the more traditional approach using
type systems (to be called inferred types) we develop the subtyping rela-
tions in both approaches; in particular we show that covariant subtyping
is the appropriate choice for observed types whereas contravariant sub-
typing is appropriate choice for inferred types. This serves as a technical
underpinning of our main thesis that observed types should merely record
how the entity has been used in the program at hand whereas inferred
types should indicate how the entity can be used in all possible contexts.

1 Introduction

Data flow analysis is a powerful method for analysing the behaviour of many
programming languages. In the interprocedural case it is based on control flow
analysis for determining which functions, procedures or methods are applied
at which program points. This information can be represented in a number of
ways suitable for the internal operation of a compiler, e.g. the set of function
abstractions that reach a given call site. However, in cases where this information
needs to be presented to the user it is important to match the expectations of
the user. Some users will be mostly familiar with types and this motivates the
study of the present paper where we show how to translate the result of the
control flow analysis into the syntax of types.

We start by introducing our simple functional programming language in Sec-
tion 2 together with its call-by-name operational semantics.

We then develop a control flow analysis in Section 3 by means of a syntax-
directed generation of constraints in Horn Clauses with Sharing [11]. We show
the semantic correctness of the analysis by means of a subject-reduction result
and we review the theory guaranteeing the existence of least solutions.

In Section 4 we then present our main contribution which is to develop ob-
served types from the result of the control flow analysis. This approach is “de-
scriptive” in that we aim to express how the entity under study has been used in

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 293–310, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

294 F. Nielson and H.R. Nielson

the program at hand. We first introduce the syntax of types and next axiomatise
when a set of values can be described by a given type; in the case of values being
function abstractions this makes use of the result of the control flow analysis.
Next we develop the observed types and in particular we formulate the subtyp-
ing rule which turns out to be covariant in line with considerations in previous
work on subtyping object-types and set-based analysis. Finally we show how to
automatically construct the optimal type for describing a given set of values;
since the control flow analysis can be computed in cubic time this provides a
cubic time algorithm for calculating observed types of a given depth.

To compare our approach with the more traditional approach using type sys-
tems we develop inferred types in Section 5. This approach is “prescriptive” in
that we aim to express how the entity under study can be used in all possi-
ble contexts. As expected the subtyping rule needs to be contravariant and we
establish some of the usual theoretical results including subject-reduction. We
conclude with giving a deeper comparison of observed types and inferred types :
this includes showing a sufficient condition for when the type system for observed
types strictly includes that of inferred types.

We provide an additional perspective and concluding remarks in Section 6.

Related work. There have been many papers studying the interplay between
types and flow analysis. Some papers have focussed on showing their close rela-
tionship culminating in the ability to provide a type system equivalent to flow
analysis [2,13,14] and vice versa. Other papers have shown that the framework
of Abstract Interpretation [5] is able to describe type systems as abstractions of
the semantics (typically in the form of a collecting semantics tracing all possible
executions) [4,9]; our own favourite is Chapter 5 of [10] that shows in Proposition
5.12 that the judgements of a type and effect system indeed constitute a Moore
family (and hence fall within the developments of Abstract Interpretation). Yet
other papers have shown how to incorporate flow analysis into the formulation
of type systems [3,6,7]; this is especially direct in the case of type and effect sys-
tems where the control flow information takes the form of effects on the function
types.

Somehow these developments fail to be fully convincing in capturing the dis-
tinction between intensionality and extensionality inherent in traditional ap-
proaches to type systems and control and data flow analysis. Indeed, while the
concepts of flow analysis and type systems can be massaged so as to coincide
[2,13,14] our thesis is that flow analysis and type systems capture related but
somehow distinct features of programs. In this paper we intend to capture some
of those distinctions amid the many strong relationships that exist.

2 Preliminaries

We start by introducing a simple functional language and its operational seman-
tics. The syntax is given by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis 295

Table 1. Small-step operational semantics: el
1 −→ el

2

el1
1 −→ e′1

l1

(el1
1 + el2

2)l −→ (e′1
l1 + el2

2)l

el2
2 −→ e′2

l2

(nl1
1 + el2

2)l −→ (n1
l1 + e′2

l2)l

(nl1
1 + nl2

2)l −→ nl if n = n1 + n2

el1
1 −→ e′1

l1

(el1
1 = el2

2)l −→ (e′1
l1 = el2

2)l

el2
2 −→ e′2

l2

(nl1
1 = el2

2)l −→ (n1
l1 = e′2

l2)l

(nl1
1 = nl2

2)l −→ ttl if n1 = n2 (nl1
1 = nl2

2)l −→ ffl if n1 �= n2

el1
1 −→ e′1

l1

(el1
1 el2

2)l −→ (e′1
l1 el2

2)l
((λx.el0

0)l1 el2
2)l −→ (e0[e2/x])l

(μf x.el0
0)l −→ (λx.(e0[μf x.el0

0 /f])l0)l

el0
0 −→ e′0

l0

(if el0
0 then el1

1 else el2
2)l −→ (if e′0

l0 then el1
1 else el2

2)l

(if ttl0 then el1
1 else el2

2)l −→ el
1 (if ffl0 then el1

1 else el2
2)l −→ el

2

el ::= ttl | ffl | nl | xl | (el1
1 + el2

2)l | (el1
1 = el2

2)l |
(λx.el0

0)l | (μfx.el0
0)l | (el1

1 e
l2
2)l | (if el0

0 then el1
1 else el2

2)l

where el ranges over labelled expressions, n denotes integers and x denotes vari-
ables. Addition and equality are intended to work only on integers and (μfx.el0

0)l

denotes a recursive variant of the λ-abstraction (λx.el0
0)l where the body el0

0 is
allowed to be recursive by reference to f . The labels, denoted l, have no seman-
tic significance but will serve as useful placeholders when developing the control
flow analysis; we shall allow to dispense with them in examples when they do
not add clarity.

The operational semantics is defined as a small-step semantics in Table 1.
For simplicity of presentation it is a call-by-name semantics but this is of no
consequence for the development. It is intended to operate on closed expressions
only, i.e. expressions with no free variables.

Example 1. Consider the following example program:

((λx.(x1x2)3)4(λy.(y5y6)7)8)9

This program will call (λy.(yy)) repeatedly upon itself and never terminate.

Example 2. Consider the following example program:

((λx.(λz.(x1x2)3)4)5(λy.(λz.(y6y7)8)9)10)11

This function will consume all parameters supplied to it and return the function
λz.((λy.(λz.(yy)))(λy.(λz.(yy)))).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

296 F. Nielson and H.R. Nielson

3 Control Flow Analysis

We now develop a control flow analysis for the functional language together with
a review of the theory that admits solutions in at most cubic time.

3.1 Correct Specification

A control flow analysis keeps track of which values (mainly lambda abstractions
but for a higher order language also rudimentary information about truth values
and integers) that reach which points in the program. We formalise it using these
predicates:

C(l, v) indicates that the value v may reach a subexpression labelled l,
R(x, v) indicates that the value v may be bound to the variable x,
P(l, v) indicates that the value v may be an actual parameter to a

λ-abstraction whose body is labelled l,

B(v) indicates that v is used where a boolean value is expected,
I(v) indicates that v is used where an integer value is expected,
A(l) indicates that l labels the body of a λ-abstraction used in the

program.

The values v belong to an unspecified universe U of constants. The contants
include the boolean values tt, ff, the token int (representing arbitrary integers)
and all labels in the program. A lambda abstraction λx.el will be represented
by the label l.

For each subprogram of a given program we then generate clauses as shown
in Table 2. The overall clause generated for the entire program is the con-
junction of all the clauses recursively generated using the method of Table 2;
we shall write [[el]] for the clause generated from el. Finally we shall write
(A,B,C, I,P,R) |= [[el]] to mean that the predicates A,B,C, I,P,R satisfy the
overall clause generated from el. We shall allow to abbreviate A,B,C, I,P,R to
ρ and write ρ(A), ρ(B), ρ(C), ρ(I), ρ(P) and ρ(R) for its components.

We next state the key result showing the consistency of the control flow anal-
ysis; it takes the form of a subject-reduction result:

Lemma 1. If ρ |= [[el]] and el −→ e′l then ρ |= [[e′l]].

Proof. The proof exploits the following substitution result (that can be proved
by structural induction on el):

If ρ |= [[el]] and ρ |= [[el0
0]] and furthermore ∀v : ρ(C)(l0, v) ⇒ ρ(R)(x, v)

then ρ |= [[e[e0/x]l]].

The Lemma is then proved by induction on el −→ e′l. �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis 297

Table 2. The generation of clauses for control flow analysis: [[el]]

ttl �→ C(l, tt) ∧ B(tt)

ffl �→ C(l, ff) ∧ B(ff)

nl �→ C(l, int) ∧ I(int)

xl �→ ∀v : R(x, v) ⇒ C(l, v)

(el1
1 + el2

2)l �→

⎧
⎨

⎩

∀u : C(l1, u) ⇒ I(u)∧
∀u : C(l2, u) ⇒ I(u)∧
C(l, int) ∧ I(int)

(el1
1 = el2

2)l �→

⎧
⎨

⎩

∀u : C(l1, u) ⇒ I(u)∧
∀u : C(l2, u) ⇒ I(u)∧
C(l, tt) ∧ C(l, ff) ∧ B(tt) ∧ B(ff)

(λx.el0
0)l �→ C(l, l0) ∧ A(l0) ∧ ∀v : P(l0, v) ⇒ R(x, v)

(μf x.el0
0)l �→

{
C(l, l0) ∧ A(l0) ∧ ∀v : P(l0, v) ⇒ R(x, v)∧
∀w : C(l, w) ⇒ R(f, w)

(el1
1 el2

2)l �→

⎧
⎨

⎩

∀u : C(l1, u) ⇒ A(u)∧
∀u : C(l1, u) ⇒ ((∀v : C(l2, v) ⇒ P(u, v))∧

(∀w : C(u, w) ⇒ C(l, w)))

(if el0
0 then el1

1 else el2
2)l �→

{
∀u : C(l0, u) ⇒ B(u)∧
∀v : (C(l1, v) ∨ C(l2, v)) ⇒ C(l, v)

Example 3. Consider the example program ((λx.(x1x2)3)4(λy.(y5y6)7)8)9 from
Example 1. The predicates A,B,C, I,P,R given by

B = I = ∅
A = {3, 7}
P = {(3, 7), (7, 7)}
R = {(x, 7), (y, 7)}
C = {(1, 7), (2, 7), (4, 3), (5, 7), (6, 7), (8, 7)}

correctly describe the behaviour of the program as follows from checking the
truth of (A,B,C, I,P,R) |= [[((λx.(x1x2)3)4(λy.(y5y6)7)8)9]].

Example 4. Consider the program ((λx.(λz.(x1x2)3)4)5(λy.(λz.(y6y7)8)9)10)11

of Example 2. The predicates A,B,C, I,P,R given by

B = I = ∅
A = {3, 4, 8, 9}
P = {(4, 9), (9, 9)}
R = {(x, 9), (y, 9)}
C = {(1, 9), (2, 9), (4, 3), (5, 4), (6, 9), (7, 9), (9, 8), (10, 9), (11, 3)}

correctly describe the behaviour of the program as follows from checking the
truth of (A,B,C, I,P,R) |= [[((λx.(λz.(x1x2)3)4)5(λy.(λz.(x6x7)8)9)10)11]].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

298 F. Nielson and H.R. Nielson

Table 3. Semantics of preconditions and clauses

(ρ, σ) R (x1, · · · , xn) iff (σ(x1), · · · , σ(xn)) ∈ ρ(R)
(ρ, σ) pre1 ∧ pre2 iff (ρ, σ) pre1 and (ρ, σ) pre2

(ρ, σ) pre1 ∨ pre2 iff (ρ, σ) pre1 or (ρ, σ) pre2

(ρ, σ) ∃x : pre iff (ρ, σ[x �→ a]) pre for some a ∈ U
(ρ, σ) R (x1, · · · , xn) iff (σ(x1), · · · , σ(xn)) ∈ ρ(R)
(ρ, σ) 1 iff true
(ρ, σ) cl1 ∧ cl2 iff (ρ, σ) cl1 and (ρ, σ) cl2
(ρ, σ) ∀x : cl iff (ρ, σ[x �→ a]) cl for all a ∈ U
(ρ, σ) pre ⇒ cl iff (ρ, σ) cl whenever (ρ, σ) pre

3.2 Least Solutions

The clauses generated by Table 2 turn out to be Horn Clauses with Sharing and
hence have least solutions:

Definition 2 (From [11]). Given a set of variables X (ranged over by x) and
an alphabet of predicate symbols R (ranged over by R), we define the set of Horn
Clauses with Sharing, cl, and preconditions, pre, by the grammar:

pre ::= R (x1, · · · , xn) | pre1 ∧ pre2 | pre1 ∨ pre2 | ∃x : pre

cl ::= R (x1, · · · , xn) | 1 | cl1 ∧ cl2 | ∀x : cl | pre ⇒ cl

Semantics. We interpret the logic over a universe U of constants. Given inter-
pretations ρ and σ for predicate symbols and variables, respectively, we define
in Table 3 the satisfaction relations:

(ρ, σ) pre and (ρ, σ) cl

We are mainly interested in closed clauses cl, i.e. clauses that have no free vari-
ables. Hence we can fix an arbitrary interpretation σ0 and we shall say that
an interpretation ρ is a solution to the clause cl, written ρ |= cl, provided that
(ρ, σ0) cl.

Proposition 3 (Corollary of [12]). Given a closed clause cl the solution set
Δcl = {ρ | ρ |= cl} forms a Moore family, i.e. it is closed under greatest lower
bounds (w.r.t. the ordering ρ1 	 ρ2 given by ρ1(R) ⊆ ρ2(R) for all R).

Proof. In [12] a similar result is proved for the Alternation-free fragment of Least
Fixpoint Logic. As Least Fixpoint Logic amounts to Horn Clauses with Sharing
extended with the ability to use universal quantifiers in preconditions as well as
negations (subject to a notion of stratification and a more complex definition of
the partial order) the proof carries over. �

In the sequel we shall only be interested in the least solution ρ as guaranteed
by the above proposition; indeed, this is the solution computed by the Succinct
Solver [12]. From the construction of the Succinct Solver, and in analogy with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis 299

Kleene’s fixpoint construction, it follows that it can be characterised inductively:
from initially empty estimates of the predicates we gradually enlarge them by
inserting tuples as required by the clauses until ρ is obtained. We shall make use
of this characterisation in the proof of Theorem 18 in Section 5.

Returning to the control flow analysis of Subsection 3.1 we shall take it for
granted that the sets {tt, ff}, {int} and {l | l is a label} are mutually disjoint.
We can then define the following desirable property of solutions; intuitively it
says that a clash-free solution records no attempt to add or compare values other
than integers, to perform tests in conditionals on values other than booleans, or
to apply entities other than functions in function applications.

Definition 4. We say that ρ is clash-free whenever ρ(B) ⊆ {tt, ff}, ρ(I) ⊆ {int}
and ρ(A) ⊆ {l | l is a label }.

It is worth pointing out that Proposition 3 does not guarantee the existence of
a clash-free solution and indeed that there are clauses (and programs) that have
no clash-free solutions. We shall return to this in Subsection 5.2.

Since the nesting depth of quantifiers is at most two it follows from Proposition
1 in [11] that the least solution to the control flow analysis can be calculated in
time at most cubic in the size of the program because both the size of the clause
generated and the size of the universe is bounded by the size of the program.

4 Observed Types

We are now ready for showing how to translate the result of the control flow
analysis into the syntax of types. This will give rise to defining a judgement
ρ |= el : t meaning that the type t is consistent with the information that ρ gives
about the label l. Furthermore, we shall show that the observed types of a given
depth are computable in cubic time.

There are many choices of the syntax of types; what will turn out to be essen-
tial is that we include a universal top type (denoted �). This is because our use
of types is “descriptive” rather than “prescriptive” in that all programs, includ-
ing the nonsencical ones, should have a type. (This is similar to the viewpoint
of soft types as opposed to strong types.)

Definition 5. The syntax of types t ∈ T is given by the grammar:

t ::= B | I | t1 → t2 | ⊥ | �

Here B is the type of booleans, I is the type of integers, t1 → t2 is a function
type, ⊥ is a type indicating non-reachability (including non-termination), and
� is a universal top type.

4.1 Observed Types from Control Flow Estimates

Our first goal is to consider a set of values V ⊆ U and to determine whether or
not those values are described by some type t.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

300 F. Nielson and H.R. Nielson

Clearly a value like tt should have the type B but since � is a universal top
type it should have � as type as well. Similarly if n is an integer it should have
the types I and �. If we consider a set of “incompatible” values like {tt, n} our
only option is to give it the type �.

Next consider an abstraction λx.el and the type t1 → t2 to be given to it
(actually to the label l). This is intended to express that throughout the entire
computation λx.el has only been applied to arguments described by t1 and has
only produced results described by t2. How do we determine what has happened
during the entire computation? We simply inspect the information supplied by
the solution ρ which by Lemma 1 applies to the entire computation. If the
function is only applied to the boolean tt it would have the type B → B but
also (as discussed above) B → �. However, it would not have any of the types
⊥ → � or I → � because the argument tt is described by neither ⊥ nor I. If
the function is not applied at all it will have the type t1 → t2 for all choices
of t1 and t2. Clearly they cannot all be optimal — only ⊥ → ⊥ is. But it is in
keeping with the philosophy of Abstract Interpretation always to admit “more
approximative” descriptions of sets of values.

For the formal definition we define the judgement

ρ |= V : t

by the following1 inductive definition:

ρ |= V : B iff V ⊆ ρ(B)
ρ |= V : I iff V ⊆ ρ(I)

ρ |= V : t1 → t2 iff

⎧
⎨

⎩

V ⊆ ρ(A)∧
ρ |= {v | u ∈ V ∧ (u, v) ∈ ρ(P)} : t1 ∧
ρ |= {w | u ∈ V ∧ (u, w) ∈ ρ(C)} : t2

ρ |= V : ⊥ iff V ⊆ ∅
ρ |= V : � iff V ⊆ U

Often we are specially interested in the values that may arise at the label l and
we shall write

ρ@l = {v | (l, v) ∈ ρ(C) }

to denote this. This faciliates introducing a more readable notation for when a
program has some observed type and for restating the subject-reduction result:

Definition 6. We write ρ |= el : t as a shorthand for ρ |= [[el]] ∧ ρ |= ρ@l : t.

Lemma 7. If ρ |= el : t and e −→ e′ then ρ |= e′l : t.

Proof. This is a trivial consequence of Lemma 1. �

1 An alternative would be to substitute {tt, ff} for ρ(B), {int} for ρ(I) and finally
{l | l is a label} for ρ(A); these definitions are essentially equivalent for clash-free
solutions ρ.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis 301

Table 4. The covariant rules for subtyping: t1 � t2

t ∈ T
t � t

t ∈ T
⊥ � t

t ∈ T
t �

t1 � t′1 t2 � t′2
t1 → t2 � t′1 → t′2

Example 5. Recall the program ((λx.(x1x2)3)4(λy.(y5y6)7)8)9 from Example 3
and let us denote by ρ the analysis estimate defined there. The overall program
has type ⊥ as should be quite natural given that it does not terminate. More
formally, this is evidenced by

ρ |= ((λx.(x1x2)3)4(λy.(y5y6)7)8)9 : ⊥

using the notation introduced above.

Example 6. Consider the program ((λx.(λz.(x1x2)3)4)5(λy.(λz.(y6y7)8)9)10)11

from Example 4 and let us denote by ρ the analysis estimate defined there.
We already stated that it evaluates to λz.((λy.(λz.(yy)))(λy.(λz.(yy)))) and it
should therefore be intuitively clear that it has a type t∞ that is somehow equiv-
alent to ⊥ → t∞; the choice of ⊥ is because the argument z is never instantiated
to any arguments.

We cannot express t∞ succinctly using the types of Definition 5 because we do
not allow recursive types, but we can give a number of “upper” approximations:

t0 = �
t1 = ⊥ → t0 = ⊥ → �
t2 = ⊥ → t1 = ⊥ → (⊥ → �)

...
ti = ⊥ → ti−1 = · · ·

More formally, this is evidenced by

ρ |= ((λx.(λz.(x1x2)3)4)5(λy.(λz.(y6y7)8)9)10)11 : ti

(for all i) using the notation introduced above.

4.2 Covariant Subtyping

Our next goal will be to define an ordering � on types such that we can obtain
a subtyping result of the form ρ |= el : t ∧ t � t′ =⇒ ρ |= el : t′. Inspecting the
inductive definition of ρ |= V : t it is quite natural to define it as in Table 4.

It is worthwhile noting that in the case of function types we have adopted a
fully covariant definition: t1 → t2 � t′1 → t′2 demands that t1 � t′1 ∧ t2 � t′2
rather than t′1 � t1 ∧ t2 � t′2. This is indeed necessary in order to establish the
subtyping result:

Lemma 8. If ρ |= V : t, V ′ ⊆ V and t � t′ then ρ |= V ′ : t′; in particular, if
ρ |= el : t and t � t′ then ρ |= el : t′.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

302 F. Nielson and H.R. Nielson

Proof. It is immediate to show by structural induction on t that ρ |= V : t and
V ′ ⊆ V suffice for deducing that ρ |= V ′ : t. Next it is immediate to show by
induction on the inference tree for t � t′ that ρ |= V : t and t � t′ suffice for
establishing ρ |= V : t′. �

Looking ahead to the development of Section 5 where a contravariant subtype
relation t ≤ t′ is defined in Table 6 it is worth stating that Lemma 8 would fail if
t ≤ t′ was used instead of t � t′. As an example consider the program (λx.xl) tt
and the least solution ρ as guaranteed by Proposition 3. It is immediate to see
that ρ |= {l} : B → B and that B → B ≤ ⊥ → � whereas ρ |= {l} : ⊥ → � fails
because ρ |= {tt} : ⊥ fails.

The next few results explore the properties of the partial order �.

Lemma 9. (T , �) is a lattice.

Proof. It is straightforward to show that � is reflexive, transitive and anti-
symmetric and hence a partial order. Next binary least upper bounds � and
binary greatest lower bounds � are defined in a mostly pointwise fashion:

� ⊥ B I t1 → t2 �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
B ⊥ B ⊥ ⊥ B
I ⊥ ⊥ I ⊥ I

t′1 → t′2 ⊥ ⊥ ⊥ (t′1 � t1) → (t′2 � t2) t′1 → t′2
� ⊥ B I t1 → t2 �

� ⊥ B I t1 → t2 �
⊥ ⊥ B I t1 → t2 �
B B B � � �
I I � I � �

t′1 → t′2 t′1 → t′2 � � (t′1 � t1) → (t′2 � t2) �
� � � � � �

It is straightforward to prove that this defines the lattice operators. �

It is immediate that all programs have a type, e.g. ρ� |= el : � where ρ� maps
all predicates of arity k to Uk. Furthermore, ρ |= el : t1 and ρ |= el : t2 suffice for
establishing ρ |= el : t1 � t2. This naturally leads to establishing the following
result for t1 � t2:

Lemma 10. Consider an analysis estimate ρ that is clash-free. If ρ |= V : t and
ρ |= V : t′ then ρ |= V : t � t′; in particular, if ρ |= el : t and ρ |= el : t′ then
ρ |= el : t � t′.

Proof. By induction on t � t′. Intuitively, clash-free ensures that whenever the
validations of ρ |= V : t and ρ |= V : t′ make different choices, one can equally
well make the choice needed for validating ρ |= V : t � t′. �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis 303

In applications of Abstract Interpretation [5,10] it is quite customary to prove
stronger versions of Lemmas 9 and 10: that (T , �) is a complete lattice and that
{t | ρ |= V : t} constitutes a Moore family. However, the latter result fails as
shown by Example 7 below.

Example 7. In Example 6 we identified the sequence of types t0 = �, t1 =
⊥ → �, · · · , ti = ⊥ → ti−1, · · · that all described the type of the program
((λy.(λz.(yy)))(λy.(λz.(xx)))). It is immediate that they form a strictly decreas-
ing chain

t0 � t1 � t2 � t3 � · · · � ti � · · ·

and that ⊥ is a lower bound. In fact one can show that ⊥ is the only lower bound
and hence the greatest lower bound. It is therefore important to observe that ⊥ is
not a valid type for the program; indeed, ρ |= ((λy.(λz.(yy)))(λy.(λz.(xx)))) : ⊥
clearly is false.

In the absence of the Moore family result we shall instead show that optimal
types exist among types of a given depth. Here a type t is said to have depth k
if k is the maximum nesting depth of the function type constructor; e.g. ⊥ →
(⊥ → �) and (I → B) → (I → B) both have depth 2.

Lemma 11. Consider an estimate ρ that is clash-free. The set of observed types
{t | ρ |= V : t and t has depth at most k } constitutes a Moore family (w.r.t. the
ordering �); in particular, {t | ρ |= el : t and t has depth at most k } constitutes
a Moore family.

Proof. From Lemma 9 it follows that ({t ∈ T | t has depth at most k}, �) is a
complete lattice because there are only finitely many types of depth at most k.
Furthermore, the Moore family property follows from ρ |= V : � and Lemma
10. A more constructive proof will be given in Subsection 4.3. �

4.3 Optimal Observed Types

We conclude by giving a more constructive proof of Lemma 11 with a view to
defining the optimal type (of a given depth) of an abstration occurring in some
program.

Definition 12. The canonical type [[V]]ρk of depth at most k ≥ 0 of a set of
values V is defined by:

[[V]]ρk = if V ⊆ ∅ then ⊥ else
if V ⊆ ρ(B) then B else
if V ⊆ ρ(I) then I else
if V ⊆ ρ(A) ∧ k > 0 then

[[{v | u ∈ V ∧ (u, v) ∈ ρ(P)}]]ρk−1 → [[{w | u ∈ V ∧ (u,w) ∈ ρ(C)}]]ρk−1

else �

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

304 F. Nielson and H.R. Nielson

Lemma 13. [[V]]ρk has depth at most k and satisfies ρ |= V : [[V]]ρk.

Proof. We proceed by induction on k and then perform a case analysis on V
(more precisely, on the outcome of the tests V ⊆ ∅, V ⊆ ρ(B) etc.). �

Lemma 14. Consider a clash-free estimate ρ. The type [[V]]ρk is least (wrt. �)
among all types t of depth at most k that satisfy ρ |= V : t.

Proof. We proceed by induction on k and then perform case analysis on V . �

Since the control flow analysis can be computed in cubic time the development
above provides a cubic time algorithm (for fixed choices of k) for calculating
optimal observed types.

Definition 15. The optimal observed type of depth k for an expression λx.el

occurring in some program e′ = · · · λx.el · · · is defined by

[[{l}]]ρk where ρ = �{ρ′ | ρ′ |= [[e′]]}

and is denoted [[l | e′]]k.

In the case of ρ being clash-free the type will be optimal in the sense of Lemma
14. If [[l | e′]]k contains no occurrences of � it will in fact be optimal also for
larger values of k.

Example 8. The optimal type of ((λx.(x1x2)3)4(λy.(y5y6)7)8)9 is ⊥.

Example 9. The optimal type (of depth k) of the program

((λx.(λz.(x1x2)3)4)5(λy.(λz.(y6y7)8)9)10)11

is tk as defined in Example 6; it has no type that is optimal for all values of k.

5 Inferred Types

In this section we investigate the relationship between the approach of observed
types of Section 4 and the more traditional approach of types inferred using a
type system [1,8,15].

5.1 Contravariant Subtyping

To facilitate the development we shall base the type system on the syntax of types
displayed in Definition 5. The judgement Γ � el : t says that the expression el

has type t in the type environment Γ ; it is defined in Table 5 and makes use of
the standard notation for type environments. The type system has the flavour of
a system for strong typing rather than soft typing because of the insistence that
only integers are added or compared, only booleans are used in conditionals and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis 305

Table 5. The traditional type system of inferred types: Γ � el : t

Γ � ttl : B Γ � ffl : B Γ � nl : I

Γ (x) = t

Γ � xl : t

Γ � el1
1 : I Γ � el2

2 : I

Γ � (el1
1 + el2

2)l : I

Γ � el1
1 : I Γ � el2

2 : I

Γ � (el1
1 = el2

2)l : B

Γ [x : t] � el0
0 : t0

Γ � (λx.el0
0)l : t → t0

Γ [f : t → t0][x : t] � el0
0 : t0

Γ � (μfx.el0
0)l : t → t0

Γ � el1
1 : t2 → t Γ � el2

2 : t2

Γ � (el1
1 el2

2)l : t

Γ � el0
0 : B Γ � el1

1 : t Γ � el2
2 : t

Γ � (if el0
0 then el1

1 else el2
2)l : t

Γ � el : t1 t1 ≤ t2
Γ � el : t2

Table 6. The contravariant rules for subtyping: t1 ≤ t2

t ∈ T
t ≤ t

t ∈ T
⊥ ≤ t

t ∈ T
t ≤

t′1 ≤ t1 t2 ≤ t′2
t1 → t2 ≤ t′1 → t′2

only functions are applied. This choice makes the comparison somewhat more
complex but also more interesting.

The type system of Table 5 uses subtyping as defined in Table 6. As is cus-
tomary for type systems the rule for function type is covariant in the result type
but contravariant in the argument type. It may be instructive to give a simple
example showing why this needs to be the case. Considering the function λx.x
we would expect it to have a type like B → B and it seems semantically correct
to allow subtyping to massage the type to B → � whereas � → B does not seem
right: indeed (λx.x) 7 would then be well-typed with type B whereas 7 clearly is
not well-typed with type B. At the more technical level the consistency of the
type system (Lemma 16 below) would fail. Using contravariant subtyping as in
Table 6 allows us to massage the type of λx.x to the less problematic ⊥ → B
and indeed we can establish the consistency of the type system by means of a
subject-reduction result:

Lemma 16. If [] � el : t and el −→ e′l then [] � e′l : t.

Proof. The proof exploits the following substitution result (that can be proved
by structural induction on el):

If Γ [x : t′0] � el : t′ and Γ � el0
0 : t0 and t0 ≤ t′0 and t′ ≤ t then

Γ � e[e0/x]l : t.

The Lemma is then proved by induction on el −→ e′l. �

Next we state an analogy of Lemma 9 for exploring the properties of the partial
order ≤.

Lemma 17. (T , ≤) is a lattice.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

306 F. Nielson and H.R. Nielson

Proof. It is straightforward to show that ≤ is reflexive, transitive and anti-
symmetric and hence a partial order. Next binary least upper bounds ∨ and
binary greatest lower bounds ∧ are defined in a mostly pointwise fashion:

∧ ⊥ B I t1 → t2 �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
B ⊥ B ⊥ ⊥ B
I ⊥ ⊥ I ⊥ I

t′1 → t′2 ⊥ ⊥ ⊥ (t′1 ∨ t1) → (t′2 ∧ t2) t′1 → t′2
� ⊥ B I t1 → t2 �

∨ ⊥ B I t1 → t2 �
⊥ ⊥ B I t1 → t2 �
B B B � � �
I I � I � �

t′1 → t′2 t′1 → t′2 � � (t′1 ∧ t1) → (t′2 ∨ t2) �
� � � � � �

It is straightforward to prove that this defines the lattice operators. �

Example 10. The example program ((λx.(x1x2)3)4(λy.(y5y6)7)8)9 of Example 1
has no type in the type system of Tables 5 and 6:

¬∃t : [] � ((λx.(x1x2)3)4(λy.(y5y6)7)8)9 : t

To show this we proceed by contradiction and suppose that there does exist a
type judgement. We first observe that proof trees for type judgements can be
normalised so that all applications of the rule for subtyping follows immediately
after one of the other rules or axioms. Furthermore, in order to determine typa-
bility it suffices to use the rule for subtyping only on the argument type in the
rule for application.

Given a type judgement this allows us to introduce the following types: tx
for the type assigned to the formal parameter x, ty for the type assigned to the
formal parameter y, tX for the type assigned to the body (x1x2)3 and tY for the
type assigned to the body (y5y6)7. These must satisfy

tx ≤ tx → tX ≤ ty ≤ ty → tY

from which tx ≤ ty ≤ ty is immediate and ty ≤ ty ≤ tx follows using tx → tX ≤
ty → tY . Using Lemma 17 we have tx = ty and hence

tx = tx → tX

which can be shown to be impossible (by induction on the size of tx).

It is an immediate consequence of the rule for subtyping in Table 6 and Lemma
17 that Γ � el : t1 and Γ � el : t2 suffice for establishing Γ � el : t1∨t2. However,
it is easy to show that Γ � el : t1 and Γ � el : t2 do not suffice for establishing
Γ � el : t1 ∧ t2; as an example take e = λx.x and t1 = B → B and t2 = I → I
where t1 ∧ t2 = � → ⊥. This is unlike the situation in Section 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis 307

5.2 Comparison of Inferred Versus Observed Types

We shall conclude by a new way of presenting the usual slogan for type systems:
that well-typed programs do not go wrong. Usually the correctness of an inferred
type system is formalised with respect to the operational semantics; here it will
be formalised with respect to the control flow analysis (which is itself formalised
with respect to the operational semantics). It says that well-typed programs
produce clash-free solutions and that the types carry over from the inferred
types to the observed types.

Due to the difference between the partial orders ≤ and � we shall introduce
the partial orders ≤◦ and �◦ indicating that they have been used in covariant
position 2 only. It is immediate that t1 ≤◦ t2 is equivalent to t1 �◦ t2 and implies
t1 ≤ t2 as well as t1 � t2. In order to ensure that the partial orders are used in
covariant position only it suffices to use t1 = t′1 in the rules for function types in
Tables 4 and 6. In the statement of the theorem [] � el : � merely says that el

has some type in the type system (and hence should not lead to any run-time
errors.).

Theorem 18. Consider a program el that is uniquely labelled and α-renamed
apart. If [] � el : � (using only ≤◦ for subtyping) there exists ρ such that
ρ |= el : � and ρ is clash-free.

Proof. Let ρ be the least solution to ρ |= [[el]] as guaranteed by Proposition 3
and as can be constructed inductively as a sequence of estimates ⊥ = ρ0, ρ1, ρ2,
ρ3, · · · , ρn = ρ as explained after Proposition 3 in Section 3.

Since the program el is uniquely labelled and α-renamed apart there is a
unique correspondence between labels and variables on the one hand and pro-
gram points and defining occurrences of variables on the other. In particular
there is a unique correspondence between the binding occurrence of a variable
x (of the form (λx.el0

0)l or (μfx.el0
0)l) and the label lx of the body of the ab-

straction (l0 in both cases). In analogy with the definition of ρ@l we shall then
define

ρ@x = {v | (x, v) ∈ ρ(R) ∨ (lx, v) ∈ ρ(P) }
to denote the set of values associated with the variable x in ρ. We use both R and
P because the control flow analysis of Table 2 promotes actual parameters to
formal parameters in two steps: C(l, v) =⇒ P(lx, v) =⇒ R(x, v) and hence the
entry (l, v) in ρi(C) shows up as (lx, v) in ρi+1(P) but as (x, v) only in ρi+2(R).

We shall prove for all i and all type judgements Γ � e′l
′

: t′ occurring
in the inference tree for [] � el : � (using only ≤◦ for subtyping) that
ρi is clash-free and that ∀x ∈ dom(Γ) : ρ |= ρi@x : Γ (x) implies that
ρ |= ρi@l′ : t′.

2 The program (λx.if tt then x 7 else x ff)(λy.5) illustrates some of the subtleties. It is
natural to type x as
 → I and then after then then-branch (resp. the else-branch)
it can be subtyped to the larger (w.r.t ≤ but not ≤◦) type I → I (resp. B → I)
which contradicts the induction hypothesis of Theorem 18. It remains future work
to possibly strengthen the result by omitting the restriction to ≤◦.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

308 F. Nielson and H.R. Nielson

We proceed by induction on i and the base case is immediate so consider the
induction step. For this we proceed by induction over the inference tree for
[] � el : � where for each judgement we inspect the clauses generated by [[el]] of
Table 2 for the expression of the judgement.

By inspection of the relevant clause generated by [[el]] of Table 2 it is clear
that no such clash is forced. In the case of subtyping we use Lemma 8 and that
t1 ≤◦ t2 implies t1 �◦ t2. �

It follows from Examples 5 and 10 that the converse result does not hold (as
indeed the solution in Example 3 is clash-free). As other examples of interest
note that we have ρ� |= 3 + tt : � (where ρ� is clearly not clash-free) whereas
we do not have [] � 3 + tt : �. Similarly we have ρ� |= 7 8 : � (where ρ� once
more is not clash-free) whereas we do not have [] � 7 8 : �.

6 Conclusion

In this paper we have shown how to express the results of control flow analysis
in the form of type systems. At the same time we have developed our thesis that
flow analysis and type systems capture related but somehow distinct features of
programs:

• The approach of observed types based on control flow analysis is “descriptive”
in that we aim to express how the entity under study has been used in
program at hand. This has the flavour of a “whole-program” analysis where
no unknown variables can occur. It seems the right concept for program
debugging and program understanding.

• The approach of inferred types based on type systems is “prescriptive” in
that we aim to express how the entity under study can be used in all pos-
sible contexts. This has the flavour of a “partial-program” analysis where
indeed unknown variables can occur. It seems the right concept for program
construction.

Although we do not consider recursive types in this paper we expect our thesis
to hold in this more general setting as well.

An intriguing point of this development is the need for using covariant sub-
typing in the case of observed types and contravariant subtyping in the case of
inferred types. We already illustrated in Section 4 that Lemma 8 would fail if
using contravariant subtyping instead of covariant subtyping. Similarly we said
in Section 5 that Lemma 16 would fail if using covariant subtyping rather than
contravariant subtyping. This dichotomy between when to use covariant subtyp-
ing and when to use contravariant subtyping has also emerged in the work on
record types.

To shed further light on this point let us reformulate the definition of ρ |= el : t
in the case of function types:

ρ |= el : t1 → t2 iff

⎧
⎨

⎩

ρ@l ⊆ ρ(A)∧
ρ |= {v | u ∈ ρ@l ∧ (u, v) ∈ ρ(P)} : t1∧
ρ |= {w | u ∈ ρ@l ∧ (u, w) ∈ ρ(C)} : t2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Types from Control Flow Analysis 309

Instead of establishing the consistency of the type system by means of a subject-
reduction result we could instead have explored a more semantic approach where
we defined a satisfaction relation �� el : t which in the case of function types
would be:

�� el : t1 → t2 iff ∀v, w :

⎧
⎨

⎩

�� v : t1 ∧ el v −→∗ w
⇓

�� w : t2

Here it is clear that the use of logical relations for the type system enforces the
need for contravariance in the subtyping relation whereas the opposite is needed
for the observed types based on control flow analysis.

A similar comparison can be given in the case of soft type systems where the
simple type system no longer demands that the absence of internal clashes; in
terms of the observed types we then dispense with the consideration of clash-free
solutions. Frequently control flow analyses contain reachability components or
are dependent on context in which case the increased strength of observed types
would be more manifest.

Acknowledgements. This work has been supported by the Danish Natural Sci-
ence Research Council projects LoST (21-02-0507) and SiES (2059-03-0011) and
by the EU-IST-FETPI project SENSORIA (FP6-016004).

The thesis that control flow analysis naturally leads to the use of covariant
subtyping seems to be somewhat controversial. We wish to thank Fritz Henglein,
Jens Palsberg and the referees for their views on the topic — they have helped
to improve the presentation of the thesis.

References

1. M. Abadi, L. Cardelli, B. C. Pierce, and G. D. Plotkin. Dynamic typing in a
statically typed language. In Proc. POPL’89, pages 213–227. ACM, 1989.

2. T. Amtoft and F. Turbak. Faithful translations between polyvariant flows and
polymorphic types. In Proc. ESOP’00, pages 26–40. Springer, 2000.

3. A. Banerjee. A modular, polyvariant, and type-based closure analysis. In
Proc. ICFP ’97, pages 1–10. ACM Press, 1997.

4. P. Cousot. Types as abstract interpretations. In Proc. POPL ’97, pages 316–331.
ACM Press, 1997.

5. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. POPL ’77, pages 238–252. ACM Press, 1977.

6. K.-F. Faxén. Polyvariance, polymorphism, and flow analysis. In Proc. Analysis
and Verification of Multiple-Agent Languages, volume 1192 of Lecture Notes in
Computer Science, pages 260–278. Springer, 1997.

7. N. Heintze. Control-flow analysis and type systems. In Proc. SAS ’95, volume 983
of Lecture Notes in Computer Science, pages 189–206. Springer, 1995.

8. F. Henglein. Global Tagging Optimization by Type Inference. In Proc. LFP ’92,
pages 205–215. ACM Press, 1992.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

310 F. Nielson and H.R. Nielson

9. B. Monsuez. Polymorphic types and widening operators. In Proc. Static Analysis
(WSA ’93), volume 724 of Lecture Notes in Computer Science, pages 267–281.
Springer, 1993.

10. F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

11. F. Nielson and H. Seidl. Control-flow analysis in cubic time. In Proc. ESOP’01,
number 2028 in Lecture Notes in Computer Science, pages 252–268. Springer, 2001.

12. F. Nielson, H. Seidl, and H. Riis Nielson. A Succinct Solver for ALFP. Nordic
Journal of Computing, 9:335–372, 2002.

13. J. Palsberg and P. O’Keefe. A type system equivalent to flow analysis. ACM
Transactions on Programming Languages and Systems, 17(4):576–599, 1995.

14. J. Palsberg and C. Pavlopoulou. From polyvariant flow information to intersection
and union types. In Proc. POPL’98, pages 197–208. ACM, 1998.

15. S. Thatte. Type inference with partial types. In Proc. ICALP’88, number 317 in
Lecture Notes in Computer Science, pages 615–629. Springer, 1988.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS

Hanne Riis Nielson and Flemming Nielson

Informatics and Mathematical Modelling, Richard Petersens Plads bldg. 321,
Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

{riis|nielson}@imm.dtu.dk

Abstract. Data Flow Analysis as expressed by Monotone Frameworks
is often associated with classical imperative programming languages and
has played a crucial role in the efficient implementation of these lan-
guages. Robin Milner’s Calculus of Communicating Systems, CCS, is
concerned with modelling concurrent systems and has mainly been anal-
ysed using types and control flow analyses. In the present paper we
present an instance of a Monotone Framework together with a novel
worklist algorithm for more precisely approximating the flow-sensitive
control structure of even infinitary processes expressed in CCS.

1 Introduction

There are many approaches to static analysis of programming languages and
calculi. In [11] we developed four of these in some depth: Data Flow Analy-
sis building on transfer functions associated with program blocks; Control Flow
Analysis taking a specification oriented approach to formulating constraints on
the set of functions reaching given application points; Abstract Interpretation
presenting a semantics based method for calculating and subsequently approxi-
mating static analyses; and finally Type and Effect Systems for expressing the
behaviour of functions by means of syntactic expressions in a monomorphic or
polymorphic type system.

Recent years have seen an increased interest in applying static analysis tech-
niques to highly concurrent languages, in particular a variety of process calculi
allowing concurrent processes to interact by means of synchronisation or commu-
nication. The majority of approaches have aimed at adapting type systems from
mainly functional and object-oriented languages to express meaningful prop-
erties, e.g. [8,10,18]. Together with our coauthors we have been active in de-
veloping Control Flow Analysis for a variety of process calculi including the
π-calculus [3], the spi-calculus [4,13], mobile ambients [12,14,15] and our own
calculus LySa [2,6].

One drawback of simple control flow analyses of the 0CFA variety is their
lack of context-sensitivity; however, it is often possible to add a suitable notion
of constext using ideas from kCFA, e.g. [16]. Another drawback of of simple
control flow analyses is their lack of flow-sensitivity; indeed for massively parallel
languages like most process algebras it is hard to determine the effect of each local
program point (in each concurrent thread) without an exponential growth in the

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 311–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

312 H.R. Nielson and F. Nielson

number of global program points (having one component for each concurrent
thread).

To get some progress on the latter problem we focus on the classical approach
of Data Flow Analysis where transfer functions associated with basic blocks
are often specified as a Bitvector Framework or, more generally, as a Mono-
tone Framework. What these analyses have in common is that there are ways
of removing analysis information when no longer appropriate. We give the first
account of an instance of an analysis problem for CCS, the Calculus of Com-
municating Systems [9], where the bitvectors (which correspond to finite sets)
are generalised to so-called extended multisets. This involves the development of
suitable generalisations of the gen and kill components of Monotone Frameworks
are used to construct transfer functions that:

provide finitary information about the control structure of configurations
arising dynamically during computation.

Unlike the classical scenario it does not suffice to simply solve the particular
Monotone Framework over a given flow graph. Here we also need to dynamically
construct the nodes to be part of the resulting finite graph for describing a given
process even in the case where its transition system is infinite. To ensure that
the graph remains finite and that the algorithm terminates even for infinitary
processes we shall use a so-called granularity function and a suitable widening
operator.

The overall motivation of the work presented here came from our work on
improving the analysis information obtained from analysing communication pro-
tocols; we conclude with a simple worked example based on the Ingemarsson-
Tang-Wong Key Agreement Protocol [5].

2 Setting the Scene

Programming Languages versus Process Calculi. Before undertaking to adapt
methods and techniques from programming languages to process calculi it is im-
portant to understand the similarities and differences between these paradigms.
In doing so we shall focus on the nature of statements versus processes and disre-
gard more high-level notions like recursive procedures versus recursive processes
(which especially in the case of process calculi are important for obtaining the
desired expressive power).

Starting with a simple non-procedural imperative programming language we
often represent it by means of a flow graph with basic blocks containing state-
ments. This corresponds roughly to the two main operations of sequencing (de-
noted 〈;〉) and branching out of conditionals (denoted 〈∨〉) leaving the
corresponding join of branches implicit. Clearly a concurrency construct may
be added to this setup (denoted 〈|〉) but only few static analyses have been
developed for this scenario; examples include analyses of low-level VHDL
programs [17].

Turning to process calculi usually the sequencing construct 〈;〉 is replaced by
a prefixing construct 〈.〉; in practice this does not seem to limit the expressive

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS 313

power although it simplifies the technical development since there is no issue of
prefixed axioms dead-locking or not terminating. Also all process calculi contain
a concurrency construct 〈|〉. This suffices for some process calculi like mobile
ambients and LySa whereas others additionally have a choice-construct. How-
ever, there are some variations as to the precise details of how this construct
behaves. The internal choice (also denoted 〈∨〉) is characterised by the choice
being taken outside of our control; from the static analysis point of view this is
rather comparable to the branching out of conditionals in that we usually are
not able to determine which branch is taken. The alternative external choice
(denoted 〈+〉) is characterised by the choice being taken when some other pro-
cess (or the environment) wishes to communicate. Generally speaking the use of
external choice gives fewer “false” executions than the use of internal choice.

It follows that programming languages tend to use features like 〈;∨〉 or some-
times 〈;∨|〉; process calculi, on the other hand, tend to use 〈.|〉 or 〈.+|〉 or even
〈.∨+|〉. As for developing the static analyses, the change from 〈;〉 to 〈.〉 does not
give rise to any complications (at most some simplifications) whereas the change
from 〈∨〉 to 〈+〉 should be considered carefully.

Internal versus External Choice. As an example consider the specification of a
(unary) semaphore S; in CCS syntax it can be written:

S � g. p. S

First the process offers the action g, then the action p after which it starts all
over again. Assume that it operates in parallel with a process Q given by

Q � g. τ. Q + p. Q

that it is willing to either perform the action g (that will synchronise with a g
action) or the action p (that will synchronise with a p action). After the g action
some internal action τ is performed and then the process recurses; after the p
action the process recurses immediately. Now assume that the sum operation is
interpreted as an internal choice. Then the system S | Q may silently move into
one of the two configurations S | p. Q or S | g. τ. Q and only in the latter case
will it be able to proceed and become p. S | τ. Q and subsequently p. S | Q.
This and the subsequent interactions are illustrated by the figure:

S | Q

S | p. Q

S | g. τ. Q p. S | τ. Q p. S | Q

p. S | g. Q

p. S | p. Q

���

��� � � ���

���

�

�

�

However, if the sum is interpreted as external choice then the ability of S to
perform the g action will prevent Q from making the “wrong” choice so the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

314 H.R. Nielson and F. Nielson

process will simply become p. S | τ. Q and subsequently p. S | Q and S | Q as
illustrated on the figure:

S | Q p. S | τ. Q p. S | Q� �

�
�
�

The Essence of Data Flow Analysis. Both in the case of Bitvector Frameworks
and Monotone Frameworks we attach transfer functions to the blocks of a data
flow graph representing the program. In the case of a forwards Data Flow Anal-
ysis the transfer function describes how information entering the block is trans-
formed so as to correspond to the exit of the block. In a Bitvector Framework
formulated using finite sets the transfer function usually takes the simple form

fblock(E) = (E \ kill block) ∪ genblock

where we first remove the information invalidated by the block and next add the
new information provided by the block. The classical examples of information E
of interest are reaching definitions, available expressions, live variables and very
busy expressions [1,11].

Overview. The analysis problem considered in the present paper is to provide
finitary information about the control structure of configurations arising dynam-
ically during computation. This is trivial in the case of traditional programming
languages (〈;∨〉) but it is non-trivial and interesting whenever we admit a con-
currency construct – regardless of whether or not a choice construct is included.

We shall study the problem for CCS (reviewed in Section 3) which in addi-
tion to the concurrency construct incorporates silent actions as well as explicit
external choice. Indeed, the presence of external choice and silent actions (〈+τ〉)
allows to model internal choice (〈∨〉) as well.

The first part of the development (in Section 4) amounts to defining transfer
functions for the individual actions occurring in some CCS process. We shall see
that the labels of individual actions will correspond to the basic blocks of Data
Flow Analysis but that there is a need to generalise from bitvectors to so-called
extended multisets.

The second part of the development (in Section 5) is to devise a worklist al-
gorithm for constructing a finite control flow graph for some CCS process. The
nodes describe the exposed actions for the various configurations that may arise
dynamically during execution whereas the edges capture the control structure
telling how one configuration may evolve into another. Unlike the classical sce-
nario it does not suffice to simply solve the particular Monotone Framework over
a given flow graph. Here we also need to dynamically construct the nodes to be
part of the resulting finite graph for describing a given process even in the case
where its transition system is infinite. One concern is to bound the size of the
graph to be constructed; this is achieved using a so-called granularity function
for limiting the extent to which new nodes are created. Another concern is to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS 315

ensure termination of the extended multiset computations; this is achieved us-
ing a widening [7] on extended multisets constructed from a rather standard
widening operation over the integers. Since the choice of granularity function
gives detailed control over the size of the graph we have deciced to let it be
a user-selectable component unlike the widening for extended multisets that is
fixed throughout the presentation.

As a worked example we consider (in Section 6) the Ingemarsson-Tang-Wong
Key Agreement Protocol [5] and show the control graphs produced by our pro-
totype implementation of our analysis. One application of such graphs is in the
areas of program understanding; quite often security flaws in protocols are only
discovered years after their conception at which time it may not be clear how
a given software system implements the protocol or whether appropriate safe
guards have already been taken.

3 Communicating Systems

The syntax of CCS [9] processes P and actions α is given by:

P ::= new xP | P1 | P2 | Σi∈Iα
�i

i .Pi | A

α ::= x | x | τ

Here I is a finite indexing set; if I = ∅ we write 0 for the sum and if I is a
singleton we simply write α�.P . Binary sums are written α�1

1 .P1 + α�2
2 .P2 and

in the following we shall perform much of the development in this simple case;
it is easily generalised to arbitrary guarded sums. The labels � ∈ Lab of the
actions are added to prepare for the analysis to be presented shortly; they have
no impact on the semantics. Actions and co-actions (x and x) are constructed
from names x; local names are introduced by the restriction construct new xP .
The construct A allow us to refer to named processes defined by (recursive)
equations of the form A � P .

There are two main approaches to the semantics of the calculus [9]. Perhaps
the simplest approach amounts to defining a reduction semantics (denoted →)
and a structural congruence (denoted ≡); this will be the choice used here and
we shall recall its definition below. The original approach was to define a labelled
transition system (LTS); however, it is worth pointing out that the two semantics
can be proved equivalent [9] and that the choice of semantics does not affect the
development of the present paper.

The reduction semantics expresses that the τ -action is a silent action that
elimitates potential alternatives in a summation:

τ �.P + Q → P

This represents an internal choice. The action x together with its co-action x
enforces a synchronisation between two parallel processes; again we express this
in the case they are both binary summands:

(x�1 .P1 + Q1) | (x�2 .P2 + Q2) → P1 | P2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

316 H.R. Nielson and F. Nielson

This represents an external choice and as above we observe that potential alter-
natives are eliminated. Further semantic rules (see [9]) ensures that the semantic
transitions can occur arbitrarily deep within parallel subprocesses and restricted
processes.

Example. To illustrate the semantics let us return to the process S | Q consid-
ered earlier where we, for the sake of later reference, add labels:

S � g1. p2. S

Q � g3. τ4. Q + p5. Q

Using the formal semantics we can express the transitions of the system already
illustrated graphically by

S | Q ≡ (g1. p2. S) | (g3. τ4. Q + p5. Q)
→ (p2. S) | (τ4. Q)
→ (p2. S) | Q
≡ (p2. S) | (g3. τ4. Q + p5. Q)
→ S | Q

where we have included the rewritings of processes due to applications of the
structural congruence ≡.

4 Transfer Functions

An exposed action is an action that may participate in the next interaction. The
process S above only has g1 as exposed action whereas the process Q has g3 as
well as p5 as exposed actions. In general, a process may contain many occurrences
of the same action (all identified by the same label) and it may be the case that
several of them are ready to participate in the next interaction – this will for
example be the case for a system like S | S | Q where two parallel occurrences
of the unary semaphore is used to model a binary semaphore. Actually there
may be an infinite number of occurrences of the same action that are ready to
interact – this is for example the case for the process Q′ � (g3.τ4.0+ p5.0) | Q′

that is equivalent to an infinite number of parallel occurrences of the process
g3.τ4.0 + p5.0.

To capture this we define an extended multiset M as an element of:

M = Lab → N ∪ {∞}

The idea is that M(�) records the number of occurrences of the label �; there
may be a finite number in which case M(�) ∈ N or an infinite number in which
case M(�) = ∞. This domain will become a complete lattice when equipped
with the ordering ≤M defined by M ≤M M ′ if and only if for all � either
M(�) ≤ M ′(�) or M ′(�) = ∞. The least element ⊥M hence maps all labels to
0 and the greatest element
M maps all labels to ∞. The least upper bound
operation �M and the greatest lower bound operation �M will be the pointwise
extension of, respectively, the minimum and the maximum operators on N∪{∞}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS 317

Calculating Exposed Actions. The key information of interest is the collection of
extended multisets of exposed actions of the processes. Initially this is computed
by an abstraction function E . First consider the sum of two processes α�1

1 .P1 +
α�2

2 .P2. Here both of the actions α1 and α2 are ready to interact but none of
those of P1 and P2 are so we shall take:

E [[α�1
1 .P1 + α�2

2 .P2]] = ⊥M[�1 �→ 1] +M ⊥M[�2 �→ 1]

Here +M is a pointwise addition operator so if the two labels happen to be equal
then the overall count will become 2. It is straightforward to adapt the formula
to the general guarded summation construct. Turning to parallel composition
we shall use a similar formula for α�1

1 .P1 | α�2
2 .P2:

E [[α�1
1 .P1 | α�2

2 .P2]] = ⊥M[�1 �→ 1] +M ⊥M[�2 �→ 1]

Again, both of the actions α1 and α2 are ready to interact but none of those of
P1 and P2 are. In the general case the formula simply is:

E [[P1 | P2]] = E [[P1]] +M E [[P2]]

The clause for the new xP construct simply ignores the introduction of the new
name thereby ignoring the scope of names. Clearly this may lead to impreci-
sion; however, in the simple case where recursion is not involved a simple alpha
renaming of bound names will solve the problem. Turning to the clause for A
where A � P we easily obtain a recursive equation of the form E [[A]] = E [[P]]
(where E [[A]] may occur inside E [[P]]) and this can be reformulated as a mono-
tone function over a complete lattice. Tarski’s fixed point theorem then gives us
a least fixed point and this will be the analysis result for A.

Example. Turning to the semaphore examples we get:

E [[S | Q]] = ⊥M[1 �→ 1, 3 �→ 1, 5 �→ 1]
E [[S | S | Q]] = ⊥M[1 �→ 2, 3 �→ 1, 5 �→ 1]

E [[S | Q′]] = ⊥M[1 �→ 1, 3 �→ ∞, 5 �→ ∞]

Generated and Killed Actions. The abstraction function E only gives us the
information of interest for the initial process and we shall now present auxiliary
functions allowing us to approximate how the information evolves during the
execution of the process. To be more precise we shall aim at constructing an
over-approximation to the result of applying the abstraction function to the
processes occurring during reduction.

Once an action has participated in an interaction some new actions may be-
come exposed – and some may no longer be exposed. As an example consider
the semaphore process S. Initially, the action g1 is exposed but once it has been
executed it will no longer be exposed (i.e. it is killed) and instead the action p2

becomes exposed (i.e. it is generated).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

318 H.R. Nielson and F. Nielson

We shall now introduce two functions G and K approximating this information
for processes. The relevant information will be an element of

T = Lab → M (= Lab → (Lab → N ∪ {∞}))

As for exposed actions it is not sufficient to use sets: there may be more than
one occurrence of an action that is either generated or killed by another action.

Let us first consider prefixing as expressed in the process α�.P . Clearly, once
α� has been executed it will no longer be exposed but those of E [[P]] will be-
come exposed. Thus a first suggestion may be to take G[[α�.P]](�) = E [[P]] and
K[[α�.P]](�) = ⊥M[� �→ 1]. However, to cater for the general case where the
same label may occur several times in a process (� may be used inside P) we
have to modify these formulas sligthly. The function G must compute an over -
approximation so we take

G[[α�.P]] = ⊥[� �→ E [[P]]] � G[[P]]

where � is the least upper bound operator on T and ⊥ is the least element of T.
Similarly, the function K must compute an under -approximation so we take

K[[α�.P]] =
[� �→ M] � K[[P]] where M = ⊥M[� �→ 1]

where � is the greatest lower bound operator on M and
 is the greatest element
of T.

We can now generalise these formulas to guarded sums and parallel compo-
sition. The function G is defined in a straightforward manner in that it sim-
ply combines information from the subprocesses using the least upper bound
operation:

G[[P | P ′]] = G[[P]] � G[[P ′]]
G[[α�1

1 .P1 + α�2
2 .P2]] = G[[α�1

1 .P1]] � G[[α�2
2 .P2]]

For K we use the greatest lower bound operation in the case of parallelism but
we can do better in the case of sums:

K[[P | P ′]] = K[[P]] � K[[P ′]]
K[[α�1

1 .P1 + α�2
2 .P2]] =
[�1 �→ M] � K[[P1]] �
[�2 �→ M] � K[[P2]]

where M = ⊥M[�1 �→ 1] +M ⊥M[�2 �→ 1]

Here we exploit that all the exposed actions (denoted M) of a sum can be killed
independently of which action is taken. As for E we shall ignore the introduction
of new names and we shall rely on fixed point theory when analysing the recursive
definitions.

Example. Turning to the semaphore example S | Q we obtain the following
information:

� G[[· · ·]](�)
1 ⊥M[2 �→ 1]
2 ⊥M[1 �→ 1]
3 ⊥M[4 �→ 1]
4 ⊥M[3 �→ 1, 5 �→ 1]
5 ⊥M[3 �→ 1, 5 �→ 1]

� K[[· · ·]](�)
1 ⊥M[1 �→ 1]
2 ⊥M[2 �→ 1]
3 ⊥M[3 �→ 1, 5 �→ 1]
4 ⊥M[4 �→ 1]
5 ⊥M[3 �→ 1, 5 �→ 1]

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS 319

Fig. 1. The finite automaton for the process S | Q

Exactly the same information is obtained for S | S | Q whereas for S | Q′

the information about generated actions needs to be modified:

� G[[· · ·]](�)
1 ⊥M[2 �→ 1]
2 ⊥M[1 �→ 1]
3 ⊥M[4 �→ 1]
4 ⊥M

5 ⊥M

� K[[· · ·]](�)
1 ⊥M[1 �→ 1]
2 ⊥M[2 �→ 1]
3 ⊥M[3 �→ 1, 5 �→ 1]
4 ⊥M[4 �→ 1]
5 ⊥M[3 �→ 1, 5 �→ 1]

Transfer Functions. Next consider a process Ps that in one step evolves into
another process Pt because of an action labelled l1 interacting with an action
labelled l2; this may be written Ps −→(l1,l2) Pt. Intuitively, the extended multiset
of explosed labels in Pt should be obtained from those in Ps by removing those
actions that are killed, i.e. K[[Ps]][�1] +M K[[Ps]][�2], and by adding those actions
that are generated, i.e. G[[Ps]][�1]+MG[[Ps]][�2]. Here +M is the pointwise addition
operator and we write −M for the pointwise subtraction operator. This then
suggests that one can prove that

E [[Pt]] ≤M E [[Ps]] −M (K[[Ps]][�1] +M K[[Ps]][�2]) +M (G[[Ps]][�1] +M G[[Ps]][�2])

as is indeed the case.
This is not quite suitable for defining a transfer function as we should like it

to remain stable during evaluation. We therefore use the fact that if an original
process P� is given and if Ps is a derivative of P�, i.e. P� −→� Ps, then the
generated actions described by P� is an over-approximation of those described
by Ps; similarly that the killed actions described by P� is an under-approximation
of those described by Ps. This motivates defining the transfer function as follows:

f�(E) = (E −M (K[[P�]][�1] +M K[[P�]][�2])) +M (G[[P�]][�1] +M G[[P�]][�2])

It follows that E [[Pt]] ≤M f�(E [[Ps]]).

5 The Worklist Algorithm

Given a process P� the development above gives information about which ac-
tions may be ready to interact, namely E [[P�]]. Furthermore, using G[[P�]] and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

320 H.R. Nielson and F. Nielson

K[[P�]] we may approximate the actions that may be ready for interaction in
the next step. The goal is to represent this information as a finite graph;
Figure 1 illustrates this for the running example S | Q. Note that due to
the simplicity of the example this is is very close to the transition graph dis-
played in Section 2.

The nodes of the graph will correspond to extended multisets of exposed
actions thereby indicating those actions that are candidates for interaction in
a given node. In the algorithm to be presented below we shall use a table E to
record this information — for the above semaphore example we will have:

E[q0] = ⊥M[1 �→ 1, 3 �→ 1, 5 �→ 1]
E[q1] = ⊥M[2 �→ 1, 4 �→ 1]
E[q2] = ⊥M[2 �→ 1, 3 �→ 1, 5 �→ 1]

Initially the table will consist of a single node q0 with E[q0] = E [[P�]]. No other
information is associated with nodes except for the extended multisets of exposed
actions as recorded by the table E. In particular a node does not contain any
process expression; as indicated in the construction of the transfer function above
the extended multiset of exposed actions together with knowledge of the original
program P� gives us all the information needed.

The edges of the graph records the potential transitions of the process: there
will be an edge labelled (�1, �2) from qs to qt in the graph if (1) the actions
labelled �1 and �2 are in E[qs] and they are enabled for interaction and (2)
qt describes the resulting set of exposed actions as determined by the transfer
function. Thus the algorithm will set

E[qt] = E[qs] −M (K[�1] +M K[�2]) +M (G[�1] +M G[�2])

where we write write G and K for the mappings G[[P�]] and K[[P�]], respectively.

The Algorithm. The graph is constructed using a simple worklist algorithm
starting from the node q0 and adding states and transitions using the ideas
outlined above. The algorithm uses the data structures Nodes and Edges to
contain the accumulated version of the graph while the worklist W keeps track
of the nodes that still have to be processed. The worklist algorithm can now be
described as follows (writing G[�1, �2] for G[�1] +M G[�2] and similarly K[�1, �2]
for K[�1] +M K[�2]):

Nodes := {q0}; E[q0] := E [[P�]];
W := {q0}; Edges := ∅;
while W �= ∅ do

select qs from W; W := W \ {qs};
for each �̃ ∈ enabled(E[qs]) do

let E = E[qs] −M K[�̃] +M G[�̃]
in update(qs, �̃, E)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS 321

Fig. 2. The graph for the process S | S | Q

Fig. 3. The graph for the process S | Q′

The operation enabled(E) will return a set of potential interactions:

– if E(�) ≥ 1 and � is the label of a τ action then � ∈ enabled(E) and
– if E(�1) ≥ 1 and E(�2) ≥ 1 and �1 and �2 are labels of actions of the form

x and x for some x then (�1, �2) ∈ enabled(E) (ensuring that they are in
different parallel branches).

The operation update(qs, �̃, E) proceeds as follows:

– First it determines whether an existing node qt needs to be reused (in order
to guarantee that only finitely many nodes are generated). A simple choice
is to reuse qt in case the domain of E[qt] equals that of E: {l | E[qt](l) > 0} =
{l | E(l) > 0}.

– If an existing node qt must be reused then we join the information of E[qt]
with that of E.

– If no existing node should be reused then we introduce a new node qt with
E[qt] = E.

– Finally, in both cases the edge relation Edges is updated with (qs, �̃, qt) and
qt is added to the worklist.

The algorithm as presented so far has three shortcomings. One is that the con-
dition for when to reuse nodes is a bit inflexible. For this we use a so-called
granularity function for determining whether an existing state must be reused;
a useful family of acceptable granularity functions have the form

Hk
L(E) = {� ∈ L | 0 < E(�) ≤ k}

where L is a any finite subset of the labels and k is any element of N ∪ {∞}.
A state qt then must be reused if Hk

L(E[qt]) = Hk
L(E). The special case where

L = Lab and k = ∞ corresponds to the simple choice mentioned above.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

322 H.R. Nielson and F. Nielson

User1

User0

Userm

Useri−1

Useri

Useri+1

�
�

	
	

	
	

�
�

ch0

chm

chi−1

chi

Fig. 4. The Ingemarsson-Tang-Wong key agreement protocol with m users

Another shortcoming is that the algorithm may loop even though we have
guarded against infinitely often choosing new nodes. This is because the lattice

M = Lab → N ∪ {∞}

of extended multisets has infinitely increasing chains. To overcome this problem
we shall use a suitable widening operator ∇ for joining the old and the new
information associated with the node. Hence we shall be setting the new value
E[qt] of a reused node qt to be E[qt]∇E.

A third shortcoming of the algorithm is that the resulting graph may have
nodes that are not reachable from the initial node q0; this is simply solved by
performing a reachability analysis.

Example. The algorithm will construct the graphs of Figure 1 when applied to
the semaphore process S | Q using a granularity function of the form HLab.
Figures 2 and 3 show the graphs obtained for S | S | Q and S | Q′.

Implementation. The graphs shown in this paper have been produced by an
implementation carried out in Moscow ML. First the auxiliary information of
E , G and K is computed using a straightforward fixed point iteration. In the
case of E and G this results in ascending chains and termination is then guar-
anteed because the main operations are addition and maximum, respectively;
in the case of K the iteration gives rise to descending chains and hence ter-
mination is guaranteed. The implementation of the worklist algorithm follows
the theoretical development and is parameterised on the granularity function.
Finally the implemention makes use of the Graphviz tool1 to display the anal-
ysis result.

1 See http://www.graphviz.org/.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS 323

Fig. 5. Four users complete one run of the protocol

6 Worked Example: A Key Agreement Protocol

To illustrate the use of the analysis we shall consider the Ingemarsson-Tang-
Wong key agreement protocol [5]. It is a generalisation of the Diffie-Hellman key
agreement protocol for establishing a joint secret key between a number of users.
The idea is as follows: m users User1, · · · ,Userm are organised in a ring so that
Useri only receives messages from Useri−1 and only sends messages to Useri+1

(with indices calculated modulo m); this is illustrated in Figure 4. Initially, all
the users have agreed upon a generator constant g that will be used to construct
the shared key. The protocol then proceeds in m − 1 rounds. In the first round
each of the users selects a random number ri, raises g to the power of ri and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

324 H.R. Nielson and F. Nielson

Fig. 6. Four users complete any number of runs of the protocol

sends it to its neighbour. Thus, in the first round Useri will receive gri−1 from
Useri−1 and send gri to Useri+1. In the second round Useri will then raise the
received value gri−1 to the power of ri to construct gri−1ri and send it to Useri+1;
obviously he will receive a value constructed in a similar manner from Useri−1

and this is the value he will use in the next round. This process is repeated for
m − 1 rounds after which each user will know gr1···rm ; this value will then serve
as the joint secret key.

To comply with the syntax of CCS we shall focus on the synchronisation
structure of the protocol and hence ignore the calculations performed by the
users and the actual values being communicated; this suffices for getting some
understanding of the operation of the protocol. The users Useri and Useri+1

(modulo m) synchronize over channels chi and in each round they may interact

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS 325

with their neighbours in any order. Thus the code for Useri in round n (for
n < m) may be written as:

Usern
i � chi−1. chi. Usern+1

i + chi. chi−1. Usern+1
i

Let us first consider the case where the users only complete one run of the proto-
col; so we simply have Userm

i = 0. In the case of four users the analysis constructs
the automaton displayed in Figure 5. The initial state q0 is shown on the top left
and final state q32 is shown on the bottom right. Any path between these two states
corresponds to a possible run of the protocol; the multitude of paths reflects the
many possible interleavings that are made possible by the use of the summation
in the definition of Usern

i above. In the “doubly circled” states (to be called q0,
q11, q22 and q32) all the users are ready to start on a new round (or, equivalently,
have just finished a round). However, the automaton also shows that there are
runs where the users do not synchronise in that way. In the two groups of “singly
circled” states (to the lower left and the upper right of the two internal “doubly
circled” states q11 and q22 on the figure) one pair of users has started on the next
round before the other pair has finished the previous round. The remaining states
fall into three groups (shown as “triangles”, “diamonds” and “pentagons” on the
figure) and in these states all the users participate in the same round.

Let us modify the scenario in which the protocol is used so that the users
recursively initiate a new run of a protocol as soon as the current run has been
completed; this corresponds to defining Userm

i to be equal to User1i . In the case
of four users we obtain the automaton displayed in Figure 6. We see that the
overall structure of Figure 5 is preserved except that the graph has become fully
connected. In general terms this is achieved by feeding the final state (the state
q32 occurring on the bottom right) of Figure 5 into the initial state (the state q0

occurring on the top left) of Figure 5; to be a bit more precise the interaction
between the two states gives rise to the same pattern of five “circled” states seen
between the three groups of Figure 5.

7 Conclusion

Often static analysis is used to capture properties of the configurations arising dur-
ing the execution of programs or processes — the analysis presented in this paper
goes one step further and focusses on the transitions between configurations.

The presence of communicating concurrent processes in itself makes this a
non-trivial task and for CCS it is further complicated by the fact that new pro-
cesses may arise dynamically just as they may cease to exist. To handle this com-
plex scenario we first introduced extended multisets of exposed actions; they are
used to model the configurations of the systems. To capture the dynamic nature
of processes we then performed a detailed analysis of how the extended multisets
will grow and shrink with the execution of the processes; this was inspired by
the classical kill/gen functions of Monotone Frameworks. For construction of the
finite automaton the classical worklist algorithm plays a key role but in order to
ensure termination we rely on our notion of granularity function as well as the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

326 H.R. Nielson and F. Nielson

widening operators of Abstract Interpretation. The finite automaton amounts
to a finite graph that represents the potentially infinite transition systems of
processes. It is important to stress that proper use of granularity functions en-
sure that we always obtain a finite automation and that the construction always
terminates. In future work we intend to explore the use of narrowing to further
increase the precision of the automaton and collapsing functions for presenting
“projections” of it that may be more useful for program understanding.

In the development of this paper the actions themselves (the x’s of the syn-
tax) only play a minor role — they are only consulted when determining whether
or not two exposed actions might indeed synchronise. The setting becomes far
more complicated when turning to process calculi like the π-calculus where syn-
chronisation is replaced by communication of names over channels which are
themselves names. This adds substantial expressivity and adds further compli-
cations to the analysis concerning the proper binding of names. In future work
we intend to investigate the challenges posed by name-passing calculi; this will
be useful for a more detailed study of communication protocols.

Acknowledgements. This work has been supported by the Danish Natural Sci-
ence Research Council project LoST (21-02-0507), by the Danish Natural Science
Research Council project Security in Embedded Systems (2059-03-0011) and by
the EU-IST-FET project SENSORIA (FP6-016004).

References

1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, 2006.

2. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static vali-
dation of protocol narration. Journal of Computer Security, 13:347–390, 2005.

3. C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for the π-
calculus with applications to security. Information and Computation, 168:68–92,
2001.

4. C. Bodei, P. Degano, H. Riis Nielson, and F. Nielson. Flow logic for Dolev-Yao
secrecy in cryptographic processes. FGCS, 18(6):747–756, 2002.

5. C. Boyd and A. Mathuria. Protocols for authentication and key establishment.
Springer, 2003.

6. M. Buchholz, H. Riis Nielson, and F. Nielson. A calculus for control flow analysis
of security protocols. International Journal of Information Security, 2:145–167,
2004.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Symposium on Principles of Programming Languages, page 269282. ACM Press,
1979.

8. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In Programming Lan-
guages and Systems (ESOP), volume 1381 of Lecture Notes in Computer Science,
pages 122–138. Springer, 1998.

9. R. Milner. Communicating and Mobile Systems: The pi-Calculus. Cambridge Uni-
versity Press, 1999.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Flow Analysis for CCS 327

10. M. Neubauer and P. Thiemann. An implementation of session types. In Prac-
tical Aspects of Declarative Languages (PADL), volume 3057 of Lecture Notes in
Computer Science, pages 56–70. Springer, 2004.

11. F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999. Second printing, 2005.

12. F. Nielson, H. Riis Nielson, and R. R. Hansen. Validating firewalls using flow logics.
Theoretical Computer Science, 283(2):381–418, 2002.

13. F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis in cubic time.
Electronic Notes of Theoretical Computer Science, 62:7–23, 2002.

14. H. Riis Nielson and F. Nielson. Shape analysis for mobile ambients. Nordic Journal
of Computing, 8:233–275, 2001.

15. H. Riis Nielson, F. Nielson, and M. Buchholtz. Security for Mobility. In R. Focardi
and R. Gorrieri, editors, Foundations of Security Analysis and Design II, volume
2946 of Lecture Notes in Computer Science, pages 207–266. Springer, 2004.

16. H. Riis Nielson, F. Nielson, and H. Pilegaard. Spatial analysis of BioAmbients. In
Proc. SAS’04, Lecture Notes in Computer Science. Springer, 2004.

17. T. K. Tolstrup, F. Nielson, and H. Riis Nielson. Information flow analysis for
VHDL. In Proc. PaCT’05, Lecture Notes in Computer Science. Springer, 2005.

18. V. T. Vasconcelos, A. Ravara, and S. J. Gay. Session types for functional multi-
threading. In CONCUR - Concurrency Theory, volume 3170 of Lecture Notes in
Computer Science, pages 497–511. Springer, 2004.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level

Modulo Scheduling

Yosi Ben-Asher and Danny Meisler

Computer Sci. dep.
Haifa University, Haifa

dmeisler@cs.haifa.ac.il

Abstract. Modulo scheduling is a major optimization of high
performance compilers wherein The body of a loop is replaced by an over-
lapping of instructions from different iterations. Hence the compiler can
schedule more instructions in parallel than in the original option. Mod-
ulo scheduling, being a scheduling optimization, is a typical backend op-
timization relying on detailed description of the underlying CPU and its
instructions to produce a good schedule. This work considers the problem
of applying modulo scheduling at source level as a loop transformation, us-
ing only general information of the underlying CPU architecture. By doing
so it is possible: a) Create a more retargeble compiler as modulo schedul-
ing is now applied at source level, b) Study possible interactions between
modulo scheduling and common loop transformations. c) Obtain a source
level optimizer whose output is readable to the programmer, yet its final
output can be efficiently compiled by a relatively “simple” compiler.

Experimental results show that source level modulo scheduling can
improve performance also when low level modulo scheduling is applied
by the final compiler, indicating that high level modulo scheduling and
low level modulo scheduling can co-exist to improve performance. An al-
gorithm for source level modulo scheduling modifying the abstract syntax
tree of a program is presented. This algorithm has been implemented in
an automatic parallelizer (Tiny). Preliminary experiments yield runtime
and power improvements also for the ARM CPU for embedded systems.

1 Introduction

This work considers the problem of implementing Modulo Scheduling (MS) [16]
at software level rather than implementing it at machine level, as is usually
done in modern compilers [12]. The main motivation in doing so is to allow
users to view the effect of modulo scheduling at source level, allowing possible
interaction with other loop transformations and manual improvements. During
experiments, it turned out that in many cases, Source Level Modulo Scheduling
(SLMS) improved the execution times even when the underlying compiler used
“exact” machine level MS. Consequently, SLMS and machine level MS should co-
exist even in a high performance compiler. Thus SLMS is used for two different
tasks: optimizing programs at source level along with other loop transformations
and as a stand alone optimization complementary to machine level MS.

T. Reps, M. Sagiv, and J. Bauer (Eds.): Wilhelm Festschrift, LNCS 4444, pp. 328–360, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 329

Basically, MS is one type of solution to the problem of extracting parallelism
from loops by “pipelining” the loop’s iterations as follows:

for(i = 0; i < n; i + +)
{
S1i : t = A[i] ∗ B[i];
S2i : s = s + t;
}

−→

S10 : t = A[0] ∗ B[0];
for(i = 0; i < n − 1; i + +)
{
S2i : s = s + t;
S1i+1 : t = A[i + 1] ∗ B[i + 1];
}
S2n−1 : s = s + t;

Note that after this “pipelining” the dependency between S1i and S2i has been
eliminated and the new statements S2i and S1i+1 can be executed in parallel
(denoted by S2i||S1i+1). 1

Many techniques have been proposed to approximate the solution to the prob-
lem of optimal pipelining of loops iterations by eliminating the maximal number
of inter iteration dependencies [3,23].

A common technique to illustrate MS (very schematically) puts consecutive
iterations i, i+1, . . . shifted by a fixed size (called the Initiation Interval or II [16])
in a 2D table of “rows”. The instructions of iteration i + k (k = 0, 1, 2, . . .) are
placed in the k’th column of this table, starting at the II∗k row. Let I0, . . . , In−1

be the assignments or instructions in the loop’s body, then rows n−II, . . . , n−1
will repeat themselves i.e., the instructions in rows n − II, . . . , n − 1 will be
identical to the instructions in rows n, . . . n + II − 1 and so forth. This repeated
II rows form the kernel of the new loop. The first n− II rows form the prologue
used to initialize the “iterations pipe” and the last n − II rows (if we put only
2n − II iterations) from the epilogue that drains the pipe. The II is valid if
the resulting kernel does not violate any data dependency of the original loop.
Figure 1 depicts this basic form of MS.

In modern compilers, MS is executed at machine level after the machine de-
pended optimization level. It is natural since in this case the machine instructions
of the loop’s body fill the columns of the MS table, which forms a schedule of
the new loop’s instructions. Every row of the table corresponds to instructions
that can be executed in parallel:

– For VLIW architectures such as TI, each row of the kernel is a VLS (com-
pound instruction).

– For super scalar architectures such as the Pentium, each row contains in-
structions that can be executed in parallel by the different pipeline units of
the CPU.

Consequently, each row of the MS table should be valid, in terms of the data
dependencies, as well as in order not to violate the amount of hardware resources
(and possibly encoding restrictions). For example, if the hardware allows only

1 This parallel execution S2i||S1i+1 is valid under the assumption that in a parallel
execution the load of t in S2i is not affected by the update of t in S1i+1. Such a
claim is true for most VLIW machines and other models.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

330 Y. Ben-Asher and D. Meisler

S0(i);
S1(i);
S2(i);
S3(i);
S4(i);
S5(i);

S1(i+2);
S0(i+2);S4(i);

S5(i); S3(i+1);
S2(i+1);

S0(1);
S1(1);
S2(1);
S3(1);

S0(2);
S1(2);

S1(i+2);
S0(i+2);S4(i);

S5(i); S3(i+1);
S2(i+1);

S4(n−1);
S5(n−1);

S2(n);
S3(n);
S4(n);
S5(n);

i=1..n−2

i=1..n i i+1 i+2 i+3

prologue

epilogue

repeated
pattern

kernel

S0(i);
S1(i);
S2(i);
S3(i);

S0(i+1);
S1(i+1);

S4(i+1);
S5(i+1); S3(i+2);

S2(i+2); S0(i+3);
S1(i+3);

S5(i+2);
S4(i+2); S2(i+3);

S3(i+3);
S4(i+3);
S5(i+3);

initial loop MS table II=2
after MS

Fig. 1. Using the MS table

two parallel additions, any row with more than two additions implies that either
the II is wrong or the instructions in the kernel’s rows should be rearranged. In
addition, MS is also used to minimize the amount of pipeline stalls between the
consecutive rows (VLSs in VLIW architectures) of the resulting kernel. Figure 2
depicts MS of a simple loop after it has been compiled to machine code. In this
case, the hardware allows VLSs with up to two load/store instructions and up
to two additions. The MS table was filled by using II = 1 and (r0), (r0 + 1),
(r0 + 2), . . . as the iteration index.

ST (r0+1),d1

ADD d1,d0,9

LD d0, (r0+1)

ADD r0,r0,1

1) LD d0, (r0)
2) ADD d1,d0,9
3) ST (r0),d1
4) ADD r0,r0,1

LD d0, (r0)

ADD d1,d0,9

ST (r0),d1

ADD r0,r0,1 ADD d1,d0,9

ADD r0,r0,1

LD d0, (r0+2)

ST (r0+2),d1

ST (r0+1),d1

ADD d1,d0,9

ADD r0,r0,1

LD d0, (r0+3)

r0 r0+1 r0+2 r0+3

prologue

kernel

epilogue

for(i=0;i<n;i++) A[i]+=9;

code generation of the loop’s body

modulo scheduling of the loop’s body

Fig. 2. Machine level MS

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 331

This work considers another possibility of implementing MS, namely to imple-
ment it as a source level loop transformation. The goal is to develop eventually a
Source Level Compiler (SLC) that will combine SLMS and known loop transfor-
mations such as peeling, fusion, and tiling as described in [4]. A program is first
compiled by using the SLC and then the resulting optimized program is compiled
to the target architecture by using a regular compiler (called the final compiler).

Figure 3 depicts how SLMS is applied. After SLMS the final compiler applies
code-generation, register allocation and list scheduling of basic blocks to create
VLIW instructions. The outcome in this case is as efficient as the one would
have obtained by using machine level MS. Remark: some MS algorithms such as
Iterative MS [17] use modified versions of List scheduling to schedule the kernel
after the II has been computed. In this respect, it may be possible to view SLMS
as moving the first part of MS to the front-end (computing the II and generating
the prologue, kernel and epilogue) leaving the actual scheduling of the kernel to
the List scheduling of the backend.

Fig. 3. Using SLMS followed by List scheduling

2 Source Level Compiler Scheme

We show that the SLC can improve final performances of programs (by using
advanced array analysis and source level transformations) as follows:

– Based on the interaction with the SLC, the user can modify parts of its code
producing new opportunities for the SLC (e.g, replacing while-loops by fixed
range for-loops or using arrays instead of pointers/records). The user can
acknowledge speculative operations of the SLC such as allowing SLMS to
use II that violates some data dependency. The proposed SLMS algorithm
is designed to minimize the changes to the original program thus, preserving
the readability of the optimized code.

– SLMS is a powerful optimization that can potentially improve the execution
times even if the underlying final compiler includes a machine level MS.
Thus, the SLC can potentially improve execution times of modern compilers
or cover the lack of a given optimization (e.g., MS) in the backend of the
final compiler.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

332 Y. Ben-Asher and D. Meisler

– The combination of SLMS and loop transformations can be, in some cases,
more effective when it is implemented at source level (as shown later on
several possible combinations).

Figure 4 presents a block diagram of the SLC scheme. The programmer in-
teracts with the SLC to improve the performance of his code.

Fig. 4. Source Level Compiler Interaction with the User, Final Compiler and HW

Figure 5 is an example of how the SLC can improve the register allocation of
the final compiler. This is done in the following steps:

1. The original loop is given as input to the SLC
2. The SLC tips the user that the life-times of loop-variants (a,b and c) can be

reduced.
3. Than the user marks the code that does not depend on those variables.
4. SLC re-arranges the source code such that the life-times are reduced.
5. The loop is than compiled by the final compiler resulting a better register

allocation scheme.

Note that this optimization is usually done by the register allocation of the
compiler, apart from cases where the compiler is not able to move instruction

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 333

Fig. 5. Source Level Compiler can improve register allocation

due to possible dependencies with the rest of the code. For example of the code
after a = A[i] contains a call to a function that may change the value of a than
only the user can hint the SLC that a = a[i] can be safely move after this call.

3 Basic Operations Used by the SLMS Algorithm

In the following subsections, are listed shortly the elementary operations used
by the proposed SLMS algorithm. Some of these operations are known and were
used in other MS algorithms. Initially, the loops are represented by their abstract
syntax tree (AST) [2]. In addition, the dependencies (including the iteration-
distances) between array references and scalar variables in the AST are given
as directed labeled edges between the AST nodes. For example, the body of
the loop for(i = 0; i < n; i + +)A[i]+ = A[i − 1]; is depicted in figure 6. The
input AST is logically partitioned to “multi-instructions”(MI), corresponding to
assignments, function-calls or to elementary if-statements. For example the AST
in figure 6 contains a single MI.

Next, we describe the concept of the minimum initiation interval (MII) [16]
and how it is computed. The minimum initiation interval is the one for which

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

334 Y. Ben-Asher and D. Meisler

assign

store_array

load_array load_array

A dec

add

A

A i

i

1i

p=0

p=1

Fig. 6. Input structure for the SLMS algorithm

a valid schedule exists. Smaller values of II correspond to higher throughput.
Calculation of the II accounts for two constrains:

1. Resource constraint (RMII). Let r(i) be the number of available resources
(e.g. add units) and n(i) the number of times the resource i is used in the
code. RMII = maxi� r(i)

n(i) �.
2. Recurrence constraint (PMII) is computed over the data dependency graph

G of the loop’s body [4]. For a given cycle of dependencies Ci in G let pmi be
the ratio of the sum of delays along Ci and the sum of “iteration-distances”
in Ci. The delay (for machine level) between two instructions is basically
the number of pipeline stalls that occur if the two instruction are executed
one after the other. For SLMS a different notion of delays will be defined as
pipeline stalls has no meaning at source level.

The “iteration-distance” indicates the number of iterations that separate
the “define” and “use” of a value (e.g., the iteration-distance between A[i] =
x and y = A[i − 3]) is three).

3. The value of MII is set to MII = Max{PMII, RMII}.

The MS algorithm first attempts to obtain a valid schedule of with II = MII
MIs. In case that such a schedule is not possible the MS algorithm tries larger
values of II until such a schedule is obtained.

3.1 Source Level If-Conversion

MS algorithms are basically designed to work on simple loops without conditional
branches. The algorithms that do handle conditional branches usually use pred-
icated instructions to eliminate the conditional branches [19]. In case that the
underlying machine does not have predication, the reverse if-conversion is used
to restore conditional branches after MS was applied [21]. This work, uses pred-
ication at source level. If-statements of the AST are predicated with Boolean
variables, similar to the if-conversion operation performed in assembly mode.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 335

For example, the if-statement if(x < y)x = x + 1; A[i]+ = x; elsey = y + 1; is
converted to

c = (x < y);
if(c) x = x + 1;
if(c) A[i]+ = x;
if(not(c)) y = y + 1;

Remark: apart from the use of if-conversion in MS there have been other pro-
posals for MS of loops with conditional statements. For example, Lam [10] uses
a sequence of hierarchical reductions of strongly connected components to MS a
loop with conditional statements.

3.2 Decomposition of MIs

This operation divides a complex “large” MI to a set of “smaller” MIs, e.g.,
A[i] = a + b ∗ c; may be divided to t = b ∗ c; A[i] = a + t;. As explained
before, in SLMS the resulting code must be as similar as possible to the original
code. Hence, we are seeking to minimize the number of decompositions of MIs
needed to obtain a valid SLMS. Finding a minimal decomposition of MIs is a key
problem in SLMS and the implemented algorithm uses the following two types
of operations:

1. Break a self data dependency edge inside the AST of the MI, e.g. the one
between A[i]+ = A[i − 1];.

2. Reduces the number of resources (arithmetic operations and load/store op-
erations) in the MI. For example the MI x = A[i] + B[i] + C[i] + D[i];
contains four load operations and four additions. In assumption that the
underlying CPU is a VLIW machine allowing up to two additions and two
load/store operation in a multi-instruction (VLS), it is better to decompose
x = A[i] + B[i] + C[i] + D[i]; to t = A[i] + B[i]; and x = t + C[i] + D[i].

Decomposition is needed for two reasons:

1. In case that the original loop contains only one MI, at least two are needed
to perform MS.

2. In case a loop-carried self dependency prevents finding the MI (section 5).

Consider the loop:

for(i = 0; i < N ; i + +){
A[i] = A[i − 1] + A[i − 2] + A[i + 1] + A[i + 2]; }

This loop does not have a valid schedule for II = 1, because there is only one MI
and because of the loop-carried self dependency between A[i], A[i− 1]. First, we
select one load array reference A[i + 1] with no flow dependence with the store
operation A[i] =. By using this selected array reference we create two MIs using
a temporary variable as follows:

for(i = 0; i < (N − 2); i + +){
reg1 = A[i + 2];
A[i] = A[i − 1] + A[i − 2] + A[i + 1] + reg1;

}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

336 Y. Ben-Asher and D. Meisler

The data dependency of reg1 = ... and A[i − 2] + reg1+ will be eliminated by
applying Modulo Variable Expansion (MVE), described in section 3.3. At this
stage SLMS can be applied with II = 1 as follows:

reg1 = A[2];
for(i = 0; i < (N − 3); i + +){

A[i] = A[i − 1] + A[i − 2] + A[i + 1] + reg1; ||
reg1 = A[i + 3];

}
A[i] = A[i − 1] + A[i − 2] + A[i + 1] + reg1;

The symbol || is used between multi instructions that can be totally parallelized
by the final compiler/hardware in terms of not violating any data dependencies.

Remark: SLMS assumes that the backend compiler shall use a register for the
new local variable “reg1”.

3.3 Modulo Variable Expansion

The SLMS operation, as explained so far can introduce new data dependencies
between MIs, such as the dependency between ... a[i− 2] + reg1 + a[i + 2]... and
...reg1 = a[i + 2]; in the last code example of subsection 3.2. Such dependencies
may prevent the underlying scheduler (the scheduler of the final compiler) or the
hardware (in case of a Super scalar CPU) to extract parallelism. Modulo variable
expansion (MVE) [10] is used to eliminate such dependencies. Basically, MVE
of a variable (say reg1) is performed by unrolling 2 the kernel, and renaming the
variable such that the data dependency inside each unrolled copy of the kernel
is removed.

reg1 = a[2];
for(i = 0; i < (N − 4); i+ = 2){

a[i] = a[i − 1] + a[i − 2] + a[i + 1] + reg1; ||
reg2 = a[i + 3];

a[i + 1] = a[i] + a[i − 1] + a[i + 2] + reg2; ||
reg1 = a[i + 4];

}
a[i] = a[i − 1] + a[i − 2] + a[i + 1] + reg1;

Note that after MVE the MIs of each copy (in the unroll operation) can be
executed in parallel forming a source level “parallel set of MIs” (indicated by
the || symbol in each row).

The following example (see figure 7) presents an application of SLMS and
MVE. In this example the original loop contained a loop variant named scal. The
first MI of the loop was decomposed by SLMS generating a second loop variant
named reg. MVE was applied separately for each loop variant, generating two
registers for each variant.
2 The number of times we need to unroll the loop depends on the lifetime of each

variable in the loop as described in [10].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 337

Fig. 7. SLMS decomposition and original loop scalar

3.4 Scalar Expansion

Another possibility to remove data dependencies caused by scalar variables is
to use scalar expansion [4] and replace the scalar variable by a sequence of
array references. For example, instead of applying MVE on the loop of section
3.2 scalar expansion can be applied by replacing reg1 by regArr[i] so that the
SLMS will be:

regArr[2] = a[2];
for(i = 0; i < (N − 3); i + +){

a[i] = a[i − 1] + a[i − 2] + a[i + 1] + regArr[i + 2];
|| regArr[i + 3] = a[i + 3];

}
a[i] = a[i − 1] + a[i − 2] + a[i + 1] + regArr[i + 2];

This operation removed the anti-dependence caused by reg1 and enables the
parallel execution of the two expressions indicated by ||.

3.5 Delay Calculations

For SLMS the delay between two MIs must be defined in general terms related
to the source code rather than the hardware. The delay of a data dependency
edge (see figure 6) has been defined so, that the sum of delays along every cycle
of dependencies will be greater or equal the number of edges in that cycle. If
this condition is not met, some dependency will be violated in the resulting
kernel. Let MIi, MIj be two MIs connected by a dependency edge ei,j then the
delay(MIi, MIj) is defined as follows:

1. delay(MIi, MIj) = 1 if i = j (loop-carried self dependency).
2. delay(MIi, MIi+1) = 1 .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

338 Y. Ben-Asher and D. Meisler

d

e

f

g

b

c
<0,1>

<0,1>

<0,1><0,2>

<2,1>

<0,1>

<2,1>

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
cd

e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
cd

e
f
g

b
c

d
e
f
g

b
c

II=2 II=1

Fig. 8. Delays between MIs

3. delay(MIi, MIj) = k if ei,j is a forward edge and k is the maximal delay
along any path from MIi to MIj . Note: j is sequentially ordered after i i < j.

4. delay(MIi, MIj) = 1 if ei,j is a back edge.

Figure 8 depicts a data dependency graph whose edges are labeled by pairs of
< itr distance, delay > yielding two cycles: C1 = c → d → e → f → c and
C2 = c → d → f → c. The MII due to C1 is (1 + 1 + 1 + 1)/(2 + 2) = 1
while the MII due to C2 is (1 + 2 + 1)/2 = 2. Indeed (as depicted in figure 8), a
feasible schedule is obtained for MII = 2 and not for MII = 1 which violates
the backedge from f to c.

3.6 Computing the MII

In SLMS the MII accounts only for recurrence constraint (PMII [16]). The com-
putation of the MII is a complex task since the MII is computed over all cycles
of dependencies. The Iterative Shortest Path algorithm presented in [3,23] has
been selected for two reasons.

1. First, its simplicity and its ability to naturally handle the case where each
dependency edge has several pairs of < iteration − distance, delay >. This
case is frequent in SLMS as each MI may contain more than one array
reference, e.g., the edge connecting MIi : A[i] = B[i−1]+y; to MIj : B[i] =
A[i − 2] + A[i − 3] has two iteration distances one for A[i − 2] −→ A[i] and
one for A[i − 3] −→ A[i].

2. Second, it does not use the resource MII which is an advantage for SLMS.

4 Filtering Bad-Cases

Filtering “bad cases” where SLMS reduces performance is the first phase of the
SLMS algorithm. This phase has to includes various types of heuristics that are
specific for both the final compiler and target machine. An example of such a
filter is given.

In order to “skip” bad cases, where SLMS reduce performances we compared
the ratio between the number of load/store operations (LS) and the arithmetic

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 339

operations (AO) in the loop’s body LS
LS+AO . This ratio is termed as the memory-

ref ratio. High values of memory-ref implies that overlapping of iterations may
lead to too many parallel load store operations in one “row”. In that case, SLMS
might cause stalls due to memory reference pressure. Experimentaly, it turned
out that many such “bad cases” can be eliminated if we require that the above
ratio will be less than 0.85. For example, the following loop has LS = 6 and
AO = 1 and ratio 0.857 and thus SLMS will not be applied here.

for(k = 0; k < n; k + +){
CT = X [k, i];
X [k, i] = X [k, j] ∗ 2;
X [k, j] = CT ;

}

Note that if we have several arithmetic operations per each load/store operation
then the scheduler can probably hide memory delays (such L1-cache misses)
using these arithmetic computations. Remark: Although not tested on other
machines, we assume that the memory-ref ratio is machine-specific, and that this
ratio depends on the machine’s capacity to perform parallel memory operations
and the delay of an L1-cache miss. An alternative way of filtering bad cases
would have been to estimate the expected number of cycles of the loop’s body
after SLMS length of the critical path Other factors that can affect this ratio
include: penalty of L1-cache misses,

Following is an example showing howSLMSmay increase the number ofmemory
references due to overlapping of successive iterations. In the following simplified
loop,most array references canbe replacedby a register.But, after applying SLMS,
the array references must be implemented by separate load/store operations.

for(i = 0; i < n; i + +){
a[i]+ = i;
a[i]∗ = 6;
a[i] −−;

}

−→

prologue
for(i = 0; i < n − 2; i + +){

a[i] −−; ||a[i + 1]∗ = 6; ||a[i + 2]+ = i;
}
epilogue

5 The SLMS Algorithm

The Overall structure of the SLMS algorithm is as follows.

1. A test to filter bad cases where SLMS will probably degrade performances
is applied (explained in section 4).

2. Apply software if-conversion.
3. Generate all the MIs in the loop’s body, following the order of execution in

the source code. Re-name multi defined-used scalars.
4. Find the MII.

(a) Dependency edges are “raised” to the root of each MI (section 3.6).
(b) Obtain the delays of the data dependencies edges (section 3.5).
(c) Compute the MII (section 3.6).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

340 Y. Ben-Asher and D. Meisler

5. If there is no valid MII, then repeat the following until a valid II is obtained
or a failure occurs:
(a) Select3 a MI and decompose it (section 3.2) based on data dependency

analysis. If there are no MIs that can be decomposed then a failure occurs.
(b) Re-compute delays and MII.

6. If the MII was found, then:
(a) Update registers lifetime (used for MVE 3.3), save the maximum lifetime.
(b) Build the prologue kernel and epilogue.
(c) For each decomposed MI, MVE (section 3.3) or Scalar Expansion (section

3.4) is applied to eliminate dependencies caused by the decomposition.
MVE or Scalar Expansion may also be activate to eliminate false depen-
dencies caused by the use of scalars in the loop. The choice between MVE
and Scalar Expansion is given to the user as MVE implies loop unrolling
and code expansion while Scalar Expansion uses temporary arrays.

Computing MII is performed as follows.

1. Initialize the difMin Matrix [3], and obtain delay and flow or anti data
dependencies between MIs. Edges connecting memory reference nodes are
propagated up to the parent MI.

2. Activate the Iterative Shortest Path algorithm [23] with increasing values of
II until a valid II is found and returned, or II is equal to the number of MI
in the loop, in this case return error.

Note, SLMS defines a valid II as one that yields a better schedule then the
sequential one, e.g. II < number of sequential MIs.

Consider the following loop for finding the maximum of an array:

max = arr[0];
for(i = 0; i < n; i + +)

if(max < arr[i])max = arr[i];

Using source level if-conversion and MVE, the following SLMS was obtained:

max0 = arr[0];
max1 = max0;
pred0 = (max0 < arr[1]);
for(i = 1; i < n − 2; i+ = 2){

if(pred0)max0 = arr[i]; ||
pred1 = (max1 < arr[i + 1]);

if(pred1)max1 = arr[i + 1]; ||
pred0 = (max0 < arr[i + 2]);

}
if(pred0) max0 = arr[i];
if(max0 > max1) max = max0; else max = max1;

Note: The last line was added manually.
3 Selection of a MI can be done by sequential order or by data dependence analysis.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 341

Some loops don’t require decomposition of MI nor MVE, such loops have
more than one MI and no loop variants. The following example demonstrates
such a case. In this loop the lack of loop-carried dependence edges generated a
MS with MII = 1.

for(ky = 1; ky < n; k + +){
DU1[ky] = U1[ky + 1] − U1[ky − 1];
DU2[ky] = U2[ky + 1] − U2[ky − 1];
DU3[ky] = U3[ky + 1] − U3[ky − 1];
U1[ky + 101] = U1[ky] + 2 ∗ DU1[ky] + 2 ∗ DU2[ky] + 2 ∗ DU3[ky];
U2[ky + 101] = U2[ky] + 2 ∗ DU1[ky] + 2 ∗ DU2[ky] + 2 ∗ DU3[ky];
U3[ky + 101] = U3[ky] + 2 ∗ DU1[ky] + 2 ∗ DU2[ky] + 2 ∗ DU3[ky];

}
SLMS transformation removed inter-iteration sequential dependencies allowing
parallel execution of all MIs within one iteration.

6 SLMS and Other Loop Transformations

SLMS can be combined with other loop reordering and restructuring trans-
formations [4]. At source level, MS can be applied both before or after other
loop transformations. The first form of combining is to apply SLMS after loop
transformations to extract the parallelism exposed by these transformations. For
example, SLMS can not be directly applied to the following inner loop due to
the dependency of a[i, j + 1] = t; and t = a[i, j + 1]; as depicted by the following
erroneous kernel obtained by using II = 1:

for(i = 0; i < n; i + +)
for(j = 0; j < n; j + +){

t = a[i][j];
a[i][j + 1] = t;

}

−→
t = a[i][j];
a[i][j + 1] = t; || t = a[i][j + 1];

a[i][j + 2] = t;

Using loop interchange [4] to replace the innermost loop from ′j′ to ′i′ yields a
legal kernel with II = 1. Note that the dependence on the temporary variable t is
resolved by using MVE. This allows the parallel execution of MI separated by ||.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

342 Y. Ben-Asher and D. Meisler

for(j = 0; j < n; j + +){
for(i = 0; i < n; i + +){

t = a[i, j];
a[i, j + 1] = t;

}

−→

for(j = 0; j < n; j + +){
t1 = a[0, j];
for(i = 0; i < n − 2; i+ = 2){

a[i, j + 1] = t1; || t2 = a[i + 1, j];
a[i + 1, j + 1] = t2; || t1 = a[i + 2, j];

}
a[i, j + 1] = t1;

}

Performing MS at source level enables its application also before other loop
transformations. Another example where loop transformations allow us to apply
SLMS is loop fusion [4]. Each of the following two loops can not be SLMSed
due to the dependency between the first statement of the next iterations and
the last statement of the current iteration. After loop fusion we get a single
loop, now SLMS can be applied obtaining a valid scheduling with II = 3 as
follows:

Consider two loops, applying SLMS separately to each loop followed by Fusion
of the two loops will generate a different schedule than first applying Fusion and
then SLMS to the fused loop. The example depicted in figure 9 demonstrates
this case.

SLMS can also be used to enable the application of loop transformations. For
example, the following two loops can not be joined by loop fusion. Usually, this
example is solved using a complex combination of loop peeling + loop reversal,
however one application of SLMS (as depicted in figure 10) will allow loop fusion.

Loop unrolling is used to resolve cases where the II is to high (close to the
number of MI). Also, in some cases, unrolling the kernel of an SLMSed loop
can improve resource utilization. In conclusion, clearly there are cases where the
combination of loop transformations and SLMS is useful.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 343

Fig. 9. The order of transformations changes the final scheduling

Fig. 10. SLMS allows loop fusion

7 Cases Where SLMS Optimizes Better Than the Lower
Level MS

In here we consider possible explanations of why SLMS can in some cases obtain
better schedulings than the underlying lower level MS. First it is important to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

344 Y. Ben-Asher and D. Meisler

understand the difference between optimizing at source level mode and at ma-
chine level mode. At machine level the optimization can use exact knowledge of the
CPU resources and obtained optimized scheduling. The opposite is true for source
level optimization which is actually performed ignoring hardware resources con-
strains, optimizing for maximal parallelism at source level. This “disadvantage”
can work to the benefit of a SLMS. In particular, it can happen that due to hard-
ware resource constrains the underlying MS will not optimize a given loop while
after SLMS a more optimized scheduling will be obtained. Typically, even an ele-
mentary list scheduling of basic blocks applied after SLMS can in some cases find
better scheduling than the more constrained machine level MS.

We mainly consider the Iterative MS as presented in [18] (IMS) however the
following is also valid for other types of MS. The IMS has a complete knowledge
of the available hardware resources and once the II has been computed it tries
to schedule the kernel’s instructions in a modulo reservation table (RT) with II
rows. The filling of the RT rows is done following the original instruction order
mixing instructions from consecutive iterations i, i + 1, i + 2, The instruction
are placed in the RT “as is” relaying on the epilogue to create the necessary
pipeline chain. Figure 11 demonstrates a case where the IMS may fail due to
increased register pressure. The DDG in figure 11 contains three instructions
x, y, z and is frequently found in loop accessing arrays. For example the long
delay between x and y can be the result of a more complex arithmetic operation
such as floating multiplication, while the dependency cycle between y and z can
be easily generated by the index increment of array accesses (y = ...z[i − 1]) or
by an accumulator instruction (y+ = z[i]). In this case II = 2 and we assume
the the IMS is able to build the corresponding kernel (figure 11 left). The use of
such a kernel implies that the last four values of x must be held in four different
registers since they must remain alive to be used by later iterations of this kernel.
As explained before, modulo variable expansion will unroll the kernel four times
in order to let the value computed by the x instruction stay alive during the
next four iterations. This unrolling increases the register pressure and may lead
to performance degradation or the compiler will prevent from using the code
generated by the IMS+Modulo-variable-expansion. On the other hand SLMS
can be applied to this loop leading to the kernel [z||x]; [y] which can be safely
schedule (figure 11). Basically the SLMS in this example was used only to expose
the possible parallelism of [z||x].

Another drawback of the IMS is that it can not explicitly correct the indexes
of instructions that are placed in the RT. Note that when the k’th instruction
is scheduled in a RT with II < k rows it is assumed to belong to the i + �k/II�
iteration where i marks the iteration of the first instruction. Hence the IMS can
not violate the order of the instruction scheduling. The code in the example in
figure 12 is taken from [18] where it is used to show how IMS fails to schedule
A3 and A4 in a RT with II = 4 rows (figure 12 left). Since SLMS ignores the
issue of hardware resources is will produce the kernel [A3i||A1i+1]; [A4i||A2i+1]
which can be schedule (using list scheduling) in a RT with 4 rows (as depicted
in figure figure 12 right). Technically the IMS failed since A3 and A4 must be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 345

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x
y

z x
y

z x
y

z x
y

z

z || x

y

machine level MS
x

y

z

0,6

DDG

0,1

1,1

SLMS Scheduling

6

Fig. 11. Failure due to register pressure

A
A

bussalu

A1
A2
A3
A4

alu buss
A3 i

A3 iA1i+1
A1i+1A4 i
A4 iA2i+1

A2i+1

bussalu
A1

A1
A2

A2

i

i

A1
A2

A3
A4

i+1

i+1

0,2

0,2

0,2

2,2

A1

A2

A3

A4

after scheduling

reservation table

DDG
iterative MS fails
to schedule A3

SLMS find a kernel

A3
A4

A1
A2 i

i

A3
A4

|| A1
|| A2i+1

i+1

SLMS’s kernel

Fig. 12. Failure due to in ability indexing of instruction during sheduling

scheduled to the rows already occupied by A1 and A2. Note that even if the
IMS would have considered mixed solutions such as the one described in figure
12 (right) it lacks the ability of changing the indexing of A1 A2 from i to i + 1.
Thus this failure of the IMS is not a technical issue it follows from the fact that
unlike IMS, SLMS can change the index of instructions while scheduling them in
the II rows of the kernel, e.g., from A1 : r1 = r0+x[i] to A1 : r1 = r0+A[i+1].

Finally, SLMS usually changes the data dependencies of the loop’s body com-
pare to the original code thus allowing different (possibly better) schedulings not

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

346 Y. Ben-Asher and D. Meisler

Fig. 13. SLMS changes the DD graph thus enabling other scheduling options

available in the original code. As an example consider the loop a[i] = a[i − 2] +
a[i+2]; of figure 13 where the code generation used rotating registers [9] to create
the loop’s code. The underlying MS parallelizes the loop (MII = RecII = 1)
due to, the dependency cycle between the ”load” and the ”add”. Note, that
the ”add” was assigned a delay of 2 cycles. The Data Dependency (DD) edges
between the ”load” and the ”add” and not between the ”load” and the ”store”
are due to the use of rotating registers. In addition, redundant ”load” optimiza-
tion was applied (no need to ”load” a[i−2]). Next, SLMS was applied before code
generation obtaining the loop a[i] = a[i− 2] + reg; reg = a[i + 3];. Due to sim-
plicity MVE was not applied. After SLMS, the DD graph for the SLMSed loop
(we present only ”flow” DD arcs) changes. The MII calculated by the underlying
MS remains 1. But since the DD graph changed, the underlying scheduler can
generate a different schedule for that loop. Since the scheduler has now more op-
tions,the new schedule can be better than the original one. However, note that,
any form of parallelization obtained by a machine level MS is clearly obtainable
using SLMS, as SLMS is less restricted than machine level MS (limited from
resource constrains).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 347

Apart from this ability of SLMS to find optimized scheduling by first ignoring
resource constrains, there are some technical factors working in favor of SLMS.

1. It is common that compilers restrict MS to small size loops such as loops
with less than 50 instructions. Thus SLMS can optimize and parallelize even
large size loops improving their final scheduling however there is no special
benefit in applying loop unrolling before SLMS.

2. SLMS works at source level thus can directly determine the exact depen-
dencies between each two array references. Though a compiler can also ob-
tain these dependencies at the front-end/AST level it may fail to transfer
them to the machine level representation (RTL) of the back-end. Thus, MS
operations such as replacing A[2 ∗ i] by A[2 ∗ (i + 1)] are more complicated
to implement in RTL/machine level than at source level.

8 Working with the Source Level Compiler

In here we shortly demonstrate how the user can use the source level compiler
(SLC) to on-line improve its source code such that SLMS can be applied. Con-
sider the following loop for which the SLMS obtained a MS with II = 2. Based
on the outcome, the user can determine that II = 1 was not obtained due to a
dependency cycle with temp− = x[lw] ∗ y[j] of the next iteration and lw + + of
the current iteration.

lw = 6;
for(j = 4; j < n; j = j + 2)
{

temp− = x[lw] ∗ y[j];
lw + +;

}

−→

lw = 6;
reg1 = y[4];
temp = temp − x[lw] ∗ reg1;
for(j = 4; j < n − 1; j = j + 2)
{

lw + +; || reg1 = y[j + 1];
temp = temp − x[lw] ∗ reg1;

}
lw + +;

The user can fix this problem by moving the lw++ before the first MI allowing
the MVE to operate replacing lw by two variables lw1, lw2. The outcome is that
SLMS now obtains a schedule with II = 1 increasing the parallelism:

lw = 5;
for(j = 4; j < n; j = j + 2)
{

lw + +;
temp− = x[lw] ∗ y[j];

}

−→

lw1 = 4;
lw2 = 5;
lw1 + +;
for(j = 4; j < n − 2; j = j + 4)
{

temp− = x[lw1] ∗ y[j]; || lw2 + +;
temp− = x[lw2] ∗ y[j + 2]; || lw1 + +;

}
temp− = x[lw1] ∗ y[j];

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

348 Y. Ben-Asher and D. Meisler

An even better improvement would have been obtained had the user decided
to apply manual decomposition of temp− = x[lw] ∗ y[j] before moving lw + +.
Since the lifetime of lw after SLMS is two iterations, then MVE will unroll twice
and use renaming to obtain the following code.

9 Experimental Results

SLMS was implemented in Wolfe’s Tiny system [22] enhanced by the Omega test
[14]. Tiny, was chosen, due to its support in source-to-source transformations and
its support of array analysis. Tiny is a loop restructuring and research tool which
interacts with the user. Tiny’s GUI allows the user to select which transformation
to apply, it includes among others, Distribution, Interchange, Fusion, Unroll and
SLMS. The following benchmarks were used to test SLMS: The NAS [5] bench-
mark, Livermore [11] loops, Linpack [6] loops, and the STONE benchmark. The
benchmarks were compiled and tested using several commercial compilers and ma-
chines: Intel’s ICC-ia64(V 9.1) and GCC-ia64 over Itanium II (IA64), IBM’s XLC
over Power 4 Regata, and GCC over ARM simulator. We have also tested SLMS
with GCC over superscalar processor Pentium(R). The Experimental results are
divided into three subsections: the first describes the results with GCC and the
second describes the results obtained using ICC and XLC, and the third describes
results for embedded systems. The GCC has a weak Swing MS and thus modeling
the use of a general source level compiler optimizing the program (with SLMS) be-
fore it is compiled by the relatively weak compiler. ICC and XLC are high perfor-
mance compilers with advanced machine level MS, their results support the claim
that SLMS is a separate optimization that can be used before low level MS is ap-
plied. Remarks: (1) in all the following graphs, the Y axes represents the speedup
obtained by SLMSed loop vs. non SLMSed loops. In all tests both SLMSed and
non SLMSed loops are compiled with the same compilation flags. (2) SLMS was
tested with and without source level MVE, the presented results show the best
time obtained. (3) In ia-64 architecture, improvement can be measured by count-
ing the number of bundles in the loop body, a bundle can be viewed as a VLS
regarding for explicit instruction level parallelism.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 349

Fig. 14. Livermore & Linpack over GCC

9.1 Experimental Results over a Relatively Weak Compiler

As explained in the introduction, SLMS is considered as part of a potential
SLC. Thus, showing that SLMS improves execution times over GCC supports
the claim that a SLC can be used to improve execution times over relatively
weak final compilers. The following graphs 14 and 15, present speedups ob-
tained using GCC (IA64) over Itanium II with and without −O3. Analyzing
GCC’s assembly for −O3 revealed that scheduling optimizations such as MVE
and Unrolling where not performed. In some successful cases such as ddot2 the
application of those transformations at source level compensated for the lack of
them in the final compiler. Another successful loop is kernel 8, this loop has a
big loop body without loop-carried dependency edges and contains only array
references. For this kind of loop, SLMS doesn’t need to decompose and in this
case MII = 1. The application of SLMS released the intra-iteration sequen-
tial dependency between MI and revealed the parallelism between them, thus
enabling the generation of less bundles. Indeed before SLMS GCC’s assembly
contained 23 bundles and after SLMS 16 bundles.

Regarding bad cases, most of them are within the Linpack loops. Most of
those loops contain one long MI and use intensive floating point calculations.
The negative results can be explained by the level of parallelism of floating point
operations in the Itanium processor. To prove this, we replaced all the floating
point variables with integer ones and re-run the test. The results where reversed
in favor of SLMS. Another prove is by the fact that those same loops have
better speedups on Pentium(R) and Power4-Regata. Filtering bad cases is an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

350 Y. Ben-Asher and D. Meisler

Fig. 15. Stone and NAS over GCC

Fig. 16. SLMS can be used to close the gap between using and not using -O3

important issue in SLMS. Bad cases can be identified at source level by general
high level characteristics, experimental results prove that they are specific for
the pair compiler/hardware.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 351

Fig. 17. SLMS can improve performance over superscalar processor

Another interesting experiment is to see how SLMS as a SLC can be used to
close the gap between using and not using -O3 for example in the ICC compiler.
If SLMS can cover a significant part of this gap, it can cover up cases where the
underlying final compiler fails to optimize for new architectures. Thus increasing
the retargibility of the underlying final compiler. In order to see this, we have
compared how SLMS without -O3 can bridge the gap between using -O3 and
the relative weak compiler obtained when -O3 is not used. Figure 16 depicts the
results over ICC+Itanium, showing that using SLMS without -O3 as a SLC can
“close” the gap between a good highly optimizing compiler and a relative weak
compiler.

We also tested SLMS on a superscalar processor (Pentium(R)) where all
the parallelism is obtained by the HW pipeline. Figure 17 depicts the results,
the loops where compiled using GCC with and without −O3. The results show
that SLMS was successful in exposing the parallelism in most of the loops. One
example for which SLMS had a negative impact is kernel 10. Kernel 10 contains
several loop-variants and a big loop body causing SLMS’s MVE to use 35 register,
apparently causing spilling since Pentium(R) has much less registers.

9.2 Experimental Results over Highly Optimizing Compilers

The following graphs 18, 19 and 20, present speedups obtained using ICC (IA64)
over Itanium II and XLC over Power 4 Regata. Showing that SLMS improves
performance over highly optimizing compilers and powerful machines, proving

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

352 Y. Ben-Asher and D. Meisler

that SLMS should co-exist with low level MS. Another indication to the fact that
SLMS can co-exist with low level MS is that out of 31 loops that were tested, ICC
performed MS both before and after SLMS for 26 of those loops. For three loops
(kernels 2,7 and 24), ICC did not apply MS but SLMS did resulting in positive
speedups. For two loops (idamax2 and kernel 8), ICC performed MS only before
SLMS. SLMS prevented MS of those loops, kernel 8 achieved speedup of almost
15 percent while idamax2 had a negative of the same amount. Showing that
SLMS should be selectively applied.

In the following example we analyze a loop that has an intensive floating point
computation.

float k[n];
for(k = 1; k < n; k + +)
{

X [k] = X [k − 1] ∗ X [k − 1] ∗ X [k − 1] ∗ X [k − 1] ∗ X [k − 1]+
X [k + 1] ∗ X [k + 1] ∗ X [k + 1] ∗ X [k + 1] ∗ X [k + 1];

}

The loop was transformed using SLMS and MVE and compiled with ICC
−O3 over ItaniumII.

float k[n];
reg1 = X [1];
for(k = 1; k < n − 3; k+ = 2)
{

X [k] = X [k − 1] ∗ X [k − 1] ∗ X [k − 1] ∗ X [k − 1] ∗ X [k − 1]+
reg1 ∗ reg1 ∗ reg1 ∗ reg1 ∗ reg1; || reg2 = X [k + 2];

X [k + 1] = X [k + 1] ∗ X [k + 1] ∗ X [k + 1] ∗ X [k + 1] ∗ X [k + 1]+
reg2 ∗ reg2 ∗ reg2 ∗ reg2 ∗ reg2; || reg1 = X [k + 3];

}
X [k] = X [k − 1] ∗ X [k − 1] ∗ X [k − 1] ∗ X [k − 1] ∗ X [k − 1]+
reg1 ∗ reg1 ∗ reg1 ∗ reg1 ∗ reg1;

Since the ItaniumII has two floating point units, and can concurrently exe-
cute two bundles, each bundle can contain one fma.s (floating multiply and add)
instruction. For the original loop ICC unrolled the kernel 8 times until maxi-
mum resource utilization was achieved, ICC achieved 5.8 bundles per iteration.
SLMS aided ICC to produced a compact and optimized code with 4 bundles per
iteration. For both loops ICC performed MS, but the II for the SLMS loop was
much smaller than the one for the original loop. This example shows that SLMS
can aid the low level MS to find a better solution. This specific example is also
relevant for improvement of floating point numeric applications. Livermore ker-
nel 24 contains a condition branch. For both loops (original and SLMSed) ICC
did not unroll nor performed MS. For the original loop ICC generated 5 bundles
per iteration and for the SLMS loop it generated 3.5 bundles per iteration. This
improvement was because SLMS transformed the loop in a way that gave ICC
other scheduling options. Apparently, unrolling and mixing iterations enabled
ICC to better utilize resources.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 353

Fig. 18. Livermore & Linpack over ICC

Fig. 19. Stone and NAS over ICC

9.3 Experimental Results for Embedded Systems

In order to test the effectiveness of SLMS for embedded systems, one should test
the power consumption gain/loss involved with SLMS. Moreover, the comparison
should be made over a classic embedded core such as the ARM or over a VLIW
machine.4 The effectiveness of SLMS for VLIW machines has been demonstrated
4 SLMS has a very minor effect on the code size, and thus this aspect of embedded

systems has not been considered.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

354 Y. Ben-Asher and D. Meisler

Fig. 20. Livermore & Linpack + NAS over XLC

Fig. 21. Power dissipation for the ARM

by the experiments over the IA-64. The Panalyzer system [1] with the simple-
scalar tool chain for ARM is used to measure the effect of SLMS on the power
dissipation of the ARM 7TDMI processor. Figure 21 depict the improvements
obtained in the overall power dissipation including caches and memories. The
results show that SLMS can indeed improve the power dissipation, but not in
all cases, hence SLMS must be applied selectively. Similar, results where also

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 355

Fig. 22. Total number of cycles for the ARM

obtained for cycle count figure 22. There is a clear correlation between the bad
cases of the power consumption and the cycle count. in addition the results
over the ARM are worse than those obtained over other architectures. The main
reason is that the ARM does not use Instruction Level Parallelism using basically
one ALU operation per cycle. Consequently, the parallelism that SLMS created
could only be used for hiding memory latencies and pipeline stalls (compare to
the IA64 where it was used to fill empty slots). Thus, the results of figure 21
should be regarded as a success, provided that SLMS will be used selectively.

10 Possible Extensions

In here possible extensions to SLMS are considered, showing its generality of
handling more complex cases than the simple loops presented so far. These
extensions include applying SLMS to while-loops and applying SLMS to loops
with conditional statements. The potential of SLMS to handle while-loops and
conditional statements is only demonstrated via examples, full implementation
of these extensions is beyond the scope of this work.

It is well known [8] that in some cases while-loops can be unrolled in spite
of the fact that their iteration count is not fixed. The ability to unroll while-
loops suggests that SLMS can also be applied to while-loops. Following are two
examples showing how SLMS can be applied to while-loops.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

356 Y. Ben-Asher and D. Meisler

In the first example, the loop finds the first element in a linked list, whose
value equal a given key.

for(p = head; p= null; p = p− > next){
if(p− > key == KEY) break;

}
This loop can be unrolled as follows.

for(p = head; p= null && p− > next= null; p = p− > next− > next){
if(p− > key == KEY)break;
if(p− > next− > key == KEY)break;

}
p = (p− > key == KEY)?p : p− > next;

A kernel can be obtained by overlapping successive iterations as follows.

iteration i iteration i + 1 iteration i + 2
c = (p− > key == Key)

if(c)break; (c = p− > next− > next) == Key
if(c)break;

The final SLMS version of this loop is as follows.

In the second example, the loop performs a shifted copy of a string.

i = 0;
while(a[i + 2]){

a[i] = a[i + 2];
i + +;

}
This loop can be unrolled as follows.

i = 0;
startUpCode();
while(a[i + 2] && a[i + 3]){

a[i] = a[i + 2];
a[i + 1] = a[i + 3];
i+ = 2;

}
closeUpCode();

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 357

Fig. 23. Schematic representation of SLMS that is focused on the most frequent path

The SLMS version after decomposition is as follows.

i = 0; j = 1;
startUpCode();
reg1 = a[i + 2];
a[i] = reg1; || reg2 = a[j + 2];
while(a[j + 3] && a[i + 3]){

i+ = 2; || a[j] = reg2; || reg1 = a[j + 3];
j+ = 2; || a[i] = reg1; || reg2 = a[i + 3];

}
closeUpCode();

Note: this outcome is better (in terms of extracted parallelism) than the unrolled
version.

The second extension is to apply SLMS to loops with conditional if-statements.
The solution of section 3.1 using source level if-conversion is not very efficient as it
adds conditional checks before every statement of the if-then/if-else body. Instead
we can use the following idea (to the best of our knowledge a novel one but there
is some similarity to the work of [20]):

– Let L be a simple loop with an if-statement L = for(i = 0; i < n; i +
+){if(Ai)Bi else Ci; Di; }.

– Assume that we can identify (via profile information or static analysis) that
Pf = Ai; Bi; Di is the most frequent path.

– We can chose the II according to Pf assuming that it is executed repeatedly
many times. By overlapping successive iterations of Pf a kernel KPf = Di

||Bi+1||Ai+2 may be obtained. Note that KPf can be repeatedly executed
as long as Ai+2 is evaluated to true.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

358 Y. Ben-Asher and D. Meisler

– Thus, when Ai+2 is false we must:
• exit KPf .
• drain the pipeline by executing Di+1; Ci+2; D[i + 2].
• continue executing the original loop until KPf can be re-started.

– Note that the less efficient fix-up code for draining the pipeline and locating
a restart point for KPf is not executed frequently.

The process of transforming a loop with if-statements is schematically depicted
in figure 23. This method can be generalized to loops with more than one if-
statements and to loops with nested if-statements. The final code for the loop’s
kernel is a s follows.

for(i = 0; i < n − 2; i + +){
D[1]; B[i + 1];
if(!A[i + 2]){
D[i + 1]; C[i + 2]; D[i + 2];
for(i = i + 3; i < n; i + +){

if(!A[i]){ C[i]; D[i]; }
else {
B[i];
if(a[i + 1]){
i −−;
break;

} else {

D[i];
}}}}}

11 Conclusions

In this work a method for source level modulo scheduling (SLMS) has been devel-
oped and implemented in the Tiny parallelizer. In spite of its relative simplicity
it obtained good speedups over the GCC (with and without the Swing MS), ICC
and XLC as-well improvements of power-dissipation on ARM. Experimental re-
sults show that SLMS can have a different effect depending on the compiler and
architecture hence SLMS must be applied selectively. The bad cases of perfor-
mance degradation can be attributed to the additional array references inserted
by the SLMS transformation. It turned out that by applying SLMS to loops
with more than six arithmetic operations per each array references almost all of
these bad cases can be eliminated.

To the best of our knowledge this is the first time SLMS has been demon-
strated and implemented. This work, also presents two possible extensions to
SLMS. An extended solution to loops with if-statements, and a partial solution
to while-loops. The development of these extension will enable the application
of SLMS to complex loops, thus allowing SLMS to use the full power of source

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Towards a Source Level Compiler: Source Level Modulo Scheduling 359

level transformations. Register pressure (a critical issue with machine level MS)
basically did not occurred in our experiments (except for kernel 10), in spite of
the extensive parallelism obtained by the SLMS. This also may be attributed to
the fact that register allocation and code generation are executed after SLMS.

The relation between SLMS and known loop transformations has been con-
sidered and demonstrated. The fact that SLMS is a source level optimization
implies that it can be easily combined with other loop transformations to form
a source level compiler (SLC) (a tool currently developed at Haifa University).
Though, the relation of SLCs and SLMS is not the focus of this work, it is an
important usage of SLMS. Other compilers such as Polaris [7] that apply loop
transformations and are able to generate C source code should not be considered
as SLC as they produce C code from machine level intermediate representation.
More related are real SLCs such as the LoopTool [15] interactively applying
controlled loop fusion and unroll-and-jam to optimize programs at source level.
Finally automatic parallelizers acting as a SLC such as the Parafrase system [13]
can also benefit from using SLMS.

SLMS is useful for two tasks: as an addition to the arsenal of loop transforma-
tions for a source level compiler and as a preliminary optimization that differs
from machine MS. We have proved, via examples and experiments that SLMS
can lead to different scheduling results than machine level MS. Thus, SLMS can
be also used as a regular optimization.

References

1. Sim-panalyzer: http://www.eecs.umich.edu/panalyzer/.
2. J. Ullman. A. Aho, R. Sethi. Compilers: Principles, Techniques and Tools. Addison-

Wesley, 1986.
3. V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining. ACM

Computing Surveys, 27(3):367–432, 1995.
4. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-

performance computing. ACM Computing Surveys, 26(4):345–420, 1994.
5. David Bailey. Nas kernel benchmark program: http://www.netlib.org/benchmark/

nas.
6. J. Dongarra, P. Luszczek, and A. Petitet. The linpack benchmark: Past, present,

and future: http://www.netlib.org/utk/jackdongarra.
7. K. A. Faigin, S. A. Weatherford, J. P. Hoeflinger, D. A. Padua, and P. M. Petersen.

The Polaris internal representation. International Journal of Parallel Program-
ming, 22(5):553–586, 1994.

8. J. Huang and T. Leng. Generalized loop-unrolling: a method for program speed-up,
1997.

9. Sverre Jarp. Optimizing IA-64 performance. Journal of Software tools, 26(7):21–22,
24, 26, July 2001.

10. M. Lam. Software pipelining : an effective scheduling technique for vliw machines.
In PLDI, pages 318–328, 1988.

11. F. H. McMahon. Lawrence livermore national laboratory fortrn kernel:mflops.
12. V. R. North. Ia-64 code generation: http://citeseer.ist.psu.edu/385244.html.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.netlib.org/benchmark/nas
http://www.netlib.org/benchmark/nas

360 Y. Ben-Asher and D. Meisler

13. C. D. Polychronopoulos, M. B. Gikar, M. R. Haghighat, C. L. Lee, B. P. Leung, and
D. A. Schouten. The structure of parafrase-2: an advanced parallelizing compiler
for c and fortran. In Selected papers of the second workshop on Languages and
compilers for parallel computing, pages 423–453, 1990.

14. W. Pugh. The omega test: a fast and practical integer programming algorithm for
dependence analysis. In Supercomputing, pages 4–13, 1991.

15. A. Qasem, G. Jin, and J. Mellor-Crummey. Improving performance with integrated
program transformations. Technical Report TR03-419, Rice University, 2003.

16. B. R. Rau and C. D. Glaese. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. In Proceeding of
the 14th Annual Workshop on Microprogramming, pages 183–198, October 1981.

17. B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In MICRO, pages 63–74, 1994.

18. B. Ramakrishna Rau. Iterative-modulo-scheduling. In HPL-94-115, November
22,1995.

19. Warter, Lavery, and Wwu (1993). The benefit of predicated execution for software
pipelining. In HICSS-26 Conference Proceedings, page Vol. 1, January 1993.

20. N. J. Warter, J. W. Bockhaus, G. E. Haab, and K. Subramanian. Enhanced modulo
scheduling for loops with conditional branches. In The 25th Annual International
Symposium on Microarchitecture, Portland, Oregon, 1992. ACM and IEEE.

21. N. J. Warter, S. A. Mahlke, W. W. Hwu, and B. R. Rau. Reverse if-conversion.
SIGPLAN Not., 28(6):290–299, 1993.

22. M. Wolfe. The tiny loop restructuring research tool. In Proceedings of the Inter-
national Conference on Parallel Processing, 1991.

23. A. M. Zaky. Efficient Static Scheduling of Loops on Synchronous Multiprocessors.
PhD thesis, Ohio State University, OH, 1989.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index

Bauer, Jörg 1
Ben-Asher, Yosi 328

Cousot, Patrick 175
Cousot, Radhia 175
Cullmann, Christoph 12

Damm, Werner 225
Di Pierro, Alessandra 160

Ferdinand, Christian 12
Field, John 273

Geilmann, Kathrin 120
Gössler, Gregor 201
Graf, Susanne 201

Hankin, Chris 160
Heckmann, Reinhold 12
Henzinger, Thomas A. 273

Knapp, Steffen 53

Loginov, Alexey 247

Majster-Cederbaum, Mila 201
Manevich, Roman 273
Margaria, Tiziana 145

Martens, Moritz 201
Martin, Florian 12
Maurer, Dieter 82
Meisler, Danny 328

Nielson, Flemming 293, 311
Nielson, Hanne Riis 293, 311

Paul, Wolfgang 53
Poetzsch-Heffter, Arnd 120

Ramalingam G. 273
Reps, Thomas 1, 247
Rüthing, Oliver 145

Sagiv, Mooly 1, 247, 273
Schäfer, Jan 120
Schlickling, Marc 12
Seidl, Helmut 97
Sifakis, Joseph 201
Steffen, Bernhard 145
Stein, Ingmar 12

Thesing, Stephan 12
Toben, Tobe 225

Verma, Kumar Neeraj 97

Westphal, Bernd 225
Wiklicky, Herbert 160

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

	Title
	Preface
	Table of Contents
	An Appreciation of the Work of Reinhard Wilhelm
	Research Activities
	Foundations of Programming and Programming Languages
	Compilers, Compiler Generators, and Compilation Algorithms
	Static Program Analysis
	Program Transformation/Rewriting
	Algorithm Animation and Visualization
	Timing Analysis for Real-Time Systems

	Technology Transfer
	Pedagogical Activities
	Schloß Dagstuhl
	A Partial List of Reinhard Wilhelm's Collaborators

	New Developments in WCET Analysis
	Introduction
	Worst-Case Execution Time Prediction by aiT
	Loop Bound Detection by Data-Flow Analysis
	Common Basis for Both Analyses
	Running Examples
	The Pattern-Based Approach
	Improved Loop Analysis Based on Data-Flow Analysis
	Evaluation of Both Methods
	Integration in aiT, and Outlook

	Detecting Infeasible Paths by Analyzing Conditions
	Overview
	The Flow-Constraint Analysis
	Evaluation
	Outlook

	Generic Slicing of Binary Code
	Slicing Using Program Dependencies
	Challenges in Computing Data-Dependencies
	Modeling Memory Accesses
	Computing Slices
	Evaluation
	Conclusion

	From VHDL to Timing Models
	VHDL and Its Semantics
	Timing Models and Analysis Framework
	Transformation of VHDL to a Timing Model
	Outlook and Conclusions

	Realistic Worst-Case Execution Time Analysis in the Context of Pervasive System Verification
	Introduction
	Pervasive Verification and Unified Theory
	System Overview
	Results

	Overview and Related Work
	Serial Interface
	Hardware Model with Continuous Time
	Continuous Time Lemmas for the Bus
	Serial Interface Construction and Correctness

	FlexRay-Like Interfaces and Clock Synchronization
	Hardware Components
	Clock Synchronization

	Specifying an Instruction Set Architecture
	Configurations and Auxiliary Concepts
	Basic Instruction Set
	Interrupts

	ISA of Processors with f-Interfaces
	I/O Ports and Message Buffers
	Timer Interrupt and I/O

	Hardware Correctness
	Scheduling Functions
	Simple Simulation Relations
	Processor Correctness Theorem
	The Interrupted Instruction

	Pervasive Correctness Proofs
	Computation Theory
	Pervasive Correctness
	Worst-Case Execution Time

	Lazy Execution of Boolean Queries
	Introduction
	Boolean Queries
	Abstract Syntax
	Standard Interpretation

	Lazy Execution
	\AndCursor
	\OrCursor
	\NotCursor
	IndexLookupCursor

	Experimental Results
	Conclusion

	Cryptographic Protocol Verification Using Tractable Classes of Horn Clauses
	Introduction
	Horn Clauses and Cryptographic Protocols
	\H_1 and Strongly Recognizable Relations
	General Flat Clauses
	One Variable Clauses
	\k-Variable Clauses and Flat Clauses
	Conclusion
	One Variable Clauses and Flat Clauses

	Infering Ownership Types for Encapsulated Object-Oriented Program Components
	Introduction
	Encapsulated Object-Oriented Components
	Ownership Domains for Boxes
	Language Syntax
	Auxiliary Functions
	Type System
	Properties

	Domain Inference
	Overall Inference Algorithm
	Constraint Generation
	Constraint Solving
	Properties of the Overall Inference Algorithm

	Related Work
	Conclusions

	ViDoC- Visual Design of Optimizing Compilers
	Introduction
	\ViDoC
	The Coordination Framework
	Using \ViDoC
	Example: Partial Dead Code Elimination
	Visual Aids for Designing Optimizations
	Visualizing Program Representations
	Visualizing Transformation Results

	Conclusion and Future Work
	Related Work

	Abstract Interpretation for Worst and Average Case Analysis
	Introduction
	Probabilistic Abstract Interpretation
	Approximations: A Classical Example
	Parallel Systems
	Tensor Models
	Average Running Time

	Conclusions

	Grammar Analysis and Parsing by Abstract Interpretation
	Introduction
	Languages and Context-Free Grammars
	Transitional Semantics of Context-Free Grammars
	Maximal Derivations
	Prefix Derivation Semantics
	Transitional Maximal Derivation Semantics
	Bottom-Up Fixpoint Maximal Derivation Semantics
	Protoderivations
	Top-Down Fixpoint Maximal Protoderivation Semantics
	Maximal Protoderivation Semantics
	Abstraction of the Top-Down Protoderivation Semantics into the Bottom-Up Derivation Semantics
	The Hierarchy of Grammar Semantics
	Fixpoint Bottom-Up Abstract Semantics
	Extension of the Bottom-Up Structural Abstract Semantics to Grammar Rule States
	Fixpoint Top-Down Abstract Semantics
	Bottom-Up Grammar Analysis
	First
	ϵ-Productivity
	Nonterminal Productivity

	Top-Down Grammar Analysis
	Follow
	Nonterminal Accessibility

	Grammar Problem
	Bottom-Up Parsing
	Top-Down Parsing
	Nonrecursive Predictive Parser
	Nonrecursive Predictive Parsing with Lookahead

	Conclusion

	Ensuring Properties of Interaction Systems
	Introduction
	Connectors, Interaction Models and Interaction Systems
	Properties of Interaction Systems
	Testing Deadlock-Freedom and Progress
	Composition of Systems
	Composition of Interaction Models and Systems
	Ensuring Deadlock-Freedom and Progress by Construction

	Discussion and Related Work
	Appendix
	Subsystems
	Proofs

	On the Expressive Power of Live Sequence Charts
	Introduction
	Core Live Sequence Charts
	Syntax
	Semantics

	Conclusion
	The Temporal Logics of Core LSCs
	From Core LSCs to Temporal Logic...
	...and Back

	Refinement-Based Verification for Possibly-Cyclic Lists
	Introduction
	Program Analysis Using 3-Valued Logic
	Reachability Maintenance in Possibly-Cyclic Linked Lists
	Expressing Properties of Transformations
	In-Situ List-Reversal Algorithm
	Establishing Properties of \Reverse
	Performance
	Related Work

	Abstract Counterexample-Based Refinement for Powerset Domains
	Introduction
	Abstract Counterexample-Based Refinement
	Refinement Orderings
	A Preference Ordering on the Domains Dimension
	A Preference Ordering on the Values Dimension
	A Preference Ordering on the Indices Dimension
	Combining Preference Orderings

	Refinement Procedures
	Refining with the Most Concrete Values/Most Abstract Values
	Computing \Ind_lazy
	Adapting the Refinement for the Most Concrete Values/Most Abstract Values

	Constrained Problem Settings
	Local Optima vs. Global Optima
	Related Work and Conclusions
	The Challenges of Refining Non-powerset Domains
	Abstract Domain Refinement

	Types from Control Flow Analysis
	Introduction
	Control Flow Analysis
	Correct Specification
	Least Solutions

	Preliminaries
	Observed Types
	Observed Types from Control Flow Estimates
	Covariant Subtyping
	Optimal Observed Types

	Inferred Types
	Contravariant Subtyping
	Comparison of Inferred Versus Observed Types

	Conclusion

	Data Flow Analysis for CCS
	Introduction
	Setting the Scene
	Communicating Systems
	Transfer Functions
	The Worklist Algorithm
	Worked Example: A Key Agreement Protocol
	Conclusion

	Towards a Source Level Compiler: Source Level Modulo Scheduling
	Introduction
	Source Level Compiler Scheme
	Basic Operations Used by the SLMS Algorithm
	Source Level If-Conversion
	Decomposition of MIs
	Modulo Variable Expansion
	Scalar Expansion
	Delay Calculations
	Computing the MII

	Filtering Bad-Cases
	The SLMS Algorithm
	 SLMS and Other Loop Transformations
	Cases Where SLMS Optimizes Better Than the Lower Level MS
	 Working with the Source Level Compiler
	Experimental Results
	Experimental Results over a Relatively Weak Compiler
	Experimental Results over Highly Optimizing Compilers
	Experimental Results for Embedded Systems

	Possible Extensions
	Conclusions

	Author Index

