
A Core Calculus for a Comparative Analysis of
Bio-inspired Calculi

Cristian Versari

Università di Bologna, Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy

versari@cs.unibo.it

Abstract. The application of process calculi theory to the modeling and
the analysis of biological phenomena has recently attracted the interests
of the scientific community. To this aim several specialized, bio-inspired
process calculi have been proposed, but a formal comparison of their
expressivity is still lacking. In this paper we present π@, an extension of
the π-Calculus with priorities and polyadic synchronisation that turns
out to be suitable to act as a core platform for the comparison of other
calculi. Here we show π@ at work by providing “reasonable” encodings
of the two most popular calculi for modeling membrane interactions,
namely, BioAmbients and Brane Calculi.

Keywords: pi-calculus, priority, polyadic synchronisation, BioAmbients,
Brane Calculi.

1 Introduction

After the first use of π-Calculus for the modeling of biological processes [22],
the applications of process calculi to Systems Biology attracted increasing re-
search efforts. The direct employment of π-Calculus allowed the formalisation of
several biological mechanism, its variants and extension [20,23,8] permitted the
representation or analysis in silico of cellular processes [13,7]. To obtain higher
abstraction level and biological faithfulness, more complex calculi have been pro-
posed [4,24,21,10,11,12] which are based on or get inspiration from π-Calculus.
Even if they present many common features, each calculus focuses its atten-
tion on particular biological entities or mechanisms. Their similarity induces the
interest for a parallel analysis, but their specialisation does not allow a direct
comparison.

The π@ language was designed to this aim: its simple but powerful extensions
to π-Calculus – polyadic synchronisation and prioritised communication – allow
to express the ideas shared by all these formalisms and flexibly adapt to represent
the peculiarities of each one. Moreover, its simple syntax and semantics, very
close to π-Calculus, allow a natural extension of many properties and results
already stated for standard π-Calculus, thus facilitating π@ theoretical analysis.

In this paper we show π@ at work by encoding two of these formalisms: Brane
Calculi and BioAmbients. Their straightforward embedding in the same language

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 411–425, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

412 C. Versari

allows to understand clearly their structural/semantical common points and dif-
ferences and provides their ready-to-run implementation on top of a common
platform.

The paper is structured as follows. Next section presents π@ language, first
by introducing its extensions to π-Calculus, then by giving its syntax and se-
mantics. Section 3 is devoted to the explanation of the central ideas behind the
encodings, followed by their formalisation and analysis. For a detailed treatment
of BioAmbients and Brane Calculi see [24,4].

2 The π@ Language

The π@ calculus – pronounced like the french “paillette” – consists in π-Calculus
with the addition of two features: polyadic synchronisation and prioritised com-
munication. The first one is used to model localisation of communication typical
of the majority of bio-inspired calculi, which usually formalise it by the explicit
introduction of compartments (i.e. ambients and membranes in the case of the
two languages considered here). Priority is exploited as a powerful mechanism
for achieving atomicity, that is the completion, without overlapping, of complex
atomic operations by the execution of several simple steps.

Before presenting π@, we shortly recall π-Calculus syntax and semantics, on
which π@ is strongly based.

2.1 The π-Calculus

Here we recall the syntax and the reduction semantics of π-Calculus, chosen as
the basis for π@ because of the simplicity and closeness to the semantics used
for the majority of bio-inspired calculi. For a full threatment of π-Calculus we
refer to [14,15].

Definition 1. Let

N be a set of names on a finite alphabet, x, y, z, . . . ∈ N ;
N = {x | x ∈ N}

The syntax of π-Calculus is defined as

P ::= 0
∣
∣
∣

∑

i∈I

πi.Pi

∣
∣
∣ P

∣
∣ Q

∣
∣
∣ ! P

∣
∣
∣ (νx)P

π ::= τ
∣
∣
∣ x(y)

∣
∣
∣ x〈y〉

Definition 2. The congruence relation ≡ is defined as the least congruence sat-
isfying alpha conversion, the commutative monoidal laws with respect to both
(

∣
∣ ,0) and (+,0) and the following axioms:

(νx)P
∣
∣ Q ≡ (νx)(P

∣
∣ Q) if x /∈ fn(Q)

(νx)P ≡ P if x /∈ fn(P)

! P ≡ ! P
∣
∣ P

where the function fn is defined as

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 413

fn(τ)
def
= ∅ fn(x(y))

def
= {x}

fn(x〈y〉) def
= {x, y} fn(0)

def
= ∅

fn(π.P) def= fn(π) ∪ fn(P) fn(
∑

i∈I πi.Pi)
def=

⋃

i fn(πi.Pi)

fn(P
∣
∣ Q) def= fn(P) ∪ fn(Q) fn(! P) def= fn(P)

fn((νx)P)
def
= fn(P) \ {x}

Definition 3. π-Calculus semantics is given in terms of the reduction system
described by the following rules:

τ.P → P (μ(y).P + M)
∣
∣ (μ〈z〉.Q + N) → P{z/y}

∣
∣ Q

P → P ′

P
∣
∣ Q → P ′

∣
∣ Q

P → P ′

(ν x)P → (ν x)P ′
P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′

2.2 Polyadic Synchronisation

In π-Calculus channels and names are usually synonyms. Polyadic synchroni-
sation (introduced in [3]) consists in giving structure to channels: each chan-
nel is composed of one or more names and identified by all of them in the
exact sequence they occur. For example, an email address is usually written
in the form username@domain, where username and domain are two strings
– two names – both necessary to identify the given email address. Moreover,
their order is crucial since domain@username specifies another, likely unex-
isting, address. Following this analogy, π@ channels are written in the form
name1@name2@ . . . @namen without limit in the number of names, even if just
two suffice for most of the applications. In other words, a channel is indicated
by a vector of names (name1, name2, . . . , namen), n ≥ 1, and communication
between two processes may happen only if they are pursuing a synchronisation
along channels composed of the same number of names, with the same multi-
plicity and appearing order.

Apart from this, communication in π@ happens in the same way as in π-
Calculus. For example, the transition

comm〈d〉.P
∣
∣ comm(x).Q → P

∣
∣ Q{d/x}

is still valid in π@. Output actions are overlined as usual, even in case of polyadic
synchronisations:

polyadic@comm〈d〉.P
∣
∣ polyadic@comm(x).Q → P

∣
∣ Q{d/x}

Communication produces the same renaming effect, but with one difference: in
π-Calculus the transmission of a name always stands for the transmission of
a channel, while in π@ the transmitted name may represent a channel or just
one of its components, or both. For example, in the following expression the
transmitted name d represents a channel in the first output action d〈y〉, while
in d@comm〈y〉 it is just the first part of the channel d@comm.

414 C. Versari

polyadic@comm〈d〉.P
∣
∣ polyadic@comm(x).

(

x〈y〉
∣
∣ x@comm〈y〉

)

→
P

∣
∣ d〈y〉

∣
∣ d@comm〈y〉

For concision and readability, polyadic synchronisation is often used also in con-
junction with polyadic communication:

polyadic@comm〈a, b, c〉.P
∣
∣ polyadic@comm(x, y, z).Q →

P
∣
∣ Q{a/x, b/y, c/z}

Finally, the following transitions are not allowed:

x@y〈〉.P
∣
∣ y@x().Q � (x �= y)

x〈〉.P
∣
∣ x@x().Q �

In the first expression, the output and input channels are composed of the same
names, but with different appearing order. In the second one, channels are rep-
resented by the same name but with different multiplicity. In both cases the
vectors of names do not match.

2.3 Priority

Priority behaves as expected: a high-priority process holds the central processing
unit and executes its job before any low priority process. In π@ high priority
synchronisations or communications are executed before any other low priority
action. Usually a high priority action is indicated by underlining the name of
the channel one or more times. For example, the expression

stand〈x〉.P
∣
∣ walk〈y〉.Q

∣
∣ run〈z〉

contains three processes with different, increasing priority. To express more than
three levels of priority another notation is used, where the priority of the process
is represented by a number following the channel names. The above expression
may be rewritten as

stand : 2〈x〉.P
∣
∣ walk : 1〈y〉.Q

∣
∣ run : 0〈z〉

where a lower priority action is labelled with a higher number (the highest pri-
ority is denoted by 0).

Interaction between processes may occur only if channels have the same pri-
ority. In this example

x〈y〉.P
∣
∣ x(z).Q �

x〈y〉.P
∣
∣ x(z).Q → P

∣
∣ Q{y/z}

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 415

only the second interaction is allowed, because the expressions x and x denote
actually two different channels. Finally, as expected, low priority actions occur
only if no higher priority action may occur:

l〈w〉
∣
∣ l(x).P

∣
∣ h〈y〉

∣
∣ h(z).Q � 0

∣
∣ P{w/x}

∣
∣ h〈y〉

∣
∣ h(z).Q

l〈w〉
∣
∣ l(x).P

∣
∣ h〈y〉

∣
∣ h(z).Q → l〈w〉

∣
∣ l(x).P

∣
∣ 0

∣
∣ Q{y/z} →

0
∣
∣ P{w/x}

∣
∣ 0

∣
∣ Q{y/z}

The first of the two transitions is not allowed because interactions on low-priority
channel l may happen only after the high-priority communication on channel h.
For a detailed survey of priority in process algebras, see [9].

2.4 The π@ Syntax and Semantics

The π@ language is very close to π-Calculus: from a syntactical point of view the
only difference is the structure of channels, composed of multiple names followed
by the priority of the action. We use μ to denote a vector of names x1, . . . , xn

and μ : k to denote a channel, that is a vector of names μ followed by a colon and
a natural number k specifying the priority. As usual, μ : k represents an output
operation along channel μ : k, while α : k stands for a generic input, output or
silent action τ of priority k.

Definition 4. Let

N be a set of names on finite alphabet, x, y, z, . . . ∈ N ;
N+ =

⋃

i>0 N i , μ ∈ N+;
N+

= {μ | μ ∈ N+};
α ∈

(

N+ ∪ N+ ∪ {τ}
)

;

The syntax of π@ defined as

P ::= 0
∣
∣
∣

∑

i∈I

πi.Pi

∣
∣
∣ P

∣
∣ Q

∣
∣
∣ ! P

∣
∣
∣ (νx)P

π ::= τ :k
∣
∣
∣ μ :k(x)

∣
∣
∣ μ :k〈x〉

As previously introduced, some abbreviations are very often used in this paper:

μ(x) = μ :2(x) μ〈x〉 = μ :2〈x〉
μ(x) = μ :1(x) μ〈x〉 = μ :1〈x〉
μ(x) = μ :0(x) μ〈x〉 = μ :0〈x〉

The definition for structural congruence ≡ is exactly the same as given for π-
Calculus, where the function fn is naturally extended to the π@ syntax, that is

fn(μ : k(y))
def
= {μ1, . . . , μn}

fn(μ : k〈y〉) def
= {μ1, . . . , μn, y}

416 C. Versari

where μ = μ1@ · · ·@μn. The reduction semantics is very similar, but defined in
terms of an auxiliary function Ik(P), representing the set of actions of priority
k which the process P may immediately execute. For example, if

P = a.Q
∣
∣ b

∣
∣ c.R

∣
∣ d + e.S

∣
∣ a.T

then I0(P) = {c, e}, I1(P) = {b, d}, I2(P) = {a, a, τ}, where the availability of
τ action derives from the interaction of the first and last process.

Definition 5. Let Ik(P) be

Ik
(∑

i

αi : li.Pi

)

= {αi | li = k};

Ik(

(ν y) P
)

= Ik(P) \
{

α | y ∈ {x1, . . . , xn}∧
(α = x1@ . . . @xn ∨ α = x1@ . . . @xn)

}

;

Ik(

!P
)

= Ik(P
∣
∣ P);

Ik
(

P
∣
∣ Q

)

= Ik(P) ∪ Ik(Q) ∪ {τ | Ik(P) ∩ Ik(Q) �= ∅},

Ik(Q) =
{

α | α ∈ Ik(Q)
}

π@ semantics is given in terms of the following reduction system:

τ /∈
⋃

i<k Ii(M)
τ :k.P + M →k P

P →k P ′

(ν x)P →k (ν x)P ′

τ /∈
⋃

i<k Ii(M
∣
∣ N)

(μ :k(y).P + M)
∣
∣ (μ :k〈z〉.Q + N) →k P{z/y}

∣
∣ Q

cP →k P ′ τ /∈
⋃

i<k Ii(P
∣
∣ Q)

P
∣
∣ Q →k P ′

∣
∣ Q

P ≡ Q P →k P ′ P ′ ≡ Q′

Q →k Q′

π@ reduction rules are exactly the same of π-Calculus, except for the additional
condition τ /∈

⋃

i<k Ii(. . .) which avoids the execution of low priority actions
if higher priority communications (represented by τ actions) are immediately
available.

2.5 Notation

In addition to standard reduction relation →k, some derived relations are used
for the formulation of theorems. As usual, →∗

k is the reflective-transitive closure
of →k, while →(n)

k is used to evidence the length of the derivation, that is

P →(n) Q iff ∃ P1, . . . , Pn−1 : P → P1 → . . . → Pn−1 → Q

Similar notation are used for the derived relations.

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 417

Definition 6. Let P, Q, Q′ be π@ processes. The reduction relations →, �k,
�→, ⇒k, are defined as follows:

1. P → Q � P →k Q, k ∈ N;
2. P �k Q � P →h Q, h ≤ k;
3. P �→ Q � P →k P ′ ∧ P ′ �∗

k−1 Q, τ /∈
⋃

i<k Ii(Q).
4. P ⇒k Q � P �∗

k−1 Q, τ /∈
⋃

i<k Ii(Q) ∧
(

P �∗
k−1 Q′, τ /∈

⋃

i<k Ii(Q′) implies Q ≡ Q′).

→ is the standard reduction relation, disregarding the priority of the reduction.
�k denotes the derivation through reduction with priority higher or equal to k.
�→ indicates that, after a reduction with a certain (low) priority and, in case, a
sequence of higher priority actions, the process comes back to a state where it
is ready to perform only low priority synchronisations. ⇒k states a confluence
property of the process, meaning that all the states from which it is not possible
to perform a reduction of priority higher than k and reachable only by reductions
of priority higher than k, are congruent.

3 Encodings

The key feature which differentiates recent bio-inspired calculi from π-Calculus
is the explicit formalisation of compartments. BioAmbients is a modified version
of Ambient calculus [5], where compartments are represented by ambients, a sort
of boxes containing processes or other nested boxes. In Brane compartments are
bounded by membranes, on the surface of which processes compute. Both am-
bients and membranes are organised in a tree structure, both can dinamically
modify this structure by performing for example merge, enter/exit or exo oper-
ations. The central issue is how they modify this structure: the most observable
difference is the bitonality preserved by brane semantics and totally absent in
BioAmbients. As remarked in [4], this peculiarity is enough to preclude an im-
mediate embedding of one language into the other, thus not allowing a direct
comparison of their expressivity. An alternative analysis can be performed by
encoding both in a third formalism and compare their encoding functions. These
functions must obviously satisfy some “reasonable” properties (as discussed in
section 3.1) and they must also be as simple as possible by hiding irrelevant
details. π@ features were chosen to meet these criteria: the lack of a predefined
semantics for compartments together with the possibility of expressing localisa-
tion (by means of polyadic synchronisation) and complex atomic operations (by
means of priority) place π@ one abstraction level lower, as a sort of assembly
language for compartmentalised formalisms.

3.1 Requirements

The fundamental criterion guiding any encoding is the preservation of some ad-
dressed semantics. According to [16], this often means that the encoding function
[[

·
]]

must at least fulfill the notion of operational correspondence, characterised

418 C. Versari

by two complementary properties: completeness and soundness. The first means
that every possible execution of the source language may be simulated by its
translation, the second ensures that all the states reached by the translation
correspond to some state of the source. Since all the languages we consider are
Turing-complete (even Brane [2,6], despite of its simplicity), as usual for con-
current languages we require some additional criteria. As remarked in [17], a
reasonable encoding should also preserve the degree of distribution of the source
language (i.e. homomorphism w.r.t. parallel composition) and should not depend
on the channel (or compartment) names of the term to be encoded. This also
implies a very valuable property, that is modular compilation, as discussed in
[1]. In addition to the cited criteria, we also require the encoding to preserve the
termination or diverging behaviour of the translated term, in order to obtain a
totally faithful encoding function. The following definition formalises the notion
of reasonable encoding used in this paper.

Definition 7. An encoding
[[

·
]]

is reasonable if it enjoys the following proper-
ties:

1. homomorphism w.r.t. parallel composition:
[[

P1
∣
∣ P2

]]

=
[[

P1
]] ∣

∣
[[

P2
]]

;
2. renaming preserving:

for any permutation of the source names θ,
[[

θ(P)
]]

= θ(
[[

P
]]

);
3. termination invariance: P ⇓ iff

[[

P
]]

⇓, P ⇑ iff
[[

P
]]

⇑;
4. operational correspondence:

(a) if P → P ′ then
[[

P
]]

→∗ [[

P ′]]

,
(b) if

[[

P
]]

→∗ Q then ∃P ′ : P →∗ P ′ ∧ Q →∗ [[

P ′]]

.

3.2 Basic Ideas

Compartment and their nesting are very intuitive abstractions: the simple state-
ment that an object is enclosed in a box suggests that it is someway isolated from
the external context; putting one box into another means that, after the opera-
tion, the inner box with all its content are located inside the outer one; merging
the content of two boxes implies putting in the same box all the enclosed objects.
To obtain this behaviour in π@ we must recognise the exact meaning of every
operation on compartments and reproduce step by step the same semantics.

The first concept to unfold is nesting: compartments compose a dynamical
tree structure which must be encoded in π@. As suggested in [15], these kind of
structures can be represented as a set of processes linked by the share of private
channels between parent and child nodes. Like in [22], the scoping of private
names represents the boundaries of compartments, but thanks to polyadic syn-
chronisation each private name may represent an unlimited number of private
communication channels, as shown in section 2.2. If each node is supplied with
one distinctive name, the simplest way to encode the tree is by ensuring that
each node knows the name identifying its parent compartment.

Therefore, trivial changes in the tree structure may affect an unlimited number
of processes: the simple disclosure of a compartment implies that all contained

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 419

processes must be notified of their new parent compartment name. The same
situation occurs when splitting or merging the content of two compartments, like
in merge+ /merge− and exo/exo⊥ operations. In π@ this turns out to be a sort
of multicast communication, where specifical groups of nodes – that is sibling
and child processes – must receive on the proper channel a new compartment
name. This result is achieved by a smart use of priority levels: a high priority
loop notifies in turn all the interested processes and ends when such processes do
not exist anymore. By a single line of code, we obtain in π@ the same mechanism
typical of broadcast communication:

BCAST ≡ ! bcast(x, y).(τ + x〈y〉.bcast〈x, y〉)

The above process can be triggered by an output operation bcast〈chn, newchn〉
and terminate when no high priority synchronisations are available, leaving no
residual terms. Obviously, a high priority complementary output loop
! bcast〈chn, newchn〉 would cause the system to hang, since it prevents any
other computation with normal priority. This is one of the reasons that do not
allow a trivial translation of Brane and Bioambients replication operators and
induce an explicit reproduction of their unfolding technique in both the encoding
functions.

3.3 Encoding BioAmbients

Ambients are containers organised in a tree structure: running processes and
nested sub-ambients are located inside them. If each node of the tree represents
an ambient, nodes are complex structures: each node may contain zero or more
parallel processes and may be linked zero or more nested sub-ambients. Conse-
quently, for the implementation of the tree structure each encoded BioAmbients
process must be aware of the name of its containing (immediate) ambient, but
also of the name indicating the parent of its immediate ambient. This explains
why the encoding function

[[]]α

K,a,pa
requires the (bound) names a and ap, which

represent the immediate ambient and the parent ambient, respectively. The free
names oa, opa are placeholders standing for the immediate ambient and parent
ambient of the outer processes, while bound names na and npa represent a new
ambient or new parent ambient name received by the process. The first param-
eter K is the set of names used for the explicit unfolding of replicated processes
when encoding the bang operator: the cardinality of K is the number of bangs
in front of the process to encode.

Definition 8. The function
[[

·
]]α from BioAmbients to π@ processes is defined

as follows:
[[

0
]]α � 0

[[

P
∣
∣ Q

]]α �
[[

P
]]α ∣

∣
[[

Q
]]α

[[

(new n)P
]]α �

[[

(new n)P
]]α

∅,oa,opa
[[

[P]
]]α �

[[

[P]
]]α

∅,oa,opa

420 C. Versari

[[

! P
]]α �

[[

! P
]]α

∅,oa,opa
[[

0
]]α

K,a,pa
� 0

[[

P
∣
∣ Q

]]α

K,a,pa
�

[[

P
]]α

K,a,pa

∣
∣

[[

Q
]]α

K,a,pa
[[

(new n)P
]]α

K,a,pa
� νn

[[

P
]]α

K,a,pa
[[

[P]
]]α

K,a,pa
� νc

[[

P
]]α

K,c,a
[[

! P
]]α

K,a,pa
� νb(BANG(b, a, pa)

∣
∣

[[

P
]]α

K∪{b},a,pa

∣
∣

! new@b(na, npa).
[[

P
]]α

K∪{b},na,npa
)

[[∑

i∈I, I �=∅
ξi.Pi

]]α

K,a,pa
� BCAST

∣
∣ νs(! s(na, npa).

(
[[

ξi.Pi

]]α

K,na,npa
+ TREE(s, na, npa))

∣
∣

[[

ξi.Pi

]]α

K,a,pa
+ TREE(s, a, pa))

[[

enter n.P
]]α

K,a,pa
� enter@n@pa(x).bcast〈pa, a, x〉.(

[[

P
]]α

∅,a,x

∣
∣ ΠK)

[[

accept n.P
]]α

K,a,pa
� enter@n@pa〈a〉.(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

exit n.P
]]α

K,a,pa
� expel@n@pa(x).bcast〈pa, a, x〉.(

[[

P
]]α

∅,a,x

∣
∣ ΠK)

[[

expel n.P
]]α

K,a,pa
� expel@n@a〈pa〉.(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

merge− n.P
]]α

K,a,pa
� merge@n@pa(x).

bcast〈merge, a, x〉.(
[[

P
]]α

∅,x,pa

∣
∣ ΠK)

[[

merge+ n.P
]]α

K,a,pa
� merge@n@pa〈a〉.(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

local n!{m}.P
]]α

K,a,pa
� local@n@a〈m〉.(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

local n?{m}.P
]]α

K,a,pa
� local@n@a(m).(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

s2s n!{m}.P
]]α

K,a,pa
� s2s@n@pa〈m〉.(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

s2s n?{m}.P
]]α

K,a,pa
� s2s@n@pa(m).(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

p2c n!{m}.P
]]α

K,a,pa
� p2c@n@a〈m〉.(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

c2p n?{m}.P
]]α

K,a,pa
� p2c@n@pa(m).(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

c2p n!{m}.P
]]α

K,a,pa
� c2p@n@pa〈m〉.(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

[[

p2c n?{m}.P
]]α

K,a,pa
� c2p@n@a(m).(

[[

P
]]α

∅,a,pa

∣
∣ ΠK)

BANG(b, a, pa) ≡ ! b(na, npa).

(unfold@b.new@b〈na, npa〉 + TREE(b, na, npa))
∣
∣

unfold@b.new@b〈a, pa〉 + TREE(b, a, pa))

TREE(b,na, npa) ≡ npa@na(x).b〈na, x〉 + merge@npa(x).b〈na, x〉+
merge@na(x).b〈x, npa〉

ΠK ≡ unfold@k1
∣
∣ · · ·

∣
∣ unfold@kn,

K = {k1, . . . , kn}
BCAST ≡ ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ)

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 421

The strict relationship between BioAmbients and π-Calculus simplifies the en-
coding of base operators: parallel composition and restriction are homomorphi-
cally translated. Like for restriction, each ambient produces a private name, but
in this case the new name is inserted in the tree structure by passing it to the
subsequent encoding. Remarkably, the translation of each communication or ca-
pability choice requires a loop: in fact, each process ready to execute an action
may be notified of an occurring change in the nesting tree structure, caused by
other processes. Consequently, it should receive and replace the proper names
representing its immediate and/or parent ambients before attempting to per-
form the desired actions: each TREE subprocess is ready to handle this kind
of events. Communications and capabilities are directly encoded by means of
polyadic synchronisation: the possibility of using an unlimited number of names
for each pi@ channel (up to three, in this case) simplifies extremely the simulta-
neous expression of localisation inside ambients and synchronisation on different
directions (p2p, s2s, . . .) equipped with names. After the execution of each ca-
pability, the reorganisation of the tree structure and the eventual unfolding of
replicated processes is obtained by a sequence of high priority actions consisting
in the triggering of one BCAST loop and a set of unfold@ki synchronisations.

Finally, the encoding function
[[

·
]]α enjoys the requirements discussed in

section 3.1, as stated by the following theorem.

Theorem 1.
[[

·
]]α is a reasonable encoding (modulo structural congruence),

that is: let P , P1, P2 be BioAmbients processes, let Q be a π@ process, then

1.
[[

P1 ◦ P2
]]α =

[[

P1
]]α ∣

∣
[[

P2
]]α;

2. for any permutation of the source names θ,
[[

θ(P)
]]α = θ(

[[

P
]]α);

3. P ⇓ iff
[[

P
]]α ⇓, P ⇑ iff

[[

P
]]α ⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[

P
]]α →∗ [[

P2
]]α;

(b) if
[[

P
]]α →∗ Q then ∃P1 : P →∗ P1 ∧ Q →∗ [[

P1
]]α.

3.4 Encoding Brane Calculi

Like ambients, membranes are organised in tree structures: each node of the tree
may contain membrane processes or nested membranes. Unlike BioAmbients,
Brane Calculi present two main entities: systems and branes. Their distinction
implies slightly different translations, because the encoding function of systems
needs only two parameters (K, the set corresponding to the bang operators in
front of the system and pc, the name representing the parent compartment)
while an additional parameter is needed for encoding branes (c, the name of
the compartment where the brane process resides). Similarly to BioAmbients
encoding, oc and opc are placeholders standing for the compartment and parent
compartment of outer processes, while nc and npc are bound names representing
the new compartment and new parent compartment received during the tree
structure reorganisation.

422 C. Versari

Definition 9. The function
[[

·
]]β from Brane to π@ processes is defined as

follows:
[[

]]β � 0

[[

P ◦ Q
]]β �

[[

P
]]β ∣

∣
[[

Q
]]β

[[

! P
]]β �

[[

! P
]]β

∅,oc
[[

σ(|P |)
]]β �

[[

σ(|P |)
]]β

∅,oc
[[

]]β

K,pc
� 0

[[

P ◦ Q
]]β

K,pc
�

[[

P
]]β

K,pc

∣
∣

[[

Q
]]β

K,pc
[[

! P
]]β

K,pc
� νb(

[[

P
]]β

K∪{b},pc

∣
∣ ! new@b(npc).

[[

P
]]β

K∪{b},npc

∣
∣

! b(npc).

(unfold@b.new@b〈npc〉 + exo@npc(x).b〈x〉)
∣
∣

unfold@b.new@b〈pc〉 + exo@pc(x).b〈x〉)
[[

σ(|P |)
]]β

K,pc
� νc(

[[

σ
]]β

K,c,pc

∣
∣

[[

P
]]β

K,c
)

[[

0
]]β

K,c,pc
� 0

[[

σ
∣
∣ ρ

]]β

K,c,pc
�

[[

σ
]]β

K,c,pc

∣
∣

[[

ρ
]]β

K,c,pc
[[

! σ
]]β

K,c,pc
� νb(BANG(b, c, pc)

∣
∣

[[

σ
]]β

K∪{b},c,pc

∣
∣

! new@b(nc, npc).
[[

σ
]]β

K∪{b},nc,npc
)

[[

a.σ
]]β

K,c,pc
� BCAST

∣
∣ νs(! s(nc, npc).

(
[[

a.σ
]]β

K,nc,npc
+ TREE(s, nc, npc))

∣
∣

[[

a.σ
]]β

K,c,pc
+ TREE(s, c, pc))

[[

phagon.σ
]]β

K,c,pc
� phago@n@pc(x).bcast〈pc, c, x〉.(

[[

σ
]]β

∅,c,x

∣
∣ ΠK)

[[

phago⊥
n (ρ).σ

]]β

K,c,pc
� νx

(

phago@n@pc〈x〉.(
[[

σ
]]β

∅,c,pc

∣
∣

[[

ρ
]]β

∅,x,c

∣
∣ ΠK)

)

[[

exon.σ
]]β

K,c,pc
� exo@n@pc(x).bcast〈exo, c, x〉.(

[[

σ
]]β

∅,pc,x

∣
∣ ΠK)

[[

exo⊥
n .σ

]]β

K,c,pc
� exo@n@c〈pc〉.(

[[

σ
]]β

∅,c,pc

∣
∣ ΠK)

[[

pino(ρ).σ
]]β

K,c,pc
� νx τ.(

[[

σ
]]β

∅,c,pc

∣
∣

[[

ρ
]]β

∅,x,c

∣
∣ ΠK)

BANG(b, c, pc) ≡ ! b(nc, npc).

(unfold@b.new@b〈nc, npc〉 + TREE(b, nc, npc))
∣
∣

unfold@b.new@b〈c, pc〉 + TREE(b, c, pc))

TREE(b, nc, npc) ≡ npc@nc(x).b〈nc, x〉 + exo@npc(x).b〈nc, x〉+
exo@nc(x).b〈npc, x〉

ΠK ≡ unfold@k1
∣
∣ · · ·

∣
∣ unfold@kn,

K = {k1, . . . , kn}
BCAST ≡ ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉 + τ)

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 423

Like for BioAmbients encoding, each operation of the original language is trans-
lated with a synchronisation followed by a sequence of high priority actions which
manage the reorganisation of the tree structure and the unfolding of replicated
processes involved in the computation. The presence of two distinct replication
operators leads to two slightly different encodings which reflect the fact that sys-
tems are only provided of parent compartment, while branes present also their
immediate compartment.

Also the encoding function
[[

·
]]β enjoys the requirements discussed in

section 3.1.

Theorem 2.
[[

·
]]β is a reasonable encoding (modulo structural congruence),

that is: let P , P1, P2 and ρ1, ρ2 be respectively Brane systems and processes, let
Q be a π@ process, then

1.
[[

P1 ◦ P2
]]β =

[[

P1
]]β ∣

∣
[[

P2
]]β,

[[

ρ1
∣
∣ ρ2

]]β =
[[

ρ1
]]β ∣

∣
[[

ρ2
]]β

2. for any permutation of the source names θ,
[[

θ(P)
]]β = θ(

[[

P
]]β);

3. P ⇓ iff
[[

P
]]β ⇓, P ⇑ iff

[[

P
]]β ⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[

P
]]β →∗ [[

P2
]]β

;

(b) if
[[

P
]]β →∗ Q then ∃P1 : P →∗ P1 ∧ Q →∗ [[

P1
]]β.

3.5 Encodings Comparison

Brane and BioAmbients are different for several aspects. Brane has a very simple
syntax, provided with only three base operations, lacks any restriction and choice
operator, there is no explicit name communication mechanism. BioAmbients is
provided with elaborate, multi-level communication primitives in addition to
compartment operations. But in [4] all these operators are considered as possible
Brane extensions and their encoding in π@ would be exactly the same of the
original BioAmbients operators. Therefore, the crucial difference is not intended
to be in the syntax, but in the semantics: Brane compartment operations have
been designed to preserve bitonality, a concept totally absent in BioAmbients,
furthermore processes are thought to be on the surface of membranes, not inside
ambients.

By translating both languages in π@, we are able to discern at first sight where
processes are exactly placed and what are the differences in the dynamical rear-
rangement of the tree structure. The encoding of phago, exo, pino, enter/accept,
exit/expel, merge± operations clearly shows that both kind of processes own
the same information about their localisation in the tree, therefore the tree struc-
ture is very similar: the only difference is in the scoping of the names of their
parent ambients. In fact, unlike the encoding of ambients, the encoding function
of a Brane system P does not need the parameter c representing the immedi-
ate compartment of the process. This difference justifies the assumption that
Brane processes are located on membranes. Bitonality simply arises in the order
of the parameters given to the last term of the TREE subprocess and in the

424 C. Versari

choice of the names broadcasted and recursively passed to the encoding func-
tion (this is particulary evident in the exo⊥ operation, where the name of the
parent compartment pc, instead of the immediate compartment c, is the object
of communication).

In conclusion, the two analised languages present much more common points
than differences: concurrency, interleaving semantics, compartments with tree
nesting and very similar structure for nodes, implicit multicast communications
within compartment boundaries. If we consider all the extensions proposed in
[4], the two formalisms may be considered close variants of the same language.

4 Conclusions and Future Work

We presented a new calculus, π@, designed to be a core language for analysing
formalisms which model localisation and compartmentalisation. We showed π@
at work by a formal comparison of the reasonable encodings of BioAmbients
and Brane languages, which permitted to clarify their structural similarities and
semantical differences.

This is the first part of a wide analysis towards a disparate variety of bio-
logically inspired languages, like [21,11,12]. The generality of π@ features allow
to extend its application not only to process calculi, but also to formalisms not
pertaining to concurrency theory, like P systems [18,25].

Finally, thanks to the strong affinity with π-Calculus, we plan to implement a
stochastic version of π@ as a direct extension of the SPIM simulator [19], hence
providing a platform on top of which it is possible to immediately execute all
the embedded formalisms.

Acknowledgements. we would like to thank Nadia Busi for the precious sug-
gestions and support.

References

1. F. de Boer, C. Palamidessi. Embedding as a Tool for Language Comparison. In
Information and Computation 108(1), 1994.

2. N. Busi, R. Gorrieri. On the computational power of Brane Calculi. Third Work-
shop on Computational Methods in Systems Biology. Edinburgh, 2005.

3. M. Carbone, S. Maffeis. On the Expressive Power of Polyadic Synchronisation in
pi-calculus. In Nordic Journal of Computing 10(2): 70-98, 2003.

4. L. Cardelli. Brane Calculi - Interactions of Biological Membranes. In Computa-
tional Methods in Systems Biology, 2004.

5. L. Cardelli, A. D. Gordon. Mobile Ambients. In Foundations of Software Sci-
ence and Computation Structures: First International Conference, FOSSACS ’98.
Springer-Verlag, 1998.

6. L. Cardelli, G. Păun. An universality result for a (mem)brane calculus based
on mate/drip operations. In International Journal of Foundations of Computer
Science. World Scientific Publishing Company, 2005.

7. D. Chiarugi, M. Curti, P. Degano, R. Marangoni. VICE: A VIrtual CEll. Compu-
tational Methods in Systems Biology. 2004

A Core Calculus for a Comparative Analysis of Bio-inspired Calculi 425

8. M. Curti, P. Degano, C. T. Baldari. Causal π-Calculus for Biochemical Modelling
In Computational Methods in Systems Biology. 2003.

9. R. Cleaveland, G. Lüttgen, V. Natarajan. Priority in Process Algebra. In J.A.
Bergstra, A. Ponse, S. A. Smolka, editors, Handbook of Process Algebra, Elsevier,
2001.

10. V. Danos, C. Laneve. Formal Molecular Biology. In Theoretical Computer Science
325 (1), 2004.

11. V. Danos, S. Pradalier. Projective Brane-calculus. Computational Methods in
Systems Biology: Second International Workshop, CMSB?04, 3082:134?148. 2004.

12. C. Laneve, F. Tarissan. A simple calculus for proteins and cells In Proc. of
the Workshop on Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC’06). 2006.

13. P. Lecca, C. Priami, C. Laudanna, G. Constantin. Predicting cell adhesion prob-
ability via the biochemical stochastic pi-calculus. In Symposium on Applied Com-
puting. 2004

14. R. Milner. The Polyadic π-Calculus: a Tutorial. In F. L. Hamer, W. Brauer and H.
Schwichtenberg, editors, Logic and Algebra of Specification. Springer-Verlag, 1993.

15. R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, 1999.

16. U. Nestmann, B.C. Pierce. Decoding Choice Encodings. In Proc. of the 7th Inter-
national Conference on Concurrency Theory (CONCUR ’96). 1996.

17. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculi. Mathematical Structures in Computer Science 13(5): 685-719.
2003.

18. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

19. A. Phillips, L. Cardelli. A correct abstract machine for the stochastic pi-calculus.
Transactions on Computational Systems Biology. 2005.

20. C. Priami. Stochastic π-calculus. The Computer Journal 38 (7). 1995.
21. C. Priami, P. Quaglia. Beta binders for biological interactions. In Computational

Methods in Systems Biology, 2004.
22. A. Regev, W. Silverman, E. Shapiro. Representation and simulation of biochemical

processes using the π-Calculus process algebra. In Proc. of the Pacific Symposium
on Biocomputing (PSB ’01). World Scientific Press, 2001.

23. C. Priami, A. Regev, W. Silverman, E. Shapiro. Application of a stochastic passing-
name calculus to representation and simulation of molecular processes. Information
Processing Letters 80. 2001.

24. A. Regev, E. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients: an
abstraction for biological compartments. Theoretical Computer Science, 2004.

25. C. Versari. Encoding catalytic P systems in π@. In Proc. of the Workshop on Mem-
brane Computing and Biologically Inspired Process Calculi (MeCBIC’06). 2006.

	Introduction
	The @ Language
	The -Calculus
	Polyadic Synchronisation
	Priority
	The @ Syntax and Semantics
	Notation

	Encodings
	Requirements
	Basic Ideas
	Encoding BioAmbients
	Encoding Brane Calculi
	Encodings Comparison

	Conclusions and Future Work

