
Structure of a Proof-Producing Compiler
for a Subset of Higher Order Logic

Guodong Li, Scott Owens, and Konrad Slind

School of Computing, University of Utah

Abstract. We give an overview of a proof-producing compiler which
translates recursion equations, defined in higher order logic, to assem-
bly language. The compiler is implemented and validated with a mix
of translation validation and compiler verification techniques. Both the
design of the compiler and its mechanical verification are implemented
in the same logic framework.

1 Introduction

Most compilers are used to compile programs. However, it also makes sense to ex-
ecute logic [1], and thus to compile logic. This is the basis for logic programming,
where search for solutions to problems phrased as logic formulas is the domi-
nant paradigm [12]. In this paper we address another—hitherto unexploited—
opportunity for logic compilation; namely, the term language that dwells within
higher order logic [16,17]. This language comprises, roughly speaking, ML-style
pure terminating functional programs, i.e., those (computable) functions that
can be expressed by well-founded recursion in higher order logic [21]. Features
like type inference, polymorphism, and pattern matching make this subset a com-
fortable setting in which to program. Although this language does not contain
all computable functions, it does express a very wide range of algorithms and,
of course, the logic provides a setting for correctness proofs of such programs.

Compilation techniques developed for functional programming may be applied
to translate these programs to machine code. However, since we are in a formal
setting, it is natural to ask for more, namely the formal correctness of compila-
tion. There are two main approaches to achieving this high level of assurance:
compiler verification and translation validation. Compiler verification proceeds
by formally specifying, in the object logic, the source and target languages, along
with the compilation algorithm. Then the correctness of the compiler is proven
once and forall: a single object logic theorem establishes that all successful runs
of the compiler generate correct code. In contrast, translation validation [18]
does a per-run correctness proof. Its main advantage is that only the results of
compilation steps need to be verified, which can at times be far simpler than
verifying the algorithms performing the compilation.

We have built a proof-producing compiler for a simple subset of higher order
logic terms in the HOL-4 proof system [17]. The compiler is mainly based on
translation validation, but compiler verification techniques such as those found in

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 205–219, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

206 G. Li, S. Owens, and K. Slind

[9,11,14] are also used. A run of the compiler returns an (automatically proved)
theorem expressing the correctness of the compilation run; from this theorem
the generated code, for an ARM-like machine, can be directly read-off.

The task of compiling the term language of a logic using the logic itself poses
a couple of novel challenges: first, the source language is not visible in the logic;
second, there is no notion of evaluation for the logic. Source functions have a set-
theoretic semantics which has to be reconciled with the operational semantics of
the target machine.

In the remainder of the paper, we give an overview of the structure of the
compiler, and summarize our experiences to date.1

2 Overview

One immediate advantage of taking logic terms as the source language is that
many front end tasks are already provided by the HOL-4 system: lexical analysis,
parsing, type inference, overloading resolution, function definition, and termina-
tion proof (needed to admit recursive functions, since HOL is a logic of total
functions). The result of all this activity is a valid HOL function definition, em-
bodied in a possibly recursive equation. From this starting point, a sequence
of proof-based transformations pass through intermediate languages, ending in
assembly. We will describe four intermediate languages: HOL- (HOL Minor),
ANF/ACF (Administrative Normal Form / A Combinator Form), HSL (Heap
and Stack Level), and CFL (Control Flow Level). HOL-, ANF and ACF pro-
grams are simply HOL functions, with no attached operational semantics. It is
this feature that enables us to use standard mathematics to prove properties of
HOL- and ANF programs directly in HOL. HSL and CFL, on the other hand, are
imperative languages represented with syntax trees and operational semantics.

The translation from a source function to HOL- is performed and validated in
the front-end in an ad hoc manner; in fact there may be multiple source languages
that target HOL-. The translation from HOL- to ANF/ACF is mainly expressed
as a collection of verified rewrite rules. Currently, the translation from HOL- to
ANF/ACF includes performing closure conversion, CPS conversion, and register
allocation in that order. ANF is used for the compilation to HSL, while ACF
is for the validation of such compilation. ACF is obtained from ANF through
verified rewriting. The result is a theorem equating the original function with
the ACF translation of its body.

An ANF-format program is converted (not by proof) to a corresponding HSL
program, which is in turn converted to its CFL by laying out the heap and the
stacks. Finally, the CFL is translated to ARM-like object code by linearizing the
control-flow structures. Roughly speaking, the path from HOL- to HSL proceeds
by translation validation, while the other steps rely on compiler verification
techniques.

1 Source code along with examples is included in the ‘examples/dev/sw’ directory in
the HOL-4 distribution (http://hol.sourceforge.net).

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 207

Since we do not have an evaluation semantics for HOL- or ACF, widely-used
techniques for proving semantics preservation for the translation, e.g., simulation
arguments based on rule-induction over the evaluation relation, are not applied
to validate the translation from ACF to HSL. Instead, we derive a collection of
Hoare rules from the operational semantics of HSL and show that this semantics
agrees with the ACF level function by bottom-up reasoning. Thus, for an ACF
function g with inputs i and outputs o, and the HSL program Shsl obtained
from g, the following statement must be proved (where σ[[v]] reads the value of
variable v from state σ):

�thm ∀σhsl. (runhsl Shsl σhsl) [[o]] = g (σhsl [[i]])

HSL states are defined over virtual registers, heap variables and stack variables,
while CFL states range over machine registers and machine memory locations.
The correctness of the translation from HSL to CFL is phrased by relating the
states of these two languages by a relation �. The correctness statement asserts
that the execution of a HSL statement Shsl has the same effect on a HSL state
as the execution of its corresponding CFL statement Scfl:

�def (σhsl � σcfl)
.= (∀v ∈ σhsl.σhsl[[v]] = σcfl[[v′]]) where v′ is v’s injection into σcfl

�thm σhsl � σcfl ⇒ (runhsl Shsl σhsl � runcfl Scfl σcfl)

The runtime state σarm for the machine is a tuple of a program counter (pc),
a process status register (cpsr), physical registers and physical memory (ω).
If a CFL program Scfl is correctly translated to an ARM program Sarm, then
the execution of Scfl and Sarm should result in the same status of registers and
memory, thus any property proved at the CFL level can be pushed down to the
ARM level:

�thm runcfl Scfl σcfl = (runarm Sarm (pc, pcsr, σcfl)).ω

Collecting all correctness statements together gives the validation proof for the
translation from HOL- to ARM: for a HOL- function g with inputs i and outputs
o, and the final flat code Sarm obtained from g, in the state after the execution
of Sarm, the values left in outputs o are equal to applying the function g to the
initial values of inputs i in σarm

�thm ∀σarm.(runarm Sarm σarm)[[o]] = g (σarm[[i]])

3 Language Syntax and Semantics

In Figures 1-3 we give the syntax of the intermediate languages. HOL- is a sim-
ple polymorphically-typed functional language handling tail-recursive equations
where variables range over tuples of elements from types that can be directly
represented in machine words for the ARM, e.g., booleans and 32-bit words.
‘Let’-binding, λ expression and function call are also supported.

ANF is obtained from HOL- by performing closure conversion to eliminate
higher order functions, and a CPS (continuation-passing style) transformation
so that all expressions are flattened and the control flow is pinned down into a
sequence of elementary steps. Register allocation is performed on a data structure
obtained by analyzing the ANF program. This ANF program is also rewritten
to its ACF form that is a ‘constructor’-like semantic function.

208 G. Li, S. Owens, and K. Slind

opb ::= + | − | ∗ | ≫ | � | � | � | & | � | # arithmetic / bitwise operator
opr ::= = | 	= | < | > | ≤ | ≥ relational operator
opl ::= ∧ | ∨ | ¬ logic operator
e ::= w | v word and variable identifier

| −→e tuple, i.e.(. . . , e, . . .)
| e opb e | e opr e | e opl e binary operation
| λ v. e anonymous function
| if e then e else e conditional
| let −→v = e in e let definition
| e e application
| f named function

f ::= fid
−→v = e function definition

x ::= w | v word and variable identifier
e ::= −→x tuple

| (op opb) x x | (op opr) x x binary operation
| if v then e else e conditional on single variable
| let v = e in e let assignment to single variable
| let −→v = f e in e function call

f ::= fid
−→v = e function definition

x, f ::= similar to x, f in ANF
y ::= −→x | y opb y data processing operation
z ::= λ−→v . y | λ−→v .f −→x data processing function
c ::= λ−→v . (x, opr, x) conditional function
e ::= z | sc e e | cj c e e | tr c e e compositional function

Fig. 1. Syntax of HOL- (top), ANF (middle) and ACF (bottom)

As mentioned, HOL-, ANF, and ACF programs are mathematical functions
with no associated evaluation semantics. They can be understood as λ expres-
sions, and the order of reductions is not specified on them.

HSL is a simple imperative language that supports various structured control
statements including blocks (BLK), sequential composition (SC), conditionals
(CJ) and tail recursion (TR), plus an important structure for function call—
FC. Variables are divided into register variables, heap (global) variables, and
stack (local) variables. A BLK structure is just a list of atomic instructions. An
FC structure consists of an argument passing pair (the first component is for
the caller, the second component for is the callee), a body statement, and a
result passing pair. Heap variables are not allowed in parameters or results since
their values are not transferred through the stack. A HSL program will never
contain any comparison or jump instructions. Variables are divided into register
variables, heap variables and stack variables. Variables in ANF format have been
mapped to either register, heap or stack variables by register allocation and inter-
procedural analysis. In our current implementation, heap (global) variables are
replaced with stack variables during closure conversion, thus actually no heap
variable appears in the HSL.

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 209

CFL explicitly lays outs the heap and stacks for function calls. It specifies
machine registers and memory locations for the variables in HSL. A function
call in HSL is implemented by dividing the processing into three phases: pre-call
processing, function body execution and post-call processing. Pointer registers
hp (heap pointer), fp (frame pointer), ip (intra-procedure register pointer), sp
(stack pointer) and lr (link register) are used to control the layout of the heap
and stack frames for functions. CFL works over machine registers and memory,
thus a (one-to-one) mapping from HSL variables to them is required.

The translation from CFL to the object code simply performs the linearization
of control-flow structures. The format of an ARM instruction is: op{cond} d1 d2.
The cond field controls conditional execution of the instruction, it is omitted
for unconditional execution; d1 and d2 are the destination operand and source
operands respectively.

opb ::= add | sub | mul | ror | lsr | asr |
| lsl | and | orr | eor | rsb | mla , . . . arithmetic and bitwise operators

r ::= r0 | r1 | . . . | r8 register variable
v ::= r | sk[.] register and stack variable
y ::= w | r word constant and register
x ::= w | v constant and variable
inst ::= opb r y y arithmetic and bitwise operation

| ldr r (hp[i] | sk[.]) | str (hp[i] | sk[.]) r access to heap and stack
s ::= BLK ˜inst basic block containing an instr. list

| CJ (x, opr, x) s s conditional jump
| TR (x, opr, x) s tail recursion (loop)
| FC (x̃, ṽ) s (ṽ, x̃) function call

p ::= (−→v , s, −→x) programs

rd ::= HSL.r data register
rb ::= hp | fp | ip | sp | lr base (pointer) register
r ::= rd | rb register
m ::= m[rb, +i] | m[rb, −i] memory location
v, y, x, p ::= similar to v, y, x, p in HSL
inst ::= opb r y y | ldr r m | str m r | push r̃ | pop r̃ single instruction
s ::= BLK ˜inst | CJ (x, opr, x) s s | TR (x, opr, x) s control flow structures

BLK [] � σ � σ
eval inst inst σ = σ1 BLK instL � σ1 � σ2

BLK (inst::instL) � σ � σ2
S1 � σ � σ1 S2 � σ1 � σ2

SC S1 S2 � σ � σ2

S1 � σ � σ1 is true (eval cond cond σ)
CJ cond S1 S2 � σ � σ1

S2 � σ � σ1 is false (eval cond cond σ)
CJ cond S1 S2 � σ � σ1

is true (eval cond cond σ)
TR cond S � σ � σ

S � σ � σ1 is false(eval cond cond σ) TR cond S � σ1 � σ2
TR cond S � σ � σ2

copy (σε,σ) (callee.i,caller.i) = σ1 S � σ1 � σ2 copy (σ,σ2) (caller.o,callee.i) = σ3
FC (caller.i,callee.i) S (caller.o,callee.o) � σ � σ3

Fig. 2. Syntax for HSL (top) and CFL (middle), and evaluation rules (bottom) (Note:
FC structures only appear in HSL)

210 G. Li, S. Owens, and K. Slind

In our machine model, the data memory is separated from instruction memory
(also known as the instruction buffer, which is modeled as a function mapping
an address to an instruction). At each step the instruction pointed to by the pc
is executed. A program is executed until the first position beyond the code area
is reached.

r ::= CFL.r | pc machine register
m, v, y, x ::= similar to m,v, y, x in CFL
inst ::= b{opr} + k | b{opr} − k branch instruction

| cmp y y | tst y y comparison instruction
| CFL.inst operation instruction

p ::= (−→v , ˜inst, −→x) programs

eval op (op y x) ω = ω1
op y x � (pc,cpsr,ω) � (pc+1,cpsr,ω1)

update cpsr cpsr d1 d2 = cpsr1
cmp d1 d2 � (pc,cpsr,ω) � (pc+1,cpsr1,ω)

is true (eval cpsr cpsr rop)
b{rop} (+/−) k � (pc, cpsr, ω) � (pc (+/−) k, cpsr, ω)

is false (eval cpsr cpsr rop)
b{rop} (+/−) k � (pc, cpsr,ω) � (pc + 1, cpsr, ω)

Fig. 3. Syntax and evaluation rules of the machine language

Since expressions in HOL-, ANF and ACF are simply HOL functions, no
explicit definitions for either the syntax or the semantics of them are required.
In contrast, the abstract syntax for HSL and CFL is presented as inductive data
types, and the operational semantics of them are defined over these data types
(note that in our definition the body of a TR structure keeps running when the
condition does not hold).

4 Translation and Verification

In this section we discuss the stages of compilation, focusing on how the proofs
are organized.

4.1 From HOL- to ANF/ACF

Various well-known source-to-source translations are employed at this level: the
input is first transformed to a first order function, then to ANF by performing
a CPS transformation. And then a standard graph-colouring register allocation
phase is invoked to produce a data structure for generating HSL programs.
Finally, ANF is rewritten to ACF, an equivalent combinatory format.

Closure Conversion. Higher order and local functions in HOL- are eliminated
by closure conversion, where the free variables for local functions are captured
in an environment as passed to the function as an extra argument.

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 211

Combinator format. Although we do not have syntax trees for functions at
this level, we can define and use ‘constructor’-like semantic functions, and use
them to implement translation steps. The recursion equation is translated to an
equivalent combinatory format based on combinators for sequential composition
(Seq), parallel composition (Par), conditionals (Ite), and tail-recursion (Rec).
Note that the Seq and Par combinators are sufficient to express let-expressions.

�def Seq f1 f2
.= λx.f2(f1 x) �def Par f1 f2

.= λx.(f1 x, f2 x)
�def Ite f1 f2 f3

.= λx.if f1 x then f2 x else f3 x
�def Rec f1 f2 f3

.= λx.if f1 x then f2 x else Rec (f3 x)
�thm (λx.let v = f1(x) in f2(x, v)) .= Seq (Par(λx.x) f1) f2

CPS Conversion. Once the program is in combinator format, a CPS translation
is applied. CPS is defined semantically: CPS f

.= λk x. k (f x) specifies the
CPS interface to a function. From this definition, it is easy to prove the theorem
relating ordinary function application to CPS function application: � ∀f x. f x =
(CPS f) (λx.x) x. The CPS transformation phase repeatedly rewrites with the
following theorems to push the CPS function down through the combinators:

�thm CPS (Seq f1 f2) = CPS SEQ (CPS f1) (CPS f2)
�thm CPS (Par f1 f2) = CPS PAR (CPS f1) (CPS f2)
�thm CPS (Ite e f1 f2) = CPS ITE (CPS e) (CPS f1) (CPS f2)
�thm CPS (Rec e f1 f2) = CPS REC (CPS e) (CPS f1) (CPS f2)

where

�def CPS SEQ f1 f2
.= λk x.f1 (λr.f2 k r) x

�def CPS PAR f1 f2
.= λk x.f1 (λr2.f2 (λr1.k (r2, r1)) x) x

�def CPS ITE e f1 f2
.= λk x.e (λr.let k1 = k in if r then f1 k1 x else f2 k1 x) x

�def CPS REC e f1 f2
.= λk x.k (Rec (e (λx.x)) (f1 (λx.x)) (f2 (λx.x)) x)

Then the CPS interface from the expression is removed by rewriting with the
theorem � CPS f k = λx. let z = f x in k z to obtain a readable, let-based
A-normal form. There is also a pass to remove all the β-redexes introduced in the
CPS translation. The quality of the ANF expression is improved by removing
as many tuples as possible, and by removing redundant let expressions that
simply rename variables. All phases of transformations are term rewriting with
theorems that establish equality for the input and result of each rewriting step.

Register Allocation. This phase converts the ANF form to a data structure suit-
able for performing register allocation. Interestingly, the graph colouring register
allocation algorithm does not have to be verified; instead, the computed colour-
ing can be taken and used to build a term incorporating the required spilling.
To formally prove that this new term is equivalent to the original is very sim-
ple, amounting to not much more than checking that the two expressions are
α-equivalent. In our implementation this task is fulfilled implicitly when we
verify the translation from ACF to HSL by comparing the ACF with the syn-
thesized function. This nice trick was first noticed by Hickey and Nogin [8] and
is also used by Leroy [11]. It allows the results of standard register allocation
algorithms to be used, without having to verify their correctness. The following

212 G. Li, S. Owens, and K. Slind

example shows the HOL- (left) and an ANF (right) of the TEA block cipher [23]
(names of variables spilled begin with m and those in registers begin with r):

DELTA = 0x9e3779b9w
ShiftXor(x, s, k0, k1) =

((x � 4) + k0) # (x + s) #
((x � 5) + k1)

Round ((y, z), (k0, k1, k2, k3), s) =
let s′ = s + DELTA in
let y′ = y + ShiftXor (z, s′, k0, k1)
in ((y′, z + ShiftXor (y′, s′,

k2, k3)), (k0, k1, k2, k3), s′)
Rounds (n, s : state) =
if n = 0w then s
else Rounds (n − 1w, Round s)

Rounds(r0, (r8, r5), (r4, r3, r2, r6), r7) =
let v9 = (op =) (r0, 0w)in
if v9 then ((r8, r5), (r4, r3, r2, r6), r7)
else let m2 = (op −) (r0, 1w) in

let m4 = (op +) (r7, 2654435769w) in
let r1 = ShiftXor (r5, m4, r4, r3) in
let r9 = (op +) (r8, r1) in
let r1 = ShiftXor (r9, m4, r2, r6) in
let r1 = (op +) (r5, r1) in
let ((m5, m3), (m1, m0, m6, r1), r0) =

Rounds (m2, (r9, r1), (r4, r3, r2, r6), m4)
in ((m5, m3), (m1, m0, m6, r1), r0)

ACF. The ANF is again converted to an equivalent ‘constructor’-like semantic
function (i.e., ACF) based on combinators for sequential composition (sc), con-
ditionals (cj) and tail-recursion (tr). By definition sc = Seq and cj = Ite; however,
tr is a little different from Rec.

�def tr f1 f2
.= λx.if f1 x then x else tr (f2 x)

�thm (f x = if f1 x then f2 x else f (f3 x)) ⇔ (f = sc (tr f1 f3) f2)

4.2 From ACF to HSL

To support reasoning about HSL programs, we use the following Hoare triples:

{P} S {Q} .= ∀σhsl.P σhsl ⇒ Q(runhsl S σhsl)

We first derive standard Hoare rules. Then, to bridge the semantic gap between
an ACF function g with inputs i and outputs o, and the HSL structure S built
from g’s ANF, we specialize the axiomatic semantics to obtain a refined set of
Hoare rules—dubbed the projective Hoare rules. A projective Hoare rule says:
provided that inputs i have initial values v, and any variable x in the live variable
set ξ has value k, then in the state σ′ after the execution of S, the values left in
outputs o are equal to applying the function f to the initial values v, and x’s
value is still k:

S � ξ ↑ (i, f, o) .=
∀x ∈ ξ ∀v∀k∀σhsl.(if σhsl = v) ∧ (σhsl[[x]] = k) ⇒
let σ′

hsl = runhsl S σhsl in ∧ (of σ′
hsl = f v) ∧ (σ′

hsl[[x]] = k)

where functions if and of project from a data state the values of vector i and
o. If the judgement embodied by a projective Hoare rule holds on the S derived
from g, then the synthesized function f should be equivalent to g and, indeed
this is easy to prove automatically since they are quite similar.

The projective Hoare rules utilize the following definitions. Operator mk cnd

turns a condition into a condition function. Suppose
−→
ξ turns a set ξ into a

vector, and ←−v turns a vector v into a set, then the product of a vector and a set

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 213

makes a new vector that comprises v1 and all elements in ξ, v1 × ξ
.= (v1,

−→
ξ).

The dot product of a function and a set gives a new function: (λx.f x) � ξ
.=

λ(x,
−→
ξ).(f x,

−→
ξ). A vector and a projective function are interchangeable.

s1 � ξ1 ↑ (i1,f1,o1) s2 � ξ2 ↑ (o1,f2,o2)
SC s1 s2 � ξ1 ∩ ξ2 ↑ (i1,sc f1 f2,o2) sc rule

s1 � ξ1 ↑ (i,f1,o) s2 � ξ2 ↑ (i,f2,o)
CJ cnd s1 s2 � ξ1 ∩ ξ2 ↑ (i,(cj (mk cnd cnd) f1 f2),o) cj rule

s � ξ ↑ (i,f,i)
TR cnd s � ξ ↑ (i,(tr (mk cnd cnd) f),i) tr rule

s � ξ ↑ (i,f,o) g i′=f i
s � ξ ↑ (i′,g,o) shuffle rule

s � ξ ↑ (i,f,o) ξ′ ⊆ ξ
s � ξ ↑ (i×ξ′,f � ξ′,o×ξ′) pick rule

s � ξ ↑ (i,f,o) ξ′ ⊆ ξ
s � ξ′ ↑ (i,f,o) shrink rule

s � ξ ↑ (callee.i,f,callee.o)
←−−−−−
caller.o ∩ ξ′ = φ

FC (caller.i,f,callee.i) s (caller.o,f,callee.o) � ξ′ ↑ (caller.i,f,caller.o) fc rule

These rules are used to keep track of how the relation between specific inputs and
outputs change during the execution. Rules sc rule, cj rule and tr rule are control
flow rules and their meaning is self-explanatory. The live variable set ξ stores the
variables that are still live but not modified by the current statement. In other
words, when the value of a live variable is not altered by the current statement,
it is stored in ξ for future use. A live variable is either in ξ, or in the outputs o.
When it becomes not live any more, it should be removed from ξ. Maintaining
a ξ helps to reduce the number of variables in the inputs and outputs. Rule
pick rule is for extracting variables from the live variable set, while shrink rule is
used to discard variables not live any more from the set. Rule shuffle rule is to
restructure the input vector. Restructuring the ouput vector is accomplished by
appending an empty block and applying the shuffle rule to it. A basic block is
simulated as a whole as it is a macro instruction, thus there exists no rule for it.

Application of projective rules is controlled by an annotated structure with
inputs, outputs and context information, which guides the symbolic simulation
and the application of rules. Control flow rules sc rule, cj rule and tr rule
are applied on structures SC, CJ and TR respectively. For instance, when rea-
soning about a (CJ cond S1 S2) structure, we first reason about S1 and S2 sepa-
rately, then apply the cj rule rule. The application of data flow rules pick rule,
shrink rule and shuffle rule are guided by the “use” and “def” information
of a structure maintained by the compiler.

4.3 From HSL to CFL

The main task for this translation is to implement function calls and map heap
variables and stack variables to memory (for wider application we handle heap
variables here although they are replaced with stack variables during closure
conversion). Obviously the mapping function, �, shall be a one-to-one function.

The storage for local (stack) variables is allocated on function entry and re-
leased on function exit. In particular, local variables are held in a stack frame
that will be “destroyed” on function exit, and the storage for its stack can be

214 G. Li, S. Owens, and K. Slind

“collected” and reused for other function calls. The memory is modelled as a
finite map with addresses ranging from 0 to 232 − 1.

We introduce an injection relation �� to relate the states occurring during
the execution of HSL code and that of the translated CFL code, where � con-
sists of three injective functions �rg, �hp and �sk that map logical registers,
heap variables and stack variables to machine registers and memory locations
respectively. Of course all procedures use the same �hp as they share the global
heap. The correctness statement amounts to showing that the execution of a
HSL statement Shsl has the same effect on a HSL state as the execution of its
corresponding CFL statement Scfl (notation Dσ and DS return the domains of
the finite maps in σ and the variables accessed by the instruction in S).

�def one one inj σhsl � σcfl
.= ∀v1, v2 ∈ Dσhsl . addr σcfl v�

1 	= addr σcfl v�
2

�def σhsl �� σcfl
.= ∀v ∈ Dσhsl . σhsl[[v]] = σcfl[[v�]]

�def (Shsl ≡� Scfl)
.=

∀σhsl∀σcfl. (DShsl = Dσhsl ∧ σhsl �� σcfl) ⇒ (runhsl Shsl σhsl �� runcfl Scfl σcfl)

The function addr returns the address of a mapped variable. An address is pa-
rameterized by a state containing the values of base registers (e.g. fp and sp).
Given an injection �, the translation from HSL to CFL for most structures is
simple and we just need to replace HSL variables with their mapped machine reg-
isters and memory locations. A FC structure will be converted to the sequential
composition of pre-call processing, callee’s body and post-call processing:

r�

i

.=�rg ri hp[i]� .= m[�hp i] sk[i]� .= m[�sk i] S� .= ∀v ∈ DS . S[v ← v�]
Γhsl S

.= S� when S is a BLK,SC,CJ or TR structure
Γhsl (FC (caller.i, callee.i) S (caller.o, callee.o)) .=

SC (SC pre (Γhsl S)) post for valid pre, post and �′ described below

When �sk maps different stack variables to different memory locations, the trans-
lation for BLK, SC, CJ and TR structures guarantees semantics preservation. The
translation for FC is more complicated: we require that the pre-call processing
and post-call processing fulfill the parameter passing and result returning task;
and the execution of the pre-call processing, function body and post-call pro-
cessing should not modify the values of the caller’s register and stack variables
except for those set to receive results (we name this the value recovering prop-
erty). Assuming that � is an one-to-one injection, we have:

(BLK S) ≡� (BLK S�)
Shsl 1 ≡� Scfl 1 Shsl 2 ≡� Scfl 2
SC Shsl 1 Shsl 2 ≡� SC Scfl 1 Scfl 2

Shsl 1 ≡� Scfl 1 Shsl 2 ≡� Scfl 2
CJ cond Shsl 1 Shsl 2 ≡� CJ cond� Scfl 1 Scfl 2

Shsl ≡� Scfl

TR cond Shsl ≡� TR cond� Scfl

∀σ.σ[[caller.i�]] = (runcfl pre σ)[[callee.i�′
]] Shsl ≡�′

Scfl

∀σ.σ[[callee.o�′
]] = (runcfl post σ)[[caller.o�]]

∀σ.∀v ∈ (Drg,sk
Scaller

\ ←−−−−−
caller.o). σ[[v�]] = (runcfl (SC (SC pre Scfl) post) σ)[[v�]]

FC (caller.i,callee.i) Shsl (caller.o,callee.o) ≡� SC (SC pre Scfl) post

There are many ways to guarantee that the value recovering property holds. One
of them is to layout the frames of the caller and callee in such a way that their
domains do not intersect with each other; and the values of register variables

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 215

modified by the callee’s execution are recovered on the function entry. This leads
to a valid implementation of a frame layout and a function call procedure. The
areas in the memory devoted to stack frames (i.e. the activation record) are
marked by the ip, fp and sp. When the callee is called, space for results are
reserved by growing the stack, then the caller pushes all parameters into the
stack; and then the frame for the callee is created. Specifically, when a callee is
called, its stack frames shall not be overlapped with the callee’s frame.

As indicated by the following rule, an implementation is valid if it ensures
that: (1) the parameter/result passing and the body execution do not change
the values of stack variables in the caller’s frame except those for receiving re-
sults (i.e., caller.o); (2) all register variables are pushed into memory before
parameter passing on function entry and then popped from memory before re-
sult passing on function exit. In the following rule, σ〈v〉 represents reading the
value at concrete address v from state σ, and Dr is the abbreviation of DScaller

.
σ1 = runcfl pre σ σ2 = runcfl Scfl σ1 σ3 = runcfl post σ2

∀v ∈ (Dsk
r)�.σ〈v〉 = σ1〈v〉 ∃xi. σ1〈xi〉 = σ[[ri]] for i ∈ Drg

Scallee

∀v ∈ (Dsk
r)� ∪ {xi | i ∈ Drg

Scallee
}.σ2〈v〉 = σ1〈v〉

∀v ∈ (Dsk
r \ ←−−−−−

caller.o)�. σ3〈v〉 = σ2〈v〉 ∀ri ∈ (Drg
r \ ←−−−−−

caller.o). σ3[[ri]] = σ2〈xi〉
∀σ.∀v∈(Drg,sk

r \←−−−−−
caller.o). σ[[v�]]=(runcfl (SC (SC pre Scfl) post) σ)[[v�]]

Complying with these requirements, our implementation compiles function calls
into a callee-save style calling convention. Specifically, �sk=�′

sk= λi.(fp, −(i +
12)), �rg=�′

rg= λr.r and �hp=�′
hp= λi.(hp, −i). By carefully moving the point-

ers fp, ip and sp we keep the caller’s frame and callee’s frame located in separate
areas in the memory. All parameters and results are passed through the stack,
and the callee saves all data registers (i.e., r0 − r8) in all cases. This solution
is suboptimal but easier to verify. In particular, it allows us, while perform-
ing colouring register allocation, not to add interferences between caller-save
registers and temporaries that are live across a call.

higher address (32-bit word based address) lower address
← . . . global heap previous frame current frame next frame . . . →

Memory Addr Memory Addr
caller’s ip reserved for pc i
caller’s fp saved lr i-1 stack variable n j

save ip i-2 caller’s sp parameter/result k j-1
save fp i-3

stored reg 8 i-4 parameter/result 0 k
. . . . callee’s ip reserved for pc k-1

stored reg 0 i-12 callee’s fp saved lr k-2
stack variable 0 i-13

pre = BLK [sub sp sp (max(#caller.i, #caller.o) − #caller.i); push caller.i;
mov ip sp; sub fp ip 1; sub sp sp 1; push {r0, . . . , r8, fp, ip, lr};
add sp sp 12; pop callee.i; sub sp fp (12 + #stack variables)]

post = BLK [add sp ip #callee.o; push callee.o; sub sp fp 12;
pop {r0, . . . , r8, fp, ip, lr}; mov sp ip; pop caller.o;
sub sp fp (12 + #stack variables)]

216 G. Li, S. Owens, and K. Slind

One subtlety appearing in proofs is that the initial values of hp, sp, ip and fp
must be greater than specific values so that the memory can accomodate all
stack frames and the areas consumed by pre/post processing.

Both the heap and the stacks are simply finite maps, thus we do not formalize
and rely on any heap management and stack property. In [3] a block-base memory
model between a machine memory and a high-level view is introduced to manage
frame stacks. As in our method, separation is enforced between stack blocks
belonging to different function activation records.

4.4 From CFL to ARM

The translation from CFL to ARM proceeds by linearizing the SC, CJ and TR
structures. The instructions in basic blocks are already in the right format. Our
translation always generates flat code satisfying good properties including: (1)
any execution of the translated code will not access beyond its own area in the
instruction buffer; (2) the data state after an execution is independent of the
initial values of pc and cpsr; (3) all executions terminate.

The translation verification for CJ proceeds by case analysis on the condition;
while that for TR by the induction on the number of rounds the body is executed.
This linearization scheme turns out to be most succinct in terms of the length of
generated code. One optimization is performed at the flat code level for function
calls: all occurrences of a callee are moved to the same area in the code so
that only one copy is left. Unconditional jumps are inserted appropriately. The
correctness proof for this relocation is straight forward because the adjusted code
runs in the same way as its old version.

Γcfl (BLK (inst :: instL)) .= inst :: Γcfl(BLK instL)
Γcfl (BLK []) .= []

Γcfl (SC s1 s2)
.= (Γcfl s1) � (Γcfl s2)

Γcfl (CJ (v1, rop, v2) st sf) .= let (ρt ρf) = (Γcfl st, Γcfl sf) in
(cmp v1 v2) :: (b{rop} + ‖ρf‖ + 2) ::
ρf � [bal + ‖ρt‖ + 1] � ρt

Γcfl (TR (v1, rop, v2) s) .= let ρ = Γcfl s in
(cmp v1 v2) :: (b{rop} + ‖ρ‖ + 2) :: ρ � [bal − (|ρ| + 2)]

Note that ‖ρ‖ returns the number of instructions in ρ, and ρ1
 ρ2 appends ρ2
to ρ1.

Example. With the following abbreviations,

body
.= BLK [msub r3 r0 1w; mmul r2 r0 r1; mmov r0 r3; mmov r1 r2]

blk1
.= BLK [mmov r2 r1] snd

.= λ(v0, v1).v1

f1
.= λ(v0, v1).(v0 − 1w, v0 + v1) f2

.= tr (λ(v0, v1).v0 = 0w)〉) f1

the intermediate forms of the factorial function and the derivation of the
specification connecting the facthsl and factacf (where Axiom1 = blk1 � {} ↑
((r0, r1), snd, r2)) are

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 217

HOL-: fact (x, a) .= if x = 0w then a else fact (x − 1w, x × a)
ACF: factacf

.= sc (tr (λ(v0, v1).v0 = 0w) f1) snd
HSL: facthsl

.= SC (TR (r0, eq, 0w) body) blk1

CFL: factcfl
.= Γhsl facthsl = facthsl

ARM: factarm
.= Γcfl factcfl = [cmp r0 r1; beq + 6; sub r3 r0 1w; mul r2 r0 r1;

mov r0 r3; mov r1, r2; bal − 6; mov r2, r1]

body � {} ↑ ((r0, r1), f1, (r0, r1))
tr rule

TR (r0, ne, 0w) body � {} ↑ ((r0, r1), f2, (r0, r1)) Axiom1
sc rule

SC (TR (r0, ne, 0w) body) blk1 � {} ↑ ((r0, r1), factacf , r2)

5 Related Work

We have also developed a hardware compiler for a similar source language [7]: it
takes in HOL function definitions and emits FPGA-level netlists. Compilation
proceeds essentially by refinement steps: control structures in logic are refined
by formulas representing unclocked circuits implementing those structures, and
those circuit-formulas are further refined to be formulas for clocked circuits.

Hickey and Nogin [8] constructed a compiler from a higher order, untyped,
functional language to Intel x86 code, based entirely on higher-order rewrite
rules. The compiler is written in the MetaPRL logical framework. A set of
rewrite rules are used to convert a higher level program to a lower level pro-
gram. However, verification of the rules remains to be done. Since their source
languages and intermediate representations are similar to ours, we may apply
their rules during the translation from HOL to HOL- and then ANF, e.g., the clo-
sure conversion and CPS conversion rules; yet our existing verification techniques
for these translations are still valid. Similarly, Watson [22] proposes a refine-
ment calculus for the compilation from high-level language to .NET assembly;
Sampaio [20] uses term rewriting to convert source programs to their normal
forms representing object code. These latter works are not machine automated.

Leroy [2,11] has verified a compiler from a subset of C, Clight, to PowerPC
assembly code in the Coq system. The semantics of Clight is completely deter-
ministic and specified as big-step operational semantics. Several intermediate
languages are introduced and translations between them are verified. The proof
of semantics preservation for the translation proceeds by induction over the
Clight evaluation derivation and case analysis on the last evaluation rule used;
in contrast, our proofs proceed by verifying that the rewrite rules used are se-
mantics preserving and the execution of programs at different phases has the
same effect on the corresponding states. Leroy also uses translation validation
to sidestep the difficult correctness proof for register allocation. He relies on an
outside verifier to check a posteriori the graph colouring register allocator.

A purely operational semantics based development is that of Klein and Nipkow
[9] which gives a thorough formalization of a Java-like language. A compiler from
this language to a subset of Java Virtual Machine is verified using Isabelle/HOL.
However, that compiler targets high-level code than our assembly, for example it
assumes an unbounded number of registers. Compilation from a type-safe subset

218 G. Li, S. Owens, and K. Slind

of C to DLX assembly code has been verified using the Isabelle/HOL theorem
prover [10]. A big step semantics and a small step semantics for this language
are related by the proof.

There has recently been a large amount of work on verifying low-level lan-
guages, originally prompted by the ideas of proof carrying code and typed as-
sembly language [15]. We are currently investigating links with recent work on
Hoare Logics for assembly language, e.g., [5,13] and also extensions such as Sepa-
ration Logic [19]. Of course, compiler verification itself is a venerable topic, with
far too many publications to survey (see Dave’s bibliography [4]). Restricting to
assembler verification, one of the most relevant works for us is by Moore [14].

6 Conclusions and Future Work

We have presented the design of a compiler for a subset of higher order logic
which operates by running proofs. The fact that the source language is not associ-
ated with any evaluation semantics makes the translation validation somewhat
novel. Our end-to-end, fully automatic compiler successfully bridges the large
gap between programs in logic and low level assembly programs.

Currently, the validation of the translation from an ACF program to its HSL
program requires the HSL program to inherit ACF’s structure, thus restricting
the degree of optimizations at the HSL level. In spite of this restriction, many
optimizations can be performed in the other levels. For example, optimizations on
basic blocks are easy since their validation simply requires symbolic simulation.

Currently, we are strengthening the front end translation to support ML-style
datatypes and non-tail recursive functions. We are also augumenting the back
end to tackle dynamic memory allocation, as well as changing the current ARM-
like target language to the detailed ARM model developed by Fox [6].

Acknowledgements. We thank Thomas Tuerk for his help in refining the defi-
nition of the ARM model. We also appreciate the advice from the anonymous
reviewers.

References

1. Stefan Berghofer and Tobias Nipkow, Executing higher order logic, P. Callaghan, Z.
Luo, J. McKinna, R. Pollack, editors, Types for Proofs and Programs, International
Workshop (TYPES 2000), 2000.

2. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy, Formal verification of a C
compiler front-end, 14th International Symposium on Formal Methods (FM 2006),
Hamilton, Canada, 2006.

3. Sandrine Blazy and Xavier Leroy, Formal verification of a memory model for C-like
imperative languages, International Conference on Formal Engineering Methods
(ICFEM 2005), Manchester, UK, 2005.

4. Maulik A. Dave, Compiler verification: a bibliography, ACM SIGSOFT Software
Engineering Notes 28 (2003), no. 6, 2–2.

Structure of a Proof-Producing Compiler for a Subset of Higher Order Logic 219

5. Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni,
Modular verification of assembly code with stack-based control abstractions, ACM
SIGPLAN 2006 Conference on Programming Language Design and Implementation
(PLDI’06), 2006, pp. 401–414.

6. Anthony Fox, Formal verification of the ARM6 micro-architecture, Tech. Report
548, University of Cambridge Computer Laboratory, November 2002.

7. M. Gordon, J. Iyoda, S. Owens, and K. Slind, Automatic formal synthesis of hard-
ware from higher order logic, Proceedings of Fifth International Workshop on Au-
tomated Verification of Critical Systems (AVoCS 2005), ENTCS, vol. 145, 2005.

8. Jason Hickey and Aleksey Nogin, Formal compiler construction in a logical frame-
work, Journal of Higher-Order and Symbolic Computation 19 (2006), no. 2-3,
197–230.

9. Gerwin Klein and Tobias Nipkow, A machine-checked model for a Java-like lan-
guage, virtual machine and compiler, TOPLAS 28 (2006), no. 4, 619–695.

10. Dirk Leinenbach, Wolfgang Paul, and Elena Petrova, Towards the formal verifica-
tion of a C0 compiler: Code generation and implementation correctnes, 4th IEEE
International Conference on Software Engineering and Formal Methods (SEFM
2006), 2005.

11. Xavier Leroy, Formal certification of a compiler backend, or: programming a com-
piler with a proof assistant, Symposium on the Principles of Programming Lan-
guages (POPL 2006), ACM Press, 2006.

12. Kim Marriott and Peter J. Stuckey, Programming with constraints, an introduction,
MIT Press, 1998.

13. John Matthews, J Strother Moore, Sandip Ray, and Daron Vroon, Verification con-
dition generation via theorem proving, LPAR 2006 (LNCS 4246), Springer Verlag,
2006.

14. J Strother Moore, Piton: A mechanically verified assembly-level language, Auto-
mated Reasoning Series, Kluwer Academic Publishers, 1996.

15. Greg Morrisett, David Walker, Karl Crary, and Neal Glew, From System F to typed
assembly language, ACM Transactions on Programming Languages and Systems
21 (1999), no. 3, 527–568.

16. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel, Isabelle/HOL — a proof
assistant for higher-order logic, LNCS, vol. 2283, Springer, 2002.

17. Michael Norrish and Konrad Slind, HOL-4 manuals, 1998-2006, Available at
http://hol.sourceforge.net/.

18. A. Pnueli, M. Siegel, and E. Singerman, Translation validation, 4th International
Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS ’98), 1998.

19. John C. Reynolds, Separation logic: A logic for shared mutable data structures,
IEEE Symposium on Logic in Computer Science (LICS’02), 2002, pp. 55–74.

20. Augusto Sampaio, An algebraic approach to compiler design, volume 4 of AMAST
series in computing, World Scientific, 1997.

21. Konrad Slind, Reasoning about terminating functional programs, Ph.D. thesis, In-
stitut für Informatik, Technische Universität München, 1999.

22. Geoffrey Watson, Compilation by refinement for a practical assembly language,
International Conference on Formal Engineering Methods (ICFEM 2003), 2003.

23. David Wheeler and Roger Needham, TEA, a tiny encryption algorithm, Fast Soft-
ware Encryption: Second International Workshop, 1999.

	Introduction
	Overview
	Language Syntax and Semantics
	Translation and Verification
	From HOL- to ANF/ACF
	From ACF to HSL
	From HSL to CFL
	From CFL to ARM

	Related Work
	Conclusions and Future Work

